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Abstract. The rise of the artificial intelligence (AI) brings golden opportunity
to accelerate the development of the intelligent transportation system (ITS). The
platoon control of connected autonomous vehicle (CAV) as the key technology
exhibits superior for improving traffic system. However, there still exist some
challenges in multi-objective platoon control and multi-agent interaction.
Therefore, this paper proposed a connected autonomous vehicle latoon control
approach with multi-agent deep reinforcement learning (MADRL). Finally, the
results in stochastic mixed traffic flow based on SUMO (simulation of urban
mobility) platform demonstrate that the proposed method is feasible, effective
and advanced.
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1 Introduction

In recent years, with the development of intelligent transportation system (ITS), people
pay more attention to congestion, accident, fuel economy, et al. [1–3]. However, when
vehicle flows running together, complex dynamic environment may make the running
of vehicle flows hard to decide a target speed to deal with dynamic environment. It may
be more difficult for vehicle flows satisfying all concerned objectives-high traffic
efficient, energy, safe, and driving smoothness.

Single autonomous vehicle maybe relatively easy to obtain a proper speed to fulfil
above mentioned aspects with artificial intelligent technology. It can be a important and
effective way to solve multi-objectives problems in dynamic environment [4]. Deep
learning (DL) as well as reinforcement learning (RL) are two main methods which are
widespread adopted to make speed decision one after another [5]. Moreover, DL and
RL make it easier to deal with the dynamic environment than other methods [6].
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Lots of methods were proposed for single autonomous vehicle to obtain the proper
speed. A rolling-horizon method can be effective to cope with complex trajectories [7].
However, proper speed which can be adequate to fulfill more objectives should be
considered [8]. In the process of application of DL or RL, challenges may happen with
policy prematurely converging to a local optimum. Therefore, research [9] considered
PPO with entropy constraint to make the results better.

However, the learned speed may not suitable when put it into the convoy speed
control. Namely, challenges also exist with how to determine a proper speed to make
the whole convoy be high traffic efficient, safe and energy at the same time when facing
with dynamic environment.

Therefore, the exploration of convoy speed control speed decision-making has
become a hot spot. [10] designed different network to state a RL control method for
CAVs to solve traffic congestion problem. And penetration rates are set with 2.5%
which can be effective to have a better running flow. To improve the ability of RL
control method, [11] setup four benchmarks to apply for different traffic problems.

Although multi-agents are concerned and applied in above researches, less attention
is paid to multi-objectives emission of multi-agents in convoy speed control which
make the convoy be put in a double squeeze.

As MADRL combines with both the advantage of deep neural network (DNN) and
RL which can deal with large-scale dynamic information effectively when interacting
with a dynamic environment.

Therefore, this paper proposes a connected autonomous vehicle platoon control
through multi-agent DRL method. And the key contributions can be summarized as
follows:

Firstly, a traffic control strategy is made using DRL with CAVs to deal with multi-
objectives mission including high traffic efficient, safe and energy together on open
road networks. It can balance various aspects for vehicle flow to achieve synthetically
optimal state.

Secondly, it also be demonstrated that DRL can be adjusted to fulfil the requirement
of convoy speed control. Namely, several traffic modes are formed which can be
selected according to traffic situation.

The remainder of the article is organized as follows. Section 2 state the basic
related knowledge of MADRL. Section 3 outlines the RL and multi-objective problem
formulation for traffic efficient, safe and energy in open highway networks. Finally,
Sect. 4 showed the simulation results of the proposed method.

2 Preliminaries

2.1 Markov Decision Processes

Markov Decision Processes (MDPs) is a description of transition from current state to
next state. It is usually represented by a tuple: (S, A, R, P). Where, S means all the states
of model including current state and next state, A is actions taken by model in the
current state, R means the reward that the adopted A at the current state, P is the
transition probability function [12].
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2.2 Actor-Critic

Actor-Critic model is made up with the actor and critic model. The critic model updates
through state-value function V(s) and the action is evaluated by action-value function Q
(a|s). The actor model updates the critic model with the direction tomakeV(s) higher [13].

2.3 Policy Gradient (PG)

PG method mainly considers the reward of the policy. The obtain of optimal policy is
to use gradient descent [14]:

R ¼ Et½rh log phðatjstÞÂt�; ð1Þ

where Ât is advantage function, ph is policy about parameter h. And advantage function
is written as follows:

Ât ¼ Qphðst; atÞ � VphðstÞ; ð2Þ

To make the policy develop to the better way, a loss function is set as:

LðhÞ ¼ Etðlog phðatjstÞAtÞ: ð3Þ

2.4 PPO

PPO is adequate to continuous state-action space. PPO usually has two developed
forms: PPO-Penalty and PPO-Clip. The former is usually adopted for its simplified
form. The purpose of PPO-Clip is to make the old and new policy similar when it is
update [15].

PPO-Clip updates h for the following equation:

h ¼ argmax
h

E
s;a phold

½Lðs; a; hold; hÞ�: ð4Þ

Let rtðhÞ ¼ phðajsÞ
phold ðajsÞ

donates the probability ratio for the current policy and the old

policy. To obtain the objective, loss function L(s, a, hold, h) can be described as:

Lðs; a; hold; hÞ ¼ minðrtðhÞÂt; clipðrtðhÞ; 1� e; 1þ eÞAtÞ; ð5Þ

where e is a hyperparameter.
Then an advantage function is set to evaluate the update effectiveness:

LÂt
¼ �

XT

t¼1
ð
X

t0 [ t
ct

0�tst0 � VphðstÞÞ
2
; ð6Þ

where c represents discount factor. st0 means the reward at time t’.
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3 Experimental Setup

3.1 Flow: Working Environment

The research of this paper is based on Flow [16]. Flow is open source which can be
easy access and expand. Flow supports custom modules and permits the research of
complex environments, agents, metrics, and algorithms. Flow is built upon SUMO
(Simulation of Urban Mobility) [17] which is used to set vehicle and traffic model, Ray
RLlib [18] which is used to execute reinforcement learning [19], and OpenAI gym [20]
which is used to go on the MDP.

3.2 Problem Setup

This article is concerned with multi-objectives optimization for multi-agent in convoy
speed control. Moreover, how to make the whole convoy be high traffic efficient, safe,
energy and driving smoothness at the same time when there are only proportionate
connected autonomous vehicles controlled by DRL and the other vehicles are human-
driven vehicles in the convoy. And the human-driven vehicles are driven by the
Intelligent Driver Model (IDM) which is set based on rules in SUMO.

3.3 Network Configuration

The setup of network can be seen in Fig. 1. It mainly includes a straight highway
network and an on-ramp road to make the environment dynamic. The whole inflow rate
and the on-ramp inflow rate are set as 4000 and 800 per hour, respectively. CAVs with
a centralized controller are trained via MADRL to obtain multi-objectives. The length
of main road, on ramp road and off ramp road are set as 1500 m, 250 m and 250 m,
respectively. Meanwhile, lane number of them are set as 3, 1, 1, respectively.

Multi-
agent

Fig. 1. Open highway network
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3.4 Human-Driven Vehicles

The acceleration and deceleration of human-driven vehicles driven by IDM can be
described as the following car following model:

f ðln; vfn; vnÞ ¼ a 1� vn
v0

� �d

� l�ðvn;DvnÞ
ln

� �2
" #

ð7Þ

where Δvn is relative velocity with the preceding vehicle, denoted by:

Dvn ¼ vfn � vn ð8Þ

where l* is the desired headway of the vehicle which can be obtained by:

l�ðvn;DvnÞ ¼ s0 þ max 0; vnT þ vnDvn
2

ffiffiffiffiffi
ab

p
� �

ð9Þ

where s0, v0, T, d, a, b are calibrated parameters to model highway traffic [21].

3.5 Autonomous Vehicles

In the convoy speed control, the CAVs are added with a certain percentage to influence
the whole vehicle flow in the network. The CAVs can be seen as multi-agents whose
actions (acceleration or deceleration in this paper) are sampled from DRL strategy
considering multi-objectives including traffic efficient, safe and energy. The total inflow
rate of the network is set as 4000 per hour and the inflow rate of autonomous vehicles is
set 20% of total inflow.

3.6 Observations and Actions

The observation space of the learning agent is decided by the multi-objectives which
consists of speed, acceleration, fuel consumption, distance between the autonomous
vehicle and other vehicles in front and rear, respectively. To improve the training
speed and obtained a better training effectiveness, all the observation vectors were
normalized [22].

The action space consists of acceleration n of each autonomous vehicles n. Con-
sidering the real situation of vehicles, the acceleration can not be infinite. Therefore, the
acceleration is clipped into the range [−1, 1] in this paper.

3.7 Reward Designation

The speed control of CAVs should consider multi-objective tasks including traffic
efficiency, fuel consumption, safety, driving smoothness at the same time. The des-
ignation of reward function can make the training result fulfill requirement.
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(1) Traffic efficiency
Traffic efficiency is usually related to the speed of CAVs. And the speed of CAVs
should not change sharply for the requirement of response time of all related
CAVs. Therefore, a working efficiency reward function can be considered:

r1 ¼
e�k1�vn vmin � vnj j � vmax

�e�k1�vn vn [ vmax

�e�k1�ðvn þ vlinitÞ vn\vmin

;

8<
: ð10Þ

where vmin and vmax are the vehicle speed range respectively, vlimit is network
speed limit, v0 is the speed of CAVs, k1 is a dynamically adjustable constant.

(2) Fuel consumption
Fuel consumption is considered in convoy control. The running convoy should be
limited by the consumption as:

r2 ¼ e�k2�Qcn ; ð11Þ

where Qcn is the fuel consumption of CAVs n, k2 is a constant.
(3) Safety

When the CAVs are driving on road, Static or dynamic obstacles including sur-
rounding vehicles, pedestrians, signal lights, et al. make it danger for CAVs.
Therefore, a safety reward function can be set considering the distance between
CAVs and others:

r3 ¼ � 1
minðdfn; drnÞþ 1

; ð12Þ

where df and dr mean the distance between the CAVs and others in front and rear,
respectively.

(4) Driving smoothness
Frequent acceleration and deceleration may make the convoy not smooth.
Therefore, considering driving smoothness, the reward function can be set as:

r4 ¼ �1000 � anj j ð13Þ

where ax and ay mean the longitudinal and lateral acceleration, respectively.
(5) Multi-objectives

To make the training model be comprehensive in the above aspects, a multi-
objective reward function can be obtained:

r ¼ w1

wk k1
r1 þ w2

wk k1
r2 þ w3

wk k1
r3 þ w4

wk k1
r4; ð14Þ

where wi means the weights considering above four objectives, w ¼
w1 w2 w3 w4½ � is the weight vector.
The platoon speed matching the dynamic environment can be obtained by setting
the proper value of the weight. The weight vector is set as: w ¼ 1 2 1 1½ �.
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3.8 Neural Network Designation

In this paper, we consider a four-layer neural network structure to train the model. The
neural network mainly has an input layer, two hidden layers, and an output layer. The
hidden layers include 128 neurons. The output is acceleration of CAVs. The states of
both set CAVs agents include 8 dimensions which are shown in Table 1.

4 Simulation

To verify the effectiveness of the proposed connected autonomous vehicle latoon
control approach with MADRL, a training is carried out in SUMO.

Table 1. The neural network input variables

Variables Input meaning Unites

1 vn Speed of autonomous vehicle n m/s
2 vfn Velocity of other vehicle in front m/s
3 vrn Velocity of other vehicle in behind m/s
4 dfn Distance with front vehicle m
5 drn Distance with behind vehicle m
6 ni Lane numbers
7 an Longitudinal acceleration of autonomous vehicle n m/s2

8 Qcn Fuel consumption of autonomous vehicle n

Fig. 2. Training results of connected autonomous vehicle latoon
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We can find that the training is rapidly converged to −2000 within 20 iterations
from Fig. 2. And then the training is stable in the following iterations which means the
whole designation of CAVs latoon control with MADRL is effective.

Figure 3 and Fig. 4 can reflect the training process inside the MADRL. vf_ex-
plained_var is the explained variation of those future rewards through the use of the
value function. We want this to be higher if possible, and it tops out at 1; however, the
results converge to 0.8 in the end which means it is effective to some extent.
cur_kl_coeff is the difference between the old strategy and the new strategy at each time
step. We want this to smoothly decrease as you train to indicate convergence. And it
decreases to 0 in the end.

5 Conclusion

This paper presented a connected autonomous vehicle latoon control approach with
multi-agent deep reinforcement learning (MADRL). In the designation of MADRL,
multi-objectives are considered to achieve excellent comprehensive performance of
latoon. The training results in stochastic mixed traffic flow based on SUMO platform
represent that the proposed latoon control method is feasible, effective and advanced.
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