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Abstract. High-throughput approaches have generated large-scale protein-
protein interaction (PPI) networks that are used in prediction of protein com-
plexes. Here, we introduce CUBCO—a minimum cut-based algorithm that
predicts protein complexes as biclique spanned subgraphs while relying on link
prediction approaches to score and incorporate missing interactions. Our com-
prehensive analyses with PPIs from different organisms show that CUBCO
performs on par with the best-performing approaches, that model protein
complexes as biclique spanned subgraphs, and outperforms the remaining
contenders. We also show that the usage of link prediction approaches in
CUBCO improves the prediction of protein complexes on average 34.22% in all
comparisons. Finally, CUBCO recovers *40% and *11% of known protein
complexes from the Pan-Plant and Metazoan PPI networks. Therefore, CUBCO
represents an efficient, parameter-free approach for accurate prediction of pro-
tein complexes from PPI networks.

Keywords: PPI networks � Protein complex prediction � Biclique spanned
graph � Minimum cut

1 Introduction

Biological functions are supported by interactions between cellular components,
including proteins. Protein-protein interaction (PPI) networks comprise nodes, corre-
sponding to proteins, and edges, denoting protein interactions. The identification of
protein complexes is important to understand the operational principles of cell systems,
from signaling to metabolism. Several high-throughput technologies [1] have emerged
to study PPIs, resulting in the assembly of large-scale PPI networks for well-studied,
model organisms. However, due to the design and steps involved in these technologies,
the resulting PPIs contain a sizeable portion of false-positive and false-negative
interactions, which affect the identification of protein complexes [2].

Computational approaches are often used in the identification of protein complexes.
These computational approaches have been grouped based on several criteria: (i) su-
pervised vs. unsupervised, (ii) using only PPI network or also integrate other data [3].
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To facilitate the comparison of these approaches and evaluate the predicted complexes,
several gold standards, e.g. EcoCyc for Escherichia coli [4], MIPS, SGD, and
CYC2008 for yeast [5–7], and CORUM for H. sapiens [8], have been assembled.

While there has been considerable improvement in the performance of computa-
tional approaches for prediction of protein complexes, there still some key challenges
that remain open. The existing approaches rely on the idea that protein complexes
correspond to highly connected clusters in PPI networks. As a result, they are often not
capable of simultaneously identifying both dense and sparse, as well as, small and large
protein complexes [3]. These approaches also depend on multiple parameters, which
renders it difficult to interpret the resulting protein complexes. In contrast, the recently
proposed PC2P and GCC-v [9, 10] represent parameter-free algorithms that model
protein complex as biclique spanned subgraphs [11]. As a result, they can identify
sparse as well as dense protein complexes independent of size, since biclique spanned
subgraphs include stars, bicliques, and cliques as special graph classes. Nevertheless, if
an approach for protein complex prediction uses only a given PPI network as input, its
performance will be affected by erroneous and missing interactions in PPI networks. To
overcome the issue of missing PPIs, link prediction algorithms have been recently
proposed [12]. Therefore, the graph clustering and link prediction algorithms can be
used jointly to improve protein complex prediction.

Building on this idea, here we introduce a new approach, referred to as CUBCO,
that models protein complexes biclique spanned subgraphs, identified via minimum cut
(unlike the local approaches in PC2P and GCC-v), and integrates link prediction to add
most probable missing PPIs and investigate their effect on the performance of pre-
dicting protein complexes.

2 Results

2.1 CUBCO Predicts Protein Complexes Using Min Cut

Let G ¼ ðV ;EÞ be a graph with a set of nodes, V , corresponding to proteins, a set of
edges, E, denoting PPIs. The simple graph denoted by G ¼ ðV ; u; vð Þj u; vð Þ 62 Ef gÞ
denotes the complement of G. We formalize the concept of a protein complex by a
biclique spanned graph, G ¼ ðV ;EÞ, whose node set can be partitioned into two
subsets, V1ðGÞ and V2ðGÞ, and its edge set has the edges in the bipartite clique on
V1 Gð Þ and V2 Gð Þ as a subset. Intuitively, a biclique spanned subgraph can be seen as a
bipartite clique to which additional edges have been added. A biclique spanned graph
has two properties: (i) the distance between any two nodes is at most two; (ii) Its
complement, G, is disconnected [13]. These properties provide a natural formalization
of a network cluster based on connectedness, since the complement of a cluster defined
this way is disconnected. Thereby, the goal is to partition the graph G, C ¼ fC1;
C2; . . .;Ckg, such that each Ci is a biclique spanned subgraph [11]. This can be
obtained by utilizing not only local properties (e.g. second neighborhood or clustering
coefficient [9, 10]), but also global properties of the graph.

The complement of graph, G, contains edges that are not present in the original
graph G. From biological perspective, the edges of G include false-negative and
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true-negative PPIs. Several studies have predicted the missing edges in PPI networks
based on different concepts, with the network-based prediction of PPIs that relies on
network walks of length three yielding the best results [12]. This approach favors
inclusion of edges between nodes that are connected with a higher number of walks of
length three in a given graph G. Here, we use the advantage of this approach, but rely
on paths—instead of walks—of length three, to avoid effects of direct neighbors.
Thereby, we assign weight to the edges of G based on normalized number of paths of
length three, given by:

w u; vð Þ ¼
X

i;j

Pu;iPi;jPj;vffiffiffiffiffiffiffiffi
didj

p ; ð1Þ

where Pi;j ¼ 1 if nodes i and j are adjacent, and zero otherwise, and di denotes the
degree of node i. Since one of the features of a biclique spanned subgraph is that its
complement is disconnected, here we employ minimum cuts to discover biclique
spanned subgraphs [14].

Given a graph G, CUBCO predicts protein complexes in three steps (Fig. 1):
(i) determine G, (ii) employ ideas from link prediction to weigh the edges in G based on
the degree-normalized number of path of length three between the end-nodes in G
(Eq. (1), Algorithm 1), and (iii) iteratively identify minimum cuts in the edge-weighted
graph G (Algorithm 2), by using the Stoer-Wagner efficient, deterministic algorithm
[15], until all resulting components are biclique spanned.

To render G disconnected and obtain the biclique spanned subgraph, Ci, in G, we
have to remove nodes, rather than edges (since edges in G are not in G). Here, we used
the min-cut algorithm that yields a partition of two node subsets, S1 and S2, and a min-cut
Ecut ¼ ui; við Þf jui 2 S1 and vi 2 S2; 1� i� kgwhere k ¼ jEcutj. Since, in practice, either
S1 or S2 contain a single node, rather than considering all subsets for node removal, we
consider the final biclique spanned subgraph to be either C1 ¼ fðS1 [ S2Þ=

Sk
i¼1uig or

C2 ¼ fðS1 [ S2Þ=
Sk

i¼1vig. The selection of the set C is guided by a score, Eq. (2), that
shows the cohesiveness of the subgraph, G½C�, induced by C in G:

sðCÞ ¼ EinðG½C�Þj j
EoutðG½C�Þj j ; ð2Þ

where jEinðG½C�Þj is the number of edges inside the subgraph, and jEoutðG½C�Þj is the
number of edges connecting the subgraph G½C� to the rest of the network. CUBCO then
selects Ci with the largest score and removes it from the graph G. The complexity of
CUBCO is Oð n2

dþ 1 mþ nlognð ÞÞ, where n is the number of nodes, m is the number of
edges, and d is the minimum degree.

CUBCO 607



2.2 Comparative Performance of CUBCO Without Link Prediction

We used twelve performance measures (Suppl. Information, see GitHub link in
Method) to compare the predicted protein complexes from 17 approaches, including
CUBCO, with all combinations of PPI networks and protein complexes from two
E. coli, two S. cerevisiae, and one H. sapiens gold standards. The performance mea-
sures include: maximum matching ratio (MMR), fraction match (FRM), separation
(SEP), positive predictive value (PPV), Sensitivity (SN), accuracy (ACC), precision,
recall, F-measure, precision+, recall+, and F-measure+, with ranges between 0 and 1 and
larger values indicating better performance (see Supplementary Information). We also
calculated a composite scores given by the sum of MMR, FRM, ACC, and F-measure,
that has been used in comparative analysis of approaches for protein complex pre-
diction [16].
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For the combinations of Babu PPI networks and gold standards of E. coli, CUBCO
resulted in the highest composite score (Fig. 2A, Tab. S3, Fig. S1, see GitHub link in
Method). CUBCO exhibited composite score larger than half of the approaches for the
combinations of Kong PPI network and gold standards of E. coli (Tab. S3, Fig. S1).
For the combination of Gavin PPI network and the SGD gold standards in S. cerevisiae
CUBCO exhibited the highest composite score in 62.5% of cases, preceded only by
PC2P and GCC-v approaches that also represent protein complexes as biclique spanned
subgraphs (Fig. 2B). In the remaining combinations of networks and gold standards
CUBCO obtained a composite score higher than half of the compared approaches.
More precisely, on average, the composite score of CUBCO is only 3.5% smaller than
the composite score of the contenders ranked higher than CUBCO (Tab. S3, Fig. S1).
In the case of H. sapiens, CUBCO exhibited the highest composite score among all
other contenders for the PIPS PPI network and CORUM gold standard (Fig. 2C).
However, for the combination of the STRING PPI network and CORUM, the com-
posite score of CUBCO was on average 40.4% smaller than the contenders with a
higher composite score (Tab. S3, Fig. S1).

Fig. 1. Illustration of min-cut biclique spanned subgraph identification in CUBCO. The
weight for each edge in the complement of the graph G is calculated based on Eq. (1). The global
min-cut of the graph G is obtained by Stoer-Wagner’s algorithm. In this case, the algorithm
separates node 6 from node-set {3, 4, 5} by removing nodes 2 and 1. Hence, the first cluster
{3, 4, 5, 6} corresponds to a biclique spanned subgraph in G. After removal of this subgraph
from G, the second cluster is given by {1, 2}.
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2.3 Integrating Link Prediction to Improve Performance of CUBCO

Next, we aimed to integrate a link prediction approach with CUBCO to resolve issues
due to missing of PPIs from experimental approaches. To this end, we applied a
modification of the L3 approach from [12], and ranked the missing edges by the
number of paths of length 3 to avoid effects of immediate neighbors (Eq. (1)). We then
selected the first 500, 1000, 1500, 2000, and 2500 of the ranked missing edges, and
added them to the original network (as false-negative edges). Finally, we applied
CUBCO on the modified network to predict the protein complexes. We found that the
performance measures, and thereby, the composite score, increased slightly for all
combinations of PPI networks and gold standards. The exception is the combinations
of PPI networks of E. coli and KroganCore PPI network of yeast with Metabolic and
SGD complexes, respectively. After careful investigation of these PPI networks, we
realized that before inserting the new edges, they were of larger density and transitivity
in comparison to all combinations of PPI networks of E. coli and KroganCore with
Ecocyc and CYC2008 complexes. The result showed that the highest composite score
for half of the combinations of PPI networks and gold standards was obtained by
adding the first 500 ranked missing edges. For the combination of KroganExt PPI
network of yeast with SGD complexes, the composite score improved gradually by

Fig. 2. Comparative analysis of approaches for prediction of protein complexes across PPI
networks of different organisms. PPI networks for three organisms are considered (A) E. coli,
(B) yeast, and (C) human. The comparative analyses are conducted with respect to a composite
score that is a sum of MMR, FRM, ACC, and F-measure (see Supplementary file, Evaluation
metric). Seventeen approaches, ordered by the year of publication, are compared on three PPI
networks-gold standard combination. CUBCO outperforms all other approaches based on the
composite score except in yeast, where it ranked third.
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increasing the number of edges from 500 to 2500 (Fig. 3, Tabs. S4–6, Fig. S2).
Overall, the finding implied that integrating of link prediction to graph clustering
methods can enhance the predicted protein complexes.

2.4 Prediction of New Protein Complexes in Conserved PPI Networks

We also applied CUBCO to predict new protein complexes in conserved PPI networks
across 13 plant species, termed Pan-Plant [17], and across nine animal species, termed
Metazoan [18] PPI network. For both PPI networks, we considered the high-confidence
interactions with a score greater than 0.5 and used the gold standard, which is included
in their corresponding studies (Tab. S1).

By applying CUBCO on the Pan-Plant PPI network, the resulting clusters fully
coincided with 47 out of 118 known protein complexes (39.83%), and we predicted
249 new protein complexes that share no protein with the gold standards used
(Tab. S7). To support the hypothesis that the proteins participating in a protein complex
are involved in similar molecular functions and participate in the same cellular com-
ponent and biological process, we determined the semantic similarity of the new
protein complexes [19]. To this end, we employed the GOSim R package [20] to
compute the median semantic similarity for every pair of proteins in each new protein
complex. As a result, 77 of the predicted protein complexes (30.92%) showed GO
semantic similarity of molecular functions equal to 1, indicating highest similarity of
proteins function in the predicted protein complexes (Tab. S8). Further, we evaluated
the predicted protein complexes by analyzing the domain-domain interactions (DDI) of
proteins. We focused on the PPI network of Arabidopsis thaliana, identified the
domains for *46% of proteins based on the Pfam database [21], and considered the
network of high-confidence (gold and silver) DDIs [22]. We found DDI support for 27
predicted protein complexes, of which 11 showed GO semantic similarity of 1
(Tab. S8). Finally, we only considered the predicted complexes that share no proteins
with complexes in the gold standard, to obtain new predictions. We identified 165 new
protein complexes, of which 19 have DDI support (Tab. S9). For instance, we found

Fig. 3. Composite score due to integration of link prediction by adding the most probable
edges. To investigate the composite score of CUBCO with the integration of link prediction, we
inserted the first 500, 1000, 1500, 2000, and 2500 edges to the original PPI networks. The
composite score is calculated for the combination of PPI networks and the gold standard of
(A) E. coli and Ecocyc, (B) S. cerevisiae and CYC2008, and (C) H. sapiens and CORUM,
respectively. On average, the composite score increases slightly with the increment of inserted
edges across all PPI networks. (D) The original composite score of CUBCO across all
combinations of organisms was compared with the obtained average composite score from
inserting considered number of edges.
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that oxidative stress tolerance protein NQR (AT1G49670) forms a complex with AIM1
(AT4G29010) and ECHIA (AT4G16210). They share the same cellular compartment
and are located in the peroxisome. One of the major functions of peroxisome is the
Beta-oxidation of fatty acid [23], and AIM1 and ECHIA participate in this process,
while NQR acts as a response to oxidative stress and co-regulated with Beta-oxidation
genes [24]. Therefore, the predicted new complexes are of high quality and can form
basis for future experimental confirmation.

Focusing on the Metazoan PPI network, CUBCO fully recovered 105 out of 981
known protein complexes (10.70%) and predicted 221 new protein complexes
(Tab. S7). By conducting GO semantic similarity based on molecular function, 46 of
the predicted protein complexes (20.81%) showed a value of 1 (Tab. S8). Based on the
Pfam database, we then detected the domains for all proteins of the H. sapiens PPI
network as part of the Metazoan network. We found that 88 of the predicted protein
complexes have the DDI support, while only 15 of them also obtained GO semantic
similarity of MF category equal to 1 (Tab. S8). Finally, we found only two new protein
complexes that share no proteins from the gold standard, of which one is supported
with DDI data (Tab. S9). The predicted complex with DDI support is the NXF1:NXT1
complex, which is also known as the TAP:p15 complex. This complex is a general
mRNA nuclear export factor, and it is conserved from yeast to humans [25]. Alto-
gether, the results indicate that CUBCO improves the performance of protein complex
prediction and can find biologically meaningful protein complexes.

3 Method

3.1 Contending Approaches for Prediction of Protein Complexes

We compared the performance of CUBCO with sixteen other state-of-the-art methods,
including: Markov Clustering (MCL), Molecular Complex Detection (MCODE),
CFinder, Affinity Propagation (AP), Clustering-based on Maximal Cliques (CMC),
Clustering with Overlapping Neighbourhood Extension (ClusterOne), PEWCC, Pro-
rank+, Discovering Protein Complexes based on Neighbor Affinity and Dynamic
Protein Interaction Network (DPC-NADPIN), Core&Peel, Inter Module Hub Removal
Clustering (IMHRC), Protein Complexes from Coherent Partition (PC2P), and GCC-v
(for references and software used, see Tab. S2). To facilitate fair comparison, the
approaches are selected based on the public availability of their implementations and
independence of any additional knowledge or data. Where applicable, we have used the
default value of parameters.

3.2 PPI Networks and Gold Standards of Protein Complexes

We carried out all the experiments on PPI networks and gold standards of three model
organisms: E. coli., S. cerevisiae, and H. sapiens. All the PPI networks are edge-
weighted except one from E. coli. We used the two PPI networks of E. coli. from
[26, 27], named by the first authors’ names (Babu and Cong). The two gold standards
were given by manually curated protein complexes from Ecocyc [4] and protein
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complexes based on the genome-scale metabolic network of E. coli [28]. For yeast, we
used: Collins [29], Krogan core (edge-weight � 0.273), Krogan extended (edge-
weight � 0.101) [30], and Gavin [31] PPI networks. The two gold standards were
retrieved from CYC2008 [7] and complexes derived from the Saccharomyces Genome
Database (SGD) [6]. For H. sapeiens, the two PPI networks were obtained from
STRING (edge-weight � 999) [32] and PIPS (edge-weight � 25) [33]. In addition,
we employed CORUM as the gold standard for human protein complexes [8]
(Tab. S1). The comparative analysis of CUBCO and all the other approaches was
performed on an Intel(R) Xeon(R) CPU E5-2670 v2 with 2.50GHz. CUBCO is freely
available on GitHub at https://github.com/SaraOmranian/CUBCO, which also includes
the supplementary figures and tables.

4 Conclusion

We proposed a new approaches, called CUBCO, to predict protein complexes from PPI
networks. Since we have shown that partitioning a PPI network into biclique spanned
subgraphs shows the best prediction performance of protein complexes [9, 10],
CUBCO adopted the same concept. However, unlike the existing approaches, it relies
on min-cuts, as a global network property, to determine the partition into biclique
spanned subgraphs. CUBCO also employs paths of length three to rank false-negative
interactions and include them in the networks to boost prediction performance. Future
work will inspect the effect on coupling other approach for link prediction with
approaches for prediction of protein complexes. In addition, we plan to consider
weighted node cuts, rendering CUBCO applicable with large-scale proteomics and
gene expression data.
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