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Abstract. One of the challenges facing artificial intelligence research
today is designing systems capable of utilizing systematic reasoning to
generalize to new tasks. The Abstraction and Reasoning Corpus (ARC)
measures such a capability through a set of visual reasoning tasks. In this
paper we report incremental progress on ARC and lay the foundations
for two approaches to abstraction and reasoning not based in brute-
force search. We first apply an existing program synthesis system called
DreamCoder to create symbolic abstractions out of tasks solved so far,
and show how it enables solving of progressively more challenging ARC
tasks. Second, we design a reasoning algorithm motivated by the way
humans approach ARC. Our algorithm constructs a search graph and
reasons over this graph structure to discover task solutions. More specif-
ically, we extend existing execution-guided program synthesis approaches
with deductive reasoning based on function inverse semantics to enable a
neural-guided bidirectional search algorithm. We demonstrate the effec-
tiveness of the algorithm on three domains: ARC, 24-Game tasks, and a
‘double-and-add’ arithmetic puzzle.
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1 Introduction

The growth and tremendous success of deep learning has catapulted us past
many benchmarks of artificial intelligence. Reaching human and superhuman
performance in object recognition, language generation and translation, and
complex games such as Go and Starcraft has pushed the boundaries of what
humans can do and machines cannot [7,12,13,16,19,22]. To continue to make
progress, we must identify and work towards reducing the gaps between human
and machine intelligence.

The Abstraction and Reasoning Corpus (ARC), introduced by François Chol-
let in 2019, captures an important aspect of human intelligence that our current
systems are unable to do: the ability to systematically and flexibly generalize to
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new domains [6]. Chollet argues that intelligence must be measured not as skill in
a particular task, but as skill-acquisition efficiency. General intelligent systems
must also have developer-aware generalization, i.e. be able to solve problems the
developer of the system has not encountered before or anticipated.

ARC consists of training, evaluation, and private test sets of 400, 400, and
200 tasks. Each task consists of 2–4 training examples and one or more test
examples. Each training example is an input/output pair of grids. To solve a
task, an agent must determine the relationship between input and output grids
in the training examples, and use this to produce the correct output grid for
each of the test examples, for which the agent is only given the input grid. Each
task is thus a few-shot learning problem, for which the solution is symbolic and
rule-based (Fig. 1).

Fig. 1. An example ARC task with three training examples and one test example. The
solution might be described as “find the most common object in the input grid”.

The tasks are unique and constructed by hand so as to prevent the reverse
engineering of any synthetic generation process. They are designed to depend
on a set of human Core Knowledge inbuilt priors such as objectness, simple
arithmetic abilities, symmetry, and goal-directedness. The evaluation and private
test sets are designed such that a solution tailored to the training set is unlikely
to transfer to the evaluation or test sets. Chollet hosted a Kaggle-competition
for ARC and the winning solution, a hard-coded brute force approach, achieved
only ∼20% performance on the private test set [2].

In this paper we report incremental progress on ARC and lay the foundation
for several approaches to abstraction and reasoning not based in brute-force
search. We approach ARC as a program synthesis benchmark, solving tasks
by writing programs that convert input grids to output grids. In Sect. 2 we
outline an approach to abstraction by applying DreamCoder [11]. We show this
approach enables learning new concepts that aid in generalization as well as
the solving of progressively more challenging tasks. In Sect. 3 we describe a
novel program synthesis approach motivated by the way humans approach ARC
that captures the reasoning required to search for ARC task solutions. Our
algorithm constructs a search graph and reasons over this graph structure to
discover task solutions. More specifically, we extend existing execution-guided
program synthesis approaches [10,25] with deductive reasoning based on function
inverse semantics [18] to enable a neural-guided bidirectional search algorithm.
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We evaluate our approach on three domains: ARC tasks, ‘24 Game’ problems,
and a simple ‘double-and-add’ challenge. These experiments show the benefits
of bidirectional search over baselines and the potential for further progress on
ARC. In Sect. 4 we discuss related work, progress on ARC, and future directions.

2 Abstraction Using DreamCoder

We frame the problem as a search problem over the space of programs express-
ible in some domain specific language (DSL). One way a learning agent can
achieve developer aware generalization (in the sense of [6]) is to identify fre-
quently occurring patterns of computation and form abstractions from them.
These abstractions enable searching for more complex programs more quickly.

In this section we use DreamCoder [11], a recent tool for program synthesis,
to form abstractions. We first show how DreamCoder’s compression algorithm
enables learning generalizations of concepts seen in training. Second, we run
DreamCoder on ARC to show how forming new abstractions enables the agent
to solve progressively more challenging tasks.

2.1 Warmup: Forming Abstractions

To show how DreamCoder can form more abstract concepts from existing ones,
we supply our agent with six synthetic tasks (meant to be similar to ARC tasks):
drawing a line in three different directions, and moving an object in three dif-
ferent directions. See Fig. 2 for a visualization of these tasks.

We solve these tasks with four primitives: rotate clockwise and counterclock-
wise, draw a line down, and move an object down. The programs synthesized
are the following:

(lambda (rotate_cw (draw_line_down (rotate_ccw $0)))) // draw line left

(lambda (rotate_cw (move_down (rotate_ccw $0)))) // move object left

(lambda (rotate_ccw (draw_line_down (rotate_cw $0)))) // draw line right

(lambda (rotate_ccw (move_down (rotate_cw $0)))) // move object right

(lambda (rotate_cw (rotate_cw (draw_line_down (rotate_cw (rotate_cw $0)))))) // draw line up

(lambda (rotate_cw (rotate_cw (move_down (rotate_cw (rotate_cw $0)))))) // move object up

After running the compression algorithm, the agent creates the following new
abstractions:

(lambda (lambda (rotate_cw ($0 (rotate_ccw $1))))) // apply action left

(lambda (lambda (rotate_ccw ($0 (rotate_cw $1))))) // apply action right

(lambda (lambda (rotate_cw (rotate_cw ($0 (rotate_cw (rotate_cw $1))))))) // apply action up

Importantly, the abstractions formed are more general than the original prim-
itives given. This can help enable systematic generalization on further tasks.

2.2 Enabling Generalization on ARC Symmetry Tasks

In a second experiment, we demonstrate how compression-based learning enables
developer-aware generalization on ARC. We provide DreamCoder with a set of
five grid-manipulation operations: flipping vertically with vertical_flip, rotat-
ing clockwise with rotate_cw, overlaying two grids with overlay, stacking two



660 S. Alford et al.

(a) An example “draw line left” task (b) An example “move object left” task

Fig. 2. Sample tasks involving applying an action left.

grids vertically with vertical_stack, and getting the left half of a grid with
left_half. We then train our agent on a subset of 36 ARC tasks involving sym-
metry over five iterations of enumeration and compression. During each iteration,
our agent attempts to solve all 36 tasks by enumerating possible programs for
each task. It then runs compression to create new abstractions. During the next
iteration, the agent repeats its search equipped with the new abstractions. In
this experiment, our agent initially solves 16 tasks. After one iteration, it solves
17 in the same amount of time. After another, it solves 19 tasks, and after the
final iteration, it solves 22 tasks. Table 1 shows some of the new abstractions
learned by DreamCoder’s compression algorithm such as flipping horizontally,
and stacking grids horizontally. The program solutions for the final tasks solved,
shown in Fig. 3, could not be feasibly discovered without the use of abstractions
to reduce the search time.

2.3 Discussion

It is useful to compare the learning done in our approach to that done by
neural networks. Neural networks can also learn new concepts from training
examples, but their internal representation lacks structure which allows them
to apply learned concepts compositionally to other tasks. In contrast, functions
learned via compression, represented as programs, can naturally be composed
and extended to solve harder tasks, while reusing concepts between tasks. This
constitutes a learning paradigm which we view as essential to human-like rea-
soning.

Table 1. Useful actions learned in the process of solving symmetry tasks. Pound signs
represent abstractions. Abstractions may rely on others for construction; e.g. to stack
grids horizontally, we reflect each input diagonally, stack vertically, and reflect the
vertical stack diagonally.

Action Code

Mirror across diagonal #(lambda (rotate cw (vertical flip $0)))

Rotate 180◦ #(lambda (rotate cw (rotate cw $0)))

Flip horizontally #(lambda (rotate cw (rotate cw (vflip $0))))

Rotate counterclockwise #(lambda (rotate cw (#(lambda (rotate cw (rotate cw $0))) $0)))

Stack grids horizontally #(lambda (lambda (#(lambda (rotate cw (vertical flip $0))) (stack vertically

(#(lambda (rotate cw (#(lambda (vertical flip $0)) $0))) $1)

(#(lambda (rotate cw (vertical flip $0))) $0)))))
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Fig. 3. One of the four-way mirroring tasks and the program discovered that solves it
written in terms of the original primitives. The program was discovered only after four
iterations of enumeration and compression.

There is a caveat of the approach shown here. Abstraction as shown uses a
simple enumerative search. DreamCoder uses a form of neural-guided program
synthesis, predicting a distribution over functions to search over, but this guid-
ance is too weak to scale to the complexity of ARC tasks. In the next section, we
show the type of reasoning required for ARC and design an approach to exhibit
this reasoning.

3 Bidirectional, Neural-Guided Program Search

In Subsect. 3.1 we first motivate and describe our bidirectional, neural-guided
search algorithm. Then in Subsect. 3.2 we present experiments and results using
this approach.

3.1 Algorithm Description

In this section we describe our reasoning approach for ARC. We first give a
motivating example of human reasoning on ARC, explain how to approximate
it with execution-guided synthesis, then incorporate inverse semantics to create
a bidirectional, neural-guided search algorithm.

Motivating Example. Solving ARC tasks fundamentally consists of a search for
valid solutions. To make this search tractable, our agent needs the ability to
reason towards solutions. ARC tasks feature rich visual queues that guide us
towards solutions. Without enabling our agent to take full advantage of these
queues, the search over possible programs becomes impossibly large. The process
of discovering the solution to an ARC task often consists of several discrete steps
of reasoning before discovering the solution. How can we design an approach to
search that searches for ARC solutions in the same manner as humans?

As a motivating example, let us consider solving task 303 in Fig. 4. The
reasoning steps to come to a solution might look something like this:
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Fig. 4. Task 303.

1. Notice that the output grid consists of copies of the 3×3 input grid, arranged
in a certain arrangement among a 9 × 9 grid.

2. New question: Where should we place the input grid copies?
3. Notice that the placements match the arrangement of a different color’s

pixels for each grid. For example, in the first example, the diagonal of grids
in the output matches the green pixels in the input.

4. New question: What color should we arrange our grid copies along?
5. Solution: The color matched is the most common color in the grid.

Notice the way discovering a solution involves combining sequential insights
and problem reductions. Systematizing a form of reasoning for ARC that emu-
lates this reasoning will be based on a combination of execution-guided program
synthesis and inverse semantics.

Extending Execution-Guided Synthesis. Execution-guided program synthesis
[5,10] is a form of program synthesis where one executes partial programs to
produce intermediate outputs, which are used to guide the construction of the
full program. Intermediate evaluations provide the opportunity for step-by-step
reasoning: instead of coming to the answer at once, one can construct it piece
by piece. Humans could be said to make use of the same thing: for instance,
it much easier to write out the result of a multiplication digit by digit, instead
of conducting the full calculation in one’s head. The form of execution-guided
synthesis we apply to ARC is most similar to the ‘REPL’ approach of [10]. An
example applying the technique to ARC is shown in Fig. 5.

Existing execution-based synthesis approaches are limited to bottom-up enu-
meration: the leaves of the program are constructed (and evaluated) first. In con-
trast, the steps for solving task 303 involve proposing a function that is used to
produce the output grid, and deducing the inputs required to correctly produce
the output as new intermediate targets before discovering the complete program.

This form of deductive reasoning involves evaluating function in reverse. It
is best exemplified in the FlashMeta system [18], which leverages the inverse
semantics of operators to deduce one or more inputs of a function given the
output target and one or more inputs. We incorporate this type of reasoning
into an extension of execution-guided program synthesis.
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Fig. 5. Solving ARC task 138 from the evaluation set with execution-guided synthesis.
Conditioned on the input and output grids, the agent chooses to flip the input hori-
zontally in step one. This action is executed to produce intermediate value i1. Next,
the agent chooses to horizontally stack the intermediate value with the input grid, pro-
ducing another value i2. Last, the agent horizontally stacks this value i2 with itself,
correctly producing the output grid for each example and solving the task.

Deductive Reasoning via Inverse Semantics. For our purposes, we can consider
two cases. The simplest case is when the function is invertible. In this case, we
can evaluate the inverse to produce two new targets for the search, as shown
in Fig. 6. In the second case, the function is conditionally invertible: given the
output and one or more inputs to a function, one can deduce the remaining inputs
needed to produce the output via this function. Many functions are conditionally
invertible; perhaps the most familiar family is arithmetic operators: if we know
1 + x = 5, we can deduce that x = 4. An example relevant to ARC is shown
in Fig. 6. Using conditional inverses, it is possible to formalize the reasoning
described for task 303.

Fig. 6. Left: the function block is directly invertible: given the output, we can deduce
the inputs. Right: the function horizontal stack (horizontal stack) is conditionally
invertible: given the output and one input, we can deduce the other input.
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Bidirectional, Neural-Guided Program Search. To extend execution-guided syn-
thesis to a bidirectional algorithm with inverse and conditional inverse functions,
we extend the environment of [10], approaching the synthesis task via reinforce-
ment learning.

The setup takes place in a Markov Decision Process. The current state is a
graph of nodes. Each node represents either an input value, the output value,
or an intermediate value resulting from the execution of an operation in the
forwards or backwards direction. A node is grounded if there is a valid program
to create that node from the operations applied so far. In general, grounded
nodes correspond to those from the forwards, i.e. bottom-up program enumera-
tion, direction of search, while ungrounded nodes correspond to those from the
backwards direction, i.e. top-down program enumeration.

An operation is a function from the grammar along with a designation of
being applied in forwards, inverse, or as a conditional inverse (and if as a con-
ditional inverse, conditioned on which input arguments). There are three types
of operations: forward operations, inverse operations, and conditional inverse
operations. A forward operation applies the function to a set of grounded inputs
to produce a new grounded node. An invertible operation takes an ungrounded
output and produces a new ungrounded target node such that grounding the
target node will cause the output node to be grounded as well. A condition-
ally invertible operation takes an ungrounded output and one or more grounded
input nodes, and produces a new ungrounded target node such that grounding
the target node will cause the output node to be grounded as well. All invertible
and conditionally invertible operations have a corresponding forward operation.

Solving a given task thus consists of an episode in the MDP. Actions in
the MDP correspond to a choice of operation and the choice of arguments for
that operation. Each action applies a function in either the forward or backward
direction. Intuitively, this executes a bidirectional search to try to connect the
grounded nodes on one side with the ungrounded output node on the other. We
give reward R for solving the task and a penalty of −1 for choosing an action
corresponding to an invalid operation.

Like [5,10,25], we train with a combination of supervised training on ran-
domly generated programs fine-tuning with reinforcement learning algorithm
Reinforce. To generate random bidirectional programs for supervised train-
ing, we first create a random program, and construct an execution trace for
it by probabilistically converting inverting function applications from the root.
Network architecture is held the same from [10], with task-dependent embedding
network nodes of the bidirectional graph, a DeepSet network [24] to encode the
graph into a single embedding and choose a function to apply, and a pointer
network [23] for choosing function arguments.

3.2 Experiments

We evaluate our bidirectional algorithm in three settings: solving ARC sym-
metry tasks, solving arithmetic puzzles from the ‘24 Game’ family, and solving
‘double-and-add’ puzzles. As a baseline, we compare bidirectional synthesis with
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a forward-only baseline which only allows application of operations in the for-
wards direction like existing approaches.

ARC Symmetry Tasks. As a proof of concept, we evaluate the bidirectional algo-
rithm on a set of 18 ARC symmetry tasks—a subset of those used in Sect. 2.
We use a DSL of six operations: stacking two grids horizontally or vertically,
rotating clockwise or counterclockwise, and flipping a grid horizontally or verti-
cally. The rotation and flip functions are directly invertible, while the stacking
operations are conditionally invertible. We use a convolutional neural network
to embed grid example sets. We train on a set of randomly generated programs
evaluated on random input grids from the ARC training set, and fine-tune with
Reinforce before sampling rollouts for thirty minutes on all tasks at once. The
agent is able to solve 14 of 18 tasks, including one of the “four-way mirror” tasks.
In this experiment, bidirectional performed equally to the forward-only baseline.

24 Game. Next, we compare the performance of bidirectional search with the
forward-only baseline by tasking our agent with solving “24 Game” problems.
A 24 Game consists of four input numbers, one through nine. To solve the task,
one must use each number once in an expression that creates twenty four using
+,−,×,÷. For example, given 8, 1, 3, and 2, a solution is 24 = (2 − 1) × 3 × 8.
To solve these tasks bidirectionally, we can use the conditional inverse of each
arithmetic operator in addition to forward arithmetic operations.1

First we conduct supervised pretraining on all depths at once. These pro-
grams may create any number as a target, not just 24, with the maximum
allowed integer 100, and no negative or nonintegral numbers. We then fine-tune
on different depths with Reinforce for 10,000 epochs of batch size 1000. We
measure performance by percent of episodes solved in the last 1,000 epochs of
training.

Results are shown in Table 2. Bidirectional synthesis outperforms the
forward-only baseline across all depths. This supports our thesis, but is sus-
picious: as we should expect to see identical accuracy for depth one tasks, when
only a single action is needed. Accuracy remains fairly high as depth increases,
because depth does not necessarily imply program length: as many as 40% of
depth four tasks remain solvable in fewer than four actions.

Double-and-add. Last, we include results on a ‘double-and-add’ task to better
show the advantage of bidirectional search. Given a target number, one must
reach it starting from the number two by repeatedly adding one or doubling
the number. For example, 7 = 1 + 2 ∗ (1 + 2). This task, akin to the method
for exponentiation by repeated squaring, is much easier solved in a top-down
fashion: the choice of adding one or doubling boils down to whether the target
is even or odd. Here we have two forward operations, each of which are directly
invertible. On a training set of five thousand numbers sampled between one and
five million, and a held out set of five hundred numbers, our bidirectional model

1 We relax the rule that each input is used exactly once.
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Table 2. Percent of tasks solved for 24 Game, measured by percent of episodes solved
in the last 1000 epochs of RL fine-tuning. Forward-only denotes only using forward
operations. Bidirectional includes conditional-inverse operations. Average over three
runs with stdev shown.

Depth 1 2 3 4

Forward-only 87.22± 0.64 84.29± 1.6 75.88± 3.6 67.04± 1.0

Bidirectional 95.2± 0.66 92.9± 2.1 87.7± 1.1 85.3± 1.9

achieves 100% evaluation accuracy after a single epoch of supervised training.
In contrast, the forward-only model fails to solve the held-out tasks, due to the
difficulty “seeing” the solution from the source, see Fig. 7.

Fig. 7. Percent of tasks solved for bidirectional and forward-only agents trained on
the double-and-add task. The bidirectional agent achieves 100% accuracy after a single
epoch of training. After fifty epochs of training, forward-only converges without solving
the held-out tasks.

4 Discussion

Related Work. Our work builds off and is inspired by a long line of progress
in neural program synthesis [3,4,8,17,21], execution-guided synthesis [5,10,26],
and deep reinforcement learning for search [15,19].

Bidirectional, neural-guided program search is made possible primarily due
to the inverse semantics of FlashMeta [18]. The concept of bidirectional program-
ming, inverse semantics, and program inversion has been present throughout the
history of program synthesis [9,14,20], but the way in which inverse evaluation
is used here is most similar to FlashMeta.

ARC. To date, there are no prominent learning-based approaches to ARC that
have proven more successful than the Kaggle-winning brute-force approach [2].
Other Kaggle approaches include genetic programming and cellular automata,
but all essentially rely on brute force search over a DSL of operations combined
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with ARC-specific tricks, without any substantial learning [1]. The few-shot
nature and large search space for ARC make it a very challenging benchmark,
and progress scaling program synthesis algorithms is likely needed to enable fur-
ther progress. We hope our progress reported here inspires and enables further
progress on ARC.

Future Work. The next step of our work is to combine the two approaches to
create a unified approach. This can be done by using the bidirectional search
algorithm to solve tasks, then create new operations out of abstractions base on
tasks solved. To fill out the learning approach, we can consider including the
ability to synthesize inverse and conditional inverse operations for newly learned
abstractions, perhaps as its own synthesis problem. Our approach remains to be
scaled up to a full DSL capable of solving ARC. Incorporating more sophisticated
inverse semantics and type-directed search are important components of the full
bidirectional approach.
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