
Developing an Online Examination
Timetabling System Using Artificial Bee
Colony Algorithm in Higher Education

Kaixiang Zhu(&), Lily D. Li, and Michael Li

Central Queensland University, Rockhampton, QLD 4702, Australia
{k.zhu,l.li,m.li}@cqu.edu.au

Abstract. Educational timetabling is a fundamental problem impacting schools
and universities’ effective operation in many aspects. Different priorities for
constraints in different educational institutions result in the scarcity of universal
approaches to the problems. Recently, COVID-19 crisis causes the transfor-
mation of traditional classroom teaching protocols, which challenge traditional
educational timetabling. Especially for examination timetabling problems, as the
major hard constraints change, such as unlimited room capacity, non-invigilator
and diverse exam durations, the problem circumstance varies. Based on a sce-
nario of a local university, this research proposes a conceptual model of the
online examination timetabling problem and presents a conflict table for con-
straint handling. A modified Artificial Bee Colony algorithm is applied to the
proposed model. The proposed approach is simulated with a real case containing
16,246 exam items covering 9,366 students and 209 courses. The experimental
results indicate that the proposed approach can satisfy every hard constraint and
minimise the soft constraint violation. Compared to the traditional constraint
programming method, the proposed approach is more effective and can provide
more balanced solutions for the online examination timetabling problems.

Keywords: Educational timetabling � Examination timetabling � Constraint
satisfaction problem � Optimisation � Artificial bee colony algorithm

1 Introduction

Examination timetabling, course timetabling and school timetabling constitute educa-
tional timetabling [1] which is a fundamental task of schools and universities.
According to Wren [2], “Timetabling is the allocation, subject to constraints, of given
resources to objects being placed in space time, in such a way as to satisfy as nearly as
possible a set of desirable objectives”. A well-organised educational timetable ensures
a sound operation of an educational institute. Educational Timetabling Problems
(ETP) are considered the constraint satisfaction problems which involve multiple
factors, such as educators, students, classrooms and teaching equipment, as a whole.
ETPs have been widely studied with multiple artificial intelligence algorithms devel-
oped, mainly including heuristics algorithms, novel approaches and multi-agent sys-
tems [3]. Heuristics algorithms consist of meta-heuristics and hyper heuristics [4].
Novel approaches can be classified as hybrid approaches and fuzzy logic approaches

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2022
Published by Springer Nature Switzerland AG 2022. All Rights Reserved
W. Xiang et al. (Eds.): BROADNETS 2021, LNICST 413, pp. 112–131, 2022.
https://doi.org/10.1007/978-3-030-93479-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93479-8_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93479-8_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93479-8_7&domain=pdf
https://doi.org/10.1007/978-3-030-93479-8_7

[3]. However, there is a lack of general solution solving a wide range of ETPs, resulted
from the definition differences of hard and soft constraints in different universities [5].
Besides, each method has its applicability and strengths.

Currently, COVID-19 crisis challenges the traditional teaching format. Tradition-
ally, ETP should consider teaching staff availabilities and infrastructure capability.
However, as social distancing practices, schools and universities have to transfer face-
to-face classes and assessments online, which causes the hard and soft constraints of
ETP changed. Especially for examination timetabling problems, multiple new condi-
tions emerge, such as non-invigilator, unlimited room capacity, technical issues and
diverse exam durations. Those features, to the best knowledge of the authors, have not
been studied in conventional ETP research, which inspires this research to investigate
the Online Examination Timetabling (OET) problem and to develop a model for
solving the problem.

The contributions of this research include a conceptual model for the OET problem,
a conflict table for constraint handling and a modified Artificial Bee Colony
(ABC) algorithm for solving the OET problem.

The organisation of this article is as follows: In Sect. 2, the existing approaches and
algorithms for solving ETPs are reviewed. Section 3 proposes a conceptual model of
the OET based on the discussion of the general features of the OET problems.
A conflict table aiming to shrink the search space is introduced to handle the main hard
constraint. In Sect. 4, a modified ABC algorithm is applied to solve the problem. The
experiment based on the data from a local university for the proposed model is pre-
sented in Sect. 5. In order to further verify the effectiveness, the proposed approach is
compared with the Constraint Programming (CP) method in Sect. 6. Section 7 con-
cludes the article.

2 Literature Review

The approaches for solving ETPs have been studied over 50 years since Appleby,
Blake and Newman [6] initiated a study in school timetabling. Around 3000 compu-
tational timetabling articles are published every year, within which university time-
tabling problems occupy over 85% proportion [5]. Educational Timetabling is to
allocate a number of educational activities, such as exams, lectures, tutorials and
meetings, into finite timeslots and/or room-slots [7]. Each activity has its unique
conditions needed to be satisfied. The conditions are different from instance to instance
depending on the priorities given by different educational institutes. Generally, those
conditions could be categorised into hard constraints and soft constraints. Hard con-
straints decide the feasibility of a timetabling problem solution. Soft constraints impact
the solution quality [8]. Schaerf [1] classified ETPs as course timetabling, school
timetabling and examination timetabling problems. Course timetabling is to allocate
lectures and tutorials to timeslots, classrooms or other teaching facilities avoiding an
individual student taking more than one class at the same time. School timetabling,
based on curriculum, assigns lecturers and tutors to a scheduled course timetable,
taking their availabilities and specialisations as hard constraints [9]. Examination
timetabling is to ensure no student taking two or more exams simultaneously and to

Developing an Online Examination Timetabling System 113

optimise resource usage within an examination period [10]. Unlike course timetabling
or school timetabling, in an examination, rooms or examiners could be assigned to
different courses at the same time [8, 9]. For each type of the ETPs, the hard constraints
are commonly defined as below.

Hard constraints for course timetabling problems [3, 11, 12]:

• No student can take more than one class at the same time.
• Only one course can be taught in one classroom at a time.
• Timeslots for assigning courses in are limited to one day.
• The number of students in a class cannot exceed the capacity of a classroom.
• All courses must be allocated in a regular basis as required.

Hard constraints for school timetabling problems [13–15]:

• No teacher can deliver more than one class at the same time.
• Teachers cannot be scheduled to timeslots when they are unavailable.
• Teachers must be allocated to the courses they are capable to deliver.
• For co-teaching classes, the teachers must be allocated in the same timeslots.

Hard constraints for examination timetabling problems [8, 16–19]:

• Every exam must be assigned in consecutive timeslots and cannot be split.
• Exams must be invigilated, meaning examiner(s) will be allocated.
• No student can sit more than one exam simultaneously.
• The number of examinees cannot exceed the capacity of the exam hall in a timeslot.
• Every exam must be scheduled.

Educational timetabling problems are NP-complete problems [20], meaning that it
may be impossible to find a polynomial-time algorithm to solve the problem. In
addition to the traditional constraint programming method, more and more researchers
are interested in seeking stochastic methods in recent years [21]. Mainly, those methods
are heuristic approaches and novel methods [3, 5, 21]. Heuristic approaches are
problem-independent [22], including meta-heuristics and hyper-heuristics. Meta-
heuristic approaches are known as approximate methods which aim at finding better
solutions in a reasonable computational time rather than the best solution [23]. Meta-
heuristics approaches are inspired by the nature mechanisms, such as biological sys-
tems, physical and chemical processes, for their success in solving multi-objective and
combinational optimisation problems [24]. Hyper-heuristics is to heuristically choose a
heuristic [25]. Instead of using a technique derived from specific scenarios, hyper-
heuristics solve problems with more generalised solutions [26]. Novel methods include
hybrid approaches, fuzzy logic approaches and Multi-Agent Systems (MAS). Hybrid
approaches combine different approaches with the purpose to mitigate the weakness of
a single approach. Fuzzy logic approaches focus on solving those problems which do
not have a precisive classification [27, 28] resulting in the difficulty of quantitating and
modelling. Multi-agent systems engage several artificial intelligence techniques, as
agents, to collaboratively accomplish a common goal [29]. Every agent is independent,
able to communicate with each other and to do tasks incompletely.

Based on the algorithms abovementioned, many applications have been evolved
and developed. In heuristics scope, Soria-Alcaraz et al. [30] applied iterated local

114 K. Zhu et al.

search, and Soria-Alcaraz, Özcan, Swan, Kendall and Carpio [31] adopted perturbative
hyper-heuristics to solve course timetabling problems. Odeniyi, Omidiora, Olabiyisi
and Aluko modified Simulated Annealing (SA) approach, while Kheiri and Keedwell
[32] introduced a sequence-based selection hyper-heuristic framework to find solutions
for school timetabling problems. Kasm, Mohandes, Diabat and El Khatib combined
constructive heuristics with colour graphing [33], and Bykov and Petrovic developed
Step Counting Hill Climbing to tackled examination timetabling problems. Hybrid
approaches are approach combinations. Those combinations for solving ETPs include
but are not limited to Artificial Bee Colony (ABC) with Hill Climbing (HC) [34], HC
with SA [35], Cat Swarm Optimisation (CSO) with swap operator [13], tabu with
genetic algorithm [36], ABC with Simple Local Search (SLS) and Harmony Search
(HS) [37], and ABC with Great Deluge (GD) [38]. To deal with ill-defined problems
[39], many fuzzy logic applications were developed to solve ETPs for universities, such
as the University of Malaysia Sabah Labuan [40], Islamic Azad University [41],
University of Eswatini and Uludag University [42]. Since, universities’ resources, such
as rooms, teaching facilities and teaching staff, are shared with different faculties,
faculties need to negotiate with each other for different resources and bring discussion
results to their administrations to come up with a solution. To mimic the negotiation
processes, many universities have adopted MAS and let the agents play the roles of
negotiators, administrators and planers [29]. For example, the University of Gdansk
[43] utilised MAS to simulate administration, database, room and teacher agent and
scheduler.

Due to the idiosyncrasy of ETPs, there is a lack of universal solutions for general
ETPs. The key components of ETPs, such as rooms, teachers, courses, students and
timeslots, are different from university to university. Universities prioritise and weigh
those components differently. In addition, the university structures, educational policies
and procedures diversify the differences dramatically. Therefore, a number of ETP
approaches reviewed in this article were based on particular business scenarios.

This research will apply ABC algorithm to solve the online examination time-
tabling problem driven by a local university’s practice. The reasons for adopting ABC
algorithm are: 1) ABC was proved to be an efficient algorithm for solving multivari-
able, multimodal optimisation problems [44]. 2) ABC algorithm is simple, efficient and
effective in solving many optimisation problems compared to traditional algorithms,
such as Differential Evolution, Genetic Algorithm, Particle Swarm Optimisation
(PSO) [37]. 3) ABC algorithm is easy to be implemented with a few parameters [44].

3 A Conceptual Model of the Online Examination
Timetabling

This section presents the features of the OET problem, conducts mathematically
modelling and proposes a conceptual model for the OET problem including a novel
approach for hard constraint handling.

To model and simulate the application, the word “unit” is used to represent a
learning subject in the rest of the article, while other literature mentioned in Sect. 2
may use “course” for the subject.

Developing an Online Examination Timetabling System 115

3.1 OET Problems Features

Originated from the local university’s conduct of online examination, the new features
of OET problems are derived as below:

• Students participate in exams remotely. But students still cannot take two exams
simultaneously. It is expected that students are not overloaded.

• Every exam only can be allocated once in the exam period.
• Exams are non-invigilated and open book. Similar to an assessment, but the

timeframe is shorter. Through teaching and learning management systems, students
can download the exam questions, and upload the answers within the designated
exam durations. It is realised that the non-invigilated examination may cause aca-
demic integrity issues, however, this is not in the scope of this research.

• Although exams move online, an exam duration cannot be fragmented. That is, the
exam duration should be continuous from the scheduling point of view.

• An exam duration could be extended up to 12 h. This is to consider the technical
issues such as Internet connection failure and/or ICT system faults.

• Physical room capacity is not taken into account.
• Without the limitation of room capacity, the number of examinations to share the

same timeslots is unlimited.
• Since the number of exams put in a day could be many, the administrative load

would be increased. The examination downloading and uploading could intensify
the traffic of the IT system. Therefore, to balance the ICT network traffic should be
taken into consideration.

3.2 Symbols and Terms Definition

Parameters
P Number of days of the whole exam period
N Number of exam units to be allocated

Variables
t Duration (in hours) of each exam, t 2 1; . . .; 12f g
w Number of days a timetabling solution uses, w ! P
a set of exams allocated in one day, a 2 1; . . .Nf g
v Average number of units distributed in w, v ¼ N

w
x Number of exam units that cannot be allocated in P, x ¼ N �Pw

i¼1 ai.

3.3 Hard Constraints and Fitness Function

Eight hard constraints have been identified, as follows.

1. Each student cannot take more than one exam simultaneously.
2. Each unit only can be allocated once in the whole exam period.

116 K. Zhu et al.

3. All units must be allocated.
4. An exam whose duration is less than eight hours must be allocated in business

hours.
5. An exam whose duration is less than or equal to twelve hours must be allocated in

one day.
6. An exam cannot be allocated on a timeslot that is blocked by administration (e.g., a

scheduled maintenance time).
7. The duration of an exam must be consecutive.
8. The whole period of the examination must not be greater than the designated days.

A feasible solution has to satisfy all the hard constraints. During the solution-
seeking process, a formulation as in Eq. 1 is introduced to evaluate the fitness f wð Þ of
the current search node and then lead the algorithm to a feasible solution.

min f wð Þ ¼
Px

i¼1
tiPN

i¼1
ti
� w�P

P ; if w[P

0; if w � P

8<
: ð1Þ

The major goal of this project is to let the number of days (w) that a solution uses is
no more than the number of days (P) that the examination administration designates.
Therefore, w should be less than or equal to P, in other words, f wð Þ is required to be
zero. When w is greater than P, the proportions, that total hours of excessive exams to
all exams and the number of excessive days to designated days, will jointly affect the
fitness value. Seeking a feasible solution without hard constraint violation is the aim of
this research. The purpose to establish Eq. (1) is to set up an intermediate value for bees
to detect better food sources. The algorithm will chase the lesser f wð Þ in the search
space unit w equals to or smaller than P, then f(w) will be set to zero directly. After that,
all the solutions that have f wð Þ equal to zero will be outputted as feasible solutions.

3.4 Soft Constraint

When multiple feasible solutions are found, the soft constraint will be applied to filter
the most preferred one. In order to avoid exam data traffic congestion and reduce
administrative workload, exams need to be levelly distributed to the whole designated
exam period. To evaluate the evenness, Standard Deviation formulation (2) is adopted.
The less the r is, the more balanced solution will be. Thus, among feasible solutions,
the solution with the least r will be chosen as the best solution.

r ¼
ffiPw

i¼1 ai � vð Þ2
w

s
where w�P ð2Þ

3.5 The Proposed Conceptual Model

The proposed conceptual model is illustrated in Fig. 1. Preliminarily, course data are
retrieved from the student enrolment database, which includes student unique

Developing an Online Examination Timetabling System 117

identifications and the courses they have enrolled in. Based on the retrieved course
data, a conflict table can be constructed. The conflict table is introduced to shrink
search space, which will be detailed in Sect. 3.6. After consulting the conflict cir-
cumstances, the exam profiles, such as exam duration, will be required. To seek
solutions from the shrunk search space for OET problems, a modified ABC algorithm
is applied. After that, all the solutions found will be filtered to output the best solution
with a minimum soft constraint violation.

The fundamental hard constraint of examination timetabling is that no one student
can take more than one examination simultaneously. Consequently, every conflict
between units should be known at the very beginning. For an individual student, all the
units enrolled are conflicted with each other in the examination period. Therefore, the
conflict unit table can be formed from all the students’ unit enrolment data. A feasible
examination timetable is to arrange, within a day, non-conflict exam units to share
timeslots, and to avoid the timeslot overlap between conflict exam units. But the
conflict exam units could be allocated consecutively. In other words, a solution is a
combination of overlapping non-conflict and/or consecutive conflict units. As the
number of possible combinations is vast, a Computational Intelligence algorithm is
needed to get a better solution efficiently and effectively. Before the algorithm runs,
parameters, such as the period of a whole examination and the duration of each unit
exam, will be required.

3.6 Constraint Handling Approach

As mentioned earlier, the major hard constraint is to prevent any student from taking
more than one examination at the same time. Based on this principle, a conflict table is
established to restrain the search space. When seeking a solution, every two exami-
nation units conflicting in the conflict table will be kept from sharing timeslots. As the
conflict table is an aggregation from the student enrolment database, the solution search
space is largely shrunk.

Fig. 1. The conceptual model of OET

118 K. Zhu et al.

The data structure of the conflict table is illustrated in Fig. 2 with Java language
expression, which collects every exam unit as a unique data item and records all the
conflict exam units to be its subset.

The conflict unit table is generated by consulting students’ enrolment database. The
flowchart of the conflict table construction is presented in Fig. 3.

The method will consult every student’s data to get their unit enrolment situation.
When a student’s data is retrieved, each enrolled unit is compared with the existing
conflict table. If the unit is not in the conflict table, this unit will be inserted into the
table as a new item and the other units will be put into the conflict unit field. If the unit
is found in the conflict table, then the other units will be added to this unit’s conflict
unit field but a deduplicating method will be implemented to ensure every unit in the
conflict unit field is unique. When every student has been consulted, the complete
conflict table is constructed.

A simplified example of constructing a conflict table is shown in Table 1 and
Table 2. For instance, in Table 1, student S1 enrolled units A, B and C, and student S3
enrolled units A, C and E. Hence, it is known that unit A conflicts with units B, C and
E. As result, units B, C and E have been placed into the conflict unit field of A in
Table 2. After consulted students S1, S2 and S3, the conflict table for units A, B, C, D
and E can be established.

Fig. 2. Data structure of conflict table

Fig. 3. Conflict table construction flowchart

Developing an Online Examination Timetabling System 119

4 A Modified ABC Algorithm for the Proposed OET Model

The ABC algorithm is adopted in the research for seeking better solutions from the
search space shrunk by the conflict table. This section firstly introduces the original
ABC algorithm. A modified ABC algorithm for the proposed OET model is presented
afterward.

4.1 Description of Original ABC Algorithm

ABC is introduced by Karaboga [44] inspired by the behaviours of social insects. Self-
organisation and labour division is its basic mechanism. This algorithm simulates the
way that honeybees self-arrange to forage with four major traits, including positive
feedback, negative feedback, fluctuations and multiple interactions. Positive feedback
reinforces a foraging process, encouraging bees to create convenient paths. Negative
feedback prevents positive feedback from saturation, such as food source exhaustion
and over-population to a destination. Fluctuations help to discover new paths by ran-
domly walking. Although fluctuations may cause errors, it is significant for creativity.
Multiple interaction mechanisms ensure the information can be delivered to each node
of the network. In the labour division, honeybees are categorised to be employed
foragers and unemployed foragers. With the food sources, these two bee characters can
form a minimal model of forage selection. Food sources stand for the possible solutions
for the problems to be solved. Food sources are valued with many factors, such as the
distances to the nest and the lavishness. Employed bees take the responsibility to
investigate the food sources and then bring the information about the sources back to
the nest. Unemployed bees consist of two groups: scouts and onlookers. Scouts search
the surroundings of the nest to exploit new food sources while onlookers set in the nest
to build up food sources from the information shared by employed bees. Onlookers
determine the profitability of the food sources.

Table 1. Example of unit enrolment

Student Enrolled
units

S1 A B C
S2 C D E
S3 A C E

Table 2. Example of conflict table

Unit Conflict
unit field

A B C E
B A C
C A B D E
D C E
E A C D

120 K. Zhu et al.

ABC algorithm includes four stages: 1) in the initialisation stage, several solutions
(food resources) will be initialised; 2) in the employed bee stage, bees will be sent to
the initialised solutions to implement search tasks; 3) in the onlooker bee stage, bees
will select a better solution according to the solution fitness; 4) in scout bee stage, bees
will explore new solutions. The equations of each stage are detailed below.

Solution Population
The number of solutions SN will be randomly generated with different dimension D.
The solution generating rule as follows:

sdi ¼ sdmin þ random 0; 1ð Þ sdmax � sdmin
� �

; ð3Þ

Where i 2 1; . . .; SNf g; d 2 1; . . .Df g. sdmax and sdmin is the upper bound and low bound
for the dimension d.

After the population, solutions will be evaluated and randomly allocated with
employed bees to be exploited. The exploitation process will be enforced repeatedly in
R times. During the exploitation, scout bee(s) will explore new solution(s).

Employed Bee Stage
Based on the assigned solutions, employed bee es will generate a neighbour solution
with the below equation.

esdi ¼ sdi þud
i sdi � sdk
� � ð4Þ

Where k 2 1; . . .; SNf g is randomly chosen and k 6¼ i. ud
i is randomly generated in the

range of [−1, 1]. sdk is a neighbour of sdi .
The esdi will be evaluated and compared to sdi . If the fitness of esdi is better than or

equals to sdi , then esdi will be chosen. Otherwise, sdi will be remained.

Onlooker Bee Stage
Onlookers will evaluate the possibility value (p) of each solution provided by
employed bees. After the evaluation, onlooker bees will exploit the high possibility
solution. The possibility equation is represented as below.

pi ¼ fit esið ÞPSN
n¼1 fit esnð Þ ð5Þ

Where fit esið Þ is the fitness of esi generated in employed bee stage.

Scout Bee Stage

si ¼ smin þ random 0; 1ð Þ smax � sminð Þ ð6Þ

If any solution found by an employed bee has been abandoned in the onlooker stage
because of its p, the owner of the abandoned solution will become a scout bee. This
scout bee will look for a new solution in a way similar to the solution population, which
is shown in Eq. 6.

Developing an Online Examination Timetabling System 121

Key parameters of the original ABC algorithm are:

• SN: number of populated solutions which equals to employed and onlooker bees.
• MAX-ITERATION: max number of exploitation cycle.

4.2 A Modified ABC Algorithm for OET

ABC is adopted for OET problem in this research. The exam combination pool is the
search space. As each exam can and only can be assigned once in the whole exami-
nation period, the allocated units have to be bypassed. Therefore, this research will

/**Initialise the search spaceand solution population**/
1. Generate Conflict Table
2. Set parameter: MAX_ITERATION, NUMBER_BEE, MAX_EXPOITATION
3. Populate food sources using Equation (3).
4. Send employed bees to explore the populated food sources.
5. Evaluate the solution fitness with Equation (1)
6. If a solution’s f(w) is zero, then output it and populate a new one with Equation

(3)
7. DO WHILE (ITERATION < MAX_ITERATION)

/*Employed bee stage*/
8. FOR (each employed bee)
9. Find neighbours of the solutions explored from Step 4 using Equation (4).
10. Evaluation the fitness of the solution by using Equation (1),
11. IF fitness <> 0, apply greedy selection.
12. ELSE output feasible solution and keep another one.
13. Calculate the probability of each found solution with Equation (5)

/*Onlooker bee stage*/
14. Declare COUNTER //the exploitation counter
15. FOR (each onlooker bee: I)
16. For (each MAX_EXPOITATION)
17. Generate a random number: RAN
18. IF (RAN < probability of I)
19. Send onlooker bees to exploit neighbours of solutions found in Step

10.
20. IF (fitness of new solution == 0) output as feasible solution
21. ELSE IF (fitness of new solution < old one) select new one
22. ELSE COUNTER +1;
23. Memorise the best solution so far

/*Scout bee stage*/
24. Convert employed bees having MAX(COUNTER) to scout bees
25. FOR (each scout bees)
26. Scout bee randomly initialises a solution similarly to Step 3.
27. ITERATION +1;
28. END WHILE
29. Evaluate soft constraint against every feasible solution with Equation (2).
30. Output the solution which has best soft constraint and least duration.

Fig. 4. Modified ABC algorithm for OET

122 K. Zhu et al.

modify Eq. 4 into Eq. 7, where # 2 1; . . .;UNf g, UN is the number of unvisited exams
UN � N.

esdi ¼ sdi þ random 0; 1ð Þ #d
Max � #d

min

� � ð7Þ

Unlike employed bees choosing a better solution with fitness Eq. 1, the key role of
onlooker bees is to exploit the neighbourhood for a better solution by probability value
with Eq. 5. In order to avoid overexploitation, a parameter called exploitation_counter is
introduced. If a solution is exhaustedly exploited (exploitation_counter reaches maxi-
mum number which is defined as MAX_EXPOITATION in Fig. 4) without probability
value improvement or the solution has the biggest local exploitation_counter, a scout bee
would replace the onlooker bee to discover a new food source. Since the goal of this
research is to obtain feasible solutions, when one of them is found, it will be outputted,
and the related bee will be converted to a scout bee immediately. The modified algorithm
pseudocode is represented in Fig. 4.

The major modifications are summarised as below:

• Preprocess original data to generate the conflict table to limit search space.
• Use modified Eq. 7 for neighbour search to avoid duplicated exploration.
• Use the exploitation-counter to abandon exhausted sources in order to avoid over-

exploitation.

Output solutions anytime if a feasible solution is found, and the bee will be con-
verted to be a scout bee immediately.

5 Experiment

5.1 Experimental Settings

This research obtained a large dataset from a local university, detailed as follows.

• Number of data items: 16,246
• Number of students: 9,399
• Number of examinations: 209
• Range of examinations that a student takes: 1 to 4
• The whole period of examination: 7 days (resulted from manual arrangement)

With the purpose to test the flexibility of the proposed algorithm, the experiment
has been configured with extra conditions presented below.

• Range of examination duration: 3 to 12 h (detailed in Table 3)
• Timeslot limitation: examinations whose duration is less than or equals to 8 h must

be allocated in the daytime. (Daytime: 8 am to 5 pm)

Table 3. Number of exam distribution in duration

Duration (hours) 3 4 5 6 7 8 9 10 11 12
Number of exams 19 23 22 18 22 28 24 19 15 19

Developing an Online Examination Timetabling System 123

The proposed approach was experimented with the below environment.

• Operation system: Windows 10 Education Edition
• Integrated development environment: IntelliJ IDEA Ultimate 2019.3
• Programming language: Java
• Computer hardware system: Intel® Core™ i5-9500 3.00 GHz; 16.0 GB memory;

integrated graphics card

The algorithm has been experimented with ten samples as presented in Table 4.
Each sample is set with different parameters in the number of bees, the number of
iterations and the MAX_EXPOITATION. The number of bees represents the coverage
of solution population in the search space; The number of iterations is expected to test
whether the increase of searching rounds will improve the result; the MAX_-
EXPOITATION is to decide the deep of exploitation. Each sample will be fed in the
proposed algorithm ten times. To choose reasonable initial parameters, this research
referenced the first ABC algorithm experiment conducted in [44] and configures the
number of bees to be 20 and the number of iterations to be 500.

To evaluate the experiment result, three values have been recorded, including time-
spent, days and soft constraint violations. The time-spent indicates how much time the
algorithm used to seek a solution under a particular parameter setting; the days shows
how many days the best solution needs to allocate all the examinations; The soft
constraint violations refer to the fitness value of the best solution calculated with Eq. 2.

5.2 Experimental Results

The experiment results for each sample are shown in Table 5 with average value, the
best value, standard deviation and Coefficient of Variation (CV), from which the
following conclusions could be drawn.

Table 4. ABC algorithm parameter settings

Samples Bees Iterations MAX_EXPOITATION

A 20 500 20
B 60 500 20
C 40 500 40
D 10 1000 20
E 20 1000 20
F 40 1000 40
G 60 1000 20
H 20 1000 100
I 80 1000 20
J 20 5000 20

124 K. Zhu et al.

• The algorithm can obtain a feasible solution in a short time for a big dataset. In
Sample A, the proposed algorithm reaches the best solution within 75 s.

• Increasing the number of iterations can minimise the soft constraint violation.
Compared to Sample A who runs 500 iterations, Sample E executes two times of
iteration (1000), which improves the soft constraint violation by 3.57% (from
Sample A 38.02756 to Sample E 36.71591). However, significantly increasing
number of iterations does not linearly improve the soft constraints. The number of
iteration that Sample J operates is ten times greater than Sample A. But the
improvement is merely 7.96% (from Sample A 38.02756 to Sample J 34.99916).

Table 5. Experiment results (ten times runs)

Samples Time-spent (second) Days Soft constraint violation

A Average 75.9518 7 38.02756
Best 74.2180 7 34.98571
Std.Dev./CV 1.4557/1.92% 0/0% 2.2372/5.88%

B Average 153.9567 6.6 36.74307
Best 151.1280 6 34.61214
Std.Dev./CV 2.3456/1.52% 0.5163/7.82% 1.4708/4.00%

C Average 150.5761 6.3 37.62617
Best 147.782 6 34.14674
Std.Dev./CV 2.2246/1.48% 0.4830/7.67% 2.5541/6.79%

D Average 117.0227 7 37.7743
Best 110.119 7 34.89986
Std.Dev./CV 4.1278/3.53% 0/0.00% 1.5995/4.23%

E Average 149.5253 6.8 36.71512
Best 141.21 7 33.70599
Std.Dev./CV 3.5841/2.40% 0/0.00% 1.8711/5.10%

F Average 299.5271 6.2 37.30763
Best 293.362 6 34.16138
Std.Dev./CV 3.9970/1.33% 0.4216/6.80% 1.8075/4.84%

G Average 372.8681 6.4 36.1736
Best 362.575 6 30.88689
Std.Dev./CV 5.4304/1.46% 0.5163/8.07% 2.20376.09%

H Average 446.7798 6.4 36.31801
Best 437.548 6 34.05877
Std.Dev./CV 5.8057/1.30% 0.5163/8.07% 1.8077/4.98%

I Average 382.9436 6.375 34.88421
Best 368.638 6 30.23243
Std.Dev./CV 8.6314/2.25% 0.5175/8.12% 2.0953/6.01%

J Average 762.8847 6.285714 34.99916
Best 740.658 6 32.92416
Std.Dev./CV 1.5754/0.21% 0.4879/7.76% 2.1523/6.15%

Developing an Online Examination Timetabling System 125

• Increasing the number of bees improves the result. Comparing to Sample E,
Sample G and Sample I deploy three times and four times of bees respectively. The
soft constraint violations improved 5.68% (from Sample E 38.35568 to Sample G
36.1736 on average) and 9.05% (from Sample E 38.35568 to Sample I 34.88421 on
average).

• Deepening exploitation was not cost-effective. Compared to Sample E, Sample H
inputs five times MAX_EXPOITATION, but the soft constraint violation only
minimized by 5.3% (from 38.3556 to 36.3180)

• The proposed approach can stably output solutions with given parameters as the all
the coefficient of variation (CV) is less than 10%.

• Overall, Sample A consumed the smallest population and achieved satisfactory
results with the least iteration. Therefore, the settings are reasonable for the pro-
posed OET model.

6 Comparison Study

The examination timetabling problem of this research is posed by the COVID-19
pandemic crisis, which makes it difficult to find a similar study to compare the
experimental result. In order to verify the performance of the proposed approach in
solving OET problem, a Constraint Programming (CP) [17] method is implemented for
the comparison study as ETPs are considered constraint satisfaction problems. CP has
been proved successful in solving various problems, such as vehicle routing and
timetabling [45]. The flowchart of the CP for the proposed model is illustrated in
Fig. 5.

Firstly, the exam and enrolment data are retrieved to construct the conflict table,
which is the same as the processes described in Fig. 1 and Fig. 3. The program then
creates a day and then selects an exam from the exam list in turn. If the selected exam
does not conflict with other exams in that day slot, the exam will be allocated on the
day. Otherwise, a consecutive exam in the exam list will be consulted. If all the
unallocated exams have been visited and none of them can be assigned in the current
day, a new day will be created for them. When a new day is created, if the number of
days violates the hard constraint, the program will backtrack the exam list. When all the
exams have been allocated without hard constraint violation, a feasible solution will be
recorded. In order to find out all the feasible solutions that the proposed CP can come
out with, this research will fully backtrack each exam in the exam list even a feasible
solution is found. All the feasible solutions will be filtered by the soft constraint. Also,
after an exam list is completely backtracked, the list will be arranged to form a new
array by the way of moving the first element of the list to the end with the purpose to
evenly expose each element in each variable selection phase. When every rearrange-
ment is finished, in other words, the last element of the original list has reached the first
position of the array, the program terminates.

To compare with CP, the proposed ABC approach uses Sample A in Table 4, which
has the smallest population and iterations. The same university dataset in Sect. 5.1 is
used in the experiment. The comparative items include the number of feasible solutions

126 K. Zhu et al.

found, the elapsed time for seeking the first feasible solution, the number of days the
solution uses to allocate all the exams, the time of the program execution, and the soft
constraint violations. The comparison results are presented in Table 6. As CP selects
exam units sequentially, its experimental results are almost the same in each execution,
Table 6 lists only one set of CP results. On the contrary, ABC generates solutions
randomly and outputs results differently in each execution. Therefore, this comparison
study tests ABC ten times and lists the best and the average results respectively. Since
in this comparison, the ABC is re-run, its results are slightly different from Table 5.

From Table 6 the following findings are observed.

• ABC can find out much more solutions than CP does. The number of solutions
ABC found is 5.68 times more than the number of solutions CP did (340.9 com-
pares to 60).

• ABC is 27.3 times faster than CP in finding the first feasible solutions (4.1 ms
compares to 112 ms)

Fig. 5. Constraint programming flowchart

Developing an Online Examination Timetabling System 127

• ABC and CP are competitive in getting the best solution in the number of days
used.

• ABC consumes a longer time than CP to complete the program execution.
(74054 ms compares to 4117 ms).

• ABC approach has achieved a less soft constraint violation than the CP approach
2.35 times (37.84188 compares to 87.202). This indicates the applied ABC
approach can even the examination density in the whole exam period.

Overall, the modified ABC algorithm can provide better results than CP method in
this research. It can quickly find out a better solution. Although the whole running time
ABC uses is longer than CP, the minute level discrepancy in computational time could
be ignored compared to the importance of soft constraint violation for the proposed
problem.

7 Conclusions

This research aims at providing an approach for solving OET problem under the
COVID-19 pandemic crisis. Examination timetabling problem is one of the ETPs,
which has been widely studied for decades and therein multiple algorithms and
approaches have been created and introduced. However, the scarcity of universal
solutions for ETPs results in the need that every practical scenario requires a specific
analysis and method selection. Moreover, with social distancing practice due to the
pandemic, many universities and schools around the world move their educational
activities online, which makes ETPs more challenging. In order to cope with the
challenge, this research proposed a conceptual model to solve the online examination
timetabling problems along with a conflict table constructed to handle the hard con-
straint. A modified Artificial Bee Colony algorithm was proposed to solve the OET
problems. The proposed approach possesses multiple merits: 1) the conflict table
proposed converts big volume raw data to be a shrunk search space; 2) the modified
ABC algorithm changes neighbour search process to avoid over-exploration; 3)
introducing MAX_EXPOITATION parameter lest overexploitation. The experimental
result shows the proposed algorithm can effectively solve OET problems with several
advantages: 1) quickness, the algorithm can reach a feasible solution in 4.1 ms on
average, which is 27.3 times faster than CP does. 2) effectiveness, the algorithm

Table 6. Comparison results of ABC approach and CP approach

Items Modified ABC CP
Best Average

Number of feasible solutions 467 340.9 60
Elapsed time for the first solution (ms) 3 4.1 112
Number of days 6 6.8 6(best)/6.8(average)
Program execution (ms) 74054 75613.2 4117
Soft constraint violation 32.4345 37.84188 87.202

128 K. Zhu et al.

provides feasible solutions 7.7 times larger than CP in solution volume. 3) reason-
ableness, the algorithm is able to gain more reasonable solutions in soft constraint
violations, 2.3 times over CP.

The research can be applied to post-pandemic education as long as the examination
is conducted online. The future works include more algorithm evaluation comparing
with other evolutionary algorithms and extending the model to other educational
timetabling problems such as school timetabling.

Acknowledgment. The authors would like to acknowledge CQUniversity to give permission to
use the de-identified student enrolment data for the research.

References

1. Schaerf, A.: A survey of automated timetabling. Artif. Intell. Rev. 13(2), 87–127 (1999).
https://doi.org/10.1023/A:1006576209967

2. Wren, A.: Scheduling, timetabling and rostering—a special relationship? In: Burke, E., Ross,
P. (eds.) Practice and Theory of Automated Timetabling. LNCS, vol. 1153, pp. 46–75.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61794-9_51

3. Babaei, H., Karimpour, J., Hadidi, A.: A survey of approaches for university course
timetabling problem. Comput. Ind. Eng. 86, 43–59 (2015)

4. Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P., Schulenburg, S.: Hyper-heuristics: an
emerging direction in modern search technology. In: Glover, F., Kochenberger, G.A. (eds.)
Handbook of Metaheuristics. ISOR, vol. 57, pp. 457–474. Springer, Boston (2003). https://
doi.org/10.1007/0-306-48056-5_16

5. Zhu, K., Li, L., Li, M.: A survey of computational intelligence in educational timetabling.
Int. J. Mach. Learn. Comput. 11(1), 40–47 (2021)

6. Appleby, J., Blake, D., Newman, E.: Techniques for producing school timetables on a
computer and their application to other scheduling problems. Comput. J. 3(4), 237–245
(1961)

7. Song, T., Liu, S., Tang, X., Peng, X., Chen, M.: An iterated local search algorithm for the
University Course Timetabling Problem. Appl. Soft Comput. 68, 597–608 (2018)

8. Arbaoui, T., Boufflet, J., Moukrim, A.: Lower bounds and compact mathematical
formulations for spacing soft constraints for university examination timetabling problems.
Comput. Oper. Res. 106, 133–142 (2019)

9. Kahar, M., Bakar, S., Shing, L., Mandal, A.: Solving kolej poly-tech mara examination
timetabling problem. Adv. Sci. Lett. 24(10), 7577–7581 (2018)

10. Valouxis, C., Gogos, C., Alefragis, P., Housos E.: Decomposing the high school timetable
problem. In: Practice and Theory of Automated Timetabling (PATAT 2012), Son, Norway
(2012)

11. Junn, K.Y., Obit, J.H., Alfred, R.: The study of genetic algorithm approach to solving
university course timetabling problem. In: Alfred, R., Iida, H., Ag, A.A., Ibrahim, Y.L. (eds.)
Computational Science and Technology. LNEE, vol. 488, pp. 454–463. Springer, Singapore
(2018). https://doi.org/10.1007/978-981-10-8276-4_43

12. Jamili, A., Hamid, M., Gharoun, H., Khoshnoudi, R.: Developing a comprehensive and
multi-objective mathematical model for university course timetabling problem: a real case
study. In: Conference: Proceedings of the International Conference on Industrial Engineering
and Operations Management, Paris, France (2018)

Developing an Online Examination Timetabling System 129

https://doi.org/10.1023/A:1006576209967
https://doi.org/10.1007/3-540-61794-9_51
https://doi.org/10.1007/0-306-48056-5_16
https://doi.org/10.1007/0-306-48056-5_16
https://doi.org/10.1007/978-981-10-8276-4_43

13. Skoullis, V., Tassopoulos, I., Beligiannis, G.: Solving the high school timetabling problem
using a hybrid cat swarm optimization based algorithm. Appl. Soft Comput. 52, 277–289
(2017)

14. Dorneles, Á., de Araújo, O.C., Buriol, L.: A column generation approach to high school
timetabling modeled as a multicommodity flow problem. Eur. J. Oper. Res. 256(3), 685–695
(2017)

15. Tassopoulos, I., Iliopoulou, C., Beligiannis, G.: Solving the Greek school timetabling
problem by a mixed integer programming model. J. Oper. Res. Soc. 71(1), 117–132 (2020)

16. Leite, N., Melício, F., Rosa, A.: A fast simulated annealing algorithm for the examination
timetabling problem. Expert Syst. Appl. 122, 137–151 (2019)

17. June, T.L., Obit, J.H., Leau, Y.B., Bolongkikit, J.: Implementation of constraint
programming and simulated annealing for examination timetabling problem. In: Alfred,
R., Lim, Y., Ibrahim, A., Anthony, P. (eds.) Computational Science and Technology. LNEE,
vol. 481, pp. 175–184. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-
2622-6_18

18. Güler, M., Geçici, E.: A spreadsheet-based decision support system for examination
timetabling. Turk. J. Electr. Eng. Comput. Sci. 28(3), 1584–1598 (2020)

19. Aldeeb, B., Al-Betar, A., Abdelmajeed, A., Younes, M., AlKenani, M., Alomoush, W.: A
comprehensive review of uncapacitated university examination timetabling problem. Int.
J. Appl. Eng. Res. 14(24), 4524–4547 (2019)

20. Kaur, M., Saini, S.: A review of metaheuristic techniques for solving university course
timetabling problem. In: Goar, V., Kuri, M., Kumar, R., Senjyu, T. (eds.) Advances in
Information Communication Technology and Computing. LNNS, vol. 135, pp. 19–25.
Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-5421-6_3

21. Tan, J., Goh, S., Kendall, G., Sabar, N.: A survey of the state-of-the-art of optimisation
methodologies in school timetabling problems. Expert Syst. Appl. 165, 113943 (2021)

22. Memeti, S., Pllana, S., Binotto, A., Kołodziej, J., Brandic, I.: Using meta-heuristics and
machine learning for software optimization of parallel computing systems: a systematic
literature review. Computing 101(8), 893–936 (2018). https://doi.org/10.1007/s00607-018-
0614-9

23. Salhi, S.: Heuristic Search: The Emerging Science of Problem Solving. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-49355-8

24. Gandomi, A., Yang, X., Talatahari, S., Alavi, A.: Metaheuristic algorithms in modeling and
optimization. In: Metaheuristic Applications in Structures and Infrastructures, pp. 1–24
(2013)

25. Kim, J., Yang, H.: Effects of heuristic type on purchase intention in mobile social commerce:
focusing on the mediating effect of shopping value. J. Distrib. Sci. 17(10), 73–81 (2019)

26. Pillay, N., Rong, Q.: Hyper-Heuristics: Theory and Applications. Springer, Cham (2018)
27. Kouhbanani, S., Farid, D., Sadeghi, H.: Selection of optimal portfolio using expert system in

mamdani fuzzy environment. Ind. Manag. Stud. 16(48), 131–151 (2018)
28. Bělohlávek, R., Dauben, J., Klir, G.: Fuzzy Logic and Mathematics: A Historical

Perspective. Oxford University Press, Oxford (2017)
29. Junn, K.Y., Obit, J.H., Alfred, R., Bolongkikit, J.: A formal model of multi-agent system for

university course timetabling problems. In: Alfred, R., Lim, Y., Ibrahim, A., Anthony,
P. (eds.) Computational Science and Technology. LNEE, vol. 481, pp. 215–225. Springer,
Singapore (2019). https://doi.org/10.1007/978-981-13-2622-6_22

30. Soria-Alcaraz, J.A., et al.: Effective learning hyper-heuristics for the course timetabling
problem. Eur. J. Oper. Res. 238(1), 77–86 (2014)

130 K. Zhu et al.

https://doi.org/10.1007/978-981-13-2622-6_18
https://doi.org/10.1007/978-981-13-2622-6_18
https://doi.org/10.1007/978-981-15-5421-6_3
https://doi.org/10.1007/s00607-018-0614-9
https://doi.org/10.1007/s00607-018-0614-9
https://doi.org/10.1007/978-3-319-49355-8
https://doi.org/10.1007/978-981-13-2622-6_22

31. Soria-Alcaraz, J., Ochoa, G., Swan, J., Carpio, M., Puga, H., Burke, E.: Iterated local search
using an add and delete hyper-heuristic for university course timetabling. Appl. Soft
Comput. 40, 581–593 (2016)

32. Kheiri, A., Keedwell, M.: A hidden Markov model approach to the problem of heuristic
selection in hyper-heuristics with a case study in high school timetabling problems. Evol.
Comput. 25(3), 473–501 (2017)

33. Kasm, O., Mohandes, B., Diabat, A., Khatib, S.: Exam timetabling with allowable conflicts
within a time window. Comput. Ind. Eng. 127, 263–273 (2019)

34. Bolaji, A., Khader, A., Al-Betar, M., Awadallah, M.: University course timetabling using
hybridized artificial bee colony with hill climbing optimizer. J. Comput. Sci. 5(5), 809–818
(2014)

35. Akkan, C., Gülcü, A.: A bi-criteria hybrid Genetic Algorithm with robustness objective for
the course timetabling problem. Comput. Oper. Res. 90, 22–32 (2018)

36. Sutar, S., Bichkar, R.: High school timetabling using tabu search and partial feasibility
preserving genetic algorithm. Int. J. Adv. Eng. Technol. 10(3), 421 (2017)

37. Bolaji, A., Khader, A., Al-Betar, M., Awadallah, M.: A hybrid nature-inspired artificial bee
colony algorithm for uncapacitated examination timetabling problems. J. Intell. Syst. 24(1),
37–54 (2015)

38. Fong, C., Asmuni, H., McCollum, B.: A hybrid swarm-based approach to university
timetabling. IEEE Trans. Evol. Comput. 19(6), 870–884 (2015)

39. Pappis, C.P., Siettos, C.I.: Fuzzy reasoning. In: Burke, E.K., Kendall, G. (eds.) Search
Methodologies, pp. 437–474. Springer, Boston (2005). https://doi.org/10.1007/0-387-
28356-0_15

40. June, T.L., Obit, J.H., Leau, Y.-B., Bolongkikit, J., Alfred, R.: Sequential constructive
algorithm incorporate with fuzzy logic for solving real world course timetabling problem. In:
Alfred, R., Lim, Y., Haviluddin, H., On, C.K. (eds.) Computational Science and
Technology. LNEE, vol. 603, pp. 257–267. Springer, Singapore (2020). https://doi.org/10.
1007/978-981-15-0058-9_25

41. Babaei, H., Karimpour, J., Hadidi, A.: Generating an optimal timetabling for multi-
departments common lecturers using hybrid fuzzy and clustering algorithms. Soft. Comput.
23(13), 4735–4747 (2018). https://doi.org/10.1007/s00500-018-3126-9

42. Cavdur, F., Kose, M.: A fuzzy logic and binary-goal programming-based approach for
solving the exam timetabling problem to create a balanced-exam schedule. Int. J. Fuzzy Syst.
18(1), 119–129 (2015). https://doi.org/10.1007/s40815-015-0046-z

43. Tkaczyk, R., Ganzha, M., Paprzycki, M.: AgentPlanner-agent-based timetabling system.
Informatica 40(1) (2016)

44. Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical
report-TR06, Erciyes university, Engineering Faculty, Computer (2005)

45. Bukchin, Y., Raviv, T.: Constraint programming for solving various assembly line balancing
problems. Omega 78, 57–68 (2018)

Developing an Online Examination Timetabling System 131

https://doi.org/10.1007/0-387-28356-0_15
https://doi.org/10.1007/0-387-28356-0_15
https://doi.org/10.1007/978-981-15-0058-9_25
https://doi.org/10.1007/978-981-15-0058-9_25
https://doi.org/10.1007/s00500-018-3126-9
https://doi.org/10.1007/s40815-015-0046-z

	Developing an Online Examination Timetabling System Using Artificial Bee Colony Algorithm in Higher Education
	Abstract
	1 Introduction
	2 Literature Review
	3 A Conceptual Model of the Online Examination Timetabling
	3.1 OET Problems Features
	3.2 Symbols and Terms Definition
	3.3 Hard Constraints and Fitness Function
	3.4 Soft Constraint
	3.5 The Proposed Conceptual Model
	3.6 Constraint Handling Approach

	4 A Modified ABC Algorithm for the Proposed OET Model
	4.1 Description of Original ABC Algorithm
	4.2 A Modified ABC Algorithm for OET

	5 Experiment
	5.1 Experimental Settings
	5.2 Experimental Results

	6 Comparison Study
	7 Conclusions
	Acknowledgment
	References

