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Abstract. We use social network analysis to model the trade networks
that connect each of the United States to the rest of the world in an effort
to capture trade shocks and supply chain disruptions resulting from the
COVID-19 pandemic and, more specifically, to capture how such disrup-
tions propagate through those networks. The results show that disrup-
tions will noticeably move along industry connections, spreading in spe-
cific patterns. Our results are also consistent with past work that shows
that non-pharmaceutical policy interventions have had limited impact
on trade flows.
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1 Introduction

COVID-19 has caused both significant demand and supply shocks in interna-
tional trade. The latter have conceivably been caused by policy interventions
that required temporarily shutting down or slowing production as well as labor
shortages caused by illness, while the former have been attributable to increased
demand for some goods and decreased demand for others. Moreover, shifts in
consumption patterns, such as where goods are consumed, have resulted in dis-
tribution challenges, especially for foodstuffs. In this research project we propose
using social network analysis to model the trade networks that connect each of
the United States to the rest of the world in an effort to capture trade shocks
and supply chain disruption resulting from the COVID-19 pandemic and, more
specifically, to capture how such disruptions propagate through those networks.
We postulate that the high levels of interconnectedness in global trade make it
likely that trade shocks and disruptions of supply chains will propagate primarily
along industry-level trade networks. Modeling those networks along with trade
shocks and supply chain disruption as we propose here would allow us to show
not only the structure of trade networks, but also how disruptions and shocks
travel along them. While we have chosen to focus on the United States due to
the severity of its COVID-19 outbreak in the time sample and the availability of
high-quality data, we do expect that many of the findings will be generalizable
for complex economies, due to the homogenization of global trade structures.
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2 Theory

2.1 Industry Linkages and Disruption Propagation

Prior to the COVID-19 pandemic, most supply chain disruption discussion
focused on natural disasters, geopolitical events, changes in technology, cyber-
attacks, and transportation failures as threats to supply chain stability. The liter-
ature divides the causes into quadrants based on controllability and whether they
are internal or external to the firm experiencing the disruption [1]. Agriculture
and foodstuffs hold a prominent place in the literature due to their vulnerability
to uncontrollable external disruptions, but the COVID-19 pandemic has shown
that most, if not all, industries are at risk of a global disruptive event. This coin-
cides with a general trend among firms to underestimate levels of risk to their
supply chain, often leaving them unprepared to respond to disruptions as they
occur [25]. Moreover, while the literature indicates that both the costs associated
with such disruptions and their frequency have increased globally, the underly-
ing assumption has long remained that they tend to be rooted locally. This has
meant that the mitigation strategies developed do not account for global dis-
ruptions [21]. An important outlier has been the work of Nassim Taleb, whose
assessment of vulnerabilities in global supply chains that hinge on Just-In-Time
manufacturing caused him to advocate for fail-safes and backup system [20].
In this paper, we not only look at all industries, but control for interaction of
disruptions at the global and local level to fill the aforementioned gap in our
understanding of supply chain vulnerabilities.

There are a number of extant measures for the robustness of supply chain
worldwide. For example, the Euromonitor International publishes a supply chain
sensitivity index compiled on the bases of measures of sustainability, supply chain
complexity, geographic dependence, and transportation network [10]. Sharma,
Srinastava, Jindal, and Gupta’s comprehensive assessment of supply chain sen-
sitivity combining 26 factors, found that having a critical part supplier, location
of supplier, length of supply chain lead times, the fixing process owners, and mis-
aligned incentives were the most critical factors in supply chain robustness [17].
While they both identify important aspects of supply chain vulnerability, they
fail to fully account for the manner in which supply chain risk compounds as
disruption spreads through industry connections. Past literature has provided
theoretical grounding for this, depending largely on qualitative case studies to
map out how disruption propagate through industry-based supply chain triads
of suppliers, manufacturers, and consumers [16]. Zhu et al., mapping industrial
linkages using the World Input-Output Database, found that on a global scale,
the asymmetrical industrial linkages could see local shocks causing serious dis-
ruptions along the supply chain [2]. In this study, we extend the theoretical
framework, albeit in a simplified operationalization, using quantitative analy-
sis for a large national market and its global connections. We hypothesize that
industry connections will be a significant vehicle for the spread of disruptions
between US states.
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2.2 Effectiveness of Policy Interventions

Due to the exceptional nature of pandemics on the scale of COVID-19, lim-
ited analysis exists of the economic disruption they cause and of the impact of
policy measures intended to mitigate against them. The last comparable global
pandemic in terms of severity and the number of economies affected was the
Spanish Flu of 1918. In the limited literature available to us, policy assessments
have found that public health interventions such as economic support and lock-
downs did not have adverse economic effects and that these areas recovered
more quickly [3]. The emerging literature assessing the efficacy of lock downs for
COVID-19 show that stay at home orders did not impact trade, whereas work-
place closures did negatively impact trade [6]. This suggests a limited impact for
policy measures controlling adverse economic impacts on trade flows. This pre-
vious study by Hayakawa and Mukunoki was focused on country-level variation
and focused on stay-at-home orders and workplace closures. We build on this
work by looking at domestic propagation of disruption, while including potential
policy confounders such as economic support and network confounders such as
cluster effects.

3 Data and Research Design

The monthly U.S. state-level commodity import and export data used in our
analysis were collected by the US Census using the U.S. Customs’ Automated
Commercial System [23]. For our analysis, we use data from March 2020 to
December 2020. We use this cutoff both due to availability at the time of writing
and to avoid having to account for changes in the federal and local responses to
the pandemic as a result of the 2020 election. The import and export data are
reported in total unadjusted value, in US Dollars. All 50 states and the district
of Columbia are included as nodes in the final networks.

To construct the dependent edge-level variable used in our models, we first
constructed a bipartite graph with states as the first mode and exports at the
four-digit level commodity code of the Harmonized System (HS-4) as the second
mode. The edges in the bipartite graph are a measure of export disruptions,
comparing export value of the current month to a three-month window centered
on the same month of the previous year. If the value of the current month was
less than 75% of the minimum value in the window for the previous year, it
was coded as a one for a disruption. We then collapse the bipartite graph into
a monopartite graph of US states and the edges are counts of the number of
shared disruptions a state has with other states at the same HS-4 commodity
level. We collapse the data primarily for methodological reasons1, but since our
goal is to measure trade disruption spread through industry ties, this step does

1 It is common in network analysis literature to collapse bipartite graphs due to failed
convergence in bipartite inferential models and for additional model features not
available in bipartite models. Past work has shown that collapsing into a monopartite
project still preserves important information about the network [15].
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not lose information that we are interested in. For robustness, we repeat this
process using a 50% minimum value threshold.

3.1 Covariates

In addition to using US Census data for our export disruption dependent vari-
able, we also use the import data to control for import disruptions of inputs for
the export industries. The variable is constructed as a weighted count using the
2014 World Input Output Database (WIOD) [22]. Import disruptions were first
constructed in the same manner as export disruptions and then assigned weights
for each HS-4 commodity. The weights were assigned using concordance tables
to convert HS-4 codes to match International Standard of Industrial Classifica-
tion (ISIC) codes to then calculate the commodity’s input value as a percentage
of the total output value for an industry. Since the weights were percentages
based on values in the WIOD and applied to counts of disruption, not trade
values, no transformation was necessary to match real USD values. Last, they
were collapsed to match the monopartite network.

To measure the impact of COVID-19 and COVID-19 related policies, we
include hospitalizations per capita, an Economic Support Index, and a Lock-
down Index. Hospitalizations per capita were calculated using monthly max
hospitalization data from The Covid Tracking Project and then divided by 2019
state population estimates from the US Census Bureau. The Economic Support
index and the Lockdown index are taken from the Oxford COVID-19 Govern-
ment Response Tracker (OxCGRT) [4]. The Economic Support index includes
measures that lessen the economic impact of COVID-19, including and weighting
state level variation in measures such income support and debt relief. The Lock-
down index focuses on measures intended to control people’s behavior, including
measures such as mask mandates, school and gym closings, and restrictions gath-
ering size and indoor dining.

3.2 Model and Specification: The Count ERGM

Existing models of network effect in supply chain risk management have relied
on complex models based in game theory [24], firm level cluster analysis [5],
Bayesian network modeling that defined edges as causes of disruption [13], and
myriad others [7]. In our contribution, we are the first to our knowledge to use
the count-valued Exponential Random Graph Model (ERGM) [8] to model the
spread of export disruptions. This model has two key advantages for the purposes
of our study. First, it allows us to model network structure without assuming
the independence of observations, as is the case with the majority of generalized
linear models (GLM). For example, we include transitivity, also known as the
clustering coefficient, to model the linkages between shared disruptions. More-
over, this model allows us to control for deviation from the specified reference
distribution, including larger variance and zero inflation. These are both critical,
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as we know that economic disruptions in one state will impact economic con-
ditions in other states and that dependent variable distribution rarely follows a
specific distribution perfectly.

The count ERGM, like all ERGMs, does not model unit level effects as GLMs
do, but rather the dependent variable serves to model the entire network using
an iterative estimation method (MC-MLE) in which, given starting values for
the parameter estimates, a Markov Chain Monte Carlo method is used to sample
networks in order to approximate a probability distribution [18]. This iterative
process continues until the parameter estimates and probability distribution con-
verge. Because the ERGM family of models allows the research to specify both
network effects and covariate effects in the model, both end up being more
accurate estimates [12]. While other statistical modeling approaches could be
used to account for network dependence while estimating covariate effects (e.g.,
latent space methods [11], stochastic block modeling with covariates [19], and
quadratic assignment procedure [14]), these alternative methods do not permit
precise estimation and testing of specific network effects. Given that part of our
research objective is to test for transitivity effects, we have adopted an ERGM-
based approach, using the implementation made available in the ergm.count [9]
package in the R statistical software.

Under the count ERGM, the probability of the observed n×n network adja-
cency matrix y is:

Prθ ;h;g (Y = y) =
h(y)exp(θ · g(y))

κh,g (θ)
, (1)

where g(y) is the vector of network statistics used to specify the model, θ is
the vector of parameters that describes how those statistic values relate to the
probability of observing the network, h(y) is a reference function defined on
the support of y and selected to affect the shape of the baseline distribution
of dyadic data (e.g., Poisson reference measure), and κh,g (θ) is the normalizing
constant.

Our main models include a number of base level convergence related param-
eters, network parameters, and covariate parameters. Base level parameters
include the sum of edge values, analogous to the intercept in a GLM model
as well as the sum of square root values to control for dispersion in edge values.
For network effects we include a transitive weight term. The transitive weight
term is specified as:

Transitive Weights : g(y) =
∑

(i,j)∈Y

min
(

yi,j ,max
k∈N

(
min(yi,k,yk,j)

))
,

This term accounts for the degree to which edge (i, j) co-occurs with pairs of
large edge values with which edge (i, j) forms a transitive triad with weighted,
undirected two-paths going from nodes i to k to j. Note that, because the net-
work is undirected, cyclical and transitive triads are indistinguishable. Exoge-
nous covariates are included by measuring the degree to which large covariate
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values co-occur with large edge values. Our only dyadic measure is that of shared,
weighted import disruptions and is defined as:

Dyadic Covariate : g(y, x) =
∑

(i,j)

yi,jxi,j ,

Lastly, we specify statistics that account for node (i.e., state) level measures of
COVID-19 intensity and policy measures. These parameters take the product
of the node’s covariate value and a sum of the edge values in which the node is
involved, defined as:

Node Covariate : g(y, x) =
∑

i

xi

∑

j

yi,j

We estimate a separate model for each month for all industries and then use
a time-pooled version when estimating models by industry. This allows us to
see changes in general trends across time as well as changes in the impact of
variables over time throughout the pandemic, as well as average effects for each
industry.

4 Results

There are several important findings from our results for the overall model, shown
in Fig. 1. We also remind readers that the disruptions here are not overall disrup-
tions, but shared disruptions across states, which means that interpretations are
for spread of disruptions, not overall disruption. However, there is some overlap
as an increase in shared disruptions coincides with an increase in the likelihood
of overall disruptions. First, we see in Panel a and b that disruptions and the
overall dispersion of shared disruptions peaks in April and gradually declines
across time. The second major finding is that non-pharmaceutical policy inter-
ventions (Panel f and g) had almost no impact on shared export disruptions,
regardless of disruption intensity. While there are a number of sound reasons
to implement lock-downs and economic support for economies in a pandemic,
our results indicate that trade need not be considered as a factor in considering
these measures to contain the spread of disease. Third, the transitivity coefficient
(Panel c) is positive and significant for all months considered, with a small drop
in the early part of the pandemic before rising again. On average, it is roughly
double in effect size for more intense disruptions. This result is a strong indicator
of spread through industry connections as the edges are defined as shared disrup-
tions in the same commodity, supporting our hypothesis that export disruptions
will spread through industry ties across states. Fourth, import input disruptions
(Panel d) are also positive and significant, with effects growing in size for more
intense disruptions. This also is indicative of the importance of supply chains
and the spread of disruptions through global trade networks. Lastly, while hos-
pitalizations (Panel e) are on average positively correlated with shared export
disruptions, the relationship is volatile, even being negative at the beginning of
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Fig. 1. Coefficient estimates of terms in Poisson ERGMs. Bars span 95% confidence
intervals. For some models, the confidence intervals are not visible due to being small
and the large range of the coefficient estimates. Circles are for models of disruptions of
75% and triangles are for 50%
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Fig. 2. Coefficient estimates of terms in time-pooled Poisson ERGMs. Bars span 95%
confidence intervals. For some models, the confidence intervals are not visible due to
being small and the large range of the coefficient estimates. Circles are for models of
disruptions of 75% and triangles are for 50%
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pandemic and in late Fall indicating that immediate pandemic intensity is not
the primary driver of economic disruption.

Variation of the coefficients across industries also leads to several interesting
findings (Fig. 2). In Panel a we see that transitivity is mostly the same across
industries. The exception is that industry seven (Raw Hides, Skins, Leather, and
Furs) serves as an outlier for transitivity and that the clustering coefficient trends
slightly larger for less processed industries (lower numbered). This trend is more
pronounced for input import disruptions (Panel b). This finding is interesting as
one might expect more highly processed industries to have more inputs and thus
be more sensitive to disruptions in imports and across industry changes. Further-
more, while there are some similarities, these findings challenge the rankings of
supply chain sensitivity in the Euromonitor’s Global Supply Chain index which
ranks the least and most processed as the most sensitive and the moderately
processed as the least sensitive [10]. Hospitalizations across industry (Panel c)
are just as volatile across industry as it is across time, warranting deeper inves-
tigation. Lastly, we confirm that even when broken down by industry, policy
variables have little to no impact on the spread of export disruption (Panel d
and e).

5 Conclusion

The global pandemic that has gripped the world since early 2020 has exacted
an incalculable toll in human lives, while crippling economies for much of that
year. Given the impact of the pandemic as well as of policy responses intended to
limit the cost in human lives, trade disruptions were to be expected throughout
supply chains. Indeed, beyond policy responses, panic-buying and other behav-
ioral oddities caused severe disruptions in very specific supply chains very early
on. Given that the previous global pandemic of 1918 took place in an economic
environment of much lesser economic complexity, studies examining that event
could not accurately predict the manner in which modern economies and indus-
tries would be affected. Modern supply chains are, after all, significantly more
spread out globally. Indeed, across the globe, new debates have emerged with
regard to the perceived need to ‘re-home’ certain key industries as Just-In-Time
supply chains dependent on imports from across the globe that have proven to
be vulnerable to disruptions in trade over which individual governments have no
control.

This pandemic, then, has presented us with a rather unique global chal-
lenge, as well as a rather unique opportunity to look at the robustness – or lack
thereof – of global supply chains in our modern globalized economic environ-
ment. More than just a study into the impact of the current global pandemic on
global supply chains, our study was intended to close a hole in the extant and
emerging literature, which has not used network level analysis of the manner in
which trade shock and disruption moves across networks. It was our hypothesis
that disruptions will noticeably move along industry connections, spreading in
specific patterns, and our model appears to support this hypothesis. We believe
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that this is an important finding that has application beyond the context of a
global pandemic.

Notes and Comments. All data used are from publicly available sources. For
replication code, please email the authors.
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