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Preface

Semiconductors and nanoscale systems pervade modern life, in our cellphones,
computers, radios, televisions, cars, boats, aircraft, even space exploration and
medical equipment, wherever electronic devices have a function or play a role. Since
the invention of the first transistor in 1949, there has been a continuous avalanche of
growth and development in the science and technology of semiconductor materials
and device applications. The thrust of the advances has involved the steady lowering
of the dimensions in which confined charge carriers can move, ultimately reaching
the nano-world. The requisite support basis of nanotechnology, laden with promising
developments tantamount to a new industrial revolution, has been a qualitatively reli-
able understanding of the underlying physics of semiconducting materials accompa-
nied by quantitatively precise predictions of device performance. This has led to new
concepts and techniques of semiconductor fabrication that have facilitated the emer-
gence of a generation of advanced deviceswithmore complex functionality andmuch
higher densities for electronic, computational and optical applications. Advances in
the growth of semiconductor thin films of differing structural, electronic and optical
properties, and the diminution of layer thickness approaching atomic dimensions,
have provided new opportunities for fundamental scientific studies and technological
applications of low dimensional semiconductor structures in new devices. Moreover,
contemporary fabrication technologies havemade it possible to reduce device dimen-
sions to the point where size effects must be properly described quantum mechani-
cally in order to reliably predict the potential and performance of low dimensional
semiconductor systems for electronic and optical applications.

Modern crystal growth techniques including molecular beam epitaxy (MBE) and
Metal Organic Chemical Vapor Deposition (MOCVD) have made it possible to
control the alloy composition and doping in ternary and quaternary alloys based on
group IV–IV, III–V and II–VI semiconductor compounds over atomic distances, as
low as tens of angstroms. These artificially made microscale and nanoscale semicon-
ductor heterostructures are easily grown as lattice mismatched substrates of epitaxial
layers so thin that quantummechanical effects are dominant. The resulting contempo-
rary low dimensional semiconductor devices (e.g., Heterostructure Bipolar Transis-
tors (HBTs) andModulation Doped Field Effect transistors (MODFETs), nanowires,
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viii Preface

quantum dots, etc.) are known to operate much faster than conventional silicon
devices (e.g., silicon Bipolar Junction Transistors (BJTs) and Metal Oxide Semi-
conductor Field Effect Transistors (MOSFETs)); this is crucial for the electronic and
optical communication and computer industries.

Contemporary electronic communication and information technologies involving
a high volume of information and the need for high speed capabilities and smaller size
devices require development and production techniques that constantly evolve. To
address this challenge and provide the needed improvements, the world’s leading
scientists and engineers have been carrying out intensive work in nanoscience
and nanotechnology to create the future information and electronic communication
technologies.

During the last two decades, large numbers of theoretical and experimental studies
have been carried out on metals, semiconductors, ceramics, polymers and compos-
ites of low dimensions, which are intended for use in applications in electronic
devices and telecommunications, biotechnology, energy conversion and storage,
health sciences and medicine, including also construction and environmental issues.
Nanotechnology now also impacts healthcare, including the drug industry and agri-
culture as well as electronics and communications, information processing and data
storage, employing the multi-functionality of the new materials. Nanomaterials are
very strong and lightweight, and they constitute very small components of computers
as well as new sensors: They provide very rapid response nanoscale electronic and
optoelectronic technologies of very small size and are also predicted to be important
in high power defense systems.

The broad prevalence of semiconductors in modern life throughout the world
suggests that the transition to nanodeviceswill have strong implications formarketing
and national and international economies. With this in view, the United States of
America, Russia, EuropeanUnion, Japan, Korea, Taiwan andChina (and also smaller
nations) promote research in various fields of nanoscience and nanotechnology and
have made huge investments. Rapidly increasing numbers of nanotechnology-based
companies are being established at various scales worldwide, and state-supported
university-industry cooperation is important. Especially, large industrial companies
are making significant investments in nanotechnology for research and development.

Nanoscience and nanotechnology involve comprehensive interdisciplinary
research between the sciences (physics, chemistry, biology, materials science) and
engineering (electronics, computer, mechanical, chemical, construction, textiles,
environment, etc.) fields. Nanoscience and nanotechnology, born as a concept put
forward in the early 1960s, grew with intensive research and development gaining
momentum in the last 20 years. The term “nano” refers to the size of a nanometer,
one billionth of a meter (1nm = 1/1,000,000,000 m). At the nanoscale, new mate-
rial properties emerge, both physical and chemical features that can influence the
function and/or production of new materials that can be controlled.

This book describes some recent advances in the properties, synthesis, character-
ization, modeling and applications of low dimensional and nanoscale materials and
devices in over 20 years of research. It begins with structural, electronic, optical and
magnetic properties, methodology of synthesis, and characterization of quantum dots
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and nanowires. And special attention is focused here on “relativistic”Diracmaterials,
whose electrical conduction and sensing properties far exceed those of silicon-based
materials, making them strong competitors to be the materials of choice for the next
generation of electronic devices and computers. Recognition of the importance of
such materials led to the award of the 2010 Nobel Prize to Geim and Novoselove for
their groundbreaking work on Graphene. More complex issues associated with the
environment and with energy production and storage follow in this book. Further-
more, important achievements in materials pertinent to the fields of biology and
medicine are also reviewed, exhibiting an outstanding confluence of basic physical
science with vital human endeavor.

We hope this book will be of interest to researchers in the semiconductor/device
field in general, also graduate students and advanced undergraduates in physics,
chemistry, biology and medicine. We have also endeavored to address subjects of
interest to those in electrical, chemical, biological and mechanical engineering.

Hilmi Ünlü
İstanbul Technical University

Maslak, Istanbul, Turkey

Norman J. M. Horing
Stevens Institute of Technology

Hoboken, USA
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R. A. W. Ayyubi Department of Physics, Quaid-i-Azam University, Islamabad,
Pakistan

Telia Azzedine Electronic Department, Frères Mentouri University Constantine,
Constantine, Algeria

Sina Bahrami Department of Physics, Stevens Institute of Technology, Hoboken,
NJ, USA

Mesut Balaban Faculty of Science and Letters, Department of Physics, Yıldız
Technical University, Esenler, İstanbul, Turkey
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İstanbul Technical University, Maslak, Istanbul, Turkey

Aparajita Upali Borough of Manhattan Community College, CUNY, New York,
NY, USA

Eui-Hyeok Yang Mechanical Engineering Department, Stevens Institute of Tech-
nology, Hoboken, NJ, USA

Ting Yu Department of Physics and Center for Quantum Science and Engineering,
Stevens Institute of Technology, Hoboken, NJ, USA

Mehmet Hikmet Yukselici Faculty of Science and Letters, Department of Physics,
Yıldız Technical University, Istanbul, Turkey

Xinyu Zhao Department of Physics and Center for Quantum Science and Engi-
neering, Stevens Institute of Technology, Hoboken, NJ, USA

O. Zorlu Department of Physics, Yeditepe University, Atasehir, Istanbul, Turkey



Chapter 1
Modelling of Semiconductors for Low
Dimensional Heterostructure Devices

Hikmet Hakan Gürel , Özden Akıncı, and Hilmi Ünlü

Abstract Advancement in the science and technology of low dimensional elec-
tronic and optical devices requires qualitatively reliable and quantitatively precise
theoretical modelling of the structural, electronic and optical properties of semi-
conducting materials and their heterostructures to predict their potential profiles.
In this chapter, we review the semiempirical tight binding and density functional
theories of the modelling of electronic properties of III–V and II–VI binary/binary
and ternary/binary compound semiconductor in low dimensional heterostructures.
We also discuss the use of finite difference technique for modelling of electronic
structure of two-dimensional quantum wells, one dimensional cylindrical nanowires
and zero-dimensional spherical quantum dots. We focus on the semiempirical tight
binding theory (with sp3, sp3s* and sp3d5s* orbital sets) and density functional theory
(DFT) based onmodified Becke-Johnson exchange–correlation potential with a local
density approximation (DFT-MBJLDA). We conclude that the NN sp3d5 TB model
gives much more physical insight than the (2NN) sp3s* TBmodel, making use of the
fictitious s* state unnecessary in band structure calculations This is essential in the
physically realistic and numerically accurate prediction of the device performance
in technologically important bipolar and unipolar heterostructure devices that can
proceed relatively independently of experiment. The semiempirical tight binding
and density functional theories can be easily implemented in the charge transport
in heterostructure devices and accurate design and simulation of low dimensional
semiconductor devices for electronic and optical components in integrated circuits.
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2 H. H. Gürel et al.

1.1 Introduction

Advances in the growth of semiconductor thin films of different structural, electronic
and optical properties and with varying composition and layer thickness approaching
nanometer has provided new opportunities and challenges in the fundamental science
and technology of semiconductor devices for electronic and optoelectronic applica-
tions in integrated circuits [1]. The combination of contemporary growth and char-
acterization of semiconducting materials and device fabrication technologies has
resulted in the production of previously unknown semiconductor devices for fast
signal processing and the discovery of some novel structures that are of special
interest to solid state scientists and device engineers. Reducing device dimensions to
nanometer scale require reliable description and accurate determination of quantum
size effects in order to realistically describe the operation and predict the potential
performance of low dimensional semiconductor devices.

Modern crystal growth techniques such as molecular beam epitaxy (MBE) and
metal organic chemical vapor deposition (MOCVD) have made it possible to control
the alloy composition and doping of semiconductor alloys based on group IV–
IV, III–V and II–VI compounds over atomic distances. These artificially made
microscale and nanoscale semiconductor heterostructures, are easily grown as lattice
mismatched substrates [2] by the epitaxial layers are so thin that quantum mechan-
ical effects are dominant. The resulting new low dimensional semiconductor devices
(e.g., heterostructure bipolar transistors (HBTs) and modulation doped field effect
transistors (MODFETs), nanowires, quantum dots, etc.) are known to operate much
faster than conventional silicon devices (e.g., Si bipolar junction transistors (BJTs)
and metal oxide semiconductor field effect transistors (MOSFETs)).

Consequently, large number of theoretical and experimental studies have been
carried out on metals, semiconductors, ceramics, polymers and composites at low
dimensions during the last three decades. Fabricated devices are to be used in elec-
tronic and telecommunications, biotechnology, energy conversion and storage, health
sciences and medicine, construction and environmental issues. Nanomaterials are
very strong and lightweight, and they constitute very small components of computers
as well as new sensors: They provide very rapid response nanoscale electronic and
optoelectronic technologies of very small size and are also predicted to be important
in high power defense systems. Smaller size electronic and optoelectronic devices
require reduction of the volume to increase the speed of these devices. This technolog-
ical achievement is possible with increasing their production methods, which brings
in many scientific and technological problems, and development of qualitatively
reliable and quantitatively precise modelling and simulation techniques.

At microscale to nanoscale, the semiconducting materials may change with
the size and new physical and chemical properties and their production can be
controlled with the contemporary crystal growth and fabrication technologies. When
the semiconductor composition changes abruptly across the interface between two
constituents, the difference in their energy bandgaps is accommodated by the discon-
tinuities in the conduction and valence bands, as shown in Fig. 1.1. The bandgap of
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Fig. 1.1 Schematic band diagram of Type II (a) and Type III (b) heterostructures: the potential
energy gradient tends to spatially separate electrons and holes on different sides of heterointerface

the barrier semiconductor overlaps (straddling lineup) that of the well and equi-
librium Fermi level is near the middle of the bandgap on both sides, as shown in
Fig. 1.1a. Both an electron and a hole tend to localize in the narrow-gap quantum
well. Such heterostructure is useful in optoelectronic applications such as lasers, with
both electrons and holes participate to device operation.

When the semiconductor composition changes abruptly across the interface
between two constituents, the bandgap of the barrier semiconductor can also partially
overlap (staggered lineup) that of the well and the equilibrium Fermi level is close to
the conduction band (or valence band) on one side while it is near the middle of the
bandgap on other side (Fig. 1.1b). The potential energy gradient tends to spatially
separate electron and hole on different sides of heterointerface. Large potential barrier
in conduction (or valence) band at heterointerface leads to a better electron (hole)
confinement in field effect transistors with higher electron (hole) concentration. Posi-
tion of equilibriumFermi level determines the density of carrier confinement on either
side of the heterointerface.When equilibrium Fermi level is close to conduction band
of wide bandgap constituent (left) the density of electrons in its conduction band is
greater but when it is closer to the valence band of narrow bandgap constituent (right)
the number of holes is greater there.

If the bandgap of the barrier may not overlap at all (broken gap lineup), as shown
in Fig. 1.1c, the equilibrium Fermi level is well above the conduction band minimum
(or well below the valence band maximum) on one side while it is near the middle
of the bandgap on the other side. Position of equilibrium Fermi level determines the
carrier confinement on either side of the heterointerface. When equilibrium Fermi
level is close to conduction band of wide bandgap constituent (left) the number of
electrons in its conduction band is greater but when it is closer to the valence band
of narrow bandgap constituent (right) the number of holes is greater there.
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The impact of heterostructures on charge transport in three and two dimensional
heterostructure devices can be summarized as follows. First of all, one can make
bipolar transistors with high injection efficiency based on an heterostructure formed
between two semiconductors (with different lattice and elastic constants). Under
forward bias conditions, charged carriers flow from the wide bandgap semiconductor
emitter to the narrow bandgap semiconductor base. Since charge injection efficiency
is related exponentially to the change in the bandgap across the heterointerface,
it can be made almost independent of doping levels [3]. Such transistor is known
as heterojunction bipolar transistors (HBTs). In these devices, the electron (hole)
injection factor is related to the conduction (valence) band offset and is also further
enhanced by the electric field induced because of the charge transfer. Figure 1.2 shows
schematic band diagram of forward biased emitter/base junction of Npn HBT. The
potential barrier blocking electron emission from the emitter to the base is lowered
and electrons injected from the emitter diffuse across the base and are collected in
the collector. Holes injected from the base into the emitter are blocked by the valence
band offset as �Ev/kT.

Furthermore, is now possible to realize low dimensional structures such as
quantum wells and superlattices, which were first proposed by Esaki and Tsu in
1970 [4]. Figure 1.3 shows a schematic band diagram of lattice matched abrupt
AlGaAs/GaAs and AlGaAs/GaAs/AlGaAs multi-quantum wells. In these structures
electrons and holes have dimensions of the order of the mean free path of charge
carries.

Fig. 1.2 The schematic equilibrium band diagram of intrinsic AlGaAs/GaAs emitter/base region
of heterojunction bipolar transistor (HBT) when both sides are intrinsic (a) and doped (b). When
N/p heteroemitter junction is forward biased, majority of electrons injected emitter electrons diffuse
across the p-GaAs base. Some electrons recombine with holes at defect sites in base region
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Fig. 1.3 Schematic view of band diagram of lattice matched abrupt AlGaAs/GaAs (a) and
AlGaAs/GaAs/AlGaAs multi-quantum well (b). The difference in their energy bands is accom-
modated by the discontinuities in the conduction and valence bands. The spike �Ec in the conduc-
tion band and step �Ev in the valence band at heterointerface influences the carrier transport and
influence the device performance

Semiconductor superlattices and quantum wells can now be grown by epitaxially
depositing two semiconductors alternatively or introducing impurities into individual
layers of a single semiconductor with thickness is smaller than the carrier mean free
path. Periodic extension of thin-layer pairs imposes an artificial perturbation of the
crystal structure and leads to novel electronic and optical properties. Second kind of
superlattices are known as doping superlattices in which the dopant type alternates
between n- and p-type. The motion of charge carriers parallel to the layers is not
affected much by the potential barrier of the superlattice. Assuming parabolic bands
and infinite barriers, the conduction band subband energy levels, relative to bottom
of the conduction band, are described by

En = �
2n2π2

2m∗
n Lz

, n = 1, 2, ... (1.1)

where m∗
n is the effective mass of conduction electrons and Lz is the quantum well

thickness.
The applications of heterostructures are not limited to HBTs and MODFETs. In

some cases, a certain compound can be grown on top of the originalmaterial as ohmic
(or Schottky) contact. For example, in GaAs/(Al, Ga). As laser diodes or modulation
doped field effect transistors (MODFETs), a GaAs layer is always used on top of the
(Al, Ga). A s layer in order to facilitate ohmic contacts since it is easier on smaller
bandgap materials. In (In, Ga). As MESFETs, the introduction of a large bandgap
GaAs or (In, Al). As as an overlayer before Schottky contact is found useful. In
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the case of modulation doped heterostructure field effect transistors (MODFETs),
the wide-gap semiconductor is doped, from which charged carriers diffuse to the
nominally undoped narrow gap semiconductor. Furthermore, it is also feasible to
construct more or less undoped heterostructures in which the carriers are induced
by the gate field in a way similar to inversion metal–oxide–semiconductor FETs
(MOSFETs), in which the use of this inversion layer as FET channel allows one to
obtain much improved threshold control.

Rapidly developed technologies and new electronic communication have intensi-
fied the urge for scientific and technological research and development that included
structures with atoms and molecules as well as biological structures. Contemporary
growth and fabrication technologies have furthermade it possible to reduce the device
dimensions to nanometers where quantum size effects must be described in order to
realistically describe the operation and reliably predict the potential and performance
of low dimensional semiconductor devices for electronic and optical applications.

In a nanoscale semiconductor heterostructure devices, such as one-dimensional
quantum wires and zero-dimensional quantum dots, the restricted movement of
charged particles are investigated by using in quantum mechanical principles (e.g.,
effective-mass approximation) in literature [5–11]. The movement of discrete parti-
cles of (discrete) energies in three dimensions (quantized) for a spherical particle in
a box can be obtained by solving Schrodinger equation with Hamiltonian defined as

H = �
2

2m∗
e

∇2 + �
2

2m∗
h

∇2 + Ve(�re) + Vh(�rh) − e2

ε|�re − �rh | (1.2)

First and second terms of the kinetic energy of electrons and space, the third and
fourth terms of limiting the potential energy of the electrons and the gap between the
last term is the Coulomb interaction energy. Interaction and exchange of energy
here in the nanostructure and dielectric material between the interaction energy
of the image (or polarization energy) has been neglected, such as energy terms.
Experimental results are compared with the following quadratic expressions

E(ne,le),(nh ,lh)(d) = Eg + 2�
2π2

d2

[
x2ne,le
m∗

e

+ x2nh ,lh
m∗

h

]
− 3.572e2

εd

− 0.124e4

�2ε2

[
m∗

em
∗
h

m∗
e + m∗

h

]
(1.3)

where E{(ne,le),(nh ,lh)}(d) is the measured core region energy-gap.m∗
e = 0.13m0 vem∗

h= 0.43m0 and CdSe electron and hole effective masses with m0 bare free electron
mass, and ε = K ε0 is the optical dielectric constant of core region. xn,l is j1(xn,l) = 0
first order Bessel function of the roots. Equation (1.3) can be used to calculate the
valence band and conductive band transitions between (transition) (1s, 1s) (1p, 1p),
(1d, 1d), (1f, 1f) and (2s, 2s) transition energies.
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Advancement in the science and technology of low dimensional devices could not
have been possible without a qualitatively reliable understanding of the basic physics
of low dimensional semiconducting material structures and quantitatively precise
potential predictions and performance of such devices. The electronic band structure
of low dimensional bipolar and unipolar semiconductor devices are often calculated
based on the following theoretical models: (i) First principle ab-initio methods, such
as density functional theory (DFT) [12, 13], (ii) methods, such as local/empirical
pseudopotential method [14], or (iii) tight binding method (also known as the linear
combination of atomic orbitals (LCAO) method) [5–11, 15–24], and k.p method
[25, 26]. The first principles ab-initio methods are computationally expensive and
require heavy parallel computations. Since the ab-initio models are based on the
calculations of ground state properties, they can only give limited physical insight
about the energy band structure at high temperatures and pressures.

However, the semiempirical tight binding models are less expensive than the ab-
initio methods and can easily be implemented in calculating electronic properties
of low dimensional and heterostructures such as two-dimensional quantum wells,
one dimensional nanowires and zero-dimensional quantum dots. We will discuss
the semiempirical tight binding theory with first and second nearest neighbor (NN
and 2NN) sp3 and sp3s* atomic orbitals sets and first nearest neighbor (NN) sp3d5

orbitals set with spin–orbit coupling of cation (Al, Ga; In, Cd, Zn) and anion (P,
As, Sb, S, Se, Te) atoms for calculating the electronic structure of III–V and II–VI
compounds. In Sect. 1.5 we will compare the predictions of semiempirical TB with
DFT that uses the modified Becke-Johnson exchange–correlation potential with the
local density approximation (LDA), called MBJLDA functional, for calculating the
band structure of group III–V and II–VI compounds and their alloys.

1.2 Strain in Low Dimensional Heterostructures

The composition variation in alloy constituent and lattice mismatch between two
semiconductors will cause strain across the interface that will modify the electronic
properties of both materials. As long as the thickness of epilayer is kept under a
critical thickness, the lattice mismatch will be accommodated by uniform elastic
strain, as shown in Fig. 1.4.

Strain will modify the structural and electronic properties of the constituent semi-
conductors in directions parallel and perpendicular to the growth direction. In order
to emphasize the importance of heterostructures in low dimensional semiconductor
systems it is essential to understand the interface formation andmodel band structure.
Until the early 1980s, the studies of heterostructures had focused on semiconducting
materials with close lattice matching with a substrate, such as an AlGaAs/GaAs
heterostructure quantum well. The constraint on lattice matching in crystal growth
is essential for relatively thick epitaxial layers since a large lattice mismatch can
cause the occurrence of misfit dislocations with large densities. Such lattice-matched
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Fig. 1.4 Strained heterolayer epitaxy is a result of a growth of materials with dissimilar lattice
constants. To accommodate the lattice mismatch the individual layers contract or expand in the
plane of the epilayers and in the plane of the growth, respectively

growth will prevent the generation of misfit dislocations that would degrade charge
transport and lower device performance.

The lattice constant of strained epilayer along the growth direction is equal to
that of the substrate and is expanded or compressed in the direction parallel to the
interface, shown in Fig. 1.4. Considering the (001) heterepitaxial growth, elastic
theory allows decomposing the biaxial strain tensor into the sum of hydrostatic and
uniaxial strains along the growth direction

εxx = εyy = ε f || =
(
a f || − a f

a f

)
,

εzz = ε f ⊥ =
(
a f ⊥ − a f

a f

)
= 2

(
C12

C11

)
f

ε f ||
(1.4)

where ε f ⊥ and ε f || are the strain components perpendicular and parallel to growth
direction. The epilayer lattice constant will be equal to that of the substrate along the
growth direction: a f || = as and is expanded by the bulk value of its Poisson ratio
perpendicular to the growth direction:

a f ⊥ = a f

[
1 − 2

(
C12

C11

)
f

(
a f || − a f

a f

)]
, (1.5)

where,a f is the bulk lattice constant and C11 and C12 are the bulk elastic stiffness
constants of the strained layer. as is the bulk lattice constant of buffer /or substrate.
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Equations (1.4) and (1.5), suggest that when a thin layer is deposited on a buffer (or
substrate) with large mismatch, the epilayer will be under strain. The lattice constant
of the epilayer along and perpendicular to the interface will be distorted to minimize
its elastic energy. The interface strains due to lattice mismatch and lattice thermal
expansion gradients over the crystal growth temperature can co-exist in heterolayers.
The thermal expansion of lattice constants of epilayer and the substrate with the
growth temperature cause the lattice constant of epilayer parallel and perpendicular
to the interface to change with temperature

af‖(T) = αf‖(T)T = αs(T)T,

af⊥(T) = αf⊥(T)T = αf(T)T + 2
C12f

C11f
[αf(T) − αs(T)]T (1.6)

where αs(T) and αf(T) are the bulk linear thermal expansion coefficients of substrate
and epilayer. Strain across the interface that will modify the electronic properties of
both materials, including the band offsets. Compressive (or tensile) strain in epilayer
results in an increase (or decrease) in conduction and valence band energy levels [27].

In the framework of so called statistical thermodynamic model, in which the
conduction electrons and valence holes are treated as charged chemical particles, the
conduction and valence band energy levels energy are expressed as a function of
pressure at any temperature [28, 29]

Ec(T, P) = Ec(0, P0) + C0
cPT (1 − ln T ) − ac

B

[
P − P2

2B
− (1 + B ′)

6B2
P3

]
,

Ev(T, P) = Ev(0, P0) + C0
vPT (1 − ln T ) − av

B

[
P − P2

2B
− (1 + B ′)

6B2
P3

]
,

(1.7)

where P is the applied pressure, T is the temperature, Ec(0, P0) and Ev(0, P0) are
the conduction or valence band edges at Γ , L and X high symmetry points with
deformation potentials acl = −B(∂Ecl/∂P) and av = −B(∂Ev/∂P). B is the
bulk modulus; B ′ = ∂B/∂P is its derivative. C0

i P is the standard heat capacity
of conduction electrons and valence holes. C0

cP = C0
nP − C0

0P = C0
pP + �C0

P

and C0
vP = C0

pP are the standard heat capacities of conduction electrons and
valence holes; C0

nP = C0
pP = (5/2)k, where k is the Boltzmann’s constant.

�C0
P = C0

nP + C0
pP − C0

0P is the heat capacity of reaction of free electron and
hole formation obtained by fitting (1.6) to the experimental data [26, 27] and empir-
ical pseudopotential bandgap energy [14] and at high symmetry points in the first
Brillouin zone of semiconductors:

Egl(T, P) = Egi + �C0
PT (1 − ln T ) − agl

B

[
P − P2

2B
− (1 + B ′)P3

6B2

]
, (1.8)
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where P = −2B f C f ε f// and P = −3Bsεs|| for the epilayer and the substrate,
respectively. In the case of (001) pseudomorphic growth, ε = ε f || = (a f || − a f )/a f

is the strain in the epilayer along the growth direction and C f = (C11 − C12)/C11.
It should be noted that as the device dimension is reduced to nanoscale of the order
of Bohr radius of charged carriers, the use of continuum elastic theory becomes
questionable [2, 30]. In such a case one should use the atomic elasticity theory known
as valence force field (VFF) approach [31, 32], especially as the lattice mismatch at
heterointerface becomes large.

1.3 Composition Effects in Ternary/Binary
Heterostructures

Semiconductor alloys based on IV–VI, III–V and II–VI compounds are important
in fabricating low dimensional bipolar and unipolar heterostructure devices since
their structural and electronic properties (e.g., lattice constants and bandgaps) can
be tailored independently. Therefore, reliable and accurate determination of compo-
sition variation of lattice constant and bandgap energies are very important. In our
recent studies [5–10, 15–22] the effects of composition and strain on the electronic
properties of semiconductor alloy constituents in heterostructures are studied by
using the semiempirical tight bindingmodels and first principles DFTwithMBJLDA
functional in terms of host bond length and distorted bond length by the substitutional
impurity without any adjustable parameter.

In determining the composition effects on tight binding parameters and in turn
on ternary alloy semiconductor band structures, we employ the method of the modi-
fied virtual crystal approximation (MVCA) in which we formulate the composi-
tion dependence of the bond length of ternary material [5–10, 15–22]. The MVCA
allows one to accurately take into account the effect of disorder-induced nonlinear
variation of the bond length in the TB parameters used in calculating the band
structure properties. The composition dependent bond length of ABC ternary is
written as the sum of undistorted bond length (dVCA = (1 − x)d0

AC + xd0
BC )

due to the virtual crystal approximation (VCA) [33] and the distorted bond length
(drelax (x) = x(1−x)δc(dBC(x)−dAC (x))) due to cation–anion relaxation of binaries
used to form ternary [5–10, 15–22]:

d(x) = dVGA(x) + drelax (x) = (1 − x)d0
AC + xd0

BC

+ δc(x)(1 − x)(dBC(x) − dAC(x)) (1.9)

where dAC(x) and dBC(x) are the bond lengths of AC and BC binaries in an ABC
ternary
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dBC(x) = (1 − x)d0
AC + xd0

BC + (1 − x)ξBC :A(d0
BC − d0

AC),

dAC(x) = (1 − x)d0
AC + xd0

BC + xξAC :B(d0
AC − d0

BC),
(1.10a)

where d0
AC and d0

BC are the undistorted bond lengths of the host materials AC and
BC and ξAC :B and ξBC :A are two dimensionless relaxation parameters [34],

ξAC :B = 1

1 + αAC
6αBC

(
1 + 10 βAC

αAC

) , ξBC :A = 1

1 + αBC
6εAC

(
1 + 10 βBC

αBC

) (1.10b)

where δc = ξAC :B − ξBC :A is the difference between dimensionless relaxation
parameters.

Equation (1.9) can then be used to consider the composition effects on the band
structures of the ternary constituent of heterostructures in the theoretical models
such as first principles WIEN2K simulations package with the MBJLDA functional
embedded in DFT and semiempirical sp3, sp3s*, sp3d5s* and sp3d5 tight binding
models. The diagonal or off-diagonal matrix elements in the NN sp3d5 and 2NN
sp3s* TB Hamiltonian matrix elements for an ABC ternary are expressed as [5–10,
15–22]

Eα/β(x) = (1 − x)Eα/β(AC) + x Eα/β(BC) + x(1 − x)δc[Eα/β(AC) − Eα/β(BC)]
(1.11)

where Eα/β(AC) and Eα/β(BC) represent the fitted energies of the s, p and d states
of anion and cation atoms forming the AC and BC binary compounds. This allows
one to consider the composition variations of the diagonal and off-diagonal elements
of the TB Hamiltonian matrix for a ternary ABC semiconductor can be taken as a
nonlinear function of alloy composition.

1.4 Electronic Band Structure Modelling

In order to emphasize the importance of the electronic structure modelling of
heterostructure in low dimensional semiconductor systems it is necessary to keep
in mind that the motion of charge carriers in a semiconductor are subject to electric
force or both electric and/or magnetic forces. If a constant force �F is applied to an
electron, change in its wavevector will be d�k. According to second law of Newton,
the equation of motion of a charged particle can be written as

d�k
dt

= 1

�

d �p
dt

= �F (1.12)
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where the force �F can be due to an externally applied electric field ( �E), magnetic field
�B or combination of both, known as Lorentz force �F = q( �E + �v× �B). The velocity
and acceleration of charge carriers such as electrons and holes can be calculated
from the semiconductor band structure. In the framework of classical band structure
model, the group velocity of themoving electrons and holes are given by the gradients
of conduction and valence band energies in k-space.

�vn = 1

�

∂En(kn)

∂kn
= 1

�

�∇k En(kn), �vp = 1

�

∂Ep(kp)

∂kp
= 1

�

�∇k Ep(kp) (1.13)

The speed and acceleation of electronc and holes is affected by the electronic band
structure of bulk or low dimensional heterostructure semiconductors. Furthermore,
the effective masses of conduction electrons and valence holes are also described
by the semconductor band structure. If the band structure is perfectly parabolic
(E(k) ∝ k2), (1.12) reduces to the classical Newtonian expression for equation of
motion. The accelerations and effective masses of of electrons and holes can be
written as

�an = d�vn
dt

=
(

1

�2

∂2En(k)

∂k2n

)
�Fn → 1

m∗
n

=
(

1
�2

∂2En(k)
∂k2n

)
,

�ap = d�vp
dt

=
(

1

�2

∂2Ep(k)

∂k2p

)
�Fp → 1

m∗
p

=
(

1
�2

∂2Ep(k)
∂k2p

) (1.14)

When the band structure is parabolic charged particles move faster and less
scattered by the impurities. There are regions in the semiconductor band structure
which are not parabolic. Therefore, a detailed study of semiconductor band structure
is essential for a relaible modelling and accurate numerical simulation of charge
transport in low dimensioal heterostructure devices.

Furthermore, in order to understand the charge transport in low dimensional semi-
conductor heterostructures, it is essential to reliably understand the formation and
precisely determine the magnitude of the structural, electronic and optical properties
across the interface between two semiconductors with dissimilar physical and chem-
ical properties. When a widegap semiconductor is grown on a narrow bandgap semi-
conductor, the interface strain, caused by the lattice mismatch and thermal expansion
gradient over the crystal growth temperature, will modify the structural and elec-
tronic properties of the constituents in directions parallel and perpendicular to the
heterointerface [27, 35]. As with all semiconductor devices, the key issue to under-
stand the impact of heterostructure on the performance of low dimensional semicon-
ductor devices is the physically reliable and numerically precise determination of
the electronic energy band structure across the heterointerface.

The theoretical calculations of structural and electronic properties of bulk semi-
conductors or low dimensional planar and core/shell semiconductor heterostructures
are often carried out by:
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(i) First principal ab-initio methods, such as density functional theory (DFT),
which allows one to calculate the electronic structure from first principles in
which there is no need for empirical fitting parameters,

(ii) Empirical methods, such as local/nonlocal empirical pseudopotential method
(EPM), orthogonalized plane wave (OPW),

(iii) Semiempirical tight binding method, and
(iv) k.p approximation.

The ab-initio methods, which utilize variational method to calculate the ground
state properties of many-body system, are computationally expensive and require
heavy parallel computations. Therefore, ab-initio methods cannot be easily imple-
mented for the study of nanoscale electronic and optoelectronic devices. In empir-
ical methods, one performs calculations on systems with empirical parameters fit to
experimental data at high symmetry points as derived fromoptical experiments. Since
empirical methods involve solution of one-electron Schrödinger wave equation to
calculate electronic band structure of semiconductors, they are less expensive than ab-
initio methods and easily generates electronic band structure. In contrast, the empir-
icalmethods, such as semiempirical tight binding model (ETB) is known as not only
simple but also reliable and easy implemented andhas great advantages over first prin-
ciples calculations in finding the electronic properties such as band structure, density
of states, band gaps of the heterostructures. The semiempirical tight binding model
is an atomistic approach and well suited to calculate the electronic band structure of
low dimensional semiconductor heterostructures such as two-dimensional quantum
wells, one dimensional quantum wires, and zero-dimensional quantum dots [36].

Quantitatively reliable and numerically precise modeling and simulation of elec-
tronic properties of compound semiconductors and their ternary alloys allows better
prediction of their material properties [23, 37–40]. It is well known that the theo-
retical calculation of the electronic properties of heterostructures usually encounters
serious computational and conceptual difficulties. Over the years various elaborate
quantummechanical models have been proposed over the years to determine magni-
tude of energy band gaps and band offsets (see [32] for a detailed review). Most of
these quantum mechanical models are based on the zero temperature calculations of
electronic band structure and therefore, can only give limited physical insight about
the formation of the energy band structure across the heterointerface and of little use
in development of nanoscale electronic and optical devices.

It is well known fact that the conventional density functional theory (DFT) allows
one to calculate the electronic structure from first principles, in which there is no
need for empirical fitting parameters. Although the DFT based calculations yield
satisfactory results for the structural properties of semiconductors [27], they fail to
produce satisfactory results for the electronic properties of the semiconductors when
comparedwith experiment [41, 42]. It is thought that this is to the errors in formulation
of the self-interaction effects and the discontinuity in exchange correlation potential
energy in calculating the band gaps with the conventional DFT studies. Although the
GW approximation or hybrid functional overcomes the band gap problem, they still
result in band gap error on the order of 10–20% compared to experiment [43]. On the
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other hand, the semiempirical tight binding model, with various orbital bases (e.g.,
sp3, sp3s∗, sp3d5, and sp3s∗d5), although approximate, can realistically describe
the electronic properties of semiconductors.

The semiempirical tight binding theory is an atomistic approach and because of
its simplicity and ability to give better band structure predictions, it is well suited for
the band structure studies of low dimensional structures (such as quantum wells and
quantum dots [42]). There is, however, still argument about the use of the fictitious s*
state in TBmodel (e.g., sp3s∗, sp3s∗d5) in the electronic structure calculations. Since
the inclusion of s∗ excited state is done by modeling the average of p-d interactions,
the sp3s∗ tight binding parameterization does not permit the inclusion of excited
d-orbitals to the sp3 basis and consequently, the actual contribution of the excited
d-states in the band structure calculations is not reliably reflected. In this section,
we shall give a brief discussion of the density functional theory (DFT) that uses
the modified Becke-Johnson exchange potential with local density approximation
(LDA) correlation potential (called MBJLDA) for obtaining band structure of group
II–VI compounds and their ternary alloys, yielding more accurate fundamental band
gaps.

In Sect. 2.2, we briefly describe the semiempirical second nearest neighbor (2NN)
sp3s∗ and nearest neighbor (NN) sp3d5 tight binding parameterizations, with spin–
orbit coupling of cation (Al,Ga, In, Cd, Zn) and VI anion (N, As, P, Sb, S, Se,
Te) atoms, based on the parametrization presented in [44–46]. We will then present
the results of our calculations for the electronic properties of CdX and ZnX (X
= S, Se, Te) compounds and their heterostructures (CdZnS/CdS, CdSTe/CdTe and
ZnSSe/ZnSe) and compare them with experimental data on band gap energies at
high symmetry points in the Brillouin zone. In the following section we will give
a brief discussion about the current progress in semiempirical tight binding theory
which is based on nearest or second nearest neighbor sp3, sp3s* [23], sp3d5s* [38,
39] and sp3d5 [40] orbitals sets to calculate the electronic structure of binary and
ternary semiconductors and their binary/binary and ternary/binary heterostructures
as a function of alloy composition, temperature, pressure and interface strain. We
present the results of our 2NN tight binding calculations, with spin–orbit coupling
[2, 35, 42] in calculating the composition, temperature, pressure and strain effects on
the electronic properties (e.g., band structure, density of states, band gaps and band
widths) of Ga and Al based III–V ternary and binaries, which are in good agreement
with experiment [14, 37] for bandgap energies and electron effective mass.

1.5 Semiempirical Tight Binding Modelling

The elementary tight-binding method introduced in 1960s has become essentially
first-principles theory and has been used in recent years to get approximate but very
precise predictions of the bonding and electronic properties of semiconductors with
both zinc-blende and wurtzite crystal structure. The linear combination of atomic-
orbitals (LCAO) allows one to formulate the total energy in semiconductors which
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provides a clear way to think about all of the trends from system to system entirely in
terms of the concepts. We will give a detailed discussion of the semiempirical tight
binding theory which uses the second nearest neighbor (2NN) sp3 and sp3s* atomic
orbitals set and first nearest neighbor (NN) sp3d5 basis sets with spin–orbit coupling
of cation (Al, Ga; In, Cd, Zn) and anion (P, As, Sb, S, Se, Te) atoms for calculating the
electronic structure of III–V and II–VI compounds and their heterostructures. The
results of DFT with MBJLDA functional and semiempirical NN sp3d5 tight binding
theory are found to be in good agreement with measured band gaps of group III–V
and II–VI compounds and their ternary/binary heterostructures.

1.5.1 Semiempirical sp3 Tight Binding Theory

In the semiempirical tight binding theory of semiconductors one assumes that the
valence electrons are tightly bound to their nuclei as in the free atom. Anion and
cation atoms are brought together until their separations become comparable to the
lattice constant of semiconductors, at which point their wave functions will overlap.
In the Slater-Koster formalism [47], the crystal potential of a binary semiconductor
is defined as a sum of the symmetrical spherical potentials around each atom. This
allows the electronic wave functionψαk to be written as linear combination of atomic
orbitals ϕα(k)

|ψαk〉 =
∑

α

uα|ϕα(k)〉 =
∑
i

ei.k.ri√
N

|ϕα(r − ri )〉, (1.15)

where r is the position of electron with respect to origin of coordinate system is real
space, k is the wave vector, N is the number of atoms, and ri is the crystal lattice site.
The energy state is given by the eigenvalue of the linear equation written in matrix
form [44, 45, 47, 48];

∑
β

[
Hαβ(k) − Sαβ(k)E

]
uβ = 0, (1.16)

where α correspond to a cation s (p) orbital and β corresponds to an anion s (p) orbital
and uβ is the wave function coefficient. The Bloch functions in (1.15) are taken to be
orthogonal so that the overlap matrix Sαβ = 〈ϕα(k)|ϕβ(k)

〉
is as an identity matrix.

E is the eigenvalue and Hαβ = 〈ϕα(k)|H ∣∣ϕβ(k)
〉
is the (2 × 2) Hamiltonian matrix.

Equation (1.16) is rewritten as

(
Hcc Hca

Hac Haa

)
− E

(
1 Sca
Sac 1

)
= 0 (1.17)
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The diagonal (Esa, Esc, Epa, Epc) and off diagonal (Ess, Exx , Esa pc , Esc pa , Exy)
elements are

Haa =

⎡
⎢⎢⎢⎣
Ea
s 0 0 0
0 Ea

p 0 0
0 0 Ea

p 0
0 0 0 Ea

p

⎤
⎥⎥⎥⎦, Hcc =

⎡
⎢⎢⎢⎣
Ec
s 0 0 0
0 Ec

p 0 0
0 0 Ec

p 0
0 0 0 Ec

p

⎤
⎥⎥⎥⎦ (1.18)

Hac =

⎡
⎢⎢⎢⎣

B0Ess B1Esp B2Ess B3Esp

−B0Esp B0Exx B3Exy B2Exy

−B2Esp B3Exy B0Exx B1Exy

−B3Esp B2Exy B1Exy B0Exx

⎤
⎥⎥⎥⎦, Hca =

⎡
⎢⎢⎢⎣

B∗
0 Ess −B∗

1 Esp B∗
2 Ess B∗

3 Esp

B∗
1 Esp B∗

0 Exx B∗
3 Exy B∗

2 Exy

B∗
2 Esp B∗

3 Exy B∗
0 Exx B∗

1 Exy

B∗
3 Esp B∗

2 Exy B∗
1 Exy B∗

0 Exx

⎤
⎥⎥⎥⎦

(1.19)

where diagonal elements and off-diagonal (interacting or hopping terms) elements
are defined as

〈
pcx
∣∣H ∣∣pax 〉 = 〈pcy∣∣H ∣∣pay 〉 = 〈pcz ∣∣H ∣∣paz 〉 = Exx B0(k),〈

pcx
∣∣H ∣∣pay 〉 = 〈pcy∣∣H ∣∣pax 〉 = Exy B3(k),

〈
pcy
∣∣H ∣∣paz 〉 = 〈pcz ∣∣H ∣∣pay 〉 = Exy B1(k),〈

pcy
∣∣H ∣∣paz 〉 = 〈pcz ∣∣H ∣∣pay 〉 = Exy B1(k),

〈
pcx
∣∣H ∣∣paz 〉 = 〈pcz ∣∣H ∣∣pax 〉 = Exy B2(k),

〈
sc
∣∣H ∣∣sa 〉 = Ess

4∑
n=1

eik.rn = Ess B0(k), 〈sc|H ∣∣pax 〉 = Esp

4∑
n=1

eik.rn = EspB1(k),

〈
sc
∣∣H ∣∣pay 〉 = Esp

4∑
n=1

eik.rn = EspB2(k), 〈sc|H ∣∣paz 〉 = Esp

4∑
n=1

eik.rn = EspB3(k),

(1.20)

where B∗
i is the complex conjugate of Bi matrix elements that are expressed as

B0(k) = 4Cos

(
kxa

2

)
Cos

(
kya

2

)
Cos

(
kza

2

)
− 4i Sin

(
kxa

2

)
Sin

(
kya

2

)
Sin

(
kza

2

)
,

B1(k) = 4Cos

(
kxa

2

)
Sin

(
kya

2

)
Sin

(
kza

2

)
+ 4i Sin

(
kxa

2

)
Cos

(
kya

2

)
Cos

(
kza

2

)
,

B2(k) = −4Sin

(
kxa

2

)
Cos

(
kya

2

)
Sin

(
kza

2

)
+ 4i Sin

(
kxa

2

)
Sin

(
kya

2

)
Cos

(
kza

2

)
,

B3(k) = −4Sin

(
kxa

2

)
Sin

(
kya

2

)
Cos

(
kza

2

)
− 4iCos

(
kxa

2

)
Cos

(
kya

2

)
Sin

(
kza

2

)
,

(1.21)

where i = √−1 and r1 = (a/2)(1, 1, 1), r2 = (a/2)(1,−1,−1), r3 =
(a/2)(−1, 1,−1) and r4 = (a/2)(−1,−1, 1) are displacement vectors of nearest
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Fig. 1.5 Unit cell group
III–V and II–VI compounds
with zinc-blende crystal
structure

neighbors. Figure 1.5 shows the schematic view of unit cells for tetrahedral
semiconductors.

The on-site atomic energies Esa, Esc, Epa and Epc off-site atomic
Ess, Exx , Esa pc , Esc pa and Exy dominate the acceptable features of electronic
band structure of semiconductors. The two off-diagonal elements Ess and Exx are
obtained from the bandgap at  high symmetry point (kx = ky = kz = 0) in the first
Brilloun zone for which B1, B2 and B3 are all zero and B0 is nonzero. The strain in
a heterostructure will modify the off-site TB matrix elements with respect to their
unstrained values and are often determined by assuming that they obey the Harrison
Scaling Law [45]:

Vll ′m(ε) = Vll ′m(a/ao)
−ηllm (1.22)

where Vll ′m(ε) and Vll ′m are the strained and bulk value of interaction potential for
anion and cation atoms. The exponents ηllm are determined to reproduce the strain
dependent band structure of relevant semiconductors under hydrostatic pressure,
namely the volume deformation potential agl = −B(∂Egl/∂P) of corresponding
band gaps Eg, EgL and EgX at high symmetry points.

In the framework of second nearest interaction (2NN) sp3 TB model of Lohrer
and Talwar [46, 49], with addition of spin–orbit interaction, considering a spherical
symmetric potential to the Hamiltonian [25], greater improvement of electronic band
structures of bulk binary semiconductors is obtained. Results are given in Fig. 1.6a
and b, respectively, for the direct bandgap GaAs and indirect bandgap AlAs binary
group III–V compound semiconductors, where the spin–orbit splitting of the valence
bands are also shown.

Semiconductor alloys improve the performance of heterostructure devices
because they allow the device designer to locally modify the band structure of the
semiconductor (e.g., increasing direct bandgap) and in turn control the motion of the
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Fig. 1.6 Electronic band structure of direct bandgapGaAsa and indirect bandgapAlAsb calculated
by using the 2NN sp3 TB parametrization of Tran et al. [50]. Spin orbit splitting of the valence
bands are also shown for both semiconductors

charge carriers. In order to understand how such local modification of band structure
can affect the motion of positive and negative charge carriers, one needs to under-
stand the composition variation of valence and conduction band energy levels of
tetrahedral semiconductors as a function of k wave vector. Using the second nearest
interaction (2NN) sp3 TB parametrization of Lohrer and Talwar [46], with rotational
spin interaction added to the Hamiltonian, calculated composition effects on band
structure of AlGaAs/GaAs heterostructures are shown in Fig. 1.7 for 20 and 30%
aluminumcomposition. IncreasingAl composition from20 to 30% results in increase
in direct bandgap of AlGaAs ternary semiconductor.

The motion of negative and positive charged particles in conduction and valence
bands are described by their group velocities and second law of Newton according
to (1.13). In this concept, the perspective view of band structure of semiconductor
components is important in order to accurately simulate the charge transport and
performance of low dimensional heterostructure devices working under high strains
and temperatures. Charge carriers move with a greater acceleration and much faster
in parabolic regions of band structure, as described by (1.11)–(1.13). Probability
of charge carriers being scattered by the local impurities will be lesser in parabolic
regions than that are non-parabolic. Perspective plots of the energy band structures
derived from 2NN sp3 tight binding parametrization of Lohrer and Talwar [46] for
AlGaAs of lattice matched AlGaAs/GaAs and from 2NN sp3s* tight binding model
for InGaAs/GaAs heterostructures are plotted in Fig. 1.8. Using the perspective view
we can easily visualize the effect of ternary alloy semiconductor band structure on
the motion of negative and positive charge carriers in conduction and valence band
energy levels, respectively.

Figure 1.9 compares the calculated composition effects on the direct and indirect
bandgaps of lattice matched AlGaAs/GaAs heterostructures at high symmetry points
of Brillouin zone for each constituent ternary semiconductor against experimental
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Fig. 1.7 Band structure of AlGaAs with x = 0.20 (left) and x = 0.30 (right) calculated with the
2NN sp3 TB parameters of Loehr and Talwar [46]

Fig. 1.8 Three-dimensional view of the composition effects on the band structure of AlGaAs in
lattice matched AlGaAs/GaAs heterostructure (a) and InGaAs in coherently strained InGaAs/GaAs
heterostructure (b) at room temperature
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Fig. 1.9 Predicted strain effects on bandgaps of AlGaAs in lattice matched AlGaAs/GaAs (left)
and of InGaAs in pseudomorphic InGaAs/GaAs (right) heterostructures

data. Since the lattice mismatch at the interface of AlGaAs/GaAs heterostructure is
nearly zero and only thermal expansion due to linear expansion of lattice constants
of AlGaAs and GaAs modify the band structure. Although the Slater-Koster type
semiempirical 2NN sp3s tight binding parametrization of electronic structures yields
a good description of valence band dispersion curves, the conduction band disper-
sion curves are inaccurately given, especially in calculating the bandgap at the X
symmetry point is not well reproduced. Since the predicted bandgaps depend on
experimental data, in order to obtain reliable and accurate tight binding parameters
which will produce reliable band structure, one must go through a fitting process that
depends on the mapping of a large number of orbital coupling parameters on the set
of observables; in many cases there are not many analytical expressions available.
This is observed in determining the indirect band gaps at L and X high symmetry
points.

One can overcome the difficulty associated with the 2NN sp3s TB parametriza-
tion for L and X bandgaps by using a so-called statistical thermodynamic model [28,
29], which considers the conduction electrons and valence holes as distinct electri-
cally chemical species, to study the interface strain and ternary composition effects
on the electronic structure of heterostructures at symmetry points. In the frame-
work of statistical thermodynamic model of semiconductors, one first calculates the
valence band Ev(x) of Ax B1−xC ternary alloy bywriting the bond length and valence
band energies according to the modified Vegard’s rule described by (1.9) and (1.11),
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respectively. The bandgap energies at high symmetry points k = (2 π /a)(0; 0; 0)
and k = (2 π /a)(1; 0; 0) are obtained by combining the Vegard’s rule and Kane’s
k.p approximation used in determining the effective mass of electrons in conduction
band at symmetry points [28, 29]:

1

mn(x)
= x

mnA(x)
+ 1 − x

mnB(x)
= 1 + P2

(x)

3

(
2

Eg(x)
+ 1

Eg(x) + �(x)

)
(1.23)

1

mntL(x)
= x

mntL A(x)
+ 1 − x

mntLB(x)
= 1 + P2

L (x)

(
2

EgL(x)
+ 1

EgL(x) + �L(x)

)
(1.24)

where mnA(x) and mnB(x) are the electron effective masses at 1C conduction
band valley and mntL A and mntLB are the transverse electron effective masses at L
conduction valley of binaries AC and BC. P(x) = x PA +(1−x)PB and PL(x) =
x PLA+(1−x)PLB are themomentummatrix elements�(x) = x�A+(1−x)�B and
�L(x) = x�L A + (1 − x)�LB are the spin–orbit energies. PA, Pb, PAL and PBL

of binaries AC and BC are obtained from (1.23) to (1.24) with measured mn(x),
mntL(x), �(x) and �L(x) for composition of x = 0 and 1.

Inverting (1.23) and (1.24) gives quadratic equations for bandgaps Eg(x) and
EgL(x). Solving the resultant quadratic equation, one obtains following expression
for these bandgaps

Eg(x) = 3y−1
 (x) − �(x)

2
+ 1

2

[
(�(x) − 3y−1

 (x))2 + 8�(x)y−1
 (x)

]1/2
(1.25)

EgL(x) = 2y−1
 (x) − �1(x)

2
+ 1

2

[
(�1(x) − 2y−1

 (x))2 + 4�1(x)y
−1
 (x)

]1/2
(1.26)

y(x) = 3(1 − mn(x))

mn(x)P2
(x)

, yL(x) = (1−mnt(x))
mnt(x)P2

L (x) (1.27)

The indirect gap EgX (x) of Ax B1−xC ternary is determined from the following
empirical expression

EgX (x) = Eg(x) + (EgX A − EgA
)
x + (EgXB − EgB

)
(1 − x) (1.28)

EgX A, EgXB,EgA, and EgB are the indirect and direct bandgap energies at  and
X high symmetry points of AC and BC binary semiconductors.

Figure 1.10 compares the measured and calculated alloy composition varia-
tion of the direct and indirect bandgaps of AlGaAs ternary of AlGaAs/GaAs and
InGaAs ternary of InGaAs/GaAs heterostructures, respectively. There is excellent
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Fig. 1.10 Predicted strain effects on bandgaps of AlGaAs in lattice matched AlGaAs/GaAs (left)

agreement between the predictions of (1.25)–(1.27) with measured bandgaps for
both AlGaAs/GaAs and InGaAs/GaAs heterostructures on (001) GaAs buffer. In
the calculations following parameters were used: mn/m0 = 0.063 and 0.08,
mnt/m0 = 0.0754 and 0.0964, �s/(eV ) = 0.35 and 0.29, �1/(eV ) = 0.23
and 0.21, Eg/(eV ) = 1.425 and 2.95, EgL/(eV ) = 1.734 and 2.363, and
EgX/(eV ) = 1.911 and 2.161 for GaAs and AlAs binary compounds, respectively
and of InGaAs in pseudomorphic InGaAs/GaAs (right) heterostructures.

1.5.2 Semiempirical sp3s* Tight Binding Theory

In order to eliminate the inaccuracy of the 2NN sp3 TB parametrization in predicting
the conduction band dispersion curves, mainly in calculating the bandgap at the
X symmetry point, Vogl et al. [51] added the higher lying excited d-states to the
semiempirical nearest neighbour sp3 TB parametrization. In this new (NN) sp3s*
tight binding theory there are 13 TB parameters, which are determined by comparing
the predicted bandgapswith those produced by empirical pseudopotential model [14]
at high symmetry points. As addition, the inclusion of 2NN interactions of cation and
anion atoms in the sp3s* TB model yields better fit of conduction band dispersion
curve at the L symmetry point. Adding the spin–orbit coupling in the 2NN sp3s*

TB model increases the size of the TB Hamiltonian matrix (10 × 10) to (20 × 20),
which is diagonalized for each k vector to obtain the band structure [51].

After the optimization of the diagonal matrix elements we then can have a realistic
TB parametrization of the off-diagonal matrix elements of 2NN sp3s* orbitals set,
which are obtained by fitting the obtained band gaps at high symmetry points to those
produced by empirical pseudopotential theory [14]. Table 1.1 lists the optimized TB
parameters and Table 1.2 [5, 16, 17] lists the direct and indirect bandgaps at high
symmery points for AlAs, GaAs, InAs, AlN, GaN and InN group III–V binary
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Table 1.1 Optimized 2NN sp3s* TBparameters forAlAs,GaAs, InAs,AlN,GaN and InNobtained
by fitting the band structure to experimental bandgaps at high symmetry points

(eV) AlAs GaAs InAs AlN GaN InN

Es,a −7.5253 −8.4399 −9.5381 −11.505 −12.915 −12.860

Ep,a 1.1627 0.9252 0.7733 4.3815 3.1697 1.9800

Es,c 0.9833 −2.6569 −2.7219 0.5047 −1.5844 −0.3994

Ep,c 3.5867 3.5523 3.5834 10.2184 9.0302 8.0200

Es*,a 7.4863 6.6235 7.2730 12.0400 12.2000 10.6300

Es*,c 6.7267 7.4249 6.6095 13.7400 12.2000 13.0000

4Vs,s −6.642 −6.4210 −5.6052 −9.8077 −8.8996 −4.2285

4Vx,x 1.8730 1.9850 1.8398 6.6900 5.3500 3.9800

4Vx,y 4.2919 4.9100 4.3977 8.9400 8.6200 7.4100

4Vsa,pc 5.1106 4.2390 3.0205 7.8500 6.4000 3.8100

4Vpa,sc 5.4965 5.15358 5.3894 7.6800 7.2400 6.1900

4Vs*a,pc 4.5216 3.80624 3.2191 8.0300 7.0600 6.8800

4Vpa,s*c 4.9950 4.7009 3.7234 2.4700 1.8200 3.3600

εsx 0.2459 0.2459 0.1441 −1.4000 0.9500 0.6150

εxy −0.1050 −0.1050 0.0249 6.9000 1.0100 0.7100

λa 0.0072 0.0553 0.1385 0.0035 0.0035 0.0035

λc 0.1721 0.1338 0.1290 0.0070 0.0410 0.1100

Table 1.2 Bandgaps at symmetry points of AlAs, GaAs, InAs, AlN, GaN and InN compounds
obtained using the 2NN sp3s* TB model [5, 16, 17] and experimental data [43] are given in
parenthesis

(eV) AlAs GaAs InAs AlN GaN InN

Eg 3.13
(3.13)

1.52
(1.52)

0.43
(0.42)

5.99
(6.00)

3.30
(3.27)

0.90
(0.90)

EgX 2.23
(2.23)

1.98
(2.03)

2.28
(2.50)

4.90
(4.80)

4.70
(4.70)

2.83
(3.00)

EgL 2.58
(2.54)

1.82
(1.85)

1.61
(1.43)

8.63 6.10 3.81

compound semiconductors which may be used to calculate their bulk and ternary
electronic band structures.

Figure 1.11 describes the band structure of AlAs, GaAs, InAs, AlN, GaN, and
InN binary compounds determined by using the optimized diagonal and off-diagonal
matrix elements of 2NN sp3s* TB Hamiltonian listed in Table 1.1. The interaction
parameters 4Vs*,p and 4Vp,s* are adjusted to fit to the X bands and 2NN interac-
tion parameters εsx and εxy to get a good fit to the L bands in reproducing the
empirical pseudopotential energy bands [14]. Adding the excited s* state to the sp3

orbitals set on the cation and anion atoms with 2NN interactions and spin–orbit
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Fig. 1.11 Electronic band structure of GaAs, GaN, AlAs, AlN, InAs and InN III–V compound
semiconductor calculated by using the 2NN sp3s* TB parametrization

coupling of p-states, improves the simulation of the conduction band structure of
III–V compounds, especially at the X symmetry point, accurately reproducing the
empirical pseudopotential bands at symmetry points of conduction bands.

As an example of implementing the modified virtual crystal approximation
(MVCA) for the calculation of composition effects in semiempiricalNNor 2NNsp3s*

tight binding model, the tight binding parameters given in Table 1.1 is used in the
calculations of the electronic structures of GaAsN, InasN, AlGaN and InGaN group
III-nitride ternaries in k-space for various alloy compositions. By implementing the
modified virtual crystal approximation (MVCA) [21, 22, 52] in the semiempiricalNN
or 2NN sp3s* tight binding model, one can then calculate the composition effects on
tight binding parameters. Using bandgap energies in Table 1.2, tight binding parame-
ters are optimized and used in the calculations of the electronic structures of AlGaN,
InGaN and GaAsN group III-nitride ternary alloys in k-space for several composi-
tions. Increasing the alloy concentration we can increase the direct bandgap region of
the ternary semiconductors in ternary/binary heterostructures. Figure 1.12a–d show
the expected trend in band structures of GaAsN, InAsN, AlGaN and InGaN ternaries
of GaAsN/GaN, InAsN/InN, AlGaN/GaN and InGaN/GaN heterostructures.

As stated earlier, the perspective view of band structure of ternary alloy semicon-
ductor is important in order to accurately simulate the charge transport and perfor-
mance of low dimensional heterostructure devices working under high temperatures
and strains. Charge carriers move with a greater acceleration and much faster in
parabolic regions of band structure, as described by (1.11)–(1.15). Probability of
being scattered by the local impurities will be lesser in parabolic regions than that are
non-parabolic regions of the semiconductor band structure. Figure 1.13a and b show
the perspective plots of the band structures of of GaAsN, InAsN, AlGaN and InGaN
group III—ternaries of GaAsN/GaN, InAsN/InN, AlGaN/GaN and InGaN/GaN
group III-nitride heterostructures, plotted as a function of wave vector for the entire
composition range. These plots allow us to visualize the dynamics of charge carriers
as a function of alloy composition and predict and simulate the performance of
low dimensional ternary/binary heterostructure devices for electronic and optical
applications.
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Fig. 1.12 Two-dimensional plots of composition effects on band structure of GaAsN, InAsN,
AlGaN and InGaN ternaries of GaAsN/GaN (a), InAsN/InN (b), AlGaN/GaN (c) and InGaN/GaN
(d) III-nitride ternary/binary heterostructures calculated by using the 2NN sp3s* TB parameters

Furthermore, Fig. 1.14a and b show the alloy omposition effect on band structure
of AlInN ternary of AlInN/InN heterostructure that are calculated by using the 2NN
sp3s* TB parameters.

The perspective plot in Fig. 1.14b allow us to better visualize the dynamics of
charge carriers as a function of alloy composition and predict and simulate the perfor-
mance of low dimensional ternary/binary heterostructure devices for electronic and
optical applications.

The composition effects on the energy band properties of AlGaN/GaN,
InGaN/GaN and GaAsN/GaAs ternary/binary group III-nitride heterostructures
are summarized in Fig. 1.15 for AlGaN/GaN (left), InGaN/GaN (middle) and
GaAsN/GaAs (right) heterostructures.

Predicted fundamental bandgaps ofAlGaN, InGaN, andGaAsN ternaries at the,
L andXhigh symmetry points, especially at symmetry point, are in excellent agree-
mentwith experiment [41]. The fundamental band gaps ofAlGaNand InGaNnitrides
increase with composition. However, the bandgap of GaAsN diluted nitride at the 
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Fig. 1.13 Perspective views of band structure of GaAsN (a), InAsN (b), AlGaN (c) and InGaN
(d) ternaries of GaAsN/GaN, InAsN/InN, AlGaN/GaN and InGaN/GaN III-nitride ternary/binary
heterostructures calculated by using the 2NN sp3s* TB parameters

Fig. 1.14 Two-dimensional (a) and perspective (b) views of composition effects on band structure
of InAsN ternary calculated by using the 2NN sp3s* TB parameters
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Fig. 1.15 Comparison ofmeasured andpredicted bandgaps ofAlGaN, InGaNandGaAsN ternaries
in AlGaN/GaN (left), InGaN/GaN (middle) and GaAsN/GaAs (right) heterosructures calculated by
using optimized 2NN sp3s* TB parameter listed in Table 1.1

symmetry point decreases with alloy composition for x < 0.25, and then increases for
0.26 < x < 1, in agreement with experiment. The lattice mismatch induced interface
strain effects on the fundamental band gaps at , L and X symmetry points can be
quite largewhen the band gap (or conduction band) deformation potential is large. It is
interesting to note that the optimized 2NN sp3s* tight binding parameters in Table 1.1
gives excellent agreement with measured fundamental bandgaps of AlGaN, InGaN
and GaAsN ternary semiconductors over the entire composition range without any
empirical fitting or any adjustable parameter. These results suggest that by using
the optimized 2NN sp3s* TB parameters for bulk GaAs, GaN, AlN and InN binary
compounds, given in Table 1.1, the 2NN sp3s* TB model allows one to determine
the nonlinear composition dependence of the principal band gaps of nitride-based
ternary semiconductors without any empirical fitting nor any adjustable parameter.
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1.5.3 Semiempirical sp3d5 Tight Binding Theory

In this section we discuss the calculation of the semiconductor electronic structure
by using the semiempirical sp3d5 tight binding parametrization, with first nearest
neighbor (NN) and spin–orbit coupling (SO) of p-states considered. The NN sp3d5

TB Hamiltonian matrix is written as

Hαβ = 〈ϕα(k)|H ∣∣ϕβ(k)
〉 = Eαβ +

∑
i =0

Iαβ(0, i)eik.ri + Hso (1.29)

where εαβ is the on-site energy for β orbital (s, p, d) at the atomic site α (cation and
anion) and represents the intra-atomic integrals, which couple atomic orbitals located
in the same cell. Iαβ(0, i) represents the first nearest neighbor interaction integrals
(hopping term) which couples atomic orbitals located in different cells. The nine
atomic-like states (s; x, y, z; xy, yz, zx, x2 − y2, 3z2 − r2) basis set describes each
atom. There are 19 independent matrix elements: 9 on-site and 10 off-site elements.
Adding the spin–orbit coupling to the sp3d5 orbitals basis set adds two extra tight
binding parameters. The spin–orbit interaction is given by λa =< xa ↑ |Hso|za ↓>

for anion and λc =< xc ↑ |Hso|zc ↓> for cation atom. The role of λa is to reproduce
the bulk zone center splitting between the split-off band and the light and heavy hole
bands.

Group II–VI alloy semiconductors are considered as usefulmaterials in fabricating
heterojunction photovoltaic devices because their band gaps and lattice parameters
can be tailored so that ternaries or quaternaries with different compositions can be
grown on a suitable lattice matched substrate. The potential barrier in the conduc-
tion and the potential step in the valence bands at interface influences the carrier
transport and device performance [31], making the reliable and accurate modelling
of interface energy band structure highly crucial to understand the impact of group
II–VI heterostructures in the design and optimization of semiconductor photovoltaic
devices. We use the sp3d5 TB model with nearest neighbor interactions and spin–
orbit coupling of p-states are considered to calculate the band structure of group
II–VI ternary/binary structures. As example, we shall focus on band structure, band
gaps ZnS, ZnSe, ZnTe, CdSe, CdS and CdTe II–VI compound semiconductors for
which we were able to find some experimental data to compare. We will compare
the predictions of nearest neighbor (NN) sp3d5 tight binding model, with spin–orbit
coupling of p-states, to those of widely used second nearest neighbor (2NN) sp3s∗
model, with spin–orbit coupling of p-states [42]. Table 1.3 give the bandgap ener-
gies used to optimize tight binding parameters for the NN sp3d5 and 2NN sp3s*

TB models that are needed to calculate the band structure of CdS, ZnS and CdSe
binaries.

Thematrix elements are determined byfitting the nonlocal pseudopotential energy
band dispersion relations to those obtained from the tight binding model for bulk
semiconductors. In doing so, one starts with calculating the electronic band structure
by estimating the values of on-site matrix elements and off-site matrix elements and
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Table 1.3 Bandgap energies of CdS, CdSe and ZnS bulk semiconductors, obtained from the fitting

of the ETB model, with sp3d5 and sp3s∗ orbital basis sets

Bandgap (eV) CdS ZnS CdSe

sp3s* sp3d5 sp3s* sp3d5 sp3s* sp3d5

E
g 2.476 2.555 3.680 3.702 1.887 1.937

EX
g 4.341 4.696 5.103 5.190 3.784 3.779

EL
g 3.983 5.193 4.810 4.641 3.097 3.027

then carry out a least-squared errorminimization fitting procedure at a number of high
symmetry points in the valence and conduction band dispersion curves to fit band
gap energies obtained from the empirical nonlocal pseudopotential method [42].

Table 1.4 gives the optimized tight binding parameters for 2NN sp3s∗ TB model
used in the band structure calculations of group II–VI binary compounds such as
CdS, ZnS and CdSe.

Table 1.5 give the optimized tight binding parameters for the NN sp3d5 TBmodel
used in the band structure calculations of group II–VI binary compounds such asCdS,
ZnS and CdSe.

Figure 1.16 compare the electronic band structure of CdS, ZnS and CdSe calcu-
lated using NN sp3d5 and 2NN sp3s* TB models, both reproducing the band gaps
as well as the valence band and conduction band dispersion curves at , X and

Table 1.4 The optimized s, p
and s* TB parameters for
CdS, CdSe and ZnS
compounds obtained from
fitting 2NN sp3s* TB model
[6] to pseudopotential bands
at symmetry points [14]

Parameters (eV) CdS CdSe ZnS

Es,a −11.5300 −11.610 −9.63

Ep,a 0.5300 1.4800 1.326

Es,c 1.8300 1.1100 0.03

Ep,c 5.8700 6.5200 4.73

Es*,a 7.1300 8.0800 7.53

Es*,c 6.8700 8.0200 5.72

4Vs,s −3.0700 −6.3000 −4.64

4Vx,x 1.7600 3.1100 2.64

4Vx,y 4.2300 5.0000 5.36

4Vs,p 2.1700 5.1600 4.57

4Vp,s 5.4800 5.1700 5.54

4Vs*,p 1.9900 2.8900 3.05

4Vp,s* 3.0600 1.7500 2.49

εsx 0.1000 0.2000 0.0

εxy −0.0100 −0.1500 0.0

λa 0.0250 [8] 0.0250 [8] 0.1434

λc 0.0130 [14] 0.0270 [14] 0.0591
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Table 1.5 Tight binding
parameters for NN sp3d5 TB
calculations of electronic
band structure of CdS, ZnS,
and CdSe II–VI compounds

(eV) CdS ZnS CdSe

sc 1.8300 1.3600 0.0300

pc 5.8700 6.5200 4.7300

dc(t2) −6.8300 −5.8200 −7.3100

dc(e) −7.4400 −6.2100 −7.8100

sa −11.5300 −14.6100 −9.6300

pa 0.9300 1.7800 1.3260

da(t2) 14.4300 15.5400 15.2600

da(e) 13.1500 13.6000 14.1000

ssσ −0.8440 −1.0050 −1.2600

spσ 2.2729 2.5387 2.3989

ppσ 1.68963 1.3343 1.9789

ppπ 2.5500 4.3775 3.3400

psσ −0.10750 −0.3725 −0.6800

dsσ 0.0000 −2.5900 −1.2200

dpσ −1.1400 −0.0500 −0.0100

dpπ −1.2900 −2.7800 −1.0900

sdσ 1.7500 1.3700 1.5200

pdσ 1.5580 2.1100 1.7800

pdπ −0.3500 −0.4500 −0.3200

λa 0.0250 0.0250 0.1434

λc 0.07600 0.0270 0.0591

L symmetry points, which cannot be done with NN sp3 and 2NN sp3 TB models.
The NN sp3d5 TB parametrization, including the spin–orbit coupling of p-states, is
adequate to accurately reproduce the band gaps at , X and L symmetry points and
both the valence band and conduction band dispersion curves. When compared with
the 2NN sp3s* TB model, the NN sp3d5 TB model better simulates both the valence
band and conduction band dispersion curves. This is due to the fact that the inclu-
sion of s∗ excited state is done by modeling the average of p-d interactions and it
does not permit the inclusion of excited d-orbitals to sp3 basis. Therefore, the actual
behavior and contribution of the excited d-states in the band structure calculations
is not reliably reproduced, suggesting that the sp3s* TB model is of limited value
for determination of optical properties of semiconductors involving high symmetry
points. However, we should add that both of these TB models with NN sp3d5 and
2NN sp3s* orbitals sets are semiempirical and their basis lies in a good description
of the electronic band structures of tetrahedral semiconductors.

Using the sp3d5 tight binding model parameters given in Table 1.5 we can also
calculate the composition effects on the band structure of ternary/binary heterostruc-
tures. Figure 1.17 shows the comparison of the sp3d5 and sp3s∗ TBmodels prediction
of the electronic band structure of Cd1−x Znx S ternary semiconductor along  − L
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Fig. 1.16 Energy band structure of CdS, CdSe and ZnS bulk semiconductors along  − L and
 − X directions, obtained by using the ETB model with NN sp3d5(solid line) and 2NN sp3s∗
(dashed line) orbital basis sets for the tight binding parameters given in Tables 1.1 and 1.5

and−X directions, with Zn composition x= 0.25 and 0.75, obtained by using given
in Table 1.5. As noted in Sect. 1.2, there is a considerable lattice mismatch induced
interface strain in II–VI ternary/binary heterostructures over most of the composition
range. Interface strain causes changes in the bond length and tight binding parameters.
Interface strain will modify the off-site tight binding matrix elements representing
the nearest neighbor interactions, known as the hopping strength, with respect to their
unstrained values and are often determined by using (1.22), obeying the universal
Harrison scaling law [45]: V s

ll ′m = Vll ′m(a/ao)−ηllm . Here a and ao are the strained
and unstrained values of inter-atomic distance between nearest neighbors. ηllm is
adjusted in order to fit the first pressure derivatives of band gaps Eg, EgL and EgX

at , L and X symmetry points to their experimental values.
Semiempirical tight binding theory with sp3d5 orbital basis set is based on the

representation of atomic interactions and need to be fitted to bulkmaterial parameters.
The fitting process is a difficult one since it depends on the mapping of large number
of orbital coupling parameters on the set of observables and there are not many
analytical expressions available. Therefore, accurate and reliable determination of
the strain effects on the energy levels by fitting the off-site tight binding matrix
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Fig. 1.17 Comparison of the sp3d5 and sp3s∗ TBmodels prediction of the electronic band structure
of Cd1−x Znx S ternary semiconductor along  − L and  − X directions, with Zn composition x
= 0.25 and 0.75, obtained by using given in Tables 1.4 and 1.5

elements to set of observables is difficult. We shall overcome this obstacle by using
the statistical thermodynamic model [28] study the strain effects on energy levels.

Since the measured band gaps are near 0 K we ignored the logarithmic term,
which accounts the electron–phonon interactions for temperature dependence. The
predicted band gaps at high symmetry points, especially at  point, are in excellent
agreement with experimental data [14] for these ternary semiconductors. Although
the inclusion of s∗ excited state in the 2NN sp3 TBmodel yields accurate calculations
of the conduction band structure features at the X high symmetry point, it does so
by modelling the average of p-d interactions and is insufficient to determine energy
levels above 6.0 eV. Jancu et al. [38, 39] suggested that from a solid-state physics
point of view, the actual behaviour of excited d-states is not reliably addressed in the
sp3s* tight binding model of valence band and conduction band dispersion curves
involving the , X and L high symmetry points of semiconductors which will be
discussed in the next sub-section.
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1.5.4 Semiempirical sp3d5s* Tight Binding Theory

Jancu et al. [38, 39] pointed out that the excited d-states contribute to both the valence
bandmaximumat the symmetry point and to the conduction band dispersion curves
at the X and L symmetry points and is explicitly included in NN sp3d5s* orbitals
set. The band gaps at high symmetry points in the Brillouin zone and optimized tight
binding parameters given by Jancu et al. [38], The electronic band structure of AlAs,
GaAs, AlSb, GaP and InP group III–V compounds are calculated. As can be seen
from Figs. 1.18 and 1.19, both the valence band and conduction band dispersion
curves of AlAs, GaAs, AlSbi GaP and InP obtained by using the NN sp3d5s∗ TB
model overcomesmost of the limitations of the earlier 2NN sp3 and sp3s∗ TBmodels.
Furthermore, accurate description of the second conduction band and the transverse
effective masses at the X- and L-symmetry points that are in good agreement with
experiment suggests that the NN sp3d5s* TB parametrization makes it possible to
accurately calculate the electronic and optical properties involving symmetry points
at the edge of the Brillouin zone of tetrahedral semiconductors.

Fig. 1.18 Energy band structure of AlAs, GaAs and AlSb III–V binary compound semiconductors
along  − L and  − X directions, obtained by using 2NN sp3d5s∗ orbital basis sets
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Fig. 1.19 Energy band structure of GaP and InP III–V binary compound semiconductors along
 − L and  − X directions, obtained by using 2NN sp3d5s∗ orbital basis sets

As can be seen from Figs. 1.18 and 1.19. the tight bindingmodel with NN sp3d5s∗
basis set eliminates the limitations of sp3 and sp3s∗ basis sets. The NN sp3d5s∗ tight
binding model is reliable for the calculation of dispersion curves for energies up to
6 eV above the valence band maximum, correctly reproducing the orbital character
of band edges, and their behavior under strain, at , X and L symmetry points of
Brillouin zone of these semiconductors.

1.6 Density Functional Theory Modelling

The classical density functional theory (DFT) is based on the original work of Kohn
and his collaborators [12, 13], which allows us to have a parameter-free description
of structural and electronic properties of elementary and compound semiconductors.
According to the Kohn-Hohenberg-Sham theory [12, 13], the wave functions of
single particle states ϕi,k(r) are determined by the solution of the following set of
equations similar to Schrödinger equation
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Hϕi,k =
(

− �
2

2m
∇2

i + Vext + Veff

)
ϕi,k = Eiϕi,k (1.30)

Veff(r) = VH(r) + Vxc(r) = VH(r) + δExc(n(r))

δn(r)
(1.31)

n(�r) =
N∑
i=1

∑
k

fi,k|ϕi,k(r) > |2 (1.32)

where Vext is the external potential of the nuclei, Veff(r) is the effective potential,
Exc(n(r)) is the exchange–correlation functional and n(�r) is the charge density which
is expressed in terms of single-particle electronic orbitals. Equation (1.32) must be
solved consistentlywith (1.30) and (1.31). Although the set of (1.30)–(1.32) yields an
exact solution to the problem, there are approximations involved in the determination
of the exchange–correlation potential Vxc(r) for which Local DensityApproximation
(LDA) andGeneralizedGradient Approximations (GGA) have proven to be effective
for a large number of semiconductors.

Although classical DFT calculations based on (1.30)–(1.32) give satisfactory
results for ground state properties (e.g., total energies, lattice constant, bulkmodulus),
their predictions are relatively poor for the electronic properties (e.g., band gaps and
effective masses) [53]. The bandgap energies predicted by the DFT calculations are
too small compared to experimental data [43] and predicted by empirical pseudopo-
tential theory [14]. Even with GW and hybrid functionals, conventional DFT results
in bandgap error on the order of 10–20% as compared with experimental data [43].
In order to overcome this obstacle, the exchange–correlation potential contribution
to the DFT band gap is shifted by using a so-called “scissor operator”, in accordance
with the suggestion of Fiorentini and Balderschi [53]. The difference between the
LDA and experimental band gaps (�E) scales with the optical dielectric constant
(�E ∼= 9.1/ε∞) [8, 9].

Furthermore, Tran and Blaha [50] combined the Becke-Johnson exchange poten-
tial and the local density approximation (LDA) correlation potential in DFT band
structure calculations. They called the modified Becke-Johnson density functional
(mBJLDA), which is an exchange–correlation (XC) potential that is obtained as the
functional derivative of the XC-energy functional EXC with respect to the electron
density n(r) (VmBJ

xc = δEXC [n(r)]/δn(r)) taken from LDA. Although the computa-
tional cost of DFT with the mBJLDA functional is comparable with DFT-LDA and
DFT-GGA, its predicted bandgaps are in good agreement with experimental data [34,
43] and empirical pseudopotential theory [14]. We used the WIEN2K simulations
with various functionals [50, 54–57] embedded in DFT to calculate the electronic
properties of group III–V and II–VI binary compound semiconductors as well as
their ternary/binary heterostructures.

The band structures of GaAs, AlAs, AlSb, GaP and InP binary materials
were investigated by using WIEN2K simulations embedded in DFT with various
exchange–correlation potentials [54–57]. The best fit with pseudo potential theory
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calculations [38], experimental bandgaps [43] and sp3s*d5 tight binding calculations
[38] are obtained. The obtained results [21] shown in Table 1.6.

The results are shown in Fig. 1.20 for GaAs, AlAs and AlSb group III–V binary
compounds.

Table 1.6 The comparison of the results obtained for III–V compounds

Compound GGA1
[54]

GGA2
[55]

GGA3
[56]

GGA4
[57]

LDSA
[58]

Exp
[43]

TB [38] PP [38]

GaAs 1.348 1.223 1.273 1.331 1.116 1.519 1.519 1.220

AlAs 3.035 2.915 2.942 3.004 2.820 3.130 3.130 2.880

InAs 0.721 0.711 0.709 0.732 0.721 0.418 0.418 0.310

GaP 2.811 2.690 2.731 2.809 2.596 2.895 2.895 2.850

AlP 4.419 4.295 4.313 4.394 4.212 3.630 3.630 4.380

InP 1.602 1.479 1.517 1.594 1.397 1.424 1.424 1.440

AlSb 2.519 2.440 2.454 2.491 2.322 2.384 2.384 2.230

Fig. 1.20 Energy band structure of AlAs, GaAs and AlSb III–V binary compounds along  − L
and  − X directions, obtained by using Wien2k (solid lines) and 2NN sp3d5s∗ (dashed lines)
orbital basis sets for the tight binding parameters
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Fig. 1.21 Energy band structure of GaP and InP III–V binary compounds along  − L and  − X
directions, obtained by using Wien2k (solid lines) and 2NN sp3d5s∗ (dashed lines) orbital basis
sets for the tight binding parameters

The comparison of results for GaP and InP is also shown in Fig. 1.21 As can be
seen from the figures, the DFT results show a perfect agreement with the sp3s*d5

TB results.
The interface strain effects on the fundamental bandgaps of III-nitrides based

ternary/binary heterostructures are shown in Fig. 1.22 for AlGaN/GaN, InGaN/GaN
and GaAsN/GaAs as functions of for the entire composition range (0 ≤ x ≤ 1).
As shown in Fig. 1.22, the interface strain effect on the fundamental bandgaps of
InGaN/GaN (middle) and GaAsN/GaAs (right) dilute nitrides based heterostructures
is rather large because of the larger conduction band deformation potentials.

Group II–VI binary compounds and their ternary alloy semiconductors are
considered as useful materials in fabricating heterojunction photovoltaic devices
because their band gaps and lattice parameters can be tailored so that ternaries or
quaternaries with different compositions can be grown on a suitable lattice matched
substrate. The potential barrier in the conduction and the potential step in the
valence bands at interface influences the carrier transport and device performance,
making the reliable and accurate modelling of interface energy band structure highly
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Fig. 1.22 Strain effects on the bandgaps of AlGaN/GaN, InGaN/GaN and GaAsN/GaAs
heterostructures as a function of composition, obtained using the WIEN2K package with GGA
[54] and corrected by scissor operator, and 2NN sp3s* TB model

crucial to understand the impact of group II–VI heterostructures in the design and
optimization of photovoltaic devices.

Therefore, it is important to comparatively discuss the use of DFT with mBJLDA
functional and the semiempirical NN sp3d5 and 2NN sp3s* TB models to calculate
the electronic band structures of ZnSSe/ZnSe and CdSTe/CdTe heterostructures.
Figure 1.23 shows the crystal structure of CdSe and ZnS compounds. CdX and ZnX
(X = S, Se, Te) have a zinc-blende crystal structure (space group F-43 m No: 216)
in which the Cd/Zn atoms are located at (0,0,0) and S (or Se) at (0.25,0.25,0.25).
Converged results are obtained using 10,000 k points in the first Brillouin zone with
RMTKmax = 8.50, where RMT represents the smallest muffin-thin radius and Kmax is
the maximum size of the reciprocal lattice vectors. LSDA, GGA and MBJLDA, as
implemented in the WIEN2K simulations package, are used for exchange and corre-
lation potentials in the calculations. SCF iterations are repeated until the total energy
converges to a point <10–4 Ryd. The WIEN2K simulations with the MBJLDA func-
tional DFT yields a remarkable improvement over LDA and GGA in the calculation
of the structural properties (e.g., lattice constants and bulk modulus) and electronic
properties (e.g., bandgaps) of these compounds. However, we should point out that
theMBJLDA underestimates the band gaps between−2.50 and−7% for CdTe, ZnS,
ZnSe, ZnTe and overestimates up to ~4% for CdS and CdSe.
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Fig. 1.23 Crystal structure of ZnS and CdSe compounds

Using WIEN2K simulations package with the mBJLDA functional based DFT,
band structure of CdS, CdSe, CdTe, ZnS, ZnSe and ZnTe II–VI compounds are calcu-
lated and the results are compared with those obtained by using NN sp3d5 and 2NN
sp3s* TB models. The comparison of the band structure dispersion curves obtained
by using the WIEN2k simulation package with the MBJLDA functional embedded
in DFT and the semiempirical tight binding theories with NN sp3d5 and 2NN sp3s*

orbitals sets is shown in Fig. 1.24 for CdS and ZnS compound semiconductors.
Figure 1.25 shows the band structures of CdSe, CdTe and ZnSe obtained using

WIEN2K with DFT-MBJLDA (dark-solid lines), NN sp3d5 TB (red-solid line) and
2NN sp3s* TB (dashed-blue line) models.

As demonstrated in Figs. 1.24 and 1.25 for CdX and ZnX (X= S, Se, Te) binaries
of ZnSSe/ZnSe and CdSTe/CdTe heterostructures, the WIEN2K simulations with
DFT-MBJLDA functional and semiempirical NN sp3d5 and 2NN sp3s* TB methods
described in this work accurately reproduce the band gaps and band dispersion curves
at high symmetry points of Brillouin zone when they are compared with empirical
pseudopotential calculations for these binary and ternary semiconductors. the three
different approaches almost equally well reproduce the band gaps at , X and L
high symmetry points and valence band and conduction band dispersion curves in
the entire Brillouin zone of bulk compound semiconductors. When the two semiem-
pirical NN sp3d5 and 2NN sp3s* tight binding parameterizations are compared with
each other, they both give reasonable descriptions of the energy levels in the vicinity
of the bottom of the conduction band and the top of the valence band of both binary
and ternary II–VI compounds. However, the NN sp3d5 TB model does better than
the 2NN sp3s* TB model in accurately reproducing band gaps as well as valence
band and conduction band dispersion curves fitted to the empirical pseudopotential
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Fig. 1.24 Band structures of CdS and ZnS group II–VI compound semiconductors obtained using
WIEN2K with DFT-MBJLDA (dark-solid lines), NN sp3d5 TB (red-solid line) and 2NN sp3s* TB
(dashed-blue line) models

calculations at the L high symmetry point of these compounds, obviating the need
for any fictitious excited s∗ state in the semiempirical tight binding model calcula-
tions. Furthermore, since the inclusion of the fictitious s∗ excited state is done by
modelling the average of p-d interactions, the 2NN sp3s* TB parametrization does
not permit the inclusion of excited d-orbitals to a sp3 basis set. Consequently, the
actual behavior and contribution of excited d-states in the band structure calcula-
tions is reliably and accurately reflected in the NN sp3d5 TB model. We should also
point out that both the NN sp3d5 and 2NN sp3s* TB models are semiempirical and
they rely on a good description of the band structures that are produced exactly by
WIEN2K simulations package with MBLDA functional embedded in DFT [50, 59]
and empirical pseudopotential theory [14].

We now discuss the use of DFT with mBJLDA functional and of the semiem-
pirical NN sp3d5 and 2NN sp3s* TB models to calculate the composition variation
of electronic band structures of ZnSSe/ZnSe and CdSTe/CdTe heterostructures. The
predicted composition and interface strain effects on the fundamental band gaps of
ZnSSe and CdSTe ternary alloy semiconductors in ZnSSe/ZnSe and CdSTe/CdTe



1 Modelling of Semiconductors for Low Dimensional Heterostructure … 41

Fig. 1.25 Band structures of CdSe, CdTe and ZnSe obtained using WIEN2K with DFT-MBJLDA
(dark-solid lines), NN sp3d5 TB (red-solid line) and 2NN sp3s* TB (dashed-blue line) models

heterostructures are shown in Fig. 1.26, respectively. The calculations are carried
out using the WIEN2K simulations based on DFT with the MBJLDA functional
(dark-solid line) and the semiempirical NN sp3d5 TB model (red-solid lines) and
2NN sp3s* TB models (dashed-blue lines) with tight binding parameters given in
Tables 1.4 and 1.5, integrated with the statistical thermodynamic model [28, 29].
Since the measured band gaps are near 0 K, we ignored the logarithmic term, which
accounts for the electron–phonon interactions for temperature dependence. We can
state that strain effect on the fundamental bandgaps can be quite large when the
interface strain increases for large deformation potential and high alloy composition.
The predicted fundamental band gaps at the  high symmetry point, are in excellent
agreement with experiment [43].
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Fig. 1.26 Strain effects on the bandgaps of ZnSSe and CdSTe in ZnSSe/ZnSe and CdSTe/CdTe
heterostructures as a function of composition, obtained using the WIEN2K simulation package
with DFT-MBJLDA (dark-solid line), and the NN sp3d5 TB (red-solid line) and 2NN sp3s* TB
(dashed-blue line) models

1.7 Tight Binding and DFT-MBJLDA Modelling of Band
Offsets

One of the key issues in low dimensional semiconductor heterostructure device tech-
nology is the theoretical understanding the formation and determining the compo-
sition and strain variation of their conduction and valence band structure across the
interface. Conduction and valence band offsets across the interface control the elec-
tronic properties and considerably influence carrier transport and performance of
bipolar and unipolar heterojunction devices (e.g., HBTs and MODFETs).

Therefore, reliable and accurate modeling of interface band structure is crucial
for the designing the functionality of group III–V and II–VI heterostructures and
their optimization in low dimensional semiconductor electronic and optical devices.
In this section, we will first focus on the effects of composition and interface strain
on electronic band structure, band gaps and band offsets of ternary/binary group
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III–V and II–VI compounds based heterostructures for which experimental data are
available for comparison. In this context, we compare the predictions of the nearest
neighbor (NN) sp3d5 tight binding model, with spin–orbit coupling of p-states, to
those of the widely used second nearest neighbor (2NN) sp3s* model, with spin–
orbit coupling of p-states. Tables 1.1, 1.2, 1.3, 1.4 and 1.5 give the number of tight
binding parameters for the 2NN sp3s* TB and NN sp3d5 tight TB models used in the
calculations.

The valence band offset across an ABC/AC ternary/binary heterostructure can
be obtained by taking the difference between the valence band energies of the
constituents that are screened with the optical dielectric constants of the constituents
[29]:

�Ev =
(
Ev

ε∞

)
BC

−
(
Ev

ε∞

)
ABC

, (1.33)

Ev = Ev(15) is top of the valence band at  high symmetry point and ε∞(ABC)

and ε∞(BC) are the optical dielectric constants of the ABC ternary and BC binary
constituents

ε∞(ABC) = xε∞(AC) + (1 − x)ε∞(BC) + −x(1 − x)δc(ε∞(BC) − ε∞(AC)),

(1.34)

The conduction band offset for a given , L and X high symmetry point of the
Brillouin zone is given as the difference between the respective band gap differences,
written as [29]:

�Eci = Eci ABC − Eci BC = �Egi − �Ev, (1.35)

where Eci = E6c , EL6c and EX6c are the minimums of conduction bands at , L
and X high symmetry points, determined with the proposed form of the 2NN sp3

TB model by using the optimized tight binding parameters. �Egi = Egi (ABC) −
Egi (BC) is the difference between band gaps Egi (ABC) and Egi (BC) of ABC
ternary and BC binary compound semiconductors.

Figure 1.27 shows the composition and strain variations of the band gap difference
and valence band offsets of lattice matched AlGaAs/GaAs and coherently grown
InGaAs/GaAs heterostructures. calculated by using the 2NN sp3 TB parametriza-
tion of Lohrer and Talwar [46]. Results indicate that the valence band offsets vary
almost linearly with alloy composition, but the conduction band offsets vary nonlin-
early. This is due to fact that the valence band deformation potential is smaller than
that of the conduction band at , L and X high symmetry points. There is almost
perfect agreement between theunstrained and strained energy levels inAlGaAs/GaAs
heterostructure since strain is due to the difference between the linear thermal
expansion coefficients. However, in the case of coherently grown InGaAs/GaAs
heterostructure strain causes a nonlinear variation of the bandgaps and conduction
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Fig. 1.27 Composition effects on bandgap differences and valence band offsets of lattice matched
AlGaAs/GaAs (left) and strained InGaAs/GaAs (right) heterostructures

band offset since strain is due to the lattice mismatch and the difference between the
thermal expansion coefficients of GaAs barrier and InGaAs quantum well, coupled
with the larger conduction band deformation potentials.

Figure 1.28 shows the results of calculations done by using the statistical ther-
modynamic model of semiconductors, giving in good agreement with predictions of
2NN sp3 TB parametrization.

In second step we compare the predictions of the nearest neighbor (NN) sp3d5

tight binding model. Table 1.1 give the number of tight binding parameters for the
2NN sp3s* TB and NN sp3d5 tight TB models used in the calculations. Figure 1.29
shows the composition and strain variations of the band gap difference and valence
band offsets in AlGaAs/GaAs heterostructure.

The band offsets in AlGaN/GaN, InGaN/GaN and GaAsN/GaAs heterostructures
are shown inFig. 1.30 for functions of interface strain for the entire composition range
(0 ≤ x ≤ 1). The strain effect on the valence band offsets in AlGaN/GaN (left),
InGaN/GaN (middle) and GaAsN/GaAs (right) dilute nitrides based heterostruc-
tures is rather small because of the smaller valence band deformation potentials. The
predicted valence band offsets are in good agreement with experimental findings [34,
43]. The strain effects on the conduction band offsets can be quite large since the
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Fig. 1.28 Calculated composition effect in conduction and valence band offsets in AlGaAs/GaAs
(a) and AlGaAs/InGaAs (b) heterostructures

Fig. 1.29 Composition
effects on bandgap
differences and valence band
offsets of lattice matched
AlGaAs/GaAs



46 H. H. Gürel et al.

Fig. 1.30 Strain effects on the band offsets of AlGaN/GaN (left), InGaN/GaN (middle) and
GaAsN/GaAs (right) heterostructures. obtained using theWIEN2KwithDFT-MBJLDA (dark-solid
line) compared with the NN sp3d5 (red-solid line) and 2NN sp3s*(dashed-blue line) TB models

latticemismatch increaseswith an increase in the ternarymole fraction.Aswepointed
out earlier, there is a considerable lattice mismatch across many of the ternary/binary
heterointerfaces. Interface strain due to lattice mismatch causes a shift in the lattice
constant of the epilayer: a = (1+ε)a0, where ε is the symmetric strain tensor. There-
fore, the bond lengths and on-site and off-site TB matrix elements will be modified
with strain. Consequently, the conduction and valence band offsets will be modified
with respect to their unstrained values. As an example, Fig. 1.31 shows the compo-
sition and strain effects on conduction and valence band offsets of CdSTe/CdTe and
ZnSSe/ZnSe heterostructures calculated by using the WIEN2K simulation package
based on the DFT with MBJLDA functional [50] and semiempirical NN sp3d5 and
2NN sp3s* TB models for optimized tight binding parameters.

As can be seen in Fig. 1.31, the interface strain effects on the conduction band
offsets of ZnSSe/ZnSe and CdSTe/CdTe heterostructures can be quite large when
the interface strain increases for large the deformation potential and high alloy
composition.
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Fig. 1.31 Strain effects on the band offsets of ZnSSe/ZnSe and CdSTe/CdTe heterostructures,
obtained using the WIEN2K with DFT-MBJLDA (dark-solid line) compared with the NN sp3d5

(red-solid line) and 2NN sp3s*(dashed-blue line) TB models

1.8 Pressure Effects on Structure and Electronic Properties

We now discuss the use of DFT as implemented in the packageWIEN2k code [59] to
calculate the structural and electronic properties of III-nitrides under high pressure.
For As and N based compounds generalized gradient approximation (GGA) [54]
are used for exchange and correlation potential for the calculations. The WIEN2K
package is used in the adaptation of the partitioning the unit cell into non-overlapping
atomic spheres (centered at atomic sites) and interstitial region. In the atomic spheres,
a linear combination of radial functions times spherical harmonics are used and in the
interstitial region a plane wave expansion is used. Each plane wave is augmented by
an atomic-like function in every atomic sphere. We have adopted sphere radii values
for GaAs, Ga and As, 2.1, 2.2 Bohr respectively, and in the cases of GaN, AlN and
InN Ga, Al, In and N we use 1.89, 1.8, 2.1 and 1.6 Bohr, respectively. Self-consistent
iteration is used for calculation and convergence criteria RMTKmax (where RMT is the
smallest atomic sphere radius in the unit cell and Kmax is the interstitial plane wave
cut-off) was set to 8.50. The iteration repeated until total energy converges to less
than 10–4 Ryd.
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1.8.1 Structural Parameters

The connection between lattice constant and pressure and volume are given by
Murnaghan’s equation of state [8]:

P =
(
B0

B
′
0

)((
V0

V

)B
′
0

− 1

)
, V (P) = V0

(
1 + B

′
0

(
P

B0

))−1/B
′
0

(1.36)

where V 0 and V are the volume at ambient and P pressure, respectively. The lattice
constant (a0) was determined by fitting the total energy as a function of volume to
Murnaghan’s equation of state fromwhich we get the volume or lattice constant (a0),
bulk modulus (B0) and its pressure derivative (B ′

0). The calculated lattice constant
differs from experimental values just 2%. According to DFT it is well known issue
and these values are in acceptable limitation. Also, calculated bulk modulus and
its pressure derivative have similar trends with available experimental and other
calculated data.

1.8.2 Electronic Properties

The first principles method with local density approximation (LDA) and related
generalized approximation (GGA) is known to give reasonably accurate good result
for the total energies and ground state structure properties of semiconductors and
insulators, but it leads to a severe underestimate of the band gap by typically 30–
50% [21]. This error is often corrected empirically by the so-called scissors operator
[21, 53]. Fiorentini and Baldereschi [53] noted that the missing self-energy term was
related to the screened Coulombic hole. They found that the difference between the
LDA and experimental band gaps, �E , scales with the optical part of the dielectric
constant ε∞ as�E ≈ 9.1/ε∞. Calculated band gap energies shifted by using “scissor
operator” and results are in better agreement with the experimental values. Band
structure and density of states of GaAs are shown in Fig. 1.32 for ambient pressure,
P = 10 GPa and P = 40 GPa, respectively.

The effects of composition and on electronic band structure of III–V nitrides based
heterostructures are calculated by using the so called modified virtual crystal approx-
imation (MVCA) [15, 16] as nonlinear function of composition. As an example, we
calculated the band structure of dilute GaAsN ternary semiconductor at ambient and
high pressures. The ternary band gap is shifted by �E ≈ 9.1/ε∞(GaAs1−x Nx ),
with 9.1 as fitting parameter [53] and dielectric constant ε∞ given as

ε∞(GaAs1−x Nx ) = (1 − x)ε∞(GaAs) + xε∞(GaN )

− x(1 − x)δc(ε∞(GaAs) − ε∞(GaN )) (1.37)
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a b

Fig. 1.32 Bulk band structure calculated by DFT with scissor operator at P = 0 GPa (solid) and P
= 10 GPa for GaAs (a) (dash) and P = ambient and P = 40 GPa for GaN (b) (dash)

where δc is difference between dimensionless relaxation parameters [14]. Figure 1.33
shows the bulk band structure calculated by DFT with scissor operator at P = 0 GPa
(solid) and P= 10GPa for GaAs (a) (dash) and P= ambient and P= 40GPa for GaN
(b) (dash). Predictions of composition effects (star) calculated by DFT calculation
for various compositon values (x = 0 0.25, 0.50, 0.75, 1) (points and squares) on the
band gap energies of GaAsN for the P = ambient GPa (dash) and P = 15 GPa (dash-
dot) Second order polinomial fitting due to DFT calculation (dash line, dash-dot)
shown in (c).

1.9 Finite Difference Method for Low Dimensional
Structures

Low-dimensional structures are classified as quantum wells, quantum wires, and
quantum dots. Here the dimension specifies the number of directions in which the
charge carrier (electron or hole) can move freely. Quantum wells are created by
adding a different type of semiconductor layer between two semiconductor layers



50 H. H. Gürel et al.

Fig. 1.33 Bulk band structure calculated by DFT with scissor operator at P = 0 GPa (solid) and P
= 10 GPa for GaAs (a) (dash) and P = ambient and P = 40 GPa for GaN (b) (dash). Predictions
of composition effects (star) calculated by DFT calculation for various compositon values (x = 0
0.25 0.50 0.75 1) (points and squares) on bands of GaAsN dilute ternary for the P = ambient GPa
(dash) and P = 15 GPa (dash-dot) Second order polinomial fitting due to DFT calculation (dash
line, dash-dot) shown in (c)

of the same type. In quantum wells, charge carriers can act as free particles in two
dimensions, while their movement towards the different layer (in the direction of
crystal growth) is limited in one dimension and their energies are quantized. In
quantumwire structures, themotion of the carriers is quantized in two dimensions. In
quantum dot structures, the motion of the carrier is quantized in all three dimensions.

In examining the properties of an electron trapped in low-dimensional structures,
we can find the energy eigenvalues and waveforms of electron by solving the time-
independentSchrödinger equation.The solutionof thedifferential equationswecome
across constitutes ourmain subject.We do not always encounter analytically solvable
differential equations. In most of the problems encountered in quantummechanics, it
is very difficult or impossible to solve the Schrödinger equation of the system analyt-
ically and determine the energy levels and wave functions. Thus, in cases where the
exact solution of the Schrodinger equation is not done directly, numericalmethods are
applied. In this subject, one of the most used numerical methods is the Finite Differ-
ence Method. Here, we will discuss the use of finite difference method to study the
electronic properties of AlGaAs/GaAs two-dimensional quantum wells, one dimen-
sional quantum wires, and zero-dimensional quantum dots, respectively. Supposing
the independent variable is measured at regular and equal intervals. Accordingly, we
can create the following Table given in Fig. 1.34.
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Fig. 1.34 Finite difference table

Table 1.7 The forward, backward (reverse) and central difference operators

Forward difference operator Reverse difference operator Central difference operator

�y(x) = y(x + h) − y(x)

�y0 = y1 − y0

�y1 = y2 − y1

∇ y(x) = y(x) − y(x − h)

∇ yn = yn − yn−1

�y1 = y1 − y0

δy(x) = y(x + h/2) − y(x − h/2)

δ(x + h/2) = y(x + h) − y(x)

δy1/2 = y1 − y0 = �y0 = �y1

δy3/2 = y2 − y1 = �y1 = �y2

Difference Operators. Any differential equation can be solved numerically with the
help of the forward, backward (reverse) and central difference operators listed in
Table 1.7.

1.9.1 Application of Finite Difference Method to Quantum
Wells

Semiconductor quantum wells are structures in which the motion of the electron is
limited in only one dimension and canmove freely in the other two dimensions. These
structures are obtained by placing a semiconductor material with a small forbidden
energy gap as a thin layer into the material with a larger forbidden energy gap, as
seen in the figure. Quantum well is made of a very thin flat semiconductor layer is
placed between the two layers. The difference between the conduction band energies
of the two materials restricts the electrons to a thin layer.
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Fig. 1.35 Application of finite difference method to quantum well with finite barrier height

Depending on the height of the potential wall, a finite and infinite quantum well
can be created wherein the electron is trapped. The potential height here can be
controlled by the composition of the wide bandgap ternary semiconductor used as
barrier. The infinite and finite potential barriers in a quantum well are defined as

V (x, y) =
{
0 −L/2 ≤ x ≤ L/2
∞ otherwise

(1.38a)

V (x, y) =

⎧⎪⎨
⎪⎩
V0

0

V0

−∞ ≤ x ≤ −L/2
−L/2 ≤ x | ≤ L/2
L/2 ≤ x ≤ +∞

(1.38b)

The solutionofSchrodinger equation for thewave function and energy eigenvalues
can be found in any classical textbook on quantummechanics andwill not be repeated
here. Figure 1.35 shows the schematic diagram of a quantum well with finite barrier
height to be studied by using the finite difference method.

If we apply the finite difference method to the solution of the quantum well, by
taking different points, the first and second derivatives are written as follows

dψ

dx
= �ψ

�x
= ψi − ψi−1

xi − xi−1
(1.39)

d2ψ

dx2
= d

dx

(
dψ

dx

)
= �

�x

(
dψ

dx

)
= ψi−1 − 2ψi + ψi+1

dx2
(1.40)

For ith point, the Schrödinger wave equation is written as

ψi−1 − 2ψi + ψi+1

dx2
+ (V (xi ) − E)ψi = 0 (1.41)
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If we write equation for each point, we can then write N number of equations.
The values of x0 andψ0 are known from the initial conditions and we can setψ0 = 0
For point i = 1, 2,.. and so on, we write

− 1

dx2
(ψ0 − 2ψ1 + ψ2) + (V (x1) − E)ψ1 = 0,

− 1

dx2
(ψ1 − 2ψ2 + ψ3) + (V (x2) − E)ψ2 = 0,

... (1.42)

which can be rewritten as

− 1

dx2
[(−2 − V (x1)dx

2
)
ψ1 + ψ2

] = Eψ1,

− 1

dx2
[
ψ1 + (−2 − V (x2)dx

2
)
ψ2 + ψ3

] = Eψ2,

... (1.43)

If we write equation for each point, then we can write N number of equations.
Representation of the wave function in a finite difference table for quantum well is
given in Fig. 1.36. We can write these equations in matrix form, and it is possible to
solve these set of linear equations with numerically.

Fig. 1.36 Representation of the wave function in a finite difference table for quantum well
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Fig. 1.37 Infinite and finite barrier GaAs quantum well. It is reproduced from [21]

− 1

dx2

⎛
⎜⎜⎜⎜⎜⎝

−2 − V (x1)dx
2 1 0 0 ...

1 −2 − V (x2)dx
2 1 0 ...

0 1 −2 − V (x3)dx
2 1 ...

. . . . ...

. . . . ...

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

ψ1
ψ2

ψN

⎞
⎟⎟⎟⎟⎟⎠ = E

⎛
⎜⎜⎜⎜⎜⎝

ψ1
ψ2

ψN

⎞
⎟⎟⎟⎟⎟⎠

(1.44)

The solution of the GaAs quantum well with finite and infinite potential barriers,
using finite difference method is given in Fig. 1.37. This figure also compares the
numerical solution with the analytical solution, also expressed as a function of the
width of the well. As can be seen in the figure, numerical and theoretical solu-
tions are in harmony with each other. Numerical and theoretical solutions of the
AlGAs/GaAs/AlGaAs, with x = 0.30, quantum wells are given. The desired poten-
tial height is obtained by varying the concentration of the AlGaAs material used as
barrierr. In this example, x = 0.3 and the potential height is taken as approximately
228 meV. Numerical and theoretical solutions are in harmony with each other in the
well problem with finite height potential barrier.

1.9.2 Application of Finite Difference Method to Quantum
Wires

In quantum wires, electron motion is limited in two directions is limited in two
directions. That is the electron is trapped by potential barriers in the x and y directions.
We performed the same calculation that we did in quantum wells, in quantum wires.
Figure 1.38 shows how the ground state energy of a GaAs quantum wire surrounded
by an infinite potential barrier height.
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Fig. 1.38 Schematic view of one dimensional AlGaAs/GaAs quantum wire

In order to find the energy eigenvalues and wave functions of an electron trapped
in an one dimensional infinitely long quantumwire, we need to solve the Schrödinger
equation with potential looks like

V (x, y) =
{
0

∞
|x | ≤ Lx/2
|x | > Lx/2

|y| ≤ −Ly/2
|y| > −Ly/2

(1.45)

We can write the single electron Schrodinger equation for the quantum wire of
infinite length as

(
− ∂2

∂x2
− ∂2

∂y2
+ V (x, y)

)
ϕ(x, y) = (Ex + Ey

)
ϕ(x, y) (1.46)

Since particle is not confined along the z-direction, it will behave as free particle
in this direction and will be quantized in (x, y) directions. Therefore, solution of
Schrodinger equation will give the following wave function and energy eigenvalues

ψ0(x, y, z) = ψ0(x, y)ψ0(z) = A cos

(
π

Lx
x

)
cos

(
π

Ly
y

)
eikz z,

E0 = − �
2

2m∗

(
π2

L2
x

+ π2

L2
y

)
+ �

2k2z
2m∗ (1.47)

In the case of one-dimensional finite length quantum wire, potential barrier is
expressed as

V (x, y) =
{
0

V0

|x | ≤ Lx/2,
|x | > Lx/2,

|y| ≤ −Ly/2
|y| > −Ly/2

(1.48)
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Fig. 1.39 Representation of the wave function in a finite difference table

and the Schrodinger equation is written as

− �
2

2m∗

(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
+ V (x, y)

)
ψ(x, y, z) = Eψ(x, y, z) (1.49)

which can be solved analytically. However, for some different potential profiles, the
analytical solution may be very difficult or impossible. In such cases, numerical
methods such as the finite difference method can be used. We take the following
steps in applying the finite difference method to the quantum wires. We take the
wave functions with equal steps on the x and y axes, shown in Fig. 1.39.

Using the definition of second derivative, we write the Schrödinger equation
ϕ(1, 1) as

− ∂2ψ(1, 0)

∂x2
− 2ψ(1, 1) + ψ(1, 2) − ∂2ψ(0, 1)

∂y2
− 2ψ(1, 1) + ψ(2, 1)

= (Ex1 + Ey2 − V (1, 1)
)
ψ(1, 1) (1.50)

Writing similar equations for ψ(1, 1), ψ(1, 2),……, ψ(n, n), we then construct
a matrix equation
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4
dx2

+ V (1, 1) − 1
dx2

0 0 0 0 1
dy2

0 ...

− 1
dx2

4
dx2

+ V (1, 2) − 1
dx2

0 0 0 0 1
dy2

....

0 − 1
dx2

4
dx2

+ V (1, 3) − 1
dx2

0 ... ... ... ...

.

.

.

.

.

... 0 0 1
dy2

0 0 0 − 1
dx2

4
dx2

+ V (n, n)

⎞
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.

ψ(n, n)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= E

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ(1, 1)
ψ(1, 2)

.

.

.

.

.

.

ψ(n, n)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1.51)

With a program that solves this matrix, we can find the E energy eigenvalues
and ψ(x, y) wave functions. In cases where the analytical solution is very diffi-
cult or impossible, we can quickly find both the energy eigenvalues and the wave
functions by numerically solving the matrix we have constructed. We performed the
same calculation that we did in quantum wells, in quantum wires. Figure 1.40a and
b, respectively, show how the ground state energy of a GaAs quantum wire with
its cross section when the wire surrounded by an infinite potential barrier (1.40)
and surrounded by a varying height finite barrier (1.40). When the potential barrier
decreases, the ground state energy also decreases at low dimensions.

Fig. 1.40 Variation of energies of one-dimensional quantum wires with its length for the infinite
height (a) and varying finite barrier height (b). It is reproduced from [21]
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1.9.3 Finite Difference Method Applied to Quantum Dots

So far, semiconductor heterostructures in which the electron is confined in one or
two directions have been considered. The energy spectrum of the electron in these
structures became discrete in one or two dimensions. This changes the intensity of
the situations drastically. However, in these structures, the particle can move freely
in at least one direction. Structures in which the movement of electrons is restricted
in three dimensions are called quantum dot structures.

We first write the three-dimensional Schrodinger equation for a cartesian quantum
box, which is the generalization of the rectangular cross-section quantum wires and
additional confinement along the x-axis. Considering the case of an infinite poten-
tial separating the interior and exterior of the quantum box, the three-dimensional
Schrodinger equation within the box is written as

[(
− �

2

2m∗
∂2

∂x2
+ V (x)

)
+
(

− �
2

2m∗
∂2

∂y2
+ V (y)

)
+
(

− �
2

2m∗
∂2

∂z2
+ V (z)

)]
ψ = Eψ

(1.52)

Using separation of variables (1.49) can be written in each direction as

(
− �

2

2m∗
∂2

∂x2
+ V (x)

)
ψ(x) = Exψ(x) (1.53a)(

− �
2

2m∗
∂2

∂y2
+ V (y)

)
ψ(y) = Eyψ(y) (1.53b)

(
− �

2

2m∗
∂2

∂z2
+ V (z)

)
ψ(z) = Ezψ(z) (1.53c)

For an infinitely deep three-dimensional potential, V (x) = 0, V (y) = 0, V (z) =
0, we then have the following wave functions and total energy of a single particle,
respectively

ψ(x) =
√

2

Lx
sin

(
πnx
Lx

x

)
, ψ(y) =

√
2

Ly
sin

(
πny
L y

y

)
, ψ(z) =

√
2

Lz
sin

(
πnz
Lz

z

)
(1.54a)

E = Ex + Ey + Ez = �
2π2

2m∗

(
n2x
L2
x

+ n2y
L2
y

+ n2z
L2
z

)
(1.54b)

In case of spherical quantum dots, the three-dimensional Schrodinger equation is
written as
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[
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∂

∂r

(
r2

∂
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)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

r2 sin θ

∂2

∂φ2

]
ψ(r, θ, φ)

= Eψ(r, θ, φ) (1.55)

where m∗ is the constant effective mass of a single particle and E is the energy
associated with the confinement along the radiur r. Using separation of variables, the
wave function is written as ψ(r, θ, φ) = R(r)Y (θ, φ). After some steps, the radial
form of (1.55) can be written as

d2R(ρ)

dρ2
+ 2

ρ

dR(ρ)

dρ
+
[
1 − l(l + 1)

ρ2

]
R(ρ) = 0 (1.56)

where ρ = kr . This equation is known as the Bessel differential equation and its
general solution is

R(ρ) = A jl(ρ) + Bnl(ρ) (1.57)

Because Neumann functions are divergent at r = 0, setting B = 0 we obtain the
wave function of the particle. Analytical solutions of the particle energy values can
be obtained from the roots of the Bessel functions. For example, when l = 0 we get

j0(ka) = sin(ka)

ka
= 0 → En,0(ka) = �

2π2n2

2m∗a2 (1.58)

In applying the finite differencemethod to the core or core/shell spherical quantum
dots we take the following steps. In step one, we take θ = π/2 in (1.56) and rewrite
the Schrödinger equation in the (x, y, 0) plane as

(
− ∂2

∂r2
− 1

r2
∂2

∂φ2
− 2

r2
∂

∂r

)
ϕ(r, φ) = (Er + Eφ

)
ϕ(r, φ) (1.59)

We take the wave functions with equal steps on the r and φ axes, shown in
Fig. 1.41.

Substituting the 1st and 2nd derivatives of wave function in the (r, φ) Table of
finite difference method shown in Fig. 1.41, we write

H(1, 1) = − 1

dr2
[ϕ(1, 1) − 2ϕ(1, 2) + ϕ(1, 3)]

− 1

r2dφ2
[ϕ(4, 1) − 2ϕ(1, 1) + ϕ(1, 2)]

− 2

rdr
[ϕ(1, 2) − ϕ(1, 1) + V (1, 1)ϕ(1, 1)] = (Eφ1 + Er1

)
ϕ(1, 1)

(1.60)
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Fig. 1.41 Representation of the wave function in a table of finite difference method

H(2, 4) = − 1

dr2
[ϕ(2, 3) − 2ϕ(2, 4) + ϕ(2, 5)]

− 1

r2dφ2
[ϕ(1, 4) − 2ϕ(2, 4) + ϕ(3, 4)]

− 2

rdr
[ϕ(2, 5) − ϕ(2, 4) + V (2, 4)ϕ(2, 4)] = (Eφ2 + Er4

)
ϕ(2, 4)

(1.61)

H(5, 5) = − 1

dr2
[ϕ(5, 5) − 2ϕ(5, 4) + ϕ(5, 3)]

− 1

r2dφ2
[ϕ(2, 5) − 2ϕ(2, 4) + ϕ(3, 4)]

− 2

rdr
[ϕ(2, 5) − ϕ(2, 4) + V (2, 4)ϕ(2, 4)] = (Eφ2 + Er4

)
ϕ(2, 4)

(1.62)

As in the case of quantumwires, the variation of ground state energies of spherical
quantum dots with different potential barriers with the diameter of the quantum
dot is then calculated. Figure 1.42 shows the variation of the ground state energy
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Fig. 1.42 Variation of the ground state energies with radius of spherical core/shell AlGaAs/GaAs
QDs with different ternary alloy shell composition. It is reproduced from [21]

obtained for the lattice matched AlGaAs/GaAs spherical core/shell quantum dot.
As with quantum wires, a decrease in ground state energy is also observed at small
radius when the potential barrier decreases. As the radius increases, the height of
the potential barrier loses its importance, and the ground state energy converges to a
certain value.

1.10 Conclusion

Advances in the growth of semiconductor thin filmswith layer thickness approaching
atomic dimensions and fabrication of low dimensional electronic and optical devices
has provided new opportunities in fundamental science and technology of semicon-
ductors and semiconductor devices. Such advancement could not have been possible
without a qualitatively reliable understanding of the basic physics of semiconducting
materials and quantitatively precise potential predictions and performance of devices,
leading to new concepts in the semiconductor growth that allowed previously many
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unknown devices with more complex functionality and much higher densities for
electronic and optical applications.

This review has presented comparative predictions of electronic band structures
of group III–V and II–VI compounds and their heterostructures obtained using the
semiempirical tight binding theory based on the 2NN sp3, 2NN sp3s*, NN sp3d5s*

and NN sp3d5 orbitals sets in comparison with the WIEN2K simulations package
based on the density functional theory (DFT) with the modified modified Becke-
Johnson exchange–correlation potential with the local density approximation (LDA),
called MBJLDA functional. We conclude that DFT with MBJLDA functional and
the semiempirical NN sp3d5 TB model are in good agreement with experimental
data for band gaps and band offsets and have considerable potential in the design
and optimization of group III–V and II–VI compounds and their ternaries used for
the fabrication of electronic and optical devices. When compared to the 2NN sp3s*

TB model, NN sp3d5 TB parametrization better simulates both the valence band and
conduction band dispersion curves. The actual contribution of the excited d-states in
the band structure calculations is reliably reproduced in the case of NN sp3d5 orbitals
set tight binding parameterization. We also discuss the use of finite difference tech-
nique for modelling of electronic structure of two-dimensional quantum wells, one
dimensional cylindrical nanowires and zero-dimensional spherical quantumdots.We
conclude that DFTwithMBJLDAand semiempirical NN sp3d5 TBmodel showgood
agreement with experiment for band gaps and band offsets. When these semiempir-
ical tight binding theories and density functional theorywithMBJLDA are integrated
in the finite difference method they may have considerable impact in the design and
optimization of group III–V and II–VI compounds and their ternaries used for the
fabrication of low dimensional electronic and optical devices.
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Chapter 2
Strain in Microscale and Nanoscale
Semiconductor Heterostructures

Hilmi Ünlü

Abstract Reliable modelling and precise determination of the strain effects on
the structural, electronic and optical properties of microscale planar and nanoscale
core/shell semiconductor heterostructures is essential for the true prediction of their
potential in fabricating electronic and optical devices operating at high temperatures.
In this chapter, a thermoelastic model is described to determine strain effects on
the structural, electronic and optical properties of microscale planar and nanoscale
core/shell semiconductor heterostructures as a function dimensions, anisotropy of
elastic constants, lattice mismatch, ternary ally composition and temperature. The
model uses lattice mismatch induced shrink fit condition for strain across heteroin-
terfaces to find contact pressure and then strain in order to consider the effect of
the difference between lattice constants, linear expansion coefficients, anisotropy of
elastic constants of constituent semiconductors. Qualitative discussion is given about
the strain effects on anisotropy in linear expansion coefficient of GaAs epilayer
in GaAs/Si (001) planar heteroepitaxy. Furthermore, details of the modelling and
calculations of strain effects on core gaps and band offsets of core/shell type I
and type II heterostructure spherical quantum dots and cylindrical nanowires are
discussed by using parabolic two band k.p effective mass approximation. Calcula-
tions suggest a parabolic increase (decrease) in core bandgaps and conduction band
offsets in GaAs/InAs (GaSb), CdSe/CdS, CdSe/ZnS, and ZnSe/ZnS quantum dots.
Furthermore, a parabolic decrease in core bandgap and conduction band offset of
GaSb/InAs(InSb) and ZnSe/CdS QDs as core (shell) diameter increases for a fixed
shell (core) diameter. Excellent agreement between predicted and measured core
bandgaps in CdSe and ZnSe based core/shell QDs suggests that proposed model can
be a good design tool for the process simulation of microscale planar heteroepitaxial
devices and nanoscale core/shell heterostructure nanowire and quantum dot based
electronic and optical devices for high temperature applications.
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2.1 Introduction

Since the invention of the first transistor in 1949, device scientists and engineers
have witnessed an amazing theoretical and experimental interest and development
in semiconductor science and technology [1]. Advances in the epitaxial growth of
semiconductor thin films of different structural, electronic and optical properties and
with layer thickness approaching atomic dimensions has provided new opportunities
and challenges in fundamental science and technology of semiconductors for device
applications [2–105]. Contemporary fabrication technologies have further made it
possible to reduce the device dimensions to the pointwhere quantum size effectsmust
be considered in order to realistically describe the operation and reliably predict the
potential and performance of low dimensional and nanoscale semiconductor devices
for electronic and optical applications.

Semiconductor nanoscale core/shell heterostructures represent a new class of
materials and a shift from conventional two-dimensional thin films to three-
dimensional structures [8]. One can grow group IV elemental and III-V and II-
VI compound semiconductor core/shell quantum dots (QDs) and nanowires (NWs)
directly on inexpensive substrates such as Si, rather than lattice-matched but more
expensive III-V substrates such as GaAs. This capability, along with other unique
properties (quantumconfinement and light trapping),makes core/shellQDs andNWs
of great interest for the next generation electronic and optical devices with improved
performance, new functionalities, and reduced production cost. The core/shell semi-
conductor nanowires and quantum dots can be synthesized as single or multiple
heterostructures in order to isolate the active region from surface defects and
traps, allowing one to facilitate better electronic properties (e.g., charge transport
and mobility) and optical properties (e.g., luminescence efficiency and sharper
linewidths, etc.) Isolating active core region from surface defects is a fundamental
precondition for the use of nanocrystals in biological labeling and light-emitting
devices, which rely on their emission properties.

When two semiconductors with different physical properties are brought in
thermal contact to form heterostructure, the difference between conduction and
valence band energy levels of constituent semiconductors are accommodated by
discontinuities �EC and �EV at heterointerface, controlling charge transport
and optical exciton in nanoscale electronic and optical devices, respectively [2].
Figure 2.1 shows the schematic band diagrams of Type I heterostructures, respec-
tively, in which conduction and valence bands are aligned in straddling type
(�Ec = �Eg − �Ev) or staggered type (�Ec = �Eg + �Ev), respectively. Here
�Eg = EgB − EgA is the difference between bandgaps.

The conduction band of barrier semiconductor overlaps (straddling lineup) that of
thewell semiconductor and equilibriumFermi level is near themiddle of the bandgap
on both sides of interface. Consequently, electrons and holes tend to localize in the
narrow bandgap well in nearly equal number. Therefore, Type I band alignment
in core/shell nanostructures results in an electron–hole pair excited near interface
which tends to localize in core region and exciton energy is result of direct exciton
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transition. Such heterostructure is useful in fabricating optoelectronic devices such
as lasers, with both electrons and holes participate to device operation.

Figure 2.2 shows the band structure of normal and invertedType II heterostructures
formed between two intrinsic semiconductors. The bandgap of the shell partially
overlaps (staggered lineup) that of the core and equilibrium Fermi level is close to
conduction (or valence band) on one side while it is near to middle of the bandgap
on other side.

In nanoscale Type II core/shell heterostructures, conduction band edge of shell
region is located in bandgap of core region leading to a local separation of electron and
hole in these regions, respectively. Electrons (holes) are confined to core (shell) region
as result of indirect exciton transitions. The local indirect bandgap of nanocrystal
is equal to Eid

g = EgA − �Ev in electron–hole confinement (Fig. 2.1a) and Eid
g =

EgB − �Ec in hole-electron confinement (Fig. 2.2b).

Fig. 2.1 Schematic band diagram of normal (a) and inverted (b) Type I heterostructures

Fig. 2.2 Schematic energy band diagram of normal (a) and inverted (b) Type II heterostructure
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Fig. 2.3 Schematic band diagram of normal (a) and inverted (b) Type III heterostructures

The extreme case of Type II band alignment is known as Type III heterostructure,
shown in Fig. 2.3. The bandgap of the barrier does not overlap at all (broken gap
lineup). The equilibrium Fermi level is well above the conduction band minimum (or
well below the valence band maximum) on one side while it is near the middle of the
bandgap on the other side. Position of equilibrium Fermi level determines the carrier
confinement on either side of the heterointerface. When equilibrium Fermi level is
close to conduction band of wide bandgap constituent the number of electrons is
greater but when it is closer to the valence band of narrow bandgap constituent the
number of holes is greater there.

Contemporary crystal growth techniques including molecular beam epitaxy
(MBE) and metal organic chemical vapor deposition (MOCVD) have made it
possible to control the alloy composition and doping in semiconductor alloys based
on group IV–IV elemental and III–V and II–VI compound semiconductor over
atomic distances, as low as few nanometers. These artificially made semiconductor
heterostructures are easily grown on lattice mismatched substrates. The epitaxial
layers are so thin so that quantummechanical effects dominate charge transport. The
resulting contemporary low dimensional and nanoscale electronic and optoelectronic
semiconductor devices (e.g., heterostructure bipolar transistors (HBTs), modulation
doped field effect transistors (MODFETs), etc.) are known to operate much faster
than conventional silicon devices (e.g., Si bipolar junction transistors (BJTs) and
metal oxide semiconductor field effect transistors (MOSFETs)), which is crucial for
the electronic and optical communication and computer industries.

As a result of intensive research and development activities in the growth and
fabrication, the size of existing semiconductor devices in order of 5 to 10 nm can
now be achieved. Advancement in the semiconductor technology could not have
been possible without a qualitatively reliable physical understanding of the semicon-
ducting materials and quantitatively precise potential predictions of devices, leading
to new concepts in the semiconductor growth that allowed previouslymany unknown
devices with more complex functionality and much higher densities.
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In this chapter we will give a detailed discussion about the modelling of structural
and elastic properties of semiconductors and how they can be implemented in theo-
retical models for the calculations of electronic and optical properties of microscale
planar and nanoscale core/shell heterostructures. We will give details of the deriva-
tion of analytical expressions for the strain effects in these heterostructures by using
continuum elastic theory of thermoelastic bodies. In Sect. 2, we give derivation of
strain expressions in heterostructures with planar geometry such as quantum wells
and superlattices. In Sects. 3 and 4, we give detailed derivations of strain expressions
in nanoscale spherical and cylindrical core/shell heterostructures. In Sect. 5, detailed
discussion of results will be given for calculating the strain effects on core band
gap and band offset in GaAs/InAs(GaSb), GaSb/InAs(InSb), CdSe/CdS(ZnS) and
ZnSe/CdS(ZnS) core/shell heterostructures.

2.2 Strain in Planar and Core/Shell Heterostructures

When two semiconductors with different physical properties are brought in thermal
contact to form a coherently grown a microscale planar or nanoscale spherical or
cylindrical core/shell heterostructure, strain across the interface can alter electronic
and optical properties of constituent semiconductors relative to their bulk values
which will influence the device operation and performance. Numerous models have
been proposed over the years to calculate the strain effects on electronic properties of
microscale planar and nanoscale core/shell heterostructures. In case of microscopic
planar heteroepitaxy of thin films, the original works of Frank and van der Merve
[3] and Matthews and Jesser [4] are used to model strain effects in microscale planar
heteroepitaxial thin films and quantum wells [6]. In case of core/shell nanoscale
core/shell heterostructures, the continuum elasticity theory of Eshelby [5] have been
used in literature.

In a coherently grownmicroscale planar heterostructures, shown in Fig. 2.4, when
lattice constants and linear thermal expansion coefficients of constituent semicon-
ductors are different from each other, strain influences the energy band structure
and charge transport across the interface, operation and performance of heterostruc-
ture devices. Strain effects in microscopic semiconductor heterostructures have been
extensively studied. The in plane (along interface) and out of plane (along growth
direction) strains in heterolayer are defined as [4]

ε f
xx = ε f

xx = ε
f
‖ = a f

‖ − a f

a f
= εm (2.1)

ε f
zz = ε

f
⊥ = a⊥ − a f

a f
= − 2v f

1 − v f
εm (2.2)
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Fig. 2.4 Schematic cross-sectional view and interface strain effects in planar heterostructure

where a f
‖ and a f

⊥ are in plane (along interface) and out of plane (along growth
direction) distorted lattice constants. a f and as are relaxed lattice constant of epilayer
in bulk form and thick substrate, respectively.εm = (a f − as)/as is lattice mismatch
and ν f is Poisson ratio of epilayer, defined as ν = C12/(C11 + C12) with C11 and
C12 elastic stiffness constants of bulk semiconductor.

Theoretical understanding the physics and determining the strain effects in one
dimensional cylindrical and zero-dimensional spherical core/shell semiconductor
heterostructures is still an obstacle. Figure 2.5 shows the schematic cross-sectional
view of a spherical or cylindrical core/shell heterostructures. Interface imposes
isotropic compression in core region and non-isotropic tension along radial and
tangential directions in the shell region, respectively. In studying the strain effects in
nanoscale structures, currently classical continuum elasticity and atomistic theories
are used to study the strain effects in nanoscale structures. In a coherently grown
nanoscale core/shell heterostructures, strain across the interface differently influ-
ences the energy band structure and charge transport, operation and performance of
heterostructure devices. Qualitatively reliable and quantitatively precise modelling
and simulation of strain effects on the morphology and electronic properties of semi-
conductor constituents is important for a better prediction of their potential inmaking
nanoscale devices.

According to continuum elastic theory [5], strain on the core and shell sides of
interface in spherical core/shell quantum dots (QDs) are described by

εir = εiθ = εiϕ − 2Em(1 − 2νi )εim
(1 + νm)Ei + 2(1 − 2νi )Em

(2.3)

εmr = − 2Ei (1 + vm)εim

(1 + νm)Ei + 2(1 − 2νi )Em
(2.4)

εmr = − 2Ei (1 + vm)εim

(1 + νm)Ei + 2(1 − 2νi )Em
(2.5)
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Fig. 2.5 Schematic cross-sectional view of core/shell heterostructure

where εir , εiθ , and εiϕ are radial and tangential strains in core region. εmr and εmt =
εmθ = εmϕ are radial and tangential strains in shell region. εim = (ai − am)/am
is the lattice mismatch, where ai and am are, respectively, the lattice constants of
core and shell constituents. Ei (Em) and νi (νm) are the Young modulus and Poisson
ratio of core and shell constituents. They are, respectively, defined as E = (C11 −
C12)(C11 + 2C12)/(C11 + C12) and ν = C12/(C11 + C12) with C11 and C12 elastic
stiffness constants of bulk semiconductors.

Likewise, in cylindrical core/shell heterostructure nanowires (NWs), the
continuum elasticity theory [5] describes the strain on core and shell sides of interface
according to the following equations

ε∗
i

= (1 − vi − 2v2i )Emεim

(1 + νm)Ei + (1 − νi − v2i )Em
− viεim, (2.6)

ε∗
mr

= −Ei (1 + vm)(1 − vi )εim
Em(1 − vi − 2v2i ) + Ei (1 + vm)

, (2.7)
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ε∗
mθ

= Ei (1 + vm)(1 − vi )εim
Em(1 − vi − 2v2i ) + Ei (1 + vm)

(2.8)

where ε∗
i is the isotropic hydrostatic strain (ε

∗
i = ε∗

ir = ε∗
iθ = ε∗

iϕ) in core region and
ε∗
mr and ε∗

mθare radial and tangential components of hydrostatic strain in shell region.
When one of the constituents of microscale planar and nanoscale core/shell

heterostructures is a semiconductor alloy (e.g., AlGaAs/InGaAs, GaAs/InGaAs,
CdSe/CdZnS, ZnSe/ZnCdS), the composition variation of structural properties of
alloy constituent will alter the sign and modify the magnitude interface strain. There-
fore, in addition to mismatches between lattice constants and thermal expansion
coefficients, it is important to include the composition contribution to the interface
strain effects on electronic properties of microscale planar and nanoscale core/shell
heterostructures prior to any device fabrication. Furthermore, the composition depen-
dent strain effect on core lattice constant of cylindrical or spherical binary/ternary
core/shell heterostructure will be in a way that is not seen in microscale planar
geometry. Modified virtual crystal approximation [95, 96] can be implemented in
the thermoelastic model [97, 98] to study the alloy effects on strain and in turn on
the lattice constant, band gaps and band offsets in binary/ternary and ternary//binary
core/shell heterostructures.

In the framework of modified virtual crystal approximation (MVCA) lattice
constant of A1−x BxC ternary alloy shell of binary/ternary heterostructure is defined
as [95, 96]:

am(x) = (1 − x)aAC(x) + (x)aBC(x)

= (1 − x)a0AC + xa0BC − x(1 − x)(ξAC :B − ξBC :A)
(
a0AC − a0BC

) (2.9)

where aAC(x) and aBC(x) are lattice constants of AC and BC bulk binary
semiconductors forming A1−x BxC ternary semiconductor shell, defined as

aAC(x) = a0AC + xξBC :A
(
a0AC − a0BC

)
, aBC(x) = a0BC + (1 − x)ξAC :B

(
a0BC − a0AC

)

(2.10)

where a0AC and a0BC are the undistorted lattice constants of host AC and BC binary
semiconductors and ξAC :B and ξBC :A are dimensionless relaxation parameters [89]

ξAC :B = [1 + αAC

6αBC
(1 + 10

βAC

αAC
)]−1, ξBC :A = [1 + αBC

6αAC
(1 + 10 βBC

αBC
)]−1 (2.11)

where α and β are force constants and are related to elastic stiffness constants as

C11 + 2C12 = (3α + β)/a − 0.355s, C11 − C12 = 4β/a + 0.053s (2.12)
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where s = e2Z ∗2 /d4ε. When disorder-induced nonlinear variation of the lattice
constant is ignored, (2.9) reduces to classical virtual crystal approximation (VCA) of
lattice constant of ternary alloy semiconductor constituent: a0m(x) = (1 − x)a0AC +
xa0BC . One then defines lattice mismatch at spherical or cylindrical heterointerface
of binary/ternary core/shell heterostructure as εim(x) = (ai − am(x))/am(x). The
effects of composition on thermal properties (e.g., linear expansion coefficient),
elastic properties, and valence and conduction band edges and their deformation
potentials of A1−x BxC ternary alloy component of core/shell QDs are calculated by
using a nonlinear expression [95, 96]

PABC
αβ (x) = (1 − x)PAC

αβ + (x)PBC
αβ − x(1 − x)(ξAC :B − ξBC :A)(PAC

αβ − PBC
αβ )

(2.13)

where PAC
αβ and PAC

αβ are the bulk parameters of AC and BC binaries.
Equations (2.1)–(2.13) suggest that the continuum elasticity theories do not fully

consider the effect of dimensions, alloy composition, difference between linear
thermal expansion coefficients, free thermal expansion of lattice constants and
anisotropy of elastic constants of semiconductors forming microscale planar and
nanoscale core/shell heterostructures. It is well known that group IV elemental
and groups III–V and II–VI compound semiconductors tend to expand due to �T
temperature rise during crystal growth and still retain their original crystal struc-
ture [91]. Therefore, one must consider the effects of lattice thermal expansion of
constituent semiconductors and thermal strain across the heterointerface developed
during crystal growth and must be added to interface strain due to local mechanical
stress caused by the lattice mismatch at the interface.

Furthermore, most of the group IV elemental and groups III–V and II–VI
compound semiconductors have elastic anisotropy [92]. Therefore, one must also
take into account the anisotropy of elastic parameters (e.g., Young’s modulus and
Poisson’s ratio) in the modelling of strain effects on electronic, and optical proper-
ties of nanoscale core/shell heterostructures. The anisotropy of elastic properties of
semiconductor may have decisive role on the reliable modelling the operation and
accurate prediction and simulation of the performance of microscale and nanoscale
heterostructure devices. In quantifying the anisotropy of cubic crystals, we can use
Zener anisotropy index, also known as anisotropy ratio [92], ratio of the maximum
and minimum values of shear modulus of cubic crystal

A = 2C44/(C11 − C12) (2.14)

whereC11,C12 andC44 are crystal elastic constants of a crystal with cubic symmetry.
Zener’s anisotropy factor A is equal to unity when the crystal is elastically isotropic.
Deviation less than or greater than unity corresponds to the degree of elastic
anisotropy possessed by the crystal. The extension of Zener’s anisotropy index to
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crystals with hexagonal symmetry creates ambiguities. Ranganathan and Ostoja-
Starzewski [93] proposed a universal elastic anisotropy index (AU) to quantify the
elastic anisotropy of crystals of all classes, including cubic and hexagonal crystals.
Average values of anisotropic elastic moduli (Ẽ and ν̃) of group IV elemental and
groups III-V and II-VI compound semiconductors are calculated by [92]

Ẽ = μ(3λ + 2μ)

λ + μ
, ṽ = λ

2(λ+μ)
(2.15)

λ = C12 − H/5, μ = C44 − H/5 , H = 2C44 + C12 − C11

where λ and μ are Lame’s parameter and shear modulus, respectively. H is called
anisotropy factor of crystal with cubic structure [92]; A semiconductor with cubic
crystal structure is elastically isotropic when H = 0 and anisotropic when H > 0.
Deviation greater than unity corresponds to the degree of elastic anisotropy possessed
by the crystal. The bulk modulus is then defined as B̃ = Ẽ/3(1 − ṽ).

In order to emphasize the importance of the structural and elastic properties of
constituent semiconductors in strain modelling it is also necessary to incorporate the
anisotropy of elastic properties in the stress–strain relations. Since thermal expansion
of volume elements cannot proceed freely, the total strain can be thought to consist
of algebraic sum of the thermal and the elastic strains produced by the resistance of
the medium to thermal expansion [94]. The Hooke’s law is modified to

εi j = 1

Ẽ
[(1 + ṽ)σi j − ṽσkkδi j ] + α�T δi j (2.16)

σi j = Ẽ

(1 + ṽ)
[εi j + ṽ

(1 − 2ṽ)
εkkδi j ] − Ẽ

(1 − 2ṽ)
α�T δi j (2.17)

where εi j and σi j are the strain and stress components, respectively. Ẽ and ṽ are
the anisotropic elastic moduli, respectively. The second term (α�T ) in (2.16) is
the thermal strain due to temperature change �T . While the second term in (2.17)
Ẽα�T/(1 − 2ν̃) is the thermal stress due to the growth temperature. In system
of rectangular cartesian coordinates, the subscripts x, y, z in (2.16) and (2.17) are
substituted for i and j, respectively. In systemof cylindrical and spherical coordinates,
subscripts rr , θθ , zz and rr , θθ , ϕϕ are substituted for i and j, respectively.

2.3 Strain in Microscale Planar Heterostructures

Thermal changes in a thermoelastic body are accompanied by the shifts in relative
positions of particles composing the body. Since the thermal expansion of volume
elements cannot proceed freely, the total strain can be thought to consist of sum of



2 Strain in Microscale and Nanoscale Semiconductor Heterostructures 75

the thermal and elastic strains produced by the resistance of the medium to thermal
expansion [90–92]. Therefore, thermal strains are added to elastic strains due to
local mechanical stress due to lattice mismatch, so that Hooke’s law is modified
to the stress–strain relations given by (2.16) and (2.17). In system of rectangular
coordinates, the components of displacement vector in the x, y and z directions are
ux ,uy ,and uz , respectively, and the strain–displacement relations are written as [94]

εxx = ∂ux

∂x
, εyy = ∂uy

∂y
, εzz = ∂uz

∂z
(2.18)

Since we are dealing with thermoelastic body, there are no shear strains (εxy =
εyz = εzx = 0). The use of (2.16) and (2.17) for modelling of strain in microscale
planar heterostructures (shown in Fig. 2.4) are subject to the following boundary
conditions;

i. stress is zero across heterointerface along growth direction (out of plane),
ii. substrate is free of stress in any crystal directions, and
iii. in plane elastic strain has a lattice mismatch induced discontinuity at heteroin-

terface, so called shrink fit condition defined as

ε f
‖ − εs‖ = εm = a f

|| − a f

a f
= as − a f

a f
(2.19)

where ε f
‖ and εs‖ are in plane strains in epilayer and thick (001) substrate, respectively,

and, εm = (as−a f )/a f is the latticemismatch. Equations (2.1) and (2.2) are rewritten
for the in- and out-of plane strains in heterolayer grown on a thick substrate

ε f
xx = ε f

xx = ε
f
‖ = a f

‖ − a f

a f
= 1

Ẽ f

[(
1 − ν̃ f

)
σ

f
‖ − ν̃ f σ

f
⊥

]
+ α f �T (2.20a)

ε f
zz = ε

f
⊥ = a⊥ − a f

a f
= 1

Ẽ f

[
σ

f
⊥ − 2ν̃ f σ

f
‖

]
+ α f �T (2.20b)

where a f
‖ and a f

⊥ are in- and out- of plane distorted lattice constants, and a f is relaxed
lattice constant of epilayer, respectively. �T = T − T◦ = T is temperature change
relative to T◦ = 0K . Since stress is zero in all directions in a thick (001) substrate,
we can write

σ s
xx = σ s

yy = σ s
zz = σ s

⊥ = σ s
‖ = 0 (2.21a)

εsxx = εsyy = εszz = εs⊥ = εs‖ = αsT (2.21b)



76 H. Ünlü

where αs is linear thermal expansion coefficient of substrate lattice constant.
Substituting (2.20a) and (2.20b) into (2.19), with continuous stress condition

along growth direction (σ s
⊥ = σ

f
⊥ = 0), the shrink-fit condition given by (2.19) is

then written as

(1 − ṽ f )

Ẽ f

σ
f

‖ + α f T − αsT = εm (2.22)

from which one can write the in-plane stress in epilayer given by the following
expression

σ
f

‖ = Ẽ f

(1 − ṽ f )
[εm + (αs − α f )T ] (2.23)

On substituting (2.23) into (2.20a) with σ
f
zz = σ

f
⊥ = 0 and into (2.20b) with

σ s
⊥ = σ

f
⊥ = 0, the in-plane and out of plane strains are expressed as

ε f
xx = ε f

xx = ε
f
‖ = a f

‖ − a f

a f
= εm + (αs − α f )T + α f T (2.26a)

ε f
zz = ε

f
⊥ = a⊥ − a f

a f
= − 2ṽ f

1 − ṽ f
εm − 2ṽ f

1 − ṽ f

(
α f − αs

)
T + α f T (2.24b)

The epilayer lattice constant distorted in plane and out of plane are then given by

a f
‖ = a f (1 + ε‖) = a f [1 + εm(T ) + [αs(T ) − α f (T )]T + α f (T )T ] (2.25a)

a f
⊥ = a f (1 + ε⊥) = a f [1 − 2ṽ f

1 − ṽ f
[εm(T ) + (αs(T ) − α f (T ))T ] + α f (T )T ]

(2.25b)

As an application, we discuss the anisotropy of thermal expansion of GaAs
epilayer grown on Si (001) substrate. Equations (2.25a) and (2.25a) are used to calcu-
late the in-and out- of plane strain distorted lattice constant (a f

‖ and a f
⊥) of GaAs

epilayer on Si (001). Elastic stiffness parameters C11 = 11.8 and C12 = 5.30(in
1010dyn/cm2) [103] for GaAs are used. The bulk lattice constants and linear
expansion coefficients for GaAs and Si are fitted to following expressions

a(T ) = a0(1 + A + BT + CT 2 + DT 3) (2.26a)

α(T )/10−6K−1 = 1

a

∂a

∂T
= B + 2CT + 3DT 2 (2.26b)
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Fig. 2.6 Predicted temperature variation of in plane and out of plane linear thermal expansion
coefficients (a) and lattice constants (b) of GaAs on Si (001) heterostructure

where a0 = 0.565325 (0.543108) nm is bulk lattice constant of GaAs (Si) at 300 K.
Constants A, B, C, and D are empirical fitting parameters [103]: A/10–2 = –0.147
(-0.071), B/10–6 K−1 = 4.239 (1.887), C/10–9 K−2 = 2.916 (1.934), and D/10–12 K−3

= –0.936 (–0.4544) for bulk GaAs (Si).
Figure 2.6 shows the composition effects on in plane and out of plane components

of interface strain and lattice constant in InGaAs quantum well of AlGaAs/InGaAs
planar heterostructure.

In plane and out of plane lattice constants as well as that of bulk GaAs all nearly
converge at about 490 °C (average value of initial growth temperature.) Out of plane
linear thermal expansion coefficient (α f

‖ (T )) of GaAs epilayer is equivalent to that
of Si (001) substrate (αs

‖(T ) = αs(T )), but smaller than that of bulk GaAs (α f (T ))
over the entire temperature range.However, out of plane hermal expansion coefficient
α

f
⊥(T ) of GaAs epilayer exceeds α

f
‖ (T ) by Poisson ratio. Similar observation is also

true for in- and out- of plane distortions of GaAs lattice constant.
Results are in excellent agreement with high resolution x-ray scattering tech-

nique findings of Lucas et al [7], who measured the anisotropy in linear expansion
coefficient of GaAs grown on Si (001) substrate. Table 2.1 gives the comparison of
predictions with experimental data. X-ray diffraction measurements [7] has shown
that epitaxial GaAs thin films on vicinal Si (001) substrate exhibit tetragonal distor-
tion at 300K. In plane thermal expansion of GaAs film follows the thermal expansion
of Si (001) substrate. Out of plane thermal expansion of GaAs thin film exceeds bulk
value.
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Fig. 2.7 Composition effects on in and out of plane components of interface strain and lattice
constant of InGaAs quantum well in AlGaAs/InGaAs heterostructure

Table 2.1 Comparisonof predicted andmeasured in plane andout of plane linear thermal expansion
coefficients and lattice constants of GaAs/Si (001) heterostructure

Parameter GaAs (predicted) GaAs (measured) Si (Predicted) Si (measured)

α⊥(10−6K−1) 7.9689 8.40 3.5095 3.51[7]

α‖(10−6K−1) 3.5094 3.46 3.5095 3.46[7]

a⊥(nm) 0.56667 0.56602 0.5431 –

a‖(nm) 0.56592 0.56483 0.5431 –

Semiconductor alloys based on IV-VI, III-V and II-VI compounds are important
in fabricating low dimensional bipolar and unipolar heterostructure devices since
their structural and electronic properties (e.g., lattice constants and bandgaps) can
be tailored independently. Therefore, reliable and accurate determination of compo-
sition variation of lattice constant and bandgap energies are very important. In the
theoretical determination of composition effects on the structural properties such
as lattice constants, a virtual crystal approximation (VCA) is often used in which
the compositional disorder effect is neglected. Since in VCA the alloy potential is
taken as the concentration weighted average of the constituent potentials the bandgap
energy is linear function of alloy composition.

However, many experimental studies report that the bandgap energies of semi-
conductor alloys are nonlinear functions of composition. Furthermore, it is believed
that the compositional disorder, which is related to the differences of electronega-
tivity of atoms forming a ternary semiconductor, plays a major role in determining its
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bowing of the bandgap energy when lattice mismatch induced strain plays a crucial
role in heterostructure electronic properties. In our recent studies [96–98] the effects
of composition and strain on the electronic properties of semiconductor alloys in
heterostructures are implemented in the semiempirical tight binding models and first
principles density functional theory (DFT) in terms of host bond length and distorted
bond length by the substitutional impurity without any adjustable parameter [94, 95].
In determining the composition effects on the band structure we employ the method
of the modified virtual crystal approximation (MVCA) in which one formulates
the composition effects on the bond length of ternary material. The MVCA allows
one to accurately considers the effect of disorder-induced nonlinear variation of the
lattice constant on the band structure parameters. As an example, Fig. 2.7 shows the
composition variation of the lattice constants and interface strain in AlGaAs/InGaAs
heterostructure. Compressive interface strain decreases the lattice constant of the
InGaAs ternary as composition increases. Whereas tensile strain increases the lattice
constant of InGaAs ternary as composition increases, such an increase or decrease
in lattice constant due to interface strain will change the electronic properties.

2.4 Strain in Spherical Core/Shell Heterostructures

Consider a hollow sphere with inner and outer radius a and b (shown in Fig. 2.8)
representing a nanoscale spherical core/shell heterostructure formed between two
semiconductors with different physical properties. The inner region is core (0 < r <
a) and outer region is shell (a < r < b), which are subject to inner and outer pressures
and uniform temperature., the tangential displacements as well as the shear stresses
and shear strains are zero (σrθ = σrϕ = σϕθ = 0 and εrθ = εrϕ = εϕθ = 0) because
of spherical symmetry The strain is related to the radial displacement ur = u(r) by
[94]

Fig. 2.8 Schematic view of a spherical core/shell heterostructure quantum dot (a) and radial and
tangent components of strain across the core/shell interface (b), respectively
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εr = εrr = ∂ur
∂r

; εt = εθθ = εϕϕ = ur
r

(2.27)

The modified stress–strain relations (Hooke’s law) are written as

εrr = 1

Ẽ
[σrr − ṽ(σθθ + σϕϕ)] + α�T (2.28a)

εθθ = 1

Ẽ
[σθθ − ṽ(σrr + σϕϕ)] + α�T (2.28b)

εϕϕ = 1

Ẽ
[σϕϕ − ṽ(σrr + σθθ )] + α�T (2.28c)

where εrr = εr and εθθ = εϕϕ = εt are radial and tangential strains with corre-
sponding stresses σrr = σr and σθθ = σϕϕ = σt . Ẽ and ṽ are the anisotropic elastic
moduli, respectively. In the absence of body forces, the equilibrium equation for
spherical core/shell structure is written as [94]

dσr

dr
+ 2

r
(σr − σt ) = 0, (2.29)

which can be solved by using the following boundary conditions:

(i) stress is continuous across interface (σir (a) = σmr (a) = −Pim),
(ii) )there is no stress outside core/shell structure (σmr (b) = Po = 0), and
(iii) tangential strain has a lattice mismatch discontinuity at interface, so that we

introduce a shrink fit condition [94], defined as

[r(εmθ − εiθ )]r=a = aεim = a(ai − am)/am (2.30)

where a is the radius of the core region. Solution of (2.29) in core region, subject
to boundary conditions (i) (ii) and (iii), yields σir = σiθ = σiϕ = σi = −Pim .
Substituting these results into (2.28a), (2.28b), and (2.28c) one finds the radial and
tangential strains in core region as

εir = εiθ = εiϕ = 1 − 2ν̃i

Ẽi

σi + αi T = −1 − 2ν̃i

Ẽi

Pim + αi T (2.31)

Solving (2.29) in shell region, one finds the radial and tangential stresses

σmr = a3b3(Po − Pim)

(b3 − a3)r3
+ a3Pim − b3Po

(b3 − a3)
(2.32a)
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σmθ = σmϕ = −a3b3(Po − Pim)

2(b3 − a3)r3
+ a3Pim − b3Po

(b3 − a3)
(2.32b)

which reduce to σmr = −Pim(a/r)3 and σmθ = σmϕ = Pim(a3/2r3) when b � a
and Po = 0 [94]. Substituting (2.32a) and (2.32b) in (2.28a), (2.28b) and (2.28c)
at r = a with Po = 0, radial and tangential strains on shell side of interface can be
written as

εmr = Pim

Ẽm(b3 − a3)
[(1 − 2ṽm)a3 − (1 + ṽm)b3] + αmT (2.33a)

εmt = εmθ = εmϕ = Pim

Ẽm(b3 − a3)
[(1 − 2ṽm)a3 − (1 + ṽm)b3] + αmT (2.33b)

where εmt = εmθ = εmϕ is the tangential component of interface strain in shell
region. Combining (2.33a) and (2.33b) with (2.31), contact pressure at core/shell
interface becomes

Pim = 2Ẽi Ẽm[1 − (a/b)3][εim + (αi − αm)T ]
[(1 + ṽm)Ẽi + 2(1 − 2ṽi )Ẽm] + 2[(1 − 2ṽm)Ẽi − (1 − 2ṽi )Ẽm](a/b)3

(2.34)

On substitution of (2.34) into (2.31), strain acting on core side becomes equal to

εi = − 2(1 − 2νi )Em[1 − (a/b)3][εim + (αi − αm)T ]
(1 + νm)Ei + 2(1 − 2νi )Em + 2[(1 − 2vm)Ei − (1 − 2vi )Em](a/b)3

+ αi T

(2.35)

On substitution of (2.34) into (2.33a) and (2.33b), strains acting on shell side
become equal to

εmr = 2Ei

(b3 − a3)

[1 − (a/b)3][(1 − 2vm)a3 − (1 + vm)b3][εim + (αi − αm)T ]
Ei (1 + vm) + 2Em(1 − 2vi ) + 2[(1 − 2vm)Ei − (1 − 2vi )Em ](a/b)3

+ αmT

(2.36a)

εmt = 2Ei

(b3 − a3)

[1 − (a/b)3][(1 − 2vm)a3 + (1/2)(1 + vm)b3][εim + (αi − αm)T ]
Ei (1 + vm) + 2Em(1 − 2vi ) + 2[(1 − 2vm)Ei − (1 − 2vi )Em ](a/b)3

+ αmT

(2.36b)

In the absence thermal strain for a � b, (2.35), (2.36a) and (2.36b), respectively,
reduce to (2.3), (2.4) and (2.5) given by Eshelby [5] for radial and tangential strains
in core and shell regions.

In a coherently grownnanoscale core/shell heterostructures, strain across the inter-
face differently influences the energy band structure and charge transport, operation
and performance in heterostructure devices. In order to understand the effect of core
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Table 2.2 Properties of some group III-V compounds used in the model calculations [103]

Parameter GaAs InAs GaSb InSb

a(nm) 0.56533 0.60584 0.581 0.541

Eg (eV) 1.519 0.41 0.809 0.235

-Ev (eV) 13.31 12.3 11.6 11.7

ag – 8.80 – 6.30 – 8.30 – 7.0

bv – 0.85 1.00 0.79 1.00

ε∞/ε0 10.86 11.6 14.2 15.3

C11 (1011 dyn/cm2) 11.88 8.329 8.838 6.608

C12 (1011 dyn/cm2) 5.38 4.526 4.027 3.531

C44 (1011 dyn/cm2) 5.94 3.959 4.320 3.027

αth(10–6 K−1) 6.03 5 6.35 5.04

α(10−4 eV) 5.5 3.07 5.3 2.7

β(K) 225 191 234 106

and shell diameters on the magnitude of interface strain acting on core and shell
sides of GaAs and GaSb based heterostructure core/shell spherical quantum dots
and cylindrical nanowires we used the material parameters listed in Table 2.2.

We will use these structural, electronic and elastic material properties of
constituent semiconductors and core and shell dimensions to calculate the inter-
face strain on the core and shell sides of some important group III-V compound
semiconductors-based core/shell heterostructure spherical quantum dots and cylin-
drical nanowires. Specifically, we will focus on the strain variation with core and
shell dimensions, lattice mismatch and thermal expansion difference, and anisotropy
of elastic properties in GaAs/InAs(GaSb) and GaSb/InAs(InSb) heterostructure
quantum dots and nanowires.

Group II-VI compounds semiconductors such CdSe, ZnSe, CdS and ZnS are also
used as for the colloidal synthesis of core/shell heterostructure quantum dots and
nanowires. The structural, electronic, optical and elasticmaterial parameters of group
II–VI compound semiconductors such as CdSe, ZnSe, CdS and ZnS compounds are
given Table 2.3. We will use these material parameters the strain variation with
core and shell dimensions, lattice mismatch and thermal expansion difference, and
anisotropy of elastic properties in CdSe/ZnS, CdSe/CdS, ZnSe/ZnS, and ZnSe/CdS
heterostructure core/shell spherical quantum dots and cylindrical nanowires. We will
also discuss the strain effects on the bandgaps and band offsets in these core/shell
heterostructures and compare the results of the calculations with experimental data
to verify the thermoelastic strain model outlined above.

In order to quantify effect of the elastic anisotropy on the strain and electronic and
optical properties of core/shell heterostructure QDs and NWs, in addition to lattice
and thermal mismatches (εim = (ai −am)/am and δαth(10−6K−1)), we introduce so
called elastic anisotropy mismatch [98]
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Table 2.3 Properties of some group II-VI compounds used in calculations [103]

Parameter CdSe ZnSe CdS ZnS

a(nm) 0.607 0.5668 0.581 0.541

Eg (0)/eV 1.766 2.807 2.445 3.865

-Ev /eV 12.71 13.49 12.55 13.42

�/eV 0.410 0.424 0.070 0.092

ag (eV) – 2.89 – 5.1 – 2.9 – 5.2

av (eV) 0.90 1.23 0.40 0.83

ε∞/ε0 5.80 5.56 5.24 5.20

C11 (1011 dyn/cm2) 6.67 8.57 7.70 10.11

C12 (1011 dyn/cm2) 4.63 5.07 5.39 6.46

C44 (1011 dyn/cm2) 2.23 4.05 2.36 4.46

αth(10–6 K−1) 7.30 7.60 4.05 6.9

α(10−4 eV) 6.96 5.58 3.45 10

β(K) 281 187 208 600

ξim = (Ai − Am)/Am (2.37)

where Ai and Am are anisotropy ratios defined by Zener for core and shell semicon-
ductors with cubic symmetry. Furthermore, we will also introduce elastic anisotropy
mismatch, by using the elasticH parameter and compare the results with those due to
(2.37) by using the following expression ηim = (Hi −Hm)/Hm ,where Hi and Hm are
defined byHirt [92] for core and shell semiconductors constituents with cubic crystal
symmetry. Using the elastic constants given in Tables 2.2 and 2.3, we calculated the
lattice mismatch and elastic anisotropy mismatches ξim and ηim . Table 2.4 lists the
calculated the lattice, thermal mismatch, and elastic anisotropy mismatch for GaAs
and GaSb III-V based and CdSe and ZnSe II-VI based ore/shell heterostructures.

Table 2.4 Lattice mismatch, thermal expansion mismatch, and elastic anisotropy mismatch for
GaAs and GaSb based III-V and CdSe and ZnSe based II–VI core/shell heterostructures

Core/Shell εim (%) δαth(10−6K−1) ξim (%)) ηim (%)

GaAs/InAs –6.68 1.03 –12.21 30.74

GaAs/GaSb –2.67 –0.32 1.77 40.50

GaSb/InAs –4.10 1.35 –13.74 –6.95

GaSb/InSb 3.565 6.35 –8.72 28.61

CdSe/CdS 4.326 3.25 7.00 0.414

CdSe/ZnS 12.329 0.4 –10.50 –54.07

ZnSe/CdS –2.712 3.55 13.30 90.87

ZnSe/ZnS 4.750 0.7 –5.30 –12.78



84 H. Ünlü

Because of the large anisotropy ratio predicted by ηim given by (2.37), we will limit
our discussion to elastic anisotropy mismatch ξim given by (2.37) in calculating the
elastic anisotropy effects on strain.

Calculations are carried out to investigate the effect of core diameter variation
of interface strain in GaAs/InAs(GaSb), GaSb/InAs(InSb), CdSe/ZnS, (CdS) and
ZnSe/ZnS(CdS) nanoscale spherical core/shell heterostructures and the results are
shown in Fig. 2.9. Figure 2.9a and b, respectively, show the core diameter variation
of strain acting on core and shell sides of interface suggest that strain is nearly
constant on both sides. In the case of GaAs/InAs and GaSb/InSb heterostructures,εim
and ξim are large and negative, resulting in a large interface strain. In GaAs/GaSb
and GaSb/InSb heterostructures lattice mismatch is negative and large and elastic
anisotropy ratio is also negative and large, but interface strain is relatively smaller
than that in GaAs/InAs and GaSb/InSb heterostructures. In CdSe/ZnS and ZnSe/ZnS
heterostructures for which both εim and ξim are large, anisotropic elastic moduli
results in larger compressive strain than isotropic ones. In CdSe/CdS and ZnSe/CdS
heterostructures (Fig. 2.9c and 2.9d),εim is large and positive and ξim is large and
negative.Consequently, the interface strain is relatively smaller than that inCdSe/ZnS

Fig. 2.9 Effect of core diameter on interface strain acting on core (a, c) and shell (b, d) sides of
nanoscaleGaAs/InAs(GaSb) andGaSb/InAs(InSb) III–V andCdSe/ZnS(CdS) andCdSe/CdS(ZnS)
II-VI compounds based heterostructure core/shell QDs
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and ZnSe/ZnS heterostructures. This has an important effect about the prediction
of the shell diameter variation of quantum confinement in the design of core/shell
heterostructures.

Figure 2.10 compare the results of the calculations for shell diameter effect
on strain acting on core (a, c) and shell (b, d) sides of GaAs/InAs(GaSb) and
GaSb/InAs(InSb) and CdSe/ZnS(CdS) and CdSe/CdS(ZnS) QDs with core diam-
eter di = 3.0 nm at 300 K. The anisotropic elastic moduli result in larger strains than
isotropic ones in GaAs/InAs, GaSb/InAs, CdSe/ZnS and ZnSe/ZnS for which both
εim and ξim are large.

A similar magnitude of strain is predicted in GaAs/GaSb, GaSb/InSb, CdSe/CdS
and ZnSe/CdS for which εim is small and ξim is large. Increasing shell diameter
causes tensile and compressive strain on core side of interface in GaAs/InAs(GaSb)
and GaSb/InAs(InSb) heterostructures, respectively, with increasing magnitude.
Whereas, increasing shell diameter causes compressive and tensile and strain on
shell side of interface in GaAs/InAs(GaSb) and GaSb/InAs(InSb), respectively, with
decreasing magnitude.In CdSe/ZnS(CdS) and ZnSe/ZnS QDs, shell diameter causes

Fig. 2.10 Effect of shell diameter on interface strain acting on core (a, c) and shell (b, d) sides of
nanoscale GaAs/InAs(GaSb) and GaSb/InAs(InSb) III-V and CdSe/ZnS(CdS) and CdSe/CdS(ZnS)
II-VI compounds based heterostructure core/shell QDs for core diameter di = 3.0 nm at 300 K
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compressive strain acting on the core side and becomes nearly constant above 8.0 nm.
Whereas, increasing shell diameter causes tensile and strain on shell side of inter-
face in CdSe/ZnS (CdS) and ZnSe/ZnS, respectively. Strain is tensile on core side
and compressive on shell side of ZnSe/CdS interface. It becomes less important
as shell diameter is increased above some critical diameter. This has an important
consequence about the effect of shell diameter variation of quantum confinement in
spherical core/shell heterostructure QDs. Drawing vertical and horizontal straight
lines tangent to strain curve, intersection point will give the upper limit for elastic
strain and shell diameter for which one can observe strong confinement regime.

The coherent growth of binary/ternary core/shell heterostructures is essential in
order to increase degree of quantum confinement by varying core and shell direct
bandgaps. Figure 2.11 shows the composition effects on strain and lattice constant
in core side of ZnSe/CdZnS and CdSe/CdZnS core/shell heterostructure QDs for
core diameter di = 3.0 nm at 300 K with isotropic and anisotropic elastic constant
properties.As composition increases the difference between isotropic and anisotropic
elastic properties tend to increase. Compressive strain acting on core causes its lattice
constant to increase with increasing composition. This will increase direct bandgap
energy and in turn the limit on quantum confinement, which will be discussed later
on. It turns out that the anisotropy of elastic constants has negligible effects on the
strain and lattice constants but tends to increase as the ternary alloy composition
increases towards one.

(a) (b)

Fig. 2.11 Composition effects on strain (a) and lattice constant (b) in core region of ZnSe/CdZnS
and and CdSe/CdZnS heterostructures for core diameter di = 3.0 nm at 300 K
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2.5 Strain in Cylindrical Core/Shell Heterostructures

Consider an infinitely long concentric cylindrical core/shell semiconductor
heterostructure with inner and outer radius a and b (a<b) and is subject to an inner
and outer pressures Pi and Po, respectively, and uniform temperature distribution
throughout nanostructure (Fig. 2.12). The core region is strained along z-axis due
to lattice mismatch εi z = εim = (ai − am)/am but the shell region is unstrained
(εmz = ∂uz/∂z = 0). Here ai and am are lattice constants of core and shell regions,
respectively.

Focusing on the cross-sectional view in Fig. 2.12b, because of cylindrical
symmetry, the tangential displacements as well as the shear stresses and shear strains
are all zero (σrθ = σrϕ = σϕθ = 0 and εrθ = εrϕ = εϕθ = 0). The compo-
nents of the displacement vector in r, θ , and z directions are ur ,uθ , and uz . The
strain–displacement relations are [91, 94]

ε∗
rr = ∂ur

∂r
; ε∗

θθ
= ur

r + 1
r

∂uθ

∂θ
; ε∗

zz
= ∂uz

∂z (2.38)

where ε∗
rr

= ε∗
r
and ε∗

θθ
= ε∗

t
are radial and tangential strains. Since thermal expansion

of volume elements cannot proceed freely, total strain is equal to sum of thermal
strain and local strain (i.e., lattice mismatch) due to resistance of medium to thermal
expansion. Applying (2.16) to system of cylindrical coordinates, the stress–strain
relation for the cylindrical core region are written as [94]

ε∗
ir

= 1

Ẽi

[σ ∗
ir

− ṽi (σ
∗
iθ

+ σ ∗
i z
)] + αi T (2.39a)

Fig. 2.12 Schematic cross-sectional view of cylindrical core/shell heterostructure
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ε∗
iθ

= 1

Ẽi

[σ ∗
iθ

− ṽi (σ
∗
ir

+ σ ∗
i z
)] + αi T (2.39b)

ε∗
i z

= 1

Ẽi

[σ ∗
i z

− ṽi (σ
∗
ir

+ σ ∗
iθ
)] + αi T (2.39c)

where ε∗
ir
, ε∗

iθ
and ε∗

i z
are the radial and tangential strains and σ ∗

ir
, σ ∗

iθ
and σ ∗

i z
are the

corresponding stresses. Ẽi and ν̃i are anisotropic Young’s modulus and Poisson’s
ratio, respectively. In the shell region, there is no displacement along z-direction,
ε∗
mz

= ∂uz/∂z = 0, and stress–strain relations are given by the following equations

ε∗
mr

= 1

Ẽm

[σ ∗
mr

− ṽm(σ ∗
mθ

+ σ ∗
mz

)] + αmT (2.40a)

ε∗
mθ

= 1

Ẽi

[σ ∗
mθ

− ṽm(σ ∗
mr

+ σ ∗
mz

)] + αmT (2.40b)

σ ∗
mz

= ṽm(σ ∗
mr

+ σ ∗
mθ

) − ẼmαmT (2.40c)

where Ẽm , ṽm , and αm are, respectively, anisotropic Young’s modulus, Poisson
ratio, and linear thermal expansion coefficient of semiconductor forming shell
region. Radial and tangential stresses satisfy following equilibrium equation for axial
symmetry [94]

dσr

dr
+ 1

r
(σr − σθ ) = 0 (2.41)

which can be solved by using the following boundary conditions.

(i) radial stress is zero at center (σir (0) = 0) and continuous across interface
(σir (a) = σmr (a) = −Pi ),

(ii) there is no stress outside core/shell nanowire structure (σmr (b) = Po = 0),
(iii) Lattice mismatch at cylindrical core/shell interface is ε∗

im
= (ai −am)/am , and

(iv) tangential strain has a lattice mismatch discontinuity at interface and so called
shrink fit condition is defined as [94]

[r(εmθ − εiθ )]r=a = aεim (2.42)

where ε∗
iθ and ε∗

mθ are tangential strains on core and shell sides, given by (2.39a) and
(2.40b).

In core region, one can set ε∗
ir

= ε∗
iθ
in (2.39a) and (2.39b) and find σ ∗

ir
= σ ∗

iθ
and

substituting them into (2.40c), with ε∗
i z

= εim = (ai − am)/am , stress along z-axis
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σi z is equal to

σ ∗
i z

= 2viε
∗
ir

+ Eiεim − Eiαi T (2.43)

Substituting σ ∗
ir

= σ ∗
iθ

= σ ∗
i

= −P∗
im
and σ ∗

i z
back into (2.39a) and (2.39b) one

finds the radial and tangential strains in core region as

ε∗
i

= ε∗
ir

= ε∗
iθ

= − (1 − vi − 2ṽ2i )

Ẽi

P∗
im

− viεim + (1 + ṽi )αi T (2.44)

where P∗
im
is contact pressure at core/shell interface. Solving (2.41) in shell region

one finds [94]

σ ∗
mr

= −P∗
im

, σ ∗
mθ

= (a2 + b2)P∗
im

/(b2 − a2) (2.45)

for radial and tangential stresses at heterointerface (r = a), respectively. Radial and
tangential strains given by (2.49) and (2.40b) at r = a can then be written as

ε∗
mr

= P∗
im

Em(b2 − a2)
[(1 − vm − 2v2m)a2 − (1 + vm)b2] + (1 + vm)αmT (2.46a)

ε∗
mt

= P∗
im

Em(b2 − a2)
[(1 − vm − 2v2m)a2 + (1 + vm)b2] + (1 + vm)αmT (2.46b)

where ε∗
mt

= ε∗
mθ

= ε∗
mϕ

is the tangential strain in shell region. Combining (2.44) and
(2.46b) with (2.42) for shrink fit condition, one finds interface contact pressure

P∗
im

= Ẽi Ẽm(b2 − a2)[(1 − ṽi )εim + δεth]
Ẽm(b2 − a2)(1 − ṽi − 2ṽ2i ) + Ẽi [(1 − ṽm − 2ṽ2m)a2 + (1 + ṽm)b2] (2.47)

where δεth(T ) = (1 + ṽi )αi T − (1 + ṽm)αmT is thermal strain due to difference
between linear expansion coefficients of core and shell constituents in bulk form. In
the absence of thermal strain (2.44) and (2.46a), and (2.46b) reduce to (2.6) and (2.7)
and (2.8) for a << b.

On substitution of (2.47) into (2.44), strain acting on core side is written as

εi = − Em(1 − vi − 2v2i )(b2 − a2)[(1 − vi )εim + δεth ]
Em(b2 − a2)(1 − vi − 2v2i ) + Ei [(1 − vm − 2v2m )a2 + (1 + vm )b2] − vi εim + (1 + vi )αi T

(2.48)

When core region radius is much smaller than that of shell region (a << b),
(2.48) reduces to
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εi = (1 − vi − 2v2i )Em[εim + δεth]
[(1 + νm)Ei + (1 − νi − v2i )Em] − viεim + (1 + vi )αi T (2.49)

Likewise, on substitution of (2.47) into (2.46a) and (2.46b), radial and tangential
strains acting on shell side of the heterointerface can be written as

εmr = − Ei [(1 + vm)b2 − (1 − vm − 2v2m)a2][(1 − vi )εim + δεth]
Em(b2 − a2)(1 − vi − 2v2i ) + Ei [(1 − vm − 2v2m)a2 + (1 + vm)b2] + (1 + vm)αmT

(2.50a)

εmt = Ei [(1 + vm)b2 + (1 − vm − 2v2m)a2][(1 − vi )εim + δεth]
Em(b2 − a2)(1 − vi − 2v2i ) + Ei [(1 − vm − 2v2m)a2 + (1 + vm)b2] + (1 + vm)αmT

(2.50b)

When core region radius is much smaller than that of shell region (a << b), radial
and tangential strains are maximum on shell side given by the following expressions

εmr = −Ei (1 + vm)[(1 − vi )εim + δεth]
Em(1 − vi − 2v2i ) + Ei (1 + vm)

+ (1 + vm)αmT (2.51a)

εmθ = Ei (1 + vm)[(1 − vi )εim + δεth]
Em(1 − vi − 2v2i ) + Ei (1 + vm)

+ (1 + vm)αmT (2.51b)

Equations (2.49), (2.51a) and (2.51b) reduce to (2.6), (2.7), and (2.8) given by
Eshelby [4] for strains in core and shell regions of a cylindrical core/shell nanowire.

In order to understand the effect of core and shell diameters on strain acting on core
and shell sides of group III-V based cylindrical core/shell heterostructures, we use
material parameters listed in Tables 2.3 and 2.4 to calculate the magnitude of strain
acting on core and shell sides of GaAs/InAs(GaSb) and GaSb/InAs(InSb) cylindrical
core/shell heterostructure as a function of core and shell diameters. Figure 2.13a and
b show the results of calculations carried out about the core diameter variation of
interface strain in GaAs/InAs(GaSb) and GaSb/InAs(InSb) heterostructures.

The interface strain is nearly constant on both core and shell sides of their
heterointerfaces. In GaAs/InAs, GaAs/GaSb and GaSb/InAs heterostructures lattice
mismatch εim = (ai − am)/am is large and negative which results in compressive
lattice mismatch strain. In GaSb/InSb heterostructure εim is large and positive which
results in tensile lattice mismatch strain. Elastic anisotropy mismatch ξim is large and
negative for GaAs/InAs, GaSb/InAs and GaSb/InSb heterostuctures.

Figure 2.14a and b show the shell diameter variation of interface strain acting on
the core and shell sides in GaAs/InAs(GaSb) and GaSb/InAs heterostructures.

Strain acting on core (shell) side of interface in GaAs/InAs(GaSb) and GaSb/InAs
heterostructures is tensile (compressive) and parabolically increases in magnitude as
shell diameter is increased and becomes nearly constant above 8.0 nm in all of these
heterostructures. Whereas, in the case of GaSb/InSb heterostructure strain is tensile
and increases parabolically in magnitude. However, increasing shell diameter causes
compressive strain on shell side of interface inGaAs/InAs andGaSb/InSb, and tensile
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Fig. 2.13 Core diameter variation of interface strain on core (a) and shell (b) sides of GaAs/InAs,
GaAs/GaSb, GaSb/InAs, and GaSb/InSb NWs with shell diameter dm = 2di at 300 K

Fig. 2.14 Shell diameter effect on strain acting on core (a) and shell (b) sides of group III-V
GaAs/InAs, GaAs/GaSb, GaSb/InAs, and GaSb/InSb core/shell NWs for di = 3.0 nm at 300 K

strain in GaAs/GaSb and GaSb/InAs heterostructures, respectively, with parabolic
increase in magnitude. This result is contrary to the effect of core diameter on the
interface strain. This has an important consequence about the effect of shell diameter
variation of quantum confinement in cylindrical core/shell heterostructure NWs. It
becomes less important as shell diameter is increased above some critical diameter.
If one draws vertical and horizontal straight lines that are tangent to strain curve,
intersection point will give the upper limit for elastic strain and shell diameter for
which one can observe strong confinement regime.
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2.6 Interface Strain and Morphology in Core/Shell QDs

When the lattice constant and linear thermal expansion coefficient of core region
are larger than those of the shell region in core/shell heterostructure QDs and NWs,
interface strain due to lattice and thermal mismatches causes the core region to
be under isotropic compression and shell region to be under compression in radial
direction and tension in tangential direction [100, 101]. Consequently, the interfa-
cial strain energy stored on the core and shell sides of heterointerfaces in core/shell
QDs depends on the diameters of constituents. In case of similar lattice parameter and
elastic constants between constituent semiconductors forming core/shell heterostruc-
ture, uniform and coherent shell growth is possible only for small size core and thin
shell region. However, when lattice and thermal expansion mismatches between
core and shell constituents are significant, then thick shell growth can cause large
interface elastic strain energy [100]. As it is evident from Table 2.4, there is signif-
icant lattice mismatch across interfaces of GaAs/InAs(GaSb), GaSb/InAs(InSb)
CdSe/ZnS(CdS) and ZnSe/ZnS(CdS) core/shell heterostructures, which is expected
to result in substantial elastic strain energy on both sides of interface, which can
affect the morphology of core/shell nanostructures.

Continuum elastic theory [94] can be used to have a quantitative treatment of
elastic. strain energy in determining the core and shell morphologies. The total elastic
energy stored in spherical core/shell QDs is written as sum of elastic strain energies
stored on core and shell side

E = 1

2

a∫

0

σi jεi j dV + 1

2

b∫

a

σi jεi j dV = 1

2

a∫

0

3σiεi dV + 1

2

b∫

a

(σmrεmr + 2σmtεmt )dV

(2.52)

where σi j = σir = σiθ = σiϕ = −Pim is stress and εi j = εir = εiθ = εiϕ = εi is
corresponding strain in core region. σmr and σmθ are radial and tangential stresses and
εmr and εmθ are corresponding strains, respectively, acting on shell side. Evaluating
integral expression in (2.52) one finds

Eim = −2πa3Pimεi − 2πa3b3

(b3 − a3)
Pim

(

(εmr + εmt ) ln(
b

a
) − (εmr + 2εmt )

(b3 − a3)

3

)

(2.53)

where first and second terms are, respectively, the elastic strain energies stored on
core and shell sides of spherical core/shell QD. Similar expression can be found for
cylindrical core/shell nanowires.

Figure 2.15 shows the elastic strain energies stored on core and shell sides of of
CdSe/ZnS (CdS), ZnSe/ZnS(CdS) spherical core/shell QDs as a function of core and
shell dimensions. Figure 1.15a and b show the core and shell diameter dependence
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Fig. 2.15 Variation of elastic strain energy stored on core and shell sides of interfaces in CdSe/ZnS,
CdSe/CdS, ZnSe/ZnS, and ZnSe/CdS core/shell QDs as a function of core diameter with dm = 2di
and shell diameter with di = 3.0 nm, respectively, at 300 K

of interfacial elastic strain energies stored on core side and Fig. 1.15c and d show the
core and shell diameter dependence of elastic strain energies stored on shell side of
interfaces in CdSe/ZnS, CdSe/CdS, ZnSe/ZnS, ZnSe/CdS core/shell QDs for core
and shell diameters of di = 3.0 nm and dm = 6.0 nm, respectively.

Core diameter increase causes large parabolic increase in interfacial elastic energy
stored on core side of CdSe/ZnS (Fig. 2.15a) and on shell side of CdSe/ZnS and
ZnSe/ZnS QDs (Fig. 2.15c) for which lattice mismatch is large and positive and
anisotropy mismatch is large and negative. Increase in shell diameter causes small
increase (0.05 to 0.20 eV) in elastic strain energy stored on core side of CdSe/ZnS
and moderate increase (0.05 to 0.90 eV) in that of ZnSe/ZnS QDs (Figs. 2.15b) and
on shell sides (Figs. 2.15d). Using anisotropic elastic moduli in calculating elastic
energy stored on both sides of interface yields larger values than using isotropic ones
when latticemismatch is large (e.g., CdSe/ZnS, ZnSe/ZnS core/shell QDs).However,
using both isotropic and anisotropic elastic moduli yields similar and negligible
increase in elastic energy when lattice mismatch is relatively small (e.g., CdSe/CdS
and ZnSe/CdS core/shell QDs). The elastic energy calculations carried out here for
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abrupt core/shell heterointerfaces. Following Cai et al. [101], one can extend the use
of (2.52) and (2.53) to spherical core/shell heterostructure QDswith compositionally
graded core/shell interfaces.

2.7 Bandgaps and Band Offsts in Core/Shell
Heterostructures

One of the critical key issues in microscale and nanoscale heterostructure semicon-
ductor device technology is the qualitative understanding the formation and precise
determination of the magnitude of band offsets across heterointerfaces. The band
offsets dominate various device properties such as carrier injection efficiency in
heterostructure bipolar transistors (HBTs), carrier confinement in modulation doped
field effect transistors (MODFETs), quantum yield of photoluminescence in small
scale and nanoscale electronic and optical devices, and have received considerable
attention among device scientists and engineers over the years. Because potential
barrier in the conduction band and the potential step in the valence band at the inter-
face significantly influence carrier transport and device performance, reliable and
accurate modeling of interface band structure is crucial for the designing the func-
tionality of spherical core/shell heterostructure quantum dots and their performance
optimization.

In order to understand the size effect on the core band gap of spherical bare core
and core/shell QDs, Efros [37], Brus [38] and then Kayanuma [44, 45] used two
band effective band approximation. Solving Schrödinger equation for a particle in a
spherical box one obtains the first excited state (1 s-1 s) energy (core band gap) of
quantum dots as [38]

Enc
g (d) = Eb

g + 2�
2π2

m∗
cvd

2
− 3.572e2

ε∞d
+ 0.124

m∗
cv

�2ε2∞
(2.54)

where Eb
g is bulk bandgap of core semiconductor, m∗

cv = m∗
em

∗
h/(m

∗
e + m∗

h) is the
reduced effective mass of electron–hole pair with effective masses of electrons and
holesm∗

e andm
∗
h , respectively,m0 is the bare electron mass, and ε∞ is the bulk value

of optical dielectric constant of constituent semiconductor. Second term in (2.54)
is the sum of the confinement energies of electrons and holes in the core region.
Third term is the Coulomb attraction energy and the fourth term is the Rydberg
electron–hole correlation energy, which is negligible when ε∞ is considerably large.

Defining the strong confinement regime by the absence of the substantial electron–
hole correlations, Kayanuma [44, 45] found that this is not limited to d ≤ 2a∗

B
, but

remains valid up to about d = 2a∗
B
. Here, a∗

B
= 2ε∞�

2/m∗
cve

2 is the effective Bohr
radius. For d � 2a∗

B
, the exciton is envisioned as a quasiparticle moving around

inside the core region with little energy increment due to confinement [79]. Although
effective mass approximation is useful to understand variation of core band gap with
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diameter, it quantitatively fails to explain the results for QDswith small size (<5 nm).
The reason was considered to be the use of bulk values for effective mass of electrons
and holes [46].

In the framework of two band effective mass approximation, solving Schrödinger
equation in cylindrical coordinates gives the following expression for the core band
gap of nanowires [99]

Enw
g (d) = Eb

g + 2�
2π2

m∗
cvd

2
+ δEs (2.55)

where Eb
g is bandgap of core semiconductor in bulk form. 2�

2π2/m∗
cvd

2 and δEs

are, respectively, the quantum confinement and surface the contributions to the
core bandgap energy. For a constant core diameter (2a) the δEs is negligible when
2a � l. Coulomb interaction is not included in the calculation of nanowire band
gap since correlation between electron and hole positions along the NW length are
not easily considered with this kind of approximation, possibly leading to a small
overestimation for the nanowire bandgap.

Since the first proposal of using two band effective mass approximation [37, 38]
to calculate core bandgap, other theoretical models have been developed over the
years. However, thesemodels do not consider the effects of core and shell dimensions
and difference between linear thermal expansion coefficients, elastic constants, and
finally the effect of spin–orbit splitting of constituent semiconductors in the computa-
tion of elastic strain in QDs and NWs. Kane’s parabolic two band k.p approximation
[105] can be effectively used for a qualitative understanding of quantum confinement
and strain effects on conduction and valence band edges of QDs and NWs. In the
framework of Kane’s k.p approximation the states are expanded in a finite set of
Bloch states close to an extremum k0 of band structure inside the Brillouin zone,
with spin–orbit interaction effect is considered which leads to following expressions
for conduction and valence band energy levels [106]

Ec(k) = − Eg

2
+ �

2k2

2m0
+ Eg

2

(
1 + �

2k2(Eg + �)

2m∗
cv Eg(Eg + 2�/3)

)1/2

, (2.56a)

Ev(k) = − Eg
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+ �

2k2

2m0
− Eg

2

(
1 + �

2k2(Eg + �)

2m∗
cv Eg(Eg + 2�/3)

)1/2

(2.56b)

where Eg = Ec(0) − Ev(0) is the unperturbed band gap and � is the contribution
of spin–orbit interaction to band gap and conduction and valence band energies.
The quantum size effect in core region of spherical and cylindrical core/shell nanos-
tructures is given by the dispersion relation with |k| = 2π/d, where d is the core
diameter. One can expand square root term in (2.56a) and (2.56b) by using the Bino-
mial approximation as (1 + x)1/2 = 1 + x/2 − x 2 /4 + .. and write the following
equation for core bandgap
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where Ebi
g (εi ) and δsp = (

Ebi
g (εi ) + �i

)
/
(
Ebi
g (εi ) + 2�i/3

)
are, respectively, the

hydrostatic strain dependent bulk bandgap and correction factor which considers the
spin–orbit interaction contribution to quantum confinement. The correction factor δsp
is close to unity forwide bandgap semiconductors such asGaAs andZnSe (Eg � �).
In a recent work we have shown that its effect on quantum confinement is between
5 to 8% for wide gap III-V and II-VI compounds. However, correction factor δsp is
larger than unity for narrow bandgap semiconductors for which bandgap is nearly
equal to or smaller than spin–orbit energy (Eg � �). δsp increases the quantum
confinement about 20% for InAs and GaSb narrow gap compound semiconductors.

Therefore, it is essential to add the spin–orbit interaction contribution to quantum
confinement in a realistic modelling of electronic properties of narrow gap/narrow
gap (or wide gap). Core/shell QDs. Adding the Coulomb interaction and Rydberg
correlation energies in (2.57), one obtains the core band gap of bare core and
core/shell QD with Type I band alignment
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Likewise, in a spherical core/shell QD with Type II band alignment core bandgap
can be expressed
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where Ebi
g (εi ) = Ebi

g +δEbi
g (εi ) and Ebm

g (εm) = Ebm
g +δEbm

g (εi ) are strain dependent
core and shell bandgaps with δEbi

g (εi ) and δEbm
g (εi ) strain shifts relative to their bulk

values Ebi
g and Ebm

g at T= 0K.�Ec(εi ) and�Ev(εi ) are the band offsets of spherical
core/shell heterostructure.

In case of cylindrical core/shell nanowires with Type I band alignment core
bandgap is found from the solution of Schrödinger equation in a cylindrical
coordinate system in effectivemass approximation, given by the following expression
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In a cylindrical core/shell nanowire with Type II band alignment core bandgap is
expressed as

Enw
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where δEs is a contribution to NW core bandgap due to surface to volume ratio,
defined in (2.55) and can be neglected in practical cases since capping core with
shell isolates the active core from surface defects and traps, allowing one to facilitate
better electronic and optical properties.

Valence band offsets are obtained by taking difference between the valence band
widths of shell and core constituent semiconductors in bulk form, screened by their
optical dielectric constants

�Ev(ε) = 1

εm∞
Emv(εm) − 1

εi∞
Eiv(εi ) (2.62)

where Eiv(εi ) (Emv(εm)) and εi∞(εm∞) are valence bandwidths and optical dielectric
constants of core and shell semiconductors, respectively. Valence band energies are
obtained by either using the (a) empirical sp3 or sp3s* tight binding theories or (b)
density functional theory. Strain effects on dielectric constants will be neglected for
the sake of simplicity. Hydrostatic strain effects on conduction band offset is obtained
by subtracting (adding) valence band offset from (to) band gap difference as.

�Ecl I (ε) = �Egl(ε) − �Ev(ε), f or T ype I interface band alignment (2.63a)

�Ecl I I (ε) = �Egl(ε) + �Ev(ε), f or T ype I I interface band alignment (2.63b)

where Ecl = E�6c , EL6c and EX6c conduction bands and Egl = Eg�, EgL and EgX

are the lowest bandgaps at k = 0(2π/a)(0; 0; 0), k = (2π/a)(1; 0; 0),
and k = (2π/a)(1/2; 1/2; 1/2) in the Brillouin zone of the constituent
semiconductors.�Eg(ε) = Em

gl(εm) − Ei
gl(εi ) is strain dependent band gap differ-

ence between shell and core constituent semiconductors at high symmetry points of
the first Brillouin zone. The accuracy of the results is as good as the input parameters
used in calculations.

Accuracy of valence and conduction band offsets prediction can be improved if
one obtains them in terms ofmeasured core band gaps, extracted from the first exciton
peak energy of UV–Vis optical absorption spectra. In doing so, we use (2.59a) and
(2.59b) to write
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for spherical core/shell QDs. Here Enc
g (exp) and d are measured core bandgap and

diameter of core/shell QD, respectively. Enc
g (exp) is obtained from the first exciton

peak energy of the UV-absorption spectra. Core diameter d is obtained from the UV–
Vis absorption spectra, X-ray diffraction (XRD), and high-resolution transmission
electron microscopy (HRTEM) measurements, respectively [107, 108]. In case of
cylindrical core/shell heterostructures we rewrite (2.61a) and (2.61b) as
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where Enc
g (exp) and d are measured core bandgap and diameter of core/shell NWs,

respectively.

2.8 Strain Effects on Bandgaps and Band Offsets

Figure 2.16 shows the conduction minimum relative to valence band maximum at
the �; high symmetry point of the first Brillouin zone of a direct bandgap semicon-
ductor. In coherently grown microscale thin films, compressive (or tensile) strain
in epilayer increase (or decrease) conduction and valence band energy levels of
semiconductor band structure. Hydrostatic strain, which corresponds to the relative
volume change of the strained epilayer, shifts the conduction band minimums rela-
tive to the average valence band maximum at �; point. The uniaxial component of
biaxial strain tensor splits the heavy-hole, light-hole and split-off valence band edges
relative to the average valence band edge. The heavy-hole, light-hole and split-off
band energies relative to the average valence band edge Ev are [6]

Evh(ε) = Ev(ε) + 1

3
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2
δE, (2.66a)

Evl(ε) = Ev(ε) − 1
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4
δE2, (2.66b)



2 Strain in Microscale and Nanoscale Semiconductor Heterostructures 99

Fig. 2.16 Band structure of
bulk direct bandgap GaAs,
showing conduction band
minimum, heavy hole, light
hole and spin–orbit splitting
of valence band maximum

Evs(ε) = Ev(ε) − 1

6
� + 1

4
δE − 1

2

√

�2 + �δE + 9

4
δE2 (2.66c)

δE = 2b(εzz − εxx ) = 2b(ε⊥ − ε||) (2.66d)

where b is the shear deformation potential which describes splitting of valence band
energy due to the [001] uniaxial strain.Ev(ε) is the average valence band maximum
under hydrostatic strain.

Reliable modelling and precise determination of electronic properties (such as
band gaps and band offsets) of spherical and cylindrical core/shell heterostruc-
tures is essential for the true and realistic prediction of their potential use in fabri-
cating nanoscale electronic and optical devices operating at high temperatures.
However, the determining the strain effects on electronic and optical properties of
nanoscale core/shell one and zero-dimensional semiconductor heterostructures is
still an obstacle. Qualitative understanding of strain shifts in core gaps of spher-
ical core/shell type I and type II heterostructure QDs can be achieved by using the
classical parabolic two band effective mass approximation [38]. We will discuss the
effects of using isotropic and anisotropic elastic moduli in calculating hydrostatic
strain effects on bandgaps and band offsets in wide bandgap GaAs/GaSb(InAs) and
GaSb/InAs(InSb) group III-V and CdSe/ZnS(CdS) and ZnSe/ZnS(CdS) group II-
VI compounds based heterostructure core/shell QDs as a function of core and shell
diameters at any temperature. The material parameters are given Tables 2.1 and 2.2
for group III-V and II-VI compounds, respectively.

In calculating the hydrostatic strain effects on energy levels on both sides of
heterointerface one can use so called the statistical thermodynamic model of semi-
conductors [102]. The energy bandgap at high symmetry points in the first Brillouin
zone of semiconductors with zinc blende or hexagonal crystal structure is expressed
as a function of temperature and pressure as
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Egl(T, P) = Egi + �C0
PT (1 − ln T ) − agl

B
[P − P2

2B
− (1 + B ′)P3

6B2
] (2.67)

where Egl is the band gap at standard temperature T0(K ) and standard pressure
P0(1atm).agl = −B(∂Egl/∂P) is deformation potential and B is bulk modulus with
its B

′ = ∂B/∂P . The logarithmic term represents the electron–phonon interactions
contribution to shift in bandgap with temperature increase. Third term represents
shifts in bandgap to free linear expansion of lattice constant of constituents with
temperature increase and strain due to lattice and thermal mismatches.�C0

gP is stan-
dard state heat capacity of reaction for formation of electron–hole pair, which is
obtained by fitting bulk band gap Eg(T, P) to experimental data [103], using the
empirical expression of Varshni [104]

Eg(T ) = Eg(0) + αT 2

(T + β)
(2.68)

where α and β are fitting constants for bulk semiconductor.
Strain effects on electronic and optical properties of microscopic planar semi-

conductor heterostructures have been extensively studied and is reasonably well
understood. In a planar heterostructure on (001) substrate, the hydrostatic pressure is
expressed as P = −2B f C f ε f// and P = −3Bsεs|| for epilayer and substrate, respec-
tively. Using (2.67) strain shifts in the bandgap energies of epilayer and substrate
can be written as
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(2.69)

where ε = ε f || = (a f || − a f )/a f is strain in epilayer along the growth direction and
C f = (C11 − C12)/C11 is the elastic constants ratio for epilayer.

However, in a coherently grown nanoscale core/shell heterostructures, strain
across the interface differently influences the energy band structure and charge trans-
port, operation and performance in heterostructure devices. When the diameter of
the nanoparticle becomes less or comparable to the Bohr diameter of the exciton,
several size quantization effects occurs such as localization of electron and hole pair
inside the quantum dot and widening of core band gap relative to bulk value. Strain
shifts of core and shell bandgap energies δEbi

g (εi ) and δEbm
g (εi ) relative to their bulk

values Ebi
g and Ebm

g at T = 0 K are still determined by using the statistical thermo-
dynamic model of semiconductors [102]. The hydrostatic strain shifts in core and
shell bandgaps are written as
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where Pi (εi , T ) = −3Biεi and Pm(T, εm) = −Bεm are hydrostatic pressures acting
on core and shell sides of interface of spherical core/shell heterostructures, respec-
tively. Here εi = εir = εiθ = εiϕ and εm = εmr + εmθ + εmϕ , are strains defined
in Sect. 2.3. agi (agm). is core (shell) bandgap deformation potential, and Bi (Bm) is
bulk modulus of core (shell) region with B

′
i = ∂Bi/∂P and B

′
m = ∂B/∂P . In cylin-

drical core/shell heterostructures, P∗
i (ε∗
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hydrostatic pressures acting on core and shell sides of interfaces, respectively. Here
ε∗
i

= ε∗
ir

= ε∗
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= ε∗
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and ε∗

m
= ε∗

mr
+ ε∗

mθ
+ ε∗

mϕ
, are strains defined in Sect. 2.4.

We first begin with the temperature variation of interface strain acting on core and
shell sides of GaAs/InAs(GaSb) and GaSb/InAs(InSb) NWs respectively, shown in
Fig. 2.17a and b for shell diameter dm = 2di with core diameter di = 3.00 nm. In
all cases, interface strains monotonically increase with temperature. When lattice
mismatch εim and anisotropy ratio mismatch ξim are both large, calculated strain
difference between using isotropic and anisotropic elastic moduli is relatively large.
Strain is tensile on core and shell sides of GaAs/InAs(GaSb) and GaSb/InAs(InSb)
NWs but it is compressive on core side of GaAs/GaSb and GsSb/InSb NWs and on
shell side of GaAs/InAs NWs.

Figure 2.18a and b show the temperature variation of interface strain acting on
core and shell sides of CdSe/ZnS(CdS) and ZnSe/ZnS(CdS) heterostructure QDs
with shell diameter dm = 2di (di = 3.00 nm). Strain is compressive on core side of
CdSe/ZnS(CdS) andZnSe/ZnSQDs and tensile in ZnSe/CdSQDs. Strain on core and

Fig. 2.17 Temperature variation of strain, calculated by using isotropic and anisotropic elastic
moduli, on core side (a) and shell side (b) of interfaces in GaAs/InAs(GaSb) and GaSb/InAs(InSb)
heterostructure core/shell NWs with shell diameter dm = 2di (di = 3.00 nm)
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Fig. 2.18 Temperature variation of strain, calculated by using isotropic and anisotropic elastic
moduli, on core side (a) and shell side (b) of interfaces in CdSe/ZnS(CdS) and ZnSe/ZnS(CdS)
heterostructure QDs with shell diameter dm = 2di (di = 3.00 nm)

shell sides of ZnSe/CdSQD is tensile and compressive below 200 K (tensile between
200 and 600 K), respectively. Strain is compressive on core sides of CdSe/ZnS(CdS)
and ZnSe/ZnS QDs and tensile in ZnSe/CdS QD. Strain on core and shell sides of
ZnSe/CdS QD is tensile and compressive below 200 K, respectively.

Figure 2.19a and b compare the temperature variation of core band gaps of
CdSe/ZnS, CdSe/CdS, ZnSe/ZnS and ZnSe/CdS QDs and valence and conduc-
tion band offsets of ZnSe/ZnS and ZnSe/CdS QDs, respectively. Anisotropic elastic
moduli result in higher band gaps in CdSe/ZnS, and ZnSe/ZnS core/shell QDs for
which both εim and ξim are large. Using anisotropic and isotropic elasticmoduli result
in a similar core band gaps in CdSe/CdS and ZnSe/CdS heterostructures.

Fig. 2.19 Comparison of temperature variation of core bandgaps of CdSe/ZnS, CdSe/CdS,
ZnSe/ZnS and ZnSe/CdS core/shell heterostructure QDs against those of bare CdSe and ZnSe
core QDs for di = 3.0 nm and dm = 2di, respectively (a) and valence and conduction band offsets
in ZnSe/ZnS and ZnSe/CdS core/shell QDs for core (shell) diameter di = 3.0 nm (dm = 2di,)
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Using anisotropic elastic moduli results in larger band offsets than isotropic ones
in the case of ZnSe/ZnS heterostructure, but the shift is small in ZnSe/CdS. Since
valence band deformation potentials of core and shell semiconductors are small,
strain shifts in valence band offsets is small at any temperature. The deformation
potentials of conduction band edges of core and shell components are larger than
those of valence band edges in bothZnSe/ZnS andZnSe/CdSheterostructures. There-
fore, using anisotropic elastic moduli gives larger shifts in conduction band offsets
than isotropic ones in these heterostructures. The conduction band offset is posi-
tive and large below 400 K, negative and small above 400 K, respectively. Valence
band offsets are small and negative, which suggest a Type I interface band alignment
below 400 K and Type II band alignment above 400 K in ZnSe/ZnS and ZnSe/CdS
heterostructure, respectively.

Figure 2.20a and b, respectively, show the effect of increasing core (shell) diameter
on core band gaps of CdSe/ZnS(CdS) and, ZnSe/ZnS(CdS) core/shell heterostruc-
tures with fixed shell (core) diameter at 300 K. In Fig. 1.20a, calculated bandgaps of
bare CdSe and ZnSe core QDs are also given for comparison purpose.

There is a parabolic decrease in core bandgap with core diameter increase with
fixed shell diameter dm = 2di (with di = 3.00 nm). Increasing shell diameter with
fixed core diameter (e.g., di = 3.00 nm) causes parabolic increase in core band
gaps of CdSe/ZnS, CdSe/CdS, and ZnSe/ZnS and decrease in that of ZnSe/CdS,
respectively. Anisotropic elastic moduli causes about 0.10 - 0.20 eV higher bandgaps
than isotropic ones in CdSe/ZnS and ZnSe/ZnS core/shell QD. However, they both
yield nearly same core bandgaps for CdSe/CdS and ZnSe/CdS core/shell QDs.

Core bandgaps of CdSe/ZnS, CdSe/CdS, ZnSe/ZnS and ZnSe/CdS heterostruc-
tures become nearly constant above 7.00 nmcore diameter and above 6.00 nm shell
diameter in all of these heterostructures, indicating that there is difference between
strain effects on band gaps as a function of core and shell diameters. Therefore,
increasing core and shell diameters further above 6.00 nm decreases the degree of

Fig. 2.20 Comparison of core and shell diameter effects on core bandgaps inCdSe/ZnS,CdSe/CdS,
ZnSe/ZnS, and ZnSe/CdS core/shell QDs for shell diameter dm = 2di, with di = 3.0 nm (a) and shell
diameter for core diameter di = 3.0 nm (b) at 300 K
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quantum confinement in these core/shell QDs. If one draws vertical and horizontal
straight lines that are tangent to parabolic curves, intersection pointwill give the upper
limit for strong confinement regime. Beyond the critical thickness that is greater than
twice of Bohr diameter, the exciton is envisioned as a quasiparticle moving around
inside the core region with little energy increase due to confinement. This agrees
with the prediction of Kayanuma [44, 45], who proposed that strong confinement is
not limited to d ≤ a∗

B
, but remains valid up to about d = 2a∗

B
, provided it is defined

by the absence of the substantial electron–hole correlations.
Figure 2.21a–d, respectively, show the effects increasing core (shell) diameter,

with fixed shell (core) diameter, on the valence band offsets and conduction band
offsets in spherical CdSe/ZnS, CdSe/CdS, ZnSe/ZnS, and ZnSe/CdS core/shell QDs.
In CdSe/CdS and ZnSe/CdS heterostructures lattice mismatch and valence band
deformation potentials of core and shell constituents are small and both isotropic
and anisotropic elastic moduli result in similar and negligible strain shifts in valence
band offsets for core and shell diameters. However, in CdSe/ZnS and ZnSe/ZnS

Fig. 2.21 Comparison of core and shell diameter effects on valence band offsets (a, b) and conduc-
tion band offsets (c, d) of CdSe/ZnS, CdSe/CdS, ZnSe/ZnS, and ZnSe/CdS core/shell QDs for shell
diameter dm = 2di (a, d) and core diameter di = 3 nm (b, c) at 300 K, respectively
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heterostructures, lattice mismatch is large and still valence band deformation poten-
tials of core and shell are small using anisotropic elasticmoduli result in valence band
offsets of the order of 0.10–0.20 eV larger than those by using isotropic ones for core
and shell diameter below 6.00 nm.Valence band offsets are small but not negative,
which suggest that CdSe/ZnS and ZnSe/ZnS heterostructure may have Type I (Type
II) band alignment if conduction band offset is positive (negative).

Increasing the core (shell) diameter with fixed shell (core) diameter causes large
parabolic increase (decrease) in conduction band offset at interfaces of CdSe/ZnS,
CdSe/CdS andZnSe/ZnS heterostructures. However, increasing core (shell) diameter
with fixed shell (core) diameter causes small parabolic increase in conduction band
offset at interface of ZnSe/CdS heterostructure. Since conduction band deformation
potentials of constituents are larger than those of valence bands, hydrostatic strain
causes significant shifts in conduction band offsets than in valence band offsets.
Using anisotropic elastic moduli results in about 0.10–0.20 eV higher strain shift
in conduction band offsets than isotropic ones in case of CdSe/ZnS and ZnSe/ZnS
heterostructure.

Semiconductor alloys based on the group IV–VI, III–V and II–VI compounds
are important in fabricating low dimensional bipolar and unipolar heterostructure
devices since their structural and electronic properties (e.g., lattice constants and
bandgaps) can be tailored independently. Therefore, reliable and accurate determi-
nation of composition variation of lattice constant and bandgap energies are very
important. In the theoretical determination of composition effects on the structural
properties such as lattice constants, a virtual crystal approximation (VCA) is often
used [16, 17] in which the compositional disorder effect is neglected. Since in VCA
the alloy potential is taken as the concentration weighted average of the constituent
potentials the bandgap energy is linear function of alloy composition. However,
many experimental studies report that the bandgap energies of semiconductor alloys
is nonlinear function of composition. Furthermore, it is believed that the compo-
sitional disorder, which is related to the differences of electronegativity of atoms
forming a ternary semiconductor, plays a major role in determining its bowing of
the bandgap energy when lattice mismatch induced strain plays a crucial role in
heterostructure electronic properties.

In our recent studies [95, 96] the effects of composition and strain on the electronic
properties of semiconductor alloy constituents in heterostructures are implemented
in the semiempirical tight binding models and first principles DFT with MBJLDA
functional in terms of host bond length and distorted bond length by the substitutional
impurity without any adjustable parameter. The MVCA allows one to accurately
considers the effect of disorder-induced nonlinear variation of the lattice constant
on the structural parameters used in the semiempirical tight binding models and first
principles DFT with MBJLDA functional calculating the band structure properties.

As an alternative method for calculating composition effects on the energy band
structure is to use the thermodynamic approach [102]. One first calculates the valence
band energy Ev(x) of Ax B1−xC ternary alloy by writing the bond length and valence
band energies according to the modified Vegard’s rule described by (2.9) and (2.11),
respectively. The bandgap energies at high symmetry points k = (2 π /a)(0; 0; 0) and
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k= (2 π /a)(1; 0; 0) can be obtained by combining the Vegard’s rule and Kane’s three
band k.p approximation at symmetry points one writes [102]:
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where mnA�(x) and mnB�(x) are the electron effective masses at �1C conduction
band valley and mntL A and mntLB are the transverse electron effective masses
at L conduction valley of binaries AC and BC. P�(x) = x PA� + (1 − x)PB�

and PL(x) = x PLA + (1 − x)PLB are the momentum matrix elements �(x) =
x�A + (1 − x)�B and �L(x) = x�L A + (1 − x)�LB are the spin–orbit energies.
PA�, Pb�, PAL and PBL of binaries AC and BC are obtained from (2.71) and (2.72)
with measuredmn(x),mntL(x),�(x) and�L(x) for x= 0 and 1. Inverting (2.71) and
(2.72) one obtains quadratic equations for bandgaps Eg�(x) and EgL(x) and solving
the resultant equations yields

Eg�(x) = 3y−1
� (x) − �(x)

2
+ 1

2

[
(�(x) − 3y−1

� (x))2 + 8�(x)y−1
� (x)

]1/2
(2.73)

EgL(x) = 2y−1
� (x) − �1(x)

2
+ 1

2

[
(�1(x) − 2y−1

� (x))2 + 4�1(x)y
−1
� (x)

]1/2

(2.74)

y�(x) = 3(1 − mn�(x))/mn�(x)P2
�(x) ; yL(x) = (1 − mnt�(x))/mnt�(x)P2

L (x)

The indirect gap EgX (x) of Ax B1−xC ternary is determined from the following
expression

EgX (x) = Eg�(x) + [EgX A − Eg�A]x + [EgXB − Eg�B](1 − x) (2.75)

EgX A, EgXB,Eg�A, and Eg�B are the indirect bandgaps of AC and BC binary
compound constituents.

If one of the constituents of spherical core/shell QD is a ternary semiconductor
alloy (e.g., CdSe/CdZnS, ZnSe/ZnCdS), alloy composition of ternary shell can
also influence interface strain and in turn core bandgap of spherical binary/ternary
core/shell QDs and can be calculated in the framework of modified virtual crystal
approximation [97, 98]. Figure 2.22 shows the predicted and measured [107, 108]
composition variation of core bandgap energy and conduction and valence band
offsets in ZnSe/CdZnS and CdSe/CdZnS core/shell heterostructures. As can be
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Fig. 2.22 Comparison of using isotropic and anisotropic elastic moduli in calculating the shell
region composition effects on core bandgap core and on valence and conduction band offsets at
interface of ZnSe/CdZnS and CdSe/CdZnS core/shell heterostructures

seen there is some difference between the use of isotropic and anisotropic elastic
anisotropy ratio.

2.9 Comparison of Measured and Predicted Core Bandgaps

When the diameter of the nanoparticle becomes less or comparable to the Bohr
diameter of the exciton, quantization effects such as localization of electron and
hole pair inside the quantum dot and widening of core bandgap relative to bulk
value, will take place. Changes in bandgaps of bare core and core/shell quantum
dots are experimentally observed by the conventional UV–Vis optical absorption
spectroscopy, in which a blue shift is observed with decreasing diameter, as first
absorption peak energy.

Enc
g = hc/λmax, (2.76)

where h is Planck constant, c is speed of light, and λmax is maximum wavelength
of first exciton peak. Brus [38] has developed a theory to explain the spectral shift
and calculate core bandgap with a parabolic two band effective band approximation.
Figure 2.23a and b compare calculated and UV-absorption measured [109] core band
of CdSe/ZnS core/shell QD, against calculated core band gap of bare CdSe QD, as
a function of temperature for core diameters: 1.90 and 2.40 nm (Fig. 1.20a) and for
3.60 and 5.20 nm (Fig. 1.23b) with shell diameter dm = 2di, respectively.

Since core bandgap shift due to electron–phonon interactions and carrier confine-
ment effects are equal in both bare CdSe core and CdSe/ZnS core/shell QDs, the
difference between calculated core band gaps of both QDs is due to hydrostatic strain



108 H. Ünlü

Fig. 2.23 Comparison of UV-absorption measured and calculated (with isotropic and anisotropic
elastic moduli) core bandgap in CdSe/ZnS core/shell QD against calculated band gap of bare CdSe
QD as a function of temperature for core diameters di = 1.90 nm and 2.40 nm (Fig. 10a) and di =
3.60 nm and 5.20 nm (Fig. 10b) with shell diameter dm = 2di

in core region of latter. Since anisotropic elastic moduli results in larger compressive
elastic strain than isotropic ones on core side, it results in about 0.10 eV higher core
band gap when compared with experimental data.

Calculated and measured core band gaps are also compared in Table 2.5 against
the calculated bandgap of bare CdSe coreQD for core diameters di (nm)= 2.40, 3.00,
3.40, and 4.40, respectively, at 300 K. In addition to Fig. 2.23a and b, Table 2.5 also
demonstrates that one achieves better agreement with experimental and predicted
core band gaps of core/shell QD if one uses isotropic elastic moduli than anisotropic
ones in band gap calculations.

Excellent agreement between model predictions and experimental data shown in
Fig. 2.23a and b and Table 2.5 for core band gaps of CdSe/ZnS QDs suggests that,
despite the common view, the parabolic two band effective mass approximation can
explain the common expected results such as core band gap and quantum confine-
ment for QDs with very small sizes (i.e., less than 5.00 nm), provided interface
strain effects are properly formulated. We conclude that provided strain effects are
properly formulated, EMA is still a useful tool to quantitatively explain the quantum
confinement and core bandgap variation with diameters less than 5.0 nm.

Table 2.5 Comparison of measured and calculated core band gap (eV) of CdSe/ZnS QD relative
to that of bare CdSe core QD for di = 2.40 nm, 3.00, 3.40 and 4.40 nm with dm = 2di at 300 K

Core diameter CdSe/ZnS QD
Measured bandgap

CdSe/ZnS QD
Isotropic

CdSe/ZnS QD
Anisotropic

CdSe QD
Isotropic/Anisotropic

di = 2.40 2.3664 [109] 2.3607 2.4696 2.0771

di = 3.00 2.2024 [109] 2.2099 2.3188 1.9263

di = 3.40 2.1232 [109] 2.1505 2.2595 1.8669

di = 4.40 2.0666 [109] 2.0664 2.1754 1.7828
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In order to make a concluding remark about the reliability and accuracy of the
proposed model for core band gaps of core/shell heterostrucure QDs with Type II
band alignment (Fig. 2.2a and b), core bandgaps calculated from (2.63a) and (2.63b)
are also compared against experimental data for CdSe/ZnS, CdSe/CdS, ZnSe/ZnS,
and ZnSe/CdS core/shell QDs [107, 108]. In doing so, valence band offsets are first
determined from (2.62) with bulk valence band widths that are calculated by using
density functional theory based onmodified Becke–Johnson exchange potential with
local density approximation (mBJLDA) [95].

In second step, using these theoretical band offsets, core band gaps of core/shell
heterostructure QDs are calculated from (2.64a) and (2.64b) by using isotropic
and anisotropic elastic moduli. Table 2.6 compares calculated and measured core
bandgaps of CdSe/ZnS, CdSe/CdS, ZnSe/ZnS, and ZnSe/CdS core/shell heterostruc-
ture QDs with shell diameters dm = 1.5di and dm = 2di for fixed core diameter di =
3.00 nm at 300 K. As can be seen from comparison in Table 2.6, there is excellent
agreement between measured and predicted core bandgaps for almost all core/shell
heterostructure QDs discussed in this work. The difference between core band gaps
predicted by using isotropic and anisotropic elastic moduli can be explained with a
close inspection of (2.59a) and (2.59b), which suggest that valence and conduction
band offsets play decisive role in determining core band gaps of core/shell QDs with
Type II interface band alignment (Table 2.7).

Since band offsets used in (2.59a) and (2.59b) to predict core band gaps of
core/shell QDS with Type II heterointerface alignment are theoretically determined,
they can be parameter dependent. For example, in calculating core bandgaps and
band offsets, we assumed that strain does not have much influence on electron and
hole effective masses and optical dielectric constant of core region. Therefore, we
used their bulk values in band offset and bandgap calculations. However, there can
be strain effects on electron and hole effective masses through band gap energy
according to following expression due to eight band k.p approximation [85]

m∗
n = mo/

[

(1 + 2F) +
(
Ebi
g (εi ) + 2�i/3

)
EP

Ebi
g (εi )

(
Ebi
g (εi ) + �i

)

]

, F = 1
m0

∑

r

|〈S|px |ur 〉
Ec − Er

(2.77)

where Ebi
g (εi ) is strain dependent core bandgap, �i is the spin–orbit coupling, EP is

Kane’s matrix element, and F is the Kane parameter for the effects of higher conduc-
tion band levels. Detailed theoretical studies [85] suggest that the difference between
eight band k.p approximation calculations and experimental values of electron mass
is about 10–20%.
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Table 2.7 Comparison of calculated and extracted valence band offsets in ZnSe/ZnS andZnSe/CdS
heterostructure core/shell QDs with Type II interface band alignment (with dm = 2di)

Nanostructure Calculated (Extracted) valence band offsets (eV)

Type II
Core/shell QD

Calculated
(Extracted)

di = 3.0 nm
(Isotropic)

di = 3.0 nm
(Anisotropic)

di = 4.0 nm
(Isotropic)

di = 4.0 nm
(Anisotropic)

ZnSe/ZnS mBJLDA
(EMA)

0.1563
(0.0408)

0.1695
(0.1799)

0.1563
(–0.0479)

0.1695
(0.0911)

ZnSe/CdS mBJLDA
(EMA)

– 0.0133
(0.0235)

– 0.0181
(–0.0025)

– 0.0133
(–0.0653)

– 0.0181
(–0.0913)

2.9.1 Comparison of Predicted and Extracted Band Offsets

The qualitative understanding of elastic strain effects on core band gaps are described
by (2.33), (2.54) and on band offsets are described by (2.57) and (2.58) in spherical
core/shell heterostructure QDs with Type II interface band alignment, respectively.
Using calculated valence band widths due to density functional theory based on
mBJLDA [96] and other material parameters [25] given in Table 1.2 and lattice,
thermal, and anisotropy mismatches given in Table 1.3, hydrostatic strain effects on
band offsets of ZnSe/ZnS and ZnSe/CdS core/shell heterostructure QDs with Type
II band alignment are calculated from (2.63a) and (2.63b) for core (shell) diameter
di = 3.00 (dm = 6.00 nm) and 4.00 nm (dm = 8.00 nm). The calculated and extracted
valence band offsets are compared in Table 1.7 for 3.00 and 4.00 nmcore diameters.
Comparison in Table 1.7 suggests that using isotropic and anisotropic elastic moduli
give positive and negative values for valence band offsets in ZnSe/ZnS and ZnSe/CdS
heterostructures, respectively. On the other hand, using isotropic elastic moduli,
(2.65a) gives positive values for 3.00 nm and negative values for 4.00 nm, and they
are small for these heterostructures. With anisotropic elastic moduli, (2.65a) gives
similar results. Since valence band edge deformation potentials of constituents are
small, difference between calculated and extracted valence band offsets is about few
meV. Using isotropic and anisotropic elastic moduli do not have significant effect
on strain shift in valence band offsets. Considering the uncertainties used as input
parameters, there is good agreement between predicted and extracted valence band
offsets in Type II core/shell heterostructures.

We should point out that in calculating core bandgaps and band offsets in the
framework of parabolic two band k.p approximation, we assumed that elastic strain
effect on electron and hole effective masses is negligible. However, more realistic
calculation of strain effects on electronic properties such as core band gaps and
band offsets of core/shell QDs with Type I and Type II heterointerface band align-
ment would require replacing the parabolic two band effective mass approximation
with a more comprehensive eight band k.p approximation [85–88], in which higher
conduction band energy levels and degeneracy of valence band energy levels must
be considered.
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2.9.2 Conclusions and Suggestions

Using the conventional stress–strain relations for thermo-elastic bodies, coupledwith
latticemismatch induced discontinuity in elastic strain at core/shell heterointerface so
called shrink fit condition, analytical expressions are derived for elastic strain acting
on core and shell sides of heterointerfaces and its effects on core bandgaps and band
offsets in type I and type II spherical core/shell heterostructure QDs as a function of
core and shell diameters at any temperature. Since potential barrier in the conduction
band and the potential step in the valence band at the interface significantly influence
carrier transport and device performance, reliable and accurate modeling of interface
strain effects on band structure across the nanoscale core/shell heterointerface is
crucial for the designing the functionality of spherical core/shell heterostructure QDs
and their optimization for maximum performance in nanoscale electronic and optical
devices. In achieving that goal, we found that the strain modified parabolic two band
effective mass approximation can be used to determine valence and conduction band
offsets in Type II core/shell QDs provided core band gaps are experimentally known.
Furthermore, we also found that the anisotropic elastic moduli can play important
role in determining band offsets and core band gaps and core and shell morphologies
in spherical core/shell QDs when lattice mismatch is large.

We can conclude that if both conduction and valence band offsets are positive,
core/shell QD has a Type I interface band alignment. When valence and conduction
band offsets are both negative, core/shell QD has inverted Type I interface band align-
ment. When both band offsets are negative and positive, core/shell QD has first kind
ofType II interface band alignmentNegative valence band offset and positive conduc-
tion band offset imply second kind of Type II interface band alignment. Furthermore,
we show that core and shell diameters can play important role in determining core and
shell morphologies of spherical core/shell QDs. Excellent agreement found between
model predictions and measured core bandgaps and extracted band offsets suggests
that proposed model can be a good predictive process design and simulation tool for
spherical core/shell heterostructure QDs for high temperature electronic and optical
device applications.
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17. O.I. Mićić, K.M. Jones, A. Cahill, A.J. Nozik, J. Phys. Chem. B 102, 9791 (1998)
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Chapter 3
Synthesis, Characterization
and Modelling of Colloidal Quantum
Dots

Md. Rezaul Karim, Mesut Balaban, Hakan Aydın, Hilmi Ünlü,
and M. Hikmet Yükselici

Abstract Colloidal semiconductor nanocrystals with their diameters range between
2–10 nmhave received great theoretical and experimental interest for both optical and
electronical applications such as solar cells, light emitting diodes (LEDs), lasers and
fluorescence imaging over the last few decades due to their size dependent optical,
physical and chemical properties. In this chapter, we present a review about the exper-
imental and theoretical study about strain effects on core band gap and diameter of
spherical bare CdSe core and CdSe/ZnS core/shell quantum dots (QDs) synthesized
by using colloidal technique at varying temperatures. We will discuss the results of
the structural, optical and dielectric characterizations. High resolution transmission
electron microscopy (HRTEM) and x-ray diffraction (XRD) characterizations indi-
cate that CdSe andCdSe/ZnSQDs have average particle sizes about 3.50 nm and 4.84
nm, respectively. Ultraviolet visible (UV–Vis) absorption and fluorescence emission
spectroscopy measurements of first optical peak energies show that the compressive
strain causes an increase (decrease) in the core band gap (diameter) of spherical
CdSe/ZnS core/shell QDs at any temperature. Elastic strain modified effective mass
approximation (EMA) predicts that there is a parabolic decrease (increase) in the
core bandgap (diameter) of QDs with temperature. The diameter of spherical bare
CdSe core and CdSe/ZnS core/shell QDs calculated by using strain modified EMA,
with core bandgap extracted from absorption spectra are in excellent agreement with
HRTEM data.
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3.1 Introduction

Colloidal semiconductor nanocrystals, also known as quantum dots (QDs), with their
diameters range between 2–10 nm have gained remarkable interest for both optical
and electronical applications such as solar cells [1–4], light emitting diodes (LEDs)
[5–7], lasers [8, 9], fluorescence imaging and for fundamental studies [10–15] over
the last fewdecades because of their size-dependent physical and chemical properties.
These small-sized nanostructures have a large surface-to-volume ratio and constitute
a class of materials intermediate between molecular and bulk forms of matter. QDs
can be synthesized in core or core–shell forms due to interest and generally are made
from III–V and II–VI compounds family of semiconductors in the periodic table.
CdSe core and CdSe/ZnS(CdS) core/shell nanocrystals, with a direct band gap, are
among the mostly investigated nanocrystals due to their bright luminescence in the
visible range of optical spectrum with varying particle size.

Advances in the synthesis and fabrication of materials with dimensions
approaching size of an atom have made it possible to control and manipulate the
degrees of freedom of charge carriers to produce charge confinement in nanoscale
structures such as one-dimensional nanowires (NWs) and zero-dimensional quantum
dots (QDs). Because of the strong confinement imposed in all three spatial directions,
QDs behave similarly to atoms. Due to similar diameters of NCs that in the scale of de
Broglie wavelength or Bohr exciton radius, size quantization effect is observed. The
conduction band or valence band energy levels are split into so called “sub-bands”
or discrete energy levels depending on the dimensionality of the confined structure.
As the size of nanocrystals gets smaller, the effective band gap and energy amount
to be excited increase whereas the emission wavelength decreases.

When CdSe and ZnS are brought in contact to form a heterostructure CdSe/ZnS
core/shell QD by using a crystal growth technique, conduction and valence band
edges of core and shell regions are aligned in a way that an electron–hole pair excited
near heterointerface (Type I structure) tend to localize in the core region. The exciton
energy in Type I core/shell QDs is the result of direct exciton transition inside the core
region (e.g., CdSe/ZnS and CdSe/CdS QDs). When electrons and holes are spatially
separated between core and shell, it is said that the QD exhibits type-II confinement
(e.g., CdSe/CdTe QDs). Figure 3.1 shows the schematic cross-sectional view and
band diagram of a spherical heterostructure. The difference in band gaps of CdSe
and ZnS is accommodated by the spike �Ec in conduction band and potential step
�Ev in valence band at heterointerface, causing the electron and hole confinement
in the CdSe core region.

Once an electron–hole pair is created by the absorption of a photon, they interact
with each other by means of their opposite charges, forming a quasi-particle called
“exciton”. The total energy of an exciton indicates the color (wavelength) of the
light emitted by the quantum systems at nanoscale. The dispersion or energy versus
momentum (which is proportional to the wave vector k) curves are parabolic just as
for classical free particles with some modifications.
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Fig. 3.1 Schematic
cross-sectional view (a) and
band diagram (b) of
pseudomorphic CdSe/ZnS
heterostructure core/shell
quantum dot

As a nanoscale heterostructure core/shell QD is formed between two semiconduc-
tors with different lattice constants and thermal expansion coefficients, elastic strain
develops across heterointerface. Elastic strain can modify the structural, electronic,
optical and dielectric properties of constituent semiconductors in a way that is not
seen in two-dimensional quantum wells and super lattices. If core lattice constant
is greater than shell lattice constant, core (shell) region will be under compressive
(tensile) elastic strain, resulting in increase (decrease) in core (shell) band gap energy
and decrease (increase) in diameter. Reliable and precise determination of magnitude
of interface strain effects on structural and electronic properties of core/shell QDs
become important in determining their tunable properties such as core bandgap and
diameter, which are essential for predicting their potential as electronic and optical
devices.

In this chapter, it is aimed to discuss the structural and optical characterizations
and parabolic two band k.p effective mass approximation modelling of the elastic
strain effects on the bandgap anddiameter of bothCdSe core andCdSe/ZnS core/shell
nanocrystals that are prepared at relatively low temperatures and characterizing them
by altering the temperature, time and initial Cd:Se precursor ratios. The bare CdSe
core and CdSe/ZnS core/shell QDs are synthesized by using colloidal technique at
low temperatures and characterized by using x-ray diffraction (XRD), high resolution
transmission electron microscopy (HRTEM), UV–Vis. absorption, and fluorescence
emission techniques, respectively. Colloidal synthesis of CdSe core and CdSe/ZnS
core/shell QDs is summarized in Sect. 3.2. The results of HRTEM and XRD char-
acterization of size of QDs will be discussed in Sects. 3.3 and 3.4, respectively. The
optical UV–Vis absorption and fluorescence emission spectral analysis and dielectric
properties of QDs will be presented in Sects. 3.5 and 3.6, respectively. In Sects. 3.7,
3.8 and 3.9 we will discuss the effects of initial Cd:Se precursor ratios and temper-
ature on the nanocrystal formation, emission quality and stability of nanocrystals.
In Sect. 3.10 we will discuss the core diameter of QDs calculated by using strain
modified two band effective mass approximation, with core bandgap extracted from
UV–Vis absorption spectra, will be compared with results of HRTEM analysis.
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3.2 Synthesis of CdSe Core and CdSe/ZnS Core/Shell QDs

Owing to the increasingdemands for highquality (mono-dispersity, high crystallinity,
narrow emission spectrum and high quantum yield) nanocrystals (NCs) it is impor-
tant to develop low-cost, green and mass producible synthesis routes. Nanocrystals
synthesized by a chemical route allow us to control their sizes and distribution.
Altering the concentrations of reactants or changing the processing times at different
temperatures of production may result in various properties of colloidal NCs [16].

3.2.1 Synthesis of CdSe Core QDs

In the preparation of synthesis of CdSe core NCs, the method developed by He and
Gu [17] has been modified to use in our Nanostructure Semiconductor Research
Laboratory (NANOSEMLAB). Layout of synthesis can be seen in Fig. 3.2.

The procedure summary is given in Fig. 3.3. At first, cadmium acetate and oleic
acid have been dissolvedwith diphenyl ether in three neck flask. The reactionmixture
has been heated 140 °C under stirring and continuous argon flow. When temperature
raised to 140 °C, we waited for one hour. Then the mixture was cooled to 70 °C.

Fig. 3.2 Layout of synthesis of CdSe core and CdSe/ZnS core/shell nanocrystals
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Fig. 3.3 Block diagram for the synthesis of CdSe nanocrystals

After then trioctylphosphine-selenide (TOPSe) solution having 200 °C temperature
under the vacuum has been added to mixture and heated to 110–180 °C. Samples
have been taken to tubes for 1, 5, 10, 15 and 20 min. After samples cooling to room
temperature, the crude solution has washed with methanol and isolated by centrifu-
gation to remove excess insoluble organics and salts that may have formed during the
reaction. A precipitation using hexane as the solvents andmethanol as the nonsolvent
is repeated three times to narrow the size distribution and remove excess organics.
After fine isolation of growthCdSe, the precipitation has beendissolvedwith different
volume of hexane. The reaction was monitored with Shimadzu UV-3600 UV-VIS-
NIR Spectrophotometer with aliquots taken at different time and temperature. The
UV-3600 is equipped with three detectors: a photomultiplier tube (PMT) for the
UV-Vis region, and InGaAs and PbS detectors for the NIR region. The three detec-
tors ensure high sensitivity over the entire measurement range and help achieve the
world’s lowest noise level with <0.00003 Abs noise at 1500 nm. A high-performance
double monochromator ensures ultra-low stray light (0.00005% or less at 340 nm) at
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Fig. 3.4 CdSe core QDs synthesized at 160 °C with Cd:Se ratio of 1:10 are shown under ambient
light

high resolution. Measurement range varies from 185 to 3300 nm, enabling analysis
in a wide variety of applications.

In order to investigate the effect of temperature, time and initial ratio of the
precursors on nucleation and growth kinetics; different combinations can be tried
for synthesis of CdSe core QDs. Size quantization effect is evident in Fig. 3.4. Color
transition from light yellow to red indicates the growth of NCs, thus resulting as
decrease in the optical absorption band gap.

3.2.2 Growth of ZnS Shells on CdSe Core

The CdSe/ZnS nanocrystals have been synthesized by using modifications of Zhu
et al. [18]. The summary of the procedure is given in Fig. 3.5.

Typically, the resulting core solution, Zn (OAc)2 · 2H2O (0.085 mmol) and S
powder (0.085 mmol) were mixed in the reaction vessel. The reaction volume was
adjusted to 15 mL by adding paraffin liquid. Next, with stirring, the mixture was
degassed at 80 °C for 20 min. Afterward, temperature was set to 160–170 °C for the
shell growth under N2 atmosphere. To monitor the reaction, aliquots were taken at
different times. The reaction mixture was cooled to room temperature after 50 min.
To grow shell ZnS with different thicknesses around a CdSe core, a seeding-growth
technique [11] was applied. After samples cooling to room temperature, crude solu-
tion has washed with methanol and isolated by centrifugation to remove excess
insoluble organics and salts that may have formed during the reaction. The reaction
was monitored with Shimadzu UV–Vis NIR absorption spectrometer with aliquots
taken at different time and temperature.
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Fig. 3.5 Block diagram for the synthesis of CdSe/ZnS core/shell nanocrystals

3.3 HRTEM Characterization

The structural properties of the synthesized bare CdSe core and CdSe/ZnS core/shell
nanocrystals were characterized by using high resolution transmission electron
microscopy (HRTEM) with at an acceleration voltage of 200 kV. A drop of dispersed
nanocrystals diluted in n-hexane dropped over an amorphous carbon substrate
supported on a copper grid of 400 mesh for taking images. Figures 3.6a, b show
the HRTEM images of bare CdSe core NCs synthesized at 160 °C for 1 and 20 min
of reaction time, respectively. Figure 3.6c, d show the HRTEM images of CdSe/ZnS
core/shell NCs synthesized at 160 °C and 170 °C for 20 min of reaction time, respec-
tively. HRTEM images shown in Fig. 3.6 indicate that both the bare CdSe core
and CdSe/ZnS core/Shell NCs are uniform in size and shape. The nanocrystal size
becomes larger as reaction time is increased. We estimate the average diameters of
bare CdSe core and CdSe/ZnS core/shell NCs are 3.50 nm and 4.84 nm, respectively.

One can estimate thickness of ZnS shell by subtracting size of bare CdSe core
from that of CdSe/ZnS core/shell QD. However, since changes in core size during
shell deposition is inevitable due to strain across core/shell interface, TEM images
after the shell deposition may not be a reliable reference to estimate the exact core
size.
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Fig. 3.6 HRTEM images of bare CdSe core QD synthesized at 160 °C for 1 min. (a) and 20 min.
(b) reaction times, and of CdSe/ZnS core/shell QD synthesized at 160 °C (c) and 170 °C (d) for
20 min. reaction time, respectively

3.4 XRD Characterization

X-ray diffraction technique is commonly used for determining the mean size of
single crystal nanoparticles. X’Pert3 MRD (XL) X-ray diffractometer operating at
45 kV/40 mA using Copper Kα line (λ = 1.5406 Å) was used in the structural
characterization of bare CdSe core and CdSe/ZnS core/shell nanocrystals. Purifi-
cation of NCs in paraffin had to be ensured for a good quality diffraction pattern.
As an amorphous phased material, paraffin drastically effects diffraction pattern of
produced nanocrystals with size varying between 3.00 and 5.00 nm. Figure 3.7 shows
the comparison of XRD patterns of bare CdSe core quantum dots prepared at 170 °C
and 190 °C, respectively.

The XRD spectra for two samples (synthesized at 170 °C for 2 min and at
190 °C for 15 min were fitted by a Gausian profile for each peak and a quadratic
function for the background. The strong peaks at around 2θhkl = 250 and at
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Fig. 3.7 The XRD patterns of bare CdSe core nanocrystals prepared at 170 °C for 2 min. and at
190 °C for 15 min, respectively

between 42–43° are consistent with (002) and (110) planes of CdSe hexagonal
crystal structure, respectively, showing the characteristics features of hexagonal
crystalline structure according to JCPDS (Joint Committee on Powder Diffraction
Standards) data base (file No. 77–2100). The strain is calculated using the rela-
tion ε = −(dnc

hkl
− dbulk

hkl )/dbulk
hkl and Bragg law for hexagonal structure. We find

dbulk
002 = c/ l = 7.0109/2 = 3.50545A, dnc

002 = 3.5556A, ε = −1.335 × 10−2 for
sample #2 prepared at 170 °C for 2 min and dnc

002 = 3.05079 with ε = −6.39× 10−4

for sample #3 prepared at 190 °C for 15 min, respectively (Table 3.1).
Figure 3.8. compares XRD patterns of uncapped CdSe core and capped with ZnS

shell (CdSe/ZnS core/shell), respectively. The XRD pattern of bare CdSe core NCs
exhibits broad peaks at 2θ values of 25˚ related to (111), 42˚ to (220) and 48˚ to
(311) crystalline plane for low temperature synthesized zinc-blende CdSe JCPDS
data base (file No. 77–2100). There is a slight shift in the XRD pattern after capping
CdSe core with ZnS shell to form CdSe/ZnS core/shell NC. The broad nature of the
peaks suggests nanocrystalline particles.

Here, we point out that there is no drastic change in the diffraction patterns of
CdSe/ZnS core/shell NCs relative to that of bare CdSe core NCs. This is because

Table 3.1 XRD plane assignments for core CdSe QDs

Sample 145 °C for 15 min 170 °C for 2 min 190 °C for 15 min

Assignment 2θhkl �(2θhkl)size 2θhkl �(2θhkl)size 2θhkl �(2θhkl)size

(002) – – 25.0479 2.4618 25.3714 1.7702

(110) – – 42.6989 4.766 42.5080 2.3819
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Fig. 3.8 The XRD pattern of bare CdSe core and CdSe/ZnS core/shell nanocrystals

the thickness of ZnS shell layer is very small (about one monolayer). Although
during purification almost all of paraffin was extracted from aliquots, paraffin as
an amorphous element suppresses peaks in the XRD pattern. The XRD patterns in
Fig. 3.8 provide strong evidence that the nanocrystals prepared at considerably low
temperatures have a zinc-blende (ZB) crystal structure. No reflection pattern from
wurtzite lattice structure (102) at 2θ ≈ 35◦ and (103) at 2θ ≈ 46◦) is found in
the XRD pattern of our nanocrystals, which is considered as a further evidence that
both bare CdSe core and CdSe/ZnS core/shell nanocrystals have zinc-blende crystal
structure. Table 3.2 gives the detailed analysis of the XRD spectra of CdSe/ZnS
core/shell QDs and CdSe QD.

Diameter of uncapped (bare core) and capped (core/shell) nanocrystals and elastic
strain can be estimated by using so called Williamson-Hall (W–H) analysis of XRD
profile, which supposes that particle diameter (d) and strain (ε) contribute to the line
broadening and defined as

Table 3.2 Details of W–H parameters for bare CdSe core and CdSe/ZnS core/shell QDs

QD 2θ 2θ (rad) FWHM FWHM (rad) ßcosθ sinθ

CdSe/ZnS 24.737 0.4315 3.500 0.061 0.059 0.214

41.4811 0.723 3.418 0.059 0.055 0.353

49.203 0.858 3.439 0.06 0.054 0.416

CdSe 24.261 0.423 8.353 0.145 0.132 −0.422
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β cos θ

Kλ
= 1

d
+ 4ε

sin θ

Kλ
(3.1)

where d is the coherent scattering length (nanocrystal size); K is a constant whose
value is often taken as 0.9; and ε internal strain in percent (%). β is the integral
width of the sample (in rad) calculated in the first step as full width at half-maximum
(FWHM) by the Gaussian fitting. A plot is drawn with sin θ along x-axis and β cos θ

along y-axis for as-prepared CdSe/ZnS core/shell nanocrystal, as shown in Fig. 3.9.
From the linear fit to the data in Table 3.2, strain from the slope of the fit is about
−2.56% and using (3.1) we find diameter of CdSe/ZnS core/shell QD to be about
4.67 nm.

The estimated nanocrystal size is about 4.30 nm. The magnitude of the estimated
compressive strain in the CdSe core of CdSe/ZnS core/shell nanocrystal is about –
2.56%. Furthermore, (3.1) suggests that CdSe core region of the CdSe/ZnS core/shell
nanoscale heterostructure is under compressive strain with amagnitude of 3.95% due
to the 12% lattice mismatch at the CdSe/ZnS interface, which is in good agreement
with the strain estimated from the XRD measurement. Equation (3.1) can also be
used to determine core size from XRD data provided interface strain is theoretically
known. Rewriting (3.1) for core diameter one finds the following relation

d = kλ

β cos θ − 4ε sin θ
(3.2)

The magnitude of compressive strain in CdSe core of CdSe/ZnS core/shell
quantum dots estimated from W–H analysis is about 2.56% although the lattice

Fig. 3.9 WH plot of XRD pattern of CdSe/ZnS core/shell nanocrystal
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mismatch betweenCdSe core andZnS shell is about�a/a = (ai−am)/am = 12.3%.
This result is confirmed with the recent theoretical strain model [19] which considers
total strain across core/shell heterointerface as sumof the thermal strain and the elastic
strain produced by the resistance of the medium to thermal expansion, and modifies
the Eshelby’s inclusion strain in spherical heterostructure core/shell quantum dot as

εi = ai (εi ) − ai
ai

= −2Em(1 − 2νi )[εim(T ) + (αi − αm)T ]
Ei (1 + νm) + 2Em(1 − 2νi )

+ αi (T )T (3.3)

where εim = (ai (T )−am(T ))/am(T ) is the temperature dependent lattice mismatch
with ai (T ) = ai (1+αi�T ) and am(T ) = am(1+αm�T ). Here ai and am are lattice
constants and αi and αm are the linear thermal expansion coefficients of core and
shell at room temperature. εth = (αi − αm)�T is so called the thermal strain, due
to the difference between αi and αm of core and shell. Ei (Em) is Young’s modulus
and νi (vm) is Poisson’s ratio of core (shell) semiconductor in bulk form, defined as
E = (C11 − C12)(C11 + 2C12)/(C11 + C12) and ν = C12/(C11 + C12), where C11

and C12 are elastic stiffness constants.
Since linear thermal expansion coefficients of CdSe and ZnS are close to each

other, and in colloidal synthesis difference between growth temperature and room
temperature is not very high so that thermal strain contribution in (3.3) can be
neglected. Using elastic constants C11 = 10.2, 6.67 GPa and C12 = 6.46, 4.63 GPa,
linear thermal expansion coefficients αi = 7.30× 10−6K−1, αm = 4.05× 10−6K−1

and lattice constants 0.607 and 0.41 nm for ZnS and CdSe (3.3) gives εi = −3.65%
interface strain atCdSe/ZnSheterointerface,which is opposite and smaller that lattice
mismatch �a/a = (ai − am)/am = 12.3%. Substituting εi = −3.65% in (3.1) with
K = 0.25, one obtains d = 4.26 nm for core diameter of CdSe/ZnS heterostruc-
ture core/shell QD. This is in excellent agreement with core diameter obtained from
HRTEM analysis discussed in Sect. 3.3.

3.5 Optical Absorption and Emission Characteristics

3.5.1 UV–Vis Characterization

Colloidal semiconductor QDsmade from II-VI and III-V groups of the periodic table
are found such a new class of fluorescent labels that is frequently employed in fluo-
rescence imaging [20, 21]. Shimadzu UV-3600 UV–VIS-NIR Spectrophotometer is
used to measure the UV–Vis absorption spectra of bare CdSe core and CdSe/ZnS
heterostructure core/shell QDs diluted in n-hexane as a function of process time and
growth temperature and are shown in Figs. 3.10 and 3.11, respectively. The first
exciton transition energies in UV–Vis optical absorption spectra are known as the
core band gaps of spherical bare CdSe core and CdSe/ZnS core/shell QDs which are
determined from the following empirical expression [22]
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Enc
g (d) = hc

λmax
(3.4)

where Enc
g (d) = Ecv = Ec − Ev is the bandgap measured at wavelength λmax at

which the absorption of nanoparticles is maximum. c and h are respectively, speed
of light and Planck’s constant.

The values of Enc
g (d) obtained from (3.4) for the maximum wavelength for bare

CdSe core and CdSe/ZnS core/shell QDs at several growth temperatures and process
times. In Sect. 3.10, we will use these results to discuss the temperature and interface
strain effects on core band gap and diameter in CdSe core and CdSe/ZnS core/shell
QDs.

Fig. 3.10 Absorbance spectra versus wavelength of CdSe core QDs synthesized at 5 min. (a) and
10 min. (b) at various temperatures

Fig. 3.11 Absorbance spectra versus wavelength of CdSe/ZnS heterostructure core/shell QDs
synthesized at 160 °C (a) and170 °C (b) reaction temperature at different times (min)
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3.5.2 Fluorescence Characterization

The photoluminescence (PL) brightness, measured by PL quantum yield (QY) and
the stability of the emission of QDs strongly depend on synthesis route. Generation
of the inorganic outer layer (shell) is the most critical step for producing highly emis-
sive materials. This layer ensures that the materials possess the exceedingly high and
stable QYs (>30%) which are pivotal for imaging and light emitting/absorbing appli-
cations. Importance of the shell layers was first identified by Hines et al. after coating
CdSe NCs with ZnS [23]. Since that effort, all types of QDs have been prepared
with appropriate shells and core–shell systems are now default structures for QDs.
Analysis of PL features was done via Varian Cary Eclipse Fluorescence Spectropho-
tometer in our laboratory. The aliquotswere dilutedwith n-hexane directly for charac-
terization. The quantum yield of bare CdSe core and CdSe/ZnS core/shell QDs were
calculated following the procedure by comparingwith a standard (Rhodamine-101 in
ethanol), with an assumption of its QYs as 95%, and using the data from the fluores-
cence and absorbance spectra of QDs, estimated using the following expression [24].

ϕx = ϕs

(
Ix
Is

)(
As

Ax

)(
n2x
n2s

)
(3.5)

where Ix (sample) and Is (standard) are integrated emission peaks, upon 480 nm
excitation; Ax (sample) and As (standard) are absorption areas at 480 nm; nx (sample)
and ns (standard) are refractive indices of solvents; and 
x and 
s are FL QYs for
measured and standard samples.

Fluorescence emission spectra of bare CdSe QD samples synthesized at several
growth temperatures for 5 and 10 min of process times are shown in Fig. 3.12 as a
function of photon wavelength. The fluorescence intensity and the emission peaks
increase with increasing time and temperatures to the particle size. The emission

Fig. 3.12 Fluorescence emission spectra versus wavelength of CdSe core QDs at 5 min. (a) and
10 min. (b) synthesized at 155 °C, 165 °C, and 175 °C, respectively
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Fig. 3.13 Fluorescence emission spectra versus photon wavelength of CdSe/ZnS core/shell QDs
synthesized at 1600° C (a) and 170° (b) for different reaction times (min)

peaks of CdSe/ZnS QDs range from 550 to 570 nm, and the corresponding full
width at half-maximum (FWHM) of the band-edge luminescence was maintained
between 32–36 nm.

From the emission spectra, it can be observed that the PL output wavelengths
corresponding to the peaks are in the range between 507 to 542 nm at 170 °C for
different times. The fluorescence emission peaks increase with increasing tempera-
tures depending on particle size. As expected, the absorption maxima occur at higher
energies than the emission maxima and the difference between absorption and emis-
sion wavelengths is the Stokes shift. The synthesized particle sizes have Stokes shifts
of ranges between 29 to 72 nm for different time and temperatures. These results are
given in Table 3.5 and are shown in Fig. 3.13 which indicate that the Stokes shift
increases as the nanoparticle size decreases.

3.5.3 UV–Vis, PL and Stokes Shift

Figure 3.14a, b compare the growth temperature effects on the absorption and emis-
sion spectra of bare CdSe core QDs synthesized at 155, 165, and 175 C for 5 and
10 min of reaction times. The position of maximum wavelength at which absorption
and emission coefficients of bare CdSe core NCs are maximum tends to slightly shift
to higher wavelengths as temperature is increased. Emission peaks vary between 507
to 542 nm for different reaction times.

Furthermore, Figs. 3.15a, b compare the effect of growth temperature on the
absorption and emission coefficients of CdSe/ZnS heterostructure core/shell QDs
synthesized at 160, and 170 °C for 1, 5 10, and 20 min of reaction times. The
emission peaks of core/shell NCs range from 550 to 570 nm and corresponding
to the full width at half-maximum (FWHM) of band-edge luminescence between
32 and 36 nm. One can observe from the PL emission spectra that the PL output
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Fig. 3.14 Absorbance and emission spectra of bare CdSe core NCs synthesized at 155, 165 and
175 °C for 5 min. (a) and 10 min. (b), plotted as a function of photon wavelength

Fig. 3.15 Absorbance and emission spectra of CdSe/ZnS core/shell NCs synthesized at 160 °C
(a) and170 °C (b) for different reaction times, plotted as a function of photon wavelength

wavelengths corresponding to the emission peaks of CdSe/ZnS core/shell NCs are
in the range between 507 to 542 nm for different reaction times. The PL emission
peaks increase with temperature.

The maximum wavelengths of UV–Vis absorption and PL emission and corre-
sponding Stokes shifts and full width half maximum (FWHM) for bare CdSe QD
synthesized from 150 to 175 °C are given in Table 3.3 for 5 and 10minutes of reaction
times.

The peak intensity values of UV–Vis absorption spectra and PL emission spectra,
Stokes shift, full width half maximum (FWHM), and quantum yield (QY) of
CdSe/ZnS core/shell QDs synthesized at 160 °C and 170 °C are listed in Table 3.4
for reaction times between 1 and 20 min., respectively.
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Table 3.3 Maximum wavelengths of UV–Vis absorption and PL emission spectra and corre-
sponding Stokes shift and full width half maximum (FWHM) of bare CdSe core QDs at different
temperatures for 5 and 10 min of reaction times

Reaction time
(min)

Growth
Temp. (oC)

UV–Vis λmax
(nm)

PL λmax (nm) Stokes shift
(nm)

FWHM
(nm)

5 150 452 521 69 31

155 476 525 49 33

160 484 527 43 42

165 496 532 36 65

170 508 538 30 43

175 512 541 29 48

10 150 453 525 72 30

155 481 527 46 32

160 488 530 42 33

165 500 535 35 32

170 512 542 30 44

175 516 545 29 62

Table 3.4 Absorption and emission peak intensities, full width and half maximum (FWHM) and
quantum yield (QY) of CdSe/ZnS NCs synthesized at 160 and 170 °C at various times

Temperature
(oC)

Time (min) Peak
absorbance
wavelength
(nm)

Peak
emission
wavelength
(nm)

Stokes shift
(nm)

FWHM (nm) QY (%)

160 1 532 550 18 32 27

5 535 553 18 33 41

10 538 554 16 32 45

20 539 556 17 36 36

170 1 549 560 11 35 28

5 552 563 11 34 40

10 555 565 10 33 44

20 557 570 13 33 42

The fluorescence quantum yield (QY) of CdSe/ZnS core/shell QDs synthesized
at 160 and 170 °C increases monotonically from 27 to 45% with reaction time
increase and decreases as reaction time is increased further. This means that one can
optimize reaction time to get maximum quantum yield. The FWHM of CdSe/ZnS
core/shell QDs synthesized at 170 °C (160 °C) decreases (increases) as reaction time
is increased. The difference between the first exciton energy of absorption spectra
and the PL peak energy in emission spectra at maximum wavelength is known as
Stokes shift, given as �E = 2S�ωp, where �ωp is the energy of the photon coupled
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a b

Fig. 3.16 Stokes shift in bare CdSe core QD (a) as a function of temperature and that in CdSe/ZnS
core/shell QD (b) as a function of reaction time, respectively

to the electron (25meV for CdSe) and S is called theHuang-Rhys factor [25]measure
of the strength of electron–phonon coupling.

Figure 3.16a shows the temperature dependence of maximum wavelength of
absorption and emission spectra andStokes shift of bareCdSe coreQDandCdSe/ZnS
QD as a function of temperature for several reaction times. Maximumwavelength of
emission and absorption spectral data given in Table 3.4 are used to study the effect
of growth temperature and reaction time on the Stokes shifts in CdSe/ZnS core/shell
QD. Figure 3.16b shows the reaction time dependence of Stokes shift of CdSe/ZnS
QD synthesized at 160 and 170 °C.

Stokes shift in bare CdSe core NCs is observed to have a parabolic decrease with
temperature increase and can be fitted to following expression

�E(T ) = −1.15 × 10−2T 2 + 4.75T − 436.44. (3.6)

which indicates that increasing temperature decreases magnitude of Stokes shift
and corresponding Huang-Rhys factor because of the increasing effect of electron–
phonon interaction with temperature increase. Furthermore, reaction time depen-
dence of Stokes shift in spherical CdSe/ZnS core/shell QD synthesized at 160 and
170 °C shown in Fig. 3.16b indicates that increasing reaction time has varying effect
on magnitude of Stokes shift and corresponding Huang-Rhys factor.

3.6 Dielectric Spectroscopy Characterization

The optical properties of any semiconductor structure is generally described by the
complex dielectric constant ε(ω) = ε

′
(ω) − iε

′′
(ω), where ε

′
(ω) and ε

′′
(ω) are

the real and imaginary parts of ε(ω), respectively. The real and imaginary parts of
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the complex dielectric constants, dielectric losses, and ac conductivity of bare CdSe
core and CdSe/ZnS heterostructure core/shell QDs were investigated as a function of
frequency at different temperatures. We used the Broadband System Novo-Control
Concept-80, which includes the low–high frequency spectrometer BDS-80 (from 3–
20 MHz) measurements for the materials investigation in combination with Quatro
Cryosystem (−160 °C–400 °C) and a program complex for visualization and treat-
ment of data. The measurements were carried out in the frequency range from 0.1 Hz
to 10MHz.Themethod for determining ε

′
(ω) and ε

′′
(ω) is the comparison of capacity

of air filled capacitor with that containing the dielectric material.
Figures 3.17a and 3.17b, respectively, compares the frequency dependency ε

′
(ω)

and ε
′′
(ω) of CdSe QDs synthesized at 130 °C, 140 °C, 150 °C, 160 °C, and 170 °C,

respectively. ε
′
(ω) and ε

′′
(ω) rapidly decrease with increasing frequency and then

become nearly constant in high frequency range (over 100 Hz). However, the low
frequency values of ε

′
(ω) and ε

′′
(ω) at 130 °C and 140 °C is somewhat smaller than

those synthesized at 150 °C, 160 °C, and 170 °C, respectively, but they approach to
values of latter ones at frequencies over 100 Hz.

Figures 3.18a, b compare the frequency variations of ε
′
(ω) and ε

′′
(ω)) of bare

CdSe core and CdSe/ZnS core/shell QDs (synthesized at 170 °C) after subtracting
the hexane contribution according to a simple approximation: εQD(ω) = εtotal(ω)−
εhexane(ω). The frequency variation of ε

′
(ω) and ε

′′
(ω) for CdSe/ZnS core/shell QDs

at low frequencies is slightly different from those of bare CdSe core QDs. The change
in ε

′
(ω) for CdSe/ZnS core/shell QD is nearly the same for that of bare CdSe core

Fig. 3.17 Temperature effect on real part ε′ (left) and imaginary part (ε′′) of complex dielectric
constant (ε) of CdSe QD synthesized at 130 °C, 140 °C, 150 °C, 160°C, and 170 °C, respectively
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Fig. 3.18 Comparison of real (a) and imaginary (b) parts of dielectric constant of bare CdSe and
CdSe/ZnS core/shell QDs synthesized at 170 °C

QD.However, the change in ε
′′
(ω) for CdSe/ZnS core/shell QDs is noticeable smaller

than that of bare CdSe core QDs at low frequencies.
The dielectric loss (tan δ = ε

′′
/ε

′
) and its measurement as a function of frequency

for different temperatures makes it possible to determine the activation energy and
relaxation time of dipolar orientation process in solid. The conduction behavior
of nanocrystal can be understood from the conduction loss expression defined as
(tan δ)c = σ/ε

′
ω, where σ is nearly independent of frequency and is equal to the dc

conductivity in practical cases. The ac conductivity of the bare CdSe and CdSe/ZnS
core/shell QDs are calculated using the relation σac = ωε(ω) tan δ = 2π f εrε0 tan δ

with εrε0 = C/C0. Here C is the capacitance of the dielectric material and C0 is the
capacitance of reference material (air filled capacitor).

Figures 3.19a, b, respectively, compare the temperature effect on dielectric loss
and ac conductivity of CdSe QDs synthesized at 130 °C, 140 °C, 150 °C, 160 °C, and
170 °C, respectively, as a function of frequency. Figure 3.19a suggests that, similar
to the dielectric constant, the dielectric loss is strongly dependent on the frequency
of the applied field. The dielectric loss decreases with increasing frequency at almost
all temperatures but appears to achieve saturation in the higher frequency range of
1 kHz and above, at all the temperatures. Figure 3.19b suggests that electrical A.C.
conductivity increases with an increase in temperatures and frequency. The results
reveal that the A.C. conductivity varies almost linearly with the applied frequency
in the high range and increases with different temperatures.

Figures 3.20a, b, respectively, show the low frequency behavior of dielectric loss
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Fig. 3.19 Temperature effect on dielectric loss and ac conductibity of CdSe QD synthesized at 130
°C, 140 °C, 150 °C, 160 °C, and 170 °C, respectively

Fig. 3.20 Comparison of dielectric loss (a) and AC conductivity (b) of bare CdSe core and
CdSe/ZnS core/shell QDs synthesized at 170 °C, with hexane contribution to real and imaginary
parts of the dielectric constants for both nanocrystals is extracted



138 Md. Rezaul Karim et al.

(tan δ = ε
′′
/ε

′
) andAC conductivity of bare CdSe core andCdSe/ZnS core/shell QDs

synthesized at 170 °C with hexane contribution to the complex dielectric constant is
removed. Figure 3.20a shows that dielectric loss decreases with increase in frequency
but appears to achieve saturation in the higher frequency range. The dielectric loss
of CdSe/ZnS QD is smaller than that of bare CdSe QD at low frequencies. However,
it becomes nearly constant at high frequencies for both nanocrystals since ε

′
(ω) and

ε
′′
(ω) are almost independent of frequency in that regime. Figure 3.20b suggests

that A.C. conductivity increases with an increase in temperatures and frequency.
Furthermore, we observe that, just like dielectric loss, A.C. conductivity of CdSe/ZnS
QD is smaller than that of bare CdSe core QD at low frequencies. However, just like
the dielectric loss, A.C. conductivity becomes nearly constant at high frequencies
for both nanocrystals since ε

′
(ω) and ε

′′
(ω) are almost independent of frequency in

that regime.
It is observed in Fig. 3.18 that the real and imaginary parts of complex dielectric

constant of bare CdSe core and CdSe/ZnS heterostructure core/shell QDs decrease
exponentially with increasing frequency and then attains almost a constant value
in the high frequency region. Furthermore, Fig. 3.20 shows that dielectric loss
and ac conductivity of bare CdSe core QD and CdSe/ZnS core/shell QD, respec-
tively, increase at small frequencies and suddenly decay and saturate as frequency
increases. We attribute these changes to the temperature dependent interface strain
effect on dielectric constant of bare CdSe core and CdSe/ZnS heterostructure
core/shell QDs. The magnitude of the complex dielectric constant ε(ω) of bare CdSe
core and CdSe/ZnS core/shell quantum dots is nearly constant at high frequencies
(ω � 1× 106Hz), plotted in Fig. 3.21. The expression ε

QD∞ = [ε′2∞ + ε
′′2∞]1/2 yields

Fig. 3.21 Comparison of dielectric constant of bare CdSe core and CdSe/ZnS heterostructure
core/shell QDs at high frequencies
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εc∞ = 5.40ε◦ and εcs∞ = 5.10ε◦ at 1×107 Hz for CdSe core and CdSe/ZnS core/shell
QDs, respectively. Using the bulk dielectric constants of CdSe and ZnS we have
εcs∞ = (εCdSe

∞ + εZnS
∞ )/2 = (5.8ε◦ + 5.10ε◦)/2 = 5.40ε◦ for εcs∞ of CdSe/ZnS

core/shell QDs. This is in good agreement with the dielectric measurements of
dielectric constant at high frequencies.

Strain effects on dielectric constants of bare CdSe core andCdSe/ZnS heterostruc-
ture core/shell QDs can be qualitatively understood by using parabolic two band Penn
model of dielectric constant of semiconductors [26]. We can write the following
expressions for the dielectric constants of bare CdSe core and heterostructure
core/shell CdSe/ZnS quantum dots

εc∞ = 1 + (�ωc
p/E

c
g)

2 ; εcs∞ = 1 + (�ωcs
p /Ecs

g )
2

(3.7)

where ωc
p(ω

cs
p ) and Ec

g(E
cs
g ) are, respectively, the plasma frequency and band gap

of bare CdSe core (CdSe/ZnS heterostructure core/shell) QDs. To a first order
approximation, we can take plasma frequencies of core and core/shell QDs equal
(�ωc

p ≈ �ωcs
p ) and relate the dielectric constant of heterostructure core/shell QD to

that of core QD as

εcs∞ = εc∞ + 1

E2
gcs

− 1

E2
gcs

= εc∞ + E2
gc − E2

gcs

E2
gcE

2
gcs

(3.8)

where Egcs and Egc are obtained from UV–Vis absorption data, according to (3.4)
or obtained from two band effective mass approximation, which will be discussed
in Sect. 3.10. Equation (3.8) suggests that the dielectric constant of core/shell QD
is shifted from that of core QD by factor of (E2

gc − E2
gcs)/E

2
gcE

2
gcs . Since Egcs

and Egc depends on the diameter of QD, (3.8) proves the fact that the real part of
optical dielectric constant (ε’) with increase in nanoparticle size, approaching the
bulk value for larger particles. The dielectric constant of all synthesized samples is
high at lower frequencies and decreases with increasing frequency. The dielectric
loss tangent (tanδ) decreases with frequency and the sample with minimum particle
size shows large value of loss tangent at a specific frequency.

3.7 Precursor Ratio Effect on Nanoparticle Growth

Since the growth kinetics of semiconductor nanocrystals are dependent on tempera-
ture, time and initial precursor ratio for any synthesis route, influence of changes in
these variables on the final properties CdSe QDs were investigated. The most impor-
tant parameter,Cd:Semolar ratio of the precursor is foundhaving the ability of change
the average particle size, number of density and size distribution by “focusing” and
“defocusing” the particle growth in the solution [10].
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Qu and Peng (2002), have investigated the influence of the initial ratio between
Cd and Se precursors on the temporal evolution of the ensemble PL QY of CdSe
NCs during their growth in a coordinating solvent [27]. The PL QY was observed to
increase monotonically during growth to a maximum value (named as bright point)
and then gradually decrease. The position and temporal width of the bright point, the
highest QY, the growth kinetics and the sharpness of the PL peak were all reported
to be strongly dependent on the initial Cd:Se ratio. The existence of the bright point
was interpreted as a signature of an optimal surface structure of NCs grown under
given conditions [27]. Talapin et al. investigated the distribution of properties within
ensembles of collodially grown CdSe NCs by analyzing size-selected fractions. An
excess of themetal cationprecursor (Cd)wasused and ahugedifferencewasobserved
between the PL efficiencies of fractions size-selected from the same ensemble. This
behaviorwas attributed to differences in surface disorder of theNCs as a consequence
of the Ostwald ripening growth mechanism. The particles with the lowest growth
rate within the ensemble were assumed to have the lowest degree of surface disorder
and therefore the highest PL QY at any given reaction conditions [28].

Our investigations of the optical and electronical properties of synthesized CdSe
core and CdSe/ZnS core–shell NCs indicate that depending on the diameter of CdSe
NCs, the red shift was observed in the absorption spectra. In coherent with the
situation, a decrease in the optical absorption band gap of NCs was recorded, thus
proving the size quantization effect. The FWHM values of CdSe core and CdSe/ZnS
core–shell NCs were found to vary between 25–31 nm without Ostwald ripening,
indicating the luminescence quality of synthesized particles in narrow size distri-
bution. For the synthesis’ with altering the Cd:Se initial precursor ratio at a fixed
temperature, it was observed that the samples with a high Cd:Se ratios are able to
nucleate and grow faster. However, it was explored that the influence of operating
temperature becomes dominant on the growth of NCs as the Cd:Se initial precursor
ratio decreases. It was attributed to unfavorable temperatures for the growth of Cd
rich samples. For a fixed temperature, it was investigated that there is an increase
for FWHM values obtained from PL spectra by reducing the Cd:Se initial precursor
ratio. The same situation is also valid for deposition of ZnS shells over CdSe core
NCs. PL QY results were showed it is possible to increase the efficiency of CdSe
core NCs with covering ZnS shells over them. Average particle diameters obtained
from high resolution TEM images were suitable with the derived particle diameters
from theoretical calculations by using effective mass approximation.

Figure 3.22 shows the diameter distribution of NCs grown with different Cd:Se
molar ratios at given synthesis temperature. As the amount of Cd precursor increases,
NCs grow into larger diameters very fast and growth is the predominant process over
nucleation, which reduces the number of density and increases the average particle
size under same experimental conditions, coherent with the study of Bhattacharjee
et al. [29]. Increase in the NC diameter is also responsible for red shift in the emission
and absorption spectra of CdSe QDs. On the other hand, the operating temperature
influences the growth of NCs when it compared in identical chemical compounds
and elapsed time.
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Fig. 3.22 Growth of CdSe NCs with different Cd:Se molar ratios at 160 °C

As shown in the Fig. 3.23a, b, difference in the diameter of grown NCs increases
with the excessive amount of initial Se precursor, therefore indicating that the
effect of operating temperature is evident for the Se rich samples. However, lower
temperatures are not suitable for the ideal growth of Cd rich samples.

Fig. 3.23 Effect of temperature on CdSe NCs growth for Cd:Se ratio of 1:2.5 (a) and CdSe NCs
growth for Cd:Se ratio of 1:5 (b) grown at 160 and 170 °C



142 Md. Rezaul Karim et al.

3.8 Emission Quality and PL Yield

Photolumiscence analysis of the CdSe quantum dots dispersed in n-hexane was done
viaVarianCaryEclipse Fluorescence Spectrophotometer. Excitationwavelentghwas
chosen as 350 nm. Figure 3.24 shows the PL properties of the CdSe quantum dots
growth for Cd:Se ratio of 1:1.25 at 160 and 170 °C. It is seen that the red shift is
observed in the PL spectra with the duration of the synthesis.

First excitonic absorption peak energy and PL emission peak energy and corre-
sponding Stokes shifts for the CdSe QDs synthesized at 160 and 170 °C are given in
Table 3.5 from 5 to 90 min of reaction times.

Stokes shift of the CdSe QDs synthesized at 160 °C for 90 min of reaction is
given in the Fig. 3.25a which is 147 meV. The relation of the synthesis duration and
temperature on the Stokes shift can be seen in Fig. 3.25b.

FWHM of an emission peak is the measure of color purity of the emission where
the smaller values indicate more pure emission and narrow size distributions without
Ostwald ripening. Table 3.6 shows the average FWHM values obtained from PL
spectras with respect to various conditions. It is noticable that, the average FWHM
value increase as the initial Cd:Se precursor ratio decreases.

Figure 3.26 also shows the normalized PL spectra of CdSe NCs and CdSe/ZnS
NCs grown over them. The red shift that suitable with the one at absorption spectra
indicates the growth of ZnS shells over CdSe core NCs. Table 3.7 and Fig. 3.26
shows the PL properties of CdSe core and CdSe/ZnS core-shell nanostructures for
given conditions. A noticable decrease in the PL QY was recorded for second and
third cycles of ZnS shell growth process, which is not expected in order to obtain
good emission quality by passivating the core surface. In general, a low PL QY is
considered as a result of the surface states located in the band gap of the NCs, which
act as trapping states for the photogenerated charges. These surface trapping sites are
originated from the dangling bonds of some of the surface atoms. The ligands on the
surface of NCs may remove some or all of the surface trapping states and increase
the PL QY of NCs. Theoretical studies indicate that the efficiency of the electronic

Fig. 3.24 Normalized PL spectra of CdSe quantum dots grown at 160 °C (a) and 170 °C (b)
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Table 3.5 1st excitonic absorption peak energy and PL emission energy peaks and corresponding
Stokes shift of CdSe core quantum dots synthesized at 160 and 170 °C for various durations

Temperature (C) Synthesis
duration (min.)

Peak absorbance
energy (eV)

Peak emission
energy (eV)

Stokes shift
(meV)

170 5 2.510 2.412 98

10 2.460 2.375 85

15 2.431 2.344 87

25 2.403 2.318 85

40 2.385 2.305 80

60 2.357 2.288 70

90 2.340 2.271 69

160 5 2.600 2.394 206

10 2.557 2.348 208

15 2.525 2.331 195

25 2.500 2.313 187

40 2.460 2.296 164

60 2.441 2.288 153

90 2.427 2.279 147

Fig. 3.25 Stokes shift of CdSe quantum dots grown at 160 °C for 90 min. (a). Stokes shift of as a
function of reaction time for 160 and 170 °C synthesis temperature (b)

Table 3.6 Effect of Cd:Se initial precursor ratio on the average FWHM values of CdSe NCs

Sample Molar ratio Temperature (°C) Average FWHM (nm)

CdSe 1:1.25 170 29.856

CdSe 1:5 170 30.156

CdSe 1:10 170 30.956
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Fig. 3.26 Normalized PL spectra of CdSe and CdSe/ZnS NCs

Table 3.7 PL properties of CdSe QDs grown at 160 °C with Cd:Se ratio of 1:1.25 and CdSe/ZnS
QDs deposited over with number of cycles

Sample Cycle number Reaction time (min) FWHM (nm) Peak site (nm) QY (%)

CdSe – 35 27 526 29.18

CdSe/ZnS 1 50 27.7 553 42.46

CdSe/ZnS 2 50 28.9 562 21.65

CdSe/ZnS 3 50 29.5 565 18.38

passivation provided by the surface ligands depend strongly on the surface structure
and the nature of the surface states of the NCs themselves. If the surface ligands
could provide a good electronic passivation for the surface states of the NCs, a high
PL QY is expected.

However, decrease in the PL QY for stable conditions can be taken as ordinary,
where the most of reports in the literature include the efficiencies of better samples.
Chattopadhyay et al. have demonstrated that there is an ideal ratio between the
diameter of core and shell thickness for different thicknesses of CdSe core QDs [30].
Normally, the resulting core solution of CdSe NCs was used for the shell growth
in the originated article. In this study, the CdSe core QDs for the ZnS shell growth
were choosen from the samples with highest PL intensity within each synthesis and
aliquots were taken for once at constant time intervals to monitor the growth of ZnS
shells.
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Table 3.8 PL properties of CdSe QDs grown at 170 °C with Cd:Se ratio of 2:1 and CdSe/ZnS QDs
deposited over within one cycle for given time intervals

Sample Cycle number Reaction time (min) FWHM (nm) Peak site (nm) QY (%)

CdSe – 45 28.3 535 14.49

CdSe/ZnS 1 10 28.7 542 40.87

CdSe/ZnS 2 20 29.1 546 24.97

CdSe/ZnS 3 30 30.3 520 22.31

Fig. 3.27 PL spectra of CdSe QDs synthesized at 170 °C with Cd:Se ratio of 1:1.25

Table 3.8 shows the PL properties of CdSe core and CdSe/ZnS core-shell
nanocrystals grown on throughout one cycle during the synthesis for given condi-
tions. PL QY reaches its best in early stages of shell coverage process due to small
diameter of choosen CdSe nanocrystals.

Fig. 3.27 shows the PL characteristics of choosen CdSe core nanocrystal with
small FWHM value, proving narrow particle size distribution.

3.9 Stability of CdSe Quantum Dots

The synthesis of CdSe QDs are described earlier in this chapter. Firstly, cadmium
stearate is prepared by heating the mixture of CdO (0.01 mol) and stearic acid
(0.02 mol) at 170 °C for 15 min in order to use in further reactions. Then, 2 mL
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Fig. 3.28 Normalized
absorption spectrum of
as-synthesized CdSe QDs at
160 °C for 90 min. with
Cd:Se ratio of 1:5. Each
measurement was taken four
years apart

TOP and Se powder (0.1 mmol) are added into a flask and are mixed in an ultrasonic
cleaner at the room temperature for several seconds. For a typical synthesis of CdSe
QDs, cadmium stearate (0.2 mmol) is added into a three-neck flask with 16 mL
paraffin liquid. The cadmium stearate-paraffin mix is degassed at room temperature
and then is heated to a chosen temperature (160 °C) in an oil-bath heater under
nitrogen dry gas flow. When the heat is reaches to aimed temperature, TOP-Se solu-
tion is rapidly injected into the reaction flask for the growth of CdSe QDs. After a
certain time (90min.) of reaction themixture is left to cool down to room temperature.

The absorption spectra of CdSe QDs diluted in n-hexane were recorded with
Shimadzu UV-3600 UV–VIS-NIR Spectrophotometer. In order to monitor long life
stability of the CdSe QDs, absorption measurements were done four years apart from
each measurement (Fig. 3.28).

CdSe QDs were kept as synthesized without purification steps and at ambient
temperature in a dark environment. Effect of the initial precursor ratio was also
monitored for the aging properties of CdSe QDs (Fig. 3.29). Long term stability of
CdSe QDs is investigated by absorption spectroscopy. 1st excitonic absorption peak
shifts of CdSe QDs due to the aging is around 20 nm after eight years. As seen by
Fig. 3.29 total peak shift is smaller for the Cd:Se ratio of 1:10, as expected since
there is less Cd precursor left in the remaining solution.

3.10 Strain Effects on Size and Core Bandgap

The conventional two band effective mass approximation [31] gives a qualitative
understanding of confinement effects on core bandgap and diameter of quantum
dots. In this model, the solution of Schrödinger equation for a particle in a spherical
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Fig. 3.29 First excitonic
absorption peak shift of
as-synthesized CdSe
quantum dots due to aging.
CdSe QDs were synthesized
at 160 °C for 90 min.
duration with different Cd:Se
ratios

box gives the first excited state (1 s-1 s) energy (core band gap) of nanoparticle, given
by following expression

Enc
g (d) = Eb

g + 2�
2π2

m∗
cvd

2
− 3.572e2

ε∞d
+ 0.124e4

�2m∗
cvε

2∞
(3.9)

where Eb
g is bandgap, m∗

cv = m∗
em

∗
h/(m

∗
e + m∗

h) is the reduced effective mass of
electron hole pair with effective masses of electrons and holes m∗

e and m∗
h , respec-

tively, and ε∞ is the optical dielectric constant of CdSe in bulk form. The second and
third terms, respectively, represent the confinement energy and Coulomb interaction
energy with a 1/d2 and 1/d dependence on QD diameter. Finally, the last term is the
Rydberg correlation energy, which is negligibly small for when ε∞ of semiconductor
component is large.

Since spherical core/shell QDs are grown from two semiconductors with different
lattice constants and thermal expansion coefficients at temperatures above 300 K,
there will be elastic strain developed across heterointerface [16]. Elastic strain can
modify the structural and electronic properties of core and shell constituents in a
way that is not seen in two-dimensional quantum wells and superlattices. In order
to understand the strain effects on structural and electronic properties of bare CdSe
core and ZnSe//ZnS core/shell QDs, we will use the recent extension of the universal
Eshelby’s elastic strain model [32] to study strain effects in nanoscale spherical
core/shell heterostructures at any temperature [19, 33, 34]. According to this model
one assumes that core radius is much smaller than that of shell constituent (a < < b)
of spherical core/shell structure and writes strain in core region as [35]

εi = ai (εi ) − ai
ai

= αi (T )T − 2Em(1 − 2νi )[εim + (αi − αm)T ]
Ei (1 + νm) + 2Em(1 − 2νi )

(3.10)
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where εim = (ai − am)/am and (αi − αm)T are lattice and thermal mismatches,
respectively. Here,ai and am are lattice constants and αi and αm are the linear
expansion coefficients of core and shell at 300 K. Ei (Em) is Young’s modulus
and νi (vm) is Poisson’s ratio of core (shell) semiconductor in bulk form, defined as
E = (C11 − C12)(C11 + 2C12)/(C11 + C12) and ν = C12/(C11 + C12), where C11

and C12 are elastic stiffness constants.
Using the elastic constants C11 = 10.2 GPa and 6.67 GPa and C12 = 6.46

GPa and 4.63 GPa, linear thermal expansion coefficients αi = 7.30 × 10−6K−1,
αm = 6.9 × 10−6K−1, and lattice constants ai = 0.607nm and am = 0.41nm
for CdSe and ZnS [22], (3.10) gives εi = −3.70% compressive strain at inter-
face of spherical CdSe/ZnS core/shell QD, which has positive lattice mismatch
�a/a = (ai − am)/am = 12.3% at room temperature. Therefore, we can conclude
that reliable modelling and precise determination of the magnitude of strain effects
on electronic structure of nanoscale heterostructures is extremely important for the
predicting their potential and simulation of the performance of nanoscale electronic
andoptical devices. In doing so, onemust thenmodify (3.9) to following expression in
order to take into account strain effects on core band gap for a reliable understanding
of charge confinement in CdSe/ZnS core/shell QDs [33]

Enc
g (εi ) = Ebc

g (T, εi ) + 2�
2π2

m∗
cvd

2
− 3.572e2

ε∞d
+ 0.124e4

�2m∗
cvε

2∞
(3.11)

where Ebc
g (T, εi ) is strain dependent bandgap of core semiconductor in bulk, which

is obtained by using statistical thermodynamic model of semiconductors [34] as

Ebc
g (T, εi ) = Ebc

g (0) + �C0
i P T (1 − ln T ) − agi

Bi
(P − P2

2Bi
− (1 + B

′
i )

3B2
i

P3)

(3.12)

where P is the hydrostatic pressure acting on band structure of core region, given by

P = −3Biεi (T ) = −3Biαi (T )�T + 3Bi
2Em(1 − 2νi )[εim + (αi − αm)T ]

Ei (1 + νm) + 2Em(1 − 2νi )
(3.13)

Logarithmic term �C0
PT (1 − ln T ) in (3.12) represents lattice vibration contri-

bution to band gap change. �C0
P is heat capacity of reaction for formation of elec-

tron–hole pair obtained by fitting bulk band gap calculated from (3.11) to measured
bandgap [17], fitted to Varshni equation [36]

Eb
g
(T ) = Eb

g
(0) + αT 2

β + T
(3.14)
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Fig. 3.30 Effects of interface strain and electron–phonon interactions (a) and charge confinement
effects (b) on band gap decrease of CdSe/ZnS core/shell QDs, respectively

where α = 4.09 × 10−4 and β = 187 are constants for bulk CdSe. We can now
use (3.9) to get a qualitative understanding of the variation of core band gap with its
diameter at any temperature.

Using the material parameters for CdSe and ZnS bulk semiconductors [22] we
calculated the effects of interface strain, electron–phonon interactions, and charge
confinement on the shift in core band gap of bare CdSe core QD and CdSe/ZnS
core/shell QD as a function of temperature. Figures 3.30a, b compare the contri-
bution of interface strain and electron–phonon interaction (Fig. 3.30a) and charge
confinement (Fig. 3.30b) on band gap decrease in band gaps of CdSe/ZnS core/shell
QD. Figure 3.30a indicates that electron–phonon interaction contribution to core
bandgap decrease is always less than zero and interface strain and lattice vibra-
tion tends to decrease core bandgap with temperature increase. However, Fig. 3.30b
indicates that charge confinement has parabolic dependence on core diameter and
becomes nearly flat as core diameters is increased above 6 nm.

Once first exciton energy (core bad gap) is determined from UV–Vis absorption
data using (3.4),core diameter quantum dot can also be calculated by converting (3.9)
to a quadratic equation as d is variable: Ad2 + Bd + C = 0, where A, B, and C
are material parameter dependent coefficients. The positive root of such quadratic
equation will give the diameter of QDs. This will then allow one to calculate the core
diameter of bare core and core shell QDs from the first excited state energy extracted
fromUV–Vis absorption spectra. Figures 3.31a, b show the measured core bandgaps
and calculated diameter of bare CdSe core QDs synthesized at temperatures between
155 °C and 180 °C and processed at 1, 5, 10, 15 and 20 min, respectively.

A polynomial fit to core bandgap of bare CdSe QDs, processed at 5 min, suggests
a parabolic temperature of the core bandgap, given as
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Enc
g

(T ) = aT 2 + bT + c (3.15)

where a, b and, c are coefficients. The parabolic fit in Fig. 3.31a yields a = 4.43 ×
10−4K−2, b = −0.16K−1, and c = 16.26 for 10 min of reaction time. The parabolic
decrease of core bandgap of bare CdSe QDs with temperature increase shown in
Fig. 3.31a, b is consistent with the fact that bandgap of most of the groups III-V and
II-VI compound semiconductors tend to decrease with increasing temperature, due
to electron–phonon interaction and free expansion of lattice constant with increasing
temperature. Similar polynomial fit to core diameter of is given by

dnc(T ) = a∗T 2 + b∗T + c∗, (3.16)

where a∗, b∗, and c∗ are coefficients: a∗ = −5.04 × 10−4/K 2, b∗ = 0.18/K , and
c∗ = −12.96 for 10 min of reaction time. Since there is only free thermal expansion
of lattice constant in bare core QDs, shift in their band gap and diameter is mainly
due to electron–phonon interaction with temperature increase.

Since the lattice constant and thermal expansion coefficient of CdSe core are
greater than those of ZnS shell of CdSe/ZnS core/shell QDs, CdSe core region will
be under compressive strain, resulting in increase (decrease) in its band gap energy
(diameter) as temperature is increased. Table 3.9 gives list of UV–Vis maximum
wavelength of absorption coefficient and corresponding first excited state energies
(core bandgaps) of CdSe/ZnS QDs core/shell QDS synthesized at 160 and 170 °C
and processed for 1, 5, 10, and 20 min, respectively.

Using the results given in Table 3.9, unstrained and strained values of core diame-
ters are compared in Fig. 3.32 as a function of core bandgap of CdSe/ZnS core/shell
QDs synthesized at 160 °C and 170 °C for various reaction times, respectively. Calcu-
lated unstrained and strained diameters show a gradual parabolic decrease (increase)
as core bandgap increase (decreases) at both temperatures (Fig. 3.32).
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Table 3.9 UV–Vis maximum wavelength and corresponding measured band gap and calculated
unstrained and strained core diameter of CdSe/ZnS QDs synthesized at 160 °C and 170 °C for
different reaction times (min)

Temperature (oC) Time (min) λmax (nm) Enc
g

(eV) d (nm) d(εi ) (nm)

160 1 532 2.34 3.89 4.35

5 535 2.32 3.92 4.39

10 538 2.31 3.95 4.43

20 539 2.30 3.96 4.45

170 1 549 2.26 4.02 4.61

5 552 2.25 4.05 4.66

10 555 2.23 4.08 4.71

20 557 2.23 4.11 4.74
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Fig. 3.32 Core diameter of CdSe/ZnS core/shell QD plotted and as a function of core bandgap
with and without strain at 160 °C and 170 °C (b), respectively

The strained core diameters are in excellent agreement with HRTEM results,
which indicates that the bare CdSe core and core/shell CdSe/ZnS QDs synthesized
at 160 °C (a) and 170 °C (b) for 20 min of reaction time have average particle sizes
about 3.50 nm and 4.84 nm, respectively.
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3.11 Conclusion

We presented the results of a comprehensive study of elastic strain effects on core
band gap and diameter of spherical bare CdSe core and CdSe/ZnS heteostruc-
ture core/shell quantum dots that are grown by a colloidal technique at various
temperatures. The XRD analysis suggests that synthesized CdSe core and CdSe/ZnS
core/shell QDs have zinc blende crystal structure. HRTEM measurements indicate
that bare CdSe core and CdSe/ZnS core/shell QDs have average particle sizes about
3.50 nm and 4.84 nm, respectively. UV–Vis absorption spectra measurements show
that the increase of growth temperature leads to a decrease (increase) in the bandgap
(diameter) of CdSe/ZnS core/shell QDs. Furthermore, we also show that the effect
of elastic strain to the band gap change is greater than that of lattice vibration in
CdSe/ZnS core/shell QDs at any temperature. The compressive strain causes an
increase (decrease) in the core band gap (diameter) of spherical CdSe/ZnS core/shell
QDs. Elastic strain modified effective mass approximation predicts that there is a
parabolic decrease (increase) in the core bandgap (diameter) of CdSe/ZnS core/shell
QDswith temperature. The calculated core diameter of bareCdSe core andCdSe/ZnS
core/shell QDs are in excellent agreement with HRTEM measurements.
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Chapter 4
Synthesis of Transition Metal
Dichalcogenides (TMDs)

Kyungnam Kang, Siwei Chen, Shichen Fu , and Eui-Hyeok Yang

Abstract Two-dimensional (2D)materials or van derWaalsmaterials typically have
strong in-plane covalent bonds and weak out-of-plane van der Waals forces. The
van der Waals materials form stable atomically-thin structures. Graphene can be
produced viamechanical exfoliation fromhighly ordered pyrolytic graphite (HOPG),
from which many unique and superior properties have been revealed. The graphene
research’s success and the lack of semiconductor properties have led to the explo-
ration of other inorganic 2D materials beyond graphene. These materials include
transition metal dichalcogenides (TMDs), phosphorene, and MXene. TMDs have
attracted considerable attention as core materials for next-generation semiconductor
devices owing to their unique electrical, mechanical, chemical, and optical proper-
ties. This chapter discusses several methods to synthesize TMDs and to manipulate
the properties of TMDs.

4.1 Introduction

TMDs are composed of three layers; top and bottom layers of chalcogen atoms and
a middle layer of transition metal atoms. The TMDs are showing unique optical and
electrical properties. The bandgaps of TMDs such asWS2, MoS2, WSe2, andMoSe2
change from indirect to direct bandgap when the materials are thinning from bulk to
monolayer [1–3], which are in the range of 1–2 eV [4–7]. The type II heterojunction
can be facilely fabricated with TMDs owing to their band alignments [8–10]. Similar
to strong light-interaction materials, monolayer TMDs can absorb up to 5–10% of
incident light [11]. Combining their unique properties, including direct bandgap,
type II heterojunction, and strong light-interaction, facilitates efficient relaxation of
interlayer excitons for photodetectors and solar cells [12–14]. The second-harmonic
generation can be enhanced in TMD monolayers because of the broken inversion
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symmetry [15]. The strong spin–orbit coupling and inequivalent valleys permit circu-
larly polarized lights to excite electrons in K-valley and -K-valley due to the valley-
dependent optical selection rules. The excited electrons in K-valley and -K-valley
are in spin-up state and spin-down state, respectively, due to the spin-valley locking
[16]. Moreover, the doping of TMDs changes their bandgaps, carrier mobilities,
and magnetic properties [17] for various applications, including electronic, optical
devices, energy harvest, sensors, and catalysts [18–22]. In this chapter, the synthesis
of TMD monolayers with tailored material properties is introduced. Furthermore,
the benefits and issues of different synthesis techniques are discussed.

4.2 Mechanical Exfoliation

The first graphitemonolayer called graphenewas isolated using themechanical exfo-
liation method [23]. The mechanical exfoliation method uses mechanical forces to
obtain van der Waals layers; high-quality monolayers can be isolated from natural
bulk crystals [24], although the method is not scalable, as compared to CVD-growth
methods [25, 26]. There are several types of mechanical exfoliation methods, such as
scotch-tape, ball milling, roll milling, gel-assisted exfoliation, metal-assisted exfoli-
ation, and layer-resolved splitting methods [27–32]. The scotch-tape, metal-assisted
exfoliation, and LRSmethods are introduced here since the scotch-tapemethod is the
first-demonstrated mechanical exfoliation method, and LRS is a method that enables
wafer-scale monolayer exfoliation. The metal-assisted exfoliation is similar to the
scotch-tape method, while it is a polymer-free process and is facile to obtain large
monolayers.

4.2.1 Scotch-Tape Method

Novoselov et al. used to isolate 2D monolayers from a bulk crystal for the first time.
Figure 4.1 shows the process of the scotch-tape method [33]. A piece of graphite
was located on the middle of an adhesive tape and exfoliated by repeated folding
and unfolding the tape. The graphene flakes are transferred onto a SiO2 substrate by
applying a uniform pressure onto the graphite/tape layers to increase the adhesion
between the SiO2 substrate and graphene layers. Finally, the adhesive tapewas gently
removed to leave graphene on the SiO2 substrate. Novoselov et al. also reported the
exfoliation of TMDmonolayers using the scotch-tape method for the first time [34].
They measured the mobility of the exfoliated MoS2 monolayers was between 0.5
and 3 cm2/Vs.
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Fig. 4.1 Procedures of the Scotch-tape method to exfoliate monolayers of 2D materials

4.2.2 Metal-Assisted Method

Although the scotch-tapemethod is a very useful process to obtainmonolayer TMDs,
it does not allow the production of large-areamonolayers. Themetal-assistedmethod
allows us to produce large-area flakes as compared to the scotch-tapemethod. For the
metal-assisted method, the adhesion between metal and TMD is critical. Since gold
has a strong semi-covalent interaction with chalcogen atoms, Desai et al. developed
a gold-assisted exfoliation method that combines the deposited gold layer (100–
150 nm) with a thermal release tape, as shown in Fig. 4.2. The exfoliated monolayer
MoS2 can reach about 500 µm2 [32]. Velicky et al. performed a further study on the
mechanism of the gold exfoliation of TMDs [35]. The STEM images showed that
the distance between the gold atoms and the top sulfur atom of MoS2 was 3.5 Å,
which is larger than the covalent bond between gold and sulfur (2.2 Å), indicating the
interaction between gold and sulfur atoms was not a chemical bond but a strong van
der Waals bond. Missing gold atoms on the surface was studied by DFT simulation,

Fig. 4.2 Illustration of the gold-assisted exfoliation process
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which showed that large vacancies in gold surfaces could reduce the overall binding
force between the TMD and gold surfaces.

4.2.3 Layer-Resolved Splitting (LRS) Method

Since the Scotch-tape and metal-assisted exfoliation methods are not scalable,
researchers put their efforts into improving the scalability. Shim et al. have developed
a new method called the layer-resolved splitting technique [31]. This technique can
isolate a 2-inch wafer size WS2 monolayer. For this technique, CVD-grown multi-
layer WS2 on a sapphire substrate was used for exfoliation. The top surface of these
multilayer TMDs can be nonuniform and discontinuous, but the bottom layer should
be uniform and continuous. Ni thick filmwas deposited on top of themultilayerWS2,
followed by the delamination of the entire WS2 layers from the sapphire substrate.
The bottom side (i.e., continuous and uniform)faced up. Another thick Ni film was
deposited to exfoliate WS2 films layer-by-layer. The different interfacial toughness
between 2Dmaterial andNi, between layers in 2Dmaterial, and between 2Dmaterial
and sapphire were 1.4 J/m2, 0.45 J/m2, and 0.26 J/m2, respectively. The quality of the
monolayers obtained using the LRS method was lower than that of the scotch-tape
method because the LRS method used CVD-grown samples.

Here, it isworth introducing the thinningmethod,which removes layers to produce
a thin film of TMDs. For the thinning process, few-layered TMD flakes are located
on a substrate and use thermal energy or laser for the thinning process. Lu et al.
applied thermal energy to sublimate TMD flakes from the upper layer [36]. In this
experiment, a laser was produced monolayer TMDs by removing extra layers from
exfoliated thick TMDs. Hu et al. used a 532 nm laser applied with 2.5mW for 0.2 s.

Fig. 4.3 Schematic illustration and photo-images of the laser-assisted thinning of TMDs (Left),
before (top right), and after laser thinning (bottom right) of MoS2
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After 13 scans, the original 10-layer MoS2 was made into monolayer MoS2 with a
size of around 10microns [37]. Themechanism behind the laser thinning of the TMD
multilayers was the thermal thinning when MoS2 was heated to 603 K. A simulation
suggests the surface can be around 669 K while under the laser exposure, and by
controlling the exposure time and power, this method can make bulk MoS2 into the
desired thickness. Figure 4.3 left is the schematic illustration of the laser thinning
method. As shown in Fig. 4.3 bottom right, this method enabled the fabrication of a
square pattern ofMoS2 trilayer, bilayer, andmonolayer froma bulkmaterial [38]. The
thickness ofMoS2 was confirmed byRamanmeasurements, as the frequency interval
between E1

2g and A1g Raman peaks is around 25.3 cm−1 for bulk and 19.4 cm−1

for monolayers [39]. Unlike other exfoliation and thinning methods, this method
comes with control of the location and structure of monolayer TMDs. This method
has potential applications in novel devices with a structural design.

4.3 Liquid-Phase Exfoliation

The liquid-phase exfoliation is a very useful method to achieve large-scale and
mass production of 2D materials at low cost for various applications. It is useful
for fabricating thin-film transistors, inkjet printed electronics, conductive electrodes,
and nanocomposites [40–43]. However, the liquid phase exfoliation has clear draw-
backs such as small grain size, high defect density, high possibility of contamination
by chemical groups, and possible phase transition of exfoliated TMDs. Although
several liquid-phase exfoliation methods have been reported, solvent-based and ion
intercalation methods are the two most popular methods [44, 45].

4.3.1 Organic Solvent-Based Exfoliation Method

The procedure of the solvent-based exfoliation method consists of immersion, inser-
tion, exfoliation, and stabilization. Figure 4.4 is the schematic diagram of the proce-
dures of solvent-based exfoliation. The solvents must fully immerse the 2D material
for providing efficient exfoliation during sonication. Furthermore, they need to exfo-
liate the material at high concentration and keep from the restacking of exfoliated 2D
material. To satisfy the conditions, surface tension,Hildebrand, andHansen solubility
parameters must be taken into consideration in order to determine the proper solvent
for a given 2Dmaterial. Based on the solvent requirements, IPA/water, acetone/water,
and THF/water are the best well-known solvents. The optimal volumetric ratio of
solvent to water depends on 2D material. Shen et al. suggested a 1:1 IPA/water
ratio for graphene, hBN, WS2, and MoSe2 and 7:3 for MoS2 [44]. The N-methyl
pyrrolidone (NMP) is an effective solvent for graphene exfoliation due to the strong
interaction between the graphene surface andNMP [46]. A pyrene containing ethanol
solution has been used for the TMDexfoliation. The pyrene physically adsorbs on the
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Fig. 4.4 Schematic illustration of the solvent-based exfoliation method

surface of TMD, which is emerged into the solution. During sonication, the pyrene
adsorbed TMD surface layer slides to form TMD nanosheets. The pyrene imme-
diately adheres to the freshly exposed TMD surface. The exfoliation and pyrene
adsorption cycle can be repeated [47].

4.3.2 Ion Intercalation Method

The fundamental principle behind the ion intercalation method is the intercalation of
impurities between layers of a bulk TMD crystal to increase the interlayer spacing.
Then the increased interlayer spacing reduces van der Waals force for exfoliation.
The intercalants include alkali metal, organometallic, polymers, and atomic species.
Lithium (Li+)-ion is a good material because of its high reduction potential and high
mobility. For lithium intercalation, n-butyllithium (n-BuLi) solution in hexane has
beenwidely used. The n-Bu− transfers an electron to TMD layers and Li+ ion interca-
lates for the chargebalance.Ultrasonicationormicrowaves havebeenused to improve
Li+ intercalation efficiency. The Li+-ion intercalated TMD bulk crystal was used to
exfoliate thin layers using hydrolyzation and sonication. Figure 4.5 a is an illustration
of a Li+ intercalated exfoliation process [48]. Zeng et al. introduced the advanced
Li+-ion intercalation method using an electrochemical approach (Fig. 4.5b). The Li+

intercalation of the electrochemical approach is a fast and controllable method [45].
For the Li+ intercalation process, a voltage was applied between an anodic Li foil
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Fig. 4.5 Schematic diagram of the ion intercalation method. a lithium intercalation and exfoliation
process, and b electrochemical lithium intercalation and exfoliation process for TMD materials

Fig. 4.6 Schematic of a
typical thermal CVD setup
for TMD growth

and a cathodic bulk TMD in an electrolyte. During the process, the Li+ ions interca-
lated between the TMD layers. The Li+ ion-intercalated TMD bulk crystal was then
agitated to generate TMD nanosheets. This exfoliation process can lead to structural
deformation of exfoliated materials. The Li+ intercalation is associated with charge
transfer from n-BuLi to the TMD crystal, and the charge transfer changes the struc-
ture of TMD from 2H to 1 T [49]. This phase change was more favorable when the
Li+ dosage increased. However, this intercalation-induced phase transformation was
reversible by annealing process or exposure to infrared (IR) radiation [50, 51].

4.4 Chemical Vapor Deposition (CVD)

The CVD method for the growth of monolayer 2D materials was first reported in
2007 for graphene growth [52]. Since then, the CVD method has been implemented
for material growth and synthesis owing to its cost-effective and scalable produc-
tion. Now it can control the growth location, the number of layers, the grain size,
and the doping impurities in addition to achieving the wafer-scale growth [53–61].
In this section, three different types of CVD methods are described for the TMD
growth: thermal CVD, metal–organic CVD (MOCVD), and chemical vapor trans-
port (CVT)methods. Thosemethods are distinguished by the precursors that are used.
The melting point of precursors affects the vapor phase transport, which is crucial
in the chemical reactions during the TMD growth. Ideally, one would use metal
and chalcogen precursors with melting temperatures similar to each other to achieve
steady and stoichiometrically vapor to achieve high-quality growth. In reality, the
melting temperature of pure elements S, Se, and Te all have the melting temperatures
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lower than 500 °C, while Mo, W, Re, and Nb all have a high melting temperature
above 2000 °C [62]. This difference in their melting temperatures means the growth
of TMDs by using elemental precursors alone is difficult to achieve. To this end, so
researchers started developing transitional metal oxide in thermal CVD growth and
metal–organic oxide in MOCVD growth as well.

Transitional metal
source

Melting temperature (C) Chalcogen source Melting temperature (C)

Mo 2633 S 115

MoO3 802 (C2H5)2S −103.8

MoBr3 500 H2S −82

Mo(CO)6 150 Se 220

W 3414 SeCl4 305

WO3 1473 (CH3)2Se −87.2

WCl6 275 H2Se −65.7

W(CO)6 150 Te 450

Nb 2477 (C2H5)2Te −10

NbCl5 205 – –

Re 3185 – –

ReF6 18 – –

4.4.1 Thermal Chemical Vapor Deposition

Before discussing the thermal-CVD growth mechanism of TMD monolayers, it is
worth noting the difference in the growth mechanism between graphene and TMDs.
For the growth of graphene with the thermal-CVD method, the introduced hydro-
carbon gases are decomposed on the surface of the metal substrate, and carbon atoms
dissolve into the substrate. The carbon atoms segregate and form a graphene layer
during the cooling down of the substrate due to the solubility difference according
to the temperature. Thus thin metal foils have been used as a substrate because
the carbon solubility of the substrate is key for graphene growth [63–65]. Unlike
the formation process of graphene, the chemical reaction between precursors is the
main route for the synthesis of TMDs. In general, powder forms of transition metal
oxide and chalcogen are used as precursors. The precursors will evaporate at high
temperatures and adsorb on a substrate where the chalcogenization of transition
metal oxide occurs to form TMDs [66–68]. Imanishi et al. deposited MoS2 film with
a thermal-CVD method in 1992 [69], and Lee et al. grew MoS2 monolayer on a
SiO2 substrate in 2012 [70]. They used MoO3 powder and sulfur powder as precur-
sors. Nitrogen was used as a carrier gas. A SiO2 substrate was treated with reduced
graphene oxide, perylene-3,4,9,10-tetracarboxylic acid tetrapotassium salt (PTAS),
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Fig. 4.7 Schematic diagram of the contact growth method. a transition metal oxide thin film
deposited SiO2, b face-to-face contacted chips, c set up for contact growth, and d localized growth
of MoS2 monolayers

or perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) to promoteMoS2 mono-
layer growth. Figure 4.6 is a diagramof a typical thermal-CVDsetup for TMDgrowth
[71]. A contact growth method was suggested for location-specific growth [72]. This
method utilized a thin film of transition metal oxide deposited onto a SiO2 substrate
as a transition metal source instead of using a transition metal oxide powder. The
substrate was put onto a bare SiO2 substrate face-to-face, where TMDs were grown
on both substrates (Fig. 4.7a). This contacted substrate set (Fig. 4.7b) was located in
the middle of the tube, and chalcogen powder was placed upstream (Fig. 4.7c). This
method allowed the formation of well-aligned TMD monolayers (Fig. 4.7d) [53].

In general, the transition metal oxide and the chalcogen powder are placed at
different temperature zones due to the difference in their sublimation temperatures.
Therefore, the thermal-CVD furnace, which usually has two independent heating
zones, is adequate to control the evaporation of the precursors. The gas-phase of
transition metal oxide is adsorbed on the substrate, and chalcogen gas is delivered
to the substrate surface by an inert carrier gas (Ar or N). The TMD monolayers are
formed on the substrate surface after the chalcogenization of pre-adsorbed transi-
tion metal oxide. Hydrogen gas occasionally is introduced to improve the reduc-
tion of transition metal oxide resulting in better chalcogenization [73]. The typical
growth temperatures are between 750 and 950 °C. Fundamental experiments show
the relationship between the ratio of transition metal (M) to chalcogen (X), growth
temperature, edge structure, and shape the evolution of TMDs. As shown in Fig. 4.8a,
Wang et al. demonstrated that the crystal domain would have a triangle shape with
M zigzag edges if the M:X ratio is greater than 1:2. If the M:X ratio is less than 1:2,
the domain would have a triangle shape with X zigzag edges. When the M:X ratio is
equal to 1:2, the domain would have a hexagonal or a truncated triangle shape with
alternative M and X zigzag edges [74]. Yang et al. added one more factor, growth
temperature, to a connection between the M:X ratio and the shape of the domain.
As shown in Fig. 4.8b, they separated three noticeable growth conditions dictating
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Fig. 4.8 Illustration of domain shape and growth parameters. a domain shape according to the
M:X ratio, and b domain shape with respect to the nominal M:X ratio and growth temperature

domain shapes into a three-point star, triangle, and hexagonal flakes [75]. After the
nucleation, the grain size of TMDs increases, and the adjacent grains start merging
together. At thismoment, the grainswould like to stop the growth rather than overlap-
ping and keeping to grow vertically [76]. Thus, large-area monolayers of TMDs can
be grown with a thermal-CVD method. An experimental result recently published
shows the growth of wafer-scale single-crystalline WS2, and MoS2 monolayers. Lee
et al. used single-crystalline hexagonal boron nitride (SC-hBN) grown using self-
collimation of B and N edges inherently. They used sodium tungstate dihydrate
(Na2WO4·2H2O) dissolved in acetylacetone as a W precursor, sodium molybdate
dihydrate (Na2MoO4·2H2O) in acetylacetone as a Mo precursor, liquid ammonium
sulfide solution ((NH4)2S) as an S precursor, and carrier gases of H2 and Ar. The
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triangle shape of WS2 and MoS2 monolayers were grown all over the substrate with
an aligned direction [77].

In addition to the growth of Mo- and W-based TMDs, the thermal CVD method
was used to grow Ta- and Te-based materials. Those materials come with unique
properties owing to crystal structure and electronic band structure. TaS2 has several
phases due to different sulfur atom stacking location and can be tuned by gating [78].
1 T’-WTe2 is a semi-metallic material with unique large and non-saturating magne-
toresistance at low temperatures. Wang et al. used TaCl5 and sulfur as a precursor
for 1 T-TaS2 growth [79]. The growth occurred at 850 °C in a hydrogen and argon
environment, which produces a 5 µmmonolayer single crystal on an hBN substrate.
Li et al. synthesized a few-layered WTe2 with WCl6 precursor at 500 °C, with the
layer thickness controlled by adjusting the amount of WCl6 and its distance from the
growth substrate [80].

4.4.2 Metal–Organic Chemical Vapor Deposition (MOCVD)

The TMD growth method for scale-up production is critical for commercialization,
and MOCVD is a good technique for it. Although MOCVD is a relatively recently
developed method for TMD growth, it has been a well-knownmethod for the deposi-
tion of thin-film semiconductors [81–83]. For the growth of TMDs using MOCVD,
gases of organic molecules containing transition metal (Mo or W) and chalcogen (S
or Se) are introduced over a substrate and decomposed by thermal energy to deposit
TMD thin films on the substrate. Especially, the MOCVD method can precisely
control the partial pressure of the precursors, which permits a uniform deposition
of TMDs on large size of a substrate. Figure 4.9 a is the schematic diagram of a
typical MOCVD setup [84]. Kang et al. deposited uniform monolayers and few
layers of MoS2 and WS2 on a 4-inch SiO2 substrate using molybdenum hexacar-
bonyl (Mo(CO)6), tungsten hexacarbonyl (W(CO)6), ethylene disulfide ((C2H5)2S),
Ar, and H2 [85]. The Ar was used as a carrier gas, and H2 improved the grain
size and crystalline quality. Eichfeld et al. synthesized WSe2 thin films on various
substrates. They have shown the effect of temperature, pressure, the transition metal
to chalcogen ratio, and the substrate for the morphology of films [86]. The TEM
image shows the size of grain and well-stitched grain boundaries (Fig. 4.9b) [85].
The average grain size was around 1 µm, obtained under high pressure, growth
temperature, and with an optimized Se:W ratio. This growth process needs 26 h to
synthesize a 4-inch MoS2 monolayer. The slow growth rate needs to be improved,
and Kalanyan et al. reported a much-improved deposition rate. They deposited a
few layers of MoS2 films in 90 s using the pulsed MOCVD method with bis(tert-
butylimido)-bis(dimethylamido)molybdenum and diethyl disulfide precursors [87].
The MOCVD method can control the number of layers and grow uniform film on a
large area, but it requires toxic precursors.
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Fig. 4.9 Illustration of theMOCVD process a Schematic diagram ofMOCVD growth, and b false-
colored TEM image of MoS2 monolayers (left), (scale bar 1 µm), and STEM image of stitched
grain boundary (right)

4.4.3 Chemical Vapor Transport (CVT) Method

The concept of the CVTmethod was invented in the middle of the nineteenth century
for the growth of single-crystal materials. Schafer conducted systematic research
of CVT and elaborated on the migration process. Fischer et al. employed sealed
ampoules for the first time. Figure 4.10a shows a setup of a typical CVT method
and a grown crystal [88]. A powder form of precursor (AB(s)) is in the source
zone (high temperature) with a gas form of transport agent (L(g)). The evaporated
precursor is going to decompose and react with the transporting agent. Then, the
gases move to the low-temperature area, which is called the sink or deposition zone.
The reverse reaction occurs at the deposition zone resulting in the reformation of a
single crystalline structure. As shown in Fig. 4.10b, there are two different routes to
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Fig. 4.10 Illustration of a CVT growth a typical CVT growth for MoTe2 (left) and grown crystals
(right), b schematic process for TMD monolayer from CVT grown crystals

obtain TMD monolayers with CVT [89]. One is the exfoliation from a bulk crystal
of TMDs, which is grown with the CVTmethod, and the other is the growth of TMD
monolayers on a substrate located at the deposition zone in the ampoule. Dave et al.
synthesized MoS2 andMoSe2 bulk crystals with the CVTmethod. They used Mo, S,
and S2 as precursors and I2 as a transporting agent [90]. Interestingly, both crystals
were p-type. Ubaldini et al. demonstrated a chloride-driven CVT method to grow
MoS2, MoSe2, and MoTe2 bulk crystals [91]. They used Mo, S, Se, and Te with
MoCl5. They found that the ratio of transition metal to transition metal chloride is
an important parameter and the ratio depends on the atomic number of chalcogen,
such as 50 for sulfide and 15 for telluride. Hu et al. deposited MoS2 monolayers
on a mica substrate. MoO3 and S were used as precursors, and I2 was used as a
transport agent [89]. This process allows avoiding themechanical exfoliation process
for obtaining monolayer MoS2 after the bulk MoS2 crystal growth with CVT. CVT



168 K. Kang et al.

provides high-quality TMD samples which are comparable to that of a mechanical
exfoliated sample, but the experimental preparation is complicated and laborious
compared to the CVD growths.

4.5 Molecular Beam Epitaxy (MBE)

The use ofMBE in fabricating semiconductor devices can be traced back to the 1960s.
The deposition requires an ultra-high vacuum (UHV), which typically goes below
10–8 to 10–12 Torr [92]. During the MBE epitaxial film growth, the molecular source
is provided from the effusion cells by heating the solid material or providing the gas
source. During the generation ofmolecular sources, no chemical reaction is involved;
the chemical reaction is taking place on the target substrate (Fig. 4.11a) [71, 93–95].
By controlling the shutters of individual effusion cells, MBE can make the sharp
atomically thin layers between epitaxy layers or doping the epitaxy layer precisely.
Another advantage of using MBE is that the UHV environment can produce high
purity of grown films. MBE is one of the first scalable methods for TMD monolayer
fabrication. Starting from 1980s, Atsushi Koma synthesized monolayer MoSe2 on
CaF2(111) substrate [96]. Since the doping of TMDs can be achieved by introducing
an extramolecular beamsource,MBEhas the potential for fabricating heterostructure
with a doped layer. Fu et al. synthesized MoS2 monolayers epitaxially on hBN [97].
Figure 4.11 b shows an AFM image of a seamless MoS2 monolayer grown on an
hBN/sapphire wafer. For MoS2 to nucleate on hBN, the growth process was divided
into two steps: In the first step, the growth substrate was kept at 750 °C with a
high concentration of Mo source, in order to promote the nucleation of MoS2. Three
hours later, the substrate temperature was adjusted to 750 °Cwith a lowerMo flux, to
initiate the growth of crystals. By doing so, large-scale growth of TMD monolayers
was achieved, while it took approximately 10 h to grow a 2-inch wafer size of MoS2
monolayers [94, 97].

4.6 Doping/Alloy of Transition Metal Dichalcogenides

Although TMDs have been widely studied for the applications due to the inherent
optical and electrical properties, the tailoring of the material properties allows a
better material selection for specific applications and improve the performance of
devices.While severalmethods are available for themanipulation of TMDproperties,
doping is an essential method. The doping methods can be sub-categorized into
substitutional, interstitial, and charge doping [58, 98–102]. In this chapter, we focus
on substitutional doping. The substitutional doping represents the impurity atoms
to replace host atoms to form covalent bonds; thus, the products are stable, and
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Fig. 4.11 MBE deposition
system a schematic diagram
of MBE deposition, b AFM
image of MBEgrown MoS2.
Scale bar is 1 µm

the property degradation is less likely than that of other doping types [103]. TMDs
consist of cation elements of the transition metal (Mo and W) and anion elements of
chalcogenide (S and Se). Thus, two different types of cation and anion substitutional
dopings are discussed.
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4.6.1 Substitution of Cation Elements in TMDs

The substitutional cation doping is a method where the host atoms of transition metal
in TMD are replaced by the impurity atoms. The tungsten doping on Mo-based
TMDs and vice versa are well-known cation substitution processes to manipulate
the optical properties. The TMDs have their own peak value of photoluminescence
(PL), and the peak position can be shifted by substitutional doping of transitionmetal
atoms and chalcogen atoms. Figure 4.12a contains the graphs of PL intensities of
WS2, MoS2, WSe2, and MoSe2 monolayers on SiO2 substrate at room temperature
[104]. The PL peaks are 2.03, 1.88, 1.67 and 1.57 eV for WS2, MoS2, WSe2 and
MoSe2 respectively [105]. Tongay et al. controlled the concentration ofW andMo to
fabricate Mo1-xWxSe2 monolayer for tuning the PL peak in Fig. 4.12b [106]. Other
metal atoms have also been used for the substitutional cation doping to tailor the
property. Rhenium (Re) has been used for donors acting as an n-type dopant, and
Niobium (Nb) has been used for acceptor acting as p-type dopants. Zhang et al.
doped MoS2 with Re and observed the shift of the Fermi level up by 0.5 eV resulted
from the degenerate n-type doping [107]. The I-V curves of doped and undoped
MoS2 monolayers were measured using the conductive atomic force microscopy
(CAFM) tip. Figure 4.12c illustrates a Schottky barrier junction between the CAFM
tip and pristine MoS2 [107]. However, the behavior of Re-doped MoS2 is closer
to metal than to a semiconductor. Suh et al. used Nb as a p-type dopant to transit
from inherently n-type MoS2 to extrinsic p-type doped MoS2. The 0.5% Nb doping
concentration gave an ohmic contact between the doped MoS2 and the Ti electrode
instead of the expected Schottky barrier. The p-n homojunction of vertically stacked
Nb-doped and undopedMoS2 showed the gate tunable current rectification, as shown
in Fig. 4.12d [108]. The substitutional doping enabled 2D dilute magnetic semicon-
ductors (DMS) at room temperature for the spintronics and valleytronics applica-
tions. The substitution of Fe atoms at Mo sites in MoS2 monolayers facilitated the
ferromagnetismof Fe:MoS2 at room temperature [109]. The room temperature super-
conducting quantum interference device (SQUID) and optically detected magnetic
resonance (ODMR) measurement showed unambiguous hysteresis (Fig. 4.12e) and
frequency widening (Fig. 4.12f). Yun et al. showed vanadium-doped WSe2 mono-
layers exhibiting ferromagnetism at room temperature as well [110]. The magnetic
force microscopy (MFM) (Fig. 4.12g) showed a domain with phase-contrast sepa-
rated by domain wall (i) and dendritic patterns in monolayer (ii) and multilayer
(iii).

4.6.2 Substitution of Anion Elements in TMDs

The anion substitutional doping is a technique that replaces host atoms of chalco-
genides in TMDs with non-metal dopants. Li et al. grew Se-dopedMoS2 monolayers
(MoS2xSe2−2x) with different Se concentrations [111]. As shown in Fig. 4.13a, the PL
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Fig. 4.12 Substitutionally doped TMDs a normalized photoluminescences of TMDs, b normalized
photoluminescences ofMo1-xWxSe2 alloywith different x (0≤ x≤ 1) value, c I-V curve of pristine
and Re-doped MoS2 monolayers., d Nb-doped-MoS2 monolayers are p-type. The fabricated p-n
homojunction shows current rectification, e M-H loop of Fe: MoS2 monolayers, f ODMR spectra
of NV− centers coated on MoS2 and Fe: MoS2 monolayers, gMFM image showing ferromagnetic
domain strips (10 µm scale bar)

peak changes from 659 to 789 nm according to the Se concentrations. The transition
fromWS2 to WSe2 arising from the substitutional doping of Se on WS2 monolayers
changed not only the PL intensities but also the semiconductor type from n- to p-type.
TheWS2,MoS2, andMoSe2 showed inherently n-type semiconductor properties, but
WSe2 showed a p-type property. Thus the transition fromWS2 to WSe2 changed the
PL peak positions as well as the semiconductor type from n to p-type. Duan et al.
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Fig. 4.13 TMDalloys via substitutional dopinga normalized photoluminescences ofMoS2xSe2−2x
alloy with different x (0 ≤ x ≤ 1) value, b normalized photoluminescences of WS2xSe2-2× alloy
with different x (0 ≤ x ≤ 1) value, c I-V curve of n-type semiconductor when it is WS2 rich alloy
and p-type when it is WSe2 rich alloy, d chlorine dopedMoS2 andWS2 have low contact resistance
between Ni and doped material, e nitrogen-doped MoS2 changes from n-type to p-type
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Fig. 4.13 (continued)

measured the PL intensities and the threshold voltages of WS2xSe2-2× with different
values of x. Figure 4.13b, c show the PL changes and p-type in WSe2 and n-type in
WS2 [112]. Yang et al. doped a few-layered WS2 and MoS2 with chloride molecules
(Cl) as a dopant [113]. As shown in Fig. 4.13d, the Cl-dopedWS2 andMoS2 reduced
contact resistance and Schottky barrier width. Azcatl et al. used nitrogen to replace
sulfur atoms ofMoS2. The nitrogen-dopedMoS2 FET in Fig. 4.13e depicts a positive
shifted threshold voltage (Vth), which represents nitrogen-doped MoS2 is a p-type
material [114]. Besides the substitutional doping, the conversion of the top-layer
chalcogen atoms can also be achieved. The product is called Janus Monolayers,
in which a layer of transitional metal atoms is sandwiched between two layers of
chalcogen, halogen, or pnictogen atoms. Rawat et al. proposed aWSeTe/WSTe based
hetero-bilayers for nano-piezotronics applications [115]. Lu et al. converted CVD
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MoS2 using an H2 plasma stripping and thermal salinization [116]. The plasma strip-
ping replaced top layer S atoms with H atoms, which later was replaced by Se atoms.
However, during the plasma treatment, the previously grownTMDcrystal was shown
to be damaged, which limits the application of the Janus fabrication method.

The tailoring of TMD properties is important for several applications. The substi-
tutional doping of ferromagnetic materials into TMDs generates a stable magnetic
phase, and the 2D dilute magnetic semiconductors are thus drawing attention due to
the application for spintronic and memory devices.

4.7 Summary

The TMDs are 2D semiconductor materials showing unique electrical, mechan-
ical, and optical properties, which can complement graphene (metallic material)
and hexagonal boron nitride (hBN, insulator) for the next-generation semiconductor
applications. In this chapter, a variety of TMDgrowthmethods have been introduced.
Although the basic concepts of production methods can be shared with other van der
Waals materials, unique approaches would be required for TMDs. Mechanical exfo-
liation methods use a bulk crystal of TMDs to produce high-quality samples quickly
and easily. Remarkably, the layer-resolved splitting method gives wafer-size TMD
monolayers using CVD-grown multilayer TMDs on a SiO2 substrate. Liquid-phase
exfoliations enable mass production of a few-layer TMDs. The CVD methods can
permit the growth of wafer-scale TMD monolayers, the control the number of TMD
layers and grain sizes. The doping of the TMDs for tailoring properties has also been
introduced. The doping processes change the bandgap, type, mobility, and magnetic
properties. The knowledge in the synthesis of TMDs and their alloys (via doping) is
essential for the research and applications of TMDs.
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Chapter 5
II-VI Semiconductor Quantum Dots: The
Evolution of Color Purity with Structure

Mehmet Hikmet Yukselici, M. K. Torun, Asuman A. Bozkurt,
Melda Patan Alper, Zaher M. Nassar, Damla Bulut, and Mesut Balaban

Abstract II-VI semiconductor quantum dots such as binary CdTe, CdSe, CdS, ZnO
and ternary CdS1-xSex, CdxZn1-xS embedded in glass or deposited on glass substrates
as thin film or colloids in aqueous solution structures have potential for technological
applications such as light emitting diodes (LED), gas, pressure and temperature
sensing detectors and two- or three-dimensional imaging, and solar cells. In this
chapter we present a comprehensive study on nanometer-sized crystals fabricated by
various routes to exploit the defect structure, progression of stoichiometry, growth
kinetics, strain due to lattice mismatch and quantum size effect by employing optical
(transmission, photoluminescence and Raman spectroscopy) and structural (SEM
and XRD) characterization techniques. We finally scrutinize the evolution of color
or emission wavelength with crystallite size dependent band gap energy through
colorimetry.

5.1 Introduction to II-VI Semiconductor Quantum Dots
in Glass and Quantum Size Effect

In the properties and customization of nanodevices that are increasingly being incor-
porated into information technology, electrical, magnetic,mechanical, and biological
systems, the sample composition and physics of quantum dots embedded in matrices
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are of fundamental significance [1–6]. Liquid nanoparticles are within a free medium
through which they may quickly migrate and thus join to form larger colloids with
neighboring nanoparticles; this causes a limit to their shelf-life. It is well known that
quantum dots are mostly synthesized by wet chemistry which makes them sensitive
to atmosphere [7]. The exciton-binding energy is increased even more by nanoparti-
cles embedded in matrices with a smaller dielectric constant and a greater energy gap
than in the standard dimensional systems. It activates improved optical effects. The
significance of the solid matrix comes from the very long shelf-life of quantum dots
embedded in glass since they are within a restricted medium. The crystal achieves
new optical and electronic properties when the size of the bulk semiconductor is
reduced to a nanometer scale. Energy levels are quantized as in atoms and the energy
difference between successive levels widens with the inverse of the size squared [8–
16]. The quantum dot radii are studied in strong containment limits with an effective
mass model [17]. First of all, the band structure must be well examined to use the
effective mass model. As a consequence of this analysis, the Urbach tail method [17,
18] discusses the defect levels below the bandgap. The Urbach tail is associated with
amorphous materials and with localized states at the band edge.

5.2 Quantum Size Effect

A quantum dot is a semiconductor whose three-dimensional excitons are confined
[19]. An exciton is a pair of bound electron-holes that are attracted by Coulomb
force to each other. An electron–hole pair is bound inside a Bohr exciton radius in a
bulk semiconductor. If the electrons and holes are squeezed below the Bohr radius,
then the characteristics of the semiconductor can change and size effect sets in. Bohr
Radius is the sum of electron Bohr Radius (ae) and hole Bohr Radius (ah)

ar = ae + ah (5.1)

IfR>> ar , we call it weak containment; ifR<< ar , we call it strong confinement.
ar is around 7.5 (nm) for CdTe. Exciton activity is the most important aspect of the
theory. Exciton behaves like an atom; the three-dimensional model of a particle in a
box is a good approximation [20]. TheSchrödingerEquation is the fundamental equa-
tion in quantum mechanics, and its solutions provide us with the wave description
of particles. The energy E is the only unknown component.

− �
2

2m

d2ψI I

dx2
+ 0 = E (5.2)

d2�I I

dx2
= −2m

�2
E (5.3)
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d2ψ

dx2
= −k2ψI I k2 = 2mE

�2
> 0, ⇒ k =

√
2m

�2
E (5.4)

Since the potential well is symmetric, we have three solutions, one even, two other
odd solutions.

ψI I = C cos(kx) f or even pari ty

ψI I = D sin(kx) f or odd pari ty

At a/2, for even parity a, is the width of a quantum well,

C cos
(
k
a

2

)
= Ae−κ a

2 (5.5)

−Ck sin
(
κ
a

2

)
= −Aκe−κ a

2 (5.6)

These two equations are transcendental (5.5, 5.6), which means that they cannot
be solved analytically, we must solve them numerically. Solving one-dimensional
time-independent Schrödinger Equation numerically, these solutions are obtained for
finite well [21–23]. Figure 5.1 shows the energy levels against radius size as 0.5 nm
and Table 5.1 shows the calculations of energy levels for a particle in a potential well
from 0.50 nm to 5.00 nm radius in size.

CdTe quantum dots have been grown through heat treatment processes in borosil-
icate glass by diffusion limited growth. In the production of quantum dot-based
devices, size dispersion, average quantum dot radius, and the number of quantum

Fig. 5.1 Energy levels for a particle in a potential well. Energy plotted against (nm) for v = 0.5
(eV)
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Table 5.1 Calculations of energy levels for a particle in a potential well. Energy listed against a
(nm)

A (nm) Total eV 1 Total eV 2 Total eV 3 Total eV 4 Total eV 5 En

0.50 2.88 3.80 4.46 4.98 5.41 18.03

1.00 2.31 2.67 2.88 3.03 3.14 5.59

1.50 2.01 2.17 2.26 2.32 2.37 3.28

2.00 1.83 1.92 1.97 2.00 2.02 2.48

2.50 1.72 1.78 1.81 1.83 1.84 2.10

2.75 1.69 1.73 1.75 1.77 1.78 1.99

3.00 1.65 1.69 1.71 1.72 1.73 1.90

3.25 1.64 1.66 1.68 1.69 1.69 1.83

3.50 1.61 1.64 1.65 1.66 1.66 1.78

3.75 1.60 1.61 1.62 1.63 1.63 1.73

4.00 1.58 1.60 1.60 1.61 1.61 1.70

4.35 1.56 1.58 1.58 1.59 1.59 1.66

4.50 1.56 1.57 1.57 1.58 1.58 1.64

4.75 1.55 1.56 1.56 1.56 1.57 1.62

5.00 1.54 1.55 1.55 1.55 1.55 1.61

dots per unit volume are major quantities to be regulated. During the quenching
of the glass melt, and then through the diffusion of ions through the borosilicate
glass, quantum dots in the glass first nucleate begin to develop at the temperature of
heat treatment. When the relatively small quantum dots disappear and redeposit on
larger quantum dots when the reactants (Cd, Te, Se, or Zn) have been precipitated,
this condition is referred to as Ostwald ripening. These are the three distinct phases
of precipitation: nucleation, natural growth, and ripening of the Ostwald [24]. The
creation of the new phase at the first stage is based on the thermal shift of themedium,
which takes the atoms to new positions relative to the untreated medium. Nucleation
is known as this method. The nuclei’s critical radius a* is given by

a∗ = 2σ

�Gv
(5.7)

The formation of nanocrystals, rate of nucleation R is given by

R = A exp

[
−

(
�Gc + �Ga

kBT

)]
(5.8)

where �Gc = 16πσ3/3�Gv
2 is the free energy to form a critical nucleus, �Ga is the

activation energy for the atoms to jump across the nucleus matrix interface, �Gv is
the free energy of bulk per unit volume, σ is the interface free energy per unit area.
The distribution of the nuclei radius is given by P(a).
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P(a) = P0 exp

(
−4πσ(a − a∗)2

3KBT

)
(5.9)

Supersaturation value controls the number of nuclei and the critical radius. The
higher supersaturation value, the smaller is the critical radius and the smaller clusters
can grow. From here, the standard deviation �a of the nuclei radius of average size
aav = a∗ can be written as

�a =
(
3KBT

8πσ

) 1
2

(5.10)

During the nucleation process, the average radius size and size distribution
depends only on σ and T. Doped borosilicate glass with the properties of CdTe
nanoparticles is found to be strongly size dependent [20]. Nanoscale systems are
considered to have different properties than bulk systems. In this analysis, absorp-
tion spectroscopy is first used to detect the bandgap of CdTe nanoparticles, then the
radii of the CdTe quantum dots doped into the borosilicate glass are calculated by
using bandgap energy. Some mathematical and physical calculations and properties
rely on the theoretical basis of estimating the radii of the quantum dots. Absorp-
tion spectroscopy is an analytical technique based on the measurement of radiation
passing through the sample’s volume of light absorption.Molecules can be excited by
the absorption of light during this passage. The transmitted light intensity is lower
than the incident light intensity. The following Beer-Lambert equation is used to
measure the absorbance and optical density.

A = log

(
I0
I

)
(5.11)

To find bandgap energies (OD × hv)2 versus hv curves are plotted in Fig. 5.2, the
straight lines on the graph show the bandgap energies.

OD = A

L
(5.12)

where, OD means Optical Density, A absorbance, L thickness of the sample.
The fingerprints for crystal structures are the vibrational frequencies (or modes).

Various crystals have various frequencies. In Table 5.2, some of the fundamental
vibrational frequencies are mentioned [24–26] below.

The crystal under investigation is excited by laser light at frequency ω1 and the
frequency of scattered light is measured the difference between the two gives the
vibrational frequency of the crystal. However, due to the nanometer size of the
crystal (phonon confinement) and the strain between the nanocrystal and the host
matrix, the vibrational frequencies we find in Ramanmeasurements could be shifted.
That is why the distinction between the shift due to phonon containment and strain
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Fig. 5.2 (OD × hv)2 plotted versus photon energy hv to find bandgap energy

Table 5.2 Fundamental
vibrational frequencies

Crystals Vibrational frequencies (cm−1)

CdTe 170.8

CdS 301.0

CdSe 210.3

ZnTe 217

ZnS 320

is an important task. The Grüneisen method [26] can be used to measure the order of
magnitude. Grüneisen proposed that the ratio of percentage decrease in vibrational
frequencies (ω) of the individual atoms to percentage increase in volume (V) is a
constant which depends on the properties of the solid, that is,

γ = − ∂ lnω

∂ ln V
=

dω
ω

dV
V

(5.13)

where γ is the Grüneisen parameter.
Table 5.3 shows the three samples for size confinement versus radius table where

Pi is Raman node, γ is Grüneisen parameter and LOB , is Bulk structure as 166.73
in Solving the equation for three different samples, as received, 12 and 24 h �ωc.
Correlation between R(nm) size confinement shift and radius can be seen in Table 5.4.

Quantum dot sensitized solar cells have beenmanufactured using cadmium-based
quantum dot materials in the II-VI range, including CdTe, CdSe, and CdSe similar
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Table 5.3 Three samples for size confinement versus radius table

Radius (nm) Pi LOB Grüneisen parameter γ

As received 2.14 159.926 166.73 0.91

12 h 2.35 153.638 166.73 0.91

24 h 2.86 153.698 166.73 0.91

Table 5.4 Size confinement
and radius

Radius (nm) Size confinement shift

As received 2.14 7.03

12 h 2.35 0.58

24 h 2.86 2.99

in scale. The size and structure of the synthesized QDs were determined using TEM
and XRD analysis. The optical properties of the samples were characterized using
absorption spectroscopy. The quantum dot scale was determined theoretically using
the Effective Mass approximation. The performance of three solar cells sensitized
with CdTe, CdSe, and CdS QDs is compared. On the basis of the differences in the
effective masses of the charge carriers [27].

For technical applications in opto-electronics, nanocrystals embedded in the glass
matrix have a robust and stable structure up to 250 °C. The findings of this work
are focused on optical research, including measurements of optical transmission and
Raman scattering. They should be backed by structural measurements such as High-
Resolution Transmission Electron Microscope (HRTEM) and small angle X-ray
scattering (SAXS) to assess relative weight of the results and conclusions drown.

5.3 Synthesis of Quantum Dots in Aqueous Solution

Colloidal aqueous synthesis of quantum dots gained significant increased research
interest for the last 30–40 years because of their size dependent properties [28–34]. To
prepare water dispersed QDs is relatively inexpensive, less toxic, environmentally
friendly, effective and highly reproducible. In general, three components, organic
solvents, precursor solution and surfactants were used to synthesize aqueous QDs.
An aqueous synthesis process starts with the reaction between metal ions and anion
predecessor in the presence of an appropriate capping reagent or stabilizer. The
subsequent process of the synthesis, the nanoparticles’ nuclei forms and then more
particles deposit onto the formed nucleus called nucleation. After nucleation, particle
growth stage take place, the growth rate of nanoparticles is slower than that of the first
stage and they reach the desired size over time. In this type of growth, the average
nanoparticle radius is proportional to the square root of the applied temperature. If
the process is not quenched, this event is called Ostwald Ripening if the particles
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continue to grow where the average quantum dot size increases with the cube root
of the annealing time [35–39]. The radius of the nanoparticle is controlled by the
annealing time.

There are several methods utilized to synthesis quantum dots such as physical,
chemical and biological and these synthesis techniques have the ability to control
nanoparticle size, surface chemistry and composition. In this study, the chemical
syntheses of CdTe nanocrystals are performed in aqueous medium. CdTe QDs are
synthesized in aqueous phase whereMercaptopropionic Acid (MPA) acts as capping
reagent which has some unique properties such as strongly emitting and stable
colloids.

5.3.1 Aqueous Synthesis of CdTe Quantum Dots

For environmental and biological reasons, aqueous synthesis has been used in this
study because of the fast, secure and stable formation of quantum dots. In general,
highly luminescent CdTe nanoparticles were synthesized by mixing Te precursor
and cadmium ion solution with capping ligand MPA in aqueous phase [40–44].
CdTe quantum dots are synthesized by a two-step method: Synthesis of NaHTe and
preparation of Cadmium Ion Solution.

5.3.1.1 Synthesis of NaHTe (Precursor Solution)

HPLC (Sartorius Water Purification Systems) water used to clean the glass vial (2–
3 times cleaning process), glass vial dried at 60 °C in the furnace. Tellurium and
NaBH4 precursors were mixed in a glass tube with a 1:4 ratio (1.5312 g NaBH4 and
0.3828 g Te). Te powder color is black and NaBH4 is white, their mixture which
dissolved in 5 ml HPLC water is hyaline purple after one day in the refrigerator.

5.3.1.2 Preparation Method of Cadmium Ion Solution

1 mmol cadmium chloride is dissolved in 150 ml HPLC water and the mixture pH
should be adjusted to 7.0 by adding sodium hydroxide into three neck flask. 0.2 ml
of mercaptopropionic acid (or TGA or cysteine) is added into the above mixture.
3 ml of the Te precursor solution (0.3 mmol) is swiftly injected into the reaction
mixture. The reaction mixture will become reddish brown in colour indicating the
formation of CdTe nuclei in the solution. The mixture should then be aged (reflux)
at 99 °C until the desired CdTe QD size (emission colour) is achieved. The CdTe
QDs can be purified using centrifugation to remove excess surfactants and unreacted
precursors in 6000 rpm. Themixture usually changes color in the first 10–15minutes,
with the onset of growth starting from golden yellow to dark red over time. With
conditions relevant combinations, complete growth occurred between a few minutes
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to several hours given in Fig. 5.4. Six solution samples were taken at different times
and solutions in the vials contain various colour samples shown in Fig. 5.3 because
each sample has different sized CdTe nanoparticles.

Developing simple, fast, cost-effective, high quantum yieldmethods for preparing
QDs of controlled size and shape is always an important area of research. There
are many state-of-the-art methods for synthesizing QDs such as electro deposition,
organometallic way, aqueous route with small thiols as stabilizers or polymers and
solution phase reductionmethods [45–50]. TheCdTe nanoparticles directly produced
in aqueous phase with thiols capping ligand of MPA as a stabilizer. In this repro-
ducible and clean process, Te-Cd molar ratio and pH value have great importance to
fabricate ultrafast QDs. The advantages of QDs prepared by the aqueousmethodwith
thiols (MPA) are: they have high quantum yields, synthesis takes place low temper-
ature and they are suitable for biological applications if they modified. The method
studied in the research is practical, fast, stabile, accurate, low-cost and highly conve-
nient and suitable for quality chemical synthesis. Other possible synthesis techniques
are also evaluated.

The UV visible spectrum measurements were performed between 330–630 nm
given inFig. 5.4.AllCdTenanoparticles showedwide absorption and their absorption
peaks lay between 430 and 530 nm, rely on the radius and structure of the CdTe
nanoparticles. CdTe QDs exciton peaks have enormous blue shifted due to quantum
confinement effect.With the long heat treatment time, the maximum absorption peak
of QDs shifted to shorter wavelengths with decreasing size of the CdTe nanoparticles
due to quantum confinement effect. The size of the CdTe NCs could be controlled by
the temperature andheat treatment time and easilymonitored by absorption spectrum.
UV visible spectra revealed slightly red-shifted absorption bands as the particles
produced in the 23-min synthesis went from 488 to 514 nm of the particles taken

Fig. 5.3 CdTe QDs in aqueous solution with different sizes
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Fig. 5.4 The UV visible spectra of aqueous phase prepared CdTe QDs samples which were
extracted at different heating time periods: Sample 1 (23 min), Sample 2 (74 min), Sample 3
(120 min), Sample 4 (200 min), Sample 5 (255 min), Sample 6 (310 min)

in the 310-min synthesis. This shift indicated that the nanoparticle size increased
throughout the synthesis.

CdTe QDs with MPA capping agent were synthesized in aqueous medium were
synthesized in aqueous medium successfully with chemical colloidal process. The
synthesis process, which takes place at a low temperature of about 100 degrees, is
a very simple, fast and inexpensive method. According to these absorption spectra
results the absorption wavelength gradually increase with increasing the growth time
(wavelength blue-shift). The size of QD-CdTe is well controlled by reaction time and
growth temperature.

5.4 Investigation of Optical and Structural Properties
of CdTe Thin Films

Because of its band gap energy which matches the solar radiation to get high-
efficiency energy conversion, cadmium telluride (CdTe) is a promising semicon-
ductor for many applications such as light-emitting diodes, photovoltaic devices,
and fluorescent labels [51]. CdTe have a high optical absorption coefficient initiating
from near-IR and rising to more than 104 cm−1. The bandgap energy (Eg) of its
bulk material is ~ 1.5 eV, this value matches the solar radiation spectrum to get best
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conversion efficiency [52]. Quantum size effect in CdTe thin films has been investi-
gated in references [53, 54]. Reducing the grain size of the bulk material to nanoscale
gives the material new conducting, optical, and structural properties; energy levels
are quantized and the bandgap energy increases as size decreases [55]. We employ
optical absorption (ABS) for evaluating the size of grains and Urbach energy (EU).
X-ray diffraction (XRD) technique is employed to study the structural characteriza-
tion. Broadening the peaks of XRD is mostly a result of grain size and strain effects.
Each effect of them is estimated by Williamson-Hall (W-H) method [55]. We also
employ Raman spectroscopy to investigate the structural property; nano-scale grains
and strain results in phonon frequency shift. The results of absorption, X-ray diffrac-
tion, and Raman spectroscopies are combined together to know the grain size effect
on strain and structural disorder.

Five thin films of CdTe are prepared by depositing the compound molecules on
glass substrates by using physical vapor deposition (PVD) method. The properties of
the films are then optically and structurally investigated employing optical ABS,
Raman, and XRD spectroscopies. Bandgap energy of the film (Efilm

g ) is evaluated
and the grain size is calculated from Efilm

g value. The bandgap energy is blueshifted
by 0.71 eV when thickness (t) decreases from 500 to 100 nm. EU related to the long-
wavelength tail width increases from 0.585 to 0.827 eV when t decreases from 500
to 100 nm, respectively. Widening and shifting of X-ray diffraction lines are mostly
produced from the strain and grain size effects. In Raman spectra, relative to the bulk
phonon frequency, shifts in phonons frequency (LO-mode phonon is blueshifted,
while LA-mode and TO-mode phonons are redshifted) are observed. The results of
optical absorption, Raman, and X-ray diffraction, spectroscopies are combined for
investigating grain size evolution effect, structural disorder, and grain-size-dependent
strain.

5.4.1 Experimental Details

CdTe thin films are grown on glass slides at 150 °C and 2.2 × 10–5 torr. Powder of
CdTe compound is thermally evaporated from tantalum crucible onto the glass slides
in the “VAKSISPVD-HANDY/25-TE” chamber. Film thicknesswas estimated using
a quartz sensor fixed near the substrate.

The optical absorption experiment is conducted at room temperature. The
measurements are obtained using silicon detector put at the output of a computer-
controlled motorized 1/8 m Oriel monochromator. A tungsten light source powered
by a dc power supply is employed for shining the samples. In Fig. 5.5 is the transmit-
tance plot shown. Assuming transparency of the samples at wavelengths 850 through
900 nm,we compute the reflectance (R) from the relation R= 1− Tmax where Tmax is
the maximum transmittance within that range. Also, we consider that the reflectance
values do not vary considerably as a function of wavelength (λ) and compute the
optical density (OD) according to (5.14):
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Fig. 5.5 Transmittance versus wavelength [55]. (Reproduced with permission. Copyright 2016,
Wiley-VCH)

OD = ln

(
I0
I

)
− ln

(
I0
I

)
min

(5.14)

where the term ln
( I0
I

)
min

is due to the reflection effect at the interfaces.
X-ray diffraction patterns of CdTe thin films recorded on a panalytical multipur-

pose diffractometer (MPD) are shown in Fig. 5.6. The wavelength of the X-ray used
is CuKaα (λ) = 1.5406 Ao. The instrumental error is less than 2 mrad.

A 250-mm-focal-length Renishaw spectrometer is used, at room temperature, for
Raman spectroscopy.ARayleigh line rejection filter is used inRamanmeasurements.
The system can measure frequencies >100-cm−1. A 532-nm-wavelength is used for
exciting the CdTe films within a 1-mm-size spot. According to the estimation for the
spectral region investigated in this study, the accuracy of the system is ±0.1 cm−1.
The Raman spectra, plotted according to the model discussed in Sect. 5.3.6 [56], are
shown in Fig. 5.7. From the figure we notice that different frequencies were recorded
for different phonon modes.

Figure 5.7a shows peak centers at wavenumbers around 123 cm−1 due to zone
center LA phonons at the X critical point. The peak center at about 140 cm−1 in
Fig. 5.7b is due to the G-critical-point transverse optical (TO) phonon, the peak of
about 162 cm−1 in Fig. 5.7c results from X-critical-point LO phonons.
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Fig. 5.6 Thin films and powder CdTe XRD patterns [55]. (Reproduced with permission. Copyright
2016, Wiley-VCH)

5.4.2 Effect of Grain Size and Strain on Bandgap Energy

Square of OD (OD2) is plotted versus E of the incident light as shown in Fig. 5.8.
The bandgap energy of the film (Table 5.5) is found by extending the straight part
of the curve shown in the figure. It is noticed that E f ilm

g is blue shifted by 0.71 eV
when R is reduced from 2.055 to 1.6 nm.

Strain, produced from dangling bonds at interfaces and surfaces, and quantum
size effect, produced from the charge confinement in the nano-scale film, may both
lead to this blueshift. The average grain size (Rave) is computed from the measured
value of E f ilm

g using the following equation [57]:

E f ilm
g (eV ) = Ebulk

g (eV ) − 0.14

Rave(nm)
+ 0.376

μ[Rave(nm)]2
+ �Estrain (5.15)

whereμ represents the electron-hole pair reduced mass. The second term of (5.15) is
the contribution of Coulombic effect, the third term is the contribution due to charge
confinement, and the fourth one (�Estrain) is due to the strain effect and is calculated
from the following relation [55, 58]:

�Estrain = E f ilm
g |strain − Ebulk

g = B
dEg

dP

[
1 −

(
a f ilm

abulk

)3
]

(5.16)
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Fig. 5.7 Intensity versus Raman shift—a comparison between the different phonons frequencies:
a X-critical-point LA phonon; b G-critical-point TO phonon; c X-critical-point LO phonon [55].
(Reproduced with permission. Copyright 2016, Wiley-VCH)
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Fig. 5.8 Square value of optical density against energy for CdTe thin film [55]. (Reproduced with
permission. Copyright 2016, Wiley-VCH)

Table 5.5 Bandgap energy and average grain size are evaluated for CdTe thin films [55]

Thickness (nm) 50 100 200 350 500

E f ilm
g (eV) 3.64 3.20 3.06 2.80 2.49

Rave(nm) 1.432 1.600 1.665 1.818 2.055

EU (eV) 0.894 0.827 0.762 0.657 0.585

where B = 4.24×1010Pa is the bulk modulus for CdTe crystal, dEg

dP = 79± 2meV
GPa is

the coefficient of pressure-dependence bandgap energy [59].�Estrain was evaluated
at about 2.2% of the 0.71 eV total blueshift that takes place in the bandgap energy
with decreasing the thickness by 400 nm (from 500 to 100 nm) [55]. Substituting
Ebulk
g = 1.44eV and μ = 0.08 (in the unit of rest mass of electron (m0)) in (5.2)

gives Rave values (Table 5.5). It is noticed that Rave is directly proportional to the
thickness. The E f ilm

g –Rave data is fitted (Fig. 5.9) to an exponential equation given
by

E f ilm
g = Ebulk

g Exp

(
A

R1.5

)
(5.17)

where the constant A is found by fitting (A = 1.607 in this study). As it is seen from
Table 5.5, the film contains films consist of nano-size grains. Therefore, we propose
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Fig. 5.9 Bandgap energy as a function of grain size (the data is fitted to an equation given by 5.17)

that grain size rather than film thickness determines the bandgap energy. The data
analysis shows that reducing grain size results in a blueshift in the energy gap.

5.4.3 Urbach Energy

The exponential-shape tail appeared before the absorption edge (Fig. 5.8) may be
due to the effect of structural and thermal disorder that can be determined by using
Urbach rule. The relationship between OD and photon energy (E) is [60]

OD(E) = OD0 Exp

(
− Eg − E

EU

)
(5.18)

where OD0 is the optical density at E=Eg, and EU is known as Urbach energy.
Figure 5.9 is a plot for ln(OD) as a function of E according to (5.19):

ln(OD) =
(
ln(OD0) − Eg

EU

)
+

(
1

EU

)
(5.19)

The straight lines in Fig. 5.10 are linear fits to the straight part of the ln(OD)-
E curve. The Urbach energy is calculated from the slopes of these lines, where
EU = 1/slope. The calculated values of EU are shown in Table 5.5. Urbach energy
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Fig. 5.10 Natural logarithm of OD is plotted versus energy. The straight lines are the linear fits
to the straight part of the ln(OD)-E curve [55]. (Reproduced with permission. Copyright 2016,
Wiley-VCH)

versus thickness (t) of the film is plotted in Fig. 5.11. The curve is fitted as a quadratic
equation to the data given in Table 5.5:

EU (eV ) = 0.945 − 0.0011t + 7.7 × 10−7t2, t innm. (5.20)

It is seen from 5.20 and Fig. 5.11 that Urbach energy varies considerably and
approximately linearly at small values of thicknesses (t), whereas it varies incon-
siderably and quadratically at high values with varying film thickness. Accordingly,
and referring to 5.18 and 5.20 we notice, at small values of t and a certain value
of Eg, that decreasing film thickness leads to a significant increasing of EU and
hence a significant increasing of OD (see 5.18). This means that optical density
varies considerably more at low values of thickness than at high values. Since EU

and structural disorder are related to each other, we conclude that structural disorder
increases, more significantly at low values of thicknesses than at high values, as the
film thickness decreases.

EU values depend on both disorder due to structure and disorder due to temperature
[61]. In this study, Urbach tail width is determined by only the structural disorder
because the optical absorption spectra are recorded at constant temperature.
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Fig. 5.11 Urbach energy against thickness [55]. (Reproduced with permission. Copyright 2016,
Wiley-VCH)

5.4.4 XRD Spectra

The crystal growth in this work is cubic zinc-blende mode structure. Fitting the
lines in the XRD spectra shown in Fig. 5.6 to a function given by adding Gaussian,
Lorentzian, and a polynomial (due to the background effect) of a suitable order, the
line center (θhkl) its associated wavevector (K), full width at half maximum [FWHM,
i.e.,�(2θhkl) or�K], lattice constant (a), and interplanar distance (dhkl) are obtained.
The obtained values of these unknowns are tabulated in Table 5.6 [55]. The position
of most-intense line (at about 2θ = 24°), is due to the (1 1 1) plane which indicates
that the crystal grows in the direction [111]. The wide background confirmed for
the 50-nm-thickness sample is mostly due to the scattering from the substrate. The
polynomial used in fitting is to estimate the intensity scattered from the substrates.

The lattice parameter (a) in the [111] direction reduces by�a =
∣∣∣ a500−a50

a50

∣∣∣×1000 =
0.540/00 with increasing thickness from 50 to 500 nm. For the strongest line, full width
at half maximum, resulting from the (1 1 1) plane, reduces as thickness increases.

The lines of XRD broaden as a result of grain size, strain, and instrumental error
according to the relation

[�(2θhkl)]
n = [

�(2θhkl)si ze
]n + [

�(2θhkl)strain
]n + [

�(2θhkl)inst
]n

(5.21)

where n is an integer and it depends on the profile by which one represents the line
widening. For Lorentzian profile n = 1, and for Gaussian profile n = 2 [62, 63]. For
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Table 5.6 Parameters obtained from fitting XRD patterns plotted in Fig. 5.6 [55]

t (nm) hkl K (nm−1) �K (nm−1) dhkl (nm) a (nm) εhkl × 10−3

50 111
220
311

2.68391
4.38554
5.13473

0.04688
0.06087
0.09718

0.372591
0.228022
0.194752

0.645346
0.644944
0.645920

0.3800
2.1024
1.0010

100 111
220
311

2.68626
4.38686
5.13203

0.03406
0.06782
0.08847

0.372265
0.227953
0.194855

0.644782
0.644750
0.646260

1.2545
2.4026
0.4754

200 111
220
311

2.68495
4.38555
5.1363

0.02907
0.06250
0.08650

0.372446
0.228022
0.194693

0.645096
0.644942
0.645723

0.7672
2.1046
1.3064

350 111
220
311

2.68695
4.38446
5.13594

0.02610
0.06303
0.06769

0.372169
0.228078
0.194706

0.644616
0.645103
0.645768

1.5110
1.8566
1.2364

500 111
220
311

2.6842
4.38057
5.13393

0.02444
0.06034
0.06201

0.372550
0.228281
0.194783

0.645276
0.645676
0.646021

0.4880
0.9702
0.8454

bulk 111
220
311

2.68289
4.37632
5.12959

0.01905
0.02318
0.02513

0.372732
0.228502
0.194947

0.645591
0.646303
0.646567

size-dependent broadening, the Debye-Scherrer equation is [64]:

�(2θhkl)si ze = 0.94λ

2Rave cos θhkl
(5.22)

the value 0.94 refers to the shape factor [65]. The strain-dependent broadening and
the coefficient of axial strain εhkl due to the pressure on hkl planes are given by 5.23
[66] and 5.24, respectively:

�(2θhkl)strain = ε tan θhkl (5.23)

εhkl = dhkl − dbulk
hkl

dbulk
hkl

(5.24)

The instrumental error�(2θhkl)inst is neglected since it is less than 2mrad. Substi-
tuting the values of d111 from Table 5.6 in 5.24, the strain coefficient (ε111) can
be calculated. The result shows that the strain increases by 61.1% when thickness
decreases from 500 to 100 nm.

X-ray diffraction patterns are studied in reciprocal space employing Williamson-
Hall (W-H) method [63]. XRD lines are fitted for all samples, and the parameters R
and ε are calculated (Table 5.7). Williamson-Hall method is explained in Sect. 5.3.5.
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Table 5.7 Average grain sizes and strains obtained by different ways [55]

t (nm) RAbs (nm) RRam (nm) RWH (nm) εGr × 10−3 εWH × 10−3

50 1.432 1.380 10.705 10.551 −18.850

100 1.600 1.485 11.555 −9.333 −16.938

200 1.665 1.602 12.048 −8.951 −16.341

350 1.818 1.750 14.127 −8.196 −15.170

500 2.055 1.984 15.009 −7.319 −13.822

The negative sign for e means compressive strain

5.4.5 Williamson-Hall Analysis of X-Ray Diffraction

X-ray diffraction peaks are broadened presumably as a result of mainly strain and
finite grain size. W-H method is an analysis used to separate the contributions of
strain and size effects on line broadening. The following details show this method:

We ignore the instrumental effect�(2θhkl)inst from 5.21 and substitute 5.22, 5.23
in 5.21 to obtain;

[�(2θhkl)]
n =

[
0.94λ

2Rave cos θhkl

]n

+ [ε tan θhkl]
n (5.25)

We use Bragg’s law and multiply LHS side and RHS side of 5.25 by
( cosθhkl

λ

)n
to

get

�K = 0.94λ

2Rave
+ ε

2
K0 (5.26)

for fitting to Lorentzian function (n = 1), and

�K =
√(

0.94λ

2Rave

)2

+
(ε

2
K0

)2
(5.27)

for fitting to Gaussian function (n = 2), where K0 is the wavevector at the peak
center and �K is the FW@HM of the peak profile. We fit the intensity (I) versus the
wavevector variable (K) to a function obtainedby addingLorentzian (L) andGaussian
(G) functions (Voigt function V [67]):

V = A

2
(L + G) = A

2

(
1

1 + x2
+ e(−ln2)x2

)
, x = K − K0

�K/2
(5.28)
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Fig. 5.12 W–H plot fitted to the Maclaurin series of 5.29 [55]. (Reproduced with permission.
Copyright 2016, Wiley-VCH)

�K = 1

2

⎡
⎣0.94λ

2Rave
+ ε

2
K0 +

√(
0.94λ

2Rave

)2

+
(ε

2
K0

)2

⎤
⎦ (5.29)

Plotting �K against K0 results in a plot (Fig. 5.12) from which one can obtain
Rave and ε. The procedures followed for analyzing XRD patterns are as follows:

1. We convert the X-ray diffraction patterns, shown in Fig. 5.6, is converted from
the real space (I versus θhkl) to the reciprocal space (I versus K) where I is the
intensity.

2. Each line in X-ray diffraction spectrum is fitted to the Voigt function given by
5.28.

3. The FWHM (�K ) of the X-ray diffraction lines is plotted versus the
wavenumber at the line center (K0)—Fig. 5.12.

4. The best-fit values of Rave and ε are found by fitting the K0 − �K graph to the
Maclaurin series of the function given by 5.29, where this function is expanded
up to (k0)20 [55].

5.4.6 Raman Spectra

Raman scattering is employed to investigate the structural properties. Phonon modes
produced from Raman scattering are shifted as a result of small size and strain
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decreasing. In the following subsections are the phonon confinement model [56] and
Grüneisen model [68] explained.

5.4.6.1 Phonon Confinement Model

Raman spectrum (intensity of light against Raman shift) of first order is given by the
equation [56]

I (ω) =
∫ |C(0, q)|2

[ω − ω(q)]2 + (�0/2)
2 d

3q (5.30)

with

|C(0, q)|2 = Exp

(−d2q2

2β

)
(5.31)

where q is the phonon wavevector, ω(q) is the phonon dispersion curve, �0 is the
natural linewidth (FWHM) of the zone-center optical phonon in the infinite/bulk
crystal, d is the diameter of the spherical grain, and β is a constant by which it is
decided how fast the wavefunction decays as it approaches the grain boundary [56].
For simplicity of analyzing problem, we consider a spherical Brillouin zone (BZ)
and we assume the optical phonon dispersion curve isotropic. These assumptions are
assumed when only a small part of BZ, located at the center of G point (the center
of BZ), contributes to Raman scattering. The dispersion curve of the optical phonon
is then approximated to the analytical function [56]

ω(q) = ω0 − �ω sin2
(qa
4

)
(5.32)

where ω0 is the zone-center optical phonon frequency, �ω is the phonon dispersion
curvewidth, anda is the lattice constant. Fitting theRaman spectrameasurements, for
each sample, to a profile given by 5.30 results in the unknown parameters including
grain size. The grain size obtained from Raman analysis is listed in Table 5.7. The
phonon modes and their confinement-dependent shifts are shown in Table 5.8.

5.4.6.2 Grüneisen Model

The shift in phonon frequency taken place in Raman spectra is mainly due to two
effects: (i) phonon confinement and (ii) strain. The total shift in phonon frequency
(relative to the bulk) is given by

ωP − ω0 = δωc − δωs (5.33)
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Table 5.8 The observed phonon modes and their confinement-dependent shifts [55]

t (nm) Phonon mode ωmeas.
P (cm−1)a ωcalc.

P (cm −1)b δωc(cm−1)c δωc(cm−1)d

50 X-point LA
�-point TO
X-point LO

124.333
141.799
162.605

122.234
139.913
161.912

1.161
0.656
9.645

1.75943
0.48126
10.7863

100 X-point LA
� -point TO
X-point LO

123.934
142.116
165.209

121.839
140.324
162.906

1.556
0.245
10.639

1.57469
0.43073
10.7564

200 X-point LA
� -point TO
X-point LO

123.678
141.633
163.231

121.318
139.785
163.228

2.077
0.784
10.961

1.51321
0.41391
10.7457

350 X-point LA
� -point TO
X-point LO

124.87
141.768
165.199

122.440
140.478
162.880

0.955
0.091
10.613

1.385S6
0.37908
10.7221

500 X-point LA
� -point TO
X-point LO

123,341
141.639
164.735

121.495
140.377
164.119

1.900
0.192
11.852

1.22603
0.33536
10.6893

Bulk X-point LA
� -point TO
X-point LO

125.364
142.169
155.649

123.395
140.569
152.267

a ωmeas.
P is the line center obtained by fitting Raman spectra data

b ωcalc.
P is the line center evaluated using Fig. 5.7a–c (model in [56])

c Peak shift due to confinement evaluated from ωcalc.
P

d Line shift, caused by confinement, evaluated from the equations shown in Figs. 5.13a–c

where ωP is the measured Raman line center for the film, ω0 is the line center for
the bulk, δωc is the line shift caused by phonon confinement, and δωs is the line shift
due to strain. The relation between δωs

ω0
and the hydrostatic strain (ε) is given by [68]

δωs

ω0
= (1 + 3ε)−γ − 1 (5.34)

where γ is the Grüneisen parameter for the film material. Equation 5.34 can be
rearranged as

ε = 1

3

[(
δωs + ω0

ω0

)− 1
γ

− 1

]
(5.35)

Substituting δωs from 5.33 into 5.35, one gets

ε = 1

3

[(
ωP − δωc

ω0

)− 1
γ

− 1

]
(5.36)
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Fig. 5.13 The Raman frequency shift caused by the a 123 cm−1, b 140 cm−1, and c 160 cm−1

phonon confinements versus grain size [55]. (Reproduced with permission. Copyright 2016, Wiley-
VCH)
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which correlate the hydrostatic strain ε and the shift δωc due to phonon confinement.
Grüneisen parameter (γ ) is estimated from [69] (γ = 0.5 for CdTe at temperature
300 K), ωP is the measured peak center for the thin film and ω0 is the phonon
frequency of bulk. The shift δωc is obtained in terms of R, as shown in Fig. 5.13a–
c, according to the explanation in [56]. The strain determined by Grüneisen model
(εGr ) is evaluated by, first, calculating the strain ε from 5.36 at all peaks of Raman
spectrum for one sample and then the mean value of ε is calculated for the same
sample in order to find the value of εGr we obtained. Similarly, εGr can be computed
for the other samples (Table 5.7).

5.4.7 Conclusion

Optical ABS characterization shows that, when the grain size decreases from
2.055 to 1.6 nm, EU increases from 0.585 to 0.827 eV, and E f ilm

g is blueshifted from
2.49 to 3.20 eV, i.e. �E f ilm

g =710 meV [55]. Equation 5.16 can be rearranged as [58]

E f ilm
g |strain = Ebulk

g + B
dEg

dP

[
1 −

(
a f ilm

abulk

)3
]

(5.37)

Substituting Ebulk
g , abulk and a100, from Table 5.6, for the highest-intense line,

E100
g can be evaluated. Likewise, E500

g can be calculated. Computing
∣∣E500

g − E100
g

∣∣,
a blueshift of 7.8 ± 0.2meV in the energy gap is obtained as a result of increasing
the strain as the film thickness decreases from 500 to 100 nm. This conclusion is in
agreementwith theGrüneisenmodel given by 5.36; decreasingR results in increasing
compressive strain (Fig. 5.15). Simultaneously, this leads to increasing the redshift
relative to the finite material as a result of phonon confinement, which means that a
redshift in phonon frequency produces as thickness decreases from 500 to 100 nm.

The most contribution of the 710-meV total blueshift in energy gap measured
as the thickness decreases from 500 to 100 nm is due to size-dependent quantum
confinement of charges; the contribution of strain is a redshift of just ~ 1.1% of
this total shift, i.e. ~ 7.8 meV, the contribution of Coulomb effect is a redshift of
~19.4 meV; while the contribution of the charged particle confinement is a blueshift
of ~723 meV. Accordingly, it is concluded that the size-dependent confinement of
the charged particles (the 3rd term in the RHS of 5.15) is the main contribution to the
total blueshift observed in the energy gap [55]. It is also noticed that the contribution
in the shift in bandgap energy produced due to strain is less than the contribution due
to Coulomb energy. Furthermore, from the second and seventh columns in Table 5.6
we notice that the wavevector K is affected by the compressive axial strain εhkl . We
also extrapolate from Table 5.8 that the phonon frequencies (and hence the peak shift
δω) are also sensitive to the compressive strain according to the Grüneisen model.

The center of the strongest Raman peak for the powder sample is 123.4 cm−1,
which is near 3.65 THz (= 121.7 cm−1) for the X-critical-point LA-phonon mode
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[22]. Relative to the powder, the phonon wavenumber at this peak is redshifted, for
all thin film samples, as shown in Table 5.8 and Fig. 5.13a. The G-critical-point
TO-phonon wavenumber of bulk is 4.20 THz (= 140.0 cm−1) [22]. The TO-phonon
wavenumber of bulk in this study is 140.6 cm−1. It is redshifted for all films as
shown in Table 5.8 and Fig. 5.13b. Referring to [69], the X-critical-point LO-phonon
wavenumbers of bulk are 4.03; 4.86, and 4.92 THz (134.3; 162.0, and 164.0 cm−1,
respectively). The resultant of the 134.3 and 164.0 cm−1 wavenumbers results in

a single peak centered at a wavenumber of ω0 =
√

(ω2
1+ω2

3)
2 ≈ 150cm−1, which

plays the role of Fröhlich mode [70]. The phonon mode of powder in this study is
centered at around 152.3 cm−1, which is near the frequency of Fröhlich mode, as
shown in Table 5.8 and Fig. 5.13c. Compared to the wavenumber of the powder, the
wavenumber of phonons, for all film samples, is blue shifted to around 163.0 cm−1,
which also has the value of the X critical point LO-phonon mode. The decrease
observed in LA and TO phonon frequency relative to phonon frequency for the bulk
may be due to two contributions: (i) phonon confinement and (ii) compressive strain
[56].

Being the exciton Bohr radius of CdTe (aB = 7.3nm [71]) is relatively high
compared to other compounds of Group II-VI, this makes the quantum size effect in
CdTe possible at greater sizes since the charge confinement is assorted by comparing
the grain radius with Bohr radius; for R > aB the confinement is weak, for R < aB

the confinement is strong, and for R = aB it is intermediate. As noticed from Table
5.5, since Rave is less than aB of the bulk, the confinement is strong. Reducing
Rave leads to stronger phonon confinement, which causes a redshift in the phonon
frequency [56].

The values of Rave and ε found by the different techniques are tabulated in Table
5.7 for comparison. The grain size Rave, is plotted against thickness in Fig. 5.14. The
curves in this figure are fitted to quadratic equations given by [55]

RAbs = 0.66 + 0.16
√
t − 7.5 × 10−3t + 6.19 × 10−6t2 (5.38)

RWH = 2.84 − 6.52 × 10−2
√
t − 6.59 × 10−3t − 3.66 × 10−6t2 (5.39)

RRam = 0.90 + 0.90 × 10−2
√
t − 3.83 × 10−3t − 3.66 × 10−6t2 (5.40)

We notice that the particle size increases as film thickness increases. It is
also noticed from Table 5.7 and Fig. 5.14 that the grain size evaluated by XRD
overestimates that obtained by ABS and Raman spectroscopies.

The strain ε is plotted as a function of the grain size RAbs in Fig. 5.15. The curve
is fitted to the equation [68],

ε(R) = εT + εσ = εT − 2

3
k

(
b

2R2
+ σ∞

R

)
(5.41)
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Fig. 5.14 Grain radius RWH (red, triangles), RAbs (orange, circles), and RRam (green, squares)
against thickness t (RWH axis is multiplied by 4) [55]. (Reproduced with permission. Copyright
2016, Wiley-VCH)

Fig. 5.15 The strains εWH and εGr against the grain size RAbs [55]. (Reproduced with permission.
Copyright 2016, Wiley-VCH)
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where εT (it is obtained by the fitting) is the strain produced from the difference
of thermal expansion coefficient between the film and the glass slide, εσ is the
strain produced from the surface-free energy, κ = 7.86×10−12m2/N [59] is theCdTe
compressibility factor, b is an unknown constant to be found, and σ∞ = 0.725N/m
[71] is the surface tension σ for the flat-slab CdTe bulk.

Fitting ε against R (Fig. 5.15) results in the following equations:

εWH (R) = −7.99 × 10−3 − 5.24 × 10−12

(
3.21 × 109

R2
+ 7.25 × 108

R

)
(5.42)

εGr (R) = −3.18 × 10−3 − 5.24 × 10−12

(
1.847 × 109

R2
+ 7.25 × 108

R

)
(5.43)

It is seen that the strain obtained by Grüneisen model has the same order as the
strain obtained byW–Hmethod (Table 5.7). It is also noticed from Table 5.8 that the
phonon frequencies of Raman lines (and hence the line shift δω) is sensitive to the
compressive strain according to the Grüneisen model.

5.5 Difficulties in the Thin Film Growth of ZnO and Defect
Structure

The experimental data, results and discussions given in this section are mainly cited
fromand/or basedon [72]. ZnO is a significantmember of II-VI semiconductor family
and has been scrutinized for many years due to its applications as photodetectors,
transparent thin film transistors, LEDs and laser diodes that function in UV region
[73–76]. It has a wide direct band gap energy (3.3 eV) in the near-UV region and a
large free-exciton binding energy (60 meV) at room temperature [77, 78].

There are a number of thin film growthing processes for ZnO, including PVD
and non-PVD techniques. The preparation techniques used in published reports can
be classified into (i) chemical vapor deposition [79], spray pyrolysis [80], sol–gel
[81] (non-PVD); (ii) vacuum deposition [82, 83], sputter deposition [84], pulsed
laser deposition and molecular beam epitaxy [85] (PVD). The structural properties
of ZnO thin films such as crystallite orientation, particle size, layer resistivity, carrier
mobility or optical transparency are affected by growthing method [79]. Most of the
ZnO thin filmdeposition/coatingmethodsmentioned above have somedisadvantages
in terms of containing some toxic chemicals, long reaction times, low purity that may
occur in the films formed, and inadequacy of large surface area deposition. Despite
its low cost and low toxicity, thermal evaporation of ZnO in vacuum attracted less
attention by the research groups [86–88].

One of themethods to obtain ZnO thin films by thermal evaporation under vacuum
is depositing Zn films from a Zn target and oxidizing these films by controlling a
flow of Ar, Oxygen and Hydrogen gas mixture in same chamber simultaneously
[82]. Fouad et al., who prepared ZnO thin films by thermal evaporation deposition
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under vacuum, studied with a vacuum pressure of 5 × 10–3 Torr and a temperature
(for deposition and oxidation) range from 350 to 650 °C and a deposition time of
10–30 min. The other method to obtain thermally evaporated ZnO thin film is first to
deposit a Zn thin film in vacuum and then to expose these Zn films to heat treatment
in open atmosphere [83]. Rusu et al. prepared ZnO thin films by thermal oxidation in
air of as-deposited Zn thin films deposited in vacuum. The oxidation temperature was
in a range of 600–700 K, while the oxidation time changed in between 20–30 min.

In this part of the study, we consider the growth of ZnO on glass slides by using
annealing process of Zn deposited films. Firstly, Zn thin films were deposited by
thermal evaporation technique under vacuum (T-PVD) and subsequently heat-treated
in air in between 1–3 h and 450–600 °C. Zn powder had a purity of 99.995% (Sigma
Aldrich-324930). The value of vacuum pressure was on the order of 10–5 Torr in
vacuum chamber unit (PVD-HANDY/25-TE/VAKSIS) while the current passing
through the tungsten boat was ultimately 70 A [72]. A schematic view of vacuum
chamber unit is represented in Fig. 5.16.

Fig. 5.16 Deposition geometry 1 (lower right corner) and 2 (upper right most corner). The angles
for geometries 1 and 2 are, in degree; θ1 = 11.14, θ2 = 10.36, ϕ1 = 78.86, ϕ2 = 68.50andθ1 =
25.07, θ2 = 18.06, ϕ1 = 64.93, ϕ2 = 71.94 respectively [72]
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We reveal that deposition of Zn powder on glass slide significantly depended
on the distance between the source (the boat) and the substrate. The deposition rate
which depends on the vaporization rate is affected by the geometry of the components
in the vacuum chamber unit. According to the following Hertz-Knudsen equation,

dN

dT
∝ (p − p∗)/T−1/2 (5.44)

vaporization rate is directly proportional to the difference between the vapor pres-
sure of the evaporant (p) and the pressure of the vacuum chamber (p*) at a certain
temperature [89].

In addition to this, it is revealed that Zinc vapour is quite volatile. Hence we expect
a high equilibrium vapour pressure of 10–2 Torr of Zn at its melting point of around
415 °C while the pressure decreases (p → 0) [90]. For the distances above 12 cm,
we could not obtain Zn deposition on the glass slide despite the inner walls of the
whole vacuum chamber were deposited by the source [72].

Cosine deposition distribution points out a relationship betweenmass per unit area
(dm/d A) and angular distribution of the deposition flux (see θ and ϕ in Fig. 5.16)
and the source-substrate distance (r) [89]:

dm

dA
∝ cos θ cosϕ

r2
(5.45)

The ratio for mass per unit area of the first set of angles of Geometry 1 to the first
set of angles for Geometry 2 is 4.4, while the mentioned ratio is 11.4 for the second
set of angles. Therefore, in order to maximize deposition of Zn powder on glass slide
it is obvious to use Geometry 2 instead of Geometry 1.

Asmentioned above, Zn deposited sampleswere heat treated in air at temperatures
in between 450 and 600 °C for durations from 1 to 3 h to grow ZnO.

Raman measurements were performed on Renishaw 250 mm focal length in Via
ReflexSpectrometer systemwhichhas aRayleigh line rejectionfilter allowingRaman
spectrum to 100 cm−1 from a cw laser line at 532 nm at room temperature. Each
vibrational mode was fitted by a Lorentzian function with a polynomial background
and the best fit parameters were obtained for each peak position.

Raman scattering results were represented in Fig. 5.17 for the following samples:
(a) as-deposited Zn thin film, (b) ZnO thin film heat-treated at 500 °C for 2 hours
and (c) ZnO thin film heat-treated at 600 °C for 3 hours [72].

Raman measurements are sensitive to the composition; hence we can provide
information about defect structure by identifying theRamanmodes. Themost intense
peak at about 439 cm−1 in the spectra is denoted as Ehigh

2 mode and thismode involves
only the vibration of oxygen atoms at high frequency in ZnO while the Elow

2 mode
is related to the vibration of the heavy Zn sublattice (not shown) [91–94]. The peak
at 331.94 cm−1 is due to the difference mode between Ehigh

2 and Elow
2 modes. The

peaks at 382.06 and 582.091 cm−1 are previously presumed to beA1(TO) andA1(LO)
Raman modes [95].
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Fig. 5.17 Raman spectra of as-deposited Zn thin film (a), heat treated at 500 °C for 2 h (b) and
600 °C for 3 h (c) [72]

Nikitento et al. who studied with ZnO powder and Wang et al. who identified
the line at ~1100 cm−1 as the acoustic combination of A1 and E2 symmetries also
reported the broad peaks in between 1000 and 1200 cm−1 previously as indicated in
Fig. 5.17b [96, 97]. The line at 1156.95 cm−1 is assigned to the third optical overtone
of A1 symmetry mode [97]. We presume that these two lines overlap as shown in
Fig. 5.17a for as deposited Zn thin film while same lines are resolved for the ZnO
thin films obtained by heat treatment at 600 °C for 3 h as indicated in Fig. 5.17c.

The peaks observed at 205.94, 331.94 and 439 cm−1 as seen in Fig. 5.17b are
red-shifted by 7 to 9 cm−1 with respect to the peaks in Fig. 5.17b. This red-shift can
arise from the possible oxygen vacancies in Zn rich ZnO thin film [93]. It can also be
employed that the presence of the peak at about 582 cm−1 for heat treated samples,
that has no correspondence in Fig. 5.17a might be originated from oxygen deficiency
or zinc interstitials [98].

In this work we consider the difficulties in the thin film growth of ZnO deposited
by thermal evaporation technique in vacuum followed by heat-treatment in air and
present the results of Raman spectra of these thin films in order to provide informa-
tion about defect structure. The red shift of some vibrational modes in the Raman
spectra for as-deposited thin film compared to the heat-treated films and the pres-
ence of a line at around 582 cm−1 point out that ZnO thin films have defects such as
oxygen vacancies or Zn interstitials. Themost intense Ramanmode attributed to high
frequency oxygen vibration for as-deposited Zn film is red-shifted by about 7 cm−1

compared to the Raman mode for the heat-treated ZnO thin film which is presumed
to originate from oxygen vacancies in Zn rich ZnO thin film. We also reveal that the
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deposition of Zinc on glass slide highly depends on the distance between the source
and the target in consistent with the Hertz-Knudsen vaporization rate.

5.6 Colorimetric Evaluation of Group II-VI Quantum Dots
in Glass Matrix

Colorimetry is the science and technology used to physically determine and define
human color perception [99]. Color in an any medium is typically achieved by
applying a colorant (dye or pigment) to themedium. Quantum dots have been investi-
gated for various applications for many years [7]. Considering their unique lumines-
cent properties of quantum dots, they can be used as a colorant for different mediums.
Semiconductor quantum dots embedded glass matrixes (QDEGs) can provide chem-
ical stability, thermal stability, andmechanical stability for numerous high endurance
applications [100, 101]. In this part, we evaluate colorimetric properties of QDEGs
within Commission Internationale de l’Elcairage (CIE) advices scope.

5.6.1 Materials and Methods

Commercial Cd, S, Se doped RG695 Schott filter glass was chosen to prepare our
samples. Typical composition percentage of semiconductor doped Schott color filters
is given as 52% SiO2, 20% K2O, 20% ZnO, 5% B2O3 and 3% of doping oxides
which are CdO, SO3, SeO3, TeO3 [102]. To dissolve the doping oxides, glass layers
subjected tomelting process at 1000 °C on a platinum substrate in an alumina boat for
15 min. After melting process, to avoid reformation of the doping oxides inside the
glass layers while cooling down, glass layers quenched rapidly to room temperature
by cold air flow. Color of the glass layers transformed from dark reddish to clear.
Then the glass layers annealed at 450 °C for 5 h to reduce stress in glass samples
and to start nucleation of nanocrystals. Subsequently, the glass samples were sanded
down to width of 0.3–0.6 mm to distribute heat evenly inside the glass layers for the
second annealing. Finally, glass layers annealed at different temperatures for various
periods of time to develop nanocrystals in the glass layers. As shown in shown in
Table 5.9QDEG samples labeled according to estimated average quantum dot radius.

Optical transmission measurements were done by a system having a 1/8 m
monochromator with a 1200 line/mm grating and a silicon photodetector. A 50 W
tungsten lamp which is driven by a constant current source was used as the light
source. Optical bandgap and average quantum dot radius calculations details can be
found in previous publications [103]. Basically, bandgap and radius of the quantum
dots are given by equations;
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Table 5.9 Quantum dot embedded glass layers labeled by estimated average quantum dot radius.
Second and third column show secondary annealing temperature and duration. Fourth column is
the thickness of the glass samples. Fifth column shows estimated average particle radius doped in
the glass layers

Sample 2nd Annealing Temp.
(°C)

Duration (hour) Thickness (mm) Estimated Av. Particle
Radius (nm)

S1 600 0.5 0.386 –

S2 625 1 0.415 2.1

S3 625 2 0.376 2.2

S4 625 4 0.39 2.5

S5 625 8 0.498 2.7

S6 650 2 0.401 3.1

S7 650 4 0.402 3.4

S8 650 8 0.342 3.5

S9 675 2 0.39 4.5

S10 675 4 0.345 4.7

S11 As received As received 0.55 Bulk

Eex (R) = Eg
�π2

μR2
(5.46)

R = �π

2
√

μ
(
Eex − Eg

) (5.47)

where Eex is first exciton peak energy value of the sample, Eg = 1.83 eV is the bulk
band gap of CdS0.08Se0.92 crystal [104] and the second part is confinement energy for
an exciton. Effective mass of an exciton is μ = 0.106 m0 electron rest mass [105].

CIE L∗ a∗ b∗ space is a three-dimensional space contrary to two dimensional CIE
1931 color space. CIE L∗ a∗ b∗ space encompasses the complete range of human
color perception where L∗ axis denotes lightness, a∗ axis denotes green and red color
shades, b∗ axis denotes blue and yellow color shades. CIE L∗ a∗ b∗ values calculated
with the advices of the CIE Technical Report [106]. Basically;

L∗ = 116 f (Gy) − 16

a∗ = 500
[
f (Gx ) − f (Gy)

]
b∗ = 200

[
f (Gy) − f (Gz)

] (5.48)

where;

Gx = (X/Xn);Gy = (Y/Yn);Gz = (Z/Zn) (5.49)
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where;

f (Gi ) = G1/3
i i f Gi > (6/29)3 (5.50)

else;

f (Gi ) = (841/108)Gi + 4/29 i f Gi ≤ (6/29)3 (5.51)

where indice i changes as X, Y and Z which are CIE tristimulus values. For our
colorimetric calculations, illumination has selected as CIE standard D65 illuminant.
D65 is common selection for various standards and applications.

As illustrated in Fig. 5.18, the CIE definition of dominant wavelength (λd) is
“Wavelength of the monochromatic stimulus that, when additively mixed in suit-
able proportions with the specified achromatic stimulus, matches the color stimulus
considered”. Also, the definition of complimentary wavelength (λc) is given by CIE
as “Wavelength of the monochromatic stimulus that, when additively mixed in suit-
able proportionswith the color stimulus considered,matches the specified achromatic
stimulus” [106]. Excitation purity (pe) is defined as;

pe = a

a + b
(5.52)

Fig. 5.18 Dominant wavelength (λd), complimentary wavelength (λc) and excitation purity (pe)
are displayed on color chromaticity diagram
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the proportion of the distance from the sample’s chromaticity coordinates to the
illuminant coordinates, to the distance of the dominant wavelength coordinates of
the sample to the illuminant coordinates (5.52).

5.6.2 Results and Discussions

Wepresent optical transmittance behavior ofQDEGsamples in Fig. 5.19.One can see
that increase of temperature and duration of thermal annealing red shifts absorption
band edge of QDEGs and approach to RG695 Schott filter glass which has bulk
CdS0.08Se0.92 nanocrystals [107]. By regulating the heat treatment conditions, the
bandgap of doping quantum dots can be modified over the entire visible range [105].

The CIE XYZ model is the foundation of all colorimetric methods. On the other
hand, these coordinates are not very intuitive, since X, Y and Z are mathematical
parameters that do not give much detailed information about the measured color
[99]. Therefore, color coordinates of QDEGs are given in Fig. 5.19 has shown in
CIE 1931 color space to aid visualization.

Taking into consideration of Figs. 5.19 and5.20, it is easy to realize that color of the
glass matrix caused by change in the size of CdS0.08Se0.92 QDs as an effect of thermal
annealing. It is observed from CIE chromaticity diagram that the transparent sample

Fig. 5.19 Optical transmission characteristics of CdS0.08Se0.92 quantum dots in glass matrix for
various temperature and durations of thermal annealing
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Fig. 5.20 CIE xy chromaticity diagram of QDEGs. Higher temperature of annealing and time
subjected samples approaches to bulk crystal color coordinates

locate near the white point of the diagram. Moreover, from the CIE 1931 gamut,
glass matrix which are subjected higher temperature of annealing and durations
shows shades of yellow and red colors. Simply by changing the thermal annealing
conditions the color of the glass matrix can be altered due to QDs acting as a colorant.

Even thoughCIE1931 color space aids to visualize coloring effect ofCdS0.08Se0.92
quantum dots, CIE L∗ a∗ b∗ space can give clearer picture in order to understand
colorimetric performance. Each dot in Fig. 5.21 represents QDEG samples. Sample
number 1 showshigher lightnessL∗ value since it is transparent to all visible range and
sample number 11 gives darkish red color due to the low visible region transmission.
Color shades gets darker with the increasing radius of the quantum dots in the glass
matrix.

Excitation purity and estimated average quantum dot radius has an asymptotic
relation as shown in Fig. 5.22. Radius of the CdS0.08Se0.92 QDs in RG695 is consid-
ered around 6 nm [108]. Considering the 5.52 and the definition of the excitation
purity, estimated average particle radius of the CdS0.08Se0.92 QDs in glass matrix
affects location of the QDEG chromaticity coordinates. When CdS0.08Se0.92 QDs’
estimated average particle radius is smaller than 3 nm, color purity is relatively lower
than when the particle radius is bigger than 3 nm. This might be due to the QDEGs’
optical transmission behavior since color coordinates are calculated with the trans-
mission spectra of QDEGs and D65 stimulus. Taking into consideration of optical
transmission characteristics of CdS0.08Se0.92 quantum dots in glass matrix (Fig. 5.19)
one can see that QDEGs have wide visible transmission characteristics also have
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Fig. 5.21 CIE L∗ a∗ b∗ visualization of QDEG samples

Fig. 5.22 Color purity of the QDEG samples with respect to estimated average particle radius
shows asymptotic behavior
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Fig. 5.23 Dominant and complimentary wavelength relation with respect to average particle size

relatively small particle radius QDs. Therefore, those QDEGs allows to pass wider
portion of the D65 stimulus and that causes to move QDEGs’ color coordinates to
closer location of D65 stimulus. Consequently, wider band gap QDs embedded glass
layers have lower color purity due to quantum confinement effect.

In Fig. 5.23 the relation between QD radius and dominant and complimentary
wavelength relation is given. In order to aid visualization each dot connected for
both dominant and complimentary wavelength regarding average QD radius.

Colorimetric properties of QDEGs evaluated by their CIE chromaticity diagram
and CIE L∗ a∗ b∗ space since CIE XYZ model is not visual friendly. 11 samples
of QDEGs were prepared by melt quenching technique and subjected to various
thermal annealing processes. These processes helped to see the effect of quantum
confinement of semiconductor CdS0.08Se0.92 QDs as a colorant for glass matrixes.
Coloring behavior is related to particle size.
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16. M.K.Torun,A.T. İnce,M.H.Yükselici, in 10thNanoscience andNanoTechnologyConference

(Istanbul, 2014)
17. J.D. Dow, D. Redfield, Phys. Rev. B 5, 594 (1972)
18. F. Urbach, Phys. Rev. 92, 1324 (1953)
19. L. Brus, Appl. Phys. A Solids Surfaces 53, 465 (1991)
20. D.A.B. Miller, in: Quantum Dynamic Simple Systems, ed. by G.-L. Oppo, S.M. Barnett, E.

Riis, M. Wilkinson (Institute Physics, London, 1996), p. 226
21. S. Chandra, Shooting Method in Solving Quantum Structure Related Problems. Jadavpur

University (2013)
22. J. Killingbeck, J. Phys. A. Math. Gen. 20, 1411 (1987)
23. H.G. Hugdal, P. Berg, Eur. J. Phys. 36, 045013 (2015)
24. I.M. Lifshitz, V.V. Slyozov, J. Phys. Chem. Solids 19, 35 (1961)
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Chapter 6
Recent Progress in Magnetic
Nanostructures Studied by Synchrotron
Radiation

Takafumi Miyanaga and Ryo Masuda

Abstract The recently developed synchrotron radiation source provides high perfor-
mance X-ray beam and opens new technique to study for the nanostructured science
and devices. In this chapter we discuss two topics: (1) XMCD and XAFS studies
for cluster-layered Fe/Cr film and (2) Mössbauer study for Fe surface magnetism.
The cluster-layered Al2O3/Cr(70Å) /[Fe(1.2Å) /Cr(10.5Å)]30/Cr(12Å) film shows
the minimum point in the resistivity. In this film, the magnetic moment of Fe atoms
decreases as the temperature increases and disappears around the critical temperature.
And further, the local structure around Fe atoms shows rather disorder, whichmay be
related the fluctuation of magnetic structure obtained from the mean field theory. The
surface magnetism of Fe (001) was studied in an atomic layer-by-layer fashion by
using the in-situ 57Fe probe layer method with a synchrotron Mössbauer source. The
observed magnetic hyperfine field exhibits a remarkable decrease at the surface and
an oscillatory behavior with increasing its depth in the upper four layers below the
surface. These results provide a first experimental evidence for the magnetic Friedel
oscillations, which penetrate several layers from the Fe (001) surface. From these
two topics, we present high utility of the applications of synchrotron radiation to
magnetic nanostructure studies.

Abbreviations and Symbols

CEMS Conversion Electron Mössbauer Spectroscopy
EXAFS Extended X-ray Absorption Fine Structure
GMR Giant magnetoresistance
IXS Inelastic X-ray Scattering
NMC Nuclear Monochromator Crystal
RI Radioactive Isotope
SMS Synchrotron Mössbauer Source
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SR Synchrotron Radiation
XAS X-ray Absorption Spectroscopy
XAFS X-ray Absorption Fine Structure
XANES X-ray Absorption Near Edge Structure
XMCD X-ray Magnetic Circular Dichroism
XPS X-ray Photoelectron Spectroscopy

6.1 Introduction

Magnetic nanostructures have many considerable interests due to their unique
magnetic properties and potential of IT applications as sensingmaterials, spintronics,
data storage, and optoelectronic technologies [1]. The important factors to govern the
magnetic properties of nanostructures are the chemical composition of the element,
shape and size of materials, surface morphology, anisotropy of atomic arrange, layer
thickness, andmolecular interaction for the system.Drastic change inmagnetic prop-
erties is observed when the particle size reduces to a critical magnetic scale, such as
the exchange length, for example, GMR. In the basic physics, the broken symmetry
at surfaces and interfaces is key concept which may increase or decrease magnetic
moment per atoms in the vicinity of surface and interface. To understand themagnetic
nanostructure, the behaviors in surface and interface are quite important, where the
atomic arrangement is well controlled on surface and in multilayers.

In recent years, highly intense (or brilliant), high energy and energy-tunable X-ray
from the SR is applicable, which opens new field on the materials science, semi-
conductors, magnetic materials, catalysis, battery materials, chemically functional
materials, even in biological systems. Especially, for the study of magnetic mate-
rials, XMCD using the circular polarization of X-ray provides information about the
local magnetic environment around atoms with good S/N ratio [1, 2]. On the other
hand, Mössbauer spectroscopy is a method to study the local electronic and vibra-
tional states of functional materials, which includes the valence, structural change,
magnetic ordering, and Debye temperature. These techniques are also progress by
using the SR source with high brilliance1 and energy-tunability.

In this chapter, first we present the application of XMCD and XAFS to study for
thin films: cluster-layered Fe/Cr filmwhich shows interestingKondo-like behavior in
the resistivity. Second, we discuss about the Mössbauer spectroscopy from the basic
introduction to recent applications: the surface magnetism of Fe(001) was studied in
an atomic layer-by-layer fashion by using the in situ 57Fe probe layer method with a
SR source.

1 In this chapter, “brilliance” is defined in the manner of X-ray optics as follows: Brilliance =
Photons/Time

Vertical and horizontal divergence of X-ray source·Vertical and horizontal size of the source·0.1%bandwidth of the X-rays .

The typical unit is Photons/seconds
mrad2·mm2·0.1%bandwidth

or Photons/seconds
arcsecond2·mm2·0.1%bandwidth

. The energy width used
in this definition is “0.1%bandwidth” and thus depends on the X-ray energy. For example,
0.1%bandwidth of 14.413 keV X-rays is 14.413 eV.
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6.2 XMCD and XAFS Study for Thin Film

In recent years, XMCD becomes powerful technique for the study of magnetic mate-
rials. When the difference in X-ray absorption coefficient of left- and right-hand
circular polarized X-rays is measured for magnetic materials, an XMCD spectra can
be obtained. The difference of the magnetic dichroism deduce the atomic magnetic
moment in the ferromagnetic materials. XMCD has several attractive features in
comparison with other techniques. (1) XMCD gives information about the spin-
and orbital-magnetization individually, while most of other methods are sensitive
only to total magnetization. (2) This technique is element specific, by measuring the
dichroism around the specific absorption edges. (3) XMCD can be applied to deter-
mine extremely small magnetic moments and to study small quantities of atoms in
thin films and on surfaces because of its high sensitivity. This makes XMCD to study
nano-scale structures, which are connected to modern electric data storage device
etc.

6.2.1 Methodology

We present here brief introduction to XMCD method with support from ref [3]. In
a circular polarized electric field, an X-ray is described as a helical wave around
the propagation direction k. The circular polarized electromagnetic wave can be
quantum mechanically described and in this case the photon with z-direction of
the propagation is in an eigenstate of the angular momentum operator, Jz . For right-
circular polarized, RCP (or Left-, LCP), photons, the eigenvalue of Jz is+ �(or−�).
Linearly polarized photons have the expectation value, 〈Jz〉=0, since they are equally
superposed by RCP and LCP photons. A circular polarized photon in eigenstate of
Jz can be governed by the selection rules for the conservation of angular momentum
in electronic transition, that makes the interpretation of XMCD signal be simple.

Let us understand the origin of the XMCD signal by simple atomic model and
consider an electronic transition from a core state to a bound state at higher energy as
a starting point. The schematical energy level described above discussion in appear
in Fig. 6.1. It is well known in the atomic physics that the probability of electric
transitions is controlled by selection rules for the change in the quantum numbers
describing the initial and final states. A main mechanism is the interaction between
the electric field of X-ray and the electric dipole moment operator. The parity of
the initial and final states is given by their orbital quantum numbers � and non-zero
matrix element is obtained for the change of �, ��, only if �� = ±1, which is so
called “dipole transition selection rule”. Since the X-ray photon is annihilated in the
absorption process, the angular momentum Jz must be transferred to the sample.
For the circular polarized photon, the change in magnetic quantum number, �m, is
permitted if �m = + 1 for RCP photons or �m =− 1 for LCP photons.
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Fig. 6.1 The simplified energy level diagram to describe XMCD origin

As general XMCD geometry, a magnetic field is applied parallel to the direc-
tion of photon propagation z. Through the Zeeman effect, the magnetic field
breaks the orbital degeneracy of the 2p state into the separate states |�,m〉 =
|1,−1〉, |1, 0〉, and|1,−1〉|. To simplify, only the orbital quantum numbers are shown
in Fig. 6.1 but the spin–orbit interaction is neglected. The Pauli exclusion principle
give a limit for the occupation in each state to two electrons. Possible transitions are
restricted by the dipole selection rule, and the selection rule �m = + 1 for RCP
photons and �m = −1 for LCP photons. For RCP photons, the transition from 1 s
state |0, 0〉 to unoccupied 2p state |1, 1〉 is allowed, but the transition from 1 s state
|0, 0〉 to occupied 2p state |1,−1〉 is forbidden. In the latter case the transition cannot
proceed because the �m =−1 state is already fully occupied. In this case a large
XMCD signal can be expected. The sensitivity of an XMCD is greatly enhanced
when the photon energy is in the vicinity of an absorption edge. This is particularly
true in the case that the core electron is excited to a strongly magnetically polarized
final state. For the first series of transition metals, this means that the photon excited
a core electron to a 3d state, while for the rare earths it is a 4f state. The edges which
interacts to these states for a dipole transition are LII (2p1/2 → 3d) and LIII (2p3/2 →
3d) in the case of the transition metals, and areMIV (3d3/2 → 4f ) andMV (3d5/2 →
4f ) in the case of rare earths.

One of the reasons that XMCD has become such a popular technique is that the
orbital, morb, and spin, mspin, moments can be obtained separately from the use of
sum rules. We write the sun rule in the case of the 3d metals. The morb, and mspin are
obtained from the following equations:

(6.1)

(6.2)



6 Recent Progress in Magnetic Nanostructures Studied … 227

where theAθandBθ are the integrations ofLIII-edge andLII-edge ofXMCDspectrum,
and.

(6.3)

(6.4)

(6.5)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

nh : number of holes in d state
μB :Bohrmagneton
μ+ :absorption intensity fromLCP photon
μ− :absorption intensity fromRCP photon
ω :frequency(energy)of incident X − ray

θ is the angle between normal direction of the sample and the direction of photon
propagation z. α is polarizability and β is the angle between direction of the
magnetization and of the photon propagation z.

XMCD measurements are performed for several different way depending on the
X-ray source and energy of the edge. The circular polarized X-ray can be obtained
from a bending magnet out of the orbital plane from the plane center; depending on
whether the source is viewed above or below the orbital plane the electrons will be
seen to rotate in a clockwise or anti-clockwise direction. This circular rotation of
the electron beams makes an angular momentum to the photons, which can be then
used for XMCD measurements. On the other hand, helical undulators can produce
the quite intense circular polarized X-ray beams. For high energy X-ray, a diamond
phase retarder can be used by producing the circular polarized photons. In either case,
the magnetically dichroic signal can be obtained by reversing the helicity of photons
or by reversing the direction of magnetization; these two situations are completely
equivalent. At hard X-ray anergy region XMCD experiments are usually performed
in a transmission mode, while for soft X-rays the XMCD signals are recording
either fluorescent X-ray, with e.g. semiconducting detector, or by measuring the
photoelectron yield. The typica XMCD measurement set up by transmission mode
is shown in Fig. 6.2.

In the latter part of this section, we discuss about the EXAFS results. The detailed
description of EXAFS technique has already appeared in the previous book chapter
[4].
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Fig. 6.2 Typical set up of XMCD measurement by transmission mode

6.2.2 XMCD and XAFS for Cluster-Layered Fe/Cr Films

One of the prominent features of Fe/Cr multilayer is GMR which was found in 1988
[5, 6]. This effect has opened the wide application of this materials to magnetic stor-
ages and sensors. On the other hand, the correlation between magnetic and transport
properties has been long studied in such amultilayer structures and granular thin films
with ferromagnetic nanoparticles [7–9]. In 2006, Kondo-like behavior, which shows
the minimum point in temperature dependence of the resistivity, has been observed
in cluster-layered Fe/Cr nanostructures [10]. In such ultrathin film, the small amount
of Fe shows superparamagnetic feature, but no GMR behavior appears.

In the MgO based thin-films as MgO/Cr(80Å)/[Fe(tFeÅ)/Cr(10Å)]n; (tFe is the
average thickness of Fe layer), Fe atoms are not continuously arranged but exist as
clusters in the range of tFe < 5Å as shown schematically in Fig. 6.3. The system shows
superparamagnetic behavior for tFe < 2Å, and its resistivity shows minimum point
(Kondo-like behavior) for tFe = 0.3 ~ 1.2Å [10]. To reveal the origin and mechanism
of such an interesting behavior in such Fe multilayer films, the magnetic and atomic
structure are investigated from the local point of view.

In this section, XMCD and EXAFS to study the local magnetic structures and the
mechanism of the characteristic magnetic feature of the Al2O3 based cluster-layered
Fe/Cr nanostructures are discussed [11].

The samples discussed in this section are Al2O3 based cluster-layered Fe/Cr films:

(1) Al2O3/Cr(100Å)/[Fe(8Å)/Cr(10.5Å)]2/Cr(20Å): (G1),
(2) Al2O3/Cr(70Å)/[Fe(1.2Å)/Cr(10.5Å)]30/Cr(12Å): (K1)
(3) Al2O3/Cr(63Å)/Fe0.17Cr0.83/Cr(24Å)): (A1)

which are all grown by molecular beam epitaxy (MBE) [10]. G1 sample shows
GMR and K1 sample shows Kondo-like behavior. In K1 sample the minimum point
is appear in the resistivity at ~170 K as shown in Fig. 6.4.

First, the XMCD result for G1 and K1 samples was discussed. XMCD was
measured at BL7A in KEK-PF, Tsukuba Japan. The applied magnetic field was 1.0 T
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Fig. 6.3 Schematic model for cluster-layered Fe/Cr film (red: Cr, green: Fe)

Fig. 6.4 The temperature dependence of the resistivity ratio with that for 300 K of
Al2O3/Cr(70Å)/[Fe(1.2Å)/Cr(10.5Å)]30/Cr(12Å) (K1 sample) under several magnetic field (0 ~
9 T)

and circular polarizability of incident X-ray was 0.7. Fe LII and LIII edge XMCD
were measured by fluorescence mode using SDD (silicon drift detector). Angular
dependent (θ = 30°, 45°, 55°, 70°, where θ is the angle between normal direction
of the sample film and X-ray beam direction). XMCD spectra were measured at
temperature range of 77 K ~ 300 K.

The G1 sample which shows GMR presents ferromagnetic feature thorough the
present temperature ranges (77 ~ 300K) and shows clear FeLII,III-edgeXMCDwhich
does not depend on temperature. On the other hand, A1 sample does not present any
XMCD signal in this temperature range (77 ~ 300 K).
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The typical X-ray Absorption Spectra (XAS) of Fe LII and LIII edge for K1 sample
measured at 158 K with different circular polarizations are shown in Fig. 6.5. The
XMCD in Fe LII, III-edge spectra for K1 sample at θ = 70° are shown in Fig. 6..6.
Clear XMCD peaks were observed at 77 K but the intensity decreases as temperature
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Fig. 6.5 FeLII andLIII edgeXAS spectra forK1 sample at 158K. θ = 70°. This figure is reproduced
from ref [11]
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Fig. 6.6 Fe LII- and LIII-edge XMCD spectra for K1 sample at a 77 K, b 170 K, c 223 K. θ =
70°. These figures are reproduced from ref [11]
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increases (170 K and 223 K). Similar clear XMCD were observed for another angle
of θ = 30°, 45°, 55°.

Using the sum rule for XMCD [12], the contribution from spin and orbital
magnetic moments can be derived from the ratio of intensities of LIII and LII XMCD
signal individually. Figure 6.7 shows temperature dependence of the magnetic
moments from spin- and orbital contribution for K1 sample measured at (a) θ =
30° and (b) 70°. Each magnetic moment is decreases with increasing temperature
and the XMCD peaks disappear higher than around 200 K.

Now we discuss the total magnetic moment obtained by sum of spin- and orbital-
moment. Temperature dependence of the total magnetic moment are shown for
K1 sample measured at θ = 30° and 70°. The magnetic moment is decreases as
temperature increases and the XMCD peaks disappear more than ~200 K (Fig. 6.8).

The temperature dependence of the totalmagneticmoments obtained fromXMCD
was analyzed by mean field theory. The applied function is

Fig. 6.7 Temperature dependence of spin-(red) and orbital-(blue) magnetic moment derived from
XMCD using sum rule for a θ = 30° and b θ = 70°
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Fig. 6.8 Temperature dependence of total magnetic moment derived from XMCD for a θ = 30°

and b θ = 70°. These figures are reproduced from ref [11]
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where the convolution function L(T, �) is expressed as

L(T,�) = �/(2π)

T 2 + (�/2)2
. (6.7)

Figure 6.9 shows the fits of the temperature dependence of the magnetic moment
with the mean field theory. The result that a diffuse phase transition from the ferro-
magnetic to the paramagnetic state with the Curie temperature distributed in the
interval � = 56 K around the average value T c = 129 K was obtained. In this
temperature range, strong fluctuations occur for the system, and they should induce
an increase in electrical resistance.

The Curie temperature is reduced by several times with the thick films. in the
two-dimensional magnetic tri-layers with spin fluctuations, such phenomenon has
been also observed [13].

Second, we discuss the local structures for these samples from the EXAFS. Fe
K-edge EXAFSwere measured at BL9C in KEK-PF, Tsukuba Japan in Fluorescence
mode using SSD (Ge-solid state detector) and Lytle detector measured at 25 ~ 300 K
and angle θ = 45°.

The local structure around Fe atom for G1, K1 and A1samples were studied.
Figure 6.10 shows (a) Fe K-edge XAFS k2χ (k) and (b) Fourier transform for K1
sample at various temperature as an example. Same quality of EXAFS data was

Fig. 6.9 The fits of the temperature dependence of the magnetic moment with mean field theory
for zero field cooling (ZFC) and field cooling (FC) at several angle θ
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Fig. 6.10 a FeK-edgeEXAFS k2κ(k) and bFourier transform forK1 sample at various temperature
with Fe foil as standard sample. These figures are reproduced from ref [11]

obtained for both G1 and A1 samples. The data was analyzed at the range of k = 2
~ 12Å−1 by use of Athena & Artemis code [14].

The temperature dependence of (a) interatomic distance and (b) Debye–Waller
factor (or mean square relative displacement) of 1st nearest neighbor (1NN) Fe–
Fe atomic pair are shown in Fig. 6.11. The interatomic distance of 1NN Fe–Fe for
K1 sample is similar to that for A1 sample, and longer than that for G1 at lower
temperature. These results mean that the local structure around Fe of K1 sample is
similar to that of A1 sample. Debye–Waller factor generally indicates the disorder
or fluctuation of the relative atomic positions from the X-ray absorbing atom.

The Debye–Waller factor of K1 sample is almost same as that of A1 sample and
larger than that of G1 sample; this result presents that the local structure around Fe
atoms for K1 sample is disordered like as alloy sample (A1).

Electron spin density fluctuations induced by local structural disorder associated
with the transition cause temperature anomalies of electrical resistivity and other
transport properties due to carrier scattering on fluctuations.

Fig. 6.11 Temperature dependence of a interatomic distance and b Debye–Waller factor of 1NN
Fe–Fe. K1; blue square, G1; red circle, A1; green triangle. These figures are reproduced from ref
[11]
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In this subsection, existence of local magnetic and atomic structures of cluster-
layered Fe/Cr thin films are shown by XMCD and EXAFS. The magnetic moment
of K1 sample is around 0.8 μB at 77 K for K1 sample and decreases as tempera-
ture increases and finally disappear near the minimum point of electric resistivity.
Analysis of the temperature dependence of the magnetic moment suggests that the
strong spin fluctuations occur in the system, and they may induce an increase in
electrical resistance. The EXAFS result shows that the local structure disorder of
cluster-layered film is close to the FeCr alloy film. The connection between the
magnetic fluctuation and the local structure disorder can be expected.

6.2.3 Other Applications

Here we shortly introduce the other applications of circular polarized X-ray to
magnetic materials. The magnetic EXAFS has advantages in both of EXAFS and
XMCD. In themagnetic EXAFS, the amplitude is proportional not only to the coordi-
nation number but also to themagneticmoment ofX-ray absorbing and photoelectron
scattering atoms because of spin–orbit coupling.

The magnetic EXAFS was applied to study Ni3Mn magnetic alloy, where a
coupling between the structure disorder and magnetic properties is prominent. The
magnetic EXAFS for Mn using circular polarized X-ray was discussed about the
effect of atomic arrangement in order–disorder couplings to magnetic properties
[15, 16]. Figure 6.12 is the Fourier transforms for Mn K-edge of (a) conventional
EXAFS and (b) magnetic EXAFS for Ni0.75Mn0.25 alloy which was heat-treated at
693 K in 500 h to order the atomic arrangement (S = 0.78) [15]. In the ordered
Ni3Mn alloy, the Mn atom has a large magnetic moment (about 3.15 βB) and is
located at the 2nd nearest neighbor (NN) and 4th NN from the X-ray absorbing Mn
atom. The FT modulus peak intensity of 2nd and 4th NN in Fig. 6.12b becomes
larger than that in Fig. 6.12a because of the large magnetic moment of Mn. From

Fig. 6.12 Mn K-edge Fourier transforms of a non-magnetic and b magnetic EXAFS for ordered
(500 h annealing) Ni0.75Mn0.25 alloy. Dotted lines are the theoretical calculation spectra



6 Recent Progress in Magnetic Nanostructures Studied … 235

the ratio of the intensities of the 1st (Ni) and 2nd (Mn) peaks, the ratio of magnetic
moment, Mn/Ni, can be evaluated. From the band calculation, the theoretical value
of the magnetic moment ratio, Mn/Ni, is 5.2 which is close to the magnetic EXAFS
result for 500 h annealing sample (Mn/Ni = 5.9) [15]. Experimental result shows
that Mn/Ni magnetic moment increases for longer annealing time or more proceeded
to order. This result indicates that the magnetic moment of Mn atoms in the highly
ordered Ni3Mn phase is larger than that in the less ordered phase.

6.3 Mössbauer Spectroscopy for Thin Films Using
Synchrotron Radiation

6.3.1 Mössbauer Spectroscopy for Thin Films

Mössbauer spectroscopy is a method to study the local electronic and vibrational
states in a sample; that is, valence, structural change, magnetic ordering, thermal
Debye characteristic temperature, and so on. This method is used in wide scientific
areas: e. g. physics, chemistry, biology, planetary science. It is of course applied to
study the nanostructured materials. In fact, it has a unique property, which might
be especially effective for the study of thin films—“isotope-specificity”. What is
isotope-specificity? You may know various element-specific methods, such as XAS,
XAFS, XMCD, XPS, and resonant IXS. The key to select the elements focused on in
these methods is the following two: the elemental absorption edges by the quantum
electronic energy levels observed in the absorption-type measurement using X-rays
and the atomic elementally characteristic X-rays observed by the scattering after the
excitation of the absorption edges. Similarly, the isotope specificity is achieved by
the nuclear energy levels. The nuclear energy levels are mainly constructed by the
strong interactions in the nuclei, as the atomic energy levels are by the electromagnetic
interactions in the atoms. In fact, the nuclear energy levels of different isotopes differ,
as the atomic energy levels of different elements do. Some atomic energy levels and
nuclear energy levels of iron and nickel isotopes are shown in Table 6.1.

The difference of the nuclear energy levels allows us to distinguish the isotopes
among elements through the nuclear resonance with photons. This is the isotope-
specificity. Therefore, if we can arrange the isotope atoms to be measured in the
position under investigation, such as surfaces, interfaces, and functional positions,
we can obtain the information from the position. Recently, we can arrange atoms in
the spatial resolution of one atomicmonolayer and thuswe can obtain the information
in the one-monolayer spatial resolution using this isotope-specificity, as shown in
Fig. 6.13. Here, we discuss the Mössbauer spectroscopy for thin films, especially
focusing on the isotope-specificity.

Now the next point is “What informationwe can obtain from theMössbauer active
isotopes?”. The simplest answer is “the nuclear energy levels”—not the electronic
levels. Is it really informative for the study on the condensed matter physics? The
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Table 6.1 Some atomic and nuclear energy levels of stable isotopes of iron and nickel

Isotopes Atomic energy levels—K absorption edge
[17]

Nuclear energy levels—first excited state
[18]

54Fe 7.110747(20) keV 1408.19(19) keV
56Fe 846.7778(19) keV
57Fe 14.4129(6) keV
58Fe 810.7662(20) keV
58Ni 8.331486(20) keV 1454.21(9) keV
60Ni 1332.514(4) keV
61Ni 67.414 (7) keV
62Ni 1172.98 (10) keV
64Ni 1345.75(5) keV

Fig. 6.13 The schematic figure of an usage of the isotope-specificity in the study of a thin film. The
Mössbauer “active” isotopes are arrenged in the position to be studied and theMössbauer “inactive”
isotopes are arranged in the other positions. We can obtain the information from the active isotope,
although all of the surface, interface and the inner layers in the layer A consist of the same elemental
components

answer is “Yes”, because the nuclear levels are affected by the surrounding elec-
trons. The nuclear levels are mainly constructed by the strong interaction between
the nucleons and a little modulated by the electromagnetic interactions with the
surrounding electrons. This interaction between a nucleus and the surrounding elec-
trons are called “hyperfine interactions”; the energy scale of the hyperfine inter-
actions is by far smaller than that of the nuclear levels, since the former is below
the order of μeV and the latter is typically the order of keV or MeV. Despite, the
interactions can be detected in principle because of the very narrow energy width
of the nuclear levels, typically from neV to μeV (Such nuclear levels are usually
selected in Mössbauer spectroscopy, although there are many nuclear levels whose
energy width is wider than them, e. g. even MeV!). The main contributions of the
hyperfine interactions are the following three, as shown in Fig. 6.14: the electric
monopole interaction, electric quadrupole interaction, and magnetic dipole interac-
tion. The effect by the electric monopole interaction is usually called “isomer shift”
and an indicator for the oxidation state, electric negativity of ligands, character of
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Fig. 6.14 The schematic figure for a typical hyperfine splitting in a 57Fe nucleus. (a) 57Fe nuclear
structures in the case of each main contribution of hyperfine interaction. The arrows show the
allowed nuclear transitions in this M1 transition case. The most left one is the original structure in
the isolated nuclei without surrounding electrons (i. e. without hyperfine interactions). The dashed
lines show the relation of degeneration of nuclear energy levels. Note that the right two figures also
includes the effect of the isomer shift because it is always included in energy domain Mössbauer
spectroscopy. (b) Typical Mössbauer absorption spectra observed in each case. Note the magnitude
of energy of the relating phenomena: the energy of the first nuclear excited state is 14.4129(6)
keV (energy difference shown in the leftmost figure in (a)), the energy shift or splitting due to the
hyperfine interactions are typically below the order of μeV, and the energy width (full width of half
maximum) of the first excited state is 4.64 (1) neV

bonds including the distance to the neighboring atoms, and spin states. The relation
between the isomer shift values and the oxidation states is shown in literature [for
example, refs. 19–21]. The effect by the electric quadrupole interaction is often called
“quadrupole splitting” or “quadrupole shift”: the latter phrase is usually used in the
case of the combination of the electric quadrupole interaction and magnetic dipole
interaction, especially the case that the electric quadrupole interaction is perturba-
tion to the magnetic dipole interaction. The electric quadrupole interaction is an
indicator for the symmetry of surrounded electrons and atoms, including molecular
symmetry, ligand symmetry, symmetry of crystal structure. It is also an indicator for
oxidation state, character of bonds, and spin states. The magnetic dipole interaction
reflects the local magnetic field at the nucleus and thus the value is often called
“magnetic hyperfine field” or “internal magnetic field”. This is an indicator for the
spin states and magnetic orderings including the ferromagnetism, ferrimagnetism,
anti-ferromagnetism. These values are simply calculated from the absorption ener-
gies from theMössbauer spectra, typically shown in Fig. 6.14b [22]. Some computer
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software packages are very useful to analyze them [for example, 23 and 24]. For
the interpretation of these values, the theoretical calculation and/or previous exper-
imental literature is very useful. For the theoretical calculation, the calculation of
the inner-core electrons with relativistic effect is essential because the Mössbauer
nucleus is surrounded by the inner-core electrons with relativistic momentum [25,
26]. As for the experimental literature, various substances have been measured by
many researchers and summarized in many textbooks and databases, especially for
those for 57Fe [For example, 19–21, 27]. When there is some chemical species or
different sites due to the breaking of some symmetry such as low crystallographic
symmetry, the Mössbauer spectra are represented by the superposition of the Möss-
bauer spectra of each species and/or sites. This site-analysis capability is essentially
important to the non-ideal surface and/or interfaces, such as surface of an alloy with
partial oxidization.

To measure the Mössbauer spectra reflecting hyperfine interactions, we should
resolve the energy difference of neV. Is it really possible? In principle, “Yes” by
“Mössbauer effect”. In 1957, R. L. Mössbauer discovered the recoilless, i.e. elastic,
nuclear resonant absorption/scattering process [28]. This effect guarantees the precise
determination of energy changes even in the range of neV. The next point is how
we actually resolve it. It is impossible to resolve such small energy difference by
commonly-used energy-resolving detectors, such as an solid-state detector. There-
fore, we use the Doppler effect of light. Consider that photons are incident on a
nucleus and the energy of the photons E is quite similar to that of a nuclear excited
level of the nucleus. We move the nucleus for the Doppler effect by the velocity of
the nucleus v. Then, the energy shift �E is

�E = v

c
E, (6.8)

where c is the speed of light. In the case of 57Fe, 1 mm/s corresponds to 48.076(2)
neV. The actual measurement system of conventional Mössbauer spectroscopy using
radioactive isotopes (RI) as an incident photon source (that is, the established system
without SR) is shown in Fig. 6.15. The velocity of the RI source is controlled
by a velocity controlling system and thus the energy of the incident photons are
modulated by the velocity. This incident photons show a simple monochromatic

Fig. 6.15 The schematic figure for a typical Measurement system of Mössbauer spectra
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energy profile with the energy width of the nuclear resonance. In the case of 57Fe,
it is 4.64 neV in the ideal case. The incident photons penetrate the sample under
study and then they are detected by the detector. We measured the photon inten-
sity depending on the velocity; when the incident photon energy coincides with
one of the allowed nuclear transitions of 57Fe nuclei in the sample, the transmis-
sion intensity decreases due to the nuclear resonant absorption. Thus, we obtain the
absorption type energy spectra where the x-axis is velocity, i. e. Mössbauer spectra
of the sample. This measurement system is non-contact and non-destructive using
hard X-rays and thus we can easily combine the vacuum chamber, thermal furnace,
and other environmental cells. This property is advantageous for the surface science.

Mössbauer spectroscopy using RI source have been also applied to thin films for
the study of the surface and interface science. However, many thin films are synthe-
sized on substrates, which are often quite thick for the incident photons to penetrate.
This problem can be solved by measuring the scattering spectra, similarly to the
fluorescent XAFS compared with the transmission XAFS. In fact, after the nuclear
resonant absorption by the nuclear level, photons and electrons are scattered in its
de-excitation processes. A well-known method of this scattering-type measurement
is conversion electron Mössbauer spectroscopy (CEMS) [29], where the internal
conversion electrons in the nuclear internal conversion processes are detected. As
shown in Fig. 6.16, the thin film samples are arranged in a proportional counter
with the ionization gas and the scattered electrons are efficiently detected by the gas
counter. Using the isotope-specificity, even the Mössbauer spectra of interfaces with
one monolayer spatial resolution is measured, although it takes tens of hours for
one spectrum [30]. In addition, the thin film sample is arranged in the gas counter
at CEMS system and thus some complex instrumentation and treatment is required
for the the study of special environmental conditions: low temperature, vacuum, and
electric current application.

Fig. 6.16 The schematic figure for a typical CEMS system
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6.3.2 Synchrotron Mössbauer Source

To overcome this problem, SR is used as an incident photon source. SR is a source
with high brilliance: the brilliance of SR is more than 105 times higher than that
of the commonly-used RI source. Because of its high brilliance, SR is also easily
combined with various advanced X-ray technique. In the study of thin films, the
combination of total reflection technique is very effective.Wecan apply transmission-
type measurement system with a modulation in the sample arrangement: instead of
the transmission through the sample, the photons are totally reflected by the thin
film or the substrate under the film. The high brilliance will also allow us short
measurement time. We see an example of SR using method applied to iron thin film
later in this chapter.

There are someways to combineMössbauer spectroscopywithSR.This is because
the property of the SR is different from that of photons fromRI and we cannot simply
use SR instead of the photons from RI. One clear difference between the photons
from RI and SR is its energy width. The energy width of photons from RI is around
that of nuclear resonance and that of SR hardX-rays are usually around a few eV, even
after the standard Si crystal monochromator. Even when we use the high-resolution
monochromator using a higher index of Si crystal monochromator, the energy width
is around a few meV or sub-meV.

One solution to this difference is to monochromate the SR in the energy width of
the nuclear resonance. This method is called synchrotron Mössbauer source (SMS)
method [31, 32]. The schematic drawing of the SMS method in the case of thin film
study is shown in Fig. 6.17. The key component is the nuclearmonochromator crystal
(NMC),which is developedbyProf. Smirnov [33].This is nearly perfect single crystal
of FeBO3 and the Bragg diffraction by the ‘forbidden’ index such as (111) and (333)
is used. Because the indices satisfy forbidden rule, there is no electronic scattering in
principle. However, the nuclear scattering has another symmetry because the nuclear

Fig. 6.17 The schematic figure for a typical SMS system for thin film. The total reflection technique
at thin film sample is combined with SMS method for the efficient measurement
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scattering is also affected by the magnetic order, which is anti-ferromagnetic around
room temperature. In this case, the forbidden rules for nuclear resonant scattering
differs from those for electronic scattering and the nuclear resonant scattering from
FeBO3 (111) and (333) is allowed. In that case, Bragg scattering occurs by purely
nuclear resonant scattering process without electronic scattering process. Thus, only
pure nuclear Bragg scattering is allowed and X-rays with the energy width of the
nuclear resonance and energy profile reflecting the nuclear hyperfine structure are
filtered from the NMC. With the combination of this pure nuclear Bragg scattering
and some other conditions, i. e. the selection rules for nuclear resonant scattering
using the polarization of SR and the heating up of theNMC crystal just below its Néel
temperature to manage the hyperfine structure due to the magnetic hyperfine field,
the incident SR after the NMC shows both the simple monochromatic energy profile
and very narrow energy width similar to the photons from RI, as well as extremely
high brilliance compared to those from RI. These photons filtered from SR through
the NMC is often called SR Mössbauer radiation. Furthermore, the combination of
SR and NMC looks a source of incident photons for Mössbauer spectroscopy using
RI with extremely high brilliance, this system is called SMS. This method is first
developed in European Synchrotron Radiation Facility (ESRF) in 1990’s [31] and
then began to bewidely used in SPring-8 in 2000’s [34]. In fact, after the success of the
control of SR Mössbauer radiation by the velocity of the NMC through the Doppler
effect of light, we can arrange various environmental cells and the applicability of this
method becomes very wide [35, 36]. Nowwe can simply use the SMS as a source for
Mössbauer spectroscopy instead of the RI source. It is noted that the SR Mössbauer
radiation is non-destructive to the samples in spite of its high brilliance because its
radiation power is by far smaller than the SR used in the other method, such as XRD
and XAFS. The reason is that the intensity of SR Mössbauer radiation is very low
owing to its very narrow energywidth. In fact, the energywidth of the incident SR for
the other method is typically a few eVs, although that of 57Fe Mössbauer radiation is
typically ten neVs. This means that the radiation power of SR Mössbauer radiation
is as weak as 10-8 times that of the SR for the other methods. In many cases, not
all the incident photons are absorbed by the sample and the radiation power is less
than this estimation. In fact, the SRMössbauer radiation at a sample is typically tens
of thousands counts and thus the total radiation power of the incident radiation is
sufficiently below 1 nW. It is also noted that the NMC described here is only about
that for 57FeMössbauer spectroscopy. Those for the other Mössbauer active isotopes
can be synthesized in principle but have not been succeeded until 2021.

For the Mössbauer spectra of thin films, the total reflection technique is often
combined. The SR Mössbauer radiation is incident on the thin film in a grazing
angle and its direction is modified by the total reflection by the thin film and/or the
substrate. Therefore, the SR does not penetrate the substrate and efficiently penetrate
the thin film for the reasonable absorption due to the thickness of the resonant nuclei
in the photon path. Then the totally reflected SR is detected by an detector, usually
an NaI(Tl) scintillator, to obtain the photon intensity depending on the velocity of
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NMC.Whenwe arrange the grazing incidence angle small[37],2 the obtained spectra
are absorption type and can be analyzed using software packages for conventional
Mössbauer spectroscopy using RI [22, 23].

6.3.3 Mössbauer Spectroscopy with Monoatomic Layer
Spatial Resolution

By the combination of the isotope specificity of Mössbauer spectroscopy and the
SMS method, the magnetic Friedel oscillation near the surface of iron thin film is
studied [38]. Here some experimental details of this study are introduced.

The magnetic Friedel oscillation is related to the magnetic property at the surface.
It is theoretically predicted that the magnetic moment MFe is 30% enhanced at the
surface of Fe(001) and it shows damping-oscillatory behavior with increasing the
depth from the surface [39, 40]. Furthermore, it is also predicted that the magnetic
hyperfine field H int at the surface is 30% reduced relative to those at bulk [41].3 This
strong modulation of H int was experimentally studied by an advanced in-situ CEMS
using RI source [42]. However, the H int was not so modulated at the surface in the
study. The authors discussed the contamination to the sample surface from residual
gas in spite of the ultra-high vacuum environment of <2.7 × 10–8 Pa, because even
such tiny residual gas might change the sample top surface due to the long measure-
ment time of several weeks in total. Until 2020, the magnetic Friedel oscillation has
not been experimentally observed in the viewpoint of magnetic hyperfine field.

However, using the SMS method, the measurement time should be drasti-
cally reduced. Therefore, the magnetic Friedel oscillation was recently tried to be
confirmed experimentally using SMS. Five Fe(001) thin film samples were synthe-
sized on the MgO(001) substrate with the size 10× 10× 0.5 mm3 under the vacuum
of typically 10−8 Pa. Here, the thickness of the Fe films was 5 nm and almost all
of each film is made from 56Fe isotope atoms except the monoatomic layer to be
studied. The monoatomic layer to be studied consisted of 57Fe atoms arranged with
0.6 Å thickness and the arranged layer differs each other for the five samples: the top
surface (first layer), second layer, third layer, fourth layer, and seventh layer. A
schematic drawing of the samples is shown in Fig. 6.18a. The Mössbauer spectra
of these samples were measured by the SMS measurement system. In this case, the
FeBO3(111) reflection was used for the NMC and 14.4 keV SR Mössbauer radia-
tion for 57Fe with 15.4 neV energy width was filtered from the incident SR. The
Mössbauer radiation was vertically focused by an elliptical mirror. The beam size

2 The incident angle is sufficiently smaller than the critical angle of the electronic scattering. In this
condition, the dominant process in the total reflection is electronic scattering and absorption-type
spectra are obtained.
3 The magnetic Friedel oscillation is essentially the fluctuation of electronic spin-polarization at the
surface. This causes both modulation of d electrons resulting in the fluctuation of atomic magnetic
moments and modulation of s electrons resulting in the fluctuation of magnetic hyperfine fields.
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Fig. 6.18 The sample thin films and corresponding Mössbauer spectra. (a) Schematic drawings
of the five sample thin films for the Mössbauer spectrosocpy with monolayer spatial resolution.
(b) Mössbauer spectra of the sample drawn in the left of this figure. Black solid lines represent the
fitted curves. Red, blue, and green lines represent three different magnetic components. Note that
the 57Fe isotope atoms oozed into neighboring layers. These figures are reproduced from [38]

was 15 μm (vertical) × 1.6 mm (horizontal) and the beam flux was about 2.9 ×
104 photons/sec. This focused Mössbauer radiation was introduced to the sample
thin films. Each thin film was in a vacuum chamber, where the film was transferred
without exposure to lower vacuum after their synthesis. The Mössbauer radiation
was totally reflected from the sample at an incident angle of 0.1° with a reflectivity
of about 80% and was detected by an NaI(Tl) scintillator.

The obtained Mössbauer spectra are shown in Fig. 6.18b in the right side of
each sample figures in Fig. 6.18a. Here, each spectrum was obtained within a few
hours from sample preparation and thus the contamination from the residual gas is
expected to be significantly less than that in [38]. The spectra of the samples where
57Fe atoms were arranged in the first, second, and third layer exhibited complex
profiles composed of two or three different magnetic components. This reflects the
situation that the ideal 57Fe layer in the samples was surrounded by finely distributed
unexpected 57Fe atoms, which stemmed from the random deposition and surface
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diffusion of iron atoms during the growth process. Therefore, the main component,
i. e. the component with the largest absorption area in each spectrum, should show
the information of the target layer. The reason why similar three components were
not observed in the spectra of the samples with the deeper 57Fe layer is that the
neighboring layers also showed the sameMössbauer spectra. Based on this consider-
ation, the experimental magnetic hyperfine field are summarized in Fig. 6.19 with the
results of theoretical calculation; the theoretical calculation is performed by the local
density approximation combinedwith the optimized effective potential method using
the exact exchange-potential for core states with the consideration to the relativistic
effect. Both theoretically calculated magnetic hyperfine fields and experimentally
evaluated ones clearly show the oscillatory behavior with increasing the depth from
the surface. In addition, the experimentally evaluated ones quite agree with those by
the theoretical calculation except those of the top surface layer. At the top surface,

a

c

b

d

Fig. 6.19 The experimentally evaluated and theoretically calculated parameters of hyperfine inter-
actions of 57Fe atoms in each depth layer from the Fe(001) surface. a Experimentally evaluated
magnetic hyperfine fields. The inner graph showed the relation between the experimental and theo-
retical ones. b The theoretically calculated mangetic hyperfine fields and the Fe atomic magnetic
moments. c Experimeltally evaluated isomer shifts and quadrupole shifts. dTheoretically calculated
isomer shifts and quadrupole shifts. All lines among data points are eye guides. These figures are
reproduced from [38]
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although the 30% reduction of the magnetic hyperfine field compared to the bulk one
is predicted, only 20% reduction is experimentally evaluated. This might be because
the calculations assume an ideal Fe(001) surface, although it is not strange that there
is the surface defects such as edges, steps, kinks, and vacancies, which might cause
the difference of coordination number around the surface atoms of actual samples
from that of the theoretical calculation. Furthermore, the isomer shifts and quadruple
shifts are also compared in Fig. 6.18. The isomer shifts also showed that the surface
charge density was modulated but it was already bulk-like at one atomic layer below
the surface. The theoretical quadrupole shifts also showed the same results. The
experimental quadrupole shifts showed some deviation from theoretical ones, but
this agrees with the not-ideally-flat surface of the samples. Thus, although there
is some effect of the surface defects, the magnetic Friedel oscillation predicted by
theoretical calculation was first clearly confirmed by the SMS experiments with one
atomic monolayer spatial resolution using its isotope-specific property.

6.3.4 Other Applications

As seen in the example above, the SMS method is very effective to study thin
films. Furthermore, this method can be also applied to thin films without such
special isotope treatment. In fact, when we measure all of a thin film and do not
require the special spatial information, we can use Mössbauer spectroscopy as an
element specific method: natural iron material includes 2.2% 57Fe isotope atoms.
For example, with such a natural Fe containing sample, i. e., the sample where the
isotope abundance of Fe was not controlled, the direction of magnetic ordering in
anti-ferromagnetic hematite Fe2O3 thin film with 20 nm thickness have been studied
by SMS [43].

Here, another excellent property of SR is noted: the nearly perfect linear polar-
ization. This property can be used to select the nuclear transition to be measured;
the nuclear transition probability depends on the direction of the hyperfine fields (i.
e. magnetic hyperfine field and the electronic field gradient at the resonant nucleus)
with respect to the polarization and the propagation vector of the incoming incident
photons. This property was already used in the study of magnetic Friedel oscillation
as the four-absorption line spectra in Fig. 6.17, while the generally allowed transition
is six, as shown in Fig. 6.13. This selection property was used for the convenience in
analysis in this case. Moreover, this polarization of SR is also used to the selection of
the magnetization direction of samples in Mössbauer spectroscopy. We can produce
circularly polarized X-rays from linearly polarized ones using an X-ray polarizing
element such as phase retarder[44]. The spin-direction selective Mössbauer spec-
troscopy is also available using the circularly polarized SR [45], similarly to the
XMCD.

As described, SMS is practically a method for 57Fe until 2021. How about the
other isotopes and/or other elements? Indeed, the broad energy spectra is further
another characteristic property of SR and photons in any energy in the broad energy
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range can be used. The third generation SR facility can produce hard X-ray photons
below 100 keV with quite high intensity and we can use SR as an incident source for
Mössbauer spectroscopy using various isotopes; for example, we can use 67.4 keV
SR photons, whose energy is the nuclear resonance energy of 61Ni. We can use other
SR photons whose energy is that of other isotopes. For the Mössbauer spectroscopy
with various isotopes, some other methods have been developed, such as nuclear
resonant forward scattering [46] and SR-based Mössbauer absorption spectroscopy
[47]. For example, 119Sn SR-based Mössbauer absorption spectra of Sn-including
thin film was measured in the literature [48].

Summary

In this chapter, we introduce the recent application of SR source to the study of
magnetic nanostructures. First example is XMCD and XAFS and second one is
Mössbauer spectroscopy. These methods are already widespread and applied several
magnetic nanostructures. On the other hand, nanostructure sciences and technology
are now in progress. The importance of these techniques will be increasing in future.
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Chapter 7
Quantum Dynamics and Statistical
Thermodynamics of Nanostructured
Dirac-Like Materials in a Magnetic Field

Norman J. M. Horing

Abstract This chapter is focused on the Landau-quantized dynamics and statistical
thermodynamics of nanostructured Dirac-like materials in a normal magnetic field,
as exemplified by Graphene and the Group VI Dichalcogenides. The chapter is based
on notes on lectures presented at the UNESCO International Center for Theoretical
Physics in Trieste, Italy in May 2019. They are composed of slides presented at the
lectures, which were carefully prepared to provide clear explanation of the material
to audience members whose native language may not have been English, using the
standard terms and mathematical symbols of theoretical physics. Sufficient detail is
provided to facilitate understanding the derivations and results presented and relevant
references are listed.

7.1 Introduction

The Landau quantized retarded Green’s function is discussed in detail for the Group
VI Dichalcogenides in position-time representation and also in position-frequency
representation, and the energy spectrum is exhibited. This Green’s function is derived
in a closed-form integral representation in terms of elementary functions (also, as
a Whittaker function), and it is expanded in a series of Laguerre polynomials. As a
(2 × 2) matrix, both diagonal and off-diagonal elements of the Green’s function are
exhibited. The thermodynamic Green’s function and spectral weight are discussed
as well as the retarded function. In regard to nanostructures, we employ a model
Graphene quantum dot to examine its role in the dynamical Green’s function and in
the energy spectrum; we also discuss a model Dichalcogenide quantum wire, again
to determine its role in the Green’s function and spectrum. A model Dichalcogenide
quantum anti-dot lattice is employed to explore its role in the Landau quantized
Green’s function dynamics and spectrum, explicitly exhibiting Landau mini-band
formation in the spectrum.
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The statistical thermodynamics of the Landau-quantized Group VI Dichalco-
genides is discussed using the Sondheimer-Wilson formulation of the Grand Poten-
tial in terms of the canonical partition function, which we obtain from the associated
retarded Green’s function, leading to the Helmholtz Free Energy,MagneticMoment,
Entropy and Specific Heat at constant volume, all of which are discussed and explic-
itly exhibited here. Typical de Haas-van Alphen oscillatory phenomenology is seen
in the degenerate statistical regime and low temperature corrections to it are exhibited
with their quantum magnetic field effects. The material of this chapter is based on
the references at the end of the chapter, which may be consulted for further detailed
information [1–7].

7.2 Dirac “Relativistic” Materials

• Hamiltonian ∼ H ∼ γ p · (Pauli Matri x)

– Graphene (γ ∼= 106 m/s)
– Group VI Dichalcogenides
– Silicene
– Topological Insulators
– “Diced” Lattice

Dichalcogenides γ (m/s) (lattice speed parameter)

Mo S2 5.96 × 105

W S2 7.43 × 105

Mo Se2 5.28 × 105

W Se2 6.68 × 105

Ref: D. Xiao, G. B. Liu, W. Feng, X. Xu, W. Yao, Phys. Rev. Lett. 108, 196802
(2012)



7 Quantum Dynamics and Statistical Thermodynamics … 251

7.3 Calculations A: Graphene and Dichalcogenides

• Quantum Dynamics and Spectra in Magnetic Field
• Green’s Functions/Propagators; Landau Quantization

– Retarded; Thermodynamic; Spectral Weight Function
– Control Wave Packet Propagation by Pseudo-spin Initial State Preparation

• Model Nanostructures in Graphene and Dichalcogenides

– Q-Dots; Q-Wires; Q-Antidot Lattice: Propagators; Spectrum
– Landau Minibands in Dichalcogenides and Graphene Q-Antidot Lattice

• Twisted Graphene Double Layer in Normal Magnetic Field

7.4 Calculations B

Statistical Thermodynamics of Dirac Materials

• Grand Potential; Helmholtz Free Energy; Partition Fns.; Entropy in Quantizing
Magnetic Field

– Magnetic Moments—Landau Quantization

• de Haas—van Alphen Oscillations (degenerate regime)

– Temperature Dependence (approach to T = 0)

• Specific Heat (standard characterization technique).

7.5 Diced Lattice Calculations

• Zero Field

– Green’s Function Derived; Propagator and Spectrum
– All Thermodynamic Functions Evaluated

• Magnetic Field—Landau Quantization

– Green’s Function and Spectrum Evaluated
– Thermodynamic Functions Evaluated.
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7.6 Work in Progress and Planned

• Dichalcogenide Polarizability, Landau Quantized

– Magneto-Plasmon Spectrum (pristine and in device configuration with
substrate)

– Damping and Static Screening in Magnetic Field
– van der Waals interaction

• Magneto-Conductivity Tensor, Landau Quantized

– Magneto-Polariton Spectrum; Dichalcogenides

• Quantum Dots, Wires in “DICED” Lattice (with and without magnetic field)

• Quantum Anti-Dot Lattice in “DICED” Material

– Zero Field
– Magnetic Field with Landau Minibands

• Landau Quantization Effects on Twisted Graphene Layers.

7.7 Hamiltonian: H ∝ ⇀
p; ⇀

π = ⇀
p + e

⇀

A
c

• Group VI Dichalcogenides

The low-energy Dichalcogenides pseudo-spin-½
⇀

k · ⇀
p model Hamiltonian is block

diagonal, with four 2×2 blocks (each block for a specific choice of spin and valley),
and the individual 2 × 2 blocks are like that of graphene (except for an additional
spin term and an energy shift):

H = γ σxπx + γvσyπy − gσz − Esz ,

where
⇀
π = (πx , πy) = ⇀

p + e
⇀

A; (è = c = 1);
⇀
σ = Pauli spin matrices; γν =

γ sign(ν) and ν = ±1 as valley index; sz = ±1 = spin index; Esz = szνλ/2;
g = −Esz + �/2; λ = spin splitting and � = energy gap; γ is a characteristic
lattice speed determined by the tight binding hopping parameter and lattice spacing.
(For the Hamiltonian of Graphene: Limit � → 0, λ → 0, Esz → 0; I2D =
2D unit matri x .)
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7.8 Green’s Function Equa. and Magnetic Field Gauge

• Retarded Green’s Function (subscript + denotes time ordering of Q-field
operators ψ,ψ+):

Gr

(
⇀
r ,

⇀

r ′; t, t ′
)

= −iε

〈(
ψ
(

⇀
r , t

)
ψ+

(
⇀

r ′t ′
))

+

〉
vacuum

,

- subscript “vacuum” denotes vacuum expectation value.

• Green’s Fn. Equation (Vector potential: �A = �B × �r/2)
(
i

∂

∂t
− H

(⇀∇,
⇀

A,
⇀

B
))

Gr

(
⇀
r ,

⇀

r ′; t, t ′
)

= I2Dδ(2)

(
⇀
r − ⇀

r ′
)

δ(t − t ′).

• Gauge Transform:
⇀

A(r) → ⇀

B ×
(

⇀
r − ⇀

r ′
)

/2 = ⇀

B × ⇀

R /2

i
∂

∂T
− H

(
⇀∇
R
,

⇀

B × ⇀

R /2,
⇀

B

)
G ′

r

(⇀

R, T
)

= I2Dδ(2)(
⇀

R)δ(T ),

where (
⇀

R = ⇀
r −⇀

r ′ = [x − x ′, y − y′]; T = t − t ′)

Gr

(
⇀
r ,

⇀

r ′; t, t ′
)

= C

(
⇀
r ,

⇀

r ′
)
G ′

r (
⇀

R; T ),

with G ′
r (

⇀

R, T ) translationally invariant and

C

(
⇀
r ,

⇀

r ′
)

= exp

[
ie

2

⇀
r · ⇀

B × ⇀

r ′ − φ(
⇀
r ) + φ

(
⇀

r ′
)]

.

and φ(
⇀
r ) is an arbitrary gauge function, which we take to vanish.

• Matrix elements of Gr → Gi j
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7.9 Retarded Green’s Function Equation

• Canonical Momentum

ΠX → ΠXY ≡ −i∂/∂X + eBY/2,

ΠY → ΠY X ≡ −i∂/∂Y − eBX/2.

• Position/Frequency representation (retardation: ω → ω + i0+)

(
ωI2D − γ σxΠXY − γνσyΠY X − gσz − Esz

)
G ′

r

(⇀

R, ω
)

= I2Dδ(2)
(⇀

R
)
;

ω−G ′
11 − [

γΠXY − iγνΠY X
]
G ′

21 = δ(2)
(⇀

R
)
,

ω+G ′
21 = [

γΠXY + iγνΠY X
]
G ′

11,

ω+G ′
22 − [

γΠXY − iγνΠY X
]
G ′

12 = δ(2)
(⇀

R
)
,

ω−G ′
12 = [

γΠXY + iγνΠY X
]
G ′

22,

where ω± = ω − Esz ± g.

7.10 Diagonal Green’s Function Analysis
[
ω∓ − ω−1± {γ 2(Π2

XY + Π2
Y X ) + iγ γν(ΠXYΠY X − ΠY XΠXY )}

]
G ′

11
22

(
⇀

R; ω

)
= δ(2)

(
⇀

R

)
.

Identity: ΠXYΠY X − ΠY XΠXY = ieB;
G ′

11
22

= G ′
11 orG

′
22 correspond to the upper or lower of ±,∓ sign:

[
ω∓ + eBγ γν/ω±

]
G′
11
22

(
⇀
R ;ω

)

+ γ 2

ω±

{
∇2
R − (eBR/2)2 − ieB

(
X

∂

∂Y
− Y

∂

∂X

)}
G′
11
22

(
⇀
R ;ω

)
= δ(2)

(
⇀
R

)
.
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7.11 Conservation of Angular Momentum

Definition: LZ = 1
i

(
X ∂

∂Y − Y ∂
∂X

) = Lz + Lz′ vanishes in application to the Green’s
function,

LZGr

(
⇀
x , t; ⇀

x ′, t ′
)

= (LZ + LZ ′)Gr

(
⇀
x , t; ⇀

x ′, t ′
)

= 0,

due to conservation of the z-component of angular momentum. Creation of a particle

at

(
⇀

x ′, t ′
)
provides angular momentum which is subsequently eliminated with its

annihilation at
(

⇀
x , t

)
.Verify by expansion ofGr

(
⇀
x , t; ⇀

x ′, t ′
)
in angularmomentum

eigenfunctions:With arbitrary gauge function φ ≡ 0, LZ commutes withC

(
⇀
x ,

⇀

x ′
)
,

so

LZG
′
r

(⇀

R;ω
)

= 0.

7.12 Diagonal Green’s Function Solution

Definitions: Ω∓ = ω∓ ± eBγ γν/ω∓; M± = ω±/2γ 2.

• 2D Oscillator:
[
�∓ + {∇2

R − (eBR/2)2
}
/2M±

]
G ′

11
22

(⇀

R;ω
)

= δ(2)
(⇀

R
)
.

• Solution: G ′
11
22

(⇀

R;ω
)

= − eB
4π

∫∞
0 dτ ei�∓τ

sin(γ 2eBτ/ω±)
exp

{
ieBR2

4 tan(γ 2eBτ/ω±)

}
;

− Expand in Laguerre polynomials Ln (notation: 1ν = {+1,−1} for {K , K ′}
points)

• G ′
11
22

(⇀

R;ω
)

= eBω±
2π

exp

(−eBR2

4

) ∞∑
n=0

Ln

(
eBR2

2

)
ω2± ∓ 2gω± − (2n + 1 ∓ 1ν)γ 2eB

.

(Off-diagonal G21
12

are obtained from these diagonal elements G11
22
.)
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7.13 Dichalcogenide Energy Spectrum

• Landau Quantization

Without the energy shifts/spin-splitting under consideration, Dirac-like Landau-
quantized energies for graphene are given by ε2n± = (2n + 1 ∓ 1ν)γ

2eB, so
Dichalcogenide denominators are

Dn± = ω2
± ∓ 2gω± − ε2n±

=
([

ω± ∓ g
]±′

√
g2 + ε2n±

)([
ω± ∓ g

]∓′
√
g2 + ε2n±

)
.

Correspondingly, the Dichalcogenide energy spectrum is given by Dn± = 0,

• ω± = ω − Esz ± g = ±g ∓′
√
g2 + ε2n±; and ωn = Esz ±′

√
g2 + ε2n±.

7.14 Off-Diagonal Elements

Notation: �̂ ≡ √
g2 + ε2n with ε2n ≡ (2n + 2)γ 2eB.

ω±G ′
21
12

(⇀

R, ω
)

= [
γΠXY ± iγνΠY X

]
G ′

11
22

(⇀

R, ω
)
.

The results for K , K ′ separately are given by:
(
Lα
n (x) = Laguerre Polynomials.

)

• K (1ν = +1) : G ′
21
12

(⇀

R, ω
)

= γ (eB)2

2π
(i X ∓ Y )e−eBR2/4

∞∑
n=0

L1
n

(
eBR2

2

)
/Dn,

• K ′(1ν = −1) : G ′
21
12

(⇀

R, ω
)

= γ (eB)2

2π
(i X ± Y )e−eBR2/4

∞∑
n=0

L1
n

(
eBR2

2

)
/Dn,

where Dn ≡ (
ω − Esz + �̂

)(
ω − Esz − �̂

)
.

Note: Off-diagonal elements are interchanged with interchange of K , K ′.
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7.15 Other Representations (Notation: ρ =
√
g2 + ε2

n± )

• Momentum/Frequency Representation—Dichalcogenides

G ′
11
22

(
⇀
p;ω

)
= −i

∫ ∞

0
dτ

ei�∓τ

cos
(
γ 2eBτ/ω±

)exp
{−i tan(γ 2eBτ/ω±)

eB
p2
}
,

• Position/Time Representation—Dichalcogenides

G ′
11
22

(⇀

R; T
)

= −iη+(T )(eB/2π)e−i Esz T exp( − eBR2/4)

×
∞∑
n=0

Ln
(
eBR2/2

){cos(�T ) ∓ (ig/�) sin(�T )},

• Position/Frequency Whittaker Function—Graphene

G ′
11
22

(⇀

R;ω
)

= (M±/π)Z2(R;ω),

Z2(R) is the second Frobenius solution of the Bessel Wave Equation.

7.16 Thermodynamic Green’s Function and Spectral
Weight Matrix A

• Thermal Avg. Weight e−β(H−μN ), instead of vacuum average.
• Thermodynamic Green’s Function: (ε = ±1 for t ≷ t ′ and subscript "+" denotes

time order of field operators; η+(T) is the Heaviside unit step function.)

G(�r , t; �r ′, t ′) = −iε
Tr [e−β(H−μN )(ψ(�r , t)ψ+(�r ′, t ′))+]

Tr [e−β(H−μN )] .

• G

(
⇀
r ,

⇀

r ′; T
)

= η+(T )G>

(
⇀
r ,

⇀

r ′; T
)

+ η+(−T )G<

(
⇀
r ,

⇀

r ′; T
)

.

• Define Spectral Weight Matrix A(ω) in terms of G>,G< :

G>
(⇀

R; T
)

− G<
(⇀

R; T
)

≡ −i A
(⇀

R; T
)

≡ −i
∫

dω

2π
e−iωT A

(⇀

R;ω
)
.

• Gauge: [G,G>,G<, A] = C

(
⇀
r ,

⇀

r ′
)[

G ′,G ′>,G ′<, A′]( �R).



258 N. J. M. Horing

• Spectral weight: A
(⇀

R, ω
)

= C

(
⇀
r ,

⇀

r ′
)
A′
(⇀

R, ω
)

satisfies the homogenous

Green’s function equation (G>,G< satisfy the same homogeneous equation) and
the sum rule

∫
(dω/2π)A

(
⇀
r ,

⇀

r ′;ω

)
= δ(2)

(⇀

R
)
I2D = A′

(⇀

R, T = 0
)
.

• Thermal Green’s Function: iG{<>}
(

⇀
r ,

⇀

r ′;ω

)
=
{
1± f (ω)
± f (ω)

}
A
(

⇀
r ,

⇀

r ′;ω

)
, where

f (ω) is Fermi–Dirac statistical distribution function.

7.17 Spectral Weight Matrix (Matrix Elements of A→ Ai j )

Notation: � ≡
√
g2 + ε2n±; �c± ≡ 2γ 2eB/ω±; M± = �±/2γ 2,

• Time Rep:
[
i∂/∂τ − p2/2M± + M±�2

c±∇2
p/8

]
A′
11
22

(
⇀
p, τ

)
= 0.

• Solution: A′
11
22

(
⇀
p, τ

)
= sec

(
�c±τ/2

)
exp

{−i p2 tan
(
�c±τ/2

)
/M±�c±

}
.

• Spectral weight from Retarded Green’s fn. Gr :
A
(

⇀
r ,

⇀

r ′, ω
)

= −2C

(
⇀
r ,

⇀

r ′
)
ImG ′

r

(⇀

R, ω
)
; [ω → ω + i0+ inG ′

r

];
A11

22

(
⇀
r ,

⇀

r ′, ω
)

= C

(
⇀
r ,

⇀

r ′
)
eB

2
exp

(−eBR2

4

)(
1 ± g

ω − Esz

) ∞∑
n=0

Ln

(
eBR2

2

)∑
±′

δ
(
ω − Esz ±′ ρ

)
,

A′
11
22

(
⇀
p , ω

)
= 2πexp

(
− p2

eB

)(
1 ± g

ω − Esz

) ∞∑
n=0

(−1)n Ln

(
2p2

eB

)∑
±′

δ
(
ω − Esz ±′ �

)
.

• Density of States: D(ω)=(1/2π)Tr A( �R, ω)=(A′
11(

⇀

R=0) + A′
22(

⇀

R=0)) area2π .
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7.18 Model Function Dot Green’s fn. Gdot—Graphene

• Model Dot Potential: U (
⇀
r ) = αδ(2)(

⇀
r ); α = ∫

d2 ⇀
r U (

⇀
r ) <0

(Dot radius is smallest length parameter; U (�r) is dot potential depth.)
• Dyson-Type Integral Equation For Gdot : (Gr is 2d retarded G-function without

dot.)

Gdot

(
⇀
r1,

⇀
r2; ω

)
= Gr

(
⇀
r1,

⇀
r2;ω

)
+
∫

d2
⇀
r3 Gr

(
⇀
r1,

⇀
r3; ω

)
U
(
⇀
r3
)
Gdot

(
⇀
r3,

⇀
r2; ω

)
:

• Integrate, solve algebraically,

Gdot

(
⇀
r1,

⇀
r2; ω

)
= Gr

(
⇀
r1,

⇀
r2;ω

)
+ αGr

(
⇀
r1, 0; ω

) 1

I − αGr (0, 0;ω)
Gr

(
0,

⇀
r2;ω

)
,

• Inversion: (Note: Gr (0, 0;ω) = G ′
r (0, 0;ω) since C(0, 0) = 1)

[I − αGr (0, 0;ω)]−1 = �−1

(
1 − αG ′

22 αG ′
12

αG ′
21 1 − αG ′

11

)
.

7.19 Landau Quantized Energy Spectrum: Graphene-Dot

• Dispersion Relation (� = c = 1)

� = (
1 − αG ′

11(0, 0)
)(
1 − αG ′

22(0, 0)
)− α2G ′

12(0, 0)G
′
21(0, 0).

• Divergence at
⇀
r ≡ 0 is due to artificial confinement of Q-well to zero radius.

For a small integration radius “a” we expect an average “smear”:
G ′(0, 0;ω) ⇒ G ′(a;ω): Note G ′

12;21 ∝ (γ eBa/ω)G ′
11;22 � G ′

11;22.

• Disp. Rel.: 1 ∼= α eB
2π ωe

(
−eBa2

4

) ∑∞
n=0 Ln

(
eBa2

2

)
/
(
ω2 − 2γ 2eB(n + [1 ∓ 1ν]/2)

)
.

• Parameters: B=500gauss; a∼10−9m; γ=106 ms ; ω≡
(
2γ 2eB

�

) 1
2∼1013

s ;
γ eBa
�ω

∼ 10−3; αeB
2πω�2 ∼ 10−3.

• Approximate solution of dispersion relation for α ∼ a2× potential well depth
very small:

ωn± = αeB

4π
e−eBa2/4Ln

(
eBa2

2

)

± 1

2

((
αeB

2π

)2

e−eBa2/2L2
n

(
eBa2

2

)
+ 8γ 2eB

(
n + [1 ∓ 1ν]

2

))1/2

.
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7.20 Model Q-Wire Green’s Function GW—Dichalcogenide

• Model Wire Potential: V (
⇀
r ) = βδ(x); β = ∫

dxV (x) < 0.
(Wire width is smallest length parameter.)

• Dyson-Type Integral Equation for GW : (Gr is 2d retarded Gr -function without

wire.)

GW (
⇀
r1,

⇀
r2;ω) = Gr (

⇀
r1,

⇀
r2;ω) +

∫
d(2) ⇀

r3 Gr (
⇀
r1,

⇀
r3;ω)V (x3)G

W (
⇀
r3,

⇀
r2;ω).

• Integrate:

GW (x1, y1; x2, y2) = Gr (x1, y1; x2, y2)
+ β

∫
dy3Gr (x1, y1; x3 = 0, y3)G

W (x3 = 0, y3; x2, y2).

• Gauge: GW
(

⇀
r1,

⇀
r2;ω

)
= C

(
⇀
r1,

⇀
r2
)
G

′W
(

⇀
r1,

⇀
r2;ω

)
.

• Restrict Propagation to Wire Alone (x1 ≡ x2 ≡ 0); C(y1, y2) ≡ 1;
• Fourier Transform:GW (0, y1; 0, y2) = GW (y1 − y2) ⇒ GW

(
py
)
,

GW (0, y1; 0, y2) = Gr (0, y1; 0, y2) + β

∫
dy3Gr (0, y1; 0, y3)GW (0, y3; 0, y2).

• Solve algebraically for py-transform

GW (py) = Gr (py) + βGr (py)
[
1 − βGr (py)

]−1
Gr (py).

7.21 Q-Wire Green’s Fn. Elements (Gr review)

• Diagonal:

G ′
11
22

(py) = eB

2π

∞∑
n=0

ω±
Dn±

∞∫
−∞

dY cos
(
pyY

)
Ln

(
eB

2
Y 2

)
exp

(
−eB

4
Y 2

)
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and G ′
11
22

(py) =
√

eB
π

∞∑
n=0

ω±
Dn±

(−1)n

n! fn
(
py
)
, (Hn are Hermite polynomials)

where fn(py) ≡ exp
(−p2y

eB

) n∑
k=0

(−1)k(nk)
(2n−2k)!
(n−k)! H2k

(√
2
eB py

)
.

• Off Diagonal: G ′
21
12

(py) =
√

eB
π

∑∞
n=0

(−1)n

Dn±n!�
op
±
(
py
)
fn
(
py
)
,

where �
op
±
(
py
) = iγν

eB
2

∂
∂py

± γ py .

7.22 Model Q-Wire Eigenenergy Dispersion Relation

β =
∫

dxV (x) ∼ wV0 ∼ small

• Dispersion Relation: det
(
I2D − βG ′

r (py)
) = 0 = 1 − β

[
G ′

11 + G ′
22

] +
β2
[
G ′

11G
′
22 − G ′

21G
′
12

];

0 = 1 − β

√
eB

π

∞∑
n=0

(−1)n

n!
[

ω+
Dn+

+ ω−
Dn−

]
fn
(
py
)

+ β2 eB

π

∞∑
n=0

∞∑
m=0

(−1)n(−1)m

n!m!
[
ω+ω− fn

(
py
)
fm
(
py
)− (

�
op
+
(
py
)
fn
(
py
))(

�
op
−
(
py
)
fm
(
py
))]

Dn+Dm−
.

• For a very narrow wire, w ∼ β is the smallest length: A root can occur
only if Dn± ∼= O(β), in which case the other denominator, D∓ ∼= O(β0) =
O(1). Therefore, most β2�n�m—terms on the right ∼= O

(
β2

β

)
= O(β)

compared to the preceding term ∼= O
(

β

β

)
= O(1). However, the term

m = n − 1ν has Dm− = Dn−1ν,− = Dn+ = O(β), so that term of
�n�m=n−1ν

contributes competitively with the first term in producing the nth-
root. Dropping all terms of higher order in β, the nth root is determined by
(choose± → +; similar results obtain for ± → −):

0 = 1 − β

Dn+

√
eB

π

[
(−1)n

n! ω+ fn
(
py
)+ (−1)n−1ν

(n − 1ν)! fn−1ν

(
py
)]

− β2

D2
n+

eB/π

n!(n − 1ν)!
[
ω+ω− fn

(
py
)
fn−1ν

(
py
)−

(
�
op
+
(
py
)
fn
(
py
))(

�
op
−
(
py
)
fn−1ν

(
py
))]

.
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7.23 Landau Quantized Dichalcogenide Q-Wire Energy
Spectrum

• Dispersion Relation: (Notation: ρn± ≡
√
g2 + ε2n±.)

0 = 1 + β

Dn+
Φn+ + β2

D2
n+

ψn,

where we have defined

Φn+ = −
√
eB

π

[
(−1)n

n! ω+ fn(py) + (−1)n−1ν

(n − 1ν)! fn−1ν
(py)

]
,

ψn = − eB/π

n!(n − 1ν)!
[
ω+ω− fn(py) fn−1ν (py) − (

�
op
+ (py) fn(py)

)(
�

op
− (py) fn−1ν (py)

)]
.

• Quadratic Solution: Dn+ = − β

2Φn+ ±′′ β

2

√
Φ2

n+ − 4ψn .
Note: Dn+ = (ω−Esz −ρn+)(ω−Esz +ρn+) ∼= (ω−Esz −ρn+)(2ρn++O(β)).

• Q-Wire Mode Energy to Order β: (nth root)

ω = ESZ + ρn+ − β

4ρn+

(
Φn+ ∓′′

√
Φ2

n+ − 4ψn

)
.

7.24 Model Q-Anti-dot Lattice Dichalcogenide Landau
Minibands

• Dyson-Type Integral Equa. for GL of Lattice (Gr is a 2D- retarded G-Fn without
antidot lattice.)

GL (x1, x2; y1, y2; ω) = Gr (x1, x2; y1, y2; ω)

+
∫

dx3

∫
dy3Gr (x1, x3; y1, y3; ω)U (x3, y3)G

L (x3, x2; y3, y2; ω).

• Krönig-Penney Model Potential for Q-Anti-Dot Lattice in magnetic field

U (
⇀
r ) = U (x, y) = α

∞∑
n=−∞

δ(x − nd)δ(y); d = Lattice Period

(α = U0a2 > 0 is a product of antidot potential barrier height with its area),
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GL (x1, x2; y1, y2; ω) = Gr (x1, x2; y1, y2; ω) + α

∞∑
n=−∞

Gr (x1, nd; y1, 0)GL (nd, x2; 0, y2).

• To solve, set x1 = md:

GL (md, x2; 0, y2) = Gr (md, x2; 0, y2) + α

∞∑
n=−∞

Gr (md, nd; 0, 0)GL (nd, x2; 0, y2).

• Lack of spatial translational invariance is a problem, except for propagation

directly on the lattice: (y1 ≡ y2 ≡ 0); C
(

⇀
r ,

⇀

r ′
)

→ 1;

Gr

(
⇀
r ,

⇀

r ′; t, t ′
)

= C

(
⇀
r ,

⇀

r ′
)
G ′

r

(
⇀
r −⇀

r ′, t − t ′
)

= G ′
r

(
⇀
r −⇀

r ′, t − t ′
)

.

7.25 Lattice GL-Fn. In Magnetic Field: Analysis

• Propagation Directly on Q-Anti-dot Lattice: (y1 ≡ y2 ≡ 0).
• Define Ġr : Gr (md, nd; 0, 0) ≡ Ġr ([m − n]d, 0, 0).

• Lattice Periodicity: G̃L(p) =
∞∑

r=−∞
eipdrGL(rd).

• Fourier Coefficient: GL(md) = d
2π

π/d∫
−π/d

dpe−i pdmG̃L(p),

and

ĠL([m − n]d) = d

2π

π/d∫
−π/d

dpe−i pd[m−n] ˙̃GL(p).

• Fourier Series to Crystal Momentum Representation:

G̃L(p) = G̃r (p) + α
˙̃Gr (p)

∞∑
n=−∞

eipdnGL(nd)

= G̃r (p) + (αd/2π)
˙̃Gr (p)

π/d∫
−π/d

dq
(
�∞

n=−∞ein[p−q]d)G̃L(q).
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7.26 Solution for Lattice GL-Function

• Poisson Sum Formula:

G̃L(p) = G̃r (p) + α

∞∑
m=−∞

π/d∫
−π/d

dq δ(p − q − 2πm/d)
˙̃Gr (p)G̃

L(q);

• Integrate over first Brillouin Zone:

G̃L(p) = G̃r (p) + α
˙̃Gr (p)G̃

L(p),

• whence G̃L(p; x2; 0, 0;ω) =
[
1 − α

˙̃Gr (p; 0, 0;ω)
]−1

G̃r (p; x2; 0, 0;ω).

• Lattice Green’s Function: 2D Krönig-Penney model in magnetic field

GL (x1, x2; 0, 0; ω) = Gr (x1, x2; 0, 0; ω) + α

∞∑
n=−∞

Gr (x1, nd; 0, 0;ω)

× d

2π

π/d∫
−π/d

dpe−i pdn
[
1 − α

˙̃Gr (p; 0, 0; ω)
]−1

G̃r (p; x2; 0, 0; ω).

7.27 Q-Anti-dot Lattice Energy Spectrum: Landau
Minibands

• Dispersion Relation: det
[
1 − α

˙̃Gr (p, 0, 0;ω)
]

= 0,

1 = α
[ ˙̃G11(p) + ˙̃G22(p)

]
− α2

[ ˙̃G11(p)
˙̃G22(p) − ˙̃G21(p)

˙̃G12(p)
]
;

• Diagonal Elements → Landau Quantized Dichalcogenides GL -Fn:

˙̃G ′Diag
11
22

(p) =
∞∑
n=0

(ω±Nn)/Dn,sz ,ν,±; Nn ≡ eB

2π

∞∑
r=−∞

eipdr e−eBd2r2/4Ln(eBd
2r2/2);

• Off-Diagonal Elements: ˙̃G21
12

(p) = ∑∞
n=0 Mn/Dn,sz ,ν,±;

Mn ≡ iγ (eB)2d

2π

∞∑
r=−∞

eipdr re
−eBd2r2

4

{ [1 ∓ 1ν ]
2

Ln

(
eBd2r2

2

)
+ L1

n−1

(
eBd2r2

2

)}
.
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• Dispersion Relation: (Notation ρn± =
√
g2 + ε2n±)

0 = 1 − α

∞∑
n=0

Nnω+/Dn+ − α

∞∑
n=0

Nnω−/Dn− + α2
∞∑
n=0

∞∑
m=0

ω+ω−NnNm − MnMm

Dn+Dm−
,

where Dn± = (
ω − Esz ∓′ ρn±

)(
ω − Esz ±′ ρn±

)
.

7.28 Dispersion Relation Analysis for Small Anti-dot Area

• Parameters: α ∼ a2U0; a2 = DotArea = Small; (Note: Dn,+ = Dn−1ν ,−).• For a root Dn,+ = 0(α) = Dn−1ν ,−, so neglecting smaller terms from other poles,

0 = 1 − α

Dn,+

(
Nnω+ + Nn−1ν

ω−
)+ α2

D2
n,+

(
ω+ω−NnNn−1ν

− MnMn−1ν

)
.

Note that the “n”-series in Mn and Nn must be terminated when the spin-

split/shifted magnetic energy ρn± =
√
g2 + ε2n± reaches the limit of validity of

the Dirac linear-momentum low-energy Hamiltonian approximation (due to band
bending). Solve quadratic eqn. for Dn±:

Dn± = α

2

(
Nnω+ + Nn−1vω−

)±′′ α

2

√(
Nnω+ + Nn−1vω−

)2 − 4
(
ω+ω− NnNn−1v − MnMn−1v

)
.

Recall Dn± = (
ω − Esz ∓′ ρn±

)(
ω − Esz ±′ ρn±

) ⇒ (
ω − Esz ∓′ ρn±

)(±′2ρn±
)
to

order α for root near ω = Esz +′ ρ+ + 0(α): (Choose ± = +.)

ω = Esz +′ ρn+ +′ Dn+/
(±′2ρn+

)
.

Since Dn+ ∼ 0(α) explicitly, its further dependence on α implicitly
through ω+, ω− may be neglected to order α.
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7.29 Landau Minibands

Nn = eB

2π

[
1 + 2�∞

r=1 cos(pdr)e
−eBd2r2/4Ln(eBd

2r2/2)
]
,

Mn = −γ (eB)2d

π

[
�∞
r=1r sin(pdr)e

−eBd2r2/4
{
[1 ∓ 1ν ]

2
Ln(eBd

2r2/2) + L1
n−1(eBd

2r2/2)

}]
.

• The n’th eigenenergy mode is given by

ωn = Esz ±′ ρn± ±′ α

4ρn±

(
Nnω+ + Nn−1ν

ω−
)

±′′
(±′′α
4ρn±

)√(
Nnω+ + Nn−1ν

ω−
)2 − 4

(
ω+ω−NnNn−1ν

− MnMn−1ν

)
.

• Since cos(pdr), sin(pdr) vary over a restricted range
−1 ≤ cos(pdr), sin(pdr) < 1, the discrete Landau level has spread into a
band of finite width, ie: a Dichalcogenide Landau miniband of width proportional
to α has been formed by the antidot lattice.

7.30 Statistical Thermodynamics of Group VI
Dichalcogenides in Magnetic Field

kB = BoltzmannConstant

• Grand Potential: �;β = (
kBT ′)−1; T ′ is Kelvin Temperature

• Helmholtz Free Energy F ; μ = Chemical Potential
• Grand Partition Function: Z = ∏

Eγ

(
1 + e−β(Eγ −μ)

)
–FermiDirac

• Ordinary Partition Function: Ẑ = �Eγ
e−βEγ = Tre−βH

• Entropy: S = −(∂F/∂T ′)
N ,V constant;

(
dF = −pdV − SdT ′ + μdN

)
• Magnetic Moment: M = −(∂F/∂B)T,V,N (B is Magnetic Field)

– de Haas-van Alphen(dHvA) Oscillations

• Specific Heat: CV = T ′(∂S/∂T ′)
V .
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7.31 Thermodynamic Functions: Relations

• Grand Potential �:

� = F − μN = −kBT
′ ln Z = −kBT

′�Eγ
ln
(
1 + e−β(Eγ −μ)

)
,

and writing the Eγ -summand as an inverse Laplace transform (contour c)

B(E) ≡ −kBT
′ ln
(
1 + e−β(E−μ)

) =
∫
c

ds

2π i
esE p(s),

with p(s) as the Laplace transform of B(E),

p(s) =
∞∫
0

dEe−sE B(E),

• we have � = F − μN = ∫
c

ds
2π i p(s)

∑
Eγ

esEγ = ∫
c

ds
2π i p(s)Ẑ(β → −s).

7.32 Wilson’s Evaluation in Terms of Ordinary Partition
Function

• A.H.Wilson:� = F − μN =
∫
c

ds

2π i

(
Ẑ(β → −s)

s2

)(
s2 p(s)

)
,

• Laplace Transform Convolution Theorem: (f(E) is the Fermi-Dirac distribution.)

� = F − μN =
∞∫
0

dE
∫
c

ds

2π i
eEs

Ẑ(s)

s2

∫
c

ds ′

2π i
eEs

′
s ′2 p

(
s ′),

∫
c

ds ′

2π i
eEs

′
s

′2 p
(
s ′) = ∂2

∂E2

∫
c

ds ′

2π i
eEs

′
p
(
s ′) = ∂2B(E)

∂E2
= ∂ f (E)

∂E
,

whence� = F − μN =
∫
c

ds

2π i

Ẑ(s)

s2

∞∫
0

dEeEs
∂ f (E)

∂E
,

• and � = −β

4

∫
c

ds

2π i

Ẑ(s)

s2

∞∫
0

dEeEssech2
( [E − μ]β

2

)
.
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7.33 Retarded Green’s Fn. and Ordinary Partition
Function

• Time Translation Operator = e−i HT ; Ẑ(β) = Tr e−βH ,

Ẑ(β) = ∫
d

⇀
x Tr

(
iGr,T>0(

⇀
x ,

⇀
x ; T → −iβ)

)
.

• Dichalcogenides: Landau Quantized Green’s Function (Retarded; Diagonal

Elements).

iG11
22

(
⇀
x ,

⇀

x ′; T
)

= η+(T )exp

(
ie

2

[
⇀
x · ⇀

B ×
⇀

x ′
])

eB

2π
e−i Esz T exp

(
− eBR2

4

)

×
∞∑
n=0

Ln

(
eBR2

2

)⎧⎨
⎩cos

(√
g2 + ε2n±T

)
∓ ig√

g2 + ε2n±
sin

(√
g2 + ε2n±T

)⎫⎬
⎭,

with ε2n± = (2n + 1 ∓ 1ν)γ
2eB (definition:1ν = sign(ν) = ±1).Also,

•
∫

d
⇀
x Tr

(
iGr,T>0

(
⇀
x ,

⇀
x ; T

))
= (area)

eB

4π
e−i Esz T

×
∑

sz=±1

∑
ν=±1

∞∑
n=0

∑
±

∑
±′

⎛
⎝1 ± (±′) g√

g2 + ε2n±

⎞
⎠e

±′i
√
g2+ε2n±T

.

7.34 Thermodynamic Green’s Function and Spectral
Weight A

• Grand Canonical Ensemble Average (subscript “+” denotes time ordering of field
operators ψ(�x, t), ψ+(�x ′, t ′) and ε = ±1 for t ≷ t ′; η+(T ) is the Heaviside unit
step function);

G(
⇀
x , t; ⇀

x ′t ′) =
−
[
iεTr

(
e−β(H−μN )

(
ψ
(

⇀
x , t

)
ψ+(

⇀

x ′, t ′)
)

+

)]

Tr
(
e−β(H−μN )

) ,

G

(
⇀
x ,

⇀

x ′; T
)

= η+(T )G>

(
⇀
x ,

⇀

x ′; T
)

+ η+(−T )G<

(
⇀
x ,

⇀

x ′; T
)

.

• Spectral Weight Matrix A(
⇀
x ,

⇀

x ′;ω) relates toG>,G< as

{
G>

G<

}(
⇀
x ,

⇀

x ′;ω

)
= −i

{
1 − f0(ω)

− f0(ω)

}
A
(

⇀
x ,

⇀

x ′;ω

)
for Fermions,
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and

G>

(
⇀
x ,

⇀

x ′; T
)

− G<

(
⇀
x ,

⇀

x ′; T
)

= −iA
(

⇀
x ,

⇀

x ′; T
)

= −i
∫

dω

2π
e−iωT A

(
⇀
x ,

⇀

x ′;ω

)
.

• G>,G<, A all satisfy homogeneous G-fn. equation; Sum rule for A
(

⇀
x ,

⇀

x ′;ω

)
:

∞∫
−∞

(dω/2π)A
(

⇀
x ,

⇀

x ′;ω

)
= δ

(
⇀
x − ⇀

x ′
)
I2D;

∞∫
−∞

(dω/2π)A
(

⇀
p, ω

)
= I2D.

• Relation of Spectral Weight to Retarded G-fn. (Gr ) and Density of States D(ω).

(⇀

R = ⇀
x −�x ′; {G,G>,G<, A

} = C
(

⇀
x , �x ′

){
G ′,G ′>,G ′<, A′}(⇀

R).
)

Retarded Green’s Fn : A(ω) = −2ImGr (ω).

Density of States : D(ω) = − 1

π
ImTrGr

(
⇀
x ,

⇀

x ′;ω

)
= (

1

2π
)TrA(ω).
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7.35 Landau Quantized Dichalcogenide Spectral Weight

• Diagonal Elements: (Matrix elements of A → Ai j )

A′
11
22

(
⇀
x ,

⇀

x ′;ω

)
= eB

2
exp

(−eBR2

4

)(
1 ± g

ω − Esz

)

×
∞∑
n=0

∑
±′

Ln

(
eBR2

2

)
δ

(
ω − Esz ±′

√
g2 + ε2n±

)
.

• G<-Trace:

−iT rG<

(
⇀
x ,

⇀

x ′; T
)

= exp

(
ie

2
[⇀x · ⇀

B × ⇀

x ′]
)
eB

4π
e− eBR2

4

∑
sz=±1

∑
v=±1

∞∑
n=0

∑
±

∑
±′

× f0

(
Esz ∓′

√
g2 + ε2n±

)
Ln

(
eBR2

2

)⎛
⎝1 ± (∓′1)g√

g2 + ε2n±

⎞
⎠e

−i
(
Esz ∓′√g2+ε2n±T

)
.

• Density:

n = −iT rG ′<
(⇀

R = 0; T = 0
)

= eB

4π

∑
sz=±1

∑
v=±1

∞∑
n=0

∑
±

∑
±′

×
⎛
⎝1 ± (∓′1)g√

g2 + ε2n±

⎞
⎠ f0

(
Esz ∓′

√
g2 + ε2n±

)
.
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7.36 Dichalcogenide Grand Potential: Degenerate Regime

• Degenerate Regime: μβ → ∞
• Wilson: � = F − μN = −π

β

∫
c

ds
2π i e

sμ Ẑ(s)
s sin(πs/β)

(per unit area),

� = F − μn = − eB

4β

∑
sz=±1

∑
ν=±1

∑
±

∑
±′

∞∑
n=0

⎛
⎝1 ∓ (±′1

) g√
g2 + ε2n±

⎞
⎠∫

c

ds′

2π i

exp

[
s′β

(
μ − Esz ±′

√
g2 + ε2n±

)]

s′ sin(πs′)
.

• To evaluate the s ′-integral, we exponentiate the integrand factor as 1/s ′ =
β
∫∞
0 dxe−s ′βx so that

(
z = πs ′).

∫
c

ds ′

2π i

es
′βEγ

s ′ sin(πs ′)
= β

∞∫
0

dx
∫
c

dz

2π i

ezβ[Eγ /π−x]

sin(z)
.

Noting that the contour of z-integration along c is a straight line from z = −i∞+0+
to z = +i∞ + 0+, we consider closing the contour with a parallel line (c′) from
i∞ − π+ to −i∞ − π+ on which dzc′ = −dzc and sin

(
z′) = − sin(z).

7.37 Contour Integral for �: Degenerate Regime

The closed contour integrand
∮ = ∫

c + ∫
c′ has the residue “1” at z = 0, so that

∮
dz

2π i
· · · =

∫
c

dzc
2π i

· · · +
∫
c′

dzc′

2π i
=
(
1 + e−πβ[Eγ /π−x]

) ∫
c

dz

2π i

ezβ[Eγ /π−x]

sin(z)
= 1.

Consequently, the x-integration of 7.36 is given by

∞∫
0

dx
1

1 + e−πβ[Eγ /π−x]
= 1

πβ
ln
(
1 + eβEγ

)
,

and, for the degenerate regime under consideration, we obtain the Grand Potential
� as

• � = F − μn = −eB

4πβ

∑
sz=±1

∑
ν=±1

∞∑
n=0

∑
±

∑
±′

⎛
⎝1 ∓ (±′) g√

g2 + ε2n±

⎞
⎠

× ln

(
1 + exp

[
β

(
μ − Esz ±′

√
g2 + ε2n±

)])
.
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7.38 Grand Potential in the Degenerate Regime: Further
Comments

This indicates the behavior at very low temperature to be given approximately by
(η+(x) = 1 for x > 0, 0 for x < 0 and η−(x) = 1 for x < 0, 0 for x > 0;
η+(x) + η−(x) = 1 for all x):

• � = F − μn = −eB

4π

∑
sz=±1

∑
ν=±1

∞∑
n=0

∑
±

∑
±′

⎛
⎝1 ∓ (±′) g√

g2 + ε2n±

⎞
⎠

×
{
η+
(

μ − Esz ±′
√
g2 + ε2n±

)[
μ − Esz ±′

√
g2 + ε2n±

]

+β−1exp

(
−β

∣∣∣∣μ − Esz ±′
√
g2 + ε2n±

∣∣∣∣
)}

,

on a per-unit-area basis.
The first term is the zero temperature limit, and the second exhibits finite tempera-

ture corrections (small). The first term is oscillatory in the de Haas-van Alphen sense
due to abrupt population changes as the magnetic field varies, causing successive

vanishings of the argument of η+
(

μ − Esz ±′
√
g2 + ε2n±

)
as Landau levels cross

the Fermi energy.

7.39 Magnetic Moment of Landau Quantized
Dichalcogenides

M = −
(

∂F

∂B

)
T,V,N

= −
(

∂�

∂β

)
T,V,N

.

MDeg = �MDeg
(
T′ = 0

)+ �MDeg
(
T′ > 0

)
.

• Degenerate Regime :
• �MDeg

(
T′ = 0

) = e

4π

∑
sz=±1

∑
ν=±1

∞∑
n=0

∑
±

∑
±′

η+
(

μ − Esz ±′
√
g2 + ε2n±

)

×

⎧⎪⎪⎨
⎪⎪⎩
(

μ − Esz ±′
√
g2 + ε2n±

)
⎛
⎜⎜⎝1 ∓

(±′1
)
g√

g2 + ε2n±
±

(±′1
)
gε2n±

2
(
g2 + ε2n±

) 3
2

⎞
⎟⎟⎠

+
⎛
⎝1 ∓

(±′1
)
g√

g2 + ε2n±

⎞
⎠
⎛
⎝

(±′1
)
ε2n±

2
√
g2 + ε2n±

⎞
⎠
⎫⎬
⎭,
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•
�MDeg

(
T′ > 0

) = e

4πβ

∑
sz=±1

∑
ν=±1

∞∑
n=0

∑
±

∑
±′

e
−β

∣∣∣μ−Esz ±′√g2+ε2n+
∣∣∣
⎧⎨
⎩
⎛
⎝1 ∓ (±′) g√

g2 + ε2n±

⎞
⎠

×
⎛
⎝1 − βε2n±

2
√
g2 + ε2n±

⎞
⎠±

(±′)gε2n±

2
(
g2 + ε2n±

)3/2

⎫⎪⎪⎬
⎪⎪⎭

.

Note: de Haas-van Alphen Oscillations in �MDeg
(
T′ = 0

)
are Not Simply Periodic

in Dirac materials.

7.40 Entropy of Landau Quantized Dichalcogenides;
Specific Heat

• S = −
(

∂F

∂T ′

)
N ,V

= − ∂β

∂T ′
∂(F − μn)

∂β
= kBβ2 ∂(F − μn)

∂β
= kBβ2

(
∂�

∂β

)
N ,V

.

Despite unbounded negative energy branch of spectrum, entropy S vanishes as

T ′ → 0. (Notation: Eγ ≡ Esz ∓′
√
g2 + ε2n±.)

• S = ∂β

∂T ′
∂
∂β

(
β−1∑

Eγ
ln
(
1 + e−β(Eγ −μ)

))
⇒ 0 as T ′ → 0.

• Degenerate Regime:

SDeg = kB
eB

4π

∑
sz=±1

∑
ν=±1

∞∑
n=0

∑
±

∑
±′

⎛
⎝1 ∓ (±′1

) g√
g2 + ε2n±

⎞
⎠{ln(1 + exp

[
β
(
μ − Eγ

)])

− β
[
μ − Eγ

]
1 + exp

[−β
(
μ − Eγ

)] }.

• Simplifying for large β as T ′ ∼ 0, the curly bracket becomes

SDeg = {
exp

(−β
∣∣μ − Eγ

∣∣)[1 + β
∣∣μ − Eγ

∣∣]}.
• Specific Heat at Constant Volume: Cv = T ′( ∂S

∂T ′
)
V

= −β
(

∂S
∂β

)
V
;

Cv = kBβ2 eB

4π

∑
sz=±1

∑
ν=±1

∞∑
n=0

∑
±

∑
±′

⎛
⎝1 ∓ (±′1

) g√
g2 + ε2n±

⎞
⎠{exp(−β

∣∣μ − Eγ

∣∣)∣∣μ − Eγ

∣∣2}.

Note: Both the entropy and the specific heat are devoid of dHvA oscillations.
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Chapter 8
T-3 “DICED” LATTICE Quantum
Dynamics and Statistical
Thermodynamics (a) Zero Magnetic
Field and (b) Landau Quantized

Norman J. M. Horing

Abstract This chapter addresses the pseudospin-1 T-3 “Diced” Lattice in regards
to its quantum dynamics, spectrum and statistical thermodynamics, both with and
without an impressed normal magnetic field. As in the preceding chapter, it is based
on lecture notes composed of slides that have been carefully prepared to provide clear
explanations of the material to audience members whose native language may not
have been English, using the standard terms andmathematical symbols of theoretical
physics. Considerable detail is presented to enhance understanding of the derivations
and results described on the slides and pertinent references are provided.

8.1 Introduction

The (3 × 3) pseudospin-1 matrix retarded Green’s functions for the “Diced” lattice
are discussed in detail, bothwith andwithout the presence of a normalmagnetic field,
describing its quantum dynamics and energy spectra, with discrete Landau quantized
energy levels in the presence of a magnetic field. These Green’s functions are used
in the determination of the corresponding canonical partition functions, which are,
in turn, employed to evaluate the statistical thermodynamic functions for the T-3
“Diced” lattice, both with and without a magnetic field. These functions include
the Grand Potential, Helmholtz Free Energy, the Grand Partition Function, Entropy,
Specific Heat, and Magnetic Moment in the case with a magnetic field. In these
evaluations, the Sondheimer-Wilson formulation is employed and the evaluations of
all the statistical thermodynamic functions are carried out in the degenerate statistical
regime (including the determination of temperature dependence in the approach to
the zero temperature limit). The material of this chapter is based on the references
at the end of the chapter, which may be consulted for further detailed information
[1–5].
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8.2 Dynamics and Statistical Thermodynamics of the T-3
Diced Lattice

• Zero Field

– Green’s Function Derived; Propagation and Spectrum
– All Thermodynamic Functions Evaluated

• Magnetic Field—Landau Quantization

– Green’s Function and Spectrum Evaluated
– Thermodynamic Functions Evaluated
– Degenerate Statistical Regime.

8.3 “Diced” Lattice: Retarded Green’s Fn. Gret at Zero
Field

• Pseudospin 1

• Hamiltonian:
⇀

K -Momentum/Frequency Rep. (α = �v/
√
2; v is characteristic

lattice speed):

H = α

⎡
⎢⎣

0 K− 0
K+ 0 K−
0 K+ 0

⎤
⎥⎦ where, K± = Kx ± i Ky,

• Green’s Fn: (Iω − H)Gret = I (ω → ω + i0+ for retardation)

Gret
( �K , ω

)
=
⎡
⎣
G11 G12 G13

G∗
12 G22 G23

G∗
13 G∗

23 G33

⎤
⎦; Define D ≡ (ω2 − 2α2K 2);

G11 = G33 = (ωD)−1
[
ω2 − α2K 2

] ; G22 = ωD−1

G12 = αK−D−1 ; G∗
12 = G21 = αK+D−1

G23 = αK−D−1 ; G∗
23 = G32 = αK+D−1

G13 = α2K 2−(ωD)−1 ; G∗
13 = G31 = α2K 2+(ωD)−1

• Energy Spectrum: ω = ±√
2 ∝ K .
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8.4 Statistical Thermodynamic Functions: Diced Lattice

• Ordinary Partition Fn. Ẑ : Cutoff Km at linear K -limit of validity of Dirac linear
�K -approximation

(
β = 1

κBT ′

)

Ẑ(β) = trace
(
e−βH

) =
∫

d2xTr
(
îGret

T>0(�x, �x; T → −iβ)
)
,

= (area)i
∫

d2K

(2π)2

[∫
dω

2π
e−iωTTrGret

( �K , ω
)]

T→iβ

,

TrGret
(

⇀
K , ω

)
= 1

ω
+
∑
±

1

ω ± √
2α2K 2

;

Ẑ(β) = 1

2π

Km∫

0

dK · K
(
1 +

∑
±

exp
(
±√

2αβK
))

,

• Ẑ(β) = K 2
m

4π
−

cosh
(√

2αβKm

)

2πα2β2
+

Km sinh
(√

2αβKm

)
√
2παβ

+ 1

2πα2β2
.

8.5 Grand Potential �

• Sondheimer-Wilson Formulation:

� = F − μN =
∫

c

ds

2π i

Ẑ(s)

s2

∞∫

0

dEeEs
∂ f0(E)

∂E
,

where F is Helmholtz Free Energy, N number, μ chemical potential, i.e. “c”
denotes the inverse Laplace transform integration contour. f0(E) is the Fermi–
Dirac distribution and β = 1/κBT ′ is inverse thermal energy.

∂ f0(E)

∂E
= −β

4
sech2

(
[E − μ]β

2

)
,

and introduce the variable z = [E − μ]β/2, so that

∞∫

0

dE eEs
∂ f0(E)

∂E
= −1

2
esμ

∞∫

−μβ/2

dz e2sz/βsech2(z).
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• Degenerate Regime: In the degenerate regime μβ → ∞, so the lower limit of the
z-integral may be taken as −μβ/2 → −∞, with the result

∞∫

0

dE eEs
∂ f0(E)

∂E
= −π

β

sesμ

sin
(

πs
β

) .

8.6 Degenerate Regime Continued: � Calculation

Putting s ′ = s/β,

� = F − μN = −π

β

∫

z

ds ′

2π i

es
′βμ Ẑ

(
βs ′)

s ′ sin(πs ′)
,

and using 8.4
(
v ≡ √

2α; � → 1
)

Ẑ(βs ′) = K 2
m

4π
+
∑
±

Km∫

0

dK

2π
Ke±vβKs ′

.

In the s ′-integral of �, we exponentiate the integrand denominator factor 1/s ′ =
β
∫∞
0 dxe−s ′βx , so that a particular term with energy Eγ contributes as

∫

c

ds ′

2π i

es
′βEγ

s ′ sin(πs ′)
= β

∞∫

0

dx
∫

c

dz

2π i

ezβ[Eγ /π−x]

sin(z)
.
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8.7 Contour Integration for �

Since the contour of z-integration along c is a straight line from z = −i∞ + 0+ to
+i∞ + 0+, we consider closing the contour with a parallel line (c′) from i∞ − π+
to −i∞−π+ on which dzc′ = −dzc and sin(z′

c) = − sin (zc). Moreover, the closed
contour integrand

∮ = ∫c +∫c′ has the residue “1” at z = 0, so that

∮
dz

2π i
· · · =

∫
c

dzc
2π i

· · · +
∫
c′

dzc′

2π i
· · · =

(
1 + e−πβ[Eγ /π−x]

)

×
∫
c

dzc
2π i

ezβ[Eγ /π−x]

sin(z)
= 1.

Consequently, the x-integration of � is given by

∞∫

0

dx
1

1 + e−πβ[Eγ /π−x]
= 1

πβ
ln
(
1 + eβEγ

)
.

8.8 � In the Degenerate Regime

• � = −K 2
m

4πβ
ln
(
1 + eβμ

)− 1

2πβ

∑
±

I±,

where I± = ∫ Km

0 dK K ln
(
1 + eβ[μ±vK ]

)
.

Since Km 
 μ/v 
 kBT/v in the degenerate regime, I+ ≡ βμK 2
m

2 + βvK 3
m

3 , and
I− is given by a parts-integration as

I− = K 2
m

2
ln
(
1 + eβ(μ−vKm )

)+ βv

2

∫ Km

0
dK K 2 f0(vK ).

• Grand Potential in the Degenerate Regime

� = − K 2
m

4πβ
[ln(1 + eβ[μ−vKm ]) + ln(1 + eβμ)] − v

12π
K 3
m f0(vKm) − vK 3

m

6π
− μK 2

m

4π

− μ3

6πv2
− πμ

(
κBT ′)2
12v2

.

• Neglecting exponentially small terms, � is given by

� ≡ −vK 3
m

6π
− μK 2

m

2π
− μ3

6πv2
− πμ

(
κBT ′)2
12v2

.
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8.9 Entropy and Specific Heat: Degenerate Regime

The entropy may be determined using the thermodynamic relation

dF = −PdV − SdT ′ + μdN

by variation holding both area (volume) and number fixed, with the result

S = −
(

∂F

∂T ′

)

N ,V,μ

= −
(

∂(F − μn)

∂T ′

)

N ,V,μ

= −
(

∂�

∂T ′

)

N ,V,μ

.

• Entropy in Degenerate Regime:

SDeg = πμκ2
BT

′

6v2
.

• Specific Heat at Constant Volume in Degenerate Regime:

Cv = T ′
(

∂S

∂T ′

)

V

= πμκ2
BT

′

6v2
.

8.10 T-3 “Diced” Lattice in Quantizing Magnetic Field B

• Hamiltonian (α = �v/
√
2; v is characteristic lattice speed; � → 1)

H =
⎡
⎣

0 απ− 0
απ+ 0 απ−
0 απ+ 0

⎤
⎦,

where πx = 1
i

∂
∂x + eB

2 y; πy = 1
i

∂
∂y − eB

2 x and π+ = πx + iπy ; π− = πx − iπy .

• Green’s Function: (I is 3 × 3 unit matrix); matrix elements of G are Gi j (i, j =
1, 2, 3)

(ωI − H)G(�r , �r ′;ω) = I δ(2)(�r − �r ′),
[
ω → ω + i0+ for the retarded function

]
,

where �r = (x, y); �r ′ = (x ′, y′); and �R = �r − �r ′, X = x − x ′, Y = y − y′;
• Gauge Considerations: Gauge and Translational Invariance

G(�r , �r ′;ω) = C(�r , �r ′)G ′( �R;ω),
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where C
(�r , �r ′) = exp

(
ie
2 �r · �B × �r ′

)
. The resulting translationally invariant

equation for G ′(R, ω) is given by

(
ωI − H( �R, ω)

)
G ′( �R, ω) = I δ(2)( �R).

8.11 Green’s Function Equations (9 Elements Gi j )

• Gi j

( �R, ω
)

= G∗
j i

(
− �R, ω

)
.

• Symmetry G33

( �R, ω
)

= G11

( �R, ω
)
.

• Green’s Function (Elements) Equations:

ωG ′
11 − απ−G ′

21 = δ2( �R),

−απ+G ′
11 + ωG ′

21 − απ−G ′
31 = 0,

−απ+G ′
21 + ωG ′

31 = 0,

ωG ′
12 − απ−G ′

22 = 0,

−απ+G ′
12 + ωG ′

22 − απ−G ′
32 = δ2( �R),

−απ+G ′
22 + ωG ′

32 = 0,

ωG ′
13 − απ−G ′

23 = 0,

−απ+G ′
13 + ωG ′

23 − απ−G ′
33 = 0,

−απ+G ′
23 + ωG ′

33 = δ2( �R).

• Detailed Equations:

{
ω + 2

α2

ω

[
∂2

∂X2
+ ∂2

∂Y 2
−
(
eB

2

)2

(X2 + Y 2)

]}
G ′

22

( �R;ω
)

= δ2
( �R
)
,

{
ω + 2

α2

ω

[
∂2

∂X2 + ∂2

∂Y 2 −
(
eB

2

)2

(X2 + Y 2)

]}
G ′

21

( �R; ω
)

= α

ω
π+δ2

( �R
)
;G ′

12 = G ′∗
21;

{
ω + 2

α2

ω

[
∂2

∂X2 + ∂2

∂Y 2 −
(
eB

2

)2

(X2 + Y 2)

]}
G ′

23

( �R; ω
)

= α

ω
π−δ2

( �R
)
;G ′

32 = G ′∗
23;

G ′
11(

�R;ω) = G ′
33(R;ω) = 1

2
G ′

22(
�R, ω) + 1

2ω
δ2( �R);

G ′
13 = α

ω
π−G ′

23; G ′
31 = α

ω
π+G ′

21 = G ′∗
13.
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8.12 G′
i j (

�R, ω) Solutions; Energy Spectrum

• Landau Levels: εn ≡ ωn = ±√2(2n + 1)α2eB (n = 0 . . . ∞).

G ′
22(

�R;ω) = −eB

4π

∞∫

0

dτ
eiωτ

sin
(
2eBα2τ

ω

) exp

⎛
⎝ ieB(X2 + Y 2)

4 tan
(
2eBα2τ

ω

)
⎞
⎠;

G ′
22(R;ω) = eB

2π
ωε−eB R2

4

∞∑
n=0

Ln

(
eBR2

2

)
1

ω2 − 2(2n + 1)α2eB
.

G ′
23(

�R;ω) = α(eB)2

2π
e−eB R2

4 [i X + Y ]
∞∑
n=1

L1
n−1

(
eB R2

2

)

ω2 − 2(2n + 1)α2eB
;

G ′
32(

�R, ω) = G ′∗
23(− �R, ω).

G ′
31(

�R;ω) = α2(eB)3

2πω
e−eB R2

4 [X + iY ]2
∞∑
n=1

L2
n−2

(
eB R2

2

)

ω2 − 2(2n + 1)α2εB
;

G ′
13(

�R;ω) = G ′∗
31(− �R;ω).

G ′
11(

�R;ω) = G ′
33(

�R;ω) = 1

2
G ′

22(
�R;ω) + 1

2ω
δ2( �R);

G ′
13(

�R;ω) = α

ω
π−G ′

23(
�R;ω); G ′

31(
�R;ω) = G ′∗

13(− �R;ω).

8.13 Grand Potential � for Diced Lattice In Magnetic Field

• Sondheimer-Wilson Formulation.
Ẑ(β) is the ordinary Partition Function

β = 1/κBT
′; κB = BoltzmannConstant

T ′ = Kelvin Temperature

μ = Chemical potential

� = F − μN = −β

4

∫

c

ds

2π i

Ẑ(s)

s2

∞∫

0

dEeEssech2
( [E − μ]β

2

)
.
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• Partition Function in terms of Retarded Green’s Function (per unit area)

Ẑ(β) =
∫

d2x Tr
(
iGret

T>0(x, x; T → −iβ)
) = eB

2π

nmax∑
n=0

∑
±

e±εnβ = eB

π

nmax∑
n=0

cosh(εnβ),

The n-series over Landau levels (on right above) terminates at nmax, which labels the
highest Landau eigen-energy for which the linear momentum approximation of the
Dirac Diced Hamiltonian is valid (due to band bending).

8.14 � for Landau Quantized Diced Lattice: Degenerate
Regime: μβ → ∞

� = F − μN = −π

β

∫

c

ds

2π i

esμ Ẑ(s)

s sin
(

πs
β

) = − eβ

2

nmax∑
n

∑
±

∞∫

0

dx
∫

c

dz

2π i

ezβ[(μ±εn)/π−x]

sin(z)
,

or, on a per-unit-area basis (n = N/area; z = πs/β)

� = F − μn = −eB

2π

nmax∑
n=0

∑
±

1

β
ln
(
1 + e[β(μ±εn)]

)
.

• For low temperature such that β(μ ± εn) 
 1, we have

� = −eB

2π

nmax∑
n=0

∑
±

{
η+(μ ± εn)[μ ± εn] + 1

β
e−β|μ±εn |

}
,

where η+(x) = 1 for x > 0; 0 for x < 0.



284 N. J. M. Horing

8.15 Magnetic Moment M of Diced Lattice: Degenerate
Regime

(
T ′ → 0

)

• Degenerate: (β(μ ± εn) 
 1;μ > 0).
• Magnetic Moment/Area:

M = −
(

∂F

∂B

)

T,V,N
= −

(
∂�

∂B

)

T,V,N
,

M = e

2π

nmax∑
n=0

∑
±

{
η+(μ ± εn)

([
μ ± εn

2

]
+ εn

2

)
+ e

2π

nmax∑
n=0

∑
±

1

β
e−β|μ±εn |

(
1 − βεn

2

)}
.

• Density n ( f0(x) is the Fermi–Dirac distribution):

n = eB

2π

nmax∑
n=0

∑
±

f0(∓εn).

• Magnetic Moment: Degenerate Regime (T ′ = 0):

MT ′=0 = e

2π

nmax∑
n=0

∑
±

η+(μ ± εn)
([

μ ± εn

2

]
+ εn

2

)
> 0.

This shows that the T-3 Diced lattice is paramagnetic, MT ′=0 > 0, in the degen-
erate regime. As usual, the singular function η+′(μ ± εn) signals the presence of
de Haas-van Alphen oscillatory phenomenology as variation of the magnetic field
gives rise to successive vanishings of μ − εn → 0, as successive Landau levels
εn cross the Fermi level μ.

8.16 Magnetic Moment M of Diced Lattice: Temperature
Corrections �M in the Approach to T ′ = 0

�M = e

2π

∑nmax

n=0

∑
±
1

β
e−β|μ±εn |

(
1 − βεn

2

)
.

This is the temperature correction to�M to the total magnetization in the degenerate
statistical regime in the approach to zero temperature. The total magnetic moment
(per unit area) is given by

M → M + �M .

Note that in the zero temperature limit the (weak) temperature-dependent part,
�M , is devoid of de Haas-van Alphen oscillations and vanishes exponentially as

κBT ′exp
(
−|μ±εn |

κBT ′

)
as T ′ → 0.
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8.17 Entropy and Specific Heat of Landau-Quantized
Diced Lattice

(All per unit area.)

• Entropy S:

S = −
(

∂F

∂T ′

)

N ,V,μ

= −
(

∂�

∂T ′

)

N ,V,μ

= κBβ2

(
∂�

∂β

)

N ,V,μ

,

• Degenerate Regime:

S = κB
eB

2π

nmax∑
n=0

∑
±

e−β|μ±εn |(1 + β|μ ± εn|).

• Specific Heat at Constant Volume Cv:

Cv = T ′ ∂S

∂T ′ = −β
∂S

∂β
= κBβ2 eB

2π

nmax∑
n=0

∑
±

[μ ± εn]2e−β|μ±εn |.

Note absence of dHvA oscillatory behavior in both the entropy, S, and specific
heat, Cv.

8.18 Summary: T-3 Diced Lattice—Zero Field Statistical
Thermodynamic Degenerate Regime

(All on a per-unit-area basis.)

• Grand Potential:

� = −vK 3
m

6π
− μK 2

m

2π
− μ3

6πv2
− πμ

(
κBT ′)2
12v2

.

• Entropy SDeg = πμκ2
b T

′
6v2 .

• Specific Heat at Constant Volume Cv = πμκ2
BT

′
6v2 .
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8.19 Summary: T-3 Diced Lattice—Magnetic Field
Statistical Thermodynamics (A) Degenerate Regime

• Grand Potential:

� = − eB

2π

nmax∑
n=0

∑
±

1

β
ln
(
1 + e[β(μ±εn)]);

�LowTemp → − eB

2π

nmax∑
n=0

∑
±

{
η+(μ ± εn)[μ ± εn] + 1

β
e−β|μ±εn |

}
.

• Magnetic Moment:

M = e

2π

(
nmax∑
n=0

∑
±

η+(μ ± εn)
([

μ ± εn

2

]
+ εn

2

)
+ 1

β
e−β|μ±εn |

(
1 − βεn

2

))
.

Note dHvA oscillatory behavior in the zero temperature limit of M. The finite
temperature correction is devoid of dHvA oscillations.

8.20 Summary: T-3 Diced Lattice—Magnetic Field
Statistical Thermodynamics (B) Degenerate Regime

• Entropy:

S = κB
eB

π

nmax∑
n=0

∑
±

e−β|μ±εn |(1 + β|μ ± εn|).

• Specific Heat at Constant Volume:

Cv = κBβ2 eB

2π

nmax∑
n=0

∑
±

|μ ± εn|2e−β|μ±εn |.

Note absence of dHvA oscillatory behavior in both entropy and specific heat.
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Chapter 9
Exact Temperature and Density
Dependencies of the Statistical
Thermodynamic Functions of the
Pseudospin-1 Diced Lattice Carriers

M. L. Glasser and Norman J. M. Horing

Abstract In this work we analyze the exact temperature and density dependencies
of the thermodynamic properties of the two dimensional pseudospin-1 T-3 Diced
Lattice. Starting from the Gibbs canonical partition function, we determine the exact
grand canonical ensemble thermodynamic potential, entropy and specific heat at
arbitrary temperature and density, and confirm results in the degenerate and non-
degenerate statistical regimes.

PAC 73.20-r · 73.43-r · 05.70 Np · 05.70 Ce

9.1 Introduction

This work addresses the thermodynamic properties of the Fermion pseudospin-1
system whose Hamiltonian is

H = (�v/
√
2)

⎡
⎣

0 K− 0
K+ 0 K−
0 K+ 0

⎤
⎦ , (9.1)

which was introduced by Bercioux, et al. [1] in 2009, where v is an effective lat-
tice speed, K± = Kx ± i Ky and �K is the 2D- crystal momentum. This system has
attracted attention recently, particularly by Malcom and Nicol [2] who studied its
electronic polarizability and related properties. This system falls into the class of
Dirac materials, which includes Group VI Dichalcogenides [3], Topological Insula-
tors [4], Silicene [5] and, most notably, Graphene [6–12].
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In Sect. 9.2, we derive the exact temperature/density dependencies of the Grand
Potential, Entropy, Chemical Potential and Specific Heat, which are all expressed
in closed form, and in Sect. 9.3 we confirm the behavior of these quantities in the
degenerate and non-degenerate statistical regimes which may be relevant to possible
experimental conditions. The results are summarized and discussed in Sect. 5.

9.2 Calculations

In the body of this work we set � = 1 and introduce the dimensionless momentum
�k = �K/Km , where Km is a cut-off introduced to restrict the band structure to the
relativistic region where the dispersion is linear in momentum. We also introduce
the characteristic energy a = �vKm corresponding to the highest energy in the linear
portion of the spectrum. The partition function, discussed in Appendix A, is

Ẑ(s) = K 2
m

π
[1
4

+ 1

a2s2
− cosh(as)

a2s2
+ sinh(as)

as
]. (9.2)

To proceed, we note that the Wilson-Sondheimer formula [13, 14] giving the
Grand Thermodynamic Potential (Appendix B) may be written as

� = −κBT
∑
{α}

ln[1 + e−β(Eα−μ] = −β

4

∫ ∞

0
dt

z(t)

cosh2[ β

2 (t − μ)] , (9.3)

(κB being Boltzmann’s constant) where the α− sum is over all the energy levels, Eα ,
T is absolute temperature, β = 1/κBT , μ is the chemical potential and (Appendix
C)

z(t) =
∫ c+i∞

c−i∞
ds

2π is2
est Ẑ(−s) = K 2

m

12πa2

[
t3 + 6a2t + 2a3 −

(
t3 − 3a2t + 2a3

)
θ(t − a)

]
.

(9.4)

Here, θ(z) denotes the Heaviside unit step function and, in conformance with the
prefactor K 2

m , � and subsequent extensive quantities refer to unit area. We point out
that, apart from the system parameters Km and a,� is a function of the state variables
T (or β) and μ (or density n) since the volume (i.e. area) is fixed. Once the density
is specified, as in dealing with a specific sample, μ is itself a function of T . Details
of the derivation of (9.4) are provided in Appendix C. The function z(t) is basically
a cubic polynomial in t and behaves nearly linearly over its range. We find that the
integral resulting from inserting it into (9.3) can be evaluated exactly, with the result
(Appendix D)



9 Exact Temperature and Density Dependencies of the Statistical Thermodynamic … 291

� = − K 2
m

12πβ
{β(3μ − a) + aβ tanh(βμ/2) + 9 ln(1 + eβμ)

− 6

(aβ)2
[aβLi2(−eβ(a−μ)) − Li3(−eβ(a−μ)) + Li3(−e−βμ)]}, (9.5)

where

Lin(z) =
∞∑
k=1

zk

kn
(9.6)

is the polylogarithm [15] (Appendix E).
The chemical potential is the Lagrange coefficient associated with the constraint

that the system contain N particles and is closely related to the energy necessary to
add or remove one particle. Since in most situations the areal density n is fixed, it is
useful to know how μ is related to n = −∂�/∂μ. From (9.5) we obtain

n = K 2
m

12π

{
12 − 9

1 + eβμ
+ aβ

cosh(βμ) + 1
− 6

aβ
ln[1 + eβ(a−μ)]

− 6

a2β2

[
Li2

(−eβ(a−μ)
) − Li2

(−e−βμ
)] }

. (9.7)

Next, the entropy S = κbβ
2∂�/∂β, is given by

S = κBK 2
m

24π

[
1

a2β2 (36Li3(−eβ(a−μ))

+ 12β(μ − 3a)Li2(−eβ(a−μ)) − 12βμLi2(−e−βμ) − 36Li3(−e−βμ) − a3β4μsech2(βμ/2))

+ 18ln(eβμ + 1) + 6(
2μ

a
− 2)ln(eβ(a−μ) + 1) − 18βμ

1 + e−βμ

]
. (9.8)

9.3 Degenerate Limit

As T → 0 the system Fermions condense into the lowest states up to the Fermi
energy, which in the limit coincides withμ. In this case it is convenient to write (9.3)
as

� =
∫ ∞

0
dt f ′

0(t)z(t) = − z(0)

1 + eβμ
−

∫ ∞

0
dt f0(t)z

′(t), (9.9)
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where ( f0(t) is the Fermi-Dirac statistical distribution function)

f0(t) = 1

1 + eβ(t−μ)
. (9.10)

The last integral is (after the change of variable β(t − μ) → t)

1

β

∫ ∞

−βμ

dt
z′(μ + t/β)

et + 1
= 1

β

[ ∫ βμ

0
dt z′(μ − t/β)

(
1 − 1

et + 1

)

+
∫ ∞

0
dt

z′(μ + t/β)

et + 1

]
. (9.11)

In the degenerate limit, βμ → ∞, so

� = − z(0)

1 + eβμ
− z(0) + z(μ) − 1

β

∫ ∞

0

z′(μ − t/β) − z′(μ + t/β)

et + 1
dt. (9.12)

Now,

z′(μ ± t/β) = z′(μ) ± t

β
z′′(μ) + t2

2β2
z′′′(μ) + · · · (9.13)

so

�deg =
(
2 + eβμ

1 − eβμ

)
z(0) − z(μ) + z′′(μ)

2β2

∫ ∞

0

t

1 + et
dt + · · · . (9.14)

Since we can ignore e−βμ for any Fermi system in the degenerate regime,

�deg = Const. − z(μ) − π2

6
z′′(μ)(kbT )2 + O((kbT )4). (9.15)

Since the Fermi temperature is on the order of kiloKelvins, it is this regime which
applies tomost experimental situations. Also, since a is roughly themaximumenergy
within the linear Dirac regime, we can assume μ < a, in which case one has from
(9.4) and (9.15)

�deg = − K 2
m

12πa2
[
μ3 + 6a2μ + 2a3

]
. (9.16)

More details are provided in reference [16].
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9.4 Non-degenerate Limit

To investigate the high temperature, low density behavior, we rewrite (9.3) in the
form

� =
∫ c+i∞

c−i∞
ds

2π i

Ẑ(−s)

s2

∫ ∞

0
dt est f ′

0(t). (9.17)

In the nondegenerate case it is appropriate to write

f ′
0(t) ≈ −βeβμe−βt , (9.18)

and, therefore, the right hand side of (9.17) is simply the inverse Laplace transform
of a Laplace transform, yielding

�nd = − 1

β
eβμ Ẑ(β). (9.19)

where Ẑ(β) is given in (9.2). Consequently, �nd and density n are related by

n = −∂�nd

∂μ
= eβμ Ẑ(β) = −β�nd or �nd = −β−1n. (9.20)

Note that this relationship is valid for any Fermi system in the nondegenerate
statistical regime.

Further discussion is available in [16].

9.5 Discussion

The thermodynamic quantities obtained above are all expressed in terms of the chem-
ical potential,μ, so it is important to determine howμ depends on the electron density
n. Except in the degenerate regime, where this has been carried out in [16], one must
solve (9.7) for μ, a formidable task. Therefore, we proceed numerically by speci-
fying n, a and looking at null contours of the n-β-μ plots. In addition, in order to
avoid the complication of an additional parameter, we introduce the scaled density
ν = 12πn/K 2

m and solve (9.7)

ν −
{
12 − 9

1 + eβμ
+ aβ

cosh(βμ) + 1

− 6

aβ
ln[1 + eβ(a−μ)] − 6

a2β2
[Li2

(−eβ(a−μ)
) − Li2

(−e−βμ
) }

= 0 (9.21)
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Fig. 9.1 μ versus ν for a = 10 at T = 4, 10, 100 and 300K

for μ vs ν. Because the behavior is not very sensitive to a, we consider only the two
values a = 10 and a = 100 atomic units (� = 1). A reasonable temperature range
is 4K < T < 400K corresponding roughly to 3 · 103 < β < 4 · 105. We assume
0 < ν < 1000. From the results shown inFigs. 9.1 and 9.2 it appears that the chemical
potential is virtually independent of temperature over most of the range, but it rises
steeply at low values of ν, indicating a density-induced sharp phase transition near
ν = 10, remaining nearly constant at μ = a at all higher densities.

Next,we examine the grand thermodynamic potential (9.5). Introducing the scaled
version �̄ = −12π�/K 2

m , one has
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Fig. 9.2 μ versus ν for a = 100 at T = 4, 10, 100 and 400K

�̄ = A(a, β, μ) + B(a, β, μ), (9.22)

where

A(a, β, μ) = 3μ − a(1 − tanh(βμ/2)) + 9

β
ln(1 + eβμ) (9.23)
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Fig. 9.3 
̄ versus inverse temperature β for 400K > T > 4K . Here a = 10, ν = 20

B(a, β, μ) = − 6

(aβ)2
[aLi2(−eβ(a−μ)) − 1

β
{Li3(−eβ(a−μ)) − Li3(−eβμ)}].

(9.24)

Numerically, we find that A and B, and so �̄, are nearly temperature independent
over the range 4K < T < 400K and that A is nearly independent of a over this
range. Consequently, quantities related to temperature derivatives of the thermody-
namic potential, such as the entropy and specific heat, will be small, as seen for the
dimensionless entropy of Fig. 9.3. Of course, at higher temperatures where states no
longer described by (9.1) are occupied, the situation will be different.

The scaled entropy defined as


̄ ≡ 12π S

kBK 2
m

(9.25)

is sketched in Fig. 9.3.
The Specific Heat is given by
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Fig. 9.4 CV versus inverse temperature β for 400K > T > 4K . Here a = 10, ν = 10

CV = − κB K 2
m

12π
β

{
1

a2β3

[
β2

(
a3β2μ(2 − βμ tanh( βμ

2 ))

cosh(βμ) + 1
− 6(3a2 − 4aμ + μ2) log(eβ(a−μ) + 1)

+ 6μ2 log(e−βμ + 1)

)
+ 12β(2μ − 3a)Li2(−eβ(a−μ)) + 36Li3(−eβ(a−μ)) − 24βμLi2(−e−βμ)

− 36Li3(−e−βμ)

]
+ 6eaβ(a − μ)2

a(eaβ + eβμ)
+ 9βμ2

eβμ + 1
− 9βμ2

(eβμ + 1)2

}
(9.26)

and is shown in Fig. 9.4 for a = 10, 100K > T > 4K .

Acknowledgement It is a pleasure to acknowledge the assistance of Prof. Dr. J. D. Mancini in
checking equations in this paper.

Appendix

A: Partition Function

Let �K = Km �k and a = �vKm :
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H = a√
2

⎡
⎣

0 k− 0
k+ 0 k−
0 k+ 0

⎤
⎦ = U−1

⎛
⎝
0 0 0
0 ak 0
0 0 −ak

⎞
⎠U , (9.27)

where the unitary matrix U consists of the normalized eigenvectors of H , with eigen-
values ω = 0, ±ak. The associated partition function is

Ẑ(s) =
∑
{ω}

e−sω = K 2
m

2π

∫ 1

0
dk k[1 + 2 cosh(ask)]

= K 2
m

π

[
1

4
+ 1

a2s2
(1 + as sinh as − cosh as)

]
, (9.28)

since
∫
dx x cosh(ax) = [(ax) sinh(ax) − cosh(ax)]/a2.

B: Derivation of (9.3)

Since any function is the inverse Laplace transform of its Laplace transform,

f (E) = kBT ln[1 + eβ(E−μ)] =
∫ c+i∞

c−i∞
ds

2π i
eEs

∫ ∞

0
dte−st f (t). (9.29)

From (9.3),

� =
∫ c+i∞

c−i∞
ds

2π i
Ẑ(−s)ϕ(s), (9.30)

where ϕ(s) is the second integral in (9.29). By multiplying and dividing the inte-
grand of (9.30) by s2 and noting that s2ϕ(s) is the Laplace transform of f ′′(t) =
−(β/4)sech2

([
β

2 (t − μ)
])

, and with z(t) defined in (9.4), one has the Sondheimer-

Wilson formula.

C: Derivation of (9.4)

Ẑ(−s) = Ẑ(s) = K 2
m

π

[
1

4
+ 1

p2
+ sinh(p)

p
− cosh(p)

p2

]
(9.31)

where p = as. Hence,

Ẑ(s)

s2
= K 2

ma
2

π

[
1

4p2
+ 1

p4
+ ep

2

(
1

p3
− 1

p4

)
− e−p

2

(
1

p2
+ 1

p4

)]
. (9.32)

Denoting the inverse Laplace transform with respect to x by L−1
x , we write
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z(t) = K 2
ma

2

π

[
L−1
t/a[

1

4p2
+ 1

p4
] + 1

2
L−1

(t+a)/a[
1

p3
− 1

p4
] − 1

2
L−1

(t−a)/a[
1

p3
+ 1

p4
]
]

,

(9.33)

since an exponential factor just shifts the argument of the inverse Laplace transform,
which is t/a after changing the variable of integration from s to p. Finally, using

L−1
x [p−n] = 1

(n − 1)! x
n−1θ(x) (9.34)

we obtain

z(t) = K 2
m

12πa2
[
t3 + 6a2t + 2a3 − (

t3 − 3a2t + 2a3
)
θ(t − a)

]
. (9.35)

D: Calculation of �

By inserting (9.4) into (9.3) one has a linear combination of the four elementary
integrals

∫ ∞

0
sech2(

1

2
β(t − μ)) dt = 4eβμ

β(eβμ + 1)

∫ ∞

0
t sech2(

1

2
β(t − μ)) dt = 4 ln(eβμ + 1)

β2

∫ ∞

0
t2 sech2(

1

2
β(t − μ)) dt = −8Li2(−eβμ)

β3
(9.36)

∫ ∞

0
t3 sech2(

1

2
β(t − μ)) dt = 4(β3μ3 − 6Li3(−e−βμ) + π2βμ)

β4
,

which follow from the elementary integrals

n
∫

xn

cosh2(ax)
dx =

0
tanh(ax)

a

1
ax tanh(ax) − log(cosh(ax))

a2

2
Li2

(−e−2ax
) + ax

(−ax + a tanh(ax)x − 2 log
(
1 + e−2ax

))
a3

3
2a2

[−ax + a tanh(ax)x − 3 log
(
1 + e−2ax

)]
x2 + 6aLi2

(−e−2ax
)
x + 3Li3

(−e−2ax
)

2a4
.

(9.37)
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E: The Polylogarithm for small and large arguments

For z small,

Li2[−e−z) ≈ −π2

12
+ ln(2)z − z2

4
, (9.38)

Li3(−e−z) ≈ −3

4
ζ(3) + π2

12
z − 1

2
ln(2)z2. (9.39)

For large z

Li2(−e−z) ≈ −e−z + 1

4
e−2z, (9.40)

Li3(−e−z) ≈ −e−z + 1

8
e−2z . (9.41)
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Chapter 10
Non-Markovian Fermionic Quantum
State Diffusion Approach

Xinyu Zhao and Ting Yu

Abstract In this chapter the non-Markovian fermionic quantum state difusion
approach is discussed. Within the open system plus environment frame work, the
non-Markovian fermionc quantum diffusion theory is established based on non-
commutativeGrassmannGaussian processes.We show that this ferminionic quantum
stochastic approach is useful in handling quantum processes involving multi-time
scales such as decoherence, dissipation and non-equilibrium quantum transport. Par-
ticularly, our fermionic quantum state diffusive theory can provide more detailed
information about the system’s Markov-non-Markvoian crossover features.

10.1 Introduction

The rapid development of experimental quantum technology and its application to
the fabrication and manipulation of quantum devices (e.g., photonic devices, quan-
tum dots, nanomechanical oscillators, etc.), has caused a resurgent interest in the
theory of open quantum systems. One problem, in particular, is the fact that no sys-
tem can be completely isolated from its environment (bath, reservoir etc.), and thus
the dynamics of a system of interest will be noticeably affected by any couplings to
its environments [1, 2]. When an open system is coupled to a Markov environment,
the Lindblad master equation may be used as a critical tool to study the open system
dynamics [3]. Additionally, the temporal behaviors of quantum open systems are
essential for understanding many fundamental issues such as quantum dissipation,
decoherence and quantum transport processes in different time scales, to name a few
[4–6]. If the Born-Markov approximation is unable to describe the evolution of a
quantum system, as is the case if the coupling between system and environment is
not weak or if the environment cannot be approximated by a broadband bath, one
must extend the standard Markov theory to a more general non-Markovian environ-
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ment. Several attempts have been proposed to derive the evolution equation of open
quantum systems beyond the Markov approximation [2, 7–12]. Notably, the non-
Markovian quantum state diffusion (NMQSD) approach has shown the potential to
solve large systems (multi-qubit or multi-cavity) [13–18], and as a computing tool,
the approach may be used in several domains such as high-precision measurement
[19], entanglement dynamics [20], quantum control [21] and coherence dynamics
of large molecules in biophysics [22] and more. Therefore, it is worth extending
the NMQSD approach for the bosonic baths to the fermionic cases where the non-
Markovian features have played an increasingly important role [23–27].

Here, we show how to derive a fermionic stochastic Schrödinger equation for an
open quantum system embedded in a fermionic bath called the fermionic NMQSD
equation [28, 29]. To illustrate our approach, we solve several models as examples
by using this new technique, including a one-qubit dissipative model, a two-qubit
dissipative model, the quantumBrownianmotion in a fermionic bath, and amultiple-
particle model. In the first example, we give the explicit analytical solution without
any approximation in a special case. In the second example,we showhow to construct
the crucial functional derivative Q operator contained in the fermionic NMQSD
equation. In the third example, we consider a continuous variable model where a
Brownian particle is immersed in a bath of fermionic particles. The last example
involves a genuinemulti-particle system that has been solved exactly by ourNMQSD
approach. Finally, the differences between the bosonic bath and the fermionic bath
are discussed.

With the fermionic NMQSD approach, we are able to extend our theory to a situa-
tionwhere a quantum system is coupled to a hybrid bath containing both fermions and
bosons [30]. By introducing Gaussian noise and Grassmann noise simultaneously,
we manage to obtain a hybrid NMQSD for the hybrid bath model. The applications
for these results include the example of a quantum dot model where the quantum
dots may interact with two fermionic reservoirs (source and drain) and other agents
such as a phonon bath. In this context, the dynamics of the quantum dot system
are determined by both the fermionic reservoirs and the bosonic bath. The hybrid
NMQSD approach is capable of taking into account of the environmental effects
arising from both types of environments. We also use several examples to illustrate
the hybrid NMQSD approach and identify the different impacts of fermionic bath
and bosonic bath on the system dynamics.

In summary, a non-Markovian treatment towards solving quantum systems that
are coupled to a fermionic or hybrid bath is developed. The environmental influences
on the system are encoded into a set of randomvariables forming a stochastic process.
Therefore, taking the partial trace over the environment is simplified to taking the
statistical average over the stochastic variables, thus allowing us to obtain a master
equation governing the evolution of the reduced density matrix. It is our hope that
the fermionic/hybrid NMQSD approach could pave a newway to solve the dynamics
of open quantum systems coupled to fermionic/hybrid baths, particularly to inves-
tigate temporal behaviors beyond Markov dynamics. The approaches described in
this chapter is expected to provide a new method to deal with the non-equilibrium
quantum transport processes.
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10.2 The NMQSD Theory for Quantum System Coupled
to Fermionic Baths

10.2.1 The General Stochastic Schrödinger Equation
and the Corresponding Master Equation

Typically, a quantum system coupled to a fermionic bath can be described by the
following Hamiltonian

Htot = HS + HB + Hint , (10.1)

where HS is the Hamiltonian of the system of interest, HB = ωi c
†
i ci is the Hamil-

tonian of the fermionic bath which is composed of a set of fermions, and Hint =∑
i gi (c

†
i L + H.c.) describes the interaction between the system and the fermionic

bath (or reservoir). The annihilation and creation operators ci and c†i satisfy the
fermionic anti-commutation relation {ci , c†j } = δi j . Here, the operators HS and L are
not specified, so that this Hamiltonian may represent various types of systems and
interactions. In the interaction picture, we can rewrite the Hamiltonian as

H I
tot (t) = HS +

∑

i

gi (c
†
i Le

iωi t + H.c.). (10.2)

Before deriving the fundamental dynamical equation governing the quantum sys-
tem coupled to a fermionic bath, it is necessary to specify the commutation relations
between the system and its environment. For a fermionic bath, the operators living
in the system Hilbert space can be either commutative or anti-commutative with the
operators living in the Hilbert space of the bath. Consider a system that is composed
of fermions, for example, a single electron in the quantum dot, the system Hamil-
tonian can be written as HS = ωdd†d, where d is the annihilation operator of the
electron in the system. Then the commutation relation between d and ci , the anni-
hilation operator of the bath mode “i”, is anti-commutative {d, ci } = 0. However, if
the system is composed of a set of bosons or spins, then the commutation relation
between the system and bath operators can be commutative. Therefore, to be more
precise, we should discuss these two cases separately. It will be shown that different
commutation between the system and bath can result in different NMQSD equations
and the corresponding master equations.

10.2.1.1 Case 1: System of Interest Commutes with Bath Operators

This case can naturally arise when the Hamiltonian (10.1) describes an effective
fermionic bath. For example, if we consider a spin-chain bath, the spin bath can
be transformed into an effective fermionic bath by performing the Jordan-Wigner
transformation and the Fourier transformation [28, 31]. In the case of an effective



304 X. Zhao and T. Yu

fermionic bath, the creation and annihilation operators c†i and ci can commute with
any operators living in the Hilbert space of the system HS . The following example
clearly shows that a spin-chain bath can be transformed into an effective fermionic
bath. Consider a quantum system interacting with a XX spin chain with the following
Hamiltonian:

Htot = HS + HB + Hint , (10.3)

HB =
∑

i

(σ+
i σ−

i+1 + σ+
i+1σ

−
i ), (10.4)

Hint = L†σ−
1 + σ+

1 L . (10.5)

After performing the Jordan-Wigner transformation,

σ−
j = exp(−iπ

j−1∑

k=1

c†kck)c j , (10.6)

and then the Fourier transformation [31],

c j = 1√
N

N/2∑

p=−N/2

exp(−i jφp)ap, (10.7)

the original Hamiltonian (10.3–10.5) becomes

Htot = HS + HB + Hint , (10.8)

HB =
N/2∑

p=−N/2

2 cosφpa
†
pap, (10.9)

Hint = 1√
N

N/2∑

p=−N/2

[L† exp(−iφp)ap + exp(iφp)a
†
pL]. (10.10)

where the operators ap and a†p satisfy the fermionic commutation relation {ap, a†q} =
δpq . This effective Hamiltonian obtained from the above transformations takes the
standard form given by (10.1).

In order to derive the fundamental dynamical equation governing the dynamics of
a system described by the Hamiltonian (10.1), we introduce the fermionic coherent
states defined as,

|ξi 〉 = (1 − ξi c
†
i )|0〉, (10.11)
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where ξi are Grassmann variables satisfying the following properties {ξi , ξ j } = 0,
{ξi , ξ∗

j } = 0.Generally, the coherent state can be expanded in terms of Fock states as

|ξi 〉 = |0〉 − ξi c
†
i |0〉. For the multi-mode environment, one can expand the coherent

state as |ξ〉 = |ξ1〉 ⊗ |ξ2〉 ⊗ |ξ3〉 ⊗ .... Similar to the bosonic NMQSD approach [13],
one can also define a stochastic state vector as

|ψ(t, ξ∗)〉 = 〈ξ|ψtot (t)〉, (10.12)

where |ψtot (t)〉 is the total state vector for the system and environment, and 〈ξ|
is a coherent state representation for the environment. It should be noted that the
fermionic state |ψ(t, ξ∗)〉 defined above is physically different from that defined in the
bosonic case. The fermionic state |ψ(t, ξ∗)〉 should be regarded as a state vector in the
“super-space” containing non-commutative stochastic variables. With the coherent
state representation, we can derive the dynamical equation for the stochastic state
vector as [28]

∂

∂t
|ψ(t, ξ∗)〉 = 〈ξ| ∂

∂t
|ψtot (t)〉

= 〈ξ| − i H I
tot (t)|ψtot (t)〉

= [−i HS + Lξ∗
t − L†

∫ t

0
dsK (t, s)

δ

δξ∗
s

]|ψ(t, ξ∗)〉, (10.13)

where ξ∗
t = −i

∑
i g

∗
i e

iωi tξ∗
i is theGrassmannGaussiannoise and K (t, s) = ∑

i |gi |2
e−iωi (t−s) is the correlation function of the fermionic bath. The Grassmann noise ξ∗

t
satisfies

M{ξ∗
t } =

∫ ∏

i

dξ∗
i dξi e

−ξ∗
i ξi ξ∗

t = 0, (10.14)

M{ξtξ∗
s } =

∫ ∏

i

dξ∗
i dξi e

−ξ∗
i ξi ξtξ

∗
s = K (t, s), (10.15)

where M{·} ≡ ∫ ∏
i dξ∗

i dξi e−ξ∗
i ξi [·] denotes the statistical mean over the Grassmann

noise. In the NMQSD equation, we use δ
δξ∗

s
ψt (ξ

∗) to denote the left-functional-
derivative with respect to the Grassmann variables. Throughout this chapter, we
will always use the δ

δξ∗
s
to represent the left-functional-derivative unless specifi-

cally indicated otherwise. Similar to the formal bosonic NMQSD equation [13,
14], the fermionic NMQSD equation contains a time-nonlocal Grassmann func-
tional derivative. In order to find a time-local NMQSD equation, one can introduce
a time-dependent Q operator defined as

δ|ψ(t, ξ∗)〉
δξ∗

s

= Q(t, s, ξ∗)|ψ(t, ξ∗)〉. (10.16)
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With this Q operator, the exact stochastic NMQSD equation can be written as

∂

∂t
|ψ(t, ξ∗)〉 = [−i HS + Lξ∗

t − L† Q̄]|ψ(t, ξ∗)〉 (10.17)

where Q̄(t, ξ∗) = ∫ t
0 dsK (t, s)Q(t, s, ξ∗). This fermionic NMQSD equation is

directly derived from the microscopic Hamiltonian without any approximation, it
is the fundamental equation governing the dynamics of the open quantum system.
In the fermionic NMQSD equation, we have introduced a new type of stochastic
process ξ∗

t . The solution of our NMQSD equation |ψ(t, ξ∗)〉 for a single realization
of ξ∗

t is called a Grassmann quantum trajectory. By construction, the reduced density
matrix of the open system can be recovered by the statistical mean over the Grass-
mann noise ρ = M[|ψ(t, ξ∗)〉〈ψ(t, ξ)|]. Although the fermionic NMQSD equation
looks formally similar to the bosonic case, the dynamic behaviors of the system gov-
erned by the two types of equations can be quite different due to distinct differences
between the bosonic and fermionic particles. Mathematically, the most striking dif-
ference between the bosonic and fermionic NMQSD equations is that the former
contains a complex Gaussian noise while the latter is driven by a non-commutative
Grassmann Gaussian noise. The detailed difference between the bosonic bath and
fermionic bath will be investigated in the following sections.

In order to solve the fermionic NMQSD equation, one need to first derive a
dynamic equation for the Q operator. Consider the consistency condition (CC),

δ

δξ∗
s

∂

∂t
|ψ(t, ξ∗)〉 = ∂

∂t

δ

δξ∗
s

|ψ(t, ξ∗)〉. (10.18)

Applying the NMQSD (10.17) to CC, the left-hand side (LHS) is

LHS = [−i HSQ − Lξ∗
t Q − L†(

δ

δξ∗
s

Q̄) − L† Q̄(−ξ∗)Q]|ψ(t, ξ∗)〉. (10.19)

On the other hand, the right-hand side (RHS) becomes

RHS = ∂

∂t
(Q)|ψ(t, ξ∗)〉 + [−i QHS + QLξ∗

t − QL† Q̄]|ψ(t, ξ∗)〉. (10.20)

Equating LHS and RHS, the equation of Q operator can be obtained:

∂

∂t
Q = −i[HS, Q] − {Lξ∗

t , Q} − L† Q̄(−ξ∗)Q + QL† Q̄ − L† δ

δξ∗
s

Q̄. (10.21)

In the derivation above, we have used the following commutation relations:

δl

δξ∗
s

[ξ∗
t ψt (ξ

∗)] = −ξ∗
t

δl

δξ∗
s

ψt (ξ
∗), (10.22)
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and
δl

δξ∗
s

[Q̄ψt (ξ
∗)] = Q̄(−ξ∗)Q̂ψt (ξ

∗) + (
δl

δξ∗
s

Q̄)ψt (ξ
∗). (10.23)

where the sign of Q̄(−ξ∗) depends on the functional formof the noise contained in Q̄.
If Q only contains odd order noise terms, Q̄(−ξ∗) = −Q̄(ξ∗). With the differential
equation for Q operator and the initial condition

Q(t, s = t, ξ∗) = L , (10.24)

the exact Q operator may be fully determined. Besides the exact Q operator deter-
mined in (10.21), there is also a systematic perturbative solution for Q operator. For
most practical problems, the perturbation approach is more useful. Similar to the
bosonic case, the operator Q can be expanded as [14, 32, 33]

Q(t, s, ξ∗) = Q(0)(t, s) +
∫ t

0
Q(1)(t, s, s1)ξ

∗
s1ds1

+
∫ t

0

∫ t

0
Q(2)(t, s, s1, s2)ξ

∗
s1ξ

∗
s2ds1ds2 + ...

+
∫ t

0
...

∫ t

0
Q(n)(t, s, s1, ...sn)ξ

∗
s1 ...ξ

∗
sn ds1...dsn

+ .... (10.25)

Substituting this expansion into (10.21), one can derive the dynamic equations
of the coefficients for each order Q(n). Particularly, the zeroth-order term Q(0)(t, s)
will satisfy the following equation (neglect all the noise terms)

∂

∂t
Q(0)(t, s) = −i[HS, Q

(0)(t, s)] − [L† Q̄(0)(t), Q(0)(t, s)], (10.26)

where Q̄(0)(t) = ∫ t
0 Q(0)(t, s)K (t, s)ds, and the initial condition is

Q(0)(t, s = t) = L . (10.27)

The fundamental equations governing the dynamics of the open quantum system
coupled to a fermionic bath have been derived. However, the solution of the NMQSD
equation |ψ(t, ξ∗)〉may not fully describe the dynamic evolution of the system.Actu-
ally, it only gives a formal realization called fermionic quantum trajectory generated
by a specific realization of the Grassmann noise ξ∗

t . Physically, in order to get the full
picture of the evolution of the system of interest, one need to reproduce the reduced
density matrix from the Grassmann stochastic state vector |ψ(t, ξ∗)〉:
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ρ(t) =
∑

n

〈n|ψtot 〉〈ψtot |n〉

=
∫ ∏

i
dξ∗

i dξi exp(−
∑

j

ξ∗
j ξ j )

∑

n

〈n|ξ〉〈ξ|ψtot 〉〈ψtot |n〉

=
∫ ∏

i
dξ∗

i dξi exp(−
∑

j

ξ∗
j ξ j )

∑

n

〈ξ|ψtot 〉〈ψtot |n〉〈n| − ξ〉

=
∫ ∏

i
dξ∗

i dξi exp(−
∑

j

ξ∗
j ξ j )Pt

= M{Pt }, (10.28)

where Pt ≡ |ψ(t, ξ∗)〉〈ψ(t,−ξ)| is the stochastic density operator. Given the relation
(10.28), the physical meaning of the NMQSD equation become clear. By choosing
a random realization of the noise ξ∗

t (reflecting the states of the environment), the
evolution of the reduced density operator is decomposed into many pure-state quan-
tum trajectories |ψ(t, ξ∗)〉. However, taking the statistical average over all of these
trajectories, the reduced density matrix is reproduced. Therefore, the complicated
properties of the environment are all encoded into the noise function ξ∗

t , so that trac-
ing out the environment is equivalent to taking average over all the realizations of
the noises. Based on relation (10.28), the master equation can be derived as

d

dt
ρ = d

dt
M{Pt }

= M{(−i HS + Lξ∗
t − L† Q̄)Pt } + M{Pt (i HS − ξt L

† − Q̄†(−ξ)L)}
= −i[HS , ρ] + LM{ξ∗

t Pt } − M{Pt ξt }L† − L†M{Q̄Pt } − M{Pt Q̄†(−ξ)}L . (10.29)

In order to establish an explicit master equation, one needs to handle the terms
like M{Ptξt } etc. These terms can be simplified by a Novikov-type theorem for the
Grassmann noise:

M{Ptξt } = −M{Q̄Pt }, (10.30)

M{ξ∗
t Pt } = M{Pt Q̄†(−ξ)}. (10.31)

In fact, the above theorem can be proved as follows

M{Ptξt }
=

∫ ∏

i
dξ∗

i dξi exp(−
∑

k

ξ∗
k ξk)

∣
∣ψ(ξ∗)

〉 〈ψ(−ξ)| (i
∑

j

g j e
−iω j tξ j )

= −i
∑

j

g j e
−iω j t

∫ ∏

i
dξ∗

i dξi [
∣
∣ψ(ξ∗)

〉 〈ψ(−ξ)| ∂l

∂ξ∗
j

exp(−
∑

k

ξ∗
k ξk)]
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= i
∑

j

g j e
−iω j t

∫ ∏

i
dξ∗

i dξi (
∂l

∂(−ξ∗
j )

∣
∣ψ(ξ∗)

〉 〈ψ(−ξ)|) exp(−
∑

k

ξ∗
k ξk)

= −i
∑

j

g j e
−iω j t

∫ ∏

i
dξ∗

i dξi [exp(−
∑

k

ξ∗
k ξk)(

∫

ds
∂ξ∗

s

∂ξ∗
j

δl

δξ∗
s

)Pt ]

= −
∫

ds
∑

j

∣
∣g j

∣
∣2 e−iω j (t−s)

∫ ∏

i
dξ∗

i dξi [exp(−
∑

k

ξ∗
k ξk)

δl

δξ∗
s

Pt ]

= −
∫ ∏

i
dξ∗

i dξi exp(−
∑

k

ξ∗
k ξk)

∫

dsK (t, s)Q(t, s, ξ∗)Pt ]

= −M{Q̄Pt }. (10.32)

It should be noted that one needs to distinguish the left-derivative (left-functional-
derivative) from the right-derivative (right-functional-derivative) when the deriva-
tives are performed. Similarly, one can prove M{ξ∗

t Pt } = M{Pt Q̄†(−ξ)}. With the
help of theNovikov-type theorem for theGrassmann noise, the exact master equation
can be formally written as

∂

∂t
ρ = −i[HS, ρ] + [L , M{Pt Q̄†(−ξ)}] + [M{Q̄Pt }, L†]. (10.33)

For example, if the operator Q is independent of the Grassmann noise, then the exact
master equation is immediately obtained as,

∂

∂t
ρ = −i[HS, ρ] + [L , ρQ̄†] + [Q̄ρ, L†]. (10.34)

Moreover, in theMarkov limit, Q̄ = γ f L , thismaster equation reduces to the standard
Lindblad master equation:

∂

∂t
ρ = −i[HS, ρ] + γ f [L , ρL†] + γ f [Lρ, L†]. (10.35)

In this part we have shown how to establish a fermion stochastic differential equation
and the derivation of the corresponding master equation.

10.2.1.2 Case 2: System of Interest Anti-commutes with the Bath
Operators

After discussing the case that system commutes with the fermionic bath, we will
consider the case that system anti-commutes with the fermionic bath which often
describes electronic system such like quantum dots. Following a similar procedure,
one can derive an anti-commutative fermionic NMQSD equation as [29, 34]
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∂

∂t
|ψ(t, ξ∗)〉 = [−i HS − Lξ∗

t − L†
∫ t

0
dsK (t, s)

δ

δξ∗
s

]|ψ(t, ξ∗)〉 (10.36)

Since the operator L typically anti-commutes with the fermionic bath, the deriva-
tion is slightly different from the commutative case [28, 29, 34], there is a minor dif-
ference between (10.13) and (10.36). Similarly, one can also define the fermionic Q
operator.However, it satisfies a different differential equation in the anti-commutative
case as

∂

∂t
Q = [−i HS − Lξ∗

t − L† Q̄] + L† δ

δξ∗
s

Q̄, (10.37)

with the initial condition
Q(t, s = t, ξ∗) = L , (10.38)

where Q̄(t, ξ∗) = ∫ t
0 dsK (t, s)Q(t, s, ξ∗). Finally the NMQSD equation can be also

written in a compact form as

∂

∂t
|ψ(t, ξ∗)〉 = [−i HS − Lξ∗

t − L† Q̄]|ψ(t, ξ∗)〉. (10.39)

and the corresponding master equation can be derived as

d

dt
ρ = −i[HS, ρ] + [L , M{Pt Q̄†(−ξ)}] + [M{Q̄Pt }, L†] (10.40)

10.2.2 Examples of Solving Fermionic Bath with Fermionic
NMQSD Equation

In the last section, we have built up the framework of the fermionic NMQSD theory.
Particularly, the fermionic NMQSD equation and the corresponding master equation
are derived. In this section, we will illustrate the power of the newly developed
fermionic NMQSD theory by solving some examples. First, we will solve a single
qubit (two-level system) coupled to a fermionic bath. Through this simple model,
we show how to apply the general fermionic NMQSD approach to a specific model.
Particularly, in a limiting case where the environment only contains one fermion,
this model can be easily solved by ordinary quantum mechanics. It is shown that the
results obtained by the fermionic NMQSD approach are identical to that obtained by
solving the Schrödinger equation of the whole system. Second, we solve a two-qubit
system coupled to a dissipative fermionic bath. In this case, we show how to construct
the fermionic Q operator with noise dependent terms. Third, we use the example
of a quantum Brownian particle in fermionic bath to illustrate a case representing a
continuous variable system. Finally, we solve an N-fermion system by the fermionic
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NMQSD approach. Besides, with this example we compare the difference between
fermionic bath and bosonic bath.

10.2.2.1 Effective Fermionic Bath: One-Qubit Coupled to a Spin Chain

In the first example, we consider an effective fermionic bath transformed from a
spin chain, and a single qubit is coupled to the spin chain bath. According to the
discussion in Sect. 10.2.1.1, the Hamiltonian can be finally transformed into a case
where the single-qubit is coupled to an effective fermionic bath as

H I
tot (t) = HS +

∑

i

ωi c
†
i ci +

∑

i

gi (c
†
i L + H.c.), (10.41)

where HS = ω
2 σz and L = σ−. Since the effective fermionic bath is transformed

from a spin chain, the system may commute with the bath, so we can use the theory
developed in Sect. 10.2.1.1 to solve this problem. According to (10.21), the solution
for Q can be obtained as

Q(t, s) = x1(t, s)σ−, (10.42)

with the initial condition
Q(t, s = t) = L = σ−, (10.43)

and the coefficient x1(t, s) is shown to satisfy

∂

∂t
x1(t, s) = [iω + X1(t)]x1(t, s), (10.44)

where X1(t) = ∫ t
0 x1(t, s)K (t, s)ds, and K (t, s) is the correlation function, and the

initial condition is given by x1(t, s) = 1. Thus, the exact Q operator can be fully
determined. Finally, the explicit NMQSD equation for this model is

∂

∂t
|ψ(t, ξ∗)〉 = [−i

ω

2
σz + σ−ξ∗

t − X1(t)σ+σ−]|ψ(t, ξ∗)〉, (10.45)

and the exact master equation is

d

dt
ρ = −i[HS, ρ] + [L , ρQ†] + [Qρ, L†]

= −i
ω

2
(σzρ − ρσz) + X∗

1(t)(σ−ρσ+ − ρσ+σ−)

+ X1(t)(σ−ρσ+ − σ+σ−ρ). (10.46)

With this exact master equation, the dynamics of this model can be fully deter-
mined.
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It is worth noting that this Q operator has the same form as the bosonic case
[14]. Besides, the master equation is also formally identical to that obtained for the
model with a single qubit coupled to a bosonic bath. The reason that fermionic bath
and bosonic bath have the same influence on the single qubit system is because the
initial state of the environment (bosonic or fermionic) is assumed to be a vacuum
state. Therefore, there exists only one excitation in the total system. In this sense, the
bosonic bath and the fermionic bath are identical.

Now, we consider a very special case for the one-qubit model where the “envi-
ronment” contains only one fermion. By analytically solving this model, we show
explicitly that the results obtained from the fermionic NMQSD approach are identi-
cal to those predicted by the ordinary quantum mechanics. The model is described
by the following Hamiltonian,

Htot = ω

2
σz + ωbc

†c + g(σ−c† + σ+c) (10.47)

and the zero-temperature correlation function becomes

K (t, s) = |g|2 e−iωb(t−s). (10.48)

Substituting the correlation function into the expression of X1(t) = ∫ t
0 x1(t, s)

K (t, s)ds, the differential equation for X1(t) is written as

∂

∂t
X1(t) = |g|2 − iωbX1(t) + iωX1(t) + X1(t)

2. (10.49)

For simplicity, we consider the resonance case ωb = ω, then the solution X1(t) is
given by

X1(t) = |g| tan(|g| t). (10.50)

From the master equation (10.46), one can calculate the time evolution for the off-
diagonal elements in the density matrix.

d

dt
ρ21 = d

dt
〈σ+〉 = tr(

d

dt
ρσ+) = iωρ21 − X∗

1(t)ρ21. (10.51)

Finally, the time evolution for the matrix element ρ21 can be obtained as

ρ21(t) = ρ21(0)e
iωt cos [|g| t] . (10.52)

This result shows that the coherence (off-diagonal elements in density matrix) will
decrease and increase periodically.

On the other hand, we can easily solve this simple case using elementary quantum
mechanics. Since this is only a two-body problem, one can solve the evolution for the
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whole system in a straightforward manner. One can check that elementary quantum
mechanics gives rise to the identical results obtained by the fermionic NMQSD
approach in (10.52).

10.2.2.2 Example 2: Coupled Two-Qubit Dissipative Model

In this section, we consider a system consisting of a pair of coupled two-level systems
(spins or someother effective two-levelmodels) interactingwith a common fermionic
bath. We will show how to construct the exact and approximate Q operator in this
example. The total Hamiltonian of this model can be written in a standard form as
(10.1) with

HS = ωAσ
A
z + ωBσB

z + Jxy(σ
A
+σB

− + σA
−σB

+) + Jzσ
A
z σB

z , (10.53)

L = κAσ
A
− + κBσB

−, (10.54)

where κA and κB are constants describing different coupling strengths for the two
qubits.

The exact Q operator of this model can be determined as

Q(t, s, ξ∗) =
4∑

i=1

fi (t, s)Qi +
∫ t

0
ds ′ f5(t, s, s ′)ξ∗

s ′ Q5, (10.55)

where the basis operator are given by Q1 = σA−, Q2 = σB−, Q3 = σA
z σB−, Q4 = σB

z σA−,
and Q5 = σA−σB−. Substituting (10.55) into (10.21), one can derive the equations for
the time-dependent coefficients fi (i = 1, 2, 3, 4, 5). The details can be found in
[28]. As we can see in [28], the exact Q operator is noise dependent. However, it is
possible to neglect the last term in the exact Q operator and the Q operator is reduced
to the zeroth-order Q operator as

Q(0)(t, s) =
4∑

i=1

fi (t, s)Qi . (10.56)

From (10.26), we can derive the differential equation for the coefficients as

∂

∂t
f1(t, s) = +2iωA f1 − i Jxy f3 + 2i Jz f4 + κAF1 f1 − κB F1 f3

+ κB F3 f1 + κB F3 f4 + κB F4 f3 + κAF4 f4, (10.57)

∂

∂t
f2(t, s) = +2iωB f2 − i Jxy f4 + 2i Jz f3 + κB F2 f2 − κAF2 f4

+ κB F3 f3 + κAF3 f4 + κAF4 f2 + κAF4 f3, (10.58)
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∂

∂t
f3(t, s) = +2iωB f3 − i Jxy f1 + 2i Jz f2 − κAF2 f1 + κB F2 f3

+ κAF3 f1 + κAF4 f2 + κB F3 f2 + κAF4 f3, (10.59)

∂

∂t
f4(t, s) = +2iωA f4 − i Jxy f2 + 2i Jz f1 − κB F1 f2 + κAF1 f4

+ κB F3 f1 + κB F3 f4 + κAF4 f1 + κB F4 f2, (10.60)

where Fi (t) = ∫ t
0 dsK (t, s) fi (t, s) (i = 1, 2, 3, 4), and the initial conditions are

f1(t, s = t) = κA, (10.61)

f2(t, s = t) = κB, (10.62)

f3(t, s = t) = 0, (10.63)

f4(t, s = t) = 0, (10.64)

With the zeroth-order Q operator, the master equation can be explicitly written in
the following form

d

dt
ρ = −i[HSρ − ρHS] + {

4∑

i=1

F∗
i [LρQ̄†

i − ρQ̄†
i L] + H.c.}. (10.65)

In the following numerical simulation, we consider a simple case, in which all
the parameters are symmetric for the two qubits, i.e., ωA = ωB = ω, κA = κB = 1.
Then, we can derive the following master equation

d

dt
ρ = −iω[(σA

z + σB
z )ρ − ρ(σA

z + σB
z )] − i Jz[σA

z σB
z ρ − ρσA

z σB
z ]

− i Jxy[(σA
+σB

− + σB
+σA

−)ρ − ρ(σA
+σB

− + σB
+σA

−)]
+ {F∗

1 [(σA
− + σB

−)ρσA
+ − ρσA

+(σA
− + σB

−)]
+ F∗

2 [(σA
− + σB

−)ρσB
+ − ρσB

+(σA
− + σB

−)]
+ F∗

3 [(σA
− + σB

−)ρσA
z σB

+ − ρσA
z σB

+(σA
− + σB

−)]
+ F∗

4 [(σA
− + σB

−)ρσB
z σA

+ − ρσB
z σA

+(σA
− + σB

−)] + H.c.}. (10.66)

Although the master equation derived above is valid for an arbitrary correlation
function, for numerical simulations, it is convenient to consider a specific example
of the correlation function. It is known that the spectral density of a fermionic bath
may be given by [10],

J (ω) = �γ2/2π

(ω − �)2 + γ2
, (10.67)
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Fig. 10.1 Time evolution of concurrence for different γ. The other parameters are ωA = ωB = ω
2 ,

Jxy = 0.5, Jz = 0, � = 1, � = π/4
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Fig. 10.2 Time evolution of |F1(t)|, |F2(t)|, |F3(t)|, and |F4(t)|. In the symmetric case, |F1(t)| =
|F2(t)|, |F3(t)| = |F4(t)|. The other parameters are ωA = ωB = ω

2 , Jxy = 0.5, Jz = 0, � = 1,� =
π/4

which is called the Lorentzian spectral density. Therefore, the correlation function is

K (t, s) = �γ

2
exp[−(γ + i�)|t − s|], (10.68)

where γ indicates the correlation time of the bath.
In Fig. 10.1, we plot the time evolution of the concurrence of the two qubits.

Given different non-Markovian correlation times, the dynamic evolution of entan-
glement shows different properties. In Fig. 10.2, we plot the evolution of the time-
dependent coefficients |Fi (t)|. In the Markov limit, all of those coefficients are time-
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independent constants, however, in the non-Markovian regime with relatively small
γ, they become time-dependent. In the long time limit, they converge to constants,
but the behavior at the early stage of the evolution is related to the non-Markovian
properties of the environment.

10.2.2.3 Example 3: Quantum Brownian Particle in a Fermionic Bath

In this subsection, we consider a continuous-variablemodel consisting of a Brownian
particle interacting with a fermionic bath (a similar model is discussed in [24]). The
Hamiltonian of the Brownian particle is given by,

HS = ωm(p2 + q2). (10.69)

The coupling between the system and the fermionic bath is described by the
coupling operator L = q, as a result, the interaction Hamiltonian can be given by

Hint = q
∑

i

gi (c
†
i + ci ). (10.70)

Applying our NMQSD approach to this model, it can be easily shown that Q
operator is a polynomial with arbitrary high orders of p, q:

Q = x1(t, s)q + x2(t, s)p + x3(t, s, ξ
∗)pq + x4(t, s, ξ

∗)p2 + x5(t, s, ξ
∗)q2 + ....

(10.71)

A useful approximation is to neglect all the noise-dependent terms, then we obtain
the so-called zeroth-order approximate Q as

Q(0) = x1(t, s)q + x2(t, s)p. (10.72)

Substituting this approximate Q(0) operator into (10.26), we can derive the dif-
ferential equations for the coefficients x1(t, s) and x2(t, s) as

∂

∂t
x1(t, s) = 2ωmx2(t, s) + i X2(t)x1(t, s) − 2i X1(t)x2(t, s), (10.73)

∂

∂t
x2(t, s) = −2ωmx1(t, s) − i X2(t)x2(t, s). (10.74)

where Xi (t) = ∫ t
0 dsK (t, s)xi (t, s) (i = 1, 2). The initial conditions for coefficients

x1(t, s) and x2(t, s) are

x1(t, s = t) = 1, (10.75)

x2(t, s = t) = 0. (10.76)
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Fig. 10.3 Time evolution of themean values of operator q in different environments. The parameter
γ describs the memory effect. The other parameters are ωm = ω = 1, � = π/2

Using this approximate Q(0) operator, the master equation can be written as

d

dt
ρ = −iωm[(p2 + q2)ρ − ρ(p2 + q2)]

+ {X∗
1[qρq − ρqq] + X∗

2[qρp − ρpq] + H.c.}. (10.77)

With the approximate Q operator, the master equation derived here is still in
the non-Markovian regime. It should be noted that the X∗

2 (including its complex
conjugation X2) does not exist in the Markov limit. The approximation used here is
also different from the weak-coupling approximation since the approximate Q still
contains the higher-order terms of the coupling constant. From the master equation
we can derive the evolution equations for all the mean values of operators q and p,

d

dt
〈q〉 = 2ωm〈p〉, (10.78)

d

dt
〈p〉 = −2ωm〈q〉 − i X∗

1〈q〉 − i X∗
2〈p〉 + i X1〈q〉 + i X2〈p〉. (10.79)

In Fig. 10.3, we plot the time evolution of 〈q〉 for different values of γ. In order to
show the transition fromnon-Markovian toMarkov regimes, theOrnstein-Uhlenbeck
noise K (t, s) = γ

2 e
−(γ+i�)|t−s| is chosen in our numerical simulations.Whenγ is very

large, the correlation function K (t, s) is close to a delta function and the dynamics
reduces to theMarkovian case. Figure10.3 shows how the evolution of 〈q〉 is affected
by γ. This is a unique phenomenon in the non-Markovian case.
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10.2.2.4 Example 4. N-fermion System Coupled To a Fermionic Bath

In this example, we will establish the exact time-local fermionic NMQSD equation
and the corresponding master equation for a genuine multipartite system coupled to
a fermionic bath. We show that, using the fermionic NMQSD approach, the exact Q
operator of the N -qubit model can be easily determined.

More specifically, The Hamiltonian we considered can be written in the standard
form as (10.1) with

HS =
NS∑

i=1

Aia
†
i ai . (10.80)

Different from the previous examples, the system here is also composed of a set
of fermions where a†i and ai are fermionic creation and annihilation operators. The
coupling operator is given as

L =
NS∑

i=1

ai . (10.81)

This Hamiltonian could be an effective Hamiltonian transformed from a set of
spins. For example, suppose that we have a long spin chain with N sites, if the first
NS (NS < N ) sites are treated as the system and the other NB sites are treated as the
bath (NS + NB = N ), then performing the Jordan-Wigner transformations for both
the system and the bath, we may obtain this type of effective Hamiltonian [28, 31].

We can show that the exact Q operator of this model takes the following form

Q =
NS∑

i=1

xi (t, s)ai , (10.82)

and the coefficients in Q operator are governed by the following differential equations

∂

∂t
x j (t, s) = i A j x j (t, s) +

Ns∑

i=1

X j (t)xi (t, s), (10.83)

where X j (t) = ∫ t
0 K (t, s)x j (t, s)ds. So, Q̄(t) = ∑NS

i=1 Xi (t)ai . The exact master
equation of this model is

∂

∂t
ρ = −i[

NS∑

i=1

Aia
†
i ai , ρ] + {[

NS∑

j=1

a j , ρ

NS∑

i=1

X∗
i (t)a

†
i ] + H.c.} (10.84)
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10.2.2.5 Fermionic Versus Bosonic Baths

In this example, we show the difference between bosonic bath and fermionic bath in a
specific example, the N -fermion model discussed above. It is instructive to consider
a simple case with two fermions in the system (NS = 2). The Hamiltonian is then
given by

HS = ω1a
†
1a1 + ω2a

†
2a2, (10.85)

L = a1 + a2, (10.86)

it is easy to show that the exact Q̄ operator is

Q̄ = X1(t)a1 + X2(t)a2 (10.87)

where X1(t) and X2(t) can be determined in (10.83) as NS = 2 case. Then, the
explicit master equation can be written as

d

dt
ρ = −iω1(a

†
1a1ρ − ρa†1a1) − iω2(a

†
2a2ρ − ρa†2a2)

+ {X∗
1(t)(a1ρa

†
1 − ρa†1a1) + X∗

1(t)(a2ρa
†
1 − ρa†1a2)

+ X∗
2(t)(a1ρa

†
2 − ρa†2a1) + X∗

2(t)(a2ρa
†
2 − ρa†2a2) + H.c.}. (10.88)

On the other hand, we can also solve this model exactly if the two effective
fermions (transformed from spins) are coupled to a bosonic bath. The Hamiltonian
takes the same form as (10.85–10.86). The Hamiltonian of the bath and the inter-
action Hamiltonian are given by HB = ∑

i ωi c
†
i ci and Hint = ∑

i (gic
†
i L + H.c.)

respectively. The difference between bosonic bath and fermionic bath arise from
the definition of the operators ci and c†i . In the bosonic bath case, ci and c†i rep-
resent a set of bosonic annihilation and creation operators satisfying [ci , c†j ] = δi j .

In the fermionic bath case, the operators ci and c†i represent fermionic annihilation
and creation operators satisfying {ci , c†j } = δi j . Using the non-Markovian NMQSD
approach for bosonic bath [13, 14], the bosonic NMQSD equation can be derived as

∂

∂t
|ψ(t, s, z∗)〉 = [−i HS + L†z∗

t − L† Ō]|ψ(t, s, z∗)〉, (10.89)

where Ō(t, z∗) = ∫ t
0 dsK (t, s)O(t, s, z∗). In the bosonic NMQSD equation, the

noise z∗
t = −i

∑
i g

∗
i e

iωi t z∗
i is the complex (not Grassmann) Gaussian noise. The

exact Ō operator is determined as follows [17]

Ō(t, z∗) = X1(t)a1 + X2(t)a2 + X3(t)a
†
1a1a2

+ X4(t)a
†
2a1a2 + i

∫ t

0
ds ′X5(t, s

′)z∗
s ′a1a2. (10.90)
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The coefficients in (10.90) satisfy the following differential equations

∂

∂t
x1(t, s) = iωax1 + x1X1 + x2X1, (10.91)

∂

∂t
x2(t, s) = iωbx2 + x1X2 + x2X2, (10.92)

∂

∂t
x3(t, s) = iωbx3 − x4X2 + x3X2 + x2X3

+ x3X3 − x3X4 − x2X4 − i X5, (10.93)

∂

∂t
x4(t, s) = iωax4 + x4X1 + x1X4 − x1X3

− x3X1 + x4X3 − x4X4 − i X5, (10.94)

∂

∂t
x5(t, s, s

′) = iωax5 + iωbx5 + x5X1 + x5X2

+ x5X3 − x5X4 + x1X5 + x2X5, (10.95)

with the initial conditions

x1(t, s = t) = 1, (10.96)

x2(t, s = t) = 1, (10.97)

x3(t, s = t) = 0, (10.98)

x4(t, s = t) = 0, (10.99)

x5(t, s = t, s ′) = 0, (10.100)

i x5(t, s, s
′ = t) = 2(x2 − x1) + x3 + x4, (10.101)

and

X j (t) =
∫ t

0
K (t, s)x j (t, s)ds ( j = 1 to 4), (10.102)

X5(t, s
′) =

∫ t

0
K (t, s)x5(t, s, s

′)ds. (10.103)

We use this particular example to illustrate some differences between the bosonic
and fermionic baths. As shown above, we can find the exact Q (O) operators for both
the fermionic bath and the bosonic counterpart. Since the exact dynamic evolution
of the system will be fully determined by Q (O) operators, so we may compare the
difference between the two operators given in (10.87) and (10.90), respectively. The
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Fig. 10.4 Dynamic
evolution of the coefficients
in Q̄ (for fermionic bath) and
Ō (for bosonic bath)
operators. The parameters
are ω1 = 2, ω2 = ω = 1,
γ = 0.4, � = π/4

0 10 20 30 40
0

0.5

1

1.5

2

2.5

3

ωt

C
o
ef
fi
ci
en

ts

|X
1
(t)|

|X
2
(t)|

|X
3
(t)|

|X
4
(t)|

first two terms are the same for both the Q and O operators, and the difference arises
from other terms. When X1(t) and X2(t) are dominant, there is no big difference
between the fermionic and bosonic baths. For example, whenω1 = ω2, two operators
Q and O are exactly the same. However, we found that the extra terms X3(t) and
X4(t) occurred in O may become important under certain conditions. As shown in
Fig. 10.4, the fermionic and bosonic baths may result in very different dynamics.

10.2.3 Summary

In this section, we have developed a novel technique called the fermionic state dif-
fusion approach that is a useful tool for studying an open quantum system coupled
to a fermionic bath. By using the Grassmann coherent states, the exact fermionic
NMQSD equation and the corresponding master equation are derived. It is worth to
note that (10.33) and (10.40) are directly derived from the microscopic Hamiltonian
without using any approximations (especially without the Markov approximation).
Therefore, these equations can successfully capture the important dynamical fea-
tures beyond the Markov evolution. To illustrate the fermionic NMQSD approach,
we have solved several interesting models and discussed the non-Markovian features
of the dynamics including a comparison between the bosonic bath and the fermionic
bath.

10.3 NMQSD Theory for a Quantum System Coupled
to a Hybrid Bath

In the last section, we have developed a systematic approach to solving open quantum
systems coupled to a fermionic bath. However, in a more practical case, an environ-
ment can be very complex, and it may contain both bosons and fermions, so a unified
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description of a hybrid bath is needed [35–37]. From a more fundamental point of
view, the dynamics of open quantum systems embedded in one or more environ-
ments has attracted a wide-spread interest in the area of quantum foundation such as
decoherence, dissipation, quantum measurement etc. [2, 4–6, 17, 21, 38–43].

Zhang et al. [44] derived a master equation applicable to either bosonic bath
or fermionic bath. A further step is to develop a dynamic equation for an open
quantum system coulped to a hybrid environment containing both bosonic bath and
fermionic bath simultaneously [45, 46]. For example, quantum dots can interact with
two fermionic reservoirs (source and drain) and a phonon (bosonic) environment.
In this case, the combined environment is a hybrid one. In this example, both the
fermionic baths and the bosonic bath may significantly affect the dynamics of the
quantum dots of interest. A dynamical equation incorporating two kinds of baths can
provide us with a powerful tool to study many realistic open system problems. In
this part, we will achieve this goal by developing a hybrid NMQSD approach. The
bosonic NMQSD approach and fermionic NMQSD have been developed respec-
tively [13, 28, 29, 34]. In the NMQSD approach for either bosons or fermions, the
central idea is to encode the influence of the environment into a stochastic process z∗

t
(bosonic) or ξ∗

t (fermionic). Taking the statistic average over the stochastic variables
is equivalent to taking the partial trace over the environment yielding the reduced
density matrix. The difference between the bosonic and the fermionic environments
is that z∗

t is a complex Gaussian noise arising from the use of the bosonic coherent
states, while ξ∗

t is a Grassmann stochastic process due to the fermionic coherent state
representation. Therefore, for a hybrid bath, we may introduce two types of noises
simultaneously and derive a stochastic equationwith both the bosonicGaussian noise
and the fermionic Grassmann noise.

10.3.1 Hybrid Baths: Commutative and Anti-commutative
Cases

The hybrid open system we considered is illustrated in Fig. 10.5, where a quantum
system interacts with a combined bath consisting of both bosons and fermions. The
model can be described by the following Hamiltonian [30]

Htot = HS + HFB + HBB + HFI + HBI , (10.104)

where HS describes the Hamiltonian of the system, HBB = ∑
r �r b†r br and HFB =

∑
k εkc

†
kck represent the bosonic bath and the fermionic bath, respectively. Here “br”

and “ck” are the annihilation operators for a single mode of the bosonic bath and the
fermionic bath respectively. The interaction between the system and the combined
bath is given by HBI = ∑

r λr b†r Lb + H.c. and HFI = ∑
k μkc

†
k L f + H.c., where

Lb , and L f are the bosonic and fermionic coupling operators, respectively. Typically,
the bosonic bath commute with both the fermionic bath and the system no matter
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Fig. 10.5 An example of commutative hybrid bath. The original spin-chain bath on the left side
can be transformed into an effective fermionic bath [28]. In this case, the effective fermionic bath
commutes with the system since the original spin-chain commutes with the system

whether the system is composed of fermions or bosons. However, the commutation
relation between system and fermionic bath indicates that we should treat the hybrid
case in two different categories.

Case 1: System of interest commutes with the fermionic bath
In this case, the Hamiltonian (10.104) typically describes an effective fermionic bath.
For example, if we consider a spin-chain bath, then the spin bath may be transformed
into an effective fermionic bath by performing the Jordan-Wigner transformation and
the Fourier transformation [28, 31]. In the case of an effective fermionic bath, the
creation and annihilation operators c†k and ck will commute with any operators living
in the Hilbert space of the system.

Case 2: System of interest anti-commutes with the fermionic bath
In case 2, the fermionic bath is composed ofmany electrons and the system of interest
is also composed of electrons. Since the electrons in the fermionic bath and system
are indistinguishable, the fermionic bath will anti-commute with the system. One
typical example in this case is the quantum dot model where the Hamiltonian of the
system is HS = ωdd†d, where the operator “d” defined in the quantumdot systemand
the operators “ck” defined the fermionic bath satisfy the anti-commutation relations
{d, ck} = 0.

For the two categories described above, we will develop two different schemes in
the following sections illustrated with a few concrete examples.
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10.3.2 Commutative Hybrid Bath

10.3.2.1 The General Stochastic SchrÖdinger Equation

First, we consider the case where the system commutes with an effective fermionic
bath. In this case, the total Hamiltonian may be transformed into the interaction
picture:

Hint
tot = HS + (

∑

k

μkc
†
k L f e

iεk t +
∑

r

λr b
†
r Lbe

i�r t + H.c.). (10.105)

By introducing the bosonic coherent states and fermionic coherent states (See
Appendix)

|z〉 =
∏

r

exp{zrb†r }|0〉, (10.106)

|ξ〉 =
∏

k

(1 − ξkc
†
k)|0〉, (10.107)

A generalized stochastic state vector can be defined as

|ψt (z
∗, ξ∗)〉 = 〈z∗, ξ∗|ψtot (t)〉. (10.108)

Throughout this chapter, we use the short-notation |ψt 〉 to denote the stochastic
pure state if no confusion arises. It should benoted that the two types of noise variables
introduced here are different. For the bosonic coherent states, zr is a complex variable,
while for the fermionic coherent states, ξk is a Grassmann variable satisfying anti-
commutation relations {ξi , ξ j } = 0. Applying the Schrödinger equation to the total
system, the dynamic equation for the stochastic state vector may be derived as

∂

∂t
|ψt 〉 = −i〈z∗, ξ∗|Hint

tot (t)|ψtot (t)〉

= [−i HS + L f ξ
∗
t − L†

f

∫

dsK f (t, s)
δl

δξ∗
s

+Lbz
∗
t − L†

b

∫

dsKb(t, s)
δ

δz∗
s

] |ψt 〉 , (10.109)

where Kb(t, s) = ∑
r λ2

r e
−i�r (t−s) and K f (t, s) = ∑

k μ2
ke

−iεk (t−s) are two correla-
tion functions for the bosonic and fermionic baths respectively. Equation (10.109)
is a dynamical equation governing the generalized stochastic state vector |ψt 〉. Note
that this equation contains two different stochastic processes:
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z∗
t = −i

∑

r

z∗
r e

i�r t , (10.110)

ξ∗
t = −i

∑

k

ξ∗
k e

iεk t , (10.111)

where z∗
t is a complex Gaussian process, and ξ∗

t is a Grassmann Gaussian process.
They satisfy the following statistical relations

Mb{zt } = Mb{z∗
t } = 0, Mb{zt z∗

s } = Kb(t, s), (10.112)

M f {ξt } = M f {ξ∗
t } = 0, M f {ξtξ∗

s } = K f (t, s). (10.113)

The statistical averages over the complex noise and the Grassmann noise are
defined as Mb{·} = ∫ ∏

r
1
π
e−|zr |2dz2r [·] and M f {·} = ∫ ∏

k dξ∗
k dξke−ξ∗

k ξk [·], respec-
tively.

The difficulty of solving (10.109) arises from the functional derivatives. However,
similar to the technique used inRefs. [14, 28, 29, 34], we can replace these functional
derivatives by two time dependent operators denoted as O and Q, respectively:

δ

δz∗
s

|ψt 〉 = O(t, s, z∗, ξ∗)|ψt 〉, (10.114)

δ

δξ∗
s

|ψt 〉 = Q(t, s, ξ∗, z∗)|ψt 〉, (10.115)

then, the NMQSD equation can be written in a compact form as

∂

∂t
|ψt 〉 = [−i Hs + L f ξ

∗
t − L†

f Q̄ + Lbz
∗
t − L†

b Ō]|ψt 〉, (10.116)

where Ō(t, z∗, ξ∗) = ∫ t
0 Kb(t, s)O(t, s, z∗, ξ∗)ds, Q̄(t, z∗, ξ∗) = ∫ t

0 K f (t, s)
Q(t, s, z∗, ξ∗)ds. The applications of the NMQSD equation are dependent on
whether these time-dependent operators O and Q can be determined. Using the
consistency condition,

∂

∂t

δ

δz∗
s

|ψt 〉 = δ

δz∗
s

∂

∂t
|ψt 〉, (10.117)

∂

∂t

δ

δξ∗
s

|ψt 〉 = δ

δξ∗
s

∂

∂t
|ψt 〉, (10.118)

we have
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∂

∂t
O = [−i Hs + L f ξ

∗
t − L†

f Q̄ + Lbz
∗
t − L†

b Ō, O] − L†
b

δ

δz∗
s

Ō − L†
f

δ

δz∗
s

Q̄,

(10.119)

∂

∂t
Q = [−i Hs, Q] − {L f ξ

∗
t , Q} + [Lbz

∗
t , Q] − L†

f Q̄(−ξ∗)Q + QL†
f Q̄

−L†
b Ō(−ξ∗)Q + QL†

b Ō − L†
b

δl

δξ∗
s

Ō − L†
f

δl

δξ∗
s

Q̄, (10.120)

with the initial conditions
O(t, t, z∗, ξ∗) = Lb, (10.121)

Q(t, t, z∗, ξ∗) = L f . (10.122)

Given these conditions, the O and Q operators may be fully determined for
many physically interesting cases. As a result, the NMQSD equation (10.116) can be
solved or applied to deriving the corresponding master equations. We can reproduce
the reduced density matrix from the stochastic state vector |ψt 〉 as

ρ(t) = Mb{M f {Pt }} (10.123)

where Pt ≡ |ψt (z∗, ξ∗)〉〈ψt (z∗,−ξ∗)| is the stochastic density operator. Given the
relation (10.123), the physical meaning of the NMQSD equation become clear. By
choosing a random realization of the noises z∗

t and ξ∗
t (reflecting the states of the

environment), the evolution of the reduced density matrix is decomposed into many
pure-states commonly called quantum trajectories |ψt 〉. However, taking the statis-
tical average over all of these trajectories, the reduced density matrix may be repro-
duced. Therefore, the complicated properties of the environment are all encoded into
the noise functions z∗

t and ξ∗
t . Therefore, tracing out the environment is equivalent to

taking average over all the realizations of the stochastic processes. Based on (10.123),
the master equation can be derived as

d

dt
ρ = −i[HS, ρ] + [L f , Mb{M f {Pt Q̄†(−ξ)}}] + [Mb{M f {Q̄Pt }}, L†

f ]
+[Lb, Mb{M f {Pt Ō†}}] + [Mb{M f {Ō Pt }}, L†

b] (10.124)

where the Novikov theorem for fermionic case [28] and the bosonic case [14] are
used in the derivation. Although taking the statistical average Mb{·} and M f {·} is
by no means a simple process in general. When the operators O and Q are noise-
independent, we may easily find the exact master equation,

d

dt
ρ = −i[HS, ρ] + {[Q̄ρ, L†

f ] + [Ōρ, L†
b] + H.c.}, (10.125)
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Actually, this case may apply to many interesting models [14, 28, 42] in which
the exact O or Q operators do not contain noises. Moreover, in general cases, we
can still expand O and Q into functional series and only take the first term (the
zeroth order in terms of the noise variables) of the expansions as O(t, s, z∗, ξ∗) ≈
O(0)(t, s) and Q(t, s, z∗, ξ∗) ≈ Q(0)(t, s). This approximation is called the zeroth-
order approximation. The validity and accuracy of this approximation are analyzed
in [47].

10.3.2.2 Example 1: Two Qubits in a Hybrid Bath

In order to illustrate the NMQSD approach for the hybrid bath we have discussed
above, we will solve several interesting examples in details. In the first example, we
will consider two qubits interacting with two dissipative baths, one is a bosonic bath
and the other the fermionic bath. In the context of the general model described by
Fig. 10.5 and (10.104), this particular example is defined as,

HS = ω

2
(σA

z + σB
z ), (10.126)

Lb = L f = σA
− + κBσB

−, (10.127)

where κB is a parameter describing the coupling strength of the second qubit. First,
wewill investigate the caseκB = 1, namely the second qubit is involved in the system
evolution. A special case where κB = 0 will be considered later, which means the
second qubit evolves independently from the other parts and the model reduces to a
single qubit case. Given this specific model, the NMQSD equation can be written as

∂

∂t
|ψt 〉 = [−i

ω

2
(σA

z + σB
z ) + (σA

− + σB
−)(ξ∗

t + z∗
t ) − (σA

+ + σB
+)(Q̄ + Ō)]|ψt 〉,

(10.128)
where the exact O and Q operators can be determined as

O = f1(t, s)O1 + f2(t, s)O2 + i
∫ t

0
ds′ f3(t, s, s′)z∗s′ O3 + i

∫ t

0
ds′ f4(t, s, s′)ξ∗

s′ O4,

(10.129)

Q = g1(t, s)Q1 + g2(t, s)Q2 + i
∫ t

0
ds′g3(t, s, s′)z∗s′ Q3 + i

∫ t

0
ds′g4(t, s, s′)ξ∗

s′ Q4.

(10.130)

For this case, the basis operators are O1 = σA− + σB−, O2 = (σA
z + σB

z )(σA− +
σB−), O3 = O4 = σA−σB−, Q1 = σA− + σB−, Q2 = (σA

z + σB
z )(σA− + σB−), Q3 = Q4 =

σA−σB−. The time-dependent coefficients satisfy the following relations

∂

∂t
f1(t, s) = iω f1 + 4 f1F2 + 4 f1G2 + i F3 + iG3, (10.131)
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∂

∂t
f2(t, s) = iω f2 + f1(4F2 + 4G2 − F1 − G1) − i

2
F3

+ f2(2F1 + 2G1 − 4F2 − 4G2) − i

2
G3, (10.132)

∂

∂t
f3(t, s, s

′) = 2iω f3 + 2 f1F3 + 2 f1G3 − 4 f2F3 − 4 f2G3 + 2 f3F1 + 2 f3G1,

(10.133)
∂

∂t
f4(t, s, s

′) = 2iω f4 + 2 f1F4 + 2 f1G4 − 4 f2F4 − 4 f2G4 + 2 f4F1 + 2 f4G1,

(10.134)
∂

∂t
g1(t, s) = iωg1 + 4g1F2 + 4g1G2 + i F3 + iG3, (10.135)

∂

∂t
g2(t, s) = iωg2 + g1(4F2 + 4G2 − F1 − G1) − i

2
F3

+g2(2F1 + 2G1 − 4F2 − 4G2) − i

2
G3, (10.136)

∂

∂t
g3(t, s, s

′) = 2iωg3 + 2g1F3 + 2g1G3 − 4g2F3 − 4g2G3 + 2g3F1 + 2g3G1,

(10.137)
∂

∂t
g4(t, s, s

′) = 2iωg4 − 2g1F4 − 2g1G4 + 4g2F4 + 4g2G4 + 2g4F1 + 2g4G1,

(10.138)
with the initial conditions

f1(t, t) = g1(t, t) = 1, f2(t, t) = g2(t, t) = 0, (10.139)

f3(t, t, s
′) = f4(t, t, s

′) = g3(t, t, s
′) = g4(t, t, s

′) = 0, (10.140)

f3(t, s, t) = f4(t, s, t) = −4i f2(t, s), (10.141)

g3(t, s, t) = −4i f2(t, s), g4(t, s, t) = −4i f1(t, s) + 4i f2(t, s), (10.142)

where

Fi (t) =
∫ t

0
Kb(t, s) fi (t, s)ds, (i = 1, 2) (10.143)

Gi (t) =
∫ t

0
K f (t, s)gi (t, s)ds, (i = 1, 2) (10.144)

Fi (t, s
′) =

∫ t

0
Kb(t, s) fi (t, s, s

′)ds, (i = 3, 4) (10.145)

Gi (t, s
′) =

∫ t

0
K f (t, s)gi (t, s, s

′)ds. (i = 3, 4) (10.146)
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In this example, the bosonic O operator contains the fermionic noise ξ∗, while
the fermionic Q operator also contains the bosonic noise z∗. Notably, the O and
Q operators in the hybrid bath case may not be just a simple combination of the
operators appearing in a single bath case. In fact, there are many cross terms and
they are mutually coupled. This reflects the fact that the effect of the hybrid bath can
not be simply treated as the summation of individual baths either being a fermionic
bath or a bosonic bath. Through coupling to the system, the cross talk between the
two uncoupled baths can be generated.

10.3.2.3 Single Qubit Case: Consistency with the Standard Quantum
Mechanics

The O and Q operators in the two-qubit example are rather complicated. It is still
possible to find a simple form for some simple cases. Now we consider a special
case, the single qubit case, namely κB = 0. In this case, the second qubit evolves
independently from all the other parts, so it can be removed in the interaction picture.
Therefore, the NMQSD equation reduces to

∂

∂t
|ψt 〉 = [−i

ω

2
σA
z + σA

−(ξ∗
t + z∗

t ) − σA
+(Q̄ + Ō)]|ψt 〉, (10.147)

where the exact O and Q operators can be determined as

O = Q = f (t, s)σA
−, (10.148)

The time-dependent coefficient f (t, s) satisfies the equation

∂

∂t
f (t, s) = [iω + F(t)] f (t, s), (10.149)

where F(t) = ∫ t
0 [Kb(t, s) + K f (t, s)] f (t, s)ds. Finally, the exact master equation

for this simple model can be derived as

d

dt
ρ = −i[HS, ρ] + {F(t)[σ−ρ,σ+] + H.c.}, (10.150)

In general, the bosonic bath and fermionic bath can be very complicated, so
the correlation functions Kb(t, s) and K f (t, s) may be very complicated. However,
for the special case to be considered here, we can show the result derived from
NMQSD approach is completely consistent with that obtained from the standard
quantum mechanics. Consider the special case that there are only one boson and one
fermion in the bosonic bath and the fermionic bath respectively, i.e., HFB = εc†c,
HBB = �b†b. Therefore, for this special case, the correlation functions reduce to
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Kb(t, s) = λ2e−i�(t−s), (10.151)

K f (t, s) = μ2e−iε(t−s). (10.152)

In the resonance case, ω = ε = �, λ = μ, the equation for F(t) is

∂

∂t
F(t) = 2λ2 + F2(t). (10.153)

The solution is
F(t) = √

2λ tan(
√
2λt). (10.154)

From the master equation (10.150), the evolution of the off-diagonal element ρ21 is

d

dt
ρ21(t) = iωρ21 − F∗(t)ρ21. (10.155)

Finally, the solution of ρ21(t) is

ρ21(t) = ρ21(0)e
iωt cos(

√
2λt). (10.156)

On the other hand, this simple example can be easily solved by solving the whole
systemwith Schrödinger equation since the total system only contains three particles.
It is easy to check, for this simple example, solving the whole system will give the
identical result to the result obtained by using the NMQSD approach.

10.3.2.4 Example 2: Single Qubit Coupled to a Dephasing Bosonic Bath
and a Dissipative Fermionic Bath

In the second example, we will investigate a case that will involve an open system
coupled to the bosonic bath and the fermionic bath in two different ways. The model
we considered is

HS = ω

2
σz, (10.157)

Lb = σz, L f = σ−. (10.158)

According to the general discussion in Sect. 10.3.2, the NMQSD equation for this
model can be formally written as

∂

∂t
|ψt 〉 = [−i

ω

2
σz + σ−ξ∗

t − σ+ Q̄ + σz z
∗
t − σz Ō]|ψt 〉, (10.159)

In this example, the O and the Q operators can contain an infinite number of
the noise terms, therefore, for simplicity, we will use the zeroth-order functional



10 Non-Markovian Fermionic Quantum State Diffusion Approach 331

expansion to yield the approximate zeroth order operators O(0) and Q(0). In the
zeroth-order approximation, we have

O(0) = σz, (10.160)

Q(0) = g(t, s)σ−, (10.161)

where the function g(t, s) satisfies

∂

∂t
g(t, s) = [iω + G(t)]g(t, s), (10.162)

where G(t) = ∫ t
0 g(t, s)K f (t, s)ds. Finally, the corresponding approximate master

equation is

d

dt
ρ = −i[ω

2
σz, ρ] + {G(t)[σ−ρ,σ+] + F(t)[σzρ,σz] + H.c.}, (10.163)

where F(t) = ∫ t
0 Kb(t, s)ds. Different from the first example where the model can

be solved exactly, we show how to use the zeroth-order approximation to derive an
approximate master equation in the second example. In the real application of the
NMQSD approach, a systematic approximation method is certainly more important
since the exact O and Q are quite difficult to find in many realistic models. With this
approximation approach, we can still solve these problems with a good accuracy.

10.3.3 Anti-commutative Hybrid Bath

10.3.3.1 The General Stochastic Schrödinger Equation

After discussing the commutative hybrid bath, we now turn to the case where the
system of interest anti-commutes with the fermionic bath, which tyically describes
an electronic system (e.g., quantum dots). Following a similar procedure, one can
also derive a NMQSD equation for the anti-commutive hybrid bath as

∂

∂t
|ψt 〉 = −i〈z∗, ξ∗|Hint

tot (t)|ψtot (t)〉

= [−i HS − L f ξ
∗
t − L†

f

∫

dsK f (t, s)
δl

δξ∗
s

+Lbz
∗
t − L†

b

∫

dsKb(t, s)
δ

δz∗
s

]|ψt 〉. (10.164)
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Since the operators L f typically anti-commutes with the fermionic bath, as to
be seen below, the functional derivation is slightly different from that defined in the
commutative case [28, 29, 34] andwemaynotice certain difference between (10.109)
and (10.164). The bosonic noise z∗

t , the fermionic noise ξ∗
t and the corresponding

correlation functions Kb(t, s) and K f (t, s) are all defined in a similar way. We can
also define the bosonic O operator and the fermionic Q operator, however, they
satisfy different differential equations in the anti-commutative case as

∂

∂t
O = [−i Hs − L f ξ

∗
t − L†

f Q̄ + Lbz
∗
t − L†

b Ō, O] − L†
b

δ

δz∗
s

Ō − L†
f

δ

δz∗
s

Q̄,

∂

∂t
Q = [−i Hs, Q] + [L f ξ

∗
t , Q] + [Lbz

∗
t , Q] − L†

f Q̄Q + QL†
f Q̄

−L†
b ŌQ + QL†

f Ō − L†
b

δl

δξ∗
s

Ō + L†
f

δl

δξ∗
s

Q̄, (10.165)

with the initial conditions
O(t, t, z∗, ξ∗) = Lb, (10.166)

Q(t, t, z∗ξ∗) = L f . (10.167)

Then, the density matrix of the open quantum system can be reproduced as

ρ(t) = Mb{M f {Pt }} (10.168)

where the average is performed for both the complex noise and the fermionic noise
and the master equation can be derived as

d

dt
ρ = −i[HS, ρ] + [Lb, Mb{M f {Pt Ō†}}] + [Mb{M f {Q̄Pt }}, L†

b]
+[L f , Mb{M f {Pt Q̄†(−ξ)}}] + [Mb{M f {Q̄Pt }}, L†

f ] (10.169)

It should be noted that, in the derivation of the master equation, a new version of
theNovikov theorem [29, 34] has been used. This new version is different from either
the Novikov theorem for fermionic bath [28] or the one for the bosonic bath [14].
Similarly, when O and Q are noise-independent, the master equation is reduced to

d

dt
ρ = −i[HS, ρ] + {[Q̄ρ, L†

f ] + [Ōρ, L†
b] + H.c.}. (10.170)

10.3.3.2 Example 3: Quantum Dot Coupled to a Hybrid Bath

In order to show the details of solving an anti-commutative hybrid bath problem, we
consider a realistic example that is the Anderson model in a bosonic environment
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(see Refs. [45, 46] for example). In this particular example the general Hamiltonian
(10.104) becomes

HS = εd†d, (10.171)

which describes a quantum dot, and

HFB =
∑

k,i=L ,R

[ε(k) − μi ]c†ki cki , HBB =
∑

r

ωr b
†
r br , (10.172)

represent two fermionic baths (“L” and “R”) and one phonon bath.

HFI =
∑

k,i=L ,R

tk,i c
†
ki d + H.c., HBI =

∑

r

λr (d
†d − 1

2
)(br + b†r ), (10.173)

are the interaction Hamiltonians describing the transport process and the dissipation
process.

In a finite temperature case [48], we need to introduce two fictitious baths aL and
aR with negative eigen-frequencies as:

H = HS +
∑

k,i=L ,R

[ε(k) − μi ]c†ki cki + {tki c†ki d + H.c.}

+
∑

r

λr (d
†d − 1

2
)(br + b†r ) +

∑

r

�r b
†
r br

+
∑

k,i=L ,R

−[ε(k) − μi ]a†ki aki . (10.174)

Then, performing the Bogoliubov transformation gives

cki = √
1 − n̄ki c

′
ki + √

n̄ki a
′†
ki (i = L , R), (10.175)

aki = √
1 − n̄ki a

′
ki − √

n̄ki c
′†
ki (i = L , R), (10.176)

the total Hamiltonian become

H = HS +
∑

k,i=L ,R

[ε(k) − μi ]c′†
ki c

′
ki

+{tki (
√
1 − n̄ki c

′†
ki + √

n̄ki a
′
ki )d + H.c.}

+
∑

r

λr (d
†d − 1

2
)(br + b†r ) +

∑

r

�r b
†
r br

+
∑

k,i=L ,R

−[ε(k) − μi ]a′†
ki a

′
ki . (10.177)
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Redefining ωki = ε(k) − μi , gki = tki
√
1 − n̄ki , fki = tki

√
n̄ki , and using the

interaction picture, the Hamiltonian can be written as

Hint (t) = HS +
∑

r

λr (d
†d − 1

2
)(bre

−i�r t + b†r e
i�r t )

+{
∑

k,i=L ,R

gki e
iωki t c′†

ki d + fki e
iωki t a′

ki d + H.c.} (10.178)

By introducing the bosonic coherent state and the fermionic coherent states as
follow:

|z〉 =
∏

r

exp{zrb†r }|0〉, (10.179)

|ξia〉 =
∏

k

(1 − ξkiaa
′†
ki )|0〉 (i = L , R), (10.180)

|ξic〉 =
∏

k

(1 − ξkicc
′†
ki )|0〉 (i = L , R). (10.181)

The stochastic pure state vector can be defined as

|ψt (z
∗, ξ∗

La, ξ
∗
Ra, ξ

∗
Lc, ξ

∗
Rc)〉 = 〈z∗, ξ∗

La, ξ
∗
Ra, ξ

∗
Lc, ξ

∗
Rc|ψtot (t)〉. (10.182)

Following the general approachdiscussed in the last section, theNMQSDequation
governing the stochastic state vector for the quantum open system is derived as

∂

∂t
|ψt 〉 = −i〈z∗, ξ∗

La, ξ
∗
Ra, ξ

∗
Lc, ξ

∗
Rc|Hint (t)|ψtot(t)〉

= Hef f |ψt 〉,

where

Hef f = −i HS + d†
∫ t

0
dsKLa(t, s)

δ

δξ∗
La,s

+ dξ∗
La,t

+d†
∫ t

0
dsKRa(t, s)

δ

δξ∗
Ra,s

+ dξ∗
Ra,t − d

∫ t

0
dsKLc(t, s)

δ

δξ∗
Lc,s

− d†ξ∗
Lc,t

−d
∫ t

0
dsKRc(t, s)

δ

δξ∗
Rc,s

− d†ξ∗
Rc,t − b†

∫ t

0
dsα(t, s)

δ

δz∗s
+ dz∗t . (10.183)

In this equation, we have introduced the following noises,

z∗
t = −i

∑

r

z∗
r e

i�r t , (10.184)
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ξ∗
ia,t = −i

∑

k

ξ∗
kiae

−iωki t , (i = L , R), (10.185)

ξ∗
ic,t = −i

∑

k

ξ∗
kice

iωki t , (i = L , R), (10.186)

and the corresponding correlation functions are

α(t, s) =
∑

r

λ2
r e

−i�r (t−s), (10.187)

Kia(t, s) =
∑

k

g2ki e
iωki (t−s) (i = L , R), (10.188)

Kic(t, s) =
∑

k

f 2ki e
−iωki (t−s) (i = L , R), (10.189)

Among the noises defined above, z∗
t is a complex Gaussian noise, and ξ∗

ia,t and
ξ∗
ic,t are Grassmann Gaussian noises. They satisfy the following statistical relations

Mb{zt } = Mb{z∗
t } = 0, (10.190)

Mb{z∗
t zs} = α(t, s), (10.191)

M f {ξ∗
ia,t } = M f {ξia,t } = M f {ξ∗

ic,t } = M f {ξic,t } = 0, (10.192)

M f {ξ∗
ia,tξia,s} = Kia(t, s), M f {ξ∗

ic,tξic,s} = Kic(t, s). (10.193)

Using the technique discussed in Sects. 10.3.2 and 10.3.3, the time-dependent
operators O and Q are defined as

δ

δz∗
s

|ψt 〉 = O(t, s, z∗)|ψt 〉, (10.194)

δ

δξ∗
ia,s

|ψt 〉 = Qia(t, s, ξ
∗
ia)|ψt 〉 (i = L , R), (10.195)

δ

δξ∗
ic,s

|ψt 〉 = Qic(t, s, ξ
∗
ic)|ψt 〉 (i = L , R). (10.196)

and the zeroth-order approximation gives the solution of these operators as

O ≈ f1(t, s)d
†d, (10.197)
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Qic ≈ fic(t, s)d (i = L , R), (10.198)

Qia ≈ fia(t, s)d
† (i = L , R), (10.199)

while the coefficients satisfy
∂

∂t
f1(t, s) = 0 (10.200)

∂

∂t
fLc(t, s) = (iε + F1 + FLa + FRa + FLc + FRc) fLc (10.201)

∂

∂t
fRc(t, s) = (iε + F1 + FLa + FRa + FLc + FRc) fRc (10.202)

∂

∂t
fLa(t, s) = (−iε − F1 − FLa − FRa − FLc − FRc) fLa (10.203)

∂

∂t
fRa(t, s) = (−iε − F1 − FLa − FRa − FLc − FRc) fRa (10.204)

where F1 = ∫ t
0 α(t, s) f1(t, s)ds, FLc = ∫ t

0 KLc(t, s) fLc(t, s)ds, FRc = ∫ t
0 KRc

(t, s) fRc(t, s)ds, FLa = ∫ t
0 KLa(t, s) fLa(t, s)ds, FRa = ∫ t

0 KRa(t, s) fRa(t, s)ds.
Finally, the master equation is derived as

∂

∂t
ρ = −iε[d†d, ρ] + {(FLc + FRc)[dρ, d†]

+(FLa + FRa)[d, d†ρ]
+F1[d†dρ, d†d] + H.c.} (10.205)

In the third example, the hybrid NMQSD approach is applied to the Anderson
model in a bosonic dephasing environment. First, we show how to map a finite
temperature problem into a zero temperature problem to apply the hybrid NMQSD
approach in a finite temperature case.More importantly,we show the hybridNMQSD
approach provide us with a powerful tool to investigate the dynamics of a quantum
system in a non-Markovian regime. Typically, in Markov case, all of the coefficients
in the master equation, FLc, FRc, FLa , FRa , and F1 are all constants. However, in
(10.205), those coefficients are time-dependent, which reflects the non-Markovian
behavior even if we only consider the zeroth order O and Q operators.

10.3.3.3 Fermionic Bath Versus Bosonic Bath

Based on themaster equation derived in (10.205), wewill compare the fermionic bath
and bosonic bath. In order to show the impact of two different types of baths, we intro-
duce two parameters in the original Hamiltonian to describe the coupling strength to
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the fermionic bath and bosonic bath. As it is shown in (10.173), tki determines the
strength of the interaction between the system and fermionic bath, and λr determine
the strength of the coupling to the bosonic bath. In the numerical simulation, we will
introduce c f and cb to control the global coupling strength for the fermionic bath and
the bosonic bath respectively. Namely, we replace tki by

√
c f tki and λr by

√
cbλr .

These two parameters will reflect the global coupling strength. If we take cb = 0,
then the bosonic bath is shut off, and we can see the evolution without the impact
of the bosonic bath. In the numerical simulation, we use four Ornstein-Uhlenbeck
noises Kmn(t, s) = �mn

2 exp[(−γmn + iφmn)|t − s|] (m = L , R; n = a, c) to sim-
ulate the correlation functions KLa , KLc, KRa , KRc. The parameters are cho-
sen as �Lc = 0.017, γLc = 0.3, φLc = 1.1, �Rc = 0.034, γRc = 0.5, φRc = 1.65,
�La = 0.012, γLa = 0.4, φLa = 0.75, �Ra = 0.044, γRa = 0.45, φRa = 1.2.

Figures10.6 and 10.7 show clearly the different effects of the bosonic bath and
the fermionic bath. Generally, the fermionic bath contributes most to the transport
process, while the bosonic bathmost to the dephasing process. FromFig.10.6, we can
see the dephasing process (off-diagonal elements) is almost the same while changing
the fermionic coupling strength will significantly change the transport process. From
Fig. 10.7, we can see the transport process is barely affected by changing the bosonic
coupling strength, as a comparison, but the dephasing rate is affected. This result
can be also predicted by analyzing the master equation or the Hamiltonian. Since
the coupling form of the bosonic bath is a dephasing type, definitely it will affect the
dephasing process. And since the coupling form of the fermionic bath is an “energy
exchange” type, it is not surprising to find that it mainly contributes to the transport
process.
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Fig. 10.6 Time evolution for different coupling strength of the fermionic bath. The coupling
strength of the bosonic bath is fixed as 1. The red (solid), green (dashed), and black (dash-dotted)
curves are the elements of density matrix ρ11, ρ22, ρ12 respectively
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fermionic bath is fixed as 1. The red (solid), green (dashed), and black (dash-dotted) curves are the
elements of density matrix ρ11, ρ22, ρ12 respectively

10.3.4 Summary

In this section, we have extended the NMQSD approach to an open system inter-
acting with a hybrid environment which contains both bosons and fermions. By
combining the bosonic and fermionic NMQSD approach, we have introduced two
types of noises simultaneously to derive the NMQSD equation of the hybrid bath
case. Based on the hybrid NMQSD equation, we also derive a master equation for
the hybrid bath case. We have discussed the hybrid model with two separate cases
(commutative and anti-commutative) together with a few specific examples. With
these examples, we illustrated the consistency between the NMQSD approach and
the standard quantum mechanics. In these cases, we have discussed both the exact
and approximate solutions of O and Q operators.

10.4 Conclusion

In this chapter, the NMQSD approach was used to solve interesting open system
problems where a quantum system interacts with an environment with fermions or
with both bosons and fermions. In particular, we have discussed the derivations of
exact master equations beyond the Markov approximation in two separate cases,
namely whether the environment was commutative or anti-commutative with the
system. In each case, we use several specific examples to show that the NMQSD
approach can serve as a powerful theoretical tool in the study of the dynamic evolution
of the fermionic/hybrid open systems.Moreover, it should be noted that the NMQSD
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is useful in investigating some early stage evolution caused by the memory effect of
its environments since our approach is systematically derived from the microscopic
model which goes beyond the Born-Markov approximation.

10.5 Appendix: Grassmann Algebra and Fermionic
Coherent State

For convenience, we collect some useful facts about the Grassmann algebra and
fermionic coherent state. The Grassmann numbers ξi are anti-commuting numbers.
These numbers anti-commute with each other but commute with real or complex
numbers x . The Grassmann numbers satisfy

ξiξ j = −ξ jξi , ξi x = xξi . (A1)

The Grassmann numbers are also used in the fermionic path integral. A function
with Grassmann variables ξi is called a Grassmann function F(ξi ). The derivative
and integral of the Grassmann numbers are defined as

d

dξi
1 = 0,

d

dξi
ξi = 1, (A2)

∫

1dξi = 0,
∫

ξi dξi = 1. (A3)

For Grassmann numbers, we have ξiξi = 0, therefore, a polynomial expansion of
F(ξi ) will only contain two terms as

F(ξi ) = a0 + a1ξi , (A4)

where a0 and a1 are complex numbers. Then, we can derive a very important rela-
tion, the commutation relation of Grassmann functions. Consider the product of two
Grassmann functions (multivariable)

F1 (ξ1...ξn)F2(ξ1...ξn)

= (a0 + ∑
i a1iξi + ∑

i. j a2i jξiξ j + ∑
i. j,k a3i jξiξ jξk + ...)

(b0 + ∑
i b1iξi + ∑

i. j b2i jξiξ j + ∑
i. j,k b3i jξiξ jξk + ...). (A5)

Note that ξiξi = 0 as stated above. Let us first consider a case where F2 only
contains terms of a certain order. For example, only first order coefficients are non-
zero, b1m 
= 0 (F2(ξ1...ξn) = ∑

m b1mξm). In this case, the following equalities can
be established by using the commutation relation term by term:
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a0
∑

m

b1mξm = a0
∑

m

b1mξm,

∑

i

a1iξi
∑

m

b1mξm =
∑

m

b1mξm
∑

i

a1i (−ξi ),

∑

i. j

a2i jξiξ j

∑

m

b1mξm =
∑

m

b1mξm
∑

i. j

a2i j (−ξi )(−ξ j ),

∑

i. j,k

a3i jξiξ jξk
∑

m

b1mξm =
∑

m

b1mξm
∑

i. j,k

a3i j (−ξi )(−ξ j )(−ξk). (A6)

More generally, we have,

F1(ξ1...ξn)F2(ξ1...ξn) = F2(ξ1...ξn)F1(−ξ1,−ξ2... − ξn), (A7)

With a short-hand notation the above equality may be simply written as

F1(ξ)F2(ξ) = F2(ξ)F1(−ξ) (where F2 is first order homogeneous polynomial).
(A8)

Similarly, we also have this result when F2 is of the third order, the fifth order etc.,
which means that the result holds if F2 is an odd-order homogeneous polynomial,
i.e.,

F1(ξ)F2(ξ) = F2(ξ)F1(−ξ) (where F2 is an odd order homogeneous polynomial).
(A9)

If F2 is an even order homogeneous polynomial (for example the second order),
we have

a0F2 = a0F2 = F2a0,

(
∑

i

a1iξi )F2 = F2

∑

i

a1iξi ,

(
∑

i. j

a2i jξiξ j )F2 = F2

∑

i. j

a2i jξiξ j ,

(
∑

i. j,k

a3i jξiξ jξk)F2 = F2

∑

i. j,k

a3i jξiξ jξk . (A10)

More generally, we get

F1(ξ)F2(ξ) = F2(ξ)F1(ξ) (where F2 is an even order homogeneous polynomial)
(A11)

Note that here ξ is a general notation representing both ξ1, ξ2, ..., ξn and ξ∗
1 ,

ξ∗
2 , ..., ξ

∗
n .

Now we can define the so-called fermionic coherent states (we start with a single
mode “i”) as [49, 50]

|ξi 〉 = (1 − ξi c
†
i )|0〉 (A12)
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where c†i is the fermionic creation operator and ξi is a Grassmann variable which
satisfies the following properties

{ξi , ξ j } = 0, (A13)

ξiξi = 0, (A14)

{ξi , ci } = 0, (A15)

{ξi , c†i } = 0, (A16)

ξi |0〉 = |0〉ξi , (A17)

ξi 〈0| = 〈0|ξi , (A18)

ξi |1〉 = ξi c
†
i |0〉 = −|1〉ξi , (A19)

ξi 〈1| = −〈1|ξi . (A20)

Then, it is easy to check that the fermionic coherent state defined above has a
property that is similar to a bosonic coherent state,

ci |ξi 〉 = ci (|0〉 − ξi |1〉)
= 0 + ξi |0〉
= ξi (|0〉 − ξi |1〉)
= ξi |ξi 〉. (A21)

We have shown that we can use the fermionic coherent states to represent a
fermionic bath. In this way, a non-commutative stochastic process can be introduced,
such that the fundamental fermionic NMQSD equation and the corresponding non-
Markovian master equation can be established.
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Chapter 11
Synthetic Spin-Orbit-Coupling in
Ultracold Atomic Gases and Topological
Superfluids

Chunlei Qu

Abstract Inspired by the discovery of topological insulating and topological super-
conducting states in electronic solid-state materials, there has been a significant
research progress in the last few years towards the observation of various topologi-
cal phenomena in other controllable quantum systems. Ultracold atomic gases hold
great promise for the exploration of topological condensed matter physics due to
their unprecedented controllability and the absence of disorder. This chapter reviews
some aspects of the recent developments of topological physics in ultracold atomic
gases. Specifically, we will discuss the experimental realization of one-dimensional
synthetic spin-orbit-coupling in ultracold neutral atoms, the ground state and low-
energy collective excitations of the spin-orbit-coupled Bose-Einstein condensate,
and the appearance of Majorana quasi-particles in a spin-orbit-coupled Fermi gas.

11.1 Introduction

Since the observation of integer quantum Hall effect in a two-dimensional elec-
tron gas under a strong magnetic field [1], the field of topological condensed mat-
ter physics has been developing very rapidly. There is a surge of research interest
in topological condensed matter physics in the last two decades due to the discovery
of topological insulators and topological superconductors [2, 3]. These topological
systems exhibit robust edge states that are immune against external perturbation and
therefore they could be used for new functional devices and topological quantum
computing.

Searching for topological phases in other synthetic materials such as photonic
crystals [4], ultracold atomic gases [5], acoustic structures [6], etc., has been an active
research area in recent years. Ultracold atomic gases provide a unique platform for
the study of various interesting quantum physics because of the high tunability of
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system parameters and the absence of disorder. Soon after the first experimental
realization of Bose-Einstein condensate in 1995, people have observed many inter-
esting macroscopic quantum phenomena, such as BEC-BCS crossover, superfluid to
Mott-insulator phase transition, etc. [7].

The major challenge for the observation of topological phenomena with ultracold
atomic gases is that atoms are charge neutral. Gauge field and spin-orbit-coupling,
which are crucial ingredients for the emergence of topological physics, are absent
for ultracold neutral atoms. To explore topological physics with atoms, we need
to engineer synthetic gauge field and synthetic spin-orbit-coupling by exploiting
the light and matter interaction. In this chapter, we will introduce the experimental
realization of 1D synthetic spin-orbit-coupling with two-photon Raman transitions
and then focus on the discussion of the hydrodynamics of the spin-orbit-coupled
Bose-Einstein condensate. Then we will discuss topological superfluids of a spin-
orbit-coupled Fermi gas. For a complete survey of this exciting research field, one
can refer the recent review articles [8–10].

11.2 Spin-Orbit-Coupled Bose-Einstein Condensate

11.2.1 Synthetic Spin-Orbit-Coupling

Synthetic spin-orbit coupling was realized for the first time with ultracold bosonic
atoms in the pioneering experiments by Ian Spielman’s group [11, 12]. As illustrated
in Fig. 11.1, a pair of counter-propagating laser beams couple two internal hyperfine
states of the 87Rb atoms. These two relevant energy levels can be defined as pseu-
dospins and thus an effective spin-1/2 system is engineered. An atom in spin up state
transits to spin down by absorbing a photon fromone beam and emitting a photon into
the other beam. During this two-photon Raman transition process, the atom acquires
a +2kL êx recoil momentum along the horizontal direction. Conversely, an atom in a
spin down state transits to spin up while acquiring a−2kL êx recoil momentum along
the opposite direction.

Fig. 11.1 Illustration of the two-photon Raman-transition process. a Configuration of laser setup.
b Energy levels of the atoms and the Raman beam induced two-photon transition process



11 Synthetic Spin-Orbit-Coupling in Ultracold Atomic Gases … 347

After a time-dependent unitary transformation and by considering the rotating
wave approximation, the single-particle Hamiltonian becomes

H0 =
(

�
2

2m (k + kL êx )2 + �δ
2

��
2

��
2

�
2

2m (k − kL êx )2 − �δ
2

)
(11.1)

where �k is the momentum of the atom, �� is the Raman coupling strength, and �δ
is the detuning. In terms of Pauli matrices, the single-particle Hamiltonian can be
written in a compact form

H0 = �
2

2m
(k + kLσz êx )

2 + ��

2
σx + �δ

2
σz (11.2)

= �
2k2

2m
+ �

2kL
m

kxσz + ��

2
σx + �δ

2
σz + EL (11.3)

where EL = �
2k2L/2m is the recoil energy. The second term indicates that a one-

dimensional spin-orbit-coupling (of the form ∼ kxσz) has been synthesized. The
strength of the spin-orbit-coupling is set by the experimental setup. However, as
demonstrated in a recent experiment [13], the strength of the synthetic spin-orbit-
coupling can be tuned by a periodicallymodulatedRaman coupling. The thirdRaman
coupling term opens an energy gap at around k ∼ 0 and it mixes the two spin states,
giving rise to two dressed state dispersions. The detuning term breaks the inversion
symmetry of the dispersion. Direct diagonalization gives the explicit form of the two
eigenenergies

E± = �
2k2

2m
±

√(
�2kL
m

kx + �δ

2

)2

+
(

��

2

)2

(11.4)

where k2 = k2x + k2y + k2z .
As shown in Fig. 11.2a, for zero-detuning �δ = 0, the single-particle dispersion

is symmetric with respect to kx = 0 and the lower branch exhibits two local minima
±kmin if theRaman coupling �� < 4EL .When theRaman coupling is larger than the
critical value ��c = 4EL , the two minima merge into a single minimum at kx = 0.
Note that the spin composition is different at each momentum kx as the Raman
coupling mixes the two spin states into dressed states. For nonzero detuning, the
symmetry between the two minima is broken (see Fig. 11.2b). However, it is still
possible to have two local minima in the lower branch if the Raman coupling and
detuning are small.
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Fig. 11.2 Single-particle dispersion of the spin-orbit-coupling system. a �δ = 0, b �δ = 1EL . In
each panel, multiple dispersions are shown with the Raman coupling �� = 0, 1, 2, 3, 4, 5EL (from
thin to thick lines). The green circles at the globalminima of the lower band indicate the approximate
position where the bosonic atoms can condense. The color at each point of the dispersion marks
the spin polarization, i.e., the relative population imbalance between the two spin states

11.2.2 Mean-Field Description

At the mean-field level, the dynamics of the spin-orbit-coupled Bose-Einstein con-
densate is governed by the couple Gross-Pitaevskii (GP) equation [14]

i�
∂

∂t
�1 =

(
(p + �kL êx )2

2m
+ �δ

2

)
�1 + Vext�1 +

(
g11|�1|2 + g12|�2|2

)
�1 + ��

2
�2

(11.5)

i�
∂

∂t
�2 =

(
(p − �kL êx )2

2m
− �δ

2

)
�2 + Vext�2 +

(
g12|�1|2 + g22|�2|2

)
�2 + ��

2
�1

(11.6)

where

Vext (x, y, z) = 1

2
mω2

x x
2 + 1

2
mω2

y y
2 + 1

2
mω2

z z
2 (11.7)

is the external harmonic potential with trapping frequency (ωx ,ωy,ωz), and gi j =
4π�ai j/m (i, j = 1, 2) are the interaction constants between the two spin states i
and j . The scattering lengths are denoted by ai j . The order parameters of the two
spin states are normalized according to

∫ (|�1|2 + |�2|2
)
d3r = N (11.8)

with N the total number of condensed atoms.
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Fig. 11.3 Typical density profiles of the spin-orbit-coupled Bose-Einstein condensates at various
Raman coupling strengths a� = 0.1EL , b� = 1EL , c� = 3EL , d� = 5EL . The detuning δ = 0
for all panels. The density distributions have been shown in both real and momentum spaces. The
condensate exhibits a density modulation in the strip phase in (a) due to the interference of the two
dressed states at kx ∼ ±kL . b, c are the density distributions in the plane-wave phase with a single
dressed state locating at either kmin or −kmin . Panel (d) corresponds to the case of single-minimum
phase where the condensate locates at kx = 0

The ground state and non-equilibrium dynamics of the spin-orbit coupled Bose-
Einstein condensate can be obtained by numerically solving the coupled GP equa-
tions. In the presence of harmonic trapping potential, the momentum of the conden-
sate is no longer a good quantum number. However, since the trapping potential is
usually very weak, the atoms occupy a very narrow range of the momentum states
around the global minimum of the lower branch of the single-particle dispersion.
Mean-field interaction plays a key role in determining the phase diagram of true
ground state.

As shown in Fig. 11.3, for zero detuning (�δ = 0), as the Raman coupling ��

increases, the system evolves into the following interesting phases [15]:
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• stripe phase—It occurs when 0 < �� < ��c,1 where ��c,1 is determined by the
ratio between interspin coupling and intraspin coupling. For typical experimental
parameters, ��c,1 ≈ 0.2EL . In the stripe phase, there is an equal superposition of
two dressed states at the two degenerate minima and their interference induces a
density modulation in real space, see Fig. 11.3a. Note that the spin compositions
of the two dressed states are opposite to each other, due to the spin-momentum
locking.

• plane-wave phase—It occurs when ��c,1 < �� < ��c where ��c ≈ 4EL , i.e.,
the critical Raman coupling strength at which the two minima of the lower band
merge into one. The bosonic atoms spontaneously choose one of the two minima
as the ground state. Since this state corresponds to the occupation of a single
dressed state at a definite momentum, it is called plane-wave phase. As Raman
coupling increases, the spin polarization of the dressed state decreases and the
system becomes spin balanced at ��c, see Fig. 11.3b, c.

• single-minimum phase—When �� > ��c, the two minima merge into a single
minimum at kx = 0. Further increasing the Raman coupling does not change the
spin polarization, see Fig. 11.3d.

Around the global minimum, the lower band dispersion can be approximated by
a quadratic function

Hef f ≈ �
2

2m∗ (k − kminêx )
2 (11.9)

which is analogous to the Hamiltonian of a charged particle in an external magnetic
field. Hence, kmin(�, δ)êx can be regarded as a synthetic gauge field Asyn for the
neutral atoms. It has only an x-component as it originates from the one-dimensional
spin-orbit-coupling. The corresponding synthetic magnetic field is defined as the curl
of the synthetic gauge field

Bsyn = ∇ × Asyn (11.10)

which is nonzero only ifAsyn depends on the transverse coordinates y or z. Since kmin

is a function of Raman coupling and detuning, we can engineer a nonzero synthetic
magnetic field by applying a y-position-dependent Raman coupling or detuning.
When the gradient of the position dependent detuning is larger than a critical value,
vortices appear as a signature of the rotating velocity field or the synthetic magnetic
field [11]. An example of the generated vortices is shown in Fig. 11.4.

11.2.3 Hydrodynamic Theory

The low-energy collective excitations of a Bose-Einstein condensate can be accu-
rately described by the hydrodynamic theory [16]. In this section, we discuss the
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Fig. 11.4 Generation of vortices in a spin-orbit-coupled Bose-Einstein condensate by increasing
the strength of the synthetic magnetic field or the gradient of the Raman detuning. The gradient of
the applied external Raman detuning is a 0.1 kHz/μm, b 0.2 kHz/μm, c 0.3 kHz/μm, respectively

hydrodynamic theory for the spin-orbit-coupled Bose-Einstein condensate in the
presence of a position-dependent detuning.

Without loss of generalities, we shall consider the single minimum phase, i.e.,
the Raman coupling �� > ��c. The detuning is zero at the trap center and it varies
linearly as a function of position y

�δ(y) = ηkL y (11.11)

We will consider the small η regime so that there are no vortices generated in
the condensate. Under the Thomas-Fermi approximation, the total density of the
condensate can be written as

n0 = μ − Vext

g
(11.12)

where μ is the chemical potential and g ≡ gi j are the nonlinear coupling constants
(For simplicity, we have assumed that the inter- and intra-spin couplings are the
same).

To derive the hydrodynamic equations, we start from the Lagrangian density of
the spin-orbit-coupled Bose-Einstein condensate

L =
2∑
j=1

i�

2

(
�∗

j

∂

∂t
� j − � j

∂

∂t
�∗

j

)
− E (11.13)

where the energy density is given by
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E =
∑
j

[
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|∇� j |2 + Vext |� j |2
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2
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(11.14)

The order parameter for the two components of the condensate can be parameter-
ized as

(
�1

�2

)
=

⎛
⎝

√
n+s
2 eφ+φR/2√

n−s
2 eφ−φR/2

⎞
⎠ (11.15)

where n = |�1|2 + |�2|2 and s = |�1|2 − |�2|2 represent the total density and spin
density, respectively. φ and φR represent the total and relative phases of the two com-
ponents. Substituting 11.15 into the Lagrangian density, after ignoring the quantum
pressure term, we find

L ≈ −n�
∂φ

∂t
− 1

2
s�

∂φR

∂t
− n�

2

8m
(∇φR)2 − n�

2

2m
(∇φ)2 − s�2

2m
∇φ · ∇φR + �

2kL
m

s∇xφ

+�
2kL
2m

n∇xφR + ��

2

√
n2 − s2 cosφR − 1

2
n2 g − Vext n + ηkL ys (11.16)

The equations of motion for the generalized coordinates can be obtained by the
variation of the Lagrangian density with respect to the four variables. For ground
state and low-energy excitations, only the lower band is relevant and thus the relative
phase φR = 0 as the two spin states are locked. Furthermore, in the single minimum
phase, the spin density is much smaller than the total density, i.e., s � n. These
considerations allow us to simplify the four differential equations into the following
two

∂n

∂t
+ �

m∗ ∇x (n∇xφ) + �

m
∇y(n∇yφ) − 1

�

�c

�
ηy∇xn = 0 (11.17)

�
∂φ

∂t
+ �

2

2m∗ (∇xφ)2 + �
2

2m
(∇yφ)2 − ��

2
+ ng + Vext − �c

�
ηy∇xφ = 0 (11.18)

wherem∗/m = (1 − �c/�)−1 is the effective mass which is due to the modification
of the dispersion along the kx direction by the Raman transition induced synthetic
spin-orbit-coupling.

To study low-energy collective excitations, we expand the density and phase
around their equilibrium values

n = n0 + δn, φ = φ0 + δφ (11.19)
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where the equilibrium phase φ0 can be found by substituting the ansatz φ0 = αxy,
s = 2βyn0 into the above equations. One finds

α = 2η
k2L
��

ω2
x

ω2
sc

, β = η
kL
��

ω2
x + ω2

y

ω2
sc

(11.20)

where ωsc =
√

ω2
x (m/m∗) + ω2

y is the scissors mode frequency in the absence of

detuning gradient (η = 0).
After substituting 11.19 into the hydrodynamic equations for the density and

phase, the linearized differential equations become

∂δn

∂t
+ �

m∗ ∇x [n0∇x (δφ)] + �

m
∇y [n0∇y(δφ)] − 1

�

�c

�
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m
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�
∂δφ

∂t
+ α

[
�
2

m∗ y∇x (δφ) + �
2

m
x∇y(δφ)

]
+ gδn − �c

�
ηy∇x δφ = 0

These two equations allow us to explore the collective dynamics of various phys-
ical quantities for the spin-orbit-coupled Bose-Einstein condensate [17, 18].

11.2.4 Low-Energy Collective Modes

Due the presence of a synthetic magnetic field controlled by the position dependent
detuning, some low energy collective modes may be coupled together. With the help
of the hydrodynamic equations derived in the previous section, we shall study the
dipole mode and scissors mode, respectively.

Dipole mode is the center-of-mass motion of the condensate. For regular Bose-
Einstein condensate, the dipole modes along the three spatial directions are inde-
pendent from each other. We can excite the dipole modes by shifting the harmonic
trap by a small distance. The oscillation frequency of the excited dipole mode is
equal to the corresponding trapping frequencies of that direction. In the presence of
the synthetic magnetic field, the two dipole modes in the plane perpendicular to the
direction of the synthetic magnetic field will be coupled together.

The center-of-mass position and the superfluid velocity of the condensate can
be obtained straightforwardly from the hydrodynamic equations. The closed set of
governing equations are found to be

d

dt
〈x〉 − m

m∗ 〈vx 〉 + ωe f f 〈y〉 = 0 (11.21)

d

dt
〈y〉 − 〈vy〉 − ω′

e f f 〈x〉 = 0 (11.22)

d

dt
〈vx 〉 + ω2

x 〈x〉 + ω′
e f f 〈vy〉 = 0 (11.23)
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Fig. 11.5 Time dependence of the dipole mode 〈x〉 (first column) and 〈y〉 (second column) of a
Bose-Einstein condensate in the presence of a synthetic magnetic field. The dynamics is excited by
shifting the harmonic trap along x-direction by an initial displacement a x0 = 1.5μm, b x0 = 3μm,
c x0 = 6μm. The solid black lines correspond to the results obtained from hydrodynamic theory and
the dashed red lines correspond to the results obtained from the GP simulation. Other parameters
are: �� = 8EL , η = 0.0025EL , ωx = 2π50

√
2Hz, ωy = 50Hz

d

dt
〈vy〉 + ω2

y〈y〉 − ωe f f 〈vx 〉 = 0 (11.24)

where we have introduced

ωe f f = η

�

�c

�
− α

�

m∗ , ω′
e f f = α

�

m
(11.25)

The above coupled differential equations indicate that the position dependent
detuning or the synthetic magnetic field causes the precession of the dipole mode,
in analogy with the Foucault precession exhibited by a classical pendulum in the
rotating earth [18].

In Fig. 11.5, we compare the numerical results for the dipole oscillation obtained
from the hydrodynamic theory and the GP simulation. The dynamics is excited by
shifting the harmonic trap along x-direction by a displacement x0. The condensate
starts from a dipole oscillation along x-direction.After about 150ms, it is transformed
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Fig. 11.6 Collective modes 〈xy〉, 〈x2〉, and 〈y2〉 excited by rotating the trap a small angle. The
black solid lines correspond to the results obtained from the hydrodynamic theory and the red dots
correspond to the results obtained from GP simulation

to a dipole oscillation along y-direction. The beating pattern indicates a precession
of the dipole mode in the x − y plane.

For x0 much smaller than the Thomas-Fermi radius, we see very good agreement
between the two results as hydrodynamic theoryworks very well in the linear regime.
As the initial displacement x0 increases, the discrepancy between the hydrodynamic
theory and the GP simulation becomes more obvious. Nonetheless, the precession
of the dipole mode persists in a wide parameter range for x0.

Similar analysis can be directly generalized to the case of other collective modes,
such as the scissors mode. For a Bose-Einstein condensate in the Thomas-Fermi
approximation, it is easy to show that the angular rotation of the condensate is pro-
portional to 〈xy〉which can be calculatedwith our hydrodynamic equations. Straight-
forward calculation shows that the scissors mode 〈xy〉 is coupled to the widths of
the condensate 〈x2〉, 〈y2〉. The closed set of differential equations are found to be

d

dt
〈xy〉 − m

m∗ 〈yvx 〉 − 〈xvy〉 + ωe f f 〈y2〉 − ω′
e f f 〈x2〉 = 0 (11.26)

d

dt
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m

m∗ 〈xvx 〉 + 2ωe f f 〈xy〉 = 0 (11.27)

d

dt
〈y2〉 − 2〈yvy〉 − 2ω′

e f f 〈xy〉 = 0 (11.28)

d

dt
〈xvx 〉 + ω′
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2
ω2
x 〈x2〉 + 1

2
ω2
y〈y2〉 = 0 (11.29)

d

dt
〈yvx 〉 + ω′

e f f 〈yvy〉 + ω2
x 〈xy〉 = 0 (11.30)

d

dt
〈xvy〉 − ωe f f 〈xvx 〉 + ω2

y〈xy〉 = 0 (11.31)

d

dt
〈yvy〉 − ωe f f 〈yvx 〉 + 3

2
ω2
y〈y2〉 + 1

2
ω2
x 〈x2〉 = 0 (11.32)

The scissors mode can be excited by rotating the harmonic trap a small angle. As
shown in Fig. 11.6, the scissors mode 〈xy〉 is coupled to the widths of the condensate
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characterized by the two modes 〈x2〉 and 〈y2〉. We again find a good agreement
between the results from the hydrodynamic theory and the GP simulation.

It is worth mentioning that the above derivations and analysis can be extended to
the plane-wave phase or the single-minimumphasewith an additional finite detuning.

11.3 Spin-Orbit-Coupled Fermi Gas and Topological
Superfluid

One-dimensional synthetic spin-orbit-coupling has also been realized in an ultracold
Fermi gaswith the sameRaman transition scheme.The interaction between fermionic
atoms can be tuned with Feshbach resonance.When the interaction between atoms is
attractive, Cooper pairsmay be formed.We shall consider the s-wave pairing between
the two spin states. The superfluid order parameter of the Fermi gas needs to be
determined self-consistently. Similar to the nanowire-semiconductor system which
may be driven to a topological superconducting phase with zero-energy Majorana
quasi-particles appearing at the two ends of the nanowire [19], the ultracold femrionic
superfluidmaybe driven to a topological superfluid phase. This allows us to search for
Majorana quasiparticles with ultracold atoms and use the spin-orbit-coupled Fermi
gas for topological quantum computation [20, 21].

11.3.1 Tight Binding Model and Bogliubov-De Gennes
Equation

We assume that N fermionic atoms are confined in a one-dimensional deep optical
lattice. The system can be described by a Fermi-Hubbard tight-binding model which
is of the following form [22]

H = H0 + HZ + Hso + Vint, (11.33)

where
H0 = −t

∑
〈i, j〉,σ

c†iσc jσ − μ
∑
iσ

niσ (11.34)

describes the spin-independent nearest-neighbour hopping and the chemical poten-
tial. n̂iσ = c†iσciσ is the particle number operator for atoms at lattice site i and spin
σ. Hereafter, we use t = 1 as the basic energy unit.

HZ = −hz

∑
i

(ni↑ − ni↓) (11.35)
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is the out-of-plane Zeeman energy term. The spin-orbit-coupling term is described by

Hso = −α

2

∑
i

(c†i−1,↓ci↑ − c†i+1,↓ci↑ + h.c.) (11.36)

The interaction between fermionic atoms is given by

Vint = −U
∑
i

ni↑ni↓ (11.37)

where U > 0 indicates that the interaction between atoms is attractive. Under the
mean-field approximation, the interaction term can be decomposed to the following
form

Vint =
∑
i

�∗
i ci↓ci↑ + �i c

†
i↑c

†
i↓ − |�i |2/U (11.38)

where �i = −U 〈ci↓ci↑〉 denotes the superfluid order parameter. Note that for sim-
plicity we have ignored the Hartree shift term in the decomposition. The particle
number niσ = 〈n̂iσ〉 = 〈c†iσciσ〉 and superfluid order parameter�i = −U 〈ci↓ci↑〉 can
be determined self-consistently for a fixed chemical potential μ.

Using the Bogoliubov transformation, we obtain the real space Bogoliubov-de
Gennes (BdG) equation

∑
j

⎛
⎜⎜⎝
Hi j↑ αi j 0 �i j

−αi j Hi j↓ −�i j 0
0 −�∗

i j −Hi j↑ −αi j
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⎞
⎟⎟⎠

⎛
⎜⎜⎝

unj↑
unj↓

−vn
j↑

vn
j↓

⎞
⎟⎟⎠ = En

⎛
⎜⎜⎝

unj↑
unj↓

−vn
j↑

vn
j↓

⎞
⎟⎟⎠ , (11.39)

where

Hi j↑ = −tδi±1, j − (μ + hz)δi j (11.40)

Hi j↓ = −tδi±1, j − (μ − hz)δi j (11.41)

αi j = 1

2
( j − i)αδi±1, j (11.42)

〈
n̂iσ

〉 =
2N∑
n=1

[|uiσ|2 f (En) + |viσ|2 f (−En)] (11.43)

�i j = −Uδi j

2N∑
n=1

[uni↑vn∗
i↓ f (En) − uni↓vn∗

i↑ f (−En)] (11.44)

with f (E) = 1/
(
1 + eE/T

)
. The BdG spectrum can be obtained from direct diag-

onalization of the real space BdG matrix. Due to the particle-hole redundancy, the
eigenvalues of the BdG matrix always appear in pairs ±En .
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Fig. 11.7 BdG quasi-particle excitation spectrum as function of kx by taking ky = 0. The out-of-
plane Zeeman fields for the three panels are a hz = 0, b hz = 0.5, c hz = 1.0. The other parameters
are t = 1, α = 2, hx = 0. The pairing order parameter has been chosen as � = 0.5

11.3.2 Topological Phase Transition

Before presenting the self-consistent calculation results, we will first consider the
BdG spectrum of the spin-orbit-coupled Fermi gas with a uniform superfluid order
parameter �. In this situation, we can transform the tight-binding Hamiltonian to
the momentum space. In the Nambu basis chosen as (ck,↑, ck,↓, c†−k,↓,−c†−k,↑), it is
found to be

HBdG(k) =
(
H0(k) �

� −σy H∗
0 (k)σy

)
(11.45)

where

H0(k) = −2t cos(kx) − μ + α sin(kx )σx − hzσz (11.46)

is the single particle Hamiltonian. The BdG quasi-particle excitation spectrum can
be obtained by a direct diagonalization of the BdG matrix in k-space.

As shown in Fig. 11.7, the band gap between the particle and hole branches
decreases aswe increase the out-of-planeZeemanfield.At a critical out-of-planeZee-
man field, hz = hz,c, the energy gap closes, signaling a topological phase transition.
For hz > hz,c the gap reopens and the system evolves into a topological supercon-
ductor or topological superfluids. In the presence of boundaries, there exist localized
bound states at the two ends of the one-dimensional lattice which can be shown to
be Majorana quasi-particles, i.e., they are their own anti-particles [19].

The phase transition from a topologically trivial superfluid to a topologically
nontrivial superfluid can be quantitatively determined by calculating the Pfaffian of
BdG matrix. One finds that the system is in a topological superfluid phase if

√
�2 + (|μ| − 2t)2 < hz <

√
�2 + (|μ| + 2t)2 (11.47)
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Fig. 11.8 a BdG spectrum of the spin-orbit-coupled Fermi gas at hz = 0.5t . b The self-consistent
superfluid order parameter � as a function of position. c, d The wavefunction of the lowest energy
quasi-particle excitation (indicated by the blue arrow in panel a). Other system parameters:U = 5t ,
N = 150, α = 1.5t , μ = −2t

11.3.3 Topological Superfluids and Majorana Edge Modes

We self-consistently solve the real-space BdG equation for a 1D spin-orbit-coupled
Fermi gas confined in a deep optical lattice and calculate the superfluid order param-
eter in each iteration until it converges. In the following numerical results, we set the
system parameters as N = 150,U = 5t , α = 1.5t , μ = −2t and focus on the effect
of the out-of-plane Zeeman field hz .

Thenumerical results for a smaller out-of-planeZeemanfield is shown inFig. 11.8.
Panel (a) shows the BdG spectrum. As we mentioned in the previous section, due
to particle-hole symmetry of the BdG matrix, the eigenvalues of the system alway
appear in paris ±En . An energy gap exists around E = 0 with the lowest quasi-
particle excitation energymarked by the blue arrow. The energy gap is a consequence
of the competition between the superfluid gap � and the out-of-plane Zeeman field
hz . As shown in panel (b), the superfluid fluid gap is uniform in the bulk � ≈ 1.38
and it becomes rapidly oscillating near the two ends due to the edge effects. In panels
(c, d), we plot the wavefunction (u↑, u↓, v↑, v↓) for the first quasi-particle excitation
(marked by the blue arrow in panel (a)). It is obvious that thewavefunction distributes
mainly in the bulk of the system. These observations indicate that the system is in a
non-topological phase.
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Fig. 11.9 aBdG spectrum of the spin-orbit-coupled Fermi gas at hz = 1.4t . b The self-consistent
superfluid order parameter � as a function of position. c, d The wavefunction of the lowest energy
quasi-particle excitation (indicated by the blue arrow in panel a). Other system parameters:U = 5t ,
N = 150, α = 1.5t , μ = −2t

The same results for a larger out-of-plane Zeeman field (hz = 1.4t) is shown
in Fig. 11.9. A major difference is the appearance of two degenerate zero-energy
Majorana quasi-particle modesmarked by the blue arrow (Fig. 11.9a). The superfluid
order parameter becomes smaller � ≈ 0.34 in the bulk because of the large Zeeman
field. The wavefunction for the Majorana modes distributes mainly on the two ends
of the system. The system is in a topological superfluid phase. It is worth mentioning
that the two degenerate Majorana modes could be weakly coupled in a finite sized
system. However, the splitting of the two eigenenergies is exponentially small for a
large system size.

To identify the precise phase transition from nontopological phase to topological
phase, we scan the out-of-plane Zeeman field from hz = 0 to hz = 2t . The results
are presented in Fig. 11.10. Here, three quantities are presented: the blue-line with
diamonds corresponds to the eigen-energy of the lowest quasi-particle excitation, the
red solid line corresponds to the second eigenenergy of the BdG spectrum, and the
green linewith squares corresponds to the superfluid order parameter average over all
the lattice sites. A sharp change appears at around hz ≈ t . Above this critical point,
E1 becomes identically zero, the order parameter dramatically changes to a different
value and there is a large energy gap between the two lowest eigenenergies. These
observations indicate that the system becomes a topological superfluid for hz > t .
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Fig. 11.10 The eigenenergies of the two lowest quasi-particle excitations E1, E2, and the aver-
age superfluid order parameter �ave as a function of out-of-plane Zeeman field hz . Other system
parameters: U = 5t , N = 150, α = 1.5t , μ = −2t

Of course, as hz further increases, the superfluid order parameter will be completely
destroyed. The system will be in a non-superfluid phase.

Another interesting physics that will not be discussed here is the appearance of
a new type of topological superfluid: the topological Fulder-Ferrel superfluid phase
where the order parameter in the bulk becomes oscillatory�(x) ∼ �0eiQx . This can
be realized by adding an in-plane Zeeman field which breaks the inversion symmetry
of the BdG band structure.
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Chapter 12
Control with EIT: High Energy Charged
Particle Detection

Aneesh Ramaswamy and Svetlana A. Malinovskaya

Abstract The strong non-linear optical response of atomic systems in electromag-
netically induced transparency (EIT) states is considered as a means to detect the
presence of small perturbations to steady states. For the 3 level system, expressions
for the group velocity and group velocity dispersion (GVD)were derived and a quan-
tum control protocol was established to account for the change in the chirp spectrum
of a probe pulse when the steady state was perturbed. This was applied to the prop-
agation of slow Cherenkov radiation in the medium due to the passage of a train
of high-energy charged particles. The choice of the initial steady state, with focus
on the slow light condition and strong narrowly confined dispersion, equated to the
continuous trapping of Cherenkov polaritons in the medium along a narrow group
cone, allowing for non-trivial fields to accumulate. Sweeping of the control field
and detuning parameters in the field-atom parameter space showed the presence of
optimal regions to maximize the first order perturbation in the coherences, creating
changes in the optical responses that modify the chirp spectra of probe pulses.

12.1 Introduction

12.1.1 A Brief Review on EIT

The use of coherent interactions between light and matter yield phenomena in which
there is drastic change in the optical response function. EIT is a phenomenon inwhich
a narrow transparency window with strong non-linear optical effects is achieved due
to interference between quantum excitation pathways. Of prime interest is the greatly
reduced absorption and drastically increased dispersion effects. Whilst its effects
has analogues in CPT (Coherent population trapping), which occurs in optically
thin media, and ATS (Autler-Townes Splitting); EIT is a phenomenon that involves
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modification of both the optical andmaterial states of the coupled light-matter system,
and hence occurs in optically thick systems. Of particular interest is the study of
quantum fields in EIT systems as dark state polaritons, the pseudo-particle arising
from the entanglement of the propagating light with the dipole transitions.

Theoretical studies have opened up several applications including generation of
non-classical atomic ensembles, high-resolution spectroscopy and reversible quan-
tummemories in optical systems. A proposed technique by Fleischhauer andMewes
to greatly increase storage time for use in quantummemory is in adiabatically reduc-
ing the control field’s strength to bring the light to a halt, effectively mapping the
light’s quantum state to the atomic spin ensemble and then achieve reconstruction
through restoring the control field’s strength [1, 2]. An experiment realization of this
protocol in a laser-cooled ensemble of a cloud of Rb-87 atoms in a magneto-optical
trap achieved a favourable result of 0.036 storage efficiency for a transport distance of
1.26mm (1/e size of the cloud) for a lifetime of 2.6 ms [3]. The approach and results
show a high promise for EIT in developing robust mechanisms for quantum optical
storage with increased transport distance, though reducing decoherence due to nat-
ural lifetime and dephasing is still a problem of study. EIT also has great promise in
few photon systems and creating schemes for resonant non-linear interactions that
create large single-photon phase shifts, which is of great interest in quantum infor-
mation, such as in the development of high fidelity quantum gates. There have been
a number of theoretical and experimental approaches to achieve high fidelity after
quantum operations whilst reducing the characteristic residual absorption of EIT
[4, 5].

Further uses of EIT include transmission with negligible dissipation, non-linear
optics in the weak field regime, and slow light. EIT does not require the highly
controlled experimental setups (e.g. ultra-low temperatures) for these phenomena
to occur. Whilst EIT was initially discovered in atomic/molecular systems (chief of
which is the three-level � system), it has been studied in optomechanical systems,
plasmonics, coupled microresonators, solid-state physics and photonic crystals [6].
Especially considering the rise of interest in quantum metrology using atomic sys-
tems, EIT is a powerful candidate for investigation in increased performance and pre-
cision in atomic clocks, in high-resolution atomic interferometry and in magnetoptic
measurements. Traditional weaknesses of EIT including low signal-to-noise ratio
and fidelity, have been compensated for by the great versatility in control protocols
that can be developed to target phenomena of interest. For example, an investiga-
tion into the frequency stability of atomic clocks found higher stability when tuning
EIT towards detecting magneto-optically induced light polarization shifts rather than
controlling the intensity of EIT fields [7]. This has naturally led to interest in EIT,
for quantum control theory, towards developing efficient practical protocols for opti-
mizing performance and precision.

Our study will be on the three-level � system, a simple starting point to gain a
strong understanding in the features and challenges with EIT.
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12.2 Developing a Picture of EIT with Three-Level
� Systems

We consider the 3-level � system with stable energy levels |1〉, |2〉 and excited state
|3〉. Only the 1–3,2–3 transitions are allowed. We will be considering the dynamics
with the 1st Born approximation and the Markovian approximation. Most of our
work will be based on a Lindbladian master equation.

An archetypal example of such a system is for the Rubidium D2 transition fine
splittings of the 5S1/2, F = 1 and 5P1/2, F = 2 energy levels (Fig. 12.1).We take our
ground state, |1〉, as [5S1/2, F = 1,m f = 0], the excited state, |3〉, as [5P1/2, F =
1,m f = 1] and the Raman ground state, |2〉, as [5S1/2, F = 2,m f = 0]. The 1–3
transition frequency is 377THz (not including the contributions from thefine splitting
differences) and the Stokes shift is 6.384GHz. The natural lifetime of the transition
τ is 27.7 ns. The hyperfine transition dipolematrix elements for our chosen transitions
is 2.54 Debye [8].

We first develop our model’s interaction Hamiltonian.

Fig. 12.1 Three level� systemwith laser frequencyωL , Rabi frequency�, laser phase modulation
φ, one-photon detuning �, two-photon detuning δ = �2 − �1 and decay rate �
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12.2.1 Hamiltonian in the Field Interaction Picture

We consider |3〉 to be the zero energy reference and we define the pump E1 and
Stokes E2 electric fields as below

E j (t) = E0
j (t) cos(ωL j (t − tc) + φ j (t)) (12.1)

The Rabi frequency is given by:

� j (t) = |p j3|E0
j (t)

�
(12.2)

The dipole moment can be complex, but we introduce the phase function into the
oscillatory part of the field. We have:

p j3 = |p j3|eiθ j

φ̃ j (t) = φ j (t) + θ j

We now define the interaction Hamiltonian Hint where:

Hint = Û Hint Û
† (12.3)

We use the unitary operator to go to the interaction picture and apply the rotating
wave approximation (RWA) where:

H j3
int = �

2
�1(t)(e

i((2ωL j +� j )(t−tc)+φ̃ j (t) + e−i(� j (t−tc)+φ̃ j (t)) (12.4)

H 3 j
int = (H j3

int )
∗

And all other terms are zero. We ignore the fast oscillating term and transform
back to the Schrodinger picture, and now consider the field interaction picture using
the unitary operator:

Û (t) = e−iωL j t/� (12.5)

We arrive at the field interaction Hamiltonian

HFE = �

2

⎛
⎜⎝

2�1 0 �1(t)ei φ̃1(t)

0 2�2 �2(t)ei φ̃2(t)

�1(t)e−i φ̃1(t) �2(t)e−i φ̃2(t) 0

⎞
⎟⎠ . (12.6)
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12.2.2 Lindblad Formalism: Finding EIT Steady States

Now we consider the case for open dynamics. We use �2 = �1 − δ and define the
master equation with the superoperator L:

ρ̇ = − i

�
[HFE , ρ] + LJ ρ (12.7)

LJ ρ =
∑
j∈J

λ jF j (ρ) (12.8)

F j (ρ) = FjρF
†
j − 1

2

{
F†
j Fj , ρ

}

{Fj } = {|1〉 〈3| , |2〉 〈3| , |1〉 〈1| , |2〉 〈2| , |3〉 〈3|} (12.9)

{λ j } =
{

�1

2
,
�2

2
,
γ12 + γ2 − γ3

2
,
γ12 − γ2 + γ3

2
,
−γ12 + γ2 + γ3

2

}

Lρ =

⎛
⎜⎜⎜⎜⎝

�1ρ33 −γ12ρ12 −(
�1 + �2

2
+ γ1)ρ13

−γ12ρ21 �2ρ33 −(
�1 + �2

2
+ γ2)ρ23

−(
�1 + �2

2
+ γ1)ρ31 −(

�1 + �2

2
+ γ2)ρ32 −(�1 + �2)ρ33

⎞
⎟⎟⎟⎟⎠

.

(12.10)

We define � j to be the natural decay rate from the excited state to the jth state
and γ are dephasing parameters to account for thermal broadening and other losses
of coherence. We then define the dephasing parameters:

γ31 = �1 + �2

2
+ γ1 (12.11)

γ32 = �1 + �2

2
+ γ2

γ = γ12.

We find stationary solutions for this open system that corresponds to an EIT state,
using the Gell-Mann matrices as our basis and solve for the Bloch vector:
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〈�σ〉 = Tr{ �ρσ} (12.12)

〈�σ〉 = (〈σ1〉 , ..., 〈σ9〉)

We solve for the density matrix terms in the Bloch equations using the below
initial condition:

〈
�̇σ(0)
〉
= 0 (12.13)

We find the coherence terms, reducing equations to depend on one unknown ρ12,
assuming the populations for determined parameters are known and fixed:

ρ13 = iγ31 + �1

2(γ2
31 + �2

1)

(
�1(t)e

i φ̃1(t)(ρ11 − ρ33) + �2(t)e
i φ̃2(t)ρ12)

)
(12.14)

ρ23 = iγ32 + �2

2(γ2
32 + �2

2)

(
�1(t)e

i φ̃1(t)ρ21 + �2(t)e
i φ̃2(t)(ρ22 − ρ33)

)
.

The solution to the differential equation for ρ12 are obtained by substituting the
above expressions for ρ13, ρ23:

ρ̇12 = (−�′ + iω′)ρ12 + K . (12.15)

�′ = γ + γ31

4

⎛
⎜⎜⎜⎝

γ31

γ32

(
�1

γ31

)2

1 +
(

�2

γ31

)2 (γ31

γ32

)2 +

(
�2

γ31

)2

1 +
(

�1

γ31

)2

⎞
⎟⎟⎟⎠ (12.16)

ω′ = δ + γ31

4

⎛
⎜⎜⎜⎝−�2

γ31

(
γ31

γ32

)2
(

�1

γ31

)2

1 +
(

�2

γ31

)2 (γ31

γ32

)2 + �1

γ31

(
�2

γ31

)2

1 +
(

�1

γ31

)2

⎞
⎟⎟⎟⎠ .

K = γ31

4

⎛
⎜⎜⎜⎝−
(

γ31

γ32

)2
�1�2

γ2
31

(ρ11 − ρ33)ei(φ̃1(t)−φ̃2(t))

1 +
(

�2

γ31

)2 (γ31

γ32

)2
(
1 + i

�2

γ31

γ31

γ32

)
⎞
⎟⎟⎟⎠

+γ31

4

⎛
⎜⎜⎜⎝

�1�2

γ2
31

(ρ22 − ρ33)ei(φ̃1(t)−φ̃2(t))

1 +
(

�1

γ31

)2
(

−1 + i
�1

γ31

)
⎞
⎟⎟⎟⎠
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In the weak field approximation, we generally see a significant oscillatory
behaviour only for the case of non-zero detuning. The scattering parameter also
depends mainly on dephasing between the two ground states when γ3 j is large. Now
we solve for the initial value of ρ12 at the stationary point:

ρs12 = K

�′ − iω′ .

Next we find the expressions for the steady-state coherences. The expression of
ρs13 and ρs23 is our main interest as it is a measure of the dispersion and the absorption
of radiation near the resonance of the (|1〉 → |3〉) transition and will be used to
determine the optical response functions

ρs13 =
�1

γ31
+ i

1 +
(

�1

γ31

)2

⎛
⎜⎜⎜⎝

�1

γ31
ei φ̃1(t)(ρ11 − ρ33) +

�2

γ31

K

γ31

(
�′

γ31
+ i

ω′

γ31

)
ei φ̃2(t)

(
�′

γ31

)2
+
(

ω′

γ31

)2

⎞
⎟⎟⎟⎠

(12.17)

ρs32 =
�2

γ32
+ i

1 +
(

�2

γ32

)2

⎛
⎜⎜⎜⎝

�2

γ32
e−i φ̃2(t)(ρ22 − ρ33) −

�1

γ32

K

γ32

(
�′

γ32
+ i

ω′

γ32

)
e−i φ̃1(t)

(
�′

γ32

)2
+
(

ω′

γ32

)2

⎞
⎟⎟⎟⎠

(12.18)

We note that the system has a natural timescale dependent on the dephasing
parameters γ3 j . For the rest of this chapter, all quantities will be expressed in terms
of γ31.

The above is the general results for the coherences for the steady-state solution.
In the weak-field approximation, the fields being smaller than the natural decay rate
implies that the steady state is unique as all the other eigenvalues of the Lindbladian
have negative real parts. With a model of the microscopic dynamics understood, we
now build the optical response functions.

12.2.3 Optical Response Functions

We find the expectation for the dipole density operator. First, we rotate from the field
interaction picture back to the Schrödinger picture using (12.5):
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ρ̃(t) = U (t)†ρ(t)U (t). (12.19)

When we rotate back to the ground reference frame, the coherence terms oscillate
with the frequencies of the fields driving the transitions:

ρ̃3 j (t) = ρ3 j (t)e
−iωL j t . (12.20)

We compare the terms for the polarization field in terms of the electric field and
susceptibility tensor, and the density matrix description. Here χ(ω) is a generally
non-linear function and depends on the frequency and the amplitude of the electric
field. Then the polarization reads:

P(r, ω) = χ(ω)E(r,ω). (12.21)

If we use a control protocol where we vary the field properties over time or if
the envelope is time dependent, it’s not obvious what the form of the polarization
will be.

In the case where we have a superposition of monochromatic plane waves, the
expression simplifies to:

P(r, t) =
n∑

k=1

(E0/2(χk(ω, t)e−iωk t + χ†
k(ω, t)eiωk t )) (12.22)

For the casewherewehave ageneral field of the form E(r, t) = E0(r, t)cos(ωl t +
φ), where we take φ to be constant, we get the following:

P(r, t) = (χ(ω, t)E0(r,ω))e−iωl t + (χ†(ω, t)E0(r,ω))eiωl t . (12.23)

For the rest of the chapter, we deal with CW light and monochromatic plane
waves.

P(ω) = ε0χ(ω, E)E = ε0��1

2|p13| (χ
∗
1(ω)ei(ωL1 t+φ1) + χ1(ω)e−i(ωL1 t+φ1))

+ ε0��2

2|p23| (χ
∗
2(ω, E)(ei(ωL2 t+φ2) + χ2e

−i(ωL2 t+φ2)) (12.24)

〈p〉 = Tr{ρp} = ζ1(ω, t) + ζ2(ω, t) ≡ |p13|/2(ρ13ei(ωL1 t+φ1+θ1) + ρ31e
−i(ωL1 t+φ1+θ1))

+ |p23|/2(ρ23ei(ωL2 t+φ2+θ2) + ρ32e
−i(ωL2 t+φ2+θ2)). (12.25)

We have n as the number density of atoms/molecules:

〈P〉 = n 〈p〉 .
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We use a simple model of a homogeneous medium of a dilute weakly interacting
gas. Comparing (12.24) and (12.25), we see that we have to match oscillating factors
to get the electric susceptibility functions. Then it follows that:

χ j (ω, E) = 2n

�ε0

|p3 j |2
� j

ρ3 j e
−iθ j . (12.26)

At this point, we have enough information to find other optical response functions
such as the complex refractive index, the phase and the group velocities and the
Group Velocity Dispersion (GVD). Now we focus our attention on the region in
the parameter space in which we develop our model for the EIT optical response
functions.

12.3 Control Scheme

With the above results, nowwe can develop a schemewherewe explore the slow light
phenomenon and the strong dispersive effects of EIT. Our goal is to develop a control
scheme for a given atomic system, which yields high transmission of the probe pulses
with the group profiles containing frequencies belonging to the resonance window.
The parameters of the system+field are chosen to satisfy this condition as well as
to optimise changes in dispersion properties, such as the group velocity, GVD, and
the transmitted pulse spectrum, so that small differences in the frequency spectrum
of the probe pulses lead to significant deviations in group profiles of pulses with
differing spectra propagating in the atomic medium.

12.3.1 The Concept

We choose a control Rabi frequency relatively large compared to the pump Rabi
frequency, which gives a peak near resonance with sharp dispersion and low absorp-
tivity, and we choose a value for the two-photon detuning to shift the transparency
window relative to the resonance. Choosing non-zero detunings does contribute to
some population of the other states, though our conditions are still valid for small
detunings. We use units of γ31 to make relevant parameters dimensionless (time is
in (γ31/2π)−1). We choose the following conditions:
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γ31 = 1

� j ,� j 
 1

�1 
 �2

ρ11 ≈ 1

ω′ ≈ �2ν2 − �1ν1

α = γ32/γ31. (12.27)

Our next step is to refine the choice of parameters to optimise the optical response
of the system to a weak probe pulse of form E(t) = A(t)ei(ωL1+x)t . The polarization
P(t) gains a chirp in the atomic medium and its spectrum is given by P(ω) =
Aω(ω − (ωL1 + x))χ(ω). The phases of the complex quantities Aω , χω are given by
φA, φχ respectively such that:

P(ω) = |Aω(ω − (ωL1 + x))||χ(ω)|ei(φA(ω−(ωL1+x))+φχ(ω)). (12.28)

Each frequency component gains a phase delay and a group delay, τp(ω), τg(ω)

with respect to the component in the vacuum:

τp(ω) = −φχ(ω)

ω
(12.29)

τg(ω) = −dφχ

dω
.

The above delays allow us to construct the chirp spectra for probe pulses that can
yield phenomena such as anomalous dispersion, group velocity direction changes
and pulse lengthening. We consider control of group velocity, GVD and the chirp
spectrum in the general case and for transform-limited pulses.

12.3.1.1 Control Using Group Velocity, Group Velocity Dispersion
and the Chirp Spectrum

If we wish to be in the neighbourhood of the minimum group velocities, we choose

parameters such that
d2k ′

dω2

∣∣∣∣
ω=ωL1+x

= 0 (the local extremum of
dk ′

dω
in the resonance

window). Here, the group velocity differences are small but we can focus on con-
trolling the dispersion and extinction coefficients at low velocities.

Tomaximize the delay between the probe and pumppulses,we intend tomaximize

�T ∝
(

1

vg(ωL1 + x)
− 1

vg(ωL1)

)
. As a general approach, we choose parameters

where the group velocities are small in the interval [ωL1,ωL1 + x] but the difference
in vg is still significant.
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If the second-order Taylor series for n′(ω) is a good approximation in the interval,
the GVD can be used to estimate the time delay/chirp. We choose parameters such

that
dn′

dω
resembles a linear function near our chosen frequency, say ωL1, giving us

local extrema for the GVD. We have �T ∝ GV D(ωL1)x .
For a probe pulse with a Gaussian envelope, the duration of the pulse (related to

the standard deviation σ) is extended after traveling a distance d in the medium. We
define σex = √σ2 + (0.5d×GV D(ω)/σ)2 as the extended pulse standard deviation.

In general, we can always design our optical response function design the trans-
mitted pulse spectrum of probe pulses for our purposes. Whilst not discussed in this
work, the use of chirped pulses for the driving and probe fields can subdue undesired
non-adiabatic effects during pulse propagation in a medium and add more control to
shaping of the optical response functions and the spectra of post-medium pulses [9].
For sustaining EIT states in general high dimensional systems, spectral modulation
by methods such as linear and sinuosidal spectral chirp can improve mitigation of
decoherence effects and adiabatically transfer populations [10, 11].

In the next section, we develop approximate forms for the optical response func-
tions and its derivatives in the control regime.

12.3.2 Optical Response Functions in the Control Regime

Weconsider the approximate formof the susceptibilityχ = χ′ + iχ′′ near resonance.
We use �ω = ω − ω31 as the argument of the functions.

χ′(�ω) ≈ 2n|p31|2
�ε0

(
(ρ11 − ρ33)�ω + Q1�

′(�2ν2 − �ων1)

(�′2 + (�2ν2 − �ων1)2)

+ Q2�
′�2

(�′2 + (�2ν2 − �ων1)2)

)
(12.30)

χ′′(�ω) ≈ 2n|p3 j |2
�ε0

(
(ρ11 − ρ33) − Q3�

′

(�′2 + (�2ν2 − �ων1)2)

)
(12.31)

Q1 = �2
2

4�′ (α
2(ρ11 − ρ33) + (ρ22 − ρ33))

+ α

ν1
(ρ11 − ρ33) + (ρ22 − ρ33)

Q2 = α(ρ11 − ρ33) − α

ν1
(ρ11 − ρ33) + (ρ22 − ρ33)

Q3 = �2
2

4
(α2(ρ11 − ρ33) + (ρ22 − ρ33)).
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Fig. 12.2 Plot of the imaginary (left) and the real(right) part of the susceptibility of the system for
parameters (�2, γ12) for the numbered configurations: (i) (1/35, 4.3E − 5), (ii) (2/35, 4.3E − 5)
(iii) (1/70, 4.3E − 5) (iv) (1/30, 1.7E − 4) and �1 = 0.1�2

We see that the real susceptibility is the sum of a linear term that depends on the
population in the 1st ground state plus a distribution (similar to aFano resonance)with
maximum value Q1/(2�′) and 2�′ being the full width between the local extrema.
The second term is an overlappingCauchy distributionwith FWHM�′ and amplitude
Q2�2(�

′)−1. Similarly, the imaginary part of the susceptibility has a constant term
plus a Cauchy distribution with FWHM 2�′ (Fig. 12.2).

Using our scheme, we assume the following approximations for the parameters:

�′ ≈ γ + γ31

(
�2

2

4
+ α�2

1

4

)
(12.32)

ν1 = (1 − γ31�
2
2/4) > 0 ν2 = (1 − γ31(α�1)

2/4) > 0.

Below, we use the approximations for the dispersion and extinction coefficients:

n′(ω) ≈ 1 + 0.5χ′(ω) n′′(ω) ≈ χ′′(ω)

2
.

We get the expression for the group velocity. For brevity, we define f (�ω) =
(�′)2 + (�2ν2 − �1ν1)

2), then:



12 Control with EIT: High Energy Charged Particle Detection 375

vg(�ω)/c ≈ ( f (�ω))2

χ0Q1�
′ν1

×
(

( f (�ω))2

χ0Q1�
′ν1

(1 + 0.5χ0(ρ11 − ρ33)�ω)

+ f (�ω)

2Q1�
′ν1

(Q1�
′(�2ν2 − �ων1) + Q2�

′�2)

+ 0.5(ω31 + �ω)

(
( f (�ω))2

Q1�
′ν1

(ρ11 − ρ33) − f (�ω) + 2

Q1�
′ (�2ν2 − �ων1)

))−1

.

(12.33)

The above expression implies that we can get infinite and negative group velocities
if χ′ has a negative gradient region with a large enough steepness. We note the group
velocity about the saddle point near 0 of the real susceptibility reads:

min|vg |
vg,e/c ≈ βmin

(
1 + O

(
�′
ω31

))−1

(12.34)

= �′
2χ0Q1ν1ω31

(
1 + �′

Q1ν1ω31

(
2�′ + �2

(
Q2 + (ρ11 − ρ33)�

′ ν2
ν1

)))−1

This is pretty close to the minimum (unsigned) group velocity, and we note that
the second term 
 1. We see the strong dependence of the slow light condition on
�′ and ω31. Whilst we can use weaker fields to reduce the line broadening effect,
the dephasing between the ground states (and therefore γ31) sets a hard limit on the
lowest value of �′.

With this, we can calculate the group velocity dispersion. In our scheme, our light
fields are at least of THz frequencies, therefore the dominant terms in the GVD are
those which include ω. We also use the fact that for a dilute medium χ′,χ′′ 
 1.
Then:

GV D(�ω)c ≈ −Aν1(�2ν2 − �ων1) f (�ω)−2

×(1 + (�2ν2 − �ων1) f (�ω)−1) (12.35)

A = 2ωχ0
�2

2

4
(ν1(α

2(ρ11 − ρ33) + (ρ22 − ρ33))

+ �′(α(ρ11 − ρ33) + (ρ22 − ρ33))).

For a light pulse, the polarized field P(ω) picks up a phase �φ(ω) = k(ω)d after
the pulse passes through a dispersive planarmediumof length d. The pulse exiting the
medium will be the Inverse Fourier Transform (IFT) of the post-medium E(ω) and
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Fig. 12.3 (Left) Plot of the group velocity (solid line) and the GVD (dashed line) for the configu-
ration in Sec 2 for two values of γ12 1.5 kHZ, 6.0 kHZ and �2 = 1/35, �1 = 0.1�2. (Right) Plot
of group velocity and the GVD showing anomalous dispersion and local minima

the time difference between peaks of two simultaneous probe pulses with different
central frequencies ω1,ω2 is given by:

T = d

(
1

vg(ω1)
− 1

vg(ω2)

)
. (12.36)

Since the dispersion in the transparency window is strong in our scheme, a
transform-limited pulse will have its spectral components accumulate different
phases with the time-domain pulse broadening. The GVD is part of the estimate
(GVD(ω0)(bandwidth)d) of the chirp introduced to the pulse (valid for relatively
small pulse bandwidths). Therefore, the group velocity, GVD and the chirp spec-
trum are effective tools to monitor responses to perturbations in the EIT medium by
the way of determining how the properties of the polarization response to the probe
pulses changes relative to the baseline case (Figs. 12.3 and 12.4).

An example we will consider is the passage of high-energy charged particles that
induces Cherenkov radiation production in the medium. The probability of a photon
being emitted during an individual high energy particle event is rather small. Tuning
the medium to have Cherenkov radiation about frequencies which have slow group
velocities will effectively ensure the buildup of the radiation over time asmore events
pass. The effect will be to introduce a growing electric potential that will affect the
EIT state, which will manifest in probe pulses having a different chirp spectrum upon
detection. We will explicitly consider the Cherenkov radiation produced in the EIT
medium and give an analytic form to the field in our parameter regime.
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Fig. 12.4 (Left) Plot of the group velocity and the GVD showing anomalous dispersion and local
minima with �1 scaled by factor of 1.1×. Green line is the asymptote where anomalous disper-
sion occurs and the group velocity becomes infinite. We see how small perturbations in the pump
Rabi frequency cause non-trivial changes in the dispersion of a pulse propagating through the
medium. (Right) Plot showing the first derivative of the dispersion. The zero points and the local
minima/maxima in the derivative correspond respectively to anomalous dispersion asymptotes and
the local maxima/minima of the dispersion

12.4 Application: Detecting High-Energy Charged
Particles Using EIT

Traditional detection of high energy charged particles have been handled in exper-
iments using Cherenkov gas counters where ultra-sensitive detectors measure the
small yield of light (essentially 1 photon per 10,000 events). The small yield of
Cherenkov radiation, which can be calculated by the Frank-Tamm formula, makes
the use of such ultra-sensitive detectors a necessity. But there has been a recent surge
of interest in using techniques in atomic interferometry to measure low-energy phys-
ical phenomena; and using EIT with atomic spectroscopic techniques to measure
changes in atomic media had been proposed in the 2000s [12].

We develop on these techniques and propose a semiclassical model which gives an
approximate analytic solution for the Cherenkov radiation using the optical response
functions calculated using theLindbladian. The strong non-linear dispersion and high
transmission properties of EIT can be used to create Cherenkov radiation with slow
group velocities for a train of relativistic charged particles. At a classical level, the
slow light condition ensures that the group profile of additive Cherenkov contribu-
tions will not smear and constructively increase in intensity. The Cherenkov radiation
develops coherence with the transition dipoles after emission by the medium, essen-
tially travelling as slow-moving dark polaritons confined to themedium for a duration
proportional to the inverse of the group velocity. The model is developed for the case
of a dilute homogeneous gaseous medium, but the results can easily be extended
and optimised towards more complex systems such as EIT diffraction gratings and
crystals.
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12.4.1 A Model Using Fourier Transformed Maxwell’s
Equations

We consider a charged high energy particle traveling with relativistic velocity v =
βcẑ and having charge q in the lab frame. We use the treatment of a classical point
particle, assuming that the width of the relativistic particle’s wavefunction is much
smaller than the wavelengths of emitted radiation. The below derivations are in the
far-field regime where we assume the particle is sufficiently far away to neglect near-
field radiation. The current density and its Fourier transform in the space and time
domain is given by:

J = ρ(x, y, z, t)v =qδ(z − vt)δ(x)δ(y)v (12.37)

Jω,k =q δ̃(ω − k · v)v.

(where δ̃(z) is the generalized delta function).
We solve for the fields produced as a result of this current when placed in a

homogeneous, anisotropic, non-magnetic medium driven to a EIT steady state. We
use the derived optical response function (ε(ω) = 1 + χ31(ω − ω31))with the Fourier
transformed Maxwell equations to calculate the fields in the far-field limit. We start
with the Fourier transformed Maxwell’s equations for an anisotropic, non-magnetic
medium:

ωk · (ε0ε̌ · Eω,k) =ρω,k (12.38)

iωk · Bω,k =0

k×Eω,k = − ωBω,k

k×Bω,k = − iμ · Jω,k + ωμε0ε̌ · Eω,k .

And then introduce the scalar and vector potentials:

Eω,k = ikVω,k + iωAω,k

ωk · (ε̌ · Aω,k) + (k · (ε̌ · k))Vω,k = ρω,k

ε0

k×(μ̌−1 · (k×Aω,k)) + ω2

c2
ε̌ · (Aω,k + c

ω
kVω,k) = −μ0Jω,k .

Here ε̌ is the 3× 3 rank 2 dielectric tensor and is a function of frequency. We
choose to take our coordinate system to be along the dielectric axes (e+, e−, ez)
where the tensor is diagonal. We consider the case where only one transverse mode
is active and themedium is nearly homogeneous.We use the Lorentz gauge condition

k · (ε̌ · Aω,k) + ω|ε̌ · μ̌ · ε̌|
c2

Vω,k = 0
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to arrive at the Helmholtz equations for the potentials [13]:

Aω,k = μ0q

(
k2 − ω2

c2
ε̂·
)−1

δ̃(ω − k · v)v (12.39)

Vω,k = q

εε0

(
k2 − ω2

c2
ε̂·
)−1

δ̃(ω − k · v). (12.40)

For lossy mediums, k∗ · E = 0 in general. We’re interested in only the transverse
mode in the far-field limit.

We take the inverse spatial Fourier transform of Aω,k :

Aω · v̂ = 1

(2π)3

∫
�k

μ0qv

(
k2 − ω2

c2
ε̌·
)−1

δ̃(ω − k · v)eik·rd2k⊥dkz . (12.41)

Expressing it in cylindrical coordinates and carrying out integration over kz , we
get:

Aω · v̂ = μ0qe
iω(z/v) 1

(2π)3

∫ ∞

0

(
k2 − ω2

c2
ε̌·
)−1 (∫ 2π

0
eik⊥r⊥ cos(θ)dθ

)
k⊥dk⊥

(12.42)

The angular integral is a representation of the zeroth order Bessel function.
The above integral, for the k⊥ integrand, has 2 poles±ikr = ±ωc−1

√
β−2 − ε(ω),

where ε(ω) is the scalar dielectric constant for the active transversemode, in the com-
plex domain corresponding to forward and backward radially propagating modes.
Since the medium is dissipative, we consider only the physical forward propagating
pole and use a semi-circular contourwith bumps excluding the poles. kz = ωv−1 fixes
the possible values for the radial wavevector. For the case of no loss, the Cherenkov
condition is Re {ε} > β−2. We will use this later to determine the contributions for
radiative modes and evanescent modes:

Aω · v̂ = μ0qe
iω(z/v) 1

2π

∫ ∞

0

k⊥ J0(k⊥r⊥)

k2⊥ + ω2

c2
(
β−2 − ε(ω)

)dk⊥. (12.43)

The solution of the integral is the modified Bessel function K0 evaluated at ikr .
Considering the treatment in [14] in extending the lossless case to the lossy case
when we transform to the time domain, the frequency integration can be segmented
into two regionsRe (ε(ω) − β−2) ≷ 0,which correspond respectively to the radiative
and non-radiative regions. We define the radiative region: �1 = [ω31 + a,ω31 + b].
We hence solve the final integral for Aω , and similarly define Vω:
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Aω(r,ω) · v̂ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μ0q

4π
eiω(z/v)K0(ikrr⊥) ω ∈ [ω31 + a,ω31 + b]c

μ0q

4π
eiω(z/v)

iπ

2
H (1)

0 (krr⊥) ω ∈ [ω31 + a,ω31 + b]
(12.44)

Vω(r,ω) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q

4πε0εv
eiω(z/v)K0(ikrr⊥) ω ∈ [ω31 + a,ω31 + b]c

q

4πε0εv
eiω(z/v)

iπ

2
H (1)

0 (krr⊥) ω ∈ [ω31 + a,ω31 + b].
(12.45)

In the far-field limit, kr⊥ � 1, asymptotic expansion of the Hankel function gives
us iπH (1)

0 (krr⊥) ∼ √
iπeikr r/

√
krr . We can define the steepest descent contours by

using the phase term with complex frequency ω̃:

r⊥
c

θ(ω̃, r, z, t) = r⊥
c
i

(
ω̃c

r

( z
ṽ

− t
)

+ ω̃n′
⊥ + i ω̃n′′

⊥

)
(12.46)

The steepest descent contour will keep the imaginary part of the phase constant
whilst the real part will have an additional term −p. We define the contour γω̃(p),
parameterized by real p by:

θ(γω̃(p), r, z, t) = θ(ω̃, r, z, t) − p (12.47)

About a point ωi , if we can define a local analytic expansion of θ(ω̃, r, z, t)
extended to the complex plane, we can define an inverse function for θ and get
γω̃(p) = θ−1(θ(ωi , r, z, t) + i p).

The method of steepest descent can be used to find any stationary points in the
case when χ′′ is very small. These group modes represent points of constructive
interference of wavefronts on a group cone with vertex at (0, vt). This involves
finding the critical points of (12.46). Analyticity of the refractive index ensures that
the critical points will be saddle points and there’ll be no local extrema in the complex
plane. The critical frequencies ω̃i obey the below condition:

t − z

v
− r⊥

dkr
dω̃

= 0. (12.48)

We deform the integration contour on the real interval to the complex plane such
that we pass through all critical points via their steepest descent contours and all other
contributions are on segments, which are very small. For the time-domain fields in
the radiative domain, we define the set of critical points Sc with each critical point
defined on contour γω̃i (p). A larger upper limit P will give a better approximation
of the integral
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V (r, t) ≈
∑

wi∈Sc

iq

4πε0v
eir⊥c

−1θ(ω̃i ,r,z,t)

√
iπ√
2r⊥

∫ P

0

e−r⊥c−1 p

ε
√
k⊥(γω̃i (p))

dγω̃i

dp
. (12.49)

In the casewhere the critical points are non-degenerate and represent localmaxima
of the real part of the phase, we can use Morse’s Lemma for complex functions to
get a nicer form of the integral. Since the functions are holomorphic, there exists a
neighbourhoodnear non-degenerate saddle pointswhere phase θ(ω̃) is approximately
quadratic. Accordingly, we can define the asymptotic expansion of (12.49)

V (r, t) ≈ −iq

4πε0r⊥v

∑
ω̃i∈St,z,r⊥

er⊥c
−1iθ(ω̃i ,t,z,r⊥)

(−GVDr (ω̃i ))1/2

(
1√

k⊥(ω̃i )
+ O
(c
r

))
. (12.50)

The critical pointswill be complex for a dissipative system andwill be located near
neighbourhoods of critical points for the non-dissipative system if the dissipation is
weak. In the case where no critical points exist or the integration is difficult, we
can calculate the Gauss-Laguerre quadrature of the integral [15]. However, when the
dissipation is significant, the validity of the Cherenkov condition and the simplicity
of the fields is not generally true.

An explicit evaluation of the integral in terms of complex error functions can be
done in the far-field limit by approximating k⊥ by a piecewise function composed
of parabolas. As shown in Fig. 12.5, we consider the local quadratic best fit in the
region and expand it about a central frequency, ω′

31 = ω31 + x , in region [ai , bi ],
kr ∼ k0 + η�ω + σ′(�ω)2. We evaluate the radial component of the E-field which
has a Hankel function of first type with order 1. We use the asymptotic far-field limit
and we get the below integral:

E(r, t) ≈ iq

8πε0r⊥v

√
ir⊥π

∑
j∈I

eiω
′
31(z/v−t)+ik0r⊥

×
∫ b j

a j

dw ei(w(z/v−t)+r⊥(ηw+σ′w2))

√
kr r̂ + ω

v
√
kr

(1 − β−2ε)ẑ

ε(w)
(12.51)

B(r, t) ≈ iq

8πε0r⊥c2
√
ir⊥π

∑
j∈I

eiω
′
31(z/v−t)+ik0r⊥

×
∫ b j

a j

dw ei(w(z/v−t)+r⊥(ηw+σ′w2))

√
kr

ε(w)
φ̂. (12.52)
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Fig. 12.5 Plots of real and imaginary parts of kr , when the radiative modes are in the anomalous
dispersion region, with piecewise parabolic approximations as functions of the frequency offset.
For our particular system+field choice, we divide the radiative region into 2 regions with common
endpoint 7500Hz. Resonant points where Re ε = β−2 are at the intersections of real and imaginary
parts, bounding the radiative region

We approximate the part of the integrand outside the exponential by a Taylor
series in w with coefficients c j . The solution to (12.51) is a sum of complex error
functions. The integral of the exponential term is given below:

G0(a, b) = i σ̃−1
[
(eσ̃2b2r⊥−i t ′b − eσ̃2a2r⊥−i t ′a)e�2t ′2/(2σ2r⊥)

−eσ̃2b2r⊥−i t ′berfcx

(
�

(
t ′√
2r⊥σ

+ i
bσ̃2√r⊥√

2σ

))

+eσ̃2a2r⊥−i t ′aerfcx

(
�

(
t ′√
2r⊥σ

+ i
aσ̃2√r⊥√

2σ

))]
(12.53)

σ = |σ̃| ≡ |√2iσ′| � = e−i arg(σ̃)/2 t ′ = (t − z/v) − ηr⊥.
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Fig. 12.6 Formation of the group cone for coherent Cherenkov radiation, showing the propagation
of the group mode with angle θ = θg and the radiation propagation distances over transit time τ
and time of Cherenkov cone vertex t

The general expansion for any of the field terms with expressions of form
A
∑

j∈I c j
∫ b j

a j
dw ei(w(z/v−t)+r⊥(ηw+σ′w2)) f (w) is given by:

F(t, z, r) = A
∑
j∈I

c j

N∑
k=0

i n
dk f

dxk

∣∣∣∣
x=ω′

31

dk

d(z/v − t)k
G0(a j , b j ). (12.54)

Expression (12.53) provides more information about the relations between the
parameters in the Cherenkov field and system parameters. It’s clear that η j and σ j

are both related to derivatives of the radialwavenumber kr about the central frequency
x for each frequency interval [a j , b j ]. We can estimate these values by looking at the
susceptibility and seeing how altering parameters like�′,�2, γ12 affect the curvature
and first derivative of kr . We see that decreasing the nonlinearity in the susceptibility
about region I j reduces the inhomogeneous broadening of spectral components over
propagation distance, suggesting that the linear dispersion region of EIT is ideal for
decreasing dissipation and for controlling group velocities.

We finish this section by expanding on the geometry of Cherenkov radiation and
checking that the causality conditions are satisfied. For the case where we have a
single stationary point for a mode with group velocity vg , we can find the critical
frequency ω̃ that solves (12.48). The phase speed at this frequency matches the
charge velocity v and results in the phase matching condition where path difference

CF = 2BF sin(φ/2)where sin(φ) = sin(θ)

1 − v2
g − 2 �vg · �v

v2

. θk is the angle of the group

velocity vector with respect to the z-axis and θg is half the aperture of the group
cone. We can define the transit time τ of radiation reaching (r, z) on the group cone
generated by the vertex at time t (as in Fig. 12.6), where ṽr is the complex radial
velocity or group velocity for wavenumber k⊥:
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τ̃ = t −
√

(z − vτ̃ )2 + r2

ṽg(ω̃)
(12.55)

In the case of weak dissipation, the real group velocity will be a relevant physical
quantity and the below causality condition must be satisfied:

t − z

v
− r

√
1

vg(ω)2
− 1

v2
≥ 0. (12.56)

Defining the group cone (12.48) and the time-retarded current density ensures
that this condition is automatically satisfied. To satisfy non-degeneracy, we require
that the complex GVD not be identically zero.

Care must be taken here, as the real group velocity defined by vg =
(
Re

dk

dω

)−1

is not always a reliable measure of the signal velocity, especially in cases where we
have significant dissipation and superluminal group velocities. For our purposes, we
assumewe’re working with timescales where the group is still coherent (no smearing
of the cone). In the next section, we’ll consider the fields in the case of very small
dissipationwhenwe use the steepest descent method and the case of weak dissipation
where we numerically solve for the fields.

12.4.2 Cherenkov Radiation in the EIT Regime

In general, the introduction of a nonzero loss term breaks the Cherenkov cone-
like condition and dampens the field amplitude. For a large enough loss, the highly
anisotropic character of the radiation and angular sensitivity to the charged particle’s
speed is weakened. Ideally we would want to get contributions close to the center of
the transparencywindow, reduce the gaseousmedium’s particle density and introduce
a background refractive index enhancement to reduce Im χ. For the case of EIT with
Rubidium D1 line spectra using linearly polarized fields, we can select a transition
between levels with magnetic numberm = 0 and introduce a static magnetic field to
cause large enough energy shifts for levelswith the same nonzerom. For large enough
detuning, these transitionswill introduce a frequency-independent contribution to the
susceptibility ε∞.

We use the control scheme outlined in Sect. 12.3. The frequency range where
Cherenkov radiation is transmitted is [ω31 + a,ω31 + b], which contains all frequen-
cies that contribute non-trivially to the radiation. We develop a scheme to evolve the
fields corresponding to a mode ωi after some time �t .
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To define the time-evolving field, we first state the group velocity vector for
Cherenkov radiation:

vg,Ch(�ω) = β−1 ẑ + n⊥r̂

(1 + χ′) + 0.5(ω31 + �ω)
dχ′

d�ω

(12.57)

Suppose the wave propagates for small time �t , such that the group profile
remains coherent, from its initial point at {t, z, r⊥}. Since the peak propagates with
velocity vg,Ch , the new positions are given by r ′ = r + (vg,Ch(�ωi ) · r̂)�t , z′ =
z + (vg,Ch(�ωi ) · ẑ)�t . We can express v�t + z′ − z = α(vt − z) and r ′ − r = βr
and they satisfy the cone condition if α = β. This condition gives us the relation
v − vg,Ch(�ωi ) · ẑ
vvg,Ch(�ωi ) · r̂ = v−1

g,r⊥ , which can be obtained from (12.54). The cone condi-

tion, and the condition for non-degeneracy, is then automatically satisfied and we
can define the one-cycle averaged Cherenkov Poynting vector, and the radiant power
per unit length at a fixed radius in the axial direction ζz = 2πr⊥ 〈S〉, for modes
ω̃i ∈ St,z,r⊥ :

ζz(r + vg,Ch(�ω̃i )�t, t + �t) =
∑

ω̃i∈St,z,r⊥

π(r + (vg,Ch(�ωi ) · r̂)�t)

×μ−1Re {Er,ω̃i (r, t)B
∗
ω̃i

(r, t)}e−2�tIm {k·vg,Ch(�ω̃i )+�ω̃}. (12.58)

The peak intensity of the radiation is confined to a thin cylinder about the z-axis
because the dissipation and the spatial coherence depend only on the bandwidth and
the radial wavevector. For small r , the spatial phase k ′

r (ω)r for different frequencies
is small enough that the spectral components add coherently. The dissipation part
k ′′
r (ω)r ’s shaping for the spectral profile is negligible for these distances. For large
r , the phase differences are large enough that the phase is rapidly changing with
frequency and the contributions to the field come from the critical points satisfying
(12.48) or from nodes for the Gauss-Laguerre quadrature. The coherent addition of
spectral components also depends on the retarded time through the relative spectral
phase �ωt ′, and hence on the radial components of group velocity and GVD. It
follows thatminimizing bandwidth and the range of kr , for frequencies that contribute
non-trivially to the radiant power, increases the coherence distance and time. The
background susceptibility ε∞ and the system+field parameters can be used to control
the radiation spectrum and the radial refractive index through manipulation of the
susceptibilities (12.30, 12.31), as seen in Figs. 12.7 and 12.8. EIT and the slow light
condition allow for strong correlations between spectral components such that the
fields due to multiple charges can stay in this coherence regime. With a significant
enough accumulation of Cherenkov radiation in the medium, we can expect a change
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(a) Re nr (b) Im nr

Fig. 12.7 Plots showing the radial refractive index nr for various values of ε∞. The decrease of
Im nr for large ε∞ proportionally decreases the dissipation and is accompanied by increased and
sharper dispersion

(a) Ω2 = 1/35γ31 (b) Ω2 = 2/35γ31

Fig. 12.8 Plots for ζz(r, t) with varying r for different times

in the optical response functions. In the next section, we consider the perturbative
effects to the EIT state due to small fields.

12.4.3 Perturbation to Steady States: Developing a Control
Method to Detect High Energy Particles

We can consider a couple of approaches in detecting the presence of Cherenkov
radiation. Use of ring Cherenkov particle detectors is the conventional approach, but
we can also use the methods of atomic spectroscopy and interferometry by tuning
the optical properties of the medium and its sensitivity to small perturbations.

Consider a setup of atoms in an EIT steady state exposed to Cherenkov radiation
described by the LindbladianLJ . We assume thatLJ has a unique steady state, with
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projection operator on the steady state subspace given by P∞ =∑λk
|ψλk 〉 〈ψλk |,

and introduce the perturbation operator g(t)O (corresponding to−i[V, ·] in the field
interaction picture) to describe the Cherenkov radiation-atom interaction. The time
evolution from an initial state is given by T e

∫ t
−∞ dτ (LJ +g(t)O) |ρs〉. We assume that the

perturbation due to Cherenkov radiation is switched on at t = 0 and g(t) is slowly
time-varying. We use the Kubo formula to solve for the first-order perturbation [16]:

T (1)
t |ρs〉 =

∫ t

−∞
dτg(τ )e(t−τ )LJ O |ρs〉 (12.59)

In the case where g(t) = G�(t), T (1)
t |ρs〉 = GLJ −1O |ρs〉. The above equation

assumes we start from the steady state of the unperturbed system. We then apply
the perturbation to the system and calculate the first order perturbation to the steady
state using the Kubo formula. The first order perturbation on a steady state describes
a leakage from the asymptotic state subspace (which contains the steady states) to
the subspace of decaying states, [16]. For the choice of parameters �1 = 0.1 MHz,
�2 = 1.0 MHz, �1 = �2 = 0, the Lindbladian is diagonalizable with 1 physical
state and 8 unphysical traceless states with negative real part of eigenvalues λk ,(

�2
1 + �2

2

γ31
≤ |λk | ≤ γ31

)
. The dissipative energy gap, �dg , is given by the mini-

mum of the absolute value of real parts of the eigenvalues and represents the time-
scale for which the perturbed wavefunction will have a contribution from states
in the decaying subspace. For the weak-field case, it roughly follows the curve of
�2

1 + �2
2

γ31
. Increasing the dissipation gap to large values will decrease the leakage

from the asymptotic subspace. We observe that small fields lead to almost no change
in the coherence with application of the probe field as contributions due to dephasing
negates any population in the other states. For large Rabi frequencies, we observe
that the perturbation magnitude decreases, as the field strength increases�dg and �′.
However, as Fig. 12.9 shows, this effect is somewhat offset by choosing large |�2|.
The perturbative effect seems to be strongest with detuning in the 20–50 kHZ range
with control Rabi frequency in the 1–2 MHz range. There are trade-offs in choosing
smaller Rabi frequencies in having to deal with larger absorptivity, while larger Rabi
frequencies will broaden the optical response lineshapes.

Figure12.9 shows regions in parameter spaces in which we can get significant
change to ρ31, whilst retaining choice for the real and imaginary parts, for small
perturbations. In determining the full perturbation to the steady state, we can config-
ure the initial system state of the detection system towards a desired change in the
optical response functions n′, n′′. For example, we could be in the region with maxi-
mized GVD and the perturbed state will modify the chirp spectrum of the Cherenkov
radiation or of another probe field and cause a delay in comparison to the pulses
propagating in the unperturbed system. Small perturbations can also be very useful
if the peak frequencies of the Cherenkov field or of another probe pulse are near
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(a) Re T (1)
t ρ13,s (b) Im T (1)

t ρ13,s

Fig. 12.9 Plots showing the real and imaginary parts of the perturbation T (1)
t ρ13,s , due to

perturbation �pertO after 1 μs (color axis). �1 = 0.1�2, γ12 = 4.3E − 5, �2 = −5.7E − 4,
�pert = 2.7E − 4

the anomalous dispersion region, such that the perturbative response will lead to
phenomena such as superluminal group velocities. Alternatively we could measure a
different propagation angle for Cherenkov radiation due to change in η. This method
allow us to observe the change in group profile/chirp spectrum of the Cherenkov
radiation for a sequence of probe pulses.

12.4.3.1 Control Method Summary

We explicitly state our control protocol for detection of high energy particles. Our
detection scheme is developed for two control objectives. The first is for the accumu-
lation of slow Cherenkov radiation, it prioritises high transmission, nonlinear modes
and slow group velocity to increase the yield of radiation. The second is for optimiz-
ing the detection of the Cherenkov radiation, involving choosing atomic and field
parameters such that the optical response functions in the medium will develop a
desired change in properties such as the chirp spectrum of a probe pulse after prop-
agation through the medium. We start from the same base conditions as those listed
in Sect. 12.3.1.

For the first control objective, we note that the properties of the Cherenkov
radiation are determined by the parameters ω31, r⊥, σ, η, φ, c0 and the band-
width [a, b] (from Sect. 12.4.2). We set the cutoff speed to be equal to β, choose
a Cherenkov parameter set to give us a desired form for the radiation, choose the
system+field parameters to shape the radial wavenumber function kr (ω) and deter-
mine the frequency interval [ωL1 + a,ωL1 + b] (with a, b being the solutions to
1 − β−2 + Re {χ} = 0 in the window centered at the peak frequency). The band-
width for the coherent group mode is limited by the EIT linewidth �′ and adjusting
the control Rabi frequency �2 is one way to broaden the linewidth, decrease dis-
sipation and increase coherence times. The axial and radial group velocities are
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determined using (12.57) and (12.33) which can then be used to find any critical
points satisfying (12.48) and then get the radiant power density (12.58). We can then
optimise the power density for a train of high energy particles associated with some
distribution of arrival times.

For the second control objective, we optimise the detection process by choos-
ing the set of system+field parameters such that the initial state is perturbed by the
Cherenkov field to a target state, which has different optical responses.We determine
the regions in the plot of T (1)(ρs) in the system+field parameter space which corre-
spond to perturbed states we target. For example, we can choose to have the initial
state to cause high GVD for a probe pulse and thus a significant enough perturba-
tion that we get a measurable chirp and pulse delay for propagation in the perturbed
medium.

This concludes our treatment for detecting high energy particles using EIT in
atomic media. In the final section, we review our results and consider their extension
to more complex systems.

12.5 Summary and Vision for Nanophotonics

Wederived the optical response functions for the three-level� system driven to a EIT
state in an open weakly coupled system using the Lindblad formalism to consider the
effects of dephasing and decoherence after determining the field interaction Hamil-
tonian. We used the Bloch vector formalism to transition from the microscopic to the
macroscopic picture where we discussed the optical response functions (dispersion
and absorptivity), and showed how an EIT state with a choice of parameters would
lead to a narrow transparency window with strong non-linear dispersion effects that
created phenomena such as slow light and anomalous dispersion.

This led to our main focus which is on developing quantum control schemes,
using the optical response and sensitivity features of atomic media in EIT states as
a spectroscopic tools, to detect the passage of high-energy particles. Our model was
developed in the regime of weak fields with ultranarrow resonances that capitalize
on the properties of slow light and dissipation-free transmission. The group velocity
dispersion (GVD) and features of the group velocity (such as in the presence of
anomalous dispersion) (Sec 3) were considered in this regard.

We discussed an application of our approach to the detection of high-energy
charged particles through the accumulative stimulation of Cherenkov radiation in a
mediumundergoing EIT (Sect. 12.4), and derived aweak-field approximation analyt-
ical model that allows us to calculate the group profile and its time-dependence. We
then considered how small perturbations would affect the steady state configuration,
determined the leakage from the steady-state subspace, the first order perturbation
and the dissipation gap. In tandem with the known optical response functions, we
showed that we can realize a control scheme that optimises the sensitivity of the
optical response functions to the perturbation.
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We note that whilst we spend most of our attention on the atomic and field prop-
erties, the high energy particles can also be controlled in a similar manner to the
atomic transitions. Work in the field of PINEM (Photon induced near-field elec-
tron microscopy) [17] shows that high energy charged particle wavefunctions can
be modulated over nanostructures with fringing evanescent fields that enhance prob-
ing of a train of randomly arriving high energy particles, introduce correlations
between the particles, and increase the perturbation to a bound electron state [18].
We can control the Rabi phase for a random arrival process and increase coherent
population build up in comparison to a train of uncorrelated wavefunctions. Further
approaches include reverse engineering the high energy particle wavefunction from
the photon spectral density function as well as through optically probing the atomic
coherences [19].

Whilst this chapter focused on a particular atomic system, the results presented
here would have similar analogues in more complex systems, such as photonic crys-
tals and nanostructures, providing a strong relevance to quantum information theory
and optical storage [20]. Coupling of the EM field to material modes in the sys-
tem leads to formations of quasiparticles similar to dark state atomic EIT polaritons.
Examples already researched include surface plasmon polaritons, in the case of intro-
ducing a substrate below the dielectric, or quasiparticles that form in bulk such as
exciton-polaritons.

Surface plasmon polaritons (SPPs) show powerful applications in the production
of tunable power-enhanced Cherenkov radiation. In [21], a dielectric substrate with
a buffer layer deposited with multiple layers of graphene was used to enhance the
production of Cherenkov radiation due to an electron beam by coupling the radiation
to the SPP modes, resulted in increasing the intensity of the radiation by more than
2 orders of magnitude. The properties of the buffer, substrate and SPP modes can be
used to control the intensity increase and the radiation frequency.Ofparticular interest
is the analogous phenomenon of plasmon-induced transparency (PIT) realized in
metamaterials consisting of two plasmonic resonators coupled to a waveguide [22].
One scheme utilizes coupling between a dark and bright resonator to achieve a
transparency window and optical response functions similar to that of EIT in atomic
media. Graphene metamaterials have seen wide applications in this field due to its
low-loss, shiftable Fermi energies and electronic properties. A number of different
geometrical approaches have theoretically showed PIT [23, 24] in the THz regime
and this phenomena’s applicability to quantum control. Due to the geometry of the
resonators, spacings in the metamaterial, and properties of the graphene layer, there
is high controllability for the electromagnetic response. The features of enhanced
slow light and trapping as well as the amplification of signals in the presence of PIT
suggests a possible extension for this chapter’s results.

Exciton interactions are another area where this research can be extended. The
strong interaction of excitons with matter and light, the capability to induce EIT, and
the formation of strongly non-linear exciton-polariton states [25] suggest a future
direction for sensing high energy particles with EIT in more complex media. One
particular application is for systems with Rydberg excitonic states, which yield sig-
nificantly higher nonlinearities in the optical response and few photon strongly cor-
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related states that result from the Rydberg blockade effect [25].With the introduction
of the blockade effect, EIT is disrupted and the nonlinearities are transferred to the
few photon states. Benefits of systems with Rydberg excitonic states include greatly
increased interaction strengths and applications of ultralow field intensities, which
reduces decoherence and line broadening effects. With the traditional features of EIT
including the transparency window and slow light along with the strongly correlated
few photon states and quantum control aspect for the Rydberg exciton system, there
is good scope in detecting high energy particles through the production and control
of slow moving Cherenkov polariton-excitons.

Acknowledgements Authors gratefully acknowledge the support from theOfficeofNavalResearch,
the Department of Energy and the Jefferson Laboratory.
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Chapter 13
Probing Plasmons by EELS in Chiral
Array of Hyperbolic Metasurfaces. The
Role of Plasmon Canalization

Oleksiy Roslyak, Vassilios Fessatidis, Antonios Balassis, Godfrey Gumbs,
and Aparajita Upali

Abstract Wehave derived the energy loss spectrum for a beamof energetic electrons
moving parallel to a set of two-dimensional (2D)-metasurfaces capable of carrying
hyperbolic plasmons due to their anisotropic conductivity. The formalism is pre-
sented for naturally occurring metasurfaces such as transition metal dichalcogenides
(TMDCs), as well as for an engineered array of graphene or phosphorene nanorib-
bons. Our formalism is applicable in the long-wavelength limit where one neglects
(graphene) or emphasizes the cross-polarization of the nanoribbons (phosphorene).
When the nanoribbons are aligned, the plasmon propagation along oblique directions
is not permitted. This allows for plasmon probing at much lower electron energies
in contrast with isotropic graphene and offers drastic modification of the energy loss
probability. Additionally, the structure is akin to a thin uni-axial crystal supporting
extraordinary refracted beams with negative group velocity. We suggest that electron
energy loss spectroscopy (EELS) is capable of identifying two resonances separately
once the beam and the direction of the nanoribbons are mismatched. For a twisted
double layer configuration, one may observe a peculiar interference effect between
ordinary and extraordinary plasmon modes.

O. Roslyak · V. Fessatidis (B) · A. Balassis
Department of Physics and Engineering Physics, Fordham University, Bronx, NY 10458, USA
e-mail: fessatidis@fordham.edu

O. Roslyak
e-mail: oroslyak@fordham.edu

A. Balassis
e-mail: balassis@fordham.edu

G. Gumbs
Department of Physics and Astronomy, Hunter College of the City University of New York,
New York, NY 10065, USA
e-mail: ggumbs@hunter.cuny.edu

A. Upali
Borough of Manhattan Community College, CUNY, New York, NY 10007, USA
e-mail: uaparajita@bmcc.cuny.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Ünlü and N. J. M. Horing (eds.), Progress in Nanoscale and Low-Dimensional
Materials and Devices, Topics in Applied Physics 144,
https://doi.org/10.1007/978-3-030-93460-6_13

393

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93460-6_13&domain=pdf
mailto:fessatidis@fordham.edu
mailto:oroslyak@fordham.edu
mailto:balassis@fordham.edu
mailto:ggumbs@hunter.cuny.edu
mailto:uaparajita@bmcc.cuny.edu
https://doi.org/10.1007/978-3-030-93460-6_13


394 O. Roslyak et al.

13.1 Introduction

Two-dimensional (2D) metamaterials, also referred to as metasurfaces, exhibit a
plethora of peculiar properties, such as beam shaping and steering via anoma-
lous reflection and refraction, controllable surface refractive index, and nonlinear
response. Conventional metasurfaces are made of subwavelength metallic nanoan-
tennas arranged in a periodic pattern [1, 2]. This allows for a nontrivial coupling
between localized surface plasmons (SP) of the individual nanoparticles and lattice
surface plasmon resonances (LSPR). The LSPRs, in contrast to plasmons in three-
dimensional (3D) metamaterials, do not exhibit volumetric losses. Recent advances
in metasurfaces fabrication allow for excellent coupling with planar optical devices
and waveguides. Some properties of metasurfaces can be replicated by anisotropic
2D materials. Whenever the surface allows for inductive and capacitive responses
along two transverse directions, a new class of metamaterials exhibits itself: hyper-
bolic metasurfaces as well as extremely anisotropic 2D structures borrowing the
anisotropy from an underlying dielectric substrate. Such structures are capable of
both, strong confinement of one type of electromagnetic field, known as plasmons,
while effectively radiating the other modes (polaritonic effect). This may lead to
effective negative refraction and focusing of surface plasmons yielding extremely
high local density of states (Purcell factor) and polarization anisotropy. The plasmon
dispersion, due to the anisotropy, becomes a set of equal frequency contours which
morph from elliptical to hyperbolic upon tunable topological transitions. The critical
frequency range for such transitions depends on both the topology of the elements
and morphology of the underlying chemical structure.

There are several plasmonic probing techniques. Plasmon-polaritons can be opti-
cally excited by normal incidence illumination. Several diffraction orders arising
from collective modes are readily achievable. Only modes with effective dipole
moments laying on the surface plane are usually of interest. Oblique incidence as
well as localized near field probes may be used to analyze the response of the out-
of-plane collective modes. The latter is usually associated with scanning near-field
optical microscopy (SNOM) [3, 4]. This technique maps optical properties of indi-
vidual plasmonic nanoparticles andmetasurfaceswith a spatial resolution of about 10
nm. The near-field mapping can occur with a large variety of excitation sources and
is limited only by the laser tunability range. The accuracy of SNOM imaging relies
on the dimensions of the optical probe. They must be small enough to obtain high
spatial resolution. It must also be efficient at converting the optical near-field into a
measurable far-field signal. Usually, this requires placing a probe in close proximity
with the sample, typically within a few nm away from the surface, in order to convert
the evanescent waves into propagating ones. Several aperture (microfiber) and aper-
tureless (metallic nanotip) techniques are available. However, the probe itself may
disturb the optical near-field, thereby producing images that are hard to interpret. The
mechanical interaction between the probe and the surface creates additional artifacts.

There is an alternative way to excite resonances out from the plane. This alleviates
the aforementioned SNOM issues. When an energetic relativistic electron (of a few
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keV) passes close to a metasurface (or approaches the surface), the time dependent
current associated with the electron motion excites plasmons and interacts with the
self induced plasmonic field. The overall interaction is frictional in nature. The elec-
tromagnetic field induced by amoving charge is accompanied by an evanescent wake
field along the surface which allows for the exploration of the dispersion relation of
elementary electronic excitations on the specimen surface outside the light cone.
The gradient of the wake potential will then act back on the electron making it lose
energy [5–7]. Out-of-plane dipole moments play an important role in this interac-
tion. This EELS technique has been proven to also be an important tool in quantum
plasmonics. It involves the analysis of electron scattering caused by the evanescent
field of the sample. This interaction often involves a few atomic layers. Researchers
are often interested in the dissipative component of the force acting back on the mov-
ing electron passing near a solid surface [8, 9]. Besides launching surface plasmons
and losing energy in the process, impinging electrons may undergo energy gain,
Smith-Purcell or Cherenkov radiation and ultimately cathodoluminescence [10].

Instead of investigating scattering events, we suggest an alternative approach. We
assume that the electron’s trajectory is not modified by underlying interactions with
the surface thereby ignoring quantum recoil effects. In this approximation, the exter-
nal charge acts as an infinite source of energy and momentum with a classical charge
distribution ρext = −eδ (r − vt). In reciprocal space, it is given by ∼ δ (q − ωv).
The problem is to find the dissipative component of the induced force. The neg-
ative of this component, can be interpreted as a space-dependent stopping power,
S = (−Ze/v) [∂φind(r)/∂t]r=vt [11]. The main feature of an EELS spectrum is the
plasmon resonance [12–14]. In a classical description of an extended system of
charged particles, a plasmon is a collective excitation of the surface electrons oscil-
lating against a background of positively charged ions. The interpretation of an
EELS spectrum is not a trivial task [10]. Besides collective excitations, there are fea-
tures in the spectrum due to uncorrelated electron-hole interband transitions (Landau
damping). Developing simplified theoretical models is of paramount importance for
interpreting experimental results . Nevertheless, in the low energy transfer domain
(low q), the plasmonic response is still sharp and Landau damping may be neglected.
Measurements of the angular distribution of inelastically scattered fast electrons give
information regarding the imaginary part of the inverse dielectric function of the solid
[12, 13], at the frequency and momentum of the energy transfer to the electrons in
the solid. It also probes the surface response function.

A thorough understanding of the electronic structure is necessary for the EELS
signal interpretation. Starting from density functional theory (DFT), linear response
time-dependent DFT in frequency-reciprocal space within the random phase approx-
imation (TDDFT-RPA) is used to describe the loss function Im

[−1/ε(q, ω)
]
for iso-

lated monolayer structures [15]. The next section is devoted to the detailed derivation
of the EELS signal for stratifiedmedia where different strata are separated by generic
metasurfaces described via an anisotropic conductivity tensor. The result is given in
terms of the poles (plasmon resonances) for Green’s tensor components aligned with
the electronic beam propagation. TheGreen’s tensor is derived via the transfer matrix
approach accounting for anisotropic layers separating the strata. The formalism can
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be readily extended to the anisotropy of the underlying dielectrics as well. The main
result is given in terms of the probability of the electron scattering into an energy
interval for a layer configuration. This can be described via the set of angles that the
main optical axes are making with respect to the beam’s direction.

We applied the above described formalism to several realistic structures made
of either naturally occurring or artificially constructed layers. Due to their specific
anisotropy, those structures are capable of carrying hyperbolic rather than more con-
ventional elliptical plasmon excitations of two types: transverse electric (TE) and
magnetic (TM) waves. Naturally occurring hyperbolic materials are represented by
transition metal dichalcogenide monolayers [15]. The artificial metasurfaces are rep-
resented by, for instance, patterned graphene layers with negligible coupling between
highly eccentric graphene nanodots. We shall also look at structures capable of
extreme plasmon canalization and squeezing, such as dense graphene nanoribbons or
ribbons comprised of milled out naturally anisotropic materials such as phosphorene
[16] or hexagonal boron nitride [17]. The former allows for plasmon canalization
along the ribbons and the latter sets plasmons propagating across the ribbon array by
utilizing the capacitive coupling between the ribbons. Both structures can be fabri-
cated using standard e-beam lithography. On one hand, their plasmonic response is
narrowly selected via their topology (the pitch and size). On the other hand, it can be
finely tuned via electrical doping or mechanical stresses. That is, all ribbons can be
simultaneously biased with a single metallic contact, thus enabling topological tran-
sitions in their plasmonic response, on-off switching of canalization and collimation
for specific frequencies, narrow-band tunable filters and sensitive detectors.

We also present results for a twisted double-layer configuration where adjacent
anisotropic layers are trying to canalize plasmons in different directions. The compet-
itive canalization directions result in a peculiar plasmon dispersion. In some cases, it
fully mimics one-dimensional (1D) plasmons. Numerical simulations and discussion
of the results are the subject of the last section.

13.2 Formalism of the Electron Energy Loss for Stratified
Media with Hyperbolic Metasurfaces

We now consider the EELS configuration shown in Fig. 13.1. An electron beam is
traveling in the plane z = b above the stratified media in the region z ≤ 0. The beam
is directed along the x–direction with velocity v. The strata are formed by arranging
2D anisotropic conducting materials (gray areas in Fig. 13.1) and stacking them on
top of each other at z = zn . We assume that the layers have the same composition but,
in general, their primary axes run at an arbitrary xn–direction. The region just above
the n–th layer is characterized by dielectric and magnetic constants, εnε0 and μnμ0

respectively, where ε0 = 1/4π is the electric permittivity of vacuum (CGS units),
and μ0 = ε−1

0 c−2 being the magnetic permeability. Here, we restrict our attention to
isotropic dielectric materials separating the layers.
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Fig. 13.1 Panel a schematic illustration of a beam of relativistic electrons traveling with velocity
v ‖ x above an array of generic metasurfaces. The primary directions of each layer are indicated by
the gray areas, we have σ‖ = σxx . Panel b a side view of the stratified structure with the layers being
separated by the metasurfaces. TE/TM decomposition of the EM field is shown on the left/right
of the panel. Backward/forward propagating components of the electric field E±

n for those waves
are indicated by up/down arrows. The setup leads to results for the reflection r and transmission
t coefficients via the transfer matrix method. The poles of the surface response functions ∼ Im r
determine self-sustained plasmon-polariton oscillations propagating in the±x′ direction. Each layer
conductivity tensor must be written in this coordinate system. Plasmons propagating in the x′ ‖ x
direction produce a self induced frictional force on the electron

The energy loss of an electron (with charge e) in the beam moving along the
trajectory re(t) = (x = vt, 0, b) is given by [18]:

�E = ev
∫

dt Eind
x (re(t), t) = �

∞∫

0

dω δE(ω), (13.1)

where δE = �‖(ω)ω is the portion of energy given to electronic oscillations in the
stratified media and the loss function �‖ describes scattering probability (per trajec-
tory segment L) off the otherwise preset linear path

�‖(ω) = ev

π�ω

∫
dt Re

[
e−iωt Eind

x (re(t), ω)
]

= e

π�ω

∫
dx Re

[
e−iωx/v Eind

x (r, ω)
]
.

(13.2)
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Here, we have used the frequency representation of the induced field

Eind
x (re(t), t) = 1

2π

∞∫

−∞
Eind
x (re(t), ω) e−iωt dω

= 1

2π

∞∫

0

[
Eind
x (re(t), ω) e−iωt + Eind

x (re(t),−ω) eiωt
]
dω

= 1

2π

∞∫

0

[
Eind
x (re(t), ω) e−iωt + (Eind

x (re(t), ω))eiωt
]
dω

= 1

π
Re

∞∫

0

Eind
x (re(t), ω) e−iωt dω.

On the other hand, the induced field may be expressed via the respective compo-

nent of the dyadic Green’s function tensor ¯̄G (see Appendix 13.7 for details) as

Eind
x (r, ω) = −4π iω

∫
d3r′Gxx

(
r, r′, ω

)
jx
(
r′, ω

)
, (13.3)

where the source current jx in the frequency representation is given by

jx
(
r′, ω

) = −ev
∫

dteiωtδ(x ′ − vt)δ(y′)δ(z′ − b) (13.4)

= −e
∫

dteiωtδ(x ′/v − t)δ(y′)δ(z′ − b)

= −eeiωx
′/vδ(y′)δ(z′ − b).

Substituting (13.4) into (13.3) and the resulting equation into (13.2), we obtain

�‖(ω) = 4e2

�
Im
∫ ∫

dxdx ′ei(ω/v)(x ′−x)Gxx
(
(x, 0, b), (x ′, 0, b), ω

)
. (13.5)

Now, let us use the reciprocity relation for the Green’s function

∫ ∫
dxdx ′ei(ω/v)(x ′−x)Gxx

(
(x, 0, b), (x ′, 0, b), ω

)
(13.6)

=
∫ ∫

dxdx ′ei(ω/v)(x−x ′)Gxx
(
(x ′, 0, b), (x, 0, b), ω

)
.

Combination of (13.5) and (13.6) results in
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�‖(ω) = 4e2

�

∫ ∫
dxdx ′cos

[ω
v

(x ′ − x)
]
ImGxx

(
(x, 0, b), (x ′, 0, b), ω

)
.

(13.7)
The spatial double integral in (13.7) exists only on the interval−L/2 ≤ x ≤ L/2,

and assumes the form

L/2∫

−L/2

dx

∞∫

−∞
dx ′cos

[ω
v

(x ′ − x)
]
exp
[
iqx (x − x ′)

]

= 1

2

∑

s=±1

L/2∫

−L/2

dx

∞∫

−∞
dx ′exp

[
i(qx + sω/v)(x − x ′)

]

= 1

2

∑

s ′=±1

L/2∫

−L/2

dx

∞∫

−∞
dx ′exp

[
i(qx + s ′ω/v)x ′]

= πL
∑

s ′=±1

δ(qx + s ′ω/v). (13.8)

The explicit form of Green’s function in terms of Fresnel’s reflection coefficients
R (valid for z > 0), is given in [19] as

Gxx
(
(x, 0, b), (x ′, 0, b), ω

) = i

8π2

∫ ∫
dqxdqy

q2
‖

exp
[
i(qx (x − x ′) + 2qz1b)

]

(13.9)

×
[
RT E (qx , qy)q2

y

qz1c2
− RTM(qx , qy)q2

x qz1
ε1ω2

]

.

Here, q‖ =
√

ω2/v2 + q2
y is the magnitude of the in-plane momentum, and

qzn =
√
k2εn − q2

‖ = i
√
q2

‖ − εnω2/c2, (13.10)

is the out-of-plane momentum in the n-th layer. Using the identity
∫∞
−∞ dqy f (qy) =

∑
s=±
∫∞
0 dqy f (sqy) and inserting (13.8) and (13.9) into (13.7), we obtain

�‖ (ω) = e2L

2π�v2

∫ ∞

0

dqy
q2

‖
Re

{

qz1e
2iqz1b

[(
qyv

qz1c

)2

RT E − 1

ε1
RTM

]}

. (13.11)

In the non-retarded limit we can ignore polaritonic effects so the first term in the
integrand, involving the term RT E , can be omitted. The out of plane momentum can
also be simplified by writing
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�‖ (ω) = − e2L

2π�v2

∫ ∞

0

dqy
q2

‖
Re

{
qz1e

−2q‖b 1

ε1
RTM

}
. (13.12)

The Fresnel reflection coefficients are given in terms of the reflection matrix
elements ¯̄r

RT E =
∑

s=±, s ′=±
rT E,T E (s

ω

v
, s ′qy) + rT E,T M(s

ω

v
, s ′qy), (13.13)

RTM =
∑

s=±, s ′=±
rT M,T M(s

ω

v
, s ′qy) + rT M,T E (s

ω

v
, s ′qy).

Explicit forms of these matrix elements are calculated in the next section via the
transfer matrix formalism.

13.3 Reflection and Transfer Matrices for Anisotropic
Stratified Media

For z < b, we have no free charges and therefore the in-plane electromagnetic fields
in the n-th strata must satisfy the following set of Maxwell’s equations

∇± × En = iωμμ0Hn,

∇± × Hn = −iωεε0En,

∇± · En = ∇± · Hn = 0,

with ∇± = ±iqznz + iqx ′x′ + iqy′y′, and the dispersion for the component qzn(ω)

is given by (13.10). Note that here we limit ourselves to the highly localized, non
radiative surface bound modes for qz1 which are purely imaginary. In the TM,TE
basis, the solutions of the above system of equations assume the following form

En,T E,y′ = E+
n,T Ee

iqzn z + E−
n,T Ee

−iqzn z, (13.14)

Hn,T E,x ′ = 1

ZT E,n

(−E+
n,T Ee

iqzn z + E−
n,T Ee

−iqzn z
)
,

En,T M,x ′ = E+
n,T Me

iqzn z + E−
n,T Me

−iqzn z,

Hn,T M,y′ = 1

ZTM,n

(
E+
n,T Me

iqzn z − E−
n,T Me

−iqzn z
)
,

where implicit dependence on exp(iq‖ · r′) is assumed, and we have introduced the
impedances

ZT E, n = ωμnμ0

qzn
= ωμn

cqzn
Z0, ZTM,n = qzn

ωεnε0
= qznc

ωεn
Z0,
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with Z0 = 4π/c = 1/ε0c being the free space impedance. The unknown amplitudes
can be presented in vector form as

�n =

⎛

⎜⎜
⎝

E+
n,T E

E−
n,T E

E+
n,T M

E−
n,T M

⎞

⎟⎟
⎠ .

Boundary conditions require continuity of the electric field, E‖
n − E‖

n+1 = 0,
and discontinuity of the magnetic field via induced currents on the interface,
H‖

n − H‖
n+1 = z × ( ¯̄σE), with ¯̄σ being a 2D–conductivity tensor specific for the

interface material [20]. At the z = zn interface, these boundary conditions applied
to (13.14) yield the following equations (for brevity we replace qzn by qn)

E+
n+1,T Ee

iqn+1zn + E−
n+1,T Ee

−iqn+1zn = E+
n,T Ee

iqn zn + E−
n,T Ee

−iqn zn ,

σT E,n+1

(
−E+

n+1,T Ee
iqn+1zn + E−

n+1,T Ee
−iqn+1zn

)
= σT E,n

(
−E+

n,T Ee
iqn zn + E−

n,T Ee
−iqn zn

)

+ σyx

(
E+
n,T Meiqn zn + E−

n,T Me−iqn zn
)

+ σyy

(
E+
n,T Ee

iqn zn + E−
n,T Ee

−iqn zn
)

,

E+
n+1,T Meiqn+1zn + E−

n+1,T Me−iqn+1zn = E+
n,T Ee

iqn zn + E−
n,T Ee

−iqn zn ,

σT M,n+1

(
E+
n+1,T Meiqn+1zn − E−

n+1,T Me−iqn+1zn
)

= σT M,n

(
E+
n,T Meiqn zn − E−

n,T Me−iqn zn
)

− σxx

(
E+
n,T Meiqn zn + E−

n,T Me−iqn zn
)

− σxy

(
E+
n,T Ee

iqn zn + E−
n,T Ee

−iqn zn
)

,

where the wave admittances are defined through the equations σT E(T M) =
1/ZT E(T M). The above equations can be recast in the following compact matrix
form

Dn+1�n+1(zn)�n+1 = Dn�n(zn)�n , (13.15)

Dn+1 =

⎛

⎜⎜
⎝

1 1 0 0
−σT E, n+1 σT E, n+1 0 0

0 0 1 1
0 0 σT M, n+1 −σT M, n+1

⎞

⎟⎟
⎠ ,

Dn =

⎛

⎜
⎜
⎝

1 1 0 0
−σT E, n + σyy σT E, n + σyy σyx σyx

0 0 1 1
−σxy −σxy σT M, n − σxx −σT M, n − σxx

⎞

⎟
⎟
⎠ ,

�n+1(zn) =

⎛

⎜⎜
⎝

eiqn+1zn 0 0 0
0 e−iqn+1zn 0 0
0 0 eiqn+1zn 0
0 0 0 e−iqn+1zn

⎞

⎟⎟
⎠ .
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Introducing the propagation matrix Pn = �n (zn−1)�−1
n (zn) and cascading

(13.15), we obtain the transfer matrix T1,N+1 via

�1 (z1)�1 = T1,N�N+1 (zN )�N+1,

where

T1,N = D−1
1

[
N∏

n=2

DnPnD−1
n

]

DN+1 =
N∏

n=2

Tn−1,nPnTn,n+1. (13.16)

For a single interface we have

T1,2 =

⎛

⎜⎜⎜⎜
⎜
⎝

σT E,1+σT E,2+σyy

2σT E,1

σT E,1−σT E,2+σyy

2σT E,1

σyx

2σT E,1

σyx

2σT E,1

σT E,1−σT E,2−σyy

2σT E,1

σT E,1+σT E,2−σyy

2σT E,1
− σyx

2σT E,1
− σyx

2σT E,1

σxy

2σT M,1

σxy

2σT M,1

σT M,1+σT M,2+σxx

2σT M,1

σT M,1−σT M,2+σxx

2σT M,1

− σxy

2σT M,1
− σxy

2σT M,1

σT M,1−σT M,2−σxx

2σT M,1

σT M,1+σT M,2−σxx

2σT M,1

⎞

⎟⎟⎟⎟
⎟
⎠

.

Let us assume that the conducting layers do not allow electron transfer but are
optically close to each other, i.e., q(zn−1 − zn) � 1. Then the propagator matrix
becomes identity and therefore T1,N+1 = T1,2(

∑N
n=1

¯̄σn). The reflection coefficients
are given in terms of the elements of the transfer matrix T as follows

rT E,T E =
(
E+
1,T E

E−
1,T E

)

E−
1,T M=0

= T14T42 − T12T44
T24T42 − T22T44

,

rT E,T M =
(
E+
1,T M

E−
1,T E

)

E−
1,T M=0

= T34T42 − T32T44
T24T42 − T22T44

,

rT M,T M =
(
E+
1,T M

E−
1,T M

)

E−
1,T E=0

= T24T32 − T22T34
T24T42 − T22T44

, (13.17)

rT M,T E =
(
E+
1,T E

E−
1,T M

)

E−
1,T E=0

= T12T24 − T14T22
T24T42 − T22T44

.

13.4 EELS in Terms of Conductivity Tensor Elements

Each layer is characterized by an anisotropic conductivity tensorwhich in the (xn, yn)
primary coordinates has the following generic form
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¯̄σ =
(

σ‖ 0
0 σ⊥

)
. (13.18)

We now introduce a set of angles θn which rotates the primary direction of each
layer to the coordinate system of the electrons, xn → x , yielding a rotation matrix

¯̄Rn =
(
cos θn − sin θn
sin θn cos θn

)
= 1

q‖

(
qxn −qyn
qyn qxn

)
. (13.19)

For a single interface, the conductivity tensor (in the frame of reference of a
moving electron) is

¯̄σ1 = ¯̄RT
1

¯̄σ ¯̄R1 =
(

σ‖ cos2 θ1 + σ⊥ sin2 θ1
(
σ⊥ − σ‖

)
sin(2θ1)/2(

σ⊥ − σ‖
)
sin(2θ1)/2 σ‖ sin2 θ1 + σ⊥ cos2 θ1

)
. (13.20)

The angle θ1 denotes the angle between the major axis of the conductivity tensor
(parallel) and the propagating electron velocity. For a twisted double layer we have

∑ ¯̄σn =
(

σ‖ + σ⊥ + (σ‖ − σ⊥) cos(δθ1,2) cos(2θ1,2)
(
σ⊥ − σ‖

)
cos(δθ1,2) sin(2θ1,2)(

σ⊥ − σ‖
)
cos(δθ1,2) sin(2θ1,2) σ‖ + σ⊥ − (σ‖ − σ⊥) cos(δθ1,2) cos(2θ1,2)

)
,

(13.21)
where θ1,2 = (θ1 + θ2)/2 is the average twist of both layers with respect to the elec-
tron velocity, and δθ1,2 = θ1 − θ2 is the relative twist angle between x1 and x2.

The reflection matrix elements in (13.17) can now be written as

rT E,T E = 1

D
[
σxyσyx + (σT M1 + σT M2 − σxx )

(
σT E1 − σT E2 + σyy

)]
,

rT E,T M = 1

D
[
2σT E1σxy

]
,

rT M,T E = 1

D
[
2σT M1σxy

]
,

rT M,T M = 1

D
[
σxyσyx + (σT M1 − σT M2 + σxx )

(
σT E1 + σT E2 − σyy

)]
, (13.22)

where D, the denominator of the transfer matrix, is given by

D = −σxyσyx + (σT M1 + σT M2 − σxx )
(
σT E1 + σT E2 − σyy

)
.

Substituting (13.22) into (13.13) and then making use of the resulting equation in
(13.12) yields

�‖ (ω) = e2L

2π�ε1v2

∫ ∞

ω/v

dq‖e−2q‖b
√
q2‖ − ω2/v2

Im
[
RTM

(
q‖, ω; θ1, . . . , θn

)+ RTM
(
q‖, ω;−θ1, . . . , −θn

)]
,

(13.23)
where we have performed a change of variables.
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The pair of symmetrized terms in (13.23) comes from the summation over the s, s ′
indices, as well as from a change of variables in Eq. (13.11):

q‖ =
√

ω2/v2 + q2
y ⇒ qy =

√
q2

‖ − ω2/v2 ⇒ dqy = q‖√
q2

‖ − ω2/v2
dq‖.

Noticing that rT M,T E is an odd function of θn , the final expression for the normal-
ized energy loss can be simplified as

� = �ε1v2

e2 L
�‖ = 1

2π

∫ ∞

ω/v

dq‖√
q2

‖ − ω2/v2
e−2q‖b Im

[
rT M,T M

]
(13.24)

=
∑

i=TM,TE

θ (qi − ω/v)
√
q2
i − ω2/v2

e−2qi b

× Re
[
σxyσyx + (σT M1 − σT M2 + σxx )

(
σT E1 + σT E2 − σyy

)]
q‖=qi

.

In the above expression, we have assumed a lossless conductivity tensor. The
denominator of the reflection matrix has been factorized in terms of its poles as
D = (q − qTM) (q − qT E ). The two plasmonic branches are given by

qTM,T E =
iω
[
4 − σxyσyx + σxxσyy ±√(4 − σxyσyx + σxxσyy)2 − 16σxxσyy

]

4σxx
,

(13.25)

where the TM (TE) subscripts stand for + (−) signs respectively.
It is worth presenting the transverse incidence of the electron case re(t) =

(0, 0, z = vt). Using the Gzz component of the Green’s tensor and denoting tan θ =
qy/qx , we obtained the transverse energy loss function

�⊥ = 2e2

π2�v2

∫ ∞

0

q2
‖dq‖

(
q2

‖ + ω2/v2
)2

2π∫

0

dθ Im
[
RTM(q‖, θ)

]+ �bulk. (13.26)

The transverse case is not only obscured by the bulk contribution to the energy loss
(part of the electron trajectory is inside the substrate) but also carries no information
about a single layer orientation with respect to the electron velocity. Therefore, it
makes sense to probemulti layered structures with this technique. In the next sections
we shall focus our attention on (13.24) and its implications.
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13.5 Energy Loss at Hyperbolic Metasurfaces

In the last decade several types of metasurfaces emerged as an alternative to con-
ventional bulk metamaterials [21]. Several stacks of metasurfaces with weak inter-
action between layers also have been reported [22–24]. These devices are designed
to collimate and guide plasmons in the desired directions via elliptical to hyperbolic
topological transitions in the plasmon dispersion curve [25–27]. These topological
properties are fully defined by the conductivity tensor (13.18). Some materials are
naturally occurring, such as transition-metal dichalcogenides (TMDC). There are
several techniques determining the conductivity of layers made of these materials.
One is based on first-principles calculations of the bulk dielectric function ¯̄ε (ω)

which can be done, for instance, with the Vienna ab-initio package. The electronic
properties of exfoliated TMDC films are usually calculated with the HSE06 hybrid
functional based on PAW pseudopotentials [28]. The layer conductivities become
¯̄σ (ω) = Z−1

0 (−iωd/c)
[ ¯̄ε (ω) − 1

]
, with the effective thickness being dWS2 ≈ 6.15

Å. Within the energy range 1.5 eV ≤ �ω ≤ 3.0 eV it yields Lorentzian components
of the conductivity tensor (see Fig. 13.3 in [15])

σ‖,⊥ = 1

Z0

(

σ∞
‖,⊥ + iω0

‖,⊥ω

ω2 − �2
‖,⊥ + iωγ‖,⊥

)

. (13.27)

Here σ∞ = i0.2, ω0
‖,⊥ = 0.2 , γ = 0.02 , �‖ = 1, �⊥ = 1.2, in units of �‖ ≈

2eV, for WS2 materials. There are several other methods, for the efficient calculation
of spectral quantities of such 2Dmaterials, based on the Chebyshev expansion of the
material Green’s functions known as Kernel Polynomial Methods [29].

One can construct the desired conductivity tensor of amore traditionalmetasurface
by patterning graphene into nano-flakes of characteristic size D arranged into a lattice
of area S. It was shown that the effective conductivity of such layer is proportional to
thepolarizability of the unit cell [30, 31]. For this case, (13.27) accepts vanishingσ∞

‖,⊥,
Lorentzian frequency �2

‖,⊥ = L‖,⊥ωF/DZ0 and weight ω0
‖,⊥ = 4πD2A‖,⊥ωF/S.

Here we have used the graphene isotropic conductivity σ‖,⊥ = σG = iωF/ω, with
the Fermi frequencyωF = 4EF/137�. The geometry dependent unitless coefficients
L,A can be found using the polarizability formula for a perfectly conducting ellip-
soid [32]. We have also neglected the lattice factor by assuming it to be dense in
comparison to the plasmon wavelength

√
S � 1/qSP. The anisotropic Lorentzian

conductivity in (13.27), depicted in Fig. 13.2, supports two classes of surface plas-
mons. Inductive plasmons are characterized by Im σ‖ Im σ⊥ > 0, with conventional
elliptical dispersion ωSP

(
kx1, ky1

) = constant. For our model this regime corre-
sponds to ωSP < �‖, given by the poles of the single layer transfer matrix D. The
plasmon ellipticity is broken once we enter the regime, �‖ < ωSP < �⊥. Here the
parallel conductivity assumes capacitive character, Im σ‖ Im σ⊥ < 0. The plasmon
dispersion,ωSP

(
kx1, ky1

) = constant, splits into two complementary hyperbolas.
The capacitive region does not support plasmons.
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Fig. 13.2 The elements of
the Lorentzian conductivity
tensor in (13.27) as functions
of the normalized frequency
ω/�‖
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3 Capacitive Hyperbolic Inductive

Isotropic surfaces, such as graphene, generate purely TM plasmons due to the
inductive nature of their conductivities. For graphene the Fermi energy EF is the only
parameter. We introduce new variables - the normalized frequency ω → ω/ωF , and
the normalizedwave numberq = cq‖/ωF . The latter is known as the squeezing factor
indicating that when compared with the wavelength in free space c/ω, the polaritonic
wavelength is squeezed by this factor. Note that for hyperbolic metasurfaces the
canalization effect boosts the squeezing factor by twoorders ofmagnitude. Therefore,
even a low energy electron beam can couple to such a plasmon-polariton effectively,
provided the right mutual orientation between the beam and the electron.

Now let us define the conductivity tensor components σ‖ = σ⊥ = iωF/ω. The
plasmon dispersion given by (13.25) reduces to qTM = 2ω2. There is no TE plasmon
in the long wavelength approximation. Formally it can be expressed as qT E = −1.
Equation (13.24) assumes the simple form

� = ω′ �
(
ω′ − 1

)

√
ω′ 2 − 1

e−2qT Mb,

with ω′ = ω(v/c). For the multilayer response of graphene to EELS as well as
nonlocal effects in graphene’s conductivity see [33].

For metasurfaces the surface waves of pure TE or TM polarization can propagate
only along the principal axes of the conductivity tensor θ1 = 0, π/2 since the off-
diagonal components of the conductivity tensor disappear. According to (13.24)
the TE wave does not contribute to the EELS. Corresponding poles are given by
crossing of the plasmon dispersion in (13.25) with the electron line q = ω/v as
shown in Fig. 13.3. At the crossing point EELS response spikes up and then recedes
as 1/

√
q − ω2/v2. Withing the hyperbolic region provided π

4 ≤ θ1 ≤ 3π
4 both types

of waves gets mixed and become quasi-TM,TE modes and both contribute to EELS
as in Fig. 13.3b.

Although only the rT M,T M reflection coefficient contributes to EELS, it is worth to
analyze individual contributions of themixed rT M,T E reflection, as shown inFig. 13.4.
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Fig. 13.3 Single layer EELS contribution from an electron running at v/c = 0.5 above (b�‖/c =
0.1) a stand-alone WS2 metasurface. The surface primary direction (x1 denoted as ‖ in Fig. 13.1) is
at angles: a θ1 = π/2, b θ1 = π/3, c θ1 = 0 with respect to the propagating electron. The plasmon
dispersion, as well as, the imaginary part of the rT M,T M (color density plot) are depicted at the
bottom of each panel. The normalized frequency is given in units of �‖ and the propagation vector
in units of c/�‖

Fig. 13.4 Single layer extraordinary surface response function Im
[
rT M,T E

]

The TE response to the TM component of the electron induced field is rather peculiar.
For θ1 > 0 the TE wave gains its energy from the TM wave giving nonphysical
negative contribution to EELS. However, their role changes upon θ1 → −θ and the
TE wave gives the same energy back to the TM mode. The overall effect on EELS
vanishes.

It is informative to consider the crossing points qTM,T E (ω) = ω/v as a func-
tion of ω, θ1 as shown in Fig. 13.5 and compare it with corresponding EELS. Low
energy electrons lose their energy to plasmons in the inductive region as depicted in
Fig. 13.5b. There is no considerable dependence on the metasurface orientation. The
higher velocity can probe hyperbolic plasmons of quasi TM origin. In this region we
can clearly observe plasmon canalization along ‖ primary direction, thus only small
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Fig. 13.5 Maximum EELS response given by (13.25) as well as q = ω/v for a single anisotropic

metasurface with panels (a.1, a.2) corresponding to
v

c
= 0.5 and

v

c
= 0.3 respectively. Pole con-

tributions from quasi TM,TE plasmons are labeled as curves 1, 2. Color theme depicts the overall
ELLS for various angles (between the electron direction and the primary axis of the metasurfaces)
and frequencies

θ1 contribute. It was previously shown that the Poynting vector of the plasmonic
eigenvalues is getting directed into the small angle [23]. In this regime hybridiza-
tion between TE,TM plasmons asserts the group velocity and the Poynting vector
running in four prescribed directions transverse to the hyperbolic asymptotic. An
electron running along those asymptotes would not experience back action via plas-
monic field. For individual metasurfaces it occurs at a small frequency range. But
the effect can be magnified by assembling those into a twisted (by angle δθ12) double
layer as highlighted in Fig. 13.1. We shall focus on the twisting angle effect and pre-
set the double-layer into a symmetric configuration so that the electron runs in the
middle of the twist angle θ1 = −θ2 thus making their average θ12 = 0. The δθ12 = 0
case, shown in Fig. 13.6c, just renormalizes the value ω0 → 2ω0 in (13.27) thus
blue-shifting the EELS maximum. For δθ12 = π/2 we restore the isotropy of the
system but the plasmonic branches are split in two. Quasi TM are the only branches
contributing to the EELS. For 0 ≤ δθ12 ≤ π/2 plasmonic hybridization occurs.

According to our simulations at the crossing point qTM = qT E , which occurs
at the frequencies given by (4 − σxyσyx + σxxσyy)

2 = 16σxxσyy , the overall EELS
contribution vanishes. In other words, it happens at the asymptotes of the hyperbolas
where the plasmon momentum runs up to infinity. The corresponding twist angle
can be revealed by EELS since the angle modifies hybridization in the hyperbolic
region (see Fig. 13.7). For a twist above the critical (a.k.a. “magic”) angle canalized
plasmons can run in the direction of the propagating electron. Given their enhanced
propagation length∼ 1/ Im q, the EELS acquires a significant boost in the hyperbolic
regime �‖ ≤ ω ≤ �⊥. Now let us turn our attention to the ultimate canalization
mechanism known as near zero σ .
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Fig. 13.6 Plasmon dispersion and EELS contribution in an anisotropic symmetric double-layer
configuration θ1 + θ2 = 0, with the same notations as in Fig. 13.3. The three panels correspond to
various twist angles: a δθ12 = π/2, b δθ12 = π/3, c δθ12 = 0

Fig. 13.7 Maximum EELS in a symmetric θ12 = 0 double layer configuration for (a.1)
v

c
= 0.3,

(a.2)
v

c
= 0.5, as a function of the twist angle. The overall notation is the same as in Fig. 13.5

Let us consider a set of graphene nanoribbons (shown as gray areas in Fig. 13.1) of
widthW arranged into a lattice with period P . The ribbons are cut along the armchair
direction. The conductivity tensor component along that direction can be written as
σ‖ = W

P σG,AC . The transverse component of the tensor is given by σ⊥ = WσCσG,Z Z

PσC+WσG,Z Z
.

Here σG,Z Z is the conductivity along the zigzag direction. σC = −iCω is associated
with the near-field coupling between adjacent nanoribbons. It defines capacitive
coupling across the lattice with the normalized capacitance given by C = 1

ωC
=

2P
πc ln

(
sin−1

(
π
2

(
1 − W

P

)))
. The conductivity tensor can be written in Lorentzian

form as in (13.27) with the following set of parameters: σ∞ = 0, ω0
‖ = ω0

⊥ = W
P ωF ,

�2
⊥ = W

P ωFωC . Along the primary direction it retains the Drude form �‖ = 0. This
effective-medium tensor model is valid when the pitch is much smaller than the
plasmonwavelength Pq � 1. For typical graphene, with doping EF = 0.1 eV, pitch
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Fig. 13.8 A dense graphene
nanoribbon array
conductivity. The frequency
is given in units of the Fermi
frequency ωF which depends
on the doping level. The
intrinsic losses are neglected
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P = 30 nm and width W = 20 nm, the Lorentzian is centered at �⊥ ≈ 15 THz.
Note that for graphene we can neglect the difference between zigzag and armchair
conductivity σG,Z Z = σG,AC = σG . In order to achieve the “near sigma zero” regime
we restrict ourselves to a dense array W

P ≈ 1. Therefore, we can neglect the capacitive
contribution σC � σG which ensues vanishing σ⊥ = 0 and purely inductive σ‖ = σG

as shown in Fig. 13.8. In the case when Im σ‖  Im σ⊥ one observes perfect plasmon
canalization in the parallel direction. In other words, the plasmonic Poynting vector
is fully oriented along that direction.

For a single layer of dense graphene nanoribbons the plasmon dispersion becomes
directional

qTM,T E = ω

cos2 θ1

(
ω ±

√
ω2 + sin2 (2θ1) /4

)
, (13.28)

where we use the same conventions as for graphene. The TE−plasmonic branch
disappears since qT E < 0. The remaining branch can be probed by EELS as shown
in Fig. 13.9.

The plasmon dispersion we obtained is reminiscent of the 1D-plasmon configu-
ration. The vanishing EELS in the transverse direction (see Fig. 13.9) was confirmed
experimentally for 1D systems in atomic scale metal wires arranged on Si(557)
substrate [34]. Therefore, it is informative to derive the plasmonic dispersion of
the graphene nanoribbon array without the effective media approximation. The
1D-electron density can be found by redefining ωF = e2EF Z0π�

2 W
P = e2N2D Z0

m∗ ,

with N2D = N1D/P = kF/P . Here we have used the fact that N1D = √n2D/W 2

is defined via the number of electrons n2D within that circle. The effective mass,
m∗ = π�

vFW
, depends on the width W and the 1D-Fermi energy EF = �vF N1D

W
P .

The procedure is equivalent to carving out ribbons from a uniform graphene sheet
and scaling the conductivity by the filling factor W/P along the x1 direction. This
naive effective model has its grounds in the quantum description of the plasmons
in graphene nanoribbons. Indeed, the 1D-model of a single nanoribbon supports
plasmons of the form
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Fig. 13.9 A dense graphene nanoribbon array σC � σG , ω/ωF → ω a θ1 = π/2 no energy loss
(not shown); b θ1 = π/3; c θ1 = 0, v = 0.5c. The top panels depict EELS and the bottom panels
show the dispersion as well as the surface response function

ω1D =
√

−2e2N1D

m∗ |qx1W |2 ln (|qx1|W ).

A uniform collection of these nanoribbons supports anisotropic two dimensional
plasmons [35]

ω2D =
√√
√√2e2N1D

m∗ |qx1W |2
[

K0 (|qx1|W ) + 2
∞∑

m=1

K0 (m |qx1| P) cos
(
mqy1P

)
]

.

Here K0 is the modified Bessel function of second kind. In the sparse limit
|qx1| P  1 we recover ω2D = ω1D . In the limit of a dense nanoribbon array
q‖P � 1 we can use [36] identity

∞∑

m=1

K0 (mu) cos (muw) = 1

2

(
C + ln

u

4π

)
+ π

2u
√
1 + w2

+

+ π

2

∞∑

m=1

∑

s=±

{
1

√
u2 + (2πm + swu)2

− 1

2πm

}

� 1

2

(
C + ln

u

4π

)
+ π

2u
√
1 + w2

� π

2u
√
1 + w2

 K0 (uW/d) ,
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Fig. 13.10 The black
phosphorous nanoribbon
array conductivity. The
frequency is given in units of
the capacitive frequency ωC
which depends on the given
ribbons topology and not
sensitive to biasing effects.
The intrinsic losses are
neglected

Re

Im

Re

Im

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8
Capacitive

where u = |qx1| P andw = qy1/ |qx1|. Combining the above two equationswe obtain

ω2D =
√
2e2N1D

m∗ |qx1W |2 π

u
√
1 + w2

=
√
2πe2n2DW

m∗P
∣∣q‖
∣∣ cos2 θ1. (13.29)

For small θ1 the above plasmon dispersion coincides with that given in (13.28).
The sin2 (2θ1) term is a consequence of the effectivemedia approximation. For a dou-
ble layer with average θ12 = 0 only one branch remains, qTM = ω2 cos−2 (δθ12/2).
Therefore, itwill behave as an1D-plasmonwith the obvious replacement θ1 → δ12/2.

Now let us turn our attention to combining the naturally occurring anisotropy of
a material such as black phosphorous (BP) with the nanoribbon configuration into
metasurface layers. The photonic properties of monolayer BP can be described by
employing a simple semi-classical Drude model which comes fromDFT simulations
of 1 nm thin films as discussed in [37]. Proper choice of the electronic density EF =
0.4 eV biases the ribbon into σAC � σC � σZ Z . This, in turn, creates sigma-zero
configuration σ‖ = 0 and σ⊥ ≈ σC . The conductivity tensor is depicted in Fig. 13.10.
Measuring the energy in units of ωC and the wave number in units of c/ωc in (13.25)
yields the plasmonic branches

qTM,T E = 1

cos2 θ1

(
1 ±

√
1 + ω2 sin2 (2θ1) /4

)
. (13.30)

The TM plasmon is characterized by negative wavevector and only the TE plas-
monic branch remains. For pitch P = 40 nm and ribbon width W = 30 nm, the
typical resonant frequency is around 50 THz. The plasmon energy highly direc-
tional propagation occurs in the transverse direction which can be probed by EELS
as shown in Fig. 13.11. Given the flat band dispersion in the transverse direction
θ1 = π/2, we observe that the available propagation length stretches to infinity and
is only limited by the intrinsic losses �γ which we have neglected in our simulations.
It was shown in [16] that the Poynting vector in this direction is proportional to the
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Fig. 13.11 EELS for v = 0.5c electron induced by a black phosphorous nanoribbon array
defined via the following set of parameters: conductivity σZ Z � σC � σAC , normalized frequency
ω/ωc → ω and electron propagation angle a θ1 = π/2; b θ1 = π/3; c θ1 = 0 no energy loss (not
shown). The colored density plot indicates the surface loss function given by the imaginary part of
the reflection coefficient

real part of qT E . For the symmetrical double layer configuration θ1 = −θ2 we obtain
the plasmon dispersion qT E = sin−1 (δθ12), which has no analogy for standalone 1D
plasmonics. It is also important to recognize that without the chosen limitation on the
conductivity along zigzag and armchair directions, a BP metasurface can exhibit all
properties of a Lorentzian metasurface: TE,TM wave hybridization and topological
transitions between elliptical and hyperbolic regimes. Partial plasmon canalization
along the hyperbolic branches is possible in such a system as was verified experi-
mentally in [17].

13.6 Summary

In this chapter, we presented a theoretical framework which may be employed
for probing plasmon excitations in stratified media with electron energy loss spec-
troscopy. The layers in the media are assumed separated with various types of meta-
surfaces thereby allowing for topological transitions from elliptical to hyperbolic
types of plasmons. For a Lorentzian type of anisotropic conductivity, in naturally
occurring TMDC or artificially designed patterned graphene metasurfaces, the role
played by TE,TM hybridization in the hyperbolic region was investigated.
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The main subject of this study is the interplay between the mutual orientation of
the metasurface primary directions and the parallel beam propagation direction. We
have indicated several conditions upon which EELS is maximized or minimized.
The role of the twist angle in double layer configurations was elucidated. We have
shown that in the hyperbolic region there is a critical “magic” angle below which the
EELS vanishes since the Poynting vector associated with the hybridized modes runs
in the direction transverse to the propagating electron above the metasurface. We
have also investigated the effect of ultimate plasmon canalization in near sigma zero
metasurfaces. Dense graphene and phosphorene nanoribbon arrays were chosen as
model systems. Fundamental differences between such systems have their origin in
the role of the capacitive coupling between the ribbons.

A symmetric double layer of graphene nanoribbons demonstrates plasmonic
response identical to a set of 1D-plasmons propagating in the middle of the opening
angle. EELS in the direction transverse to such plasmons disappears. The phos-
phorene configuration favors plasmon canalization in the direction transverse to the
ribbons. The corresponding double layer offers no analogy to conventional single
layer configurations.

Acknowledgements G.G. would like to acknowledge the support from the Air Force Research
Laboratory (AFRL) through Grant No. FA9453-21-1-0046.

13.7 Appendix A. Green’s Function Tensor for Anisotropic
Stratified Media

The imaginary part of the single point reflectedGreen’s tensor describes the enhance-
ment in spontaneous emission rate of a stationary dipole μ known as Purcell factor

1 + 6πc

|μ| ω μ · Im
[ ¯̄G (�r0, �r0, ω)

]
· μ, (13.31)

¯̄G (�r0, �r0, ω) = i

8π2

∫ ∞

−∞

∫ ∞

−∞
dqxdqye

i2qzb (13.32)

×
(
rT E,T E

¯̄MT E,T E + rT E,T M
¯̄MT E,T M + rT M,T E

¯̄MTM,T E + rT M,T M
¯̄MTM,T M

)
,

¯̄MT E,T E = 1

q2z q
2‖

⎛

⎝
q2y −qxqy 0

−qxqy q2x 0
0 0 0

⎞

⎠ , ¯̄MTM,T M = c2qz

ω2q2‖

⎛

⎜
⎝

−q2x −qxqy −qxq2‖/qz
−qxqy −q2y −qyq2‖/qz
qxq2‖/qz qyq2‖/qz q4‖/q2z

⎞

⎟
⎠ ,

¯̄MT E,T M = c

ωq2‖

⎛

⎜
⎝

−qxqy −q2y −qyq2‖/qz
q2x qxqy qxq2‖/qz
0 0 0

⎞

⎟
⎠ , ¯̄MTM,T E = c

ωq2‖

⎛

⎜
⎝

qxqy −q2x 0
q2y −qxqy 0

−qyq2‖/qz qxq2‖/qz 0

⎞

⎟
⎠ .
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Chapter 14
Landau Quantized Dynamics and Energy
Spectra of Asymmetric
Double-Quantum-Dot Systems: (a)
Nonrelativistic Electrons; (b) Dirac T-3
“Diced” Lattice Carriers

N. J. M. Horing, J. D. Mancini, and S. L. Horton

Abstract This chapter is concerned with charge carrier propagation and the associ-
ated energy spectrum in asymmetric quantum double-dot systems embedded in a two
dimensional host sheet subject to Landau quantization. The two dots are modeled by
two Dirac delta function potential terms of differing depths (each of which would
support just one subband state if the other were absent, if there were no magnetic
field). The Dyson-like integral equation for the Green’s function of such a double-dot
system is solved exactly in closed form in terms of the infinite sheet Green’s function
for two dimensional charge carriers subject to Landau quantization in the absence
of the quantum dots. The dispersion relation for the coupled double-quantum-dot
subband energies is formulated and examined by analyzing the frequency poles of
the Green’s function, with Landau-quantization-like splintering of both of the dot
levels by the magnetic field, modified by the proximity of the two dots. The effects of
the asymmetry of the quantum dots in regard to their differing potential well depths
are analyzed as functions of the well depth difference and dot separation. These
studies are carried out here for two 2D systems: (A) nonrelativistic Landau quan-
tized charge carriers, and (B) T-3 “Diced” lattice Dirac-like pseudospin 1 Landau
quantized charge carriers.
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14.1 Introduction: Asymmetric Double-Quantum-Dot
Green’s Function

Newly conceived quantum-dot-based electronic devices for transport in nanostruc-
tured systems have often assumed that each constituent dot [1] involved in the device
would support just one single energetically accessible energy subband level in the
absence of a magnetic field, and that the role of the magnetic field can be represented
merely in terms of a Peierls phase factor. However, this ignores another important
effect of the magnetic field in that it induces a “splintering” of the single subband
energy level into a proliferation of many Landau-quantized states. The latter states
may be energetically accessible making the situation much more complicated, pos-
sibly interfering with the intended device function.

This chapter is concerned with charge carrier propagation and the associated
energy spectrum in a two-dimensional asymmetric quantum double-dot system
embedded in a two-dimensional host sheet subject to Landau quantization in a nor-
mal magnetic field. The two dots are represented by two model Dirac delta function
potential terms (at spatially separated positions), each of which would support just
one subband state if the other were absent, if there were no magnetic field (consonant
with the assumption of just one single energetically accessible subband level per dot).
The quantum dynamics of charge carriers in this double-dot system is formulated
in terms of a Dyson-like integral equation for its Green’s function, which is solved
exactly in closed form in terms of the infinite sheet Green’s function for two dimen-
sional electrons subject to Landau quantizationwith no quantum dots. The dispersion
relation for the asymmetric double dot subband energies is analyzed by examining
the frequency poles of the Green’s function, with Landau-quantization-like splin-
tering of both of the dot levels by the magnetic field, modified by the proximity of
the two quantum dots. Two 2D double quantum dot systems are examined in these
studies: (A) nonrelativistic Landau quantized charge carriers, and (B) T-3 “Diced”
lattice Dirac-like pseudospin 1 Landau quantized charge carriers.

We consider a planar double-quantum-dot system on a two dimensional sheet in
a perpendicular magnetic field, represented by a double-well potential as (α± < 0)

U (�r) = α+δ(2)(�r − �r+) + α−δ(2)(�r − �r−) =
∑

±
α±δ(2)(�r − �r±), (14.1)

where �r = xî+y ĵ and the two potential wells defining the double dot are located at
�r± = ±î d/2 with strengths α± = −U0±A± < 0 representing the product of the well
depths U0± at �r± times their common area A± ≡ a2. The retarded Green’s function
for charge carrier propagation on the sheet, G(�r1, �r2, ω), including the dot regions,
obeys the Dyson-like integral equation (position/frequency representation; � → 1)

G(�r1, �r2;ω) = GB
2D(�r1, �r2;ω) +

∫
d2�r3GB

2D (�r1, �r3;ω)U (�r3)G(�r3, �r2;ω), (14.2)
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or

G(�r1, �r2;ω) = GB
2D(�r1, �r2;ω)

+
∑

±
α±
∫

d2�r3GB
2D(�r1, �r3;ω)δ(2)(�r3 − �r±)G(�r3, �r2;ω), (14.3)

where GB
2D is the infinite sheet two dimensional Green’s function for electron prop-

agation on the sheet in a magnetic field in the absence of the quantum dot potential
wells. Integration with respect to �r3 yields

G(�r1, �r2;ω) = GB
2D(�r1, �r2;ω) +

∑

±
α±GB

2D(�r1, �r±;ω)G(�r±, �r2;ω). (14.4)

This algebraic equation is readily solved by setting �r1 = �r±′ ,

G(�r±′ , �r2;ω) = GB
2D(�r±′ , �r2;ω) +

∑

±
α±GB

2D(�r±′ , �r±;ω)G(�r±, �r2;ω), (14.5)

whence

GB
2D(�r±′ , �r2;ω) =

∑

±

[
δ±′,± − α±GB

2D(�r±′ , �r±;ω)
]
G(�r±, �r2;ω). (14.6)

The inversion of this 2 × 2 position space matrix equation yields (assuming that
all elements of the 2 × 2matrixGB

2D(�r±′ , �r±;ω) commute, which is assured if we are
dealing with spinless, nonrelativistic “p2/2m” electrons, but is not assured if those
elements of the 2 × 2 matrix GB

2D(�r±′ , �r±;ω) are themselves 3 × 3 pseudospin 1
matrices of the “Diced” lattice carriers to be treated later in this chapter)

G (�r±, �r2;ω) = D∓,∓GB
2D(�r±, �r2;ω) + D∓,±GB

2D(�r∓, �r2;ω)

D∓,∓D±,± − D±,∓D∓,±
, (14.7)

and D±,± is defined as

D±,± = δ±,± − α±GB
2D(�r±, �r±;ω) (14.8)

and also
D±,∓ = α±GB

2D(�r∓, �r±;ω). (14.9)

The final Green’s function is given by (14.4) and (14.6) as
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G(�r1, �r2;ω) = GB
2D(�r1, �r2;ω) +

∑

±
α±GB

2D(�r1, �r±;ω)

× D∓,∓GB
2D(�r±, �r2;ω) + D∓,±GB

2D(�r∓, �r2;ω)

D∓,∓D±,± − D±,∓D∓,±
.

(14.10)

The coupled subband energy eigenstates associated with the double quantum dot
arise from its frequency poles, as given by the dispersion relation:

D∓,∓D±,± − D±,∓D∓,± = 0. (14.11)

14.2 Infinite Sheet Nonrelativistic 2D “ p2/2m” Magnetic
Field Green’s Function GB

2D

The retarded nonrelativistic “p2/2m” infinite sheet Green’s function for a spinless
2D charge carrier (absent dots) subject to Landau quantization is well known as [2]
(the magnetic field �B is taken in the z-direction; � → 1; c → 1)

GB
2D(�r1, �r2; T ) = −η+(T )C(�r1, �r2)mωc

4π

exp
[
imωc(X2+Y 2)

4 tan(ωcT/2)

]

sin(ωcT/2)
, (14.12)

in position-time representation. Alternatively, expanding the exponential on the right
as a generator of Laguerre polynomials [3], we have (ω → ω + i0+)

GB
2D(�r1, �r2;ω) = C(�r1, �r2)mωc

2π
e−mωc R2/4

∞∑

n=0

Ln

(
mωc R2

2

)
1

ω − (n + 1
2 )ωc

,

(14.13)

in position-frequency representation (above, T = t1 − t2, X = x1 − x2, Y = y1 −
y2, R2 = X2 + Y 2, ωc is the cyclotron frequency and η+(T ) is the Heaviside unit
step function). Furthermore,C(�r1, �r2),which is in the nature of a Peierls phase factor,
is given by ( �A(�x) is the vector potential for the constant, uniform magnetic field;
� = c = 1)

C(�r1, �r2) = exp

⎡

⎢⎣
ie

�c

�r1∫

�r2

d �x · �A(x)

⎤

⎥⎦ = exp
[
i(e/2)�r1 · �B × �r2

]
, (14.14)

and the �x-integral depends on the path in accordance with the Aharonov-Bohm effect
(but it is taken on the right-hand-side of (14.14) as a straight line). Considering
(14.12) in frequency representation, and setting �r1, �r2 = �r± as needed in (14.7),
(X = 0,Y = 0) with C(�r1, �r2) → C(�r±, �r±) = 1, we have
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GB
2D(0, 0;ω) = −mωc

4π

∞∫

0

dT
eiωT

sin(ωcT/2)
. (14.15)

Expanding the integrand,

1

sin(ωcT/2)
= 2i

∞∑

n=0

e−iωc(n+1/2)T , (14.16)

the T -integral may be evaluated as

GB
2D(0, 0;ω) = mωc

2π

∞∑

n=0

1

ω − (n + 1/2)ωc
. (14.17)

This series diverges as n → ∞, as does the T -integral of (14.15) for X = Y = 0.
The divergence is an artifact of assuming a δ(2)(�r) potential, which confines the
dot to a single point. It may be removed by noting that the original integral equation
involves integration over a small, but finite radius “a”, so we should install a “smear”
radius “a” putting X2 + Y 2 → a2 (instead of “0”) in (14.11), (14.12), leading to

GB
2D(0, 0;ω) ⇒ GB

2D(a;ω) = −mωc

4π

∞∫

0

dT eiωT

sin(ωcT/2)
exp

[
imωca2

4 tan(ωcT/2)

]
,

(14.18)
and, installing the “smear” radius, we have,

GB
2D(0, 0;ω) ⇒ GB

2D(a;ω)

⇒ mωc

2π i
exp

[−mωca
2/4
] ∞∑

n=0

Ln

(
mωca2

2

)

∞∫

0

dT exp[i([ω − (n + 1/2)ωc])T ], (14.19)

where we have again expanded the last exponential on the right hand side of the
T -integrand of (14.18) in Laguerre polynomials [3], Ln(x), that embody the Landau
eigenstate matrix elements on the plane in closed form. In this context the T -integral
of (14.19) can be carried out with the result

GB
2D(0, 0;ω) ⇒ GB

2D(a;ω) = mωc

2π
e−mωca2/4

∞∑

n=0

Ln

(
mωca2

2

)
1

ω − [n + ( 12
)]ωc

.

(14.20)
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The n-series of (14.20) is slowly convergent [3]. As n → ∞, Ln(x) ∼ n−1/4, so
the summand goes like 1/n1.25, which ensures convergence [4]. Notwithstanding
this convergence, there is reason to consider truncating the n-series of (14.20) in
materials with band structure that bends away from the “p2/2m” form assumed here
at an energy

Emax
∼= (nmax + 1/2)ωc, (14.21)

which identifies the maximumLandau eigen-energy index nmax acceptable for inclu-
sion in the series. Considered jointly with dot size “a” understood to be the smallest
length parameter, so thatmωca2/2 
 1 and Ln(mωca2/2) → 1, we recover (14.17)
cut off at nmax .

It should be noted that the dispersion relation of (14.6), (14.11) also involves
Peierls phase factors C(�r±, �r∓) as D±,∓D∓,± ∼ C(�r±�r∓,)C(�r∓,�r±) ∼ exp[ ie2 (�r± ·
�B × �r∓ + �r∓ · �B × �r±] = 1 so the Peierls phase factors cancel in the dispersion rela-
tion, but not in G(�r1, �r2;ω).

14.3 Dispersion Relation for a Nonrelativistic “ p2/2m”
Asymmetric Double-Quantum-Dot in a Normal
Magnetic Field

Finally, the results above yield the dispersion relation as (recall that |�r+ − �r−| = d)

1 = (α− + α+)

∞∑

n=0

�n
1

ω − [n + ( 12
)]ωc

− α−α+

( ∞∑

n=0

�n
1

ω − [n + ( 12
)]ωc

)2

+ α−α+

( ∞∑

n=0

�n
1

ω − [n + ( 12
)]ωc

)2

, (14.22)

where (restore �)

�n = mωc

2π�2
exp

(−mωcd2

4�

)
Ln

(
mωcd2

2�

)

and

�n = mωc

2π�2
exp

(−mωca2

4�

)
Ln

(
mωca2

2�

)
,

for an asymmetric quantum-double-dot in a nonrelativistic “p2/2m” semiconductor
(not a Dirac material) in a perpendicular magnetic field. One may expect that there
are infinitely many roots of (14.22) corresponding to all the integer values of n, but
since the equation involves second order (quadratic) terms in (ω − [n + 1/2]ωc)

−1,



14 Landau Quantized Dynamics and Energy Spectra of Asymmetric … 423

Table 14.1 First 5 calculated “upper” energies for differing well depths

n U0−, U0+ =
(25, 75)meV

U0−, U0+ =
(100, 200)meV

U0−, U0+ =
(100, 300)meV

U0−, U0+ =
(200, 300)meV

U0−, U0+ =
(200, 400)meV

n = 0 0.51230 0.53456 0.54515 0.55478 0.56435

n = 1 1.51054 1.52870 1.53999 1.54504 1.55517

n = 2 2.50977 2.52544 2.53724 2.53776 2.54893

n = 3 3.50970 3.52548 3.51230 3.53798 3.54880

n = 4 4.50984 4.52662 4.53790 4.54096 4.55119

there are actually two such coupled subband energy eigenvalues for each value of n,
an “upper” (larger) value and a “lower” (smaller) value, corresponding to the Landau
quantization of each of the two distinct quantum dot spectra, with modification due
to the proximity of the two dots.

From this dispersion relation one can see that as d, the distance separating the two
quantum dots, goes to infinity,�n → 0, we are left with the two decoupled quantum
dots contributing separately to the dispersion relation as:

(
1 − α−

mωc

2π�2
exp

(−mωca2

4�

) ∞∑

n=0

1

ω − [n + ( 12
)]ωc

Ln

(
mωca2

2�

))

×
(
1 − α+

mωc

2π�2
exp

(−mωca2

4�

) ∞∑

n=0

1

ω − [n + ( 12
)]ωc

Ln

(
mωca2

2�

))
= 0.

(14.23)

On the other hand, when the dots approach each other, d → a, the first and third
terms on the right side of (14.22) cancel, yielding

1 = (α− + α+)

∞∑

n=0

[
mωc

2π�2
e
(

−mωca2

4�

)

Ln

(
mωca2

2�

)
1

ω − [n + ( 12
)]ωc

]
, (14.24)

in which we have the dispersion relation of a single dot having the combined strength
of the two coupled dots, (α− + α+), as one should expect.

Our numerical analysis of the asymmetric double quantum dot spectrum based on
(14.22) fora = 5 nm,d = 5a = 25 nm,�ωc = 2meV,m = 0.067me, carrying 5000
terms, yields the first 5 calculated “upper” and “lower” energies for each different
U− and U+ pair as exhibited below in Tables 14.1 and 14.2, respectively.

We also consider an alternative analytic scheme for solving the dispersion relation
of (14.22) when α� 
 1 and α� 
 1. This occurs for nanoscale parameters such as
we have employed in the text above. In this situation the magnitudes of the prefactors
(α±�n, α±�n) on the right of (14.22) are very small due to the smallness of the dot
area, and to achieve equality with the unit “1” on the left of (14.22), the frequency
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Table 14.2 First 5 calculated “lower” energies for differing well depths

n U0−, U0+ =
(25, 75)meV

U0−, U0+ =
(100, 200)meV

U0−, U0+ =
(100, 300)meV

U0−, U0+ =
(200, 300)meV

U0−, U0+ =
(200, 400)meV

n = 0 0.48695 0.45966 0.44273 0.43053 0.39846

n = 1 1.48909 1.46897 1.45398 1.45048 1.43134

n = 2 2.48992 2.47241 2.45774 2.45772 2.44226

n = 3 3.49001 3.47139 3.45834 3.45582 3.43795

n = 4 4.48992 4.47139 4.45837 4.45367 4.43479

denominators must be close to zero, ωn − [n + 1
2 ]ωc

∼= |α±�n| or |α±�n|. This is
to say that the frequency roots are essentially determined by the nearest pole alone.
In such a “single pole” approximation (14.22) becomes (� → 1)

1 = (α+ + α−)
�n

ωn − [n + 1/2]ωc
+ α+α−

�2
n − �2

n

(ωn − [n + 1/2]ωc)
2 , (14.25)

where we have neglected terms from the squares of series
(∑

n ...
)2 =∑n

∑
m ...

involving n �= m: Denoting the small parameters collectively by λ ≡ |α±�n| or
|α±�n|, such terms are of the form (n �= m) (assume ω − [n + 1

2 ]ωc
∼= λ)

λ2

(ω − [n + 1
2 ]ωc)(ω − [m + 1

2 ]ωc)
= λ2

λ(ω − [m + 1
2 ]ωc)

∼= λ2

λ[n − m]ωc

∼= λ

[n − m]ωc

 1, (14.26)

and as they are of order O(λ), they are negligible compared to the second order pole

terms having n = m that are order O
(

λ2

λ2

)
= O(1). Solving (14.25), we obtain

ωn − (n + 1/2) ωc =
⎛

⎝
(α− + α+)�n ±

√
(|α+ − α−|)2 �2

n + 4α−α+�2
n

2

⎞

⎠ .

(14.27)
Again, if d → ∞, �n → 0 and two decoupled dot modes emerge as

ωn − (n + 1/2) ωc →
⎧
⎨

⎩

α+�n

and
α−�n

⎫
⎬

⎭ , (14.28)

while if d → a, �n → �n and a single mode emerges having the combined strength
of two dots as

ωn − (n + 1/2) ωc → (α+ + α−) �n. (14.29)
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In the Appendix, Tables14.3 and 14.4 show the results for the first five “upper”
and “lower” energies respectively, using the “single pole” evaluation approximation
with the same parameters employed in Tables 14.1 and 14.2.

14.4 Infinite Sheet Landau Quantized Greens Function for
the T-3 “Diced” Lattice

The Green’s function G(�r1, �r2;ω) for the T-3 “Diced” lattice in a magnetic field is a
3 × 3 pseudospin 1matrix with elements (i, j = 1, 2, 3); again, we writeGB

2D → G,
dropping subscript “2D” and superscript “B” to make room for matrix element
subscripts

Gi j (�r1, �r2;ω) = C (�r1, �r2)G ′
i j

( �R;ω
)

, (14.30)

in position/frequency representation.
(
As above, C(�r1, �r2) = exp

(
ie
2 �r1 · �B × �r2

)
.
)

SinceG andG ′ (andC(�r1, �r2)) are hermitian for realω,G ′
i j = G ′∗

j i , and the 9 elements
have been determined as follows [5]:

G ′
11

( �R;ω
)

= G ′
33

( �R;ω
)

= 1
2G

′
22

( �R;ω
)

+ ( 1
2ω

)
δ2
( �R
)

, (14.31)

and (� = 1)

G ′
22

( �R;ω
)

= eB

2π
ωe−eBR2/4

∞∑

n=0

Ln

(
eBR2

2

)
1

ω2 − 2(2n + 1)α2eB
. (14.32)

The frequency poles identify the Landau energy eigenvalues εn of the T-3 “Diced”
lattice carriers as (� → 1; α = v/

√
2 is a characteristic speed parameter of the T-3

“Diced” lattice)

εn ≡ ωn = ±
√
2(2n + 1)α2eB (n = 0...∞). (14.33)

Furthermore, the off-diagonal element G ′
23

( �R;ω
)
is given by

G ′
23

( �R;ω
)

= α(eB)2

2π
e−eB R2

4 [i X + Y ]
∞∑

n=1

L1
n−1

(
eB R2

2

)

ω2 − 2(2n + 1)α2eB
. (14.34)
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Moreover, G ′
31

( �R;ω
)
is given by

G ′
31

( �R, ω
)

= α2(eB)3

2πω
e−eB R2

4 [X + iY ]2
∞∑

n=2

L2
n−2

(
eB R2

2

)

ω2 − 2(2n + 1)α2eB
. (14.35)

These results for G ′
22, G

′
23, G

′
31 suffice to determine all 9 elements of G ′ since

we also have the relation G ′
11 = G ′

33 = ( 12 )G
′
22 + (1/2ω)δ2

( �R
)
; and also G ′

21 =
G ′∗

23; as well as G
′
32 = G ′∗

23, G
′
13 = G ′∗

31, G
′
23 = G ′∗

32, G
′
12 = G ′∗

21 so G ′
12 = G ′

32. In
connection with these relations it should be noted that the diagonal elements G ′

22,
G ′

11, and G ′
33 are real for real ω, while the off-diagonals are complex conjugates

across the diagonal.
The solution of (14.6) for G(�r±, �r2;ω) (with |r±′ − r±| → a as in (14.18); |r±′ −

r∓| → d), which is essential for solution of G(�r1, �r2), involves the inversion of the
matrix M defined as (in the interest of clarity, we briefly restore superscript “B” and
subscript “2D” on GB

2D to distinguish it from the double dot Green’s function G),

M =
(
1 − α+GB

2D(a;ω) −α−GB
2D(d;ω)

−α+GB
2D(d;ω) 1 − α−GB

2D(a;ω)

)
, (14.36)

in the context of GB
2D(�r±′ , �r2;ω) = MG(�r±, �r2;ω) as the matrix product of (14.6).

Each of the elements of M exhibited here is a 3 × 3 matrix in pseudospin 1 space.
This inversion is complicated by the possibility that the 3D pseudospin matrices
GB

2D(a;ω) and GB
2D(d;ω) do not generally commute, and we will not address this

issue here. Nevertheless, considerable progress can be made with the determinant
DetM to deal with the determination of the eigenvalue spectrum of the T-3 “Diced”
lattice asymmetric double quantum dot system in a magnetic field. (Henceforth, we
again delete the superscript “B” and subscript “2D” on GB

2D → G to make room for
matrix element subscripts.) As noted below (14.21), the Peierls phase factorC(�r1, �r2)
cancels in the determinental dispersion relation for the eigenvalue spectrum, which
therefore involves G ′ in place of G.

14.5 Eigenenergy Dispersion Relation for a T-3 “Diced”
Lattice Asymmetric Double-Quantum Dot in a
Normal Magnetic Field

The determinental energy eigenvalue dispersion relation for a Landau quantized
asymmetric double-quantum-dot on a T-3 “Diced” lattice may be identified from
(14.6) by noting that a frequency pole of its Green’s functionG requires the vanishing
of DetM , so that
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DetM = Det
{(
I − α+G ′(a;ω)

) (
I − α−G ′(a;ω)

)− α+α−G ′2(d;ω)
} = 0,

(14.37)
or, alternatively,

Det
{
I − [α+ + α−]G ′(a;ω) + α+α−[G ′2(a;ω) − G ′2(d;ω)]} = 0. (14.38)

Here, I represents the 3 × 3 pseudospin 1 unit matrix, just as G ′ is a 3 × 3 pseu-
dospin 1 matrix, and Det is the 3 × 3 determinant. Again, there are two relatively
simple limiting cases:

(a) if the dot-dot separation is very large, G ′(d;ω) → 0 and (14.37) yields two
separated, distinct single dot dispersion relations,

Det
{
I − α+G ′(a;ω)

} = 0, (14.39)

Det
{
I − α−G ′(a;ω)

} = 0; (14.40)

(b) if the dot-dot separation is very small, d → a, (14.38) takes the form

Det
{
1 − [α+ + α−]G ′(a;ω)

} = 0, (14.41)

which is appropriate for a single dot having the combined strength [α+ + α−].
These 3 single dot limiting-case dispersion relations can be solved together as a
generic single dot relation,

Det
{
1 − λG ′(a;ω)

} = 0, (14.42)

with λ = α+, α−, α+ + α−.

Considering λG ′(a;ω) of the generic single dot dispersion relation, (14.42), it is
clear that the smallness of dot size a2 leads to a relatively small value of λ (we take
U0

∼= 100meV = 1.6 × 10−20J),

λ = U0a
2 ∼= 1.6 × 10−38 Jm2, (14.43)

where we have taken a = 1nm. Estimating with parameter values B = 1Tesla, α =
106 m s−1 and ω ∼= α

√
eB/� = 4 × 1013 s−1 as a typical, non-resonant frequency

value for the T-3 “Diced” lattice (ie: not an eigenenergy of the quantum dot), we
have (restore �)

G ′(a;ω) → G ′
22(a;ω) ∼= eB

2πω�2
∼= 0.7 × 1035 /Jm2, (14.44)

so that for the typical value of ω,

∣∣λG ′(a;ω)
∣∣→ ∣∣λG ′

22(a;ω)
∣∣ ∼= 10−3 
 1, (14.45)
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which is too small for a resonant solution of the dispersion relation, since the lat-
ter requires that such a resonant frequency/eigenenergy root ω̄n solution of the dot
dispersion relation (14.42) must have

∣∣λG ′(a; ω̄n)
∣∣→ 1. This can only occur if

ω̄2
n − ε2n

∼= O(λ) (recall εn =
√
2(2n + 1)α2eB/� s−1). (14.46)

In the analysis of such roots for every positive integer value of n, the parameter
values cited above yield off-diagonal elements G ′

i �= j which are considerably smaller
than the diagonal ones, for example,

G ′
12(a;ω)

G ′
22(a;ω)

∼= αeBa

�ω
∼= 0.04 < 1, (14.47)

and
G ′

31(a;ω)

G ′
22(a;ω)

∼= α2(eB)2a2

�2ω2
∼= 1.6 × 10−3 
 1. (14.48)

On this basis, the off-diagonal G ′
i �= j (a;ω) elements may be ignored, yielding the

generic single dot dispersion relation in diagonal form:

0 = Det(1 − λG ′(a;ω)) = Det

∣∣∣∣∣∣

1 − λG ′
11(a;ω) 0 0
0 1 − λG ′

22(a;ω) 0
0 0 1 − λG ′

33(a;ω)

∣∣∣∣∣∣
,

(14.49)
or (i = 1, 2, 3)

1 − λG ′
i i (a;ω) ≡ 1 −

∞∑

n=0

λgn(i i)(a;ω)

ω2 − ε2n
, (14.50)

where

gn(11)(a;ω) = gn(33)(a;ω) = 1

2
gn(22)(a;ω) (14.51)

and

gn(22)(a;ω) = eBω

2π�2
e−eBa2/4� Ln

(
eBa2

2�

)
. (14.52)

Bearing inmind the discussion of (14.43)–(14.46), and recalling that the smallness
of |λG ′(a;ω)| for a typical frequency that is not resonant means that in the vicinity of
the nth-resonance root ω2

n − ε2n
∼= O(λ), all other n′ �= n terms have relatively large

denominators,

ω2 − ε2n′ → ω̄2
n − ε2n′ ∼= ε2n − ε2n′ ∼= α2eB/� ∼= O(λ0) = O(1), (14.53)

which sharply reduces the impact of those terms on the nth root in question, rendering
them (n �= n′) negligible in the context of the nth resonant frequency/eigenvalue root
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ω̄n of the quantum dot. Thus, the nth root ω̄n is determined by its nearest pole alone
(to the exclusion of all other poles) as

ω̄2
n(i,i) = ε2n + λgii (a; εn), (14.54)

in this “single pole” approximation.
Alternatively expressed, the generic single dot frequency/eigenvalue roots for the

T-3 “Diced” lattice quantum dot subject to Landau quantization are given by (in
inverse seconds)

ω̄n(22) = ±εn

(
1 + λ

eB

2π�2
e−eBa2/4� Ln

(
eBa2

2�

)/
2εn

)
(14.55)

and the degenerate ω̄n(11) and ω̄n(33) frequency roots are

ω̄n(11) = ω̄n(33) = ±εn

(
1 + λeB

2π�2
e−eBa2/4� Ln

(
eBa2

2�

)/
4εn

)
, (14.56)

where λ = U0a2 ∼= 1.6 × 10−3 Jm2 and εn ∼= α
√
eB/� in inverse seconds, for the

parameters cited above.
Obtaining the 6 dot frequency/eigenvalue roots when the off-diagonal elements

G ′
i �= j need to be taken into consideration involves solving a 6th order determinental

equation, and in the context of the “single pole” approximation it takes the form

0 = Det
∣∣1 − λG ′(a;ω)

∣∣

= Det

∣∣∣∣∣∣

ω2 − ε2n − λgn(11) −λgn(12) −λgn(13)

−λgn(21) ω2 − ε2n − λgn(22) −λgn(23)

−λgn(31) −λgn(32) ω2 − ε2n − λgn(33)

∣∣∣∣∣∣
, (14.57)

where gn(i j) ≡ gn(i j)(a;ω) are given in (14.51), (14.52); also gn(i j) = g∗
n( j i) and

gn(23) = g∗
n(21), where

gn(23)(a;ω) = iα(eB)2a

2π�3
e−eBa2/4�L1

n−1(eBa
2/2�) (14.58)

and

gn(31)(a;ω) = α2(eB)3a2

2πω�4
e−eBa2/4�L2

n−2(eBa
2/2�). (14.59)

Alternately, we have the single dot dispersion relation as

(
ω2 − ε2n − g11

)2 (
ω2 − ε2n − g22

)

− (
ω2 − ε2n − g22

) |g13|2 − 2
(
ω2 − ε2n − g11

) |g12|2 − 2g13|g12|2 = 0,
(14.60)

which includes the off-diagonal terms.
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In regard to the double dot dispersion relation, we proceed using (14.38) noting
the necessary presence of terms of the form G ′2(a or d;ω). In conformance with the
discussion above, we again ignore the relatively small off-diagonal terms of G ′ here.
Such G ′2(a or d;ω)–terms involve the product of two series

α+α−G ′2
i i (a or d;ω) = α+α−

∞∑

n=0

∞∑

m=0

gn(i i)gm(i i)(
ω2 − ε2n

) (
ω2 − ε2m

) . (14.61)

Since both α+ and α− are proportional to λ, α+α− ≈ λ2, so both denominator
factors must be proportional to λ to contribute significantly to the dispersion relation
solution. This is satisfied for the subset of terms with n = m, which thus constitute
a second order pole. However, terms having n �= m may involve one denominator
factor ω2 − ε2n ∼ O(λ), but the other denominator factor is then ω2 − ε2m ∼ ε2n −
ε2m ∼ O(λ0) = O(1), which is relatively large, sharply reducing the magnitude of
the n �= m terms relative to the n = m terms, rendering them negligible. In this
context, the G ′2

i i (a or d) terms are approximately given by

α+α−
(
G ′2

i i (a;ω) − G ′2
i i (d;ω)

) = α+α−
∞∑

n=0

g2n(i i)(a;ω) − g2n(i i)(d;ω)

(ω2 − ε2n)
2

∼= O

(
λ2

λ2

)
= O(1), (14.62)

and the double-dot dispersion relation for its eigenenergies is given by the single-pole
approximation as (i = 1, 2, 3)

0 = 1 − (α+ + α−)
gn(i i)

ω2 − ε2n
+ α+α−

g2n(i i)(a; εn) − g2n(i i)(d; εn)

(ω2 − ε2n)
2

, (14.63)

so the double dot eigenenergy solutions ω̄n are given by

ω̄2
n(i i) − ε2n = 1

2

{
(α+ + α−)gn(i i)(a; εn)

±
√

(α+ + α−)2g2n(i i)(a; εn) − 4α+α−(g2n(i i)(a; εn) − g2n(i i)(d; εn))
}

. (14.64)

14.6 Conclusions

In summary,wehave explicitly determined thekeydynamical propagator of a spinless
nonrelativistic “p2/2m” electron on a planar double quantum dot system subject to
Landau quantization in a magnetic field as the retarded Green’s function given by
(ω → ω + i0+; � → 1)
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G(�r1, �r2;ω) = GB
2D(�r1, �r2;ω) +

∑

±
α±GB

2D(�r1, �r±;ω)

× D∓,∓GB
2D(�r±, �r2;ω) + D∓,±GB

2D(�r∓, �r2;ω)

D∓,∓D±,± − D±,∓D∓,±
, (14.65)

with the associated double dot eigenenergy dispersion relation as

D∓,∓D±,± − D±,∓D∓,± = 0, (14.66)

where

D±,± = δ±,± − α±GB
2D(�r±, �r±;ω) (14.67)

and

D±,∓ = α±GB
2D(�r∓, �r±;ω). (14.68)

While our calculations have focused on the smallness of dot size as the dominant con-
sideration, with the attendant employment of the “single pole” approximation care-
fully discussed in the text, the fundamental double dot Green’s function of (14.10)
and dispersion relation (14.11) are valid without any such restriction.

Furthermore, the infinite sheet 2D Landau quantized Green’s functions involved
for the nonrelativistic “p2/2m” system and for the relativistic T-3 “Diced” lattice are
discussed in Sects. 14.2 and 14.4, respectively.

Considering the “Diced” lattice Green’s function in general, (14.6) may bewritten
as (

GB
2D(�r+, �r2;ω)

GB
2D(�r−, �r2;ω)

)
= M

(
G(�r+, �r2;ω)

G(�r−, �r2;ω)

)
, (14.69)

where

M =
(
1 − α+GB

2D(�r+, �r+;ω) −α−GB
2D(�r+, �r−;ω)

−α+GB
2D(�r−, �r+;ω) 1 − α−GB

2D(�r−, �r−;ω)

)
. (14.70)

Inversion of the matrix M to obtain M−1 must be done carefully since the off-
diagonal matrix elements are themselves 3 × 3 pseudospin 1 matrices, and the off-
diagonal elements do not commute with the diagonal elements in general. However,
the determination of M−1 yields the “Diced” lattice Green’s function of (14.4) as

G(�r1, �r2;ω) = GB
2D(�r1, �r2;ω) +

∑

±
α±GB

2D(�r1, �r±;ω)G(�r±, �r2;ω), (14.71)
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where

G(�r±, �r2;ω) =
(
G(�r+, �r2;ω)

G(�r−, �r2;ω)

)
= M−1

(
GB

2D(�r+, �r2;ω)

GB
2D(�r−, �r2;ω)

)
. (14.72)

A further simplification can be achieved if |�r1|, |�r2| � a, d, when there is interest
in propagation far from the region of the two dots, since one can then approxi-
mately write GB

2D(�r1, �r±;ω) ∼= GB
2D(�r1, 0;ω) and GB

2D(�r±, �r2;ω) ∼= GB
2D(0, �r2;ω),

independent of r± because it is relatively small. In this case, we have the approxi-
mation

G(�r1, �r2;ω) = GB
2D(�r1, �r2;ω) + GB

2D(�r1, 0;ω)M̂−1GB
2D(0, �r2;ω), (14.73)

where

M̂−1 = (1 1
) (M−1

) (1
1

)
= (M−1

)
11 + (M−1

)
12 + (M−1

)
21 + (M−1

)
22 ,

(14.74)

which is the sum of all 3 × 3 pseudospin 1 elements of M−1 . These results may
be useful in the description of transport over relatively large distances. Over smaller
distances this approximation is not valid, and (14.71), (14.72) would have to be
employed: The same is true for the statistical thermodynamic properties of the
“Diced” double-dot system, which involves evaluations at �r1 = �r2 in the region of
the dots, as well as elsewhere.

In conclusion, the proliferation of states due to Landau quantization, which may
be energetically accessible, needs to be taken into account in considerations of the
quantumdynamics of transport through nanostructured dot systems in the presence of
a normal magnetic field. In general, magnetic considerations restricted to the neglect
of Landau quantization, are, in fact, insufficient. Our analysis of the eigen-energy
dispersion relation for a spinless nonrelativistic “p2/2m” 2D Landau-quantized dou-
ble quantum dot, with the results shown in Tables 14.1 and 14.2 in the text above
and in Tables 14.3, 14.4, and 14.5 in the Appendix, clearly exhibits the splintering of
each zero-field dot subband level into a multitude of Landau levels, modified by the
proximity of the two quantum dots. These same features are evident in our results
for the eigenenergy spectrum of a Landau-quantized double quantum dot in a T-3
“Diced” lattice, as seen in (14.55), (14.56), and (14.64).

14.7 Appendix

Tables 14.5 and14.6 exhibit the percentage difference between thefirst five calculated
“upper” and “lower” energies and the corresponding results using the single pole
approximation.



14 Landau Quantized Dynamics and Energy Spectra of Asymmetric … 433

Table 14.3 First 5 “upper” energies for differing well depths using the single pole approximation

n U0−, U0+ =
(25, 75)meV

U0−, U0+ =
(100, 200)meV

U0−, U0+ =
(100, 300)meV

U0−, U0+ =
(200, 300)meV

U0−, U0+ =
(200, 400)meV

n = 0 0.49884 0.49580 0.49537 0.49236 0.49160

n = 1 1.49588 1.48472 1.48353 1.47180 1.46944

n = 2 2.49200 2.46952 2.46798 2.44268 2.43905

n = 3 3.48787 3.49765 3.51230 3.54091 3.40547

n = 4 4.48397 4.43646 4.53790 4.52662 4.37292

Table 14.4 First 5 “lower” energies for differing well depths using the single pole approximation

n U0−, U0+ =
(25, 75)meV

U0−, U0+ =
(100, 200)meV

U0−, U0+ =
(100, 300)meV

U0−, U0+ =
(200, 300)meV

U0−, U0+ =
(200, 400)meV

n = 0 0.48734 0.46273 0.45101 0.43853 0.42547

n = 1 1.47678 1.43326 1.40711 1.39150 1.36652

n = 2 2.46745 2.40880 2.40880 2.35453 2.31760

n = 3 3.48683 3.38683 3.33459 3.32355 3.27365

n = 4 4.44993 4.36522 4.29970 4.29446 4.23043

Table 14.5 Percent difference between the first 5 calculated “upper” energies and the single pole
approximations

n U0−, U0+ =
(25, 75)meV
(%)

U0−, U0+ =
(100, 200)meV
(%)

U0−, U0+ =
(100, 300)meV
(%)

U0−, U0+ =
(200, 300)meV
(%)

U0−, U0+ =
(200, 400)meV
(%)

n = 0 2.63 7.25 9.13 11.25 12.89

n = 1 0.97 2.87 3.67 4.74 5.51

n = 2 0.71 2.21 2.73 3.75 4.31

n = 3 0.62 0.79 1.73 2.94 4.04

n = 4 0.57 1.99 2.25 3.35 3.92

Table 14.6 Percent difference between the first 5 calculated “lower” energies and the single pole
approximations

n U0−, U0+ =
(25, 75)meV
(%)

U0−, U0+ =
(100, 200)meV
(%)

U0−, U0+ =
(100, 300)meV
(%)

U0−, U0+ =
(200, 300)meV
(%)

U0−, U0+ =
(200, 400)meV
(%)

n = 0 0.08 0.67 1.87 1.86 6.78

n = 1 0.82 2.43 3.22 4.07 4.53

n = 2 0.90 2.57 2.09 4.20 5.10

n = 3 0.06 2.44 3.58 3.83 4.80

n = 4 0.89 2.37 3.56 3.57 4.61
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Generally, the results differ by a few percent, in a few cases about ten percent.
Overall, the single pole approximation provides a reasonable estimate of the order
of magnitude, with minimal numerical work.
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Chapter 15
Two Dimensional Magnetopolaritons
and the Associated Landau Quantized
Magnetoconductivity Tensor

Mark Orman and Norman J. M. Horing

Abstract We address the magnetopolariton spectrum andmagnetoconductivity ten-
sor of a two dimensional plasma of nonrelativistic charge carriers subject to Landau
quantization in a normal magnetic field. The analysis is carried out in the random
phase approximation for linear electromagnetic response. Various regimes of mag-
netic field strength and wave number are considered. An exact integral representa-
tion of the magnetoconductivity tensor is derived and several expansions in terms
of modified Bessel functions and Laguerre polynomials are obtained, as well as a
low wave number power expansion. These results encompass the nondegenerate and
degenerate statistical regimes as well as intermediate field and quantum strong field
strengths. The two-dimensional magnetopolariton dispersion relation is formulated
and solved for the electromagnetic normalmodes, and local and nonlocalmagnetopo-
laritons/plasmons are discussed, including nonlocal Bernstein modes, all subject to
Landau quantization. The leading nonlocal corrections to the local modes are shown
to exhibit de Haas-van Alphen oscillatory quantum structure in the degenerate sta-
tistical regime.

Preface

This chapter is focused on themagnetopolariton normalmode spectrum and the asso-
ciated linear magnetoconductivity tensor of a Landau quantized two-dimensional
sheet of nonrelativistic electrons. The nonequilibrium Green’s function techniques
discussed can be fruitfully employed more generally, including to the determina-
tion of the magnetoconductivity tensors of 2D Dirac materials, for studies of their
magnetopolariton spectra.

In Sect. 15.1 the electromagnetic Green’s function propagator for a Landau quan-
tized 2D plasma in 3D space is discussed and its frequency poles provide the dis-
persion relation for the 2D magnetopolariton spectrum in terms of the 2D magneto-
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conductivity tensor of the mobile charge carriers of the material sheet. Section15.2
addresses the determination of the linear 2Dmagnetoconductivity tensor σ

˜

2 in terms
of an associated tensor L

˜

(�k,�) = (i�/c) σ
˜

2(�k,�). (In this, we ignore the negligible
Pauli spin current, but discuss it and provide some pertinent references.) The deter-
mination of the linear current response tensor L

˜

(�k,�) is formulated in terms of a
grand canonical ensemble averaged current, but is then evaluated in terms of a related
imaginary-time-periodic averaged nonequilibrium Green’s function, whoseMatsub-
ara Fourier series coefficient provides the frequency (�) dependent linear current
response tensor L

˜

(�k,�) and linear conductivity σ
˜

2(�k,�) in momentum (�k) repre-
sentation: The latter is finally evaluated by an analytic continuation in an imaginary
time integration in terms of a product of equilibrium Green’s functions—the RPA
“ring” diagram—by linearization of the nonequilibrium Green’s function equation
of motion. Employing the Landau-quantized equilibrium Green’s function involved,
its non-translationally-invariant Peierls phase factor is separated and the remainder
of the Green’s function is spatially translationally invariant, leading to the conduc-
tivity tensor σ

˜

2(�k,�) and L
˜

(�k,�) as functions of a single momentum/wavenumber
variable �k and frequency �.

The resulting linear current response tensor L
˜

(�k,�) of nonrelativistic electrons is
presented in terms of a 3-fold integral representation that involves only elementary
functions and the Fermi-Dirac distribution, incorporating the exact role of the mag-
netic field in its discretization of the 2D spectrum due to Landau quantization. The
tensor elements Li

j (
�k,�) are also presented in a modified Bessel function expansion

exhibiting resonant frequency pole structure at integer multiples of the cyclotron fre-
quency, with coefficients involving a Fermi integration and an accompanying inverse
Laplace transform. Both integrations are evaluated exactly in the nondegenerate sta-
tistical regime, and the resulting nondegenerate linear magnetoconductivity tensor
elements Li

j are exhibited explicitly. The zero temperature degenerate limit is also
examined with exact execution of the Fermi integration, so the coefficients involve
only an inverse Laplace transform replete with de Haas-van Alphen oscillatory struc-
ture in the Li

j tensor elements. A further expansion of Li
j at arbitrary temperature

in terms of Laguerre polynomials expedites the execution of all three integrations,
leaving the Fermi distribution intact at arbitrary temperature (but evaluated at multi-
ples of �ωc), and the tensor elements Li

j are also presented in this form. This form is
particularly useful for determining Li

j in the degenerate quantum strong field limit,
in which the magnetic field is sufficiently high that only the lowest Landau eigen-
state is populated: This most extreme quantum manifestation of the magnetic field
is also exhibited in the Li

j tensor elements explicitly. Finally, we also exhibit a low
wavenumber power expansion of the Li

j tensor elements for arbitrary temperature
and arbitrary field strength taking account of the leading nonlocality effects of the
Li

j tensor elements along with its local structure.
In Sect. 15.3 the 2D magnetopolariton spectrum is examined using the magneto-

conductivity tensor of Sect. 15.2 in the low wavenumber approximation to determine
the local modes and their wavenumber corrections, including the n = 2 quantum gen-
eralization of the Bernstein mode at arbitrary temperatures (statistical regime) and
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magnetic field strength, incorporating de Haas-van Alphen phenomenology. The
evanescent wave dispersion relation is formulated exactly and simple approximate
analytic solutions for the 2D magnetopolariton normal modes are obtained in the
cases having ωc much smaller and much larger than the other frequency parameters;
also, the electrostatic limit ck‖ → ∞ is studied. Quantum magnetic field effects,
including de Haas-van Alphen oscillations, are fully incorporated in both the local
modes and their nonlocal corrections, including the n = 2 Bernstein mode general-
ization. Furthermore the polarizations of all modes studied are determined.

15.1 Electromagnetic Propagator for a Landau Quantized
2D Plasma

This report is concerned with the magnetopolaritons and associated magnetoconduc-
tivity tensor of a Landau quantized 2D plasma sheet in a normal magnetic field. As
such, it is appropriate to discuss the associated electromagnetic propagator, whose
frequency poles define the normal electromagnetic polaritonmodes of the 2D system.
In this context, we briefly review studies [1, 2] of the propagator and its dispersion
relation.

Considering a uniform 3D background medium of dielectric constant ε(3D)
b → εb

and magnetic permeability μ = 1, the Helmholtz equation for the dynamic electric
field �E(�r ,�) may be written in position/frequency representation as (c is the speed
of light in vacuum; ̂I = x̂ x̂ + ŷ ŷ + êz êz is the 3D unit dyadic/tensor)

[

̂I

(

�∇2 + �2

c2
ε(3D)
b

)

− �∇ �∇
]

�E(�r ,�)

+ 4πi�

c2

∫

d3 �r ′σ̂(2D)
f s (�r , �r ′;�) �E(�r ′;�) = −4πi�

c2
�Jext (�r;�). (15.1.1)

Here, we have written the linear induced current �Jind(�r ,�) in terms of the non-
local, spatially inhomogeneous 3 × 3 matrix dyadic conductivity tensor σ̂(�r , �r ′;�)

as
�Jind(�r ,�) =

∫

d3 �r ′σ̂(2D)
f s (�r , �r ′;�) �E(�r ′;�), (15.1.2)

and transposed it to the left side of (15.1.1). The associated Green’s function propa-
gator ̂G f s(�r , �r ′;�) is defined to satisfy the equation

�E(�r ,�) = 4πi�

c2

∫

d3 �r ′ ̂G f s(�r , �r ′;�) · �Jext (�r ′;�), (15.1.3)
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and it is therefore determined by the relation

[

̂I

(

�∇2 + �2

c2
ε(3D)
b

)

− �∇ �∇
]

̂G f s(�r , �r ′;�)

+ 4πi�

c2

∫

d3 �r ′′σ̂(2D)
f s (�r , �r ′′;�) ̂G f s( �r ′′, �r ′;�) = −̂Iδ3D(�r − �r ′). (15.1.4)

In the absence of the 2D plasma, the bulk 3D Green’s function ̂G3D(�r , �r ′;�) is
given by

[

̂I

(

�∇2 + �2

c2
ε(3D)
b

)

− �∇ �∇
]

̂G3D(�r , �r ′;�) = −̂Iδ(3D)(�r − �r ′) (15.1.5)

and it may be used to convert the differential relation (15.1.4) to an integral equation
as follows (�k‖ = kx x̂ + ky ŷ):

̂G f s(�r , �r ′;�) = ̂G3D(�r , �r ′;�) + 4πi�

c2

∫

d3 �r ′′
∫

d3 �r ′′′ ̂G3D(�r , �r ′′;�)

× σ̂(2D)
f s ( �r ′′, �r ′′′;�) ̂G f s( �r ′′′, �r ′,�). (15.1.6)

Due to spatial translational invariance in the plane of the plasmonic layer, the
dyadic Green’s function may be written in terms of a Fourier transform in the plasma
plane [�r‖ − �r ′‖ � �k‖], so that (15.1.6) takes the form

̂G f s(�k‖; z, z′,�) = ̂G3D(�k‖; z, z′;�)

+ 4πi�

c2

∫

dz′′
∫

dz′′′
̂G3D(�k‖; z, z′′;�)

× σ̂(2D)
f s (�k‖; z′′, z′′′;�) ̂G f s(�k‖; z′′′, z′;�). (15.1.7)

Considering the conductivity tensor to be confined to the plane z = 0 of the 2D
plasma, and to be homogeneous on the plasma plane, but nonlocal, we have

σ̂(2D)
f s (�k‖; z′′, z′′′;�) = ̂I σ̂(2D)

f s (�k‖;�)δ(z′′)δ(z′′′), (15.1.8)

where σ̂(2D)
f s is the 2D surface current conductivity tensor. Application of the

δ(z′′)δ(z′′′) functions in (15.1.7) reduces that integral equation to an algebraic matrix
(dyadic) equation, whose solution is [1, 2]

̂G f s(�k‖; z, z′,�) = ̂G3D(�k‖; z, z′;�) + ̂G3D(�k‖; z, 0;�)γ

×
[

̂I − ̂G3D(�k‖; 0, 0;�)γ
]−1

̂G3D(�k‖; 0, z′;�), (15.1.9)

where
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γ = 4πi�

c2
σ̂(2D)

f s (�k‖;�). (15.1.10)

This Green’s function has already been applied to the light pulse excitation of
radiating polaritons in a 2D excitonic layer [2] and EMwave transmission-diffraction
through a subwavelength nano-hole in a 2D plasmonic layer [1]. The collective
electromagneticmagnetopolaritonmode dispersion relation is given by the frequency
poles of ̂G f s , and this means that

det
[

̂I − ̂G3D(�k‖; 0, 0;�)γ
]

= det

[

̂I − 4πi�

c2
̂G3D(�k‖; 0, 0;�)̂σ(2D)

f s (�k‖;�)

]

= 0, (15.1.11)

provides the requisite roots,�. The solution for ̂G3D(�k‖; 0, 0;�) of (15.1.5) is readily
obtained by Fourier transforming �r‖ − �r ′‖ → �k‖, with the result (bear in mind that
êz = ẑ is the unit vector in the perpendicular direction, which is parallel to the normal

magnetic field; k⊥ ≡ kz ≡
√

k2 − k2‖)

̂G3D(�k‖; z, z′;�) = −eik⊥|z−z′ |

2ik⊥

×
{

̂I − 1

q2
�

[�k‖�k‖ + k⊥sgn(z − z′)(�k‖êz + êz �k‖)

+ êz êz
(

k2⊥ − 2ik⊥δ(z − z′)
)]} , (15.1.12)

with

q� ≡ k ≡ |�k| =
√

k2‖ + k2⊥ ≡ (�/c)
√

ε(3D)
b , (15.1.13)

in mixed (�k‖; z, z′) Fourier representation.
As (15.1.9) calls for an evaluation of ̂G3D at z = z′ = 0, so that sgn(0) = 0 and

δ(0) may be understood as representing the inverse plasma layer thickness 1/d, we
have

̂G3D(�k‖; 0, 0;�) = − 1

2ik⊥

{

̂I − 1

q2
�

[

�k‖�k‖ + êz êz

(

k2⊥ − 2ik⊥
d

)]}

. (15.1.14)

Thus, the dispersion relation is given by

det

(

̂I + 2π�

c2k⊥
{

̂I − c2

�2ε(3D)
b

[�k‖�k‖ + êz êz(k
2
⊥ − 2ik⊥/d)]

}

σ̂(2D)
f s (�k‖,�)

)

= 0. (15.1.15)
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This 3 × 3matrix determinant is block diagonal and its 2 × 2 sub-block pertaining
to the planar fields and currents of the plasma layer yields (note that ̂I = I

˜

+ êz êz
with I

˜

= x̂ x̂ + ŷ ŷ as the 2D identity dyadic, and recall that k2 = �2ε(3D)
b /c2)

det

(

I
˜

+ 2π�

c2k⊥

{

I
˜

− [�k‖�k‖]
k2

}

σ
˜

(�k‖,�)

)

= 0. (15.1.16)

Here, σ
˜

is the 2 × 2 sub-block of σ̂(2D)
f s that refers to the lineal in-plane plasma

layer conductivity dyadic/tensor.
The polarization of the in-plane electric field of the normal self-sustaining mag-

netopolariton modes of the plasma layer may be obtained from the homogeneous
counterpart of (15.1.1) in the absence of any driving current, �Jext (�r;�) ≡ 0. Express-
ing this homogeneous counterpart of (15.1.1) as it pertains to the in-plane electric
field on the plasma sheet in terms of G3D(�r , �r ′;�) as shown in (15.1.14), we have

(

I
˜

+ 2π�

c2k⊥

{

I
˜

− [�k‖�k‖]
k2

}

σ
˜

(�k‖,�)

)

· (Ex x̂ x̂ + Ey ŷ ŷ
) = 0, (15.1.17)

which determines the polarization of the modes in terms of Ex/Ey (but not the
absolute magnitude of �E as it is a homogeneous equation).

It might be noted that an alternative (albeit less general) derivation for the 2D
magnetoplasma dispersion relation can be obtained using Gauss and Stokes Laws
boundary conditions, and this is presented in Appendix15.4.

In subsequent sections, it will be convenient to use a coordinate system in which
�k‖ ≡ �ky, �kx ≡ 0, �k⊥ ≡ �kz . With this coordinate system, the 2D magnetoplasma dis-
persion relation (15.1.16), reduces to the simple form

det

(

1
˜

+ 2πk⊥
ε(3D)
b �

(

k2/k2⊥ 0
0 1

)

· σ
˜

)

= 0 (15.1.18)

where k⊥ ≡ i
(

k2‖ − ε(3D)
b �2

c2

)
1
2

and k2‖ >
ε(3D)
b �2

c2 for evanescent waves.

15.2 2D Linear Conductivity Tensor

The linear charge transport properties of a Landau quantized 2D plasma may be
determined from the nonlocal conductivity tensor defined as (notation: 1 = x1, y1, t1,
etc.),

σ2
˜

(1 − 2) =
[

δ �J s(1)

δ �E(2)

]

�E→0

. (15.2.1)
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Here, �E is the electric field along the plasma surface and �J s is the induced surface
current density. It will be convenient to carry out our analysis in terms of a related
2D linear response tensor L

˜

(1 − 2),

L
˜

(1 − 2) =
[

δ �J s(1)

δ �A(2)

]

�A→0

, (15.2.2)

where �E = − 1
c

∂ �A
∂t − �∇φ → i�

c
�A − i �kφ in Fourier representation (�k,�), and �A is

the vector potential in the plane of the plasma, with φ as the scalar potential. For a
translationally invariant medium the Fourier components of σ2

˜

and L
˜

are related by

L(�k,�) =
(

∂ �Js
∂ �A

)

�A→0

=
(

∂ �Js
∂ �E · ∂ �E

∂ �A

)

�A→0

= i�

c
σ2

˜

,

or σ2

˜

(�k,�) = c

i�
L
˜

(�k,�). (15.2.3)

To evaluate σ2
˜

or L
˜

, it is necessary to specify the average current density in
the presence of perturbing fields. For a non-relativistic quantum plasma, the field
theoretic expressions for the surface charge density and current density operators are
given by (� → 1)

ρs = eψ†ψ, (15.2.4a)

and

�Js = e

2m

(

−�∇
i

ψ† · ψ + ψ† · �∇
i

ψ

)

− e2

mc
( �A + �Am)ψ†ψ, (15.2.4b)

where ψ is the second quantized fermion field operator for 2D electrons and �Am

is the vector potential along the plasma surface due to a normal, constant, uniform,
externalmagnetic field.Weassumehere that the electromagnetic fieldsmaybe treated
as classical (c-number) quantities, whereas the particle fields are treated as second
quantized operators.

It should be noted that the present nonrelativistic formulation of current and
conductivity neglects the role of magnetic field spin energy associated with the �A-
field as it pertains to the “μ0 �Hm · �σ ” Hamiltonian term of (15.2.21). Consideration
of it leads to the replacement

μ0 �Hm · �σ → μ0

( �Hm + �∇ × �A
)

· �σ, (15.2.5)

and following the usual procedures this leads to an additional current density operator
term of the form (� → 1)
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�Js = e

2m
�∇ × (ψ†�σψ

)

. (15.2.6)

This “spin current” operator has been interpreted [3–5] in terms of the spin mag-
netic moment operator e�σ/2m, which, on a “per-unit-volume” basis yields the spin
magnetization operator as

�M = e

2m
ψ†�σψ, (15.2.7)

whose curl is the corresponding spin current density operator

�Js = �∇ × �M = e

2m
�∇ × (ψ†�σψ

)

, (15.2.8)

in accordance with electromagnetic interpretation [4, 5].
Spin current has recently received considerable attention, particularly in the pres-

ence of strong spin-orbit coupling that is crucial for creating and manipulating it.
Such spin-orbit coupling is an automatic consequence of relativisticDirac theory, and
spin currents in Graphene and the TransitionMetal Dichalcogenides have been under
examination [6–13]. Thermodynamic, thermoelectric, ferromagnetic and supercon-
ducting aspects of spin currents have also been discussed [14–17], including spec-
ulation about its practical application in quantum computing and spintronics. As a
charge transport current, it is unusual in being divergence-less (by vector identity),

�∇ · �Js = e

2m
�∇ · �∇ × (ψ†�σψ

) ≡ 0, (15.2.9)

so it cannot affect the equation of continuity, ∂ρ/∂t = −�∇ · �Js , which is unusual
for a charge transport current. It has been interpreted as a “swirl”/circulatory-type
current [3].

The present chapter does not treat the spin current as it has not been traditionally
significant in nonrelativistic quantum transport theory or in the determination of
nonrelativistic electromagnetic polariton spectra, upon which we focus with careful
consideration of an impressed steady magnetic field �Hm that dwarfs the magnetic
wave field contribution of �A in its direct comparisonwith the spin energy contribution
of �∇ × �A. (The wave magnetic field strength is of the order of 10−6 Tesla, which is
many orders of magnitude smaller than steady laboratory fields commonly of order
10–50 Tesla.) Nevertheless, there was an examination of the role of spin current
effects on the nonrelativistic magnetoconductivity tensor by Bardos and Frankel
[18]: In their words, they found that spin contributions do “not significantly affect the
plasma dispersion in the plasma layer”, and we do not deal further with spin currents
in this chapter. However, the interested reader will find another timely chapter on
spin currents in this book by K. H. Bennemann, under the title “Spin Dependent
Thermoelectric Currents of Tunnel Junctions and Other Nanostructures: Onsager
Response Theory”.
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If the 2D plasma is perturbed from thermodynamic equilibrium by an external
field, the expectation value of the resulting nonequilibrium current operator �Js is
given by the grand canonical ensemble average,

< �Js >β =
∑

N ,E

[

e−β(E−ζN )< N , E |�Js |N , E >
]

∑

N ,E
e−β(E−ζN )

, (15.2.10)

where this average involves states of the initial equilibrium system; i.e. just prior to the
perturbation. Here, ζ is the chemical potential for 2D electrons, β = 1

KT (K ≡Boltz-
mann’s constant, T = absolute temperature), and |N , E > are the energy/number
eigenstates of the unperturbed 2D Hamiltonian. The preceding expression may also
be written as

< �Js >β = Tr [e−β(H0−ζN )�Js]
Tr [e−β(H0−ζN )] , (15.2.11)

with H0 and N representing the Hamiltonian and number density operators for the
initial, unperturbed 2D plasma system and Tr indicating the trace operation (includ-
ing a spin trace involved in the sum over energies). By virtue of (15.2.2),

L
˜

β
c (1 − 2) =

[

δ < �Js(1) >β

δ �A(2)

]

�A→0

. (15.2.12)

The angle bracket with superscript “β” indicates thermal averaging of the current
density over the initial equilibrium ensemble, and the subscript “c” indicates that the
response is causal in nature; i.e L

˜

β
c (1 − 2) ≡ 0 for t1 < t2.

Equation (15.2.12) specifies the actual physical linear current response of a per-
turbed 2Dplasma.Although this quantity has a simple representation as the ensemble
average of a current-current commutator, its actual evaluation can be challenging and
we approach it from another point of view [19–23]. Martin and Schwinger [19–21]
developed a technique that allows the indirect evaluation of L

˜

β
c in terms of a closely

related “periodic” response function. This latter quantitymay be represented in terms
of nonequilibrium Green’s functions (involving time ordered products of two cur-
rent operators) which provide a powerful mathematical framework for analyzing
nonequilibrium response properties.

To be specific, one may define the following nonequilibrium ensemble averaged
current density:

< �Js >iτ =
Tr
[(

exp[−i
τ
∫

0
(H(t ′) − ζN )dt ′)])+�Js(t)

]

Tr
[(

exp[−i
τ
∫

0
(H(t ′) − ζN )dt ′])+

]

, (15.2.13)
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where H(t ′) is the time dependent Hamiltonian in the presence of external, time
dependent perturbations that drive the system out of equilibrium. The + subscripts in
(15.2.13) denote a time ordering process that imparts an imaginary time periodicity
to < �Js >iτ above, as discussed in Appendix 15.5. The corresponding “periodic”
2-D linear response tensor is defined as

L
˜

iτ
p (1 − 2) =

[

δ < �Js(1) >iτ

δ �A(2)

]

�A→0

. (15.2.14)

Whereas L
˜

β
c represents the actual causal physical response of the system driven

from thermodynamic equilibrium, the tensor L
˜

iτ
p is a closely related mathematical

quantity that facilitates the evaluation of L
˜

β
c . Its utility arises from the fact that it

satisfies time-periodicity conditions in imaginary time τ = −iβ (in consequence of
the time translation character of the operator [exp(−i

∫ τ

0 H(t ′)dt ′)]+ under the trace
average in (15.2.13)), so that L

˜

iτ
p may be expanded in a Fourer series over the imag-

inary time interval 0 < t1, t2 < τ . It can be shown [19–23] that the resulting Fourer
series coefficients L

˜

iτ
p

(

2πν
τ

)

(ν = 0, 1, 2, etc) are directly related to the frequency

spectrum of L
˜

β
c via the analytic continuation (ε is a positive infinitesimal)

L
˜

β
c (�) = L

˜

iτ
p

(

2πν

τ
→ � + iε, iτ → β

)

, (15.2.15)

(This reflects the fact that the fundamental time interval of periodicity is imaginary
since τ → −iβ). By virtue of this relationship, one can analyze the linear response
properties of a plasma in terms of imaginary-time-periodic functions, and then use
the resulting solutions to determine the physical (causal) response. The advantage of
this approach is that the linear physical response functions can be directly expressed
in terms of periodic/antiperiodic equilibrium Green’s functions, and these may be
evaluated by employing various Green’s function techniques.

In the present case, the 2D nonequilibrium one particle Green’s function is defined
as

Ḡiτ (1, 1′) = −i <∈ (ψ(1)ψ†(1′))+ >
iτ
eiζ(t1−t ′1). (15.2.16)

Here, ∈≡ ±1 for Fermions (for Bosons it is always +1) depending on whether
t1 ≷ t ′1, and the + subscript denotes the time ordering of the field operators ψ(1),
ψ†(1′); 1 = t1, �r1 = (x1, y1), etc. The averaging procedure here is identical to that
of (15.2.13). Defining the “velocity” operators (� → 1)

�V = 1

m

( �∇
i

− e �Am

c

)

, (15.2.17)

�V † = 1

m

(

−�∇
i

− e �Am

c

)

,
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and employing (15.2.4b), (15.2.13) and (15.2.16), one can easily show that (neglect-
ing spin current)

< �Js(1) >iτ = e

i
lim
1′→1

{ �V †(1′) + �V (1)

2
− e �A(1)

mc

}

Ḡiτ (1, 1′+), (15.2.18)

with the+ superscript on t ′1 in theGreen’s function indicating that t ′1 is infinitesimally
larger that t1. Inserting this into (15.2.14), we have

L
˜

iτ
p (1 − 2) = −e2

mc
ns1
˜

δ(1 − 2) + e

i
lim
1′→1

[ �V †(1′) + �V (1)

2

]

[

δḠiτ (1, 1′+)

δ �A(2)

]

�A→0

.

(15.2.19)

Here, 1
˜

is the unit tensor in two dimensions, δ(1 − 2) is the Dirac delta function
δ(1 − 2) = δ(t1 − t2)δ(x1 − x2)δ(y1 − y2) (with z as the coordinate perpendicular
to the plasma surface), and ns is the equilibrium surface plasma density,

ns = −i lim
1′→1

Ḡiτ (1, 1′+)] �A→0
iτ→β

= Tr [e−β(H0−ζN )ψ†(1)ψ(1)]
Tr [e−β(H0−ζN )] . (15.2.20)

To obtain the zero field limit for the Green’s function derivative in (15.2.19), one
can employ the differential equation for Ḡiτ (in which we neglect collisional and
phonon scattering interactions):

⎧

⎪

⎨

⎪

⎩

i
∂

∂t1
+ ζ − μo

�Hm · �σ −
[ �∇1

i − e �Am (1)
c − e �A(1)

c

]2

2m
− e�

⎫

⎪

⎬

⎪

⎭

Ḡiτ (1, 1′)

= δ(1 − 1′),
(15.2.21)

where ζ is the chemical potential, μo is the Bohr magneton, �σ = (σ1,σ2,σ3) are
the Pauli spin matrices (μo

�Hm · �σ is the Zeeman energy term due to electron spin
coupling with the uniform external magnetic field), and� is the classical (c-number)
scalar potential for the 2D plasma field. This differential equation can be derived in
the usual manner [19–23] from the equation of motion for the 2D field operators
ψ(1) and ψ†(1′). Converting (15.2.21) into an integral equation,
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Ḡiτ (1, 1′) = Ḡiτ
o (1, 1′) −

∫

dx3dy3dt3Ḡ
iτ
o (1, 3)

{

e

2mc

( �∇3

i
− e �Am(3)

c

)

· �A(3)

+ e

2mc
�A(3) ·

( �∇3

i
− e �Am(3)

c

)

− e2

2mc
�A2(3) − e�(3)

}

Ḡiτ (3, 1′),

(15.2.22)

where Ḡiτ
o (1, 1′) = [Ḡiτ (1, 1′)] �A=0,�=0 is the equilibrium Green’s function solution

to (15.2.21). Thus, we have

[

δḠiτ (1, 1′)
δ �A(2)

]

�A→0

= −e

c
lim
2′→2

([ �V †(2′) + �V (2)

2

]

Ḡiτ
o (1, 2′)Ḡiτ

o (2, 1′)

)

.

(15.2.23)
Substituting into (15.2.19), one obtains

L
˜

iτ
p (1 − 2) = −e2

mc
ns1
˜

δ(1 − 2)

+ ie2

c
lim
1′→1
2′→2

([ �V †(1′) + �V (1)

2
· �V †(2′) + �V (2)

2

]

· Ḡiτ
o (1, 2′)Ḡiτ

o (2, 1′)

)

.

(15.2.24)

The preceding equation provides a concise formulation for the 2D plasma linear
response in the presence of a uniform magnetic field. It should be noted that eval-
uation of the linear response in the limit of zero perturbing electromagentic field is
tantamount to the Random Phase Approximation [21, 22].

One can readily show [21–23] that the equilibrium Green’s function Ḡiτ
o (1, 2) in

a constant, uniform magnetic field can be factored into the product form

Ḡiτ
o (1, 2) = C(1, 2)Ḡiτ

o (1 − 2). (15.2.25)

Here, Ḡiτ
o (1 − 2) is the gauge-independent translationally invariant portion of the

Green’s function, and the Peierls phase factor is given by

C(1, 2) = exp
(

i
{ e

2c
�r1 · ( �Hm × �r2) − e

c
φ(�r1) + e

c
φ(�r2)

})

, (15.2.26)

where �r1 and �r2 are position vectors along the plasma surface, �Hm = Hm ẑ is a con-
stant uniformmagnetic field perpendicular to the plasma surface, andφ(�r1) is an arbi-
trary gauge function for the vector potential �Am

( �Am(1) = 1
2

�Hm × �r1 − �∇1φ(�r1)
)

.

Substituting (15.2.25) and (15.2.26) into (15.2.24), one obtains the matrix elements
of L
˜

iτ
p (1 − 2) as follows (take φ(�r) ≡ 0);
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[Liτp (1 − 2)]ij = −e2

mc
δij δ(1 − 2)ns (15.2.27)

+ ie2

4m2c
lim
1′→1
2′→2

⎧

⎨

⎩

[ �∇1′ − �∇1

i

]i [ �∇2′ − �∇2

i

] j

Ḡiτ
o (1′ − 2)Ḡiτ

o (2′ − 1)

⎫

⎬

⎭

+ ie2

4m2c
lim
1′→1
2′→2

⎧

⎨

⎩

[ e

c
�Hm × (�r2 − �r1)

]i
[ �∇2′ − �∇2

i

] j

Ḡiτ
o (1′ − 2)Ḡiτ

o (2′ − 1)

⎫

⎬

⎭

+ ie2

4m2c
lim
1′→1
2′→2

⎧

⎨

⎩

[ e

c
�Hm × (�r1 − �r2)

] j
[ �∇1′ − �∇1

i

]i

Ḡiτ
o (1′ − 2)Ḡiτ

o (2′ − 1)

⎫

⎬

⎭

+ ie2

4m2c
lim
1′→1
2′→2

{

[ e

c
�Hm × (�r2 − �r1)

]i [ e

c
�Hm × (�r1 − �r2)

] j

× Ḡiτ
o (1′ − 2)Ḡiτ

o (2′ − 1)

}

.

The thermodynamic equilibrium Green’s function Ḡiτ
o (1 − 2) satisfies the differ-

ential equation [21–23]

⎧

⎪

⎨

⎪

⎩

i
∂

∂t1
+ ζ − μo

�Hm · �σ −
( �∇1

i − e
c

�Hm×(�r2−�r1)
2

)2

2m

⎫

⎪

⎬

⎪

⎭

Ḡiτ
o (1 − 2)

= δ(1 − 2),
(15.2.28)

which has the solution [21, 23] below written in terms of the symbols Ḡiτ=β

o{≷} corre-
sponding to the time orders t1 {≷} t2 (ie: Ḡiτ=β

o (1 − 2) = η+(t1 − t2)Ḡ
iτ=β
o> (1 − 2)+

η+(t2 − t1)Ḡ
iτ=β
o< (1 − 2)):

Ḡiτ=β

o{≷}(1 − 2) = eiζ(t1−t2)
∫

d2 p̄

(2π)2
ei �p·(�1−�2)

∫

dω

2π

{ −i(1− fo(ω))
i fo(ω)

}

e−iω(t1−t2)

×
∞
∫

−∞
dT ′eiωT

′
sec

(

ωcT ′

2

)

e−iμoHm ·σz T ′
exp

[

−i

(

p̄2

mωc
tan

(

ωcT ′

2

))]

,

(15.2.29)

where p̄ ≡ (px , py),ωc = cyclotron frequency = eHm
mc and fo(ω) = [1 + e(ω−ζ)β]−1

is the Fermi distribution. For t1 > t2 , the term −i(1 − fo(ω)) in the curly brackets
applies for Ḡiτ=β

o> , whereas for t1 < t2, the term i fo(ω) applies for Ḡiτ=β
o< .

To obtain the wavenumber, frequency dependent linear response tensor, the pre-
ceding Green’s function is substituted into (15.2.27) and the resulting expression is
Fourier transformed in space and time using the Fourier series in imaginary time.
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The imaginary time Fourier series coefficient Liτ
p ( 2πν

τ
) is then evaluated using an

analytic continuation involving Ḡiτ=β

o{≷} in the complex time plane with deformation

of the time integration contour, as explained in [21], Sects. 9.8 and 10.7. Thus obtain-
ing Liτ

p (�), (15.2.15) provides the result for Lβ
c (�). The mathematical details of this

procedure are straightforward though tedious, and we omit them from the present
chapter for the sake of brevity (the interested reader is referred to [21, 22] for further
details). After performing the spin trace over the ḠoḠo products of (15.2.27) using
(15.2.29), restoring factors of � (Planck’s constant) and Fourier transforming from
position representation tomomentum representation, and (without loss of generality)
restricting the propagation vector along the plasma surface to the “y” direction so
that kx ≡ 0, ky ≡ k‖, the final results are (tensor elements are denoted as Li

j with
i, j = 1, 2 for the two directions on the plane):

Li
j (k‖,�) = −e2

mc
nsδij (15.2.30)

+
{∫

dω
fo(ω)

�2

i∞+δ
∫

−i∞+δ

ds

2πi

esω

2π

m�ωc

tanh
(

�ωcs
2

)

(−1

�

)

×
−∞
∫

0

dT e−i(�+i∈)T exp

[

�k2‖
mωc

(

cos
[

ωc
2 (2T − is�)

]− cosh
(

�ωcs
2

)

2sinh
(

�ωcs
2

)

)]

× L i
j (y = 2T − is�) + (� → −�)

}

,

where (note that y = 2T − is� does not represent a spatial coordinate here)

L 1
1 = ie2

mc

�ωc

2

(

cos
(ωc y

2

)

sinh
(

�ωcs
2

)

)

+ ie2�2

m2c

(

cos
(

ωc
2 y
)− cosh

(

�ωcs
2

)

2sinh
(

�ωcs
2

)

)2

k2‖,

(15.2.31a)

L 2
2 = ie2

mc

�ωc

2

(

cos
(ωc y

2

)

sinh
(

�ωcs
2

)

)

− ie2�2

4m2c

(

sin
(ωc y

2

)

sinh
(

�ωcs
2

)

)2

k2‖, (15.2.31b)

L 1
2 = −L 2

1 = − ie2

mc

�ωc

2

(

sin
(ωc y

2

)

sinh
(

�ωcs
2

)

)

+ ie2�2

2m2c

(

sin
(ωc y

2

)

sinh
(

�ωcs
2

)

)(

cos
(ωc y

2

)− cosh
(

�ωcs
2

)

2sinh
(

�ωcs
2

)

)

k2‖, (15.2.31c)

(δij is the Kroenecker delta and the parameters δ and ∈ are infinitesimal positive
quantities here).
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It can readily be shown that the Li
j terms of (15.2.30), (15.2.31a)–(15.2.31c) are

conveniently expressed in terms of the quantity L0
0 = [δ〈cρs〉β/δ�]�→0 (with ρs as

the charge density operator and � as the scalar potential) as follows:

L00 = ie2c

�

∞
∫

−∞
dω

f0(ω)

�2

i∞+δ
∫

−i∞+δ

ds

2πi

esω

2π

m�ωc

tanh (�ωcs/2)

×
−∞
∫

0

dT e−i(�+iε)T exp

⎡

⎣

�k2‖
mωc

⎛

⎝

cos
[

�ωc
2 (2T − is�)

]

− cosh
[

�ωcs
2

]

2 sinh
(

�ωcs
2

)

⎞

⎠

⎤

⎦+ (� → −�);

(15.2.32)

so that

L1
1 = −e2ns

mc
− ω2

c

c2

(

∂

∂(k2‖)
+ k2‖

∂2

∂2(k2‖)

)

L0
0

− �ωc

2mc2
L0
0

{

1
(

tanh
(

�ωcs
2

)) → 1
(

tanh
(

�ωcs
2

))2

}

, (15.2.33a)

L2
2 = − �2

c2k2‖
L0
0, (15.2.33b)

L1
2 = −L2

1 = − i�ωc

c2
∂L0

0

∂(k2‖)
, (15.2.33c)

where

ns =
∞
∫

−∞
dω

f0(ω)

�2

i∞+δ
∫

−i∞+δ

ds

2πi

esω

2π

m�ωc

tanh
(

�ωcs
2

) . (15.2.34)

In the expression for L1
1 above, the last term (in curly brackets) indicates that in

the “s” contour integrand for L0
0 (as per (15.2.32)), we replace the denominator factor

(tanh
(

�ωcs
2

)

) by (tanh
(

�ωcs
2

)

)2. These results can be obtained by direct inspection
of (15.2.30)–(15.2.32) and the use of the 2D gauge invariance requirement Lμ

νk
ν
‖ =

0, where (μ, ν) have values (0, 1, 2), kν
‖ = (�

c , 0, k‖), and repeated indices imply
summation over these indices (Einstein convention).

The preceding closed form integral representations for the frequency-wavevector
dependent magnetoconductivity tensor elements σi

j = c
i� Li

j are valid for all field
strengths and temperatures and statistical regimes, viz degenerate, non-degenerate.
They are particularly useful for obtaining evaluations at low and intermediate mag-
netic field strengths, and for generating low wavenumber power expansions.

A fuller appreciation of the effects of Landau quantization at arbitrarily strong
magnetic field strengths (particularly in the degenerate limit) may be obtained by
expanding the wavenumber dependent exponentials in the integrals of Li

j in a modi-
fied Bessel function series and then employing the Hille-Hardy identity. The T -, s-,
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and ω- integrals in (15.2.32)–(15.2.33c) can then be readily evaluated. Specifically,
we use the identity [24]

e[y cosφ] =
∞
∑

n=−∞
einφ In(y); In = I−n are the modified Bessel functions.

(15.2.35)

Setting, y ≡ �k2‖
mωc

· 1
2 sinh( �ωcs

2 )
, and φ ≡ ωc

(

T − is�
2

)

, we have

exp

[

�k2‖
2mωc

·
(

cos
[

ωc
(

T − is�
2

)]− cosh
(

�ωcs
2

)

sinh
(

�ωcs
2

)

)]

(15.2.36)

= e− �k2‖
2mωc

coth( �ωcs
2 )

∞
∑

n=−∞
einωcT e(

n�ωcs
2 ) In

(

�k2‖
2mωc sinh

(

�ωcs
2

)

)

.

The resulting T -integrals in Li
j (15.2.32)–(15.2.33c) can be evaluated immedi-

ately:

−∞
∫

0

dT e−i(�+iε−nωc)T = −i

�+ − nωc
, �+ ≡ � + iε,

and then (15.2.32) yields L0
0 as (�+ ≡ � + iε):

L0
0 = e2c

∞
∫

−∞

dω f0(ω)

�2

i∞+δ
∫

−i∞+δ

ds

2πi

esω

2π

m�ωc

tanh
(

�ωcs
2

)

∞
∑

n=1

2nωc

�(�2+ − n2ω2
c )

× 2 sinh(n�ωcs/2)e
−
[

�k2‖
2mωc

coth( �ωcs
2 )

]

In

(

�k2‖
2mωc

1

sinh
(

�ωcs
2

)

)

. (15.2.37)

Furthermore, using (15.2.33a)–(15.2.33c), we have

(a) L11 = −e2

mc
ns + e2c

∞
∫

−∞
dω

f0(ω)

�2

i∞+δ
∫

−i∞+δ

ds

2πi

esω

2π

m�ωc

tanh
(

�ωcs
2

)

∞
∑

n=1

2 sinh

(

n�ωcs

2

)

× 2nωc

�

(

�2+ − n2ω2
c

) e
−
[

�k2‖
2mωc

coth
(

�ωcs
2

)

]

{

. . .

}

In

⎛

⎝

�k2‖
2mωc sinh

(

�ωcs
2

)

⎞

⎠ ,

(15.2.38a)
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where

{

. . .

}

≡ −�
2k2‖

4m2c2 coth
2
(

�ωcs
2

)+
(

�ωck2‖
mc2 coth

(

�ωcs
2

)− ω2
c

c2

)

∂
∂k2‖

−ω2
c

c2 k
2
‖

∂2

∂2(k2‖ )
; and

(b) L2
2 = −e2�2

ck2‖

∞
∫

−∞
dω

f0(ω)

�2

i∞+δ
∫

−i∞+δ

ds

2πi

esω

2π

m�ωc

tanh
(

�ωcs
2

)

∞
∑

n=1

2nωc

�
(

�2+ − n2ω2
c

)

× 2 sinh

(

n�ωcs

2

)

e
−
[(

�k2‖
2mωc

)

coth �ωcs
2

]

In

(

�k2‖
2mωc

1

sinh
(

�ωcs
2

)

)

;
(15.2.38b)

and

(c) L1
2 = −L2

1

= − ie2ωc�

c

∞
∫

−∞
dω

f0(ω)

�2

i∞+δ
∫

−i∞+δ

ds

2πi

esω

2π

m�ωc

tanh
(

�ωcs
2

)

∞
∑

n=1

2nωc

�
(

�2+ − n2ω2
c

)

× 2 sinh

(

n�ωcs

2

)

exp

[

− �k2‖
2mωc

coth

(

�ωcs

2

)

]

(

−�

2mωc
coth

(

�ωcs

2

)

+ ∂

∂k2‖

)

× In

(

�k2‖
2mωc

1

sinh
(

�ωcs
2

)

)

. (15.2.38c)

It is useful to recognize that two important statistical regimes are readily identified
in the above results: First, the nondegenerate regime of relatively low density and
high temperature is obtained as the leading term in the fugacity expansion of f0(ω);

f0(ω) = 1

1 + eβ(ω−ζ)
→ eζβe−ωβ, (15.2.39)

whereupon the ω− and s− integrals are just Laplace transform and inverse so the
evaluation immediately yields the common integrand with the replacement s → β.
Thus, (15.2.37) yields L0

0 in the nondegenerate regime as

L0
0 = e2c

2π�2
eζβ m�ωc

tanh(�ωcβ/2)

∞
∑

n=1

2nωc

�(�2+ − n2ω2
c )
2 sinh(n�ωcβ/2)

× exp

[

− �k2‖
2mωc

coth(�ωcβ/2)

]

In

(

�k2‖
2mωc

1

sinh(�ωcβ/2)

)

, (15.2.40)
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and L1
1, L

2
2, L

1
2 = −L2

1 can then be obtained using (15.2.38a)–(15.2.38c) with the
nondegenerate density expression

ns = eζβ

2π�2

m�ωc

tanh(�ωcβ/2)
, (15.2.41)

which may be used to eliminate eζβ in L0
0 and Li

j in favor of the density ns in the
nondegenerate regime.

The other important regime to address is the degenerate regime of zero tempera-
ture, in which f0(ω) = η+(ζ − ω), so integrals of the form

J =
∞
∫

−∞
dω f0(ω)

i∞+δ
∫

−i∞+δ

ds

2πi
esω j (s)

=
∞
∫

−∞
dωη+(ζ − ω)

i∞+δ
∫

−i∞+δ

ds

2πi

desω

dω

j (s)

s
(15.2.42)

can be evaluated by a parts integration as

J = −
∞
∫

−∞
dω

dη+(ζ − ω)

dω

i∞+δ
∫

−i∞+δ

ds

2πi
esω

j (s)

s
=

i∞+δ
∫

−i∞+δ

ds

2πi
esζ

j (s)

s
(15.2.43)

since dη+(ζ − ω)/dω = −δ(ω − ζ). This enables us to identify the principal phys-
ical feature of the degenerate regime, de Haas-van Alphen oscillations, which
arise from the discrete isolated singularities of the s-integrand of L0

0 and J at
sn = ±i2πn/�ωc in the structure of j (s), yielding characteristic oscillatory terms of

the form esnζ = e± i2πnζ
�ωc , as a result of Landau quantization of the spectrum. With this

in view, L0
0 can be written in the degenerate regime as

L0
0 = e2c

�2

i∞+δ
∫

−i∞+δ

ds

2πi

esζ

2πs

m�ωc

tanh
(

�ωcs
2

)

∞
∑

n=1

2nωc

�(�2+ − n2ω2
c )

· 2 sinh (n�ωcs/2)

× e
−
[

�k2‖
2mωc

coth �ωcs
2

]

In

(

�k2‖
2mωc

1

sinh (�ωcs/2)

)

. (15.2.44)

Inspection of the poles of the s-integrand of (15.2.44) shows that they produce de
Haas-van Alphen oscillatory terms (except for the pole at s = 0) of the form (r =
integers = 0) cos(2πrζ/�ωc), which have theirmaximumamplitude at T = 0. If they
are neglected (Appendix 15.6), the remaining pole at s = 0 yields a “semiclassical”
result as
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L0
0 = 2e2mc

π�2

∞
∑

n=1

n2ω2
c

�2+ − n2ω2
c

i∞+δ
∫

−i∞+δ

ds

2πi
esζ

e
− k2‖

mω2c s

s
In

(

k2‖
mω2

c s

)

,

where the s-integral is evaluated as (α ≡ k2‖/mω2
c )

i∞+δ
∫

−i∞+δ

ds

2πi

esζ

s
e−α/s In

(α

s

)

=
[

J0(
√

2αζ)
]2 =

[

J0

(

k‖vF

ωc

)]2

,

with vF ≡ √
2ζ/m (see “Tables of Integral Transforms”, Erderlyi, et al., McGraw

Hill, pg. 280 # 5.16.15 (1954)). Again, L1
1, L2

2 and L1
2 = −L2

1 can be obtained
from L0

0 using (15.2.38a)–(15.2.38c). Further discussion of this semiclassical model,
which is devoid of Landau quantization effects that are of principal interest in this
chapter, will be taken up in Appendix 15.6.

The degenerate expression for density at zero temperature is given by

ns =
i∞+δ
∫

−i∞+δ

ds

2πi

esζ

2π�2

m�ωc

s tanh(�ωcs/2)
, (15.2.45)

which exhibits de Haas-van Alphen oscillations in the relation between the density
and chemical potential (Fermi energy). More discussion of such integrals can be
found in [23], including evaluation at intermediatemagnetic field strengths, aswell as
low and high fields. In the semiclassical model, with its neglect of dHvA oscillations,
the density is given by

ns =
i∞+δ
∫

−i∞+δ

ds

2πi

esζ

2π�2

2m

s2
= mζ

π�2
.

To develop yet another representation of Li
j that spans all statistical regimes

while focusing on the discrete states of the spectrum for arbitrary field strength and
arbitrary wavenumber, we express the linear response tensor in terms of general-
ized Laguerre polynomials. This can be accomplished by applying the Hille-Hardy
transformation to the modified Bessel function expansions of (15.2.37)–(15.2.38c).
The resulting expressions for Li

j may then be integrated exactly (in terms of Dirac
delta functions) to provide a series solution whose contributing terms correspond
to occupied Landau levels with the Fermi distribution function maintained intact,
without approximation. Since few such levels are populated in the high field regime
(�ωc ∼ ζ), the generalized Laguerre polynomial series for Li

j converges rapidly.
The Hille-Hardy transformation is given by [25]



454 M. Orman and N. J. M. Horing

e
−
(

�k2‖
2mωc

coth �ωcs
2

)

In

⎛

⎝

�k2‖
2mωc

· 1

sinh
(

�ωcs
2

)

⎞

⎠ =
∞
∑

r=0

2r !
(n + r)! sinh

(

�ωcs

2

)

e
−
(

�ωcs
2 (n+2r+1)

)

(15.2.46)

× e
−
(

�k2‖
2mωc

)

(

�k2‖
2mωc

)n [

Lnr

(

�k2‖
2mωc

)]2

,

with Ln
r as the Laguerre polynomials. The “s” and “ω” integrals in (15.2.37),

(15.2.38a)–(15.2.38c) may now be performed, yielding [22]

L0
0 = e2c

( mωc

2π�2

)
∞
∑

n=1

∞
∑

r=0

∑

±

∑

±′
(±′)

r !
(n + r)!

2nωc

(�2+ − n2ω2
c )

× e
−
(

�k2‖
2mωc

) (

�k2‖
2mωc

)n [

Ln
r

(

�k2‖
2mωc

)]2

fo(ω = arn(±,±′)), (15.2.47)

and

L1
1 = −e2

mc
ns − ω2

c

c2

(

∂

∂k2‖
+ k2‖∂2

∂2(k2‖)

)

L0
0 − e2ω2

c

2πc�

{ ∞
∑

n=1

∞
∑

r=0

∞
∑

p=0

′

×
∑

±

∑

±′
(±′)

r !
(n + r)!

2nωc

(�2+ − n2ω2
c )

fo(ω = p�ωc + arn(±,±′))

× e
−
(

�k2‖
2mωc

) (

�k2‖
2mωc

)n [

Ln
r

(

�k2‖
2mωc

)]2}

, (15.2.48a)

L2
2 = −

(

�2

c2k2‖

)

L0
0, (15.2.48b)

L1
2 = −L2

1 = −
(

iωc�

c2

)

∂L0
0

∂k2‖
, (15.2.48c)

where

ns = mωc

2π�

∑

±

∞
∑

n=0

fo

([

n + 1

2
± 1

2

]

�ωc

)

, (15.2.49)

and

arn(±,±′) = [(n + 2r + 1) − (±1) − (±′n)]�ωc

2
. (15.2.50)
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(The prime superscript on the p-sum in (15.2.48a) indicates that the p = 0 term is to
be divided by 2. It should be noted that we are taking spin splitting to be the same as
Landau level separation).

The summation over the index “n” in (15.2.47) represents contributions to the
2D plasma response from various levels of cyclotron excitation at the frequencies
� = ωc, 2ωc, 3ωc, etc. The summation over the index variable “r” corresponds to
different Landau level contributions. The (±) sum over arn(±±′) arises from the
two electron spin states; the (±′) sum is a consequence of folding the cyclotron fre-
quency summation

∑∞
n=−∞ →∑∞

n=1

∑

±′ when using (15.2.36) to obtain (15.2.47)–
(15.2.48c).

It is of interest to note that the degenerate de Haas-van Alphen oscillations dis-
cussed above as complex exponentials, e±i2πnζ/�ωc , are manifested in a different form
in (15.2.47)–(15.2.48c). Here, they arise from the sharply cutoff degenerate Fermi
distributions at zero temperature,

f0(ω = arn(±,±′)) = −η+(ζ − arn(±,±′)), (15.2.51)

which causes sharp changes of f0(ω) as variation of the magnetic field in arn(±,±′)
induces successive vanishings of the argument of η+(ζ − arn(±,±′)) for successive
integers that label the discrete Landau quantized energy levels. Notwithstanding the
difference of mathematical forms, these two representations of de Haas-van Alphen
oscillations are equivalent.

In the degenerate limit of very strong magnetic fields, the 2D plasma electrons
are restricted essentially to the ground state Landau level with the spins aligned
anti-parallel to �Hm . The dominant contribution to the 2D linear response tensor then
comes from the lowest order Laguerre polynomial, Ln

0(x) ≡ 1. This can be shown
by noting that for high magnetic fields such that �ωc>̃ζ >> β−1, the definition of
arn(±±′) in the degenerate Fermi distribution of (15.2.51) yields (ζβ → ∞)

fo(ω = arn(±,±′)) ∼= δr,oδ(±,+)δ(±′,+′)
fo(ω = p�ωc + arn(±,±′)) ∼= δr,oδp,oδ(±,+)δ(±′,+′). (15.2.52)

Hence, in this degenerate quantum strong field limit, the Fermi distribution cuts
off all the Laguerre series contributions beyond the r = 0 term, corresponding to
the ground state Landau contribution. Under these conditions, (15.2.47)–(15.2.49)
reduce to:

L0
0 = e2cnse

( −�k2‖
2mωc

) ∞
∑

n=1

1

n!

(

�k2‖
2mωc

)n
2n�ωc

�2�2 − n2�2ω2
c

, (15.2.53)
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, (15.2.54a)
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, (15.2.54b)
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, (15.2.54c)

where

ns = mωc

2π�
(quantum strong field limit). (15.2.55)

Another useful expansion for the 2D linear response tensor may be obtained in
the low wave number regime. Referring to the general solution for Li

j in (15.2.30),
we note that at low wavenumbers, the wave number dependent exponential can be
aproximated by the leading terms in an expansion in powers of k‖ as follows:

exp

[

�k2‖
mωc

(

cos
[

ωc(T − is �

2

]

) − cosh
(

�ωc
s
2

)
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(

�ωc
s
2

)

)]

= 1 + �k2‖
2mωc

(
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[

ωc(T − is �

2 )
]− cosh

(

�ωcs
2

)
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(

�ωc
s
2

)

)

+ 1

2

(

�k2‖
2mωc

)2 (
cos
[

ωc(T − is �

2 )
]− cosh

(

�ωcs
2

)

sinh (�ωcs/2)

)2

+ − − −.

(15.2.56)

Employing this series in (15.2.30)–(15.2.31c) and integrating over T , one readily
obtains
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L1
1 = −e2ns

mc
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c

− e2

mc
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mc2
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ω2
c

(

4ω2
c

�2 − (2ωc)2
− 3ω2

c

�2 − ω2
c
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+ · · ·
(15.2.57a)
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2 = −e2ns

mc
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c

− e2
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c2k2‖
ω2
c
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4ω2
c
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+ · · ·
(15.2.57b)

L1
2 = −L2

1

= − e2

mc
ns
(

iωc
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)

�2

�2 − ω2
c

+ 2e2

mc
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(
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)

×
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4ω2
c

�2 − (2ωc)2
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c

�2 − ω2
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+ · · · · · · , (15.2.57c)

where ns , the surface charge density, is given by

ns =
∞
∫

−∞

dω fo(ω)

�2

i∞+δ
∫

−i∞+δ

ds

2πi

esω

2π

m�ωc

tanh
(

�ωcs
2

) =
∞
∫

−∞
dω fo(ω)D(ω), (15.2.58)

and σs , the surface energy density, is given by

σs =
∞
∫

−∞

dω fo(ω)

�2

i∞+δ
∫

−i∞+δ

ds

2πi

esω

2π

m�ωc
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(

�ωcs
2

)

�
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Here, D(ω) = 1
�2

∫ i∞+δ

−i∞+δ
ds
2πi

esω

2π
m�ωc

tanh( �ωcs
2 )

is the density of states (per unit energy,

per unit area) for a 2D Landau quantized plasma. This quantity may be readily
evaluated by contour integration to yield [22]

D(ω) = m

π�
ωcη+(ω)

∞
∑

n=−∞
δ(ω − n�ωc), (15.2.60)

where η+(ω) =
{

1 ω>0
0 ω<0

}

and η+(0) = 1
2 .

Hence, from (15.2.58),

ns = mωc

π�

(

fo(0)

2
+

∞
∑

n=1

fo(n�ωc)

)

. (15.2.61)

Similarly, contour integration of (15.2.59) yields [22]
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σs = mωc

π�

∞
∑

n=1

n�ωc fo(n�ωc), (15.2.62)

where fo(ω) = [1 + e(ω−ζ)β]−1. These expressions show that the plasma surface
charge density is the sum of thermally weighted contributions from each of the
Landau eigenstates. (The presence of a sum rather than an integral is a consequence
of the discreteness of these 2D Landau quantized states). It is clear that σs represents
an average surface energy density, since by (15.2.62), it is the sum of thermally
weighted energy contributions from each of the Landau eigenstates. The zero energy
contribution from the ground state (and also the 1

2 weighting factor in the ground state
contribution to ns in (15.2.61)) is due to our implicit assumption that the electrons
are spin 1

2 particles with a “g” factor equal to 2. It may be noted that the local
limit (k‖ → 0) of the 2D plasma conductivity is purely classical as a function of
electron density ns alone (but ns itself is oscillatory in the de Haas-van Alphen
sense as a function of ζ/�ωc). By contrast, the nonlocal contributions to plasma
conductivity incorporate Landau quantization effects, e.g. through σs in (15.2.57),
with σs specified by (15.2.62).

15.3 2D Magnetopolaritons in a Quantizing Magnetic Field

Wenowdiscuss the dispersion relation for evanescent electromagnetic normalmodes
propagating on the surface of a Landau-quantized 2D plasma. Our considerations

will be restricted to low wave numbers
(

ζk2‖
mω2

c
or

�k2‖
mωc

or
k2‖

mω2
cβ

� 1
)

where the plasma

spectrumconsists of localmodes and anonlocal “Bernstein”-typemode in thevicinity
of � ≈ 2ωc. The dispersion relation for the local modes will be formulated exactly,
with simple approximate solutions obtained in the cases where ωc is very much
smaller or very much larger than the other frequency parameters, and also in the
electrostatic limit ck‖ → ∞. In each of these three cases, we find that there is only
one local solution to the plasma dispersion equation consistent with an evanescent
wave of real frequency. The leading nonlocal quantum corrections to the local mode
dispersion relations for these various cases is provided. The dispersion relation for the
nonlocal “Bernstein”-type mode is also explored, with special consideration given to
the electrostatic limit, low magnetic-field strength, and high surface-charge density.

(a) Local Limit

Summarizing the formulation of Sect. 15.1 for the electric field associated with an
evanescent 2D plasma wave, we write its equation as (recall notation: k⊥ = kz, k‖ =
ky, kx ≡ 0; k2 = k2⊥ + k2‖ = εm�2/c2; |k⊥| = −ik⊥ = −ikz and eik⊥z = e−|kz |z for
evanescent waves; εm ≡ ε(3D)

b of Sect. 15.1 notation)
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{

1
˜

+ 2πi |k⊥|
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|k⊥|2 0
0 1

)(

σ1
1 σ1

2
σ2
1 σ2

2

)

}

(

E1
s

E2
s

)

= 0. (15.3.1)

The plasma normal modes are thus determined by the condition (also see
(15.1.18))

det

∣

∣

∣

∣

∣

1
˜

+ 2πi |k⊥|
εm�

( −k2
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0 1

)(

σ1
1 σ1

2
σ2
1 σ2

2

)

∣

∣

∣

∣

∣

= 0, (15.3.2)

and the polarization of the modes is given by

(

E1
s

E2
s

)

= 1 + 2πi |k⊥|σ2
2/εm�

2πi |k⊥|σ1
2/εm�

. (15.3.3)

The values of � and |k⊥| = (k2‖ − εm�2/c2)
1
2 utilized in (15.3.3) are those deter-

mined by the dispersion relation (15.3.2).
Within the framework of a low wave-number approximation, the magnetocon-

ductivity tensor may be expressed as (15.2.3), (15.2.57):

σ1
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[
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+ · · ·
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, (15.3.4b)
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+ 2σsk2‖
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4
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�2+ − ω2
c

)

+ · · ·
]

,

(15.3.4c)

where

ns = mωc

π�

(

f0(0)

2
+

∞
∑

n=1

f0(n�ωc)

)

, (15.3.5a)

σs = mωc

π�

∞
∑

n=1

n�ωc f0(n�ωc), (15.3.5b)

and
f0(ω) ≡ [1 + eβ(ω−ζ)

]−1
. (15.3.5c)

In the local limit, these further reduce to

σ1
1

∼= σ2
2

∼= ie2�

m

ns

�2+ − ω2
c

, (15.3.6a)
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σ1
2

∼= −σ2
1

∼= − e2ωcns

m
(

�2+ − ω2
c

) . (15.3.6b)

Substitution of (15.3.6) into (15.3.2) results in the local-mode dispersion equation

det

∣

∣

∣

∣

∣
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˜

− αc|k⊥|
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1 +iωc
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�
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)

∣

∣
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∣

∣

= 0, (15.3.7)

where

α ≡ 2πe2ns

mc
. (15.3.8)

With some algebraic manipulation, this may be re-expressed as

(

εm�2 − αc|k⊥|) (c|k⊥| + α) = εmω2
c c|k⊥|. (15.3.9)

The polarization of the local modes—as determined from (15.3.3), (15.3.6),
(15.3.8) and (15.3.9)—can be written in the convenient form

(

E1
s

E2
s

)

= − iεmωc�

c|k⊥| (α + c|k⊥|) . (15.3.10)

In the limit of zero magnetic field, the only evanescent wave permitted by (15.3.9)
is the longitudinal Stern mode [26],

�2
0 = αc|k⊥|

εm
= αc

εm

(

k2‖ − εm�2
0/c

2
)

1
2 =

(

α2

2εm

)

·
(

−1 + [1 + 4c2k2‖/α
2
]

1
2

)

.

(15.3.11)

(There are no transverse evanescent modes in the local zero magnetic-field limit.)
For nonzero magnetic field (ωc = 0), one can obtain an exact solution of the local
dispersion equation by eliminating �2 in favor of |k⊥| in (15.3.9) (using |k⊥| =
(k2‖ − εm�2/c2)

1
2 ), and then determining the roots of the resultant cubic equation for

|k⊥|. Employing this procedure, we find the cubic dispersion relation

(c|k⊥|)3 + p (c|k⊥|)2 + q (c|k⊥|) + r = 0, (15.3.12)

where
p ≡ 2α; q ≡ α2 + εmω2

c − c2k2‖; r ≡ −αc2k2‖ . (15.3.13)

With the definitions

a ≡
(

q − p2

3

)

= −
(

c2k2‖ − εmω2
c + α2

3

)

, (15.3.14a)
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b ≡
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r − pq

3
+ 2p3

27

)

= −α

3

(

c2k2‖ + 2εmω2
c + 2α2
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)

, (15.3.14b)
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2

)2
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3
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(

εmω2
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3

)3 (
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εmω2
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− εmω2
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27
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(

3εmω2
c − 5α2)
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9

(

εmω2
c − α2
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)
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(15.3.14c)

A ≡
(

−b

2
+ D

) 1
3

, (15.3.14d)

B ≡
(

−b

2
− D

) 1
3

, (15.3.14e)

the exact solutions for the roots of the cubic equation (15.3.12) are given by [24]:

c|k⊥| = −2a

3
+ (A + B), (15.3.15a)

c|k⊥| = −2a

3
− (A + B)

2
+ i(A − B)

2

√
3, (15.3.15b)

c|k⊥| = −2a

3
− (A + B)

2
− i(A − B)

2

√
3, (15.3.15c)

where the only acceptable roots have c|k⊥| real and positive, corresponding to evanes-
cent wave solutions. The frequencies of these normal modes are obtained from

εm�2 = c2k2‖ − c2|k⊥|2, (15.3.16)

with�2 > 0 for real frequency waves. When the quantity D2 in (15.3.14c) is greater
than zero, the only real root for c|k⊥| is (15.3.15a). By contrast, when D2 ≤ 0 all
three roots are real. For D2 < 0, a convenient trigonometric solution is [24]

c|k⊥| = −2a

3
+ 2

√−a

3
cos

(

φ

3
+ 120◦n

)

, n = 0, 1, 2 (15.3.17)

where

cosφ = +
√

b2

4

/

(−a)3

27
. (15.3.18)

In any case, the only acceptable modes are those for which |k⊥| = −ikz is both
real and positive and �2 > 0.



462 M. Orman and N. J. M. Horing

It is apparent from the preceding expressions that the exact solutions of the cubic
dispersion relation have a rather complicated dependence on the three frequency
parameters ck‖,ωc and α, so that in general, these solutions must be evaluated by
numerical means. However, there are a number of limiting cases in which the local
dispersion relation can be treated analytically by the use of approximate methods. In
the discussion that follows, we will explicitly consider the weak field limit ωc � α
and ck‖, the strong field limit ωc � α and ck‖, and the electrostatic limit c → ∞
(corresponding to ck‖ � ωc and α).

Whenωc is verymuch smaller than both ck‖ andα, onemay obtain an approximate
solution of the local dispersion equation by employing a simple iterative technique.
Specifically, we multiply both sides of (15.3.9) by factor �2+αc|k⊥|/εm

εm (α+c|k⊥|) to obtain

(

�2
)2 −

(

αc

εm

)2

|k⊥|2 = ω2
c c|k⊥|

(

�2 + αc|k⊥|/εm
α + c|k⊥|

)

. (15.3.19)

The left-hand side of (15.3.19) is expressible as

(

�2
)2 + α2

εm
�2 −

(

αc

εm

)2

k2‖ = (�2 − �2
0+
) (

�2 − �2
0−
)

, (15.3.20)

where �2
0± are the roots of the quadratic form and are hence the zero magnetic field

local solutions, given by (15.3.11)

�2
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2εm
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−1 ±
√

1 + 4c2k2‖/α2
)

. (15.3.21)

(Note that �2
0+ > 0 but �2

0− < 0, so the latter root does not correspond to a real
wave.) Thus,

(
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1

�2 − �2
0−

. (15.3.22)

The leading magnetic-field correction to �0+ (of order ω2
c ) is determined by

putting � → �0+ and |k⊥| → |k⊥|0 on the right-hand side of (15.3.22). Since

�2
0+ − �2

0− = α2

εm

√

1 + 4c2k2‖
α2

,

we obtain
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where �2
0+ is given in (15.3.21) and
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(

k2‖ − εm�2
0+

c2

)
1
2

=
[

k2‖ − α2

2c2

(

−1 +
√

1 + 4c2k2‖/α2
)

]
1
2

. (15.3.24)

(In regard to the leading magnetic field correction to the �0− root, that results in
�2 < 0, which is unacceptable as a normal mode.)

If ck‖
α

� 1, then�2
0+ ≈ αck‖/εm, |k⊥|0 ≈ k‖(1 − α

ck‖ )
1
2 , and (15.3.23) reduces to

�2 ∼= αck‖
εm

+ ω2
c . (15.3.25)

(Bardos and Frankel [18] suggest that the preceding local low magnetic field correc-
tion to Stern’s result in (15.3.25) is not valid because it is inconsistent with a low
wavenumber approximation for the plasma conductivity, such as shown in (15.2.56).
We disagree. While it is correct that one cannot let ωc → 0 for a low wavenum-
ber expansion, there is a range of values ωc << ck‖ such that the low wavenumber
expansion is still valid, and over this range (15.3.25) holds true.) Alternatively, if
ck‖
α

� 1, then �2
0+ ≈ c2k2‖

εm

(

1 − c2k2‖
α2

)

, |k⊥|0 ≈ ck2‖
α
, and

�2 ≈ c2k2‖
εm

(

1 − c2k2‖
α2

)

+ 2ω2
c

(

ck‖
α

)4

. (15.3.26)

Hence, the presence of a weak magnetic field induces an ω2
c correction to the

zero magnetic field dispersion results. It should be noted that the polarization of
the weak field mode of (15.3.23) is essentially longitudinal since the numerator of
(15.3.10) goes to zero as ωc → 0, whereas the denominator tends to the zero field
value c|k⊥|0 (α + c|k⊥|0) > 0.

When ωc is very much larger than ck‖ and α, one may employ another iterative
technique to obtain an approximate solution of the local dispersion relation. Recalling
that

(

εm�2 − αc|k⊥|) (α + c|k⊥|) = εmω2
c c|k⊥| (15.3.27)

we can obtain the high magnetic field limit by noting that |k⊥| → 0 as ωc → ∞ in
order that the right-hand side be finite. (The left-hand side of (15.3.27) is bounded

because evanescent waves require |k⊥| = (k2‖ − εm�2/c2
) 1

2 > 0, or �2 < c2k2‖/εm).
This suggests that we put the dispersion relation into the form
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|k⊥| = 1

ω2
c cεm

(

εm�2 − αc|k⊥|) (α + c|k⊥|) , (15.3.28)

in order to obtain an iterative series for |k⊥| in powers of 1
ωc
. Replacing |k⊥| and �

on the right-hand side of (15.3.28) by their values at large field strength
(

|k⊥| →
0; �2 = c2

εm

(

k2‖ − |k⊥|2)→ c2k2‖
εm

)

, one obtains:

|k⊥| ≈ αck2‖/εmω2
c ,

(

ωc � α, ck‖
)

(15.3.29)

whence

�2 ≈ c2k2‖
εm

− α2c4k4‖
ε3mω4

c

,
(

ωc � α, ck‖
)

(15.3.30)

to leading order in
(

1
ω2
c

)

. Substitution of (15.3.29) and (15.3.30) into (15.3.10) fur-

ther shows that the high magnetic field mode is essentially transverse polarized
(

E1
s /E

2
s � 1

)

.
Another simple limiting case is obtained if we set c → ∞ corresponding to the

electrostatic plasma limit. In this regime,

|k⊥| =
√

k2‖ − εm
�2

c2
→ k‖, (15.3.31)

and the dispersion relation

(

εm�2 − αc|k⊥|) (α + c|k⊥|) = εmω2
c c|k⊥|

results in
(

εm�2 − αck‖
) ∼= εmω2

c . (15.3.32)

Hence,

�2 ∼= αck‖
εm

+ ω2
c , (c → ∞) (15.3.33)

which is in agreement with known results [27] (It should be noted that αc = 2πe2ns

m is
independent of c.) The polarization of the electrostatic mode is purely longitudinal,
since by (15.3.10), E1

s /E
2
s → 0 as c → ∞.

Thus, in the weak magnetic field, strong magnetic field, and electrostatic limits,
there exists only one evanescent mode solution of the local dispersion relation.

It is worth noting that there are no purely “radiative” modes (� and k⊥ both real)
in the local limit of the 2D dispersion relation. For by (15.3.9) we have

(

εm�2 + iαck⊥
)

(α − ick⊥) = −iεmω2
c ck⊥,
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and if k⊥ is real, this dispersion relation does not possess a purely real solution for
�. (Complex values of � correspond to waves that are either unstable or damped.)
Also, magnetic field effects on the local 2D plasma spectrum are essentially classical
in nature (except for de Haas-van Alphen oscillations of the density as a function
of ζ/�ωc). However, as shown immediately below, such quantization effects are
manifest when nonlocal terms are included.

(b) Nonlocal and Quantum Corrections to the Local Modes

The low wave-number approximation for the magnetoconductivity tensor in (15.3.4)
can conveniently be rewritten as

σ1
1 =

(

ie2ns�

m(�2 − ω2
c )

)

(

1 + S11,NL

)

(15.3.34a)

σ2
2 =

(

ie2ns�

m(�2 − ω2
c )

)

(

1 + S22,NL

)

(15.3.34b)

σ1
2 = −σ2

1 = −
(

e2nsωc

m(�2 − ω2
c )

)

(

1 + S12,NL

)

, (15.3.34c)

where S11,NL ≡
(

σs

ns

)

(

k2‖
m�2

)

(

4(�2 − ω2
c )

�2 − (2ωc)2
− 3

)

(15.3.35a)

S22,NL ≡
(

σs

ns

)

(

k2‖
m�2

)

(

4(�2 − ω2
c )

�2 − (2ωc)2
− 1

)

(15.3.35b)

S12,NL ≡
(

2σs

ns

)

(

k2‖
m�2

)

(

4(�2 − ω2
c )

�2 − (2ωc)2
− 1

)

= 2S22,NL . (15.3.35c)

Employing the dispersion relation condition (15.3.2), shifting the nonlocal terms
to the right hand side of the equation while keeping local terms on the left, and
ignoring terms of higher order than k2‖ arising from

(

S11,NL · S22,NL

)

and
(

S22,NL

)2
,

one obtains

(

εm�2 − αc|k⊥|) (α + c|k⊥|) − ω2
c εmc|k⊥| = RHS, (15.3.36)

where

RHS ≡
α2c|k⊥| ( σs

ns
)

(

k2‖
m

)

�2 − (2ωc)2

(

3c|k⊥|
α

− εm(�2 + 8ω2
c )

αc|k⊥| + 4�2 − ω2
c

�2 − ω2
c

)

. (15.3.37)

If RHS = 0, then (15.3.36) is just the local mode dispersion formula in (15.3.9).
Since the nonlocal terms in (15.3.37) are assumed small, we can obtain first order
corrections to the local mode solutions by using the local mode values �L , |k⊥|L in
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(15.3.37); i.e., RHS → RHS(�L , |k⊥|L). One can then re-solve for �, k⊥ using
(15.3.36) with RHS(�L , |k⊥|L) to obtain the nonlocal corrections to the local mode
values. (It might be noted that the small dimensionless expansion parameter in
(15.3.35a–15.3.35c) is

(

σs

ns · 1
mc2
) ∼ 10−2 for a magnetic field Hm = 10 Tesla.)

The exactmode values�L , |k⊥|L for the local casewere shown to be the solutions
for the cubic equation in |k⊥|L , (15.3.12)–(15.3.15), with�L determined by εm�2

L =
c2k2‖ − c2|k⊥|2L , (15.3.16). With the nonlocal term, RHS(�L , |k⊥|L), present in
(15.3.36), one can re-solve the cubic equation (15.3.12) but with r → −αc2k2‖ +
RHS(�L , |k⊥|L) to obtain the corrections to the local mode values. As before,
the only acceptable solutions are those which have �, |k⊥| real and positive for
evanescent waves and are consistent with a low wavenumber approximation; i.e.,
have nonlocal shifts that are small in comparison to the local values. It should be
noted that for numerical evaluation of these equations, it is necessary to calculate
σs , the 2D energy density in (15.2.62), which incorporates quantum effects. This
requires that one determine the chemical potential ζ in the Fermi function f0, which
is obtained from the user specified density ns , (15.2.61).While this is straightforward
for the non-degenerate case where ns = (eζβm�ωc)/(2π�

2 tanh(�ωcβ/2)) as per
(15.2.41), it is not as simple in general since one must effectively determine the ζ
roots of the transcendental equation (15.2.61). A possible numerical technique for
doing this is to use optimization methodologies to find the ζ values that minimize
the difference between ns and the right hand side of (15.2.61), with this difference
required to approach zero. Possible optimization procedures include Monte Carlo
or Genetic Algorithm searches for the ζ roots followed by quasi-Newton gradient
minimization, which algorithms are generally available in standard mathematical
software libraries (e.g. IMSL).

One can also use (15.3.36), (15.3.37) to find the nonlocal corrections to the approx-
imate local mode solutions shown here for the cases ωc << ck‖ or α, ωc >> ck‖
or α, and the electrostatic limit c → ∞. For ωc small, one can employ the develop-
ment leading to (15.3.23), (15.3.24), but now adding the nonlocal contributions from
RHS(�0, c|k⊥|0), (15.3.37), evaluated at ωc → 0. For the case c|k‖|

α
>> 1 where

�2
0

∼= αck‖
εm

and |k⊥|0 ∼= k‖

RHS(�0, |k⊥|0) ∼= 3εmck‖
(

σs

ns

)

(

k2‖
m

)

. (15.3.38a)

Following the development leading to (15.3.23), one obtains

�2 ∼= αck‖
εm

+ ω2
c +

(

3σs

ns
· k

2
‖
m

)

, (15.3.38b)

where the last term on the right is the nonlocal shift (compare with (15.3.25)). For

ωc small but ck‖
α

<< 1, one has from (15.3.26) �2
0

∼= ck2‖
εm

, |k⊥|0 ∼= k‖
(

ck‖
α

)

so that
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RHS(�0, |k⊥|0) ∼= 3αεm

(

σs

ns

)

(

k2‖
m

)

, (15.3.39a)

and

�2 ∼= c2k2‖
εm

(

1 − c2k2‖
α2

)

+ 2ω2
c

(

ck‖
α

)4

+
(

6σs

ns
· k

2
‖
m

)

(

ck‖
α

)2

, (15.3.39b)

where the last term on the right provides the nonlocal correction (compare with
(15.3.26)).

Considering next the case ωc >> ck‖ or α, as per the discussion leading to
(15.3.28), if ωc is large then c|k⊥| must be small for local terms to remain finite,
and this must also hold true in the presence of small nonlocal corrections. One can
therefore write (as in (15.3.28))

c|k⊥| = 1

ω2
c εm

(εm�2 − αc|k⊥|)(α + c|k⊥|) − RHS

ω2
c εm

, (15.3.40)

where RHS is approximately evaluated from (15.3.37) using the largemagnetic field

values |k⊥| → 0, �2 → (ck‖)2
εm

. This results in

RHS(ωc large) ∼= 2αεm

(

σs

ns

)

(

k2‖
m

)

. (15.3.41a)

Substituting into (15.3.40), (15.3.36) yields

c|k⊥| ∼= αc2k2‖
εmω2

c

(

1 − 2εm
mc2

· σs

ns

)

(15.3.41b)

and

�2 ∼= c2k2‖
εm

− α2c4k4‖
ε3mω2

c

(

1 − 2εm
mc2

· σs

ns

)2

(15.3.41c)

(compare with (15.3.30)).
Finally, in the electrostatic limit c → ∞ (but αc = 2πe2ns

m , ωc → 0), where

c|k⊥| ∼= ck‖, �2 ∼= αck‖
εm

, (15.3.37) yields

RHS(c → ∞) ∼= 3εmck‖

(

σs

ns
· k

2
‖
m

)

(15.3.42a)

and substituting into (15.3.36)



468 M. Orman and N. J. M. Horing

�2 = αck‖
m

+ ω2
c + RHS

εmck‖
(15.3.42b)

or

�2 = αck‖
m

+ ω2
c +

(

3σs

ns
· k

2
‖
m

)

(15.3.42c)

As expected these results agree with (15.3.38) since in both cases ωc << ck‖ and
α << ck‖.

In regard to polarization of the nonlocally corrected modes, we note that our
examination of the role of nonlocality has addressed only the leading nonlocal cor-
rections, which are small by definition, and therefore do not have a significant affect
on the polarization of the local modes.

In considering nonlocal corrections it is particularly interesting to note that a high
magnetic field tends to suppress nonlocal structure through wavenumber parameters
such as k2‖/mω2

cβ (nondegenerate), k2‖ζ/mω2
c (degenerate), �k2‖/mωc (quantum);

and in the degenerate quantum strong field limit nonlocal structure involving σs/ns

vanishes as σs → 0.

(c) Nonlocal “Bernstein” Resonances

The formulae for σi
j in (15.3.4) show that the magnetoconductivity tensor possesses

a simple first-order pole at � = 2ωc. The presence of this pole induces a nonlocal
root of the plasma-wave dispersion relation, in the nature of a “Bernstein”-type mode
[22, 27–29]. For low wave number, the Bernstein mode should be near� ∼ 2ωc and
in view of this we estimate it by putting� → 2ωc in the local terms of σi

j and neglect
nonlocal shifting of the local structure. The expressions for σi

j , (15.3.4), then take
the approximate form

σ1
1

∼= σ2
2

∼= −2e2ns

imωc

(

1

3
+ σsk2‖

mns
1

�2+ − (2ωc)2
+ . . .

)

, (15.3.43a)

σ1
2 = −σ2

1
∼= −2e2ns

mωc

(

1

6
+ σsk2‖

mns
1

�2+ − (2ωc)2
+ . . .

)

. (15.3.43b)

Substituting (15.3.43) into the dispersion relation (15.3.2), and defining

α = 2πe2ns

mc
, (15.3.44a)

Z = σsk2‖
mns

1

�2+ − (2ωc)2
, (15.3.44b)

one obtains the approximate dispersion relation
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0 = det

∣

∣

∣

∣

∣

∣

∣

1
˜

+ αc|k⊥|
⎛

⎜

⎝

4
3+4Z
c2|k⊥|2

i( 2
3 +4Z)
c2|k⊥|2

i( 1
6+Z)
εmω2

c

−( 1
3+Z)

εmω2
c

⎞

⎟

⎠

∣

∣

∣

∣

∣

∣

∣

, (15.3.45)

which has the solution (we note that the terms quadratic in Z cancel out of (15.3.45)
and, in consequence, there is only a single “Bernstein”-type mode at � ∼ 2ωc):

Z = −1

3

[

α2c2|k⊥|2 + αc|k⊥| (α2 − 3εmω2
c

)− 4α2εmω2
c

α2c2|k⊥|2 + 4
3α

3c|k⊥| − 4α2εmω2
c

]

, (15.3.46)

Since Z ≡ σs k2‖
mns
(

�2 − (2ωc)
2
)−1

, one obtains,

�2 = (2ωc)
2 − 3σs

mns
k2‖ [. . . ] , (15.3.47a)

where

[..] = α2c2|k⊥|2 + 4
3α

3c|k⊥| − 4α2εmω2
c

α2c2|k⊥|2 + αc|k⊥| (α2 − 3εmω2
c

)− 4α2εmω2
c

. (15.3.47b)

Therefore,

(c|k⊥|)2 = (c2k2‖ − εm�2
) ∼= c2k2‖ − 4εmω2

c + 3εmσsk2‖
mns

[...], (15.3.48)

with ns,σs given in (15.3.5). Hence, (15.3.47a), (15.3.47b) provides the frequency
solution for the n = 2 “Bernstein”-type mode in terms of the frequency parameters

ck‖, α, ωc and the nonlocality parameter (σs/ns)
k2‖
m , (where σs/ns is the average

energy of a Landau-quantized electron constrained to move on a two-dimensional
surface). Note that Landau-quantization effects are present in the structure of this
mode through the average energy σs/ns .

The polarization of the n = 2 “Bernstein” mode can be obtained from (15.3.3)
and (15.3.43), (15.3.44), viz:

E1
s

E2
s

= Ex
s

E y
s

= i

[

εmω2
c − αc|k⊥| ( 13 + Z

)

αc|k⊥| ( 16 + Z
)

]

, (15.3.49)

where Z is given in (15.3.46) and c|k⊥| is determined from (15.3.48).
The dispersion relation in (15.3.47a), (15.3.47b) simplifies considerably for vari-

ous limiting values of ck‖, ωc andα. In the electrostatic limit c → ∞ (corresponding
to ck‖ � ωc and α; with α/ωc arbitrary) one obtains
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�2 ∼= (2ωc)
2 − 3σs/ns

m
k2‖ . (15.3.50)

From (15.3.46), Z → −1/3 as c → ∞, and as per (15.3.49) the “Bernstein”
mode is essentially longitudinally polarized for this case. When ωc � ck‖ or α,
corresponding to a weak magnetic field limit, (15.3.47) reduces to

�2 ∼= (2ωc)
2 − 3σs/ns

m
k2‖

(

1 + 4
3

α
ck‖

1 + α
ck‖

)

. (15.3.51)

If α � ck‖, then [27]

�2 = (2ωc)
2 − 3σs/ns

m
k2‖ . (15.3.52)

Since Z → −1/3 and ωc → 0 in (15.3.49), the mode is longitudinally polarized.
However, if α � ck‖, then

�2 = (2ωc)
2 − 4σs/ns

m
k2‖, (15.3.53)

and Z → − 1
4 in this limit and εmω2

c � αck‖ or αc|k⊥|. Equation (15.3.49) then

shows E1
s

E2
s

∼= i . In this case, themode has both longitudinal and transverse components
that are approximately equal in magnitude and 90◦ out of phase.

Landau quantization effects are present in the structure of the n = 2 “Bernstein”
type mode through the energy parameter σs and quantum magnetic field effects will
also be present in the higher order “Bernstein” type modes as a consequence of
higher order wave number corrections to the plasma magnetoconductivity tensor.
These and other nonlocal phenomena can significantly affect the 2D plasma wave
spectrum. For example, as discussed in [29], nonlocal modifications (∼10%) to the
2D plasma wave spectrum of Si(100) − SiO2 interfaces can occur for wave numbers
k‖ of the order of [100 Angstroms]−1.

15.4 Appendix 1: Alternative Formulation of the 2D
Magnetoplasma Dispersion Relation

We consider a 2D plasma in a uniform, static magnetic field perpendicular to the
plane of the plasma. The electrons are assumed mobile while the positive charges are
taken to be fixed. From Gauss’ and Stokes’ Laws, one has the boundary conditions

E⊥(0) = 2πns

εm
and ẑ × �H(0) = 2π �J s

c
, (15.4.1)
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where ⊥, ‖ refer to field components perpendicular, parallel to the plasma surface
at z = 0 and ns, �J s are the surface charge and current densities respectively. For a
monochromatic wave with frequency� and wavenumber �k, Maxwell’s curl equation
yields

�k × �E(0) = �

c
�H(0), ∴ ẑ × (�k × �E(0)) = 2π�

c2
�J s, (15.4.2)

and one has

E⊥(0)�k‖ − �E‖(0)k⊥ = 2π�

c2
�J s . (15.4.3)

Eliminating E⊥(0) in terms of ns using (15.4.1) and employing current continuity
�ns − �k‖ · �J s = 0, one obtains

�E‖(0) = −2π�

c2k⊥

(

1
˜

− �k‖�k‖
k2

)

· �J s, (15.4.4)

where k2 = k2⊥ + k2‖ = εm�2

c2 .One can thenuseOhm’sLaw �J s = σ
˜

2 · �E‖(0) to obtain

[

1
˜

+ 2π�

c2k⊥

(

1
˜

− �k‖�k‖
k2

)

· σ
˜

2

]

· �E‖(0) = 0. (15.4.5)

The dispersion relation for 2Dplasmawaves is obtained by setting the determinant
of the bracketed expression in (15.4.5) to zero (compare with (15.1.16) in the text).
One can also define a 2D dielectric tensor ε

˜

2:

ε
˜

2 ≡ εm1
˜

+ 2πk⊥
�

σ
˜

2, (15.4.6)

where εm is the surrounding bulk medium permittivity. From (15.4.5), the 2D plasma
dispersion relations are

det

∣

∣

∣

∣

∣

1
˜

+ k2

k2⊥

(

1
˜

− �k‖�k‖
k2

)

(

ε
˜

2

εm
− 1
˜

)

∣

∣

∣

∣

∣

= 0, (15.4.7)

and with some simple manipulation, this can also be expressed as

det

∣

∣

∣

∣

∣

(

1
˜

− �k‖�k‖
k2‖

)

− �2

c2k2‖

(

1
˜

− �k‖�k‖
k2

)

· ε
˜

2

∣

∣

∣

∣

∣

= 0. (15.4.8)



472 M. Orman and N. J. M. Horing

15.5 Appendix 2: The Time-Ordered Exponential Time
Development Operator

An operator U (t, t0) defining the time development of a state �(t) from an initial
state �(t0),

�(t) = U (t, t0)�(t0),

subject to the initial conditionU (t0, t0) = 1, satisfies the Schrödinger equation (� →
1)

i(∂/∂t)U (t, t0) = H(t)U (t, t0).

Integration of this with respect to t from t0 to t and applying the initial condition
leads to an integral equation,

U (t, t0) = 1 − i
∫ t

t0

dtH(t)U (t, t0),

which can be solved by repeated iterations as

U (t, t0) = 1 − i
∫ t

t0

dt1H(t1)

[

1 − i
∫ t1

t0

dt2H(t2)U (t2, t0)

]

= 1 − i
∫ t

t0

dt1H(t1) + (−i)2
∫ t

t0

dt1

∫ t1

t0

dt2H(t1)H(t2) + . . .

+ (−i)n
∫ t

t0

dt1

∫ t1

t0

dt2 . . .

∫ tn−1

t0

dtnH(t1)H(t2) . . . H(tn) + . . . .

The n’th integrand involves products of the time dependent Hamiltonian H(t)
repeated n times with the highest time argument t , on the left, proceeding to the
lower time arguments in succession with the lowest time argument tn on the right.
This is a defacto time ordering of the Hamiltonian products, denoted by the “+” sub-
script. H(t1) . . . H(tn) ≡ (H(t1) . . . (tn))+. It is important to recognize and respect
this time ordering because time dependent Hamiltonians generally fail to commute
at different times (ie: [H(t), H(t ′)] = 0).

In the special case of a time-independent Hamiltonian, the iteration series for
U (t, t0) is just the usual time development operator U (t, t0) = e−i H(t−t0). In view
of this, it has become conventional to symbolize the iteration series above (for a
time dependent H(t)) as U (t, t0) = (exp[−i

∫ t
t0
H(t)dt])+, (a “time-ordered expo-

nential”), but this hasmeaning only as the iteration series above with the time ordered
Hamiltonian products under multiple time integrations.

Having identified the correct time development operator for a time dependent
Hamiltonian, it is important to recognize that the upper limit of the time integration
involved in (15.2.13) is imaginary, τ = −iβ = −i/κBT , so the time displacement
involved in < �J s >iτ is also imaginary. This imparts an imaginary time periodicity
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property to the time t-dependence of functions such as < �J s(t) >iτ of (15.2.13) and
associated nonequilibrium Green’s functions, with imaginary period τ = −iβ: This
is discussed in detail in [21], sections 7.4 and 9.1. It should be borne in mind that
these considerations are in the context of the many-body-problem, which involves a
constant particle number such that [N , H(t)] ≡ 0 for all times t : This means that the
appearance of N in the grand canonical ensemble averaging process is essentially
“inert” with respect to the time development process in our present considerations.
(If N were not a fixed constant in time, [N , H(t)] = 0, the situation would be more
complicated.)

15.6 Appendix 3: Semiclassical Model

Although our principal interest is in quantum magnetic field effects due to Landau
quantization in the 2D magnetopolariton spectrum, it is of interest to explore the
precise meaning of the semiclassical model as defined by Chiu and Quinn [30]: That
definition neglects the dHvA oscillatory terms embedded in the quantity δ given by
(r = positive integers = 0)

δ ≡ π

βζ

∑

r =0

(−1)r
cos(2πrζ/�ωc)

sinh(2π2r/�ωcβ)
. (15.6.1)

These oscillatory terms have maximum amplitude at zero temperature
(�ωcβ >> 1), taking the form

δT=0 = �ωc

2πζ

∑

r =0

(−1)r

r
cos(2πrζ/�ωc), (15.6.2)

so that its vanishing in the degenerate limit further requires that �ωc/ζ → 0. In the
nondegenerate statistical regime, �ωcβ << 1, (15.6.1) reduces to

δT→∞ = 2π

βζ

∑

r =0

(−1)r cos(2πrζ/�ωc)e
−2π2r/�ωcβ, (15.6.3)

which vanishes exponentially with temperature. While this “semiclassical” model
of the magnetopolariton spectrum is of some interest, it is antithetical to the arduous
task of a fully quantum mechanical analysis of Landau quantization effects in
a magnetic field, and it ignores valuable physical information embedded in the
structure of dHvA oscillations.
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Chapter 16
Quantum Dynamics in a 1D Dot/Antidot
Lattice: Landau Minibands
and Graphene Wave Packet Motion
in a Magnetic Field

Norman J. M. Horing, R. A. W. Ayyubi, K. Sabeeh, and Sina Bahrami

Abstract This work is focused on the analysis of the quantum dynamics of a
model one-dimensional lattice array of quantum dots on a two dimensional electron
sheet/layer in a normal magnetic field. Our analysis is carried out with the derivation
of the Green’s function for the quantum dot lattice subject to Landau quantization
using the corresponding “no-lattice” Green’s function, for propagation along the axis
of the 1D quantum dot lattice. The frequency/energy poles of this Green’s function
provide the dispersion relation for the Landau quantized energy spectrum, which
exhibits Landau minibands, rather than discrete Landau levels. In the case of non-
relativistic carriers, the dispersion relation is explicitly exhibited in a closed form in
terms of the Jacobi Theta Function of the third kind, and an approximate solution
displaying the Landau miniband formation is obtained in terms of Laguerre polyno-
mials. We also examine the case of “relativistic” graphene carriers, employing the
appropriate Landau quantized graphene Green’s function in a study of the associated
wave packet dynamics in a graphene antidot lattice in a normal magnetic field. In
this, we analyze the effects of pseudospin on the wave packet dynamics in Landau
quantized graphene, including the role of Zitterbewegung in circular orbit motion.

16.1 Introduction

The present work is concerned with a lattice of quantum dots/antidots in a nor-
mal magnetic field. Quantum dot/antidot systems have been under exploration as a
mechanism for quantum transport for quite some time [1–3]. Quantum dot applica-
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tions have also been discussed in graphene and have even reached into biology and
medicine [4, 5]. In regard to the inclusion of a magnetic field, its role as a probe of the
properties of matter has always been well appreciated [6], but its importance is fur-
ther amplified by its splintering of the energy spectrum into a multitude of Landau
eigenstates [7], which can influence electronic conduction in quantum dot/antidot
transport (beyond the relatively poor semiclassical treatment of the magnetic field
restricted by an approximation limited to the Peierls phase factor alone). Moreover,
the role of a row of quantum dots in the form of a periodic lattice brings into view
several important features in the presence of a magnetic field, which are addressed
in this chapter:

• The formation of Landau Miniband Structure, [8] and
• The circular features of “relativistic” graphene carrier wave packet dynamics in a
magnetic field and its behavior in an antidot lattice, including “Zitterbewegung”:
with an examination of the important role of pseudospin in the preparation of the
incident wave packet.

Our study of a quantum dot/antidot lattice in a magnetic field begins with a “first
principles” derivation of the associated nonrelativistic magnetic field Green’s func-
tion, obtained explicitly in a closed form analytic representation in terms of known
functions for propagation along the axis of the dot lattice [8]. This Green’s func-
tion can serve as a basic element in facilitating further transport calculations. We
have also extracted the desired eigen-energy information by an analysis of the mag-
netic field lattice Green’s function’s frequency poles, obtaining the desired spectral
information—which shows that there is a proliferation of eigen-energy states in
Landau minibands that must be taken into account in quantum dot/antidot lattice
transport in a magnetic field, a fact often neglected. This concise analysis avoids
potential calculational difficulties using a tractable model for quantum dots/antidots
in a lattice array, subject to Landau quantization [9]. Similar phenomenology in a
different system involving a superconductor with an Abrikosov lattice of vortices
was discussed by Chen and Fal’ko [10].

In connection with the analysis of wave packet dynamics in a graphene quantum
antidot lattice in a magnetic field, we determine the “relativistic” graphene antidot
lattice Green’s function subject to Landau quantization, again in a closed form ana-
lytic representation in terms of known functions for propagation along the axis of
the antidot lattice. It is employed to trace the dynamical development of a wave
packet and is seen to exhibit “Zitterbewegung” rapid oscillatory features in circular
motion generated by the magnetic field. We find that the pseudospin polarization of
the incident wave packet plays an important role in its dynamics, with both propa-
gation of the packet and Zitterbewegung strongly dependent on it. In particular, the
packet is found to propagate in the direction of initial pseudospin polarization . This
study also suggests that a graphene antidot lattice can serve as a channel for electron
transport that is tunable by pseudospin polarization, antidot potential and applied
normal magnetic field strength.
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16.2 Determination of the Quantum Dot Lattice Green’s
Function

Considering a two-dimensional (2D) sheet of nonrelativistic Schrödinger electrons
in a lattice formed by a one dimensional periodic array of quantum dot potential
wells, we examine the role of a quantizing magnetic field B perpendicular to the
2D sheet. In this analysis we explicitly construct the appropriate Green’s function
G(x1, x2; y1, y2;ω) describing the Landau-quantized electron dynamics for this 2D
Krönig-Penney-type model of a 1D array of dots in a strong magnetic field [11]. We
examine its frequency poles to establish the dispersion relation for the eigen-energy
spectrum of this 2D system with an array of dots represented by a row of Dirac-delta
functions in a high magnetic field.

In accordance with the Krönig-Penney model for a quantum dot lattice, we intro-
duce an infinite periodic lattice array of identical dot potential wells on the x-axis at
xn = nd, y ≡ 0 as

U (r) = U (x, y) = α

∞∑

n=−∞
δ(x − nd)δ(y), (16.1)

where α < 0 is the product of the quantum dot potential well depth (U0) of a typical
potential well times its area (a2), and d is the uniform spacing of the wells. The 2D
Schrödinger Green’s function in frequency representation is given by the Dyson-type
integral equation

G(x1, x2; y1, y2;ω) = G0(x1, x2; y1, y2;ω)

+
∫

dx3

∫
dy3G0(x1, x3, y1, y3;ω)U (x3, y3)G(x3, x2, y3, y2;ω);

(16.2)

or (suppress ω)

G(x1, x2; y1, y2) = G0(x1, x2; y1,y2)

+ α

∞∑

n=−∞
G0(x1, nd; y1, 0)G(nd; x2; 0, y2),

(16.3)

where G0(r1,r2) is the infinite-space Green’s function for 2D electrons in a perpen-
dicular magnetic field in the complete absence of potential wells/dots. Note that the
solution for G(x1, x2; y1, y2) devolves upon the determination of G(nd, x2; 0, y2) at
a discrete set of values. Therefore we set x1 = md, and y1 = 0 in (16.3):
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G(md, x2; 0, y2) = G0(md, x2; 0, y2) + α

∞∑

n=−∞
G0(md; nd; 0, 0)G(nd, x2; 0, y2).

(16.4)

Addressing the presence of a perpendicular magnetic field, we limit our attention
to electron propagation confined to the x-axis of the lattice, with y ≡ y1 ≡ y2 ≡ 0.
In this case, the infinite-space magnetic field Green’s function G0(md, nd; 0, 0) is
spatially translationally invariant and

G0(md, nd; 0, 0) = Ġ0([m − n]d), (16.5)

acts as a translationally invariant position-space matrix, indicated by an overhead
dot on the right of (16.5). Suppressing x2, ω for the moment, these equations may be
solved using the periodicity of the lattice in a Fourier series defined by (r are integers
here)

G̃(p) =
∞∑

r=−∞
eipdrG(rd) (16.6)

with

G(md) = d

2π

∫ π/d

−π/d
dp e−i pdmG̃(p), (16.7)

and

Ġ0([m − n]d) = d

2π

∫ π/2

−π/2
dp e−i pd[m−n] ˙̃G0(p). (16.8)

Correspondingly, (16.4) becomes

G̃(p) = G̃0(p) + α
˙̃G0(p)

∞∑

n=−∞
eipdnG(nd)

= G̃0(p) + αd

2π
˙̃G0(p)

∫ π/d

−π/d
dq

( ∞∑

n=−∞
ein[p−q]d

)
G̃(q). (16.9)

Employing the Poisson Sum Formula as

∞∑

n=−∞
ein[p−q]d = 2π

d

∞∑

m=−∞
δ(p − q − 2πm/d),

we have

G̃(p) = G̃0(p) + α

∞∑

m=−∞

∫ π/d

−π/d
dq δ(p − q − 2πm/d)

˙̃G0(p)G̃(q). (16.10)
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Since the q-integral is extended only over the first Brillouin zone, we have

G̃(p) = G̃0(p) + α
˙̃G0(p)G̃(p), (16.11)

with the solution given by (restore x2, ω)

G̃(p; x2; 0, 0;ω) =
[
1 − α

˙̃G0(p; 0, 0;ω)
]−1

G̃0(p; x2; 0, 0;ω). (16.12)

Taken jointly with (16.7) and (16.3), the result of (16.12) completes the description
of the Green’s function for the 2D Krönig-Penney-like model for a 1D quantum dot
lattice, for electron propagation confined to the axis of the lattice (y ≡ y1 ≡ y2 ≡ 0
and we suppress further reference to y):

G(x1, x2;ω) = G0(x1, x2;ω) + α

∞∑

n=−∞
G0(x1, nd;ω)

× d

2π

∫ π
d

− π
d

dp e−i pdn
[
1 − α

˙̃G0(p; 0, 0;ω)
]−1

G̃0(p; x2;ω). (16.13)

16.3 Role of the Magnetic Field

The 2D Schrödinger Green’s function, G0, in a perpendicular magnetic field in the
absence of any potential barriers has been determined in position representation
as [12]

G0(r, r′; t, t ′) = C(r, r′)G ′
0(r − r′; t − t ′), (16.14)

where the Peierls phase factor C(r, r′) embodies all non-spatially-translationally
invariant structure and gauge dependence (B is the magnetic field),

C(r, r′) = exp

[
ie

2�c
r · B × r′ − φ(r) + φ(r′)

]
, (16.15)

and φ(r) is an arbitrary gauge function, which we discard. It is important to note
that C(r, r′) enters G0(md; nd) on the right of (16.4) in the form C(mdx̂, ndx̂) =
exp

[
ie
2�cmdx̂ · B × ndx̂

] ≡ 1 since x̂ · B × x̂ = 0 for our choice y ≡ y1 ≡ y2 ≡ 0.
Therefore C(r, r′) does not enter the denominator factor of (16.13), although it
may be present in the numerator factors of the final Green’s function, except when
eliminated by restricting considerations to r ‖ r′, as we have done by taking y ≡ 0
for propagation on the lattice axis. This means that the eigen-energy spectrum given
by the vanishing of the denominator is unaffected by C(r, r′).

The solution for the translationally invariant part of the nonrelativistic retarded
Green’s function, G ′

0(R, ω), is given by (R = r − r′; X = x − x ′; Y = y − y′;
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� → 1; frequency representation) [12]

G ′
0(R;ω) = −mωc

4π

∫ ∞

0
dτ

eiωτ

sin(ωcτ/2)
exp

{
imωc[X2 + Y 2]
4 tan(ωcτ/2)

}
, (16.16)

wherem is themass andωc is the cyclotron frequency. Expanding the τ−integrand as
a generator ofLaguerre polynomials [13], Ln , we obtain another useful representation
as

G ′
0(R;ω) = mωc

2π
exp(−mωc R

2/4)
∞∑

n=0

Ln

(
mωc R2

2

)
1

ω − (n + 1
2 )ωc

. (16.17)

16.4 Energy Spectrum: Landau Minibands

The energy spectrum of the 2D Krönig-Penney-type model for a quantum dot lattice
in a normal magnetic field is given by the frequency poles of the Green’s function
arising from the vanishing of the denominator on the right hand side of (16.12):

[
1 − α

˙̃G0(p; 0, 0;ω)
]

= 0. (16.18)

Employing (16.16) and forming the Fourier series of (16.6) yields

˙̃G0(p; 0, 0;ω) = −mωc

4π

∞∑

r=−∞
eipdr

∫ ∞

0
dT

eiωT

sin(ωcT/2)
exp

[
imωcd2r2

4 tan(ωcT/2)

]
.

(16.19)

Noting that the T -integral is a half-time-axis transform of a periodic function, the
semi-infinite range of integration may be divided into individual periods which are
summed and translated to the fundamental interval. Defining z = ωcT/2, the result
takes the form

˙̃G0(p; 0, 0;ω) = − m

2π

[ ∞∑

n=0

(−1)n exp

(
i2πωn

ωc

)] ∫ π

0
dz

exp(i2ωz/ωc)

sin(z)

×
∞∑

r=−∞
eipdrexp

[
imωcd2

4 tan(z)
r2

]
. (16.20)

The n-sum is readily evaluated as

∞∑

n=0

(−1)n exp(i2πωn/ωc) = exp(−iπω/ωc)

2 cos(πω/ωc)
, (16.21)
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and the r -sum is just the Jacobi Theta Function of the third kind, �3(α, β): This
yields the dispersion relation for the eigen-energies of the 2D Krönig-Penney-type
model of a quantum dot lattice in a magnetic field as (restore �)

1 = − αm

4π�2

exp(−iπω/ωc)

cos(πω/ωc)

∫ π

0
dz

exp(i2ωz/ωc)

sin(z)
�3

(
pd

2π

∣∣∣∣
mωcd2

4π�tan(z)

)
.

(16.22)

It should be noted that the limit d → 0 results in divergence of the T -integral of
(16.19). Consequently, the limit of the Jacobi Theta function diverges as d → 0.
This is an artifact of the δ-function single-point confinement potentials assumed for
the dots. More realistically, a spatial spreading of the δ-function dot potentials gives
rise to an integral equationwhich “smears” theGreen’s function solution over its area,
a2, rendering the result finite. This divergence may be circumvented by considering
the restriction d ≥ a > 0 in the results above.

Alternatively, one can employ (16.17) jointly with (16.6) to rewrite the dispersion
relation in the form

1 = αmωc

2π�2

∞∑

r=−∞
eipdr exp[−mωcd

2r2/4�]
∞∑

n=0

Ln(mωcd2r2/2�)

ω − (n + 1/2)ωc
. (16.23)

(The divergence discussed above is now manifested in the r -sum as d → 0, and
it can be circumvented by the same restriction.) For small dot radius ( |α|m

2π�2 � 1),
(16.23) requires that ω → ωn closely approach the pole position (n + 1/2)ωc, so
that particular pole is the predominant influence in determining the energy root ωn:
Consequently, a reasonable first approximationmay be undertaken dropping all other
terms of the n−sum, leading to the result

ωn
∼= (n + 1/2)ωc + αmωc

2π�2

∞∑

r=−∞
eipdr exp[−mωcd

2r2/4�]Ln(mωcd
2r2/2�).

(16.24)

When mωcd2/4� > 1, it suffices to retain only r = −1, 0, 1 of the r -sum: Applying
this to a GaAs-based antidot lattice having dot potential well depth about 100 meV
and diameter 2nm, we find a proliferation of subband energies that are quantized by
the magnetic field with frequencies ωn(n = 0, 1, 2 . . . ∞) approximately given by

ωn = (n + 1/2)ωc + αmωc

2π�2
(1 + 2 cos(pd) exp[−mωcd

2/4�]Ln(mωcd
2/2�)),

(16.25)

for the case in which the lattice period d is larger than the orbit radius of the lowest
Landau level. Equation (16.25) indicates that the quantum dot lattice broadens each
Landau eigenstate into a subband (miniband) of width
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ωn = 2αmωc

π�2
exp[−mωcd

2/4�]Ln(mωcd
2/2�), (16.26)

and generates an effective mass in the neighborhood of the nth subband minimum
p = π/d given by

1

m∗
n

= d2
ωn

2�
= d2
En

2�2
. (16.27)

16.5 Landau Quatized Graphene: Wave Packet Dynamics
in an Antidot Lattice

Addressing “relativistic”Diracmaterials, we focus on graphene in a normalmagnetic
field (in the absence of any lattice) with Hamiltonian (� = c = 1)

H = γσ ν · (p − eA) , (16.28)

where σν = [σx , 1νσy] and σx , σy are Pauli spin matrices, which act on the sublat-
tice/pseudospin space and represent the sublattice degree of freedom of graphene’s
honeycomb lattice structure, also 1ν = 1 or -1 for K or K ′ valleys of the low energy
graphene band structure, and γ = 3

2αhd ≈ 106ms−1 is the characteristic speed (αh is
the hopping amplitude originating from the tight binding approximation in which the
lattice spacing is d). A is the vector potential of constant, uniform normal magnetic
field B. Furthermore, we employ an antidot lattice in the present case by reversing
the sign of α > 0 in (16.1) and in the antidot lattice Green’s functions of (16.13).
Again (16.14) and (16.15) are applicable and the 2 × 2 “relativistic” Landau quan-
tized graphene matrix Green’s function has a spatially translationally invariant part
G ′(r − r′; t − t ′) given by the equation

[
i

∂

∂T
− γ σν ·

(
1

i

∂

∂R
− e

2
B × R

)]
G ′(R, T ) = I2δ

2(R)δ(T ), (16.29)

where R = r − r′ such that X = x − x ′,Y = y − y′ and T = t − t ′ and I2 is the
2 × 2 unit matrix.

The diagonal elements of the Green’s function matrix (ω representation) for this
system of monolayer graphene in a uniform, constant, perpendicular magnetic field
are (G ′

11
22

collectively represents G ′
11, G ′

22) [9]

G ′
11
22

(R;ω) = 1

4π�γ 2
ωe

− ω2g
8γ 2 (X

2+Y 2)
∞∑

n=0

Ln

[
ω2
g

4γ 2

(
X2 + Y 2

)]

ω2

ω2
g
− (

n + 1−1ν

2

) . (16.30)
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We introduced the notation

ωg = γ

√
2eB

�
, (16.31)

which is the cyclotron frequency for Dirac fermions.

16.5.1 Landau Quantization

The poles of G ′
11
22

(R;ω) show that the energy spectrum is Landau quantized, with

Landau level index given by n. The frequency poles of (16.30) provide the energy
spectrumof the infinite graphene sheet in perpendicularmagnetic field (at the location
of K -point) [14] as

ωK = ±ωg
√
n. (16.32)

Here the positive energy values in above equation correspond to conduction band
(electrons), and the negative energy values correspond to valence band ( holes).
Furthermore, these levels are not equidistant as in the case of Landau quantization
in conventional electronic systems. From (16.32), the maximum energy separation
occurs between the zero’th and first Landau level. Quantum-Hall effect in graphene
is the consequence of this large gap, even at normal (room) temperature [15].

And the energy pole positions at the location of K ′ point for an infinite graphene
sheet in a perpendicular magnetic field are given by (16.30) as

ωK ′ = ±ωg

√
(n + 1). (16.33)

The residues obtained at the pole positions of equations (16.32) and (16.33) represent
the relative strengths of the modes.

The K ′ point lacks the energy level with E = 0 as shown in Figs. 16.1a and b.
One can expect some interesting features due to the presence of two sublattices in
graphene, which are labeled sublattice A and sublattice B. Actually, occupation of
these sublattices gives rise to many interesting properties. Specifically, the Landau
levels corresponding to n = 0 have non-zero energies and consequently wave func-
tions at these Landau levels carry non-zero amplitudes on sublattices A and B. But,
the Landau level corresponding to n = 0 shows unique behaviour i.e the amplitude
of the wave function is non-zero only at one sublattice (sublattice A for K ′ valley or
sublattice B for K valley) because that state with energy E = 0 occurs only at one
point of the Brillouin zone i.e K or K ′ point. This asymmetry property of the wave
functions corresponding to the n = 0 Landau level makes the zero’th Landau level
play a remarkable role in various magnetic applications of graphene. The reason
behind the asymmetry of sublattices A and B is asymmetric positions of the nearest
neighboring atoms in sublattices A and B.
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Fig. 16.1 Landau levels (n=0–10) and their energies for a Landau quantized monolayer graphene.
a At K point in graphene. b At K ′ point in graphene

Fig. 16.2 Energy levels of
graphene subjected to
Landau quantization for K
point as a function of
magnetic field in units of
Tesla

0 1 2 3 4 5
0.2

0.1

0.0

0.1

0.2
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Also, note that the energy of a Landau level increases with
√
B according to

(16.31). Figure 16.2 clearly shows the increase in energy of the first five Landau
levels at the location of K point with the variation in the magnetic field from zero to
5 T esla, it also shows that the positive and negative energy Landau levels meet at
the point with E = 0 (Dirac point) when there is no magnetic field.

16.5.2 Density of States

TheDensity of states (DOS) per unit areaρ(r; E) is the imaginary part of the diagonal
matrix element of theGreen’s function, [W.Huaiyu, “Green’s Function inCondensed
Matter Physics”, Science Press, 2012.]

ρ(r; E) = ∓ 1

π
ImG±(r, r; E), (16.34)
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and the total density of states is the imaginary part of the trace of the diagonal matrix
elements of the Green’s function:

ρ(E) =
∫

drρ(r; E) = ∓ 1

π
Im

[
TrG±(E)

]
, (16.35)

where (η is a small positive number introduced to facilitate computation)

G±(r, r′; E) = lim
η→0+

G(r, r′; E ± iη) = G(r, r′; E ± i0+). (16.36)

The notation 0+ represents a positive small number and its opposite number is 0−.
(i.e: E − i0+ = E + i0−).

The Green’s function for the K-point given in (16.30) (using R2 = X2 + Y 2) can
be written as

G ′
11(R;ω)K = 1

4π�γ 2
ωe

−
(

ω2g
8γ 2

R2

) ∞∑

n=0

Ln

[
ω2
g

4γ 2 R2
]

ω2

ω2
g
− n

. (16.37)

Putting r = r′,R → 0, Peierls phase factorC(r, r′) = 1, so the energy representation
of the Green’s function (using notation G11(r, r; E)K = G(r, r; E)K ) is given by
(E = �ω; Eg = �ωg)

G(r, r; E)K = E2
g

4π(�γ )2
E

∞∑

n=0

1

E2 − nE2
g

(16.38)

Using (16.36), (16.38) may be written as

G+(r, r; E)K = E2
g

4π(�γ )2
lim

η→0+

[ ∞∑

n=0

(E + iη)

(E + iη)2 − nE2
g

]
.

It is straightforward to separate the imaginary part of the above equation for use
in (16.34), finally

(
ρ (E)

ρ0

)

K

= lim
η′→0+

[ ∞∑

n=0

(
E ′2 + η′2 + n

)
η′

(
E ′2 − η′2 − n

)2 + 4E ′2η′2

]
, (16.39)

where we have used

Eg = �ωg, ρ0 = Eg

4π2(�γ )2
, E ′ = E

Eg
, and η′ = η

Eg
, (16.40)

and for K ′-point, n is to be replaced by n + 1 in (16.39).
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Fig. 16.3 Density of states (DOS) as a function of energy at the sites of both Dirac points in a
Landau quantized monolayer graphene at two different values of η′. a DOS at η′ = 0.005 for K
point. b DOS at η′ = 0.015 for K point. c DOS at η′ = 0.005 for K ′ point. d DOS at η′ = 0.015
for K ′ point

Calculated results for both (K and K ′) Dirac points are exhibited in
Fig. 16.3a–d. These plotted results for the DOS are in good agreement with ana-
lytic results obtained in (16.32) and (16.33), i.e corresponding to the energy of each
Landau level; the densities of states show sharp peaks, and for the energies between
the Landau levels, the density of states is zero. Ideally, these lines are very sharp
like a Dirac delta function of zero width. Actually each line corresponds to a unique
Landau level (energy spectrum) with no continuum states, but we introduced a small
artificial width “η” to facilitate the computation. Physically, the small artificial width
corresponds to the continuum of energy states which are induced by interactions of
electrons with surroundings (substrate and impurities, etc.).

Also note that, generally, the K and K ′ spectra (DOS) for graphene are closely
aligned, except for the central mode of the K point, which has no K ′ counterpart as
shown by the Fig. 16.3a, c and b, d.
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16.5.3 Off-Diagonal Elements

The off-diagonal matrix elements can be calculated using the relation (γν ≡ 1νγ ) [9]

ωG ′
21
12

= [γ�XY ± iγν�Y X ]G ′
11
22

. (16.41)

In the above equation, �XY ≡ 1
i

∂
∂X + eB

2 Y and �Y X ≡ 1
i

∂
∂Y − eB

2 X are canonical
momentum operators and G ′

21
12

= G ′
21 or G ′

12 corresponds to the upper or lower ±, ∓
signs elsewhere in the equations. Making use of (16.41), the off-diagonal elements
of the Green’s function matrix for K and K ′ can be separately expressed as [16, 17]

K (1ν = +1) : G′
21
12

(R; ω) = ω2
g

8π�γ 3 e
− ω2g

8γ 2

(
X2+Y 2

)
(i X ∓ Y )

∞∑

n=1

L1
n−1

[
ω2
g

4γ 2

(
X2 + Y 2

)]

ω2

ω2
g

− n
,

(16.42)

K ′(1ν = −1) : G′
21
12

(R; ω) = ω2
g

8π�γ 3 e
− ω2g

8γ 2

(
X2+Y 2)

(i X ± Y )

∞∑

n=1

L1
n−1

[
ω2
g

4γ 2

(
X2 + Y 2

)]

ω2

ω2
g

− (n + 1)
.

(16.43)
Clearly, the off-diagonal elements interchange with the interchange of Dirac points
(K and K ′).

The Green’s function matrix in time representation can be obtained by Fourier
transform of (16.30), (16.42), (16.43) as

G ′
μν(R; t) =

∫ ∞

−∞
dω

2π
e−iωtG ′

μν(R;ω), (16.44)

where μ, ν = 1, 2 denote matrix indices.
Noting thatG ′

μν(R;ω) has real energy poles at εK = ±ωg
√
n ; εK ′ = ±ωg

√
n + 1

we employ contour integration with ω → ω + i0+ for the retarded Green’s
function with the contour closed in the lower half plane running clockwise from
+∞ to −∞. For the K -point, we have (for the K ′-point

√
n → √

n + 1)

G ′
11
22

(
x, x ′; y, y′; t) = −iη+(t)

ω2
g

4πγ 2
e− 1

2 ζ

∞∑

n=0

Ln [ζ ] cos

(
ωgl

γ

t

τo

√
n

)
, (16.45)
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G ′
21
12

(
x, x ′; y, y′; t) = −η+(t)

ω3
gl

8πγ 3
e− 1

2 ζ

[
i

(
x − x ′

l

)
∓

(
y − y′

l

)] ∞∑

n=1

L1
n−1 [ζ ]√

n

× sin

(
ωgl

γ

t

τo

√
n

)
.

(16.46)

Here, we have introduced an arbitrary constant length, l, chosen for convenience
to be the width of an impressed wave packet, and η+(t) = 0, 1 for t < 0, t > 1,
respectively, is the Heaviside unit step function; also, we have defined

ζ = 1

4

(
ωgl

γ

)2
[(

x − x ′

l

)2

+
(
y − y′

l

)2
]

,

and τo = l/γ .
To study thewave packet dynamics, we take the initial wave function to be aGaus-

sian wave packet having nonvanishing average momentum p0x = �k0x and width l,

ψ(r, 0) = f (r)√| c1 |2 + | c2 |2
(
c1
c2

)
, (16.47)

f (r) = 1

l
√

π
exp

(
− x2 + y2

2l2
+ ik0x x

)
,

where c1 and c2 are the coefficients which set the initial pseudospin polarization. Also
ψ(r, 0) can be taken as a smooth enveloping function considering that lattice period
is much smaller than the width l of the initial wave packet. The Green’s function
matrix elements Gμν(r, r′, t) determine the time evolution of an arbitrary initial state
ψ(r, 0); in Schrödinger representation it is given by

ψμ(r, t) =
∫

dr′Gμν(r, r′, t)ψν(r′, 0), (16.48)

where μ, ν = 1, 2 denote the matrix indices, which correspond to upper component
ψ1(r, t) and lower component ψ2(r, t) of state ψμ(r, t). The probability density is

ρ(r, t) =| ψ(r, t) |2=| ψ1(r, t) |2 + | ψ2(r, t) |2 . (16.49)

And to study ZB, the average value of coordinates can be represented as

x̄ j =
∫

ψ∗
1 (r, t)x jψ1(r, t)dr +

∫
ψ∗

2 (r, t)x jψ2(r, t)dr, (16.50)
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where j = 1, 2 with x1 = x and x2 = y. It is interesting to note that Zitterbewegung
oscillations can also be observed in laboratories if they fulfill appropriate require-
ments: [18]

• Oscillations should have some considerable lifetime so that they can be observed
easily.

• Frequency of the oscillations should not be greater than 1015 Hz i.e frequency
should lie in currently detectable regime.

• Amplitude of the oscillations should not be less than a few angstroms.

16.6 Wave Packet Dynamics with Various Pseudospin
Polarizations: Zitterbewegung

To obtain results for the temporal evolution of the initial Gaussian wave packet,
ZB oscillations and the effect of initial-pseudospin polarization, we have performed
numerical calculations. To facilitate it, we introduced the following dimensionless
variables: [19–21]

• A dimensionless parameter which is suitable to replace wave vector k0x is a0 =
k0x l.

• Distance of propagation of the wave packet can be measured in units of initial
width l of wave packet.

• Time can be measured in τo = l/γ (γ is Fermi velocity, 106 m/s) units.
• Some other variables can be combined to produce dimensionless variables, e.g
b = ωgl

γ
.

The Landau level summation is performed up to the 10th Landau level in all calcu-
lations since the results become convergent in this limit.

We consider four cases with different initial pseudospin polarizations {c1, c2} for
the Gaussian wave packet given in (16.47).

Case-1: {c1, c2} = {1, 0} which corresponds to initial electron probability of one
at the sites of sublattice A.

Case-2: {c1, c2} = {1, 1} corresponds to the situation where the pseudospin is
directed along the x-axis.

Case-3: {c1, c2} = {1, i} corresponds to the pseudospin directed along y-axis.
Case-4: {c1, c2} = {1, eiπ/4} implies that at time t=0, the pseudospin lies in x-y

plane making an angle of 45o with x-axis.
The numerical results obtained from (16.48), (16.49) are plotted in Fig. 16.4.
In Fig. 16.4, the electronic probability density is plotted for parameters t=1, 5,

10τo, with momentum k0x = 0.6nm−1, width l=2 nm so that a0=k0x l=1.2 and τo=2
femtosecond and B=3.3 in units of T esla, i.e. ωg � 1 × 1014 Hz. B=3.3T is chosen
to facilitate comparison with work in the literature and also because it facilitates
numerical computation as ωg is a round figure at this value [19]. Left panel shows
the initial wave packet at a very small time t=1τo, and as we move from left to



490 N. J. M. Horing et al.

right the time evolution of the initial Gaussian packet can be seen for different initial
pseudospin polarizations. The strength of the electron probability density ρ(x, y, t)
is given by the color bar on the right side.

As one can see in Fig. 16.4a, b, c, the wave packet spreads and propagates in the
plane of the graphene sheet in the form of rings for the pseudospin c1=1 and c2=0.
Initially in Fig. 16.4a, maximum probability of the electron is located at the origin,
but as time increases, the wave packet propagates and the electron density can be
found at a radius of r � 24 nm in 20 f s. Similarly, for the other three cases, the wave
packet propagates with its maximum probability density in the direction of the initial
pseudospin polarizations, but in the shape of incomplete rings; this is because the
probability density gradually decreases in the directions away from the direction of
pseudospin polarization. It propagates in the x direction when the initial pseudospin
polarization is along the x axis (see Figs. 16.4d, e, f), in the y direction when initial
pseudospin polarization is along the y axis (see Figs. 16.4g, h, i) and it propagates
in (x, y)=(1, 1) direction when initial pseudospin is polarized along (x, y)=(1, 1)
direction (see Figs. 16.4j, k, l). This is because of the conservation of chirality, in
which momentum gets aligned with pseudospin and σ ν .p remains conserved. Also,
the distance covered by the wave packet in these three cases is r � 24 nm in 20 f s.
Hence the direction of propagation of a wave packet in Landau quantized graphene
can be controlled using pseudospin polarization. Also, the wave packet propagates
without any splitting; splitting was observed in the case of monolayer graphene in
the absence of a magnetic field [19]. We propose that, experimentally, this type of
controlled propagation of a wave packet in any direction can easily be obtained using
photonic graphene as test beds [22].

Also note that the electronic probability densities plotted in Fig. 16.4 are not
symmetric with respect to both x and y axes: ρ(x, y, t){c1,c2} = ρ(−x, y, t){c1,c2}
and ρ(x, y, t){c1,c2} = ρ(x,−y, t){c1,c2} for any pseudospin polarization (subscript
{c1, c2} defines the corresponding pseudospin polarization): This means that center
of the wave packet is oscillating along both the x as well as the y directions; these
oscillations can be readily recognized as Zitterbewegung oscillations.

To examine this trembling motion we use (16.50) and solve it numerically for
expectation values of both x and y coordinates. Figures16.5 a, c, e, g and b, d, f, h
show the oscillations in thewave packet’s center along x and y directions respectively.
Results are plotted for two values of initial momentum k0x = 0.6 and 0.8 i.e a0 =
k0x l = 1.2 and 1.6, given by solid and dotted lines for four different values of
pseudospin polarization. It is clear from Fig. 16.5 that an increase in momentum
results in a decrease in amplitude of Zitterbewegung oscillations without any other
change in the behaviour of ZB. In further discussion, ZB oscillations corresponding
to different pseudospin polarizations will be referred to as x̄{c1,c2} and ȳ{c1,c2}.

The ZB oscillations shown in Fig. 16.5 are of the order of nanometers (easily
detectable), except x(t){1,0} and x(t){1,i} which are of the order of 0.1pm. On com-
paring the ZB oscillations x(t){1,0}, x(t){1,1}, x(t){1,i}, we have concluded that when
the direction of initial momentum (x-axis) is perpendicular to initial pseudospin
polarizations (z, y-axis) then the ZB oscillations have very small amplitude in the
direction of initial momentum. Note that, ZB oscillations in Figs. 16.5g and h are
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Fig. 16.4 (Color online) The electron probability density ρ(x, y, t) for an initial Gaussian wave
packet with B = 3.3T esla, a0=k0x l=1.2 at times 1τo, 5τo and 10τo. Time increases as we move
from left to right. Color bar given at extreme right side shows the strength of probability density
from its minimum to its maximum. Up to down: Four rows with initial pseudospin polarizations
{1, 0},{1, 1},{1, i} and {1, ei π

4 } with pseudospin and propagation directed in the radial, x , y and
(x = 1, y = 1) directions respectively. [Reproduced from “R. A. W. Ayyubi, N. J. M. Horing, and
K. Sabeeh. Effect of pseudospin polarization on wave packet dynamics in graphene antidot lattices
(GALs) in the presence of a normal magnetic field. Journal of Applied Physics, 129(7):074301,
2021”, with the permission of AIP Publishing. https://aip.scitation.org/doi/10.1063/5.0038316]

very similar to those of Fig. 16.5c and f respectively. This is because pseudospin
polarization {1, ei π

4 } has projections on both x and y axes so ZB oscillations in this
case have detectable amplitude in both directions.

In Figs. 16.5a–h we have seen that initially the amplitude of the Zitterbewegung
oscillations increases, then these oscillations seems to die out but reappear for all
pseudospin polarizations. For example in Fig. 16.5c these oscillations reappear at
t � 18, 55, 84τo... . Hence, when there is a magnetic field applied to the system,
Zitterbewegung oscillations are not transient; rather they are recurrent. Also, in the
presence of the magnetic field, several ZB frequencies appear (see Figs. 16.5a–h).
This is different from the ZB phenomenon observed in monolayer graphene without
a magnetic field, in which ZB oscillations are transient having a single frequency
[19].

https://aip.scitation.org/doi/10.1063/5.0038316
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Fig. 16.5 Average coordinates x̄(t) (left column) and ȳ(t) (right column) versus time (τo = l/γ )

corresponding to four different values of pseudospin polarization (changing from up to down), at
two values of momentum a0 with B = 3.3T esla. a, c, e, g: x̄(t) versus time corresponding to
pseudospin polarizations {1, 0},{1, 1}, {1, i} and {1, ei π

4 } respectively. b, d, f, h: ȳ(t) versus time
corresponding to pseudospin polarizations {1, 0},{1, 1}, {1, i} and {1, ei π

4 } respectively. Here l ′=l ×
10−5. [Reproduced from “R. A. W. Ayyubi, N. J. M. Horing, and K. Sabeeh. Effect of pseudospin
polarization on wave packet dynamics in graphene antidot lattices (GALs) in the presence of a
normal magnetic field. Journal of Applied Physics, 129(7):074301, 2021”, with the permission of
AIP Publishing. https://aip.scitation.org/doi/10.1063/5.0038316]

Hence, the results in hand are in agreement with the previous studies in
both respects i.e., (1) in the presence of a magnetic field ZB oscillations are
permanent and (2) ZB oscillations strongly depend on initial pseudospin polarization
[23, 24]. Finally, in Fig. 16.6 we have plotted the average coordinates x̄(t){c1,c2} and
ȳ(t){c1,c2} against each other to study the ZB trajectory of the center of the wave
packet corresponding to the Figs. 16.5c, d. Initially due to large ZB, the center of the
packet sweeps a large area. For a better understanding, we have shown a zoomed

https://aip.scitation.org/doi/10.1063/5.0038316
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Fig. 16.6 Average coordinates x̄(t) versus ȳ(t) corresponding to pseudospin polarization
{c1, c2}={1, 1} for momentum a0 = 1.2 with B = 3.3T esla. a ZB Trajectory for t = 0 to t =
100τo(0.2ps). b Zoomed view of the same trajectory for t = 7τo to t = 100τo. [Reproduced from
“R. A. W. Ayyubi, N. J. M. Horing, and K. Sabeeh. Effect of pseudospin polarization on wave
packet dynamics in graphene antidot lattices (GALs) in the presence of a normal magnetic field.
Journal of Applied Physics, 129(7):074301, 2021”, with the permission of AIP Publishing. https://
aip.scitation.org/doi/10.1063/5.0038316]

view of the ZB trajectory in Fig. 16.6b. Due to the presence of recurrent ZB, these
trajectories do not disappear with time (infinite trajectories) [21].

It is well known that the electronic band structure of graphene can be modified by
introducing external ID potentials using nanopatterning [25]. These 1Dpotentials can
not onlymodify the energy spectrum of the system but they also help us to control the
charge transport properties of the system [26–30]. Potentials such as antidot lattices
can be carved on graphene by various techniques and lattice parameters can be tuned
[31, 32]. With the aim of controlling electron propagation in graphene along a 1D
channel, we introduce a 1D antidot lattice in the following section.

16.7 Graphene Antidot Lattice in the Presence
of a Magnetic Field

As discussed in Sect. 16.2 we consider a two-dimensional graphene sheet having
a one dimensional lattice of quantum antidot potential barriers, with a quantiz-
ing magnetic field B, which is perpendicular to the plane of the graphene sheet.
The antidot array is modeled by Dirac delta functions periodically spaced along the
x-axis at xn′ = n′d, y ≡ 0 as

U (r) = U (x, y) = α

∞∑

n′=−∞
δ(x − n′d)δ(y), (16.51)

https://aip.scitation.org/doi/10.1063/5.0038316
https://aip.scitation.org/doi/10.1063/5.0038316
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Fig. 16.7 Two dimensional graphene sheet having a one dimensional lattice of quantum antidot
barriers at y = 0. Solid black circles represent periodically placed quantum antidots along the x-
axis. a2 is the dot area and d is the uniform separation of the periodically placed quantum antidot
potential barriers. [Reproduced from “R. A. W. Ayyubi, N. J. M. Horing, and K. Sabeeh. Effect
of pseudospin polarization on wave packet dynamics in graphene antidot lattices (GALs) in the
presence of a normal magnetic field. Journal of Applied Physics, 129(7):074301, 2021”, with the
permission of AIP Publishing. https://aip.scitation.org/doi/10.1063/5.0038316]

where α > 0 for antidot potential strength, with integers n′ = −∞ to +∞ and

α = U0 a2, (16.52)

whereU0 is the barrier height,a2 is area and d is the uniform separation of the periodic
quantum antidot potential barriers as shown in Fig. 16.7. The associated Green’s
functionG(x1, x2; 0, 0;ω) for the twodimensionalKrönig-Penney-likemodel having
a one dimensional antidot lattice, for an electron propagating directly along the axis
of the antidot lattice (y ≡ 0 ≡ y1 ≡ y2 and suppressing further reference to y) is
completely analogous to that of the quantum dot lattice discussed in Sect. 16.2. This
Green’s function is given by [33]

G(x1; x2;ω) = G0(x1; x2;ω) + αd

2π

∞∑

n′=−∞
G0(x1; n′d;ω)

×
∫ π

d

− π
d

dp e−i pn′d
[
1 − α

˙̃G0(p; 0, 0;ω)
]−1

G̃0(p; x2;ω). (16.53)

Here, G0(r1, r′
1) is the Green’s function for graphene in a perpendicular magnetic

field in the complete absence of quantum antidot potential barriers, which is given by
(16.30),(16.42) and (16.43), while the overhead dot represents the spatially transla-
tionally invariant Green’s function i.e. G0(m ′d, n′d;ω) = Ġ0([m ′ − n′]d;ω) where
m ′ and n′ are integers. Also, the Green’s function G̃(p) can be expanded in a Fourier
series due to the periodicity of the lattice, given by [33]

https://aip.scitation.org/doi/10.1063/5.0038316
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G̃(p) =
∞∑

r=−∞
eiprdG(rd), (16.54)

where r = 0, 1, 2, 3... are integers, with

G(m ′d) = d

2π

∫ π
d

− π
d

dpe−i pdm ′ G̃(p), (16.55)

and

Ġ0([m ′ − n′]d) = d

2π

∫ π
d

− π
d

dpe−i p(m ′−n′)d ˙̃G0(p). (16.56)

It is important to note that the Peierls phase factor isC(r, r′)=1 for the case involving
propagation directly along the axis of the antidot lattice (our choice y ≡ 0 ≡ y1 ≡ y2
results in r ‖ r′). Therefore C(r, r′) does not appear in (16.53) and the eigen-energy
spectrum given by poles of (16.53) is unaffected by C(r, r′).

16.7.1 Landau Minibands

The energy spectrum of this system can be obtained from the vanishing of the fre-
quency poles of the Green’s function of (16.53):

Det (I2 − α
˙̃G0(p; 0, 0;ω)) = 0. (16.57)

Equations (16.30) and (16.42) taken jointly with (16.54) yield (Y = 0, X2 + Y 2 =
X2 = (rd)2)

˙̃G0
11
22

(p; 0, 0;ω)K = 1

4π�γ 2
ω

∞∑

r=−∞
eiprde

− ω2g
8γ 2

(rd)2
∞∑

n=0

Ln

[
ω2
g

4γ 2 (rd)2
]

ω2

ω2
g
− n

, (16.58)

and

˙̃G0
21
12

(p; 0, 0;ω)K = iω2
g

8π�γ 3

∞∑

r=−∞
(rd) eiprde

− ω2g
8γ 2

(rd)2
∞∑

n=1

L1
n−1

[
ω2
g

4γ 2 (rd)2
]

ω2

ω2
g
− n

,

(16.59)
for the K point in graphene. It is clear from (16.58) and (16.59) that
˙̃G0
11(p; 0, 0;ω)K

= ˙̃G0
22(p; 0, 0;ω)K and ˙̃G0

12(p; 0, 0;ω)K = ˙̃G0
21(p; 0, 0;ω)K . Hence (16.57) can be

written as
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1 − 2α ˙̃G0
11 + α2

( ˙̃G0
11

2 − ˙̃G0
12

2
)

= 0. (16.60)

Note that since the antidot radius is very small (i.e αωg

4π�γ 2 � 1), a root of (16.60) ω

approaches the pole position i.e ω → ωn , so that the n-th pole has the primary influ-
ence in determining the eigen-energy root ωn . Therefore, we can make a reasonable
first approximation by dropping all other terms of the n-sum. Also, for ωgd

8γ > 1 , it
suffices to keep only r = −1, 0, 1 terms of the r -sum in (16.58) and (16.59). This
imposes the following condition on antidot spacing [21]

d >
145√

B(T esla)
(nm). (16.61)

Finally, (16.60) can be written as

1 − 2
ωg�ωn

ω2
n − nω2

g

+ ω2
g�

2ω2
n

(
ω2
n − nω2

g

)2 − ω4
gκ

2

(
ω2
n − nω2

g

)2 , (16.62)

where we have defined

� = αωg

4π�γ 2

[
1 + 2 cos pde

− ω2g
8γ 2

d2

Ln

(
ω2
g

4γ 2
d2

)]
, (16.63)

and

κ = αωg

4π�γ 2

(
ωgd

γ

)
sin pde

− ω2g
8γ 2

d2

Ln

(
ω2
g

4γ 2
d2

)
. (16.64)

The four roots of (16.62) describe the energy spectrum at the K point of graphene
having a 1-D antidot lattice placed in a uniform normal magnetic field:

ωn,K = � ± √
�2 + 4(n ±′ κ)

2
ωg. (16.65)

Similarly, for the K ′ point, n will be replaced by n + 1 on the right hand side of
(16.65).

In this, we have the energy spectrum composed of broadened Landau levels (Lan-
dau minibands) for a graphene antidot lattice in a quantizing magnetic field. Each
Landau level has split into two branches and each branch has broadened into a small
continuous band (subband) of energy states instead of a single energy. Figure 16.8a
and b show the Landau minibands at the location of K and K ′ points. The broad-
ening is so small that it can not be observed with the naked eye, so we multiplied
a broadening factor β = 200 with the oscillatory terms cos(pd) and sin(pd). The
parameter β introduces an increase in the amplitude of the minibands to facilitate
observation of the broadening of the Landau minibands; i.e we used
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Fig. 16.8 Landau minibands (n = 0 − 3) in Landau quantized graphene having a one dimensional
antidot lattice with antidot potential U0=100 meV, antidot radius a=10 nm and spacing d=100 nm
in the presence of magnetic field B=3.3T esla. a K point. b K ′ point. [Reproduced from “R. A. W.
Ayyubi, N. J.M. Horing, andK. Sabeeh. Effect of pseudospin polarization onwave packet dynamics
in graphene antidot lattices (GALs) in the presence of a normal magnetic field. Journal of Applied
Physics, 129(7):074301, 2021”, with the permission of AIP Publishing. https://aip.scitation.org/
doi/10.1063/5.0038316]

� = αω2
g

4π�γ 2

(
1 + 2β cos(pd)e

− ω2g
8γ 2

d2

Ln

[
ω2
g

4γ 2
d2

])

and

κ = αωg

4π�γ 2

(
ωgd

γ

)
β sin(pd)e

− ω2g
8γ 2

d2

Ln

(
ω2
g

4γ 2
d2

)

to exhibit the Landauminibands plotted in Fig. 16.8. The energy spectra of the K and
K ′ points differ by a unit shift even in the presence of an antidot lattice. The presence
of antidots induced a gap between the conduction and valence bands at both K and
K ′ points. In the case of Fig. 16.8, if we consider β = 1 with all other parameters
having same values, then the gap opened at the locations of the K and K ′ points is
7.96 meV and 132 meV, respectively. This gap between the conduction and valence
bands increases with increase in strength of the magnetic field and reaches 36.25
and 283.4 meV for K and K ′ points respectively when B=15T esla. Similarly, this
gap shows an increase with increase in strength of the antidot lattice. Note that when
the antidot strength α approach zero (which means no antidot lattice), � and κ also
approach zero, i.e

lim
α→0

� = 0 = lim
α→0

κ.

https://aip.scitation.org/doi/10.1063/5.0038316
https://aip.scitation.org/doi/10.1063/5.0038316
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Fig. 16.9 Dimensionless
width δE/Eg of the Landau
minibands as a function of
Landau level index n for
K point at U0=100 meV,
a=10 nm, d=100 nm and
B=3.3 in units of Tesla so
that Eg = �ωg = 65.9meV
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In this case (16.65) reduces to the case of a discrete eigen-energy spectrum of
graphene in a normal, uniform magnetic field. The width of Landau minibands for
the K point of graphene is


ωn,K = [ωn,K ]p= 2π
d

− [ωn,K ]p= π
d
.

Evaluation of this expression for the width of Landau minibands yields


ωn,K

ωg
= α′� ± 1

2

√
α′2(1 + �)2 + (2

√
n)2 ∓ 1

2

√
α′2(1 − �)2 + (2

√
n)2,

(16.66)
where we have defined

α′ = αωg

4π�γ 2
� = 2e

− ω2g
8γ 2

d2

Ln

[
ω2
g

4γ 2
d2

]
.

Upper and lower signs are used for conduction and valence bands respectively. For
the width of the Landau minibands for the K ′ point, we have (2

√
n + 1)2 in place

of (2
√
n)2 in (16.66).

Thewidth of Landauminibands as a function of Landau index n for the conduction
band at the K point is plotted in Fig. 16.9. The parameters used are the same as the
parameters used in Fig. 16.8.

To investigate electron propagation in the system under study, first we have to find
the Green’s function matrix of the system in time representation. This is evaluated
in Sect. 16.8.
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16.8 Green’s Functions: Frequency and Time
Representation

To evaluate the full Green’s function matrix G(x1; x2;ω)K given in (16.53), we have

to find the G0(x1; x2;ω),G0(x1; nd;ω),
˙̃G0(p; 0, 0;ω) and G̃0(p; x2;ω) matrices.

These four matrix Green’s functions can be easily determined using G0(x1; x2;ω),
which is theGreen’s function in the presence of a perpendicular and uniformmagnetic
field in the absence of an antidot lattice given in (16.30) and (16.42).

For propagation along the antidot lattice i.e the x axis only (y1 = 0 = y2, X =
x1 − x2 and C(r1; r2) = 1), (16.30) and (16.42) reduce to (for K -point)

G0
11
22

(x1, x2;ω)K = 1

4π�γ 2
ωe

− ω2g
8γ 2

(x1−x2)
2

∞∑

n=0

Ln

[
ω2
g

4γ 2 (x1 − x2)
2
]

ω2

ω2
g
− n

, (16.67)

G0
21
12

(x1, x2;ω)K = iω2
g

8π�γ 3
e
− ω2g

8γ 2
(x1−x2)

2

(x1 − x2)
∞∑

n=1

L1
n−1

[
ω2
g

4γ 2 (x1 − x2)
2
]

ω2

ω2
g
− n

,

(16.68)

respectively. Matrix elements of G0(x1; n′d;ω)K can be obtained by taking x2=n′d
in (16.67) and (16.68), while matrix elements of ˙̃G0(p; 0, 0;ω)K are given in (16.58)
and (16.59).

Similarly, the matrix G̃0(p; x2;ω)K can be obtained by using x1=rd in (16.67)
and (16.68) jointly with (16.54). Note that for ωgd

8γ > 1, it suffices to keep only

r = −1, 0, 1 of the r -sum in the expressions for matrix elements of ˙̃G0(p; 0, 0;ω)K
and G̃0(p; x2;ω)K , as discussed earlier. The above four matrix Green’s functions
completely determine the full Green’s function G(x1; x2;ω)K given in (16.53).

As discussed earlier, for temporal evolution of the wave packet we require the
time representation of the Green’s function. Hence, to find the time representation
of the full Green’s function, we have to take the Fourier transform of G(x1; x2;ω)K
matrix using (16.44) and (16.53):

Gμν(x1, x2; t)K =
∫ ∞

−∞
dωe−iωtG0(x1; x2;ω) + αd

2π

∫ ∞

−∞
dωe−iωt

×
∞∑

n′=−∞
G0(x1; n′d;ω)

∫ π
d

− π
d

dpe−i pn′d
[
1 − α

˙̃G0(p; 0, 0;ω)
]−1

G̃0(p; x2;ω).

(16.69)

There are two integrals in the above equation. The first integral was evaluated in
(16.45) and (16.46) as
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G0
11
22

(x1, x2; t) = −iη+(t)
ω2
g

4πγ 2
e
− ω2g

8γ 2
(x1−x2)

2
∞∑

n=0

Ln

[
ω2
g

4γ 2
(x1 − x2)

2

]

× cos

(
ωgl

γ

t

τo

√
n

)
, (16.70)

and

G0
21
12

(x1, x2; t) = −iη+(t)
ω3
gl

8πγ 3
e
− ω2g

8γ 2
(x1−x2)

2
(
x1 − x2

l

) ∞∑

n=1

L1
n−1

[
ω2
g

4γ 2 (x1 − x2)
2
]

√
n

× sin

(
ωgl

γ

t

τo

√
n

)
.

(16.71)

Evaluation of the second term of (16.69) is a lengthy process. The matrix ele-
ments Vi, j (t) (i, j=1, 2) of the second term in time representation are given by (see
Appendix 2) [21]

V 11
22

= −iη+(t)
ωg

2π

∞∑

n′=−∞

{
γ1

[
c 11

22
(η)

]

η=0
+

∞∑

n=1

cos

(
ωgl

γ

t

τo

√
n

)

×
[
γ1Ln [ϒ] c 11

22
(η) + γ2√

n
L1
n−1 [ϒ] c 21

12
(η)

]

η=√
n

}
,

(16.72)

and

V 12
21

= −η+(t)
ωg

2π

∞∑

n′=−∞

{
iγ1

[
c 12

21
(η)

]

η=0
+

∞∑

n=1

sin

(
ωgl

γ

t

τo

√
n

)

×
[
γ1Ln [ϒ] c 12

21
(η) + γ2√

n
L1
n−1 [ϒ] c 22

11
(η)

]

η=√
n

}
,

(16.73)

where

ϒ = ω2
gl

2

4γ 2

(
x1 − n′d

l

)2

, γ1 = αωg

4π�γ 2
e− ϒ

2 , (16.74)

γ2 = iαω2
gl

8π�γ 3

(
x1 − n′d

l

)
e− ϒ

2 , (16.75)

and ci j (η) (where η= ω
ωg
) are thematrix elements of the following integral (see (16.91)

and (16.94); notation q ≡ pd):
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∫ π

−π

dqe−iqn′ [
I − α

˙̃G0(p; 0, 0; η)
]−1

G̃0(p; x2; η).

These considerations yield the time representation of the full Green’s function, i.e.
G(x1, x2; t)K for a Landau-quantized monolayer graphene having a one dimensional
antidot lattice. In Sect. 16.9, this Green’s function G(x1, x2; t)K will be employed to
study the temporal dynamics of a wave packet in the lattice system.

16.9 Wave Packet Dynamics Along a One-Dimensional
Antidot Lattice

With the solution of (16.69) in hand, in the form of (16.70), (16.71), (16.72) and
(16.73), the temporal study of an electron wave packet propagating along the axis of
the antidot lattice due to an initial, incident wave packet given by

ψ(r, 0) = f (r)√| c1 |2 + | c2 |2
(
c1
c2

)
, (16.76)

where

f (r) = 1

l
√

π
exp

(
− x2 + y2

2l2
+ ik0x x

)
δ(y)

can be made using (16.48) and (16.49). In Fig. 16.10, results for the probability
density ρ(x, 0, t) of an electron along the x-axis of the antidot lattice (y = 0) are
plotted for four different cases to examine the effect of the antidot lattice.

In Fig. 16.10, ρ(x, 0, t) is represented at times t = 1τo and t = 5τo with solid and
dashed lines, respectively. Moving from left to right, the three columns correspond to
three different pseudospin polarizations {c1, c2}, while from up to down the four rows
represent the increase in antidot strength EA = U0 from zero meV to 330 meV with
constant magnetic field strength EB = 66 meV (EB ≡ �ωg) at B = 3.3T esla. All
three columns represent the propagation of the wave packet along the x axis (y = 0).
One can see thatwith the increase in antidot strength, the probability density offinding
the electron starts increasing along the axis of the antidot lattice. Row 1 corresponds
to the situation when there is no antidot lattice and the wave packet propagates in
graphene under the effect of the perpendicular magnetic field only. Similarly, rows
2, 3 and 4 correspond to EA = U0 = 13.2, 66 and 330 meV respectively. Clearly,
the probability of finding an electron along the antidot direction increases with the
introduction of the antidot lattice on a Landau quantized graphene sheet; this can be
treated as the propagation of a wave packet through a quantum antidot wire, which
is clearly supporting the propagation through it. Also, the probability density gets
more confined with increase of antidot strength; this can be seen in rows 2, 3 and
4 of Fig. 16.10. Moving from up to down across the rows 2–4, the spread of the
packet gets smaller with a clear increase in magnitude of probability density, which
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Fig. 16.10 Electron probability density ρ(x, 0, t) for K point along the x axis in the presence of a
uniform magnetic field B = 3.3T esla having strength EB = �ωg = 66 meV for a0 = k0x l = 1.2
with l = 2 nm; also antidot lattice parameters, spacing d = 100 nm and radius a = 10 nm. Left to
right: Three columns with initial pseudospin polarization {1, 0}, {1, 1} and {1, i}, respectively. Up
to down: Four rows with antidot strength EA = U0 = 0, 13, 66 and 330 meV respectively. [Repro-
duced from “R. A. W. Ayyubi, N. J. M. Horing, and K. Sabeeh. Effect of pseudospin polarization
on wave packet dynamics in graphene antidot lattices (GALs) in the presence of a normal magnetic
field. Journal of Applied Physics, 129(7):074301, 2021”, with the permission of AIP Publishing.
https://aip.scitation.org/doi/10.1063/5.0038316]

means that the probability of finding an electronic current along the antidot lattice
increases. This may be referred to as collimation of the electronic beam along the
axis of antidot lattice.

Further, we explore the effect of initial pseudospin polarization on thewave packet
dynamics in the presence of an antidot lattice, as shown in Fig. 16.10. In Fig. 16.10,
it can be seen that propagation of the wave packet is strongly affected by the change
of pseudospins polarization across the rows. Columns 1 and 3 correspond to pseu-

https://aip.scitation.org/doi/10.1063/5.0038316
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dospins {1, 0} and {1, i}, respectively, and the propagation corresponding to these
two columns is similar because the pseudospins are both perpendicular to the axis
of the antidot lattice, and the center of the wave packet does not propagate with
an increase in time; it is always located at x = 0 without being affected by antidot
strength, as shown in Figs. 16.10a, d, g, h and c, f, i, l. But, one can see in Figs.
16.10b, e, h, k (column 2) that the center of the wave packet propagates along the
axis of the antidot lattice when the initial pseudospin polarization is along the axis
of the antidot lattice i.e. x axis: At t = 5τo the dashed lines clearly show the prop-
agation of the wave packet when compared with the solid lines at t = 1τo. Hence,
the wave packet only propagates along the one dimensional antidot lattice when the
initial pseudospin polarization is parallel to the axis of antidot lattice [21].

16.9.1 Experimental Relevance

We now address the question of experimental relevance of this work. In this regard,
we note that it is possible to initialize the pseudospin and study the dynamics of
an electron wave packet in graphene by means of pump-probe laser spectroscopy.
Experiments have been performedwhere pseudospin initialization and its subsequent
relaxation have been probed on the femtosecond scale in graphene [34–36]. Recently
it has been shown that pesudospin can bemanipulated by a coupledwaveguide-cavity
configuration in graphene [37].

Another possibility is the creation of artificial graphene (honeycomb lattices) in
cold atom systems. In these systems, it is possible to generate effective fields and
study transport in graphene-like structures [38–41].

Recently it has become possible to treat pseudospin as a real measurable angular
momentum at par with electron spin in photonic graphene (honeycomb array of
evanescently coupled waveguides) [22, 39]. These photonic systems allow a great
degree of control of initial conditions in the study of wave packet dynamics.

16.10 Discussion

In summary, thisworkfirst addressed the role of a normal quantizingmagnetic field on
two-dimensional Schrödinger electrons in an quantum dot lattice. The quantum dots
are modeled by a row of uniformly spaced Dirac delta-function potential profiles
on the x-axis, and the associated Green’s function was formulated as an integral
equation. It was seen to devolve upon a discrete matrix equation that was solved
exactly for propagation confined to the x-axis of the lattice (with simplification of the
Peierls phase factorC(r, r′) → 1 due to y ≡ 0). The frequency poles of this Green’s
function describe the eigenenergy dispersion relation, which has been exhibited in
closed form in terms of the Jacobi Theta Function of the third kind. An alternative
formulation of the dispersion relation is presented in terms of Laguerre polynomials,
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and was solved approximately, exhibiting the proliferation of broadened Landau
quantized eigenstates into Landau minibands.

Furthermore, we studied the evolution of a two dimensional Gaussianwave packet
in a graphene sheet placed in a uniform and perpendicular magnetic field. We have
observed that the temporal dynamics of the wave packet strongly depends on the
initial pseudospin polarization. We have shown that direction of propagation of the
wave packet can be controlled through pseudospin polarization.

Further, we have studied the effect of pseudospin on trembling motion (ZB) of the
Gaussian wave packet in a graphene sheet placed in a quantizing magnetic field for
non zero values of the initialmomentum k0x . Initially, theseZBoscillations seemingly
die out but reappear i.e. the amplitude of the ZB oscillations start to grow again
without any fundamental frequency. So, for finite magnetic fields, ZB oscillations
have a recurrent character and they do not die with time. The quantized (discrete)
energy spectrum, which is a consequence of the magnetic field, is the main reason for
the recurrent character of ZB oscillations. This property is completely different from
the zero magnetic field case, in which the energy spectrum is not quantized (discrete)
and ZB of the wave packets has a transient character [42]. Most importantly, we have
found that in the presence of a magnetic field, ZB has strong dependence on initial
pseudospin polarization, which can be regarded as pseudospinorial Zitterbewegung
(PZB), a name given in a recent study [24].

In our study of wave packet dynamics in a one dimensional antidot lattice in
graphene in the presence of the magnetic field, we determined the associated Green’s
function matrices of the system both in frequency and time representations. From
the poles of the Green’s function, we found that along the axis of the antidot lattice,
the energy spectrum is composed of Landau minibands with a unit shift at K and
K ′ points of graphene. In the time evolution of the wave packet, we found that the
wave packet dynamics are highly dependent on the initial pseudospin polarization,
as indicated above and, specifically, the center of the Gaussian wave packet can be
made to propagate along the antidot lattice by tuning the pseudospin parallel to the
axis of the antidot lattice. Also, when the strength of the antidot potential is greater
than the strength of the magnetic field, the wave packet becomes more confined in
space and the probability of finding it on the axis of the antidot lattice significantly
increases. Hence, we propose that quantum antidot channels can be made such that
propagation of the wave packet can be controlled using pseudospin polarization and
the strength of the antidot potential. Finally, we would like to point out that this
work may lead to new insights for controlling currents in both natural and artificial
graphene systems by tuning initial pseudospin polarization, both in Landau quantized
graphene and in a graphene antidot lattice in the presence of a magnetic field. This
may lead to the preparation of graphene based nano gates in which two different
pseudospin polarizations perpendicular to each other can be used to get “ON” and
“OFF” states [21].
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Appendix A

16.11 Zitterbewegung Phenomenon

Zitterbewegung is the jittery motion of the Dirac electron. It occurs when one tries to
confine theDirac electrons. According to theHeisenberg uncertainty principle, local-
ization of the electron wave packet leads to uncertainty in momentum. For particles
with zero rest mass (massless Dirac particles), uncertainty in momentum translates
into uncertainty in energy of the particle (This should be contrasted with the nonrel-
ativistic case, where the position-momentum uncertainty relation is independent of
the energy-time uncertainty relation) [27].

16.11.1 Prediction and Interpretation of Zitterbewegung by
Schrödinger

Schrödinger discovered a highly oscillatory motion of the electron with velocity c
during his work on the time evolution of the position operator, which he named
Zitterbewegung [43]. Schrödinger attempted to explain this phenomenon in terms
of microscopic dynamical variables i.e coordinate and momentum. To determine the
time evolution of the position operator, Schrödinger used Dirac’s Hamiltonian for
the free electron-positron system, which is

H = cα.q + mc2β.

[
β =

(
I 0
0 −I

)]
(16.77)

In the above equation α and β satisfy the following anti-commutation relations:

{αi ,α j } = 2δi j I ; {αi , β} = 0; β2 = I,

where i, j = 1, 2, 3 and I is a unit matrix. Also the momentum operator q and coor-
dinate operator x commute with α and β, and satisfy the canonical anti-commutation
relations for Fermions

{xi , x j } = {qi ,q j } = 0 and {xi ,q j } = i�δi j I.

In the Heisenberg picture, the time derivative of any one of these operators, say A,
which does not have explicit time dependence is given by
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d A

dt
= i

�
[H, A]. (16.78)

As a result
dq
dt

= 0,
dH

dt
= 0,

dx
dt

= cα, (16.79)

and (16.77) and (16.78) for the operator α give

− i�
dα

dt
= [H,α] = 2Hα − {H,α} = 2Hα − 2cq. (16.80)

Above equation can be written as

−i�
dα

dt
= 2Hη,

where we have defined
η = α − cH−1q. (16.81)

Schrödinger noted that

−i�
dη

dt
= −i�

dα

dt
= 2Hη,

which yields

η(t) = e
2i Ht

� η0 wi th η0(0) = α(0) − cH−1q. (16.82)

Using {H, η} = 0 = {H, η0}, (16.82) can also be written as

η(t) = η0e
−2i Ht

� . (16.83)

Combining (16.80), (16.81) and (16.83), Schrödinger obtained

dx
dt

= cα = c2H−1q + cη0e
−2i Ht

� ,

which on integration yields

x(t) = a + c2H−1qt + i

�
cη0H

−1e
−2i Ht

� , (16.84)

where a is an operator which is a constant of integration with the definition

a = x(0) − i

2
�c2H−2q. (16.85)
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Defining
xA(t) = a + c2H−1qt,

equation (16.84) will become

x(t) = xA(t) + ξ(t),

where we have defined

ξ(t) = i

2
�cη0H

−1e
−2i Ht

� = i

2
�cηH−1. (16.86)

Here, the term ξ(t) corresponds to a microscopic coordinate which oscillates at high
frequency known as Zitterbewegung (ZB). This motion is superimposed on a macro-
scopic type of motion associated with the coordinate xA. Characteristic amplitude
associated with Zitterbewegung is �

2mc and this amplitude is equal to half of the
Compton wavelength of an electron, while the characteristic angular frequency of
the Zitterbewegung is 2mc2

�
.

Schrödinger went on to note, that if the orbital-angular momentum L and spin
vector S are introduced as

S = − i

4
�α × α and L = x × q

then both L and S alone are not constant but their sum L + S is a constant of the
motion. Schrödinger found

S(t) = SA − η(t) × q

and
L(t) = LA + η(t) × q,

where SA and LA are constants and the term η(t) × q is oscillatory. Finally he found
that

L + S = LA + SA. (16.87)

This constant of the motion allowed Schrödinger to explain Zitterbewegung in terms
of microscopic dynamical variables spin and orbital angular momentum [43].
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16.11.2 Zitterbewegung: Interpretation in Terms
of Interference Between Positive and Negative
Energy States

It can be easily verified that (16.84) along with (16.82) and (16.85) can be written as

x(t) = x(0) + c2q
H

t + �c

2i H

(
e

2i Ht
� − 1

) (
α(0) − cq

H

)
. (16.88)

Also (16.80) can be brought to the form

Hα + αH = 2cq,

and hence
H

(
α − cq

H

)
−

(
α − cq

H

)
H = 0. (16.89)

Along with the initial term x(0) at t = 0, (16.88) also carries two more terms, one of
them is linear in time t and corresponds to group velocity, while the second term is
oscillatory in nature and is known as Zitterbewegung. α − cq

H is an operator whose
matrix elements are required to evaluate the average value

∫
ψ†(0, x)x(t)ψ(0, x)d3x .

Nonvanishing matrix elements of this operator only lie between states of the same
momentum. Also from (16.89), the anticommutator only vanishes when the ener-
gies are of opposite sign. Hence it can be concluded that ZB is a consequence of
interference between positive and negative energy states as predicted by relativistic
quantum mechanics [44].

Appendix B

16.12 Contour Integration

To solve the second integral in (16.69), let us denote the integral by I [21]

I = αdωg

2π

∞∑

n′=−∞

∫ ∞

−∞
dηe−iωgηtG0(x1; n′d; η)

∫ π
d

− π
d

dpe−i pn′d

×
[
I2 − α

˙̃G0(p; 0, 0; η)
]−1

G̃0(p; x2; η).

(16.90)
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(I2 is unit matrix of order 2) where

η = ω

ωg
and dω = ωgdη.

Note that in the above integral, each “no lattice” Green’s function has real poles at
η=±√

n. These “no lattice” poles of the term

T1(η) =
[
I2 − α

˙̃G0(p; 0, 0; η)
]−1

G̃0(p; x2; η) (16.91)

canbe seen to cancel by re-expressing the “no lattice”Green’s functions ˙̃G0(p; 0, 0; η)

and G̃0(p; x2; η). For this purpose, by using (16.58) and (16.59), one can easily write

α
˙̃G0(p; 0, 0; η) matrix as

α
˙̃G0(p; 0, 0; η) = 1∏∞

n=0(η
2 − n)

(
a11 a12
a12 a11

)
(16.92)

where we have defined ( j corresponds to the index r in (16.58, 16.59))

a11(η) = α1η

∞∑

m=0

Lm

[
ω2
gl

2

4γ 2

(
j
d

l

)2
] ∞∏

n=0
n =m

(η2 − n),

and

a12(η) = α2

∞∑

m=1

L1
m−1

[
ω2
gl

2

4γ 2

(
j
d

l

)2
] ∞∏

n=0
n =m+1

(η2 − n),

with

α1 = αωg

4π�γ 2

∞∑

j=−∞
eipjde

− ω2gl
2

8γ 2 ( j dl )
2

,

and

α2 = iαω2
gl

8π�γ 3

∞∑

j=−∞

(
j
d

l

)
eipjde

− ω2gl
2

8γ 2 ( j dl )
2

.

Similarly, the G̃0(p; x2; η) matrix can be written as

G̃0(p; x2; η) = 1∏∞
n=0(η

2 − n)

(
b11 b12
b12 b11

)
, (16.93)
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where we have defined

b11(η) = β1η

∞∑

m=0

Lm

[
ω2
gl

2

4γ 2

(
j
d

l

)2
] ∞∏

n=0
n =m

(η2 − n),

and

b12(η) = β2

∞∑

m=1

L1
m−1

[
ω2
g

4γ 2l2

(
j
d

l

)2
] ∞∏

n=0
n =m+1

(η2 − n),

with

β1 = ωg

4π�γ 2

∞∑

j=−∞
eipjde

− ω2gl
2

8γ 2

(
jd−x2

l

)2

,

and

β2 = iω2
gl

8π�γ 3

∞∑

j=−∞

(
jd − x2

l

)
eipjde

− ω2gl
2

8γ 2

(
jd−x2

l

)2

.

Note that in the above equations, n is a Landau index and m is a dummy index for
the Landau levels; the maximum value of n and m is the same.

Finally substituting (16.92) and (16.93) in (16.91), the matrix T1 becomes

T1(η) =
[ (

1 0
0 1

)
− 1∏∞

n=0(η
2 − n)

(
a11(η) a12(η)

a12(η) a11(η)

) ]−1 1∏∞
n=0(η

2 − n)

(
b11(η) b12(η)

b12(η) b11(η)

)

=
(

1∏∞
n=0(η

2 − n)

)−1 [ (∏∞
n=0(η

2 − n) 0
0

∏∞
n=0(η

2 − n)

)
−

(
a11(η) a12(η)

a12(η) a11(η)

) ]−1

× 1∏∞
n=0(η

2 − n)

(
b11(η) b12(η)

b12(η) b11(η)

)

=
[ (∏∞

n=0(η
2 − n) 0

0
∏∞

n=0(η
2 − n)

)
−

(
a11(η) a12(η)

a12(η) a11(η)

) ]−1 (
b11(η) b12(η)

b12(η) b11(η)

)
.

In the above expression, the real “no lattice” poles (η=±√
n) cancel. The above

expression can be solved numerically. In this computation, it is also necessary to
address the poles of the actual lattice Green’s function, which are defined by the

zeros of the denominator, det
[
I2 − α

˙̃G0(p; 0, 0; η)
]

= 0, and these roots depend

on p (and are not spaced by integer multiples of ωg): These poles are treated using
the line broadening discussion of Sect. 16.5.2. The resultant 2 × 2 matrix with ci j (η)

(where i, j = 1, 2) as matrix elements can be written as (substituting q = pd)
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Q(η) =
∫ π

−π

dqe−iqn′
T1(η) =

(
c11(η) c12(η)

c21(η) c22(η)

)
. (16.94)

Note that the above integral can be numerically calculated by applying the trapezoidal
rule in the limits −π to π , while keeping the trapezoidal step equal to π

10 ; this gives
an accuracy up to five decimal points for each value of n′.

Putting (16.94) in (16.90), the integral I becomes

I = αωg

2π

∞∑

n′=−∞

∫ ∞

−∞
dηe−iωgηtG0(x1, n

′d; η).Q(η). (16.95)

It can be seen that the “no lattice” poles of the second integral (p integral) in (16.90)
have been removed; and the poles of the actual lattice Green’s function have been
dealt with using the line broadening of Sect. 16.5.2, so the only remaining poles that
we have to deal with now are the poles of the matrix G0(x1, n′d; η).

Using (16.67) and (16.68), the matrix αG0(x1, n′d; η) can be written as

αG0(x1, n
′d; η) =

(
γ1

1
η

0
0 γ1

1
η

)
+

∞∑

n=1

(
γ1η

Ln [ϒ]
η2−n γ2

L1
n−1[ϒ]
η2−n

γ2
L1
n−1[ϒ]
η2−n γ1η

Ln [ϒ]
η2−n

)
, (16.96)

where ϒ , γ1 and γ2 are defined in (16.74) and (16.75). Using the matrices Q(η) and
αG0(x1, n′d; η) in (16.95), and breaking the matrix into two matrices, we get

I = ωg

2π

∞∑

n′=−∞

∫ ∞

−∞
dηe−iωgηt

(
γ1

1
η
c11(η) γ1

1
η
c12(η)

γ1
1
η
c21(η) γ1

1
η
c22(η)

)

+ ωg

2π

∞∑

n′=−∞

∫ ∞

−∞
dηe−iωgηt

(
M11(η) M12(η)

M21(η) M22(η)

)
. (16.97)

(The first and second matrices correspond to n=0 and n > 0 Landau minibands,
respectively.) In the above expression

M 11
22

(η) =
∞∑

n=1

(
γ1η

Ln [ϒ]

η2 − n
c 11

22
(η) + γ2

L1
n−1 (ϒ)

η2 − n
c 21

12
(η)

)
,

and

M 12
21

(η) =
∞∑

n=1

(
γ1η

Ln [ϒ]

η2 − n
c 12

21
(η) + γ2

L1
n−1 [ϒ]

η2 − n
c 22

11
(η)

)
.

In (16.97), the first matrix has a pole at η=0, while the second matrix has poles at
η=±√

n. We now use contour integration with the Jordan lemma (closing the contour
in the lower half plane for t > 0) to evaluate the integrals. Results for the two terms
in (16.97) are
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∫ ∞

−∞
dηe−iωgηt

ci j (η)

η
= −iπη+(t)

[
ci j (η)

]
η=0 , (16.98)

∫ ∞

−∞
dηe−iωgηt M 11

22
(η) = −iπη+(t)

∞∑

n=1

cos

(
ωgl

γ

t

τo

√
n

)

×
[
γ1Ln [ϒ] c 11

22
(η) + γ2√

n
L1
n−1 [ϒ] c 21

12
(η)

]

η=√
n

(16.99)

and

∫ ∞

−∞
dηe−iωgηt M 12

21
(η) = −πη+(t)

∞∑

n=1

sin

(
ωgl

γ

t

τo

√
n

)

×
[
γ1Ln [ϒ] c 12

21
(η) + γ2√

n
L1
n−1 [ϒ] c 22

11
(η)

]

η=√
n

.

(16.100)

(η+(t) is the Heaviside unit step function and i, j=1, 2). In the calculation of the
expressions given by (16.98), (16.99) and (16.100), we have also used

[
c 11

22
(η)

]

η=−√
n

=
[
c 11

22
(η)

]

η=√
n
,

and [
c 12

21
(η)

]

η=−√
n

= −
[
c 12

21
(η)

]

η=√
n
,

which we found during the calculations [21].
Hence, (16.98) along with (16.99) and (16.100) provide the complete solution for

the integral I , which is the time representation of the second term of the full Green’s
function G(x1, x2; t)K given in (16.69).
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Chapter 17
Numerical Analysis of the Helmholtz
Green’s Function for Scalar Wave
Propagation Through a Nano-hole
on a Plasmonic Layer

Désiré Miessein, Norman J. M. Horing, Godfrey Gumbs, and Harry Lenzing

Abstract A detailed numerical study of the Helmholtz Green’s function for the
description of scalar wave propagation through a nano-hole on a plasmonic layer is
presented in this chapter. In conjunction with this, we briefly review the analytic for-
mulation taking the nano-hole radius as the smallest length parameter of the system.
Figures exhibiting the numerical results for this Green’s function in various ranges
of the transmission region are presented.

17.1 Introduction

The transmission properties of a scalar field propagating through a nano-hole in a
two-dimensional (2D) plasmonic layer have been analyzed using a Green’s function
technique in conjunction with an integral equation formulation [1–4]. The nano-hole
is taken to lie on a plasmonic sheet (located on the plane z = 0 embedded in a three-
dimensional (3D) bulk host medium with background dielectric constant ε

(3D)
b ). In

Sect. 17.2 of this paper, we briefly review in some detail the analytic determination of
the scalar Helmholtz Green’s function with the presence of the layer in which a two-
dimensional plasma is embedded. Sect. 17.3 reviews the scalar Helmholtz Green’s
function solution for the 2D plasmonic layer embedded in a 3D host medium with
the presence of a nano-hole aperture in the subwavelength regime. The results of our
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thorough numerical analysis of the perforated layer Helmholtz Green’s function are
discussed in Sect. 17.4 with illustrative figures showing results in the near, middle
and far field zones of the transmission region. Finally, conclusions are summarized
in Sect. 17.5.

17.2 Green’s Function Solution for Full 2D Plasmonic
Layer Embedded in a 3D Bulk Host Medium

17.2.1 Integral Equation for the Scalar Green’s Function
and Solution

We consider a two dimensional plasmonic layer S1 to have a dynamic, nonlocal 2D
polarizability α

(2D)
f s (�k‖, ω), located on the plane z = 0, embedded in a three dimen-

sional bulk host medium with background dielectric constant ε
(3D)
b (Fig. 17.1). The

associated Helmholtz Green’s function including the two-dimensional plasmonic
sheet, G f s without a nano-hole, satisfies the integro-differential equation (posi-
tion/frequency representation) [1–4]

(
−�∇2 − ω2

c2
ε

(3D)
b

)
G f s(�r , �r ′;ω) − ω2

c2

∫
d3�r ′α(2D)

f s (�r , �r ′′;ω)G f s(�r ′′, �r ′;ω)

= δ(3)(�r − �r ′). (17.2.1)

The polarizability α
(2D)
f s of the full 2D plasmonic layer has the form

Fig. 17.1 (Color online) Schematic illustrationof a twodimensional plasmonic layer S1 of thickness
d embedded at z = 0 in a three dimensional bulk medium with dielectric constant ε(3D)

b
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α
(2D)
f s (�r , �r ′;ω) = α

(2D)
f s (�r‖, �r ′

‖;ω) d δ(z)δ(z′), (17.2.2)

where d is the thickness of the plasmonic sheet, �r = (�r‖; z) and α
(2D)
f s (�r‖, �r ′

‖;ω) is the
2D plasmonic polarizability of the 2D sheet; δ(z) is the Dirac delta function needed
to confine the polarizability onto the plane of the 2D layer at z = 0.

To solve (17.2.1), we employ the bulk Helmholtz Green’s function [5]

(
−�∇2 − ω2

c2
ε

(3D)
b

)
G3D(�r , �r ′;ω) = δ3D(�r − �r ′). (17.2.3)

After performing the 2D spatial Fourier transform of G3D in the plane of the trans-
lationally invariant 2D homogeneous plasmonic sheet (�r‖ = �r‖ − �r ′

‖)

G3D(�k‖; z, z′;ω) =
∫

d2�r‖ G3D(�r‖; z, z′;ω) e−i �k‖.�r‖ , (17.2.4)

equation (17.2.3) becomes

[
∂2

∂z2
+ k2⊥

]
G3D(�k‖; z, z′;ω) = −δ(z − z′) (17.2.5)

where k2⊥ = q2
ω − k2‖ and qω = ω

c

√
ε

(3D)
b . This has the well-known solution [5]

G3D( �k‖; z, z′;ω) = −eik⊥|z−z′ |

2ik⊥
. (17.2.6)

Employing G3D(�r , �r ′;ω), (17.2.1) can be conveniently rewritten as an inhomo-
geneous integral equation as follows:

G f s(�r , �r ′;ω) = G3D(�r , �r ′;ω)

+ ω2

c2

∫
d3�r ′′

∫
d3�r ′′′G3D(�r , �r ′′;ω)α2D

f s (�r ′′, �r ′′′;ω)G f s(�r ′′′, �r ′;ω).

(17.2.7)

Introducing (17.2.2) in (17.2.7) and Fourier transforming the resulting equation in
the lateral plane of translational invariance (�r‖ − �r ′

‖ → �k‖), we obtain

G f s(�k‖; z, z′; ω) = G3D(�k‖; z, z′; ω) + ω2 d

c2
G3D(�k‖; z, 0; ω)α

(2D)
f s (�k‖; ω)G f s(�k‖; 0, z′; ω).

(17.2.8)
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Solving for G f s(�k‖; 0, z′;ω) algebraically, we obtain

G f s(�k‖; z, z′; ω) = G3D(�k‖; z, z′; ω) + ω2 d

c2
G3D(�k‖; z, 0; ω)α

(2D)
f s (�k‖; ω)G3D(�k‖; 0, z′; ω)

1 − ω2

c2
dα

(2D)
f s (�k‖; ω)G3D(�k‖; 0, 0; ω)

,

(17.2.9)

and using (17.2.6), this leads to the full sheet Green’s function as

G f s( �k‖; z, z′;ω) = −eik⊥|z−z′|

2ik⊥
+ γ eik⊥(|z|+|z′|)

2ik⊥(2ik⊥ + γ )
, (17.2.10)

where
γ = ω2 d α

(2D)
f s (�k‖;ω)/c2. (17.2.11)

Our analysis (below) of the Green’s function in the presence of an aperture will be
seen to devolve upon the evaluation of G f s(�r , �r ′′; z, z′′;ω) at the aperture position
�r ′′ = 0, z′′ = 0 in position representation as given by

G f s( �r‖, 0; z, 0;ω) = 1

(2π)2

∫
d2�k‖ei

�k‖.�r‖G f s( �k‖; z, 0;ω) (17.2.12)

where

G f s( �k‖; z, 0;ω) = − eik⊥|z|

2ik⊥ + γ
, (17.2.13)

so that

G f s( �r‖, 0; z, 0;ω) = − 1

4iπ

∫ ∞

0
dk‖

k‖ J0(k‖r‖)eik⊥|z|

k⊥ + γ

2i

. (17.2.14)

Noting (17.2.11) and employing the 2D polarizability of the layer in the local
limit as [6]

α
(2D)
f s (�k‖;ω) =

(
2π ie2n2D
m∗ω2

) √
q2

ω − k2‖ (17.2.15)

Our calculations employ typical values for GaAs (n2D = 4 × 1015/ cm2 is the 2D
equilibrium density on the sheet, m∗ = 0.065m0 is the effective mass and μ ≡
πe2d n2D
m∗c2 ), and we have

G f s( �r‖, 0; z, 0;ω) = − 1

4iπ [1 + μ]
∫ ∞

0

dk‖k‖ J0(k‖r‖)ei |z|
√

q2
ω−k2‖√

q2
ω − k2‖

.

(17.2.16)
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The k‖-integral of (17.2.16) is readly evaluated as [7]

G f s( �r‖, 0; z, 0;ω) = 1

4π [1 + μ]
ei qω

√
r2‖ +|z|2√

r2‖ + |z|2
. (17.2.17)

17.3 Green’s Function Solution for a Perforated 2D
Plasmonic Layer with a Nano-hole Embedded in a 3D
Bulk Host Medium

17.3.1 Integral Equation: Scalar Helmholtz Green’s
Function for a Perforated Plasmonic Layer

We consider a 2D plasmonic layer S1 which is perforated by a nano-scale aperture
S2 of radius R, as depicted in Fig. 17.2, lying in the (x–y)-plane. The presence of
the nano-hole in the layer is represented by subtracting the part of the polarizability
associated with the hole from the polarizability of the full layer, (Fig. 17.2) [1–4]

α(2D)(�r , �r ′;ω) = α
(2D)
f s (�r , �r ′;ω) − α

(2D)
h (�r , �r ′;ω) (17.3.1)

where α
(2D)
h (�r , �r ′;ω) is the part of the layer polarizability removed by the nano-

hole. The resulting Green’s function for the perforated plasmonic layer with the hole
satisfies the integral equation given by

Fig. 17.2 (Color online) Schematic representation of a perforated 2D plasmonic layer (thickness
d, embedded at z = 0 in a three dimensional bulk medium) with a nano-hole of radius R at the
origin of the (x–y)-plane



520 D. Miessein et al.

G(�r , �r ′; ω) = G f s(�r , �r ′; ω) − ω2

c2

∫
d3�r ′′

∫
d3�r ′′′G f s(�r , �r ′′; ω)α2D

h (�r ′′, �r ′′′; ω)G(�r ′′′, �r ′; ω).

(17.3.2)

Here, the polarizability of the nano-hole is defined as [8, 9]

α
(2D)
h (�r , �r ′;ω) = α

(2D)
f s (x, y, x ′, y′;ω)η+(R − |x |)η+(R − |y|)η+(R − |x ′|)η+(R − |y|′)d δ(z)δ(z′),

(17.3.3)

where η+(R − |x |) is the Heaviside unit step function representing a cut-off imposed
to confine the integration range on the 2D sheet to the nano-hole dimensions; and
the Dirac delta function δ(z) is needed to localize the polarizability onto the plane
of the 2D plasmonic layer. A simple approximation of (17.3.3) for very small radius
leads to (A represents the area of the aperture)

α
(2D)
h (�r , �r ′;ω) ≈ A2α

(2D)
f s ( �r‖, �r‖′;ω)δ2D( �r‖)δ2D( �r‖′

)dδ(z)δ(z′), (17.3.4)

and employing it in (17.3.2) to execute all positional integrations, we obtain

G( �r‖, �r‖′; z, z′; ω) ≈ G f s( �r‖, �r‖′; z, z′;ω) − β G f s( �r‖, 0; z, 0; ω)G(0, �r‖′; 0, z′; ω),

(17.3.5)

where β = γ A2 with γ = ω2d
c2 α2D

f s ([�r‖ = 0] − [�r ′
‖ = 0];ω). To solve (17.3.5), we set

�r‖ = 0 and z = 0, and determine G(0, �r‖′; 0, z′;ω) as

G(0, �r‖′; 0, z′;ω) = G f s(0, �r‖′; 0, z′;ω)

1 + β G f s(0, 0; 0, 0;ω)
. (17.3.6)

Substituting (17.3.6) into (17.3.5) yields the algebraic closed form analytic solution:

G(�r‖, �r ′‖; z, z′; ω) ≈ G f s(�r‖, �r ′‖; z, z′; ω) − βG f s(�r‖, 0; z, 0; ω)G f s(0, �r ′‖; 0, z′; ω)

1 + βG f s([�r‖ = 0] − [�r ′‖ = 0]; z = 0, z′ = 0; ω)
.

(17.3.7)

Noting that a transmitted scalar wave emerging from the aperture is controlled by
G(�r‖, 0; z, 0;ω) ,we have analyzed this quantity setting �r ′

‖ = 0 and z′ = 0 in (17.3.7),
leading to

G(�r‖, 0; z, 0;ω) ≈ G f s(�r‖, 0; z, 0;ω)

1 + βG f s([�r‖ = 0] − [�r ′
‖ = 0]; z = 0, z′ = 0;ω)

. (17.3.8)

Equation (17.3.8) is an approximate analytical Green’s function solution to (17.3.2),
in which
G f s([�r‖ = 0] − [�r ′

‖ = 0]; z = 0, z′ = 0;ω) is found to involve a divergent integral
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when all its arguments vanish. This divergence may be seen in α
(2D)
f s and G f s setting

�r‖ = 0, �r ′
‖ = 0, z = 0 and z′ = 0 as follows:

α
(2D)
f s (0, 0;ω) = 1

2π

(
2π ie2n2D
m∗ω2

) ∫ ∞

0
dk‖k‖

√
q2

ω − k2‖, (17.3.9)

and (17.2.16) is given by

G f s(0, 0; 0, 0;ω) = i

4π [1 + μ]
∫ ∞

0

dk‖k‖√
q2

ω − k2‖
. (17.3.10)

The divergence of α(2D)
f s andG f s is an artifact of limiting the radius of the aperture to

be vanishingly small (zero) in the kernel of the integral equation, (17.3.2)–(17.3.4).
Amore realistic consideration involves a cut off at a small but finite radius R, alterna-
tively an upper limit on the wavenumber integration, k‖ ∼ 1

R , yielding the convergent
integrals

α
(2D)
f s (0, 0;ω) = q3

ω

2π

(
2π ie2n2D
m∗ω2

) {∫ 1

0
dyy

√
1 − y2 + i

∫ 1
qω R

1
dyy

√
y2 − 1

}

(17.3.11)
and

G f s ([�r‖ = 0] − [�r ′‖ = 0]; z = 0, z′ = 0;ω) ≈ i qω

4π [1 + μ]

⎧⎨
⎩

∫ 1

0
dy

y√
1 − y2

− i
∫ 1

qω R

1
dy

y√
y2 − 1

⎫⎬
⎭ ,

(17.3.12)
where we have introduced the dimensionless notation y = k‖/qω, so that

k⊥ =
{
qω

√
1 − y2 for 0 ≤ y < 1 ;

i qω

√
y2 − 1 for y > 1 ;

(17.3.13)

and the following results are obtained

α
(2D)
f s ([�r‖ = 0], [�r ′

‖ = 0];ω) ≈ 1

6πR3

(
2π ie2n2D
m∗ω2

)[
(qωR)3 + i

[
1 − (qωR)2

]3/2]
(17.3.14)

and

G f s([�r‖ = 0] − [�r ′‖ = 0]; z = 0, z′ = 0; ω) ≈ 1

4π(1 + μ)R

[
i qωR +

√
1 − (qωR)2

]
,

(17.3.15)
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for qωR < 1. Furthermore, substituting (17.3.14) into the expression for γ , we
have

γ = μ

3πR3

[
i ( qωR)3 − [

1 − (qωR)2
]3/2]

(17.3.16)

with μ = πe2d n2D/(m∗c2) .

17.4 Numerical Results

Our numerical results for the real and imaginary parts of the Green’s function in
(17.3.8), Re[G(�r‖, 0; z, 0;ω)] and Im[G(�r‖, 0; z, 0;ω)], respectively, for frequency
f = 300 THz are presented in 3D and density plots in Figs. 17.3, 17.4, 17.5, 17.6,
17.7, 17.8, 17.9,17.10, and 17.11, 17.12, 17.13, 17.14 as functions of x and y for
several values of distance z away from the layer screen: We chose z = 50 R (near-
field), z = 300 R (middle-field) and z = 1000 R (far-field). These figures reveal the
structure of the Green’s function for the perforated layer in terms of near-field (z =
50 R), middle-field (z = 300 R) and far-field (z = 1000 R) radiation zones for R =
5 nm.

Further detail concerning Re[G(�r‖, 0; z, 0;ω)] and Im[G(�r‖, 0; z, 0;ω)] is pro-
vided in the Figs. 17.15, 17.16, 17.17, 17.18, 17.19, 17.20 below for the three z-
radiation zones described by z = 50 R (near-field), z = 300 R (middle-field) and
z = 1000 R (far-field):

Fig. 17.3 (Color online) Figure a exhibits Re[G(�r‖, 0; z, 0; ω)] in terms of 3D plot for a perforated
2D plasmonic layer of GaAs in the presence of a nano-hole of radius R = 5 nm at z = 50 R (Near-
Field) for εb = 1, n2D = 4 × 1015 cm−2, d = 10 nm and m∗ = 0.065m0 where m0 is the free-
electron mass
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Fig. 17.4 (Color online) Figure b exhibits Re[G(�r‖, 0; z, 0; ω)] in terms of density plot for a
perforated 2D plasmonic layer of GaAs in the presence of a nano-hole of radius R = 5nm at
z = 50 R (Near-Field) for εb = 1, n2D = 4 × 1015 cm−2, d = 10 nm and m∗ = 0.065m0 where
m0 is the free-electron mass

Fig. 17.5 (Color online) Figure c presents Im[G(�r‖, 0; z, 0; ω)] in terms of 3D plot for a perforated
2D plasmonic layer of GaAs in the presence of a nano-hole of radius R = 5 nm at z = 50 R (Near-
Field) for εb = 1, n2D = 4 × 1015 cm−2, d = 10 nm and m∗ = 0.065m0 where m0 is the free-
electron mass
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Fig. 17.6 (Color online) Figure d presents Im[G(�r‖, 0; z, 0; ω)] in terms of density plot for a
perforated 2D plasmonic layer of GaAs in the presence of a nano-hole of radius R = 5nm at
z = 50 R (Near-Field) for εb = 1, n2D = 4 × 1015 cm−2, d = 10 nm and m∗ = 0.065m0 where
m0 is the free-electron mass

Fig. 17.7 (Color online) Figure a exhibits Re[G(�r‖, 0; z, 0; ω)] in terms of 3D plot for a perforated
2D plasmonic layer of GaAs in the presence of a nano-hole of radius R = 5 nm at z = 300 R
(Middle-Field) for εb = 1, n2D = 4 × 1015 cm−2, d = 10 nm and m∗ = 0.065m0 where m0 is the
free-electron mass
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Fig. 17.8 (Color online) Figure b exhibits Re[G(�r‖, 0; z, 0; ω)] in terms of density plot for a
perforated 2D plasmonic layer of GaAs in the presence of a nano-hole of radius R = 5nm at
z = 300 R (Middle-Field) for εb = 1, n2D = 4 × 1015 cm−2, d = 10 nm andm∗ = 0.065m0 where
m0 is the free-electron mass

Fig. 17.9 (Color online) Figure c presents Im[G(�r‖, 0; z, 0; ω)] in terms of 3D plot for a perforated
2D plasmonic layer of GaAs in the presence of a nano-hole of radius R = 5 nm at z = 300 R
(Middle-Field) for εb = 1, n2D = 4 × 1015 cm−2, d = 10 nm and m∗ = 0.065m0 where m0 is the
free-electron mass
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Fig. 17.10 (Color online) Figure d presents Im[G(�r‖, 0; z, 0; ω)] in terms of density plot for a
perforated 2D plasmonic layer of GaAs in the presence of a nano-hole of radius R = 5nm at
z = 300 R (Middle-Field) for εb = 1, n2D = 4 × 1015 cm−2, d = 10 nm andm∗ = 0.065m0 where
m0 is the free-electron mass

Fig. 17.11 (Color online) Figure a exhibits Re[G(�r‖, 0; z, 0; ω)] in terms of 3Dplot for a perforated
2D plasmonic layer of GaAs in the presence of a nano-hole of radius R = 5 nm at z = 1000 R
(Far-Field) for εb = 1, n2D = 4 × 1015 cm−2, d = 10 nm andm∗ = 0.065m0 wherem0 is the free-
electron mass
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Fig. 17.12 (Color online) Figure b exhibits Re[G(�r‖, 0; z, 0; ω)] in terms of density plot for a
perforated 2D plasmonic layer of GaAs in the presence of a nano-hole of radius R = 5nm at
z = 1000 R (Far-Field) for εb = 1, n2D = 4 × 1015 cm−2, d = 10 nm and m∗ = 0.065m0 where
m0 is the free-electron mass

Fig. 17.13 (Color online) Figure c presents Im[G(�r‖, 0; z, 0; ω)] in terms of 3Dplot for a perforated
2D plasmonic layer of GaAs in the presence of a nano-hole of radius R = 5 nm at z = 1000 R
(Far-Field) for εb = 1, n2D = 4 × 1015 cm−2, d = 10 nm andm∗ = 0.065m0 wherem0 is the free-
electron mass
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Fig. 17.14 (Color online) Figure d presents Im[G(�r‖, 0; z, 0; ω)] in terms of density plot for a
perforated 2D plasmonic layer of GaAs in the presence of a nano-hole of radius R = 5nm at
z = 1000 R (Far-Field) for εb = 1, n2D = 4 × 1015 cm−2, d = 10 nm and m∗ = 0.065m0 where
m0 is the free-electron mass

Fig. 17.15 a Exhibits Re[G(x, x ′ = 0; y = 0, y′ = 0; z = 50 R, z′ = 0; ω)] as a function of x for
a perforated 2D plasmonic layer of GaAs in the presence of a nano-hole of radius R = 5nm at
z = 50 R (Near-Field) for εb = 1, n2D = 4 × 1015 cm−2, d = 10 nm and m∗ = 0.065m0 where
m0 is the free-electron mass
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Fig. 17.16 b Presents Im [G(x, x ′ = 0; y = 0, y′ = 0; z = 50 R, z′ = 0; ω)] as a function of x
for a perforated 2D plasmonic layer of GaAs in the presence of a nano-hole of radius R = 5nm
at z = 50 R (Near-Field) for εb = 1, n2D = 4 × 1015 cm−2, d = 10 nm and m∗ = 0.065m0 where
m0 is the free-electron mass

Fig. 17.17 a Exhibits Re[G(x, x ′ = 0; y = 0, y′ = 0; z = 300 R, z′ = 0; ω)] as a function of x
for a perforated 2D plasmonic layer of GaAs in the presence of a nano-hole of radius R = 5nm at
z = 300 R (Middle-Field) for εb = 1, n2D = 4 × 1015 cm−2, d = 10 nm andm∗ = 0.065m0 where
m0 is the free-electron mass
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Fig. 17.18 b Presents Im [G(x, x ′ = 0; y = 0, y′ = 0; z = 300 R, z′ = 0; ω)] as a function of x
for a perforated 2D plasmonic layer of GaAs in the presence of a nano-hole of radius R = 5nm at
z = 300 R (Middle-Field) for εb = 1, n2D = 4 × 1015 cm−2, d = 10 nm andm∗ = 0.065m0 where
m0 is the free-electron mass

Fig. 17.19 a Exhibits Re[G(x, x ′ = 0; y = 0, y′ = 0; z = 1000 R, z′ = 0; ω)] as a function of x
for a perforated 2D plasmonic layer of GaAs in the presence of a nano-hole of radius R = 5nm at
z = 1000 R (Far-Field) for εb = 1, n2D = 4 × 1015 cm−2, d = 10 nm and m∗ = 0.065m0 where
m0 is the free-electron mass
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Fig. 17.20 b Presents Im [G(x, x ′ = 0; y = 0, y′ = 0; z = 1000 R, z′ = 0; ω)] as a function of x
for a perforated 2D plasmonic layer of GaAs in the presence of a nano-hole of radius R = 5nm at
z = 1000 R (Far-Field) for εb = 1, n2D = 4 × 1015 cm−2, d = 10 nm and m∗ = 0.065m0 where
m0 is the free-electron mass

17.5 Concluding Remarks

In this chapter we have presented a thorough numerical analysis of the closed-form
expression for the scalar Green’s function of a perforated, thin 2D plasmonic layer
embedded in a 3D host medium in the presence of a nano-hole.

Inspection of the resulting Green’s function figures shows that for large r‖ �→ x >

2500 nm the spatial dependence of theGreen’s function becomes becomes oscillatory
as a function of r‖(x) with peaks uniformly spaced. In this regard, it should be noted
that our designation of near, middle and far radiation zones is defined in terms of
z-values (50R, 300R, 1000R) alone, to the exclusion of r‖: In consequence of this
exclusion, the figures actually carry useful information for r‖(x) in all radiation
zones as conventionally defined in terms of the incident wavelength λ ∼ 2π/qω.
Furthermore, this approach to oscillatory behavior as a function of r‖ with uniformly
spaced peaks is accompanied by a geometric 1/r‖ - diminution of the amplitude of
the Green’s function as r‖ increases.

Acknowledgements Thanks are extended to Professors M. L. Glasser and Dr. Erik Lenzing for
numerous helpful discussions as well as Liuba Zhemchuzhna and Dr. Andrii Iurov for helpful
comments.
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Chapter 18
Near Zone Electromagnetic Wave
Transmission Through a Nano-Hole
in a Plasmonic Layer

Désiré Miessein, Norman J. M. Horing, Harry Lenzing, and Godfrey Gumbs

Abstract We examine the role of the angle of incidence in the transmission of
an electromagnetic wave through a subwavelength nano-hole in a thin semicon-
ductor plasmonic layer, focusing on the near zone. In this, we treat both p- and
s-polarizations of the incident wave for a variety of incident angles using a dyadic
Green’s function formulation that includes both (1) the electromagnetic field trans-
mitted directly through the 2D plasmonic layer and (2) the radiation emanating from
the nano-hole, explicitly exhibiting interference fringes. Employing an integral equa-
tion formulation, this dyadic Green’s function approach incorporates the role of the
2D plasmon of the semiconductor layer, which is smeared due to its lateral wave
number dependence. The interference fringes, clustered near the nano-hole, flatten
to a uniform level of transmission directly through the semiconductor sheet alone
at large distances from the nano-hole. As the incident angle increases, the axis of
the relatively large central transmission maximum through the nano-hole follows it,
accompanied by a spatial compression of interference fringe maxima forward of the
large central transmission maximum, and a spatial thinning of the fringe maxima
behind it. For p- polarization, the transmission results show a strong increase as the
incident angle θ0 increases, mainly in the dominant Ez component (notwithstand-
ing a concomitant decrease of the Ex component as θ0 increases). In the case of
s-polarization of the incident EM wave, the transmission decreases as θ0 increases.
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18.1 Introduction

This chapter is concerned with the role of the angle of incidence in the transmis-
sion/diffraction of an electromagnetic wave [1] through a subwavelength nano-hole
[2–4] in a thin semiconductor plasmonic layer (Fig. 18.1), focusing on the near zone.
We treat both p− and s− polarizations of the incident wave for a variety of incident
angles using a dyadic Green’s function formulation [5–8] that includes both (1) the
electromagnetic field transmitted directly through the 2D plasmonic layer and (2) the
radiation emanating from the nano-hole, explicitly exhibiting interference fringes.
Employing an integral equation formulation, this dyadic Green’s function approach
incorporates the role of the 2D plasmon of the semiconductor layer, which is smeared
due to its lateral wavenumber dependence.

Fig. 18.1 2D plasmonic layer (S1) (thickness d, embedded at z = 0 in a 3D bulk
medium) with a nano-hole (S2) of radius R at the origin of the (x − y) plane, shown
with incident, reflected and transmitted wave vectors (�k0, �kr , �kt ) for corresponding waves
( �E0(x, y, z; t), �Er (x, y, z; t), �Et (x, y, z; t))
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18.2 Analytical Formulation

The underlying Green’s function is determined by a succession of integral equations,
the first of which is given in dyadic notation by [9, 10] [z coordinate represents
distance perpendicular to plane; suppress lateral wavevector �k‖ = (kx , ky) (parallel
to the x − y plane of the layer) and frequency ω notation]

̂G f s(z, z
′) = ̂G3D(z, z′) − 4π iω

c2

∫

dz′′
∫

dz′′′
̂G3D(z, z′′) σ̂2D

f s (z′′, z′′′)̂G(z′′′, z′),

(18.1)

where, ̂G f s(z, z′) is the dyadicGreen’s function for thenon-perforated 2D plasmonic
layer, σ̂(2D)

f s (z, z′) is its conductivity dyadic and ̂G3D(z, z′) refers to the bulk host
medium dyadic Green’s function [11–13]. Furthermore, the dyadic Green’s function
for the 2D layer perforated by a nano-hole obeys a second integral equation [14]

̂G(z, z′) = ̂G f s(z, z
′) − 4π iω

c2

∫

dz′′
∫

dz′′′
̂G f s(z, z

′′) σ̂2D
hole(z

′′, z′′′)̂G(z′′′, z′),

(18.2)

where σ̂(2D)
hole (z, z′) represents the conductivity dyadic for the material excised from

the 2D layer to create the nano-hole. Equations (18.1) and (18.2) are solved exactly
analytically for a nano-small layer thickness(d) and hole radius(R) [14–16].

The resulting 9 elements of ̂G(�r‖, �r ′
‖; z, z′;ω), which are obtained by solving

(18.1) and (18.2) in succession, are given by ( �r‖ = (x, y) parallel to the plane of the
layer; �k‖ = (kx , ky) is the conjugate wavevector):

Gxx (�r‖, 0; z, 0;ω) = Gxx
f s(�r‖, 0; z, 0;ω)

1 + β Gxx
f s(0, 0; 0, 0;ω)

, (18.3)

where (A represents the area of the nano-hole)

β =
(

4 iπω

c2
σ(2D)

f s (ω)

)

A2, (18.4)

and (ε(ω) is the dielectric function of the 2Dplasmonic layer of thickness d embedded
in a bulk medium of dielectric constant ε(3D)

b )

σ(2D)
f s (ω) = iω

4π

[

ε(3D)
b − ε(ω)

]

d. (18.5)
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Here, we employ a model 2D polarizability given by α(2D)(ω) � −ω2
P3D

d/ω2 =
−4πe2n2D/m∗ω2, where n2D = 4 × 1015/cm2 andm∗ = 0.065m0 for a GaAs layer
10 nm thick. Greater accuracy can be achieved using the exact local 2D polarizability

α2D
f s (

−→
k|| ;ω) = (

2πie2n(2D)

m∗ω2 )
√

q2
ω − k2|| (k|| = lateral wavenumber representation; qω =

(ω/c)
√

ε(3D)
b ).

Furthermore, (J0(x) is the Bessel function of order 0; qω = (ω/c)
√

ε(3D)
b ;� =

2πωσ(2D)
f s (ω)

c2 ; ρ = qωr|| and |s| = qω|z|)

Gxx
f s(�r‖, 0; z, 0;ω) = − 1

4π i

q2ω
�

{∫ 1

0
dy y J0(ρy) e

i |s|
√

1−y2 +
∫ ∞

1
dy y J0(ρy) e

−|s|
√

y2−1
}

+ qω

4π i

q2ω
�2

{

∫ 1

0
dy y J0(ρy)

[

ei |s|
√

1−y2

qω
�

+ √

1 − y2

]

− i
∫ ∞

1
dy y J0(ρy)

[

e− |s|
√

y2−1

−i qω
�

+ √

y2 − 1

]}

, (18.6)

and (R is the radius of the nano-hole)

Gxx
f s(0, 0; 0, 0; ω) = − 1

4π i R

{

1

2�R
+ i

(qωR)2

(�R)2

√

1 − (qωR)2 − (qωR)3

(�R)2

}

+ 1

4π i R

{

(qωR)4

(�R)3
ln

[

(qωR)2 + i R�
√

1 − (qωR)2

(qωR)2 + R�(qωR)

]}

. (18.7)

Also,

Gxy(�r‖, 0; z, 0;ω) = 0, (18.8)

and

Gxz(�r‖, 0; z, 0;ω) = Gxz
f s(�r‖, 0; z, 0;ω)

1 + β Gzz
f s(0, 0; 0, 0;ω)

, (18.9)

where

Gxz
f s(�r‖, 0; z, 0;ω) = sgn(z)

4π i

q2ω
�

∫ 1

0

dy y2 J0(ρ y)
√

1 − y2 ei |s|√1−y2

y2 + α2
√

1 − y2

+ sgn(z)

4π

q2ω
�

∫ ∞
1

dy y2 J0(ρ y)
√

y2 − 1 e− |s|√y2−1

y2 + i α2
√

y2 − 1
. (18.10)
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and

Gzz
f s(0, 0; 0, 0;ω) = − q2

ω

4π i �

{∫ 1

0
du u

[

u2 − i α0 u − 1

u2 − α2 u − 1

]}

− q2
ω

4π i �

{

∫ 1
α3

√
1−α2

3

0
dv v

[

v2 − α0 v + 1

v2 + i α2 v + 1

]

}

, (18.11)

where we have defined α0 = 2
d qω

and α1 = qω

�
; α2 = α1 + i α0; α3 = qω R and � =

2πω σ(2D)
f s (ω)

c2 with σ(2D)
f s (ω) = iω

4π

[

ε(3D)
b − ε(ω)

]

d.

Moreover,

Gyx (�r‖, 0; z, 0;ω) = 0, (18.12)

and

Gyy(�r‖, 0; z, 0;ω) = Gyy
f s(�r‖, 0; z, 0;ω)

1 + β Gyy
f s(0, 0; 0, 0;ω)

, (18.13)

where

Gyy
f s(�r‖, 0; z, 0;ω) = − qω

4π i

{

∫ 1

0

dy y J0(ρy) ei |s|
√

1−y2

�
qω

+ √

1 − y2

}

+ qω

4π i

{

i
∫ ∞

1

dy y J0(ρy) e−|s|
√

y2−1

−i �
qω

+ √

y2 − 1

}

, (18.14)

and

Gyy
f s(0, 0; 0, 0;ω) = − 1

4π i R

{

qωR − i
√

1 − (qωR)2 − �R ln

[

R� + qω R

R�

]}

− 1

4π i R

{

�R ln

[

R� + i
√

1 − (qωR)2

R�

]}

; (18.15)

Gyz(�r‖, 0; z, 0;ω) = 0. (18.16)
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Furthermore,

Gzx (�r‖, 0; z, 0;ω) = Gzx
f s(�r‖, 0; z, 0;ω)

1 + β Gxx
f s(0, 0; 0, 0;ω)

, (18.17)

with

Gzx
f s(�r‖, 0; z, 0;ω) = sgn(z)

4π i

q2
ω

�

{

∫ 1

0

dy y2 J0(ρ y) ei |s|
√

1−y2

qω

�
+ √

1 − y2

}

− sgn(z)

4π i

q2
ω

�

{

i
∫ ∞

1

dy y2 J0(ρ y) e− |s|
√

y2−1

−i qω

�
+ √

y2 − 1

}

, (18.18)

and Gxx
f s(0, 0; 0, 0;ω) is given by (18.7). Also,

Gzy(�r‖, 0; z, 0;ω) = 0; (18.19)

Gzz(�r‖, 0; z, 0;ω) = Gzz
f s(�r‖, 0; z, 0;ω)

1 + β Gzz
f s(0, 0; 0, 0;ω)

, (18.20)

Gzz
f s(�r‖, 0; z, 0;ω) = − qω

4π i

qω

�

∫ 1

0
dy y J0(ρy) e

i |s|
√

1−y2

{

y2

y2 + α2
√

1 − y2

}

− qω

4π i

qω

�

∫ ∞

1
dy y J0(ρy) e

−|s|
√

y2−1

{

y2

y2 + i α2
√

y2 − 1

}

,

(18.21)

where α0 = 2
d qω

, α1 = qω

�
, α2 = α1 + i α0 and Gzz

f s(0, 0; 0, 0;ω) is given by
(18.11).

In this chapter, we present calculated results for the transmission of an incident
plane electromagnetic wave �E0 incident on the system for various angles of incidence
θ0 = 30◦, 60◦, 80◦, in particular for the “near zone” taken as z ≤ 50 R (with nano-
hole radius R=5nm), although the lateral distance �r‖ of the field point from the hole
parallel to the plane can extend up to 1000 R − 2000 R. The transmitted field �E due
to the incident field �E0 is obtained using ̂G as (dyadic electromagnetic notation, and
positional matrix product notation implies z− integration) [14]

�E = �E0 + 4π i ω

c2
̂G

[

σ̂2D
f s − σ̂2D

hole

] �E0 . (18.22)

Calculated results for the transmitted field �E are exhibited below for both p-
polarization of the incident field �E0 = E0 (̂ex cos θ0 + êz sin θ0) and for s-polarization�E0 = E0 êy .
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18.3 Calculated Transmission Results: Near Zone

The results of our calculations are exhibited in terms of transmitted field-component
powers | E‖(x, y, z; t)/E0 |2 and | Ez(x, y, z; t)/E0 |2 for p−polarization
(with the x − z plane as the plane of incidence) in the line graphs of Figs. 18.2,
18.3, 18.4, 18.5, 18.6, 18.7, 18.8, 18.9, 18.10 for the special choice y ≡ 0; also
for s−polarization, | Ey(x, y, z; t)/E0 |2 results are presented as functions of x for
y = 0 in the line graphs of Fig. 18.5. Furthermore, the calculated results for the
transmitted component powers are also exhibited as functions of both x and y for
both polarizations in both 3D and density plots for the various angles of incidence
in Figs. 18.11, 18.12, 18.13, 18.14, 18.15, 18.16, 18.17, 18.18, 18.19, 18.20, 18.21,
18.22, 18.23, 18.24, 18.25, 18.26, 18.27, 18.28. It should be noted that the interfer-
ence fringes, clustered near the nano-hole, flatten to a uniform level of transmission
directly through the semiconductor sheet alone at large lateral distances from the
nano-hole. As the incident angle increases, the axis of the relatively large central
transmission maximum through the nano-hole follows it, accompanied by a spatial
compression of interference fringe maxima forward of the large central transmission
maximum, and a spatial thinning of the fringe maxima behind it. For p-polarization,
transmission results show a strong increase as the incident angle θ0 increases, mainly
in the dominant Ez component (notwithstanding a concomitant decrease of the Ex

component as θ0 increases). In the case of s− polarization of the incident electro-
magnetic wave, the transmission decreases as θ0 increases.

p-polarization: Near-Field, z = 50 R; θ0 = 30◦

Fig. 18.2 p-polarization-Near-Field, z = 50 R; θ0 = 30◦: | Ex (x, y, z; t)/E0 |2 produced by a per-
forated 2Dplasmonic layer ofGaAs as a function of lateral distance r‖ = x (y = 0) from the aperture
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Fig. 18.3 p-polarization-
Near-Field, z = 50 R;
θ0 = 30◦:
| Ez(x, y, z; t)/E0 |2
produced by a perforated 2D
plasmonic layer of GaAs as a
function of lateral distance
r‖ = x (y = 0) from the
aperture

p-polarization: Near-Field, z = 50 R; θ0 = 60◦

Fig. 18.4 p-polarization-
Near-Field, z = 50 R;
θ0 = 60◦:
| Ex (x, y, z; t)/E0 |2
produced by a perforated 2D
plasmonic layer of GaAs as a
function of lateral distance
r‖ = x (y = 0) from the
aperture
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Fig. 18.5 p-polarization-Near-Field, z = 50 R; θ0 = 60◦: | Ez(x, y, z; t)/E0 |2 produced by a
perforated 2D plasmonic layer of GaAs as a function of lateral distance r‖ = x (y = 0) from the
aperture

p-polarization: Near-Field, z = 50 R; θ0 = 80◦

Fig. 18.6 p-polarization-
Near-Field, z = 50 R;
θ0 = 80◦:
| Ex (x, y, z; t)/E0 |2
produced by a perforated 2D
plasmonic layer of GaAs as a
function of lateral distance
r‖ = x (y = 0) from the
aperture
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Fig. 18.7 p-polarization-Near-Field, z = 50 R;θ0 = 80◦: | Ez(x, y, z; t)/E0 |2 producedbyaper-
forated 2Dplasmonic layer ofGaAs as a function of lateral distance r‖ = x (y = 0) from the aperture

s-polarization: Near-Field, z = 50 R

Fig. 18.8 s-polarization-
Near-Field, z = 50 R :
| Ey(x, y, z; t)/E0 |2
θ0 = 30◦, producedbya
perforated2Dplasmonic
layer ofGaAsas a function
of lateral distance
r‖ = x (y = 0) from the
aperture
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Fig. 18.9 s-polarization-Near-Field, z = 50 R : | Ey(x, y, z; t)/E0 |2, θ0 = 60◦ produced by a
perforated 2D plasmonic layer of GaAs as a function of lateral distance r‖ = x (y = 0) from the
aperture

(c)

Fig. 18.10 s-polarization-Near-Field, z = 50 R : | Ey(x, y, z; t)/E0 |2, θ0 = 80◦ produced by a
perforated 2D plasmonic layer of GaAs as a function of lateral distance r‖ = x (y = 0) from the
aperture
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p-polarization: Near-Field, z = 50 R; θ0 = 30◦

Fig. 18.11 p-polarization: Near-Field, z = 50 R; θ0 = 30◦—a Field-component distribution for
GaAs layer in terms of 3D plot: | Ex (x, y, z; t)/E0 |2 as functions of x and y for fixed z

Fig. 18.12 p-polarization: Near-Field, z = 50 R; θ0 = 30◦—b Field-component distribution for
GaAs layer in terms of density plot: | Ex (x, y, z; t)/E0 |2 as functions of x and y for fixed z
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Fig. 18.13 p-polarization: Near-Field, z = 50 R; θ0 = 30◦—a Field-component distribution for
GaAs layer in terms of 3D plot: | Ez(x, y, z; t)/E0 |2 as functions of x and y for fixed z

Fig. 18.14 p-polarization: Near-Field, z = 50 R; θ0 = 30◦—b Field-component distribution for
GaAs layer in terms of density plots: | Ez(x, y, z; t)/E0 |2 as functions of x and y for fixed z
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p-polarization: Near-Field, z = 50 R; θ0 = 60◦

Fig. 18.15 p-polarization: Near-Field, z = 50 R; θ0 = 60◦—a Field-component distribution for
GaAs layer in terms of 3D plot: | Ex (x, y, z; t)/E0 |2 as functions of x and y for fixed z

Fig. 18.16 p-polarization: Near-Field, z = 50 R; θ0 = 60◦—b Field-component distribution for
GaAs layer in terms of density plot: | Ex (x, y, z; t)/E0 |2 as functions of x and y for fixed z
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Fig. 18.17 p-polarization: Near-Field, z = 50 R; θ0 = 60◦—a Field-component distribution for
GaAs layer in terms of 3D plot: | Ez(x, y, z; t)/E0 |2 as functions of x and y for fixed z

Fig. 18.18 p-polarization: Near-Field, z = 50 R; θ0 = 60◦—b Field-component distribution for
GaAs layer in terms of density plot: | Ez(x, y, z; t)/E0 |2 as functions of x and y for fixed z
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p-polarization: Near-Field, z = 50 R; θ0 = 80◦

Fig. 18.19 p-polarization: Near-Field, z = 50 R; θ0 = 80◦—a Field-component distribution for
GaAs layer in terms of 3D plot: | Ex (x, y, z; t)/E0 |2 as functions of x and y for fixed z

Fig. 18.20 p-polarization: Near-Field, z = 50 R; θ0 = 80◦—b Field-component distribution for
GaAs layer in terms of density plot: | Ex (x, y, z; t)/E0 |2 as functions of x and y for fixed z
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Fig. 18.21 p-polarization: Near-Field, z = 50 R; θ0 = 80◦—a Field-component distribution for
GaAs layer in terms of 3D plot: | Ez(x, y, z; t)/E0 |2 as functions of x and y for fixed z

Fig. 18.22 p-polarization: Near-Field, z = 50 R; θ0 = 80◦—b Field-component distribution for
GaAs layer in terms of density plot: | Ez(x, y, z; t)/E0 |2 as functions of x and y for fixed z
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s-polarization: Near-Field, z = 50 R; θ0 = 30◦

Fig. 18.23 s-polarization: Near-Field, z = 50 R —a Field distribution for GaAs layer in terms of
3D plot: | Ey(x, y, z; t)/E0 |2, θ0 = 30◦ as functions of x and y for fixed z

Fig. 18.24 s-polarization: Near-Field, z = 50 R —b Field distribution for GaAs layer in terms of
density plot: | Ey(x, y, z; t)/E0 |2, θ0 = 30◦ as functions of x and y for fixed z
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s-polarization: Near-Field, z = 50 R; θ0 = 60◦

Fig. 18.25 s-polarization: Near-Field, z = 50 R —a Field distribution for GaAs layer in terms of
3D plot: | Ey(x, y, z; t)/E0 |2, θ0 = 60◦ as functions of x and y for fixed z

Fig. 18.26 s-polarization: Near-Field, z = 50 R —b Field distribution for GaAs layer in terms of
density plot: | Ey(x, y, z; t)/E0 |2, θ0 = 60◦ as functions of x and y for fixed z
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s-polarization: Near-Field, z = 50 R; θ0 = 80◦

Fig. 18.27 s-polarization: Near-Field, z = 50 R —a Field distribution for GaAs layer in terms of
3D plot: | Ey(x, y, z; t)/E0 |2, θ0 = 80◦ as functions of x and y for fixed z

Fig. 18.28 s-polarization: Near-Field, z = 50 R —b Field distribution for GaAs layer in terms of
density plot: | Ey(x, y, z; t)/E0 |2, θ0 = 80◦ as functions of x and y for fixed z
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Chapter 19
Spin Dependent Thermoelectric Currents
of Tunnel Junctions, and Other
Nanostructures: Onsager
Response-Theory

K. H. Bennemann

Abstract Spin Currents in Tunnel Junctions, for example, those induced by thermo-
electric forces due to temperature and magnetization gradients, etc., are discussed
in this chapter. Using Onsager response theory, in particular for magnetic tunnel
junctions, metallic rings and quantum dots, yields directly, spin dependently, all
thermoelectric and thermomagnetic effects like the Seebeck and Peltier ones and
Josephson–like Spin currents driven by the phase gradient of the magnetization. The
results can be compared with recent experiments determining the spin dependent
Seebeck effect and other thermoelectric effects. The Onsager theory directly yields
coupled currents, like the heat current due to a spin current and other thermoelec-
tric effects. The Onsager theory can be extended towards an electronic theory by
expressing the Onsager coefficients in terms of current correlation functions, and
then calculating these using Lagrange formalism, symmetry and scaling analysis.
We discuss in particular the spin currents resulting from the force due to magnetic
phase gradients at tunnel junctions of magnetic materials, both in normal and super-
conducting singlet and triplet states. Note, Onsager theory can also be applied to
spin currents in molecules and in magnetic ionic liquids, and also to dynamics in
cosmology problems.

19.1 Introduction

Recently, spin dependent currents in nanostructures and tunnel junctions have been
discussed intensively [1–5]. In particular the spin dependent thermoelectric and ther-
momagnetic effects like Seebeck effect and the heat due to spin dependent currents
in ferromagnets, spin Peltier effect receive special attention [4, 5]. The interdepen-
dence of the various currents is most interesting and is expected by Onsager theory.
Onsager theory j = LX for the currents j driven by the spin dependent generalized
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thermodynamical forces X like temperature gradient or magnetization gradient etc.
yields the spin dependent thermoelectric effects [6]. In particular this holds for nanos-
tructures like tunnel junctions and metallic rings [2, 7] and tunnel currents through
molecules and spin currents inmagnetic ionic liquids. Note, even if originally one has
a homogeneous magnetization a temperature gradient �T will induce a difference
�M in the magnetization and �M ∝ �T .

Also, of course, even in a homogeneous ferromagnet one gets for itinerant elec-
trons j↑ �= j↓ for the spin currents due to the spin dependent density of states
(N↑(ε) �= N↓(ε)) etc. Already the Boltzmann equation yields this in a qualitative
correct way.

In analogy to the Josephson current in superconductors due to the phase difference
of the order parameter, one expects also for ferromagnets, magnetic tunnel junctions,
with a gradient in the magnetization its magnitude and phase (M = |M | exp(iφ)) a
similar Josephson like spin current [2, 3, 6]. Such currents are also expected for
metallic rings with inhomogeneous magnetization. Of course, in inhomogeneous
ferromagnets, see Fig. 19.1, coupled currents involving spin and charge are expected.
This is elegantly described by Onsager theory, see also Bennemann [3]. Note, the
magnetization may result from local magnetic moments (for example, in rare–earth)
or from spins of itinerant electrons in transition metals or rare–earth.

The Onsager theory may also be applied to describe thermoelectric and thermo-
magnetic effects in magnetic ionic liquids. Then spin dependent pressure effects are
expected in case of pressure gradients, possibly interfering with other gradients.

Interesting are in particular inhomogeneous systems (nanostructures, tunnel junc-
tions) like (FM1|N |FM2), (FM |SC |FM), etc., to study spin lifetimes of electron
spins injected from a ferromagnet (FM) into a nonmagnetic metal (N) and to study
spin currents in superconductors (SC) also analysis of singlet vs. triplet superconduc-
tivity, (FM|SC) interfaces [2, 7]. This may be used to test triplet superconductivity.

As indicated already by the giant Faraday effect in graphene and a few layers
of graphene, one expects for graphene structures (due to the relatively long spin

Fig. 19.1 Illustration of an inhomogeneous ferromagnetic tunnel junction with temperature gradi-
ent �T = T1 − T2 and magnetization gradient �M(t) = M1 − M2 and possibly other gradients.
Coupled spin dependent currents ji are expected in accordance with Onsager theory. Note that the
currents may induce a temperature gradient and thus affect�M(t). In particular one gets Josephson

like spin currents due to a phase difference of the magnetizations ( j Js ∝ dM
dt ∝ −→

M1 × −−→
Hef f. + ...)

and for example from the coupled currents a spin dependent Seebeck effect (�(μ↑ − μ↓) ∝ �T
and Peltier effect (heat∝spin current). Clearly the various currents will depend on the magnetic
configuration of M1 and M2, ferromagnetic vs. antiferromagnetic configuration of the two magnets

and thus also the electric potential gradient �ϕ depends on
−→
M1 and

−→
M2), (�ϕ ∝ �T )
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mean free paths) interesting spin dependent thermoelectric effects (see MacDonald
et al., Bennemann and others). For example, for tunnel junctions involving graphene
between the two ferromagnets, the Josephson–like spin current driven by a gradient
of the phase of the magnetizations on the left and right sides of the tunnel junction
could be observed.

For tunneling involving triplet superconductivity and ferromagnetism, the inter-
play of the order parameters yields novel properties of tunnel junctions. For example,
one gets Cooper pair tunneling even for no phase difference between the supercon-
ductors on both sides of the tunnel junction [7]. Note, regarding the Josephson like
spin current driven by the phase gradient of the magnetization on the left side and
right side of the tunnel junction [2, 6], see Fig. 19.2, this might require relatively long
spin mean free paths. Thus, weak spin–orbit scattering and tunneling for example
through graphene favors this spin current. Strong spin–orbit scattering is expected
to suppress this Josephson spin current.

Spin currents in metallic rings, in particular persistent ones, are interesting. One
expects that the Aharonov–Bohm effect, spin–orbit coupling and interferences of
magnetism and superconductivity yield novel behavior [8].

For fluctuating spin currents (in z–direction) one has according to the Maxwell
equations, also accompanying electromagnetic fields, see 4π js,z = −4πμB∂t 〈Sz〉 =
∂x Ey − ∂y Ex , etc. Generally, the connection between spin currents and magneti-
zation dynamics is given by ∂t Mi + ∂μ jiμ,σ = 0 [2]. According to Kirchhoff, for
example, the emissivity (e) of a tunnel junction (or thin film) is related to themagneti-
zation dynamics andmagnetic resistance (�e/e 	 a(GMR), where�e is the change
in the emissivity due to changing the magnetic configuration (↑ / ↑) to (↑ / ↓) of
neighboring thin films or tunnel junctions, GMR is the giant magnetoresistance).

In general, nonequilibrium thermodynamics describes the thermoelectric and ther-
momagnetic effects. The currents ji , including spin currents, are driven by the spin
dependent thermoelectric forces Xi = − ∂�S

∂xi
, where S is the entropy and ẋi = ji (xi =

fluctuations of usual thermodynamical variables, xi and Xi are conjugate variables).
Thus, the currents can be calculated from

ji ∝ (1/Xi )d�F/dt, (19.1)

where F is the free–energy determined for example by an electronic hamiltonian.
Note, (19.1) is of basic significance, since it relates the currents to the free–energy,
see F. Bloch, S. deGroot and others [8, 9]. Hence, the currentsmay be calculated from
the free–energy and this obviously permits application of scaling theory regarding
phase transition behavior.

In the case of itinerant electrons the spin dependent currents result from the gradi-
ents�μσ of the spin σ dependent chemical potentialsμσ . Note,μ↑ − μ↓ 	 2μ0Hef f ,
where Hef f is the effective molecular field acting on the itinerant spins [9], μ↑(↓) =
μ ∓ μ0Hef f .
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Above (19.1) follows from d�S = �i Xi xi , ji = ẋi and then

d�Ḟ = −
∑

i

(T ji Xi ) + .... (19.2)

This yields, in particular, ji�ϕ = −d Ḟ [8]. As discussed later and as quantum
mechanically expected, of course, the phase of the driving force Xi (t) plays an
important general role, see for example Josephson currents in superconductors or
spin currents in magnets, etc. Clearly, in general, (19.1) includes also contributions
due to time dependencies of phases occurring in the free–energy and applies also to
superconductors.

The following study may be useful to demonstrate how Onsager theory yields the
interdependence of the various currents (in nanostructures). Onsager theory is most
useful to describe directly all thermoelectric effects etc., spin dependently. Already,
known results [1, 4, 5] and new results [2] are presented. Interesting behavior is
expected by manipulating, for example, the phase gradient of the magnetic material
in Fig. 19.2. This may help to apply studies by Bloch [8] and others to spintronics
and to new problems.

19.2 Theory

19.2.1 Onsager Theory

As a general framework for deriving the coupled spin dependent currents in tunnel
junctions (and nanostructures in general) driven by thermoelectric forces Xi , like
magnetization–, temperature– or chemical potential–gradients one may use Onsager
theory, see Kubo, Landau, de Groot et al. [9].

Generally for deriving the spin dependent thermoelectric and thermomagnetic
currents one may use the Onsager theory. The coupled spin dependent currents ji
are given according to Onsager theory by (expanding ẋi = f (xl) = Li j X j )

ji (t) = Li j X j (t) + Li jl X j Xl + ..., (19.3)

with driving forces [9, 10] Xi = −∂�S/∂xi , and using for the entropy S the expres-
sion d�S = �i Xi xi . Note, xi denotes the extensive thermodynamical variables like
E, V, e etc. Then, from thermodynamics one has

d�S = �(1/T )dE + �(p/T )dV − �σ�(μσ/T )dNσ

+ �(H
′
e f f /T )dML , (19.4)

whereμσ is the spin dependent chemical potential of itinerant electrons,ML themag-
netization of local magnetic moments and H

′
e f f the effective molecular field acting
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on the local spins, μσ = μ(ϕ) − σμ0Hef f , μ(ϕ) = μ(0) − eϕ, and ϕ is the potential
acting on the electron charge, respectively. Note, the term �μσdNσ can also be put
into the form (�μdN − �Hef f ), where Hef f is the molecular field acting on the itin-
erant electron spins with magnetizationM.Wemay put X1 ≡ XE = �T/T 2, X2σ =
�(μσ/T ), X3 = XM = −�(H

′
e f f /T ), X4 = −�(p/T ), X5σ = −�(pσ/T ), the

partial pressure of the electrons with spin σ, etc.
Thus, one finds for the coupled currents ji = Li j X j + ... driven by the forces Xi

(with i = 1 = E, i = 2 = e, i = 3 =↑, etc.) the expressions [9] of a coupled set of
Equations with Onsager coefficients as unknowns to be determined, for example,
by experiments, various conductivities or they may be determined from the free-
energy using for F an electronic theory. Special situations may describe, for example,
decoupling of charge and spin currents. Near phase transitions scaling theory can
be applied, in particular. Taking into account the spatial anisotropy induced by the
molecular field HEFF and by an external magnetic field H one has ji

jML = L41�T/T 2 + �Lσ
42�(μσ/T ) − L43�(H

′
e f f /T ) + ... . (19.5)

Note, the replacement↑→↓ yields j↓. The spin currents j↑ and j↓ may be coupled
by spin flip processes, in particular spin–orbit interaction. Then a term proportional
to �μ↓ could also contribute to j↑. As usual, symmetries may reduce the number of
different Onsager coefficients Li j , for example Li j (Hef f ) = L ji (−Hef f ) may hold
etc.

The most important and central property of the Onsager equations is the interde-
pendence of the various currents driven by the forces Xi . In particular, the driving
force

X2σ = �(μσ/T ) ∝ −�(Hef f /T ) + ... ∝ −�(M/T ) + ... (19.6)

causes correlated currents due to gradients of the magnetization with respect to phase
and magnetization magnitude,respectively. The phase gradient driven spin currents
are of the Josephson type [2, 6]. The Onsager equations show that the spin Josephson
current is accompanied by a contribution to je, jE , for example, or, better, �M due
to a phase gradient also induces a contribution to the other currents, je, etc. This is
immediately obvious from Onsager theory and yields new behavior.

Note, the Onsager Equations apply also to superconductors and yield different
behavior for the single particle currents regarding singlet and triplet superconductors,
in particular for je and j↑. The current of the Cooper pairs may be added to above
Onsager equations. In the case of triplet pairing, the spin or angular momentum
current of the Cooper pairs is of particular interest.

Also note, the Onsager theory applies to ions (in liquids, gases), in particular,
magnetic ones. A specially interesting application of Onsager theory may be to a
lattice of atoms or molecules and of quantum dots.

The Onsager equations are very useful for deriving directly the thermoelectric
and thermomagnetic effects. The Onsager coefficients may be determined exper-
imentally, by various conductivities, and may be calculated from the free–energy
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using, for example, an electronic theory. Scaling theory may be applied to the cou-
pled currents near phase transitions.

Special situations are easily described by the Onsager equations. For example,
decoupling of charge and spin current is described by je = 0 and j↑ or js = j↑ − j↓
not equal to zero. e giant magnetoresistance (GMR) or tunnel resistance (TMR) the
tunnel currents depend on the relative orientation of themagnetizations. The Seebeck
and Peltier effects will reflect this.

Regarding a gradient in the phase of the magnetization, one gets a spin current (as
mentioned already) from the gradient of the phase of the magnetization for a tunnel
junction (or for film multilayers). Using the continuity equation ∂t Mi + ∂μ jiμ,σ = 0

under certain conditions, or using the Landau–Lifshitz equation dM/dt = a
−→
M ×−−→

Hef f + ..., where
−−→
Hef f refers to the effective molecular field, one may derive a spin

current including a Josephson like spin current j J of the form

jσ = j1σ(ϕ) + j J . (19.7)

Here, j1σ(ϕ) is the spin current due to the electrical potential ϕ and may result from
the spin dependent density of states. The Josephson like spin current driven by a
phase gradient of the magnetization is given by

j J ∝ dM/dt ∝ −→
ML × −→

MR + ... ∝ |ML ||MR| sin(φL − φR + ...), (19.8)

where (φL − φR) is the phase difference of the magnetization on the left and right
side of a tunnel junction (or of two films). φ is the canonical conjugate of Sz . Note,
damping of spin transport may approximately be taken into account, see the Landau–
Lifshitz equation or Landau–Lifshitz–Gilbert equation, in the coefficient in front of
the term (

−→
ML × −→

MR).
Note, the previous equation for J J also follows from

j J =
∑

σ

σ jσ = μB(ṠL
z − Ṡ R

z ) (19.9)

and charge current jcharge = ∑
σ jσ

due to electrons with spin σ. R and L refer to
right and left side of tunnel junction.

Here, L and R refer to left and right sides of the tunnel junction. Then, in
accordance with general thermodynamics theory (see Onsager), her treating ‖Sz‖
and θ as canonical conjugate variables with Ṡz = − ∂H

∂θ
and θ̇ = ∂H

∂Sz
, just inter-

changing θ and ‖Sz‖. Furthermore, assuming exchange coupling, H = H0 + Hint ,
Hint = −J

∑−→
SL · −→

SR one gets
−−→‖Sz‖ exp iθ,

j J = μB J |SL | · |SR| sin(θL − θR) + . . . (19.10)

Here, the spin current due to a phase gradient �θ may be analyzed for special
situations like jcharge = 0 and 4 j J �= 0.
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Note, using for a tunnel junction the hamiltonian

Hint. = −EJ S
2 cos(θL − θR) + μ2

B/2Cs(S
z
L − SzR)2 (19.11)

one gets see Nogueira, Bennemann

j J = 2EJ S2

μB
sin�θ, (19.12)

and
�θ̇ = 2μBVS + (...)h. (19.13)

Here, h refers to an external magnetic field and VS = μB

CS
(SzL − Sz)R . CS denotes

the spin capacitance. Note, the current j J induces electric fields ∇xEi = 4π j J for
no external fields.

Note, in the spirit of Onsager theory j J carries an energy current like the charge
current jcharge. Both affect the gradient of the magnetization.

The Onsager equations for the coupled currents of the itinerant electrons may be
rewritten by introducing the spin dependent Peltier (P) and Seebeck (S) coefficients,
respectively, For a tunnel junction with a magnetic metal A on the left side and a
metal B on the right side, see Fig., one gets heat generation

j AE − j BE = (�A
i − �B

i ) ji (19.14)

where i refers to i = e for electronic current i = s for spin current j J . Of course
the current discontinuity depends on the relative direction of the megnetization of
metals A and B.

More and detailed experimental studies are needed to determine the Onsager
coefficients, to check on previous equations, and to determine different Onsager
coefficients in external magnetic fields. The Onsager Equations show again that, in
particular, the Josephson spin current due to �M , with respect to its phase gradient,
is accompanied by corresponding contributions to je, jE , etc. [8–15]. As discussed
already, the Seebeck coefficient describes the generation of a spin voltage by a tem-
perature gradient [10]. Note, this is a characteristic result of Onsager theory and
which, of course, can also be derived using an electronic theory. Note again, one
gets directly from μσ = μ(0) − eV − μ0σHef f that the spin voltage and the See-
beck coefficient is controlled by Hef f (T ). Recent studies by others also derived this
result, see MacDonald, et al. [1, 4, 5, 10]. As discussed, if one expands μσ in terms
of nσ , T and pressure, etc. one gets the Seebeck effect. Clearly, Sσ , etc., are given by
the energy spectrum, density of states Nσ(ε) and electron populations. Note, the form
�(μ↑ − μ↓) = eSs�T + ... is already most practical for an electronic calculation.

An external magnetic field
−→
H affects the spin voltage. Regarding the spatial

dependence x of the spin dependent chemical potential μσ(x, t), note that for dT
dx =

const., the gradient of the spin voltage varies linearly for a (one–dim.) tunnel junction
in x–direction.
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The spin Seebeck effect means (as discussed before) that a spin current can be
induced in amagnetic metal without an electric current (�ϕ = 0), since�T causes a
contribution to the spin voltage�(μ↑ − μ↓) �= 0. The spin current js is expressed by
Lσ
i j and, approximately, js ∝ (N↑(εF ) − N↓(εF )) + . . . As is clear, this spin current

depends on the spin mean free path, but it might disappear due to spin–flip scattering
far less than spin currents injected into metals. For example, in a tunnel junction
involving tunneling through graphene (with spin dissipation length ∼ nm or more)
one might get relatively large spin currents induced by a temperature gradient. This
is also the case for the spin currents resulting from the gradient of the phase of
the magnetization. Regarding dynamics, the time dependence of the gradient of the
magnetization phase is of interest.

19.2.2 Tunnel Junctions Involving Superconductors

It is also of interest is also to analyze the phase gradient driven currents in super-
conductors and to use these as a spin filter, see the illustration in Fig. 19.3 [10]. As
known, a singlet superconductor may block a spin current and affect the currents
driven, for example, by the gradients �T , �M = M1 − M2, etc. Depending on the
energy gain due to je vs. loss of energy due to (singlet) Cooper pair breaking, one
may have that the currents weaken the superconducting state. Note, �M(t) may
cause Josephson like spin current ( js ∝ sin�φ + ...) [12].

If the two ferromagnets are separated by a triplet superconductor, then the relative
orientation of the angular momentum

−→
d of the triplet Cooper pairs with respect to

the magnetizations
−→
M1 and

−→
M2 controls the tunnel currents [2, 7, 12].

Note,
−→
d may be oriented via an external magnetic field. It is of particular interest

to study the effect of superconductivity, triplet superconductivity, on the (giant) mag-
netoresistance in the case of two antiferromagnetically (af) oriented ferromagnets,
see Fig. 19.3. One expects for the parallel configuration of

−→
d ,

−→
M1 and

−→
M2 the lowest

Fig. 19.2 Illustration of a magnetic tunnel junction consisting of two ferromagnetic metals (FM)1
and (FM)2 separated by a superconductor (SC). The electron current je, as well as j↑ and j↓
and js = j↑ − j↓, depend on the relative orientation of the magnetisations

−→
M1 and

−→
M2 and on

the superconducting state, singulet vs. triplet Cooper pairs. Note, M2 − M1 = �M may cause
Josephson–like spin current, which is particularly affected in the case of a triplet superconductor
by the phase of its order parameter. Of course, the spin current is destructively affected by spin flip
scattering
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Fig. 19.3 Tunnel current j between two superconductors SC1 and SC2, which depends on the
relative phase of the order parameter of the two superconductors and the phase of the magnetization.
Of course, the thickness d of the ferromagnet controls the current, in particular spin polarized ones.
The tunnel current may be manipulated optically via hot electrons in the ferromagnet

Fig. 19.4 Illustration of a tunnel junction (T SC/FM/T SC). The phases �, φ and α of the super-

conducting order parameter, Cooper pair condensate and of the magnetization
−→
M , respectively,

control the tunnel currents. The magnetization may be decomposed into components M⊥ and M‖.
Due to the spin and angular momentum of the Cooper pairs one expects that the current through the

FM depends sensitively on the relative direction of
−→
M , spin relaxation, spin flip scattering resulting

(for example) from spin–orbit coupling, population of the Andreev states and the thickness d of FM

resistance, while the largest one for af configuration of
−→
d , and magnetizations. Of

course, Onsager theory can be used to describe the system illustrated in Figs. 19.2
and 19.3. Note, M2 − M1 may act like a magnetization gradient.

Related properties are expected for the tunnel junction shown in Fig. 19.4. One
may use this to distinguish singlet from triplet superconductivity. Onsager theory
can be used to describe such a system phenomenologically. Josephson currents jJ
sensitively characterize such tunnel junctions. The current jJ decreases for increasing
thickness d of the ferromagnet and for decreasing Cooper pair binding energy (Tc).
Also in the spirit of Onsager theory the difference (�2 − �1) of the superconducting
order parameters acts like a gradient inducing corresponding currents.

In the case of triplet superconductivity (TSC), the Josephson current jJ depends
in an interesting way on Tc and the angle between the magnetization

−→
M and direction

normal to
−→
jJ . The current should depend on the triplet state and impurity scattering
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(in particular spin orbit scattering). Hot electrons in the ferromagnet FMmodulate jJ .
Generally the spin polarization of the currents may be manipulated by the gradient
�M(t).

In view of the significance of the occurrence of triplet superconductivity in metals
we sketch the situation in the following Fig. 19.4. The current carried by Andreev
states is calculated using [7, 12]

jJ = −(e/�)
∑ ∂Ei

∂φ
tanh(Ei/2kT ), (19.15)

where the sum is extended over all Andreev states with energy Ei and mediating the
tunneling. Here, φ is the phase difference between the Cooper condensates on the
left and right side of the tunnel junction. One expects jJ to depend characteristically
on the phases of all order parameters, on the relative orientation of the Cooper
pair vectors

−→
dL ,

−→
dR and magnetization

−→
M , respectively. The triplet Cooper pairs

are described by �(k) = ∑
l dl(k)(σl iσ2), l = 1, 2, 3 where σl are the Pauli spin

matrices and dl are the spin components of the superconducting order parameter, see
Bennemann and Ketterson [7, 12]. Note, the triplet Cooper pairs have a spin and
orbital momentum.

For the transport of angular momentum, obviously the phases of all three order
parameters are of importance for tunneling. Even for no phase difference φ = φL −
φR between the triplet Cooper pair condensates on both sides of the tunnel junction
one gets for arbitrary phase of the magnetization of the ferromagnet a Josephson
current. In the ferromagnet the Andreev states carry the current of the tunneling
electrons and temperature controls its population. Also, of course, the magnitude
of the magnetization and electron spin relaxation in the FM matter. As physically
expected the Josephson current may change sensitively upon rotation of M⊥, change
of the direction of

−→
M . Model calculations yield results shown in Fig.7(a) [7, 12].

This implies that the tunnel junction (TSC|FM|TSC) may act like a switch turning on
and off the current jJ . This behavior suggests a sensitive dependence of the current
jJ on an external magnetic field.

In Fig. 19.5b model calculation results, strongly simplifying the influence of the
FMmetal, are given for the temperature dependence of the Josephson current [7, 12].
These should reflect the temperature controlled occupation of theAndreev states. The
change in sign of jJ (T ) as a function of T occurs only if Andreev states are non
degenerate and in the case of two Andreev states 1 and 2 with derivatives ∂E1

∂φ
and ∂E2

∂φ
that have opposite signs. Also note, the sign change of jJ for increasing temperature
may be suppressed by electron scattering in the FM [7, 12].

Clearly, in view of the importance of studying triplet superconductivity improved
calculations of the current jJ are needed. The FM tunnel junction metal must be
taken into account in a more realistic way. In case of paramagnetism M = χH , the
direction of the external magnetic field can be used to manipulate the current. In
view of the rich behaviour of (T SC/FM/T SC) tunnel junctions one also expects
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Fig. 19.5 Results for a
tunnel junction
(TSC/FM/TSC) sketched in
Fig. 19.4, see Morr et al.
[7, 12]. Dependence of the
Josephson current on a phase

α of the magnetization
−→
M

and b temperature T for
various values of α. Results
refer to model calculations
simplifying the coupling of
the Cooper pairs to the FM.
For increasing electron
scattering at the
ferromagnetic barrier, jJ
does not change sign for
increasing temperature any
more. The Andreev states
carrying the current are
determined using the
Bogoliubov–de Gennes
method. Tc is the
superconducting transition
temperature

interesting behavior for the currents. Again, the phases of the three order parameters
control the currents. One expects

j Js 	 A(�) sin(�φ + η), (19.16)

where � refers to the relative phase of the triplet Cooper pairs and �φ to the phase
difference of the magnetization on left and right side of the tunnel junction. Of
course,the Josephson spin current j Js can also be manipulated optically by changing
the population of the electronic states, by an externalmagnetic field and by applying a
temperature(or pressure) gradient. A spin currentmay result due to NσL(ε) �= NσRε.
Then, j = js + j Js .
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Interesting spin-dependent effects are also expected for superconductors due to
geometrically induced transitions of BCS and BEC transitions,�, in magneto optics
of nanostructures, see Hübner, Bennemann studies, and for systems of quantum dots,
see Garcia, Jensen, Bennemann [21, 22].

19.3 Summary

Various experiments can be used to determine the generally spin dependent Onsager
coefficients Lσ . The spin dependent forces Xσ can generally be manipulated by light
creating hot electrons and thus changing the various gradients �T , �M , etc. For
the tunnel system shown in Fig. 19.2 one might expect interesting behavior if, for
example, the metal 3 is replaced by Ce which electronic properties, valency changes
upon photon induced and controlled population of the s, d and f –states. Similarly,
currents change dramatically if, in Fig. 19.2, thematerial 3 consists of semiconductors
like Si, Ge etc or magnetic semiconductors which conductivity is strongly affected
by hot electrons [13].

Note, the Onsager coefficients are given by the current–current correlation func-
tion [9, 14, 15]

Lil(t) = 〈 ji (t) jl(0)〉, (19.17)

with ji (t) calculated using response theory, Heisenberg or v.Neumann equation of
motion (ρ̇ ∝ [ρ, H ] + ...), or as a functional of the free–energy F [9, 14, 15], see
also Bloch using jV = dF/dt with V being the potential associated with the force
Xiσ(t). Then, (see response theory)

ji (t) =
∫ t

∞
dt ′Lil(t − t

′
)Xl(t

′), (19.18)

where the Lil(t) are now calculated within an electronic theory. The analysis is
simplified if Li j ∝ δ(t − t

′
) (Markov processes, see Kubo [9]).

An electronic theory may be useful in order to apply field theoretical arguments
and symmetry considerations, see for example Nogueira [14]. The currents are also
directly calculated as derivatives of the electronic free–energy [8]. One expects gen-
erally the formulae jVth = dF/dt , where Vth denotes the “potential” associated
with the driving force Xiσ(t) of thermodynamics [9]. Note, for large gradients Xσ

nonlinear contributions to the currents may play a role.
In the case of magnetic multilayer structures, for example a ferromagnet A on

a ferromagnet B, one may induce spin currents by shining light on the surface of
the thin magnetic film. This creates hot electrons and a temperature gradient and

thus induces a spin current etc. Note, according to Maxwell equations �
−−→
M(t) will

generate electric fields Ei , i = x, y, z, which should be reflected in the observed
currents.
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Onsager theory also applies to currents in (gases) liquids of magnetic ions and in
the presence of a polarizing external magnetic field. Separating, for example, such a
system by a wall (with appropriate holes) into two compartments A and B, one may
induce charge and spin currents driven by Xiσ , voltage gradient, thermal gradients,
magnetic field gradient, etc. . One gets (approximately) for the currents through the
wall holes, see for example Kubo [9],

jασ ∝ pα
σ/

√
T α + ...,α = A, B, (19.19)

where pσ is the partial pressure due to ions with spin σ. Obviously, while for the
stationary state j Ai = j Bi , gradients Xiσ cause corresponding currents. For example,
in case of no pressure difference charge (and spin) may flow from A to B due to a
temperature gradient and TA < TB .

Onsager theory has many applications in thermodynamics. As an example, note
that in case of magnetostriction thermodynamics yields [9]

�M = − ∂V

∂Hef f

)

p,T

�p + ... (19.20)

Hence, a pressure gradient changes the magnetization and may cause spin current.
In particular, a time dependent pressure p(t) drives a magnetization dynamics.

Onsager theory could also be applied to spin currents in topological insulators
and at the interface of semiconductors in the presence of strong magnetic fields.
Interplay of spin–orbit coupling and magnetic field and magnetism of a substrate of
semiconductor should yield interesting results [7, 18].

Regarding (magnetic) atoms on lattices, including tunnel junctions (structures),
spin dependent gradient forces Xi acting on the atoms may cause currents and novel
behavior. Photon assistance of atom or molecule tunneling might be of particular
importance.

Coupled currents under the influence of a magnetic field and radiation fields also
likely play an important role in interstellar and galactic interactions and could be
treated using same theory as above, using Onsager theory for magnetic, ionic gases.

Finally, interesting andnovel behaviormayoccur if (diffusion) currents are accom-
panied by coupled chemical reactions, see de Groot [9]. Then in magnetic systems,
spin and magnetization may play a role and cause magnetic effects [13–23].

This discussion demonstrates the many options for inducing spin currents and the
powerful general analysis Onsager theory offers.
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Chapter 20
Bulk to Low Dimensional 2D
Thermoelectric Materials: Latest
Theoretical Research and Future View

T. Seddik and M. Batouche

Abstract The thermoelectric (TE) materials convert heat directly into electricity
or transport thermal energy by the application of an electric current. This class of
materials has been known for over a century, but the limited efficiency has slowed
down their development. However, due to the discovery of new materials and the
control of dimensionality, thermoelectric has regained its interest in recent years.
Inspired by the fascinating properties of 2D graphite many new 2D materials are
designed. The prediction of low dimensional materials and the exploration of their
electronic and thermoelectric properties have demonstrated that the low dimensional
approach is effective for the enhancement of the figure of merit ZT. In this review,
we discuss the thermoelectricity phenomena and the latest theoretical investigations
performed in developing and designing new 2D thermoelectric materials. Besides,
the different strategies to improve the thermoelectric performance that could be used
in the new 2D thermoelectric materials will be highlighted.

20.1 Introduction

In recent years, thermoelectricity has become very attractive as a new application
that uses a clean energy source. So, many projects are being studied to apply thermo-
generators in different fields such as automotive, microelectronics, medical…etc.
These thermo-generators are typically made of materials called thermoelectric mate-
rials which have the ability to convert heat directly into electricity or vise versa. This
class of materials has been known for over a century [1], but the limited efficiency
has slowed down their development.

The thermoelectric performance of a material is essentially characterized by a
factor stand for figure of merit, ZT = S2σT

κ
, where S, σ , and κ denote the Seebeck

coefficient, electrical and thermal conductivity, respectively. Thus the major target is
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the improvement of ZT, however search for the materials with low κ value, the high
value of S and σ had been a challenge to all the researchers in recent past. It is because
of the reason that the dependence of S, is inversely proportional to the concentration
of charge carriers. Hence, for the materials if the Seebeck coefficient decreases, the
electrical conductivity is increased with increasing carriers concentration. Likewise,
such increase in electrical conductivity results in increasing thermal conductivity,
which shows an adverse effect on the improvement of the ZT factor.

One powerful strategy to increase ZT value is the control of dimensionality of
the bulk TE materials. This strategy was initially introduced by Hicks and Dres-
selhaus where they examined the thermoelectric of 2D quantum well structure and
reported that the quantum-confinement can considerably improve the power factor
PF [2, 3]. The mechanisms behind this are: (i) dramatic change of density of states
(DOS) caused by the increasing size; (ii) Scattering of phonons more effectively than
electrons by increasing boundary and interfacial scattering [2–4]. Consequently, the
PF of 2D materials is significantly increased and the lattice thermal conductivity
is decreased compared to their bulk counterparts. Besides, inspired by the fasci-
nating properties of 2D graphene [5–8] many new 2D materials are designed such
as Graphene family, Penta-graphene family, Dichalogenide family, Trihalide family,
Mxene family, Phosphorus family, …etc. [5–18]. Owing to their remarkable proper-
ties compared to the bulk counterpart these 2D materials have attracted broad atten-
tion in order to design a new class of thermoelectric materials with high performance
[19–27].

In this review, we discuss the thermoelectricity phenomena and the latest theo-
retical investigations performed in developing and designing new 2D thermoelectric
materials. Besides, the different strategies to improve the thermoelectric performance
that could be used in the new 2D thermoelectric materials will be highlighted.

20.2 Principles of Thermoelectric Energy Conversion

Athermoelectric phenomenon is the generation of electricity (occurrence of electrical
potential differenceΔV ) when thematerial is exposed to a temperature differenceΔT
via the Seebeck effect [28]. This phenomenon is mainly explained by the displace-
ment of charge carriers from the hot side to the cold side of a material to return to
an equilibrium state under a temperature gradient, creating a diffusion current. For
material in an open circuit, this current is zero and a voltage ΔV appears which
is depending on the used material. This thermoelectric voltage difference per unit
temperature is termed the Seebeck coefficient. Conversely to this process i.e., when
this material is subject to electrical potential difference ΔV the thermal energy is
transporting, it’s the Peltier effect [29]. These effects are usually used for power
generation and cooling or heating applications through thermo-generator Fig. 20.1,
which consist of two legs one of them is an n-type semiconductor and the other is a
p-type semiconductor. Typically many thermo-generators are electrically connected
to form a thermoelectric device (module) Fig. 20.1.
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Fig. 20.1 Schematic diagram of thermo-generator which consists of two legs one of them is an
n-type semiconductor and the other is a p-type semiconductor (right) and module (left)

20.2.1 Thermoelectric Figure of Merit

The conversion efficiency η of module for power generation applications can be
defined as follow:

η = TH − TC
TH

√
1 + ZT − 1

√
1 + ZT +

(
TC

/
TH

) (20.1)

on the other hand, the coefficient of performance (COP) of module for cooling
applications is given by the following equation:

COP = TH

TH − TC

√
1 + ZT −

(
TH

/
TC

)

√
1 + ZT + 1

(20.2)

where TH and TC , are the hot-side and cold-side temperature, respectively, and ZT
is the average figure of merit which is the average of the dimensionless figure of
merit ZT of the materials included in the module. This figure of merit is given by:

ZT = S2σ

κ
T (20.3)

Here, S denotes Seebeck coefficient, σ the electrical conductivity, and κ the
thermal conductivity. The Seebeck coefficient is expressed by the following equation:
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S = 8π2k2B
3eh2

m∗T
( π

3n

) 2
3

(20.4)

where e is the electronic charge, kB is the Boltzmann’s constant, T is the temperature,
h is the Planck’s constant, n is the carrier concentration, andm* is the effective mass
of the carrier. Besides, the electrical conductivity σ which represents the ability of
the material to conduct electric current is given by:

σ = neμ (20.5)

where μ is the mobility of the charge carriers. Moreover, the thermal conductivity
κ which represents the material’s capability to transfer heat subject to temperature
gradient across its points is given by:

κ = κe + κl (20.6)

here, κe and κ l are the electronic and the lattice thermal conductivity, respectively.
The first one κe is determined by the Wiedemann–Franz law κe = LσT , where L

denotes Lorenz number. On the other hand, κ l is given by κl = 1/3 cvsl p, where vs
is the sound velocity, c the specific heat, and lp is the phonon mean free path.

So for higher η and COP we desire a material with ZT as high as possible, hence
improving ZT factor is a major target. However, search for materials with lower κ

value and higher S and σ value is a very big challenge for researchers. It is because
of the reason that the dependence of S, is inversely proportional to the concentra-
tion of charge carriers Fig. 20.2. Hence, for the materials, if the Seebeck coefficient
decreases, the electrical conductivity is increased with increasing carriers concen-
tration. Likewise, such an increase in electrical conductivity results in increasing
thermal conductivity, which shows an adverse effect on the improvement of the ZT
factor.

20.3 Theoretical Investigations of 2D Thermoelectric
Materials

20.3.1 Theoretical Background

From Sect. 20.2.1 we have observed that higher ZT requires high Seebeck coefficient
S and electric conductivity σ , and low thermal conductivity κ, which is very difficult
to realize since these three thermoelectric quantities are inter-related for the 3D
crystalline system. However, reducing dimensionality is considered as an effective
way to enhance ZT value of bulk materials. The mechanisms behind this are: (i)
dramatic change of density of states (DOS) (Fig. 20.3) caused by the increasing size.
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Fig. 20.2 Seebeck coefficient S, electrical conductivity σ, power factor (PF = S2σ), elec-
tronic thermal conductivity κe, and lattice thermal conductivity κL as function of charge carrier
concentration n.. Reprinted from [30], Copyright (2012), with permission from Elsevier
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Fig. 20.3 Electronic density of states for 3D bulk system (left) and 2D quantum well structure
(right)
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Compared to the 3D bulk materials the Fermi level in 2D materials is located near
a sharp change in DOS, which lead to significant enhancement in S. (ii) Scattering
of phonons more effectively than electrons by increasing boundary and interfacial
scattering, leading to a decrease in the lattice thermal conductivity [2–4].

This dimensionality effect was the subject of Hicks and Dresselhaus works where
they examined the thermoelectric of 2D quantumwell structure [2, 3]. They assumed
a quantum confinement in the z-direction and in the x–y plane the electrons are in
parabolic bands. The electronic dispersion relation in x–y plane is parabolic and given
by [31]:

E2D
(
kx , ky

) = �
2k2x
2mx

+ �
2k2y
2my

+ �
2π2

2mzd2
w

(20.7)

where mx, my, and mz are the effective mass along x, y, and z-direction, and dW is
the thickness of the quantum well.

Compared to the expression of ZT for 3D bulk system given by [31]:

ZT3D =
[
5F3/2
3F1/2

− ζ ∗
]2

3
2 F1/2

1
B3D

+ 7
2 F5/2 − 25F2

3/2

6F1/2

(20.8)

where Fi denotes Fermi–Dirac function given by:

Fi = Fi
(
ζ ∗) =

∞∫

0

xidx

exp(x − ζ ∗) + 1
(20.9)

here x = E/kBT is a dimensionless energy and ζ* = ζ /kBT is a dimensionless
electrochemical potential, and B3D is a dimensionless material parameter described
by:

B3D = 1

3π2

(
2kBT

2

)3/2(
mxmymz

)1/2 k
2
BTμx

eκph
(20.10)

here μx is the mobility in x direction.
Using 2D electronic dispersion relation the ZT expression for 2D system is given

by [31]:

ZT2D =
[
2F1
F0

− ζ ∗
]2
F0

1
B2D

+ 3F2 − 4F2
1

F0

(20.11)
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where the material parameter B2D is expressed by the following equation:

B2D = 1

πdW

(
kBT
2

)(
mxmy

)1/2 k
2
BTμx

eκph
(20.12)

From ZT expression (20.8) and (20.11) one can observe that the figure of merit
value depends on reduced chemical potential ζ* and material parameter B. Thus for
3D bulk materials, varying doping level to optimize ζ* or increasing B by reducing
lattice thermal conductivity and/or maximize mobility, the ZT3D can be enhanced.
On the other hand for 2D system, in addition of these parameters one more variables
of length scales dW can be varied to maximize ZT2D value. Apparently minimizing
the dW increase the material parameter B2D and hence the ZT2D can be largely
enhanced [32].

20.3.2 Recent Theoretical Results

Since the discovery of graphene in 2004 [5], there has been a surge of interest in 2D
materials for various applications. These include Graphene family, Penta-graphene
family, Dichalogenide family, Trihalide family, Mxene family, Oxide family, Phos-
phorus family, and various others [5–18]. Owing to their remarkable properties
compared to the bulk counterpart these 2D materials have attracted broad atten-
tion for thermoelectric applications. Using ab initio method based on density func-
tional theory [33] within the semi-classical Boltzmann transport theory [34] many
researchers group have explored 2D materials in order to designing new class of
thermoelectric materials with high performance.

20.3.2.1 Graphene Family

The fact that the graphene have poor thermoelectric performance [35] leads to design
and development of new 2D carbon structure [36–40] and new graphene-like 2D
materials such as graphene-like BN, ZnO, AlN, BeN2, …etc. [41–50].

Unlike graphene the graphyne exhibit an opening band gap which make it favor-
able candidate for thermoelectric application [19, 51]. Jiang et al. [52] have theoreti-
cally investigated the electronic and thermoelectric of γ-graphyne and they reported
a high Seebeck coefficient and low thermal conductivity of γ-graphene compared to
doses of graphene. Besides, they estimated a ZTmax of about 1.5 for the p-type doping
along the x-direction and 1.0 for the n-type doping along the y-direction Fig. 20.4b.
This interesting thermoelectric performance is interpreting by the existence of the
carbon–carbon triple bonds in the γ-graphene structure and the opening of the band
gap [52].
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Moreover, many other work on 2D graphene-lick materials are achieved
such as AlX (X = S, Se, and Te) [41], InN [42], CdCh (Ch = S, Se, and Te) [43],
BPn (Pn = P, As, and Sb) [44], SiCx [45], SrS [46], XBi (X = Si, Ge, and Sn) [47],
ZnO [48], BN [49] and BaX (X = O, S, Se, and Te) [50]. These materials show
promising thermoelectric properties however theirs ZT are still far from the desired
value for thermoelectric application except for BX (X = As and Sb).

In the case of the BX (X=As, Sb) monolayer Zhou et al. [44] predict a higher ZT
value along the zigzag direction compared to those along armchair direction for both
p- and n-type carriers, with ZTmax achieved at 1300 K and 700 K for BAs and BSb
monolayer, respectively. At these temperature and for hole concentration of about
5.7 × 1019 cm−3 and 2.7 × 1019 cm−3 the expected maximum ZT values are 3.7 and
3.3 for 2D BAs and BSb materials, respectively, along the zigzag direction. They
also found that along the armchair direction the BSb monolayer has almost same
thermoelectric performance for p and n-type doping [44].

20.3.2.2 Penta-Graphene Family

The 2D carbon allotrope material named penta-graphene (PG) has proposed for the
first time by Zhang et al. [16]. This PG is completely composed of carbon pentagons
and shows a good dynamical and mechanical stability [16]. It is estimated that PG
posses a band gap of about 3.25 eV, making it a potential candidate for optoelec-
tronic device [53–57]. Furthermore, it is showed that PG has a κ l of about 197.85
Wm−1 K−1[58] at room temperature, which is much lower compared to the graphene
one. C. P. Chen et al. reported that even though the PG posses low κ l its ZT value
is still lower (0.053) at room temperature, however this ZT can reached a value
about 0.481 under strain effect for p-type PG [20]. Besides, a new two-dimensional
materials with pentagonal structure investigated such as penta-SiC2, penta-silicene,
penta-SiN2, penta-CB2, penta- MAs2 (M = Ni, Pd, Pt), penta-PdX2, and penta-PtX2

(X = S, Se, and Te) [59–67]. Y. S. Lan et al. investigated theoretically the electronic
and thermoelectric properties of penta-PdCh2 (Ch = S, Se et Te) [21]. They show
that 2D penta-PdCh2 materials are semiconductors with indirect band gap of about
1.14 eV, 1.34 eV and 1.24 eV, respectively. They also reported a lower lattice thermal
conductivity along the x-direction compared to the y-direction with κ l (PdTe2) < κ l

(PdSe2) < κ l (PdS2). This trend leads to higher ZT value of about 2.42 along x-
direction for the p-type PdTe2 material at 3.78 × 1012 cm−2 carriers’ concentration
and room temperature [21].

Later on, another first principle study has carried on other anisotropic 2D-material
named penta-silicene [68]. This 2D-materials exhibit semiconductor character with
a nearly direct band gap of about 0.68 eV using HSE06 functional. As a result the
penta-silicene shows a reducing Seebeck coefficient at low concentration due to the
bipolar effect and thus a lower power factor PF. At 300 K, Zhibin Gao et al. estimated
a maximum PF value of about 156.40 and 40.23 mW/mK2 at 5.09 × 1013 cm−2 hole
carriers concentration along x- and y-direction, respectively. However, the PFmax is
61.75 and 39.22 mW/mK2 at 1.55× 1013 cm−2 electron carriers concentration along
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x- and y-direction, respectively. Such higher PF value of penta-silicene for p-type
doping is explained by the presence of four hole pockets and relatively flat bands
in the valence band (see Fig. 20.5) [68]. Furthermore, the calculated ZT display
an anisotropic behavior with a higher value equal to 3.43 for p-type doping along
the x-direction and 3.04 for n-type doping along the y-direction at room tempera-
ture Fig. 20.6. This makes penta-silicene a promising candidate for thermoelectric
application at near room temperature.

Fig. 20.4 a γ-graphyne structure, b the temperature dependence of phonon thermal conductivity of
γ-graphyne along the x- and y-directions (left), and the corresponding ZT values (right). Reprinted
from [52], Copyright (2017), with permission from Elsevier

Fig. 20.5 The penta-silicene structure in a 3 × 3 supercell a top view and b side view, c Electronic
band structure of penta-silicene using the DFT-PBE (black) and DFT-HSE06 (red) approximation.
Reprinted and adapted with permission from [68]. Copyright (2020). American Chemical Society
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Fig. 20.6 Calculated figure of merit ZT of a p-type and b n-type penta-silicene as a function of the
carrier concentration along x- and y-axes at 300 and 600 K. Reprinted with permission from [68].
Copyright (2020). American Chemical Society

Very recently, Tao et al. have theoretically studied a new 2D pentagonal materials
based on platinum PtCh2 (Ch= S, Se, and Te) [69]. Similarly to the penta-PdCh2 the
penta-PtCh2 presents anisotropic thermoelectric properties with higher ZT values
along the x-direction. Besides, the ZT values of this 2D materials are enhanced with
the increasing temperature to attain a maximum at 600 K equal to 1.46 (0.71), 3.42
(1.33), and 5.03 (4.85) for p-type (n-type) PtS2, PtSe2, and PtTe2, respectively along
x-direction. This result suggests high thermoelectric properties of penta-PtCh2 at
medium temperature.

20.3.2.3 Phosphorus Family

After the exfoliation of the black-phosphoren from the bulk BP [70] the 2D phos-
phoren materials became more and more attractive for nanoelectronics applications
[71–75]. Previously, both black-P and Blue-P are estimated to have a band gap value
of about 1.59 eV and 2.73 eV, respectively by Cem Sevik and Hâldun Sevinçli
using HSE06 functional [22]. These authors also pointed motivating thermoelectric
performance of black and blue-P. At room temperature they reported a ZT value to
be 0.4/0.13 in the armchair/zigzag direction for black-P and 1.25 for blue-P. Very
recently, Cui et al. have studied the thermoelectric performance of black-P with a
variety of thickness [23]. They estimated a maximum ZT value of 0.9 for bi-layer
black-P (p-type) in the armchair direction, and point out the strong dependence of
thermoelectric performance of black-p on layer numbers Fig. 20.7a. According to
these authors these results is principally owing to the high and degenerate valence
band near the Fermi level of bi-layer black-P. Besides, they show that the formation
of the black-P/hBN heterostructure can improve the ZTmax of the black-P to be 0.65
and 1.2 at 300 K and 500 K, respectively Figs. 20.7b, 20.8.
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Fig. 20.7 The calculated ZT values as a function of carrier concentration along armchair direction
of 2D black-P at 500 K (left panel) and black-P/h-BN heterostructure at 300 and 500 K (right panel).
Reprinted from [23], Copyright (2021), with permission from Elsevier

Fig. 20.8 Phosphorene-like structure of monolayers of group-IV monochalcogenides (a) Side
views of the x–z plane for the four compounds and for phosphorene. b Side view of the y–z
plane of SnS and phosphorene. c Top view of the structures. Reprinted figure with permission from
[76]. Copyright (2015) by the American Physical Society
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Fig. 20.9 ZT value of a p-type and b n-type 2DSnTe as function of carrier concentration at different
temperature in armchair (dashed line) and zigzag (solid line) directions. Reprinted from [77], with
the permission of AIP Publishing

Moreover, other 2D black-P analog materials with buckled structure (Fig. 20.9)
have been investigated for thermoelectric applications, such as IVCh (IV = Ge, Sn
and Ch = S, Se, Te).

Using density functional theory combined with Boltzmann transport theory A.
Shafique and Y. H. Shin show high thermoelectric performance of these 2D IVCh
(IV = Ge, Sn and Ch = S, Se) materials with ZTmax reached 1.75/1.88, 2.63/2.46,
1.85/1.29, and 1.99/1.73 for SnS, SnSe, GeS, and GeSe along armchair/zigzag direc-
tion, respectively at 700 K [24]. Later on, Li et al. investigated the thermoelectric
and thermal transport of the monolayer SnTe [77]. They show that this 2D SnTe has
interesting electronic transport properties owing to their specific Fermi surface and
band structure. Thus, this 2D SnTe can achieved a ZT value of about 2.2 and 2.9 in
the armchair direction for p-type and n-type doping, respectively, at 900 K Fig. 20.9.

20.3.2.4 Transition Metal Dichalcogenides and Oxides Family

The 2D transition metal dichalcogenides and oxides (TMDs and TMOs) have
attracted much attention owing to theirs interesting electronic and optical proper-
ties as compared to their corresponding Bulk counterparts [78–85]. These 2D TMDs
and TMOs have hexagonal 1H phase, however some of them possess another phase
noted 1 T-CdI2 [25]. Recently many researchers highlighted their fascinating ther-
moelectric properties [25, 86–91]. Based on DFT calculation Özbal et al. [25] have
investigated on thermoelectric of 2DTMDs and TMOsmaterials. They have reported
an exciting figure of merit value in the 1H phase of about 1.41 (1.42), 1.38 (1.17),
and 1.57 (1.28) for p-type (n-type) ZrSe2, HfS2, and HfSe2, respectively, at room
temperature Fig. 20.10. At 800K these values attain amaximum of about 2.96 (3.61),
3.03 (2.92), and 3.30 (3.04) for p-type (n-type) ZrSe2, HfS2, and HfSe2, respectively
[25]. On the other hand the 1 T phase of Zr/Hf oxides (both p-type and n-type) and
n-type Zr/HfCh2 (Ch = S and Se) shows considerable ZT value at 800 K Fig. 20.10.
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Fig. 20.10 ZT value of 2D transition metal dichalcogenides and oxides at 300 K and 800 K for 1H
phase (top panels) and 1 T phase (bottom panels). All data are taken from [25]

Accordingly, compared to the bulk counterpart [92] the 2D TMDs and TMOs mate-
rials display fascinating thermoelectric properties makes them promising candidates
for thermo-generator device.

20.3.2.5 MXenes Family

The MXenes 2D materials are generally formed by removing the A layers in MAX
phases based nitride and carbides. These 2D materials display fascinating properties
making them attractive for electromagnetic interference shielding [93], water purifi-
cation [94], energy storage [95–97], biosensing [98], antibacterial activity [99], and
ion sieving [100].

Among them, semiconducting MXenes based transition metal (M = Sc, Ti,
Zr and Hf) shows promising thermoelectric properties, e.g., a ZTmax value
of 0.5 and 0.45 is reported for p-type Sc2C(OH)2 and n-type Sc2CF2 and
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Fig. 20.11 The calculated ZT a and TE conversion efficiency b for Cr2TiC2 and Cr2TiC2T2
(T= −F and−OH). Reprintedwith permission from [101]. Copyright (2019). AmericanChemical
Society

Ti2CO2, respectively [26, 27]. Moreover, Ziang Jing et al. have theoretically
studied the thermoelectric performance of double transition metal 2D MXenes
Cr2TiC2T2 (T = − OH or − F) [101]. They estimated a ZT value of 2.59 and 3
for p-type Cr2TiC2(OH)2 MXene at 300 K and 600 K, respectively Fig. 20.11. This
material displays a thermoelectric conversion efficiency of 20%, showing interesting
TE performance [101].

20.4 Strategies for Enhancement of Thermoelectric Figure
of Merit

From above we have seen that the dimensionality play a major role to boost ther-
moelectric performance due to the enhanced power factor (PF = S2*σ) caused
by a sharper density of states near the Fermi level, or the reduced lattice thermal
conductivity caused by the increased phonon scattering, however it’s not always the
case. Therefore, it is necessary to overcome this problem by using other strategy to
improving ZT value of 2D materials. The band convergence is one of the promising
solutions which can be realized by alloying, doping or using the strain method. For
example, theoretically, Basant Roondhe et al. show that oxygen doped h-BN leads to
two times larger PF than pure 2D h-BN [102]. This is due to the increase in the elec-
trical conductivity resulting from the reduction of the band gap value from 4.36 eV
for h-BN to 0.7 eV for BNO. Further, Lv et al. demonstrate that the thermoelec-
tric performance of 2D phosphorene can be tuned by the applied strain [103]. They
reported that the uniaxial strain improves simultaneously the Seebeck coefficient and
electrical conductivity leading to ZT value of 1.65 for 5% zigzag-direction strain and
2.12 for 8% armchair direction strain at room temperature. Building 2D heterostruc-
ture is also an effective solution for improving thermoelectric performance due to
the interfaces phenomena which leads to some new properties. Ding et al. show that
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making 2D ZrSe2/HfSe2 heterostructure can improve the ZT value to be 5.3 for n-
type doping and 3.2 for p-type doping which is four times higher than those of ZrSe2
and HfSe2 monolayer [105]. In addition, Cui et al. show that the formation of the
black-P/hBN heterostructure can improve the ZT value of the black-P to be 0.65 and
1.2 at 300 K and 500 K, respectively [23].

20.5 Conclusion

The thermoelectric materials have the ability to convert heat directly into electricity
or vise versa. This class of materials has been known for over a century, but the
limited efficiency has slowed down their development. In this review, we have seen
that to overcome this problem a powerful solution is adopted which is the reduc-
tion of dimensionality. This strategy plays a major role to boost thermoelectric
performance due to the enhanced power factor PF caused by a sharper density of
states near the Fermi level, or the reduced lattice thermal conductivity caused by
the increased phonon scattering. Consequently, new 2D materials such as graphene
family, phosphorus family, penta-graphene family, MXenes family, and transition
metal dichalcogenides and oxides family have been developed and designed to be the
next-generation high-performance thermoelectric materials. However, more efforts
are needed to understand the electrical and phonon transport mechanism in 2Dmate-
rials. Although the power factor is enhanced, it is still difficult to decouple the
different transport coefficients. Besides, it is still challenging to manufacture 2D
thermoelectric materials for future practical applications.
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Chapter 21
Reversible DC Electric Field
Modification of Optical Properties
of CdTe Nanocrystals

Rabia Ince, Melda Patan Alper, and Mehmet Hikmet Yukselici

Abstract Modifiable nonlinear optical properties have the potential for innovative
device applications. Quantum dot systems have an energy level system that is modi-
fied under external electric fields, modifying their optical properties. The matrix
surrounding the quantum dot systems influences this optical modification. In this
work absorption spectra of cadmium telluride quantum dot systems in solution and
solid glassmatrixeswere studied under increasing appliedD.C electric fields between
0.25 and 5 kV/cm. Quantum dot systems in both solid glass and liquid solution
matrixes gave rise to electro-optic effects, which modified their optical properties
(absorption spectra, bandgap energy and refractive index). The effect is reversible,
so that removal of the electric field returns the original electro absorption spectra.
This work showed all nanoparticle samples except one displayed a linear decrease of
band gap energy with electric field; this amounted to equivalent changes in quantum
dot radii of 0.02 nm per kV in glass matrixes and about 0.03 nm per kV for solution
matrixes. Evidence of improved mono-dispersity was also observed.

21.1 Introduction

Optical absorption is a nonlinear optical property whose perturbation causes refrac-
tive index modifications. This has the potential for device applications in far-infrared
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laser amplifiers, photodetectors, and high speed electro-optical modulators. Variable
refractive index, energy bandgap and optical absorption are examples of nonlinear
optical properties utilized in innovative optical devices such as distributed feedback
lasers.

Quantum dots offer an energy level system that can bemodified by external condi-
tions, such as electric field and surroundingmatrix, leading to changes of their optical
properties. Electric field modification of nanoparticle nonlinear optical properties is
unique and offers a simple, low-cost method of controlling their optical properties.
The literature discusses the theoretical effect of electric fields on CdTe quantum
dot systems [1–3] for the case of a spherical quantum-dot subjected to an external
perpendicular electric field in the presence of an impurity.

In this work an experimental investigation of the effects of high voltage electric
fields (0.25–5 kV/cm) on the absorption coefficients and bandgap energies of a range
of prepared samples of cadmium telluride nanoparticles in both solid glass matrixes
and solution matrixes has been carried out.

21.1.1 Electro-Optic Modification of Spectra

High voltage DC and AC electric fields perturb the energy levels of isolated atoms,
leading to a shift in the absorption wavelength of the atom. Semiconductor nanopar-
ticles exhibiting atom-like quantized energy states are perturbed in the presence of
electric fields. The application of an electric field to quantum dot systems leads to
electro-optic modulation of absorption spectra attributed to the quantum confined
Stark effect, (QCSE) [4–10]. Figure 21.1 shows the QCSE mechanism and outcome
of this effect. The electrons in the valence band can be excited by less energy than the
band gap energy according to the red-shifted band gap energy, E′ = Eg−qxF where
q is the charge per carrier, x position and F the electric field applied.

QCSE is caused when electrons and holes are forced in opposite directions by
the applied field, decreasing wave function overlap and hence absorption peaks; a
red shift of the energy band gap also occurs. In this study red shifts were observed
alongside a decrease in absorption magnitude, which are characteristic of the QCSE.

21.2 Theory

When the radius of a semiconductor sphere approaches a few nanometres, Bohr radii
of their excitons becomes larger than the sphere, efficiently confining them. This
quantum size effect causes electron–hole pairs to have discrete transition energies
greater than their band gap energy,Eg, by a size-dependent energy shift,�En,l, which
radically changes the chemical, physical, optical and electric properties of the whole
quantum system.
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Fig. 21.1 Eg = bulk band gap, Ee = electron energy, Eh = hole energy, absorbed energy = Eg +
Ee + Eh (a) wave function for n = 1 level of a quantum confined system at zero applied electric
field (b) wave function of n = 1 level of the system is perturbated by applied electric field causing
red shift (decrease in transition energy En = 1), reduction in confinement energy, and reduction in
wavefunction overlap so peaks don’t coincide causing intensity decrease (c) Change in absorption
spectrum after application of electric field (dashed line) [11]

The effective mass approximation [12–15] of (21.1) relates bandgap in eV to the
quantum system properties. It is useful to compare energy bandgap modification
to equivalent nanoparticle size modification with applied DC electric fields across
nanoparticle samples.

En,l
∗ = c∗h

λonset
= Ebulk

g + h2

8r2

(
1

me
∗ + 1

mh
∗

)
− 1.786e2

4πεεor
(21.1)

where, r is the particle radius, me
∗ is the effective mass of excited electron, mh

∗ is
the effective mass of excited hole, ε is the relative permittivity, ε0 is the permittivity
of free space, and e is the electronic charge. The first term represents bulk band gap
and the second confinement energy. The third term represents Coulomb interaction,
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polarization is negligible here, so a term to represent it is omitted. More terms should
be added to the right side such as shift in energy if the temperature or pressure on the
sample change during the measurement as well as shift due to electric field applied,
as in this study. The electric field induced shift �E in the band edge is given by the
equation [16, 17]

�E(meV) = −24 × 10−7 M [F(kV/cm)]2[Rave(nm)]4 (21.2)

where M is the translational mass of the electron–hole pair in units of electron rest
mass and F is the electric field.

21.2.1 Size Distribution of the Crystals n(R)

Absorption spectra were recorded of all nanoparticle systems, allowing bandgap
energies, En,l to be determined from extrapolation of linearized Tauc plots [18–20].
This allowed an estimation of equivalent nanoparticle radius r (from (21.1)) for
samples with and without H.V. fields, these could then be compared with their band
gap modifications.

Absorption edges of the samples in this work were broader than bulk crystals due
to the size distribution of the nanocrystals n(R). This is an important quantity because
monodispersed samples are desirable. In the dilute concentration limit, n(R) can be
obtained by assuming absorbance A at any wavelength is related to the total volume,
V, of spherical particles with radius greater than or equal to the size corresponding
to the absorption onset [21]:

A(r) ∝
∞∫
r

4

3
πR3n(R)dr (21.3)

Since n(R) = 0 when R → ∞

n(R) ∝ −d A/dR

V
(21.4)

Particle size distributionswere obtained from the absorption spectrumusing (21.1)
and (21.4). The derivative of the absorption curve was obtained by converting the
wavelength axis to energy units, allowing radii to be extracted via (21.1). The gradi-
ents at each radius were substituted into (21.4) to determine size distributions from
the full width at half maximum (FWHM) for the sample spectra.
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21.3 Sample Preparation

21.3.1 Semiconductor Nanoparticles Grown in Glass
Matrixes

CdTe colloidally coloured Schott optical filter glass samples (RG830) were heat
treated over three temperature and time cycles to enhance diffusion of the Cd2+ and
Te2− ions as shown in Table 21.1. This caused CdTe quantum dots to form which
had temperature–time dependent dimensions. Three samples were obtained from the
same glass matrix which were melted at 1100 °C for 15 min to dissolve the colloids,
these were quenched at room temperature. The samples subsequently underwent a
two-stage heat treatment: at a temperature below the glass transition temperature to
initiate nucleation, followed by annealing at 660 °C using a furnace of well-known
temperature profile to allow the nanoparticles to grow.

21.3.2 Synthesis of Semiconductor Nanoparticles and Their
Absorption Spectra

Nanoparticles in liquid matrixes were obtained through a synthesis route developed
by trial-and-error modification of literaturemethods [22, 23] into a two-stage process
using a NaHTe solution precursor. Sodium borohydride (1.5312 g) and Te (0.3828 g)
powder were mixed in a 1:4 ratio with HPLC water (doubly distilled) which was left
to cool for 24 h until a clear purple colour change occurred. This was then used for
the second stage of the synthesis.

Cadmium chloride (0.2 g) was dissolved in 150 ml of HPLC water in a round
bottomed flask, and the PH adjusted to 7–8 by the addition of sodium hydroxide with
a syringe. The resulting mixture was then heated using a controller (hot plate with
magnetic stirrer) until it reached a steady temperature of 98 °C. Mercaptropropionic
acid (0.2 l) was quickly added into the mixture using a syringe, followed by the
injection of 0.3 mmol of the clear purple precursor. This changed its colour to yellow
on maintaining a constant temperature for 20 min.

The first quantum dot sample was then extracted using a syringe and deposited in
a test tube. As the solution gradually changed colour through red, orange, brown over
several hours, six further samples were extracted every hour. Each was centrifuged at

Table 21.1 Solid
nanoparticle samples and
annealing times

Sample matrix Sample no Second stage heat treatment time
(hr)

Glass 1 3

Glass 2 8

Glass 3 12



594 R. Ince et al.

6000 rpm for 15min to remove excess surfactants; their peak absorption wavelengths
were immediately determined with a uv–vis spectrometer through transmission
measurement. The spectra are shown in Fig. 21.2.

The blue shift was observed in the onset of the asymptotic optical absorption for
both sets due to the quantum size effect in Fig. 21.2a and b.

Fig. 21.2 Absorption. spectra of nanoparticles in (a) solution samples and (b) glass matrixes
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21.4 Measurement of Spectra

The spectra of the solid and liquid samples were measured at zero field and several
non-zero applied fields to determine their modification of band gap energies En,l,
using Tauc plots [18–20] and equivalent nanoparticle radii (21.1). A secondary goal
was to determine the effect of matrix type (solid and liquid) on nanoparticle proper-
ties. These observations provide information on controlling the non-linear properties
of nanoparticles.

21.4.1 Sample Rigs for Electro Optical Measurements

Solid samples of varying thickness (0.9–0.14 mm) containing nanoparticles of
varying size were sandwiched between two indium-tin-oxide (ITO) covered glass
slides. Tiny spots of epoxywere carefully applied to their edges, as shown in Fig. 21.3
and the structures allowed to dryovernight.Optical transmission spectra of the sample
were recorded with and without high electric DC fields (0.25–5 kV/cm).

To perform the electro-optical measurements on solution samples, the quantum
dot solutions were placed inside a 1 cm quartz cell containing copper electrodes as
shown in Fig. 21.4. Optical transmission spectra of the samples were recorded with
and without high electric DC fields (0.25–5 kV/cm).

Fig. 21.3 Sample geometry and electrical/optical configurations for solid glass samples
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Fig. 21.4 Electrical/optical configurations for solution samples

21.4.2 Determination of Optical Band Gap from Tauc Plots
Under H.V. Fields

Figure 21.5 shows the home-made absorption measurement system, constructed to
allow samples to be simultaneously present in both the optical path and the H.V.
field. Using the test rigs, it was adapted for measuring both quantum dots in glass and
quantum dots in solution using a monochromator [Oriel, Cornerstone 130 motorized

Fig. 21.5 Optical spectrometer set-up for spectral measurements. W: 50W Tungsten lamp, L1, L2
lenses, QDS (quantum dot samples), S: slit, M: monochromator, MS1: monochromator entrance
slit, MS2: monochromator exit slit, D: silicon detector, R: load, OPM: optical power meter, PC:
personal computer and IEEE
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monochromator 1/8 m, 1200 lines/mm grating]. Electric fields were applied along
axes perpendicular to the optical path in the range 0.25–5.5 kV/cm for solid samples
and 0.25–2.5 kV/cm for solution samples.

Samples under electric field might be modelled as a resistor and capacitor
connected in parallel. As the voltage is applied, the capacitor is quickly charged,
with some current passing through the resistor. Since the conductivity of water is ~6
orders of magnitude greater than that of glass, the electrical breakdown occurs at a
lower potential in water than glass. This means the maximum voltage that can be
applied is 2.5 kV for water samples and 5.5 kV for glass samples.

Light from a 50 W tungsten lamp was focused onto a 2 mm diameter area
on the sample. Transmitted light was collected and re-focused at the entrance slit
of the monochromator. During source wavelength scanning from 450 to 900 nm,
transmitted light intensity was transferred to a computer via an optical power meter.

A reference measurement was recorded (Io) without any sample, followed by
transmission spectra with each sample. Absorption coefficients (α) were determined
from Lambert–Beer’s law [24] as shown in (21.5), where I is transmitted light
intensity and, d is nanoparticle sample thickness.

αd = ln(Io/I ) (21.5)

Wavelengths from the spectrometer were converted into energy units during the
scan, allowing absorption coefficient to be plotted against source energy. The optical
band gap of semiconductor samples was then determined using the Tauc equation
[18–20], shown in (21.6), linearized to (21.7), so that Tauc plots could be used to
extract band gap energy, Eg, as shown in Fig. 21.6.

αE = A(E − Eg)
n (21.6)

(αhυ)2 = A2hυ − A2Eg (21.7)

where A is a constant, υ is photon frequency, and Eg is optical band gap with n = ½
for CdTe.

Equivalent radii (r) were determined by substitution of Eg into (21.1). Relative
permittivity, ε, in (21.1) were extracted fromHilbert transforms of absorption spectra
of each sample [25–27].

21.5 Results

All samples displayed absorption peaks red shifts and post absorption edge
oscillations, characteristic of QCSE (as shown in Fig. 21.1).
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Fig. 21.6 Tauc plot of (αhV)2 versus hV for a representative CdTe Solid Sample without field
(dashed line extrapolates for a linear fit to obtain optical bandgap)

21.5.1 Effect of Annealing Time on Quantum Dot Growth

Bandgaps (Eg) versus annealing times in solution and glass matrixes are plotted in
Fig. 21.7, showing nanoparticle growth as logarithmic functions of time (t). Nanopar-
ticles in solution samples appear earlier, and grow faster, than those in glass matrixes
[28]. Nanoparticles in glass matrixes were never observed until at least 2 h after
annealing.

Figure 21.8 show equivalent radii for these nanoparticle bandgaps (from (21.1))
at no field (E = 0) and 1 kV (E = 1 kV) applied field conditions.

Eg = -0,134ln(t) + 2,3543
R² = 0,9856

Eg = -0,328ln(t) + 2,9229
R² = 0,9999
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Fig. 21.7 Typical best fits of band gap energy versus annealing time for a solid and solution sample
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Fig. 21.8 Nanoparticle equivalent radius before and after application of a 1 kV DC electric field
for annealing times of CdTe nanoparticles

21.5.2 Effect of Step H.V. Field on Quantum Dot Samples
in Glass and Solution Matrixes

Spectral absorption peak width was affected by electric field, it is an indication of
nanoparticle size distribution. Derivatives of sample Gaussian absorption curves [21]
allowed determination of FWHM in Table 21.2. Figure 21.9 shows the decrease in
FWHM with field on and off for a given sample (solid sample 2). Similar plots for
the other samples yield Fig. 21.10; the decrease in FWHM per 1 kV field for all
samples.

Nanoparticles synthesized in solution have a narrower size distribution compared
to those in glass. Table 21.2, the FWHM tends to be narrower with applied field. To
determine the measurement uncertainty of the particle size distribution, best Gauss
curve fits were found and FWHM values extracted for 0 V and 1 kV measurement
conditions. The standard uncertainty was calculated from the difference between
curve 1 FWHM and curve 2 FWHM values.

Table 21.2 Electric field induced change in FWHM of quantum dot samples

Matrix type Sample no Equivalent radius (nm) FWHM change
(nm) per kV

Uncertainty (nm)
per kVZero field 1 kV

Glass 1 0.25 0.23 −0.02 ±0.028

Glass 2 0.50 0.43 −0.07 ±0.014

Glass 3 0.39 0.36 −0.03 ±0.014

Solution 1 0.16 0.15 −0.01 ±0.028

Solution 3 0.18 0.15 −0.03 ±0.028

Solution 4 0.23 0.20 −0.03 ±0.028

Solution 6 0.29 0.24 −0.05 ±0.014

Solution 7 0.20 0.17 −0.03 ±0.028
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Fig. 21.10 Modification of absorption spectrum of CdTe nanoparticles in glass matrix

In Fig. 21.10, the absorption spectra of CdTe nanoparticles in solid glass is plotted
against photon energy with zero field and maximum field. As the electric field
increases, the absorption decreases. Application of DC electric field also caused
blue shifts of the band edges of the nanoparticles (Figs. 21.10 and 21.11); although
Tauc’s law showed the band gap itself to be red shifted.

First band gap energies change from 2.55 to 2.52 eV for solution sample 1 and
the greatest decrease in the band gap was recorded at 2.5 kV shown in Fig. 21.11.
High voltage values could not be achieved in liquid samples, the maximum applied
voltage possible in liquid samples was 2.5 kV.
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Fig. 21.11 Electric field modification of absorption spectrum of CdTe nanoparticles in solution

The bandgap energy was also modified by applied H.V. electric field The in situ
optical transmission measurements were conducted for both solid and aqueous
samples and the onset of the asymptotic optical absorption edge (band edge: Eedge)
were determined under increasing high voltages applied to the samples. A typical
plot for band gap energy versus applied high voltage is presented in Fig. 21.12 for
solid samples and in Fig. 21.13 for aqueous samples, respectively. In the same plots
the average radii calculated for each sample are also shown. As the applied high
voltage increases the band edge decreases and the estimated average particle radius
increases for both sets. The band edge is red-shifted by 164 meV under a maximum
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Fig. 21.13 Solution Sample 3: Bandgap (Eg) ˛ and radius (r) � variation with applied voltage

electric field of 5.5 kV/cm for the glass sample heat-treated at 660 °C for 3 h, while
the same value is just 30 meV for the aqueous sample. The bandgap returns to its
zero-field value within ±0.2% after removal of the applied field.

For the solid samples, the band gap energy and radius versus applied electric
field graphs give information about the general trend of nanoparticles. The trend
demonstrated that CdTe nanoparticles suffer a red shift, decreasing their band gap
and leading to a higher calculated radius with applied electric field; quantum dot
radius varies from 1.92 to 2.40 nm. As a result of quantum confinement, the band
gap of the semiconductor nanocrystal QDs became smaller, causing their computed
radii to increase. This demonstrates that the band gap of semiconductor nanocrystal
QDs can be tuned using an applied H.V. electric field. Bandgaps of samples under
increasing applied H.V. are shown below, together with their equivalent nanoparticle
radii for each solution sample. Their fitting equations and correlations (R2) are given
inside the figures.

The band gap energies of the liquid samples grown for ~6 h range from 2.55
to 2.14 eV before applying the electric field. With no applied electric field, CdTe
nanoparticles in solution were found to have a narrower size distribution compared to
those in glass. The electro optical measurement results showed clearly that increasing
electric field causes reduction in band gap energy.
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21.6 Discussion

21.6.1 Modification of Nanoparticle Bandgap in Both
Matrixes

The electric field induced red shift of nanoparticle bandgap in solid matrixes
(Fig. 21.12) is linear except for one sample with rates of change in radius 0.02
to 0.07 nm per kV.

The electric field induced red shift of nanoparticle bandgap in solution matrixes
(Fig. 21.13); are all linear, with rates of change in radius 0.01 nm/kV to just under
0.05 nm/kV.

The decrease in bandgap is expected and typical of QCSE dominated spectra,
since the electron and hole wavefunctions are separated by the applied electric field.
This effect has also been observed in the literature [1] where the absorption edge of a
QCSE device is modulated with a bias voltage, resulting in a red shift. This decreases
the absorption peak height (Fig. 21.1) since electrons and holes move closer together
in energy, increasing the wavelength of the absorption [29, 30]. The literature shows
that applied electric fields influence excited-state dynamics ofCdTe quantum systems
[31–35] and can influence electron–ion dynamics causing a decrease in nanoparticle
size [36], due to Rayleigh instability.

The work presented in this chapter is the first time the modification in energy
band gaps have been quantified against electric field magnitudes, and compared with
changes in equivalent nanoparticle radius. The equivalent nanoparticle sizes increase
with applied electric field strength. This could be explained by the electric field
repelling electrons within the nanoparticles, causing a decreased electrical attraction
within the nanoparticle, which increases their size due to Rayleigh instability.

The literature [1] shows that strain caused by bias voltage on quantum wells
increases the lattice constant of quantum systems. In this work, atoms forming the
nanoparticles are constrained within either a glass or solution matrix, which may
cause strain due to increased lattice constant as the electron and holes are separated
by the H.V. field. The QCSE effect is flexible, since removal of the electric field
returns the original characteristic graphs.

21.6.2 Decrease in Sample Bandwidth with Electric Field

Widths of absorption peaks decreased with the 1 kV electric field application, indi-
cating a narrower size distribution. One solid sample showed a larger decrease in
size distribution compared to the other samples. This correlates with its comparative
large change in bandgap under electric fields compared to the other samples. This,
again may be explained by its radius and matrix combination allowing excited-
state dynamics [31–35] to have a stronger influence upon it, leading to more
monodispersity.
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Nanoparticle samples in glass matrixes must experience a higher electric field
for the same applied voltage (E = V /d), since they are only (0.9–1.4 mm) thick
compared to the solution samples, which occupy 1 cm in their sample cells. There
is also a higher relative electric permittivity (K) in solution samples (mainly water
of approximately K = 80) compared to glass (approximately K = 5–10). Since, E =
V /(Kd) it should cause the electric fields experienced by solutions to be a factor ~80
times weaker than that of the glass matrix samples. However, since the voltage is
continuously connected electric permittivity differences may only have a secondary
effect on the local electric field experienced by nanoparticles.

21.7 Conclusion

The different sized CdTe quantum dots in aqueous and solid samples were char-
acterized by uv–vis spectra and demonstrated that absorption wavelength gradu-
ally increases with increasing growth time. This work shows that a H.V. electric
field modifies the spectra of quantum systems in both glass and solution matrixes.
Samples generally displayed a linear decrease in their band gap energy with electric
field increase; this amounted to equivalent maximum changes in nanoparticle radii of
0.07 nm for glass matrixes and 0.05 nm for solutionmatrixes, as summarised in Table
21.2. The former are 2–3 times stronger than quantum systems in the solutions as
they are tightly constrained to their matrixes, as well as having a local environment
with a higher dielectric constant. Deformation of nanoparticles due to an electric
field reduces the energy required to break it down, which increases the disintegra-
tion probability due to thermal fluctuations. Monodispersity improves during the
time an electric field is applied, but the changes were completely reversible once
the electric field was removed, and the quantum systems did not disintegrate; most
probably due to the strength of the matrix. This type of temporary modification of
a quantum system has important applications in cases where optical properties need
to be modulated temporarily, such as for localized surface plasmon resonances or
refractive index variations.

Electric field dependent spatial separation of electron and hole wavefunctions
may cause the linear bandgap modifications observed here through increasing strain
on the matrix.

If nanoparticle size is modified it can be explained by the electric field repelling
electrons from the nanoparticles, the decreased charge interaction of the nanoparticles
then increases their size due to Rayleigh instability. This possibility can only be
elucidated through X-ray microdiffraction studies.
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Chapter 22
Perpendicular Andreev Reflection: Solid
State Signature of Black Hole Horizon

Z. Faraei and S. A. Jafari

Abstract In this chapter, we introduce the Dirac and Weyl equation in solids. We
classify the boundary conditions in Weyl materials and show how Fermi arcs nat-
urally follow from the boundary conditions. Then the Green’s function is used to
study superconducting proximity in Dirac and Weyl materials. In the case of Dirac
materials we find that a novel form of parity breaking superconductivity,�5, namely
the pseudoscalar superconductivity can be induced. We discuss its transport signa-
tures. We further discuss the induction of superconductivity in Fermi arc states. We
discuss how the simultaneous presence of pseudoscalar superconductivity, �5, com-
bined with the conventional superconducting parameter �s can give rise to chiral
supercurrent.

22.1 Introduction

In 1937 physicist Conyers Herring, while studying the properties of the electronic
energy bands of solids, asked himself: “Under what conditions do electronic bands in
solids have the sameenergy?”Suchdegeneracies can arise in solidswith a high crystal
symmetry, but he argued that accidental band touchings can occur in solid crystals
that lack certain symmetries [1]. Near these band touching points, the description
of the low-energy features of the band structures requires 4 × 4 matrices: a two
dimensional space (spanned by Pauli matrices τμ [2]) for the two bands in question
and another two dimensional space (spanned by σμ) to account for the spins. Taylor
expanding the band touching in leading order gives a linear momentum dependence
for the energy eigenvalues ε± = ±�vF |k|, where the± labels the states above/below
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the touching point and Fermi velocity vF is the group velocity of the band structure
at the touching point. This state of affairs can be formally encoded into the “Dirac
equation” [3]. Although the symmetries of this emergent Dirac equation is the same
as theDirac equation that describes the electrons inCERNexperiments, the important
difference is that the speed of light, c, in the original Dirac equation is replaced by
vF , which is typically 2–3 orders of magnitude smaller than c. The emergent Lorentz
symmetry of the solid-state Dirac equation enjoys the parity (P) and time reversal
(T) symmetries of the original Dirac equation. When the chemical potential is right
at the crossing point, it further enjoys the charge conjugation (C) symmetry which
in the solid state context is nothing but the particle-hole symmetry.

The Dirac Hamiltonian being composed of 4 × 4 matrices can be gapped out by
adding a Dirac mass term.When the mass (gap) vanishes, the Dirac Hamiltonian can
be brought into block diagonal format composed of two 2 × 2 equations as χσ.k [4]
where χ = ± labels the two sectors and is called the chirality. In the solid state,
the so called Weyl semi-metals are materials in which either the P or T is broken.
Therefore the band touching points will be grouped into Weyl points of opposite
chirality. The electronic excitations around such points are the Weyl fermions in
condensed matter [5].

The candidates for the Weyl fermions in the standard model of particle physics
are neutrinos. However, the claim of small mass, has ruled out this possibility [6].
However, quantum condensed matter continues to offer massless Weyl fermions in
solid-state systems. Examples ofmaterials that exhibit strong spin-orbit coupling and
offer masslessWeyl fermions are tantalum or niobium arsenide (TaAs andNbAs) [7–
10]. Such a band-crossing is not limited to electronic bands. One can also have such
band crossings in photonic bands [11] which is not going to be our focus.

There is a topological significance associated with the Weyl points, namely the
χ = ± nodes act as source/sink of Berry monopole in the momentum space [5,
12–17]. The simplest manifestation of these fictitious magnetic monopoles is exotic
surface states [12]. The surface of Weyl semimetals has a Fermi surface that forms
pieces of constant energy surface which do not close on themselves referred to as
“Fermi arcs” [1, 5]. These Fermi arcs terminate at the location of the bulkWeyl points
ensuring their topological nature [5]. Angle-resolved photoemission spectroscopy
(ARPES) is an appropriate method to observe the Fermi arc shapes [18–20]. The
ARPES technique involves illuminating the sample with high-energy photons on a
material and measuring the energy, momentum and spin of the ejected electrons both
from the surface and the bulk. This allows for the explicit determination of both bulk
Weyl nodes and the Fermi-arc surface states (Fig. 22.1).

Electrons in every material are characterized by the momentum k and spin
sz =↑,↓. In Weyl semimetals, in addition to the above attributes, one further needs
to specify the chirality τz = ±1 that determines to which Weyl node the fermion
belongs. In the absence of chirailty the problem of forming Cooper pair involves the
specification of the spin (sz) and orbital (k) for the pair. Now in the Weyl semimet-
als, one has to further specify the total chirality τ of the Cooper pair. Therefore the
superconducting pairing in Weyl semimetals can be both even and odd with respect
to exchanging the chirality attribute of the electrons forming the Cooper pair. The
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Fig. 22.1 Weyl fermion and Fermi arcs a Schematic of the band structure of a Weyl fermion
semimetal. b Correspondence of the bulk Weyl fermions to surface Fermi arc states. c ARPES
mapping of the TaAs Fermi surface. d The Fermi arc surface states and Weyl nodes on the (001)
surface of TaAs. e Linear dispersion of Weyl quasi-particles in TaAs. (Adapted from [7])

conventional superconductivity does not know about the chirality, and hence can be
considered to be even under the chirality flip. Therefore a striking possibility for the
formation of the Cooper pairs in Weyl semimetals is that they can form chirality-odd
pairings. We denote the superconducting order parameter that is even (odd) under
the chirality flip by �s (�5). We will show that this promotes the superconducting
order as eiφ�s → eiφ(�s + iγ5�5), where a γ5 is a 4 × 4 matrix whose eigenvalues
denote the chirality.

22.2 Dirac and Weyl Hamiltonian in Solids

Let us start with the Hamiltonian for the electron in a periodic potential with spin-
orbit (SO) interaction

H = p2

2me
+ V (r) + �

4m2
ec

2
σ.∇V × p, (22.1)

where me is the bare electron mass, c the velocity of light, σ the Pauli spin matrix
vector, V (r) the periodic crystal potential, and p = −i�∇ the momentum operator.
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The above Hamiltonian can be viewed as substitution p → p +
(

�

4mc2

)
σ × ∇V

and retaining the leading power of �/(mec)2.
The band structure of any solid around the band extremum can be expanded

within the so called k. p theory. This can also be done for solids with strong spin-
orbit interactions and hyperbolic bands which results in the Dirac theory. Perhaps the
oldest known example of a Dirac solid is Bismuth for whichWolf derived an effective
Hamiltonian that is an anisotropic extension of the well-known Dirac theory. In the
case of Bismuth, it has been shown that only two bands are enough for understanding
experimental results. So, the matrix elements of the electrons’ equation of motion
reduces to a 4 × 4 matrix which describes conduction and valence bands with up and
down spins. Cohen and Blount represented these matrix elements as:

⎛
⎜⎜⎝

εg − ε 0 �k · v13 �k · v14
0 εg − ε �k · v23 �k · v24

�k · v31 �k · v32 −εg − ε 0
�k · v41 �k · v42 0 −εg − ε

⎞
⎟⎟⎠

⎛
⎜⎜⎝
c1
c2
c3
c4

⎞
⎟⎟⎠ = 0, (22.2)

where εg is the band extremum and c1 . . . c4 are the expansion coefficients of the
Hamiltonian eigenfunction in the basis (a↑, a↓, b↑, b↓) where a and b label the
conduction and valence bands, respectively.We further assume that the a and b bands
are very close to each other. The matrix elements of the velocity operator ∂H/∂ p are
given by vi j = 〈ψi |

∣∣vψ j
〉
and are influenced by the Peierls-like substitution in (22.1).

In the limit of vanishing SO coupling, there is no coupling between the opposite spins
in the a and b bands. Butwhen SOcoupling dominates over the p2/2me + V (r) term,
there will be a full-fledged coupling between the spin states of the a and b bands in
a manner represented in (22.2).

The Dirac equation in particle physics enjoys symmetry under parity (P) and
time-reversal (�). The first thing parity does is to give zero velocity matrix elements
for aa and bb, meaning that v12 = v34 = 0. This is responsible for the fact that the
wave vector k appears only block-off-diagonally in the band space in (22.2). Further,
imposing the P� symmetry on the Hamiltonian (22.2) gives, v13 = v42 and v14 =
−v32. Take for example, v13 which is v13 = 〈

ψ+↑
∣∣ ∣∣vψ−↑

〉 = 〈
PT vψ−↑

∣∣ ∣∣PTψ+↑
〉 =〈

vPTψ−↑
∣∣ ∣∣ψ+↓

〉 = 〈
ψ−↓

∣∣ ∣∣vψ+↓
〉 = v42 [21].

The difference between v13 and v14 magnitudes depends on the strength of the
spin-orbit interaction. When the SO coupling is the largest energy scale, the spin ↑
state in band a will be equally coupled to both ↑ and ↓ states in band b, and therefore
|v13| = |v14|. In general, we need to specify four vectors Re(v13), Im(v13), Re(v14)
and Im(v14) in order to fix the two band model. Wolf used the freedom in choosing
the basis functions to enforce Re(v13) = 0 which gives,

H = εg

2
β + i�k ·

⎡
⎣ 3∑

μ=1

W(μ)βαμ

⎤
⎦ , (22.3)
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where the vectors W(μ) are given by W(1) = Im(v14), W(2) = Re(v14), W(3) =
Im(v13), and the 4 × 4 matrices β and αμ are,

β =
(
I 0
0 −I

)
, αμ =

(
0 σμ

σμ 0

)
. (22.4)

If we assume isotropic velocity vectors as W(1) = (vF , 0, 0), W(2) = (0, vF , 0)
and W(3) = (0, 0, vF ), leads to the isotropic Wolff Hamiltonian for 3DDMs

H0D(k) =
[

εg i�vF k.σ
−i�vF k.σ −εg

]
, (22.5)

where vF is the Fermi velocity, ±εg sets band edges for conduction and valence
bands. From this point we set � and vF equal to 1 and will restore the constants
whenever required.

Let us briefly remind ourselves of the properties of the Dirac Hamiltonian. An
n × n Hamiltonian matrix of the form

H0D(k) = k.�α + mβ, (22.6)

where �α and �β are n × n matrices satisfying �αβ = −β �α, αiα j = −α jαi when i �=
j and (αi )2 = β2 = 1 represents a Dirac Hamiltonian. The spectrum ε(k) of this
Hamiltonian is trivially obtained by squaring the abovematrix. The anti-commutation
of dislike matrices eliminates cross terms, and the fact that every matrix squares to
1 immediately gives H 2(k) = 1(k2 + m2), and therefore ε(k) = ±√

k2 + m2. This
dispersion reminds us of the energy-momentum relation for relativistic particles.
In the context of the standard model of particles, the ± branches correspond to
fermion/anti-fermion. In our present solid-state setting, the ± signs correspond to
the conduction/valence bands. Furthermore, in the context of high-energy physics,
the parameter m is the “mass” of the particles, while in our solid-state setting it
corresponds to the energy gap between the valence and conduction bands.

It is customary to use the αi and β matrices to define a new set of matrices by

γ0 = β, γi = βαi , (22.7)

where i runs over the space indices. For example in 2Dmaterials we have two γx , γ y

etc. The matrices γμ where the “Lorentz” index μ = 0, 1, . . . includes both “time”
(0) and “space” directions (1, 2, . . .). These matrices satisfy the so-called Clifford
Algebra,

{γμ, γν} = ημν, (22.8)

where ημν = diag(1,−1), is the Minkowski metric, where 1 represents a unit matrix
of dimension equal to the space dimension. It turns out that the representations of the
above algebra is only possible for even values of n. For one space dimension the n = 2
is sufficient and one can choose e.g., αx = σx . Then for the mass term one has two
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choices β = σy (corresponding to the Peierls distortion) or β = σz corresponding to
“sublattice” symmetry breaking. For two space dimensions still n = 2 is enough and
one possible choice is αx = σ1 and αy = σ2. Then for β, the only possible choice
will be β = σ3. For three space dimensions, the 2 × 2 Pauli matrices are not enough,
and one has to think of n = 4-dimensional matrices which can be constructed from
the direct product of Pauli matrices τ and σ.

With this reminder, we are now ready to return to the effective theory of Bismuth.
We make the following choice for the γμ matrices,

γ0 = τ3 ⊗ σ0, �γ = τ1 ⊗ i �σ. (22.9)

The Pauli matrices �τ act on the space of conduction and valence bands, while �σ act
on the spin space. In terms of what we construct in (22.9), β = γ0 and �α = γ0�γ. The
Clifford algebra for γμ matrices implies �αβ = −β �α and −�γ2 = �α2 = β2 = 1.

In this way, after a minimal substitution k → k − eA, the Dirac equation for a
charge −e electron in a background field A is given by,

[iγ0γ j (∂ j − i.e.A j ) + mγ0]ψe = εeψe, (22.10)

where ψe is the wave function of an electron with momentum k and energy εe =√
k2 + m2 close to the Dirac point.
TheDiracHamiltonian (22.6) has three important symmetries: charge conjugation

(C), parity (P) and time reversal (�). The charge conjugation is nothing but the
particle-hole symmetry when the chemical potential is precisely at the middle of
the conduction and valence band. When the Dirac mass is zero, the 4 × 4 Dirac
equation decouples into two 2 × 2 sectors. These two sectors are labeled by the
eigenvalues ± of the matrix γ5 = iγ0γ1γ2γ3. Using the Clifford anticommutations
algebra one can immediately verify that (γ5)2 = 1 and that γ5 anticommutes with
all γμ matrices. The eigenstates with +1 (−1) eigenvalue are called right-handed
(left-handed) fermions [22]. In a real “Weyl” semimetal, breaking either the P or �

gives rise to the separation of the two 2 × 2 block of right/left handed fermions in
the momentum space [14].

22.3 Chirality-Odd Superconductivity

In addition to its momentum k and spin s, an electron in a Dirac/Weyl solid requires
another attribute, namely its chirality τ = ± (the eigenvalues of γ5) that specifies
whether it is right-handed or left-handed. In the absence of the chirality attribute, the
Cooper pair can be either odd or even with respect to the exchange of the spin of the
two electrons forming the Cooper pair. These are spin singlet/triplet pairing. With
the new chirality attribute available in the Dirac/Weyl materials, the Cooper pairing
becomes richer, and can be even/odd with respect to the exchange of the chirality of
the two fermions forming the Cooper pairs.
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Let us formalize the above concept as follows. Assuming the spin part of the
pairing is singlet, the chirality-even pairing is

eiφs�s
[
ψ∗

−↑ψ∗
+↓ − ψ∗

−↓ψ∗
+↑ + ψ∗

+↑ψ∗
−↓ − ψ∗

+↓ψ∗
−↑
]
. (22.11)

The above expression is clearly even under+ ↔ −. One can also construct a pairing
that is odd under the above chirality flip operation as follows,

eiφ5�5
[
ψ∗

−↑ψ∗
+↓ − ψ∗

−↓ψ∗
+↑ − ψ∗

+↑ψ∗
−↓ + ψ∗

+↓ψ∗
−↑
]
, (22.12)

where τ = ± and ↑↓ denote the chirality and spin of the electrons, respectively.
The name �5 suggests a close connection with the matrix γ5. If the above two forms
coexist with each other, the requirement of a single transition temperature Tc restricts
φ5 − φs to be 0,π [23]. The remaining parameter �s is real (and can be chosen to be
positive). The significance of the odd-chirality pairing is that, being odd with respect
to the change in the chirality attribute ± → ∓, this form of superconductivity, in
addition to the usual U (1) symmetry, spontaneously breaks additional parity sym-
metry too. The above discussion is for the superconductivity formed by attractive
interactions in the Dirac/Weyl material. In the following we will present the details
of a proximity induced superconductivity for Dirac/Weyl materials and will show
how the above form of superconductivity (in addition to other interesting forms of
superconductivity) are induced. For simplicity, in the following we will assume that
we are dealing with a single Dirac cone material [24].

Assume that a conventional s-wave superconductor, characterized with a scalar
superconducting gap �sc, is placed next to the three dimensional Dirac material
(3DDM). We furthermore assume that the Dirac mass m = 0. The present tunneling
calculation can be done for non-zero m as well [25]. We consider a planar interface
perpendicular to the z-axis, located at z = 0. The subscript S denotes the supercon-
ductor region for z < 0 while D stands for the 3DDM region for z > 0. Combining
the Nambu space of both the superconductor and the 3DDM, the Green’s function
in the absence of tunneling is given by

G0 =
[
G0S 0
0 G0D

]
, (22.13)

where G0S(D) = [iωn − HS(D)]−1 is a 4 × 4 (8 × 8) Green’s function matrix in the
Nambu space of the conventional superconductor (Dirac material) mentioned above.
ωn are Matsubara frequencies, HS is the standard BCS Hamiltonian and HD is the
Dirac-Bogoliubov-de Gennes (DBdG) Hamiltonian,

⎡
⎣He

D − μ �

�† μ − Hh
D

⎤
⎦[ψe

ψh

]
= ε

[
ψe

ψh

]
,
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The Dirac Hamiltonian He is given in (22.10) by setting A j = 0. The Dirac Hamil-
tonian Hh for holes can be obtained from He by charge conjugation operation [25].
The end result is the intuitive expression Hh = He,

HD =
[
mγ0 + kμγ

0γμ − μ �

�† μ − mγ0 − kμγ
0γμ

]
. (22.14)

The Nambu spinor is given by ψT = [ψe
T (k) , ψh

T (k)] where for a 3DDM it
becomes,

ψT
e (k) = [

ck,+,↑ ck,+,↓ ck,−,↑ ck,−,↓
]
, (22.15)

and its charge conjugate is

ψT
h (k) = [

c†−k,−,↓ − c†−k,−,↑ − c†−k,+,↓ c†−k,+,↑
]
, (22.16)

in which, the subscripts± are chirality indices and refer to the upper and lower bands
with dispersion ε = ±|k|.

When the superconductor and 3DDM are brought together, the coupling between
the two in the combined Nambu space can be described by a 4 × 8 tunneling matrix
t. This matrix has two blocks, one for the electron tunneling (τe) and the other for the
holes (τh). The elements of τe (τh) connect an electron (hole) annihilation operator
from the Dirac material to an electron (hole) creation operator in the superconductor.
The tunneling matrix is given by,

t =
∑
〈k,k′〉

e−i(k′−k).�r
[
τe 0
0 τh

]
. (22.17)

Here
∑

〈k,k′〉 denotes the summation over k and k′ with the limitation k|| = k′
||, where

|| means parallel to the interface. Indeed, we consider a system with an interface
parallel to the xy-plane, so px = �kx and py = �ky are good quantum numbers and
remain unchanged through the tunneling process. τe = (t+ t−) ⊗ 1, as mentioned
before, describes the electron transfer from the 3DDM side to the superconductor,
and τh = (t− t+) ⊗ 1 represents the hole tunneling matrix, provided that the spin
direction remains unchanged. Here t+ and t− are the spin-independent tunneling
amplitudes of the superconductor to positive and negative energy states of the 3DDM.

The Green’s function of 3DDM gets dressed at each order of tunneling and
acquires off-diagonal matrix elements in the Nambu space which are anomalous
Green’s functions and correspond to induced superconducting correlations.

The leading correction to the Green’s function that generates superconducting
correlations isG = G0 + G0T G0T G0.Reading theNambuoff-diagonal component
from the 8 × 8 Dirac sector in the above correction gives,

F2/g = A + B(k.�α) + (k.�α)τ+†τ−(k.�α), (22.18)
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where A = (iωn + μ)τ †
e τh(iωn − μ), B are 4 × 4 matrices independent of k, and

g = m∗π√
ω2
n + �2

sc

[
e−κ+z

κ+
− e−κ−z

κ−

]
(ω2

n + k2)−2,

with κ± =
√
k||2 ± 2im∗(ωn

2 + �sc
2)1/2 resulting from integration over the k ′

z on
the superconductor side. Them∗ is the effective mass in the superconductor defining
the dispersion of the underlying band structure by (k ′2

x + k ′2
y + k ′2

z )/(2m
∗) and k||2 =

k2x + k2y . The above factor is an even function of k and ωn and will not affect our
symmetry considerations regarding the even/odd behavior under the space (k → −k)
and time reversals.

22.4 Classification of Superconducting Order in 3DDM

The 4 × 4 Nambu-off-diagonal superconducting correlations are induced by the
tunneling of Cooper pairs from the superconductor into 3DDM. Denoting the
F2/g by the superconducting matrix � whose matrix elements are defined as
�ασ,α′σ′ = 〈ψeασψ̄hα′σ′ 〉 [26]withα,α′ = ± andσ,σ′ =↑,↓, ormore explicitly [25]

� =

⎡
⎢⎢⎣

�+↑−↓ −�+↑−↑ �+↑+↓ −�+↑+↑
�+↓−↓ −�+↓−↑ �+↓+↓ −�+↓+↑
�−↑−↓ −�−↑−↑ �−↑+↓ −�−↑+↑
�−↓−↓ −�−↓−↑ �−↓+↓ −�−↓+↑

⎤
⎥⎥⎦ . (22.19)

Fierz decomposing the above matrix

� = �s1 + �μγ
μ + �μνσ

μν + �5μγ
5γμ + �5γ

5, (22.20)

where σμν = i[γμ, γν]/2, one can read off the superconducting in various “chan-
nels”. Significance of the expansion (22.20) is that, assuming that the above super-
conducting matrix respects the Lorentz symmetry of the underlying 3DDM, the
above expression must be scalar with respect to the Lorentz transformation. There-
fore, with respect to the Lorentz transformation, the �s is scalar,�μ is a four-vector,
�5 is pseudo-scalar, �5μ is pseudo-vector and �μν is a tensor. At the second order,
the actual values of the above superconducting orders are summarized in Table22.1.

As can be seen the pseudo-scalar pairing �5 is driven by the different tunneling
rates for right and left-handed fermions and vanishes once t+ = t−. Such a differ-
ence in a material setting is quite feasible. Because fine tuning to the t+ = t− point
requires the energy levels of the superconductor to be very precisely and evenly
placed between the positive and negative energy states of the 3DDM. Any deviation
from such a perfect symmetry produces a difference between t+ and t−, and therefore,
the induction of the pseudo-scalar superconductivity is generic. Another important
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Table 22.1 Fierz decomposition of the gap matrix for 3DDM . The indices i, j, l correspond to
three spatial directions 1, 2, 3 and εi jl is the totally antisymmetric tensor

�s : −t+t−(ω2
n + μ2 + k2)

�5 : i
2 (t2+ − t2−)(ω2

n + μ2 + k2)

�μ : 0
�50 : i

2 (t2+ + t2−)(ω2
n + μ2 − k2)

�5 j : [ωn(t2+ + t2−)]k j
�0 j : 2μt+t−k j
�i j : −iμ(t2+ − t2−)εi jl kl

feature of �5 is that π/2 is out of phase with respect to �s . This extra factor of “i”
has important implications. Comparing a purely�s superconductor with a purely�5

one, every time an electron undergoes the Andreev reflection, a π/2 phase is accu-
mulated. Therefore, in one complete round involving two reflections from the right
and left superconductor in a Josephson setup, a total phase of π will be accumulated.
Therefore, one needs two complete rounds to return the wave function of the fermion
to its original value. This is the simple explanation of 4π periodic Josephson effect
observed in the Josephson setup of the Dirac superconductors.

When forming a Cooper pair, the pair has to be odd with respect to exchanging all
the attributes of thefirst electronwith the secondone. In the present case, the attributes
are: spin (↑ or ↓), chirality (±), momentum k and the frequency ωn . Exchanging the
coordinates of the electron amounts to parity transformation (P), k → −k. Table22.2
summarizes the symmetry aspects of the induced superconducting correlations.

The first column is the superconducting amplitude in various channels (scalar,
pseudo-scalar, vector, pseudo-vector, and tensor). The second column indicates the
explicit expression for the Cooper pairs which is obtained by the Fierz decomposition
of (22.19) such that it satisfies (22.20). The third column (S) indicates the sign arising
from the exchange of the spins of the electrons in a Cooper pair. The fourth column
indicates the sign that arises from the exchange in the chirality attributes + and − of
the electrons in the Cooper pair. The fifth column (P) indicates the sign that arises
from k → −k in Table22.1. Although in the present second order perturbation result,
summarized in Table22.1, there are no � j contributions, but since the only vector
in the problem is k j , the only acceptable functional dependence of � j on k j can
have odd parity. That is why we have used quotation marks to indicate the putative
parity (perhaps at higher orders of perturbation theory) of� j . For the non-zero Dirac
mass m, one can obtain non-zero �0 [25] which turns out to have even parity. The
last column follows from total antisymmetry under exchange of all attributes which
agrees with Table22.1. For any deviation of m from 0, frequencies other than those
indicated in this column can mix. At m = 0, there would be no �0 in the leading
order perturbation result of Table22.1, but if anything appears in higher orders it
must have an odd order of frequency. Any m �= 0 results in the mixing of a little bit
of the opposite frequency symmetry (i.e., even frequency).
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Table 22.2 Pairing symmetries of chiral fermions in three dimensional Dirac semimetals under the
exchange spin (S), chirality (τ ), space coordinate (P), and the time or frequency (ω) of the fermions
forming the Cooper pair. The first (second) row is even (odd) under the chirality flip + ↔ −.

� Cooper pairing S τ P ω

�s �+↑−↓ − �+↓−↑ + �−↑+↓ −
�−↓+↑

− + + +

�5 �+↑+↓ − �+↓+↑ − �−↑−↓ +
�−↓−↑

− + + +

�μ �+↑−↓ − �+↓−↑ − �−↑+↓ +
�−↓+↑

− − + “−”

�1 �+↑+↑ − �+↓+↓ + �−↑−↑ −
�−↓−↓

+ + “−” +

�2 �+↑+↑ + �+↓+↓ + �−↑−↑ +
�−↓−↓

+ + “−” +

�3 −�+↑+↓ − �+↓+↑ − �−↑−↓ −
�−↓−↑

+ + “−” +

�50 �+↑+↓ − �+↓+↑ + �−↑−↓ −
�−↓−↑

− + + +

�51 �+↑−↑ − �+↓−↓ − �−↑+↑ +
�−↓+↓

+ − − −

�52 −�+↑−↑ − �+↓−↓ + �−↑+↑ +
�−↓+↓

+ − − −

�53 −�+↑−↓ − �+↓−↑ + �−↑+↓ +
�−↓+↑

+ − − −

�01 −�+↑+↑ + �+↓+↓ + �−↑−↑ −
�−↓−↓

+ + − +

�02 �+↑+↑ + �+↓+↓ − �−↑−↑ −
�−↓−↓

+ + − +

�03 �+↑+↓ + �+↓+↑ − �−↑−↓ −
�−↓−↑

+ + − +

�12 �+↑−↓ + �+↓−↑ + �−↑+↓ +
�−↓+↑

+ + − +

�23 −�+↑−↑ + �+↓−↓ − �−↑+↑ +
�−↓+↓

+ + − +

�13 −�+↑−↑ − �+↓−↓ − �−↑+↑ −
�−↓+↓

+ + − +

22.5 Implications of Pseudo-Scalar Superconductivity

So far we have shown that in a proximity induced setup, both �s and �5 can be
induced into a Dirac material by a simple BCS superconductor. What can happen
when attractive interactions in a Dirac matter are introduced to form Cooper pair?
Assuming that the pairing is a spin-singlet, obviously in addition to the even chirality
pairing�s , there is always a second option of forming odd-chirality pairing�5. Any
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arbitrary attractive interaction can be decomposed into scalar and pseudo-scalar chan-
nels. The strength of the resulting attraction in the above two channels is the same.
Therefore it is likely that when a three dimensional Dirac/Weyl semimetal is allowed
to form its own Cooper pairs, the �s and �5 might co-exist. In such a case, insisting
that a superconduting matrix embodying�s1 and�5γ

5 be simultaneously present in
the Nambu-off-diagonal part of a Dirac-BdG equation, the hermiticity requirement
for the Dirac-BdG equation forces them into a combination of the following form

eiφ
(
�s1 ± i |�5|γ5

)
. (22.21)

This generic form is consistent with the result listed in Table22.1, according to which
the order parameter multiplying γ5 involves a real number and an additional i with
respect to the scalar (BCS) order parameter. Indeed the pair of order parameters
(�s,�5) behave like the real and the imaginary parts of a “complex” number. Note
that this complex algebraic structure is apart from the common U (1) phase above.
As such, the chiral angle χ can be defined as tanχ = ±|�5|/�s . Therefore the most
generic form of a superconducting order in chiral fermions involves a new phase
variable, χ.

The first non-trivial result following from (22.21) is that once a small value of �5

is introduced (either by proximity, or by formation of odd-chirality Cooper pairs),
there will be another chiral Josephson current I5, in addition to the usual Josephson
current Is , and is controlled by the difference in the chiral angle χ of the left-side
and right-side superconductors as I5 ∝ sin(χR − χL). The continuum limit of this
current will be I5 ∝ ∇χ. Therefore if the chiral angle χ can vary in space, in addition
to the current I arising from the spatial gradient of the superconducting phase ∇φ,
there will be another chiral current driven by ∇χ [23].

22.6 Boundary Conditions

So far we have been dealing with the Dirac/Weyl equation in infinite space. How-
ever, every real material is finite and bounded by a surface. Therefore an important
question is “What are the appropriate boundary conditions (BCs) for the Dirac/Weyl
equation?”. An important effect of the BC in Weyl semimetals is that there will be
peculiar surface states known as Fermi arcs. Unlike the familiar closed Fermi sur-
faces, the Fermi arcs are not closed. The arc connects the projections of the twoWeyl
nodes. Therefore, all the perturbations that do not gap out the Weyl nodes will not
be able to destroy the Fermi arcs. In this section we will focus on Weyl semimetals
and will discuss and classify the BCs for these materials.

The relevance of the Fermi arcs to our supeconducting hetereostructure is as
follows. When the interface which is separating the supercondutor from the non-
superconduting side of the junction, is perpendicular to the vector (say b) that sep-
arates the Weyl nodes in the momentum space, then both Weyl nodes will have the
same projection, and therefore there will be no Fermi arcs. Otherwise, there will be
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a Fermi arc. To appreciate the special role of the Fermi arc states, we first need to
discuss the interesting phenomenon of chirality blockade suggested by [27] accord-
ing to which, the bulk cannot contribute to the Andreev transport. The reason is that
bulk fermions are described by the Hamiltonian h = τσ. p. An incident electron
from oneWeyl node with momentum p, spin σ and chirality τ will be reflected with
momentum− p. If the supercondutor is a spin singlet, the net reflected momentum of
the whole must be −σ such that the helicity σ. p (which for massless Weyl fermions
is the same as chirality) does not change upon Andreev reflection of the bulk degrees
of freedom. But if we insist on a superconducting condensate whose total center of
mass momentum is zero, such a process is impossible, and hence the name “chirality
blockade”.

Since the chirality blockade eliminates the bulk states from the transport in het-
erostructures involving the superconductors, when the interface is such that it sup-
ports the Fermi arcs, the Fermi arc states will be the only players in such transport
phenomena. As such, the setups involving spin-singlet superconductors, is a natural
framework to obtain a form of transport that is the sole effect of the Fermi arcs, and
the low-energy excitations around the Weyl node have no contributions.

Therefore for our purposes it is of utmost importance to understand the formation
of the Fermi arc states. Some researchers might find it convenient to “write down”
a separate effective Hamiltonian for the two-dimensional surface Fermi arc states.
However, we must emphasize that the only Hamiltonian governing the dynamics
of the fermions in Weyl semimetals is the Weyl Hamiltonian τσ. p of the bulk. It
is normal practice in quantum theory to model surfaces using BCs. Therefore one
expects to obtain the Fermi arcs by starting from the bulk Weyl Hamiltonian, and
imposing the appropriate BCs on them. Indeed this point of view can lead to a
distinct collective behavior in the two-dimensional electron gas formed by the Fermi
arc states. The collective density (plasmon) oscillations in normal two dimensional
electron gases can be shown from generic hydrodynamic arguments to behave as
ωpl(q) ∝ √

q . However, the peculiar Fermi arc states that have their “roots in the
bulk” (see the rest of this section for derivations) will lead to ωarc

pl (q) ∝ q, namely a
sound-like density oscillation [28].

22.6.1 Classification of Boundary Conditions in WSMs

In a time reversal symmetry breaking Weyl semimetal, there will be twoWeyl nodes
separated by a vector 2b. The low energy effective theory around these nodes located
at ±b that correspond to chirality τ = ± is given by

Ĥτ = τσ · (−i∇ − b). (22.22)

By inversion symmetry, the band touching points come in pairs, at −b and b, and
these have opposite chiralities.
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Fig. 22.2 (Top left): Schematic representation of a semi-infinite Weyl semimetal with a hard wall
boundary at z = 0. (Top right): Reflection processes at the surface with M̌1 and M̌2 as the boundary
matrices. The blue (orange) arrows are the electrons that come from the χ = −1 (χ = +1) Weyl
node corresponding to the left (right)-handed Weyl fermions. In both cases, the reflected electron
picks up an additional phase which comes from the boundary matrix angles. These angles turn out
to be related to the slope of the Fermi arc. In the case of the M̌1-type BC, the reflected electron
involves a spin flip to make the spin parallel to the plane of the boundary. In the M̌2-type BC, the
reflected electron has the same spin as the incident electron, but involves a chirality flip such that the
reflected electron is a mixture of both chiralities. Both types of BC are compatible with the Fermi
arcs. (Bottom): Schematic illustration of the dispersion relation of the bulk states (Weyl cones) and
the surface states, the Fermi arc (red line) connecting the projections of the two Weyl nodes with
opposite chiralities (Adapted from [29].)

Within the geometry depicted in Fig. 22.2, we have a surface at position z = 0.
We are dealing with a quantum mechanical problem, namely a Hamiltonian supple-
mented with the “appropriate” [30] boundary conditions. In fact a “good” boundary
condition is the one that ensures the Weyl equation (22.22) is Hermitian. Such a
“good” BC forWeyl fermions of single chirality has been discussed byWitten which
immediately reproduces “Fermi rays” ending in the projection of the Weyl node at
the boundary surface [30, 31]. Incorporating the band bending near the boundary of
the Weyl semi-metal turns the “Fermi rays” emanating from the projection of the
Weyl node into a “Fermi spiral” [32]. Accounting for simultaneous presence of two
chiralities leads to an additional “good” BC that will be discussed below.

Here is the essential line of thought of the argument. Following [33], a physically
sensible BC is the one that prohibits the current transmission through the bound-
ary [34]. This is known as hard wall BC that can be effectively incorporated into the
Hamiltonian with an additional confinement potential at the boundary as,
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[
i τ̂z ⊗ (σ · ∇) + τ̂0 ⊗ (σ · b) + M̌δ(z)

]
� = E�. (22.23)

Note that we have combined the space of chiralities acted upon by the Pauli matrices
τμ and the spin space corresponding to thePaulmatricesσμ to generate a 4 × 4matrix.
The vedge on the matrix M that incorporates the effect of the boundary, emphasizes
its 4 × 4 nature. The matrix M̌ is a hermitian, unitary matrix with M̌2 = 1̌. The
hermiticity follows from the fact that it is part of theHamiltonian.Unitarity is imposed
by requiring that it does not change the total amplitude of the wave function at the
surface. Finally, integrating the above differential equation across an infinitesimal
region surrounding the boundary gives,

[
i τ̂z ⊗ (�σ · ẑ)]�|z=0 = M̌�|z=0. (22.24)

Multiplying this equation by its own conjugate transpose, given thatM is a Hermitian
matrix, we find the requirements that M2 = 1̌.

To satisfy the above BC, it is necessary and sufficient to choose M̌ such that
{τ̂z ⊗ σ̂z, M̌} = 0. There are eight possible matrices satisfying these constraints on
M̌ , which can be parameterized with eight parameters as follows,

M̌ = τ̂0 ⊗ (a1σ̂x + a2σ̂y) + τ̂z ⊗ (a3σ̂x + a4σ̂y) (22.25)

+τ̂x ⊗ (b1σ̂0 + b2σ̂z) + τ̂y ⊗ (b3σ̂0 + b4σ̂z).

The constraint M̌ M̌† = 1̌ forces M̌ to have either of the following basic forms,

M̌1 = τ̂0+τ̂z
2 ⊗ (cos� σ̂x + sin� σ̂y) + τ̂0−τ̂z

2 ⊗ (cos ξ σ̂x + sin ξ σ̂y) (22.26)

M̌2 = (cosα τ̂x + sinα τ̂y) ⊗ σ̂0+σ̂z
2 + (cosβ τ̂x + sin β τ̂y) ⊗ σ̂0−σ̂z

2 (22.27)

where as far as the hard wall BC is concerned, the angles �, ξ, α and β are some
arbitrary parameters. They describe the amount of mixing between spins (M̌1) or
chiralities (M̌2). Any other linear combination of the form

M̌ = M̌3 = (cos γ)M̌1 + (sin γ)M̌2, (22.28)

is also an eligible BC. Further constraints on these parameters can be obtained from
additional physical requirements. For example, if we consider the charge conjugation
operator in the Weyl representation C = τ̂z ⊗ σ̂y K [35] (where K is the complex
conjugation operator) and demand C−1M̌1C = M̌1, we obtain � = ξ = π/2. Simi-
larly if we require C−1M̌2C = M̌2 then the boundary condition parameters will be
constrained as β + α = π. Alternatively, they can be obtained from explicit solutions
which have already encoded all the appropriate symmetries.

The main difference between these two basic BCs is that M̌1 is block diagonal
in the chirality space while M̌2 is block-off-diagonal, such that with M̌2 type BC,
scattering at the surface can change the chirality,
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M̌1 =

⎛
⎜⎜⎝

0 e−i� 0 0
ei� 0 0 0
0 0 0 e−iξ

0 0 eiξ 0

⎞
⎟⎟⎠ , M̌2 =

⎛
⎜⎜⎝

0 0 e−iα 0
0 0 0 e−iβ

eiα 0 0 0
0 eiβ 0 0

⎞
⎟⎟⎠ . (22.29)

Asymptotic solutions for a Weyl system with M̌2 as the boundary matrix, cor-
respond to incoming waves with one chirality and are reflected as a mixture of
both chiralities. But M̌1 preserves the chirality index. So, the M̌-matrix specifies the
behavior of the Weyl fermions in a solid when they hit the boundary surface. In the
following, we show that either of M̌1 or M̌2 can consistently reproduce the Fermi
arc. In the experimental observation of the Landau quantization of Fermi arcs [36,
37] one can infer that the relevant boundary conditions are modeled by M̌2. The BC
modeled by M̌1 in a background B field (the Landau problem) gives a trivial ψ = 0
solution only. Since the two BCs cannot simultaneously hold, the BC in the above
experiments can only be modeled with M̌2 matrix.

22.7 Green’s Function of Semi-infinite Weyl Semimetals

The Green’s function is defined by the equation,

[ε − Ȟ(�r)]Ǧ(�r , �r ′) = δ(�r − �r ′), (22.30)

where the most general form of Ǧ(�r , �r ′) is,

Ǧ(�r , �r ′) =
(
Ĝ−− Ĝ−+
Ĝ+− Ĝ++

)
. (22.31)

In the above equation Ĝχχ′ itself is a 2 × 2 matrix in the spin space and has the
following form,

Ĝχχ′ =
(
G↑↑

χχ′(z, z′) G↑↓
χχ′(z, z′)

G↓↑
χχ′(z, z′) G↓↓

χχ′(z, z′)

)
e[ikx (x−x ′)+iky(y−y′)]. (22.32)

Imposing the BC on Ǧ(�r , �r ′) gives M̌Ǧ(�r , �r ′)|z=0 = Ǧ(�r , �r ′)|z=0. Note that since
we are considering a system that is infinite along the x and y directions such that the
momentum along the x and y axes are good quantum numbers, a plane wave part
has been factorized in (22.32).

Equation (22.30) implies two coupled equations for Gσσ′
χχ′ where σ and σ′ denote

the spin projections ↑ and ↓, and σ =↑ corresponds to σ̄ =↓ and vice versa. The
above four equations decouple into two equations of the following form,
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(ε − iχσ∂z + σbz)G
σ̄σ
χχ′ − χ(kχ

x + iσkχ
y )G

σσ
χχ′ = 0 (22.33)

(ε + iχσ∂z − σbz)G
σσ
χχ′ − χ(kχ

x − iσkχ
y )G

σ̄σ
χχ′ = δχχ′

4π2
δ(z − z′),

where σ =↑,↓ and kχ
x(y) = kx(y) − χbx(y). Elimination of Gσσ

χχ′ between the coupled
equations in (22.33) gives,

[q2
χ + (iχ∂z − bz)

2]G σ̄σ
χχ′(z, z′) = −kχ

x + iσkχ
y

4π2χ
δ(z − z′)δχχ′,

where q2
χ = (kχ

x )2 + (kχ
y )

2 − ε2. We seek a solution of the form,

Gσ̄σ
χχ′ (z, z′) = − χ(kχ

x + iσkχ
y )

8π2(qχ + iχbz)
e−(qχ+iχbz )|z−z′|δχχ′ + C σ̄σ

χχ′ (z′)e−(qχ+iχbz )z , (22.34)

where the first term is the Green’s function of the infinite system (a homogeneous
differential equation) and is chirality diagonal (non-zero only for χ = χ′). The poles
of the first term qχ + iχbz = 0 give the bulk dispersion relation. The second term is
a solution of the inhomogeneous differential equation and therefore incorporates the
effects of the boundary. The coefficients Cσσ̄

χχ′(z′) are determined in such a way as to
satisfy the BC.

Once the spin-flip components of the Green’s function in (22.34) are known, the
spin-diagonal components are immediately obtained from the first line of (22.33)
as,

Gσσ
χχ′(z, z′) = ε − iχσ∂z + σbz

χ(kχ
x + iσkχ

y )
G σ̄σ

χχ′(z, z′). (22.35)

Therefore we only need to obtain the coefficientsCσσ′
χχ′ for the twoBCs corresponding

to M̌1,2 and demonstrate that in the absence of a magnetic field, both BCs give rise
to Fermi arcs.

22.7.1 M̌1-Type BC

Ifwe choose M̌1 as the boundarymatrix, then the boundarydoes notmix the chiralities
so we can treat them separately and solve the problem for just one chirality. In this
situation the elements of the full Green function that mix the chiralities are zero. This
leaves only Ĝχχ to be computed which in the spin-space is,
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Ĝχχ(�r , �r ′) =
(

1 ε−iχ∂z+bz
χ(kχ

x +ikχ
y )

ε+iχ∂z−bz
χ(kχ

x −ikχ
y )

1

)
(22.36)

×
(

0 G↑↓
χχ(z, z′)

G↓↑
χχ(z, z′) 0

)
e[ikx (x−x ′)+iky(y−y′)].

Operating with the M̌1-type matrix on the Green’s function we obtain,

eiσθχGσσ′
χχ′(z, z′)|z=0 = G σ̄σ′

χχ′(z, z′)|z=0 (22.37)

where θ− = �, θ+ = ξ and σθχ = ±θχ for σ =↑/ ↓. With this BC, the coefficients
of (22.34) are obtained as,

C σ̄σ
χχ′ = ε − iχσqχ + 2σbz − χe−iσθχ(kχ

x + iσkχ
y )

ε + iχσqχ − χe−iσθχ(kχ
x + iσkχ

y )

× χ(kχ
x + iσkχ

y )

8π2(qχ + iχbz)
e−(qχ+iχbz)z′

δχχ′ . (22.38)

The dispersion relation of the Fermi arc states corresponds to the poles of the
above Green’s function arising from the first line. The denominator vanishes when
[38]

ε + iχσqχ − χe−iσθχ(kχ
x + iσkχ

y ) = 0. (22.39)

This equation with the definition of qχ as q2
χ + ε2 = (kχ

x )2 + (kχ
y )

2 yields the disper-
sion energy of the surface states as:

ε = χ|kχ| cos(φχ − θχ), (22.40)

qχ = |kχ| sin(φχ − θχ), (22.41)

where (|kχ|,φχ) are the polar coordinates corresponding to (kχ
x , kχ

y ) and as defined
aboveθχ are the angles arising fromBC.Sowehave found surface localized states that
are supported on the line segment (kx − χbx ) cos θχ + (ky − χby) sin θχ − εχ = 0
in the kx − ky plane. At ε = 0 (which corresponds to the Fermi energy at bulk
Weyl nodes), for χ = −1, this is a straight line with a slope of − cot� that ends at
(kx , ky) = (bx , by), and for χ = 1, this is a line with a slope of − cot ξ that ends at
(kx , ky) = (−bx ,−by); see Fig. 22.3. At the endpoints where qχ → 0, the localiza-
tion length of the surface states set by q−1

χ (see the second term in (22.34)) diverges,
and therefore the Fermi arc states penetrate infinitely deep into the bulk. This way,
tunneling from one surface to the opposite surface becomes possible. This effect has
been discussed in the presence of a background B field by [40]. Note that, although
the Fermi arc states close to the arc ends have extremely long localization lengths,
they are distinct from the bulk states (those arising from the homogeneous part of
(22.34)). To summarize, (22.40) is a Fermi arc that has its two end associated with
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Fig. 22.3 Constant energy curves obtained from the poles ofGreen’s function, (22.38), of a confined
Weyl semimetal. For every chirality we obtain an independent energy dispersion that terminates
at the projections of the Weyl nodes on the surface of the Brillouin zone. The slope of the Fermi
rays denoted as dashed lines emanating from the projection of the nodes are determined from the
boundary matrix parameters (� and ξ). In the absence of a mechanism for bending the Fermi rays,
they orient themselves along the line segment connecting the projections of the two Weyl nodes.
Inset: When the Fermi energy is EF �= 0, the Fermi arc has a non-zero intercept with the ky and
kx axes, consistent with the formation of the bulk Fermi surfaces surrounding each Weyl point [39]
(Adapted from [29])

the band crossing points �b and −�b and connects the projection of the Weyl points on
the surface of the Brillouin zone, which in the real space are localized in the physical
surface of the sample.

By Nielsen-Ninomiya theorem [13], the arc starting from the projection of one
Weyl node has to end in the projection of another node with the opposite chirality.
Therefore the above two slopes must be equal, i.e., − cot(�) = − cot(ξ) which
constrains the BC angles by� − ξ = mπ. Furthermore the actual slope of the Fermi
arcs is by

bx
whichfixes theBCangle as� = − cot−1(

by
bx

) + m ′π. In the above equations
m and m ′ are integers.

For ε �= 0 which corresponds to the situation where the Fermi level is shifted
above or below the Weyl points, the line equation acquires an intercept with respect
to (kx , ky) axis denoted in Fig. 22.3. This result is in agreement with the Haldane’s
prediction [39] according to which the end points of the Fermi arc are two points on
the projected bulk Fermi surfaces (the inset in Fig. 22.3). The sign of ε, determines
the sign of the intercept. For ε > 0, the shift of the end points of the Fermi arcs is
positive. This is satisfied if− ε

sin�
> 0 and ε

sin ξ
> 0. Therefore the signs of sin� and

sin ξ are negative and positive respectively, which confines m to odd integers and m ′
to even integers.

Since we have considered only the linear corrections around the band touching
points, the Fermi arc is obtained as a straight line-segment. But in realistic materials
the Fermi arcs must be bent at least for two reasons: (i) higher order corrections
taking the band curvature into account leads to bending in the Fermi arc, which
are captured in lattice models of Weyl semi-metals [41]; (ii) when the boundary is
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not atomically sharp, the boundary or interface can be modeled with an effective
Hamiltonian which in turn gives rise to a curvature on the Fermi arc [32, 42].

22.7.2 M̌2 as the Boundary Matrix

Now if we use the M̌2-type BC, all the elements of Green’s function in the chirality
space are nonzero and the BC relates the wave functions with opposite chiralities:

e−iχθσGσσ′
χχ′(z, z′)|z=0 = Gσσ′

χ̄χ′(z, z′)|z=0, (22.42)

where θ↑ = α, θ↓ = β and χ̄ = −χ. Imposing the M̌2-type BC gives the coefficients
C σ̄σ

χχ and C σ̄σ
χ̄χ as,

C σ̄σ
χχ = iχσ(kχ

x + iσkχ
y )(k

χ̄
x + iσkχ̄

y )

8π2Dσ̄σ
χχ

e−(qχ+iχbz)z′
, (22.43)

C σ̄σ
χ̄χ = χ(kχ

x + iσkχ
y )

8π2(qχ + iχbz)

(N σ̄σ
χχ

Dσ̄σ
χχ

)
e−(qχ+iχbz)z′

, (22.44)

where

Dσ̄σ
χχ = χ̄eiχθσ̄ (ε + iχσqχ)(kχ̄

x + iσkχ̄
y ) − χeiχθσ (ε + i χ̄σqχ̄)(kχ

x + iσkχ
y ),

and

N σ̄σ
χχ = Dσ̄σ

χχ + 2iσeiχθσ̄ (qχ + iχbz)(k
χ̄
x + iσkχ̄

y ). (22.45)

The dispersion relation is obtained from Dσ̄σ
χχ = 0. This equation gives the same

Fermi arc as (22.40). To see this, in the above equation substitute for ε + iχσqχ

and ε + i χ̄σqχ̄ from (22.39), which then gives α − β = � − ξ mod 2π. Therefore
this equation gives the Fermi arcs in the same way that (22.39) does. Consequently,
both M̌1 and M̌2 reproduce the Fermi arcs on the surface. Therefore as long as the
experimentally observed Fermi arcs are concerned, both types of BC are compatible
with the Fermi arcs. However, when we turn on a background magnetic field to study
the Landau problem of the surface states, the M̌1-type BC can only produce the
trivial solution ψ̌ = 0, while the M̌2-type BC is compatible with non-trivial Landau
orbitals [29]. Note that the BC proposed by Witten [30] only includes the M̌1-type
BC which does not give rise to Landau quantization of the surface states in Weyl
materials.
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22.8 Superconducting Proximity in Fermi Arc States

As pointed out, the electron system at the surface of Weyl semimetals is composed
of Fermi arc states that differ from an ordinary two-dimensional electron gas in that
the Fermi arc states leak more and more into the bulk as one approaches the end
of the Fermi arcs. How will this difference manifest itself when we consider the
superconducting proximity of the Fermi arc states? In a standard 2D electron system
brought into proximity with a conventional BCS superconductor, the only possibility
is to induce conventional superconductivity with a clean BCS gap. However, as we
will show in the following section, fascinating forms of topologically non-trivial
superconductivity can be induced into the “2D” Fermi arc states.

In (22.14), for a given electron Hamiltonian, we constructed the hole Hamilto-
nian required in the Nambu representation by operating on the electron part by a
charge conjugation operation. Alternatively one can operate with the time-reversal
operation [43] (22.23) describes the electrons in a Weyl semimetal. Let us call He

the Hamiltonian of the electrons away from the boundaries (where the M̌ term has
no effect). Then the hole Hamiltonian Hh(k) = σy H∗

e (k)σy is

Hh(k) = τz(�σ.k) − τ0(�σ.�b), (22.46)

where k = −i∇ is understood. This can be combined with the electronic part to give
the Bogoliubov-De Gennes Hamiltonian,

HW =
(
He 0
0 −Hh

)
. (22.47)

Let us now return to the question of the boundary. The crucial point in constructing
Green’s function for holes is that, the particle-hole transformation should also operate
the on matrix M̌ in (22.23) that encodes the BC information. Starting with the BC
matrix M̌1 for the electrons in (22.26) and operating with time-reversal, the BC for
the holes will be σy M̌∗

1σy = −M̌1. This is eventually equivalent to the substitution
� → π + � and ξ → π + ξ. This is quite intuitive, since the reflection of an electron
with its in-plane spin rotated by an angle� after the TR operation can be equivalently
viewed as the rotation of the spin of a hole by an angle π + �. Similarly for the M̌2-
type BC in (22.27) we have

σy M̌
∗
2σy = (cosα τ̂x − sinα τ̂y) ⊗ σ̂0 − σ̂z

2
+ (cosβ τ̂x − sin β τ̂y) ⊗ σ̂0 + σ̂z

2
.

Therefore the M̌2 BC matrix for the holes is obtained from the corresponding M̌2 of
the electrons by the replacement α ↔ −β.

Now, we are ready to set up Green’s function for the holes that satisfies

[ε + Hh + M̌hδ(z)]Gh = δ(�r − �r ′),
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where the matrix M̌h can be any of the matrices discussed above. For the electron
wave function ψe = [

ψ−↑ , ψ−↓ , ψ+↑ , ψ+↓
]T

the hole wave function obtained

from time-reversal will be ψh = [− ψ∗
+↓ , ψ∗

+↑ , − ψ∗
−↓ , ψ∗

−↑
]T
. Intuitively, the

time-reversal flips the chirality+ ↔ − and up to a phase factor i it replaces↑→ − ↓
and ↓→↑.

So that the Ǧh(�r , �r ′) will be arranged into the following matrix,

Ǧh(�r , �r ′) =
([Ĝ++(�r , �r ′)]h [Ĝ+−(�r , �r ′)]h

[Ĝ−+(�r , �r ′)]h [Ĝ−−(�r , �r ′)]h
)

. (22.48)

In the above equation [Ĝχχ′(�r , �r ′)]h has the following form in the spin space

[Ĝχχ′ ]h =
(
G↓↓

χχ′(z, z′) G↓↑
χχ′(z, z′)

G↑↓
χχ′(z, z′) G↑↑

χχ′(z, z′)

)
e[ikx (x−x ′)+iky(y−y′)], (22.49)

where every element in the above equation is obtained from the corresponding ele-
ment of Green’s function for the electron by appropriate replacements of the angular
parameters α, β, � and ξ as discussed above. After this replacement (and of course
changing the sign of the energy) the spin-off-diagonal elements of Green’s functions
for the hole become,

Gσ̄σ
χχ′ (z, z′) = C σ̄σ

χχ′ (z′)e−(qχ+iχbz )z − χ(kχ
x − iσkχ

y )

8π2(qχ + iχbz)
e−(qχ+iχbz )|z−z′|δχχ′ , (22.50)

whereas the spin-diagonal components are,

Gσσ
χχ′(z, z′) = ε + iχσ∂z − σbz

χ(kχ
x − iσkχ

y )
G σ̄σ

χχ′(z, z′), (22.51)

where as before, kχ
x(y) = kx(y) + χbx(y). The value of these matrix elements is the

same as those for the electrons, except for the replacement σ → −σ.
Up to this point the above expressions are valid for any BC. For the M̌1-type BC

we have:

C σ̄σ
χχ′ = ε + iχσqχ − 2σbz − χeiσθχ(kχ

x − iσkχ
y )

ε − iχσqχ − χeiσθχ(kχ
x − iσkχ

y )

× χ(kχ
x − iσkχ

y )

8π2(qχ + iχbz)
e−(qχ+iχbz)z′

δχχ′ . (22.52)

where θ− = � + π and θ+ = ξ + π, and for the M̌2-type BC, the spin-off-diagonal
components are,
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C σ̄σ
χ̄χ = −iχσ(kχ

x − iσkχ
y )(k

χ̄
x − iσkχ̄

y )

8π2Dσ̄σ
χχ

e−(qχ+iχbz)z′
(22.53)

and

C σ̄σ
χχ = χ(kχ

x − iσkχ
y )

8π2(qχ + iχbz)

(N σ̄σ
χχ

Dσ̄σ
χχ

)
e−(qχ+iχbz)z′

, (22.54)

where

Dσ̄σ
χχ = χ̄eiχθσ̄ (ε − iχσqχ)(k

χ̄
x − iσk

χ̄
y ) − χeiχθσ (ε − i χ̄σqχ̄)(k

χ
x − iσk

χ
y ) (22.55)

and

N σ̄σ
χχ = Dσ̄σ

χχ − 2iσeiχθσ̄ (qχ + iχbz)(k
χ̄
x − iσkχ̄

y ), (22.56)

with θ↑ = −β and θ↓ = −α.
For practical calculations one has to specialize to a specific coordinate system.

The coordinate system can be chosen in such away that the Fermi arc lies along the kx
axis. This does not harm the generality of the approach, since always, by appropriate
rotation along the kz axis, a new coordinate system can be chosen in such a way that
the new kx is along the Fermi arc [29].

22.9 Inducing Superconductivity in Fermi Arcs

Now, we bring a conventional s-wave superconductor (SC) near the WSM. The SC
occupies the z > 0 part of the space and WSM occupies the z < 0 part with their
interface being at z = 0. The bulk Hamiltonian of the SC is:

Hs = [|ks |2/(2m)κ̂3 + �s κ̂1] ⊗ σ̂0, (22.57)

where ks denotes themomentum in the SC,m is the electronmass in the SC,�s is the
superconducting gap and κ̂(i=0...3) are the Pauli matrices acting in the particle-hole
space. As before, the coupling between WSM and SC can be incorporated by:

T =
(
0 t̆†

t̆ 0

)
, (22.58)

where, assuming that the tunneling amplitude t is the same for right handed and
left handed electrons, and the 4 × 8 matrix t̆ is constructed as t̆ = t/2(ť+ ť−) from
4 × 4 matrices ťα = (τ̂z + ατ̂0 + τ̂1 + iατ̂y) ⊗ σ̂0, with α = ±. Based on the Dyson
equation, Green’s function of the WSM becomes:
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GW = G0
W +

∑
ks

G0
W .t̆†.ǧs .t̆ .GW , (22.59)

where we use the symbols ǧs to denote 4 × 4 matrices and G for 8 × 8 matrices. The
superscript 0 in G0 denotes the Green’s function in the Nambu-space in the absence
of tunneling.

Assuming that the superconductivity at the surface of the SC is of the same form
as its bulk, and that t̆ and t̆† in (22.59) are independent of ks , we can perform the
sum over ks to obtain the self energy [44]:

∑
ks

t̆†.ǧs .t̆ = s√
�2 − ε2

(εκ̂0 − �κ̂1) ⊗ (τ̂0 + τ̂x ) ⊗ σ̂0. (22.60)

where s = πρ0t and ρ0 is the density of states of the superconductor at its Fermi
level before becoming a superconductor. Substituting this result is (22.59), we can
derive Green’s function for the surface of the WSM in presence of a SC.

22.9.1 M̌1-Type BC

Once Green’s functions obtained in (22.50) and (22.51) are corrected with the Dyson
(22.59), the poles of the new Green’s function give us the dispersion relation of the
excitations on the surface. For an M̌1-type BC, we obtain the following secular
equation for the poles of Green’s function:

[F(ε, k) + 4εbkys
2]2 − 16s4ε4(k2x + k2y) = 0, (22.61)

where F(ε, k) = √
�2 − ε2[4 s4(−b2 + k2x + k2y) − (ε2 − k2y)] and the tunneling

strength s quantifies the ability of the electrons in the superconductor to tunnel into
WSM. The states at the Fermi level correspond to ε = 0 which will be equivalent
toF2(0, k) = 0. Therefore the solutions ofF(0, k) = 0 will be twofold degenerate.
These solutions are given by the following ellipse in the kx − ky plane (see Fig. 22.4):

k2x + (
1 + 4s4

4s4
)k2y = 1. (22.62)

The major axis of this ellipse is horizontal with magnitude 1 (note that in our units a
momentum of size 1 actually means b) and coincides with the Fermi arc of a pristine
Weyl semimetal before bringing the superconductor to its proximity. This is similar
to the zero-energy surfaces due to the Fermi arcs of dopedWSMs [45]. Furthermore,
the magnitude of the minor axis, b̃ = 2s2√

1+4s4
is determined by the combination s

of the tunneling amplitude t and the density of states ρ0 of the superconductor in
its normal phase. As such, when the superconducting agent is an undoped Dirac
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Fig. 22.4 Bogoliubov Fermi contour for the first type boundary conditions. The major axis of the
ellipse coincides with the Fermi arc of the WSM before bringing the SC to contact with it. The
Pfaffian (see the text) changes sign across this contour and excitations around the elliptic contour
are linearly dispersing. The minor axis of the ellipse depends on the tunneling strength as in (22.62).
By turning off the tunneling the minor axis becomes zero, and the ellipse reduces to the Fermi arc
(Adapted from [46])

superconductor [25], due to ρ0 = 0, the minor axis will be of zero length, and the
ellipse will collapse into the Fermi arc. It is curious that although the very existence
of the ellipse depends on the superconducting gap � of the s-wave superconductor
that proximitizes the WSM, the minor axis does not depend on the superconducting
gap � and is only controlled by the tunneling strength s. Therefore, the ability of
the electrons to tunnel into Fermi arcs, gives rise to a superconducting state with an
ellipse shaped Bogoluibov Fermi contour (BFC) that originates from the arc.

Let us discuss the topological significance of the BFCs. At ε = 0, the denominator
of Green’s function (ε − H)−1 will become the determinant of the Hamiltonian, i.e.,
F2(0, k) = det H(k), where H(k) is theHamiltonian of the entire system. The above
relationsmean thatF(0, k) is actually the Pfaffian of theHamiltonian. Following [47,
48] we use F(0, k) to construct the Z2 topological index ν that protects the zero-
energy ellipse of Bogoliubov quasi-particles as (−1)ν = sgn

[
F(k−)F(k+)

]
where

k+(k−) refers to the momenta inside (outside) of the BFC [47, 48]. As can be seen
F(0, �k) changes its sign across the elliptic zero energy contour and therefore we are
dealing with the ν = −1 situation which is Z2-non-trivial. In our two-dimensional
case, the Z2 index is only consistent with the DIII class which belongs to the BdG
family [49, 50]. In this class, particle-hole and sublattice symmetry must be present;
which is the case by construction. The TR must be broken, which is again the case,
as the parent WSM is characterized by the TR breaking parameter �b. The meaning
of ν = −1 is that the weak perturbations within the DIII class are not able to destroy
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the elliptic Fermi contour of the Bogoliubov quasiparticles. A simple consequence
of this robustness is that by changing the tunneling parameter s, only the minor axis
of the ellipse changes, but it cannot be cut into pieces or destroyed. As we will see
in the following, with the M̌2-type BC, we will have a totally different situation.

In terms of the Altland-Zirnbauer [51] classification, the induced superconductiv-
ity on Fermi arc states belongs to the DIII class. The interpretation of its Z2 index is
connected with the existence of the (elliptic) BFC. Once the Fermi contour is formed,
the Fermi contour itself can be further classified as a singularity of Green’s function
in the momentum space by a winding number [15]. This is defined as

n1 = tr
1

2πi

∮
C
G∂�G

−1d�, (22.63)

where the closed path C is any contour enclosing the Fermi contour (ellipse in
our case) and � parameterizes this path. For the Fermi contour of two-dimensional
metals, as long as it has the Fermi liquid structure G(iω, p) ∝ (iω − p)−1, where
p is the momentum deviation from the Fermi contour, the above winding number
will be ±1. However, an essential difference between the elliptic Fermi contour of
Bogoliubov quasiparticles compared to the Fermi contour of Fermi liquids is that,
due to two-fold degeneracy, the pole structure near the Fermi contour is given by
G(iω, p) ∝ (iω − p)−2. This form of Fermi contour will give n1 = ±2. This means
that in principle there can be perturbations outside the DIII class which can break
the n1 = 2 topological charge into two n1 = 1 (Fermi liquid-like) Fermi contours.

To gain further insight into the physical nature of this BFC, let us study the
excitations around this elliptic Fermi contour. In the radial direction, a little away
from the ellipse we can use a small parameter η to parameterize themomenta at ε = 0
as kx = (1 + η) cosφ and ky = (b̃ + η) sin φ. Let us assume that by approaching the
ellipse, the energy vanishes asαηγ .With this choice, the lowest order terms of (22.61)
are:

4b̃4

1 − b̃2
α2η2γsin2φ (22.64)

+
(

2�b̃2

1 − b̃2

)2

η2(cos2 φ + 1

b̃
sin2 φ)2

+
[

8�b̃4

(1 − b̃2)3/2

]
αηγ+1(cos2 φ + 1

b̃
sin2 φ) sin φ

= 4b̃2

1 − b̃2
α4η4γ(cos2 φ + 1

b̃
sin2 φ)

If γ > 1, then only the second term on the left-hand side is the leading order term and
should be zero but this is generically impossible. On the other hand if γ < 1, then the
first term in (22.64) is the leading order term and leads to α = 0. We thus conclude
that γ = 1 and that around the BFC, the energy disperses linearly. There are only
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two exceptions to γ = 1: at φ = 0 and φ = π (related to the former by symmetry)
which correspond to dispersion along kx axis. These two peculiar points correspond
to the projection of the Weyl nodes on the kx − ky surface. In this case, sin φ = 0
and (22.64) reduces to,

(
�b̃2

1 − b̃2

)
η2 = α4η4γ . (22.65)

from which we obtain γ = 1/2. Therefore the singular behavior at φ = 0 means that
by departing from the projection of the Weyl nodes in the kx direction inward to the
ellipse, we obtain a peculiar ε(px , py = 0) ∼ √

px where px and py measure the
momenta from the two ends of the major axis of the ellipse.

22.9.2 M̌2-Type BC

Unlike the M̌1-typeBCwhere a robust BFC is obtainedwhich can be distorted but not
destroyedbychanging theparameters of theHamiltonian (in our case the combination
s = πρ0t), for M̌2-type BC, instead of BFC we will have a set of Bogoliubov-Weyl
(BW) nodes. To see this, let us look into the zeros of the determinant appearing in
the denominator of Green’s function, which at ε = 0 becomes,

{ [
3(b2 − k2x + ky2)2 + 4k2x (b

2 − 4ky + 3k2y)
]
s4 − b2k2y

}2

+ 16b2k2x k
2
y(2ky − b)2 s4 = 0. (22.66)

This expression being the sum of two complete squares appearing on the first and
second lines, respectively, can only vanish when each term vanishes separately. From
the second line there are three possibilities, namely kx = 0, ky = b/2, or ky = 0.
The third case does not give any zeros for the first line. The first two cases, however,
give two pairs of solutions as follows (note that we are working in units of b = 1).
On the kx = 0 line there are two values of k2y as long as tunneling is less than

smax =
[
(4 − √

15)/6
]1/4 ≈ 0.38. As can be seen in Fig. 22.5a, the two solutions

move toward each other and meet at smax. Beyond smax there is no zero energy
solution on the ky axis, meaning that the two BW nodes annihilate each other upon
collision. This indicates that they are carrying opposite topological charges. Their
partner in negative ky axis also behaves similarly. This has been schematically shown
in the second row of this figure. Figure22.5b shows that on the ky = 1/2 line, the blue
pair of BW nodes start at k2x ≈ 0 for very small s ≈ 0. As can be seen k2x increases
linearly as we increase s. Beyond smin = (4/75)1/4 ≈ 0.48, a second pair of (red)
BW nodes appear on the ky = 1/2 line and start their journey from the k2x = 0 point.
By further increasing s, the blue and red BW nodes further depart from each other.
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Fig. 22.5 Bogoliubov-Weyl nodes with second type boundary conditions. a k2y coordinate of the

position of BW nodes as a function of dimensionless tunneling strength s. b The k2x coordinate
of the nodes lying on ky = b/2 as a function of s. Inset in both (a) and (b) indicates location of
BW nodes. Panels in the second row show the schematic evolution of BW nodes upon varying s
(Adapted from [46])

22.9.3 Linear Combination of M̌1-Type and M̌2-Type BCs

Let us now see what happens if the boundary condition is neither M̌1 nor M̌2 type, but
a linear combination of the form M = 1

1+λ2 (M1 + λM2) ≈ M1 + λM2. Assuming
that Green’s functions of a Weyl semimetal with type-1 and type-2 BCs are g1 and
g2, respectively. Green’s function g for the mixed BC can be perturbatively obtained
for small λ as follows:

g = g1
1 + λg1M2

≈ g1 − λg1M2g1, (22.67)

where higher powers of λ are ignored, and because of the δ(z) in (22.23) it is under-
stood that the self-energy corrections arising from mixing of the M̌2-type boundary
condition of strength λ are non-zero only at the interface. When combined with
(22.59) the above equation gives,

det g1 → det g1
[
1 − λtrM̌2g1

]
. (22.68)

As perturbative thinking is valid the poles of det g1 as long determine the pole of
the above renormalized Green’s function. Therefore, as long as λ remains within
the reach of perturbation theory, the above self-energy arising from the chirality flip
(M̌2) at the interface will only produce a renormalization of spectral features of g1.
So the picture will be as follows. At λ = 0 (i.e., pure M̌1-type BC) we have a robust
Bogoliubov Fermi contour which is protected by topology. At λ = ∞ (i.e., pure
M̌2-type BC) we have a superconducting phase with point nodes in the spectrum of
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Bogoliubov quasiparticles of the proximitized surface. These nodes are also protected
by the topological charge of theBWnodes. Therefore it is likely that a phase transition
at a finite λ separates the physics of M̌1 from M̌2 BC.

22.10 Pairing Symmetry of Fermi Arc States: Majorana
Fermi Contour

So far we have shown that the M̌1-type BC gives a topologically protected BFC.
Now we are going to discuss its consequences. As pointed out earlier, the Cooper
pairs can be either chirality-even or chirality-odd. In the following we discuss these
two cases separately.

22.10.1 Chirality-Even Pairing

It is useful to form combinations of the pairing amplitudes which are even or odd
under the exchange of the chirality index. Each of these �s is a 2 × 2 matrix in the
spin space and can be written as a sum of singlet and triplet components,

�̂ = iσy(d0 + �d.�σ). (22.69)

The even-chirality part of anomalous Green’s function is

F̂+ = h

[−ikx + ky −b
−b ikx + ky

]
, (22.70)

h = 4�skys2[F − 4bεs2(ε − ky)]
(F + 4εbkys2)2 − 16ε2 s4k2

(22.71)

which gives, d0 = 0 and �d = (ikx ,−iky,−b)h. The spin-singlet pairing is absent,
and therefore the spin angular momentum of the Cooper pairs is even with respect
to the exchange of the spin attribute of the electrons forming the Cooper pair. Since
chirality is already assumed to be even, the orbital part will be necessarily odd. It
is evident from the �d vector that in this channel a substantial p + i p pairing exists.
However it has been multiplied by a factor h which needs to be integrated over ε to
give the induced pairing. In the weak tunneling regime where s is small, working
to order s2 which amounts to ignoring s4 in comparison with s2 in the numerator,
and ignoring s altogether in the denominator, allows us to analytically calculate this
function which gives the following strength for the pairing that after restoration of �

and vF becomes,
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Fig. 22.6 The ky
dependence of (22.72) for
kx = 0 (Adapted from [46])

� ∼
π�ss2�vF

√
k2x + k2y + b2√

|k2y − �2
s |

. (22.72)

This function has been plotted in Fig. 22.6. The induced pairing in themiddle, kx = 0
of the Fermi arc ky = 0 is simply π�vFbs2 which conforms to the Golden rule
intuition. Even on the BFC, according to (22.62), the minor axis is controlled by s2

and hence even on the BFC, ky remains small. As can be seen in Fig. 22.6, the ky
dependence near ky ≈ 0 is very weak, and therefore this factor will not introduce
higher angular momenta and the orbital (angular momentum) part will be entirely
given by the p + i p form.TheMajoranaFermi sea can be turned into a set of localized
Majorana zero modes when an external B field is applied. Since every vortex can
then bind a Majorana zero mode [52], the applied magnetic field perpendicular to
the surface, can induce a delocalized-localization phase transition.

22.10.2 Odd-Chirality Pairing

The amplitude for odd-chirality pairing is

�̂− = 4�kys2[{ − 4bεs2(ε − ky)]
(F + 4εbkys2)2 − 16ε2 s4k2

[ −ib −kx + iky
−kx − iky ib

]
,

and so d0 = ikyh and �d = (−ib , 0 , kx )h. This can be considered as a manifesta-
tion of pseudo-scalar pairing in the Fermi arc states. The integration over energy in
weak tunneling regime gives the same formula (22.72). Although the singlet pairing
amplitude d0 is zero on the Fermi arc (ky = 0), nevertheless on the BFC it becomes
non-zero. From (22.62), this is proportional to the minor axis b̃ ∝ s2. Therefore the
singlet component of the pairing on the BFC will be controlled by the tunneling
strength. On the contrary, the triplet component �d of the induced pairing depends on
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b and kx . The z-component of this pairing changes from +b to −b by spanning the
BFC, while its x-component remains constant, −ib.

22.10.3 Majorana Nature of BFC

The elliptic BFC in our problem is distinct from the underlying Fermi arc. Outside
the BFC the Bogoliubov quasi particles are more electron-like, while inside the
elliptic BFC the excitations are more hole-like. Right on the BFC the excitations will
be equally electron-like and hole-like, so that the average charge of the excitations
is zero. Therefore the BFC is actually a Majorana Fermi contour. The fact that it is
protected by a Z2 topological index alreadymanifests as the simple fact that changing
the tunneling strength s, does not destroy the elliptic BFC. It can only modify the
aspect ratio, but maintains the elliptic shape of the BFC. Now the question is, what is
the experimental signature of such a Majorana Fermi contour. In a transport setting
the portion of the current which passes through the BFC surface states will appear
as a zero-bias feature. At zero temperature, the strength of such a zero-bias peak
which is determined by the number of channels is proportional to the perimeter of
the Majorana Fermi contour,

d I

dV
∝ 4bE

(
1√

1 + 4s4

)
, (22.73)

where E is the elliptic function of the second kind, andwe have restored the length 2b
of the Fermi arc which determines themajor axis of the ellipse. For low temperatures,
the peak will acquire thermal broadening, but still remains proportional to the above
value. According to [53], the effective length of the Fermi arc can be controlled by
coupling to radiation. To that extent, the linear dependence of the above formula to
the length 2b of the Fermi arc can be checked in transport measurements. However,
a more exciting verification of the above formula would be to apply a magnetic field
to form vortices in the superconductor.

The BFC will also have a clear thermodynamic signature in the specific heat.
Since the two-dimensional BFC supports linearly dispersing excitations around it
(except for the two nodal points which are of measure zero), the resulting density of
states will be linear in energy. Therefore the contribution of these excitations to the
specific heatwill be∼ T 2. This situation is similar to graphene [54]. This contribution
can fortunately be separated from other degrees of freedom that contribute to the
absorption of heat. First of all, the bulk degrees of freedomof the superconductor have
no sub-gap excitations. Secondly the bulk degrees of freedom of the WSM disperse
linearly but in three space dimensions. By power counting, they will contribute a T 3

term. Therefore the T 2 term due to excitations around the BFC will take over at low
temperatures and can be separated from the bulk of the WSM and SC.
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Chapter 23
Atomistic Tight-Binding Study
of Core/Shell Nanocrystals

Worasak Sukkabot

Abstract Progressive technologies in the synthetic chemistry of semiconductor
nanostructures havemade it possible to access high quality semiconductor nanostruc-
tures with precise size, shape and composition. Colloidal core/shell nanocrystals are
composed of a core made from one material terminated by a shell of another mate-
rial. Because of the improved photoluminescence quantum yields, high photosta-
bility and size-tunable emission properties, core/shell nanocrystals are tremendously
attractive for the active applications. The purpose of this chapter is to present the
atomistic tight-binding theory to study the electronic structures and optical properties
of core/shell nanocrystals with the purpose to evidently understand the significance
of core and growth shell. Owing to the heterostructure of core/shell nanocrystal, the
valence force field method is utilized to optimize the structural geometry. To analyze
the electronic structures and optical properties of the core/shell nanocrystals with
the corresponding structural parameters, some of the calculations are demonstrated.
Finally, all-inclusive information based on atomistic tight-binding theory success-
fully conveys the natural behaviors of core/shell nanocrystals and carries a guideline
for the design of their electronic and optical properties before applying to the novel
electronic nanodevices.

23.1 Introduction

Advanced technologies in the synthetic chemistry of semiconductor nanostructures
have made it possible to access high quality semiconductor nanostructures with
controlled size, shape and composition. Nanostructures containing more than one
material can easily be synthesized nowadays. Core/shell nanocrystal is one of the
nanostructures composed of a core made from one material terminated by a shell of
anothermaterial. Therefore, the structural, electronic,magnetic andoptical properties
of the core/shell nanocrystals can be manipulated not only by the core but also by the
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growth shell. The advantages in the improved photoluminescence quantum yields,
highphotostability and size-tunable emissionpropertiesmake core/shell nanocrystals
extremely gorgeous for widespread applications such as light-emitting diodes [1, 2],
solar cells [3–6], lasers [7], biological imaging [8–11] and quantum information [12–
16]. Before the authentic manufacture, the theoretical description of semiconductor
nanostructures is of crucial importance because of its allowance to analyze and
predict the fundamental physics. Here, it is the aim of this chapter to provide the
reader with a comprehensive overview of the band structure calculations of core/shell
semiconductor nanocrystals. We take a special emphasis on the empirical tight-
binding description and valence force field method in order to deliver some of their
calculations.

To study the electronic and optical properties of semiconductor nanostructures, the
band structures are required to be understood. At the moment, there are several theo-
retical calculations of the band structures such as k.p method [17–25], tight-binding
model [26–35], pseudopotential model [36–42] and density functional theory [43–
46]. Each method has their own technique to calculate the band structures of semi-
conductors. Conventionally, the nanostructures are investigated by k.p method in the
framework of the envelope function approximation (EFA) [47–49]. This approach
mainly lacks the atomic detail. Because of a reasonable compromise between the
computational resource and the reliability of the results, k.p method still remains to
be implemented. Advanced technologies of the synthesismake it possible to fabricate
the high quality semiconductor nanostructures with complexity where k.p method
hardly deals with. Hence, the envelope function concept is replaced by density func-
tional theory.However, the realistic nanostructures contain an amount of atomswhere
density functional theory encounters the dimensionality of the problem. Presently,
advanced density functional calculations under large parallel supercomputers can be
applied to study the structures with several thousand atoms. With the aim to mainly
preserve both of the computational efficiency and atomistic detail, the empirical
methods are the suitable candidates for modelling the nanostructure devices. Two
empirical methods are proposed for atomistic nanostructure description, namely the
empirical tight-binding approach (ETB) and the empirical pseudopotential technique
(EPM). ETB method yields the simple and appealing calculations using bonding
properties in the framework of orbital occupations and orbital overlap. ETB approach
overcomes k.p method due to the consideration of atomic details, while the computa-
tionally consuming time of ETBmodel is comparable to that of k.p method. Another
strength is that the scalability of ETB approach can be investigated up to the level of
the density function theory. However, the disadvantage of ETB method is the large
number of parameters involved to accurately reproduce the band structures. The
EPM represents the precise band structures with a few parameters, thus reducing the
restrictions of ETB approach. For the demonstration of the accurate band structures,
EPM method must be based on the wave function expansion produced from the
large number of plane waves. Within the tight-binding model, the wave function is
spanned with a small basis set depending on the included orbitals, number of atoms
and neighboring interactions. Hence, ETB model is computationally less expensive
than EPMmodel. According to the argument, ETB model is a good applicant for the
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study of relatively big and complicated systems in which both of the computational
efficiency and atomistic description are preserved.

The main objective of this chapter is to give the comprehensive description of
computational tool for the nanostructure devices. The computational tool consists of
the valence force fieldmethod and empirical tight-binding theory. Valence force field
method is implemented to optimize the atomic positions. After obtaining the relaxed
structures, the electronic and optical properties are determined in the framework of
empirical tight-binding model. This chapter is also to deliver primarily our ownwork
and a rudimentary attempt is made to cover the wide literature on this subject. The
chapter is organized as follow. Section 23.2 provides the description of the valence
force method. In Sect. 23.3, the principle of the empirical tight-binding method
is applied to the bulk semiconductors with different tight-binding hybridizations.
The implementation of the sp3s* empirical tight-binding method into the core/shell
semiconductor nanocrystals is demonstrated in Sect. 23.4. Finally, the summary is
provided in Sect. 23.5.

23.2 Valence Force Field

Due to the lattice mismatch between core and shell material, the atomic positions
inside and around core/shell nanocrystal are distorted. To optimize the structural
geometry, there are two major methods, continuum elasticity [50–53] and atom-
istic elasticity approach [50, 54–61]. In this work, the valence force field method
(VFF), one of the atomistic elasticity approaches, is implemented to relax the atomic
positions of the core/shell nanocrystal. The advantage of the valence force field is
that it includes atomic scale information such as inter-atomic potential and correct
point group symmetry. For the demonstration, the atoms in core/shell nanocrystal
are considered as point particles and the bonds are termed as springs. Therefore, the
equation of the spring deformation is theoretically used to explain the behavior of
the stretching and bending bonds. The objective of this approach is to minimize the
energy associated with a given atomic structure. The total energy of this model is
the summation of the energy of the stretching and bending of the bonds. The expres-
sion of total energy is described in term of the fitting parameters which explain the
behaviors of different kinds of the atoms in core/shell nanocrystal. After relaxing the
atomic positions, the strain distribution and strain tensors are attained.

23.2.1 Valence Force Field Method (VFF)

In the realistic structures, core and shell are chemically synthesized from different
materials with their own lattice constants, leading to the lattice-mismatch-induced
strain in such structure. For example, the mismatch for InAs core passivated by GaAs
shell is 6%, while for InAs core terminated by InP shell it is about 3%. To calculate
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the optimized atomic positions of core/shell nanocrystal, strain relaxation has been
provided. In this work, the valence force field method is implemented for atomistic
optimization. The elastic energy of all atoms is expressed as a function of the atomic
positions Ri as:

E =
∑

i j

V2(Ri − R j )+
∑

i j

V3(θi jk)

where V2 is the two-body term called stretching function, V3 is the three body term
of the bond angle called bending function and θi jk is the angle subtended at the atom
i by atoms j and k. The actual formula for the total elastic energy is given by:

E=
∑

i

4∑

j=1

3αi j

16(d0
i j )

2

[
(R j − Ri )

2 − (d0
i j )

2
]2

+
∑

i

4∑

j,k>1

3βi jk

8d0
i j d

0
ik

[
(R j − Ri ) · (Rk − Ri ) − cos θd0

i j d
0
ik

]2

Here, d0
i j denotes the bulk equilibrium bond length between the nearest-

neighboring atom i and j in the corresponding binary compound and θ =
arccos(1/3) is the ideal bond angle of zinc-blende structure. The first term is a sum
over all atom i and its nearest neighbours j . The second term is a sum over all atoms i
and distinct pairs of its nearest neighbours j and k. The fitting dependent parameters
α and β are the bond-stretching and bond-bending force constants, respectively. For
the bending term at the interface where the species j and k are different, the average
of the corresponding values of these pure semiconductors is utilized. Table 23.1 lists
the parameters α and β of the the important semiconductors (mainly in III–V and
II–VI group) [62].

Table 23.1 The parameters
α and β of the the important
semiconductors (mainly in
III–V and II–VI group) [62]

Semiconductor α(N/m) β(N/m)

InAs 35.04 6.14

InP 38.56 6.75

InSb 28.68 5.02

GaAs 41.70 7.30

GaP 48.18 8.44

GaSb 31.68 5.55

CdS 33.43 3.54

CdSe 29.64 3.14

ZnO 69.67 7.38

ZnS 42.16 4.46
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To calculate the relaxed atomic positions of the core/shell nanocrystals, the total
elastic energy is minimized with respect to the atomic positions Ri . Here, the conju-
gate gradient method (CGDESCENT) [63–65] developed by William W. Hager is
implemented. Once the relaxed atomic positions of all atoms are known, the strain
distribution is realized through the strain tensors. The cation site is formed a tetrahe-
dron bonding to its four nearest neighboring anions. The strain tensors ε are calculated
from the correlation between the distorted and ideal tetrahedron edges. The distorted
tetrahedron edges, R12, R23 and R34, are connected to the ideal tetrahedron edges,
R0
12, R

0
23 and R0

34, from this relation: [50]

⎡

⎣
R12,x R23,x R34,x

R12,y R23,y R34,y

R12,z R23,z R34,z

⎤

⎦ =
⎡

⎣
1 + εxx εyx εzx

εxy 1 + εyy εzy

εxz εyz 1 + εzz

⎤

⎦

⎡

⎢⎣
R0

12,x
R0

23,x
R0

34,x

R0
12,y

R0
23,y

R0
34,y

R0
12,z

R0
23,z

R0
34,z

⎤

⎥⎦

The strain tensors are then calculated by the matrix inversion as:

⎡

⎣
εxx εyx εzx

εxy εyy εzy

εxz εyz εzz

⎤

⎦ =
⎡

⎣
R12,x R23,x R34,x

R12,y R23,y R34,y

R12,z R23,z R34,z

⎤

⎦

⎡

⎢⎣
R0

12,x
R0

23,x
R0

34,x

R0
12,y

R0
23,y

R0
34,y

R0
12,z

R0
23,z

R0
34,z

⎤

⎥⎦

−1

− I

where I is the 3 × 3 identity matrix.

23.2.2 Examples of the Calculations

Here, the examples in the implementation of the valence force field method on the
core/shell nanostructures are demonstrated. The nanocrystals and nanorods of CdSe
andCdSare excellent candidates for the novel optical and electronic applications. Luo
andWang [66] optimized the atomic positions of CdSe/CdS core/shell nanorod. The
spherical CdSe core with a diameter of 3.44 nm at the right-hand side of the nanorod
was surrounded by CdS rod with diameter of 4.30 nm and the length of 15.48 nm.
Due to the lattice mismatch between core and shell material, the compressive strain
was found in CdSe core, while the tensile strain was observed nearby CdSe core and
in CdSe shell. In CdS shell far away from CdSe core, there was no strain influence.
CdSe/ZnSe core/shell nanocrystal is one of the outstanding candidates to provide the
high luminescence quantum yields. Due to the lattice mismatch between core and
shell, the induced strain in CdSe/ZnSe core/shell nanocrystals with experimentally
synthesized sizes was studied by Sukkabot [67]. The ZnSe shell thicknesses (ts) of
0.9, 1.8 and 2.7 monolayer (ML) were consecutively passivated on CdSe core with
diameter of 3.6 nm. Figure 23.1 displayed the hydrostatic strains (exx + eyy + ezz)
in the z direction through the middle of the core/shell nanocrystal under different
shell thicknesses. The hydrostatic strains were mainly sensitive with the growth shell
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Fig. 23.1 Hydrostatic
strains (exx + ezz + ezz) of
CdSe/ZnSe core/shell
nanocrystals as a function of
ZnSe shell thicknesses (ML)
[67]

thickness. The compressive strains were probed in the core region within all shell
dimensions, whereas there was no tensile strain in core and shell.

23.3 Empirical Tight-Binding Method

The empirical tight-binding theory was initially developed by Slater and Koster [68].
Within the empirical tight-binding theory, Hamiltonian matrix elements are eluci-
dated by fitting parameters. These parameterizations can reproduce the reference
quantities such as the band structure, effective mass or band gap derived by first-
principles calculations or extracted from experimental data. The empirical tight-
binding method is often used to study electronic and optical properties of nanos-
tructure devices. Before developing the nanostructure description, it is essential to
describe bulk semiconductors and matrix element parameters. Here, sp3s∗ empirical
tight-binding method is used to determine the bulk semiconductors. The historical
parameterization is described with the increasing including orbitals starting from the
minimal sp3 basis.

23.3.1 The Bulk Hamiltonian

In the term of the bulk semiconductor, the one-electron wavefunctions |nk> can be
written as Bloch functions due to the symmetry of the system as given by:

∣∣ψn,k
〉 =

∑

α,β

Cαβ(n, k)

{
∑

R

eik·Rβ
∣∣α, Rβ

〉
}
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For the convenience, Rβ = R + dβ where R is the lattice vector and dβ is the
atomic position. β and α refer to the index of the atom and to the atomic orbital
index, respectively. Cαβ(n, k) are the coefficients of the linear combination which
depend on the band index n and the k vector in Brillouin zone. The expansion of
the one-electron wavefunction utilizes a complete set of basis functions. In the tight-
binding method, the basis used in the linear combination contains the atomic states
of the outermost occupied valence electron states. The coefficients Cαβ(n, k) of the
linear expansion are carried out by solving the well-known Schrodinger equation:

H
∣∣ψn,k

〉 = En(k)
∣∣ψn,k

〉

where En(k) symbolizes the energy band dispersion. To obtain the energies and
one-electron wavefunctions, quantum matrix is implemented with assistance of the
hoppingmatrix elements. Then, the one-electron tight-bindingHamiltonian iswritten
in term of the localized basis as:

H =
∑

α,Rβ

∣∣α, Rβ

〉
εα,β

〈
α, Rβ

∣∣ +
∑

α,α′,Rβ′ �=Rβ

∣∣α′, Rβ ′
〉
tαα′

〈
α, Rβ

∣∣

Thefirst term stands for Rα′ = Rα andα′ = α, namely the on-sitematrix elements:

εα,β = 〈
α, Rβ

∣∣H
∣∣α, Rβ

〉

The second term stands for Rβ ′ �= Rβ , called the off-site matrix elements:

tα′α(Rβ ′ − Rβ) = 〈
α′, Rβ ′

∣∣H
∣∣α, Rβ

〉

For the demonstration of the bulk band calculations, the tight-binding method
with the combination of minimal sp3 basis (one s orbital and three p orbitals) plus
the excited s state with s-like symmetry (s*), called sp3s∗ empirical tight-binding
approach. This empirical tight-binding model has been widely implemented for
various nanostructures. In this chapter, sp3s* empirical tight-binding method with
the nearest-neighboring interaction is applied to the zinc-blende structures. The inde-
pendent tight-binding parameterizations consisting of on-site energies (εs,a(c), εp,a(c)

and εs∗,a(c)) and off-site matrix elements (V) are demonstrated as:

Vss = 4tss(Ra − Rc)

Vxx = 4tpx px (Ra − Rc)

Vxy = 4tpx py (Ra − Rc)

Vspx = 4tspx (Ra − Rc)
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Vpx s = 4tpx s(Ra − Rc)

Vs∗px = 4ts∗px (Ra − Rc)

Vpx s∗ = 4tpx s∗(Ra − Rc)

Here, a and c present the anion and cation atoms. The interaction between s ∗
orbitals is neglected. Finally, the 10 × 10 Hamiltonian matrix is given by:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

εs,a 0 0 0 0 Vssg0 Vspg1 Vspg2 Vspg3 0
0 εp,a 0 0 0 −Vpsg1 Vxx g0 Vxyg3 Vxyg2 −Vps∗g1
0 0 εp,a 0 0 −Vpsg2 Vxyg3 Vxx g0 Vxyg1 −Vps∗g2
0 0 0 εp,a 0 −Vpsg3 Vxyg2 Vxyg1 Vxx g0 −Vps∗g3
0 0 0 0 εs∗,a 0 Vs∗pg1 Vs∗pg2 Vs∗pg3 0

Vssg∗
0

−Vpsg∗
1

−Vpsg∗
2

−Vpsg∗
3

0 εs.c 0 0 0 0
Vspg∗

1
Vxx g∗

0
Vxyg∗

3
Vxyg∗

2
Vs∗pg∗

1
0 εp.c 0 0 0

Vspg∗
2

Vxyg∗
3

Vxx g∗
0

Vxyg∗
1

Vs∗pg∗
2

0 0 εp.c 0 0
Vspg∗

3
Vxyg∗

2
Vxyg∗

1
Vxx g∗

0
Vs∗pg∗

3
0 0 0 εp.c 0

0 Vps∗g∗
1

Vps∗g∗
2

Vps∗g∗
3

0 0 0 0 0 εs∗.c

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

In this matrix, the gi coefficients depend on the wave vectors k. These values are
defined as:

g0(k) = 1

4

[
eik·τ1 + eik·τ2 + eik·τ3 + eik·τ4

]

g1(k) = 1

4

[
eik·τ1 − eik·τ2 + eik·τ3 − eik·τ4

]

g2(k) = 1

4

[
eik·τ1 − eik·τ2 − eik·τ3 + eik·τ4

]

g3(k) = 1

4

[
eik·τ1 + eik·τ2 − eik·τ3 − eik·τ4

]

where the vectors τi are the distances between the nearest-neighboring atoms in the
zinc-blende structure given by:

τ1 = A0

4

(
î + ĵ + k̂

)

τ2 = A0

4

(
−î − ĵ + k̂

)



23 Atomistic Tight-Binding Study of Core/Shell Nanocrystals 649

τ3 = A0

4

(
î − ĵ − k̂

)

τ4 = A0

4

(
−î + ĵ − k̂

)

Here, A0 is lattice constant of the studied zinc-blende semiconductor.
For the realistic situation, the spin–orbit interaction is included in sp3s∗ empir-

ical tight-binding Hamiltonian as described by Chadi [69]. Considering a spherical
symmetric potential, the spin–orbit interaction is defined as:

Hso = �

4m2c2
1

r

dVC(r)

dr
L · σ

Here, σ are the Pauli matrices, VC is the crystal potential and L is the angular
momentum. Then, the spin–orbit matrix elements with spin components s (s= ↑, ↓)
are given by:

〈
α, Rβ, s

∣∣HSO

∣∣α′, Rβ ′ , s ′〉 = 〈
α, Rβ

∣∣ �

4m2c2
1

r

dVC(r)

dr
L
∣∣α′, Rβ ′

〉 · 〈s|σ |s〉

For the tight-binding approximation, contributions on the same atom are only
considered. Then, the non-zero matrix elements of spin–orbit interaction are
demonstrated:

〈
px , Rβ,↑∣∣HSO

∣∣py, Rβ,↑〉 = −iλβ

〈
px , Rβ,↓∣∣HSO

∣∣py, Rβ,↓〉 = iλβ

〈
pz, Rβ,↑∣∣HSO

∣∣px , Rβ,↓〉 = −λβ

〈
pz, Rβ,↓∣∣HSO

∣∣px , Rβ,↑〉 = λβ

〈
py, Rβ,↑∣∣HSO

∣∣pz, Rβ,↓〉 = −iλβ

〈
py, Rβ,↓∣∣HSO

∣∣pz, Rβ,↑〉 = −iλβ

λβ(λa, λc) are the spin–orbit splittings of the anion and cation of p orbitals. In empir-
ical tight-binding method, these values are the fitting parameters. Finally, the intro-
duction of the spin–orbit interaction into sp3s∗ empirical tight-binding Hamiltonian
of a zinc-blende structure doubles to the 20 × 20 Hamiltonian matrix.
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23.3.2 Empirical Tight-Binding Parameterization

To obtain the reliable results of the empirical tight-binding method, the parameter-
ization is a main point which depends on the interesting applications. In the band
structure analysis, the data such as effective masses and band gaps need to be repro-
duced with the density functional calculations and experiments. These parameteriza-
tions can be implemented to study the structural, electronic and optical properties of
nanostructure devices. There are numerous tight-binding parameterizations of semi-
conductors introduced by several authors. J. C. Slater andG. F.Koster initially studied
the linear combination of atomic orbitals (LCAO) or tight binding, approximation
with orthogonalized plane-wave methods to calculate the band structures of simple
cubic, face-centered cubic, body-centered cubic and diamond structures. Using the
sp3 tight-binding method with the nearest neighboring interaction [70], the valence
bands are described in a proper feature in the comparison with the pseudopotential
method. However, sp3 empirical tight-binding method fails to generate the accurate
conduction bands. This problem is revised by including more excited energy orbitals
or the orders of the neighboring interactions. Niquet et al. [71] proposed the sp3 tight-
binding model with up to third-nearest neighboring interactions to Si band structure.
The tight-binding band structure was excellent to fit with the GW model.

The modification of the parameterizations has been reported by Vogl et al. [72] by
introducing an additional s* orbital with higher energy, called sp3s* empirical tight-
binding method. Using this basis, both valence and conduction bands of various
IV, III–V and II–VI semiconductors with direct and indirect band gap are accurately
reported. The band structure of Si semiconductor plotted along the high symmetry of
the Brillouin zone is illustrated in Fig. 23.2. This sp3s* empirical tight-bindingmodel
has been successfully applied to semiconductor nanostructures. However, the sp3s*
tight-binding model cannot properly fit the X point in the Brillouin zone. Therefore,
its applicability to model the nanostructures is limited in the semiconductor nanos-
tructures where the natural properties are described in X point of the Brillouin zone.

Fig. 23.2 The sp3s*
tight-binding band structure
of Si semiconductor along
the high symmetry of the
Brillouin zone
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Table 23.2 Empirical
tight-binding models with
their references of
parameterizations

Semiconductor sp3 TB sp3s∗ TB sp3d5s* TB

IV

Si [76–78] [72, 75] [73]

Ge [76–78] [72] [73]

SiC [79] [72] [73]

III–V

GaAs [85] [72, 75, 80–84] [73]

AlAs [70] [72, 75, 80–83] [73]

InAs [85, 87] [72, 75, 80, 83, 86] [73]

GaP [85] [72, 75, 83] [73]

AlP [72, 75] [73]

InP [85] [72, 75, 80, 83] [73]

GaSb [72, 75] [73]

II–VI

ZnSe [72, 75, 84, 88–92]

CdSe [93] [88, 94, 95]

ZnTe [72, 75, 88–90]

CdTe [98, 99] [88, 96, 97]

HgTe [98, 99] [88, 96]

ZnS [93] [84, 88, 89]

CdS [93, 100] [88]

ZnO [93, 101]

In order to overcome the restrictions, the sp3s* tight-binding model is improved by
increasing the number of neighboring interactions or the number of orbitals.

Jancu et al. [73, 74] included the d orbital into sp3s* tight-binding model with the
combination of the nearest-neighboring interaction and spin–orbit coupling, called
sp3d5s* empirical tight-binding method. The additional d orbitals play the crucial
role for the corrections of lowest conduction bands at X point. The band structures
for many IV, III–V and nitride semiconductors such as C, Si, Ge, AlP, GaP, InP, AlAs,
GaAs, InAs, AlSb, GaSb, InSb, GaN, AlN and InN are in an excellent agreement
with pseudopotential method and experiments. Table 23.2 itemizes the references of
the tight-binding parameterizations for the important semiconductors (mainly in IV,
III–V and II–VI group).
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23.4 Empirical Tight-Binding Theory of Core/Shell
Nanocrystals

23.4.1 The sp3s∗ Empirical Tight-Binding Description

For the demonstration of the studied nanostructures, sp3s∗ empirical tight-binding
theory with the combination of the nearest neighboring interaction and spin–orbit
coupling is utilized to investigate the core/shell semiconductor nanocrystals. The
sp3s∗ empirical tight-binding method was initially introduced by Vogl [72] to obtain
more accurate band structures than sp3 TB and consume the computationally require-
ment less than sp3d5s∗ TB. The computational process starts with a definition of
the atomic positions of the core/shell nanocrystals with the zinc-blende or wurtzite
crystal structure depending on the available experiments. The single wave function
is written as a linear combination of atomic orbitals localized on each atom given
by:

|ψ〉 =
Nat∑

R=1

10∑

α=1

CR,α|R, α〉

where α stands for the localized atomic orbitals on atom R with Nat being the total
number of atoms inside the system. The index of α from 1 to 5 stands for s ↑, px ↑,
py ↑, pz ↑ and s∗ ↑, while the index of α from 6 to 10 is defined as s ↓, px ↓, py ↓,
pz ↓ and s∗ ↓. The coefficients CR,α determining the i th single-particle state and
the corresponding single-particle energies are found by diagonalizing the empirical
tight-binding Hamiltonian. The sp3s∗ empirical tight-binding Hamiltonian is given
by:

HT B =
Nat∑

R=1

10∑

α=1

εRαc
†
RαcRα+

Nat∑

R=1

10∑

α=1

10∑

α′=1

λRαα′c†RαcRα′

+
Nat∑

R=1

Nat∑

R′=1

10∑

α=1

10∑

α′=1

tRα,R′α′c†RαcR′α′

where the operator c†Rα(cRα) creates (annihilates) the particle on the orbital α of atom
R. The on-site orbital energies εRα , spin–orbit coupling constant λRαα′ and hopping
matrix elements tRα,R′α′ connecting different orbitals situated on neighboring atoms
are described in this Hamiltonian. For the heterostructure, the valence-band offset
(Ev) between core and shell is included in the tight-binding Hamiltonian. Therefore,
all diagonal matrix elements of the core are shifted by Ev as compared to the shell
diagonal matrix elements. The strain effect in the heterostructure is encompassed to
provide a realistic description of the electronic states. The changes due to the strain
are treated only by the scaling of inter-site matrix elements defined as:
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tRα,R′α′ = t0Rα,R′α′

⎛

⎝
d0
R

′
J RJ

dR′
J RJ

⎞

⎠
nkl

where t0Rα,R′α′ and tRα,R′α′ are the ideal and distorted hoppingmatrix elements, respec-
tively. d0

R
′
J RJ

and dR′
J RJ

are the bond lengths of unstrained and strained binary mate-

rials, respectively. From Harrison’s d−2 rule [102], nkl = 2.0 is employed. Besides,
the core/shell nanocrystals are passivated with the hydrogen atoms at the surface to
avoid the formation of dangling bonds because these bonds may produce gap states
and impede the calculations.

23.4.2 Oscillation Strength

To study the optical properties of the nanostructures, the oscillator strengths between
the electron and hole states are demonstrated and analyzed. The oscillator strengths
are calculated to determine optically allowed states of the dynamic polarization. The
oscillation strengths fi j between electron (i) and hole ( j) states are defined as:

fi j = 2m0

�2

∣∣∣∣ê · ⇀

D
i j

∣∣∣∣
2

× (
Ei − E j

)

where m0 is the free-electron mass. Ei and E j are the energies of electron (i) and
hole ( j) levels, respectively. ê are the polarized vectors (xy plane [110] and z axis

[001]).
⇀

D
i j
are the interacted dipole moments between transition states of electron (i)

and hole ( j) levels.

23.4.3 Optical Spectra

To understand the optical properties of nanostructure devices, the optical spectra are
calculated with the combination of single-particle spectra obtained from empirical
tight-binding model and Fermi’s Golden rule. The formula of the optical intensity
(I (E)) is given by:

I (E) = 2π

�

∑

n,m

∣∣∣
〈
ψv

n,k=0

∣∣E ⇀
e · ⇀

r
∣∣ψc

m,k=0

〉∣∣∣
2
δ
(
Ev
n,k=0 − Ec

m,k=0 − E
)

Here, k = 0 is the Gamma point hin Brillouin zone. The indexes of m and n are
symbolized for mth electron and nth hole levels. ψc

m,k=0 and ψv
n,k=0 are the electron
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and hole wave functions, respectively. Ec
m,k=0 and Ev

n,k=0 are the electron and hole

energies, correspondingly.
⇀
e are polarized vectors.

23.4.4 Radiative Lifetime

To understand the recombination between electron and hole, the calculations of
radiative lifetime (τi j ) between electron (i) and hole ( j) states are determined. The
equation is given by:

τi j = 3h2m0c3

8π2ne2
(
Ee
i − Eh

j

)2

1

fi j

For the demonstration, m0 is the free-electron mass, n is the refractive index and
fi j are the oscillator strengths between electron (i) and hole ( j) states. Ee

i and Eh
j

are the single-particle energies of electron (i) and hole ( j) states, respectively.

23.4.5 Many-Body Hamiltonian

Once the single-particle statesψ(r) and energies En are obtained bydiagonalizing the
empirical tight-binding Hamiltonian, the many-body Hamiltonian for the interacting
electrons and holes is written in second quantization as: [103–105]

Hmany−body =
∑

i

Ee
i c

†
i ci +

∑

i

Eh
i h

†
i hi + 1

2

∑

i jkl

V ee
i jkl c

†
i c

†
j ckcl

+ 1

2

∑

i jkl

V hh
i jkl h

†
i h

†
j hkhl −

∑

i jkl

V eh,dir
i jkl c†i h

†
j hkcl +

∑

i jkl

V eh,exchg
i jkl c†i h

†
j ckhl

Here, the operators c†i (ci ) and h†i (hi ) create (annihilate) the electron or hole in
the state with energies Ee

i (E
h
i ). The two-body coulomb matrix elements are V ee

i jkl for

electron–electron interaction,V hh
i jkl for hole-hole interaction,V

eh,dir
i jkl for electron–hole

direct coulomb interaction and V eh,exchg
i jkl for electron–hole exchange interaction. In

the single excitonic case (contain one electron and one hole), the third and fourth
term are therefore absent. Then, the single excitonic Hamiltonian is re-written as:

Hsingle−exci ton =
∑

i

Ee
i c

†
i ci +

∑

i

Eh
i h

†
i hi

−
∑

i jkl

V eh,dir
i jkl c†i h

†
j hkcl +

∑

i jkl

V eh,exchg
i jkl c†i h

†
j ckhl
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The wave functions of the excitonic states are defined as the product of electron
and hole wave functions:

ex =
∑

i, j

Ci, j�
e
i (re)�

h
j (rh)

�e
i and �h

j are the single-particle ith electron and jth hole wave functions, respec-
tively. Finally, the energies and the coefficients Ci, j of the excitonic states can be
obtained by diagonalizing the single excitonic Hamiltonian.

23.4.6 Examples of the Tight-Binding Calculations

Here, the examples in the implementation of the empirical tight-binding method
with different orbital hybridizations on the different nanostructures are presented. In
addition, the results corresponding to the electronic structures and optical properties
of the examples are mainly presented in this chapter. Here, the example begins
with the simple sp3 empirical tight-binding model. Niquet et al. [71] reported the
electronic calculations of Si nanostructures using the sp3 empirical tight-binding
model with third-nearest neighboring interactions and spin–orbit coupling. Using
this parameterization, the band gap, Luttinger parameters and effective masses were
properly fitted to experiment. The comparison of the confinement energies of Si
nanocrystals was realized as a function of diameters. The empirical tight-binding
data was compared against pseudopotential (PP) and local density approximations
(LDA). The confinement energies of tight-binding model were not only in a good
agreement with PP model in large sizes but also in an excellent agreement with LDA
within the small clusters. Sukkabot [106, 107] reported the theoretical investigation of
electronic structures and optical properties of InN and InSb nanocrystals via the sp3s*
empirical tight-binding model with the nearest neighboring interactions and spin–
orbit coupling. The structural and optical properties of InN and InSb nanocrystals are
mainly dependent on their sizes, compositions and crystal structures. The example
of the calculated band gaps in these nanocrystals was demonstrated. Figure 23.3
displayed the excitonic gaps of InSb nanocrystals as a function of the diameters. The
optical band gaps of InSb nanocrystals were reduced with the increasing diameters
due to the quantum confinement. The excitonic energies of tight-binding model were
more consistent with the experimental data than those originally calculated by Efros
and Rosen.

In case of the core/shell nanocrystals, there are several scientific works. This
chapter mainly focuses on some important results of these nanostructures via sp3s∗
empirical tight-binding theory. Sukkabot [67] studied the electronic structures and
optical properties of CdSe/ZnSe core/shell nanocrystals with experimentally synthe-
sized sizes by sp3s∗ empirical tight-binding theory as a function of the growth shell
thicknesses. The structural parameters of theCdSe/ZnSe core/shell nanocrystalswere
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Fig. 23.3 The excitonic gaps of InSb zinc-blende nanocrystals as a function of diameters [106]

employed from the experimental data of Reiss et al. [108]. The spherical shape of
CdSe/ZnSe core/shell nanocrystals was consisted of CdSe core with diameter of
3.6 nm and ZnSe terminated shell thicknesses (ts) of 0.9, 1.8 and 2.7 monolayer
(ML). For the demonstration of the electronic properties, the energies of electron
and hole states under different shell thickness were displayed in Figs. 23.4 and 23.5,
respectively. In the presence of the ZnSe shell, the electron and hole levels were
improved in the comparison with those of single CdSe nanocrystals because of the

Fig. 23.4 Electron energies as a function of ZnSe shell thicknesses (ML) [67]
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Fig. 23.5 Hole energies as a function of ZnSe shell thicknesses (ML) [67]

valence band offset between core and shell. Figure 23.6 illustrated the single-particle
gaps, excitonic gaps and the size-tuneable absorption spectra ofCdSe/ZnSe core/shell
nanocrystals as a function of the ZnSe shell thicknesses. The single-particle gap was
computed from the difference between the maximum hole and minimum electron
state. The excitonic enegies were achieved by diagonalizing the single excitonic
Hamiltonian using the configuration interaction method. The results underlined that
the reduction of the single-particle and excitonic gaps with increasing shell thick-
ness reflected the quantum confinement. As the comparison, the sp3s∗ empirical

Fig. 23.6 The single-particle and excitonic gaps as a function of ZnSe shell thickness (ML) [67]
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tight-binding calculations coincided well with optical band gaps from the exper-
iment. In order to understand the behavior of orbital localized in the CdSe/ZnSe
core/shell nanocrystals, the theoretical analysis of electron and hole character was
also discussed. The ground electron states were characterized the s-like behavior in
Fig. 23.7. In Figs. 23.8 and 23.9, the admixture of the p orbital contributed to the
first-two hole states. In the presence of the ZnSe shell, the heavy-hole-like state in h1
and light-hole-like state in h2 were significantly improved in the comparison with the
singleCdSenanocrystal. For the demonstration of the optical properties, the oscillator
strength spectra ( f xyi j and f zi j ) of dipole moments determined by the spatial symmet-
rical xy plane and z component were displayed in Figs. 23.10 and 23.11 as a function
of the inter-band transition states between the electron (ei ) and hole levels (h j ) under

Fig. 23.7 The s character in
the ground electron state (e1)
as a function of ZnSe shell
thickness (ML) [67]

Fig. 23.8 The heavy-hole
character in the first hole
state (h1) as a function of
ZnSe shell thickness (ML)
[67]
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Fig. 23.9 The light-hole
character in the second hole
state (h2) as a function of
ZnSe shell thickness (ML)
[67]

Fig. 23.10 Oscillation
strengths in xy plane ( f xyi j )
as a function of ZnSe shell
thickness (ML) [67]
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Fig. 23.11 Oscillation
strengths along z direction
( f zi j ) as a function of ZnSe
shell thickness (ML) [67]

various shell thicknesses, respectively. The oscillation strengths were sensitive with
the shell thickness and polarized vectors (xy and z direction). The minor red shifts
in the oscillation strength spectra were reported with the increasing shell sizes. The
oscillation strengths were enhanced when passivating the ZnSe growth shell on CdSe
core, showing the improved optical properties. To analyze the optical properties, the
first-two inter-band transition was determined. By considering the first peak of the
spectra contributed from e1 − h1 transition, in the presence of the ZnSe shell the
magnitudes of f xyi j were greater than those of f zi j . This was due to the fact that
the dipole moment interactions between s-like (e1) and heavy-hole-like states (h1)
along [109] plane were mainly more promoted than those along the [001] direction
as described by the orbital characters in the previous Fig. 23.8. Therefore, the first
peaks of the emission spectra were mostly donated by f xyi j terms. For the second
peaks from e1 − h2 transition, when coating ZnSe shell the magnitudes of f zi j were
higher than those of f xyi j because the dipole moment interactions between s-like
(e1) and light-hole-like states (h2) along the z direction were augmented. Hence, the
majorities of the second peakswere from f zi j . As can be seen, the electronic structures
and optical properties were mainly manipulated by the growth shell thickness with
the implementation to novel optoelectronic applications.
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Fig. 23.12 Electron energies of InP/GaP core/shell and InP/GaP/ZnS core/shell/shell nanocrystals
as a function of internal shell (tGaP ) and external shell (tZnS) thicknesses, respectively [109]

In addition, the core/shell nanocrystals could be passivated by another growth shell
of different material, called core/shell/shell nanocrystal. Thus, the electronic struc-
tures and optical properties were widely controlled within more structural parame-
ters (external shell). Sukkabot [109] reported the improvement of the luminescence
efficiency for InP nanocrystals by coating a GaP/ZnS multi shell in zinc-blende
phase using the atomistic tight-binding theory and configuration interaction method.
InP/GaP/ZnS core/shell/shell nanocrystalswere considered to be a non-toxicmaterial
for customer applications. For the demonstration of the impact for the interior shell
on the natural behaviors, InP core with diameter of 3.10 nm was passivated by layers
of GaP internal shell (tGaP ) from 0 to 5 monolayers (ML). To study the external shell
dependence, thick layers of the ZnS external shell (tZnS) from 0 to 5 ML were termi-
nated on InP/GaP core/shell nanocrystal with InP core diameter of 3.10 nm and GaP
internal shell thickness of 2 ML. Figure 23.12 demonstrated the electron energies
of InP/GaP core/shell and InP/GaP/ZnS core/shell/shell nanocrystals as a function
of the internal and external growth shell thicknesses. The electron energies were
reduced with the increasing internal and external coated shell thicknesses. The hole
energies of InP/GaP core/shell and InP/GaP/ZnS core/shell/shell nanocrystals were
illustrated in Fig. 23.13 under different internal and external growth shell thicknesses.
With the increasing growth shell thicknesses, the hole energies of InP/GaP core/shell
and InP/GaP/ZnS core/shell/shell nanocrystals were improved. For the active appli-
cations in the optoelectronic devices, the optical band gaps of InP/GaP core/shell and
InP/GaP/ZnS core/shell/shell nanocrystals as a functions of the internal and external
growth shell thicknesses were presented in Fig. 23.14. The reduction of optical band
gaps was obtained with the increasing internal and external growth shell thicknesses
due to the quantum confinement effect. The optical band gaps changing across the
visible wave lengths were carried out by varying the internal and external growth
shell thicknesses. The optical properties of InP/GaP core/shell and InP/GaP/ZnS
core/shell/shell nanocrystals were analyzed in the framework of ground-state oscil-
lation strengths in Fig. 23.15. The oscillation strengths were improved when termi-
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Fig. 23.13 Hole energies of InP/GaP core/shell and InP/GaP/ZnS core/shell/shell nanocrystals as
a function of internal shell (tGaP ) and external shell (tZnS) thicknesses, respectively [109]

Fig. 23.14 Optical band gaps of InP/GaP core/shell and InP/GaP/ZnS core/shell/shell nanocrystals
as a function of internal shell (tGaP ) and external shell (tZnS) thicknesses, respectively [109]

Fig. 23.15 Oscillation strengths of InP/GaP core/shell and InP/GaP/ZnS core/shell/shell nanocrys-
tals as a function of internal shell (tGaP ) and external shell (tZnS) thicknesses, respectively
[109]
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Table 23.3 The references of
theoretical studies for the
important core/shell
nanostructures (mainly in IV,
III–V and II–VI group)

Systems References

DFT EPM ETB

Si/Ge [110, 111] [112, 113]

InAs/InP [114]

InAs/GaAs [115] [116, 117]

CdSe/CdS [118, 119] [66, 120] [121, 122]

CdSe/ZnS [123] [124]

CdSe/ZnSe [67]

CdTe/CdSe [125] [126]

ZnSe/ZnS [127] [128, 129]

ZnTe/ZnS [130]

ZnTe/ZnSe [131]

nating the internal and external shell, implying the enhancement of the optical proper-
ties. The oscillation strengths were progressively reduced as the internal and external
shell thicknesses were increased. Passivation of GaP shell on InP core obviously
improved the optical properties in the comparison with InP single nanocrystal. In
addition, the optical properties in InP/GaP/ZnS core/shell/shell nanocrystals were
enhanced when comparing to InP/GaP core/shell nanocrystals. By changing the
sizes of the internal external coated shell, the guideline for designing the electronic
structures and optical performance of these systems was finally achieved.

At themoment, there are several semiconductor core/shell nanocrystals, especially
in IV, III–V and II–VI group. These systems have been widely determined by various
experimental and theoretical methods. The theoretical description of semiconductor
nanostructures is of essential prominence to examine fundamental physics before
the actual manufacture. Table 23.3 itemizes the references of theoretical studies for
the important core/shell nanostructures (mainly in IV, III–V and II–VI group). Here,
theoretical investigationsmainly focus on density functional theory (DFT), empirical
pseudopotential method (EPM) and empirical tight-binding method (ETB).

23.5 Conclusion

Semiconductor core/shell nanocrystals are commonly applied in modern electronic
and optoelectronic devices. Before actual fabrication, the theoretical description of
semiconductor core/shell nanocrystals is of crucial importance. It is well known that
atomistic approaches are essential to model the structural, electronic and optical
properties of the approaching nanometric sizes. Here, the empirical tight-binding
approach is successfully utilized because both of the computational efficiency and
atomistic description are preserved. For the demonstration, the procedure of the
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computations is structured as follow. The first step is to generate the atomic posi-
tions of core/shell nanocrystals with desired shape, core diameter and growth shell
thickness. Due to the lattice mismatch induced by the difference in core and shell
material, the valence force fieldmethod (VFF) is implemented to optimize the atomic
positions. The total energy of this approach is described as the summation of the ener-
gies of the stretching and bending bonds with the integration of the fitting parame-
ters which explain the behaviors of each binary. After minimizing the total energy
by conjugate gradient method, the relaxed atomic positions and the strain distribu-
tion are achieved. Using the Schrodinger equation, the single-particle spectra are
numerically obtained in the framework of atomistic tight-binding theory. Due to the
optimized computational consumewith the satisfied bulk band structure calculations,
sp3s∗ empirical tight-binding theorywith the combination of the nearest neighboring
interaction and spin–orbit coupling is utilized to investigate the core/shell semicon-
ductor nanocrystals. After obtaining the single particle states and energies by diago-
nalizing the empirical tight-bindingHamiltonian, the natural properties of the studied
core/shell nanocrystals are carried out. Implementing the configuration interaction
description, the many-body Hamiltonian is computationally solved via the exact
diagonalization method in the combination of the single-particle spectra. Using the
tight-binding model, the electronic structures and optical properties of several semi-
conductor core/shell nanocrystals are evaluated and present a good agreement with
the other theoretical and experimental data. Therefore, the empirical tight-binding
model is very promising for the simulation tool to support the project of nanostructure
devices.
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Chapter 24
Tight Binding and Density Functional
Theory of Tailoring Electronic Properties
in Al1−xInxN/AlN/GaN High Electron
Mobility Transistors (HEMTs)

Meziani Abdelhakim, Abdul-Rahman Allouche, Telia Azzedine,
and Hilmi Unlu

Abstract Group III-nitrides have acquired an important role in science and tech-
nology of compound semiconductors for fabricating the novel electronic and optical
devices. AlN, InN, GaN and to a lesser extent BN and their alloys InGaN, AlGaN,
and AlInN are of great interest for the high temperature electronics and opto-
electronics applications. Recent growth technologies leading to high quality films
renewed interest especiallywhen the ternaryAl1−xInxN alloy presents a band gap that
covers thewidest energy range (0.69–6.25 eV) compared to other nitride compounds.
This material provides a unique range of composition coverage making it an ideal
candidate to fabricate electronic and optoelectronic devices such as high-power
high-frequency field-effect transistors, blue and ultraviolet light-emitting and laser
diodes, resonant- cavity light-emitting diodes, surface-emitting lasers, and solar blind
ultraviolet photodetectors. In this chapter, we present a semiempirical tight binding
theory and density functional theory analysis of the lattice mismatch and thermal
strain effects on the tailoring of the electronic, optical and elastic properties of the
zincblende and wurtzite phases of the Al1−xInxN/GaN ternary/binary heterostruc-
ture. Results are presented and compared with available data for the wurtzite phase,
yielding a useful database for the modeling of AlInN high electron mobility field
effect transistors (HEMTs).
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24.1 Introduction

Since the development of a commercial blue light emitting diode based on GaN [1],
group III nitride binaries (InN, GaN, AlN) and their ternary and quaternary alloys
(InGaN, AlGaN, AlInN and AlInGaN) have revolutionized solid state lighting and
continue to attract substantial research interest due to their unique properties and
importance for micro and nanoscale optoelectronics and electronics. Consequently,
the theoretical and experimental investigation of structural, electronic and optical
properties of Group III-nitrides GaN, InN, AlN binaries and their ternary alloys
InGaN, AlGaN and AlInN, and the quaternary alloy AlInGaN have been the subject
of intensive research for the device scientists and engineers in recent years due to
their potential application for the fabrication of novel electronic and optoelectronic
devices fabrication [2]. Among these semiconductor structures ternary Al1−xInxN
alloy has a band gap that covers a very wide energy range (0.69–6.25 eV), which
makes it an ideal candidate to fabricate electronic and optoelectronic devices such as
high-power high-frequency field-effect transistors, blue and ultraviolet light emitting
and laser diodes, resonant-cavity light emitting diodes, surface-emitting lasers, and
solar blind ultraviolet photodetectors [3, 4] (Fig. 24.1).

Fig. 24.1 Band gaps versus structural parameters of III–V wurtzitic nitrides (left). Color range of
emitted light (middle). Relationship between band gap and structure parameters on some material
used in LED (right) [5]
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Under normal growth conditions, AlN and InN crystallize in hexagonal wurtzite
structure (B4 phase), but growth of zincblende structure (B3 phase) on cubic
substrates can also been achieved [6], whereas the rocksalt structure (B1 phase)
is only obtained at high pressure [7, 8]. Over the last few years, the theoretical and
experimental studies of these semiconductors under high pressure have become an
extremely important subject exhibiting high growth. The effects of pressure are more
easily incorporated into first-principles simulations and varying gaps by means of
pressure variation are another way of tailoring gaps and providing a wider spectrum
for optoelectronic devices.

The architecture of electronic or optical devices requires heterostructure stacking
of different compounds with various lattice parameter constants thus creating strains
on the thin films. This has an immediate effect on the structural properties on the
strained alloy and therefore on its electronic and optical properties. In the case of
AlInN based devices, GaN is often chosen as a buffer layer resulting in a biaxial strain
on the semiconductor alloy with an immediate modification of the lattice parameters
hence its electronic and optical properties.Many of the charge transport parameters of
AlInN/AlN/GaN high electron mobility transistors (HEMTs) depend on the density
of two-dimensional electron gas (2DEG), which is greatly influenced by the interface
strain.

In this chapter we will review theoretical studies about the pressure effects on the
variation of the electronic properties of AlInN ternary alloy zincblende and wurtzite
phases. We will discuss use of the first nearest neighbor semi-empirical sp3s∗ tight
binding theory and the density functional theory (DFT), with the modified Becke-
Johnson (mBJLDA) potential, to investigate the composition effects on the lattice
and energy band structure of Al1−x InxN ternary alloy in the zincblende and wurtzite
phases. In these studies, one first optimizes the lattice constant and then calculates
the composition effect on the energy band gaps at high symmetry points of the first
Brillouin zone, the electron effectivemass and the density of states.We shall compare
the theoretical predictions of some DFT studies with mBJLDA functional and first
nearest neighbor (NN) semi-empirical sp3s∗ Tight binding method for the lattice and
band structure properties of ternary Al1−x InxN as a function of alloy composition
against the available experimental data.

24.2 Semi-empirical Tight Binding Theory

In the semi-empirical sp3s∗ tight binding model (TB) every atom is described by the
valence s orbital and the outer p orbital and a fictitious s* state to take into account the
effects of d orbitals in the energy band calculations [9]. We used the semi-empirical
sp3s∗ TBwith first nearest neighbor (NN) interactions taken into account to calculate
the electronic properties of ternary Al1−x InxN alloy. The spin orbit effect is neglected
because of the type of atoms used in this study. The Schrodinger equation in matrix
form is
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∑

β

[
Hαβ(k) − Sαβ(k)E

]
uβ = 0, (24.1)

where E is the energy eigenvalue of the Hamiltonian matrix:

Hαβ(k) = < χα(k)|H |χβ(k) > (24.2)

with the overlap integral between the atomic-like orbitals, with α and β that
correspond to cation (c) and anion (a) s, p atomic orbitals, respectively.

Sαβ(k) = < χα(k)|χβ(k) > (24.3)

where χ(k) is the basis function formed by the linear combination of s, p atomic
orbitals of cation and anion of binary compound. The sp3s∗ Hamiltonian Hαβ

has six diagonal elements (on-site atomic energies:Esa, Esc, Epa,Epc, Es∗a and
Es∗c) and seven off-diagonal elements (interaction integrals, known as hopping
terms:Ess, Exx , Esa pc , Esc pa ,Exy, Es∗ p and Eps∗ ). The general form of sp3s∗ TB
Hamiltonian matrix for semiconductors with zincblende crystal structure without
spin–orbit interaction is given by [10]:

H =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Esa Vss g1 0 0 0 Vsapcg2 Vsapcg3 Vsapcg4 0 0

Vss g′1 Esc −Vpascg′2 −Vpascg′3 −Vpascg′4 0 0 0 0 0

0 −Vpascg2 Epa 0 0 Vxx g1 Vxy g4 Vxy g3 0 −Vpasc∗g2
0 −Vpascg3 0 Epa 0 Vxy g4 Vxx g1 Vxy g2 0 −Vpasc∗g3
0 Vpascg4 0 0 Epa Vxy g3 Vxy g2 Vxx g1 0 −Vpasc∗g4

Vsapcg′2 0 Vxx g′1 Vxy g′4 Vxy g′3 Epc 0 0 Vs∗apcg2 0

Vsapcg′3 0 Vxy g′4 Vxx g′1 Vxy g′2 0 Epc 0 Vs∗apcg3 0

Vsapcg′4 0 Vxy g′3 Vxy g′2 Vxx g′1 0 0 Epc Vs∗apcg4 0

0 0 0 0 0 Vs∗apcg′2 Vs∗apcg′3 Vs∗apcg′4 Es∗a 0

0 0 −Vpasc∗g′2 −Vpasc∗g′3 −Vpasc∗g′4 0 0 0 0 Es∗c

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(24.4)

g1 = 1

4
(exp(id1k0) + exp(id2k0) + exp(id3k0) + exp(id4k0)),

g2 = 1

4
(exp(id1k0) + exp(id2k0) − exp(id3k0) − exp(id4k0)),

g3 = 1

4
(exp(id1k0) − exp(id2k0) + exp(id3k0) − exp(id4k0)),

g4 = 1

4
(exp(id1k0) − exp(id2k0) − exp(id3k0) + exp(id4k0))

(24.5)

where we have assumed that atom 1 is located at the origin and di (i = 1,4) are the
positions of its four nearest neighbors and a is the lattice parameter.
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d1 = a

4
(1, 1, 1) , d2 = a

4 (1,−1,−1) , d3 = a
4 (−1, 1,−1) , d4 = a

4 (−1,−1, 1)

(24.6)

The general form of sp3s∗ TB Hamiltonian matrix for semiconductors with
wurtzite crystal structure without spin–orbit interaction, can be expressed in a block
form as below [11].

H =

⎛

⎜⎜⎝

Ea H0 H13 H14

H0 Ea H14 H24

H ′
13 H ′

14 Ec H0

H ′
14 H ′

24 H0 Ec

⎞

⎟⎟⎠ (24.7)

where the different matrix elements are 4 × 4 matrix blocks. The diagonal matrices
Ea and Ec contain the orbital energies. The matrices Hij represent the interaction up
to nearest neighbors.

Ea =

⎛

⎜⎜⎝

Esa 0 0 0
0 Epza 0 0
0 0 Epxa 0
0 0 0 Epxa

⎞

⎟⎟⎠ , Ec =

⎛

⎜⎜⎝

Esc 0 0 0
0 Epc 0 0
0 0 Epc 0
0 0 0 Epc

⎞

⎟⎟⎠

H13 = g1M13 = g1

⎛

⎜⎜⎜⎜⎜⎜⎝

f0U1ss f0U1sz f1U1sx

√
3
2 f3U1sx

f0U1zs f0U1zz f1U1zx

√
3
2 f3U1zx

f1U1xs f1U1xz f1U1xx + 3
4 f2

(
U1xx +U1yy

) √
3
4 f3

(
U1xx −U1yy

)

√
3
2 f3U1xs

√
3
2 f3U1xz −

√
3
4 f3

(
U1xx −U1yy

)
f1U1yy + 3

4 f2

(
U1xx +U1yy

)

⎞

⎟⎟⎟⎟⎟⎟⎠

H14 = g1M14 = g1

⎛

⎜⎜⎝

Uss Usz 0 0
Uzs Uzz 0 0
0 0 Uxx 0
0 0 0 Uxx

⎞

⎟⎟⎠

H24 = g2M24 = g2

⎛

⎜⎜⎜⎜⎜⎜⎝

f ′0U1ss f ′0U1sz − f ′1U1sx −
√
3
2 f ′3U1sx

f ′0U1zs f ′0U1zz − f ′1U1zx −
√
3
2 f ′3U1zx

− f ′1U1xs − f ′1U1xz f ′1U1xx + 3
4 f ′2

(
U1xx +U1yy

)
−

√
3
4 f ′3

(
U1xx −U1yy

)

−
√
3
2 f ′3U1xs −

√
3
2 f ′3U1xz −

√
3
4 f ′3

(
U1xx −U1yy

)
f ′1U1yy + 3

4 f ′2
(
U1xx +U1yy

)

⎞

⎟⎟⎟⎟⎟⎟⎠

Uss = Vss/4 = −
√
3

4
Vsapc , Uzs = −Usz ,

Uzz = (
(Vxx/4) + (

Vxy/2
))

,Uxx = (
(Vxx/4) − (

Vxy/4
))

,

U1ss = Uss U1sz = −Usz/3 ; U1zs = −Uzs/3; U1sx = Vsapc/
√
6,

U1xs = −Vscpa/
√
6 ;U1xz = Vxy/

(
3
√
2
)
;U1zx = U1xz;

U1xx = ((8Uzz/9) + (Uxx/9)),U1zz = ((Uzz/9) + (8Uxx/9)),U1yy = Uxx
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Table 24.1 AlN and InN onsite and hopping parameters

AlN InN

B3 (eV) Onsite Esa = −11.5047; Epa = 4.3815;
Esc = 0.5047; Epc = 10.2184; Es*a
= 12.04; Es*c = 13.74;

Esa = −12.8605; Epa = 1.98; Esc =
−0.3994; Epc = 8.02; Es*a =
10.63; Es*c = 13.00;

Hopping Vss = −9.8077; Vxx = 6.031; Vxy
= 8.6191; Vsapc = 9.4; Vpasc = 8.5;
Vs*apc = 8.03; Vpas*c = 2.47;

Vss = 4.2285; Vxx = 3.65; Vxy =
6.405; Vsapc = 3.81; Vpasc = 5.75;
Vs*apc = 6.88; Vpas*c = 3.36;

B4 (eV) Onsite Esa = −12.104 Epxa = 3.581; Epza
= 3.725; Esc = −0.096; Epc = 8.95

Esa = −6.791; Epxa = 0.000; Epza
= 0.000; Esc = −3.015; Epc =
8.822;

Hopping Vss = −10.735; Vxx = 5.808; Vxy
= 7.486; Vscpa = 9.755; Vsapc =
10.092;

Vss = −5.371; Vxx = 0.022; Vxy =
6.373; Vscpa = 0.370; Vsapc = 18.0

The tight bindingAlN, InN andGaN self-energies parameters have been extracted
from [12, 13] andmodified so as to fit with high symmetry points. AlN and InN onsite
and hopping parameters are listed in Table 24.1.

Within this scheme one can reproduce the conduction and valence band energies
of zincblende and wurtzite III-N semiconductors with direct and indirect bandgaps.
The energies of the on-site and off-site elements of the TB Hamiltonian matrix are
obtained from the fitting of the experimental data of bandgap energies to the TB
calculations at high symmetry points. Using the derived parameters, the energy band
structure is obtained by diagonalizing the Hamiltonian matrix at each point of the
Brillouin zone.

In order to study the band structure of ternary/binary system the first step is to reli-
ably and precisely determine the composition effects on the band structure of ternary
semiconductor. In this respect, the empirical tight binding scheme can be used to
incorporate the composition effects for a realistic description of the composition
dependent band structure. The common practice is to employ so called the virtual
crystal approximation (VCA) to the tight binding Hamiltonian matrix elements and
bond length with and without the compositional disorder of the alloy semiconductor.
The calculation of atomic energies for the Al1−xInxN ternary is carried out by using
the virtual crystal approximation. The tight binding parameters representing the diag-
onal terms in the Hamiltonian matrix for Ax B1−xC ternary semiconductor are taken
as

Eαβ(x) = xEαβ(AC) + (1 − x)Eαβ(BC) (24.8)

where Eαβ = Ess, Exx , Esa pc , Esc pa ,Exy, Es∗ p and Eps∗ are the atomic energies of
s and p states of the anion and cation atoms forming the AC and BC compounds
binary such as AlN and InN, respectively.
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24.3 Density Functional Theory Calculations

Density functional theory (DFT) is a powerful ab-initio method for computing the
physical properties of solids such as the structural, electronic magnetic properties of
semiconductors to name a few from the first principleswithout any fitting parameters.
The conventional density functional theory (DFT) enables us to have a parameter-
free description of structural and electronic properties of semiconductors and has
its foundations in the work of Kohn and his collaborators [14, 15]. The variation
method is used to calculate the ground state properties of a many-body system with
the charge density, expressed in terms of single-particle electronic orbitals

n(�r) =
N∑

i=1

∑

k

f i,k |ϕi,k(r) > |2 (24.9)

which plays the central role in the calculation of the structural and electronic prop-
erties of semiconductors. The major consequence of the Kohn–Hohenberg–Sham
studies [14, 15] is that the single particle states ϕi,k(r) are determined by the solution
of a set of equations similar to the Schrodinger equation:

H |ϕi,k >= (− �
2

2m
∇2
i + Vext + Vef f )|ϕi,k >= Ei |ϕi,k > (24.10)

where ϕi,k(r) are the one-electron wave functions,Vext is the external potential of the
nuclei, and Vef f (r) the effective potential defined as

Vef f (r) = VH (r) + Vxc(r) = VH (r) + δExc(n(r)

δn(r)
(24.11)

where VH (r) is the Hartree Coulomb term and Exc(n(r) is the exchange–correlation
functional. Since the electron density n(r) is involved in the definition of effective
potential, (24.10) must be solved consistently with (24.9) and (24.11). Although the
set of (24.9)–(24.11) yields, in principle, an exact solution to the quantum–mechan-
ical problem, there are approximations involved in the exchange–correlation potential
Vxc(r). In this respect, Local Density Approximation (LDA) [16] and Generalized
Gradient Approximations (GGA) [17] have proven to be effective for a large number
of semiconductors.

Existing codes differ by generally the basis set used to expand the Kohn–Sham
orbitals. Among the variety of basis three main sorts of sets are used: local, nonlocal
and augmented. Our DFT-based ab-initio calculations were performed by means
of Wien2k [18] and VASP [19] codes. Wien2k uses a mixed set the full potential
linearized augmented plane wave (FP-LAPW) method. In this method, the unit cell
of the system is partitioned into atom-centered spheres, called Muffin–Tin (MT), of
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selected radii designed by RMT and an interstitial region. Inside each atomic sphere
the wave function is approximated by a linear combination of radial functions times
spherical harmonics, while in the interstitial region a plane wave expansion is used.
TheVASP, an acronym for TheViennaAb initio Simulation, on the other hand, uses a
planewave basis for the valence band electronswhereas the all-electronwavefunction
and core potential beyond a certain cutoff distance from the ionic core are replaced
by a pseudo-wavefunction and pseudopotential. This assumption is justified by the
fact that the core electrons do not participate in chemical bonds and are therefore can
be frozen and that the wave functions near the nucleus present strong oscillations
and therefore require a large number of plane waves.

24.3.1 Wien2k Code Tuning

The energy separation between valence and core states was taken to a value of 6 Ry,
furthermore the azimutal quantum number expansion was carried out up to lmax =
10. The plane waves were expanded up to a cut-off parameter, Kmax, so that RMTKmax

= 7 the RMT being the radius of muffin tin spheres. The convergence of total energy
was set to an accuracy of 0.1 mRy. The ternary calculation were carried out using
a supercell of 16 atoms (2 × 2 × 1) in an ordered form for the wurtzite structure,
and a 8-atom supercell for the zincblende phase (Fig. 24.2). The sampling density
of the reciprocal space defined by the number of k-points, whose value needed a
convergence test with respect to the energy, was found to be 1500 k for both binary
compounds. A proportionally smaller number of k-points were used for the ternary
calculation.

Fig. 24.2 Al75In25N wurtzite cell (left) zincblende cell (right)
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Fig. 24.3 Special quasi-random 64-atom supercell Al0.75In0.25 N derived with ATAT. Top left:
rocksalt structure top right: zincblende structure, bottom: wurtzite structure

24.3.2 Vasp Code Tuning

In our computational setup, calculations for all phases were performed with a plane
wave basis set with an energy cut-off of 600 eV and an energy convergence criteria
fixed at 0.01 meV. The interaction between the valence electrons and the ionic cores
were treated by the projector-augmented-wave (PAW) method. The Brillouin inte-
gration for binaries was performed using a Gamma centered grid of 8 × 8 × 8 for
both B1 and B3 and 8 × 8 × 6 for B4. For ternary Al1−xInxN, a 4 × 4 × 4 k-points
sampling grid was selected for B1 and B3 phases and a 6 × 6 × 2 for B4.

The ternary Al1−xInxN (x varying from 0 to 1) was obtained by replacing, in a
supercell of 64 atoms, the Al with In atoms in a proportion step variation x of 0.125.
Alloy disorder was taken into account for all phases by using a special quasi-random
structure (SQS) [20, 21] in the 64-atom supercell and was implemented by means of
the Alloy Theoretic Automated Toolkit (ATAT) [22]. The SQS approach proved to
be an efficient method for calculating random alloy physical properties [23, 24], it is
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designed in a manner that In or Al atomic sites of the supercell are occupied in such
a way that the pair correlation function reproduces that of an infinite random alloy.

For both codes, the Perdew, Burke and Ernezerhof (PBE)sol [25] exchange corre-
lation functional, a modified version for solids of PBE, was utilized for total energy
and lattice parameter calculations while, since PBE greatly underestimates band
gaps, the Tran-Blaha potential [26] a modified version of the Becke and Johnson
[27] (mBJ) potential was employed in the energy gap calculations. With the mBJ
potential a remarkable improvement on gaps accuracy is obtained nearly as precise
as those obtained by much more time consuming approach like HSE functionals or
G0W0 method [28].

24.4 Group III-Nitrides Basic Structures

III-nitride semiconductors AlN, GaN, InN and their alloys can crystallize in three
structures (Fig. 24.4): the hexagonal wurtzite phase (B4), the cubic zincblende phase
(B3) and the rocksalt phase (B1). The thermodynamically stable phase at room
temperature is the wurtzite phase, but also nitride epitaxial growth with zincblende
structure can be achieved on (001) oriented cubic substrates. Finally, the rocksalt
structure can be induced in III-nitrides at high pressures.

The structural properties calculations were carried out starting from a sequence
of different volumes, the corresponding energies were computed and the energy
variation with the volume (V) plot illustrated in Fig. 24.5. Results clearly confirmed
the B4 phase as the most favorable for the entire In range with B3 is slightly higher
in ground state energy.

In addition, the equilibriumstructural parameters of bulkAlNand InNbinaries and
their ternary Al1−xInxN are determined by calculating the total energy and pressure
at various volumes (DFT calculation) and fitting it to the pressure versus volume
Birch–Murnaghan equation of state [29] in its third-order expansion of volume as
expressed in (24.12).

Fig. 24.4 AlN structure: B4 (a), B3 (b) and B1 (c)
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where B0 is the bulk modulus and B
′
0 its first derivative.

The lattice constants (Fig. 24.6) are increasing with In contents. The phases B3
is presenting the largest lattice constant ranging from 4.37 Å (x = 0) to 5.05 Å (x
= 1) compared to B1 varying from 4.04 to 4.67 Å, whereas the parameter a and c
of the B4 phase vary respectively from 3.11 to 3.58 Å and from 4.98 to 5.77 Å.

The lattice constants of the Al1−xInxN ternary alloys may be expressed in terms
of the binaries parents by:

a(x) = x .aInN + (1 − x).aAlN + b.x .(1 − x) (24.13)

with the term b.x.(1−x) representing the linearity correction term due to the lattice
distortion.

We observe very little deviation from linearity for all phases, with the bowing
parameter b calculated values of 0.020; −0.253; 0.006 for B3, B1 and B4 phases
respectively.

The response to pressure or strain in the process of growth or in the making of
heterostructures needs the knowledge of the bulk modulus (BM). The B1, B3 and B4
BM computed values are represented in Table 24.2 and drawn in Fig. 24.7. One may
note that BM decreases as the In content is increased which can be a consequence of
a longer lattice parameter leading to a weaker bond. Furthermore, the bulk modulus
presents the largest value for B1 phase and close values for B3 and B4 phases. This
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Fig. 24.6 Lattice parameters of Al1−xInxN versus In composition (B1, B3 and B4 phases)

Table 24.2 Bulk modulus B and its fist derivative B’0 for Al1−xInxN (B1, B3 and B4)

Composition x ssB(GPa) B ′(GPa)

B1 B3 B4 B1 B3 B4

0 TW
Exp
Others

264.32
221a

272b

202.43
–
211.78c

203.33
207.9a

209b

3.935
4.8b

3.8b

3.87
–
3.90c, 3.7b

3.866
5.7–6.3b

3.7a

0.25 TW 223.92 183.51 184.66 4.546 3.964 3.648

0.5 TW 167.15 167.69 166.90 5.955 3.991 3.909

0.75 TW 203.33 152.65 149.04 4.762 4.278 4.414

1 TW
Exp
Others

193.39
170a

186e

142.56
137a

144c

141.82
125a

143e

4.931
5.0b

4.6b

4.443
–
4.56c

4.477
12.7d

4.6b

a[30], b [31], c[32], d[33], e[34].

may be traced back to the fact that the B1 phase has a shorter lattice constant and B3
and B4 phases have similar bond lengths and coordinate numbers. There also seems
to be a discontinuity in the BM B1 curve at a composition of 0.5 this anomaly may
be due to the fact that AlN and InN have different phase transition pressures and
subsequently is the evolution of the Al1−xInxN and In1−xAlxN curves.
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Fig. 24.7 Bulk modulus of Al1−xInxN versus In composition (B1, B3 and B4 phases)

24.5 Tailoring Bandgap by Alloying

The energy band diagram of the wurtzite and zincblende binaries determined by tight
binding are respectively shown in Figs. 24.8 and 24.9. The graphs clearly indicate
that, apart from zincblende AlN which is an indirect semiconductor, wurtzite AlN
and InN in both phases have direct band gaps.

Fig. 24.8 TB AlN band diagram: zincblende (left) wurtzite (right)



682 M. Abdelhakim et al.

Fig. 24.9 TB InN band diagram: zincblende (left) wurtzite (right)

Zincblende AlN is found to be of indirect gap, the calculated gap values at gamma
and X high symmetry points are respectively 5.60 eV and 4.81 eV, while, on the other
hand, zincblende structure InN is a direct semiconductor with a gap value of 0.59 eV.
When alloying AlN and InN the band gap is found to be indirect up to a crossover
whose concentration valuewas found at x= 0.17with a corresponding gap of 4.95 eV.

The wurtzite phase, in contrast, shows direct gap for both AlN and InN, with
respective values of 5.34 and 0.78 eV, comparatively the rocksalt phase shows the
largest band gap range varying from 5.74 (AlN) to 0.80 eV (InN). One has to note,
at that point, that the indium band gap (B4 phase) has long been overestimated at
1.7 eV it was not until 2001 that a new value was reported [35].

The computed �−� energy band gap values, of Al1−xInxN for all three phases
B1, B3 and B4 as a function of indium proportion are presented in Table 24.3 and
plotted in Fig. 24.10. The results show that the band gaps are decreasing with In
composition.

The results confirm that AlInN has the largest spectrum compared to the other III–
V semiconductors where the gap spectra for the phosphides (AlInP) the antimonides
(AlInSb) and the arsenides (AlInAs) varies respectively in the range [3.63, 1.42],
[2.38, 0.23] and [3.09, 0.41] eV [36].

The energy band gap variation with In contents can be expressed as follows:

Eg(x) = xEg,AlN + (1 − x)Eg,I nN + bx(1 − x) (24.14)

where EgAlN and EgInN are respectively the band gap energy of InN and AlN and b
the band gap bowing parameter for Al1−x InxN ternary alloy. The obtained values
of b are presented in Table 24.4. The band-gap bowing parameter yielded by our
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Table 24.3 Band gap of
Al1−xInxN in rocksalt (B1),
zincblende (B3) and wurtzite
(B4) phases

Composition x Eg (eV)

B1 B3 B4

0 TW
Exp.
Others

5.743
–
5.42c, 5.40d

4.817
5.34a

4.09c, 4.36e

5.347
6.23b

4.26c, 4.22f,

0.25 TW 3.794 2.961 2.924

0.5 TW 2.037 2.044 1.794

0.75 TW 1.346 1.256 1.203

1 TW
Exp.
Others

0.800
1.0a

0.595
0.7 g, 0.6 h

0.53a, 0.78b,

0.782
0.9a, 0.78b

0.69a, 0.90 l

a[37], b[38], c [39], d[40], e[41], f[42], g[43]; h[44], l[45].
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Fig. 24.10 Band gap variation of Al1−xInxN rocksalt B1, zincblende B3and wurtzite B4

calculations has a constant value for both B1 and B3 phases. Yet, it depends on
the alloy composition x for the B4 phase. A similar band-gap bowing parameter
composition dependent has been reported in numerous works for the same material
system of interest [46–48].

The strong dependence of bowing parameter on In-composition is a general trend
in all the In-containing nitride alloys. Physical explanation seem still in debate and
there a number of theories regarding the cause among which: a large size mismatch
between cation atoms [48], charge transfer contributions due to a large electroneg-
ativity differences between aluminum and indium atoms [46], localized electronic
states [47], indium clustering [49]. As far as the B1 and B3 phases are concerned in
the present contribution, the physical reason for the non-dependence of the band-gap
bowing parameter on the alloy composition x is not clear.
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Table 24.4 AlInN Band gap
bowing parameter of
zincblende, wurtzite and
rocksalt

Phase Bowing parameter this
work

Bowing parameter
others

B3 2.83 2.5a

B1 4.37 –

B4: 11.82 11.74 (x = 0.13)b

x = 0.125 6.80 8.12

x = 0.25 5.07 5.15

x = 0.50 3.85 4.24

x = 0.75 3.61 3.87

x = 0.875 – –

a[38], b[47]

24.6 Tailoring Effective Mass by Alloying

In addition to the band gap, the effective mass of electrons stands to be another
significant physical parameters giving more insights as regards to the electronic
transport electronic devices engineering especially the newly HEMT’s using AlInN
active layers [4]. The obtained results are presented in Table 24.5 where the m‖ and
m⊥ represent respectively the masses in the direction parallel and perpendicular to
the c-axis. Plots of the calculated electron effective mass of Al1−xInxN alloy, as a
function of indium composition, for B1, B3 andB4 phases are illustrated in Fig. 24.11

where the B4 mass is taken as the mean mass value defined by m∗ = 3

√
m‖m2

⊥. The
variation of the electron effective mass of Al1−xInxN alloy, with indium composition
show a decrease with In composition for all phases and an overall a lighter relative
electron mass of the B4 structure and since the electron effective mass is in inverse
proportion to the electronmobility, onemay expect, if we exclude the alloy scattering

Table 24.5 Electron effective masses (in free electron mass units) of Al1−xInxN (B1, B3 and B4)

Composition x B1 B3 B4

m m m⊥ m‖
0 TW
Exp.
Others

0.583
–
–

0.523
–
0.32g

0.306
0.29–0.45a

0.32g,

0.289
0.29–0.45
0.284m

0.25 TW 0.438 0.260 0.293 0.253

0.5 TW 0.202 0.174 0.169 0.151

0.75 TW 0.134 0.093 0.077 0.069

1 TW
Exp.
Others

0.096
–
–

0.077
0.04j

–

0.049
0.07a

0.129m

0.046
0.07a

0.089m

a[36], g[42], j[50], m[51]
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Fig. 24.11 Electron effective mass of Al1−xInxN zincblende and wurtzite

and the effects of disorder and eventual clustering, an increase of the mobility richer
In ternary compounds.

The obtained masses of the stable B4 varies in the range [0.29, 0.05] which, to
some extent, are heavier compared to AlInP ([0.22, 0.08]), AlInSb ([0.14, 0.014])
and AlInAs ([0.15, 0.026]) [36] the other In based III–V’s.

Assuming that the electron effectivemass versus alloy content x curve is quadratic
bm (x) , similarly to the band-gap energy, one defines an electron effective mass
bowing parameter by the relation,

m∗
n(x) = (1 − x)m∗

n(AC) + xm∗
n(BC) + bm(x)x(1 − x) (24.15)

where m∗
n(AC) ad m∗

n(BC) are the effective electron mass of AC and BC binaries
such as AlN and InN group III-nitrides and bm (x) is a coefficient representing
the composition dependent bowing effect on ternary effective mass. The computed
bowing parameters of the three phases for various In concentrations (Table 24.6)
show small values.

Table 24.6 Electron
effective mass bowing factor

x 0.25 0.5 0.75

b (B1) −0.124 −0.55 −0.447

b (B3) −0.808 −0.504 −0.507

b (B4) 0.273 0.094 0.0386
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24.7 Density of States

The number of states available per unit energy (density of states (DOS)) is an impor-
tant factor in studying the electronic properties. The calculated total and partial
density of states of zincblende and wurtzite are shown respectively in Figs. 24.12
and 24.13. The vertical dashed line represents the Fermi level which is set to zero. It
is clear that the density of states is higher in wurtzite phase than in zincblende phase.
The upper energy valence bands range from −5 to 0 eV. The major contribution
comes from the nitrogen atom for all compositions in the two phases. The p-orbital
seems to bring all the contribution of nitrogen to the binaries. The lower conduc-
tion band of wurtzite phase extends continuously from the value of the gap up to
about 15 eV with a similar contribution of all atoms either in wurtzite or zincblende
phase. In the case of AlN, the p-orbital is prevalent while for InN, N and In, respec-
tively, contributes through the p-and s-orbitals. The ternary compounds present in
the case of wurtzite phase a continuous lower conduction band. However, there is a
discontinuity for zincblende phase that seems to shift towards higher energies with
increasing indium content. In the case of the valence band we notice that the DOS
peak increases with indium.

Fig. 24.12 Total and partial DOS of Al1−xInxN (B3) for x = 0.25 (top left), 0.50 (top right) and
0.75 (bottom)
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Fig. 24.13 Total and partial DOS of Al1−xInxN (B3) for x = 0.25 (top left), 0.50 (top right) and
0.75 (down)

24.8 High Pressure Effects on Bandgap Energy

24.8.1 Phase Transition Pressures

High pressure studies of semiconductors have given valuable insights to their room
pressure properties and have also been used to generate new phases. Accordingly,
the changes in optical or electronic properties can be interpreted in a straightforward
manner. Nitrides are most commonly found in the wurtzite crystalline structure and
to a lesser extent in zincbende phase rearranging into the rocksalt structure under
extreme high pressure.

Before investigating the high pressure effects on the bandgap, the phase transition
pressure of respectively the zincblende and wurtzite to the rocksalt phase should first
be determined.

The phase stability is determined by the minimum of the Gibbs free energy G:

G = E + P.V − T .S (24.16)

where E, P, V, T, S stand respectively for internal energy, pressure, volume, temper-
ature and entropy. The Gibbs free energy reduces to enthalpy H (H = E + P.V )
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Fig. 24.14 Al1−xInxN enthalpy difference of B4–B1 (left) and B3–B1(right)

Table 24.7 B4–B1 and
B3–B1 phase transition
pressures

Composition x Transition pressure of Al1−xInxN
(GPa)

B4–B1 B3–B1

0 TW
Others
Exp.

7.84
12.5a, 9.2b

14,20c

6.02
7.1b

0.25 TW 15.01 14.69

0.5 TW 15.19 16.94

0.75 TW 9.61 9.46

1 TW
Others
Exp.

4.02
4.93d,11.1b

11.6b

3.37
10.5b

a[52], b [30], c[33], d [53]

given that calculations are made at 0°K. By using the obtained values for total energy
and corresponding volume one can calculate the variation of enthalpy with pressure
for each phase. The variation of the relative enthalpy difference of B4 and B3, for
various In proportions, are plotted in Fig. 24.14 with the phase transition pressures
determined at the x-axis intersection of the various enthalpy curves (�H = 0).

The computedphase transitionpressures are summarized inTable 24.7.The results
show a structural phase transition varying, with In concentration, from 4.02 (x = 0)
to 7.84 GPa (x = 1) for B4–B1 transition and from 3.37 (x = 0) to 6.02 GPa (x = 1)
for B3–B1 transition with a maximum value around 16 GPa for x = 0.5.

24.8.2 Bandgap Energy Variation with Pressure

In order to study of the effects on the energy band gap of Al1−xInxN in its B3 and B4
phases the pressure is varied from tensile to compressive up to the transition phase
pressure. Results show a linear increase of the gap for either phases (Fig. 24.15),
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Fig. 24.15 Band gap of Al1−xInxN versus pressure B3 phase (a) and B4 phase (b)

with the slopes varying with In concentration from 36.8 meV/GPa (x = 0) to 24.5 (x
= 1) for B4 and from 41.5 (x = 0) to 29.5 meV/GPa (x = 1) for B3. The magnitude
of these slopes is typical of III-group nitrides which, due to their large ionicity, and
independently of their phase, exhibit much lower band gap pressure coefficients
than other III-V group compounds such as GaAs (117 meV/GPa) [54].

24.9 Strain Effects on Heterostructure Bandgap

If we consider the deposition of a thin layer of material (f) on a substrate of material
(S) the atoms of the film f align with those of S causing a deformation of the thin
layer cell. The film takes the form of the substrate in the growth plane inducing a
change of the cell parameters in the normal direction. The lattice mismatch causes
therefore a biaxial compression (dilation) where the new parameters of the epilayer
correspond to those of the substrate in the in-plane (as, bs) (Fig. 24.16) while the
parameter out of plane is dilated (compressed).

Fig. 24.16 In-plane lattice modification under strain
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The effect of depositing a AlInN film on a GaN buffer, and due to the difference
in the lattice structure parameters between the film and the buffer, leads to strain
effects. This results in changes in the structural parameters and therefore affects the
physical properties of the alloy. If we consider a thin AlInN film, the first layers will
be affected by the buffer. The first direct effect will be the change in the bond length
and the angles hence a deformation of the wurtzite cell (Fig. 24.17).

In order to calculate electronic structure, one has first to calculate or measure the
position dependent strain tensor εαβ . The basic approach to calculate the variation on
the geometry of the unit cell under such strains is to use classical harmonic elasticity.
The growth of both the zincblende or wurtzite AlInN structures on a GaN substrate
yields a tetragonal structure whose basal parameter corresponding to the substrate
(GaN) lattice parameter while the perpendicular c parameter depends on the layer
structure. For a film grown on a buffer with parallel lattice constant as, the strain
components are:

ε‖ = εxx = εyy = as − aeq
aeq

εz = c − ceq
ceq

(24.17)

where aeq and ceq are the equilibrium lattice constant of the unstrained material and
c is the perpendicular lattice constant of the strained film.

For a cubic system the value of the c lattice parameter is determined from deriving
the strain energy with respect to parallel strain yielding [55]:
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Table 24.8 Perpendicular lattice parameter of the tetragonal strained structure

AlN Al0.75In0.25 N Al0.50In0.50 N Al0.25In0.75 N InN

Czb (Ang) 2.062 1.856 1.618 1.333 0.976

Cwz (Ang) 4.913 5.204 5.543 5.964 6.535

c = (
(2 − 3q)ε‖(as) + 1

)
aeq (24.18)

q is the ‘epitaxial strain reduction factor’ for orientation G of the c axis is:

q = 1 − B

C11 + γ�
(24.19)

where � is the elastic anisotropy:

� = C44 − 1

2
(C11 − C12) (24.20)

γ is a directional geometric factor.
B is the bulk modulus:

B = 2

3
(C11 + 2C12) (24.21)

For an hexagonal structure the c lattice parameter is given by [56]:

c = ceq(1 − 2
C13

C33
εxx ) (24.22)

The computed lattice parameters of the resulting tetragonal structure are listed in
Table 24.8. The basal parameter as is that of the substrate i.e. as = aGaN = 3.189 Ang,
while cwz and czb, correspond respectively to the perpendicular direction parameters
of the formerly wurtzite and zincblende structures.

24.9.1 Tight Binding Prediction of Bandgap

Under the strain TB matrix elements HlR,mR are modified since the lattice parameter
and the bonding length differ from those of the unstrainedmaterial. Considering only
scaling of the inter-site matrix elements, the matrix elements of the strained HlR,mR

and unstrained H0
lR,mR structure are related by:

HlR′,mR = H 0
l R′,mR f (d0

R′−R, dR′−R) (24.23)



692 M. Abdelhakim et al.

where the function f (d0
R′−R, dR′−R) describes the influence of the bond length and

angle on the hopping matrix elements, (d0
R′−R and dR′−R) being, respectively, the

bond vectors between the atomic positions of the unstrained and strained material. A
very accurate band structure description TB model can be achieved by scaling only
the inter-site matrix elements without the need to adjust the diagonal matrix elements
[57]. By using Harrison’s d−2 rule [58] which is a reasonable approximation we get
the following relation:

HlR′,mR = H 0
l R′,mR

[
d0
R′−R

dR′−R

]2

(24.24)

All these facts taken into account result in a change of the lattice parameters of
AlInN which induces a whole new energy band diagram and therefore a modified
band gap and electronic effective mass. An example (x = 0.75) of energy band
diagram of a unstrained and strained AlInN film is presented in Fig. 24.18.

The band gap is extracted from the band energy diagram for various In concentra-
tion x and plotted in Fig. 24.19. Below the matching concentration the strained mass
is lower than the unstrained one whereas the trend reverses for higher In contents.
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Fig. 24.18 Unstrained (blue) and strained (red) Al0.75In0.25 N wurtzite (right) zincblende (left)
band diagram
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Fig. 24.19 Band gap
variation of strained (red)
and unstrained (blue) Alx
In1−xN (TB)

24.9.2 Density Functional Theory Predicton of Bandgap

The strain results in a deformation of the wurtzite cell, leading to a tetragonal struc-
ture. All calculation have been made using 16 atom supercell with the new cell
parameters determined by (24.16) and (24.21). Figures 24.20 and 24.21 represent
respectively the energy band diagram of unstrained and strained Al0.75 In0.25 N in
wurtzite and zincblende form. We notice for the wurtzite diagram a widening in the

Fig. 24.20 Energy band diagram (DFT) Al0.75 In0.25 N (wz). left: unstrained right: strained
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Fig. 24.21 Energy band diagram (DFT) Al0.75 In0.25 N (zb). left: unstrained, right: strained

Table 24.9 Band gap for strained and unstrained Al1−xInxN in the wurtzite phase

AlN Al0.75In0.25 N Al0.50In0.50 N Al0.25In0.75 N InN

TB unstrained 6.231 4.303 2.656 1.448 0.790

TB strained 5.825 4.492 3.097 1.833 0.879

DFT unstrained 5.950 3.769 2.802 1.786 0.998

DFT strained 5.238 3.368 3.175 2.145 1.523

shape of the lower conduction band and a narrowing of the band gap. Moreover the
degeneracy is lifted for the higher valence bands. The same observation is valid for
zincblende where the lowering on the lowest CB is more severe than in the other CB
bands.

The energy band gaps extracted from these band diagrams are reported in Table
24.9 with the corresponding plots in Fig. 24.22.

24.10 Strain Effects on Electron Effective Mass

Computed electron mass for the strained and unstrained configurations is presented
in Table 24.10 and plotted in Figs. 24.23 and 24.24 respectively for the TB and the
DFT methods.
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Fig. 24.22 Band gap of
unstrained and strained
wurtzite AlInN versus In
composition
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Table 24.10 Strained and unstrained AlxIn1−xN electron effective masses in wurtzite phase

AlN Al0.75In0.25 N Al0.50In0.50 N Al0.25In0.75 N InN

TB unstrained me/m0 0.321 0.259 0.194 0.127 0.054

TB strained 0.294 0.257 0.215 0.166 0.113

DFT unstrained me/m0 0.306 0.293 0.169 0.077 0.049

DFT strained 0.300 0.209 0.196 0.185 0.141

Fig. 24.23 Electron effective mass of unstrained and strained AlInN versus In composition (TB)
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Fig. 24.24 Electron effective mass of unstrained and strained AlInN versus In composition (DFT)

Both methods show decreasing mass with In proportion. We notice two different
sections: above around 25% the strained mass is larger than the unstrained while
below this mark which coincides with the matching proportion between AlInN and
GaN (18%) the strained mass is lighter.

24.11 Polarization Effects

Piezoelectricity is a charge that builds up in certain crystals arising from an applied
mechanical stress. A piezoelectric potential can be created in crystals lacking a center
of symmetry, due to polarization of ions under applied stress and strain. This property
is common to both the zincblende and wurtzite crystal structures.

The polarization is related to stress by the relation:

Ppz = ei jε j (24.25)

where e and ε are respectively the piezoelectric and the strain tensors.
For zincblende materials, the relation between the induced polarization and strain

is given by:
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⎡

⎣
Px
Py

Pz

⎤

⎦ =
⎡

⎣
0 0 0 e14 0 0
0 0 0 0 e14 0
0 0 0 0 0 e14

⎤

⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

εxx

εyy

εzz

εyz

εzx

εxy

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(24.26)

where e14 is the non zero the piezoelectric tensor coefficient, and εxx ,εyy are the
strain tensor in-plane components and εzz the normal one. As a result of the special
form of the piezoelectric tensor, in zincblende semiconductors a biaxial strain does
not generate piezoelectricity on (001) direction.

Crystals with a cubic structure have four equivalent bonds and due to this
symmetry the center of electronic charges coincides with the nucleus. On the other
hand, for materials with a hexagonal structure, the [0001] direction carries a bond
that is longer than the others, thus creating an electric dipole.

In strained wurtzite structures along or perpendicular to c-axis, the relation is:

⎡

⎣
Px
Py

Pz

⎤

⎦ =
⎡

⎣
0 0 0 0 e15 0
0 0 0 e15 0 0
e31 e31 e33 0 0 0

⎤

⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

εxx

εyy

εzz

εyz

εzx

εxy

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(24.27)

e31, e33 and e15 are the piezoelectric tensor elements.
Thus for layers grown in the [0001] orientation, a piezoelectric polarization will

be aligned along the c-axis direction and given by:

Ppz = e31(εxx + εyy) + e33εzz (24.28)

Using (24.17) and (24.22) the piezoelectric polarization, of an AlInN wurtzite
layer grown on a GaN buffer, takes the following expression:

PAl1−x I nx N
piezo (x) = 2(e31(x) − e33(x)

C13(x)

C33(x)
)εxx (x) (24.29)

where eij(x) are the piezo-coefficients and Cij(x) the elastic parameters. They are
related to the binaries eAlNi j , eInNi j , CAlN

i j and C InN
i j by the following relations:

eAl1−x I nx N
i j = (1 − x)eAlNi j + xeInNi j (24.30)

CAl1−x I nx N
i j = (1 − x)CAlN

i j + xC InN
i j (24.31)
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Table 24.11 Piezoelectric
and elastic constants and
spontaneous polarization of
nitrides binaries [59, 60]

Parameters AlN InN GaN

e31(cm−2) −0.58 −0.412 −0.55

e33(cm−2) 1.55 0.815 1.12

C13(GPa) 100 92 110

C33(GPa) 390 224 387

Psp(cm−2) −0.09 −0.042 −0.034

Table 24.12 Piezoelectric and spontaneous polarization of Al1−xInxN versus In composition

x 0.00 0.25 0.50 0.75 1.00

Psp −0.0900 −0.0647 −0.0483 −0.0407 −0.0420

Ppz −0.0477 0.0217 0.0808 0.1278 0.1657

III–V nitrides show also in addition to piezoelectric polarization a spontaneous
polarization. Spontaneous polarization (Psp) is an intrinsic property related to the
bonding nature of the material, whose origin can be attributed to the fact that the
center of the negative charges (electrons) in the solid does not coincide with the
center for the positive charges (nuclei).

The spontaneous polarization of the ternary AlInN takes the form:

PAl1−x I nx N
sp (x) = (1 − x)PAlN

sp + x P InN
sp + bx(1 − x) (24.32)

where PAlN
sp andP InN

sp are respectively the spontaneous polarizations of AlN and InN
and b the bowing factor (bPspAlInN = 0.071 cm−2) [59].

The values of the binariesAlN and InN spontaneous polarization and piezoelectric
coefficients e31 and e33 used in this work, are presented in Table 24.11.

The resulting values of piezoelectric and spontaneous polarization are listed in
Table 24.12, and their variation with In concentration plotted in Fig. 24.25.

The plot shows that the piezoelectric polarization is always negative for the In
composition corresponding to a layer of Al1−xInxN in tension. An In concentration
close to 18% gives a lattice matching with GaN layer and therefore a zero piezoelec-
tric polarization then with the composition rising, the layer will be in compression
and the positive piezoelectric polarization will oppose spontaneous polarization. At
high In concentration the piezoelectric becomes the predominant polarization.

24.12 Hemt Device

The High Electron mobility Transistor (HEMT) is a field effect transistor consisting
of a heterostructure of two semiconductors of different gaps. A thin-layer of a ternary
alloy Al(Ga, In)N, called the barrier layer is grown on an unintentionally doped GaN
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Fig. 24.25 Al1−xInxn Spontaneous and Piezoelectric polarization versus In concentration

buffer layer acting as a channel resulting in a quantumwell at the interface between the
two materials (Fig. 24.26). A large density of high electron mobility electrons is then
created in the undoped zone resulting in a High Electron Mobility Transistor. Over
the last few years, GaN HEMTs have attracted attention owing to their high-power
performance and the ability to operate at high frequencies. Nitride HEMTs generally
use a heterostructure AlGaN/GaN, however the difference in lattice constants of two
layers induces a stress that limits their reliability [61, 62]). As an alternative, Kuzmik
[63] proposed using AlInN/GaN HEMTs that have the advantages that at 18% of In
Al0.82 In0.18 N and GaN are lattice matched removing strains in the heterostructures.

Fig. 24.26 Band diagram
for AlInN / GaN
heterojunctions HEMT
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Moreover, charges induced by the spontaneous polarization are almost three times
higher than in the traditional AlGaN/GaN HEMT [63].

24.12.1 Hemt Physical Processes

In the AlInN HEMTs a heterostructure AlInN/GaN is used with a AlInN doped wide
band gap layer and an smaller gap of undoped GaN channel layer (Fig. 24.27). As
a result of the difference of band gaps between the two layers, a quantum well is
created within the structure. The high concentration of electrons of the doped layer
of AlInN fall completely into the GaN layer. Owing to the GaN undoped layer, a
thin channel of highly mobility electrons at very high concentration is created in the
GaN-side conduction band forming what is called a two-dimensional electron gas
(2DEG). In a HEMT the conduction is hence provided by a large density ns of high
mobility electrons supplied by the 2DEG layer whose origin are the spontaneous
polarization of the polar material and the piezoelectric polarization. In addition to
that in order to provide a better carrier confinement and to reduce the alloy scattering
2DEG one generally adds a spacer layer of AlN at the AlInN/GaN interface [64, 65].

The schematic band diagram of the above heterostructure is shown in Fig. 24.28,
where:

e is the electron charge, �b the Schottky contact barrier height.
d Al InN and d AlN are respectively the barrier layer AlInN and cap layer AlN

thickness.
�EAl InN/GaN (x) and�EAlN/GaN are the conduction band discontinuity between

AlInN/GaN and AlN/GaN.
E0 is the triangular quantum well ground state level considered usually the only

state occupied and EF is Fermi energy level given respectively by [66]:

E0 =
(

9π --he2

8ε0
√
8m∗(x)

ns(x)

ε(x)

) 2
3

(24.33)

Fig. 24.27 Structure of an AlInN HEMT transistor



24 Tight Binding and Density Functional Theory of Tailoring Electronic Properties … 701

Fig. 24.28 Schematic band
diagram of an
AlInN/AlN/GaN

EF = E0(x) + π --h2

m∗(x)
ns(x) (24.34)

The corresponding balance equation can be written as follow:

e�b(x) − Ec,Al InN/AlN dAl InN + �Ec,Al InN/AlN − Ec,AlN dAlN − �Ec,AlN/GaN + E0 + (EF − E0) = 0
(24.35)

where:
εAlInN and εAlN are respectively the alloy relative permittivity of respectivelyAlInN

and AlN.

εAl1−x I nx N (x) = (1 − x)εAlN + xε I nN (24.36)

Ec,AlN and Ec,AlInN are the fields across respectively the AlN and the AlInN barrier
and have the following expressions:

Ec,AlN = e(σ AlN/GaN − ens)/ε0εAlN (24.37)

Ec,Al InN = e(σ Al InN/AlN (x) − ens)/ε0εAl InN (x) (24.38)

σ is the charge density induced by the spontaneous and piezoelectric polarizations
given by:

σ Al1−x I nx N = −P
Al1−x Inx N

sp − PAl1−x I nx N
piezo (24.39)

σ AlN = −P
AlN

sp − PAlN
piezo (24.40)



702 M. Abdelhakim et al.

Considering that that ground state energy value E0 nearly corresponds to the
bottom of conduction band one then gets the carrier density n expression of the
2DEG:

ns = 1

e

(
d Al I nN

ε
Al InN

+ d AlN

ε
AlN

)−1[
d Al I nN

ε
Al InN

σ Al InN + d AlN

ε
AlN

σ AlN − ε0
e

(e�b(x) − �E
AlN/GaN
c + �E

Al InN/AlN
c (x))

]

(24.41)

Assuming a Ni/Au gate, the Schottky contact barrier height �b is [63]:

�b(Ni/Al1−x I nx N ) = 3.05 − 3.7x (24.42)

The conduction band discontinuities �E Al InN/GaN
c (x) and �E Al InN/AlN

c (x) take
the following value [66]:

�E Al InN/GaN (AlN )
c (x) = 0.7(E Al1−x I nx N

g (x) − EGaN (AlN )
g ) (24.43)

Replacing in (24.39) the various terms by their values and taking a buffer (AlInN)
thickness of 11 nm and a spacer thickness of 1 nm, one gets the variation of the
carrier density with In concentration as shown in Fig. 24.29.
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Fig. 24.29 Variation of the 2DEG density with In concentration



24 Tight Binding and Density Functional Theory of Tailoring Electronic Properties … 703

One is mainly interested in the region around the matching point (MP) x = 0.18,
at that concentration the electron gas may, theoretically, reach a density of 4.50
1017 m−2 for a AlInN/AlN/GaN configuration. Another noticeable fact is that at
above approximately 40% of In content the negative values obtained for the gas
density correspond to a gas of holes carriers (2DHG).

Since the stress is composition dependent, to provide estimation of the factors
influencing the change the channel resistance with concentration is investigated.
The channel resistivity is inversely related to the 2DEG sheet carrier density ns and
electron mobility μe and given by [60]:

ρch = 1

qnsμe
(24.44)

In the presence of a variable stress, the relative variation in channel resistivity can
be written as:

�ρch

ρch
= �ns

ns
+ �μe

μe
(24.45)

To evaluate the effect of stress on the channel resistivity, the effect of stress on both
the 2DEG sheet carrier density and mobility needs to be considered. If we consider
that “The mobility variation is dominated by a change in the effective mass through
band warping” [67] we get then the following expression:

�ρch

ρch
= �ns

ns
+ �me

me
(24.46)

If we take the zero stress concentration x = 0.18 as reference, the fluctuation
of the 2DEG density and the electron effective mass around the matching point as
respectively:

�ns = ns(x) − ns(0.18), �me = me(x) − me(0.18).

where me (x) is the electron effective mass of the strained structure.
The effect of a ±3% of indium fluctuation, around the matching concentration

(x = 0.18), on the variation of the channel resistance can reach 14% mainly due to
2DEG variation (Fig. 24.30).
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Chapter 25
Nonlinear Optical Properties of Low
Dimensional Quantum Systems

V. Ustoglu Ünal, M. Tomak, E. Akşahin, and O. Zorlu

Abstract Low dimensional semiconductor structures such as quantum wells, wires
and dots demonstrate interesting nonlinear optical properties. The low dimension-
ality modulates the electronic structure leading to distinct nonlinear optical proper-
ties as compared to their bulk counterparts. In this review, we concentrate more on
quantumwells anddots althoughwealso consider someworks onquantumwires. The
nonlinear optical parameters such as the second and the third order susceptibilities
are specifically discussed.

25.1 Introduction

The optical properties of semiconductor nanostructures are studied by a number of
references [1–20]. These low-dimensional systems can be grown as quantum wells
(QWs), quantum wires, and quantum dots (QDs) which are effectively two, one
and zero dimensional electronic systems. When sufficiently thin layers of different
band gap materials are sandwiched, quantum properties can be observed due to the
quantized energy levels. Therefore, these nanostructures, where electrons or holes
are confined are referred to as artificial atoms if the confinement extends to three
dimensions. The electron wave functions behave like the standing waves of a particle
in a square well potential in two-dimensional confinement.

These nanostructure materials show interesting properties which are completely
different from their solid-state bulk counterparts. They have very rich physics and
applications in fields such as photonics, quantum information technology, micro-
electronic and optoelectronic devices such as infrared photo detectors, quantum dot
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lasers, data transmission based on quantum cryptography, electro-optical modula-
tors, light emitting diodes, laser amplifiers, electron transistors, optical memory and
communication technology.

The polarization of the medium, especially the nonlinearity, is the main interest
in the related scientific works. The nonlinear effects can be enhanced more strongly
in these low-dimensional asymmetrical quantum systems than in bulk materials. The
nonlinear optical properties together with the second and third order susceptibilities
and the effects of electric field have been studied inmanyworks [21–23]. Researchers
are very interested in the study of optical properties of these low dimensional struc-
tures and excitonic effects, the attractive part is that, their applications in technology,
interesting contents and demanding physics [1–3].

If we list the important points that influence the linear and nonlinear optical
properties; the first is the shape of the confining potential, the second is the Coulomb
interaction, the third is the external electric and magnetic fields and the fourth one is
the incident field intensity. The confining potentials could be used in the optimization
of these systems. The Coulomb interaction in the exciton effects considerably on the
nonlinear optical coefficients. In some studies [24–26], the Coulomb interaction
which forms the exciton is not included in the strong confinement limit or they
handled this term as a perturbation. But its affect is not negligible and should be taken
carefully in the calculations of nonlinear optical properties of the low dimensional
systems. The nonlinear optical coefficients are considerably larger if one takes the
excitonic effects into account.

The externally applied electric and magnetic fields create changes in the results
obtained for the elements of the dipole matrix. The nonlinear optical response
increases stronglywith the asymmetry in confinement potential profile and this asym-
metry may be obtained by the application of an external electric field. The electronic
structure and related optical properties are influenced by the external fields.

There are also some other factors such as contamination, temperature, noise,
etc. A very large dipole strength and a narrow bandwith have been observed in the
experiments for GaAs QDs which suggest that the intersubband optical transitions
in QDs may have huge nonlinearities [27].

25.2 Theoretical Framework and Discussions

25.2.1 Quantum Wells (QWs)

Quantum wells can be imagined as a sandwich consisting of a layer of material with
small bandgap embedded between two layers of material with a larger bandgap.
Such a double heterostructure confines carriers into the small bandgap material, in
the growth direction. QWs are very thin quasi-3D planes, and just one of the three
main parts of quantum devices. If we slice a narrow strip from one of the planes it
results into 1D-quantum wire. Then dicing up a 1D-wire yields a 0D-quantum dot.
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Reducing the number of dimensions in this manner forces electrons to behave more
like in a super-atom.

The shape of the confining potential plays important role on the nonlinear optical
response. Studies on different confining potentials are based on the better control of
the atomic layers and effective design of QWs. The results of studies with confining
potentials, such as Woods–Saxon, Pöschl-Teller (PT) and Modified Pöschl-Teller
(MPT) in [29–31, 36] have shown that it is possible to optimize nonlinear optical
properties of these low dimensional systems.

AlGaAs − GaAs QWs are studied in detail [28–31], the linear and nonlinear
changes in the refractive index, absorption coefficients, second and third harmonic
generations together with electric field effects are analysed.

The one dimensional effective-mass equation, defining the quantization of motion
along the growth direction, is solved using the effective-mass approximation and the
transverse energy of the nth-subband En and the envelope wave functions ϕn(z) are
obtained.

In quantum wells, the Schrödinger equation is written using one dimensional
confinement potential V (z),(PT/MPT):

−�
2

2

d

dz

(
1

m∗
dϕn(z)

dz

)
+ V (z)ϕn(z) = Enϕn(z), (25.1)

Two parameters are changing the well width and depth and help us to control the
MPT potential, including the wave functions and the energies. In PT potential, three
parameters tune the degree of the asymmetry.

The generalization is usually done that the Hamiltonian of the system can be
written in two parts,

H = H0 + e
∣∣∣−→F ∣∣∣z (25.2)

where H is the totalHamiltonian, H0 is the unperturbedpart,
−→
F is the external electric

field and e is the absolute value of the electron charge. Electric field is taken as a
perturbation [5, 6]. In the dipole approximation, the interaction of an electromagnetic
wave with the two-level electron system is defined by the second term in (25.2).

e
∣∣∣−→F ∣∣∣z〈〈∣∣∣E (0)

0 − E (0)
1

∣∣∣ (25.3)

is considered. Thewavefunctions and the corresponding energy levels are determined
using the time-independent, non-degenerate perturbation theory;

�n = En − E (0)
n = e

∣∣∣−→F
∣∣∣znn + e2

∣∣∣−→F
∣∣∣2∑

j �=n

∣∣znj ∣∣2
E (0)
n − E (0)

j

+ ..., (25.4)
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and

ϕn(z) = ϕ(0)
n (z) + e

∣∣∣−→F ∣∣∣∑
j �=n

ϕ
(0)
j (z)

∣∣znj ∣∣
E (0)
n − E (0)

j

+ ..., (25.5)

with no degeneracy, ϕ(0)
0 is expected to be a parity eigenstate. The unperturbed wave

functions are used to determine the znj matrix.
Incident optical radiation of angular frequency w has the polarization along the

growth direction z.
The incident radiation over all frequencies can be written as

E(t) =
∑

j
E(wj )exp(−iw j t). (25.6)

In the linear case, the polarization and the strength are linearly proportional, but
the nonlinear optical response of a material can be described more generally as,

P(t) = χ(1)
ω E(t) + χ

(2)
0 |E |2 + χ

(2)
2ω E2(t) + χ

(3)
3ω E3(t) + · · · =

∑
j

P(ω j )e
−iω j t ,

(25.7)

whereχ(1)
ω , χ

(2)
0 , andχ

(3)
3ω are the linear, optical rectification and third-order nonlinear

optical susceptibilities, respectively.
The polarization can also be written in terms of the expectation value of electric

dipole moment μ(t), which can be calculated using the density matrix ρ
∧

;

P(t) = N 〈μ(t)〉 = N tr
(
ρ
∧

μ
∧) = N

∑
i j

ρi jμi j , (25.8)

where N is the free electron density and 〈μ(t)〉 = ∑
j 〈μ

(
ω j

)〉e−iω j t . Indices i and
j run over all of the energy eigenstates of the system and ρi j represents the elements
of the density matrix.

By direct time differentiation of (25.8) and using Schrödinger’s equation for the
time evolution of the probability amplitudes, the one-electron densitymatrix equation
with intra-band relaxation is obtained including the damping terms;

∂ρi j

∂t
= 1

i�
[Ho − qzE(t), ρ]i j − �i j

(
ρ − ρ(o)

)
i j

(25.9)

assuming ρi j relaxes to its equilibrium value ρ
(0)
i j at a single relaxation rate �o only.

The�i j elements are taken to be equal to one value�o only. Equation (25.9) is solved
via the iterative method [5].
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The iterative solution of (25.9) gives the density matrix steady state solution ρ
(0)
i j

and the higher order corrections ρ
(1)
i j , ρ

(2)
i j etc.

The linear susceptibility can be obtained using

〈μ(t)〉 =
∑
i j

ρ
(1)
i j μi j, (25.10)

and

P (1)
(
ω j

) = N 〈μ(ω j )〉 = N
∑
i j

ρi jμi j = χ(1)
(
ω j

)
E

(
ω j

)
. (25.11)

The calculations in (25.10, 25.11) can be carried to higher orders. Using the third-
order correctionρ

(3)
i j , the expression for the third-order nonlinear susceptibility can be

obtained. But these expressions can be simplified using the two-level approximation.
In most studies, the one-electron density matrix formalism is considered for a

two-level approximation of the system of QWs, QDs, where the two energy states,
0 for the ground state and 1 for the first excited state. More commonly, the effective
mass approximation is used for the derivation of electronic structure of these low
dimensional systems.

The susceptibilities become particularly large when one of the frequencies of the
incident field (or sum or differences) becomes equal to a transition frequency of
the system, resonance response. Density matrix formulation allows one to describe
these near resonant situations, relaxation processes, thus it can show explicitly how
accurately one needs to set the incident field frequency to that of the system resonance
and how strongly the system response at the resonance. This formalismprovidesmore
generally valid results. Thus the first order and the third order susceptibilities can be
written as [5, 32];

χ(1)(ω) = ρs |μ10|2
E10 − �ω − i��o

, (25.12)

χ(3)(ω, I ) = 2π Iρs |μ10|4
nr c(E10 − �ω − i��o)

×
[

4

(E10 − �ω)2 + (��o)
2 − |μ11 − μ00|2

|μ10|2
1

(E10 − �ω − i��o)(E10 − i��o)

]
,

(25.13)

Here, I is the intensity of the incident field,ρs is the electron density, energy differ-
ence E10 = E1 − E0 and the second-order nonlinear optical rectification coefficient
is given by [33–35],
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χ
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(25.14)

whereμi j , μ
′
i j define the unperturbed, perturbedmatrix element of the electric dipole

operator, obtained by unperturbed, perturbed wave functions, μi j (i, j = 0,1).

μi j =< ϕi |qz|ϕ j > δknk
′
n .

(25.15)

The frequency-dependent refractive index is

n(ω) = Re
[√

ε + 4πχ(w)
]
, (25.16)

for the well material with the static dielectric constant ε.
If electron density is small, the refractive index is expressed as

n(ω) = √
ε

{
1 + Re

[
4πχ(w)

2ε

]}
. (25.17)

The linear change in the refractive index due to the incident field can be written
as

�n(1)(ω) = Re

[
2πχ(1)(w)√

ε

]
= Re

[
2πχ(1)(w)

nr

]
. (25.18)

where nr is the refractive index.
We can write the third order nonlinear change using the (25.18) written for the

third order nonlinear susceptibility;

�n(3)(ω) = 2πRe
[
χ(3)(w)

]
nr

. (25.19)

The total optical absorption with its linear and third order nonlinear parts are
combined as;

α(ω, I ) = α(1)(ω) + α(3)(ω, I ), (25.20)

where the linear absorption coefficient is
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α(1)(ω) = ω

nr

√
μ

εo
Im

[
χ(1)(ω)

]
(25.21)

and the nonlinear part is,

α(3)(ω, I ) = ω

nr

√
μ

εo
Im

[
χ(3)(ω, I )

]
, (25.22)

where μ is the permeability of the system [31, 32, 36–38].
Let us give some examples. The one-dimensional confining potential is repre-

sented by a Pöschl-Teller (PT) potential by Tomak and others [28–30] and by Modi-
fied Pöschl-Teller (MPT) potential by Ustoglu Unal, Aksahin and Aytekin [31]. They
used PT and MPT in getting the optical properties of QWs.

These studies have shown that the shape; depth and the width of the potential,
are important parameters on the optical properties and should be handled sensitively,
Figs. 25.1 and 25.2. The optical intensity of the incident photons is another control
parameter on the results. These parameters can give the opportunity for the opti-
mization of nonlinear optical properties: that is the applied electric and magnetic
fields, dot size and the intensity of the incoming photons as well as the shape of the
confinement.

The mentioned works compared the results with different confinements; the infi-
nite PT potential and the finite MPT potential with well depth −0.34eV. The main
differences in their results related to the difference in the depths are presented in
Table 25.1. In the MPTmodel, the negative third order nonlinear conribution is quite
small, the peak values are smaller than those obtained in the PT well. Therefore total
change in the refractive indices in MPT are found to be bigger than those in PT. This
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Fig. 25.1 The change in the refractive indexe as a function of photon energy for various QW
width-(η) values with I = 1.0 MW/cm2, Vo = −0.34eV
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Table 25.1 Comparison of the infinite PT potential results in Yıldırım and Tomak [29] with those
in the finite MPT potential in Ustoglu Unal, Aksahin and Aytekin [31]

Potential type Well width (Ȧ) �n(1)

Peak
�n(3)

Peak
�n(total)

Peak

PT 126.5 0.03 (0.171 eV) −0.006 (0.172 eV) 0.025 (0.17 eV)

MPT 98 0.028 (0.165 eV) −0.006 (0.167 eV) 0.024 (0.164 eV)

MPT 126.5 0.057 (0.084 eV) −0.025 (0.086 eV) 0.042 (0.082 eV)

is mainly due to the difference in the calculated values of the dipole matrix elements
related to the different well depths.

The external electric field mainly causes an asymmetry in the QW and as the
strength of the field increases, the effects on the optical coefficients become more
clear, the nonlinear optical properties increase. Various applied fields are studied
as in Fig. 25.3, their resultant effects are shown for the second term in (25.13).
Strong electric fields increases the contribution of the second term in the third-order
susceptibility. The change in the total refractive index can be increased if the external
electric fields and the optical intensities reduce.

25.2.2 Quantum Dots (QDs)

The nanostructures with three-dimensional confinement of electrons and holes are
called Quantum Dots (QDs). When a thin layer of a semiconductor is grown on
top of a substrate, which has a different lattice constant, the thin layers order, or
self-assemble into QDs. QD is a region of space (1–100 nm at low temperatures)
in a crystalline semiconductor matrix, with sizes comparable to the exciton Bohr
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Fig. 25.3 Contribution of the nonlinear term as a function of photon energy, various applied electric
fields F

radius a. QDs in AlGaAs based material have been obtained with radii typically in
the range of 50 nm or larger. For such sizes the spacing between energy levels can be
larger than the thermal energy. In a quantum dot, the electron is confined in all three-
dimensions, thus reducing the degrees of freedom to zero. [11, 23]. The quantization
of the electronic levels appears as a result of confinement of the exciton. Thus, these
nanostructures show unique electrical and optical behaviors which make them very
useful as device elements in number of applications such as batteries, transistors,
sensors, photovoltaics, etc.

It is clearly shown excitonic effects are essential in increment of the nonlinear
optical coefficients. Approximations about the shape of the dot are done; one-
dimensional [40–42], two-dimensional [23, 36], disk-like [7, 12, 13, 39], or semi-
spherical [43] shapes are analyzed by researchers. The electronic structure of the QD
may be calculated more simply in this way.

Another simplification in the calculations can be done by considering only the
strong confinement limit.

To investigate the optical properties of QDs, the system may be off-resonantly
excited by an optical pulse. In [36–38], it is shown that the Woods–Saxon Potential
and Parabolic Potential can be used to model the confinement in quantum dots with
considerable success. One could engineer the structure of materials by means of
external electric field and confinement strengths and tailor the energy spectrum to
produce desirable nonlinear optical effects.

Excitonic effects

In some studies, analitical solutions are obtained for the exciton in a spherical QDs,
based on the effective mass approximation. The linear and nonlinear optical proper-
ties are calculatedwithin the densitymatrix formalism.The effects of external electric
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field are searched. Sometimes, the strength of the confinement is not defined speci-
ficially as strong or intermediate. On the optical absorption and the refractive index
calculations, the challenging effective mechanisms are the Coulomb interaction, the
confinement potential and the applied static electric field.

Some references considers just the strong/intermediate confinement limit where
they take the interaction of the electron and hole via Coulomb force as a perturba-
tion or simply neglect it [12, 23–26, 40, 41]. The computational method followed
by the references varies from a variational approach [8, 13, 44] to numerical matrix
diagonalization [7, 9]. Usually, a small electric field is considered and the Coulomb
term is treated as a perturbation [37]. In [37], to get the electronic structure of three
dimensional spherical QD, an analytical solution is set out. This is especially vital
to compare various contributions those take part in the QDs electronic structure.
Considering a parabolic confinement potential for the exciton moving in a spher-
ical QD, the Hamiltonian operator within the effective mass approximation may be
expressed as

H = − �
2

2me

−→∇ 2
e + 1

2
ker

2
e − �

2

2mh

−→∇ 2
h + 1

2
khr

2
h − γ∣∣−→r h − −→r e

∣∣ + |q|−→F · (−→r e − −→r h
)
,

(25.23)

where me,mh denote the effective masses, and −→r e,
−→r h are the position vectors of

the electron e and hole h. ke(kh) = me(mh)ω
2
o, where ωo is the harmonic frequency

which controls the confinement strength. q is the electron charge,
−→
F represents the

external electric field and γ is a positive constant.
The Hamiltonian operator can be decomposed in terms of the relative coordinate∣∣−→r ∣∣ = ∣∣−→r h − −→r e

∣∣ and the center-of-mass coordinate

−→
R = (

me
−→r e − mh

−→r h
)
/(me + mh). (25.24)

and written as

H = HC.M + Hrel (25.25)

For the center of mass, the Hamiltonian operator is shown as

HC.M = − �
2

2M
−→∇ 2

C.M + 1

2
Mω2

o R
2 (25.26)

where the total mass is M= me + mh . The Hamiltonian in relative coordinates is
shown as,

Hrel = Ho + H
′

(25.27)
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Unperturbed Ho is solved including the electric field, without the Coulomb inter-
action, and the unperturbed eigenenergies and eigenfunctions are obtained. Coulomb
interaction is taken as a perturbation.Using the perturbation theory, the newperturbed
energy, E

′
n, and the wave functions, ψ

′
n, are calculated. These wavefunctions and

energies related to the parabolic confinement are themain part of thework and simple
solution of the problem is presented in [37, 38].

The results which present the changes in the calculated optical properties due
to the Coulomb interaction are clearly shown in Figs. 25.4, 25.5, 25.6 and 25.7. It
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Fig. 25.4 Effect of Coulomb interaction on the refractive index calculations, F = 25kV/cm and
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can be seen that the linear absorption coefficient α(1) and the nonlinear absorption
coefficient α(3) act in opposite ways; linear part is large and positive, unlike the
smaller and negatively acting nonlinear part. Another critical characteristics is that
the blue shifted peaks as a result of increasing harmonic frequency, that is decreasing
QD size.
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The change in harmonic frequency has different effects on the linear and nonlinear
absorption coefficients. As ωo increases, there is no curicial change in linear absorp-
tion coefficient but the nonlinear one decreases in negative height and therefore
becomes more positive. As harmonic frequency increases, the energies are getting
smaller than those calculated without the Coulomb interaction. This could be due
to the stronger localization created by the Coulomb interaction and thus the total
absorption coefficient increases. The Coulomb interaction increases both the linear
and nonlinear coefficients. It causes the blue shift of the peaks. This result is equiv-
alent to the results of stronger confinements. One can conclude that the presence of
the Coulomb interaction increases the absorption, acting as a confining factor. It is
effectively increasing the confinement, blue-shifting the peaks but not changing their
peak value. The Coulomb interaction has a considerable effect on the position of the
peaks.

The calculation of third order susceptibility may not be successful if the Coulomb
interaction is ignored. These three parameters, the confinement, the Coulomb inter-
action and the incident photon energies, have appreciable affect on the electronic
structure, matrix elements and the optical coefficients.

Applied electric field has an important effect on all calculations. The effect of
the electric field on absorption coefficients, susceptibilities and optical rectification
are clear in Figs. 25.8, 25.9 and 25.10. Electric field decreases the absorption peak
value and obvious red shift is observed. The electric field is effectively increasing
the distance between the particles, thus the resultant effect looks like in that of a
reducing confinement. The third-order susceptibility peaks are always blue shifted,
along with the values of the refractive index change,�n, with increasing field values
but change in the total refractive index peak values is hardly noticable.

The electric field also increases the second-order nonlinear optical rectification
coefficient χ(2)

0 values for both narrow and wider dots. External electric field creates
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asymmetry inQDs andwhen theQDhas some asymmetry, the second order nonlinear
optical property becomes more powerful than higher ones. A red shift is observed
when electric field strength is increased. For smaller harmonic frequency values, the
decrease is observed clearly and forms up a peak at weak electric field strengths. The
χ

(2)
0 peaks are blue shifted in the strong confinement as shown in Fig. 25.11, [37, 38].
The intensity of incoming photons is another important parameter as presented in

Fig. 25.12. Increase in the intensity causes a reduction in the absorption coefficient.
Absorption saturates towards I = 1.0 × 1010W/m2. The peak may turn into two
peaks at large intensities due to the perturbational nature of the approach [42]. The
refractive index changes considerably if the field intensity increases. Especially at
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the high intensities, the intensity dependent refractive index should be considered
carefully.

The shape of QDs is another effective factor on the optical properties. As an
example, in [39], disc-like and spherical QDs are discussed by calculating their
optical response. When we take a disc-like QD, the peaks are red-shifted and have
lower values compared to those in the spherical case. The elements |μ10|2 of dipole
matrix for the disc-like case is also lower than that for the spherical QD, Fig. 25.13.
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The peaks in both refractive index and absorption graphs depend on |μ10|2, this is
the reason why larger peaks appear in the spherical QDs.

The peak values of the coefficients studied are always red shifted with increasing
dot size. The effect of harmonic frequency ωo, which changes the confinement, on
the linear refractive index calculations, �n(1) can be followed in Fig. 25.14. The
linear change is plotted as a function of incident photon energy hν. The larger ωo

corresponds to smaller dot size. For smaller dot sizes, that is for stronger confinement,
the energydifferencebetween states becomes larger, the blue shift of the peaks occurs.
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25.2.3 Quantum Wires

Quantum wires are very narrow structures where electron may only transport in a
very few transversemodes (with energies less than the Fermi energy). Semiconductor
quantum wires can be used to make switchable high-speed lasers as the length and
width of a quantum wire can be controlled. By altering the width, the number of
transverse propagating modes is changed and as a result the conductance is variable.

In many calculations an exciton in a cylindrical quantum wire with a parabolic
potential is studied. The center of mass problem is exactly solvable since HCM corre-
spond to a two-dimensional harmonic oscillator plus the kinetic energy of the free
motion along the QW. In terms of the relative coordinate

∣∣−→r ∣∣ = ∣∣−→r h − −→r e

∣∣ and
the center-of-mass coordinate

−→
R = (

me
−→r e − mh

−→r h
)
/(me + mh).

Just in studies for QDs, the Hamiltonian operator may be written as H = HC.M +
Hrel , where HC.M = − �

2

2M

−→∇ 2

C.M + 1
2Mω2

o R
2 and M= me + mh .

The Hamiltonian is written in relative coordinates, Hrel = Ho + H
′
.

TheHamiltonian operator within the effectivemass approximationmay bewritten
as;

H = − �
2

2M
−→∇ 2

R + ω2
0

2
M

−→
R

2 − �
2

2μ
−→∇ 2

r + ω2
0

2
μ

−→r 2 − γ
e2∣∣−→r ∣∣ + |e|−→F .

(−→r )
(25.28)

where ωo is the frequency of the parabolic confining potential,
−→
F is the external

electric field applied in r direction.
Using the Schrödinger equation, the eigenfunctions and eigenvalues related to

the states of exciton wave functions, the total refractive index change and linear
absorption coefficient may be plotted as in Figs. 25.15 and 25.16.

25.3 Conclusion

Semiconductor heterostructures, quantum wells, quantum-well wires, quantum
dots, and superlattices, represent some of the most important objects in modern
semiconductor physics.

These structures exhibit very different confining potentials. Quantum confinement
effects appear when the geometric dimensions of the nanostructures reach the value
of the bulk excitonic Bohr radius.

Themechanism of the nonlinearity in quantum dots is of a basically different kind.
With decreasing size, the optical nonlinearity is strongly influenced by quantum
confinement. In the case of quantum dots, the zero-dimensional structures can be
considered as experimental realization of discrete-level systems in semiconductors.
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The motivation behind introducing these structures is an attempt to tailor the
electronic and optical properties of these materials for exploitation in devices. The
quantum confinement of carriers in the low-dimensional system leads to the forma-
tion of discrete energy levels and the drastic changes of physical and chemical
properties such as the novel nonlinear optical effects. Practical use of these low
dimensional systems; fast optical switching, phase conjugation and wave guiding,
efficient emission of radiation and lasing with tunability over a wide spectral range,
microelectrodes and photocatalysts in photochemical reactions, a promising basis
for binary logic operation; applications in waveguiding devices, optical switching
technology, optical computing and quantum cryptography, light-emitting devices,
laser characteristics, etc.

The aim generally is to test how far a correlation between shape, size, external
electric field, intensity of the incident field, confinement potential and electronic
states can be proven in the optical properties as a sign of three-dimensional quantum
confinement.

As noted above, the shape has a significant effect on the QD physical properties.
The shape of a quantum dot affects not only the energy of charges in QDs, but also
their electronic density of states. We have shown that refractive index and absorption
peaks are larger in the spherical QDs compared to those in the disc-like QD shape. It
is related to the changes in the dipole matrix elements as a result of shape changes.
The peak values of the coefficients studied are always red shifted with increasing dot
size.

In many studies, different confinements are investigated, the exact solutions to
the problems with or without electric field is interesting. Calculations have been
made in the effective mass approximation and using perturbation theory to include
the effects of applied electric field. We have given the examples of the Pöschl-
Teller and Modified Pöschl-Teller potentials that can have tunable asymmetry and
the corresponding Schrödinger equation is analytically solvable. It yields promising
nonlinear optical properties. MPT gives larger changes in refractive index values
compared to those in PT, mainly due to the difference in well depths. The Woods–
Saxon and the Parabolic potential studies have also shown that one could control the
confinement strengths and tailor the energy spectrum to produce desirable nonlinear
optical effects.

The excitonic properties are investigated in a three-dimensional spherical quantum
dot under various confinement potentials plus a static electric field using the effec-
tive mass approximation. The novelty of some calculations is the use of rather
simple analytical expressions for the exciton wavefunction, in the calculation of
corresponding binding energy and, the first and third order susceptibilities (under
the density matrix formalism). Therefore, the competing role of different mech-
anisms (confinement, Coulomb interaction, etc.) can be easily disentangled when
determining the optical absorption properties of the system.

The main trends are very well known in the Literature, even under more realistic
descriptions of the quantum dot itself. However, by the careful use of the analyt-
ical work, it is shown that, whereas the customary infinite-barrier confinement in
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spherical quantum dots leads to infinite series when evaluating the first-order correc-
tion to the unperturbed exciton wavefunction, the parabolic confinement leads to
a great simplification of such corrections. In other words, the unique properties of
the harmonic-oscillator wavefunctions are the very basis of the possibility of the
relatively simple analytical treatment of the problem.

The considerable contribution of the Coulomb interaction on the calculations
of nonlinear optical properties of QDs in all confinement limits are presented, no
assumptions are needed. One must underline the fact that the Coulomb effect should
be considered in theHamiltonian even in the strong confinement limit. The third order
nonlinear susceptibility should not be calculated by ignoring the Coulomb interac-
tion. This interaction increases the absorption. This is natural since the Coulomb
interaction results inmore localization. Its effect is equivalent to the effect of stronger
confinement.

The second order nonlinear optical property is stronger than higher order optical
nonlinearities especially when there is an asymmetry in QDs. The asymmetry can be
realized by the applied electric field. The results show that the optical rectification
susceptibility obtained in the spherical QD can reach the magnitude of 10−4 m/V.
The peak values illustrate the effects of both the harmonic frequency and the external
electric field on the results.

It is observed that linear optical coefficient peaks obtained for quantum wire are
smaller than those for quantum wells and dots and seems to be more sensitive to the
changes in harmonic frequency ωo which controls the size. In quantum wires, the
peaks have an obvious blue shift.

The dynamic effects of all important physical quantities related to the low dimen-
sional qunantum systems must be studied precisely to understand their optical
responses clearly. The neglect of any of themmay lead to an incomplete conclusions.
The very interesting part is that it is possible to optimize the linear and nonlinear
optical properties. By controlling those parameters mentioned so far, one can get rid
of any unwanted effects in these systems, which is not an available option for bulk
materials.
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Chapter 26
One-Dimensional Silicon
Nano-/microstructures Based
Opto-Electronic Devices

H. Karaağaç, E. Peksu, B. Alhalaili, and M. Saif Islam

Abstract One-dimensional (1D) nanostructures, including nanorods, nanowiskers,
nanowires, nanotubes and nanobelts, have been receiving a great deal of research
attention from industry and academia in recent years. Due to their special and
outstanding many characteristics, such as effective light–trapping ability, bandgap
tunability, efficient charge carrier collection, high carrier mobility, large surface-to-
volume ratio and excellent thermal conductivity, such nanostructures play a very
important role in the manufacture of high-performance devices with novel function-
alities. To date, a number of materials, such as TiO2 (titanium-oxide), ZnO2 (zinc-
oxide), Si (silicon), C (carbon), Ga2O3 (gallium oxide) and SnO2 (tin-oxide), have
been employed in the production of one-dimensional 1D structures for the fabrication
of high-performance electronic and opto-electronic devices. Among them, silicon
(Si) is particularly attractive material for a wide range of opto-electronic device
application owing to its highly developed technology and outstanding features such
as high thermal conductivity, facile doping control, hardness and excellent optical
and electrical properties. In this chapter, although we discuss the recent advances
in optoelectronic applications of 1D Si nano-/microstructures, it focuses mainly
on our own recent studies based on the synthesis of ordered and disordered Si-
nanowires/micropillars and their applications in photodetection and harvesting solar
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energy. In particular, a special focus will be given on the fabrication of Si nano-
/microstructures based solar cells with transferred 1D nano-/microstructures from
Si-wafer to glass substrates via using a fracture-transfer printing technique, which
have demonstrated the possibility of the fabrication of low-cost, transparent, flexible
and high-efficient next generation 1DSi nano-/microstructures based next generation
opto-electronic devices.

26.1 Introduction

Due to their capacity for interpreting basic physical concepts and building a wide
range of functional optoelectronic devices, including light-emitting diodes (LEDs),
solar cells, photodetectors and laser diodes at the nanoscale, one-dimensional (1D)
inorganic nanostructures such as nanowires, nanopillars and nanotubes have attracted
a great deal of research interest in recent years [1]. Their function as intercon-
nectors and the key components in these devices is expected to play an important
role in realizing high-performance next generation systems requiring some special
characteristics such as high-speed, great flexibility, low-weight, low-cost, excel-
lent light absorption capability, high storage-capacity, good thermal stability, high
transparency and good thermal and electric conductivity [1, 2]. Photodetection and
solar energy harvesting, in particular, have recently been among the most popular
opto-electronic device applications of 1D nanostructured materials.

The finite supplies of conventional energy resources based on oil, natural gas
and coal have motivated researchers to explore renewable energy resources like
solar, biomass, geothermal and wind, as a substitute for fossil fuels. Among renew-
able energy options, solar energy has an immense potential to become a significant
source of safe, abundant, clean, sustainable and cost-effective energy that can meet
global energy demand in the near future. Today, one of the most powerful ways of
harvesting energy from the sun is the use of solar cells, devices that capture light
from the sun and convert it directly into electricity. Silicon (Si), the second-most
abundant element in the earth’s crust, is the most widely known material employed
in solar cells, mainly due to its low cost, long lifetime, high efficiency and mature
technology. In addition to traditional Si-based solar cells, the manufacture of highly
efficient low-cost inorganic solar cells with a wide variety of device architectures and
material combinations has also been explored in recent years. In particular, consid-
erable research efforts have been devoted to implement new photovoltaic absorber
materials that can embody earth-abundant and environmentally friendly constitute
elements for the construction of low-cost and high-efficiency solar cells. It is a well-
known fact that today’s thin film solar cells are primarily based on materials such as
CuInSe2 (CIS), CuInxGa1-xSe2 (CIGS) and CdTe, consisting of rare, costly and toxic
elements. This is considered to be as one of the main obstacles for the expansion,
mass production and commercialization of thin-film solar cells. Therefore, the intro-
duction of new photovoltaic absorber materials that can encapsulate earth-abundant,
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inexpensive and environment friendly constituent elements for the realization of low-
cost, large-scale, and highly efficient thin film solar cells has been a major research
endeavor in recent years. Kesterite Cu2ZnSnS4 (CZTS), a quaternary (I2–II–IV–VI4)
compound having p-type conductivity with a high absorption coefficient (10–4 cm−1)
and ideal direct optic-bandgap energy (~1.45 eV) for the solar spectrum, has been
recently proposed as a promising photovoltaic semiconductor that addresses almost
all the issues related to the limitations of all the above materials. While a significant
amount of work has been conducted so far on the development and characterization
of CZTS thin films, relatively little attention has been paid to the realization of next-
generationCZTS solar cells based on one-dimensional nanostructures. Therefore, we
will primarily concentrate on our own studies on the realization of one-dimensional
Si-nano-/microstructures based CZTS solar cells such as Si (wafer)/Si-nanowires
(NWs)/CZTS, glass/Si-NWs/CZTS, and glass/Si-micropillars (MPs)/CZTS struc-
tured devices, in the first part of the present chapter. The manufactured solar cells are
expected to combine the performance of the 1st generation solar cells with the advan-
tages of the solar cells of the 3rd generation, allowing the realization of low-cost,
environmentally friendly and high-efficiency solar cells.”

Recently, several groups have demonstrated periodic photon trapping structures
on silicon to convert normally incident beams of light by almost ninety degrees
into laterally propagating modes of light along the plane of a silicon substrate [3–
6]. Such surface structures are mostly1D nano/micro holes (these can be thought
of as the inverse of a nanopillar or nanowire structures) and can not only increase
the propagation length of light, contributing to more than an order of magnitude
improvement in light absorption efficiency but also offer an opportunity to design
solar cells and photodetectors with a very thin absorption layer. An added advantage
is the enhanced speed of operation in photodetectors because of thin absorption
layer. These devices can be designed to be flexible and offer opportunity for using
commercially viable CMOS compatible processes.

New methods, architectures and materials, known to be an important tool for
a wide variety of opto-electronic device applications such as photodetectors and
solar cells, have been continuously proposed in photoelectric research to enhance
the sensing performance of the devices [7, 8]. Today, in the application of envi-
ronmental, military, and even biological fields such as flame sensing, emissions
control, light-wave communications, and biological agent detection, photodetectors
are considered to be very crucial instruments [9]. Over the last two decades, the use
of one-dimensional nanostructures, such as nanowires, nanotubes and nanopillars, in
devices has receivedmuch attention as an effort to boost the performance of photode-
tectors [10–16]. Incorporation of these nanostructures is expected to provide more
favorable features, such as the decoupling of absorption and carrier collection direc-
tion, bandgap tunability, unique surface chemistry, effective light-trapping, efficient
charge collection and separation, large surface-to-volume ratio, compared to their
planar counterparts [1]. In the second part of this chapter, we will comprehensively
review recent progress on photodetectors based on 1D nanostructures, with partic-
ular emphasis on our own recent studies based on photodetectors manufactured with
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1D Si nano-/microstructures as well as the inverse of 1D nanopillar or nanowire
structures or holes.

This chapter is divided into three sections. The first section gives a brief
overview of the techniques used to fabricate arrays of one-dimensional Si-
nano-/microstructures. This is followed by an overview of the recent studies on
the opto-electronic device application of 1D ordered and disordered Si nano-
/microstructures such as photodetectors and solar cells. In third section, future
research opportunities and challenges for 1D Si nano-/macrostructures based solar
cells and photodetectors are discussed.

26.2 Fabrication of One-Dimensional (1D)Silicon
Nano-/microstructures

To date, a number of top down or bottom up synthesis routes, including wet-chemical
etching, gas-phase growth, and dry etching, have been reported for the fabrication
of arrays of 1D well-ordered and disordered Si nano-/microstructures with well-
controlled geometries that can be employed for a wide range of electronic and opto-
electronic device applications [17–21]. In this section of the chapter, recent advances
in the fabrication of the arrays of these structures via wet-chemical etching and dry
etching techniques are provided.

26.2.1 Dry Etching

Dry etchingmethods, like inductively coupled plasma reactive ion etching (ICPRIE),
plasma etching and deep reactive ion etching (DRIE), instead of other methodologies
are often embraced to synthesize 1D Si nano-/microstructures with a high degree of
reliability, stability, homogeneity and controllability in terms of many parameters
such as the crystallographic orientation, diameter, interspace, spatial arrangement
and length [22]. In general, for this approach, an etch-mask transferred on Si-wafer
with a desired pattern is required for the fabrication of regular and homogenous
arrays of 1D Si nano-/microstructures with different aspect-ratios. Over the years, a
number of routes have been suggested for the preparation of etch masks on Si-wafers
to control the spacing, position anddiameter of the resultant Si nano-/microstructures,
such as patterning a photoresist, silicon nitrate of silicon and alumina (hard mask)
via lithography, using anodized aluminum oxide (AAO), block copolymers (BCL)
and self-assembled close-packed monolayer of nanospheres [23, 24]. Nanosphere
lithography (NSL) is one of the most widely preferred techniques for the preparation
of a large-scale etch mask [25, 26]. A typical process of patterning a layer via NSL
to fabricate 1D Si nano-/microstructures is depicted in Fig. 26.1 [27]. Intense plasma
is used to adjust the size of the nanospheres in a controlled manner. In this way, the
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Fig. 26.1 The process flow for the fabrication of 1D Si nano-/microstructures using nanosphere
lithography combined with a dry or wet etching technique: aDeposition of a monolayer polystyrene
nanospheres onto the Si wafer, b size reduction of nanosphere mask via O2 plasma, c a noble metal
layer deposition and removal of nanosphere, and d nano-/microstructures formation via a dry or
wet chemical etching process [27]

mask layer can then be modified for various configurations, which is subsequently
carved into Si wafer in order to fabricate 1D nano-/microstructures with different
length, geometry, diameter, density and spacing.

The ability to prepare the masks in the required direction will have a direct
effect on determining the diameter, interspace and spatial distribution of the 1D
nano-/microstructures to be synthesized. To transfer a pattern to a silicon wafer,
the sample configured with the mask is exposed to the etching plasma consisted of
accelerated electrons and ions, which subsequently removes the Si atoms from the
wafer’s surface either by chemical reaction with the reactive gases (e.g., SF6 and
C4F8) or momentum transfer of ions and yields 1D Si nano-/microstructures with
specific diameter, geometry, length, density, interspace and aspect ratio.

By adjusting the applied RF (radio frequency) power and flow rate of the gases
supplied into the chamber, the etching speed can be controlled, respective role of each
is accelerating ions towards the material being etched and triggering radical-material
chemical reactions.

To date, a considerable amount of literature has been published on the synthesis
of ordered and disordered 1D Si nano-/microstructures using different forms of
dry etching techniques [28–30]. Among them, deep reactive ion etching (DRIE), a
process that combine physical and chemical effects, has attracted a special attention
due to its repeatability, versatility, wide parameter tunability, process controllability,
minimized undercut and high mask selectivity [31, 32]. It has been considered one
of the most widely preferred dry etching technique in semiconductor industry, such
as silicon based Micro-Electro-Mechanical Systems (MEMS), complex microflu-
idics devices and micro-optics [33, 34]. There are two major processes for the
DRIE to achieve deep etches: cryogenic and Bosch. Figure 26.2 illustrates one cycle
of a standard DRIE process flow for the BOSCH recipe for the production of Si
nano/microstructures [35].

The Bosch process, as seen in the Fig. 26.2, is based on switching between
depositing a protective layer on the sidewalls with a particular material like C4F8
(Teflon-like material) and etching the bottom part of the feature with a reactive gas
such as SF6, which enables the realization of deep and high aspect features needed
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Fig. 26.2 A schematic one cycle of the BOSCH process for the production of Si
nano/microstructures: a Passivation via a Teflon like polymer, b vertically directed ions to remove
the passivation layer, and c etching phase [35]

for the manufacture of 1D Si nano-/microstructures based high performance elec-
tronic and optoelectronic devices. The full etch process requires multiple etching and
passivation cycles with specific switching times to achieve 1D nano/microstructures
with certain length, diameter and roughness. With the Bosch process, aspect ratios
of 30:1 and etch rates of 10–20 nm/min are achievable [36, 37].

To date, DRIE has been extensively used to manufacture 1D Si nano-
/microstructures for a wide range of applications [17–19]. For example, Cutarelli
et al. fabricated 3D vertically-aligned Si micropillar arrays that could be employed
as culture systems for human iPSC (Induced pluripotent stem cells)-derived cortical
progenitors [38]. Recently, Mikulik et al. reported the synthesis of Si micropillars
(MPs) arrays via combining photolithographic patterning with DRIE technique to
study the effect of Al2O3 passivation on interface trap density of MPs using electro-
chemical impedance spectroscopy [39]. The findings revealed that Al2O3 passivated
Si micropillars with optimum parameters could be used for high-performance solar
cells and photodetectors. In another study, MP array was produced as an effective
anti-reflection coating to reduce the visible light reflection from a radial p–n junction
solar cell [40]. The results demonstrated that the constructed solar cell with Si MPs
arrays exhibits a better short current density and open-circuit voltage compared to its
planer counterpart, which was attributed to the reduced reflection in the wavelength
range of 400–1000 nm. In a different study, the quality of the manufactured Si
nanopillars synthesized by metal-assisted chemical etching (MACE) process was
compared with those by DRIE process [41]. Optical lithography and DRIE were
used by Oates et al. [42] fabricated arrays of vertical Si pillars for the manufacture
of a model system for radial junction solar cells. The built solar cell based on MPs
showed superior optical properties to its planer counterpart.

In our very recent study [20], ordered Si micropillars (MPs) were successfully
fabricated using theDRIE technique. The study’smain goal was to transferMPs from
amother substrate (Si wafer) via a fracture-transfer printing technique to a number of
carrier substrates that could be amorphous, transparent, or flexible while preserving
the original hierarchy on the mother substrate. Figure 26.3a shows SEM pictures of
the fabricated Si-MPs captured from various angles. The periodicity diameter and
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Fig. 26.3 The captured SEM images of ordered Si micropillars (MPs) fabricated using the DRIE
technique. a The top and cross-sectional SEM images of the manufactured Si MPs on the Si-wafer.
b The SEM images showing the transferred MPs on the SLG substrate. Inset image shows the
photograph of the transferred MPs on the SLG substrate. c The Si-wafer following the transfer
process [20]

length of the ordered Si-MPs were found to be 3μm, 2μm, and 16μm, respectively,
which can be seen in the recorded micrographs. Following the production of the
pillars, they were detached from the Si-wafer using the transfer printing technique
and successfully transferred onto an SLG substrate, as seen in Fig. 26.3b.The carrier
substrates (soda-lime-glass (SLG)) were first cleaned using the standard cleaning
procedures before initiating the transfer process. Following the cleaning process,
PMMA (Polymethyl methacrylate) thin filmwith layers (~2μm thick) was deposited
onto the carrier substrates by spin coating technique.

The quality of transferred Si-NWs onto carrier substrates is determined by the
thickness of the PMMA film, which plays a significant role in maintaining the local
orientation, order, and alignment of MPs. If PMMA’s thickness is less than a critical
value, Si NWs may not retain its original hierarchy because of the poor adhesion
between Si MPs and PMMA material. Therefore, the thickness of PMMA on the
carrier substrate was adjusted accordingly based on the length and density of MPs
on the mother substrate in order to preserve their vertical orientation and hierarchy
throughout the transfer process. Si MPs on the mother substrate were then placed
onto the carrier substrate without any vertical force being embossed. The combined
mother-carrier substrateswere subsequently heated above the glass transition temper-
ature of the PMMA, which is around 160 °C [43]. Embossing forces ranging from
1 to 100 N were applied to the mother substrate in the vertical direction to penetrate
the nanowires (NWs) into the PMMA polymer, which were determined based on the
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density of MPs on the mother substrate. The unified mother-carrier substrates were
then cooled to room temperature. A lateral force was applied to the edge of the Si-
wafer to separate Si MPs from the mother substrate, as detailed in our previous study
[44]. The transfer of MPs from the Si-substrate has been successfully accomplished
by maintaining their original order and orientation on the mother substrate, as can be
seen from the recorded top and cross-sectional SEMphotographs shown inFig. 26.3b.
Furthermore, it was revealed that the area transferred from the mother substrate was
approximately 11 mm × 9 mm, as seen in the inset image in Fig. 26.3b. The SEM
micrographs of themother substrate following the transfer processwere also obtained
(see Fig. 26.3c). They revealed that the Si-MPs were perfectly broken from the roots
during the transfer process, emphasizing the success of the conducted study. Further-
more, as seen in the SEM images, the transfer process can be carried out without
producing too many defects, such as semi-broken pillars and non-transferred pillars
on the mother substrate, which is a significant step forward in the manufacturing of
next-generation core–shell structured semi-transparent and flexible solar cells on a
variety of carrier substrates that can be flexible, amorphous, and transparent.

26.2.2 Wet Etching

Wet etching, unlike dry etching, is not a vacuum based approach; instead, it takes
place in a liquid under atmospheric conditions, allowing for the fabrication of large
scale Si nano-/microstructures in a cost effective way. The process is based on the
conversion of solid substances into liquid compounds when immersed in a liquid
solution bymeans of special chemical etchants, such as alkaline and acidic solutions.
It is usually an isotropic and a highly selective process. Different combinations
of HF (hydrofluoric acid)-HNO3 (nitric acid) and HF-NH4F (ammonium fluoride)
are the most extensively utilized etchants for Si and SiO2, respectively. In general,
for the manufacturing of 1D Si nano-/microstructures, two kinds of wet-etching
techniques are widely employed: electrochemical wet etching and metal-assisted
chemical etching (MACE) [45]. Among them, MACE technique has recently drawn
particular attention because of its simplicity, low-cost and versatility [46]. It can
be employed not only for the realization of 1D Si nano-/microstructures, but also
the fabrication of more complicated structures, which are crucial for the fabrication
of numerous applications such as 3D (three dimensional) accelerometers, square
diaphragms and comb-drive resonators [47].

At the beginning of MACE process, a patterned metal layer, like Ag, Au, Pt
and Cu, is deposited onto a planar Si wafer via a number of etch masks such as
a monolayer polystyrene nanospheres with hexagonal close-packed arrays, heat-
deformed colloidal monolayers and the periodic nanoparticle patterns. After that, the
Si wafer decorated with a patterned noble metal layer is immersed into an aqueous
solution containing HF and an oxidant. The patternedmetal layer on the Si wafer acts
as an effective catalysis for the MACE process, which induce local oxidation and
reduction reactions [48]. In other words, metals act as local cathode to catalyze the
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Fig. 26.4 Overall metal assisted chemical etching process for the fabrication of Si pillar arrays
[49]

reduction process of oxidants such asH2O2 and generating holes. The generated holes
are then injected into the Si semiconductor, oxidizing it before being etched away by
theHF in the solution. TheSimaterial beneath themetal is etchedmuch faster than the
uncoated bare Si regions because of the catalytic activity of the metal. In the end, the
metal sinks down the Si wafer as a result of the selective etching, and the transferred
metal pattern is engraved into the wafer [48]. By changing the etching mask pattern
and growth parameters, such as reaction temperature, precursor concentration, and
etching time, 1D Si nano-/microstructures of various lengths, geometry, diameters,
and interspaces can be manufactured. A typical MACE process for the fabrication
of Si pillar arrays is shown in Fig. 26.4, which is derived from [49].

The MACE technique has been extensively used in recent years to fabricate one-
dimensional Si-nano/microstructures arrays. For instance, in an effort to build stretch-
able Si-organic hybrid solar cells, S.-S. Yoon andD.-Y. Khang successfully produced
ordered vertical SiMPs arrayswith diameters and lengths of 5–25μmand 30–40μm,
respectively [50]. The findings showed that many process parameters, such as the
etching time and the pattern dimension transferred on the Si wafer, could be used to
easily control the length, interspacing, and diameter of the MPs. The study by H. Lin
et al. [51] reported the fabrication of Si nano-/microstructure arrays using theMACE
technique to construct radial junction solar cells. The effect of different catalysts, like
Au, Ag and Ag/Au, used in the MACE process on the quality of the grown Si nano-
/microstructures was examined in detail. The results revealed the advantages of using
anAg/Au bilayer as catalyst in theMACEprocess to produce high-performance solar
cells with shape-controlled Si nano/microstructures. In another study, p-type 3D Si
micropillars (MPs) with lengths ranging from 20 to 25 μm were produced via the
MACE process to investigate the effect of porous Si/SiOx shell on the characteristics
of SiMPs based optoelectronic device applications [52]. In a different study, densely-
packed Si MPs were successfully fabricated via the MACE technique to examine the
effect of Au contamination on the performance of 3D radial junction solar cells [53].
The study concluded that cost-effective and high-performance solar cells could be
manufactured with low-quality materials if they were constructed with a 3D radial
junction architecture. In another study, the same group used the MACE process to
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fabricate smooth micropillar arrays with high aspect ratios for the manufacture of
radial junction solar cells [54]. The effect of EtOH (ethanol) and HF concentration
on the quality of the developed Si MPs was investigated in depth in that analysis,
and it was revealed that the presence of EtOH and a high concentration of HF were
essential in order to achieve Si MPs with smooth sidewalls.

Recently, we synthesized disordered Si NWs via electroless etching (EE) tech-
nique for the fabrication of a third generation solar cell device structure with n-
Si-NWs/p-CZTS material combination [21]. The EE technique was particularly
preferred for the production of nanowires as it is a simple and low-cost wet etching
process that enables wafer-scale production of vertically well-aligned Si NWs. The
EE technique offers a direct control over a number of physical parameters of the
synthesized Si nanowires, like length and density, by adjusting growth parameters
such as precursor concentration, reaction temperature, and growth time. Top-view
and tilted-view SEM images of the fabricated Si nanowires (NWs) using the EE
technique are seen in Fig. 26.5. The captured micrographs show an approximately
homogeneous etching profile with a depth of 3.5 μm. In addition, it can be deduced
from the images that the average diameter of the produced nanowires (NWs) varies
from 20 to 80 nm.

In 2020, we published a study aiming at fabricating disordered and well-ordered
one-dimensional Si nanostructures (nanowires and pillars) using a method that
combined nanosphere lithography with the metal assisted chemical etching (MACE)
technique in order to construct CZTS (Cu2ZnSnS4)-based semi-transparent, flexible,
and lightweight solar cells [20]. The electroless etching (EE) technique was chosen
for the fabrication of disordered Si nanowires (NWs). As mentioned earlier, this
technique is advantageous because it allows Si-NWs to retain the bulk crystalline
properties of the Si from which they are developed and the fabrication of nanowire
(NW) arrays at large scale. The disordered Si-NWs were produced using an n-type
Si wafer (100) with an electrical resistivity of 10�.cm as the starting material. The
n-type Si wafer was subjected to a mixture solution of AgNO3/HF for a specific
time to fabricate n-type Si NWs. The fabrication of Si NW arrays was achieved by

Fig. 26.5 a Top-view and b tilted-view SEM images of the fabricated Si NWs using the electroless
etching (EE) technique [21]
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local oxidations by Ag ions adsorbed onto the wafer and a subsequent HF etching
process for the oxidized Si, as described elsewhere [21, 55–57]. Following nanowire
synthesis, theywere printed onAg-paste coated glass and copper-foil substrates using
the fracture-transfer printing technique, the details of which are given elsewhere [20].

Figure 26.6a shows the SEMmicrographs of disordered SiNWs synthesized using
the EE technique. It can be deduced from the images that the length and density of
the synthesized Si NWs are around 8.0 μm and 5 × 107 NWs/mm2, respectively.
The Si-NWs were then successfully transferred from the Si-wafer to the 1st carrier
substrate (Soda-lime-glass (SLG)) while preserving the hierarchy of the NWs on the
wafer, as shown in Fig. 26.6b. The SEM image of the mother substrate was analyzed
again following the transfer process (see Fig. 26.6c), which clearly revealed that
the vast majority of NWs was successfully fractured from the roots of the NWs
located on the mother substrate. Figure 26.6d shows the SEM images captured for
the Si NWs transferred from the 1st carrier substrate to an Ag (silver)-paste (5 μm
thick) pre-coated SLG substrate. In terms of the characteristics of the Si NW packs,
Fig. 26.6a, b reveal that the bottom and top portions of the Si NWs do not have
the same appearance. However, as seen in Fig. 26.6d, the top–bottom-top switching
processes result in the emergence of the original Si NWs synthesized on the mother
substrate at the final phase of the process, highlighting the success of the transfer
operation.

The constructed SLG/Ag-paste/n-Si NWs structure was employed for the realiza-
tion of core–shell structuredCZTSbased solar cell on an amorphous substrate (SLG).
In addition to an amorphous substrate, the Si NWs were also successfully transferred
to flexible copper-foil substrates using the same stages, as seen in the SEM images
provided in Fig. 26.7. It can be deduced from the images that the transfer process
to the Cu foil substrate was completed in acceptable proportions by preserving the
original NW order on the mother substrate. The electrical resistance between the Cu
foil and the tips of the transferred Si NW arrays was determined to be around 300
�, suggesting the existence of a physical connection between the bottom part of the

Fig. 26.6 The SEM micrographs captured for a the fabricated Si-NWs on the Si-wafer using the
electroless etching technique, b the transferred Si NWs on 1st carrier substrate (SLG), c the Si-wafer
following the transferring operation, and d the transferred Si-NWs on the Ag-paste pre-coated SLG
substrate [20]
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Fig. 26.7 The top and cross-sectional SEM micrographs captured for a the fabricated disordered
Si-NWs on the Si-wafer, b the transferred Si NWs on Cu foil carrier substrate, and c Si-wafer after
the transferring operation. Inset in b shows the photograph of the transferred NWs on the Cu-foil
[20]

nanowire (NW) and the Cu-foil. Due to the high flexibility of the Cu-foil, which
prevents the formation of homogeneous lateral force during the transferring process,
some nanowires (NWs) were not fractured from the bottom section, as can be seen
in Fig. 26.7c.

For the realization of high-aspect ratio ordered one-dimensional (1D) Si-nano-
/microstructures, nanosphere lithography technique (NSL), a simple and cost-
effective method, was combined with the MACE method, stages of which are
presented in Fig. 26.8. Figure 26.8a shows a monolayer of polystyrene spheres with
a diameter of 460 nm deposited on an n-type Si wafer via spin coating process.
As shown in Fig. 26.8b–e, the polystyrene nanospheres were then exposed to O2

(oxygen) plasma, formed at various powers for specific time intervals, so as to reduce
their diameters. Figure 26.8d illustrates how a 70 W power and a 60 s time interval
were found to be sufficient to reduce nanosphere diameters from 460 to 300 nm.
Furthermore, as can be seen in Fig. 26.8e, spheres with smaller diameters could be
achieved by either increasing plasma power or etching time.

Thermal evaporation was used to deposit a thin film of Au (20 nm) on the
nanosphere-layer following the size reduction (see Fig. 26.8f). Sonication in toluene
was used to remove the Au-decorated nanospheres, resulting in a patterned Au layer
on the Si wafer, as seen in Fig. 26.8g. The MACE process was eventually conducted
by dipping the Si wafer with the patterned metal layer in a solution containing
(H2O2: HF: H2O; V:V:V; 1:4:5) for a few minutes at room temperature. As seen
in Fig. 26.8h, aforementioned process steps can be used to fabricate well-aligned
Si-nanopillar (NPs) of the predefined diameters and lengths. By changing certain
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Fig. 26.8 Si nanopillar (NPs) fabrication steps by NSL technique. a Photograph and top-view
SEM images illustrating hexagonally close packed monolayer of polystyrene nanospheres (etching
mask) with diameter of 400 nm on an n-type Si-wafer surface. b–e SEM images of monolayer
nanospheres subjected to O2 plasma treatment for different powers and periods of time. f A thin
film of Au (20 nm) deposited on nanospheres. g The recorded SEM image following the extraction
of etching mask (monolayer nanospheres) from the Si-wafer. h Tilted-view SEM image of ordered
arrays of Si NPs fabricated by the MACE process [20]

growth parameters during the growth stage, it is possible to fabricate ordered arrays
of Si nanopillar (NPs) in a variety of diameters and lengths. The etching time is one of
these growing parameters that can be used to adjust the length of NPs. For example,
to investigate the effect of etching time on nanopillar length, the MACE process was
carried out at room temperature over time intervals of 30 to 90 s for the Si-wafer
decoratedwith amonolayer polystyrene nanospheres of diameter 300 nm. The length
of theNPs increases with increasing etching time, reaching a length of ~1μm for 90 s
etching duration, as can be deduced from the recorded SEM micrographs presented
in Fig. 26.9.

Using the same process steps, Si micropillars (MPs) with dimensions ~8 μm
in diameter and 300 nm in length were also successfully obtained, as shown in
Fig. 26.10a. Following the transferring steps outlined above, the grown ordered
Si micropillars (MPs) were successfully moved onto the ITO (indium-tin-oxide)
and Ag-paste coated glass substrates (see Fig. 26.10b–e), while holding their initial
pattern on the Si wafer. This achievement will undoubtedly pave the way for the
manufacture of third-generation ordered arrays of Si MPs-based solar cells on wide
range of substrates, including the amorphous, transparent and flexible ones, in the
near future.

As can be seen in Fig. 26.11, the synthesis of ordered arrays of Si pillars micropil-
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Fig. 26.9 The SEM images captured for the ordered arrays of Si nanopillar (NPs)fabricated by the
MACE process conducted at different etching times: a 30 s, b 45 s, c 60 and d 90 s. eCross-sectional
SEM image of the Si NPs obtained following 90 s etching time at room temperature [20]

lars (MPs) with extremely large diameters was also accomplished within the context
of the study by following the same stages of the route ofMACE process coupled with
the NSL. The recorded SEM micrographs provided in Fig. 26.11a, b revealed that
the diameter and length of the micropillars (MPs) were around 2 μm and 7.5 μm,
respectively. The initial diameter of the polystyrene spheres used to prepare the etch
mask for the MACE process was 3 μm. However, following an oxygen plasma treat-
ment at 70W for 60 s, their diameters were reduced to 2 μm. It is also apparent from
the top-view SEM images given in Fig. 26.11b that the KOH (potassium hydroxide,
silicon etchant) etching solution can be employed to reduce the diameters of the Si
MPs even more. The Si micropillars (MPs) were subsequently transferred onto the
Ag-paste pre-coated glass substrates using the above-mentioned transfer process by
preserving the initial hierarchy that existed on the Si wafer, as seen in the top-view
and tilted-view SEM pictures provided in Fig. 26.11b. The transfer of MPs from the
Si wafer to the Ag paste pre-coated glass substrate was a huge success and achieved
for the first time in this work.
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Fig. 26.10 Transfer of Si nanopillar (NPs) onto the ITOandAg-paste coatedSLGcarrier substrates.
a Top-view SEM image of the synthesized NPs with diameter of 300 nm and length of ~8 μm in
length on the Si-wafer using the MACE process combined with the NSL. Transfer of NPs via the
transferring material (PMMA) onto b, c the ITO and d, e Ag-paste coated SLG substrates [20]

26.3 Optoelectronic Device Applications

One-dimensional (1D) Si nano-/microstructures arrays can be employed for a wide
range of opto-electronic device application owing to their highly developed tech-
nology and outstanding features such as high thermal conductivity, facile doping
control, hardness and excellent optical and electrical properties. In this section,
however, the recent studies on 1D Si nano-/microstructures based solar cells and
photodetectors will be discussed.
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Fig. 26.11 The SEM micrographs obtained for the ordered arrays of Si micropillars (MPs) fabri-
cated via an etch mask consisted of polystyrene microspheres (~3 μm in diameter). a The top-view
and cross-sectional SEM images of the ordered arrays of Si MPs on the Si wafer produced by using
the MACE process coupled with the NSL. b Top and tilted-view SEM images captured for the
ordered arrays of Si MPs transferred onto Ag-paste pre-coated glass substrate [20]

26.3.1 Solar Cells

If designed with the right architectures, like radial p–n junction, and optimized struc-
tural parameters such as diameter and array periodicity, one-dimensional Si nano-
/microstructured solar cells will combine the benefits of first and second-generation
solar cells to realize both high power conversion efficiency and low-cost goals in
solar cells. Therefore, there has been an increase of interest in the fabrication of
these structure-based solar cells in recent years, which offer lower optical reflec-
tion, less material consumption, better absorption, and superior charge collection
compared to the traditional planer bulk Si systems such as crystalline-Si wafer and
polycrystalline/multicrystalline/amorphous-film based ones, which are dominating
the photovoltaic market [58].

Recently, a Si/InP structured Si nanowires based heterojunction solar cell was
reported in [59]. In order to construct the structure, p-type Silicon NWs arrays
on Si (100) were decorated with an n-type InP layer using atmospheric pressure
metal organic chemical vapor deposition. The open-circuit voltage (Voc), short-
circuit current density (Jsc) and power conversion efficiency (η) were found to be
0.56 V, 14.26 mA/cm2 and 4.39%, respectively. The findings revealed that the core–
shell radial heterojunction could provide a significant improvement in efficiency as
compared to the traditional nanowire-based solar cells, which was attributed to the
effective light trapping and better absorption ability of the cell in core–shell arrays.
Singh et al. [40] constructed Si micropillars (MPs) based radial-junction solar cells
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as an attempt to improve the charge carrier collection and light management. The
periodicity, length and diameter of the ordered Si MPs arrays with vertical sidewalls,
produced via the DRIE technique, were 1.5–3.3 μm, 8 μm and 4 μm, respectively.
The constructed device exhibited a 27% increase in Jsc as compared to its planar coun-
terpart, which was ascribed to the improvement in the extraction of photo-generated
carriers through the formed radial p–n junction using Si MPs. In addition, the recom-
bination losses were minimized in the device by planarizing Si/metal interface to
improve the Voc parameter. The resulting cell exhibited a Voc of 0.62 V, the highest
voltage reported so far for the MPs based solar cells. In another study, as a proof-
of-concept demonstration, stretchable bifacial Si-organic hybrid solar cells based on
Si MPs were fabricated by embedding Si MPs into polydimethylsiloxane (PDMS)
[50]. The cell made up of MPs with a diameter of 5 μm exhibited the highest effi-
ciency, 3.3%, and did not display any performance degradation even when stretched
by 40%. The preliminary results suggest that the same approach can be employed
for the realization of large scale wearable energy-harvesting and attachable personal
health tracking devices. In 2016, a radial junction solar cell based on Si micro-/nano
hybrid structures, using theMACE process, with an efficiency of 17.6%was success-
fully fabricated [60]. Owing to the peculiar design of the producedmicro-nano hybrid
structure, the cell had a very high short-circuit current density (39.5 mA/cm2), which
resulted in a substantial increase in efficiency, 61.5%, over a planer Si solar cell owing
to its excellent light absorption capacity (97%). The results indicated that the manu-
factured hybrid structure through growing nanostructures on top of microwire arrays
could be used for the production of high-performance radial junction solar cells.
Baytemir et al. [54] demonstrated a 3D radial junction solar cell based on ordered
Si MPs with high aspect ratios and low sidewall-roughness for the manufacture of
high-performance solar cells. A power conversion efficiency of 17.26% has been
recorded, which is one of the highest values reported to date for Si-MPs based radial
junction solar cells. It was realized that solar cells with higher efficiency could be
accomplished by lowering the surface recombination at the interface and series resis-
tance of the cells with a set of optimization process, including the passivation of the
MPs with SiO2/SiNx and improving the quality of metal contacts. In a different
study, highly ordered and well-aligned Si nanopillars (NPs) were employed for the
realization of axial p–n junction solar cells [61]. An approach combining the use of
colloidal particle self-assembly with cryogenic silicon plasma etching process was
chosen for the production of Si NPs. The Voc, Jsc and FF of the p+n junction solar cell
constructed with an axial architecture were determined to be 0.37 V, 18.9 mA/cm2

and 0.59, respectively. The Methyl-termination and H-termination processes were
also found to be very effective in preventing leakage current by providing good and
stable electrical passivation for Si NPs. In 2018, Ioannis Leontis et al. [62] inves-
tigated the effect of Si nanowires (NWs), grown on the front solar cell surface via
the MACE technique, as light-trapping material on the performance of crystalline
Si solar cells. The cells were constructed with nanowires (NWs) having different
lengths, such as 0.5, 1, and 1.5 μm. The highest efficiency, 13.4%, was recorded for
the case of 1μmwithout any passivation layer, whichwas attributed to the lower light
reflection and decreased density of states compared to the other two NW lengths. In
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addition, the performance of the cell decorated with 1 μm NWs was compared to
that of a reference planar Si solar cell, revealing that the use of NWs increases power
conversion efficiency by 45%. In 2020,Myunghae Seo et al. [63] successfully synthe-
sized hourglass-shaped silicon nanowires (HG-Si NWs) using inductively coupled
plasma reactive ion etching for the realization of solar cells that can achieve light
absorption over the entire solar spectrum and overcome the limits of the conventional
bulk Si solar cells. The results revealed that only adjusting the diameter of the HG-
Si NWs would increase the JSC and result in a 1.85 times higher power conversion
efficiency as compared to the reference cylindrical Si NW-based solar cells due to
their excellent absorption capability. In 2017, Pankaj Yadav et al. [64] conducted a
detailed study on the manufacture of large-scale ordered Si micropillars based solar
cells. The fabricated solar cell had a power conversion efficiency of 16.90%, which
was the highest ever recorded for Si solar cells based on nano-/microstructures. The
recorded high efficiency was mainly ascribed to the improvement in photocurrent
and voltage following the interfacial engineering of the cell. The findings indicated
that the microstructured Si solar cell could have better advantages compared to its
planer counterpart in terms of production costs and scalability, both of which are
critical for the widespread adoption of these devices. In another study, Hsin-Ping
Wang et al. [65] synthesized wafer-scale Si micro-pyramids and nanowire arrays
using a time-effective, simple and low-cost fabrication technique (electroless etching)
for the manufacture of cost-effective and high-performance nano-/microstructured
Si solar cells. Without any additional process such as the inclusion of passivation
or anti-reflective layers, the solar-cell with optimized structure exhibited excellent
light-harvesting ability with negligible electrical losses, resulting in a 10.48% power
conversion efficiency. In 2017, Hong-Sik Kim et al. [66] reported a record high-
efficiency of 16.92% for the Si microwires (MWs) based solar cells. The effect of
NW parameters including diameter and periodicity on the operation and electrical
properties was studied in detail. The performance of solar cells was compared with
that of conventional planar-Si solar cells. The findings showed that incorporating Si
MWs into the device structure boosts theVoc of the cells by increasing the shunt resis-
tance as compared to the standard flat-Si solar cell. In a recent paper by Laxmikanta
Karmakar and Debajyoti Das [67], a solar cell based on n-type Si nanopillars, grown
via PTNCC (p-to-n type conductivity conversation) process, with a proof-of-concept
power conversion efficiency of 4.22% was achieved. In the constructed solar cell
structure, the ITO (indium-tin-oxide) and Ag paste were employed as front and back
electrodes, respectively. Melvin David Kumar et al. [68]synthesized ordered Si pyra-
mids via wet etching process as an attempt to manufacture high-performance Si solar
cells. Melvin David Kumar et al. [68]used a wet etching route to synthesize ordered
Si pyramids in an effort to manufacture high-performance Si solar cells. The ITO
decorated ordered Si pyramids, derived from Si pillars via wet etching, was found
to be very effective in the absorption of photons with long-wavelengths. The Jsc and
power conversion efficiency of the pyramid patterned solar cell were calculated to
be 36.2 mA/cm2 and 16.3%, respectively.

Very recently, we reported a study on an n-Si NWs/p-Cu2ZnSnS4 (CZTS) core–
shell solar cell by using disordered Si nanowires (NWs) synthesized via electroless
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etching (EE) technique [21]. The aim of study was to fill a gap in the literature by
examining the photovoltaic performance of a sol–gel derived CZTS thin film in a
core–shell solar cell device configuration for the first time. The constructed hybrid
structure was expected to combine the performance of first-generation solar cells,
like high efficiency and mature technology of silicon, with the advantages of third-
generation solar cells such as an excellent light trapping, enhanced charge collection
and large surface-to-volume ratio, which allows for the manufacture of low-cost and
high efficiency Si nano-/microstructures based solar cells. A sol–gel derived thin
layer (600 nm) of CZTS thin film was used to cap the synthesized Si NWs, 20–
80 nm in diameter and ~3.5 μm in height, as the shell component of the core–shell
device architecture. A thermally evaporated 60-nm thick silver dot contacts and 150-
nm thick silver thin film layer were assigned as the ohmic top-contact and a back
contact of the solar cell, respectively, schematic representation of which is provided
in Fig. 26.12.

Figure 26.13 demonstrates cross-sectional and tilted-view SEM images of the
synthesized bare Fig. 26.13a, b and CZTS-coated Fig. 26.13c, d Si NWs. The SEM
images reveal that vast majority of the NWs are completely decorated with the CZTS
layer both longitudinally and radially, suggesting a high contact interface between
Si-NWs and the CZTS absorber layer.

The current (I)-voltage (V) characteristic of the cell under the AM 1.5 G (AM1.
5G stands for the standard spectrum at the Earth’s surface) illumination is given in
Fig. 26.14, from which the open circuit voltage (Voc), short circuit current (Isc), fill
factor (FF) and power conversion efficiency (ï) were found to be 0.40± 0.01 V, 9.60

Fig. 26.12 Schematic representation of the manufactured Ag/n-Si/n-Si NWs/p-CZTS/Ag core–
shell solar cell [21]
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Fig. 26.13 Cross-sectional and tilted-view SEM images of the synthesized (a-b) bare and (c-d)
CZTS-coated Si NWs so as to construct the n-Si NWs/p-CZTS core–shell solar cell [21]

± 0.20 mA/cm2, 26 ± 1% and 1.0 ± 0.2%, respectively. Since these are the first
findings reported for an n-Si-NWs/p-CZTS core–shell solar cell, it is impossible to
compare them with those published in the literature. Nonetheless, as compared to
traditional planer CZTS and CIGS thin film solar cells, the achieved power conver-
sion efficiency (1%) is clearly low. A solar cell with a Mo/p-CZTS/n-Si/Al planer
heterojunction configuration [69] has exhibited the highest power conversion effi-
ciency reported so far. The Voc, Jsc, and ï parameters of the cell were calculated
to be 0.52 V, 3.28 mA/cm2 and 1.13%, respectively. Despite the fact that the cell’s
efficiency is slightly higher than that accomplished with current study, the Jsc is
significantly lower than that obtained with the NW-based device configuration. The
observed enhancement in the Jsc for the cell with Si nanowires (NWs) configuration
compared to its planar counterpart can be attributed to unique features of SiNWs such
as excellent light trapping, enhanced charge collection and large surface-to-volume
ratio.

The reflectance spectra of CZTS thin films deposited on Si NWs and planer-
Si wafers are shown in Fig. 26.14b. As can be deduced from the inset figure, the
average reflectance measured for the Si-NWs coated with CZTS is between 0.01%
and 0.3%. The reflectance measurement for the CZTS thin film deposited on the
planer Si wafer was also carried out as reference, which showed higher values for
the same wavelength range, varying from 20 to 40%. The recorded extremely low
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Fig. 26.14 a The current–voltage (I-V) characteristic of the n-Si-NWs/p-CZTS core–shell solar
cell recorded under dark and an illumination of 100 mW/cm2. The inset plot shows the I-V curve
under light in the first quadrant. b The spectral reflectance measured for the disordered arrays of Si
nanowires (NWs) based solar cell and its planer equivalent. The inset plot presents the zoomed-in
spectral reflectance of the device constructed with the Si NWs. The inset pictures display the SEM
micrographs captured for both device configurations [21]
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reflectance for the solar cell with Si NWs configuration can thus be related to the
measured higher Jsc in the present study as compared to its planer equivalents.

In 2020, we conducted a study to manufacture Si nano-/microstructures based
core solar cells on low-cost, lightweight and amorphous surfaces by transferring
them from Si wafer onto a number of substrates through a transfer printing method,
as stated earlier [20, 70]. Following the synthesis of 1D ordered and disordered
Si nano-/microstructures using the MACE process in conjunction with the NSL,
the fracture-transfer printing technique was used to transfer them onto Ag-paste
pre-coated glass substrates. The disordered Si nanowires (NWs) and ordered arrays
of Si micropillars (MPs) transferred onto the Ag-paste pre-coated glass substrates
were then decorated with 600 nm thick e-beam (electron-beam) evaporated p-
type Cu2ZnSnS4 (CZTS) thin films for the realization of the SLG/Ag-paste/n-Si-
nano/microstructures/p-CZTS structured core–shell solar cells. The structural, elec-
trical, and optical properties of CZTS thin films obtained in a single step via the
e-beam technique have been described in detail elsewhere [71]. To complete the solar
cell device structure constructed on the Ag-paste coated glass substrate, a thin film
of ITO (indium-tin-oxide, 100 nm) and Al (120 nm) as top contacts were deposited
on the CZTS decorated Si nano-/microstructures using the DC-sputtering technique.

The first prototype solar cell was constructed via the 1D Si micropillars fabricated
using theMACE technique in conjunctionwith theNLS, the diameters of whichwere
further reduced using a KOH etching solution, as described in the wet etching part.
Figure 26.15a shows top and tilted-view SEM pictures captured for the CZTS coated
Si MPs transferred onto the Ag-paste coated glass substrate. From the images, it
can be observed that the Si MPs are continuously covered with the CZTS layer.
The I–V characteristics of the built SLG/Ag-paste/n-Si MPs/p-CZTS/ITO/Al solar
cell recorded in the dark and under light illumination are seen in Fig. 26.15b. The
formation of a p-n hetero-junction between the n-SiMPs andCZTSfilmwas revealed
by the observed bias-polarity dependent rectification of the current in the plots.
The Voc, Jsc, FF and η of the solar cell were found to be 0.42 V, 7.93 mA/cm2,
26% and 0.87%, respectively. This study is the first to report on the performance of
the solar cell in the SLG/Ag-paste/n-Si MPs/p-CZTS/ITO/Al device structure. The
efficiency measured is substantially higher than those reported in the literature for
solar cells with similar configurations, which range from 0.1% to 0.46% [72, 73].
Even higher efficiencies can be achievedwith this device configuration by optimizing
certain manufacturing processes such as improving the quality of the CZTS layer
and applying surface passivation processes to the Si MPs.

By coating the Si nanowires (NWs) transferred onto the Ag-paste pre-coated
glass substrate with a 600 nm thick electron-beam evaporated CZTS thin layer, the
SLG/Ag-paste/n-Si-NWs/p-CZTS/ITO/Al structured core–shell solar cell was also
manufactured as an application of the transferred disordered Si NWs. As stated
earlier, the Al dot-contacts and Ag-paste layer were assigned as the top and bottom
contacts of the constructed solar cell, respectively. The SEM images of the synthe-
sized disordered Si NWs on the Si wafer and those transferred onto the Ag-paste
pre-coated SLG glass substrate, coated with the CZTS layer, are shown in Fig. 26.16.
The captured SEM micrographs clearly demonstrate that the Si-NWs were not only
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Fig. 26.15 a The top and tilted-view SEM images captured for the transferred Si-MPs on Ag-
paste pre-coated glass substrate (SLG) decorated with a thin layer of e-beam evaporated p-type
CZTS. b The I-V characteristics of the SLG/Ag-paste/n-Si NWs/p-CZTS/ITO/Al core–shell solar
cell measured in dark and under light illumination. The tilted view SEM image of the fabricated
solar cell is seen in the inset micrograph [20]

perfectly printed on the Ag-paste pre-coated SLG substrate, but that they are also
fully coated with the CZTS layer. The I-V characteristics of the manufactured solar
cell recorded in the dark and under light illumination are presented in Fig. 26.17a, b.

The semilog plot of the I-V characteristic under light illumination is also plotted
in Fig. 26.17b to clearly show the observed photovoltaic effect. The Voc, Jsc, FF and
η of the SLG/Ag-paste/n-Si NWs/p-CZTS/ITO/Al solar cell were determined to be
0.40 V, 19, 20 mA/cm2, 17% and 1.31%, respectively. These are the first published
results for an SLG/Ag/n-Si-NW/p-CZTS/ITO/Al structured solar cell constructed
on the SLG substrate with transferred Si NWs, which exhibits the highest energy
conversion efficiency ever achieved in a solar cell based on a Si and CZTS material
combination built on an SLG surface [21, 69, 74, 75]. The higher efficiency achieved
in this study over planar counterparts may be attributed to the unique properties of
the Si NWs, including the excellent light trapping, efficient charge extraction and
large surface to volume ratio. The results demonstrate the promise of next genera-
tion solar cells that can be manufactured on a wide range of substrates, including
transparent, amorphous, and flexible ones. As highlighted earlier, even though the
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Fig. 26.16 The top and cross-sectional SEM images of a the Si NWs on mother substrate with ~
8.0 μm lengths, b after the transferred onto the Ag-paste covered 2nd carrier (SLG) substrate
and decorated with a p-type CZTS absorber layer to fabricate a SLG/Ag-paste/n-Si NWs/p-
CZTS/ITO/Al structured solar cell. The inset is an enlarged view of the Si NWs coated with a
600 nm thick CZTS layer [20]

current solar cell’s power energy conversion efficiency is still lower than that of its
traditional planar equivalents, higher-efficiency NW-based solar cells can be manu-
factured by adjusting several production processes, including improving the quality
of the absorber layer and applying surface passivation processes to the Si NW to
eliminate potential surface defects, such as surface recombination centers.

26.3.2 Photodetectors

Photodetectors with nano-/microwires

Nanowire (NW)-based photodetector (PDs) can be used in a wide range of technolo-
gies. However, for the nanowire (NW) integration process to be economically viable
and attractive for CMOS applications, it must offer the possibility of direct growth
and integration of non-Si-based NW devices onto large Si wafers. Currently, issues
such as lattice constant, material and thermal mismatch, lack of good control over
atomic structures, assembly into functional devices, difficulty in forming ternary
and quaternary NW alloys, surface states, persistent photocurrent, contact resistance
and noise, controlled doping for sharp homo- and heterojunctions, nano-to-micro
impedance matching, catalyst-induced contamination, etc., make it difficult to grow
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Fig. 26.17 a The current (I)-voltage (V) characteristics of the fabricated solar cell measured in
dark and under AM 1.5G illumination. b The semi log plot of I-V characteristics that clearly
reveals the photovoltaic effect. Inset Figure displays the photograph of the SLG/Ag-paste/n-Si
NWs/p-CZTS/ITO/Al solar cell [20]
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and design nanowire (NW) devices on Si or any other substrates, which is a setback
in the application of NW PDs at the industrial level.

A successful nanowire (NW) detection and sensing device would require a metic-
ulous control of surface states, defects, traps, orientation, polarization and light
coupling as well as good control on generating sharp axial or radial junctions in
the nanowires (NWs). There are obvious challenges in implementing the nanowire
(NW) PDs. Most conventional semiconductor PDs operate at high quantum effi-
ciency, whereas NW PDs’ efficiencies are low in values. Development of feasible
techniques is now crucial to match the efficiency of NW PDs to that of classical
counterparts and a combination of plasmonic techniques and NW heteroepitaxy may
offer the potential to realize substrate independent NW PDs with high efficiency and
bandwidth.

The basic devices and laboratory demonstrations of the key elements of tech-
nology exist for NW PDs and no physical breakthrough is required to implement
the device in most systems. Substantial technological work remains. Controlling
the physical properties such as diameter, doping uniformity, orientations, identical
surface and contacts are required to meet the strict requirements for practical systems
with future generations of silicon photonics and CMOS. In addition, work will
be required in developing impedance matching techniques between NW PDs and
conventional high-speed circuits. The technology for integrating III-V and II-VI
NWs with silicon integrated circuits is still at an early stage, though there have
been considerable key demonstrations in last few years. Several groups introduced
NW PDs using hybrid approaches, such as transfer printing or pick-and-place, such
hybrid approaches require no modifications to the current process for fabricating
silicon integrated circuits except to add pro- cesses to fabricated NW PDs [70, 76,
77]. Commercially viable approaches will focus on monolithic integration via nano-
heteroepitaxy. In the next section, we will present a recent approach based on inverse
of nanowires or negative nano-/microwires which is potentiallymassmanufacturable
and CMOS compatible.

Photodiodes with Photon-Trapping Inverse Nano/microwires (Holes)

A periodic array of micro-nano scale holes were recently used to bend a vertically
oriented beam of light by 90 degrees (Fig. 26.18a) andmake it propagate horizontally
within a thin Si film on an SOI substrate [4, 78]. Such light-bending and lateral slow
propagating modes enhance photon-material interactions and dramatically increase
the light absorption capabilities of semiconductors that areweak in absorption charac-
teristics.Using this technology, researchers developed extremely fast Si andGe-based
photodetectorswith high quantum efficiency (~10×) [79], which opens opportunities
for integrating amplifiers, equalizers, and other CMOS circuit elements with photo-
diodes, overcoming the challenges of cost, the complexity of integration, and mass
production of receivers for rapidly growing data centers. Figure 26.18b–d shows a
top-illuminated all-silicon PDdesigned and fabricated using IC compatible processes
to facilitate very-large-scale integration (VLSI) and leverage cost reduction enabled
by the CMOS industry. The PD structure (Fig. 26.18b) was epitaxially grown on a
silicon-on-insulator (SOI) substrate that has 0.25 μm device layer (p-Si). The thin
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Fig. 26.18 a Schematics comparing light propagation in a thin slab with hole arrays and a thick
semiconductor without holes ( adapted from reference [80]. b Schematics of cross-section of the
device on an SOI substrate showing individual layer thicknesses and an array of tapered holes etched
into the active PD region. c–eMicrographs of a Si PDwith a high-speed coplanar waveguide (CPW)
and integrated micro and nanoscale holes

absorption region consists of 2 μm thick i-Si to minimize the transit time for elec-
trons and holes. A lattice-matched 0.2 μm p++ Si0.988Ge0.01B0.002 was used as the
bottom p-contact layer, as well as an etch-stop layer for the n-mesa isolation process.
A 0.3 μm phosphorus doped n++ thin layer served as the top n-contact. The devices
have mesa structures with nip on a SOI wafer with a 3 μm SiO2 layer.

In order to address the weak absorption in indirect bandgap semiconductor Si, an
array of 2D periodic micro or nanoscale holes were integrated in the active region of
the PDs. The diameters of these holes range from 600 to 1700 nm and with periods
ranging from 900 to 2000 nm. The details of the fabrication processes are discussed
in reference [4]. Holes were fabricated with both uniform cylindrical shapes as well
as gradual funnel shapes with square or hexagonal lattices in the active regions of
the PDs with ~ 65° tapered sidewalls as shown in Fig. 26.18b–e.
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The nanohole array supports a set of modes with wave vectors in the perpendic-
ular direction, as well as in-plane (x–y) directions. Depending on the parameters of
the 2D hole array, collective modes are formed similar to the modes in photonic
crystals. Under certain parameters, slow lateral modes can appear to contribute to
considerably higher photon absorption [3]. The insets in Fig. 26.19a show FDTD
numerical simulations that depict the formation of lateral modes around holes when
a vertically oriented beam illuminates them. As time increases from left to right,
lateral components of the electric field spread into Si as cylindrical waves. Based on
the simulations, for a design to operate around 850 nm, the hole periods of 900 nm or
bigger valueswere found to excitemodes that propagate in the lateral x–y plane. Thus,
a successful conversion of an initial incident vertical plane waves to an ensemble of
lateral collective modes was realized in a 2D periodic array of holes. Strong lateral
modes propagating deep into i-region enable the absorption of a wide range of the
wavelength and contribute to above 80% absorption, as shown for three different
side-wall angles of holes in Fig. 26.19a. Since a PD has a much larger lateral size
than its vertical thickness, lateral waves are almost completely absorbed, and as a
result, electron–hole pairs are efficiently generated. These generated carriers drift
quickly under the strong vertical electric field in the device and create a high-speed
current output.

Through extensive simulations and experimental implementations of photon-
trapping structures in silicon photodetectors, a direct correlation between the
enhancement of absorption and physical parameters of the photon-trapping struc-
tures was also divulged. By employing cylindrical nanoholes, inverted pyramids,
and funnel-shaped surface formations, close to 1000% enhancement in the quantum
efficiency was achieved compared to the control devices [3, 79, 81]. This was made
possible by bending the incident beam of light and enabling lateral propagation of
modes to prolong the light-matter interactions and suppress back reflection using the
inverse nanowires or nanoholes. The enhancement in absorption also comes with
a considerable reduction in device capacitance and thereby an improvement in the
time response. The combined effect collectively can help to overcome the trade-off
between the efficiency and speed of operation of the PDs. State-of-the-art CMOS
fabrication processes could enable near-perfect EQE and above 50% capacitance
reduction, by increasing the number of photon-trapping nanoholes integrated into
the devices, especially in photodiodes with small surface area, required to operate at
high speed. This open opportunities for the development of complete CMOS inte-
grated receivers operating with high sensitivity and high speed and can be expanded
to other semiconductors such as germanium (Ge), gallium arsenide (GaAs), and
indium phosphide (InP) based ternary and quaternary materials [82].

26.4 Summary and Future Outlook

Due to their outstanding properties such as high charge carrier collection, unique
surface chemistry, enhanced charge-carrier generation, large surface-to-volume ratio,
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Fig. 26.19 a Absorption in a pin PD with integrated holes of ~2 μm depth etched in funnel shapes
(diameter/period (d/p):1300/2000 nm) with angles of 75° and 66° and cylindrical shape with 90°
slopes. The bottom curve (black) shows the absorption in a regular Si PDwith 2μm i-Si. bMeasured
enhanced EQE versus wavelengths in these PDs enabled by integrated holes (d/p: 700/1000 nm)
with angles of 61° and 66° and cylindrical shape with 90° slopes. The inset shows I-V curves for
dark and optical illumination. c Plot of αeffective between 600–1050 nm showing how its value in
our PDs increased by more than an order of magnitude to the level of αGaAs
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the decoupled charge transport and light-incidence direction, and excellent light
absorption/trapping, 1D Si nano-/microstructures have been shown to be potential
building blocks for the realization of cost-effective and high-performance photode-
tectors and solar cells. Therefore, in this chapter, a number of top-down approaches,
likewet and dry etchingmethods, for the synthesis of ordered and disordered arrays of
1D Si nano-/microstructures are first introduced. The advantages and disadvantages
of the wet and dry etching processes were also briefly discussed. A special attention
has been paid to the fabrication of ordered arrays of 1D Si nano-/microstructures by
coupling the MACE or DRIE process with the NSL technique. The recent studies on
these structure-based solar cells and photodetectors are then discussed, with a main
focus on our own recent studies.

The results demonstrate that large-scale arrays of 1DSi nano/microstructures with
different diameters, interspace and lengths ranging from a few micrometers to tens
of nanometers can be achieved in a cost-effective way by controlling several param-
eters such as the dimension and feature size of etching mask (or template) prepared
via the NSL, the etching time, the reaction temperature and precursor concentra-
tion. The synthesized arrays of Si nano-/microstructures have been shown to have
a wide range of applications, including light sensing and solar energy harvesting.
The recent studies have demonstrated that both ordered and disordered arrays of Si
nano-/microstructures can be successfully transferred to a wide range of substrates,
including Ag-pre-coated glasses, transparent-conductive-oxides, and metal foils,
which is crucial for scalable production of low cost, lightweight and flexible elec-
tronics and opto-electronic components. As this approach offers a way to grow low-
cost device manufacturing on a diverse range of substrate surfaces with highly crys-
talline semiconductor materials, it can be taken as a giant step towards the realization
of next-generation opto-electronic devices. The performance of the aforementioned
opto-electronic devices can be improved even further in future studies since the
introduced fabrication routes have a full control over the size and morphology of the
manufactured 1D arrays of Si nano-/microstructures.

Despite the amazing progress in nano-/microstructure production and applica-
tions, there are still some problems in the application of 1D ordered and disordered
Si nano-/microstructures that need to be resolved in future study for the realization
of high-performance solar cells that can be alternative to the conventional planer
solar cells. One of these issues is the presence of high-density defects at the inter-
face/surface resulting from the 1D structures’ large surface-to-volume ratio. Coating
Si nano-/microstructures with a suitable surface passivation material, such as porous
silicon, a thin transparent conductive oxide layer, SiNx and Al2O3, is one of the
most effective ways to address this issue. Other critical factors that need to be opti-
mized for the realization of high-performance core–shell solar cells, for instance,
include the alignment and dimensions of Si nano-/microstructures such as diameter,
density, pitch and aspect ratio as the core component, the quality of the absorption
layer in terms of its thickness, series resistance, electrical and optical properties as
the shell component, the nature of interfacial junction in hetero-structures and its
depth, the doping profile uniformity along the nano-/microstructures’ length, and
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the electrical quality of the metal contacts required for the extraction of the photo-
generated current. The compatibility of the contacts and the density of the impurities
at the junction, in particular, should be optimized for the realization of core–shell
solar cells with high open-circuit voltages, as they play a critical role in determining
the level of shunt resistance. Another major issue is the high series resistance of
solar cells, which is accompanied by a high bulk resistivity of the absorber layer.
The series resistance has a direct effect on the short-circuit current density of the
radial p–n junction based solar cells and can be expected to be dramatically lowered
by optimizing the quality of the shell layer in terms of uniformity, thickness and
crystallinity, and eliminating bulk defects causing a recombination problem.

Si-based high-speed photodiodes with light-trapping mechanism enabled by
inverse-nanowires or nanoholes can possess a new category of high speed and highly
efficient photodiodes that can be implemented in an all-Si platform. Monolithic inte-
gration of surface illuminated Si-based high-speed photodiodes with CMOS circuits
will open new opportunities for optical communication industry to design low-cost
on-board optical modules with less complexity and low-parasitic [3]. The nature of
inverse or negative structures such as holes, inverted pyramids or cones can keep the
surface material unfragmented and offer solution to the first challenge by designing
contacts that can be fabricated with CMOS-compatible conventional processes. On
the other hand, the challenges additional surface area and surface damage along
with higher surface resistance are added issues of this approach. Therefore, CMOS-
compatible surface passivation techniques need to be developed to fully tap into the
potential of micro-/nanostructures in Si PDs [6]. Inherently, having less material
compared to bulk counterparts, micro-/nanostructures cause increase in resistance,
which can limit the speed of a photodiode. However, this drawback can be suppressed
with smart designs of micro-/nanostructures to reduce the capacitance at the same
time. Reduction in capacitance can compensate for the increase in resistance and
eliminate RC time limited response. Even though there are challenges that need to be
addressed to benefit the full potential of Si-based PDs with micro-/nanostructures,
the advantages of monolithic integration and reduced cost of the transceivers that
utilized such PDs, promise real solutions to meet the high demand of connectivity
in modern data centers that are expected to connect numerous computer systems
serving artificial intelligence, internet of things, autonomous vehicles, and social
infrastructures [83, 84].
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Chapter 27
Two-Dimensional Nanomaterials Based
Biosensors

Bahadır Salmankurt and Hikmet Hakan Gürel

Abstract Graphene became thefirst 2D (two-dimensional) nanostructurewhichwas
discovered in 2004. After the synthesis of graphene revealed its unique properties,
researchers set out to discover new 2D nanomaterials: Phosphorene is one of the new
2D nanomaterials. It can be described as a counterpart of graphene. Like graphene, it
has excellent biocompatibility and unique properties making phosphorene very suit-
able for biosensing applications. Two forms of phosphorene, which are called as BP
(Black Phosphorene) and BuP (Blue Phosphorene), have been demonstrated by both
experimental and theoretical studies. BuP possesses a buckled honeycomb lattice,
whereasBP exhibits a puckered non-planar structure. There is now increasing interest
in the unique biological and medical properties of these 2D materials. Our main
focus is on the interaction between DNA/RNA nucleobases (NB) and monolayer
graphene/phosphorene. Better understanding of the interaction between DNA/RNA
nucleobases with these 2D surfaces will provide a better understanding of the same
interaction mechanisms for amino acids, peptides and proteins. According to both
experimental and theoretical studies, the interactions of biomolecules and 2D mate-
rials are long-ranged and very weak. Considering the nature of this interaction, it
is very important to focus on vdW (Van der Waals) interactions. The application of
some external mechanisms, such as charging, can modify the strength of binding.
In this work, the binding mechanism of DNA/RNA nucleobases on 2D monolayer
graphene/phosphorene has been studied using the DFT (Density Functional Theory)
formalism including vdW-DF2 scheme. In this chapter, we report on the trends of the
binding energies and on the effects of the charging on the structural and electronic
properties of the graphene/phosphorene nucleobases systems. The results presented
in this study will be useful for advances in biosensing applications.
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27.1 Introduction

After the discovery of graphene, two-dimensional materials became popular and
scientists predictedmany two-dimensionalmaterials, theoretically [1].Many of these
materials have also been experimentally synthesized over time [2]. The interactions
of two-dimensional materials and biological molecules and the interfaces they form
are still an active research area [3]. It is possible to develop various biomedical
applications such as biosensors using these interfaces. When the surface of the two-
dimensionalmaterial interacts with the biomolecules, the electronic and optical prop-
erties of the surface aremodified [4]. The fixation of organicmolecules on the surface,
defects, adatoms and external effects such as electric field and charging can be used
to ensure to bind organic molecules to the 2D surface [5]. Studies on DNA/RNA
nucleobases and amino acids continue with increasing interest [6].

Because of the large surface-to-volume ratio, 2D materials are good candidates
as molecular diagnostics, DNA sequencing and biosensors [6–10]. Recognition,
detecting and distinguishing of DNA/RNA nucleobases (NB) are very important
especially for genomics, forensic sciences, diagnosis and treatment of some of the
diseases [10].

BP (Black Phosphorene) and BuP (Blue Phosphorene) differ from graphene in
terms of both structural and electronic properties. Unlike graphene, BuP possesses
silicene like structure (a buckled honeycomb lattice), whereas BP exhibits a puckered
non-planar structure, as shown in Fig. 27.1. Furthermore, BP has a direct band gap
with 0.90 eV. Similar to BP, BuP is an indirect band gap semiconductor with 1.92 eV,
as shown in Fig. 27.2 [11, 12].

In this work, the interaction mechanism of NB with Graphene, BuP and BP were
performed by using Density Functional Theory (DFT). Hence, obtained results in

Fig. 27.1 Top and side view of a BlueP and b BlackP
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Fig. 27.2 Band structure of 1 × 1 a BP and b BuP

this study are expected to increase the significance of 2D monolayers for biosensing
applications. Moreover, recent progress in charging molecule-interface interactions
has shown us a new way for modifying the binding mechanism [13–15]. Adding or
removing charge to/from the systems not only allow us to identify a NB but also to
change the binding energies. So, in this work, the charging process is applied to all
NB-2D systems. Obtained results have provided a good way for understanding of
binding mechanism for each system.

27.2 Computational Details

We have performed Density Functional Methods (DFT) for exploring the adsorption
geometries, energies and dynamics of NB/2D interfaces. Our calculations are made
by using the PW-PP approach within DFT as implemented in the Quantum Espresso
code [16]. The DFT has been realized in the GGA, using the PBE method with DFT-
D2 to define vdW interactions [17, 18]. The electron-ion interaction is described
by using ultrasoft PP [19]. The Brodyden -Fletcher-Goldfarb-Shanno (BFGS) mini-
mization scheme was used in geometry optimization [20]. In order to simulate the
two-dimensional monolayer system, we used a 5x5 supercell geometry (Fig. 27.1)
with a vacuum space of about 19 A in the z-direction. It allows us the interaction
between two adjacent unit cells in the periodic cell is negligible. To explore the effects
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of larger supercell geometry, we also calculated the interaction energy between two
periodicmolecules along the xy plane for 5x5 supercell which is about 10meV. Thus,
it is computationally effective strategy to continue to calculations with 5x5 supercell
geometry.

Also, we have realized that it is suitable to use 3 × 4 and and 4 × 4 supercell
geometries (Figure 27.1) for BlackP and BlueP, respectively. For the Brillouin zone
integration, we used a 3 × 3 × 1 k-points mesh [21]. The maximum value of PW
cutoff energy is 35Ry,while the electronic charge density is expanded in a basis cutoff
up to 380 Ry. Integration up to the Fermi surface is done by a smearing technique
using a Methfessel-Paxton (MP) smearing of 0.005 Ry. The relaxation procedure
started in the middle of the supercell on xy plane. To calculated the band structure,
it has been used the special 60 k points along the high symmetry directions. The
geometric structures are drawn by using Vesta software [22].

27.3 Results and Discussions

27.3.1 Relaxed Adsorption Structures and Adsorption
Energies

It is well known that binding energy Eb, can be expressed as follows.

Eb = E2D + ENB−E2D+NB (27.1)

E2D is the total energies of the bare Graphene, BP or BuP, ENB is total energies of bare
the NB (NB=Adenine (A), Guanine (G), Cytosine (C), Thymine(T) and Uracil (U))
and E2D+NB is the total energies of NB adsorbed to each 2D supercell. The binding
energy can be taken as an indicator of strength of interaction between biomolecule
and nanolayer. As an example the optimized geometries of Guanine physiosorbed
on a graphene, BuP and BP sheet are presented in Fig 27.3. respectively.

The adsorption energies and average vertical distances are shown in Table 27.1
for graphene and in Table 27.2 for BP and BuP, respectively.

All NB are placing parallel to graphene, BuP and BP layer. It is possible that
being parallel is the energetically more favourable due to larger contact area. It is
clear that the nature of the interaction between DNA/RNA nucleobases on the 2D
monolayer surface comes from vdW interaction. Hence, it is included Grimme-vdW-
D2 correction to mimic vdW interaction. Guanine has the largest adsorption energy
among all the nucleobases for all 2D monolayers. The larger binding energy is come
from its relative high polarizability compared to other nucleobases [26].

GR-NB interactions show that the interacting energies are in the order of
G>A>T>C>U [9, 10, 13, 23, 27, 28]. Furthermore, the adsorption of NB on WS2,
MoS2 and h-BN, are similar to that of GR. The order of binding energies of the
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Fig. 27.3 Top and side views of optimized binding geometry of individual Guanine (G) on a
Graphene, b BuP and c BP, respectively. Part a is reprinted from, Hikmet Hakan Gürel and Bahadır
Salmankurt. Bindingmechanisms ofDNA/RNAnucleobases adsorbed on graphene under charging:
first-principles van der Waals study. Mater. Res. Express 4 065,401 [13]. https://doi.org/10.1088/
2053-1591/aa6e67. © IOP Publishing. Reproduced with permission. All rights reserved

Table 27.1 Calculated binding energies and average distance of Nucleobases on Phosphorene (in
eV) with previous studies. It is reprinted from, Hikmet Hakan Gürel and Bahadır Salmankurt.
Binding mechanisms of DNA/RNA nucleobases adsorbed on graphene under charging: first-
principles van der Waals study. Mater. Res. Express 4 065,401 [13]. https://doi.org/10.1088/2053-
1591/aa6e67. © IOP Publishing. Reproduced with permission. All rights reserved

NB Graphene

DFT-D2 [13] PBE+vdW [23] vdW-DF [23] DFT-D2 [23] d

G −0.70 −0.99 −0.74 −0.77 3.15

A −0.59 −0.85 −0.63 −0.64 3.20

C −0.52 −0.76 −0.58 −0.57 3.17

T −0.57 −0.76 −0.60 −0.58 3.19

U −0.50 – – −0.50 3.14

Table 27.2 Calculated binding energies (in eV) and average distance (Å) of Nucleobases on BP
and BuP with previous studies

NB Phosphorene

BP BuP BuP [24] BP [25] BP [26] dBP dBuP

G −0.65 −0.64 −0.62 −0.84 −0.97 3.21 3.20

A −0.51 −0.46 –0.48 −0.70 −0.89 3.33 3.26

C −0.49 −0.46 – −0.65 −0.75 3.16 3.26

T −0.47 −0.40 −0.46 −0.65 −0.79 3.32 3.44

U −0.44 −0.37 – – −0.69 3.30 3.33

https://doi.org/10.1088/2053-1591/aa6e67
https://doi.org/10.1088/2053-1591/aa6e67
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NB with BP is G>A>C>T>U and with BuP is G>C>A>T>U. Our order of binding
energies of BP is excellent agreement with the previous reported data [24, 29]. The
binding energy order of Bp and BuP is significantly different from that of other 2D
materials such as graphene, MoS2 and WS2 (G>A>T>C>U) calculated by DFT-D2
method [9]. Main difference possibly comes from the structure of BlueP and BlackP.
Because of the same buckled structure, both silicene, germanene and BlueP have
some binding energy order [30]. The presented binding energies are in an agreement
with previous obtained data [31–33].

27.3.2 Effects of Charging on Electronic Energy and Band
Structure

In recent years, it is possible to see several computational investigations on charged
nanostructures in the literature [34–40]. In this part, we have focused electronic
properties and band structure of the system how can be affected when they are
charged. The charging mechanism can be calculated via increasing/decreasing the
number of electrons in the unit cell.

In this section, it is explained the interaction mechanisms of NB and graphene,
BP and BuP can be changed by applied charging.

The charging can be defined as follows, Q > 0 shows a missing electron, while Q
< 0 shows an extra electron for per unit cell (ucell). Also, Q = 0 shows the neutral
case. It is shown that band structure of U on graphene surface for the neutral Q =
0 e/ucell, Q = −1 e/ucell and Q = +1 e/ucell cases in Fig. 27.4. It can be easily
seen that in Fig. 27.4, Fermi level moves down for Q = +1 e/ucell and Fermi level
moves up for Q = −1 e/ucell. The movement of Fermi level can be observed for
other nucleobases.

The graphene band structure has a Dirac semimetal character. It keeps Dirac
semimetal character even when the NB adsorbed on the graphene. On the other
hand, this Dirac semimetal character has been changed under charging. According
to Fig. 27.4, changing the number of electrons of NB and graphene system leads
to NB on graphene surface system becomes metal. Hence, it is possible to modify
the electronic properties and band structure of DNA/RNA nucleobases and graphene
system by changing the number of electrons of the system.

In Fig. 27.5, it is shown that the band structure of U on BuP as an example for
neutral and charged cases (Q = ±1 e/ucell). After adding an extra electron (Q = −
1 e/ucell) to the U on BlueP system, Fermi level moves up with respect to position
of neutral case. On the other side, after removing an electron (Q=+1 e/ucell) from
the U on BuP system, Fermi level moves down with respect to position of neutral
case. Adsorption process under charging with one added/removed electron breaks
the semiconductor character of both BuP and BP. After adsorption of all DNA/RNA
NB on BP/BuP system, under charging with one added/removed electron (Q = ±1
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Fig. 27.4 (Color Online) Band structure of Uracil on GR. Green line shows the Q= 0 neutral case;
blue line showsQ=−1 e/ucell case; red line showsQ=+1 e/ucell case. It is reprinted from,Hikmet
Hakan Gürel and Bahadır Salmankurt. Binding mechanisms of DNA/RNA nucleobases adsorbed
on graphene under charging: first-principles van der Waals study. Mater. Res. Express 4 065,401
[13]. https://doi.org/10.1088/2053-1591/aa6e67. © IOP Publishing. Reproduced with permission.
All rights reserved

Fig. 27.5 Band structure of U on BlueP. The band structure in the middle shows the neutral Q =
0; on the left shows Q = −1 e/ucell; on the right shows Q = +1 e/ucell. Dash line shows that the
Fermi level and it is set to zero

https://doi.org/10.1088/2053-1591/aa6e67
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e/ucell), becomes metallic such as U on BuP as shown in Fig. 27.5. It is possible say
that semiconductor–metal transition occurs while charging for NB on BP and BuP.

27.3.3 Simulating Adsorbent Behavior Under Charging
via Pulling Mechanism

The pulling mechanism can be utilized to show the binding character of NB on
2D systems under charging. It has been calculated total energies of the optimized
geometries of NB and graphene, BP and BuP system while a NB is pulled out
along z direction perpendicular the monolayer plane. For avoiding movement of 2D
monolayer while pulling process, it has been fixed the carbon/phosphor atoms at the
corner of the monolayer. The pulling energy can be expressed as follows; Ep = ET

[NB + 2D; Q; d] − ET [NB + 2D;Q; d = 0]. NB indicates each of nucleobases. Ep
gets its maximum value by Epmax. Obtained pulling energy results for graphene are
presented in Fig. 27.6. The obtained results suggest that Epmax can be considered
as a strength of the binding between NB and 2D monolayer system. We can simply
say that Epmax can be considered as the energy barrier to pull out the adsorbed NB
from 2D monolayer surface. In case of NB and graphene system, there is a strong
correlation between Epmax and the charging. When we allow to be Q < 0, Epmax
increases. On the other hand, for Q > 0 decreasing of the Epmax is observed. For
example, in adenine and graphene system, Epmax is 0.33 eV for Q = +1 e/ucell.
However, this pulling energy up to 0.72 eV for Q = −1 e/ucell. It suggests 118%
more energy to pull out A from graphene surface with respect to Q = +1 e/ucell.
Hence, in uracil and graphene system, the Epmax energies are 0.47 eV and 0.53 eV
for Q = +1 e/ucell and Q = −1 e/ucell, respectively. The amount of changing of
Epmax is different among NB. The difference depends on the amount of charging
on NB and graphene. Considering Bader charge calculations, when it is added an
extra electron to the system charge distribution between graphene and adenine is
much lower than uracil and graphene system. Because of the charge redistribution,
the electrostatic repulsion/attraction is much bigger for uracil and graphene system
than adenine and graphene system. Because of this reason, when it is added an extra
electron, it is harder to pull out adenine from graphene plain than uracil. When it is
removed an electron from the system just direct opposite, it becomes much harder
to pull out uracil from graphene plain than adenine.

Pulling behaviour of NB on BP and BuP are shown in Fig. 27.7 and Fig. 27.8,
respectively. According to our latest calculations, For BP, when one more electron
added to system (Q=−1 e/ucell), Epmax slightly increases with respect to its neutral
case except forU. ForBuP,when onemore electron added to system (Q = −1 e/ucell),
increasing of Epmax with respect to its neutral case is much higher than BP. For
example, we get maximum rising in C+BuP system for Q = +1 e/ucell. It means
that we need to 100% more energy to pull out C from BuP with respect to neutral
state Q = 0. It is also needed 55% more energy to pull out U from BuP surface for
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Fig. 27.6 (Color Online) Pulling technique of a NB from graphene surface (a). Pulling energies of
Adenine (b), Guanine (c), Cytosine (d), Thymine (e) and Uracil (f) from graphene surface. Green
line shows the neutral Q= 0; blue line ishows Q=−1 e/ucell; red line shows Q=+1 e/ucell. It is
reprinted from, Hikmet Hakan Gürel and Bahadır Salmankurt. Binding mechanisms of DNA/RNA
nucleobases adsorbed on graphene under charging: first-principles van derWaals study. Mater. Res.
Express 4 065,401. https://doi.org/10.1088/2053-1591/aa6e67. © IOP Publishing. Reproducedwith
permission. All rights reserved

Fig. 27.7 (Color Online) Pulling energies of a NB from BuP layer. Green line shows the neutral
Q = 0; blue line shows Q = −1 e/ucell; red line shows Q = +1 e/ucell

https://doi.org/10.1088/2053-1591/aa6e67
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Fig. 27.8 (Color Online) Pulling energies of a NB from BP. Green line shows the neutral Q = 0;
blue line shows Q = −1 e/ucell; red line shows Q = +1 e/ucell

under Q = −1 e/ucell. It is possible to increase these examples. There are several
factors to affect the pulling mechanism under charging. The main reason behind
these differences is the amount of charge redistribution on system. Considering the
obtained Bader charge analysis, the charging can change the charge redistribution so
electrostatic repulsion/attraction can be different between BP/BuP and NB. Another
reason is that structural properties of the monolayers and NB can play a key role on
this different behaviour. Binding mechanism is also affected by structural geometry
of BP andBuP. In this context, we also need to consider the structural geometry ofNB
such as ring geometry, number of O atoms, etc. It is observed that O atom responds
charging much more than other atoms. It may come from the electronegativity of O.
We simply conclude that NB act mainly electron acceptor from BP/BuP monolayer.

It is also calculated magnetic moments of the NB 2D monolayer system under
for neutral and charged cases. It is applicable method to tune the magnetic moment
of the 2D monolayer via adsorbed with NB or changing the number of the electrons
of the systems. However, the spin polarized simulations show that it is not observed
any magnetic moment (µ = 0).

27.4 Conclusion

In this study, binding mechanism of DNA/RNA NB on 2D graphene, BP and BuP
monolayer have been simulated using DFT method including vdW interactions. It
is aimed to investigate effects of charging on binding mechanism. Our calculations
show that the nature of adsorption is mainly due to van der Waals interactions.
All the NB are physisorbed onto graphene, BP, and BuP surface and the strength
of the interaction of the DNA/RNA NB with BlackP is G>A>C>T>U with BlueP
is G>C>A>T>U. The order of the binding energy of graphene, MoS2 and WS2 is
G>A>T>C>U and it is significantly different from BP and BuP.

In neutral cases, adsorption of NB on BP has no effect on its direct bandgap
character. On the other side, adsorption of NB on BuP changes its indirect band gap
and also band gap value.

After adsorption of G and A, BuP becomes direct band gap semiconductor with
lower band gap value with respect to pristine BuP. According to our band structure
calculations Fermi level moves down for Q = +1 e/ucell and moves up for Q = −1
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e/ucell. In case of Q=±1 e/ucell, semiconductor character of both NB adsorbed on
BuP and BP are broken, and they become metal. There is a semiconductor–metal
transition for both BP and BuP for different level of charging. In this study, we
showed that binding energies could be modifying via adding or removing to/from
NB and graphene, BP and BuP system. Our recent analysis is clearly showed that
binding mechanism, pulling energy, electronic properties are strongly depended
to the total number of charges of the system. Graphene, BP and BuP are good
candidates for the applications in fast sequencing devices for DNA/RNA NB.
Furthermore, our results have the potential to contribute to experimental studies and
may be valuable for advances in the fields of biosensors and nano-biotechnology.
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Chapter 28
Recent Applications of Microfluidics
in Bionanotechnology

B. Hacısalihoğlu and Z. P. Çakar

Abstract Microfluidic systems provide many advantages for biological studies,
such as rapid and precise control of the cellular microenvironment, multiplexed anal-
ysis and integration of multiple experimental steps on a single platform. This chapter
reviews major recent microfluidic applications in bionanotechnology, including
microfluidic bioreactors, microbial strain development, microbial behavior and
single-cell studies. Additionally, recent applications of microfluidics in common
molecular biology methods such as nucleic acid amplification and DNAmicroarrays
are discussed.

28.1 Introduction

Microfluidics has been established as a major distinct technological area and
microfluidic platforms with novel functions have been continuously introduced in
recent years. Besides, studies over the past 30 years resulted in microdevices that
enable efficient analysis of systems which were elusive to be investigated by conven-
tional technologies [1]. Microfluidic devices allow miniaturization and paralleliza-
tion of multiple experiments with the ability of precise and automated control of
liquids at minute volumes. Hence, microfluidics offers several advantages in biolog-
ical experiments such as reduced manual labor and errors as well as the lower
consumption of reagents and costs. Developments in the fabrication of microflu-
idic devices have led to the production of devices at a precision of single micron or
even lower [2].
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Microfluidics has contributed to the biological sciences by, for example, in vitro
diagnostics [3], bio-based production processes [4] and microbial ecology [5]. In
vitro testing of biological samples has a major role in clinical diagnosis. Point-
of-care (POC) tests with a rapid and accurate response and multiplexing capacity
could open up new directions in health care delivery in low-resource settings [6].
Microfluidics-basedPOC tests partially or fully integrate chemical lysis, isolation and
amplification of nucleic acids and optical detection on a platform [7]. Microfluidics
has also potential to be used in the development of POC tools for rapid and low-cost
identification of bacterial strains with antimicrobial resistance [8].

Microfluidic cultivation devices enable to study the effect of large-scale bioreactor
conditions on cellular growth dynamics and product formation, providing clues to
the strain development for the improved performance in the industrial bioprocesses
[9]. Microfluidics is also compatible with conventional cultivation systems and can
be used to separate dead cells and debris [10] and for the rapid detection of bacterial
contamination in mammalian cell cultures [11].

Microfluidics can enable spatial control and constant tracking of single- cells [2].
Additionally, microfluidic devices provide rapidmolecular transport within the chan-
nels, hence, allow dynamic control of the chemical environment of cells through fluid
manipulation. Such devices are promising tools to investigate stemcell differentiation
at single-cell resolution and the formation of organoids [12].

We had previously reviewed the microfluidics applications in bionanotechnology
extensively [13]. However, since that review (published in early 2016), there has
been an increasing interest in this field, resulting in many recent publications. In
this respect, this chapter reviews recent literature on a range of current and poten-
tial applications of microfluidics within bionanotechnology. Firstly, it focuses on
microfluidic bioreactors and then discusses microfluidics applications in microbial
behavior studies, strain development and single-cell studies. Finally, the recent exam-
ples of the implementation of microfluidics to commonly used biological techniques
such as nucleic acid amplification and DNA microarrays are discussed.

28.2 Microfluidic Bioreactors

Microfluidic bioreactors are promising bioprocessing systemswith improved param-
eter control, the low consumption of reagents, parallel operation, and automation.
Microfluidics bioreactor platforms are mainly in the form of droplets and chambers
that support a stream of fluids. The discrete droplets are generated in the micro-
pores that shear two immiscible phases in one another [14]. The droplets allow
compartmentalization of different cells and experiment conditions in a volume down
to even femtoliter scale [15]. As the droplets form a mixed population, encoding
and decoding of the droplet content are critical for the tracking of multiple condi-
tions. Spectroscopic encoding based on fluorescent dyes is frequently used for this
purpose. Recently, a method based on colored polystyrene beads has been suggested
as a potent droplet encoding system. The colored beads were encapsulated to gather
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Table 28.1 Selected reports on microfluidic bioreactors

Improvement area Reference

Encoding/ decoding of the droplet content [16]

Mimicking biological membranes [20]

Biomass trapping for perfusion cultures [23]

Precise control of pH and dilution rate [24]

Screening and optimization of bioproducts [25, 26]

Multilayered vessels for the functional organization of different cell types in 3D cell
culture

[28]

with biological samples and the content of the droplets in-flow was quantified via
automated analysis of images obtained by bright-field microscopy [16]. That report
and some other selected reports on microfluidic bioreactors are listed in Table 28.1.

Dropletmicrofluidics has been recently used to evaluatemicrobial producer strains
for valuable chemicals [17], to study enzyme activity [18] and for the screening of
enzyme evolution libraries [19]. By droplet-based microfluidic devices, it is possible
to form giant liposomes or giant unilamellar vesicles (GUVs) that contain a lipid
bilayer resembling a biological membrane. GUVs have potential as a microbial
culture system owing to its natural permeability that allows modification of aqueous
conditions inside or outside of the compartment. Immobilization of GUVs provides a
direct observation systemand improves stability under culture conditions [20]. Liquid
droplets coated with hydrophobic particles, which are called liquid marbles, expand
the applicability of droplet fluidics as an in vitro 3D model of cell–cell interactions
[21]. Recently, real-time differentiation of the embryonic body has been monitored
by using a transparent silica nanoparticle coating on the liquid marbles [22].

Microfluidic devices in chamber format have been described for cultivations.
Pico-liter sized chambers enable the restriction of cellular growth to monolayers
and provide a proper arrangement for imaging and image analysis [23]. Microfluidic
chamber systems that allow the flow of fresh media while trapping the biomass in
special zones in the bioreactor are suitable for perfusion cultures, which have poten-
tial applicability in the optimization of macroscale fermentations with immobilized
cells. Such a microfluidic perfusion culture was assessed for the continuous invertase
production by the yeast Saccharomyces cerevisiae. Precise control over the process
parameters such as dilution rate and pH supported stable cell growth and enzyme
activity for an extended duration [24].

Microfluidic reactors are also efficiently used in strain screening and optimization
ofmicrobial productionof biochemical compounds.Amicrofluidic device containing
12 individual bioreactors has been demonstrated as an efficient system to reduce the
time required to collectmeaningful data during the screening of yeast strains for lactic
acid production [25] Down-scaling of complex processes also allows throughput
for production optimization. The optimized enzymatic production of levodopa and
dopamine in amicrofluidic systemmaintained the increased yields when up-scaled to
a milliliter system [26]. Besides, such systems can be implemented in algae culturing
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to accelerate the tedious work of screening competent strains and fertilizers [27].
Microfluidic bioreactors provide novel platforms for 3D cell culture and tissue engi-
neering, as well. Multilayered vessels imitate the natural structure of vascular walls
and enable the functional organization of different cell types [28].

28.3 Microbial Behaviour Studies by Microfluidics

Microfluidic technologies have been recognized for providing a novel in situ system
to studymicrobial behavior. Some of the recent reports onmicrofluidics-basedmoni-
toring ofmicrobial behaviour are listed inTable 28.2.Different geometrical structures
at the sub-micron scale have been fabricated; the motility characteristics of bacteria
in such structures could be relevant in the context of host-microbe interactions [29].
Recently, microfluidic approaches have been adapted for the interrogation of micro-
bial interactions in a variety of ecosystems. Microbial habitats are often defined by
their heterogeneity, from which certain microorganisms benefit by their chemotactic
ability. A chemotaxis assay has been demonstrated to analyze aquatic microbial
behavior at the microscale, which is difficult to achieve by conventional oceano-
graphic techniques. The platform was designed as an array of wells that support the
chemotactic accumulation of microorganisms, where each well was connected to the
exterior seawater environment by microfluidic channels [30]. More recently, Täuber
et al. designed a microfluidic platform that facilitates analysis of cellular behavior
under dynamic environmental conditions at the single-cell level. A model organism,
Corynebacterium glutamicum, was cultivated for the first time, using nutrient profiles
mimicking the environmental conditions present in large-scale bioreactors [31].

Microfluidics overcomes the limitations in real-time microscopic studies with
opaque backgrounds such as soil. A microfluidic device, Tracking Root Interactions
System (TRIS), allowed the growth of roots of Arabidopsis seedlings into nine inde-
pendent microfluidic chambers. The platform allowed live-imaging of chemotactic
colonization of fluorescently labeled bacteria on the root sections, which could give
clues to the complex root microenvironment [32]. Microfluidics also opens up the
opportunity to study chemotaxis in the context of variations among individuals of
a microbial population. In a recent study, the differences in chemotactic sensitivity
among a clonal bacterial population have been established by using a microfluidic

Table 28.2 Recent examples of microfluidics-based monitoring of microbial behaviour

Microbial behaviour Reference

Bacterial motility in different geometrical structures [29]

Aquatic microbial behavior at the microscale [30]

Cellular behaviour under dynamic environmental conditions at the single-cell level [31]

Chemotactic colonization of bacteria on the plant root [32]

Response to antimicrobial agents [34]
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device in the form of an iterative T-maze which had a different range of chemical
gradient at each junction, so that bacteria were compelled to decision-making [33].

Microfluidics has been applied to studymicrobial response to drugs and antibiotics
for over a decade. Advanced microscopy techniques implemented within microflu-
idic systems allow the analysis of single cells quantitatively which has enabled the
comparison of responses of wild-type and mutant bacteria in response to antimicro-
bial agents [34]. Conventional antibiotic susceptibility tests employ either disc diffu-
sion or broth dilution methods to assess the inhibition of bacterial growth in the pres-
ence of various concentrations of antibiotics. Microfluidic systems reduce the occur-
rence of false results by eliminating manual intervention. However, such systems
necessitate a reliable concentration gradient. To this end, centrifugal microfluidic
platforms that exploit centrifugal flow for mixing the fluids have been presented
[35]. Alternatively, Shi et al. developed a microfluidic chip with nine improved
micro-channels for mixing the liquids under laminar flow [36].

28.4 Strain Development

The advancement of sustainable bioindustries requires new tools that expedite the
strain construction process, which typically consists of iterative design-built-and-test
cycles.Microfluidics has the potential to be incorporatedwithin the synthetic biology
workflow including gene assembly, DNA delivery into host strains and phenotypic
evaluation of the engineered strains [37]. Biological applications often require effi-
cient merging and mixing of reagents. Digital microfluidic (DMF) devices based
on the electro-wetting phenomenon address droplets discretely, therefore they are
advantageous for such fluidic operations. DMF has been applied for the automation
of bacterial transformation by electroporation [38] and heat-shock protocols [39],
which are important techniques in the rational construction of mutant libraries.

After construction, the genetic libraries—typically of high diversity- must be
screened to detect the rather rare mutants with phenotypes of interest. Microfluidics
offers compartmentalized cell culture settings suitable for high-throughput screening.
Moreover, microfluidic devices that have the feature of targeted cell isolation from
a heterogeneous population have been developed. A recent example was based on
a self-assembled nanoporous membrane that enabled nutrient transport into micro-
compartments and supported chemostat-like growth conditions. The compartments
were connected to anotherH-shaped channelmade upof aUV-curablematerialwhich
enabled selective blockingof themicro-chambers that containednon-target cells [40].
Syntrophic Co-culture Amplification of Production phenotype (SnoCAP) has also
been introduced recently to facilitate the phenotype evaluation in strain development.
It employed a metabolic cross-feeding between producer and sensor strains to trans-
late the concentration of targetmolecules into distinct co-culture growth features [41].

Microfluidic screening systems have also been used in the context of non-directed
strain improvement. Non-GMO approaches such as random mutagenesis and evolu-
tionary engineering are preferred especially in the development process of strains
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used in the food industry [42, 43]. The application of screening systems using
microfluidics in strain improvement of lactic acid bacteria has been recently reviewed
[44]. In one of the studies, drop-based microfluidics enabled the detection of the
rare Lactococcus lactis variants with improved riboflavin production from a mutant
library obtained by mild chemical mutagenesis [45]. Microdroplets have also been
employed in the evolution-based selection of microalgae variants with overproduc-
tion of lipids [46]. Most recently, a microbial microdroplet culture system (MMC)
provided an integrated platform for automated, high-throughput cultivation and adap-
tive evolution of microorganisms. In a proof-of-concept study, adaptive evolution of
methanol-essential Escherichia coli strain for 18 days in MMC resulted in strains
with higher growth rates [47].

28.5 Single-Cell Studies

The role of non-genetic heterogeneity of cells in the biological processes such as
tumor development and stem cell differentiation have been already recognized for a
few decades. However, considering the sizes and concentration of cellular compo-
nents, the conventional analysis tools are limited in terms of their sensitivity and
detection limits. In this respect, several methods have been developed for microflu-
idic single-cell studies. A successful captivation of the single cells is the basis of
single-cell studies. Effective emulsification of single cells is critical and can be a
challenge due to cell sedimentation and aggregation. The efficiency of single-cell
encapsulation of THP-1, a human monocytic leukemia cell line, in microdroplets
was increased by the use of neutral buoyancy [48]. There are also several single-cell
trapping strategies based on hydrodynamic methods, electrophoresis, and colloids
[49]. Of these, hydrodynamicmethods such as droplet microfluidics can achieve high
throughput but may require integration to other methods to improve the accuracy of
the analysis [50]. Microfluidic platforms that integrate isolation and downstream
analysis are promising for the detection of rare circulating tumor cells, which have
been considered as an alternative to biopsy [51].

Zhou et al. integrated amicrofluidic device to impedance spectroscopy. The differ-
entiation of single mouse embryonic stem cells captured by hydrodynamic trapping
was analysed by tracking the variation of the cellular electrical parameters at different
time points [52]. Electrical impedance spectroscopywas also proposed as a label-free
tool for the dynamic single-cell studies of microorganisms. Zhu et al. described the
use of impedance spectroscopy in the microfluidic analysis of the growth of single
Schizosaccharomyces pombe cells [53].

In contrast to the analysis of total RNA obtained by multicell lysate, single-cell
transcriptome analysis provides information about cell-specific regulations. A “dig-
ital hydrolysate” approach has been introduced to determine the number of single-cell
RNA sequencing analysis required to represent a cell population.Multiple single-cell
transcriptomes were computationally averaged and compared to conventional multi-
cell transcriptome analysis. It was concluded that 15 single-cell transcriptomes were
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sufficient to characterize the fluorescence ubiquitination-based cell cycle indicator
(FUCCI)-expressing-cells [54].

Single-cell gene expression has the potential to provide clues about cancer treat-
ment selections. In this respect, microfluidics has been used for multiplexed gene
expression profiling of human cancer cells in response to drug treatments. The
designed microchip integrated the cell lysis and reverse transcription of the released
mRNA, and it enabled the detection of the genotoxic effect of the tested drugs [55].
Cancer stem cells are a small portion of the heterogeneous cell population of cancer
and are responsible for the metastases. Microfluidics has been effectively applied to
identify and quantify cancer stem cells based on the detection of single-cell derived
spheres [56]. Additionally, single-cell RNA sequencing has been used to investigate
the gene expression dynamics during the early differentiation of human pluripo-
tent stem cells, which enabled the identification of the key transcription factors and
signalling pathways involved in the process [57].

28.6 Nucleic Acid Amplification

Nucleic acid amplification techniques enable the detection of the low-copy number of
DNA and rare variants. Thus, they have been increasingly used in medical diagnosis
[58], forensic sciences [59], and environmental sampling [60].

Polymerase chain reaction (PCR) was the first nucleic acid amplification method
developed on microfluidics systems. Selected reports on the improvement of nucleic
acid amplification using microfluidic systems are listed in Table 28.3. Recent
advances inmicrofluidic PCR include improvements in the chamber design to prevent
bubble formation and reagent evaporation [61]. Another study focused on the design
of the microchannel and heat transfer system to enhance the accuracy of the process
[62]. Besides, PCR devices that amplify DNA extremely fast (<2 s/cycle) with subse-
quent detection [63] and melting analysis have been developed [64]. Elimination of
post-PCR analysis makes these systems suitable for POC testing [65].

Loop-mediated isothermal amplification (LAMP) is a relatively new nucleic acid
amplification method. LAMP is conducted at constant temperatures ranging from
37 to 65 °C. Because of its simpler heating system, LAMP can be an alternative

Table 28.3 Selected reports on improvements of nucleic acid amplification

Improvement area Reference

Prevention of bubble formation and evaporation [61]

Heat transfer system for PCR [62]

Integration to subsequent detection step [63]

Low-copy nucleic acid detection [67]

Integration to preceding nucleic acid isolation [69]

Real-time analysis and quantification of nucleic acid amplification [71]
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to PCR for the implementation in POC testing devices. While the specificity of the
PCR depends on the optimized annealing temperatures, LAMP achieves specificity
of amplification by more complex primer designs that allow auto-cycling strand
displacement after primer annealing [66]. Implementation of microfluidics to reverse
transcription LAMPhas been useful to detect disease-causing viruses. Awax-printed
papermicrofluidic chip that conducts reverse transcriptionLAMPhas beendeveloped
for rapid detection of Zika virus as fast as 15 min at a limit of detection as low
as 1 copy/µL [67]. In another study, the prior sample preparation step has been
integrated into isothermal nucleic acid amplification of H1N1 influenza virus on a
microfluidic chip utilizing capillary forces through a polydimethylsiloxane (PDMS)
surface treatment [68]. Recently, automation of magnetic-bead extraction of nucleic
acids has been demonstrated with a direct transfer to nucleic acid amplification [69].

Microfluidic LAMP devices have also the potential to be used in the detection of
mutations associatedwith diseases. Cao et al. designed a centrifugalmicrofluidic chip
integrated with visual detection of LAMP amplification of the molecular markers
of myeloproliferative neoplasms. The reaction mixture was centrifuged into the
microchambers, in which the target primers were immobilized, and the amplification
was detected by color-change [70]. Hardinge et al. combined LAMP with the biolu-
minescent assay in real-time (LAMP-BART). They encapsulated droplets containing
LAMB-BART reagents and DNA stably within hydrogel shells. DNA amplification
could be determined from the light output and quantified in real-time [71].

28.7 DNA Microarrays

DNA microarrays have been frequently applied in profiling of gene expression,
detection of single nucleotide polymorphisms and nucleic acid-based diagnostics.
Microfluidic systems offer advantages over conventional DNA microarray formats
in terms of shortened assay time and consistency of the hybridization quality due
to the elimination of manual operation [72]. The hybridization signal strength and
occurrence of false-positive results in the microfluidic DNA microarray is an impor-
tant issue, especially for point mutation detection during the screening of genetically
inherited diseases. An automated microfluidic DNA microarray device has been
developed to achieve precise control over the hybridization parameters, including
microfluidic flow and temperature. In this platform, the specificity of the point muta-
tion detection was improved by the application of a graphene oxide treatment step,
which quenched the dyes bound to non-hybridized DNA [72].

One of the time-consuming steps of the commercial DNA microarrays is the
hybridization of nucleic acids to probes, which is usually performed overnight. A
microfluidic DNAmicroarray platform can enable a significantly reduced hybridiza-
tion time. A system based on the active electrophoresis that transports the biotin- and
fluorophore-labeled DNA samples through the streptavidin-functionalized hydrogel
could discriminate the genotypes of five different clinical targets as rapid as 3 h [73].
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The morphology of the oligonucleotide spots is another important factor during
the signal detection on the hybridization arrays. A uniform deposition and immo-
bilization of the biomolecules are necessary for the proper spot formation, thus
for the accuracy of the miniaturized microarrays. The surface characteristics of the
microarray substrates can be modified by coating with polymers to control the size
and the spreading of the droplets in which the biomolecules are suspended. Sola et al.
introduced an N, N-dimethylacrylamide (DMA) derived polymer coating to increase
the hydrophobicity of the surface, which helped prevent non-specific interactions
with the surface [74]. This approach was more recently extended to accommodate
probes with different chemistries on multi-chemistry DNA arrays [75]. Additionally,
integration of cell-free expression systems to DNA microarray on microfluidic plat-
forms enables the production of protein microarrays in a cost-effective way. Such
systems lay the foundation for the analysis of complex protein networks [76].

28.8 Conclusions

Microfluidics has provided researchers several advantages such as rapid and precise
control over experimental parameters, reducedmanual labor, parallelization of exper-
iments and increased throughput.Novelmicrofluidic tools can enable to study biolog-
ical phenomena at a single-cell level, which are elusive by macro-scale techniques.
Miniaturization of common molecular biology methods such as DNA microarray
has improved the assay performances. Future advances in microfluidics can make
the large-scale single-cell analysis a practical reality.
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Chapter 29
Synthesis and Biological Use
of Nanomaterials

Manolya Kukut Hatipoglu and Pinar Akkus Sut

Abstract Nanomaterials are themost evolving and developing area of the nanotech-
nology. They are considered as uniquematerials regarding their size-dependent prop-
erties. Hence, they became essential in human life in particular they are a very valu-
able tool in modern medicine. Nanomaterials are used for both diagnostic and treat-
ment purposes including design of fluorescent biological markers/labels, synthesis of
molecules for diagnosis, drug and gene delivery systems, bio-detection of antibodies
and proteins, genetic and tissue engineering, detection and treatment of tumors and
contrast agent enhancement for magnetic resonance imaging. The type of the nano-
material (or nanodevices) varies with the need and the purpose of the applications.
Liposomes and micelles, dendrimers, quantum dots, magnetic nanoparticles, gold
nanoparticles and silver nanoparticles are some of the most important nanoparticles
to be used in biology and medicine. The aim of this chapter is firstly to explain
the rationale of utilization of nanomaterials to biology and medicine, secondly to
overview the synthesis methods and biological applications of nanomaterials.

29.1 Introduction

Nanomaterials are the advanced products of nanotechnology that are interpreted in
assorted fields such as medicine, cosmetics, electronics, coatings and many more.
The application of nanoscale technology to medicine is an important contribution
to molecular imaging, diagnostics and drug delivery systems. Nanomaterials offers
solutions in molecular levels by enabling detection of single molecules in complex
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biological environments and targeting specific tissues of related diseases for the
treatment. Nanomaterials are providing better treatment options compared to conven-
tional methods that are used in physiology, pathology and other specialized medical
sciences. Targeted delivery with more precision, lower toxicity and less adverse
effects of drugs are just a few advantages that the use nanomaterials brings. The
synthesis/preparation methods of nanomaterials varies depending on the need. There
is a vast number of techniques starting from a great collection of precursors. These
techniques include both dry/physical and wet methods based on the type of nano-
material [1]. Ball milling, vapor condensation, chemical vapor deposition and laser
ablation are considered as drymethodswhereas sol-gel, co-precipitation,microemul-
sion and solvothermal methods are known as wet techniques [1]. There are also green
synthesis approaches where microorganisms and plants are used to produce nano-
materials. This chapter contains synthesis/preparation methods and biological use
of most common nanomaterials including liposomes, micelles, metal nanoparticles,
magnetic nanoparticles, dendrimers and carbon nanotubes. Quantum dots, one of
the common nanomaterials that are employed in medicine, are not subject of this
chapter. The synthesis and biological applications of quantum dots was reviewed in
detail elsewhere [2].

29.2 Liposomes

Liposomes are micrometer or nanometer sized artificial carriers [3]. They can be
synthesized from cholesterol and natural non-toxic phospholipids as spherical vesi-
cles [3]. Liposomes have become promising drug delivery systems due to their size,
amphiphilic character and biocompatibility since their discovery in the 1970s [4–6].
Therefore, they have been used as one of the earliest nanoscale platform for ther-
apeutic delivery to the central nervous system (CNS) [7]. Properties of liposomes
varies to a great extend based on lipid composition, surface charge, size and method
of preparation [3]. Liposomes are bilayer particles that give the opportunity to adjust
the rigidity or fluidity and charge by the choice of its components. As an example,
the use of phosphatidylcholine from egg or soybean creates more permeable and
less stable bilayers than long acyl chains which form rigid and relatively imperme-
able bilayer structure [8–10]. The phospholipid nature of forming closed structures
such as spherical particles in aqueous solutions enables transportation of lipid and
liquid drugs. Since the liposomes behave amphiphilic in aqueous environment, self-
assembly and thermodynamic phase properties entropically affect the enclosure of
their hydrophobic sections into spherical bilayers (see Fig. 29.1) [3, 11].

Liposomes can be fabricated with particle size ranging from 10 nm to several
micrometers as spherical vehicles. Generally, the polar head groups of the lipid
bilayer located in the pathway of interior and exterior aqueous phases. A represen-
tative phospholipid structure is shown in Fig. 29.2 [11].
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Fig. 29.1 Illustration of a liposome structure. Reprinted from [11] with permission from creative
commons

29.2.1 Classification of Liposomes

Liposomes are divided into five categories in terms of work and mechanism of
intracellular delivery including; conventional liposomes, pH sensitive liposomes,
cationic liposomes, immune liposomes and long circulating liposomes. A list of
various types of liposomes are collected in Table 29.1 [12].

Conventional liposomes; were first synthesized by Immordino et al. in 2006
for pharmaceutical applications [13]. This type of liposomes are usually fabri-
cated fromphospholipids or lipids such as 1,2-distearoryl-sn-glycero-3-phosphatidyl
choline (DSPC), sphingomyelin, egg phosphatidylcholine and monosialoganglio-
side [14]. pH-sensitive liposomes; were first used in 1987 by Wang and Huang
for in vitro gene transfection [15]. There are vast compositions of pH-sensitive
liposomes which genuinely bind to cell surface followed by internalization into
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Fig. 29.2 A representative phospholipid structure. Reprinted from [11] with permission from
creative commons

Table 29.1 List of different types of liposomes [12]

Vesicle type Main components

Emulsomes A mixture of fats and triglycerides stabilized by high proportion of lecithin

Enzymosomes Complexes of lipids and enzymatic proteins

Sphyngosomes Sphingolipids containing amide and ether bonds

Transfersomes A mixture of single chain surfactant, phospholipids and ethanol (10%)

Ethosomes Phospholipids and ethanol (20–40%)

Pharmacosomes Conjugate of drug and phospholipid

Virosomes Viral glycoproteins

Aquasomes Tin oxide, diamonds or brushite core covered with oligomeric film

Bilosomes Bile salts and acids (deoxycholic acid)

Niosomes Non-ionic surfactants (span and tween)

endosomes. The internal environment of endosomes have more acidic pH than
the external intermediate. Since the inner pH of endosomes around 6.50 [16], the
content of conventional liposomes were delivered to lysosomes and stained. To
overcome the accumulation of liposomes pH-sensitive liposomes were proposed
which was inspired by viruses that would deliver their cargo to the cytosol after
penetration to endosomal membrane before reaching the lysosomes [17]. Cationic
liposomes, synthesis of these particles is relatively simple compared to other types
of liposomes. The procedure only requires the mixing of cationic lipids such as
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1,2-di-O-octadecenyl-3-trimethylammonium propane (DOTMA), 1,2-dilauroyl-sn-
glycero-3-ethylphosphocholine (EPC), dimethyldioctadecylammonium (DDAB),
1,2-dioleyloxy-3-dimethylaminopropane (DODMA) with their cargo and the it is
followed by the administration of the particles for the delivery. Immune liposomes; in
addition to delivery of therapeutics, liposomes can be used in generation of immune
response by acting as immunological adjuvant. Encapsulation or incorporation of
antigens can enhance the immune response such as macrophage activation, anti-
body production [18], effective induction of cytotoxic cell [19] and subsequent anti-
tumor activity [20]. Biodegradability, non-toxic nature, lowantigenicity and targeting
potential of liposomes makes them favorable among other particles. There is great
number of data showing that liposomes are outstanding adjuvants for generation of
immune response [21, 22, 23]. Immune liposomes are also valuable tools considering
the given data for immunoassays and diagnostic tests. Long circulating liposomes;
disposition of liposomes generally occurs through mononuclear phagocytic system
with intrahepatic uptake. One of the first examples of extended time in the systemic
circulationof liposomeswas the administrationof gangliosideGM1or phosphatidyli-
nositol at 5–10% into the bilayer [24, 25]. Maximum circulation time was reached
after modification of lipids with polyethylene glycol. It was also shown that, both
size and number of bilayers were two major factors on determination systemic circu-
lation time which limits their uptake by immunoglobulins, macrophage uptake or
fibronectins.

Depending on their size and number of bilayers liposomes can be divided in
two groups as multilamellar vesicles (MLV) and unilamellar vesicles. Unilamellar
vesicles can be divided in two sub-groups as large unilamellar vesicles (LUV) and
small unilamellar vesicles (SUV) [26]. Unilamellar liposomes consist of single phos-
pholipid bilayer encapsulating the aqueous solution. Multilamellar liposomes bears
several unilamellar vesicles one inside in another creating an onion like structure.
The phospholipid layers in multilamellar liposomes are separated by the layer of
water.

29.2.2 Synthesis Methods of Liposomes

The synthesis of liposomes composed of four stages including; (a) drying down the
lipids from organic solvent, (b) dispersing the lipid in aqueous media, (c) purifying
the resultant liposome and (d) characterization of the final product. Methods of lipo-
some loading is divided in to two as passive loading where liposomes are formed
simultaneously with drug loading, and active loading which requires generation of
liposomes with transmembrane gradient prior to loading of the active agents. Passive
loading techniques of liposomes is composed of threemethods referred asmechanical
dispersion, solvent dispersion and detergent removalmethod.Mechanical dispersion
method, contains different types of techniques such as sonication, French pressure
cell, freeze-thawing, lipid film hydration, micro emulsification and membrane extru-
sion. Sonication is the most common route of SUV synthesis. Probe sonication and
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sonication baths can be used in preparation of MLVs but there are major drawbacks
of this method which can specified as low internal volume or encapsulation effi-
ciency, degradation of phospholipids and cargo of the liposomes, metal pollution
caused by the sonicator probe tip and fabrication of MVLs and SUVs at the same
time. French pressure cell, is an extrusion technique for preparation of MLVs. This
method offers gentle handling of delicate materials such as proteins. Working with
small volumes and difficulty in controlling the temperature are main disadvantages
of this method. Freeze-thawing, method can be used to prepare unilamellar vesicles
by instant freezing and slow thawing cycles of SUVs. The fusion of SUVs during
the process results in unilamellar vesicles where the encapsulation efficiency ranges
from 20 to 30% [27]. Solvent dispersion method, involves injection of a solution of
lipids containing diethyl ether or ether methanol mixture into an aqueous solution of
the cargo under reduced pressure. Liposomes can be obtained after the removal of
the solvent from the system. Another solvent evaporation set up is injection of lipid
solution in ethanol to an excess buffer where MLVs can be formed. One of the hand-
icaps of this process is controlling the uniformity of the particle size [28]. Reverse
phase evaporation method is another technique that is used in synthesis of liposomes.
It offers entrapment of large amounts of aqueous material and a high aqueous space
to lipid ratio. Formation of inverted micelles by sonication of an aqueous phase in
the presence of an organic solvent containing amphiphilic lipids. The evaporation
of organic solvent results in viscous gel form of inverted micelles. The presence of
excess amount of phospholipids creates liposomes out of these invertedmicelles. The
combination of different lipids or volume to lipid ratios can be used to producemulti-
lamellar liposomes [29, 30]. Detergent removal method; this method includes a few
different techniques such as dialysis and gel-permeation chromatography. Detergents
are used to solubilize lipids during liposome synthesis. The micelles in the mixture
behave better after removal of detergent from the environment. For this purpose
detergents can removed from the solution by dialysis bags. Another method for the
removal of the detergent is gel-permeation chromatography which would eliminate
the detergent by size special chromatography.

29.2.3 Biological Applications of Liposomes

Liposomes are not only experimental tool for delivery purposes, they are also
commercially available products for clinical and veterinary use. They have utilized to
several fields of life science. Liposomes have showngreat ability on delivery of drugs,
gene, vaccine and diagnostic products. They are also used as cosmetic ingredients
and encapsulation of food [31, 32].

For the drug delivery purposes, liposomes are used to modify pharmacokinetics
of drug to obtain higher therapeutic efficacy with minimum toxicity [3]. In addition
to their well-established biocompatibility and safety profiles; they offer enhanced
encapsulation efficiency for both hydrophilic and hydrophobic drugs, improved
bioavailability of drugs and controlled release of their cargo [33, 34]. They are used in
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parenteral, topical, oral, ophthalmic and pulmonary administrations for vast number
of diseases including but not limited to CNS diseases, inflammatory diseases, bacte-
rial and fungal infections, skin conditions and administration of local anesthetics
[35]. Chemotherapeutic agents are known by their poor pharmacokinetic proper-
ties. This is where liposomes come to play to enhance the physical and chemical
stability of the chemotherapeutics. There is a great number of examples of lipo-
somes that are used as chemotherapeutic agent carriers for breast cancer, multi-drug
resistant breast cancer, ovarian carcinoma, non-small cell lung carcinoma, multi-
drug resistant ovarian carcinoma, gastric cancer, brain cancer, head and neck cancer
[36, 37, 38, 39]. The first introduction of liposome based therapies was on 1990s for
Kaposi’s sarcoma, ovarian cancer, multiple myeloma, and metastatic breast cancer
with the approval of FDA. The stealth liposomes and an uncoated liposome formu-
lations were used in Doxil/Caelyx (Janssen Pharmaceutica NV, Beerse, Belgium)
and Myocet (GP Pharm SA, Barcelona, Spain/Teva Pharmaceutical Industries Ltd,
Krakow, Poland), respectively. The efficacy of liposomal formulations was found to
be higher than conventional therapy on patients suffering from breast, advanced or
recurrent ovarian, or prostate cancer, as well as other types of tumors [40–49]. In a
recent study, docetaxel (DTX) loaded nanoliposomes have shown superior biodistri-
bution than free iodinated DTX due to enhanced permeability and retention (EPR)
effect. The size and encapsulation efficiency of DTX-liposomes were determined as
115 nm and 34–67%, respectively. As indicated in Fig. 29.3, in vivo experiments
showed that DTX-liposomes significantly delayed the tumor growth and prolonged
the survival time in comparison with control group on BALB/c mice bearing 4T1 or
TUBO breast cancer carcinoma tumors [50].

Fig. 29.3 Therapeutic efficacy of DTX loaded liposomes in comparison with control groups (PBS,
andTaxotere) inBABL/cmodels of 4T1 (upper panel) or TUBO (lower panel)mammary carcinoma.
a: Body weight, b: Average tumor volume (mm3) in all treated groups and c: Survival of all groups
was monitored (n = 4 or 5, mean ± S.D). Reprinted from [50] with permission from the Creative
Commons Attribution (CC BY)
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Recently, another approachwas applied to be used in cancer by designing aptamer-
gold nanoparticle loaded pH-sensitive liposomes (Apt-Au@MSL) for encapsulation
morin for treatment of cancer [51]. In this study, Ding et al. proposed the synthesis
of a pH-sensitive liposome that also had targeting properties. Since the environment
that surround the tumors are lower than the normal tissue, a pH responsive carrier can
release their cargo in acidic environment via dialysis. It has been shown that, Apt-
Au@MSL were monodisperse and can effectively suppress proliferation on SGC-
7911 model cancer cell line in vitro [51]. Additionally, in vivo study on xenograft
mouse model of BALB/c male nude mice confirmed that Apt- Au@MSL could
inhibit tumor growth and also it can promote tumor apoptosis. Figure 29.4 shows the
extracted tumors from mice 24 days after the first administration of 2 mg/kg dose
of liposomes intravenously. Ding et al. concluded as Apt- Au@MSL can be used in
targeting and delivery of chemotherapeutics in the future.

In another example of liposomes were employed to carry dacarbazine which is
used in the treatment of malignant melanoma, Hodgkin’s disease, and soft tissue
sarcomas. The short half-life and poor hydrophilicity limit the its applications. The

Fig. 29.4 a In vivo applications ofApt-Au@MSLandphotographs of themice tumor taken 24days.
A dosage of 2 mg/kg was administrated intravenously for all mice (n = 6–8). b Tumor weight of
mice in different groups after 24 days. c Tumor volume index for the different treatment groups.
The tumor sizes were measured at the indicated time points. d Survival rate of the mice in different
group after tumor inoculation. Data are means ± SD (n = 6–8). In vivo therapeutic effects of Apt-
Au@MSL in SGC-7901-bearing mice. Data are means ± SD, *P < 0.05, **P < 0.01. Reprinted
from [51] with permission from Copyright (2004) National Academy of Sciences, U.S.A
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encapsulation of dacarbazine into nanoliposomes resulted in releasing 50% of drug
within the first 2 h where the rest of it released up to 30 h [52]. It was speculated that
this carriage system can be beneficial for the drugs similar to dacarbazine after the
adjustment of the required dose [53]. Liposomes can also be used in immunotherapy
for cancer treatment. For instance, immune checkpoint blockades (ICBs) can block
important inhibitory pathways which enables tumor cells to evade immune attack
[54]. In this manner, ICBs can be promising for the treatment of melanoma. Hei
et al. used programmed death ligand 1 monoclonal antibodies (aPDL1s) as an ICB
by attaching on the surface of a liposome bearing catalase (CAT) as an encapsu-
lated cargo. The rationale behind the employment of liposomes was to overcome
the limitations which caused by the low selectivity in vivo and immunosuppressed
tumor microenvironment including hypoxia [54]. The study showed that immuno-
liposomes (CAT@aPDL1-SSLs), enhanced the cellular uptake both in vivo and
in vitro, provided a good biodistribution as a result of proper targeting and inhibited
the growth of tumor [54]. A different application of liposome was encapsulation of
raloxifene (RLX) which is a selective estrogen receptor modulator. It is commonly
used to lower the risk of breast cancer in post-menopausal women [55]. RLX suffer
from the similar problems as many anticancer drugs does; low bioavailability due to
poor hydrophilicity and substantial first pass mechanism [56]. Liposomal formula-
tion of RLX with glyceryl caprylate and glyceryl monostearate as lipids, enhanced
the pharmacokinetic parameters as well as the oral bioavailability [57]. In addition to
that, the degree of absorptionwas 3.75-fold higherwhichpoints out that the liposomes
were by-passing the first pass metabolism [57]. Curcumin is another promising anti-
cancer agent lacking bioavailability [58]. It has shown a cytotoxic effect on many
human cancer cell lines solo or accompanied to chemotherapy [33, 59, 60]. In a
recent study, curcumin loaded liposomes showed better pharmacokinetic parameters
with the twofold increase in the half-life compared to control group for a potential
brain tumor treatment [61]. More to this, in vivo studies indicated that liposomal
formulation raised the accumulation of curcumin in the brain which resulted in an
increase in the inhibitory effect of curcumin approximately fourfold [61]. Liposomes
are also frequently used in delivery of chemotherapeutics to the CNS. Cytarabine is
an FDA approved antimetabolic cancer agent that is also available as DepoCyt®. It is
used in many cancer applications. Liposomal formulation of cytarabine produces a
foam-like material providing a sustained drug release, an improved pharmacokinetic
profile, low cytotoxicity up to 14 days and a longer half-life of 43 h [62–66]. Dong
et al. employed liposomes to obviate a common problem of multiple drug resistance
that usually arise due to long-term administration of chemotherapeutic agents [67].
In this approach, more than one drug were encapsulated into same particle, aiming to
both control the release of the chemotherapeutic agents and enhancing the anticancer
effect through the synergistic effect of accompanying two drugs (Doxorubicin (DOX)
and vincristine (VCR)). The results showed a prolonged release and a sustained anti-
tumor activity effect on lymph cancer [67]. Wang et al. flowed a similar approach to
benefit from the synergistic effect by incorporating paclitaxel (PTX) and DOX for
the treatment of lung cancer [68]. In vivo studies showed that liposomal formulation
of PTX and DOX had improved tumor targeting and enhanced inhibitory effect [68].
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Cancer therapy may appear to be dominating the implement of liposomal formu-
lations due to poor bioavailability of anticancer drugs. Nevertheless, liposomes are
good candidates for many other diseases including but not limited to gene delivery,
vaccine delivery and several infectious diseases [31]. Liposomes made of cationic
lipids can achieve encapsulation and the delivery of geneticmaterials via electrostatic
forces with negatively charged phosphate backbones of nucleic acids. In addition
to that, positive surface charge of liposome promotes the interaction between the
particle and cell membranes which leads to higher internalization [69, 70]. This type
of liposomes referred as lipoplexes. Besides having good advantages as easy and
safe production, cost effectiveness, biodegradability, biocompatibility and lack of
dangerous immunogenicity the limited endosomal escaping ability causes decreases
transfection efficiency. This condition leads to exposure of genetic materials enzy-
matic and acid degradation in lysosomes [70]. The incorporation of 1,2-dioleoyl-sn-
glycero-3-phosphoethanolamine (DOPE) to the liposomal formulation helps to solve
the problembyhelping lipids particles to escape bymembrane fusionwith endosomes
resulting in early cytoplasmic release of the cargo which are referred as fusogenic
liposomes. There are several reported studies in this perspective on delivering genes
encoding for tumor suppression proteins [71]. In a study performed on 2016 by
He et al. suggested that lipoplexes were found to be promising on therapeutic gene
expression regulated by an hTERTpromoter [72]. The combination of the lipids in the
preparation stage of liposomes determines the application area of the particles. For
instance the incorporation of phosphatidylserine, N-[1-(2,3-Dioleoyloxy)propyl]-
N,N,N-trimethylammonium methyl-sulfate (DOTAP), fatty acids and monophos-
phoryl lipids in liposome production render the particles for immune-stimulating
purposes. These liposomes can generate an immune response on macrophage uptake
followed by endolysomal degradation [73]. Generation of an immune response also
depended on the lamellarity, size and the surface charge of the particles [74].

Army liposome formulation (ALF) was first synthesized and tested by US Army
in 1980s [75]. It contains saturated phospholipids, cholesterol and monophosphoryl
lipid to act as immunostimulant.ALF-based adjuvantswere found to be promising for
the development of vaccines for paracitic, bacterial or viral targets including P. falci-
parummalaria and human immunodeficiency virus (HIV-1) [75]. Furthermore, ALF-
based adjuvants pave thewayof development of vaccinewhichwas effective ongroup
B Neisseria meningitidis caused meningitis [76], various number of immunothera-
peutic cancer vaccines [77–79], and an Alzheimer disease vaccine which is currently
under phase 1/2a testing [80]. vanDissel et al. showed efficient delivery of TBvaccine
by combination of various lipids including a glycolipid, trehalose 6,6’-dibehenate,
and a cationic lipid DDAB [81]. There is a number commercial vaccines of lipo-
somal formulations such as; Epaxal® for hepatitis A, Inflexal®V for influenza virus
andMosquirix® for malaria [31]. In spite of successful applications, some liposomal
formulations were not able to implemented. Major histocompability targeting class
I complex (Stimuvax®) vaccine for the treatment lung carcinoma failed as a vaccine
application.

Liposomes have also been utilized in biomedical applications.Magnetoliposomes,
superparamagnetic particles bearing liposomes, are used in magnetic resonance
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imaging (MRI). Modification of liposomes with radioisotopes enables them to be
employed in nuclear imaging. 64Cu, 18F, 89Zr or 52Mn and 99mTC, 111In or 67Ga
labeled liposomes are used in positron emission tomography and single photon emis-
sion computed tomography, respectively. Liposomes functionalized with quantum
dots (QDs) or fluorescent dyes are implemented to diagnostic platform. Analytical
areas have used the leverage of liposomes by incorporating them in immunoassays,
biosensor analysis and liquid chromatography. Direct enzyme-linked immunosor-
bent assay (ELISA) is a common use of fluorophore conjugated liposomes that carry
secondary antibody to be bound to antigen.

Liposomeshavedrawnattentiondue their demonstrated clinical success as carriers
of diverse chemical and macromolecular species. A better adaptation of liposomes
in therapeutic applications would enhance availability and accessibility of liposomal
products would lead to more effective treatments.

29.3 Micelles

Micelles are colloidal spherical lipids ranging from 5–100 nm [82, 83]. The type
of head groups and length of the alkyl chains determines the size of micelles [84,
85]. The hydrophobic ends of phospholipids (tail) arranges facing inward while
hydrophilic ends (head) point outside [86, 87]. They can be prepared from a fatty
acid, a salt of a fatty acid (soap), phospholipids or any other molecules with a similar
head and tail orientation. The structure of a micelle is shown in Scheme 29.1.

Scheme 29.1 Structure of a
micelle
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Micelles formed from a lipid, might have lower critical micelle concentration
(CMC) [88]. CMC can be described as measure of the surface tension as a function
of surfactant concentration. Micelle formation starts as the surfactant concentra-
tion reaches CMC. At this point, hydrophobic units of the micelle forming mate-
rials becomes important. Amphiphilic copolymers were developed as alternatives
due to limitations in the synthesis procedure caused by CMC [89]. For instance,
distearoylphosphatidyl ethanolamine (DSPE) was employed as hydrophobic unit in
the synthesis of a di-block copolymer of polyethylene oxide (PEO) to prepare 22 nm
micelles [90]. The interference of surrounding water with polar head groups leads to
separation of hydrophobic and hydrophilic segments during micelle preparation. In
this case, porous micelles form which are favorable to be used in biological applica-
tions and drug delivery systems [91, 92]. This depicted micelles can enhance drug
solubility, prolong circulation time and reduce toxicity. In addition,micelles aremore
capable of penetrating into tumor cells owing to EPR effect than liposomes. On the
other hand due to their smaller size the circulation time in the body is relatively short
compared to liposomes [93].

29.3.1 Synthesis of Micelles

Micelles are synthesized from amphiphilic materials in aqueous solution by self-
assembly as shown in Scheme 29.2 [94, 95]. In general, small units referred as
monomers forms in the solution than it is followed by aggregation and self- assembly
resulting in micelle formation [83]. As mentioned before CMC is required to form

Scheme 29.2 Polymeric micelle structures. Reprinted from [101] with permission of the Creative
Commons Attribution (CC BY)
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micelles. Dehydration of the hydrophobic tails forms a state entropy as the core of
micelles are established byVan derWaals bonds [83]. The obtained structure contains
crosslinked hydrogen bonds between hydrophilic shell and surrounding water in the
final step of micelle formation [96]. Micelles can be in various forms including
spheres, rods, tubules and lamellae which can be altered by the solvent, length of
blocker chain, structure of the materials to be used in the synthesis of the micelles
and temperature [97, 98, 99]. Polymeric micelles are more durable in the case of
dilution due to low CMC, that gives them an enhanced circulation time in the body
compared to surfactant micelles [100]. The structure of polymers used in micelle
fabrication is shown in Scheme 29.2.

A great number of polymers with biocompatibility and biodegradability can be
benefited in order to produce micelles. Some of the polymers used to manufacture
micelles are listed as follows; poly(ethylene glycol) (PEG), poly(N-vinyl pyrroli-
done) (PVP), poly(N-isopropylacrylamide) pNIPAM, poly(propylene oxide) (PPO),
poly(D,L-lactic acid) (PDLLA), poly(ε-caprolactone) (PCL), poly(L-aspartate) and
poloxamers [83, 102–104]. The right selection of the polymeric material can make
the micelles by-pass the reticuloendothelial system (RES) resulting as an increase in
circulating time in the body [100]. Micelles fabricated from amphiphilic polymers
form a core–shell structure with a hydrophobic core and hydrophilic shell [105].
The structure bring the features of encapsulating poorly water-soluble drugs, long
circulation half-life, sustained release of the cargo and option of functionalization the
surface for targeting [106]. Conjugation of PEG with diacyl-lipids, oleic acid (OA)
modified chitosan andPEG-phosphatidylethanolamine (PEG-PE) are a few examples
of the hybrid polymers that widely took place in micelle synthesis [107–109].

29.3.2 Biological Applications of Micelles

The most common route for the drug carriers to deliver their cargo is intravenous
administration [110]. Since low molecular weight drugs are eliminated rapidly by
liver and/or kidneys, encapsulation of these in micelles lead an increment in their
molecular weight and results in higher bioavailability [110]. Furthermore, EPR effect
of the micelles offers passive targeting of tumor cells which caused by the toxi-
city of solubilizing agents that are generally accompanied with hydrophobic drugs,
becomes eliminated [110]. Delivery of anticancer drugs via micelles have drawn a lot
of attention. Paclitaxel (Ptx) is an anticancer agent used in treatments against breast,
ovarian, colon and neck cancers. As a common problem of most anticancer agents,
intravenous administration of Ptx is challenging as the formulation in solution is not
stable, catheter use can cause infection, there is also a possible risk of extravasation of
thrombosis and on top of these the chance of occurrence of several adverse reactions
is high. After taking into consideration of these drawbacks oral administration of Ptx
seems to be a better choice than intravenous administration [111]. Even though oral
administration is preferred over intravenous injection, low oral bioavailability is still
an important issue to deal with. Moreover, Ptx is a substrate to Gp-p and has high



806 M. Kukut Hatipoglu and P. Akkus Sut

affinity to intestinal enzymes [112, 113]. In a study conducted by Bromberg et al.
has found promising results of oral administration of Ptx via polymeric micelles.
A formulation of Pluronic P85 and polyacrylic acid (PAA) was used in compar-
ison between oral and intravenous delivery routes of encapsulated Ptx in polymeric
micelles. The results were found encouraging due to the area under the curve of oral
administration which was similar to intravenous administration. Also, drug bioavail-
ability had improved by prolonged retention time and suppression of efflux through
the membrane [113]. In recent studies, Ptx bearing polymeric micelles have shown a
great potential of high drug capacity and good efficiency in metastatic breast cancer
patients [114] and non-small cell lung carcinoma patients [115]. Besides Ptx, there is
a number of examples for micelles as carriers of poor-water soluble drugs including
but not limited to tamoxifen, porphyrin, camptothecin, vitaminKand curcumin [116–
118]. PEG conjugated curcumin was found to be effective on many cancer cell lines
such as breast [119], colon [120], prostate [121], kidney [122], liver [123], lymphoid
and myeloid tissues [124] and melanoma [125].

Micellar nanocarriers which have the ability to from a linkage via electrostatic
interactions with nucleic acids, are referred as micelleplexes. One of the successful
utilization of micelleplexes was performed by Lee et al. [126]. They developed a
theranostic micelleplex that mimics the combined therapy of chemotherapeutic drug
SN38 and siRNA for the treatment of colorectal cancer. This delivery system consists
of poly(2-(dimethylamino) ethyl methacrylate (PDMA)-block-poly(Ƹ -caprolate)
(PDMA-b-PCL) and an ultra-small super- paramagnetic iron oxide (USPIO) and
targets human vascular endothelial growth factor [126]. The study concluded that
the delivery system had shown a significant reduction in tumor growth and these
micelleplexes could be used as a diagnostic tool for various types of diseases [126].
A study years before Lee et al. another group designed a new nanocarrier for siRNA
delivery [127]. The aim of the study was to get through the endosomal barrier
with high efficiency to silence the target gene via specific siRNA. To achieve this
goal, pH responsive micelles (PDMA-b-poly(2-(diisopropylamino) ethyl methacry-
late (PDPA)) were used to bind and co-deliver the anti-fungal drug (amphotericin
B) simultaneously by the synergic effect. They have used the self-assemble ability
of PDPA which is also an amphiphilic polymer, to encapsulate amphotericin B
while cationic polymer bound to siRNA molecules. The results indicated that these
micelleplexes were able to overcome the endosomal barrier for an efficient delivery
of their cargo to endoplasm [127]. Micelleplexes were also employed in the treat-
ment of glioblastoma multiforme (GBM) known as a very aggressive and fatal brain
tumor. The goal of Zhang et al. was to deliver anti-miRNA in the cerebrospinal
fluid (CSF) for a gene-based therapy. A hydrophilic arginine-rich cell-penetrating
peptide (R15) containingmicelleplex systemmade ofmethoxy-poly (ethylene glycol-
b-lactide) (PEG-b-PLA) block copolymer was developed. In this system, high levels
of glutathione was exploited to incorporate with a reducible disulfide bond between
the PEG-b-PLA and R15 which promoted the release of anti-miRNA release. It was
reported that this delivery system of reducible micelleplexes were found promising
for gene therapy to be used in the future GBM treatment [128]. Prior to this
work, a similar approach was followed where mPEG-PLA-b-polyarginine (R15) was
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employed as cationic polymer to encapsulate and deliver siRNAs to cancer cells.
This nanosystem was tested on breast cancer cell line in vitro and in vivo. Zhao
et al. have shown that these micelleplexes efficiently protect the genetic material
and deliver them to the target cells. They have also shown a good bioavailability, an
effective uptake by the cells and an increased transfection efficiency demonstrated
by the significant gene silencing in vitro and the significant reduction of the tumor
growth in vivo [129]. In a recent study, an acid activatable cationic micelleplexes
were developed to be utilized in cancer immunotherapy mediated by photodynamic
therapy. The aim was to inhibit the function of the programmed cell death receptor 1
(PD-1) and its ligand programmed cell death ligand (PD-L1) by the delivery of siRNA
to block the PD-1/PD-L1 pathway. The micelleplexes were made from a photo-
sensitizer pheophorbide A (PPa) modified pH-responsive poly(ethylene glycol)-
block-poly(diiso- propanol amino ethyl methacrylate-co-hydroxyethyl methacry-
late) (PEG-b-P (DPA-co-HEA) by co-assembly of an amphiphilic polycation 1,2-
epoxytetradecane alkylated oligoethyleneimine (OEI-C14). The results indicated that
micelleplexes were able to escape from immune resistance which was demonstrated
by an efficient tumor growth. They also concluded that PD-1 pathway was blocked,
tumor-specific ROS production and stimulation of immune responses were induced
[130]. The final example for micelleplexes is smart particles that were utilized to
deliver siRNAs to a particular cell type. Lu et al. developed micelleplexes of PEI
grafted PCL-b-PEG polymer with a conjugation of folate (PEI-PCL-PEG-Fol). This
structure was specific to target cells owing to folate in the structure and having core–
shell type of particles resulted in good transfection in in vitro and in vivo. It can be
said that this nanocarrier system could be used in delivery of siRNAs into ovarian
cancer cells [131].

Micelles are also engaged in enhancing the solubility of drugs. The lipophilic
segment of the block copolymers, the core of micelles, entraps the water insoluble
drug molecules. This process boosts their aqueous solubility and bioavailability of
the drugs [132]. In general, the drugs metabolized through gastrointestinal uptake
are affected by the particle size. It has been reported as, the particles with 100 nm
size are uptaken in GI tract 15–250 fold higher than micrometer size drug particles
[133]. The effect of nano-sized micelle systems for these drugs is more significant
than the others. The chain length of lipophilic segment of the block copolymers
is the major factor on solubilization capacity of micelles besides concentration of
polymers, and the temperature of the process parameters [134, 135]. In this aspect,
Bemabeau et al. solubilized PTX in a mixed micellar system by combination of two
biocompatible copolymers; polyvinyl caprolactam–polyvinyl acetate–polyethylene
glycol (Soluplus®) and D-α-tocopheryl polyethylene-glycol 1000 succinate (TPGS).
They have shown that the solubility of PTX was increased 60,000 and 38,000 fold
when it was formulated with only Soluplus® micelles and combination of Soluplus®

and TPGS, respectively. Mixed micelles were tested on human cancer cell lines
including ovarian (SKOV-3), breast (MCF7) and triple negative breast (MDA-MB-
231) cancer cells in vitro. The results showed that micelles provided a significant
increase in cellular uptake compared to free drug shown in Fig. 29.5 [136].
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Fig. 29.5 Time-dependent intracellular/cell PTX levels in MCF-7, MDA-MB-231 and SKOV
cancer cell lines for drug-loaded single and mixed micelles in comparison with PTX solution.
Drug amount was normalized by protein concentrations of the cell lysates. Results are expressed
as mean ± S.D. (n = 3). Reprinted from [136] with permission

Micellar nanocarriers are versatile systems for the delivery of biologics and drugs.
As summarized in this part of the chapter micellar formulations employed in solu-
bilization of poorly water-soluble drugs, encapsulation of the nucleic acids due to
electrostatic interactions, targeted delivery, cancer treatment and many more fields.
The possibility of utilization of these particles depending on the need make them
unique transporters. Therefore, micelles will continue to be popular among carriers.

29.4 Magnetic Nanoparticles

Iron, cobalt, nickel or metal oxides are such magnetic materials that are found in
different fields of technology, have a great impact on advancement of modern world.
Devices as motors, generators, sensors, videotapes and hard discs were evolved by
the use of magnetic nanoparticles due to high interest on miniaturization efforts.
Particularly, magnetic nanoparticles (MNPs) exhibit superparamagnetic features
(iron oxides) at room temperature which is described by being composed of one
single domain where ferromagnetic or ferrimagnetic particles lose their magnetism
below their Curie temperature. The superparamagnetic particles own an important
place in data analysis and medicine. MNPs in each field have diverse characteristics
such as geometry, stability and physical properties.

Magnetic property of a material associated with spin motions of the electrons
in the orbital that angular momentum and magnetic moment are correlated with it
[137]. Magnetic moment interactions of atoms influence magnetic order below a
certain critical temperature. This results in a change on the materials behavior under
magnetic field at different temperatures [138]. Bulk magnetic materials are formed
by regions that are referred as magnetic domains. Magnetic properties differ with
the size of the material meaning that once the volume reaches nano dimension, the
magnetic properties are no longer alike with the bulk material. In general, MNPs
show superparamagnetic behavior which means magnetization of each MNP can be
manipulated by the change in thermal energy. A change in the temperature results in
random rotations in the magnetic moment of each individual MNP. Due to this influ-
ence of temperature, in the absence of magnetic field (see Fig. 29.6) the net magnetic
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Fig. 29.6 Aschematic representation of superparamagnetic particles under amagnetic field.Repro-
duced from [138] with permission from the Centre National de la Recherche Scientifique (CNRS)
and The Royal Society of Chemistry

moment will be zero whereas a net statistical alignment of magnetic moments will
take place under a magnetic field [138]. Aside from having a magnetic moment of a
single atom as in paramagnetic materials in the case of MNPs they contain various
atoms which show similar behavior. After removal of the magnetic field, remanent
magnetization provides colloidal stability and helps to avoid agglomeration.

29.4.1 Synthesis of Magnetic Nanoparticles

The properties of theMNPs such as size, shape, surface coating and colloidal stability
can be tailored for a given biomedical applications. Despite having the ability to tune
MNP according to a specific need, the choice of magnetic material is limited to
iron based magnetic oxides. Note that, the use of magnetite (mixed Fe2+ and Fe3+

ions), and maghemite have already been approved by FDA for medical purposes.
Due to larger magnetization and ferrimagnetism of both materials, they are often
preferred for the synthesis of MNPs. Even though iron oxides possess the first place
in biomedical applications, particularly magnetic ferrites of the general formula of
MFe2O4 are being intensively investigated. These ferrites gives the leverage of fine-
tuning of magnetic properties where M can be Zn2+, Mn2+, Co2+, Ni2+, Mg2+ etc.
It is possible to incorporate divalent cation into ferrite structure that can change
both the saturation of magnetisation and magnetic anisotropy of the material. The
synthesis methods of MNPs can be summed up in two categories as hydrolytic and
non-hydrolytic approaches.Magnetic ferrites are generally fabricated by coprecipita-
tion which is a subset of hydrolytic synthesis for biomedical applications. In general,
Massart method is employed that involves alkaline coprecipitation of stoichiometric
amounts of ferrous and ferric salts [139]. The average MNP size differs from 3 to
20 nm that mostly depends on temperature, pH, concentration of the cations and
the nature of base. It should be noted that, the pH has the major influence on size
of MNPs during synthesis. Stable ionic ferrofluids can be prepared in a wide range
of pH owing to electrostatic repulsion on the surface. There is a number of pluses
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of the coprecipitation approach including the use of cheap chemicals, mild reaction
conditions, direct synthesis in water, easy scale-up procedures, high concentration
of ferrofluid products. The ease of altering the core and surface properties can be
considered as the most important advantage of this approach. Availability of diverse
reactive sites offers an easy surface modification by direct incorporation of addi-
tives [140]. The challenging part of hydrolytic approach is having to deal with large
number of parameters in order to control properties of final product. Since the major
handicap is limited control over MNP size, reverse micelles are used to carry out the
synthesis of MNPs [141]. Although, reverse micelle synthesis method can improve
the particle size in the 4–12 nm range; low yields, poor crystallinity, reproducibility
and scaling up are disadvantages of this technique. Another method for the synthesis
of MNPs is a non-hydrolytic technique where decomposition of iron (III) acetylace-
tonate (Fe(acac)3) takes place in the presence of mixture of surfactants and polyols
acting as reducing agent. The control of size is achieved through a seeded growth
mechanism that leads to particles with 20 nm of size [142]. Regarding to advan-
tages of employing cheap and non-toxic starting materials, polyol-based synthesis
methods are referred as valuable methods for large scale production.

29.4.2 Biomedical Applications of Magnetic Nanoparticles

MNPs have attracted a great interest regarding their success in extensive use as
magnetic fluids,magnetic energy storage, catalysis, environmental benefits,magnetic
inks, and magnetic resonance imaging (MRI) [143–146]. The utilization poten-
tial of inorganic nanomaterials with metal based configurations enables manipu-
lation of them in numerous applications including biomedicine [147]. Precision
in the synthesis, morphology, surface modification of magnetic nanoparticles for
specific applications owes the success to the progress in nanoparticle research field.
For instance, dextran-coated- gadolinium nanoparticles were employed in imaging
kidneys, liver, spleen, tumor and tumor angiogenesis with no side effects or toxicity
[146].

MNPs are not only used in imaging but also in hyperthermia, protein and DNA
separation, biosensing, bacteria detection, contrast agent for MR, in vivo enzyme
activity, stem cells and drug delivery systems.

29.4.2.1 Hyperthermia

Hyperthermia is one the methods used in cancer treatment which is performed by
increasing the temperature of a specific region up to 41–45 °C in the whole body with
ultrasounds,microwaves or destroying the tissue of diseased areawith radiofrequency
[148]. This method built on the thermosensitive character of the cancer cells over
healthy ones. The high glycolytic activity and relatively lower pH results in thermos
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sensitivity on cancer cells [149]. Even though hyperthermia seems like a local treat-
ment, it suffers from low penetration depths and limited targeting addition to being
very aggressive. To overcome these drawbacks, MNP-mediated hyperthermia (MH)
is being used. MNPs transfers the electromagnetic energy into heat owing to their
magnetic properties [150, 151]. The size of MNPs employed in MH differs from
1 to 200 nm. The type of nanoparticles can be oxides, metallic, or metallic shells
and are stabilized by an organic or inorganic coatings [152, 153]. The small size
of the MNPs bring in a major advantage on diffusion leading to their distribution
in the target tissue. For instance, Jordan et al. conducted a study to investigate the
silane and dextrane magnetite nanoparticles ranging from 3–13 nm for stimula-
tion of hyperthermia in vitro. The study indicated that the nanoparticles were able
to induce hyperthermia, differential endocytosis and tissue necrosis [154]. Another
group investigated the effects of nanoparticle characteristics including shapes, aspect
ratios and hydrodynamic volume on human breast tissue (ex vivo) and in mouse
tumors in vivo. It was shown that magnetic nanoparticles with different features
created a significant increase in tissue temperatures in both in vivo and ex vivo exper-
iments [155]. Maier-Hauff et al. carried out a study on GBM with surface modified
iron oxide nanoparticles. The magnetic nanoparticles were coated with silane and
the sizes were determined approximately 15 nm. It was shown that the all patients
were able to endure the treatment with no major side effects. However minor side
effects were observed at an intratumoral temperature of 44.6 °C with the evidence of
tumor control [156]. Another example of surface modified iron oxide nanoparticles
was an antibody linked nanoparticles with size of 20 nm. The surface of the nanopar-
ticles were covered with dextran and PEG followed by conjugation of Chimeric L6
antibody. These particles showed a good targeting ability on human breast cancer
xenografts in mice. The surface modified particles were also found to be efficient
on the control of the tumor growth by MH therapy [157]. The effect of polyaniline
coating of superparamagnetic iron oxide nanoparticles (SPIONs) was reported indi-
cating that the coated SPOINs (65 nm) had higher specific absorption rate (SAR)
compared to bare particles. It was speculated that the higher SAR was the result
of better stability and also particles were able to induce magnetic hyperthermia in
tumor cells [158]. Liu et al. have proven that a ferrimagnetic vortex-domain nanoring
(FVIO)was effective againstMCF-7 breast cancer cells and it had high SAR [159]. In
a recent study, Mg0.13-γFe2O3 nanospheres were developed as MH agent by doping
γFe2O3with magnesium. These particles displayed an efficient heating and boosted
antitumor activity in vitro and in vivo [160].

In spite of the efforts put in MH therapy, it still remains in its early development
stage. The challenges of cancer treatment varies with the type of the cancer. MH
therapy needs more efficient particles in terms of targeting, biocompatibility, and a
better temperature management.
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29.4.2.2 Drug Release

The common problems and major drawbacks of controlled drug delivery systems
such as poor body distribution, limited effectiveness and low selectivity can be elim-
inated by the use of MNP [161]. Smart and stimuli responsive systems of MNPs
are under investigation to deliver therapeutics with site specific manner at the right
concentrations within the body under externally applied magnetic field [162]. The
magnetically drug delivery approach seems more abler way than conventional drug
delivery systems since it meets the two major requirements of a delivery system;
targeting and organ controlled drug release [161, 163]. All types of magnetic parti-
cles such as ferrimagnetic, paramagnetic, super paramagnetic, anti-ferromagnetic,
ferromagnetic and diamagnetic are employed in drug delivery systems. Among the
types of magnetic particles super paramagnetic ones are the far most interesting ones
regarding drug delivery purposes owing to their ability to develop magnetization
under an external magnetic field. In addition magnetic nanoparticles offer a variety
of surface modifications with various polymers or surfactants which makes them
tunable depending on the aim [164]. Regarding to surface modifications of magnetic
nanoparticles the most common and promising approach is introducing polymers
as an external stimuli-sensitive element to the system. In this context, delivery of
ibuprofen (IBU) from a poly(l-lactic acid) (PLLA) membrane with inclusions of
a zeolite (Faujasite) and magnetostrictive Terfenol-D particles was monitored. The
synthesis, characterization and drug release profile of the particles were investigated.
The effect of external magnetic field on drug release rate was observed as more
than 30%. In addition, an increase in the magnetic field intensity was seen, it also
accelerated the release of IBU. Furthermore, in a different approach of employing
magnetic nanocomposites with temperature responsive hydrogels was carried out.
Themagnetic field was used as a trigger where it generated the heat that led to release
of larger amounts of drug [165].

A total newmethodology enlighten the way for the advancement of smart delivery
materials and systems [166]. It was reported that, a delivery system made of hybrid
polymers bearing γ-Fe2O3 super-paramagnetic iron oxide NPs with encapsulated
DOX was able to increase cytotoxicity to 18% and set off intracellular drug release
when exposed to a high frequency magnetic field. Even so; in clinical tests, field
of intensity and the frequency was lowered due to the patients discomfort [167,
168]. A multifunctional mesoporous Fe3O4/silica nanoparticle had the ability to be
manipulated by an external magnetic field to increase the concentration close vicinity
to the tumor site [169].

The nanoparticles had also provided the option to switch on the drug delivery
upon demand. These nanoparticles could integrate themselves into tumor cells
by taking the advantage of their surface coatings of (poly(ethyleneglycol))-3-
aminophenylboronic acid-mediated endocytosis. The integration of the particles into
tumor cells caused disorientation as a result of high concentration glutathione in
cytoplasm which triggered the release of the drug followed by cell apoptosis.

Apart from the above-mentioned studies magnetic nanoparticles are used in MRI
assisted drug delivery by iron oxide nanoparticles (IONs). Xie et al. modified the
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surface of oleate coated IONs with dopamine-plus-human serum albumin (HSA)
in order to explore their potential on U87MG xenograft model [170]. The results
revealed that the surface coating led to a prolonged circulation half-life and accu-
mulation in tumor site due to EPR effect. Same group proceeded the with the same
particles to encapsulate DOX into HASmatrices [171] for tumor targeting. The parti-
cles had the hydrodynamic diameter of 51 nm where they displayed better uptake
by breast cancer cells (4T1) compared to free DOX. This study was followed by an
in vivo xenograft experiment on 4T1 murine breast cancer model and demonstrated
promising results as having higher tumor accumulation and suppression than free
DOX.A similar approachwas applied for the treatment and diagnosis of breast cancer
by using folic acid conjugated IONs [172]. The efficacy of folic acid containing
nanocarriers was tested on nude mice with xenograft MCF-7 breast cancer tumor
and the accumulation of the particles in the tumor was demonstrated.

Another platform where these nanoparticles employed is magnetically guided
drug delivery. The targeted delivery of drugs to the specific sites in the body is
possible under an external field by taking advantage of magnetic properties of these
particles. The efficiency of this method was proved by detection of the accumulation
of nanoparticles in pre-determined sites such as tumors or inflamed areas [173].
Manipulation of MNPs was investigated by many groups such as Wagstaff et al.
where they developed a delivery system made of gold coated IONs for the release of
cisplatin [174]. Cisplatin release was evaluated in vitro on human ovarian carcinoma
cell lines (A2780) and the cell growth inhibition when orienting nanoparticles with
a bare magnet was monitored. Another delivery system for cisplatin was developed
by Unterweger et al. [175]. The group synthesized cisplatin containing IONs with
dextran/hyaluronic acid. The rationale behind hyaluronic acid use was to increase
incorporation of cisplatin and targeting of overexpressed CD44 receptors in cancer
cells [176]. The drug release kinetics found to be promising and showed that the
presence of hyaluronidases increases drug release rate. PVA coated IONs loaded
with DOX had a similar approach for the utilization of magnetic particles in drug
delivery [177]. The results revealed that the external magnetic field had a control over
drug delivery properties of these NPs. In a different study, lauric acid (LA) and HSA
coated IONs bearing mitoxantrone demonstrated a linear drug release profile with
an enhanced stability for more than 72 h. The same research group has also shown
a significant site specific targeting and therapeutic effect via magneto-guided assay
in another study. Natesan et al. also studied magnetically driven targeted delivery
for cancer treatment. They demonstrated that chitosan and artemisinin coated IONs
could accumulate at the tumor region in in vivo on 4T1- breast tumor bearingBALB/c
mice model [178].

29.4.2.3 Molecular Detection

The signaling processes need reciprocal recognition done bymolecular pairs through
specific interactions. Labeling is one these biomolecular entities with MNPs results
in specifically binding to the biomolecular counterpart. This makes it possible to
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control the localization of specific targets by an externally applied magnetic field
and under proper conditions isolating them. This methodology is used in protein and
DNA separation. In this technique, MNP bearing immobilized affinity tag is mixed
with the desired molecules. The affinity species tightly bind to the ligands bearing
MNPs after a pre-determined time and the isolated can be collected by magnetic
decantation. In the final step, purified target molecules can beMNPs free by a proper
elution procedure. Figure 29.7 illustrates the separation procedure [138] (Fig. 29.7).

The grey rods on the surface of the spherical MNP in the figure represent the
immobilized tag which will tightly bind the DNA strand or protein of interest. The
separation process follows the steps: (1)mixingMNPs and the solutionwith different
components, (2) particular proteins or DNA (green rings) bind to the MNPs and (3)
the magnetic field is applied to trigger magnetic decantation, followed by further
washing steps and collecting the molecule of interest [138].

DNA and RNA can be isolated with this method where selected oligonucleotides
grafted on MNPs that would lead to capture of complementary strands [179].
MNPs can also be used in biosensors for the determination of concentration of
various analytes including glucose and calcium ion [180, 181]. For instance, CLIO-
glucose and concavalin-A combination was able to provide clinically meaningful
data for measuring glucose concentration over semi-permeable membrane. The
same methodology can serve in simultaneous detection of metabolites by MRI
in vivo [182]. Magnetic separation is also used for the detection of the bacteria.
As the organism selectively incorporates with the MNPs, it would be isolated from
the biological samples and identification can be performed through conventional
methods. For this purpose, El-Boubbou et al. produced the silica-coated magnetic
glycol-NPs to detect E. coli strains in a very short period of time such as 5 min
where 88% of the bacteria was removed from the sample [183]. Another application
that serves this purpose was single domain Ab functionalized MNPs which showed

Fig. 29.7 Illustration of magnetic separation of DNA or proteins in solution. Reproduced from
[138] with permission from the Centre National de la Recherche Scientifique (CNRS) and The
Royal Society of Chemistry
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high selectivity and efficiency on Staphylococcus aureus to target and capture from
a mixed cell population [184].

29.4.2.4 Contrast Agent

In vivo molecular imaging is classified as a non-invasive route to investigate diseases
by the National Cancer Institute of the Unites of America [185]. The purpose of
monitoring the molecular characteristics of physiological and pathological changes
in living organisms is to be couple of steps ahead of the diseases before a required
invasive procedure. Generation of 3D images, excellent spatial resolution within soft
tissues, no required irradiation and having a good signal-to-noise ratio are among the
advantages ofMRI. Paramagneticmaterials such as gadolinium (Gd), europium (Eu),
neodymium (Nd) andmanganese (Mn) and IONs as superparamagneticmaterials can
be used as MRI contrast agents. The most important criteria for the contrast agents
to meet as to be used in targeting is being able to identify cells and/or diseases and/or
function-specific biomarkers. The desired biomarker should only be expressed on the
specific cell types, ideally.Moreover, disease-specific biomarkers should be different
from healthy ones. In general, MNPs which are intended to be used in targeting are
composed of at least two segments that are targeting and affinity components. MNPs
without targeting components are cleared by the monocytes or macrophages [138].
In a target-specific detection study of MPS, two different breast cancer types were
visualized.

MNPs can also be utilized as multi modal magnetic imaging probes where they
can function as magneto-optical and magneto-radioactive probes. Most of the MNP
probes bear organic fluorophores due to their optical properties. Hence, these fluo-
rophore groups bring the advantage of detection in broad range for in vivo and in vitro
applications. For instance, fluorophore containing MNP probes are favored in NIR
fluorescence applications which provides an excellent contrast between the target
and background tissues [138]. Gold MNPs were used in imaging of small animals,
protein purification systems and sensitive biosensing applications [186, 187]. In a
study, gold MNPs were employed in colorimetric detection of human α-thrombin
which was produced by matrix metalloproteinases expressed in tumors [188–191].
Another application of MNPs in MRI was detection of enzyme activity. Enzymes
can be used as biomarkers for various processes and they are essential molecules in
physiological and pathological events [138]. Detection of in vivo enzyme activity is
carried out by MR contrast agents that benefits from latter principle. The detection
process starts with the functionalization of MNPs with affinity to the enzyme modi-
fied substrates, followed by enzyme activation which leads to induced molecular
and MR signal changes. This detection technique has been used to visualize cell
surface ADP-ribosyltransferse 2 upon lymphoma cells [190]. The sensors for the
enzyme activity demonstration are generally made of Gd-complexes. There are only
a few examples where iron oxide nanosensors used for this purpose and designed
to measure enzyme activity of proteases, methylases and restriction endonucleases
[189, 191, 192].
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Dendritic cell (DC) tracking is one of many areas where MNPs are employed
for imaging. DCs derive from bone marrow hematopoietic cells and they enhance
the antitumor immune responses such as anti-cancer reactions that puts them under
focus of interest [193]. DC-based vaccines were studied for several types of condi-
tions for treatment including skin, prostate, breast and neuronal cancers [194, 195,
196]. Although these therapies were accomplished successfully, the methods used to
monitor DC migration is invasive [197]. Cellular MRI can be a useful tool to visu-
alize DC migration in a non-invasive manner. There are several labels for complex
MNPs including fluorophores, multifunctional polymers containing NPs [198–200].
In general, mice and other small animals were used in DC tracking studies by MRI
[191, 200]. Addition to DC tracking, MNPs has great potential to be used in moni-
toring stem cell migration where stem cell transplants were utilized for the treatment
of degenerative diseases. The capability of multiple cell cycle divisions and differ-
entiation efficiency of stem cells make them great candidates in this area [201, 202].
Unlike DC tracking, several clinical stem cell trials are in progress. Surface function-
alizedMNPswith PEG, silica, dextran and polystyrenewere used in order to increase
stability of the particles and avoid the toxicity cause by agglomeration [203–205].
An example of MNP labelled stem cells for cardiovascular disease showed that this
techniques was not only offers a potential regeneration of the heart tissue but also
gave opportunity to follow long term migration of the cells [206, 207, 208]. Even
though many clinical trials approved by FDA, there are still a vast number of issues
to be addressed.

29.5 Dendrimers

Dendrimers are branched synthetic polymers and layered architectures. The molec-
ular weight and chemical composition of these molecules can be determined based
on their synthesis [209–212]. Dendrimers, molecules with high branching and
symmetry, were first reported in the late 1970s and early 80s with the work of
the Vögtle, Denkewalter, Tomalia, and Newkome groups, and afterwards synthesis,
analysis and applications of dendrimers were reported by many researchers [213,
214]. A dendrimer is a polymeric molecule consisting of a large number of branched
monomer layers emerging from the core central structure [215]. The structure of
a dendrimer is shown in Fig. 29.8. When the core structure is removed from the
dendrimer, each of the remaining identical structures are called dendrons, and the
number of dendrons depends on themultiplicity of the core.Dendrons consist of three
parts: core, interior (branches) and periphery [215]. The most important feature of
dendrimers is their multivalency. Contrary to linear polymers, as the weight and
generation increase, the terminal ends become more tightly packed and this feature
allows the researchers to load higher rates of drug or spectroscopic markers for treat-
ment and imaging studies. The presence of a large number of end groups is important
in determining the solubility of the dendrimer.
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Fig. 29.8 Structure of a dendrimer. Reprinted with permission from [216]

Fig. 29.9 Synthesis of a dendron structure. Convergent and divergent synthesismethods. Reprinted
with permission from [217, 218]
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29.5.1 Synthesis of Dendrimers

Synthesis of dendrimers proceeds by repeating a 2-step reaction sequence; genera-
tion growth step and activation step. The smooth synthesis of dendrimer structures
depends on the pureness and high reaction yields of the reactions carried out without
side reactions. There are two synthetic methods for dendrimer synthesis referred as
divergent approach and convergent approach, which differ in direction of dendrimer
growth. In the divergent approach developed by Tomali et al. and Newkome et al.,
the growth of the dendrimer occurs by the gradual addition of sequential layers,
which are building blocks, starting from the core (see Fig. 29.9) [213, 214]. In the
convergent approach developed byHawker and Frechet [219], in contrast to the diver-
gent approach, dendrimer growth occurs inward, starting from the end chains (see
Fig. 29.9). Since divergent approach enables the control of final dendritic structure,
it is found as a better option for large-scale production. High costs associated with
stepwise synthesis are important factors to consider for the dendrimer production.
However, time-consuming and challenging steps of these approaches requires new
techniques for the preparation of dendrimers.

29.5.2 Biological Applications of Dendrimers

Potential applications of dendrimer and dendrimer based structures are studied
by numerous research groups. Based on their behavior in in vivo applications,
these branched polymers use to be components of structures such as tissue treat-
ment scaffolds, targeted carriers of chemotherapeutic agents, molecular imaging
systems, and optical oxygen sensors [215, 220–223]. Functional end groups of
dendrimers allow conjugations with various biologically active molecules. The
use of dendrimers as a carrier or a scaffold is an advantage for diagnosis and
therapy applications. Amphiphilic characters and interior spaces make it possible
to use hydrophilic or hydrophobic drugs in encapsulation. Unlike conventional
amphiphilic polymers, they are effective in maintaining the stability of drug formu-
lations. Medium-sized dendrimers are used as MRI agents in the diagnosis of
lymphatic systems. Dendrimers with multivalent character and high branching
mimicking natural extracellular matrices are preferred in tissue engineering applica-
tions. The common dendrimers used in biological applications are polyamidoamines
[224], polyamines [225], polyamides (polypeptides) [226], poly (aryl ethers) [219],
polyesters [227, 228], carbohydrates [229] and DNA [230, 231]. Polyamidoamine
(PAMAM) dendrimers, which are commercially available with various generations
and peripheral functionalities, are the most studied dendrimers [215] (Fig. 29.10).

The controlled functionalization of the surface and their compact special struc-
tures determines the use of dendrimers in drug delivery systems [233]. As they
employed for the drug delivery purposes, the interaction between drug molecules
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Fig. 29.10 siRNA delivery with PAMAM dendrimer

and dendrimers occurs through covalent and non-covalent conjugation. While cova-
lent conjugation with drug molecules is preferred for the delivery large amounts
of drug molecules, non-covalent conjugation method is favorable for poor water
soluble drugs [234, 235]. Figure 29.11 shows the covalent and non-covalent interac-
tions of dendrimers with drug molecules. Drug molecules that are covalently bound
to dendrimers are released into the cell environment by the breakdown of the bonds
by intracellular enzymes. Covalent drug loading provides an advantage with more
drugmolecules to be loaded into dendrimers, and also provides a controlled release of
drugs. Ibuprofen [30], propanolol [236], methotrexate [237], dexamethasone [238]
paclitaxel [239], cisplatin [240], penicillin [241], venlafaxine [242], doxorubicin
[243], and paclitaxel [244] are among the drug molecules covalently loaded on
dendrimers.

Micelle-like structures of dendrimers are important properties that allow non-
covalent interactions for encapsulation of drug molecules. The hydrophilic groups
located in the terminal part of dendrimers help to overcome the solubility limitation of
hydrophobic drugs [245]. Dendrimer structures can increase the oral bioavailability
of poor water soluble drugs such as propanolol, camptothecin analogues, silbylin,
DOX, and naproxen by increasing their solubilities, drug penetrations and avoiding
the drug efflux pump [236, 246].



820 M. Kukut Hatipoglu and P. Akkus Sut

Fig. 29.11 Interactions of drug molecules with dendrimer structure, a Covalent interactions and b
Non-covalent interactions. Reproduced from [232]

It has been reported in studies performed with dendrimers that many drugs such
as indomethacin [247], methotrexate [235], doxorubicin [248], ibuprofen [249], 5-
fluorouracil [250], flurbiprofen [251], piroxicam [252], 5-amino salicylic acid [253],
rifampicin [254], lamivudine [255], betamethasone [256], and PTX [257] have been
encapsulated and solubilized. An important anticancer agent, camptothecin which
has limited use in clinical application caused its poor water solubility. It has been
reported that the solubility of camptothecin can be altered by the use of PAMAM
dendrimers. In the study a polyester dendrimer structure consisting of naturalmetabo-
lites such as glycerol and succinic acid was used as the carrier for camptothecin, and
it was reported that there was a 16-fold increase in camptothecin uptake for MCF-7
cells. In addition to that, an increase in the retention of the drug in the cell has also
been observed [258].

Active targeting is also possible by integrating targeting agents such as antibody
molecules, folic acid, etc. in dendrimer based drug delivery systems. Folic acid is
one of the molecules commonly used among the targeting agents mentioned. In a
study where folic acid used as a targeting agent after conjugation with PAMAM; the
efficacy of the drug, methotrexate, was found 10 times higher compared to the free
drug in vivo [259]. Another article stated that the dendrimer structure conjugated
to J591 anti-prostate specific membrane antibody can specifically bind to prostate
cancer cells such as LNCaP containing prostate-specific antigen [260].

While many studies have been reported in the literature regarding in vitro admin-
istration of entirely dendrimer-based drug carriers, few studies on in vivo therapeutic
applications are noted. The carrier system obtained by complexing the surface groups
of PAMAM dendrimers terminated with G-4 carboxylate with cisplatin is one of the
first examples of anti-tumor drug transport with dendrimers [240]. The addition of
cisplatin to the dendrimer structure, it led to increase in the solubility approximately
tenfold while the drug induced the cross-linking between dendrimer molecules. This
structure results in formation of aggregates of 30–40 nm in diameter. This made it
possible to follow the aggregates when given to the mice intravenously rather than
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the subcutaneous administration to tumors with the passive targeting mechanism
through EPR effect. When the free drug and drug-dendrimer aggregates given in the
same dose were compared, it was reported that platinum level in tumor tissue was 5
times higher with the use of dendrimer-drug aggregates.

Dendrimers such as PAMAM and poly(propyleneimine) [PPI], which have
cationic primary amine end groups, efficiently transport genetic materials into the
cell by forming nanoscale complexes with DNA and siRNA called dendriplex [261].
The first use of dendrimers as gene delivery agents is the work of Haensler and
Szoka in 1993, which includes gene transfection with PAMAM dendrimers [261]. In
that study, it was reported that high efficacy DNA transfection was depended on the
dendrimer-DNA ratio and the diameter of the dendrimer. It has also been shown that
the PAMAM dendrimer-DNA complex exhibits less toxicity than polylysine and has
higher transfection efficiency.

Genetic material transfection with dendrimers on different cell lines was reported
by Baker in 1996. It was shown that the protonated dendrimer structures form
complexeswere stable under physiological conditionswith theDNAmolecule having
negative charge, and under specific conditions the transfection efficiency was found
as 10 to 100 times higher than the commercial cationic lipid molecules.

The success of PAMAM dendrimers in DNA transfection has led to the devel-
opment of commercial kits [262]. The successful results of PAMAM dendrimers in
DNA-based gene delivery systems has drawn the attention for the their potential use
in siRNA transport studies and PAMAM-based dendrimers were the most studied
type of dendrimers for siRNA studies [262].

The extensive use of dendrimers in the field of imaging owes the popularity to
their large number of reactive chain ends. Controllable chain ends gives opportunity
to modify and attach contrast agents that produces images with high sensitivity.
Dendrimer-based MRI contrast agents are used to monitor heart, blood vessels and
many other organs. Dendrimers are also used as chelating group carriers for MRI
agents [263]. Medium-sized dendrimers of around 5 nm are employed for MRI
contrast agents in the diagnosis of lymphatic systems. Dendrimers also enables active
targeting by utilization of antibodies to their structure. The number of the dendrimer
generations are affect the application areas such as G2 dendrimers are suitable for
renal imaging whereas G7 for intratumoral vasculature imaging [264].

Photonic oxygen sensing is another imaging applications of dendrimer structures.
Since the oxygen level in the tumor tissues gives an idea in determining the response to
the treatment, it is important to develop methods that allows the determination of the
oxygen level in the tumor tissue [265]. Phosphorescence lifetimes of dendrimers are
inversely proportional to the oxygen levels in the environment and can be determined
in vitro and in vivo [265]. Vinogradov et al. prepared different sized dendrimer
structures in which the hydrophobic metalloporphyrins were encapsulated in their
cores. The phosphorescence of these water soluble dendrimer oxygen sensors was
quenching when they collide with dissolved oxygen [266].

Dendrimers are excellent artificial macromolecules that can mimic the protein
structure thanks to their high molecular weights and branched structures. The use
of dendrimers that mimic the surface structures of proteins involved in inhibition of
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Fig. 29.12 Comparison of protein and PAMAM dendrimers: a insulin, b cytochrome C, c
hemoglobin, and PAMAM dendrimers generations d 3, e 4, and f 5. Reprinted with permission
from [268]

angiogenesis in antitumor systems has been reported [267]. Recent studies suggested
that arginine-based dendrimers suppress and prevent the growth and metastasis of
solid tumors [268].

The use of dendrimer structures has also been reported in the synthetic production
of collagen which is an important extracellular matrice structure component [269].
With the development of such synthetic collagen mimetic molecules, it is considered
to overcome allergic responses or disease transitions caused by the collagen sources
in use. Kinberger et al. carried out the synthesis of a collagen mimicking dendrimer
structure, TMA[TRIS[(Gly-Pro-Nleu)6-OMe]3]3, which exhibited a triple-helical
structure [270].The distribution of ligands on the dendrimer surface had an invaluable
binding inhibitory effect between cells and microorganisms (Fig. 29.12).

29.6 Metal Nanoparticles

29.6.1 Silver Nanoparticles (AgNPs)

Their unique chemical, biological and physical properties have made silver nanopar-
ticles (AgNPs) the most studied nanomaterials in recent years [271]. AgNPs, whose
optical, thermal and catalytic properties vary in size and shape, have applications in
many areas such as biosensors, electronic compounds, textile products, food industry,
cosmetics, medical products etc. [272]. The biggest factor of their use in the afore-
mentioned applications is their wide antimicrobial spectra that they exhibit against
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microorganisms (See Fig. 29.13). They arewidely used inmedical applications due to
their antimicrobial properties againstmicroorganisms such as bacteria, viruses, fungi.
They are also used in medical imaging applications owing to their light absorption
properties compared to other nanoparticles [273].

29.6.1.1 Synthesis of AgNPs

There are many synthesis methods for AgNP including chemical, physical, biolog-
ical, microwave-assisted, electrochemical, photochemical methods. Considering the
terms such as repeatability, low cost, easy and fast synthesis, the most used method
for the preparation of AgNPs is the chemical reduction of silver salts in the presence
of reducing agents [274]. The molecules selected as starting material, reducing agent
and stabilizer for the synthesis of AgNPs are the factors that needs to be adjusted
carefully. The reducing capacity of the reducing agent is an important factor influ-
encing the size and dispersibility of the particles in AgNP synthesis. Synthesis of
well-dispersed nano sized particles is possible when using a strong reducing agent
in the synthesis procedure.

Sodium borohydride and citrate are the most used reducing among others.
However, many different chemicals such as hydroxylamine, hydrazine, aniline,
formaldehyde, and ascorbic acid are used as reducers in AgNP synthesis.

The early studies on synthesis of AgNPs have shown the ability of citrate has on
reducing the metal cation and stabilize the formed nanoparticles. It was followed by
Turkevitch where the synthesis process involved boiling of the gold salt with sodium
citrate. This method has shown that it was possible to synthesize gold nanoparticles
(AuNPs)with the same size and shape.As the samemethodwas used for the synthesis
of AgNPs, it was observed that silver crystallites with different sizes and shapes
ranging from 60–200 nm are obtained.

In addition to chemical reduction, there are also physical and biological synthesis
approaches for AgNP synthesis. In general, biological synthesis involves the use
of organisms such as plants, bacteria and fungi. Biosynthesis methods generally
carried out by employing microorganisms and plants which are environmentally
friendly biomolecules without toxicity and they have the role of natural stabilizer
for nanoparticles. Biosynthesis is under investigation as an alternative to chemical
methods regarding the ability to block nanoparticle aggregation and provide easy
synthesis opportunities of biomolecules [274, 275]. Synthesis of AgNPs can be
performed intracellularly or extracellularly using strains of bacteria such as Bacillus
subtillus [276], Staphylococcus aureus [277], Escherichia coli [278], and Lacto-
bacillus acidophilus [278]. Even though the time need to synthesize AgNPs with
plant extracts, producing monodispersed nanoparticles is a huge issue to overcome
[279, 280]. The type material including plant roots, leaves, seeds and fruits in the
synthesis determines the shapes and sizes of the nanoparticles.

UV-initiated photoreduction method also used to produce AgNPs in the pres-
ence of citrate, polyvinylpyrrolidone, collagen, etc. [281]. The size of the particles
obtained in this method, which is quite simple and effective, varies depending on
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the irradiation time. As the process is terminated, particles with a fixed size can be
obtained. It is also possible to determine the shape of AgNPs formed by the sono-
electrochemistry technique method. Nitrilotriacetate can be employed in order to
prevent agglomeration of nanoparticles [281]. Electrochemical synthesis of AgNPs
is also among the current synthesis methods. Adjusments of the electrolysis param-
eters and components of the electrolytic solution, it is possible to obtain different
sizes of AgNP [281].

The most commonly used methods among the physical synthesis are evapora-
tion–condensation and laser ablation. The use of atmospheric pressure and tube
furnace brings in the advantage of no contamination which is generally caused by
the solvents in chemical synthesis methods. However the size of the furnace and the
high energy consumptions are the factor to be considered for the physical synthesis
of AgNPs [275].

Laser ablation is another technique to synthesize AgNPs which allows the
manipulation of properties by adjusting the applied laser wavelength, laser pulse
duration [275].

29.6.1.2 Biological Applications of AgNPs

AgNPs are widely used in the food preservation (storage), health surveys, detection
and diagnosis platforms, data storage, textile and medical device coatings, and in
many environmental applications owing to their specific features including broad
antibacterial activity, high resistance to oxidation, and high thermal conductivity
[272]. The most important feature that make AgNPs favorable in most of these appli-
cations is their wide range of antimicrobial effects. Studies based on the antimicrobial
properties of AgNPs expanded over time including development and preparation of
anti-cancer agents, drugdelivery systems anddifferentmaterials.Reproducibility and
stability in their production are the crucial parameters that play amajor role on utiliza-
tion of AgNPs and AgNP based systems for applications in the medical field [273].

Factors such as size, shape, concentration, surface charge, and colloidal state are
elements on determination of the antimicrobial properties of AgNPs [282, 283].
Some studies indicates that antibacterial effects depends on these parameters, while
others suggest the release of silver ions fromAgNPs play an important role on it. The
mechanism of antimicrobial effect of AgNPs starts with binding to the cell surface
and causing a change in permeability on the membrane followed by the disruption in
the cellular respiratory mechanism and subsequent release of intracellular metallic
silver ions [284].

AgNPs are also effective on biofilm-forming microorganisms [280]. AgNPs
combat these microorganisms by destabilizing their exopolymeric components in
the extracellular matrix or by interacting with bacterial communication molecules.
AgNPs are also employed in the prevention of the development of such life-
threatening infections by providing antimicrobial properties to medical devices and
clinical materials in the high risk category to be exposed to microbial contamination
caused by hospital-acquired infections [285, 286]. The studies performed with the
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materials such as central venous catheters coatedwithAgNPs showed that the biofilm
formation on catheters by Gram (+) or (−) bacteria have been inhibited [287, 288].

In orthopedics, the use of AgNPs in various applications such as bone cements,
tumor prostheses and trauma implants is becoming increasingly common due to its
antimicrobial properties [289]. The use of AgNPs in hydroxy apatite coatings to
block biofilm formation plays an essential role in order to prevent the occurrence of
disease after orthopedic surgery [290].

Research about the effects of AgNPs on wound healing revealed that AgNPs
lowers matrix metalloproteinase activity and increasing neutrophil apoptosis in the
wound area. In 1995, Dr. Robert Burrell developed the first nanosilver-containing
wound dressing, anticoat, which sped up the healing process with no scar. Huang
et al. reported that AgNPs accelerated the healing process compared to conven-
tional silver dressings [290]. The adaptation of AgNPs for wound healing in diabetic
patients which takes long periods of time to heal and mostly get secondary infections
before complete recovery is a vital goal [291]. The presence of AgNPs in adsorbent
wound dressings leads to exudation of bacteria resulting in their complete destruction
[292, 293].

It has been demonstrated that AgNPs can be used to assist regeneration of nerve
cells in post-traumatic injuries or degenerative neural diseases. AgNPs have been
reported among nanoparticles, which are known to increase neuron growth and affect
electrical activity,with their effects to increase differentiation of somenerve cell types
[294].

AgNP-based nanosystems are evaluated and intensively studied as suitable
special carriers for the transport of different therapeutic molecules such as anti-
inflammatories [295, 296], antioxidants [297], antimicrobials [298], and anti-cancer
agents [299]. The reason for the great interest in AgNPs in these studies is the wide
range of organic molecule binding capacity, adjustable absorption capacity, and their
low toxicity. There is a number of studies of AgNPs as active or passive carriers in
cancer treatment serving as an effective anti-tumor drug delivery system [300, 301].
The interactions of AgNPs with cancer cells are shown in Fig. 29.14. Ramar et al.
demonstrated that AgNPs exhibited dose-dependent cytotoxicity by inducing apop-
tosis on MCF-7 breast cancer cells [302]. A study carried out by Gurunathan et al.
has shown that AgNP induced cell death on MDA-MB-231 cells through caspase 3
activation, reactive oxygen species production and DNA fragmentation [303].

In a study of AgNPs on multi-drug resistant cancer cells, it was reported that
AgNPs modified with TAT peptide could kill tumor cells, prevent their growth and
show similar efficacy with DOX, which has serious toxic effects in clinical use [306].

AgNPs synthesized using Cleome viscosa plant extract are considered as alter-
natives to improve cancer treatment. It has been reported that the particles tested for
human ovarian teratocarcinoma (PA1) and human lung adenocarcinoma (A549) cell
lines could hinder the growth of cancer cells and could have a great potential for
cancer treatment [307]. In a study with gefitinib, AgNPs used to transport gefitinib.
This delivery system was found to be reducing the side effects from gefitinib and
improving the effectiveness of the drug [305].
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Fig. 29.13 Mechanism of antimicrobial action. Reproduced with permission from [304]

Fig. 29.14 Interactions of AgNP with cancer cells. Reproduced from [305]
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Antiviral effect of AgNPs were examined on HIV-1 resulted in proofing acitivity
of the particles on the inhibition of virus binding to carrier cells [308]. The effect
of different sizes of AgNPs on Hepatitis B was investigated by using the HepAD38
cell line as an infection model, showed that the particles prevented the production of
hepatitis B virus RNA and extracellular virions in vitro [309]. A similar study to that
on Herpes simplex virus 2, AgNPs were reported to be active in the early phases of
viral replication [310].

The main applications of AgNPs in the food industry are food packaging and
the determination of contaminants in foods. AgNPs are used in antibacterial pack-
aging to increase the shelf life and quality of foods [311, 312]. It has been reported
that polymer composites containing AgNP can protect foods against bacteria, fungi,
etc. which cause contamination in foods. In addition, it is stated that long term
AgNP release prevents the microbial growth for a long time. It is also noted if the
inner surfaces of food containers such as canned food covered with AgNPs, biofilm
formations originating frommicroorganisms can be prevented. Studies on the insecti-
cidal activities of AgNPs are also present in the literature. AgNPs synthesized using
Euphorbia prostrate aqueous leaf extract have been reported to show insecticidal
activity against the Sitophilus oryzae pest that affects rice, wheat and maize grains
[313]. AgNPs have shown an effective insecticidal activity at every growing stage of
fruit fly Drosophila melanogaster [314].

AgNPs are used in various analytical applications due to their responsiveness to
stimuli, having many sorption zones on their surfaces and high molar absorptivity.
Given the plasma membrane permeability, small AgNPs tend to accumulate in the
internal parts of the cells.

One of the important application areas of AgNPs is their utilization to biosensors
and medical diagnostics regards to their optic features. As the surface electrons of
AgNPs are excited by the light, a collective resonant oscillation occurs which is
also known as surface plasmon resonance. The resonant oscillation increases by the
intensity of the applied light and this process leads to diffusion of the light or converts
to heat. This enhanced scattering is useful particularly in diagnostic purposes. The
plasmonic properties of AgNPs has given a rise to their use in surface enhanced
Raman spectroscopy applications in diagnostics [315, 316]. While it is possible to
detect various single biological molecules using AgNPs in this way, they constitute
a potential for early detection and diagnostic applications of diseases such as cancer
[317]. AgNPs enables to diagnose diseases by determining specific proteins, peptides
and other biological molecules in the blood through determination of the changes in
their Raman signals [315].

29.6.2 Gold Nanoparticles (AuNPs)

Gold nanoparticles are nanotechnology products that are widely studied in biotech-
nology due to their unique optical and physical features. AuNPs continues to offer
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innovations and advantages in biosensors, diagnosis of microorganisms, develop-
ment of targeted drug delivery systems, immunoassays, cancer treatment and optical
imaging processes. Due to their biocompatibility, easy and variety of functionaliza-
tion options and non-toxicity AuNPs play a role in the development of more reliable
and biocompatible systems, especially in the diagnosis and treatment of diseases.

29.6.2.1 Synthesis of AuNPs

A great number of different methods exists in the literature for synthesis of AuNPs
such as chemical reduction, physical, photochemical, biological reductions and
microwave irradiation. The applied synthesis method give opportunity to modify
the properties of AuNPs such as size and shape as desired.

The recent studies on developing new strategies on the synthesis of AuNPs
employed different stabilizer molecules such as thiol compounds, polymers, organic
molecules etc. The common AuNP synthesis method in which sodium citrate is
used as a reducing agent is developed by Turkevich [318]. This method involves the
reduction of gold salts such as hydrogen tetrachloroaurate with the use of citrate as
reducing agent. In the Turkevich method [318], AuNP production is carried out by
adding sodium citrate solution while mixing to the boiling HAuCl4 solution. The
initially colorless HAuCl4 solution turns wine red, showing the formation of AuNP,
after the addition of sodium citrate. With this method, it is possible to obtain AuNPs
with monodisperse and sizes ranging between 10 to 20 nm. The synthesis of larger
AuNPs with high polydispersity and low efficiency can be listed as disadvantages of
this method. It is possible to synthesize monodisperse AuNPs with different methods
as shown by Brown and Natan [319]. Another AuNP synthesis methods known as
the seeding approach, the surface of AuNPs was used as a catalyst in the reduction
of Au3+ by hydroxylamine. Later on, Murphy and his colleagues took advantage of
this seeding approach in determining the shape and size of AuNPs [320].

It is also possible to synthesize spherical AuNP that can be dispersed in organic
solvents, and one of the best known method for this synthesis is the Brust-Schiffrin
method [321]. The method allows to obtain AuNPs less than 10 nm.

29.6.2.2 Biological Applications of AuNPs

Biomedical applications of AuNPs go back to the middle ages with the use of potable
gold applications in the treatment of several diseases [322]. Colloidal gold applica-
tions, which cause significant side effects to be observed mostly due to the use
in oxidation state, started to be used more safely in the biomedical field with the
understanding of the nature of AuNPs and the development of the nanotechnology
concept.

The size, shape, and functionalized surface structures,which allow specific or non-
specific interactions with the cellular lipid layer, are important factors affecting the
utilization of AuNPs in biological systems. AuNPs applications are widely examined
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in tumor diagnosis and treatment due to their physical and chemical properties. The
ability to form chemical bonds with groups containing -S and -N allows AuNPs to
be modified with many molecules in order to be employed in effective targeting and
drug delivery systems [323]. An illustration of the biomedical application of AuNPs
is shown in Fig. 29.15.

Photothermal therapy (PTT) applications,which are benefited from the heat gener-
ated via nanoparticles applied in the tumor areas, in response to laser light, are among
the most important applications of AuNPs [325]. Noble metal nanoparticles are
promising agents for photothermal therapy applications due to their surface plasmon
resonance (SPR) properties to produce heat by absorbing laser. Gold nanoparticles
havemaximumabsorption in the visible area or near IR region andgenerate heatwhen
stimulated with light [325]. As AuNPs are directed into the tumor tissue, the parti-
cles heat up rapidly and kill the tumor cells after being exposed to the light. Global
AuNPswith highNIR absorption greater than 50 nm arewidely used in photothermal
therapy. As a PTT mediator, AuNPs offer advantages such as high biocompatibility,
high efficiency controllable surface synthesis possibilities and conjugation with drug
molecules [325]. Larger AuNPs are preferred for high resolution and sensitive cancer
imaging-guided PTT, and smaller AuNPs having higher absorption efficiency that is
preferred for higher photothermal efficiency.

The high surface-to-volume ratio surfaces of gold nanoparticles allow multiple
binding of hundreds ofmolecules, such as ligands, antibodies, therapeutic, diagnostic

Fig. 29.15 Biomedical applications for different types of gold nanoparticles. Reprinted with
permission from [324]
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and targeting agents. PTT application using AuNPs can be applied together with
chemotherapy, immunotherapy, and gene therapy [325]. Commonly used iodinated
molecules for imaging are low molecular weight vascular contrast agents, have short
retention times and are eliminated through the kidneys. AuNPs with high X-ray
absorption coefficient offer advantages over conventional contrast agents, in terms
of the length of vascular retention times, targeting, non-toxicity, and ease of surface
functionalization. It has been demonstrated by Hainfeld that AuNPs can be used to
increase vascular contrast in vivo when administered in CT imaging [326].

By taking advantage the basic features they have, AuNPs can be used as effective
agents for the detection of different biological analytes such as nucleotides, proteins,
toxins, and saccharides [327, 328].As a result of utilization of theAuNP in the sensing
applications; surface plasmon resonance, colorimetric, fluorescence-based, elec-
trical and electrochemical, surface-enhanced Raman scattering-based, quartz crystal
microbalance-based and Bio-Barcode assay sensors are available [329]. Among the
different AuNP types, gold nanorods attract much attention for bio-sensing due to
their important and unique optical properties [330] (Fig. 29.16).

Colorimetric sensing applications are based on visible color changes as a result of
aggregation of AuNPs. The surface plasmon resonance properties of AuNPs cause
a shift at the maximum characteristic absorbance wavelength in UV–Vis region as a
result of a change in the particle size, morphology and particle distance [331–333].
A change in the color of AuNPs is observed with the appereance of the shift in UV–
Vis spectrum [334, 335]. This behavior of AuNPs is used to create optical sensing
technologies by making use of nanoparticle aggregation induced by interaction with
the target substance in covalent or non-covalent manner. A general illustration for
various applications of AuNPs is shown in Fig. 29.17.

The most promising and continuously developing applications of AuNPs in the
medical field is targeted drug delivery systems.Conjugation ofAuNPswith antitumor
agents such as DOX [337], tamoxifen [338], methotrexate [339], dodecylcyscteine

Fig. 29.16 Gold nanoparticle-based sensing in analytical science. Reprinted with permission from
[331]
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Fig. 29.17 Applications of gold nanoparticle colorimetric sensors. Reprintedwith permission from
a [232], b [336]

[340], docetaxel [341], platinumcomplexes [342], andHerceptin [343] via adsorption
or alkanethiol linker molecules. The effectiveness of the carrier system can be altered
by including targeting molecules to the carrier system. The vast majority of studies
reported that drug molecules are more effective when conjugated with AuNPs.

The use of platinum-based anticancer drugs such as cisplatin, carboplatin, and
oxaliplatin, which are the main therapeutics of chemotherapy applications, have
limited use in clinical applications due of their undesirable effects. AuNPs appear as
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an alternative carrier in this context. AuNP-platinum based drug delivery system has
been reported to show superior results than oxaloplatin, in terms of cytotoxicity [344,
345]. In another study it was noted that when methotrexate used in the treatment of
various types of cancer is given with AuNP, it suppressed tumor growth [339, 346].
Surface functionalizations of AuNPs also increases the circulation time of drug-
AuNP conjugates and delivers the drug to the target cells or tissues with reduced
toxicity. An application of AuNPs for pancreatic cancer treatment as a carrier of
gemcitabine demonstrated the inhibition of the growth of tumor cells in an advanced
stage of the disease [347].

29.7 Carbon Nanotubes (CNTs)

Carbon nanotubes (CNTs) are nanostructures that consist of cylindrical graphene
layers and exhibit unique physical, mechanical and chemical properties. They
are grouped as single (SWCNT) and multi-walled (MWCNT) carbon nanotubes
according to the number of graphene layers they contain [348] (see Fig. 29.18).
Due to their unique structural [349], dimensional [349], electrical [349], thermal
[350], mechanical [350] and optical properties [351], CNTs are widely studied in
different areas such as composite materials [352], nanoelectronic applications [353],
and hydrogen storage [354]. Recently, applications in the biomedical field have taken
a new turn [355, 356].

SWCNTs are 1Dnanomaterialwith sizes ranging from50 nm to 1 cm in length and
1 to 2 nm in diameter. SWCNTs offer new opportunities in biological environments
depending on their unique behavior than other kinds of nanoparticles. The fact that
a flexible 1D nanotubes have multiple binding sites which allows nanotubes to be

Fig. 29.18 Structures of single wall and multiwall CNTs. Reprinted with permission from [348]
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conjugated with targeting agents for and increased affinity to target structures. Their
high surface area allows many molecules to be attached along with the nanotube
surface [357].

SWCNTs are highly absorbing materials. They exhibit strong optical absorption
in the near infrared (NIR) range due to their E11 optical transitions and this situation
makes them useful for photothermal therapy and photoacoustic imaging [358, 359].
Semiconductor SWCNTs with small band gaps in the 1 eV level exhibit photolu-
minescence in NIR range. Since SWCNTs have emission between 800–2000 nm
[88, 360, 361] which covers the biological tissue permeability window, they are
feasible for biological imaging. At the same time the enhanced resonance allow
Raman detection and imaging possible [362, 363].

MWCNTs, unlike SWCNTs, consist of a large number of graphene layers and
have a diameter of 10–100 nm. Although they are less interesting in terms of optical
properties than SWCNTs, it was found out that they can be used in biological systems
and they are found to be advantageous in order to transfer of large structures as
plasmids to the cells [364, 365]. In general CNTs are promising structures to be
employed as carriers for biological molecules to cells [366]. On the down side,
CNTs have been shown to exhibit toxicity on cells when they are not functionalized
[367, 368].

29.7.1 Synthesis of CNTs

Several synthesismethods are available to control diameter of the nanotubes, chirality
and wall numbers in a controlled manner. Methods such as arc-discharge [369], laser
ablation [370], flame synthesis [371], spray pyrolysis [372], and chemical vapor
deposition [373] (CVD) are the five main techniques used in CNT synthesis [374].
Among these methods, the CVD method is widely preferred one due to simplicity
of the process, low cost and easy scale up.

Although most of CNTwalls are not reactive structures, fullerene-like types them
allow functionalizations at some degree. The main factor that determines the reac-
tivity of CNTs is π orbitals. The end parts of CNTs are more reactive as they are
curved relative to their side surfaces. Surface modifications of CNTs can be carried
out by covalent bonding through chemical reactions and non-covalent bonding by
hydrophobic and hydrophilic interaction is also possible.

Oxidation of CNT surface via oxidizing agents such as nitric acid is one of the
methods used in the functionalization of these particles [375]. In a study, it was
shown that amino acids were able to covalently attach to the surface of SWCNT
after oxidation of nanotubes [376]. Different modification procedures and bioactive
molecules that can be attached on the CNT sidewalls are shown in Figs. 29.19 and
29.20 respectively. The high salt contents in most biological solutions hinder CNTs
from being used directly due to the a potential of aggregation in these environments
[377].
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Fig. 29.19 Molecular structures of CNT covalently functionalized with different types of small
molecules. 1, CNT-Ammonium; 2, CNT-Acetamido; 3, CNT-Fuorescein isothiocyanate (FITC);
4, CNT-Ammonium-FITC; 5, CNT-Methotrexate (MTX)-FITC; 6, shortened CNT-amphotericin B
(AmB)-FITC; 7, shortened CNT-FITC. Reproduced from [348]

Non-covalent sidewall functionalizations are based on weak interactions such
as hydrogen bonding, π-π stacking, electrostatic forces, van der Waals forces, and
hydrophobic interactions [33]. These interactions are generally used to wrap small
molecules, biochemically active molecules or molecules such as polymers onto CNT
side walls.

Modification of oxidized CNTs with polymers such as hydrophilic PEG results
in stable CNT-polymer conjugates in biological environments that can be utilized in
in vivo and in vitro studies. Another way of functionalization is provided by cyclo
additions performed on the aromatic side wall. [2 + 1] cycloadditions can be done
by the reaction of CNTs with azide molecules through photochemistry or Bingel
reaction with carbene-forming compounds [378, 379].

Another frequently used modification reaction for CNTs is the 1,3-dipolar cyclo
addition reaction developed by Prato [380, 381]. It was accomplished by azomethine-
ylide mediated condensation of α-amino acids and aldehydes to the graphitic surface
with the coupled pyrrolidine ring formation on the CNT surface. Even though the
surface modifications make CNTs stable and allow them to be employed in biolog-
ical applications, they have negative effect on the photoluminescence and Raman
scattering properties of the particle due to the damage caused to the structure [377].
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Fig. 29.20 Bioactive molecules that can be conjugated with CNTs. Reproduced from [348]

29.7.2 Biological Applications of CNTs

Until the beginning of the twenty-first century, carbon nanotubes, which came to
the fore with their applications in the industrial field, have started to be reported
in the biological field, and a great increase has been observed in the biomedicine
field. Nanotubes that are stable in water and serum are biocompatible, non-toxic
and have potential for biomedical applications. Although the in vivo distribution
varies depending on their functionalization and size, they tend to accumulate in
reticuloendothelial system (RES),whichmostly includes liver and spleen. It is known
that noncovalently functionalized CNTs mostly accumulate in the liver and spleen
while covalently functionalized CNTs tend to be excreted through the urine. An
illustration of CNTs use in biomedical applications is shown in Fig. 29.21.

The precise determination of biological materials using CNTs is possible
with surface passivation via preventing the non-specific interactions of biological
molecules with the hydrophobic nanotube surface.

In vivo and in vitro studies show that carbon nanotube-based drug delivery systems
appear to be promising carrier systems for cancer therapy due to the decrease seen
in side effects of anticancer drugs for the organism and increased the possibility of
localization of the particles in the desired region. Another reason to prefer CNTs as
a drug delivery system is their high cellular internalization, efficient drug loading
capacity and exhibiting the selective targeting via surface modifications. Studies
performed by functionalizing of CNTs with active or passive targeting agents are
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Fig. 29.21 CNTs in biomedical applications. Reprinted with permission from [348]

reported. Modifications with hydrophilic polymers such as chitosan, PEG and poly
(acrylic acid) were the strategies used in the preparation of carrier systems for tumor
tissues.

Meng et al. showed that CNTs modified with folic acid was wrapped with
chitosan could penetrate into cancer cells through an energy-dependent endocytotic
mechanism [382] (see Fig. 29.22).

Studies on the conjugation of CNTs with therapeutics such as DOX, cisplatin,
paclitaxel have been extensively investigated [383]. For instance, DOX can be effi-
ciently loaded into CNTs based on the π-π interactions between them. Most of the
studies conducted on cancer cells in order to compare with free DOX and CNT trans-
ported DOX, concluded that transported DOX higher cancer cell killing capacity. In
addition to this, transportation of DOXwith folic acid modifiedMWCNTs prevented
the tumor growth and decreased the side effects of DOX in vivo.

SWCNTs have been used in chemotherapy and NIR PTT for the delivery of DOX
[384]. The results revealed that SWCNTs caused high amount of DOX accumula-
tion in the nucleus of cancer cells and exhibited low drug release profile. As the
NIR radiation included to the treatment, cell death was observed due to mitochon-
drial damage and increased reactive oxygen species kin the environment. A similar
approach was followed for the treatment of breast cancer. MWCNTs were combined
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Fig. 29.22 In vivo fluorescent images of tumor-bearing BALB/c mice after intravenous injection
of fluorescent Chitosan-SWNTs for a 0 h, b 2 h, c 20 h, and Folic acid/Chitosan-SWNTs for d 0 h
e 2 h, f 20 h. Reprinted with permission from [382]

with methotrexate and delivered to the tumor site followed by thermal ablation. It
was reported that the higher rate on the death of breast cancer cells were observed
compared to free drug [385].

Biosensing studies are among main applications of CNTs. One of the first studies
in this area was reported by Kirschner which involved modification of the surface
of a biosensor for the detection of proteins by interacting them with fullerene
and CNTs. Later on, various high-sensitivity DNA-biosensors using functionalized
MWCNT have been reported by researchers. Studies have shown that specific DNA
sequences and pathogenic microorganism DNAs such as mycobacterium tubercu-
losis and Hepatitis C DNAs can be detected with high sensitivity [386, 387]. Apart
from DNA detection, CNT-based biosensors have also been reported to be used
in detection of molecules such as pesticides [388], glucose [389], reactive oxygen
species [390], and identification of diseases including malaria [391] and tuberculosis
[392].

Modified CNTs have been prepared to be employed in the combat with infections
from different microorganisms. In this aspect, antibiotic conjugated CNTs were
produced against the resistance developed by bacteria to antibiotics [393]. CNTs
modified with vancomycin hydrochloride have been reported to have high potential
inwound healing processes due to their distinguished antimicrobial properties. Resis-
tance to ciprofloxacin, which is used in the treatment of infections caused by Gram-
positive andGram-negative bacteria, is a problemall over theworld [394].Assali et al.
conducted a study to overcome this problem and reported that ciprofloxacin loaded
SWCNTs demonstrated a significant increase in the antibacterial activity compared
to free drug against 3 bacterial strains [395]. It has been shown in several studies that
the combination of CNTs with noble metals such as AgNPs is an effective option in
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the combat with pathogenic microorganisms, including antibiotic resistant microor-
ganisms [396, 397]. Al Aani et al. demonstrated an increased antibacterial activity of
AgNP coated MWCNT hybrid nanostructure against two important microorganisms
such as Staphylococcus aureus and Escherichia coli [398]. CNT-copper hydroxide
acetate hybrid nanostructure has shown to exhibit antimicrobial activity against the
same bacteria [399].

CNTs are also utilized in neural tissue applications including the development of
neuro implants for neuron growth and repair, as they can provide optimum conditions
as high binding affinity and electrical conductivity required for neural regeneration
[400]. It has been reported that hybrid CNT scaffold structures exhibit high electrical
conductivity, elasticity and cellular compatibilitywere developed tomake use of them
in neural applications.

29.8 Conclusions

As it is reviewed in this chapter, the most of the effort put on the nanomaterials
regardless of the type is about adopting them to medicine and commercialization.
Nanoparticles are replacing contrast agents in terms of imaging, changing administra-
tion routes of the drugs into non-invasive manner, offering better treatment options
with high efficacy and low toxicity particularly for cancers and several types of
other diseases, providing precision in detection of various materials and biologics.
These benefits and many more which are not listed here makes the utilization of
nanomaterials inevitable. Since the nature and the behavior of nanoparticles in diver-
sified environments have not been well understood yet, their potential to exhibit treat
against human health is still unclear. The next step in the adaptation of nanomaterials
to our daily life and medicine is to develop them as multifunctional and controllable
nanodevices while keeping the potential of risk of cytotoxicity in mind.
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Chapter 30
Recent Advances in Textile Wastewater
Treatment Using Nanoporous Zeolites

Abdullah Zahid Turan and Mustafa Turan

Abstract This review study deals with low-cost nanoporous zeolite for color
removal from textile wastewaters. Wastewater from textile industries contains
colorants originating from printing or dyeing processes. Basic and reactive dyes
are extensively used in the textile industry due to their favorable characteristics of
bright color, being easily water soluble, simple application technique and low-energy
consumption.Yet, they can not be easily removed via conventional treatmentmethods
since they strongly resist to biodegradation in an aerobic environment. Oxidation and
adsorption are two major technologies that are used for wastewater treatment in the
textile industrywhile adsorption-based removal of colorants alongwith other organic
pollutants from industrial wastewater is considered an important application. Zeolites
are becoming widely used as alternative materials in areas where sorptive applica-
tions are required. Having said that, several studies have reported that zeolites are
not suitable for the treatment of anionic contaminants and reactive dyes. Thus, in
order to enhance the removal of anionic contaminants, modification of zeolites with
quaternary amine cationic surfactants have been proposed. This review investigates
the equilibrium and the dynamics of the adsorption of dye on zeolites. The dynamics
of color/dye removal using bed depth service time (BDST) was modeled and design
parameters of the fixed-bed system were determined. Textile and other synthetic
dyes were discussed along with their removal via non-conventional low-cost adsor-
bents. In a nutshell, this chapter provides an updated literature on the application of
nanoporous zeolites in the treatment of textile dyeing wastewaters. An extensive list
of natural and modified zeolites in batch and fixed-bed systems was compiled. Dye
adsorption capacities and other parameters for natural and modified zeolites were
evaluated. Color removal efficiency for textile wastewater treatment systems coupled
with zeolites were presented. Adsorption capacities and cost of zeolites were also
reported in comparison with other adsorbents.
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30.1 Introduction

Many industries, such as dyestuffs, textile, paper and plastics, use dyes in order to
color their products and also consume substantial volumes of water.Wastewater from
textile industries contains colorants originating from printing or dyeing processes.
Dyes used in the textile industry are classified into three classes: (i) anionic (direct,
acid and reactive dyes), (ii) cationic (all basic dyes) and (iii) nonionic (dispersed
dyes). Basic and reactive dyes are extensively used in the textile industry due to
their favorable characteristics of bright color, being easily water soluble, simple
application technique and low-energy consumption [1, 2].

The use of organic dyes has increased in these said industries i.e., for an annual
world production of 30 million tonnes of textiles, 700,000 tonnes of different dyes
are required [3]. Such voluminous quantities pose considerable environmental prob-
lems since reactive dyes are water-soluble and cannot be easily removed by conven-
tional methods such as chemical coagulation/flocculation and biological methods
[4]. Moreover, these dyes are hardly biodegraded in an aerobic environment [5].

The adsorption process provides an attractive alternative for the decoloriza-
tion of dye wastewaters and low-cost and readily available adsorbents have so
far been utilized for this purpose in various applications.Many non-conventional low-
cost adsorbents, including natural materials, biosorbents and waste materials from
industry and agriculture, have been proposed in several studies. Some of the reported
sorbents include clay materials (sepiolite, bentonite, kaolinite), zeolites, siliceous
materials (silica beads, alunite, perlite), biosorbents (chitosan, peat, biomass),
agricultural wastes and industrial waste products.

Nanoporous zeolites have negative charges that arise due to isomorphous substi-
tution of Al3+ for Si4+ and its typical unit cell formula is given either as Na6[(AlO2)6
(SiO2)30]0.24H2O or (Na2, K2, Ca, Mg)3[(AlO2)6(SiO2)30]0.24H2O [6]. The frame-
work structure may contain linked cages, cavities or channels which are of the right
size to allow small molecules to enter (Fig. 30.1). The three-dimensional crystal
structure of zeolite contains two-dimensional channels [7, 8] which embody some
ion exchangeable cations such as Na+, K+, Ca2+ and Mg2+. These cations can be
exchanged with organic and inorganic cations [9, 10]. Such sorptive properties have
been utilized for a variety of purposes such as removal of ammonia [11–13], heavy
metals [14, 15] and dyes [16, 17].

This review study presents a thorough investigation of studies on zeolite-assisted
treatment of textile wastewater and in this respect covers; (i) batch adsorption studies,
where adsorption equilibrium, kinetic models and thermodynamic parameters are
considered; (ii) column adsorption studieswith adsorption column design parameters
and bed depth service time (BDST)model; (iii) examination of dyes (textile and other
synthetic) along with their removal via non-conventional low-cost adsorbents; (iv)
description of dye/color removal efficiency and other parameters for zeolites in the
batch andfixed-bed column systems; (v) investigation of dye/color removal efficiency
for wastewater treatment systems coupled with zeolites; (vi) analysis of the cost of
zeolite and other low-cost materials.
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Fig. 30.1 Zeolite structure

30.2 Methodology

30.2.1 Batch Adsorption Studies

30.2.1.1 Equilibrium Isotherms

Sorption studies are performed by batch technique to obtain rate and equilibriumdata.
The removal efficiency (%) of adsorbent and the adsorption capacity of solution qe
(mg/g) is calculated, respectively, as follows;

Removal efficiency(%) = (Ci − Ce)/Ci × 100 (30.1)

qe = (Ci − Ce)V/m (30.2)

where Ci and Ce are the initial and equilibrium solution concentrations (mg/L),
respectively, V the volume of the solutions (L) and m the weight of adsorbent used
(g). The equilibrium adsorption isotherm is fundamental in describing the interactive
behavior between solutes and adsorbent and is important in the design of adsorption
system. The widely used Langmuir isotherm [18] has found successful application
in many real sorption processes and the lineer form of Langmuir model is expressed
as;

Ce/qe = 1/kb + Ce/b (30.3)
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where the values of b (mg/g) and k (L/mg) aremaximumadsorption capacity of adsor-
bent and the adsorption energy coefficient, respectively. The well-known Freundlich
isotherm [19] used for isothermal adsorption is a special case for heterogeneous
surface energy, where the energy term in the Langmuir equation varies being depen-
dent on surface coverage varying with sorption degree. The lineer form of Freundlich
equation is given as;

log qe = log Kf + (1/n) log Ce (30.4)

where Kf is a practical indicator of the adsorption capacity and n is the adsorp-
tion intensity. The magnitude of 1/n reveals the favorability of adsorption. Values,
n > 1 indicate favorable adsorption condition [20]. The three-parameter Koble-
Corrigan model is the combination of Langmuir and Freundlich models and is given
as;

qe = ACm
e /

(
1 + Cm

e

)
(30.5)

This model is valid when m > 1 [21]. Redlich-Peterson model has three constants
and has been proposed to improve the fit by Langmuir and Freundlich models as
follows;

qe = KRPCe/(1 + aRPC
b
e) (30.6)

where KRP, αRP and β are the Redlich-Peterson parameters. Value of β is between 0
and 1. Equation (30.6) reduces to a linear isotherm at low surface coverage, to the
Freundlich isotherm at high adsorbate concentration and to the Langmuir isotherm
when β = 1 [22]. The derivation of the Temkin isotherm assumes that the fall in
the heat of adsorption is linear rather than logarithmic, as implied in the Freundlich
equation. The Temkin isotherm [23] is given as;

qe = A + B lnCe (30.7)

where A and B are isotherm constants.

30.2.1.2 Kinetics and Thermodynamics

In order to investigate the mechanism of adsorption, the pseudo-first-order adsorp-
tion, the pseudo-second-order adsorption and the intraparticle diffusion model are
used to test dynamical experimental data. The first-order rate expression of Lagergren
[24] is given as;

log
(
qe − q

) = log qe − k1t/2.303 (30.8)
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where qe and q are the amounts of dye adsorbed on adsorbent (mg/g) at equilibrium
and at time t, respectively and k1 is the rate constant of first-order adsorption (1/min).
The slopes and intercepts of plots of log (qe–q) versus t are used to determine the
first-order rate constant k1. In many cases, the first-order equation of Lagergren does
not fit well to the whole range of contact time and is generally applicable over the
initial stage of the adsorption processes [25]. The second-order kinetic model [26]
is expressed as;

t/q = 1/
(
k2q

2
e

) − t/qe (30.9)

and

h = k2q
2
e (30.10)

where k2 (g/(mg min)) is the rate constant of second-order adsorption and h is the
initial adsorption rate (mg/(g min)). The slopes and intercepts of plots of t/q versus t
are used to calculate the second-order rate constant k2 andqe. Thismodel assumes that
adsorption is the rate-controlling step and it is more convenient for the prediction of
adsorption behaviour over awider range [25, 26]. The intraparticle diffusion equation
is described as;

q = kit
0.5 (30.11)

where ki is intraparticle diffusion rate constant (mg/(g min0.5)). ki is the slope of
straight-line portions of plot of q versus t0.5. The pseudo-second-order rate constant
of solute adsorption is expressed as a function of temperature by the Arrhenius
equation:

ln k = ln A − Ea/RT (30.12)

where Ea is the Arrhenius activation energy of sorption, representing the minimum
energy that reactants must have for the reaction to proceed, A is the Arrhenius
factor, R is the gas constant (8.314 J/(mol K)) and T is the solution temperature. The
thermodynamic parameters such as change in free energy (�G°), enthalpy (�H°)
and entropy (�S°) are determined using the following equations [27, 28]:

KC = CAe/Ce (30.13)

DG0 = −RT lnKC (30.14)

logKC = DS0/(2.303R) − DH0/(2.303RT) (30.15)
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where KC is the equilibrium constant, CAe is the amount of adsorbate (mg) adsorbed
on the adsorbent per L of the solution at equilibrium, Ce is the equilibrium concen-
tration (mg/L) of the dye in the solution, T is the solution temperature (K) and R is
the gas constant. �H° and �S° are calculated from the slope and intercept of logKC

versus 1/T plot.
The magnitude of activation energy gives an idea about the nature of adsorption,

which is mainly either physical or chemical. Generally, the absolute magnitude of
the change in free energy for physisorption is between −20 and 0 kJ/mol, while
chemisorption has a range of –80 to –400 kJ/mol [29]. The negative values of the
standard enthalpy change (�H°) indicate that the interaction of the adsorbate with
adsorbent has an exothermic nature.

30.2.2 Column Adsorption Studies

30.2.2.1 Adsorption Column Design Parameters

Adsorption performance of fixed-bed process can be evaluated while bed volumes
(BV) at breakthrough point (C/C0 = 0.1) is maximum. The breakthrough curves are
constructed by plotting the normalized effluent concentration (C/C0) versus time (t)
and/or bed volumes (BV). The bed volumes, BV and the empty bed contact time,
EBCT, for a fixed-bed column process are defined, respectively, as follows;

BV = VF/VR = Qt/VR (30.16)

EBCT = VR/Q (30.17)

where VF is the total volume of wastewater treated during adsorption process at time
t (L), VR is the volume of zeolite bed (L), C0 is the influent concentration (mg/L),
C is the effluent concentration at time t (mg/L), Q is the fixed-bed feed flow rate
(L/min) and t is the service time (min).

The formation and the movement of the adsorption zone can be evaluated numer-
ically [30, 31]. The time required for the adsorption zone to become established and
move completely out of the bed at exhaust time is;

tExh = VExh/Q = BVExhEBCT (30.18)

The rate at which the adsorption zone (Uz) is moving up or down through the bed
is;

Uz = hz/tz = h/(tExh − tf) (30.19)
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From (30.19), the height of the adsorption zone (hz) is obtained as;

hz = h(tz)/(tExh − tf) (30.20)

where VExh is the total volume of wastewater treated in the zeolite column at exhaust
time (L), hz is the height of adsorption zone (cm), h is the total bed height (cm) and
tf is the time required for the adsorption zone to initially form (min). tf value can be
found as follows;

tf = (1 − F)tz (30.21)

At breakthrough point, the fraction (F) of adsorbent present in the adsorption zone
still possessing the ability to remove solute is;

F = Sz/Smax =
∫ VExh

Vb
(C0 − C)dV/C0(VExh − Vb) (30.22)

where Vb is the total volume of the wastewater treated to the breakthrough point
(L), Sz is the amount of solute that has been removed by the adsorption zone
from breakthrough to exhaustion and Smax is the amount of solute removed by the
adsorption zone when completely exhausted. The percentage of column saturation
at breakthrough point is;

%saturation(h + (F − 1)hz) × 100/h (30.23)

30.2.2.2 Bed Depth Service Time (BDST) Model

The objective of fixed-bed process is to reduce the effluent concentration to such a
degree that it does not exceed a specific breakthrough concentration (Cb). The original
study on the BDST model was carried out by Bohart and Adams [32] who proposed
a relationship between bed depth, Z, and the time taken for breakthrough to occur.
The service time, t, is related to the process conditions and operating parameters;

ln(C0/Cb − 1) = ln
(
ekadN0Z/V − 1

) − kadC0t (30.24)

Hutchins [33] proposed a linear relationship between the bed depth and service
time;

t = N0Z/(C0v) − (1/kadC0) ln(C0/Cb − 1) (30.25)
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where Cb is the solute concentration at breakthrough point (mg/L), kad is the adsorp-
tion rate constant (L/(mg h)), N0 is the adsorption capacity (mg of solute/L of adsor-
bent), Z is the bed depth of column (cm), v is the linear flow velocity of feed stream
(cm/h), and t is the service time of column (h). The critical bed depth, Z0, is the
minimumcolumnheight necessary to produce an effluent concentrationCb.By letting
t = 0, Z0 is obtained from (30.25);

Z0 = (v/kadN0) ln(C0/Cb − 1) (30.26)

Equation (30.25) enables the service time, t, of an adsorption bed to be determined
by a specified bed depth, Z, of adsorbent. t and Z, which are are correlated with the
process parameters such as the influent concentration of solute, solution flow-rate
and the adsorption capacity [34] 30.23, can be expressed in the following form:

t = mZ + n (30.27)

where

m = slope = N0/C0v (30.28)

n = intercept = −(1/kadC0) ln(C0/Cb − 1) (30.29)

30.2.3 Dyes and Low-Cost Adsorbents

30.2.3.1 Textile and Other Synthetic Dyes

Today, the annual worldwide production of more than 100,000 commercial dyes
is estimated to be around 7 × 105–1 × 106 tons [35–38]. Having said that, it is
also reported that 10–15% of the used dyes enter the environment through wastes
[39]. The main consumers of dyes are textile, dyeing, paper and pulp, tannery and
paint industries. The classification of synthetic dyes and some basic features of
them are explained below [40]:

(i) Reactive dyes: They are usually used in cotton and other cellulosics. Their
attachment is over a covalent bond with the fiber. Their structure is rela-
tively simple, which is composed of chromophoric groups such as azo,
anthraquinone, triarylmethane etc.

(ii) Acid dyes: These are mainly used in nylon, wool, silk and modified acrylics.
Most of them are water-soluble and generaly in chemical forms like azo,
anthraqui-none, triphenylmethane, azine, xanthene, nitro and nitroso.
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(iii) Basic (cationic) dyes: These dyes generate coloured cations upon dissolved
in water. They are often used for paper, polyacrylonitrile, modified nylons,
modified polyesters and cation dyeable polyethylene terephthalate. These
water-soluble dyes yield coloured cations in solution and that’swhyare called
as cationic dyes. They are generally in diazahemicyanine, triarylmethane,
cyanine, hemicyanine, thiazine, oxazine or acridine form.

(iv) Vat dyes: These water-insoluble dyes usually consist of anthraquinone
(including polycyclic quinones) and indigoid structures and they are mainly
used in cotton.

(v) Disperse dyes: Their highly water-insoluble character makes them good
candidates for use in hydrophobic polyester fibers. They are often composed
of azo, anthraquinone, styryl, nitro and benzodifuranone groups.

(vi) Direct dyes: These water-soluble anionic dyes show have high affinity
for cellulosic fibers and are mainly utilized in the dyeing of cotton,
rayon, paper and leather. Poly azo compounds, along with some stilbenes,
phthalocyanines and oxazines are typical chemical structures.

(vii) Solvent dyes: These dyes are used for plastics, gasoline, lubricants, oils
and waxes. They are water-insoluble and generally exhibit nonpolarity or
weak polarity, that’s why they are deprived of polar solubilizing groups such
as sulfonic acid, carboxylic acid or quaternary ammonium. Their chemical
structures are generally azo and anthraquinone, though phthalocyanine and
triarylmethane are also possible.

(viii) Sulfur dyes: These dyes are mainly used for cotton and rayon and utilized in
other sort of fibers only at a small extent.

30.2.3.2 Non-Conventional Low-Cost Adsorbents

The removal of colorants and other organic pollutants from industrial wastewater
using suitable adsorbents is considered an important application of the adsorption
process. Activated carbon and polymer resins appear to be the best adsorbents for
removing chemicals from relatively concentrated wastewater, yet they are expen-
sive and require regeneration [16, 41–43]. That’s why several researchers have
focused studies on low-cost adsorbent systems. A sorbent can be regarded as low-
cost if it requires only minor processing, is wide-spread in nature or is a by-product
or waste of a different process [44]. Materials to be used as adsorbents, either
being natural or wastes from industrial and agricultural processes, can be classified
as follows [45]:

(i) Activated carbons from solid wastes: Activated carbonss (AC) can be prac-
tically produced from almost any carbon-containing source, yet commercial
production is generally from natural materials such as wood, coconut shell,
lignite or coal.

(ii) Agricultural solid wastes: Potential adsorbents in this group are agricultural
solid wastes and waste materials from forest industries such as sawdust and
bark.
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(iii) Industrial by-products: Industrial solid wastes such as metal hydroxide
sludge, fly ash and red mud can be classified as low-cost materials.

(iv) Clays: Clays emerge as an important class of adsorbents thanks to their low
cost, world-wide abundance and high sorption properties. Clay materials
possess a layered structure and are classified accorfing to the differences in
these structures. There exist several forms of clays such as smectites (mont-
morillonite, saponite), mica (illite), kaolinite, serpentine, pylophyllite (talc),
vermiculite and sepiolite.

(v) Siliceous materials: The use of natural siliceous sorbents such as silica beads,
glasses, alunite, perlite and dolomite for wastewater is increasing due to their
abundance, availability and low cost. Within inorganic materials, silica beads
are of particular insterest.

(vi) Zeolites: Zeolites are highly porous aluminosilicates with different cavity
structures. Their structures consist of a three dimensional framework, having
a negatively charged lattice. The negative charge is balanced by cations which
are exchangeable with certain cations in solutions. Zeolites correspond to a
wide spectrum i.e., there exist more than 40 natural species such as clinoptilo-
lite, heulandite, phillipsite etc. The characteristics and applications of zeolites
have been reviewed elsewhere [46]. Zeolites are attractive adsorbents thanks
to their high surface area and low cost. Another advantage of zeolites over
resins is their ion selectivities due to their rigid porous structure. Zeolites are
becoming widely used as alternative materials in sorption-based processes.
They have been extensively studied recently because of their capability in
removing trace pollutants (e.g. heavy metals and phenols) thanks to their
cage-like structures suitable for ion exchange [47–49].

(vii) Biosorbents: Sorption-based separation of species via biological materials
is defined as biosorption. Chitin, chitosan, peat, yeasts, fungi and bacte-
rial biomass can be regarded as common biosorbents, which can be used
as chelating and complexing sorbents in order to concentrate and to remove
dyes from solutions.

30.3 Dye/Color Removal from Textile Dyeing Effluents
Using Nanoporous Zeolites

30.3.1 Dye Adsorption onto Natural and Synthetic Zeolites
in the Batch Systems

An overview of nanoporous zeolites for the dye/color removal from textile wastew-
aters is presented in this article. Several studies have been conducted on the sorbent
behavior of natural zeolites [16, 46–50]. Recently, natural zeolites have been used
effectively for the removal of basic dyes [51, 52]. However, they were not suitable
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for the removal of reactive dyes due to extremely low sorption capacities. So, a tech-
nical challenge have arisen for the enhancement of these low-cost materials to be
used as effective adsorbents. In this respect, within the scope of the recent studies
of the authors, a quaternary amine, hexadecyltrimethylammonium bromide (HTAB,
C19H42BrN) as seen in Figs. 30.2 and 30.3, was used tomodify the surface of zeolite
for the sorption of some anionic azo dyes [17, 53–56]. The adsorption mechanism of
three reactive dyes by zeolite has been examinedwith the aimof identifying the ability
of zeolite (clinoptilolite) to remove textile dyes from aqueous solutions [17]. The
reactive dyes CI Reactive black 5, red 239 and yellow 176 are typical azo dyes exten-
sively used in textile dyeing. The adsorption results indicate that the natural zeolite
has a limited adsorption capacity for reactive dyes, yet is substantially improved
upon modifying its surfaces with quaternary amines. The results are also supported
by electrokinetic measurements. The adsorption data were fitted to the Langmuir

Fig. 30.2 Hexadeciltrimetilammonium Bromide (HTAB) [56]

Fig. 30.3 A schematic illustration of the interaction of dye anions with quaternary amine on zeolite
surface [17]
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isotherm and it was found that the modified sepiolite yields adsorption capacities
(qe) of 111, 89 and 61 mg/g for red, yellow and black, respectively (Table 30.1).

Karadag [55] investigated the adsorption of Acid orange 8 on the surfactant-
modified clinoptilolite. The maximum adsorption capacity was obtained as
18.98mg/g at pH 8. Error analysis showed that theKoble-Corriganmodel best fits the
equilibrium adsorption data. Adsorption process was also found to be controlled by
both surface and particle diffusions. Adsorption of cationicmethylene blue (MB) and
anionicOrange II (OII) onto unmodified and surfactant-modified zeoliteswas studied
using a batch equilibration method [57]. For unmodified and 2% SDBS-modified
zeolites, the optimum conditions for MB adsorption are at 25 °C, pH 6.85, and 1 h
equilibrium time with adsorption capacities of 8.67 and 15.68 mg/g, respectively.
For OII adsorption on unmodified and modified zeolites, the best condition is at
25 °C and pH 1 for 20 min equilibrium time with adsorption capacities of 0.63 and
3.38 mg/g, respectively (Table 30.1).

Alpat et al. [49] investigated the adsorption of Toluidine blue O (TBO) using
clinoptilolite as a natural zeolite. It was found that adsorption of TBOon clinoptilolite
was fitted to the second-order kinetic model with two-step diffusion process and that
the adsorption isotherm follows both the Langmuir and Freundlich models. The
maximum adsorption capacity of clinoptilolite for TBO was 2.1 × 10–4 mol/g at
solution pH of 11.0. In 2006, the adsorption of methylene blue and rhodamine B on
an Australian natural zeolite was studied [50]. The maximal adsorption capacity of
zeolite for both basic dyes was found to be 2.8× 10–5 and 7.9× 10–5 mol/g at 50 oC,
respectively (Table 30.1). The adsorption isotherms fitted both the Langmuir and
Freundlichmodels and the adsorptionwas endothermic process. Itwas also found that
only 60%capacity could be recovered by the two regeneration techniques.Wang et al.
[58] researched an adsorption study onMCM-22,which is a novel nanoporous zeolite
synthesized [59] for the removal of basic dyes includingmethylene blue (MB), crystal
violet (CV), and rhodamine B (RB) from aqueous solution. The adsorption capacities
for MB, CV, and RB can reach 1.8 × 10−4, 1.2 × 10−4, and 1.1 × 10−4 mol/g,
respectively. The adsorption kinetics follows the pseudo-second-order model and the
external diffusion is the controlling process. The adsorption isotherms can be well
fitted with Langmuir and Freundlich models. Thermodynamic calculations indicate
that the adsorption of basic dyes on MCM-22 is spontaneous and an endothermic
reaction. The �H° for MB, CV, and RB is 5.4, 1.2, and 5.0 kJ/mol, respectively.

Within another study, the removal performance of clinoptilolite for Amido black
10B and Safranine T was compared [60]. The results indicate that clinoptilolite
has a limited adsorption capacity for Amido black 10B (removal efficiency of
81.2%) and has a good adsorption capacity for Safranine T (removal efficiency
of 16.3%). the adsorption isotherms for both dyes follow the Langmuir model. In
a similar study, adsorption equilibrium and kinetic of methylene blue (MB) onto
natural zeolite was studied [61]. The increase in temperature resulted in a higher MB
adsorption. The adsorption isotherm and kinetic follow the Redlich–Peterson model
and the pseudo-second-order model, respectively. The thermodynamics parameters
indicated that the MB adsorption onto zeolite was spontaneous and endothermic
process. Meshko et al. [16] evaluated the adsorption of basic dyes from aqueous
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solution onto granular activated carbon and natural zeolite using an agitated batch
adsorber. Two basic dyes were used as commercial salts without purification.
The dye Maxilon Schwarz FBL-01 300% (MS-300) contains 30–40% component
A and 20–30% component B. The dye Maxilon Goldgelb GL EC 400% (MG-400)
contains more than 90% component A.

The selectivity of a Mexican surfactant-modified clinoptilolite-rich tuff to retain
azo dyes (Red-40, Yellow-5 and a mixture of them) from aqueous solutions has been
investigated by Torres-Perez et al. [62]. The zeolitic material was modified with
hexadecyltrimethylammonium bromide and then left in contact with azo dyes. It
was found that in single and binary solutions, under the experimental conditions, the
modified zeolitic material retain preferentially Red-40 in comparison to Yellow-5.
The best models to describe the reaction rate and the sorption of azo dyes Red-40
and Yellow-5 by Mexican surfactant modified clinoptilolite-rich tuff were pseudo-
second order and Langmuir models, respectively. Recently, the adsorption of three
basic dyes as rhodamine B (RB), crystal violet (CV), and methylene green (MG) and
two acid dyes as Acid red 1 (AR1) and Erioglaucine (EG) ontoMCM-41 was studied
to examine the potential ofMCM-41 [63] for the removal of dyes fromwater solution
by Lee et al. [64]. The adsorption capacity of MCM-41 for the five dyes followed
a decreasing order of RB > CV > MG > EG ∼ AR1. The fitness of both Langmuir
and Freundlich adsorption model on describing the equilibrium isotherms of three
basic dyes was examined. Thermodynamic calculations indicate that the adsorption
of basic dyes onMCM-41 is an exothermic process and the change in enthalpy (�H°)
for RB, MG, Q and CV are −32.1, −7.5, and −26.3 kJ/mol, respectively.

Yousef et al. [65] investigated the effect of using Jordanian zeolitic tuff as filler
on the mechanical performance and on the adsorption capacity of the geopoly-
mers products. Geopolymers consist of an amorphous, three-dimensional structure
resulting from the polymerization of aluminosilicate monomers. For methylene blue
and copper (II) ions, geopolymers M-RZ and M-JZ (based on kaolin and Jordanian
zeolite) have the highest adsorption capacities of qm = 0.07 and 0.08mmol/g, respec-
tively. The adsorption of Reactive black 5 and Reactive red 239 in aqueous solution
on cetyltrimethylammonium bromide (CTAB)-zeolite was studied in a batch system
by Karadag et al. [66]. CTAB modification covered the zeolite surface with posi-
tive charges, and the adsorption capacity of zeolite increased. Chemical structure
of Reactive black 5 and Reactive red 239 was shown in Fig. 30.4. The Freundlich
isotherm agrees very well with the experimental data. Thermodynamic parameters
such as change in free energy (�G°), enthalpy (�H°), and entropy (�S°) were also
determined. The maximum adsorption capacities changed from 12.93 to 12.18 mg/g
for RR239 and from 15.94 to 11.02 mg/g for RB5 with increasing temperature from
30 to 40 °C.

Similarly, the adsorption of the dyes Basic red 46 (BR46) and Reactive yellow 176
(RY176) from aqueous solution onto natural and modified zeolites has been investi-
gated [67]. The surfactants cetyltrimethylammonium bromide (CTAB) and hexade-
cyltrimethylammonium bromide (HDTMA) were used to modify the zeolite surface.
BR46 adsorption onto natural zeolite increased to a minor extent with increasing
pH, whereas pH did not significantly affect RY176 adsorption. The increase in ionic
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Fig. 30.4 Chemical structure of reactive dyes: a Reactive black 5, and b Reactive red 239 [66]

strength caused a decrease in adsorption of BR46 and an increase in adsorption
of RY176. Adsorption of BR46 on natural zeolite is more favorable than RY176
on the CTAB and HDTMA modified zeolites. In 2009, the adsorption behavior
of four anionic dyes as methyl orange (MO), Orange IV (OIV), Reactive brilliant
red X-3B (X-3B), and Acid fuchsine (AF) on ammonium-functionalized MCM-
41 (NH3+-MCM-41) was investigated [68]. The intraparticle diffusion model was
found to be the best in describing the adsorption kinetics for the four anionic dyes
on NH3+-MCM-41. The adsorption isotherm follows the Langmuir model. It was
observed that the anion of weak acid inhibited the adsorption capacity significantly.
Recently, the surfaces of NaY zeolite particles were modified by the alkylsilylation
of n-octadecyltrichlorosilane (OTS) by Nur et al. [69]. Two kinds of modified NaY
zeolites were prepared; one with its external surface partially and the other fully
covered with alkylsilyl groups. Since the size of OTS is larger than the pore diameter
of NaY, it is attached on the external surface, leaving the internal pore accessible to
adsorbate molecules. As a result of alkylsilylation, the adsorption properties of these
sorbents were improved. The adsorption properties of these materials were tested by
their reaction in a mixture of Paraquat and Blue dye.

Natural zeolite and synthetic zeolite, MCM-22, were used for removal of a basic
dye, methylene blue, from wastewater [70]. Fenton oxidation and high temperature
combustion were also used for the regeneration of used materials. It is found that
MCM-22 exhibits equilibrium adsorption at 1.7× 10–4 mol/g, which is much higher
than the adsorption of natural zeolite (5 × 10–5 mol/g) at initial dye concentration of
2.7 × 10–5 M and 30 °C. Higher solution pH results in higher adsorption capacity.
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Physical regeneration under high temperature calcination will recover more than
88% adsorption capacity while chemical regeneration by Fenton oxidation will only
restore 60% adsorption capacity. In a similar study [71], the adsorption of two basic
dyes, Basic green 5 (BG5) and Basic violet 10 (BV10), onto MCM-41 was studied.
It was found that the effect of interactions between large dyes (such as BV10) and
MCM-41 on the pore structure stability of MCM-41 was insignificant. It was also
found that the adsorption capacity for the two dyes was very distinct, though their
molecular sizes were similar. Hydrothermally synthesized ZSM-5 zeolite was modi-
fied by manganese (Mn/ZSM-5) or lanthanum (La/ZSM-5) or mixture of both (Mn–
La/ZSM-5) using impregnation technique [72]. These materials were tested for
discoloration (adsorption) and mineralization (in the presence of UV irradiation)
of Indigo Carmine (IC) dye. Mn–La/ZSM-5 showed high catalytic activity during
IC adsorption (100% removal).

Wang et al. [73] investigated the removal of methylene blue (MB) by adsorption
process on single-phase and high-crystalline zeolite A (FA-ZA) and X (FA-ZX).
Both zeolite adsorbents, FA-ZA and FA-ZX, were synthesized from aluminosilicate
gel, which is prepared from fly ash and subsequently subjected to a hydrothermal
treatment at 100 °C.The adsorption capacity followed this: FA-ZX>FA-ZA.Another
similar study [74] was also carried out to remove methylene blue using zeolites
synthesized from fly ashes. Nearly 90 min of contact time were found to be sufficient
for the adsorption of dye to reach equilibrium. The adsorption isotherm follows the
Freundlichmodel and the adsorption kinetic follows the pseudo-second-ordermodel.
A novel zeolite was synthesized, characterized and employed for the adsorption of
Methylene blue (cationic dye) and bisphenol-A in aqueous solution [75]. The pore
properties of the synthesized zeolite have been determined using N2 adsorption–
desorption isotherms, indicating that it is a supermicroporous adsorbent with BET
surface area of over 400 m2/g (Table 30.1). It was found that the synthesized zeolite
exhibited significantly higher adsorption capacity for methylene blue than that for
bisphenol-A due to the difference in molecular properties.

In 2007, the removal of malachite green (MG) and Pb2+ ions onto natural zeolite
was studied in a batch system [76]. In the single system, MG adsorption isotherm
follows the Langmuir model while Pb adsorption follows the Freundlich isotherm.
The adsorption capacities of MG and Pb at 30 °C, pH 6 are 5 × 10–5 and 10 ×
10–5 mol/g, respectively. In the binary system, MG and Pb2+ exhibit competitive
adsorption on the natural zeolite. The dynamic adsorption of malachite green and
Pb2+ follows the first-order kinetics. Yan et al. [77] determined adsorption isotherms
and kinetics of methylene blue (MB) onto mesoporous carbons. It was found that
the adsorption capacities of MB at 20 °C onto the carbons prepared using acid-
and alkaline-treated zeolite X as the template were 223 and 380 mg/g, respectively.
Adsorption isotherm follows the Langmuir model and the adsorption kinetics of MB
on mesoporous carbons also followed pseudo-second-order kinetic model. Zeolites,
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polymeric resins, ion exchangers and granulated ferric hydroxide (GEH) were inves-
tigated with different reactive dyes (M 600–1500 g/moL) [78]. Zeolites and microp-
orous resins were not suitable due to extremely low sorption capacities. The macro-
porous resins without functional groups showed moderate maximum loadings (100–
400 μmoL/g or 100–400 mg/g) but low affinity and were not suitable for large dyes
(>1000 g/moL).

Karadag et al. [79] used cetyltrimethylammonium bromide (CTAB) modified
zeolite for the removal of Reactive blue 4 (RB4) and Reactive yellow (RY) dyes.
According to individual dye removal efficiencies, coagulation is the main treatment
process of the combined process and RY has better performance than RB4. The
combination of chemical coagulation followed by adsorption achieved greater than
99.5% color removal and 97.25%COD removal efficiencies for both dyes. In another
study, typeA zeolite, an insoluble crystalline sodium aluminosilicate, has been devel-
oped as a water-hardness controlling agent for laundry detergent products [80]. The
isotherm of methylene blue on Na-A was Langmuirian over the concentration range
studied, reaching constancy for solution concentrations above 2.0× l0−6 M and indi-
cating coverage in the plateau region of 2.8 × mol of MB/g of zeolite. Combining
this coverage with the measured surface area gives a calculated area of zeolite per
molecule of MB of 113 Ao2. This is similar to the calculated surface area for a
flat orientation of MB, viz., 120 Ao2 [81]. Recently, the sorption behaviour of dye
remazol yellow using surfactant modified zeolitic rock and a carbonaceous material
obtained by pyrolysis of sewage sludge and treated with HCl (1.0%) solution was
determined [82]. Remazol yellow could be removed from the saturated modified
zeolitic material by chemical and thermal treatment, but, the surfactant was removed
together with the dye. However, thermal treatment was the best method found to
remove the dye from the carbonaceous material.

Kuleyin and Aydin [83] also used surfactant-modified zeolite (SMZ) to remove
Remazol Brillant blue R and Remazol yellow reactive dyes from aqueous solutions
in the batch system. The Langmuirmonolayer adsorption capacities of Remazol Bril-
lant blue R and Remazol yellow were estimated as 13.9 and 38.31 mg/g, respectively
(Table 30.1). Thermodynamic parameters such as�H°,�S°, and�G°, at 20 °C,were
found to be 5.2126 kJ/mol, 0.0273 kJ/mol K, and 22.7969 kJ/mol (Remazol Bril-
lant blue R), and 29.9747 kJ/mol, 0.10875 kJ/mol K, and 21.8900 kJ/mol (Remazol
yellow), respectively. Sayal et al. [84] studied the adsorption of two basic dyes
(Amido black and Thionine) onto granular activated carbon as well as zeolite from
fly ash and bentonite. The adsorption isotherm could be described by the Langmuir
and Freundlich isotherm equations. The parameters in the adsorption isotherms are
estimated from the experimental equilibrium data using non-linear regression anal-
ysis. Recently, the adsorption of reactive dyes, namely Reactive red 239 (RR-239)
and Reactive blue 250 (RB-250) on modified zeolite (HMDA-Z) was investigated
in batch system [85]. The most appropriate model was the Freundlich model. The
kinetic studies indicated that the adsorption of reactive dyes followed the pseudo-
second-order kinetic. Thermodynamic calculations showed that the adsorption of
both investigated dyes was a spontaneous and endothermic process for RB-250 and
an exothermic process for RR-239.
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Fig. 30.5 Synthetic zeolite (ZIF-67) and cationic dye Malachite Green (MG) [88]

In 2013, kaolin and zeolite have been utilized as adsorbents for the removal of
a cationic dye, methylene blue (MB), from aqueous solution within a batch process
[86]. The results indicate that kaolin and zeolite could be interesting alternative
materials with respect to more costly adsorbents used for dye removal. A novel
N,N-dimethyl dehydroabietylamine oxide (DAAO) surfactant was synthesized via
alkylation and oxidation of dehydroabietylamine [87]. The adsorptive removal of
an anionic dye, Congo red (CR), from aqueous solution was then investigated. The
Langmuir isotherm model fits well with the equilibrium adsorption data and adsorp-
tion capacity was found 69.94 mg/g. The results showed that the CR adsorption was
best described by pseudo-second-order kinetics. In 2015, zeolitic imidazole frame-
works (ZIFs) (Fig. 30.5), a new class of adsorbents, are proposed to adsorb malachite
green (MG) in water [88]. The as-synthesized ZIF-67 was characterized and used
to adsorb MG from water. The adsorption capacity of ZIF-67 for MG could be as
high as 2430 mg/g at 20 °C, which could be improved at the higher temperatures.
Such an ultra-high adsorption capacity of ZIF-67 was almost 10-times of those of
conventional adsorbents, including activated carbons and biopolymers.

In 2016, chabazite, one of the common types of zeolite, was used to remove
methylene blue (MB) dye from aqueous solutions [89]. The experimental data were
well fitted to the Langmuir isotherm model. The adsorption kinetics of MB dye on
chabazite could be described by a pseudo second-order model. Hor et al. [90] eval-
uated different facile and cost-effective physicochemical methods in enhancing the
adsorption capacity of natural zeolite and subsequently demonstrated the removal of
methylene blue (MB). Four different physicochemical methods, namely: acid treat-
ment (AT), base treatment (BT), combined acid-thermal (ATT) and base-thermal
treatments (BTT) were investigated. Batch adsorption studies were carried out using
the modified zeolite adsorbents, in order to evaluate the highest removal efficiency
of MB under varying adsorption conditions. Results showed that both the physico-
chemical methods of AT (using 0.4 M HCl) and BT (using 4.0 M NaOH) are able to
enhance the adsorption capacity of natural zeolite from 41% to 98.8% and 52.2%,
respectively. Nassar et al. [91] reported on the preparation ofmordenite zeolite nanos-
tructures using a low-cost hydrothermal treatment of silica gel, aluminumnitrate and
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sodium hydroxide. The influence of organic templates such as ethylene glycol, glyc-
erol and polyethylene glycol 200 (PEG 200) on the zeolite products was studied.
The PEG 200 organic template generated a mordenite product with 57.51 nm crys-
tallite size and 28.26 m2/g BET surface area (Table 30.1). The mordenite product
also showed good adsorption properties toward the removal of methylene blue (MB)
dye from wastewater.

In 2017, the adsorption of Basic blue 41 textile dye from aqueous solutions on a
zeolite tuff (Romanian) was studied in batch mode [92]. The maximum adsorption
capacity for the investigated basic textile dye (∼40% pure dye) was 192.31 mg/g at
50 °C (at pH 5) for the average diameter particles tuff of 0.085 mm. The positive
enthalpy change for the adsorption process confirms the endothermic nature ofad-
sorption and a free energy change confirms the spontaneity of the process. Aljerf [93]
researched the importance of the adsorption properties of a modified clinoptilolite
zeolite (CL) for the removal of BCP dye and some heavy metals as total chromium
(tCr) in the ammoniac phase. The batch removal showed the optimal conditions for
BCP adsorption: pH (6.5), time (t) (60 min), temperature (T) (303.15 K), sorbent
dosage (m) (60.4 mg) and initial concentration (Co) (11.7 mg/L). The maximum
adsorption capacities of BCP and tCr onto the CL-SWwere 175.5 mg/g and 37mg/g,
respectively. In 2018, a highly efficient and reusable zeolite was prepared using the
biopolymer chitin as mesoporosity agent and applied to adsorb three cationic dyes
[94]. The zeolite was synthetized by the hydrothermal method and was character-
ized. The potential of zeolite to adsorb crystal violet (CV), methylene blue (MB) and
basic fuchsin (BF) was evaluated conducting kinetic, equilibrium, thermodynamic
and regeneration studies. The treatment of simulated effluents was also performed
(Table 30.2). The modification with chitin biopolymer provided attractive adsorptive
characteristics for the zeolite structure. Maximum adsorption capacities predicted by
the isothermmodels were 1217.3, 548.2 and 237.5 mg/g for CV,MB and BF, respec-
tively. The modified zeolite can be used for fifteen adsorption cycles maintaining the
same adsorption capacity. Also, the adsorbent was able to treat a simulated textile
effluent providing 85% of color removal.

Adsorption of the hazardous cationic dye malachite green (MG) on the synthe-
sized zeolite was investigated [95]. The maximum equilibrium adsorption capacity
was found to be 108.26 mg/g at 30 °C. The MG adsorption data fit better to the
Freundlich model (R2 > 0.99) than the Langmuir model. Another study [96] focused

Table 30.2 Chemical
composition of the simulated
textile effluent [94]

Cationic dyes λmax (nm) Concentration (mg/L)

Basic Fuchsin 540 15

Methylene Blue 664 15

Crystal Violet 590 15

Inorganic compounds

NaCl – 100

NaHCO3 – 100
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on the adsorption properties of zinc oxide (ZnO) in the form of nanoflakes on the
surface of zeolite for the removal of Congo red (CR) dye. The adsorption data follows
pseudo second order kinetics andLangmuir isothermmodelwith amaximumadsorp-
tion capacity of 161.3 mg/g. The synthesized composite is easily regenerable and
reusable and is capable of removing CR dye from the polluted water up to 90% (for
5 regeneration cycles). The adsorption properties of three types of natural zeolite
(heulandite, clinoptilolite, and phillipsite) was also investigated [97]. The selected
zeolite minerals were applied as adsorbents in the decolorization of safranin-T
dye from water. The estimated uptake capacities for safranin revealed the higher
capacity of heulandite than clinoptilolite and Phillipsite (heulandite > clinoptilolite
> phillipsite). Monolayer adsorption form was suggested for the uptake by heulan-
dite and clinoptilolite (Langmuir) and multilayer form was predicted for phillipsite
(Freundlich).

In 2018, Sodalite zeolite nanoparticle (SZN) was synthesized and its surface was
modified by different amounts of (3-aminopropyl) triethoxy silane (APTES) and
denoted as SZN(0.5), SZN(1) and SZN (1.5) by Mahmoodi and Saffar-Dastgerdi
[98]. The surface modified zeolite nanoparticles were used for adsorbing Direct
red 23 (DR23) and Direct red 80 (DR80) from wastewater. The investigated data
for the effect of APTES amount on the zeolite n terms of DR23 and DR80
removal was shown in Fig. 30.6. Adsorption capacity of SZN(0.5) was 2415 and
4842 mg/g for DR80 and DR23, respectively. The Gibbs free energy at 298, 313,
323 and 333 K were −12.53, −14.68, −16.12 and −17.55 kJ/mol for DR23 and
−9.27, −11.73, −13.37 and −15.01 kJ/mol for DR80. In 2020, another study [99]
reported the first use of Fe-ZSM-5 as a potential adsorbent for textile effluent purifi-
cation. The Fe-ZSM-5 zeolite was synthesized through a hydrothermal method using
tetrapropylammonium bromide as an organic structure-directing template for appli-
cation as a binder forBasic fuchsin (BF) dye.N2 adsorption–desorptionmeasurement
showed the microporous structure (pore size around 1.93 nm) of Fe-ZSM-5 with a

Fig. 30.6 Effect of APTES loading on zeolite on dye removal by the synthesized nanomaterial a
DR23 and b DR80 [98]
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BET surface area of 399m2/g. The experimental adsorption data were in good agree-
ment with pseudo-second-order kinetics and Langmuir isotherm with a maximum
adsorbed amount of 251.87 mg/g. BF dye adsorption onto Fe-ZSM-5 was a sponta-
neous and endothermic phenomenon. The highest BF dye removal performance was
found to be 99.6% under optimum conditions of pH 5, Fe-ZSM-5 dose 0.75 g/L,
initial BF concentration 10 mg/L for 120 min at 20 °C.

30.3.2 Dye/Color Removal from Textile Wastewaters
in the Fixed Bed Columns

In spite of the promising results demonstrated in several studies, the real applicability
of these natural materials to purify dyewastewaters is still not clear. Another problem
of zeolites is their lowpermeability and this requires an artificial supportwhen used in
column operations. The sorption mechanism on zeolite particles is complex because
of their porous structure, inner and outer charged surfaces, mineralogical hetero-
geneity and other imperfections on the surface [47]. Adsorption is advantageous to
other techniques in respect of initial cost, flexibility and simplicity of design, ease
of operation and insensitivity to toxic pollutants. In addition, adsorption is one of
the most important unit processes in a wastewater treatment plant and the design
of the adsorption column usually requires data generated in pilot-scale studies [31].
Several investigators reported studies in the fixed-bed reactors using zeolite as a cost-
effective adsorbent for dye/color removal (Table 30.3). In the recent studies of the
authors, the modification of zeolite (clinoptilolite) surface with a cationic surfactant
to improve the removal efficiency of reactive azo dyes in the fixed-bed reactor was
investigated (57,104–107).

Adsorption tests were conducted to find the uptake of three types of reactive dyes
(Reactive black 5, red 239 and yellow 176) [54]. Each run consisted of modifying
zeolite with HTAB in the column followed by removal of color from the modified
zeolite bed. The breakthrough curves for modification process were obtained as the
normalized effluent concentration (C/Co) versus time or bed volumes (BV). Opti-
mization studies show that 3 g/L ofHTABdosage at a flowrate of 0.025L/min showed
the best performance. Similarly, Taguchi method was applied as an experimental
design to determine optimumconditions for color removal from textile dyebath house
effluents in a zeolite fixed bed reactor [100]. The optimum conditions were found
as: HTAB concentration of 1 g/L, HTAB feeding flowrate of 0.015 L/min, textile
wastewater flowrate of 0.025 L/min and bed height of 50 cm. The treated wastew-
ater volume reached a maximum at 217 BV (Table 30.3). Recently, the ability of
surfactant-modified zeolite (SMZ) to remove color from real textile wastewater was
investigated [101]. Reactive dyes and auxiliary chemicals used in dyeing process
that produce textile wastewater are given in Table 30.4. Tests were performed in a
fixed-bed column reactor and natural zeolite was modified with HTAB. Wastewater
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Table 30.4 Reactive dyes
and auxiliary chemicals used
in dyeing process that
produce textile wastewater
[101]

Chemicals Amount (kg)

Dyes

Everzol orange 3R 11

Everzol red F2B 15

Everzol black GR 166

Everzol black HC 77

Remazol gelb 3R5 8

Remazol rot 3B5 8

Remazol black N150 82

Procion yellow HEXL 3

Procion yellow HEGG 3

Procion red HEGXL 1

Procion crimson HEXL 1

Procion blue HERD 2

Procion navy HEXL 3

Evercion yellow HE4R 15

Evercion red HE7B 22

Evercion blau HEGN 6

Evercion navy HER 26

Evercion navy ESL 32

Auxiliary chemicals

Na2SO4 650

NaCl 850

Na2CO3 1500

NaOH 250

CH3·COOH 350

H2O2 220

Na2·S2O4 45

Ion holder 90

Detergent 80

Wetting 125

was diluted in the ratios of 25%-75% in order to assess the influence of wastew-
ater strength. The theoretical service times evaluated from bed depth service time
(BDST) approach for different column variables. The regeneration of the SMZ was
also evaluated using a solution consisting of 30 g/L NaCl and 1.5 g/L NaOH at pH
12 and temperature 30 °C. The point of 0.1 Ceff/Cinf for 1st, 2nd and 3rd regeneration
cycles were obtained at 360, 330 and 300min (or 51, 46.7 and 42.5 BV), respectively.

Faki et al. [102] also studied adsorption of Reactive yellow 176 onto HTAB
modified zeolite in a fixed-bed column system. Adsorption of Reactive yellow 176
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dye by zeolite modified at different HTAB concentrations against service time are
seen in Fig. 30.7. The bed depth service time (BDST) model proved to be effective
in the comparison of column variables. The minimum bed height, the adsorption
rate constant, and the adsorption capacity of the HTAB modified zeolite for yellow
dye removal were found to be 12.02 cm, 6.432 × 10–3 L/(mg h), and 12.05 g/L,
respectively. The breakthrough times (corresponding to Cb/Co = 0.1) were found to
be 8, 6, and 3 h for the aqueous yellow dye solution, the simulated textile wastewater,
and the real textile wastewater, respectively. The zeolite column was regenerated
at different temperatures and the higher temperature (60 °C) with a desorption
efficiency of 90.6% was found to be more effective than that at lower temperature
(30 °C) with a desorption efficiency of 23% by means of the desorption of yellow
dye. In another study [103], adsorption of reactive dyes (Everzol black B, Everzol
red 3BS, Everzol yellow 3RS H/C) on surfactant-modified clinoptilolite (zeolite)
was investigated by batch and column systems. For black, yellow and red dyes, the
breakthrough curves of zeolite exhibited as C/Co = 0 value from the startup to 72,
60 and 48 BV, respectively (Table 30.3).

Han et al. [104] evaluated comparison analysis of linear least square method
and nonlinear least square method for estimating the kinetic parameters using the
experimental columndata ofmethylene blue (MB) adsorption onto zeolite at different
flow rates and initial concentration. The data were fitted to Thomas model equations
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Fig. 30.7 Adsorption of Reactive yellow 176 dye by zeolite modified at different HTAB concen-
trations against service time (influent dye conc.) 50 mg/L, dye flow rate) 0.050 L/min, bed height)
25 cm) [102]
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using linear and nonlinear regressive analysis, respectively. Markovska et al. [105]
researched adsorption of basic dyes (Maxilon Goldgelb GL EC, Maxilon Shwarz
FBL-01) from aqueous solution onto granular activated carbon and natural zeolite in
a fixed bed system. The experimental results showed that both adsorbents removed
the dyes effectively, and the effect of changing the column operating variables, such
as flow rate and initial concentration, can be predicted by the BDSTmodel. Wu et al.
[106] used natural zeolite as an adsorbent for adsorption of malachite green (MG)
from an aqueous solution in fixed-bed reactor. Adsorption reached saturation faster
with increasing the flow rate and influent MG concentration. When the flow rate
was 9 mL/min and the influent concentration of MG was 50 mg/L, the maximum
adsorption quantity reached 23.55 mg/g according to the Thomas model.

Ojstrsek and Fakin [107] proposed to examine the potential of natural zeolite
for colour and TOC reduction in a fixed-bed system. Assessment of the biofilter’s
performancewas verified bymonitoring absorbance and total organic carbon in initial
and treated wastewaters. The results showed that when increasing the hydraulic
retention time from 11 up to 17 h, the decolouration increased from 20 to 57%
(for RB5), from 46 to 80% (for RB19) and from 16 to 57% (for RR22) while TOC
removal efficiency rose from 30 to 75%. The removal of COD, ammonia and color
in dye wastewater using granular activated carbon (GAC) and zeolite in the column
studies was evaluated by Syafalni et al. [108]. The maximum removal efficiency
was found at the surface loading rate of 2.84 mL/cm2.min and bed height of 10 cm.
The best removal of the contaminants among the all adsorption treatment was found
using GAC (bottom layer) and zeolite (upper layer) in 6.35 cm diameter column
with 59.46% removal of COD, 60.82% removal of ammonia and 58.4% removal of
color. The adsorption data fitted well for both Langmuir and Freundlich isotherms.
In another study [109] several Cu/zeolite Y samples were synthesized by different
routes and examined for the catalytic wet peroxide oxidation of quinoline aqueous
solution in continuous fixed-bed reactor. Aqueous ion-exchange (CuYAIE) and wet-
impregnation (CuYIMP) methods promoted isolated Cu1+/2+ species; however, large
crystallites ofCuOwere present on the external surface of precipitation-impregnation
(CuYPI) catalyst. CuYPI showed hierarchical porosity and increase of surface area
from 567 to 909 m2/g.

Zeolitic imidazolate frameworks are a class of metal–organic frameworks that
are topologically isomorphic with zeolites. Bionanocomposites of carboxymethyl
cellulose-based ZSM-5/zeolitic imidazolate framework (CMC/ZSM-5/ZIF-8)
hollow beads with different compositions were synthesized and employed as an
adsorbent for methylene blue removal from aqueous solution in batch and contin-
uous fixed bed systems [110]. The equilibrium batch adsorption capacities for CMC,
CMC/ZIF-8, CMC/ZSM-5, and CMC/ZSM-5/ZIF-8 adsorbents were 12.01, 13.06,
11.53, and10.49mg/g, respectively.All four adsorbents are consistentwith allmodels
but the pseudo-first-order model showed more consistency. The equilibrium contin-
uous adsorption capacities for CMC, CMC/ZIF-8, CMC/ZSM-5, and CMC/ZSM-
5/ZIF-8 adsorbents were 10.56, 11.87, 9.29, and 8.15 mg/g, respectively. The adsor-
bents showed more consistency with models of Thomas, Yoon-Nelson and Modified
Dose Response. Besides, the generation process was successfully assessed in five
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steps. In another research [111], the efficiency of an integrated ultra-violet (UV)
photocatalysis and anaerobic digestion (AD) system in the degradation of methy-
lene blue (MB) dye was studied in up-flow fixed bed reactors. Zeolite was applied as
support material for micro-organism and photocatalyst in the bioreactor and photore-
actor, respectively. The integration of the two processes led to high colour reduction
efficiencies of above 75%.

30.3.3 Dye Wastewater Treatment Systems Combined
with Zeolites

Coloured wastewaters from dye production and application industries cause a
serious threat for the environment due to high resistance to decomposition present
in their chemical nature. Many conventional wastewater treatment methods are
often inappropriate for such pollutants due to their inability to effectively remove
and degrade persistent synthetic dyes. Wastewater treatment methods based on the
advanced oxidation processes (AOPs), especially Fenton type processes, seem to
offer promise due to their high efficiency for dye degradation, relatively low cost
and the ease of process operation and maintenance. Through the combination of
AOPs with zeolite adsorption, the overall process efficiency could be enhanced
[112–114]. Catalytic wet hydrogen peroxide oxidation of an anionic dye has been
explored. Copper (II) complex of NN’–ethylene bis(salicylidene-aminato) (salenH2)
has been encapsulated in super cages of zeolite-Y by flexible ligand method [112].
The results indicate that complete removal of color has been obtained after a period
of less than 1 h at 60 °C, 0.175 M H2O2 and 0.3 g/L catalyst. More than 95% dye
removal has been achieved using this catalyst for commercial effluent. Neamtu et al.
[113] reported the degradation of a reactive azo dye, Procion Marine H-EXL, by
catalytic wet hydrogen peroxide oxidation (CWHPO). The catalyst was prepared
by ion-exchange, starting from a commercially available ultrastable Y zeolite. The
results indicate that after only 10 min at 50 °C, 20 mmol/L H2O2 and 1 g/L FeY11.5

color removal was as high as 97% at pH = 3 and 53% at pH = 5. In another research
[114], the addition of solid particles, namely synthetic zeolites NH4ZSM5 and HY,
was investigated in order to enhance the efficiency of AOPs for dye wastewater
treatment. Degradation studies were carried out with Reactive blue 49 and Reactive
blue 137. It was found that AOPs in combination with zeolites were shown to be
very successful in colour removal (>98%) (Table 30.5).

Zeolites can be applied for the treatment of coloured wastewater through biolog-
ical methods. Chang et al. [115] developed a biological aerated filter (BAF) to treat
textile wastewater and tested its performance using natural zeolite and sand as media.
Higher nitrogen removal in the biofilter with natural zeolite was attributable to its ion
exchange capacity with NH4

+. The results indicate that natural zeolite is a superior
media for textile wastewater treatment while reductions for COD (86–92%), BOD
(99%) and colour (77–79%) were not significantly dependent of hydraulic load.
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Recently, Ciobanu et al. [116] also used the combination of zeolite and membrane
for wastewater treatment. The SAPO-5 zeolite-filled polyurethane membranes with
perselectivity to the gases or liquids were prepared, characterized and utilized for the
ultra- and microfiltration (UF + MF) of synthetic wastewater containing colophony.
The study demonstrates the potential of the unfilled and zeolite-filled PUmembranes
for colophony removal from solutions with below 1 g/L concentrations. In 2008,
decolourization and mineralization of an indigoid dye, Acid blue 74, was conducted
using Fe-ZSM5 zeolite as a catalyst in the presence of UV-C light and H2O2 [117].
While optimal conditions were pH 5, 21.4 mmol/L of H2O2 and 0.5 g/L of the cata-
lyst, 57% TOC of a solution containing 8.56 × 10–5 mol/L Acid blue 74 could be
removed after 120 min in a 2 L batch photo-reactor.

In another study [118], the degradation of azo dye (Congo red) by catalytic wet
peroxide oxidation was investigated using Fe exchanged commercial Y zeolite as a
catalyst. The percent removals of dye, color andCODat optimumpH=7, 90 °Cusing
0.6mLH2O2 /350mL solution and 1 g/L catalyst was 97% (in 4 h), 100% (in 45min)
and 58% (in 4 h), respectively. Dye removal in 45 min and at above conditions was
82%, whereas the color removal was 100% (Table 30.5). The catalytic effectiveness
of three iron exchanged ultra-stableY zeolites (USY) for the degradation of a reactive
azo dye, Reactive yellow 84 (RY84) using hydrogen peroxide was evaluated [119].
The results show that it is possible to remove 96.90% of color, 70.70% of COD
and 34.52% of TOC using Fe-Y11.5 catalyst after the 60 min of oxidation at the
above-mentioned conditions. Using Fe-Y5 catalyst, 99.93% of color removal, more
than 74.14% of COD and 64.21% of TOC removal were obtained. Chen et al. [120]
examined the decolorization of an anthraquinone dye, Reactive brilliant Blue KN-R
by hydrogen peroxide using Fe-containing Y and ZSM-5 zeolites as heterogeneous
catalysts. Fe-containing Y and ZSM-5 zeolites generally exhibited similar or better
catalytic efficiency compared with homogeneous Fenton reagent, with Fe-containing
ZSM-5 being more efficient. Under the conditions of initial pH 2.5, 30.0 mmol/L
H2O2 and 4.0 g/L catalyst, 250 mg/L KN-R could be decolorized to a degree over
90% within 20 min.

Zeolites have demonstrated their potential as unique and versatile host materials
for variety of chemical transformations. Semiconductor-loaded zeolite and meso-
porous materials such as natural zeolite, ZSM5, NaY zeolite, MCM-41 etc., have
drawn attention as potential photocatalysts due to their unique pore structure and
adsorption properties [120–123]. Titaniumdioxide has proved to be a potential photo-
catalytic semiconductor as it allows for the complete degradation of pollutants under
ultraviolet irradiation. The advantages using zeolite support for titania photocatalysis
include formation of ultrafine titania particles during sol–gel deposition, increased
adsorption in the pores and surface acidity which enhances electron-abstraction.
A method of supporting TiO2 on zeolite, without losing the photosensitization of
TiO2 and the adsorption properties of zeolite, is an important aspect while preparing
zeolite-based photocatalysts. Tayade et al. [121] prepared TiO2-coated zeolite photo-
catalysts by dispersing zeolite powders in dilute titanium tetraisopropoxide solution.
The photocatalytic activity of TiO2-coated NaY and HY zeolite was investigated by
degradation of aqueous solution of methylene blue dye. The highest photocatalytic
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was obtained with 1% TiO2-coated zeolite catalysts. The photocatalytic activity of
TiO2-coated catalyst was found to be higher than that of bare TiO2 at a low amount
of TiO2 coating on the surface. Similarly, zeolite-based photocatalyst have been
prepared using TiO2-coated NaY zeolite by post-synthesis modification with silver
metal ion exchange [122]. The photocatalytic activity of the catalysts was studied
by degradation of aqueous nitrobenzene, acetophenone, methylene blue, and mala-
chite green in the presence of UV light and the highest photocatalytic activity was
obtained for silver metal ion exchanged photocatalysts coated with TiO2 (2%, w/w).
Huang et al. [123] also prepared Pt modified TiO2 loaded on natural zeolites (Pt-
TiO2/zeolites) by solegel technique and photoreductive deposition method. Their
photocatalytic activities were examined by the photocatalytic decolorization of
methyl orange solution under UV light irradiation. The results show that Pt doping
induced the enhancement of photocatalytic decolorization and optimal Pt doping is
about 1.5 wt% with 86.2% of decolorization rate under 30 min irradiation time. The
repeatability of photocatalytic activity was also tested and the decolorization rate
was 81.9% of initial decolorization rate after five cycles (Table 30.5).

In 2009, the complex of FeIII2[2-(hydroxy-benzeylidine)-amino] benzoic acid
has been encapsulated in pores of NaA zeolite by two different synthesis proce-
dures, namely a zeolite synthesis method in the presence of preformed iron
complex (FeIIIL/Aen) and a solid–solid-type reaction (FeIIIL/Ass) [124]. The resulting
host/guest compound including H2O2/UV was active system for the oxidative color
removal of Direct blue-1 in aqueous heterogeneous suspensions with very low cata-
lyst/substrate ratio.Recently, the heterogeneous photo-Fenton-typeoxidationof reac-
tive azo dye solutions was also studied in a quartz batch reactor using artificial UVA
as a light source [125]. Fe-exchanged zeolite has been used as a heterogeneous cata-
lyst in the process. The optimal operation parameters were found as: 35 °C, pH as
solution pH 5.2, 15 mmol H2O2 dosage, 1 g/L catalyst loading. Mineralization and
comparison with homogenous photo-Fenton process were evaluated by analyzing
color removal and total organic carbon (TOC) values. Wang et al. [126] evaluated the
physical and chemical states of zeolite-supported TiO2. The photocatalytic reaction
followed first-order kinetics for all catalysts; optimum photodegradation efficiency
was found to result from the use of a high TiO2 concentration (20% TiO2), a calcina-
tion temperature of 600 °C, alkaline pH (9–10) and a catalyst dosage of 5333 ppm.
Aravindhan et al. [127] explored catalytic wet hydrogen peroxide oxidation of acid
dye.Manganese (III) complex of N,N’-ethylene bis(salicylidene-aminato) (salenH2)
has been encapsulated in super cages of zeolite-Y by flexible ligand method. The
results indicate that after 20 min at 30 °C, 0.175 MH2O2 and 3 g/L catalyst, about
90% dye removal was obtained.

Guo et al. [128] prepared TiO2 /Na-HZSM-5 nano-composite photocatalysts by
dispersing TiO2 onto the external surface of Na+-modified nano-ZSM-5 zeolite using
a sol–gel process and investigated the adsorption and photodegradation of methyle
orange (MO) in aqueous solution. Results showed that the modification of support
by Na does not affect the loading, dispersion and structure of loaded TiO2, but
reduces the acidity of the nano-zeolitic support by preferentially eliminating stronger
acid sites. TheMO photodegradation activity of TiO2/Na-HZSM-5 nano-composites
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is better than that of bare TiO2. Petkowicz et al. [129] estimated the degradation
of methylene blue dye for a series of in situ generated titania resulting from the
impregnation of TiCl4 into a series of NaA zeolites. The highest catalyst activity
was reached with samples having 10 wt.% Ti. Catalyst activity was shown to be
comparable to that exhibited by commercial P-25 after 1 h of UV light exposi-
tion and experiments carried out in natural sunlight reached 92% decomposition
of methylene blue. Koprivanac et al. [130] also used Reactive red 45 (RR45) in
the advanced oxidation processes (AOPs) for the treatment of model wastewater
containing organic dye. Mineralization rates of 40%were achieved with Fe(II)/H2O2

and Fe(II)/H2O2/zeolite processes. In the case of O3/H2O2 and O3/H2O2/zeolite
processes, 60% of mineralization was obtained.

Recently,Nikazar et al. [131, 132] investigated photocatalytic degradation of some
azo dyes. Photocatalytic degradation of Disperse yellow 23 in water was studied
[131]. Titanium (IV) oxide was supported on clinoptilolite using the solid-state
dispersion (SSD) method. The results show that the TiO2 /Clinoptilolite (SSD) is
an active photocatalyst. The maximum effect of photo degradation was observed at
10 wt%TiO2, 90 wt% clinoptilolite zeolite and a first order reaction with k= 0.0119
1/min was observed. Similarly, photocatalytic degradation of azo dye Acid Red 114
in water with TiO2 supported on clinoptilolite was also studied [132]. A photocat-
alyst containing 10% TiO2 and 90% clinoptilolite has the maximum efficiency on
photo degradation of AR 114. The photodegradation conversion of AR 114 decreases
with an increase in the initial con centration of AR 114. Valdes et al. [133] studied
methylene blue (MB) removal systems based ozone oxidation, zeolite adsorption,
and simultaneous adsorption-oxidation using ozone in presence of natural zeolite.
It was found that ozone oxidation combined with zeolite increases the overall MB
oxidation ratewith respect to ozonation process and zeolite adsorption. In presence of
free radical scavenger, only a 25% of reduction on MB removal rate are in the simul-
taneous treatment (Table 30.5), as compared with 70% when ozonation treatment is
used.

Lim et al. [134] analyzed the adsorption behavior of azo dye Acid orange 7 (AO7)
fromaqueous solutionontomacrocomposite (MC)under various experimental condi-
tions. The adsorbent,MC,which consists of amixture of zeolite and activated carbon,
was found to be effective in removing AO7. The Langmuir isotherm model fitted the
equilibrium data and the adsorption kinetic was found to be well described by the
pseudo-second-order model. Thermodynamic analysis indicated that the adsorption
process is a spontaneous and endothermic process. For the phytotoxicity test, treated
AO7 was found to be less toxic. Recently, the adsorbent, magnetic NaY zeolite was
synthesized for simultaneous removal of three toxic cationic dyes as methylene blue,
crystal violet, and fuchsine, from aqueous solutions [135]. The percentage of dye
removal was mathematically described as a function of experimental parameters and
was modeled through central composite design (CCD) and optimum conditions of
10.3, 50 °C, 45 min, 10 mg/L, and 46.2 mg, for pH, temperature, time, initial dyes
concentration, and adsorbent mass were resulted, respectively. It was obtained the
percent of model dye removal prediction of 99.0, 98.6, and 98.4 for methylene blue,
crystal violet, and fuchsine, respectively. Amodu et al. [136] reported the adsorption
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of crystal violet (CV) dye onto magnetic zeolite (MZ) nanoparticles, synthesized by
direct fusion of fly ash (FA) and magnetite particles. The synthesised MZ showed
high capacity for CV dye adsorption, removing 95% of the dye at an equilibrium
adsorption time of 10 min and 25˚C. Chong et al. [137] studied to synthesize a
functional-formof titaniumdioxide (TiO2)–zeolite nanocomposite through themodi-
fied two-step sol–gel method for enhanced application and separation after advanced
industrial dye wastewater treatment. The photoactivity of synthesized TiO2–zeolite
nanocomposite was measured and compared against the commercial TiO2 particles.
It was found that the TiO2–zeolite nanocomposite shows a high apparent pseudo-first
order reaction rate constant of 0.0419 L/min at lower dye concentration.

In 2017, cross-linked beads of activated oil palm ash zeolite/chitosan (Z-AC/C)
composite were prepared through the hydrothermal treatment of NaOH activated oil
palm ash followed by beading with chitosan [138]. The effects of initial dye concen-
tration (50–400 mg/L), temperature (30–50 °C) and pH (3–13) on batch adsorption
of methylene blue (MB) and acid blue 29 (AB29) were studied. Adsorption of both
dyes was better described by Pseudo-second-order kinetics and Freundlich isotherm
model. The maximum adsorption capacities of Z-AC/C were 151.51, 169.49, and
199.20 mg/g for MB and 212.76, 238.09, and 270.27 mg/g for AB29 at 30 °C, 40 °C,
and 50 °C, respectively. In another study [139], an efficient biodegradablemembranes
were fabricated using polyvinyl alcohol (PVA), carboxymethyl cellulose (CMC) and
ZSM-5 zeolite, and their utility for the removal of methylene blue (MB), was inves-
tigated [139]. A high dye removal (97%) and high adsorption capacity (7.83) were
observed for 5 wt% of zeolite loaded sample for an initial dye concentration of
10 ppm with a contact time of 10 h at 30 oC. Similarly, a novel nanocrystalline
zeolite X (nZX) was synthesized using coal fly ash of eastern India for adsorptive
removal of crystal violet (CV) from aqueous solution. The nZX has a surface area, an
average crystal size, an average particle size, crystallinity, and product yield of 651.34
m2/g, 16.28 nm, 27.28 nm, 82% and 91% respectively. A maximum of 99.52% CV
was removed at optimized condition of pH 9, 60 min contact time, 50 °C tempera-
ture, 100 mg/L initial dye concentration and 1.0 g/L adsorbent mass. The maximum
Langmuir adsorption capacity of 234.57 mg/g was obtained. The adsorption of CV
followed a pseudo-second order kinetic model.

Sono-assisted adsorptive elimination of dyes from industrial effluent is proved
to be a fast, efficient and clean technique. Highly pure nanozeolite X (nFAZX)
was synthesized from waste coal post-combustion fly ash (CFA) by pre-fusion
hydrothermal method. Rapid sono-assisted adsorptive elimination of methylene blue
(MB) dye from water solution was studied in presence nFAZX, CFA and commer-
cial zeolite X (CZX) [141]. Optimization study was explored by response surface
methodology (RSM). MaximumMB removal (64.52% by CFA, 99.30% by nFAZX,
and 96.57% by CZX) was obtained at pH 8.25, 0.164 g/100 mL of adsorbent,
9.92 min sonication time, and 25 mg/L MB concentration. Also, The maximum
Langmuir adsorption capacity of CFA, nFAZX and CZX for MB were 78.22 mg/g,
345.36mg/g, and 250.41mg/g respectively for 0.160 g/100ml adsorbents. In another
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research [142], laccase enzyme from Polyporus durus ATCC 26,726 was immobi-
lized on nanoporous Zeolite-X (ZX), with 83% immobilization yield. The immobi-
lization process protected laccase against pHand temperature changes. The activation
energy was lowered after immobilization. The thermodynamic analysis for substrate
oxidation indicated that the enthalpy (�H°), entropy (�S°), and free energy of tran-
sition state (�Go

E–T) were lower for immobilized laccase. Furthermore, there was
an increase in turnover number (kcat) after immobilization. The immobilized laccase
could decolorize two dyes and two synthetic wastewater solutions. It retained 100%
activity against AB 225 dye after 7 successive decolorization cycles and it could be
reused for 11 times with 48% activity loss.

In 2020, the application of a novel polyvinyl alcohol/starch/ZSM-5 zeolite
membrane as an adsorbent for the removal of Eriochrome black T (EBT) from
aqueous medium was investigated [143]. Swelling measurement showed that with
increase in zeolite content the hydrophobicity of the membrane also increases. The
maximum adsorption capacity was estimated to be 2.17 mg/g for 5 wt% zeolite
loaded membrane at an initial concentration of 10 mg/L and pH 3. A similar study
[144] is mainly focused on the explanation of nanoparticles aggregation by deposi-
tion on natural zeolite, and utilization of this natural zeolite as supported material
to nano zerovalent iron (NZ-nZVI) in the form of liquid slurry with sodium percar-
bonate acting as an oxidant in a Fenton like system for the removal of synthetic
CI Acid orange 52 (AO52) azo dye, in textile effluent. The removal of CI Acid
orange 52 dye was obtained as 94.86%. Furthermore, the actual dyeing effluent
including green, magenta, and the blended colour was successfully decolourized by
natural zeolite-supported nZVI/SPC Fenton process. Nyankson et al. [145] studied
zeolite/Cerium oxide nanocomposite (Z/CeO2–NC) hydrothermally synthesize and
its adsorption capacity on methylene blue organic dye (MB). The thermodynamic
Gibbs free energy (�G) parameter was determined to be negative, indicating a spon-
taneous adsorption process. The synthesized Z/CeO2–NCs showed strong adsorption
for methylene blue dye with increasing amount of CeO2. The maximum adsorption
efficiency was calculated as 93.9% and the maximum regeneration efficiency of the
adsorbent was found to be 78.8% higher after it had been washed by alkaline solu-
tion of pH 13. Tony [146] showed that highly efficient low-cost alum sludge-based
sorbents (AS-Sorbents), derived from alum sludge by-product waste is a significant
potential for treating wastewaters contaminated by textile dyes. The experimental
data revealed that AS-Sorbents exhibited a reasonable textile dye removal from real
jeans dying effluent. The adsorption matrix was well fitted by Langmuir isotherm
and followed second-order kinetic model while the maximummonolayer adsorption
capacity was 6.5 mg/g. Thermodynamic parameters show that the process follows
the physical adsorption matrix with a spontaneous and exothermic nature.

Mittal et al. [147] reported the feasibility of utilizing zeolite-Y incorporated
hydrogel composite (ZHC) of gum karaya (GK) as a potential adsorbent to treat
cationic dyes contaminated wastewater. For dye adsorption studies, Brilliant green
dye (BG) was taken as the target pollutant. Adsorption isotherm followed Lang-
muir model with 1461.35 mg/g adsorption capacity and the adsorption kinetics was
most appropriately explained using pseudo-second-order model. Jawad et al. [148]
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attempted to develop zwitterion composite adsorbent is conducted by modifying
chitosan (CHS) with a covalent cross-linker (epichlorohydrin, ECH) and an alumi-
nosilicatemineral (zeolite, ZL). The zwitterion composite adsorbent of chitosan-
epichlorohydrin/zeolite (CHS-ECH/ZL) was performed multifunctional tasks by
removing a cationic dye as methylene blue (MB) and anionic dye Reactive red 120
(RR120) from aqueous solutions. The research findings revealed that the adsorp-
tion isotherm at equilibrium well explained in according to the Freundlich isotherm
model, and the recorded adsorption capacities of CHS-ECH/ZL are 156.1 and
284.2 mg/g for MB and RR120 respectively at 30 °C (Table 30.5). Recently, Ghana-
vati et al. [149] studied to evaluate adsorption of Acid Blue 74 by electrospun PA-
6/Modified zeolite nanofibrous composite. Design of the Response Surface Method
(RSM) of Box-Behnken model (BBD) was used to determine the optimal conditions
for the removal of Acid Blue 74. The investigation of kinetic and isotherm model
showed that the reaction kinetics follows the pseudo-second-order model and the PA-
6/Modified zeolite nanofibrous composite adsorption process follows the Freundlich
model.

30.4 Cost Analysis

Zeolites correspond to a wide family of chemical structures, while there are 40
naturally occurring zeolite frameworks like clinoptilolite, which are readily avail-
able and abundant in nature. High ion-exchange capacity, relatively high specific
surface areas and more significantly being low-cost materials, make zeolites attrac-
tive adsorbents for the textile wastewater treatment. Currently, their price varies
between US$ 0.03–0.12/kg, depending on the quality of the mineral [150]. On the
other hand, the cost of one of the most inexpensive commercially available carbon
is about US$2/kg. An average natural zeolite costs about US$70/ton, including the
cost of its purchase, transport and processing (chemicals, electrical energy, and labor
required in the process), whereas modified zeolite costs about US$420/ton. Having
said that, modified zeolite can be considered as a good alternative to commercially
available activated carbon considering their enhanced adsorption performance [103,
151, 152]. Among low-cost materials, bagasse fly ash, peat, sphagnum moss peat,
fullers earth, BF slag, bentonite, manganese oxide, fullers earth, carbonaceous adsor-
bent (fertilizer industry waste) can be considered as potential candidates with costs
lower than 0.1 US$/kg as compared to commercial ACs [40]. Montmorillonite clay,
for example, has a very large surface area and high cation exchange capacity andwith
its current market price (about US$ 0.04–0.12/kg), it is considered to be quite inex-
pensive compared to activated carbon [129]. The removal performances of Fullers
earth and CAC for basic blue 9were compared byAtun et al. [153]. They showed that
the adsorption capacity is greater for Fullers earth than for CAC. Moreover, Fullers
earth is an promising sorbent thanks to its low price of ca. US$ 0.04/kg.

Chitosan is produced by alkaline N-deacetylation of chitin, which is widely found
in the exoskeleton of shellfish and crustaceans. It was estimated that chitosan could
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be produced from fish and crustaceans at a market price of US$ 15.43/kg [150].
Among their current commercial prices, zeolite is undoubtedly the most inexpensive
alternative adsorbent compared to others and is 15 times cheaper than chitosan. Peat
moss, a complex soil material containing lignin and cellulose as major constituents,
is a natural substance widely available and abundant. Peat moss has a large surface
area (>200 m2/g) and is highly porous so that it can be used to bind heavy metals.
Peatmoss is a relatively inexpensivematerial and commercially sold at US$ 0.023/kg
in the US [150]. A further study was also conducted to investigate the removal of
Pb2+ and Cr6+ using blast-furnace slag sold at US$ 38/ton [150]. It was found that
the maximum metals uptake observed under identical conditions is 40 and 7.5 mg/g
of Pb2+ and Cr6+, respectively. It can be concluded that its removal performance is
comparable to the most inexpensive commercial activated carbon, as 1 g of activated
carbon can adsorb 32.4 mg of Pb2+. It was found that the performance of insoluble
starch xanthate is better in terms of adsorption capacity and ease of operation. It was
also reported that soluble starch xanthates cost only US$ 1.0/kg.

30.5 Conclusions

In this review, the recent development of nanoporous zeolites in the textile wastew-
aters treatment has been evaluated. Briefly, it can be claimed that natural zeolite
is an inexpensive, locally available material and could be used effectively in place
of commercial activated carbon for color removal from textile effluents. Synthetic
and natural zeolites are important alternatives as adsorbents due to their high
ion-exchange and adsorption capacities as well as thermal andmechanical stabilities.

Among 40 natural zeolite species, clinoptilolite is regarded as the most abundant
formpresent in nature. Zeolites are considered as low-costmaterials, where the prices
vary between ca. US$ 0.03–0.12/kg, depending on the quality of the zeolite. The
reactive dyes have negative sulfonate groups, which are repelled by the negatively
charged zeolite surface. This induces a relatively low adsorption capacity for natural
zeolite. For this reason, in order to increase the adsorption capacity, the surface of
natural zeolite is modified with a cationic surfactant. A large number of researches
on the batch and fixed-bed zeolite systems have been performed in recent years.
The influence of coupling conventional systems with zeolites for textile wastewater
treatment was investigated by various researchers. Moreover, zeolites, thanks to their
large surface areas, internal pore volume, unique uniform pores and channel size,
are regarded as promising hosts to disperse semiconductor photocatalyst on their
surfaces. Extensive literature information on dye adsorption by a wide range of
zeolites has been reviewed in this paper. The adsorption of Basic blue 41 textile dye
from aqueous solutions on a zeolite tuff (Romanian) was studied in batch mode. The
monolayer adsorption capacity of adsorbent was found to be 192.31 mg/g at 50 °C
and pH 5 for the tuff particles of 0.085 mm. Besides, zeolitic imidazole frameworks
(ZIFs), a new class of adsorbents, were proposed to adsorb malachite green (MG)
in water. ZIF-67 exhibited 2430 mg/g MG adsorption at 20 °C and ∼3000 mg/g at
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40 °C. However, despite a large number of papers published on zeolite as a low-cost
adsorbent, there is still little information on the application of a full-scale zeolite
treatment system. Once zeolite performance in removing dyes at low cost is proven
at higher scales, they can be adopted and widely used in industries not only to
minimize cost inefficiency, but also to improve profitability. Undoubtedly zeolite as
a low-cost adsorbent offers a lot of promising benefits for commercial purpose in the
future.
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Chapter 31
Removal of Heavy Metals and Dyes
from Wastewaters by Raw and Activated
Carbon Hazelnut Shells

Abdullah Zahid Turan and Mustafa Turan

Abstract In this article, the technical feasibility of rawand activated carbon hazelnut
shells for the removal of heavymetals and dyes fromwastewaters has been reviewed.
Adsorption has been proved to be an excellent way to treat industrial waste effluents,
offering significant advantages like the low-cost, availability, profitability, conve-
nience in operation and efficiency. There is a great potential of hazelnut shells to
be used in adsorption applications. Nanotechnology is an advanced field of science
having the ability to solve the variety of environmental challenges by controlling
the size and shape of the materials at a nanoscale. Carbon nanomaterials are unique
because of their nontoxic nature, high surface area, easier biodegradation and partic-
ularly useful environmental remediation. Textile industry effluents and heavy metal
contamination in water are major problems and pose a great risk to human health.
Carbon nanomaterials namely carbon nanotubes, fullerenes, graphene, graphene
oxide and activated carbon have great potential for removal of heavy metals and
dyes from water because of their large surface area, nanoscale size and availability
of different functionalities and they are easier to be chemicallymodified and recycled.
Activated carbon was also prepared using agricultural by-products such as palm-tree
cobs, grape seeds, several nutshells (almond shell, hazelnut shell, walnut shell and
apricot stone), olive-waste cakes and corn cob due to the fact that activated carbon
made from conventional rawmaterials are expensive. This review reports the removal
of heavy metals and dyes from wastewaters using raw and activated carbon hazelnut
shells in order to provide useful information on various aspects of utilization of the
agricultural waste materials and carbon nanomaterials. The adsorption capacities of
raw and activated carbon hazelnut shells under different experimental conditions are
also reported and compared with other agro-based adsorbents.
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31.1 Introduction

The increasing contamination of urban and industrial wastewaters by toxic metal
ions and colorants is a worrying environmental problem. These pollutants are of
considerable concern because they are non-biodegradable and highly toxic [1]. The
removal of these toxic pollutants fromwastewater is difficult by conventional coagu-
lation and the activated sludge process [2]. Therefore, the treatment methods, such as
oxidation, chemical precipitation, membrane filtration, ion exchange and adsorption
have been practiced for the removal of heavy metals and dyes [3]. One of the major
methods for the removal of pollutants from aqueous effluent is adsorption by using
porous solid adsorbents. Adsorption has demonstrated its efficiency and economic
feasibility as a wastewater treatment process compared to the other purification and
separation methods [4, 5], and has gained importance in industrial applications, such
as removal of heavy metals cations [6, 7] and coloring materials [8, 9] from aqueous
solution by adsorption onto activated carbon prepared fromagriculturalwastes.Many
non-conventional low-cost adsorbents have been used for the removal of heavymetal
and dye from wastewaters such as [10, 11]: (1) Clay materials (sepiolite, bentonite,
kaolinite etc.) [6–8, 12, 13], (2) Zeolites [7–9, 14–18], (3) Siliceous materials (silica
beads, alunite, perlite) [19–21], (4) Biosorbents (chitosan, peat, biomass) [22–26],
(5) Agricultural wastes [27–29] and (6) Industrial waste products [30–34].

Nanotechnology is an advanced field of science having the ability to solve the
variety of environmental challenges by controlling the size and shape of the mate-
rials at a nanoscale. Carbon nanomaterials are unique because of their nontoxic
nature, high surface area, easier biodegradation, and particularly useful environ-
mental remediation. Carbon nanomaterials namely carbon nanotubes, fullerenes,
graphene, graphene oxide, and activated carbon have great potential for removal of
heavy metals and dyes from water because of their large surface area, nanoscale
size, and availability of different functionalities and they are easier to be chemically
modified and recycled [35]. Activated carbon is the most used adsorbent owing to
its high capacity, but needs a regeneration process being an expensive material. In
general, the methods for production activated carbon consist of two steps: (1) The
first step involves a chemical activation step where raw agricultural materials are
impregnated with a solution of dehydrating agent (for example ZnCl2, H2SO4) to
retard the formation of tars during the carbonization process. (2) Furthermore, in
physical activation, they are washed, dried and carbonized in an inert atmosphere to
produce the final activated carbon [36–38].

Many efforts, however, have been made to investigate the use of various low
cost organic adsorbents [39, 40]. They should be cheap, easily available and dispos-
able without regeneration. Activated carbon was also prepared using agricultural
by-products such as palm-tree cobs, grape seeds, several nutshells (almond shell,
hazelnut shell, walnut shell and apricot stone), olive-waste cakes and corn cob due to
the fact that activated carbonmade from conventional rawmaterials is expensive [41–
45]. Hazelnut shell is a biomass and especially important in Turkey, because Turkey
is the biggest hazelnut producer country in the world [46]. North coasts of Turkey are
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so suitable to grow hazelnut that approximately 80% of the total hazelnut production
in the world is supplied from this region [47]. Its major use today is as combustible
owing to the considerable calorific value. Besides, there is a great potential of raw
hazelnut shell to use in some industrial applications in that region. Figure 31.1 shows
green and dried hazelnuts with husks. Various researches on hazelnut shell have been
done in recent years.

In 2005, the possibility of the production of amethyl ester biodiesel from hazelnut
waste/sunflower oil mixture using methanol, sulphuric acid and sodium hydroxide
in a two-stage process was investigated [48]. The effects of particle size on the non-
isothermal slow pyrolysis of hazelnut shell from ambient to 1173 K with a linear
heating rate of 20 K/min under dynamic nitrogen atmosphere were also studied [46].
In another research, it was carried out to determine effects of composted hazelnut
husk (CHH) on some chemical properties of soil and soil humic acid (HA) [49]. This
material was also considered in some works as source for activated carbon mostly
utilized in removal of dye and heavy metals. Hazelnut shells have the some polar
functions such as alcoholic, carbonylic, carboxylic and phenolic groups, which are
potentially involved in bonding with sorbed pollutants [50, 51]. This review reports
the removal of heavy metals and dyes in the wastewater treatment using natural
(raw) hazelnut shells and their activated carbon forms (activated carbon hazelnut
shells) in order to provide useful information on various aspects of utilization of the
agricultural waste materials and carbon nanomaterials. The adsorption capacities of
raw and activated carbon hazelnut shells under different experimental conditions are
also reported and compared with other agro-based adsorbents.

31.2 Pore Charateristics of Porous Solids

The shape of pores is preferably described in terms of cylinders (which may be the
case for activated oxides like alumina or magnesia), prisms (some fibrous zeolites),
cavities and windows (other zeolites), slits (possible in clays and activated carbons),
or spheres (although, most often, the pores are on the contrary, the voids left between
solid spheres in contact with each other, as it happens with gels: silica gel, zirconia
gel etc.) [52]. Pore size has a precise meaning when the geometrical shape of the
pores is well defined and known (e.g., cylindrical, slit-shaped etc.). Nevertheless,
the limiting size of a pore, for most phenomena in which porous solids are involved,
is that of its smallest dimension which, in the absence of any further precision, is
referred to as the width of the pore.

Porous solids can be classified as follows: (i) Micropores (pore size up to
2 nm), (ii) Mesopores (pore size 2–50 nm) and (iii) Macropores (pore size
larger than 50 nm) [52, 53]. Five types of hysteresis loops were identified and
correlated with various pore shapes: Type A hysteresis corresponds to cylindrical
pores; type B is related to slit-shaped pores; type C and D hysteresises are attributed
to wedge-shaped pores, and type E hysteresis is produced by bottle neck pores
(Fig. 31.2a). Based on pore connectivity, the types of pores in coal can be also
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Fig. 31.1 a Green and b
Dried Hazelnuts with husks

(a)

(b)
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(a)

(b)

Fig. 31.2 a Hysteresis loops and their corresponding pore shapes; b Types of pores [55]

classified into passing, interconnected, dead end, and closed pores (Fig. 31.2b). The
former three types are called open pores, and they have great influence on the gas
adsorption, desorption and diffusion in coal [54, 55].

31.3 Activated Carbon Production from Hazelnut Shells

Carbons are widely used as industrial adsorbents because of their hydrophobic
surface, high specific area and good thermal stability. With respect to other
nanoporous materials like zeolites, characterized by different pore architecture and
composition, porous carbons offer the advantage of a lower specific weight [56].
Carbons are prepared by synthesis and advanced separation systems and catalysis.
The synthesis of ordered meso- and micro-porous carbons involves the use of meso-
porous silica or zeolites as a template [57–62]. The preparation of carbon with
nanopores, width less than 2 nm, is unattainable by this method, thus limiting its
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ultimate surface area, porosity, and performance. Stress graphitization of pure carbon
has been reported at temperatures in excess of 2000 °C [63, 64].

Nanoporous carbon (NPC) is synthesized by pyrolysis of polymers, such as poly-
furfuryl alcohol (PFA) [65]. Due to its strong resistance to transformation to graphite
evenwhen annealed at temperature above 2000 °C, it is classified as non-graphitizing,
as defined by Franklin [66]. Commercially available activated carbon (CAC) is
usually derived by thermal treatment from natural materials such as biomass, lignite
or coal, but almost any carbonaceous materials may be used as precursor for the
preparation of carbon adsorbents, while due to its availability and cheapness, coal is
themost commonly used precursor for activated carbon production [67–71]. Biomass
and other waste materials may also offer an inexpensive and renewable additional
source of activated carbon [72]. A wide variety of carbons have been prepared from
biomass and other wastes, such as olive-seed waste [45, 68], desert plant [69], biosor-
bent (Caulerpa lentillifera) [70], date pit [73], wheat bran [74], oil palm fiber [41, 75],
almond shell, walnut shell, apricot stone [76], hazelnut shell [76, 77], peach stone
[78], rice hull [79, 80], corn cob [36, 81], coir pith [25, 43, 82] and peanut hull [28,
83]. In recent years, growing research interest in the production of carbon basedmate-
rial has focused on agricultural residues. Figure 31.3 shows a process flow diagram
of activated carbon preparation from agricultural residue [84]. Activated carbon can
be defined as carbonaceous material having high porosity and internal surface area

Fig. 31.3 Process flow
diagram of activated carbon
preparation from agricultural
residue [84]
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and cannot be characterized by any distinctive chemical formula. Depending on the
usage, activated carbons are available as powder, granulated, pressed sticks in various
size and shapes.

Hazelnut shell, as a promising biomass, has lower ash content and abundant
hydrocarbon, which can be utilized along with municipal sewage sludge (MSS)
by co-pyrolysis to decrease total content of pollution. In 2016, activated carbons
were prepared from hazelnut shell taken from Eastern Blacksea region [85]. Acti-
vated carbons were prepared by chemical activation method with phosphoric acid
and boric acid (phosphoric acid activation, phosphoric acid + boric acid activation
and activated carbon+ boric acid activation). In order to find the optimum activated
carbon, different H3PO4 (35–65%) and H3BO3 (3–10%) concentration, activation
temperature (400–800 °C) and carbonization time (30–120 min) was employed. As
a result of studies, optimum activated carbon was obtained at 35% phosphoric acid
concentration, 500 °C carbonization temperature and 60min carbonization time. The
obtained iodine number of activated carbonwas 583.32mg/I2, while surface areawas
1071.29 m2/g. Also, hardness and adsorption tests produced results of high hardness
of the active carbon (90%) and high adsorption capacity. Due to having lowmoisture
and ash content with high surface area, hardness, hazelnut shell is considered to be
a potential raw material for producing activated carbon.

Lewicka [86] researched producing activated carbons for CO2 capture from
hazelnut shells (HN), walnut shells (WN) and peanut shells (PN). Saturated solution
of KOH was used as an activating agent in ratio 1:1. Samples were carbonized in
the furnace in the range of temperatures 600–900 °C. Properties of carbons were
tested by N2 adsorption method, using BET equation, DFT method and volumetric
CO2 adsorption method. With the increase of carbonization temperature, specific
surface area of studied samples increased. The largest surface area was calculated
for samples carbonized at 900 °C and the highest values of CO2 adsorption were
obtained with the samples: PN900 at 0 °C (5.5 mmol/g) and WN900 at 25 °C (4.34
mmol/g). All of the samples had a well-developed microporous structure.

Recently, a low cost activated carbon was prepared from hazelnut shells by
chemical activation with sodium hydroxide at 600 °C in a N2 atmosphere and then
through combining with magnetic NiFe2O4 nanoparticles by hydrothermal and co-
precipitation methods [87]. Results indicated that the NiFe2O4 nanoparticles synthe-
sized by the hydrothermal method had a higher saturation magnetization and smaller
average particle size than those produced by the co-precipitationmethod. The specific
surface area and total pore volume of the activated carbon decreased from 314 to
288 m2/g and 0.3639 to 0.3338 cm3/g, respectively by forming a hybrid with the
magnetic NiFe2O4 nanoparticles synthesized by the hydrothermal method. NiFe2O4

nanoparticles were mainly distributed on the surface, although a few were inside the
pores of the activated carbon. Their sizes were the same as those of the original ones.
The saturation magnetization of the hybrids was lower than those of the original
NiFe2O4 nanoparticles due to the existence of the activated carbon. They showed
super paramagnetic behavior at room temperature and were easily separated from
solutions by an external magnet.
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The copyrolysis of MSS and hazelnut shell blend was analyzed by a method of
multi-heating rates anddifferent blend ratioswithTG-DTG-MSunderN2 atmosphere
by Zhao et al. [88]. The apparent activation energy of co-pyrolysis was calculated by
three iso-conversional methods. Satava–Sestak method was used to determine mech-
anism function G(α) of copyrolysis, and Lorentzian function was used to simulate
multi-peaks curves. The results showed that there were four thermal decomposition
stages, where the biomass transformed at different temperature ranges. The apparent
activation energy increased from 123.99 to 608.15 kJ/mol. The reaction mechanism
of co-pyrolysis is random nucleation and nuclei growth. The apparent activation
energy and mechanism function afford a theoretical groundwork for co-pyrolysis
technology.

31.4 Removal of Heavy Metals from Wastewaters Using
Hazelnut Shells

31.4.1 Removal of Heavy Metals from Wastewaters by Raw
Hazelnut Shells

In recent years themost promising alternativemethod for removal of heavymetal ions
uses the sorption by waste materials, both organic and inorganic, which are low cost
and abundant. Cimino et al. [89] reported the use of hazelnut shell (HS) as a biosor-
bent to remove toxic ions such as cadmium, zinc, three- and hexavalent chromium,
from aqueous solutions. General description of HS is given in Table 31.1. Batch tests
showed that more Cr3+ ions were removed than both Cd2+ and Zn2+ ions. The Cr(VI)
removal was pH dependent and fitted with the Langmuir isotherm model. In another
investigation [90], the removal of Ni(II), Cd(II) and Pb(II) by shells of hazelnut
(HS) and almond (AS) was studied. Figure 31.4 shows the sorption efficiency of
heavy metal ions (HMI) on HS. The negative values of free change (�Go) indicated
the spontaneous nature of the adsorption of Ni(II), Cd(II) and Pb(II) onto shells of
hazelnut and almond and the positive values of enthalpy change (�Ho) suggested the
endothermic nature of the adsorption process. The selectivity order of the adsorbents
was Pb(II) > Cd(II) >Ni(II), with adsorption capacities of 16.23, 5.42, and 3.83mg/g,
respectively (Table 31.2). The potential to remove Pb2+ ion from aqueous solutions
using the shells of hazelnut (HS) and almond (AS) through biosorption was investi-
gated in batch experiments [91]. The equilibrium sorption capacities of HS and AS
were 28.18 and 8.08 mg/g for lead, respectively after equilibrium time of 2 h.

Demirbaş et al. [92] studied batch adsorption of Cu2+ ions onto hazelnut
shells (HS). The capacity of the adsorption for the removal of copper ions from
aqueous solution was investigated under different conditions. The sorption capaci-
ties increased with increasing pH and decreasing particle size values. The adsorption
process becomes more favorable with increasing temperature. The enhancement
of adsorption at higher temperatures may be attributed to the enlargement of pore
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Table 31.1 Physical and chemical properties of HS raw material used in the experiments

Parameters Aygün et al. [76] Cimino et al. [89] Bulut and Tez
[90]

Pehlivan et al.
[91]

Cellulose (%) – 27.3 – 18.24

Hemicellulose
(%)

– 24.6 – 28.90

Lignin (%) – 40.7 – 48.57

Ash content (%) 0.49 1.40 2.10 1.46

C content (%) 51.4 46.8 42.67 48.92

Oxygen (%) – 44.9 – 45.43

H content (%) 5.95 5.50 4.74 5.65

Nitrogen (%) – 1.40 – –

Moisture content
(%)

7.7 – 5.49 –

Total loss of
ignition (%)

– – 81.10

Water soluble
components (%)

– – 7.41 –

Insoluble
components (%)

– – 8.68 –

Particle size (mm) 1.0–1.25 0.3–0.8 0.8 –

Surface area
(BET) (m2/g)

– – 4.31 –

Bulk density
(g/mL)

– – 0.46 –

Fig. 31.4 Percent removal
of HMI versus time on
hazelnut shell (HS) (initial
HMI concentration = 100
mg/L; temperature
= 298 K;
HS concentration = 10 g/L;
agitation speed = 150 rpm)
[90]
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size and/or activation of the adsorbent surface [93]. The Langmuir isotherm model
appears to fit the isotherm data. The capacity of the adsorption for the removal
of copper ions was found 0.104 mmol/g at pH 5–7 (Table 31.2). In 2007, the batch
removal of Cu(II) ions from aqueous solution using walnut (WS), hazelnut (HS), and
almond (AS) shells was also investigated comparatively [94]. The sorption process
conformed to the Langmuir isothermwithmaximumCu(II) ion sorption capacities of
6.74, 6.65, and 3.62 mg/g forWS, HS, and AS, respectively. The percentage removal
Cu(II) ion was maximum at 10–3 mol/L solution concentration and initial pH of 6.0
(80.3, 75.6, and 75.0% by WS, HS, and AS, respectively). A further investigation
[95] on the removal of Cr(VI) ion from aqueous solutions was performed through
biosorption using WS, HS and AS in a batch system. The Langmuir isotherm was
found suitable with maximum Cr(VI) ion sorption capacities of 8.01, 8.28, and 3.40
mg/g for WS, HS and AS, respectively. Percentage removal by WS, HS and AS was
85.32, 88.46, and 55.00%, respectively.

A high-efficiency, low-cost and environment-friendly 2-acrylamide-2-methyl
propane sulfonic acid (AMPS)-modified hazelnut-shell-based adsorbent (AHS) was
synthesized and used to adsorbCu2+, Pb2+,methylene blue (MB) andmalachite green
(MG) from aqueous solutions by Lu et al. [96]. The maximum adsorption capacities
were found to be 21.14 and 32.74 mg/g for Cu2+ and Pb2+, respectively (Table 31.2).
The adsorption capacities could be maintained above 90% even after ten adsorption–
desorption cycles. Ahmed et al. [97] investigated the possibility to enhance Pb(II)
removal from wastewater by ultrasound-assisted adsorption using hazelnut shell, a
locally and readily available agriculturalwaste in batch system.Operation parameters
were optimized using response surface methodology. The obtained results indicated
high adsorption efficiency, between 91.6 and 97.3%, even for very short contact time
(4–10 min) and for relatively large particles of grounded shell (particle size between
0.5 and 0.63 mm). Langmuir model fitted better to the isotherms of ultrasound-
assisted adsorption. In another study [98], kinetics and isotherms of nickel uptake by
activated carbon (AC), sawdust (SD), hazelnut (HS) and almond shells (AS) were
compared. pH tests results showed that maximum absorption using AC, HS, SD and
AS obtained at pH 6, 6, 6, and 7 respectively. Kinetic model fitting results showed
that for sawdust and hazelnut shells, Lagergern model was a better representative.
The results also revealed that rate of Nickel adsorption follows this order: AS < SD
< HS < AC.

31.4.2 Removal of Heavy Metals from Wastewaters
by Activated Carbon Hazelnut Shells

Hazelnut shell is an important agricultural residue, the amount produced annu-
ally in Turkey being estimated as ca. 3 × 105 tonne. At present, this agricultural
waste material is used principally as a solid fuel. In recent years, metal ions such
as Cr(VI), Cd(II), Zn(II) [89] and Ni(II) [99] have been removed efficiently from
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aqueous solutions by activated carbons generated from hazelnut shells (ACHS).
Similarly, activated carbon prepared from hazelnut shells was also used to remove
Co(II) from aqueous solution by adsorption in the batch mode [100]. The adsorption
capacity calculated from the Langmuir isotherm was 13.88 mg Co(II)/g carbon at
303 K employing a pH value of 6 and a particle size of 1.00–1.20 mm (Table 31.2).
Chemically-activated hazelnut shell (ACHS) was also prepared by adding 100 ml of
double distilled sulphuric acid to 100 g of HS material. After heating in an air oven
at 40 °C for 2 h, the product was washed by doubly distilled water until acid reac-
tion was over. It was then suspended in 1% NaHCO3 aqueous solution overnight to
remove any residual acid. The material was washed with doubly distilled water and
dried for 6 h in the air oven at 60 °C. Kazemipour et al. [101] studied the adsorption
of Cu, Zn, Pb, and Cd onto the activated carbon produced from nutshells of walnut,
hazelnut, pistachio, almond, and apricot stone. The aqueous adsorption tests indicate
that the activated carbon has a notable adsorption capacity for Cu, Zn, Cd, and Pb.
The maximum removal occurred at pH 6–10, flowrate of 3 mL/min, and 0.1 g of the
adsorbent. The activated carbons produced from shells and stone have high surface
areas between 635 and 1208 m2/g.

Sayan [102] examined the combined chemical and physical activation process to
prepare activated carbon from ultrasound-assisted KOH-impregnated hazelnut shell
for removing heavy metals cations such as Cu2+. For this purpose, hazelnut shells
were impregnated with KOH solution under ultrasound irradiation. After filtration,
hazelnut shells have been carbonized under inert N2 atmosphere. It is now widely
accepted that ultrasoundpower has great potential for uses, in addition to conventional
applications in cleaning and plastic welding, in awide variety of industrial fields such
as electrochemistry, food technology, nanotechnology, chemical synthesis, dissolu-
tion and extraction, dispersionof solids, phase separation,water and sewage treatment
[103]. Ultrasound produces its mechanical and chemical effects through the forma-
tion and collapse of “cavitations” bubbles [104]. A significant amount of research has
been published concerning with this “sonochemical effect”, and collected in various
recent books [105, 106]. Ultrasound power (continuous mode) is adjusted using the
relationship between the intensity setting of the generator, and ultrasound power
absorbed by the reaction medium measured by the calorimetric method [107]. BET
surface areas of the raw and activated carbon from hazelnut shell were calculated
to be 0.188 and 10.1 m2/g, respectively. Considering BET surface areas, the surface
area of the activated carbon is 50 times greater than raw hazelnut shell surface area.

In a similar study [108], activated carbon adsorbent was prepared for removing
heavy metal cations such as Zn2+ from aqueous solutions. The experiments were
planned by statistical design methods. Finally, activated carbons were characterized
by the evolution of their zinc adsorption capacity. BET surface areas of the raw
and activated carbon from hazelnut shell were calculated to be 0.188 and 5 m2/g,
respectively. A further study [109] was also conducted on the removal of Cu(II) ions
by ultrasound-assisted adsorption onto ACHS. The granular activated carbon was
prepared from ground dried HS by simultaneous carbonization and activation by
water steam at 950 °C for 2 h. The maximum adsorption capacity of the adsorbent
for Cu(II), calculated from the Langmuir isotherms, in the presence of ultrasound
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(3.77 mmol/g) is greater than that in the absence of ultrasound (3.14 mmol/g). The
removal of Cu(II) ions was higher in the presence of ultrasound than in its absence,
but ultrasound reduced the rate constant.

Kobya [110] studied the adsorption Cr(VI) from aqueous solutions onto ACHS.
Adsorption of Cr(VI) is highly pH dependent and the best results are obtained in
the pH range 1.0–2.0. At low pH a high percentage of Cr(VI) reduces to Cr(III)
form. Chromium is adsorbed rapidly when lower concentrations are used. Adsorp-
tion capacity was calculated from the Langmuir isotherm as 170 mg/g at an initial
pH of 1.0 for the 1000 mg/l Cr(VI) solution. Thermodynamic parameters were eval-
uated and the adsorption is endothermic showing monolayer adsorption of Cr(VI).
Demirbaş et al. [111] utilized waste hazelnut shell as the rawmaterial for the produc-
tion of granular activated carbon by chemical activation and evaluated its adsorption
capacity for Cu(II) ions from aqueous solutions. The adsorption capacity of Cu(II)
increasedwith time and attained amaximumvalue at 60min and thereafter, it reached
a constant value indicating that no more Cu(II) ions were further removed from the
solution (Fig. 31.5). Desorption efficiencies in four cycles were found to be in the
range 74–79%. The monolayer adsorption capacity of Cu(II) ions was determined as
58.27 mg/g at 323 K (Table 31.2). Thermodynamic parameters were calculated for
the Cu(II) ion–ACHS system and the positive value of �H (18.77 kJ/mol) showed
that the adsorption was endothermic and physical in nature.

The possible use of activated hazelnut shell ash and activated bentonite as the
adsorbents of Cr(VI) from synthetic solutions and the effect of operating parameters
were investigated [112]. The activated hazelnut shell ash was prepared thermally
in two sizes 0.5 and 1.0 mm. The maximum removal of Cr(VI) occurred at pH 3
by activated hazelnut shell ash and at pH 5 by activated bentonite. The Freundlich
model agrees very well with experimental data. It is evident that after chemical
modification or conversion by heating into activated carbon, the activated carbon
hazelnut shells (ACHS) originating from raw hazelnut shells have demonstrated

Fig. 31.5 Effect of initial
concentration on the
adsorption of Cu(II) by
ACHS (Conditions: pH 6,
1.00–1.20 mm particle size,
3 g/L adsorbent dosage,
300 rpm, 120 min, agitation
time and 293 K) [111]
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outstanding metal removal capabilities. To justify their viability as effective adsor-
bents for heavy metal removal, the adsorption capacities of all low-cost adsorbents
need to be compared. Adsorption capacities (mg/g) for the removal of heavy metal
such as Cr(II), Cr(VI) and Ni (II) by activated hazelnut shell (ACHS) and other agri-
cultural based activated carbons are reported in Table 31.3 [113–119]. Among these
agricultural based activated carbons, activated carbon hazelnut shell-ash (Cu(VI):
667.2 mg/g), ACHS-ultrasound (Cu(VI): 240 mg/g), ACHS (Cr(VI): 170 mg/g),
AC-coconut shell (Cr(VI): 107.1 mg/g) and AC-peanut hull (Cu(II): 65.57 mg/g)
stand out for significantly higher metal adsorption capacities compared to the other
adsorbents.

Recently, activated carbons prepared from hazelnut shells and apricot stones were
used as adsorbents for the removal of copper(II) ions from aqueous solution [120].
The amount of Cu(II) ions adsorbed increased with increasing temperature, pH and
initial Cu(II) ion concentration. The Freundlich model showed a better fit of the
adsorption data. The physical and chemical properties of hazelnut shell and apricot
stone activated carbons were determined for comparative purposes. Figure 31.6a
shows that the hazelnut shell activated carbon had a porous structure, an observation
supported by the BET surface area (646.80 m2/g) and iodine number (276 mg/g)
of this activated carbon. As can be seen from Fig. 31.6b, most of the adsorbed
Cu(II) ions were located inside the pores. In 2013, the removal of copper(II) ion

Table 31.3 Recent reported adsorption capacities (mg/g) for heavy metal sorption on activated
carbon hazelnut shell (ACHS) and other agricultural based activated carbons

Adsorbent Metal ion Surface area (m2/g) Adsorption capacity
(mg/g)

Source

ACHS, Steam
activated-ultrasound

Cu(II) 1651 240 [109]

ACHS Cu(II) 441 58.27 [111]

AC-Rubber wood dust,
H3PO4 activat

Cu(II) 1674 5.73 [113]

AC-Peanut hull Cu(II) 65.57 [116]

AC-Olive stone Cu(II) 9.21 [117]

AC-Almond Shell Cu(II) 8.85 [117]

ACHS-ash Cr(VI) 445 667.2 [112]

ACHS Cr(VI) 170 [110]

AC-Coconut Shell Cr(VI) 107.1 [114]

AC-Wood Cr(VI) 87.6 [114]

P-Sawdust Cr(VI) 320 37.8 [115]

ACHS Ni(II) 441 11.64 [99]

AC-Coir pith Ni(II) 592 62.5 [118]

AC-Almond husk Ni(II) 37.17 [119]

AC: Activated carbon, P: Pyrolysis
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Fig. 31.6 Scanning electron
micrographs of hazelnut
shell activated carbon: a
before and b after the
adsorption of Cu(II) ions
[120]

(a)

(b)

from aqueous solution by the granular activated carbon, obtained from hazelnut
shells (ACHS), was investigated in the batch tests [121]. The ACHS was prepared
from ground dried hazelnut shells by specific method carbonisation and water steam
activation at 950 °C for 2 h. The granular activated carbon produced from hazelnut
shells has a high specific surface area (1452m2/g) and highly developedmicroporous
structure (micropore volume: 0.615 cm3/g). The monolayer adsorption capacity of
the ACHS-copper(II) ion, calculated from the Langmuir isotherms, was 3.07mmol/g
(195 mg/g).

Imamoglu [122] reported a batch adsorption of Cd(II) ions onto activated carbon
(AC) produced from hazelnut husks. The AC showed a high affinity to Cd(II) ions
at pH values between 5.0 and 7.0. Maximum Cd(II) adsorption capacity of AC was
calculated to be 20.9 mg/g. Cd(II) adsorption was kinetics described well with the
pseudo second order model. Şencan et al. [123] investigated the Pb+2 adsorption
capacities of hazelnut shell and activated carbon obtained from hazelnut shell. The
raw hazelnut shell’s BET surface area is 5.92 m2/g and the surface area of acti-
vated carbons which is pyrolyzed at 250 and 700 °C were determined 270.2 and
686.7 m2/g, respectively. The surface area of hazelnut shell, which pyrolyzed at
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700°C after being activated with ZnCl2, was determined to be 736.49 m2/g. Results
show that physical adsorption process is dominant for the activated carbon pyrolysis
at 700 °C but the chemical adsorption is dominant for the activated carbon pyrolysis
at lower degrees and for raw hazelnut shell. Obtained results after the experimental
studies are shown in Fig. 31.7. Fencan and Kılıç [124] used raw hazelnut shells
to obtain charcoal by pyrolysis at 250 °C and the obtained material was subjected
to physical, chemical, and physicochemical treatment methods to obtain activated
carbons (ACs). The charcoal samples were examined for Pb(II) adsorption from
aqueous solutions under different pH conditions of 4 to 6. Effect of microwave and
ultrasound treatments was also examined during Pb(II) adsorption by the chemically
treated AC. The results showed that chemical treatment with Ca(OCl)2, microwave
treatment for 5min, ultrasound treatment for 20min, and pyrolysis at 700 °C together
were the most suitable combination enhancing the surface area of the adsorbent. This
combination increased the surface area and the adsorption capacity of the adsorbent
by 202 and 4.76 times, respectively, when compared to those of the raw hazelnut
shell.

Hazelnut husk (HH) was also used to prepare an activated carbon (ACHH) by
chemical activation using K2CO3 [125]. ACHH has a high surface area (980.9 m2/g)
and contains 2.60 mmol/g of total acidic functional groups. ACHH was used for
the removal of Pb(II) from aqueous solutions, where a number of effective factors
were investigated. For Pb(II) adsorption onACHH, kinetics followed pseudo-second-
order model and the Langmuir model showed a better fit of the adsorption data
while maximum adsorption capacity was 109.9 mg/g. In a similar study [126],
hazelnut husk (HH) was converted to carbonaceous material by chemical activa-
tion using potassium acetate. ACHHwas used for the batch adsorption of Cu(II) ions
from aqueous solutions and the adsorption capacity was found as 105.3 mg/g. Zhao

Fig. 31.7 Pseudo-first- and second-order kinetical graphics of the sorption process made with
nutshell (conditions: 100mg/L initial concentration, pH5, 300–180μmparticle size, 1 g/L adsorbent
dosage, 150 rpm, and 20 °C) [123].
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et al. [127] applied the co-pyrolysis technology to municipal sewage sludge (MSS)
and hazelnut shell with alkaline activating agent K2CO3 under N2 atmosphere. The
specific surface area reached 1990.23 m2/g, and the iodine absorption number was
1068.22 mg/g after co-pyrolysis at 850 °C. The residual fractions of heavy metals in
bio-char were above 92.95% after co-pyrolysis at 900 °C except Cd to prevent heavy
metals digestion. The Cu(II) adsorption capacity of the bio-char was 42.28mg/g after
24 h, and surface functional groups acted as active binding sites for Cu(II) adsorp-
tion. In 2021, in order to produce an adsorbent with high Cr(VI) adsorption capacity,
two different composite adsorbents were synthesized by coating citric acid modified
almond and hazelnut shells with chitosan [128]. Then, chitosan in the structure was
cross-linked with glutaraldehyde. Cr(VI) adsorption performances of chitosan-citric
acid modified almond shell composite (C-CA-AS) and chitosan-citric acid modi-
fied hazelnut shell composite (C-CA-HS) were investigated. In batch adsorption
experiments, the optimum adsorbent dosages for the adsorption of Cr(VI) from the
55 mg/L Cr(VI) solution using C-CA-AS and C-CA-HS adsorbents were 1.8 and
1.0 g/L, respectively. The maximum adsorption capacities calculated by Langmuir
isotherm were 100.3 mg/g for C-CA-AS and 89.5 mg/g for C-CA-HS. Adsorption
was found to be compatible with pseudo-second-order kinetic model, and it was
determined that adsorption was spontaneous and endothermic.

31.5 Removal of Dyes from Wastewaters Using Hazelnut
Shells

31.5.1 Removal of Dyes from Wastewaters by Raw Hazelnut
Shells

The colour removal from dyehouse effluents becomes day by day more than ever an
important objective ofwastewater treatment processes. The dye adsorption behaviour
of ground hazelnut shells was compared with that of wood sawdust, a low cost adsor-
bent already experimented for dye removal by Ferrero [129]. Both batch adsorption
of methylene blue and acid blue onto ground hazelnut shells (HS) were investigated
in comparison with sawdust of various species of wood and fixed bed adsorption
of methylene blue on HS columns. The equilibrium data were processed according
to Langmuir’s model and higher adsorption capacity values towards both dyes were
shown by HS than wood sawdust. The adsorption capacity of hazelnut shells (HS)
changed according to particle size of HS (125–500 μm) and dye concentration (50–
1000 mg/L) (methylene blue: 5–76,9 mg/g, acid blue 25:−60.2 mg/g) (Table 31.4).
In the subsequent research [129], fixed bed adsorption of methylene Blue was also
performed on HS columns and the breakthrough curves were determined by varying
bed depth, flow rate and influent concentration. The data were processed according
to Bohart–Adams model and the column performances could be predicted by the bed
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depth service time (BDST) approach. Some theoretical models of fixed bed adsorp-
tion were developed for activated carbon and applied to other adsorbents [130–135].
Lu et al. [96] synthesized a high-efficiency, low-cost and environment-friendly 2-
acrylamide-2-methyl propane sulfonic acid (AMPS)-modified hazelnut-shell-based
adsorbent (AHS) and used to adsorb Cu2+, Pb2+, methylene blue (MB) andmalachite
green (MG) from aqueous solutions. Adsorption kinetics shows that the adsorption
rate is well represented by the pseudo second-order rate model, and the Langmuir
model gives the best fit adsorption isotherm. The Langmuir maximum adsorption
capacitieswere found to be 68.03mg/g forMBand 263.16mg/g forMG, respectively
(Table 31.4).

Recently, Carletto et al. [136] has investigated the adsorption of the direct azo dye
Congo red on hazelnut shell within a concentration range of 50–5000mg/L. Hazelnut
shells were employed as organic support for Phanerochaete chrysosporium cultures
to study the best cultural medium composition for the MnP production. Cultures of
Phanerochaete chrysosporium were carried out with hazelnut shells coming from
Congo red adsorption tests, showing that 43% of the adsorbed dye was degraded.
In 2008, the batch adsorption of a basic dye, methylene blue (MB), was performed
onto ground hazelnut shell [137]. The extent of the MB removal increased with the
increase of solution pH, ionic strength and temperature but decreasedwith increase in
the particle size. The maximum adsorption capacities for MBwere 2.14–2.31× 10–4

mol/g at temperature of 25, 35, 45, and 55°C, respectively. Adsorption heat revealed
that the adsorption of MB is endothermic in nature. Dogan et al. [138] reported the
adsorption kinetics of methylene blue (MB) on hazelnut shell. Adsorption activation
energy was calculated to be 45.6 kJ/mol. The values of activation parameters such
as free energy (�Go), enthalpy (�Ho) and entropy (�So) were also determined as
83.4 kJ/mol, 42.9 kJ/mol and −133.5 J/(mol K), respectively. Figure 31.8 shows
the effects of contact time on the amount of MB adsorbed by hazelnut shell under
different initial MB concentrations.

Fig. 31.8 The effect of
initial dye concentration to
the adsorption rate of MB on
raw hazelnut Shell (HS) (T:
30 °C, pH: 4.1–4.5, SS: 200
rpm, PS: 0–75 μm) [138]
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31.5.2 Removal of Dyes from Wastewaters by Activated
Carbon Hazelnut Shells

An investigation of several agricultural wastes (almond shell, hazelnut shell, walnut
shell and apricot stone) revealed that their suitability for granular activated carbon
production is more governed by type-specific features rather than material character-
istics (elemental composition). Granular activated carbons were evaluated for their
physical (attrition, bulk density), chemical (elemental composition, % weight loss),
surface (surface area, surface chemistry) and adsorption properties (iodine number,
phenol and methylene blue adsorption) [76]. Adsorption isotherm data were fitted to
both Langmuir and Freundlich models. Highest surface areas of activated carbons
from ACAS, ACHS, and ACWS were found at 750 °C with 10 h activation time
but for ACAST, it was obtained at 800 °C with 18 h activation time. ACHS has the
highest surface area and iodine number. The iodine numbers of ACHS andACWS are
higher than that of other two activated carbons. All carbons have high bulk density
and hardness. These properties can be explained by high lignin and low ash contents
of the shells (Table 31.5).

The removal of dyestuff from aqueous solutions by different adsorbents,
such as activated carbon, kaolinite and montmorillonite was studied [139]. The
adsorption isotherm data were fitted to the Langmuir isotherm. For Acid dye,
the adsorption capacities of RAC (a commercial activated carbon), ACHS, KC
(raw kaolinite) and MC (montmorillonite) were obtained as 967.0, 50.5, 43.7,
and 31.3 mg/g at 25 °C, respectively. Similarly, the removal of Direct
dyes (Direct yellow 50 (DY50), Direct red 80 (DR80) and Direct blue 71
(DB71)) from an aqueous solution by different adsorbents such as RAC,
ACHS, KC, and MC was also investigated [140]. Adsorption capacities of
RAC, ACHS, KC, and MC increased in the following order: DY50 > DR80

Table 31.5 Physico-chemical characteristics of activated carbons [76]

Characteristics ACAS ACAST ACHS ACWS

Particle size (mm) 1.00–1.25 1.00–1.25 1.00–1.25 1.00–1.25

Burn off (wt.%) 67 70 63 70

Bulk density (kg/L3) 0.80 0.82 0.79 0.81

BET surface area (m2/g) 736 783 793 774

Iodine number (mg/g) 638 754 965 905

Attrition (%) 9.4 12 10 11

C (%) 79.2 76.0 72.0 75.3

H (%) 0.64 0.49 1.8 0.71

Acidic groups (mmol/g) 0.33 0.00 0.00 0.13

Basic groups (mmol/g) 0.66 0.31 0.39 0.36

ACAS: Activated carbon almond shell, ACAST: Activated carbon apricot fruit stone, ACHS:
Activated carbon hazelnut shell, ACWS: Activated carbon walnut shell
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> DB71, DB71 > DR80 > DY50, DR80 > DB71 > DY50, and DB71
> DR80, respectively. Recently, the removal of Acid red 183 from aqueous solu-
tion onto activated carbon, raw kaolinite and montmorillonite was also researched
[141]. The adsorption capacities were 1495, 111, 29, and 19 mg/g for RAC, ACHS,
KC andMC at 25 °C, respectively (Table 31.4). The activated carbons produced from
hazelnut shells have high surface areas and highly developed micropore structure.

Özer et al. [142] prepared activated carbon from hazelnut husks (ACHH) using
phosphoric acid activation and characterized by some physicochemical analyses.
Surface area and zero point charge of pH (pHPZC) were found to be 770 m2/g and
4.5, respectively. Adsorption of methylene blue (MB) was elevated with increasing
pH and temperature. The equilibrium data were analyzed by Langmuir and an
adsorption capacity of 204 mg/g was found. Table 31.6 presents the dye adsorp-
tion capacities of the activated carbon hazelnut shell (ACHS) and other agricultural
based activated carbons [69, 76, 140, 141, 143–148]. The removal capacities of AC-
Bamboo (Methylene blue: 454.20 mg/g), AC-Vetiver roots (Methylene blue: 375
mg/g), and AC-Orange peel (Direct yellow 12: 75.76 mg/g) were found higher than
that of activated carbon hazelnut shell (ACHS) (Methylene blue: 8.82 mg/g, and
Direct yellow 50: 11 mg/g). For acid dye removal, the adsorption capacity of ACHS
(Acid red 183: 111 mg/g), was significantly higher than that of AC-Guava seed
(Acid red 1: 0.4 mg/g). Karaçetin et al. [149] analyzed activated carbon prepared
from hazelnut husk (ACHH) using zinc chloride and investigated adsorption from
aqueous solution of Methylene blue (MB) by the batch method. SEM images of HH

Table 31.6 Recent reported adsorption capacities (mg/g) for dye sorption on activated carbon
hazelnut shell (ACHS) and other agricultural based activated carbons

Adsorbent Dye Surface area (m2/g) Adsorption capacity
(mg/g)

Source

ACHS Methylene blue 793 8.82 [76]

AC-Bamboo Methylene blue 1896 454.20 [143]

AC-Vetiver roots Methylene blue 1185 375 [145]

AC-Salsola
vermiculata plant

Methylene blue 1178 130 [69]

AC-Coir pith Methylene blue 5.87 [144]

AC-Apricot stone Methylene blue 783 4.11 [76]

AC-Walnut shell Methylene blue 774 3.53 [76]

AC-Almond shell Methylene blue 736 1.33 [76]

ACHS Direct yellow 50 14 [140]

AC-Orange peel Direct yellow 12 75.76 [146]

ACHS Direct blue 71 26 [140]

AC-Orange peel Direct Blue 86 33.78 [148]

ACHS Acid red 183 111 [141]

AC-Guava seed Acid red1 12 0.4 [147]
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(a) (b)

Fig. 31.9 a SEM micrographs of a HH and b ACHH [149]

and ACHH were obtained by magnifying 650 × and are shown in Fig. 31.9a and b,
respectively. When surface patterns and porous form of both carbons are compared
with each other, it is apparent that the ACHH has a porous structure. MB adsorption
capacity of ACHH was found to be 476.2 mg/g and MB adsorption kinetics corre-
sponds well with pseudo second order model. Thermodynamic studies revealed that
MB adsorption is a spontaneous and endothermic process.

Low-cost biosorbents such as pine cone char, walnut shell char, and hazelnut shell
char were prepared by pyrolysis process at different carbonization temperatures in
the range of 400–700 °C [150]. Biochars with the highest surface area were used
to remove Alizarin yellow GG from aqueous solution and the adsorption capaci-
ties of these materials were compared to commercially available activated carbon.
The maximum removals of Alizarin yellow GG were about 89, 82, 78, and 52% for
commercially available activated carbon (charcoal), pine cone char (259.740 m2/g),
walnut shell char (256.931 m2/g), and hazelnut shell char (124.347 m2/g), respec-
tively (Table 31.4). Al-Sharify et al. [151] used the prepared activated carbon from
hazelnut shells (HS) to removeReactive red 2 dye (RR2) fromaqueous solutions. The
adsorption behavior of dye onto the porous carbon was studied by varying parame-
ters. The maximum adsorption capacity of dye was 8.67 mg/g at 45 °C and pH 3. The
thermodynamic parameters (�Go,�Ho,�So) were also determined, which revealed
that the process of adsorption Reactive red 2 dye was spontaneous and endothermic
while an increase in temperature favored the adsorption.

31.6 Conclusions

This review presents hazelnut shell as a low-cost material to be used for the removal
of heavy metals and dyes from the wastewaters. Hazelnut shell is a biomass and
Turkey has become the largest hazelnut producer per year worldwide, i.e. about
70% of total world hazelnut production, which corresponds to 675,000 tonnes of
annual hazelnut production performed on ca. 700,000 hectares of land. Activated
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carbon has great potential for removal of heavy metals and dyes from water owing
to its large surface area, nanoscale size, and availability of different functionalities,
not to mention that they tend to be more easily modified and recycled. Generally,
hazelnut shell has low removal efficiency and adsorption capacity for the removal of
heavy metals and dyes. It is expected that activated carbons prepared from hazelnut
shells using different activation processes have high surface areas and may show
high removal performance. Extensive literature information on the removal of heavy
metals and dyes from wastewaters using hazelnut shells has been reviewed in this
paper. The raw hazelnut shell’s BET surface areawas found 5.92m2/g and the surface
area of activated carbons which is pyrolyzed at 250 and 700 °C were determined
270.2 and 686.7 m2/g, respectively. The surface area of raw hazelnut shell (HS),
which pyrolyzed at 700 °C after being activated with ZnCl2, was determined to be
736.49 m2/g for activated carbon hazelnut shell (ACHS). The adsorption capacity
of HS was 28.18 mg/g for lead. The maximum adsorption capacities of AMPS
modified HSwere found to be 21.14 mg/g for Cu2+, 32.74 mg/g for Pb2+, 68.03 mg/g
for Methylene blue (MB) and 263.16 mg/g for Methylene green (MG), respectively.
The maximum Pb+2 adsorption capacities were found to be 667.2 and 195.2 mg/g for
ACHS (0.5 mm) and ACHS (1.0 mm), respectively. The adsorption capacity toward
MB of HSs with dp = 125 μm was found to be 76.9 mg/g. MB adsorption capacity
of the activated carbon hazelnut husk (ACHH) was also found to be 476.2 mg/g. This
study demonstrated that hazelnut shell and its activated carbon forms could be used
as effective adsorbents for the treatment of wastewater containing heavy metals and
dyes. Hazelnut shell as a low-cost adsorbent proposes a lot of promising benefits for
commercial purposes in the future.
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