
A Machine Learning-Based Elastic Strategy
for Operator Parallelism in a Big Data Stream

Computing System

Wei Li1, Dawei Sun1(&), Shang Gao2, and Rajkumar Buyya3

1 School of Information Engineering, China University of Geosciences,
Beijing 100083, People’s Republic of China
{leeway,sundaweicn}@cugb.edu.cn

2 School of Information Technology, Deakin University,
Melbourne, VIC 3216, Australia
shang.gao@deakin.edu.au

3 Cloud Computing and Distributed Systems (CLOUDS) Laboratory,
School of Computing and Information Systems,

The University of Melbourne, Melbourne, Australia
rbuyya@unimelb.edu.au

Abstract. Elastic scaling in/out of operator parallelism degree is needed for
processing real time dynamic data streams under low latency and high stability
requirements. Usually the operator parallelism degree is set when a streaming
application is submitted to a stream computing system and kept intact during
runtime. This may substantially affect the performance of the system due to the
fluctuation of input streams and availability of system resources. To address the
problems brought by the static parallelism setting, we propose and implement a
machine learning based elastic strategy for operator parallelism (named Me-
Stream) in big data stream computing systems. The architecture of Me-Stream
and its key models are introduced, including parallel bottleneck identification,
parameter plan generation, parameter migration and conversion, and instances
scheduling. Metrics of execution latency and process latency of the proposed
scheduling strategy are evaluated on the widely used big data stream computing
system Apache Storm. The experimental results demonstrate the efficiency and
effectiveness of the proposed strategy.

Keywords: Operator parallelism � Runtime awareness � Resource allocation �
Machine learning � Stream computing � Distributed system

1 Introduction

In recent years, big data has driven the rapid advances in distributed systems. There are
generally two processing methods for big data: batch processing and stream processing
[1]. Compared with batch processing, stream processing is more suitable for real-time
applications. Distributed stream processing platforms enable big data applications to
process continuous stream data and obtain near real-time feedback [2]. At present, the
mainstream distributed stream processing platforms include Apache Storm [3], Apache

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2022
Published by Springer Nature Switzerland AG 2022. All Rights Reserved
W. Xiang et al. (Eds.): BROADNETS 2021, LNICST 413, pp. 3–19, 2022.
https://doi.org/10.1007/978-3-030-93479-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93479-8_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93479-8_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93479-8_1&domain=pdf
https://doi.org/10.1007/978-3-030-93479-8_1

Flink [4], Apache Spark (Spark Streaming) [5], Apache Samza [6], Apache Apex [7],
and Google Cloud Dataflow [8]. Through an elastic execution engine, Flink can sup-
port batch processing tasks and stream processing tasks at the same time, as well as
state management. It suits projects that require high throughput, low latency and
demand state management or window statistics. Storm requires to design a topology
first and then assign the topology to Execution nodes in a cluster, making it more
suitable for small independent projects with low latency. Spark Streaming divides the
input data stream into multiple batches through micro-batch processing, which is more
suitable for projects in the Spark ecosystem. The work in this paper is optimized based
on the widely used Storm platform, but the entire design, its strategy and model are not
only limited to the Apache Storm platform. It can be applied to a variety of related
streaming computing environments.

With the Storm default scheduling, if there are idle resources, uneven load and
overload problems may occur [9, 10]. If no idle resources, there might be poor resource
distribution caused by computing and communication bottlenecks in heterogeneous
clusters [11]. The fundamental problem is that once the relevant parameter configu-
ration is determined, the system cannot optimize parameter configuration during run-
time. To support elastic adjustment, we face the following challenges: first, our solution
must be compatible with the mainstream streaming computing platforms, such as
Apache Flink, Apache Storm, and Apache Spark Streaming; the second is that the
entire process must be monitored in real time to achieve true self-regulation; finally, the
problem that needs to be solved is when using high-overhead pluggable scheduling, it
is likely to introduce a new bottleneck affecting the whole performance [12].

1.1 Contributions

Motivated by the above discussion, we propose an elastic scaling strategy for operator
parallelism (Me-Stream). It supports self-adjustment during runtime, can effectively
optimize resource allocation and ensure the smooth operation of the system. In this
paper, all the three aspects of Me-Stream are discussed, summarized as follows:

(1) We provide a formal definition of the elastic scaling strategy for operator paral-
lelism, and realize the complete process of self-adjustment in operation.

(2) We design the architecture of the parallelism strategy for elastic scaling operations
to solve new bottlenecks caused by pluggable scheduling.

(3) We evaluate the optimization performance of the strategy by metrics of execution
latency and process latency on Storm to demonstrate the effectiveness of the
proposal.

1.2 Paper Organization

The rest of the paper is organized as follows. In Sect. 2, Me-Stream, together with a
model for intelligent tuning solution are introduced. Section 3 focuses on the detailed
discussion of Me-Stream and the algorithm design, where a machine learning model is
adopted to find the better parallel migration path and resource allocation without
manual intervention. Section 4 introduces the experimental environment, parameter

4 W. Li et al.

settings and performance evaluation of Me-Stream. Section 5 reviews related work on
runtime elastic optimization of parallelism in distributed systems. Finally, conclusions
and future work are presented in Sect. 6.

2 Me-Stream Architecture

This section mainly focuses on the parallelism optimization of streaming application
topology for dynamic data streams. An intelligent optimization solution to the paral-
lelism of running instances without manual intervention is provided. The proposal is to
solve the inability of self-adjustment during operation after the relevant parameter
configuration is determined.

As shown in Fig. 1, first of all, at the runtime, a monitoring process needs to obtain
bolts related data in real time [13]. The data set can be obtained through IO or crawlers.
Then, based on the flow perception, the data set is cleaned in real time and output to the
parallel degree bottleneck identification to obtain the bottleneck level. When the preset
conditions are met, the monitoring process executes rebalance to redistribute slots. The
whole process does not require manual intervention. Storm’s default scheduling does
not consider inter-process optimization or inter-node optimization, which will result in
poor configuration of instance parameters with the same computing resource con-
sumption [14, 15]. Through the parallelism bottleneck identification, the topology
bottleneck level can be identified, then it is passed into the parameter plan generation
together with all-slots. A topology parameter plan is created, and the resources are
reallocated according to the default schedule.

At this time, if a scheduling with a large overhead is produced, it is likely to
become a new bottleneck. Therefore, it is necessary to design a matching instance
scheduling that has better performance than the default scheduling of Storm on the
basis of generalization. Through the parameter migration conversion, the topology
parameter plan is converted into a migration plan and stored in the routing table. By
now, the resource reallocation is completed according to the migration plan.

An intelligent tuning solution model is designed to solve the problem of the par-
allelism of running instances without manual intervention. The whole process is as
follows:

(1) Obtain relevant data of bolts;
(2) Identify parallel degree bottleneck;
(3) Generate parameter plan;
(4) Conduct parameter migration and transformation;
(5) Schedule instances;
(6) Execute the rebalance command;
(7) Complete resource redistribution.

A Machine Learning-Based Elastic Strategy 5

3 Me-Stream Framework

This section introduces in detail the processes of parallelism bottleneck identification,
parameter plan generation, parameter migration, instances scheduling and how to
complete the parallelism optimization for running instances using the elastic scaling
strategy (Me-Stream).

3.1 Parallel Bottleneck Identification

First, the strategy traverses the nodes and the executed tasks in each topology in turn,
quantifies the bottlenecks existing in the current topology through the execution
latency, and calculates the maximum execution latency as the bottleneck. After all the
topology traversal is completed, the bottleneck levels are sorted according to the
execution latency, from the highest to the lowest. Among them, Tcalc represents the
calculation time for task cj on node ni, m function represents the required processing
power under the complexity of current task, x function represents the complexity of the
calculation task, and p function represents the ability of the assigned executor to
process ni. The preliminary deduction formula is defined by (1).

Fig. 1. Elastic scaling process of operator parallelism strategy (Me-Stream).

6 W. Li et al.

Tcalcðni; cjÞ ¼ mðxðcjÞÞ
pðniÞ : ð1Þ

Secondly, considering the communication bottleneck factors between nodes in
different network environments, the strategy sequentially traverses the nodes and the
executed tasks in each topology in different network environments, quantifies the
bottlenecks in the current topology through the process latency, and calculates the
maximum process latency as the bottleneck. After all the topology traversal is com-
pleted, the bottleneck levels are sorted according to the process latency. Among them,
Tcomm represents the communication time from ni�1 to ni and ni to niþ 1, m function
represents the required processing capacity under the complexity of the calculation
task, and l represents transmission link bandwidth. The preliminary deduction formula
can be described by (2).

Tcommðni; cjÞ ¼ mðcjÞ
li�1;i

þ mðcjÞ
li;iþ 1

¼ mðcjÞðli�1;i þ li;iþ 1Þ
li�1;ili;iþ 1

: ð2Þ

In summary, the formula for calculating the sum of the parallel bottleneck time of
tasks on all nodes is described by (3) (the maximum of calculation time and the
communication time is the bottleneck time).

T ¼ max
SumðTcalcðni; cjÞÞ;
SumðTcommðni;cjÞÞ

2 :

�
¼ max

SumðmðxðcjÞÞpðniÞ Þ;
SumðmðcjÞðli�1;i þ li;iþ 1ÞÞ

2li�1;i li;iþ 1
:

(
ð3Þ

The above explains how to identify the main bottlenecks from communication
bottlenecks and calculation bottlenecks in a cluster environment.

Next, we need to know when to perform the reallocation. In order to know this
threshold accurately, we design a threshold identification function based on the linear
regression. The specific steps are as follows:

(1) First, according to the above parallel bottleneck identification method, a first-order
binomial linear regression equation is created. The data set ðt; cÞ is obtained by
collecting, classifying, and labeling the original data (original data is obtained
through crawlers and hooks), where t represents the original data timestamp, and c
represents the average delay at timestamp t.

1
m

Xm

i¼1
ðf ðtÞ � ciÞ2 ¼ eðf ; cÞ: ð4Þ

Where f ðtÞ is the threshold identification function, ci is the actual value, eðf ; cÞ is
the mean value distribution, defined as the mean error. The smaller the mean error,
the more accurate f ðtÞ is. It is the linear regression function produced on the
training set.

A Machine Learning-Based Elastic Strategy 7

(2) Then, according to the principle of linear regression:

1
m

Xm

i¼1
ðwti þ b� ciÞ2 ¼ eðf ; cÞ: ð5Þ

(3) Next, the partial derivatives of w and b can be obtained by the linear regression
function of the first-order binomial linear equation:

w ¼
Pm

i¼1 ci ti � tð ÞPm
i¼0 t

2
i � 1

m ð
Pm

i¼1 tiÞ2
; b ¼ 1

m

Xm

i¼1
ðci � wtiÞ: ð6Þ

(4) Finally, using the least squares method to calculate the w and b. when the sum of
the Euclidean distance between the training set and the fitted linear labeling
function is the smallest, the labeling function is the threshold identification
function.When the fitting function becomes stable, the non-monitoring period can
be entered, which can effectively reduce training overhead and release resources.
The threshold identification function is associated with topologies and can be
cached. Therefore, each threshold identification function does not depend on the
selection of the training set, and can be used in parallel with the operator of
another system in the current cluster. However, each threshold identification result
is generated in the current topology instance and destroyed at the end of the
topology’s life cycle.

(5) After obtaining threshold identification function, Me-Stream records the reference
bottleneck by comparing the value of the threshold identification function f and
the actual value c in real time. If the mean error eðf ; cÞ between the value of the
function and the actual value is positive under the accuracy requirement, record
the value as an effective bottleneck value. We take the maximum effective bot-
tleneck value in the bottleneck interval as the reference bottleneck (the bottleneck
time interval depends on the data set interval and automatic redistribution time
setting. The default is 1 min).

(6) When the reference bottleneck occurs multiple times in an interval and the bot-
tleneck time obtained by the threshold identification function is in the same order
of magnitude, reallocation is performed.

8 W. Li et al.

3.2 Parameter Plan Generation

Bottleneck level priority: The task with the highest bottleneck level gets slots allocated
first, then the remaining slots are allocated in turn to tasks with lower bottleneck levels.

A Machine Learning-Based Elastic Strategy 9

This allocation strategy considers the weight of bottleneck level more, and is suitable
for situations where the difference of bottleneck time between topologies is large. The
bottleneck time is calculated for different topologies. Each topology calculates the
bottleneck time and then sorts them globally.

NTask ¼ u
NExecuter þNBottleneck

NExecuter
NTask: ð7Þ

Parameter planning priority: According to the bottleneck levels from high to low,
the previous executor number is added to the bottleneck level multiplied by the
coefficient (default 1). At the same time, the number of tasks is increased by the
corresponding multiple times. This allocation strategy controls the weight of the bot-
tleneck level by a coefficient u, and is suitable for situations where the bottleneck time
between topologies has little difference. The bottleneck level and parameter schedule
on the example WordCount instance are as follows (Table 1):

3.3 Parameter Migration and Conversion

Parameter migration conversion is conducted based on parameter planning. Its process
is as follows:

Table 1. Bottleneck level and parameter schedule on the WordCount instance

Topology Worker number Executor number Task number Bottleneck level

T1 3 8 16 4
T2 5 10 10 2
T3 3 5 10 1
T4 6 10 20 3

10 W. Li et al.

(1) When Me-Stream program is started, the table columns N(k,v) and P(k,v) will be
created automatically;

(2) At runtime, the current node and port are saved into the corresponding keys;
(3) Before redistribution, a new operator allocation is generated based on the

parameter schedule;
(4) After completing the allocation, the node and port from the new allocation result

are assigned to replace the corresponding value in the routing table;
(5) After N (k, v) and P (k, v) are updated, they are provided as a migration path on

the example WordCount instance to the new scheduling (Table 2).

Table 2. Parameter plan and migration path on the WordCount instance

Topology Executor number Task number Operator number Slots Migration path
Node Port N (k,v) P (k,v)

T1 1 1 { [1, 2]…} S1 6700 (1, 3) (1, 3)
1 2 S1 6700 (1, 3) (1, 3)

…

T2 2 3 {…[3]…} S2 6701 (2, 2) (2, 1)
…

T3 3 9 {…[9, 10]…} S3 6702 (3, 1) (3, 2)
3 10 S3 6702 (3, 1) (3, 2)

A Machine Learning-Based Elastic Strategy 11

3.4 Instances Scheduling

Bottlenecks may be created during the optimization process because of the computing
and communication bottlenecks on heterogeneous cluster nodes, the stateful and
stateless instances at the instance layer [16, 17], and some complex pluggable
scheduling. As such, an instance scheduling that can directly identify the migration
table is designed, and the corresponding configuration is provided as the default setting.
The specific instance scheduling steps are executed as follows:

(1) Call the cluster's needsSchedualerTopologies method to obtain the topology that
needs to be assigned with tasks, and store all the topologies in the keys of N (k, v)
and P (k, v) according to the bottleneck level.

(2) Call the cluster's getAvailableSlots method to obtain the resources available in the
current cluster, return them in the form of a collection of <node, port>, and
allocate them to available slots.

(3) Call the cluster's compute-executors method to convert the topological executor
information into a collection of <start-t ask-id, end-task-id> and store it in all
executors.

(4) Call the getAliveAssignedNodeAndPort method of eventScheduler to obtain the
resources acquired by the current topology, and return the <node + port, execu-
tor> collection and store it in alive-assigned.

(5) Call the overriding slot-can-ressign method in Me-Stream to determine whether
the Slots information is active, then select the slot that can be reassigned and store
it in the can-ressigned variable.

(6) Call the overriding bad-slot method in Me-Stream to calculate the number of slots
that can be released in the current topology. If it is greater than the number of slots
currently allocated, call the cluster's freeSlots method to release them.

(7) Call the migration-path method in Me-Stream and allocate all execution programs
based on the N (k, v) and P (k, v) records calculated by all topologies before
scheduling.

4 Performance Evaluation

In this section, the experimental environment and parameter settings are first discussed,
followed by the analysis of performance evaluation results.

4.1 Experimental Environment and Parameter Settings

The proposed Me-Stream system is implemented on Storm 2.1.0, and installed on top
of Ubuntu 20.04.1. Real-life data experiments are conducted on the computing cluster
at Alibaba Cloud Computing. The cluster consists of 28 machines, with 1 designated
machine serving as the master node, running Storm Nimbus, 2 designated as Zookeeper
nodes, and the rest 25 machines working as Supervisor nodes. The software configu-
ration of Me-Stream platform is shown in Table 3.

12 W. Li et al.

Moreover, one DAG with WordCount function is submitted to the computing
cluster. The logic graph of WordCount is shown in Fig. 2.

In Storm, the WordCount instance is used to simulate random words input into
Spout through Kafka, and messages from different partitions are evenly distributed to
different executors for consumption. When Spout parallelism is set to 1, there is no
need to adjust the parameters. Therefore, our focus is to test the system performance
when the spout has multiple executors. Under normal circumstances, the Capacity
value range is between 0.0x and 0.2. When the value is close to 1, it indicates that the
load is severe and the degree of parallelism needs to be increased. At the same time,
when the failure value is not 0, it means that the load is serious and there are tuples that
experience failure or time out. At this time, the parallelism of Spout should be
increased accordingly. We simulate a normal situation where the Capacity value is
small and Failure value is 0. The following describes the experimental verification in
detail, and the parameter table applied in the entire experimental process is shown in
Table 4.

Table 3. Software configuration of Me-Stream.

Software Version

OS Ubuntu 20.04.1 64bit
Storm Apache-Storm-2.1.0
JDK Jdk1.8 64bit
Zookeeper Zookeeper-3.4.14
Kafka Kafka-2.3.0
Redis Redis-6.0.5

sva vb vc

Spout Bolt Bolt

Fig. 2. Logical graph of WordCount in Me-Stream

Table 4. Table of parameter settings in the experiments.

Parameter Explain

Emitted Number of tuples launched to date
Transferred Number of tuples successfully transferred to the next bolt to date
Complete latency
(ms)

The average time taken for each tuple to be fully processed in tuple
tree to date

Acked Number of tuples successfully processed to date
Failed Number of tuples failed or timed out to date

A Machine Learning-Based Elastic Strategy 13

4.2 Performance Results

We consider the average delay data set of topologies within 38min * 50min under the
default Storm scheduling strategy and Me-Stream optimization strategy for compari-
son. The experimental settings contain two evaluation parameters: execute latency EL
and process latency PL.

(1) Execute latency.
Execute latency reflects the overall execution time for all running DAGs, and it is
evaluated by the timestamp from the execution of the function to the end of per
DAG. The smaller the execution latency, the stronger the data processing ability
of the elastic stream computing system.

When the data input rate is stable, Me-Stream has a lower execution latency
comparing to the DefaultScheduler on Storm platform. As shown in Fig. 3, with
the capacity remains unchanged during the whole process, the average execute
latency by Me-Stream and by the default scheduler at the stable stage are
2.3886 ms and 8.3267 ms, respectively. It demonstrates that the execution latency
by Me-Stream is lower than that of the default scheduler on the given instance
when the input rate is stable.

(2) Process latency.
Process latency reflects the overall processing time for all running DAGs, and it is
evaluated by the timestamp of each DAG passed from the tuple arrival to the ack.
The smaller the processing latency, the stronger the data processing ability of the
elastic stream computing system.

Fig. 3. Comparison of execute latency between the default scheduler and Me-Stream on the
WordCount instance.

14 W. Li et al.

When the data input rate is stable, Me-Stream has a lower process latency com-
paring to the DefaultScheduler on Storm platform. As shown in Fig. 4, with the
capacity remains unchanged during the whole process, the average process
latency by Me-Stream and by default Storm strategy at the stable stage are
14.6867 ms and 52.7333 ms, respectively. It demonstrates that the process
latency by Me-Stream is lower than that of the default Storm strategy on the given
instance when the input rate is stable.
We also respectively collect statistics on execute delay, process delay and total
delay data sets of the DefaultScheduler and the Me-Stream optimization strategy,
as shown in Fig. 5 and 6.

Fig. 4. Comparison of process latency between the default scheduler and Me-Stream on the
WordCount instance.

Fig. 5. Statistics of execute delay, process delay and total delay data sets of the default scheduler
on the WordCount instance.

A Machine Learning-Based Elastic Strategy 15

5 Related Work

The application of machine learning models can produce better parallel migration paths
and better resource allocation without manual intervention. However, the time-
consuming training process greatly limits the efficiency of machine learning methods,
and the inconsistency of state and data can also cause considerable overhead.
Researchers have been trying to address these issues.

In [18], a double exponential smoothing method was proposed to predict abnormal
events, which solves the shortcoming of the Markov model that requires a training
process. By designing a seven-phase protocol for traffic-aware active migration, it
handles the inconsistency of state and data in the load balancing partition.

In [19], a pipeline data processing model based on streaming applications was
mentioned. When the ratio of input data to output data of upstream neighbor operations
is known, the input data of downstream neighbor operations can be obtained in
advance. The linear relationship is obtained through learning and analysis, and the
average value of the probability distribution during the monitoring period is taken. The
concept of the average value of the probability distribution during the monitoring
period is also added to the original algorithm, which can effectively reduce the error of
the data set and the function value, and improve the efficiency and accuracy of training.
When the fitting function becomes stable, the non-monitoring period can be entered,
which can effectively reduce training overhead and release resources.

In [20], the ideas of learning rate and discount factor were introduced on the basis
of fitting. Data sets that have a greater impact on the data stream are stored in the
evaluation table. When data with a large influence offset continuously appears, its
weight can be added to influence according to the evaluation result, so as to achieve the
purpose of better training the result function.

In [21], a cost-effective resource allocation model was proposed. Its purpose is to
allow users to automatically and efficiently deploy applications in local or cloud
clusters, and developed a profiler for Spark, which can analyze applications in actual

Fig. 6. Statistics of execute delay, process delay and total delay data sets of the Me-Stream
optimization strategy on the WordCount instance.

16 W. Li et al.

clusters according to different resource allocation schemes and input workloads. Based
on the application profile received from the profiler, dSpark uses the proposed resource
allocation model to select a cost-effective resource allocation plan based on the
deadline in order to deploy the application to the cluster.

The above prior works provide valuable insights into the potential solutions to the
static parallelization setting problems using elastic strategies of machine learning.
However, for big data stream applications, innovative methods need to be developed,
and the characteristics specific to the big data flow computing environments need to be
considered when exploring elastic non-manual intervention. A summary of the com-
parison between our work and other closely related works is given in Table 5.

6 Conclusions and Future Work

In this paper, an elastic scaling strategy for operator parallelism Me-Stream is pro-
posed. It can intelligently perform instance parallelism without manual intervention at
runtime. Starting from the Storm Instance parameter level, we first initiate a monitoring
process to obtain the bolts-related data in real time through traffic sensing, then analyze
and use them, followed by self-optimizing the resource allocation from time to time.
This paper mainly solves the following problems:

(1) It is not transparent for Storm users to use API to set parallelism for operators in a
topology at runtime, that is, users need to run the API frequently to change the
configuration of their applications.

(2) Storm users may not know how to optimally adjust the parallelism. We use a
machine learning model to achieve a better parallel migration path. The model can
achieve a better effect in terms of resource allocation without manual intervention,
and has a certain learning ability.

(3) Storm distributes instances to work programs and work program nodes in a round-
robin manner by default. The number of configured work programs is still evenly
distributed. The instance scheduling we designed can achieve better compatibility
with the intelligent tuning scheme under the premise of ensuring good
generalization.

Table 5. Comparison of Me-Stream and related work

Parameter Related work Me-Stream
[18] [19] [20] [21]

Versatility ✗ ✓ ✓ ✗ ✓

Parallelism ✓ ✓ ✓ ✓ ✓

Machine learning ✗ ✓ ✓ ✗ ✓

Cost saving ✗ ✓ ✗ ✓ ✓

Resource saving ✗ ✗ ✓ ✓ ✓

A Machine Learning-Based Elastic Strategy 17

Future work will focus on the following aspects:

(1) Adapt Me-Stream to other big data stream computing environments.
(2) Deploy Me-Stream in a real big data stream computing environment.

Acknowledgements. This work is supported by the National Natural Science Foundation of
China under Grant No. 61972364, the Fundamental Research Funds for the Central Universities
under Grant No. 2652021001, and Melbourne-Chindia Cloud Computing (MC3) Research
Network.

References

1. Cao, H., Wu, C.E.Q., Bao, L., Hou, A., Shen, W.: Throughput optimization for Storm-based
processing of stream data on clouds. Future Gener. Comput. Syst. 112, 567–579 (2020)

2. Paris, C., Stephan, E., Gyula, F., Seif, H., Stefan, R., Kostas, T.: State management in
Apache Flink: consistent stateful distributed stream processing. Proc. VLDB Endow. 10(12),
1718–1729 (2017)

3. Apache, Storm. http://storm.apache.org
4. Flink. https://flink.apache.org/
5. Spark Streaming. https://spark.apache.org/streaming/
6. Samza. http://samza.apache.org/
7. Apex. https://apex.apache.org/
8. Google Cloud Dataflow. https://cloud.google.com/dataflow/
9. Deng, S., Wang, B., Huang, S., Yue, C., Zhou, J., Wang, G.: Self-adaptive framework for

efficient stream data classification on storm. IEEE Trans. Syst. Man Cybern. Syst. 50(1),
123–136 (2020)

10. Li, C., Zhang, J., Luo, Y.: Real-time scheduling based on optimized topology and
communication traffic in distributed real-time computation platform of storm. J. Netw.
Comput. Appl. 87, 100–115 (2017)

11. Muhammad, A., Aleem, M., Islam, M.A.: TOP-Storm: a topology-based resource-aware
scheduler for Stream Processing Engine. Cluster Comput. 24(1), 417–431 (2020). https://doi.
org/10.1007/s10586-020-03117-y

12. Pathan, R., Voudouris, P., Stenstrom, P.: Scheduling parallel real-time recurrent tasks on
multicore platforms. IEEE Trans. Parallel Distrib. Syst. 29(4), 915–928 (2018)

13. Li, H., Wu, J., Jiang, Z., Li, X., Wei, X.: Task allocation for stream processing with recovery
latency guarantee. In: Proceedings of the 2017 IEEE International Conference on Cluster
Computing, CLUSTER 2017, pp. 379–383. IEEE Press,September 2017

14. Zhang, J., Li, C., Zhu, L., Liu, Y.: The real-time scheduling strategy based on traffic and load
balancing in storm. In: Proceedings of the 18th IEEE International Conference on High
Performance Computing and Communications, HPCC 2016, pp. 372–379. IEEE Press,
January 2017

15. Muhammad, A., Aleem, M.: A3-Storm: topology-, traffic-, and resource-aware storm
scheduler for heterogeneous clusters. J. Supercomput. 77(2), 1059–1093 (2020). https://doi.
org/10.1007/s11227-020-03289-9

16. You, Y., Demmel, J.: Runtime data layout scheduling for machine learning dataset. In:
Proceedings of the 46th International Conference on Parallel Processing, ICPP 2017,
pp. 452–461. IEEE Press,September 2017

18 W. Li et al.

http://storm.apache.org
https://flink.apache.org/
https://spark.apache.org/streaming/
http://samza.apache.org/
https://apex.apache.org/
https://cloud.google.com/dataflow/
https://doi.org/10.1007/s10586-020-03117-y
https://doi.org/10.1007/s10586-020-03117-y
https://doi.org/10.1007/s11227-020-03289-9
https://doi.org/10.1007/s11227-020-03289-9

17. Al-Sinayyid, A., Zhu, M.: Job scheduler for streaming applications in heterogeneous
distributed processing systems. J. Supercomput. 76(12), 9609–9628 (2020). https://doi.org/
10.1007/s11227-020-03223-z

18. Cheng, D., Wang, Y.: Adaptive scheduling parallel jobs with dynamic batching in spark
streaming. IEEE Trans. Parallel Distrib. Syst. 29(12), 2672–2685 (2018)

19. Wei, X.: Pec: proactive elastic collaborative resource scheduling in data stream processing.
IEEE Trans. Parallel Distrib. Syst. 30(7), 1628–1642 (2019)

20. Wang, W., Zhang, C.:An on-the-fly scheduling strategy for distributed stream processing
platform. In: IEEE International Conference on Parallel & Distributed Processing with
Applications, Ubiquitous Computing & Communications, Big Data & Cloud Computing,
Social Computing & Networking, Sustainable Computing & Communications (2018)

21. TawfiqulIslam, M., Karunasekera, S., Buyya, R.: dSpark: deadline-based resource allocation
for big data applicationsin apache spark. In: IEEE 13th International Conference on e-
Science, 24–27 October 2017

A Machine Learning-Based Elastic Strategy 19

https://doi.org/10.1007/s11227-020-03223-z
https://doi.org/10.1007/s11227-020-03223-z

	A Machine Learning-Based Elastic Strategy for Operator Parallelism in a Big Data Stream Computing System
	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Paper Organization

	2 Me-Stream Architecture
	3 Me-Stream Framework
	3.1 Parallel Bottleneck Identification
	3.2 Parameter Plan Generation
	3.3 Parameter Migration and Conversion
	3.4 Instances Scheduling

	4 Performance Evaluation
	4.1 Experimental Environment and Parameter Settings
	4.2 Performance Results

	5 Related Work
	6 Conclusions and Future Work
	Acknowledgements
	References

