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Abstract. Docker containers’ privacy and data protection is a critical
issue. Unfortunately, existing works overlook runtime scanning methods.
This paper proposes a novel lightweight and rapid scanning model under
a framework covering assertion techniques during the container’s run-
time, defined as vulnerability scanning framework VSF. Our framework
includes identifying vulnerability, scanning security exposures, conduct
analysis, and call-back notifications to the requestor asynchronously. In
addition, the proposed scanning model is compared against other tools
of similar and complementary objectives. The framework is modeled
using nmap scripting engine NSE for its active scanning building block.
It applies network port scanning and security assertion techniques to
rapidly discover security vulnerabilities in a running Docker container
environment for a proactive testing approach as a security engine. Also,
providing an active trust model developed for Docker containers whether
containers are black-listed or grey-listed. It was developed over a frame-
work for DevSecOps environments and DevOps teams as the persona on
its adoption. The empirical case studies demonstrate the capability of
our scanning model, including standalone, CI/CD pipelines, and secu-
rity containerized environment. The case studies revealed no tangible
difference in the performance but the flexibility driven by the modeled
architecture. The experiments presented a velocity of 1.15 scans

sec
. How-

ever, the execution time is directly proportional to the complexity of
the vulnerability on the Docker ecosystem and its related attack vector
complexity. Its core capability resides on the artifacts developed as part
of the Art per relevant CVE via nmap NSE scripts.

Keywords: DevSecOps · DevOps · Containers · Docker · Containers
security · Docker security · Containers vulnerability scanner ·
Containers vulnerability assertion · Vulnerability scan

1 Introduction

Information Technology (IT) ecosystems that are generally considered secure
with a full spectrum of security measures can be exposed to vulnerabilities
natively available in container environments, on either: the container host, guest
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daemon, and the image. Large Enterprise, Banking, Government, Telco, Pub-
lic Cloud, Entertainment amongst key players in today’s economy, are widely
adopting containers platforms as an emerging technology due to its native bene-
fits; driving microservices architectures adoption in a vast range of organisations
such as Amazon, Twitter amongst a few [13]. Some key drivers in the emer-
gence of containerised environments include simplicity, flexibility derived from a
microservices architecture, shared compute underlying options, and easy adop-
tion requirements.

DevOps teams are surging as digital technology enablers across organisa-
tions and using containers as a crucial component. The organisational size and
business requirements drive the container’s orchestration needs, where advanced
environments will consume containers via a clustered orchestration layer, such as
Kubernetes. Some other players will deploy isolated container hosts to meet their
needs on a smaller scale. Despite the approach taken, the key issue remains the
same, caused by the existing vulnerabilities in the runtime containers’ abstrac-
tion layer.

DevOps environments tend to adopt conventional security measures and
passive image scanning, where related work presents novel active and passive
security methods that aim to provide a secure and trusted environment. The
Docker environments rely on Docker Hub as the sole repository of public Docker
images, including non-official nor verified images available. Once a Docker image
is loaded into a Docker Host, Docker does not provide a method to prove the
image authenticity in runtime. However, Guo et al. [5] proposes a PKI under
a container attestation service. The ability to deploy unverified Docker images
presents a security risk in any Docker environment, given published images are
public, uncontrolled, nor digitally signed.

The DevSecOps paradigm arises on protecting a DevOps tool-chain if the
tool-chain runs on containers or uses containers as an underpinning technol-
ogy. How can the containers be trusted? This paper proposes to black-list con-
tainers that are directly pulled from the Docker Hub until verified under the
proposed vulnerability scanning framework VSF. It grey-lists the relevant con-
tainers launched in runtime with active software scanning techniques. It allows
validating vulnerabilities present in the running container like CVE (Common
Vulnerabilities and Exposures) and consequently trusts the container in the con-
tainers’ network environment.

The experiments were conducted on Amazon AWS EC2 compute running
CentOS 7 instances. The case studies are considered typical scenarios for DevOps
teams; DevOps teams are considered the key stakeholder group for adopting the
proposed work. VSF’s key features aligns with the flexibility sought in DevOps
environments for container runtime vulnerability scanning.

Our research work found that: (a) runtime assertion testing for vulner-
ability scanning in Docker environments is an active technique to mitigate
native security risks associated with the ability of Docker to deploy images that
are not verified nor signed directly from Docker Hub. (b) A trust model can
be leveraged via the assertion testing with using an accuracy factor to determine
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whether the grey-listed/black-listed classification for a Docker container is certain
against some conditions. (c) Any active Docker vulnerability scanning techniques
can be adopted by DevOps teams via a vulnerability scanning framework as
needed in DevSecOps environments.

In the following section, we present the related work, where we cover the
classification of the tools and approaches used to date in security-relevant to
containers environments. Next, we present our proposed framework (VSF), some
experiments, and analysis. The experiments cover the scanning engine selection
and the case studies used to demonstrate VSF. Later on, the results are presented
to include a summary of the finding of the case studies plus our recommendations;
finally, our conclusions are presented with future work.

2 Related Work

Container environments have been rapidly adopted in the industry, especially in
DevOps teams, for accelerating development and its lightweight release cycle [10].
However, this approach increases surface attacks and further security exposures.
Evidence of this adoption relates to Docker Hub’s recording over four million
images in the Docker Hub by March 2021, with an increase of 77% in three
years, when compared to 2018 as per Martin et al. [10]. The key attributes
of container adoption in DevOps environments include: an abstraction level in
computing architecture, optimization of computing resources, and segmentation
provided at the service level in a micro-services architecture [13].

Applications and services are transformed with the adoption of containers
as seen in DevOps environments [10]; from edge computing to adaptive appli-
cations, when conventional security does not address the attack surface in an
agile manner, a lightweight runtime scanner is required, as detailed by Merino
et al. [1], as evidence on security concerns around the utilisation of containers
technologies.

Containers, when compared to its predecessor technology virtualisation (vir-
tual machines - VMs), drive abstraction into a micro-services domain but running
on a Linux baseline kernel host. It opens up flexibility but implies fewer controls
in a non-specific purpose kernel [15]. Containers have not been designed with a
robust security framework, instead conventional Linux hardening and configu-
ration options are available. Consequently, the are problems with security risks
associated with the utilisation of the containers technology as applications can
have direct access to the host kernel; thus, an attacker can reach the host envi-
ronment from the container layer [15]. Merino et al. [1] exemplifies the need for
a runtime scanning method.

We classify the related work in hardware-software based, or active-passive;
being hardware-based dependant on compute hardware; software-based depen-
dant on a software defined approach; or as active if it interacts with container
in runtime; or passive when interacts with components prior attestation of con-
tainers.
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Hardware-based security techniques for containers include the following:
Schwarz and Lipp [12] demonstration on how side-channel attack vectors can tar-
get Intel SGX (Software Guard Extensions) chipset and how to protect it via the
deployment of an enclave which proxies communications to an encrypted section
of DRAM on any computing; containers can still be targeted. Guo et al. [5]
developed a trust model based on remote attestation techniques for contain-
ers via vTMP (Virtual Trust Platform Modules) requiring modification of the
host and container image. These use cases covered hardware-based protection on
general SGX computes or attestation via vTMP, respectively, affecting container
environments. In addition, Guo et al. [5] uses a PKI (Public Key Infrastructure)
model during the attestation of containers. The PKI is positioned between the
Host and Containers as a trust model, where the root certificate is self-signed,
and certificate exchange occurs. Their method represents an active hardware
technique to provide data protection with enforcement of a PKI within the con-
tainer’s ecosystem.

Software-based security deployments are used to protect either host, con-
tainer, application, and permutations of these, including industry container hard-
ening techniques, container isolation, vulnerabilities patching via container’s
lightweight images upgrades, modifications in the kernel or container images
with a secure Linux load, with image vulnerability scanning occurring before
the container’s attestation [2,5]. Sultan et al. [13] excluded from their work
the orchestration layer security and mentioned the decentralized attestation via
blockchain as needing further development. Furthermore, Xu et al. [14] uses
blockchain to decentralize the container image trust or other data types but
developing an image trust model. Kong et al. [7] presents a secure containers’
deployment method using genetic algorithms via Secure Container Deployment
Strategy (SecCDS). Li et al. [9] applied a DDoS (Denial of Service) mitigation
mechanisms for low rate DDoS attacks over a simulation, demonstrating that
the isolation of affected containers in an environment improves the quality of
service of the model via white-listing requests into the containers environment.

On the other hand, broader security exposure analysis reveals multi-
dimensional exposures in Docker as covered by Martin et al. [10]; it highlights the
importance of runtime scanning techniques. Berkovich [2] argued that scanning
Docker container images as binaries are a critical security activity in DevOps
environments, such as CI/CD pipelines. Yasrab [15] described the issues on the
Docker container level due to the large number of sensitive services running,
including the container service, application, and Host OS. A vulnerability assess-
ment framework is presented by Mostajeran et al. [11] which includes three key
components related to containers on their work: (1) configuration, (2) images,
(3) deployed services.

A Docker Thread Detection Framework acting as a software-based system
is presented by Huang et al. [6]; the framework analyses the Docker image and
the container’s running IP/DNS requests. Similar to IP addressing scanning,
other industry players target development environments with tools such as Kali-
Linux to target containers environments. However, this active testing is related
to legacy scanning methods.
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Passive scanning techniques relate to those that do not actively interact
with the security exposure or presence of the condition that defines the attack
vector in runtime. Guo et al. [5] that enables a trusted environment incurring in
modification of the kernel and container’s attestation service via a state challenge
protocol. As per Kwon et al. [8] by enabling a Docker Image Vulnerability Diag-
nostic System (DIVDS) for containers. As well as, Berkovich et al. [2] running a
container’s image vulnerability scanning tool known as Ultimate Benchmark for
Container Image Scanning (UBCIS).

On the other hand, Active scanning techniques relate to those which
actively interact with the Docker Host and/or Docker containers in runtime to
detect a condition that defines the attack vector, including work such as Mosta-
jeran et al. [11] with their vulnerability assessment framework that presents
a runtime fixed container security benchmark tool as a risk assessment tool.
Merino et al. [1] described in its managed container layers: application, names-
pace, control groups, amongst others to detect containers anomalies in runtime.
Alternatively, it is the potential to detect co-resident containers security expo-
sures, according to Gao et al. [3]. Kong et al. [7] used a genetic algorithm defence
system, or Huang et al. [6] which uses their Docker thread detection framework to
complete hardware checks against computing resources and network port scan-
ning.

Table 1 lists key comparison features in related work highlighting the defence
as a key attribute being developed, followed by the scanning, attack and runtime
capabilities.

Table 1. Related work comparison

Related work/Capability Scanning Defence Attack Runtime

Two-stage defense approach [3] No Yes No Yes

DIVDS [8] Yes No No No

Docker thread detection framework [6] Yes Yes No No

SecCDS [7] No Yes No No

Security assessment framework [11] Yes No No Yes

UBCIS [2] Yes No No No

Managed container framework [1] No Yes No No

Container state attestation [5] No Yes No Yes

Amongst the overall security approach discussed earlier and summarised in
Table 1, the scanning engine is a pivotal component. Key industry players in
cloud containerization as Google have developed tools such as tsunami [4] which
can be used to develop vulnerability scanning. In our experiments section, we
will compare and select a scanning engine for our proposed framework.

This work focuses on developing a lightweight security framework encom-
passing runtime security vulnerability scanning of the container service abstrac-
tion layer within a Docker environment as an active software-defined approach.
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In particular, using the CVE disclosed vulnerabilities against Docker to enable
DevSecOps practices. The framework is to be used in line with the operations
of the DevSecOps environment for detecting possible attack surfaces exposed
by the Docker Host or Docker Images in runtime as an active scanner. Also, it
assumes that DevOps teams know the CVEs to test using VSF on the Docker
environment. This method is not described in related literature, as it conducts
software assertion tests of the relevant CVEs into the Docker Host or specific
Docker containers in runtime.

3 Security Framework for Containers Environments

The runtime vulnerability scanning framework VSF for Docker containers pin-
nacles its capability in the active assertion testing against a Docker runtime
environment in a lightweight manner. This security framework has been defined
modularly to aggregate active software scanning. The active approach aims to
detect existing vulnerabilities in a running Docker container environment as part
of an Incident Response Procedure, Proactive testing practices, and the state of
the Art container practice due to the atomic nature of the container’s environ-
ment of short lifespan; and with an increased level of difficulty in its tracing and
tracking capabilities once the containers are destroyed.

Initially, the positioning of the security framework is defined in the container’s
abstraction layer and identified as the Docker Engine; the application runs as a
container via the containerd daemon. Thus, to complete the vulnerability asser-
tion testing, VSF provides a binary response: true-positive if the container is
vulnerable, or true-negative when the container is not vulnerable against the
CVE. Hence, the container can be grey-listed.

Figure 1 shows a representation of VSF and its modules, including core,
fetch, runner, callback, and connection. These modules represent specific
functions underpinned by nmap to complete the scanning function. The frame-
work include the following five components:

– Core: The core engine for the scanner like nmap.
– Fetch: A plugin for fetching the CVEs related to the Docker image.
– Runner: Individual scripts running as assertion techniques against the vul-

nerability in runtime.
– Callback: A notification means to the requestor.
– Connection: Underlying Host packages that enables the presentation OSI

layer of the framework with a type of connection handled by the core engine,
e.g., SSH.

Core is considered the core engine of the framework. It could be regarded
as an orchestrator on demand to interface with all other components in the
framework. Some of its features include orchestration, scanning engine, teleme-
try, analytics, scheduler, trust, and queuing. The emphasis in the component is
given to the scanning engine where a substantial section of the core development
takes place.
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Fig. 1. Docker containers vulnerability scanning framework—Framework

VSF proposes to black-list containers that returned true-positive as a result
of the assertion testing and also to those containers which has not been tested via
VSF. On the other hand, if the assertion test results as a true-negative containers
can be grey-listed and digitally signed; however, if the Accuracy Factor of the
assertion testing is lower than 75%, then the image is black-listed due to its low
certainty on the trust of the running container.

The container’s digital certificate signing request will adopt the DevSecOps
environment PKIs as required, and the certificate can be made available via the
container’s secret exchange method of choice.

The Accuracy Factor (AF) is a metric measured in percentage that indicates
the certainty of the runtime assertion test completed given some conditions,
including:

– An AF value lower than 75% results into a black-listed docker container;
– An AF value between 75% and 100% is considered as a true result;
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– An assertion test that relates to a Docker container image other than the one
described in the CVE.

Fetch, this component interacts with the NIST (National Institute of Stan-
dards and Technologies) APIs to retrieve relevant vulnerabilities classified as
CVEs that may affect the Docker image. The key metrics to filter the rating
includes (a) the exploitability score threshold, (b) the impact score threshold,
and (c) keywords to match the Docker image. It permits a rapid manner pars-
ing vulnerability information and/or detecting new exposures, across the Docker
Host virtualisation layer and the application or Docker image. Docker images are
pulled from the Docker Hub. The parsing criteria relate to the relevant Docker
images are utilised in the environment. These can be denoted by a tuple (a, b, c),
where (a ≥ 1.8, b ≤ 5.9, c = “docker”).

Figure 2 refers to results of the fetch module with 153 vulnerabilities identified
given the values (a, b, c). In this example, the vulnerability identified as the
number 81 relates to CVE-2016-3728.

Fig. 2. Fetch results—an example

The fetch module could be exchanged if the CVEs were unknown, with the
DIVDS system proposed by Kwon et al. [8] amongst one of the passive models to
detect impacting vulnerabilities in containers via white-listing. Hence, the fetch
component is presented as a lightweight alternative that assumes pre-existing
knowledge on the CVEs and exposures to Docker containers environment, typ-
ically the case in DevOps teams. However, VSF aims to grey-list despite the
DIVDS approach.

Runner uses the nmap scripting engine (NSE) to execute the assertion test-
ing on a specific vulnerability relevant to the Docker Host environment or Docker
image. The Art defines the artifacts that include each vulnerability assertion test
in an independent NSE script. The NSE scripts are executed in runtime within
the Docker environment. The Runner component contains a collection of NSE
scripts that will be classified based on the CVE id. Should the Core component
consider necessary to validate this vulnerability, it would then execute the nmap
script and obtain the response of the assertion test. Results are to be retrieved
and identified as binaries, true-positive or true-negative.
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An example of a Runner NSE script for CVE-2020-35195 is detailed below.
It conducts assertion testing against the existence of a blank root password in
the container in runtime for a haproxy image.

if conn:password_auth(user , passw) then
local A1 ... = conn:run_remote(cmd)
local A2 ... = conn:run_remote(cmd2)
local _A2 , _y = string.find(A2 , _blankpw)

if _A2 == 1 then
stdnse.verbose ("Passed�assertion�test")

return "CVE�assertion�test�Passed"

Callback relates to a notification mechanism to inform on the outcome of
the assertion testing completed by the runner. The core component would have
captured the assessment completed, and this is to be reported asynchronously
back to the requestor. Notifications are to be sent as webhooks.

Connection contains underlying Host OS packages required to interact at a
network layer with the Docker host, in order to enable connectivity of the core,
runner components. Two options can be chosen, including libssh2 and openssl.

The components of the vulnerability scanning framework (VSF), as previ-
ously defined, present a lightweight novel security framework for Docker con-
tainer environments. Its purpose is to provide runtime Docker host and con-
tainer’s vulnerability software scanning capability to offer Privacy and Data
Protection via completing active assertion testing techniques that would grey-
list running containers. It assumes pre-existing knowledge of the CVEs, as in
the case of DevOps teams. The modularity of VSF resides on its capability to
exchange some of the methods, i.e., the fetch and core components, could be
interfaced with the DIVDS system defined by Kwon et al. [8], or with the cer-
tificate exchange proposed by Guo et al. [5] respectively.

4 Experiments

We present the experiments in two sections, the underlying scanning engine with
the initial experiment, followed by the case studies and subsequent analysis.

4.1 The Scanning Engine Selection—Experiment

The initial experiment for the vulnerability scanner consisted of testing the
underlying agent that would be running the assertion testing. In this case, we
selected tsunami and nmap (NSE) as two well-known tools in the open-source
community.

Our experiment with tsunami and nmap comprised of installing the each tool
on disparate AWS EC2 CentOS 7.0 instances. The execution time for tsunami
is comparable to those seeing in nmap, with 12.355 s to run. Table 2 compares
the two scanning engines, with the capabilities as detailed below:
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– Open source, nmap is a well-known network security scanning tool; and
tsunami, is a Google initiative that allows development of network security
scanning.

– Programmatic development, is the capability to developing vulnerability asser-
tion tests over a programmatic approach. nmap is implemented in Lua and
tsunami in Java.

– Response time, is the execution time of a one scanning job. Both tools are of
comparable execution time as per our experiment; with 12.355 s on tsunami
and 1.86 s on nmap. This is a metric that can vary, and it is dependant on
the complexity of the scan as observed later in the case studies.

– Lightweight, is the ability to consume the tool across a wide range of envi-
ronment in a simple manner. The experiment revealed that tsunami has a
large set of dependencies when compared to nmap; which makes nmap con-
siderably easier to deploy and portable across environments. We consider as
a result of the experiment that nmap is a lightweight tool.

– Network port scanning, is the ability to run active network port scanning on
a target system. Both tsunami and nmap cover this capability.

– Relevance in the Industry, is the presence and relevance of the tool in the
industry. We define this capability as a measure of the risk to adopt the tool
given its wide spread in the industry. We consider both tools tsunami and
nmap offer low risk.

The previous capability analysis offers comparable characteristics for the
selection of the scanning engine, between tsunami and nmap. However, the
lightweight capability of nmap, its execution simplicity, and portability distinc-
tively enable the proposed framework for rapid development on its scanning
component. Thus nmap NSE is VSF’s scanning engine.

Table 2. Scanning engine comparison

Tools Open source Programmatic Response time Lightweight Port scanning Relevance

nmap Yes Yes Yes Yes Yes Yes

tsunami Yes Yes Yes No Yes Yes

4.2 Case Studies

The presented case studies assume that VSF is used by a DevOps team across
various scenarios, including Standalone and CI/CD pipelines. Hence, CVEs are
known or checked via the fetch component of VSF. The container signing request
and secrets management methods detailed in the core component are not repre-
sented and outside of the scope of the experiments in the case studies.

The experiments follow the same execution principle against different running
Docker containers, Docker host, and emulation scenarios. Firstly, we develop
individual nmap NSE scripts per CVE. These scripts are written in Lua-NSE and
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reference each relevant CVE attack vector against a target running container.
Our approach consists of the following steps per NSE script as detailed below
and as shown in Fig. 3:

Step 1, to complete a Docker host or Docker container network port scanning
against common network ports relevant to the communications;
Step 2, to authenticate into the Docker host; the NSE script to authenticate
into the Docker host using the root credentials;
Step 3, to gain privilege access into Docker host;
Step 4, to identify the relevant Docker container id (as optional step);
Step 5, to run Docker remote commands from the host into the target Docker
container, or to run Docker local commands in the Docker host;
Step 6, to navigate through the conditions as defined in the impacting CVE
that makes the running target container vulnerable;
Step 7, to match the assertion criteria for the impacting CVE;
Step 8, to present the scan result as true-positive or true-negative with an
accuracy factor; then repeat from Step 1 to complete next scan.

Direct access via the container’s network interface (CNI) is not used, as
in specific container images, this capability is disabled. As detailed before, the
Anatomy of VSF includes the artefacts that leverage nmap’s ability to scan ports
and define network connectivity (i.e., libssh2 ) to reach the container; then define
the rule sets and followed by actions and logic to determine whether the running
environment is vulnerable or not with an accuracy factor.

The accuracy factor (AF) is a metric we use to measure the certainty of the
scan; i.e., if the scan targets the specific Docker container image relevant to a
CVE and the matching criteria are validated, the AF value is 100%. However,
if the vulnerability scan is run against a different image than the one referenced
in the CVE, we estimate that the AF is 50%, as the certainty is lower given the
CVE conditions are not fully met.

The Art defines the artefacts in the runner component, which include the
development for the following shortlisted CVEs for Lua-NSE development:

– CVE-2020-35467, relates to a “Docker docs” container image vulnerability,
– CVE-2020-35195, relates to a “haproxy” container image vulnerability,
– CVE-2020-15157, relates to a “containerd” vulnerability,
– CVE-2016-3697, relates to a Docker “runC” vulnerability,
– CVE-2021-21284, relates to a “libcontainerd” vulnerability.

The performance of each case study is checked against one metric. It is defined
as the velocity during scanning, which is the number of scans in the environment
against the execution time in seconds. Depending on volume, this will incur
in greater overall execution time that will impact the case study. A would be
relevant within the DevOps team context as it impacts the pipeline execution.

ΔA

Δt
= λ
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Fig. 3. Vulnerability scanning

– A, the number of assertion tests in a period of time,
– t, the execution time of a NSE script,
– λ, the number of test over period of time, velocity.
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A velocity of 1.5 assertion tests is achieved via VSF given the detailed run-
ner artefacts (Table 3). The velocity would vary depending on the vulnerability
complexity and compute required in the execution of the NSE. The execution
time does not fall into a distribution or statistical relationship as shown in Fig. 4;
instead these are derived from the complexity of the vulnerability on the Docker
ecosystem and its related attack vector complexity as execution time associated
with the scan type.

Table 3. Experiment results: execution time

Scan type Performance (s)

CVE-2020-35467 0.68

CVE-2020-35195 0.68

CVE-2020-15157 0.57

CVE-2016-3697 1.86

CVE-2021-21284 0.56

Fig. 4. Experiment results: execution time plot

The case studies are detailed as follows, where we act as a DevOps team
across multiple scenarios.

Standalone, this case study encompasses the use of VSF in a standalone
Docker environment, such as a software developer’s IDE (integrated development
environment). The case study assumes that an IDE runs in a Linux-based Oper-
ating System to leverage VSF components’ capabilities. Our Docker container
environment included the following running containers as active:

– docker.io/centos
– docker.io/docs/docker.github.io
– docker.io/haproxy
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CVE-2020-15157, as demonstrated in Fig. 5 the NSE script shows a match-
ing CVE condition which asserts a true-positive result in runtime with an AF
value of 100%. Implying that the active Docker container is running a config-
uration in runtime that points to an external source, as per test case A3 in
Table 4. In this case instead of reading the offline image manifest, VSF validates
the runtime foreign layer by reading the active config.json file per container
on each libcontainerd process and returning a true-positive result, as per path:
/run/docker/libcontainerd/[id]/config.json

Fig. 5. CVE-2020-15157—VSF scanning results

Similarly, we completed the CVE-2020-35195 and CVE-2020-35467 assertion
testing procedures related to the haproxy and Docker Docs active containers
as per test cases A1 and A2 respectively. Our assertion testing results (See
Table 4) revealed that our running container are set with no-password for the
root user, resulting in an AF value of 100% for each scan. Our VSF assertion
demonstrates true-positive results, as per the path /etc/shadow and condition
root:!::0::::: .

Our test case A5 CVE-2021-21284, requires the utilisation of namespaces
within the Docker containers environment via root user privilege access. In
this test case, our standalone environment did not have enabled namespaces
so resulted in nonvulnerable assertion testing as a true-negative. The recorded
AF value is 80%, and this container would still be grey-listed. We refer to Table 4
as an impact on the Docker host.
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--userns-remap
# cat /etc/docker/daemon.json
{
"userns-remap":"admin"
}

Finally, in test case A4 related CVE-2016-3697 attempts to capture numeric
UID as usernames. This test case resulted in non-vulnerable assertion testing
as a true-negative, given that none of the containers captured these running
conditions as per the below path. The recorded AF value is 100%.

libcontainer/user/user.go

Table 3 shows the maximum value to the run time execution time on the local
CI/CD pipeline, which is 1.86 s. In addition, to identifying true-positive assertion
test results against the CVEs rule sets as defined in VSF. Test Cases A4 and A5
relate to conditions within the Docker Host. Whereas A1, A2 and A3 relates
to Docker containers as described in the experiments. The key benefits of the
proposed methods arise in the ability to rapidly validate vulnerability exposures
in the Docker Host and running Docker containers which as per results presented
in Table 4.

Table 4. Experiment results: CVE assertion testing—runner component

Test case (runner) A1: CVE-2020-35467

Test result true-positive

Impact container: docker.io/docs/docker.github.io

Performance 0.68 s

Accuracy 100%

Trust black-listed

Test case (runner) A2: CVE-2020-35195

Test result true-positive

Impact container: docker.io/haproxy

Performance 0.68 s

Accuracy 100%

Trust black-listed

Test case (runner) A3: CVE-2020-15157

Test result true-positive

Impact host: Docker host

Performance 0.57 s

Accuracy 100%

Trust black-listed

Test case (runner) A4: CVE-2016-3697

Test result true-negative

Impact host: Docker host

Performance 1.86 s

Accuracy 100%

Trust grey-listed

Test case (runner) A5: CVE-2021-21284

Test result true-negative

Impact host: Docker host

Performance 0.56 s

Accuracy 80%

Trust grey-listed
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As a summary of the experiment results, our standalone Docker environment
is black-listed given the results of test cases A1, A2 and A3. Also as per Fig. 6 the
assertion testing accuracy is high with existing true-positive Docker containers.
Hence, our IDE require container images updates or configuration updates to
mitigate these risks as identified in the Docker environment.

Fig. 6. Standalone assertion results VS accuracy

CI/CD Pipelines, this case study involves a dynamic insertion of VSF
within a CI/CD pipeline tool-chain, with containers being used for infrastructure
platform orchestration. The case study assumes we are a DevOps team that
is using Jenkins as a typical CI/CD pipeline in a DevSecOps environment to
manage infrastructure platform orchestration. Our Docker environment is used
for code promotion during pipeline testing. The following container image was
loaded in Docker as available in Docker Hub1 (A 2 years old image).

In test case B1, we deploy the Jenkins Docker container and launch VSF in
the Docker Host environment. VSF does not contain a specific CVEs NSE script
for the Jenkins container image. Nevertheless, we complete runtime scanning
against known vulnerabilities as we consider it relevant to this image. In our
test case, we target the Jenkins workload as the target container and validate
that the running container may have exposure as related to known vulnerability
CVE-2020-25195 related to blank password condition for the root user, as per
the path and matching condition shown below:

/etc/shadow
root:!::0:::::

Table 5 presents the result of the test case B1, and demonstrates the runtime
execution of VSF. The assertion testing on the jenkins image against CVE-2020-
35195 resulted in a true-negative and an AF of 80% due to the condition that
the scan CVE is related to a different image haproxy. Our testing classifies the
jenkins container as grey-listed.
1 docker.io/jenkins:2.60.3.



Containers’ Privacy and Data Protection via Runtime Scanning Methods 53

Table 5. Experiment results: CVE assertion testing against jenkins image—runner
component

Test case (Runner) B1: CVE-2020-35195

Test result true-negative

Impact container: docker.io/jenkins:2.60.3

Performance 0.71 s

Accuracy 80%

Trust grey-listed

5 Analysis

The case studies demonstrated how Docker active containers are grey-listed or
black-listed against relevant CVEs. The accuracy factor (AF) is found as a
required metric to validate the assertion test upon a criterion within VSF. It
was proven to be an effective metric in test case C1 when a grey-listed container
was rated with an AF of 80% equal to a lower certainty.

The experiments presented a velocity of 1.15 scans
sec and the samples captured

as per the plot shown in Fig. 4 does not fall into a statistical relationship. How-
ever, the execution time is directly proportional to the complexity of the vulner-
ability on the Docker ecosystem and its related attack vector complexity as the
CVE detailed in the fetch component as per Fig. 2.

The first case study was the standalone, where a typical IDE environment
for a DevOps team member pulls containers from Docker Hub. VSF offered a
capability to rapidly complete CVE assertion testing in runtime to validate if
the running container is vulnerable. Table 4 present the result where true-positive
events were detected on test cases A1, A2 and A3. Test Case A3 CVE-2020-
15157 matches the CVE condition which asserts in runtime that the Docker
image is running a configuration from an image that points to an external source
in a known CVE. Consequently this container is black-listed until resolved and
VSF scan presents a true-positive result with an AF value of 100%, as a defence
mechanism to vulnerable container images.

The CI/CD pipeline applied test cases B1. In this case, the DevOps teams
considered that the condition was relevant for Jenkins container images, with an
AF factor of 80%. The trust result shows that the Jenkins container is grey-listed.
It is indicative of the potential, portability, and flexibility of VSF for DevOps
teams.

Table 6 presents a comparative analysis across four key capabilities,
including scanning, defense, attack and runtime; when compared to related work
as per previous sections. VSF demonstrates a robust reach across the security
portfolio of a DevSecOps environment as the only tool with three categories,
including scan, defense, and runtime. Even though the runtime capability over-
laps with other frameworks, VSF is unique in its ability to complete Docker Host
and container’s software vulnerabilities scanning in runtime, not evidenced in
related work.
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Table 6. Comparative analysis

Related work/Capability Scanning Defence Attack Runtime-Hardware Runtime-Software

VSF Yes Yes No No Yes

Two-stage defense approach [3] No Yes No Yes No

DIVDS [8] Yes No No No No

Docker thread detection framework [6] Yes Yes No No No

SecCDS [7] No Yes No No No

Security assessment framework [11] Yes No No No Yes

UBCIS [2] Yes No No No No

Managed container framework [1] No Yes No No No

Container state attestation [5] No Yes No Yes No

6 Results

VSF’s execution performance in runtime has no impact on the execution time
of the container. In fact, the execution time and scanning velocity of the vulner-
ability scanning framework VSF are directly proportional to the complexity of
the vulnerability and its attack surface.

The experiments consisted of two stages. In the first stage, the focus was to
baseline the scanning engine tools that can effectively perform security vulnera-
bilities scans against container environments running Docker. The second stage
consisted of utilizing the tool in a software-driven approach over a proposed
framework (VSF) to grey-list or black-list active Docker containers as a trust
model.

Nmap NSE was scanning engine shortlisted due to its lightweight capability
on the initiation of the engine. Our testing revealed that tsunami could per-
form scanning functions; however, its interdependencies in the installation may
encounter issues for adoption as a lightweight tool. Whereas nmap is widely
available as a native tool in many security infrastructures, libraries are available
and have proven their usability as per the case studies. VSF leverages nmap
NSE for containers privacy and further covers the capability of detecting vul-
nerabilities that would affect the containers and its data from know exposures
as detailed in CVEs.

Our case studies obtained a trust posture of each Docker environment pre-
sented via the assertion testing of the VSF engine that resulted in grey-listing or
black-listing the target Docker container. The trust was cross-referenced against
an accuracy factor that indicates the certainty of the result given explicit con-
ditions. The combination of the two metrics allowed us to obtain a runtime
vulnerability assessment of each Docker container. In addition, the flexibility of
VSF has proven that it can be used on multiple scenarios, with a central view
on the DevSecOps environment.

6.1 Recommendations

VSF has proven to fulfill a function not found in related work due to its software
vulnerability scanning capability in runtime for Docker containers. Whether used
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as a framework or as a discrete tool per component, it can complement other
security initiatives within a DevSecOps strategy agenda as a lightweight tool for
a Docker containers environment. Some highlighted recommendations include:

1. On the Framework, by improving the credentials management during asser-
tion testing; and adding a containers’ signing request capability as a functional
addition to the framework.

2. On the Usability, by facilitating an easy deployment approach for DevOps
teams to deploy the tool in DevSecOps environments; and by adding automa-
tion to VSF in order to facilitate the operational requirements of the adopting
team.

3. On the Accuracy Factor model, by gathering a larger data set that allows for
a higher volume of assertion testing results.

7 Conclusions

This paper proposed the vulnerability scanning framework (VSF) as a novel
lightweight toolset for DevSecOps environments. VSF targets DevOps teams
as the key audience. VSF delivers software vulnerability scanning capability
to Docker container environments in runtime, leveraging nmap NSE scripts to
deploy discrete assertion testing to relevant CVEs.

Further work is required on Docker containers security to enrich the trust
model in runtime and orchestration. We will adapt VSF components to fit specific
requirements generic to DevOps teams in software development CI/CD pipelines
or infrastructure as code scenarios. Improving the trust model via the grey-
listing objective will also improve its accuracy factor module. Last but not least,
we will add the feature of containers signing requests to the Docker containers
environment.
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