
A Proposed Dynamic Hybrid-Based Load
Balancing Algorithm to Improve Resources

Utilization in SDN Environment

Haeeder Munther Noman1(&) and Mahdi Nsaif Jasim2

1 Software Department, College of Information Technology,
University of Babylon, Babylon, Iraq

2 University of Information Technology and Communications, Baghdad, Iraq

Abstract. Several load balancing schemes are proposed to tackle the webserver
overloading problems. Static load balancing is appropriate for systems with low
load variations where the traffic fairly distributes among servers and Prior
information about system resources is required. Dynamic load balancing mon-
itors the system’s current state to perform load controlling actions and respond
to the current system state while making load transferring decisions. Conse-
quently, processes may dynamically switch from an overused machine to
underuse during real-time. However, to utilize the resources more efficiently this
paper proposes a new hybrid-based load balancing algorithm that relies on
inheriting the distinctive characteristics, overcoming the existing limitations, and
combining the desired features of static as well as dynamic load balancing. The
experimental analysis witnessed the utilization of the OpenLoad benchmarking
tool that generate a concurrent users from 0 up to 350 to provide a near real-time
performance measurement of the application under test and to evaluate the
performance of load balancing algorithms. Results reveal that proposed hybrid-
based load balancing algorithm interestingly enhances server transactions per
second up to 10.41%, average server response time up to 24.61%, and server
CPU capacity up to 9.55% when compared with other load balancing algorithms
like static weighted round-robin (WRR) and dynamic least connection-based
(LCB). Accordingly, this research recommends deploying the proposed load
balancing technique in SDN-Based Platform data center networks (DCN’s).

Keywords: Weighted Round-Robin (WRR) � Least Connection-Based (LCB) �
Software Defined Network (SDN) � Advanced Server Monitoring module
(ASM) � Hybrid-based (HB)

1 Introduction

SDN is a modern architecture that separates control and forwarding functions in the
network. The separation is a departure from the conventional architecture where
complex tasks are abstracted from the repeated forwarding tasks. A complex process is
automated and handled separately in a centralized SDN controller or Network Oper-
ating System. The controller uses the OpenFlow protocol to connect with the real
physical or virtual switch, and the data path uses the flow entries inserted by the

© Springer Nature Switzerland AG 2021
A. M. Al-Bakry et al. (Eds.): NTICT 2021, CCIS 1511, pp. 147–162, 2021.
https://doi.org/10.1007/978-3-030-93417-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93417-0_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93417-0_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93417-0_10&domain=pdf
https://doi.org/10.1007/978-3-030-93417-0_10

controller in the flow table for routing data. Three methods exist to separate the control
plane and the data plane: fully distributed, logically centralized, and strictly centralized.
In the Fully distributed method, switching devices provide one essential feature for
forwarding packets, but unfortunately, without a control power, that may lead to a
failure point. The logically centralized method includes a remarkable feature signified
in the devices with a partial functionality embedded inside. The strictly centralized
method adopts the conventional way of making all machines within all planes route
packets through the network. However, the majority of clients, organizations, and
businesses rely on the internet for their daily activities to deliver services online [1].
The hardware performance improvements are no longer enough to cope with the rising
volume of customer requests while preserving the desired quality of service [2].
Accordingly, standard practice is to utilize servers to process the client requests [3].
Suppose it is difficult to allocate the incoming requests among servers evenly. In that
case, some servers could be overloaded while others remain idle, which leads to low
server utilization and poor service quality. Moreover, due to the ever-increasing request
loads of popular websites, it’s challenging to adopt a single robust server or mirrored
servers [4]. Therefore, a load balancer (also known as a dispatcher) is employed to
distribute client requests to a particular server in the back end and removes any possible
single point of failure to maximize system reliability [5]. The load balancing strategies
invoked by the load balancer are viable to redirect requests among the server members
and become necessary when multiple servers operate simultaneously. Moreover, load
balancing techniques reduce the overall response time and optimize the total
throughput when all activities are transparent to the user [6]. The contribution is to
develop and implement a hybrid-based load balancing algorithm that eliminates the
issues and inherits the merits of static and dynamic load balancing schemes.

The organization of this paper is as follows: Sect. 2 introduces a literature review
related to the development of load balancing algorithms running in SDN, the main
features of static and dynamic load balancing algorithms, and the limitations for both
types of algorithms. Section 3 outlines the proposed hybrid-based (HB) load balancing
algorithm. Section 4 discusses the experimental set up. Section 5 is committed to
discuss the flow-sequence diagram of the proposed algorithm. Section 6 describes the
experimental results, evaluation, and finally Sects. 7 and 8 deal with the conclusion and
future work.

2 Related Work

Many approaches have been hypothesized to address the load balancing issue. Tradi-
tional load balancing algorithms suffered from being non-programmable and vendor
locked, which turned them to be rendered inoperable. Moreover, network adminis-
trators could not build customized applications [7]. Preliminary work focused on a
single load balancing parameter was later insufficient to pick up the best server for
processing user requests [8]. A systematic study to investigate a dynamic flow entry
saving multipath (DFSM) system for inter-data center WAN transmission was carried
out [9]. The DFSM system employed the concept of source-destination multipath
forwarding mechanism with latency awareness flow-based traffic splitting to preserve

148 H. M. Noman and M. N. Jasim

flow entries and get a high level of achieved performance. However, the DFSM saved
from 15% up to 30% of system flow entries and reduced from 10% up to 48% of
average latency. The computation of the shortest route among hosts and performing the
load calculations associated with each link was proposed by [8]. If congestion in a route
occurs, it substitutes the old route with the alternative best route having the lowest
traffic flow [10]. The utilization of the dispatcher architecture represented the major
advance regarding load balancing to employ the back-end server, later investigated to
be inappropriate for distributing client requests evenly to different servers [11]. The
hybrid–based load balancing algorithm’s proposition relying on each of the Least Load
and Round-Robin load balancing solutions running in an SDN environment was
suggested by [12]. Accordingly, the time has come to develop different hybrid load
balancing algorithm that merges two or more load balancing schemes, static or
dynamic. The aim is to produce a new algorithm that incorporates the benefits, inherits
the distinctive characteristics, and overcomes both strategies’ limitations and
inconveniences.

2.1 Static Load Balancing Algorithms

An equal division of traffic is performed inside the servers in a static algorithm, which
is appropriate for platforms where the load changes at a low rate. Prior information
about system resources is required to ensure that load shifting decisions do not rely on
the system’s current state. Moreover, initial tasks are assigned to the individual pro-
cessors for execution by the master processor [13]. Accordingly, the performance of the
workload is calculated from the beginning through the master processor. Slave pro-
cessors calculate the expected work and provide the results for the master processor.
Static load balancing is appropriate for systems with low load variations where the
traffic fairly distributes among servers. The processor’s efficiency is computed at the
start of execution, and the decision to transfer loads avoids relying on the system
processors’ current status. Tasks are assigned to virtual machines and processors after
their generation because they could not be transferred to any other device for load
balancing during the execution. Although a static scheme is less overhead, suitable for
a homogeneous environment, and easy to implement, several drawbacks are reported:
like the non-versatile nature, the inability to accept dynamic changes, pure dependency
on statically obtained data, and the non-pre-emptive behavior. WRR is a good instance
of this type of algorithm regarded as the Round-Robin’s improved version. Static
weight is assigned to each server in the network pool based on servers’ actual capacities
and specifications regarding CPU, RAM, etc. [14].

2.2 Dynamic Load Balancing Algorithms

Due to the dynamic distribution of the pre-programmed load balancing patterns, the
dynamic load balancing scheme is more efficient than static [15]. Two modes are
available to implement the dynamic load balancing scheme: the non-distributed and
distributed. In the nondistributed approach, a (centralized) node receives and distributes
all requests to the servers, whereas the distributed mode shares the nodes within the
distribution of the requests [16]. Features of dynamic load balancing schemes include

A Proposed Dynamic Hybrid-Based Load Balancing Algorithm 149

monitoring the system’s current state to perform load controlling actions and
responding to the current system state while making load transferring decisions.
Consequently, processes may dynamically switch from an overused machine to an
underused device in real-time. Dynamic load balancing schemes come with several
advantages, like the absence of a single web server overloading problem. The current
system load is kept under consideration to select the following data center. Drawbacks
include communication overheads, the growing number of procedures, and the higher
run time complexity. However, LCB is one of the traditional dynamic load balancing
schemes in circulation. The load distribution is decided based on the current number of
connections for every node. A load balancer keeps a log of a node’s number of
connections. However, the node with the fewest number of connections is firstly
selected [17] such that when a new operation or order occurs, load increases, whereas
when the operation terminates, load decreases. This technique is a good choice if the
request load has a high degree of variance and is ideal for an individual server pool
with a similar capacity for each member node.

2.3 Limitations and Drawbacks

Load balancing schemes perform well but unfortunately hold certain limitations. WRR
is simple and runs fast but lacks accuracy during load balancing of varying load size or
request complexity. Current server load is not considered during request distribution
[18]. In the LCB algorithm, the server load is taken into account before load delivery,
which may have the load distributed sparsely, leaving some of the servers idle [19].

3 Proposed Hybrid-Based (HB) Algorithm

The proposed load balancing algorithm consists of two functional models, the
Advanced Server Monitoring Module (ASMM) and the Hybrid Load Balancing
Module (HLBM). The modules usually mount on the top of the POX controller.
The ASMM module tracks all of the information related to the server’s status, modify
some of the corresponding parameters, and forwards it periodically to the load bal-
ancing module. The Hybrid load balancing Module (HLBM) is considered the main
operating module responsible for handling and controlling the load balancing deci-
sions. Each server connects to the OpenFlow switch with a static IP address, and each
server pool acquires a virtual IP and MAC address. Without recognizing the server’s
physical address, users send their requests to the OpenFlow switch’s virtual MAC
address, which sends a Packet_in message to the controller running the modules
mentioned above. If there is no matching regarding flow entries, the controller inserts
the corresponding flow entry into the OpenFlow switch via the southbound OpenFlow
protocol.

3.1 Advanced Server Monitoring Module (ASMM)

The ASMM is developed to collect the OpenFlow switch ports, flow entries, and flow
table counters statistics. The OpenFlow switch provides three types of counters

150 H. M. Noman and M. N. Jasim

statistics: the first type is the statistics per flow table that consist of matched packets, the
number of looked-up packets, and the number of active flow entries. The second type is
the statistics per flow entry in a flow table that consists of the received bytes, received
packets, and duration. The last type is the statistics per port consisting of received
packets, transmitted packets, received bytes, transmitted bytes, receive drops, transmit
drops, receive errors, transmit errors, and collisions. The module executes a runnable
class, which involve the running data collection function according to the time interval
set to 5 s by passing out two parameters: the first parameter is the OpenFlow switch
port number (OpenFlowPortNo.) used to retrieve the counters statistics related to
OpenFlow switch ports such as the received packets, transmitted packets, received
bytes, transmitted bytes, received drops, transmitted drops, and the collisions. The
second parameter is the Flow entry number (FlowEntryNo.) is used to retrieve the
counters statistics related to flow entries such as received bytes, received counters, time
and OpenFlow table statistics such as active entries, packet lookups, and packet mat-
ches. The ASMM is incorporated into the HLB by using a thread that handles the
request and response statistics as explained in Algorithm 1.

3.2 Hybrid Load Balancing Module (HLBM)

This section aims to explain the approach followed by this module to compute and
distribute the incoming traffic to the server. The load is determined based on least
connections as well as static weight for each server. The requests usually demand pages
of type text with small sizes as the HTTP web server itself could process them and do
not require many resources. Thus, consuming less bandwidth and avoiding server-side

A Proposed Dynamic Hybrid-Based Load Balancing Algorithm 151

scripting (e.g., JSP, ASP, and PHP). In contrast, requests demanding pages of big sizes
like images that require additional resources cause extra time and consume high
bandwidth. The HLBM implements the load of each server and selects the optimal
server to handle the incoming request, as shown in the processes listed below:

1. Computing the Load of Servers
The module adopts a single pool (P) assigned with a single service type (HTTP).
The pool includes server members acquiring varying load, L = (L(S l), L (S2)….L
(SN)) and R is the set of requests that need to be scheduled: R = (R1, R2….RN).
The load of the pool is calculated according to Eq. 1:

LðSiÞPool ¼
Xn

i¼0

LðSiÞ ð1Þ

The load of the server members is calculated based on the algorithmic rule that
consists of two stages. The first stage continuously monitors server members and
computes the active number of connections of each server, and selects the server
with the least number of real-time active connections according to Eq. 2:

Sm ¼ Min½Conn
Xn

i¼1
Si� ð2Þ

Where Sm: refers to the server member having the least number of connections.
However, the second stage carries out the mathematical multiplication of least
connections server member resulting from the first condition with static weight for
each server in the pool. The server producing the highest product value, is selected
and the request is forwarded to that server depending on Eq. 3:

Soptimal ¼ Max½
Xn

i¼1

ðSmÞ �WðSiÞ� ð3Þ

Where Soptimal: refers to the final server member responsible for handling the
incoming request among a pool of n servers. n, i = {1, 2, 3,}, where n is the total
number of servers in the pool. W (Sw): refer to the assigned static weight for each
server member.

2. Selecting the Optimal Server
As the POX controller receives requests from clients, then relying on the calcula-
tions of the mathematical rule mentioned in the above step, the server with the least
load is selected to process the client request. However, each time a load of server
members varies, then related information is updated as explained in Algorithm 2.

152 H. M. Noman and M. N. Jasim

A Proposed Dynamic Hybrid-Based Load Balancing Algorithm 153

4 Experimental Setup

The experimental work is carried out using a POX controller. The POX is written with
Python, designed and implemented as a friendlier alternative by several SDN devel-
opers and Engineers. POX performs well as compared to NOX. The POX is a more
straightforward development environment to deal with that offers a web-based GUI
with a fairly well-written API and documentation. Moreover, the POX facilitates the
addition and removal of restored units, and enhances the experiments flexibility and
performance. The POX includes a list of IP addresses assigned to each server statically.
The Mininet emulator carries creates the virtual network topology that consists of three
hosts acting as Apache HTTP web servers holding the same configuration to provide
the same web services to the clients. Nine hosts acting as clients, which attempt to
access the Apache HTTP web servers by using a virtual IP address. The OpenLoad
benchmarking tool plays an important role in evaluating the performance of the pro-
posed load balancing scheme. OpenLoad is easy to use and provides a near real-time
performance measurements of the application under test. This is particularly useful
during performing optimization due to the fact that OpenLoad reflects the impact of
modifications almost immediately. This tool examines the impact of the gradual growth
of load represented by concurrent users from 0 up to 350 on the server’s quality of
service (QoS) metrics defined by the server’s average response time, server’s trans-
actions per second, and server’s CPU capacity to handle requests. Port 6633 is the
default connection port for establishing communications between the OpenFlow switch
and POX controller.

5 Flow Sequence Diagram

Fig. 1. HB load-balancing algorithm flow-sequence diagram

154 H. M. Noman and M. N. Jasim

As shown in Fig. 1, the flow-sequence diagram Steps of HB load balancing algorithm
is listed as follows:

• System Configuration Process
The user should initially set up the server pool, the VIP address associated with that
pool, and the traffic type. The configuration of the server pool is based on the
number of member servers. Since a single service is provided by the server
members and single type of transmission that is TCP. Therefore, the proposed
system requires a single pool

• The Addition of Member Servers to Pool
Three HTTP servers (HTTP Server1, HTTP Server2, and HTTP Server3) are
launched into the pool relying on their layer three static IP address with the same
port of VIP.

• Sending Requests
The OpenLoad benchmarking tool plays an essential role in evaluating the per-
formance of server members. OpenLoad is discovered to be flexible for use and
provides a near real-time performance measurement of the application under test,
which is particularly useful when performing optimization as the impact of changes
could be immediately observed. This tool relies on investigating the effect of the
gradual growth of load represented by concurrent users on the server’s performance
metrics. The number of concurrent users’ requests varies from 0 up to 350 (req/sec)
with a uniform increase of 50 (req/sec)

• Receive and Process Packet_in Messages
When the message reaches the OpenFlow switch and no base entry is found, then it
is forwarded to the POX controller, which verifies whether the message is IPv4 or
not. If yes, then the packet is parsed to obtain details like the type of service,
destination IP, and source IP. The POX controller utilizes the IP address of server
members and the VIP to send ARP messages in order to check if there is a server
crash (the server that has not responded to this message for some time) and must be
deleted from the server list in the load balancing application.

• Load Balancing Mechanism
The ASMM reports the OpenFlow switch statistics, including ports and flows entry
counter statistics of each server member in the pool periodically every 5 s.
The HLBM executes the tasks represented by the computation of the load for each
server member according to Eq. (4) and Eq. (5) to select the optimal server for
handling the incoming request from the client. The experimental evaluation com-
pares the proposed HB load balancing algorithm with two dynamic-based load
balancing algorithms represented by WRR and LCB under the same conditions.
WRR is simple and runs fast but lacks the accuracy during load balancing of
varying load size or request complexity, and current server load is not considered
during request distribution. The LCB takes into account the server load before load
delivery, which ends up when the load is acquired sparsely, leaving some servers
idle beside the Addressing the imperfect system performance when the processing
capabilities of the servers are different, thereby reducing system performance
(Table 1).

A Proposed Dynamic Hybrid-Based Load Balancing Algorithm 155

The network topology in Fig. 2 utilizes a single remote POX due to owning free,
open-source utilities that facilitate the addition and removal of restored units and allow
the experiments to be more flexible and reliable. Moreover, this section adopts an OVS
switch along with a companion Linux kernel module for flow-based switching as
shown in Fig. 2. The listening port 6633 is the default connection port for the mininet
to create connections between the OpenFlow switch and the POX. The Mininet
emulator creates a virtual network topology that consists of 3 hosts acting as

Table 1. Experimental parameters values.

Parameter Value

Host operating system Linux (Ubuntu) version 14.04
Programming language Python 2.7.6
Simulation tool OpenLoad
Max no. concurrent users 350
Min no. concurrent users 0
No. of servers (3) 3
No. of clients 9
SDN controller (POX)
Virtual SDN switch OpenFlow switch
POX Controller to OpenFlow switch port 6633
HTTP web servers listening port 80
Virtual IP (service IP) 10.0.1.1
No. of iterations 7
Link Latency No

Fig. 2. SDN-based platform network topology

156 H. M. Noman and M. N. Jasim

Apache HTTP web servers that offer the same web services and 9 hosts’ serves as
clients who access the web servers using a virtual IP address.

6 Results and Discussions

The outcomes of the research can be discussed as follows:

6.1 Server Transactions per Second

The Server Transactions per Second is the first metric to investigate, which is regarded
as one of the essential performance parameters capable of handling routine and keeping
records. In general, this metric defines the total number of transactions accomplished
by a server in a given period divided by the seconds per that period. The load is
represented by the simultaneous number of users attempting to access the local server
webpage, which starts from 0 up to 350 to verify the ability of load balancing schemes
to distribute several flows in a parallel path between the source and the destination.

Transactions per Second TPSð Þ ¼ TPS1þ TPS2 � � � . . .TPSnP
T

ð4Þ

Related to Eq. (4), Fig. 3 Demonstrates servers’ transactions per second when adopting
WRR, LCB, and proposed HB load balancing schemes. The experimental results
indicate a noticeable improvement to the proposed HB scheme, recording 67.73
compared to 53.5, 60 to WRR and LCB schemes, respectively.

0

20

40

60

80

100

120

140

50 100 150 200 300 350

Se
rv

er
 T

ra
ns

ac
tio

ns
 P

er
 se

co
nd

(T
PS

)

No. of Conncurrent Users

Proposed Hybrid-Based Least Connection-Based Weighted Round-Robin

Fig. 3. Server transactions per second vs. the no. of concurrent users

A Proposed Dynamic Hybrid-Based Load Balancing Algorithm 157

6.2 Server Average Response

This parameter expresses the required time to deliver request results to the clients.
Different variables may affect the response time, such as average thinking time, number
of requests, number of users who accessed the system, and the bandwidth [20].

Server Average Response Time SARTð Þ ¼ Un
Rn

� Tt: ð5Þ

Whereas TT is the thinking time per request, Un is the number of concurrent users,
and Rn is the number of requests per second. According to Eq. (5), Fig. 4 proves that
polylines fluctuate in a stable and minimal form during the application of the proposed
HB scheme, which leads to selecting the server with the minimum average response
time of 1.28 ms as compared with 1.49, 1.51 ms associated to WRR and LCB load
balancing policies (Fig. 5).

0

0.5

1

1.5

2

2.5

3

50 100 150 200 300 350

Se
rv

er
 A

ve
ra

ge
 R

es
po

ne
 T

im
e

(m
se

c)

No. of Concurrent Users

Proposed Hybrid-Based Least Connection-Based Weighted Round-Robin

Fig. 4. Server Average Response Time vs. the no. of concurrent users

158 H. M. Noman and M. N. Jasim

6.3 Server CPU Capacity

The Server CPU capacity is the final metric to investigate, which refers to the process
responsible for calculating the number of resources needed to provide the desired level
of services for a given workload, as presented in Eq. (6) [20].

Server CPU capacity ¼ 1
SART

ð6Þ

According to Eq. (6), the results from Fig. 6 unmistakably imply that the proposed
HB scheme records the highest ratio of Server CPU capacity up to 1.033 compared to
0.988 and 0.981 belonging to the LCB and WRR load balancing schemes.

0
5

10
15
20
25
30
35
40
45
50

50 100 150 200 300 350

Se
rv

er
 M

ax
 R

es
po

ne
 T

im
e

(m
se

c)

No. of concurrent users

Proposed Hybrid-Based Least Connection-Based Weighted Round-Robin

Fig. 5. Server Maximum Response Time vs. the no. of concurrent users

A Proposed Dynamic Hybrid-Based Load Balancing Algorithm 159

7 Conclusion

The development of SDN architecture offered new possible options to solve the con-
ventional load balancing problems. This article suggested a new load balancing scheme
using the POX controller under the SDN architecture to pick the server, achieving
several vital metrics in SDN like the maximum transactions per second, minimum
average response time, and maximum server CPU capacity. Moreover, it seemed to be
sufficient to overcome low-performance problems and high load balancing costs. It is
possible to conclude that the proposed HB load balancing algorithm achieves a sig-
nificant progress in terms of server transactions per second up to 10.41%, server
average response time up to 24.61%, and server CPU capacity up to 9.55%. It is also
essential to state that any attempt to increase the number of concurrent users above 350
lead servers to enter the saturation region, which causes several drawbacks and per-
formance degradation.

8 Future Work

In the following, we present possible future research directions that may be conducted
to extend the dissertation innovations:

• Future work will address the scalability of the proposed HB load balancing algo-
rithm achieved by the dynamic addition of the hosts to the existing pool when all
pool members are being overloaded.

0

0.5

1

1.5

2

2.5

3

50 100 150 200 300 350

Se
rv

er
 C

PU
 C

ap
ac

ity

No. of Concurremt Users

Proposed Hybrid-based Least Connection-Based Weighted Round-Robin

Fig. 6. Server CPU Capacity vs. the no. of concurrent users

160 H. M. Noman and M. N. Jasim

• Adopting multiple controllers to avoid the single point of failure problem as
additional controllers carry out the load balancing task when the master controller
goes down.

• The assignment of dynamic weights instead of static ones for the servers partici-
pating in the proposed hybrid-based load balancing scheme. Dynamic weights
generally reflect actual server capabilities and further improve the performance of
the balancing scheme.

References

1. Trestian, R., Katrinis, K., Muntean, G.M.: OFLoad: an OpenFlow-based dynamic load
balancing strategy for datacenter networks. IEEE Trans. Netw. Serv. Manag. 14(4), 792–803
(2017)

2. Semong, T., Maupong, T., Anokye, S., Kehulakae, K., Dimakatso, S., Boipelo, G., Sarefo,
S.: Intelligent load balancing techniques in software defined networks: a survey. Electronics
9, 1091 (2020)

3. Xie, J., Guo, D., Hu, Z., Qu, T., Lv, P.: Control plane of software defined networks: a
survey. Comput. Commun. 67, 1–10 (2015)

4. Mendiola, A., Astorga, J., Jacob, E., Higuero, M.: A survey on the contributions of software-
defined networking to traffic engineering. IEEE Commun. Surv. Tutor. 19(2), 918–953
(2016)

5. Kavana, H.M., Kavya, V.B., Madhura, B., Kamat, N.: Load balancing using SDN
methodology. Int. J. Eng. Res. Technol. 7, 206–208 (2018)

6. Bholebawa, I.Z., Jha, R.K., Dalal, U.D.: Performance analysis of proposed OpenFlow-based
network architecture using Mininet. Wirel. Pers. Commun. 86, 943–958 (2016)

7. Kreutz, F.M., Ramos, V., Verissimo, P.E., Rothenberg, C.E., Azodolmolky, S., Uhlig, S.:
Software-defined networking: a comprehensive survey. Proc. IEEE 103, 14–76 (2014)

8. Chen-Xiao, C., Ya-Bin, X.: Research on load balance method in SDN. Int. J. Grid Distrib.
Comput. 9, 25–36 (2016)

9. Muthumanikandan, V., Valliyammai, C.: Link failure recovery using shortest path fast
rerouting technique in SDN. Wirel. Pers. Commun. 97, 2475–2495 (2017)

10. Chen, L., Qiu, M., Dai, W., Jiang, N.: Supporting high-quality video streaming with SDN-
based CDNs. J. Supercomput. 73(8), 3547–3561 (2016). https://doi.org/10.1007/s11227-
016-1649-3

11. Karakus, M., Durresi, A.: A survey: control plane scalability issues and approaches in
software-defined networking (SDN). Comput. Netw. 112, 279–293 (2017)

12. Jha, R.K., Llah, B.N.: Software Defined Optical Networks (SDON): proposed architecture
and comparative analysis

13. Sufiev, H., Haddad, Y., Barenboim, L., Soler, J.: Dynamic SDN controller load balancing.
Future Internet 11, 75 (2018)

14. Mehra, M., Maurya, S., Tiwari, N.K.: Load balancing in software defined network: a survey.
Int. J. Appl. Eng. Res. 14, 245–253 (2019)

15. Chahlaoui, F., Dahmouni, H.: A Taxonomy of load balancing mechanisms in centralized and
distributed SDN architectures. SN Comput. Sci. 1, 1–16 (2020)

16. Iyer, N., Hugar, N.S., Manjunath, M.N.: Load balancing using open daylight SDN
controller: case study. Int. Res. J. Adv. Sci. Hub 2, 59–64 (2020)

A Proposed Dynamic Hybrid-Based Load Balancing Algorithm 161

https://doi.org/10.1007/s11227-016-1649-3
https://doi.org/10.1007/s11227-016-1649-3

17. Jader, O.H., Zeebaree, S.R., Zebari, R.R.: A state of art survey for web server performance
measurement and load balancing mechanisms. Int. J. Sci. Technol. Res. (IJSTR) 8, 535–543
(2019)

18. De Rango, F., Inzillo, V., Quintana, A.A.: exploiting frame aggregation and weighted round
robin with beamforming smart antennas for directional MAC in MANET environments. Ad
Hoc Netw. 89, 186–203 (2019)

19. Singh, N., Dhindsa, D.K.: Hybrid scheduling algorithm for efficient load balancing in cloud
computing. Int. J. Adv. Netw. Appl. 8 (2017). 0975-0290

20. Osman, A.A.A.: Service based load balance mechanism using Software-Defined Networks.
Doctoral dissertation, University of Malaya (2017)

162 H. M. Noman and M. N. Jasim

	A Proposed Dynamic Hybrid-Based Load Balancing Algorithm to Improve Resources Utilization in SDN Environment
	Abstract
	1 Introduction
	2 Related Work
	2.1 Static Load Balancing Algorithms
	2.2 Dynamic Load Balancing Algorithms
	2.3 Limitations and Drawbacks

	3 Proposed Hybrid-Based (HB) Algorithm
	3.1 Advanced Server Monitoring Module (ASMM)
	3.2 Hybrid Load Balancing Module (HLBM)

	4 Experimental Setup
	5 Flow Sequence Diagram
	6 Results and Discussions
	6.1 Server Transactions per Second
	6.2 Server Average Response
	6.3 Server CPU Capacity

	7 Conclusion
	8 Future Work
	References

