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Abstract. Identifying influential nodes in complex networks is a well
studied problem in network science. Finding an optimal set of influential
nodes is an NP-Hard problem and thus requires the use of heuristics to
find the minimal set of nodes capable of maximizing influence in a net-
work. Once identified, these influencer nodes can been applied in various
applications such as controlling disease outbreaks, identifying infectious
nodes in computer networks, and finding super spreaders for viral mar-
keting in social networks. This paper proposes a novel approach to solve
this problem by modeling it as a supervised machine learning problem.
Several synthetic and real world networks with nodal and network level
attributes are used to train supervised learning models. Model perfor-
mance is tested against real world networks emanating from a variety
of different domains. Results show that the trained models are highly
accurate in identifying influential nodes in networks previously not used
for training and outperform commonly used techniques in the literature.

Keywords: Influence maximization · Complex networks · Machine
learning · Gradient boosting · Resilience

1 Introduction

Influence is defined as the tendency of an individual to perform an action, and
trigger another individual to perform the same action. Influence maximization
is the problem of identifying optimal subset of such individuals capable of max-
imizing influence in a social network [27]. This field has wide applications in
social and other networks. Real world applications of influence maximization
can be found in controlling diseases outbreaks spreading information as word-
of-mouth and viral marketing processes [14] and identifying critical nodes in
infrastructures such as transportation networks and power systems.

Researchers have used various approaches to solve this NP-hard problem [22].
Kleinberg and colleagues [22] suggested a greedy strategy based on submodular
functions that can obtain a solution that is provably 63% within the optimal one
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but does not guarantee the best solution [27]. Furthermore, greedy approaches
are not scalable to moderate size networks with hundreds of thousands of nodes.

Another approach to identify influential nodes is to use heuristic methods.
Widely used methods include the high-degree centrality (HD), high-degree adap-
tive (HDA) [18], PageRank [28], k-cores [2], betweenness centrality, closeness and
eigenvector centrality [23], equal-graph-partitioning [10] and collective influence
[27]. These methods have often performed indifferently on networks with varying
structural properties [19,20] and there is no single heuristic that is capable of
identifying the smallest set of influential nodes.

This paper models the problem as a supervised machine learning problem
where influential nodes are a function of nodal and network level attributes
combined together. Using several networks, varying in size, domain and other
structural properties, a set of influential nodes is identified and then machine
learning models are trained to classify influential nodes in test networks. To
the best of our knowledge, this is the first attempt to use supervised machine
learning algorithms to identify influential nodes in complex networks.

2 Related Work

2.1 Influence Mining

Influence mining is a diverse field and many researchers have studied it in a
variety of domains to: develop models for information diffusion; enhance these
models; learn influence probabilities; maximize influence; observe influence prop-
agation; apply direct data mining approaches; explore applications in real life.

[14] was the first to study the problem of identifying influential users and
influence propagation in terms of data mining. They modeled a social network
as Markov Random field and proposed heuristics for selection of most influential
users. Extending Domingos’s work, Kempe et al. [22] took greedy approximation
approach to guarantee influence maximization. They focused on two basic and
very frequently used time step-based diffusion models: Linear Threshold model
(LT) and Independent Cascade model (IC).

Since influence maximization under both LT and IC models are NP-Complete
[22], Leskovek et al. targeted the propagation problem using a different app-
roach, calling it Outbreak Detection [24]. The outbreak detection problem is to
detect the minimal set of nodes that could spread a virus in a network in a
minimal time. They developed an efficient algorithm using an approach called
lazy-forward optimization to select new seeds; the algorithm is 700 times more
efficient than simple Greedy solution. Wei Chen et al. [9] extended IC model to
incorporate propagation of negative opinions by introducing a parameter, qual-
ity factor to depict natural behaviour of people and, while maintaining Greedy
method’s sub-modularity property, designed a non-trivial algorithm for k seed
selection that computes influence in tree-structures and further build a heuristic
for influence maximization. Kazumi Saito et al. [29] discussed how to learn influ-
ence probabilities for IC model from historical influence propagation traces. They
propose a method, Expectation Maximization (EM) to solve the maximization
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problem by using likelihood maximization. The EM method is a heuristic, which
assumes that most influential users are the ones who propagate their actions
to most of their neighbours. Their work has limitations when applying to real-
World problems, most significant of which is that according to their model, nodes
with higher number of connections can influence more nodes and result in being
influential nodes rather than being able to generate a cascading behaviour.

Goyal et al. [16] studied the same problem under an alternate model, the
General Threshold Model. They used this model and made the probabilities
decline with time. The assumption behind this is that if a user u performs an
action, then his linked user v will either repeat the action shortly after, or never.
This decline of probability is observed to be exponential. They compared two
genres of models; one assumes the influence probability remains static with time;
3 models, Bernoulli distribution, Jaccard index and Partial Credits and their
combinations were discussed. The contrary assumes the influence probability to
be a continuous function of time. The results showed that time-aware model was
better, not only in terms of accuracy but being able to roughly predict future
action times.

Lu et al. [25] comprehensively summarized the area of influence mining on dif-
ferent types of networks, discussing centrality methods to state-of-art heuristics
to Greedy algorithm and its variations, the authors conclude on the applications
of influence mining in social networks, financial area, scientific influence.

2.2 Machine Learning

Surprising as it may seem, there is scarcity of studies which utilize the power of
continuously evolving machine learning techniques in order to identify influential
nodes in a network in a generic fashion. Among those that exist, the prominent
publications are often specific to social networks.

[17] demonstrate how predictive analytics can be used to predict diffusion
cascades in a social network. Their proposed model, T-BaSIC does not assume
a fixed diffusion probability, but a time-dependent function. This temporal dif-
fusion model is used to create time series to describe how a topic originated
and spread in a Twitter network in a closed set of users. The authors trained
multiple classifiers to learn parameters of diffusion function, and opted Bayesian
classifier to define the diffusion function. The results show that in the informa-
tion diffusion process, initially the volume of tweets is high against a topic, and
then lowers with time following a wave pattern. The T-BaSIC method reduces
the overall diffusion prediction error by 32.75% in comparison with 1-time lag
model.

Zanin et al. [33] discusses the application of data mining techniques in com-
plex networks. The authors describe how data mining techniques can make use of
structural patterns of individual nodes as well as whole network. Excerpts from
this article are widely reflected in experiments we propose in this manuscript.

Albeit these attempts, to the best of our knowledge there is lack of any pub-
lished work which solves the influence mining problem using supervised machine
learning on a variety of complex networks.
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3 Design and Methodology

The experiments discussed in this paper consist of openly available real graphs
as well as synthetically generated graphs. Moreover, unlike majority of studies,
which use network data, user attributes, action logs and other information, we
only use network’s structural properties that can be calculated by G = (V,E),
where V is a set of vertices or nodes in the graph G, while E is the set of edges
or links connecting these vertices. Source code of all experiments conducted in
the study are shared on GitHub1.

3.1 Training Data Sets

We used networks from various domains with different sizes and structural prop-
erties. A total of 390 graphs were used to train and validate the model. The
networks used in this study come from three sources:

Synthetic Networks are generated networks, which exhibit similar properties
as real networks. We drew 6 random samples for each of the following types of
complex networks using Igraph library ranging from size 10 - 2000 nodes [12]:

1. Scale free: almost all complex networks are scale free [3]. They are defined by
a prominent property that their degree distribution obeys power-law2. The
power law coefficient in a scale free network is usually 2 < γ < 3.

2. Small-world: these networks have low APL and high CC [31].
3. Small-world and scale free: most of the real world networks, especially social

networks exhibit both scale free and small-world properties [18]

Cited Networks are frequently cited networks from various domains and sizes
that are available online:

1. Zachary karate: members of a university karate club by Wayne Zachary.
2. World trade: data about manufacturers of metal among 80 countries [30].
3. Nematode: Neural network of the nematode [32].
4. Political blog: hyperlinks between weblogs on US politics [1].
5. Yeast protein: protein-protein interaction network of yeast [21].

Extracted Networks additionally, we extracted two social networks to ensure
that the training set not only contains clean and ready-to-use networks but
also replicate real-world situations where networks are in raw state without any
preprocessing. These networks are described as follows:

1 https://github.com/seekme94/influence-mining/tree/influential-node-prediction/
Experiments.

2 States that a change in one quantity X results in a proportional relative change in
another quantity Y .

https://github.com/seekme94/influence-mining/tree/influential-node-prediction/Experiments
https://github.com/seekme94/influence-mining/tree/influential-node-prediction/Experiments
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1. Influence citations: network of paper citations on topic of influence mining till
2016. The data set was constructed by collecting a corpus of research articles
on various topics of Influence mining. Each node in this network represents a
unique article, while the edges represent citations between these articles.

2. Twitter: starting with a reference user account (ID: seekme 94) in the Twitter
network, a subset network was extracted, such that each node is either a direct
connection of reference account, or a connection at a distance of 1 degree. The
reference node was finally removed from the network.

3.2 Test Data Sets

To test the final model, following complex networks from various domains were
used. Again, variation in their nodal as well as structural properties can be
observed in Table 1. All these are also frequently cited networks in the literature.
These networks can be downloaded from KONECT: http://www.konect.cc.

– Author NetScience: coauthorship network of network theory researchers.
– ITA 2000: air transport network representing connections between airports

through direct flights.
– AS-CAIDA: network of autonomous systems of the Internet connected with

each other from the CAIDA project.
– JDK Dependencies: a network of class dependencies in JDK v1.6.

Table 1. Networks used for Training. Basic statistics for all the real networks used
for training the model. APL is Average Path Length, γ is Power-law coefficient, CC is
clustering coefficient and AvDg is Average Degree. The variation in size of the networks,
APL, γ, CC and AvDg demonstrates how we have captured different network level
structural properties for our training dataset.

Network Nodes Edges APL γ CC AvDg

Training data

Karate club 34 78 2.4 2.12 0.256 4.6

World trade 80 1000 1.7 2.56 0.460 25

Nematode 297 2359 2.5 3.29 0.181 15.9

Political blog 1222 19089 2.7 3.89 0.173 4.6

Yeast protein 1458 3941 6.1 3.24 0.226 31.2

Influence citation 1254 1993 3.8 2.35 0.057 3.2

Twitter 894 2060 4.9 4.60 0.052 5.4

Test data

Author 379 914 6.0 3.36 0.431 4.8

ITA 2000 3304 67195 4.0 1.69 0.249 40.7

AS-CAIDA 26475 53381 3.9 2.09 0.007 4.0

JDK 6434 150985 2.1 2.01 0.011 46.9

http://www.konect.cc
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3.3 Influential Node Identification

The first step to train supervised machine learning models is to identify influen-
tial nodes in training dataset.

Influence Maximization Algorithms. In order to guarantee that the nodes
we label as influential, in fact are influential, we used the optimal solution (NP-
hard) for networks of size less than 50 nodes, and baseline Greedy algorithm for
larger networks [22]. Opting for greedy algorithm was a compulsion because find-
ing the optimal solution for larger graphs is practically impossible in polynomial
time.

Influence Test. In order to quantify the influence of a node, multiple methods
exist, including diffusion test under linear threshold model, diffusion test under
independent cascade model [22] and resilience test [11] which quantifies the net-
work breakdown after a set of nodes is removed. Since the resilience test does
not require any data other than network information, therefore this study uses
resilience test as many other similar studies [18,27].

Conventionally, the resilience test is a temporal function, i.e. in discrete time
step, one node is removed from the network and we compute the largest con-
nected component remaining in the network. This iteration is repeated until
network completely decomposes. The quicker a method decomposes the net-
work, the better its performance. In this article, instead of single node, a batch
of k nodes is removed in exactly one iteration and the size of the biggest con-
nected component is measured. The smaller the size of the biggest connected
component, the better the identification of influential nodes.

Budget. Selecting the right budget is a widely debated topic. Pareto principle
[26] suggests that the budget should be 20%, while [22] argue that this number
is much smaller. Leskovec et al. [24] showed that the growth in gain with respect
to budget is logarithmic. Nevertheless, this is a debatable topic and out of scope
of this study. In the experiments, this budget was fixed to 10% for networks with
nodes less than 50 and, 2.5% for all other networks.

3.4 Structural and Nodal Attributes

For a machine learning model to perform optimally, feature selection and data
transformation are the key steps. For this experiment, we carefully chose a num-
ber of nodal and network level traits which are described in Table 2.
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Table 2. Network traits, and heuristics used in the experiments.

Name Description

Structural attributes

Nodes Number of nodes in the network

Edges Number of edges in the network

Maximum degree Maximum number of connections of a single node

Average degree Average number of edges for each node

APL Average of lengths of shortest path from all pairs of nodes

CC Connectedness of nodes in the network. Value of 1 means the
network is a clique

Diameter Shortest distance between the two farthest nodes

Density Ratio between existing network edges and all possible edges
among nodes

Average distance Average distance when connecting two nodes

Triads Number of triangles, i.e. 3 interconnected nodes

Assortativity Pearson correlation coefficient of nodes at any side of an
edge. Ranging between -1 and 1, negative value means that
the high degree nodes tend to connect with low degree nodes,
positive value means that the nodes connect with respect to
degree similarity

Nodal attributes

Degree Number of direct connections of a node to other nodes

Betweenness The number of times a node falls along the shortest path
between two other nodes

Closeness Reciprocal of the sum of length of shortest paths between a
node with all other nodes

Eigenvector Ranks node u based on not only the degree, but also the
degrees of the v nodes that are direct neighbours of u

Eccentricity The reciprocal of the longest shortest path between a node u
and all other nodes in the network v the shortest path
between the node v and all other nodes in the network

Heuristics

Coreness Defines which core does a node lie in. A k-core of is a
maximal subgraph in which each node has at least k degree.
If a node belongs to k-core, but not (k+1) core, then its
coreness is k. This heuristic is chosen due to its performance
as claimed by [2]. [4] computes coreness in O(m) time.

Pagerank Eigenvector centrality based Webpage ranking algorithm
developed by Google Inc. [28]. Pagerank of a node is high if
the sum of ranks of its neighbours is also high. This
algorithm has proven to be effective on scale

Collective influence A state-of-art influence maximization algorithm by Morone et
al. [27] (see 2). This algorithm identifies weak nodes, which
act as bridges between strong influences, and is also scalable
to large networks
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4 Experiments and Results

4.1 Machine Learning Models

Fernandez et al. [15] argued that the real world classification problems do not
require too many machine learning models after comparing 179 classifiers on 121
data sets. Analyzing the results of the best and worst performing models from
different families, we used the following models for our experiment:

1. Logistic regression: Generalized Linear Model (GLM) by Dobson [13].
2. Decision Trees and Rule-Based: Recursive partitioning (Rpart) by [6], and

C5.0, (an extended version of original C4.5 model).
3. Support Vector Machines: (SVM) model using Gaussian kernel from popular

LibSVM library [7].
4. Boosting: Random Forests (RForest) by [5], and eXtreme Gradient model

by [8] (XGBoost).

From the dataset, the target variable tells whether the node is identified as
an influential node by the Optimal or Greedy algorithm.

The models are evaluated using measure of accuracy, a standard way to com-
pare the performance of machine learning models. We denote true positives as
the number of nodes which were correctly classified as influential; true negatives
is the number of nodes which wore correctly classified as non-influential; false
positive is the number of nodes which were incorrectly classified as influential;
finally, false negative is the number of nodes which were incorrectly classified as
non-influential. We test the accuracy of the models on various sizes of networks
and average out the accuracy of each model on the validation set.

Figure 1 illustrate the accuracy of classification models by size, where overall
accuracy is given in Fig. 2. Size of the networks are on horizontal axis, while
the accuracy of each model on these sizes are on vertical axis. It is evident
that XGBoost has the highest accuracy overall on varying sizes of networks.
We also observe that the performance of all models in small graphs is variable.
However, XGBoost still outperformed other models on small networks. There-
fore, we selected XGBoost based on its performance in comparison with other
supervised machine learning models. However, it is to note that the variance in
performances of these models is not high. This observation also implies that the
application of machine learning classification is not subject to a specific model,
but with a small percentage trade-off a broad range of models can be applied to
the underlying problem.

4.2 Results

The key objective of this study is to find out if a machine learning algorithm can
outperform heuristics in discovering influential nodes in networks of various sizes
and structural properties. Previous section explained the methodology followed
in order to select and train an appropriate model, i.e. XGBoost model. In order
to test our hypothesis, we pass all the test networks discussed in Table 1 to the
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Fig. 1. Accuracy of classification models
on various sizes of networks in validation
set. The figure demonstrates that the
models perform consistently on a variety
of sizes.

Fig. 2. Average accuracy of classification
models on all networks in validation set.
The results from previous figure are aver-
aged out for all sizes.

model to identify k most influential nodes. The output obtained from the model
is a probability against each node, which quantifies how strongly the model
classified that particular node as influential. We pick the set of k nodes of the
highest probabilities and perform resilience test on the test networks. Resilience
test is destructive, i.e. it is used to measure how much a network decomposed
when a set of nodes is removed. After removing k influential nodes identified
by the model, we calculate the size of the largest connected component in the
remaining network. Therefore the method, which identifies k nodes that results
in higher decomposition of the network qualifies as a better performer.

The results shown in Fig. 3 illustrate that the XGBoost model performed
very well when compared with commonly used heuristics. In this figure, “size”
on x-axis represents the number of nodes in the original test network, while
the rest of the bars represent how large the network remained after removing k
influential nodes. Best results are highlighted with bold-italic text in the figure.

1. Author: this is the smallest of all test networks. XGBoost model collapsed
the network to 254 after removing k influential nodes.

2. ITA 2000: XGBoost showed best results with network size dropping to 3014,
but only marginally better than Pagerank and Betweenness centrality.

3. AS-CAIDA: a relatively large network, where XGBoost (score 16264) dom-
inated other methods with significant margin. Eccentricity (score 22756),
which is the next best is still had 6492 nodes.

4. JDK: Similar results with XGBoost (score 4696). Interestingly, Eigenvec-
tor centrality and Eccentricity are only slightly better than random method,
indicating that centrality based methods may not universally perform better.
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Fig. 3. Comparison of influence mining performance. On x-axis are the influence mining
methods under comparison. On y-axis is the number of nodes in largest component after
removing k nodes from the network

Table 3. Comparison of heuristics with ML model. XGBoost outperformed all other
heuristics, while in the other results, there is no clear second best method.

Network Author ITA 2000 AS-CAIDA JDK

Random 10 10 10 10

Degree 4.5 5 3.5 3

Betweenness 3 2.5 7 6

Closeness 6 8 8 2

Eigenvector 7.5 4 9 9

Pagerank 4.5 2.5 5 5

Eccentricity 9 9 2 8

Coreness 7.5 6 3.5 7

CI 2 7 6 4

XGBoost 1 1 1 1

Analyzing the results, although XGBoost model stands atop, analysis on
next best also reveals that there is no clear runner up method. Table 3 lists the
influence methods and ranks using average ranking method. As observable, CI
has 2nd rank in Author network, but fails on other networks; Betweenness and
Pagerank perform equally well on ITA 2000, but do not hold this position for
other networks; likewise, Eccentricity is impressive on AS-CAIDA network, but
performs almost similar to random method on other networks. This observa-
tion also validates that heuristics perform differently, based on structure of the
network. Therefore, no heuristic can be considered as a generic algorithm to
accurately identify influential nodes in a variety of complex networks.
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Another observation is that not all networks decompose with the same rate.
For example, ITA 2000 network proved highly resilient by sustaining a size of
3014 (91%) after removing influential nodes. On the other hand, AS-CAIDA
reduced to 16264 (61%). It is also evident that random methods perform poorly,
as indicated by various authors before.

5 Conclusion and Future Work

This study proposed use of supervised machine learning to generalize the prob-
lem of influence mining in complex networks of different structural properties.
The experiments and results not only validate the proposal by outperforming var-
ious conventional and state-of-art methods, but take us a step ahead in terms of
prerequisites. The model which was trained for this study was based on synthetic
networks, combined with some openly available network data sets. Moreover, it
did not require large amount of data and high performance computing machines.
The classification outperformed the competing methods in all tested real world
networks. While machine learning can certainly help in various applications, it is
important to note that training the model is computationally much more expen-
sive than any other heuristic in comparison. It is assumed that anyone applying
this solution aims to reuse the model on various networks, and multiple times.
For simple one-time applications, the solution is still valid in terms of perfor-
mance, but has a high computation overhead. Therefore, one of the key areas
of optimization is selecting the right set of features which reduces the overall
complexity while maintaining the high performance achieved. This study opens
up many potential research avenues to explore, and help develop robust methods
to identify influential nodes in large complex networks.
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