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Abstract. We analyse the transaction networks of four representative
ERC-20 tokens that run on top of the public blockchain Ethereum and
can be used as collateral in DeFi: Ampleforth (AMP), Basic Attention
Token (BAT), Dai (DAI) and Uniswap (UNI). We use complex network
analysis to characterize structural properties of their transaction net-
works. We compute their preferential attachment and we investigate
how critical code-controlled nodes (smart contracts, SC) executed on the
blockchain are in comparison to human-owned nodes (externally owned
accounts, EOA), which are be controlled by end users with public and
private keys or by off-blockchain code. Our findings contribute to char-
acterise these new financial networks. We use three network dismantling
strategies on the transaction networks to analyze the criticality of smart
contract and known exchanges nodes as opposed to EOA nodes. We con-
clude that smart contract and known exchanges nodes play a structural
role in holding up these networks, theoretically designed to be distributed
but in reality tending towards centralisation around hubs. This sheds new
light on the structural role that smart contracts and exchanges play in
Ethereum and, more specifically, in Decentralized Finance (DeFi) net-
works and casts a shadow on how much decentralised these networks
really are. From the information security viewpoint, our findings high-
light the need to protect the availability and integrity of these hubs.
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1 Introduction

1.1 Blockchain and Ethereum

Blockchain. Public blockchain technology answers the requirement to register
a series of events in a open, decentralised, available and immutable platform.
Although the word blockchain does not appear in it, the seminal paper about
Bitcoin by Satoshi Nakamoto in 2008 [1] discloses the concept behind it. “The
longest chain wins” and, consequently, “the largest devoted computing power
wins” summarises the functioning of Bitcoin.

Ethereum. Five years later, Vitalik Buterin invented and co-founded
Ethereum. This public blockchain evolves Nakamoto’s original blockchain con-
cept into a Turing-complete platform able to run decentralised applications by
introducing smart contracts, i.e., code that runs on top of the blockchain [2]. The
possibility to script any logic in a blockchain gave birth to a multitude of tokens,
both fungible and non-fungible (NFTs). While Bitcoin bases its transactions on
unspent transaction outputs (UTXO) model with scripts for locking and unlock-
ing the outputs, Ethereum uses an account-based model with balances associated
with each address which also allows the implementation of smart contracts [2].

ERC-20 Tokens. Ethereum Request for Comments 20 (ERC-20) is the
Ethereum standard for fungible non-native tokens ([3]). Fungible refers to tokens
which are identical and interchangeable between the same currency. ERC-20 pro-
vides an application programming interface (API) to transact with these tokens.
It defines methods such as transfer(), balanceof() and approve(). The four tokens
of our study are ERC-20 Ethereum tokens.

Network Participants: Humans and Code. In the Ethereum network trans-
actions occur between addresses, each of which has an associated balance. While
in Bitcoin transfers can occur from “1 to 1”, “n to 1”, “1 to n” and “n to
n” senders and destinations addresses due to its use of the UTXO model, in
Ethereum all transactions happen “1 to 1” between a sender address and a
destination address due to its use of the account model. Each account has an
address derived from a public key and belongs to one of the two types: i) exter-
nally owned accounts (EOA) which are controlled by users or, alternatively, by
code running outside of blockchain, and smart contracts. Smart contracts expose
functions that can be invoked by EOAs or other contracts, with the distinction
that smart contracts cannot initiate transactions themselves - only EOA’s can
initiate chain of smart contract executions [2,4].

1.2 Transaction Networks in Blockchain Systems

Nodes and Edges: Addresses and Transactions. Complex network analysis
studies the relations between systems composed of a high number of nodes,
connected between them via edges [5]. A long list of authors has studied public
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blockchains’ networks via network science [6–10]. We use network analysis to
understand the structure of the transaction networks of the four mentioned ERC-
20 tokens. The nodes represent the addresses that intervene in these networks
and the edges the value transfers between them.

Network Properties. Key network science properties that characterise a com-
plex network are, among others, degree [11], density, and largest connected com-
ponent. In addition to these, in this paper we analyze two more - preferential
attachment and network dismantling. Preferential attachment relates to the way
the network grows. Linear preferential attachment leads to a scale-free network
that displays a power law behaviour. Network dismantling, the opposite to net-
work percolation, provides insights on how the network endures the elimination
of highly connected nodes [12–14]. As Ethereum is a public blockchain, we extract
all transaction relevant data related to AMP, BAT, DAI and UNI from a fully
synced Ethereum node. We build the four corresponding transaction networks
and calculate their key network properties with a special focus on the smart
contract addresses.

1.3 Four Tokens Used as DeFi Collateral

DeFi changes the paradigm in finance. It shifts financial activities such as lending
and borrowing from a traditionally centralised approach to a blockchain-based
distributed approach. The logic required to run these financial processes is imple-
mented in smart contracts running predominantly on the Ethereum platform.
We study the transaction networks of four types of Ethereum-based ERC-20
tokens that can be used as collateral in DeFi: A utility token (BAT), an algo-
rithmic stablecoin (AMP), a multi-currency pegged algorithmic stablecoin (DAI)
and a governance token (UNI).

Ampleforth (AMP): An algorithmic stablecoin pegged to the USD that bases
its stability by adapting its supply to price changes without a centralised col-
lateral. The protocol receives exchange-rate information from trusted oracles on
USD prices and accordingly changes the number of tokens each user holds [15].
AMP was launched in June 2019 and has a market capitalisation of over USD
2B as of September 2021 which places it in the top 100 cryptocurrencies [16].

Basic Attention Token (BAT): A utility token aiming to improve effi-
ciency in digital advertising via its integration with the Brave browser. Users
are awarded BATs for paying attention to ads. BAT allows users to maintain
control over quantity and type of the ads they consume while advertisers can
achieve better user targeting and reduced fraud rates [17]. BAT had an initial
coin offering (ICO) in May 2017 and as of September 2021 it has a market cap-
italisation of roughly USD 1.1B which places it in the top 100 cryptocurrencies
[16].
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Dai (DAI): A multi-currency pegged algorithmic stablecoin token [18] launched
in 2017 which uses, as AMP, smart contracts on Ethereum network to keep its
value as close as possible to US$. Users can deposit ETH as a collateral and
obtain a loan in DAI, and the stability of DAI is achieved by controlling the type
of accepted collateral, the collaterisation ratio and interest rates. In November
2019 DAI transitioned from a single-collateral model (ETH) to a multi-collateral
model (ETH, BAT and USDC among other tokens), which we analyze in this
paper. As of September 2021 DAI has a market capitalisation of USD 6.5B [16].

Uniswap (UNI): A decentralised finance protocol [19] to exchange ERC-20
tokens on the Ethereum network. Unlike traditional exchanges it does not have
a central limit order book but rather a liquidity pool - pairs of tokens provided
by users (liquidity providers) which other users can then buy and sell. This UNI
governance token was launched on September 2020 [19]. It is currently ranked
among the top 11 cryptocurrencies by market capitalisation, which amounts to
almost USD 14B as of September 2021 [16].

2 Data Description

Table 1. Summary of the datasets curated for the four tokens used in this study. We
extract all transactions (Tx) from the ETH blockchain. The last two columns show
the Ethereum blocks containing the transactions used in this study for each token and
their time span. Although DAI token launched in 2017 we collect transaction data only
since its move towards a multi-collateral model in 2019.

Token Tx Nodes Edges Blocks Time span

AMP 755827 83050 201456 7953823–12500000 14/6/2019–25/5/2021

BAT 3046615 1105958 1702429 3788601–12500000 29/5/2017–25/5/2021

DAI 8422158 1042638 2523076 8928674–12500000 13/11/2019–25/5/2021

UNI 2079132 701054 1271933 10861674–12500000 14/9/2020–25/5/2021

We construct an aggregated transaction network GS(t) represented with a sin-
gle directed graph encompassing the full available history for each of the four
Ethereum tokens. The nodes of the network represent addresses participating
in transfers. Every edge of the network represent all the transfers that happen
between the two involved addresses. We analyse more than 700k transactions
(Tx) in AMP, 3M Tx in BAT, 8M Tx in DAI and 2M Tx in UNI, as displayed
in Table 1.

GS(t) =
(VS(t), ES(t)

)
for symbol S ∈ {AMP,BAT,DAI,UNI}

The set of nodes VS(t) corresponds to the addresses that have been included
in at least one transaction of symbol S since time t. The set of edges ES(t)
consists of unweighted, directed edges between all pairs of addresses. In edge
(transaction j ) (j1, j2), node j1 is the sender and j2 is the recipient (Tables 2
and 3).
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Table 2. Spearman correlation ρs between in-degree kin and out-degree kout for each
token. The relation is stronger for AMP and DAI than it is for BAT and UNI. Observing
a highly irregular pattern for low in-degree nodes, we suspect that the correlation for
nodes with higher degree could be stronger. Computing the Spearman correlation for
kin > 100 confirms this.

Token ρs(kin, kout) p-value ρs(kin, kout) where kin > 100 p-value

AMP 0.5201 0 0.6772 1.2470 10−7

BAT 0.1523 0 0.4119 2.6450 10−13

DAI 0.4842 0 0.4874 5.112 10−48

UNI 0.2710 0 0.5094 1.3512 10−15

Table 3. Scale-free networks are characterised by a power law degree distribution
pk ∼ k−γ . In the definition of Barabasi the exponent should 2 ≤ γ ≤ 3, as in [20,21]
This condition happens for only few cases, for BAT and DAI in kout. According to [22]
in most of our cases we are in weak and weakest condition of scale free networks, where
we are mostly following a power law distribution. xmin is the minimum x value where
the fit starts.

Token k xmin γ Best fit

AMP kin 5.0 3.8017 Power law

AMP kout 3.0 4.0106 Power law

BAT kin 44.0 1.7745 Truncated power law

BAT kout 5.0 2.9365 Power law

DAI kin 57.0 1.8617 Truncated power law

DAI kout 7.0 2.7211 Power law

UNI kin 51.0 1.7872 Truncated power law

UNI kout 29.0 1.6668 Truncated power law

2.1 Preferential Attachment

Preferential attachment is the network growth mechanism where the probabil-
ity of forming a new link is proportional to the degree of the target node. In
mathematical terms, we describe the probability π of forming a new link to an
existing node j with in-degree kin,j or from an existing node j with out-degree
kout,j in the following way:

π(kin,j) =
(kin,j)αin

∑
j′(kin,j′)αin , (1) π(kout,j) =

(kout,j)αout

∑
j′(kout,j′)αout , (2)

where αin > 0. If αin = 1 the preferential attachment is linear. If αin < 1 it is
sub-linear, and when αin > 1 it is super-linear. When the probability of forming
the new link is linear, then preferential attachment leads to a scale-free network.
When the attachment is super-linear, very few nodes (hubs) tend to connect to
all nodes of the network. These hubs are of crucial importance in the network.
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We further extend this model to the out-degree kout,j for an existing node j to
model the accruing and dynamic process of consolidation of out-degree as well
in preferential attachment for directed networks.

When a new, directed edge is added to the network, we assume that the
source node j is selected with a probability which is a function (solely) of its
out-degree k∗

out, i.e. π (k∗
out), as we denote π(kin) the probability that a new link

is created to any node with out-degree k∗ (or in-degree as in the original model).
Since this probability is a time-dependent, we use the rank function R(α; k∗

in, t),
computed for each link addition to a node with in-degree k∗ at each time t.
Specifically:

R(α; k∗, t) =
∑k∗−1

k=0 n(k, t) kα

∑
k n(k, t) kα

. (3)

Thus, the sum in the denominator runs for all nodes whose in-degree is lower
than k∗

in or, in case of out-degree whose k∗
out is lower than 0. When a new edge is

created, if the target or the source node is drawn with a probability for a given
αin

o or αout
o , that we can replace into Eq. 3.

To obtain the value of αo, we measure the corresponding K-S (Kolmogorov-
Smirnoff) goodness of fit, i.e., the difference between the empirical distribution
function (ECDF) calculated with different exponents α and the theoretical linear
CDF distribution. The value αo that minimises the distance to the uniform dis-
tribution is the best fit for the exponent, which determine the kind of preferential
attachment in our Transaction Network. We sample 10% of all the edges while
building the network and calculate K-S error between the empirical distribution
and a theoretical one, in this case a pure power law, for a range of α ∈ [0, 2.5] to
find an error-minimising α. We observe, consistently in all four tokens, that the
minimum value of α is achieved around 1.0 for the out-degree and around 1.1 for
the in-degree. A value of α > 1 for the in-degree indicates a super-linear prefer-
ential attachment in the network, i.e., small number of nodes attract most of the
connections in the network and will eventually form super-hubs. This is another
indication of the rising centralisation in the network, caused by the presence of
key smart contract and exchange nodes. For all the tokens we have super-linear
preferential attachment AMP has αin 1.05 (error 0.143), αout 1.02 (error 0.174),
BAT has αin 1.15 (error 0.198), αout 1.1 (error 0.226), DAI has αin 1.1 (error
0.099), αout 1.05 (error 0.126), UNI has αin 1.05 (error 0.227), αout 1.02 (error
0.257). An evolution in time with non cumulative time windows can be seen in
Fig. 2.

3 Methods and Implementation

Figure 1 plots network density as a function of network size for all four tokens.
Density scales inversely proportional to network size d ∝ N−1. This shows that
the number of edges grows linearly with the size of the network. New nodes add
a limited number of edges. Transactions mostly reuse already existing edges: an
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indication of preferential attachment. This also indicates an increasing central-
isation in the network as smart contract nodes and exchanges act effectively as
hubs in the network through which most transactions are executed.

Fig. 1. Evolution of network density as a function of network size. As the network size
grows the network does not densify but rather the number of edges scales as d ∝ N−1,
which is an evidence of a preferential attachment process.

Figure 2 shows the evolution of the best fit α for preferential attachment
over time in all four tokens for in-degree αin and out-degree αout. We see that
αin stays consistently around 1.1 (equivalently, 1.0 for the αout) for the entire
time period of network evolution studied. This confirms a slight super-linear
preferential attachment in the network from its start. This comes as no surprise
as the tokens are managed by the programmable logic of the smart contract
nodes and traded via the exchanges, and these are present in the network from
its start.

3.1 Network Dismantling

Network dismantling refers to a general problem of finding the minimal num-
ber of nodes whose removal dismantles a network [14] into isolated subcom-
ponents. It belongs to a class of nondeterministic polynomial hard (NP-hard)
problems, which essentially implies that there is currently no algorithm that can
find the optimal dismantling solution for large-scale networks. However, there
are approximate methods which work well enough in practice even for large net-
works [12,13]. In this paper we are not interested in finding the most efficient
dismantling strategy but rather on estimating the influence that the different
types of nodes have on dismantling. Our aim is to asses their role in the struc-
tural integrity of the network. In our case, we are interested in the difference
between nodes corresponding to the addresses of smart contracts and known
exchanges, a list of whom was extracted from public sources such as [23] which
are controlled by the logic of the code, as opposed to the nodes corresponding
to the addresses of the externally owned accounts (EOA), which are controlled
by the actual users possessing the corresponding cryptographic keys.
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Fig. 2. Evolution of best fit α for all four tokens for in-degree αin (top panel) and
out-degree αout (bottom panel) for preferential attachment over time, with disjoint
and non cumulative time windows.

Our dismantling strategy consists of repeatedly removing nodes of the appro-
priate type with the highest in-degree kin one-by-one, and then recalculating the
in-degrees for all of the nodes before repeating the procedure. As a measure of
dismantling we use the ratio of the Largest Strongly Connected Component
(LSCC), i.e. the largest maximal set of graph nodes such that for every pair of
nodes a and b, there is a directed path from a to b and a directed path from b
to a. In our analysis we perform dismantling for up to 200 nodes of each type
and for all four tokens separately as shown in Fig. 3. We observe that for all four
tokens the removal of nodes corresponding to the addresses of contracts and
known exchanges only causes faster dismantling than the removal of nodes cor-
responding to the addresses of EOA’s only - the LSCC collapses by removing just
a handful of nodes. This indicates a large structural centralisation. Nodes cor-
responding to the addresses of smart contracts and known exchanges effectively
act as hubs in the network. Unlike the nodes that correspond to addresses of
EOA’s, they have a crucial structural role because they are involved in majority
of the transactions. In the information security realm, intentional risk managers
should protect these nodes the most [24]. We also performed additional disman-
tling for up to 10k nodes for each of the tokens but this did not show qualitatively
different results, so in Fig. 3 we only show results for up to 200 nodes.
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Fig. 3. Dismantling of largest strongly connected component in token with three dif-
ferent strategies, removing first highest in-degree nodes which are smart contracts and
known exchanges addresses, EOA address, or a strategy combining two.

3.2 Assortativity

Assortativity coefficient r measures a general tendency of nodes of a certain
degree ki to attach to other nodes with similar degree. Its range is −1 < r < 1.
A positive value indicates assortative mixing: a high correlation between the
degrees of neighboring nodes, forming usually communities. A value close to
zero suggests non-assortative mixing: very low degree correlation, typical in core-
periphery structures found in broadcasting. Finally, a negative values reveals
disassortative mixing: a negative correlation, found in structures optimised for
maximum distributed information transmission. Equation 4 presents the stan-
dard definition of assortativity coefficient r [25] where ai =

∑
j eij , bj =

∑
i eij

and eij is a fraction of edges from nodes of degree ki to nodes of degree kj .
Due to the high computational demand required to compute the assortativity
coefficient in our transactions networks, we instead compute scalar assortativity
rs defined as Equation 5 [25], particularly useful when the degree changes over
time [26].
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Fig. 4. Scalar assortativity while dismantling the network.

r =
∑

i eii − ∑
i aibi

σaσb
(4) rs =

∑
ij kikj(eij − aibj)

σaσb
(5)

In Fig. 4 we show the scalar assortativity of the networks as we remove more
and nodes during dismantling, separately for two types of nodes, i.e., nodes cor-
responding to the addresses of smart contracts and known exchanges (blue line)
and nodes corresponding to EOA addresses (orange line). Initial scalar assorta-
tivity of networks is slightly negative but close to 0 (from −0.06 for BAT and
UNI to −0.20 for AMP), which is not surprising considering the centralisation
in the network - most of the small in-degree nodes are connected to the large
central hubs, with very little connections between them. Removal of nodes cor-
responding to EOA addresses during dismantling has no discerning effect on the
scalar assortativity, while for contracts and known exchanges the assortativity
tends to increase towards zero, making the networks less centralised and almost
non-assortative. This is probably because the first nodes to be removed dur-
ing dismantling are the highly connected hubs - by removing these nodes first
the assortativity in the network rises because many connections of the low-to-
high degree nodes, which contribute to the dissasortativity of the network, are
removed as well.
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4 Discussion

Decentralised finance (DeFi), based on public blockchain technology, holds over
USD 80 B assets in September 2021. It aims to disrupt the traditional finan-
cial system by providing an alternative way to access financial services. It relies
on automation to execute financial transactions on top of a decentralised public
blockchain with no central governance. However, decentralisation in the underly-
ing protocol does not necessarily imply decentralisation in the application space
on top of it. Smart contracts providing DeFi services act as a central point for
the protocol logic. We observe this centralisation in the transaction networks
of DeFi-collateral tokens, where nodes corresponding to the addresses of smart
contracts and known exchanges (controlled by the logic of code) exhibit differ-
ent structural roles as opposed to the nodes corresponding to Externally Owned
Accounts (EOA) addresses which should be controlled directly by users.

The four types of DeFi-collateral Ethereum-based tokens we study span mul-
tiple use cases in the DeFi sector: an algorithmic stablecoin (Ampleforth, AMP),
a utility token used in digital marketing (Basic Attention Token, BAT), a multi-
currency pegged stablecoin (Dai, DAI) and a governance token used in the UNI
decentralised exchange (Uniswap, UNI).

We analyse the transaction networks of these four tokens up to mid 2021 to
evaluate the structural roles in the network of two types of nodes: those repre-
senting addresses driven by code and those human-driven. Our analysis shows
an increasing centralisation of their transaction network, with nodes correspond-
ing to the addresses of smart contract and known exchanges acting as hubs: we
find a decreasing density in the network as new nodes are added, which scales
inversely proportional to the number of newly added nodes, as well as a slightly
super-linear preferential attachment coefficient (αin > 1.0) which implies that
few nodes are gaining most of the connections from the newly incoming nodes, a
form of “winner takes all” effect commonly observed in social systems as well [27].
Those nodes should be protected the most from the information security view-
point in terms of their availability and integrity. Network dismantling confirms
the fact that these highly connected nodes indeed correspond to the addresses of
smart contracts and known exchanges and not the EOA’s which are controlled
by the actual users. Our network dismantling strategy removes one-by-one the
two types of nodes with the highest in-degree kin and measures the effect on
the Largest Strongly Connected Component (LSCC). Our results conclude that
the removal of nodes corresponding to the addresses of smart contracts and
known exchanges causes a much faster dismantling than the removal of nodes
corresponding to EOA’s. This confirms their structural role in the transaction
network as hubs that mediate most of the transactions in the network.

Our analysis is restricted to only four representative tokens on Ethereum,
the largest public blockchain for smart contracts. These results hint a poten-
tially inconvenient fact for the DeFi sector, claiming to offer decentralisation and
inclusiveness in its financial services. Most decentralised applications (dApps)
run on smart contracts which effectively centralise application logic. Exchanges
which process most of the transactions contribute to centralisation, regardless
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of whether exchanges are centralised (in that case transactions are off-chain)
or decentralised (powered by smart contracts, in that case transactions are on-
chain). The underlying situation mimics the advent of online social networks in
the mid 2000’s. Although they run on nominally decentralised Internet protocol,
they effectively centralised information flow within their application ecosystems
over time. It seems that DeFi sector is on a similar centralisation trajectory,
however, the long term consequences of this are yet unknown.

Future work can focus on popular tokens such as the heavily used USD-
pegged asset-collateralised stablecoins USDT and USDC and tokens that offer
cross-chain compatibility or second-layer solutions (like AAVE or Polygon,
respectively). Additionally, we suggest to perform a similar analysis in newer
smart contract blockchains such as Polkadot, Solana and Tezos. Finally, a
novel research path would be to understand how second-layer blockchain solu-
tions, that address scalability challenges in base layer blockchain protocols, and
cross-chain compatibility protocols, that share information between different
blockchains, influence decentralisation.
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