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Abstract. The problem of finding paths in temporal graphs has been
recently considered due to its many applications. In this paper we con-
sider a variant of the problem that, given a vertex-colored temporal
graph, asks for a path whose vertices have distinct colors and include the
maximum number of colors. We study the approximation complexity of
the problem and we provide an inapproximability lower bound. Then we
present a heuristic for the problem and an experimental evaluation of
our heuristic, both on synthetic and real-world graphs.
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1 Introduction

Finding paths is a basic problem in graph theory [9] and several variants have
been studied, including finding a shortest path between two vertices and finding
a longest path in a graph. Recently, these problems have been considered for
real-world data that need a description of the vertex properties and dynamics
of the relations [19]. For these data, a richer representation with respect to the
classical graph model has to be introduced, for example by associating labels
or colors with vertices and by representing the evolution of relations with a
temporal graph. In this latter model, edges are associated with timestamps to
represent when an interaction occurred [6,10,15].

In this paper we consider a problem that looks for a path in a temporal graph
that has vertices associated with colors. Given a set of colors, the problem asks for
a temporal path having vertices with distinct colors and including the maximum
number of colors. A temporal path in a temporal graph is a path in which
the timestamps of consecutive edges are strictly increasing, thus representing a
path that does not violate the time constraint specified by the timestamps of
the edges. The problem we consider is a variant of the one considered in [19],
that asks for a temporal path that exactly matches a multiset of colors (called
motif in [19]). As outlined in [19], this problem has several applications, for
example in tour recommendations [7,13], where vertices correspond to interesting
locations, colors represent activities available in locations, edges correspond to
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transportation links between different locations (a timestamp is associated for
example to departure time). A set (or a multiset) of colors represents activities
a tourist may be interested into, and a path associated with different colors is
then a suggestion of the activities that can be carried out respecting the time
constraints. A temporal graph, due to its structure, may not contain a temporal
path that includes all the colors. Thus a natural direction that we consider in
this paper is to look for a temporal path that includes the maximum number of
colors.

Related Works. Given a (static) vertex-colored graph, the problem of finding
a colored path whose vertices have distinct colors and that includes the maxi-
mum number of colors (called tropical path) has been recently investigated in
[8]. In [8], it is shown that the problem is not approximable, unless P = NP,
within constant factor as the Longest Path problem, while hardness results or
polynomial-time algorithms are given for several graph classes (bipartite chain
graphs, threshold graphs, trees, block graphs, and proper interval graphs). A
related problem on static graphs is that of finding a path whose vertices con-
tain all the colors in a set and the vertices in the path are all colored distinctly
[2,16]. Another related problem considered in vertex-colored static graphs is that
of finding the maximum number of vertex-disjoint uni-color paths [3,11].

Several variants of the problem of finding a temporal path in a temporal
vertex-colored graph that matches a given multiset of colors (called motif) have
been introduced in [19]. It is shown in [19] that these variants of the problem
are NP-complete, but fixed-parameter tractable when parameterized by the size
of the motif.

Several problems related to finding paths in a temporal graph have been
considered [21,22]. A notable example is that of checking whether there exists a
temporal path with waiting time constraint, a problem that has been shown to be
NP-complete [5]. A similar problem is the temporal graph exploration [12] that
asks for a temporal walk that, starting at a given vertex, visits all vertices of a
graph with the smallest arrival time. Other related problems ask for the deletion
of vertices so that temporal paths connecting pairs of vertices are removed [23].
Some recent contributions have investigated the computational complexity of
exploring a temporal graph when the underlying graph is a star and finding an
eulerian walk in a temporal graph [1,4,18].

Our Contribution. In this paper, given a temporal vertex-colored graph, we
consider the problem of finding a temporal path whose vertices have distinct
colors and that includes the maximum number of colors (a problem called Max
CPTG). First, we study the approximation complexity of the Max CPTG problem
and we show in Sect. 3 that it is not approximable within a factor O(|V | 1

2−ε),
unless P = NP . Notice that the corresponding problem on static graphs (finding
a tropical path) is only known to be not approximable with a constant factor,
unless P = NP [8].

In Sect. 4 we present a heuristic for Max CPTG, as our aim is to design a
method that is applicable even for a large number of colors. Notice that the



Finding Colorful Paths in Temporal Graphs 555

methods proposed in [19] are for different variants of the problem, where all the
colors of the motif have to be included in a solution. Moreover, the methods
proposed in [19] are fixed-parameter algorithms, where the parameter is the size
of the motif, hence the running time of these latter algorithms is exponential
in the size of the motif, leading to methods that are able to process motifs of
moderate size (up to 18 colors are considered in [19]). On the other hand, we
have to point out that the methods in [19] compute exact solutions, while our
method is only a heuristic. In Sect. 5, we present an experimental evaluation of
our heuristic, both on synthetic and real-world graphs. We start in Sect. 2 by
introducing some definitions and by defining the problem we are interested in.
Some proofs are omitted due to space constraints.

2 Preliminaries

We start this section by introducing the definition of discrete-time domain over
which is defined a temporal graph.

Definition 1. A discrete-time domain T is a sequence of timestamp ti, 1 ≤ i ≤
tmax, where each ti is an integer and ti < ti+1. An interval T = [ti, tj ] over T ,
where ti, tj ∈ T and ti ≤ tj, is the sequence of timestamps t such that ti ≤ t ≤ tj.

Two intervals T1 = [ta,1, tb,1] and T2 = [ta,2, tb,2] are disjoint if they do not
share any timestamp, that is ta,1 ≤ tb,1 < ta,2 ≤ tb,2 or ta,2 ≤ tb,2 < ta,1 ≤ tb,1.
The concatenation of T1 and T2 is an interval T1 · T2 obtained by merging the
two time intervals T1 and T2, that is, assuming without loss of generality that
ta,1 ≤ tb,1 < ta,2 ≤ tb,2, T1 · T2 = [ta,1, tb,2]. Given a set of pairwise disjoint
intervals T1 = [ta,1, tb,1], T2 = [ta,2, tb,2], . . . , Tq = [ta,q, tb,q], where ta,1 ≤ tb,1 <
ta,2 ≤ tb,2 < · · · < ta,q ≤ tb,q, we can define the concatenation of these intervals:
T1 · T2 · . . . Tq = [ta,1, tq,2].

We present now the definition of temporal graph. We assume that the vertex
set is not changing on the time domain, that is the vertex set is identical in each
timestamp.

Definition 2. A temporal graph G = (V,E, T ) consists of

1. A set V of vertices
2. A time domain T
3. A set E ⊆ V × V × T of temporal edges, where a temporal edge of G is a

triple {u, v, t}, with u, v ∈ V and t ∈ T .

E[t] denotes the set of active edges at timestamp t ∈ T , that is: E[t] =
{{u, v, t}|{u, v, t} ∈ E}.

Now, we introduce the definition of temporal path.

Definition 3. Given a temporal graph G = (V,E, T ), a temporal path in G
is an alternating sequence of vertices and temporal edges vp,1 ep,1 vp,2 ep,2

. . . ep,q−1 vp,q such that:
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1. vp,1, vp,2, . . . , vp,q are distinct vertices
2. For each i, with 1 ≤ i ≤ q − 1, ep,i = {vp,i, vp,i+1, ti} ∈ E, with ti ∈ T
3. For each i, with 1 ≤ i ≤ q − 1, it holds ti < ti+1.

Vertices vp,1 and vp,q in p are the start and end vertex of p. The length of p,
denoted by |p|, is the number of vertices in p. We refer to Point 3 of Definition
3 as the time constraint of a temporal path.

A vertex-colored temporal graph is defined by adding a coloring to the ver-
tices of a temporal graph.

Definition 4. Gc = (V,E, T , c) is a vertex-colored temporal graph, where G =
(V,E, T ) is a temporal graph and c : V → C is a function that assigns a color
from set C to each vertex in V .

We can now define the concept of colorful set of vertices.

Definition 5. Given a vertex-colored temporal graph Gc = (V,E, T , c), a set
V ′ ⊆ V is colorful if all the vertices in V ′ have distinct colors.

A temporal path in a vertex-colored temporal graph Gc = (V,E, T , c) is
colorful if all its vertices have distinct colors. Now, we are able to define the
problem we are interested into.

Problem 1. Maximum Colorful Path in a Temporal Graph (Max CPTG)
Input: A vertex-colored temporal colored graph G = (V, T , E, c).
Output: A colorful temporal path in G that includes the maximum number of
colors (that is it has maximum length).

3 Inapproximability of Max CPTG

In this section we prove that the Max CPTG problem cannot be approximated
within a factor O(|V | 1

2−ε), unless P = NP . We prove this result by giving an
approximation preserving reduction from the Maximum Independent Set problem
(denoted by Max IS). For details on approximation preserving reductions see
[20]. The Max IS problem, given a graph GI = (VI , EI), where |VI | = n and
|EI | = m, asks for an independent set I ⊆ VI of maximum size (we recall that I
is an independent set if for u, v ∈ I, it holds that {u, v} /∈ EI).

Next, we describe our approximation preserving reduction from Max IS to
Max CPTG. Given an instance GI = (VI , EI) of Max IS, we define a corresponding
vertex-colored temporal graph G = (V, T , E, c), which is an instance of Max
CPTG (an overview of G = (V, T , E, c) is given in Fig. 1).

For each vi ∈ VI , 1 ≤ i ≤ n, V contains a set Vi of n + 1 vertices: Vi =
{vi,x : 0 ≤ x ≤ n}. Furthermore, V contains an additional set of vertices Vn+1 =
{vn+1,x : 0 ≤ x ≤ n}. The vertex set V of G is defined as follows: V =

⋃n+1
i=1 Vi.

The time domain T consists of the concatenation of n + 1 time intervals
T (V1), . . . , T (Vn), T (Vn+1), where each T (Vi), 1 ≤ i ≤ n + 1, is associated with
vertex set Vi. The idea is that only edges connecting vertices of Vi are active in
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Fig. 1. An overview of the temporal graph G = (V, T , E, c) associated with GI . Each
box contains the set Vi of vertices, 1 ≤ i ≤ n+1, and the path p(Vi); the temporal edges
are active in the time interval T (Vi) (on the left of the box). Each vertex is labeled
on the left with its name, on the right with its color. We assume that {v1, v2} ∈ EI ,
hence c(v1,2) = c(v2,1) = c1,2, {v1, vn} /∈ EI , hence c(v1,n) = an

1 , c(vn,1) = a1
n and

{v2, vn} ∈ EI , hence c(v2,n) = c(vn,2) = c2,n.

interval T (Vi), except for the last timestamp. The interval T (Vi), 1 ≤ i ≤ n + 1,
is defined as follows:

T (Vi) = [(n(i − 1) + i, (n + 1)i].

Notice, for example, that T (V1) = [1, n + 1] and T (V2) = [n + 2, 2n + 2] and
so on. By construction, the intervals T (Vi), 1 ≤ i ≤ n+1, are disjoint. The time
domain T is then the concatenation of intervals T (V1), T (V2), . . . , T (Vn+1), that
is T = T (V1) · T (V2) · . . . · T (Vn) · T (Vn+1).

The color function c : V → C, is defined over the following set C of colors:
C = {ci,0 : 1 ≤ i ≤ n+1}∪{ci,j : {vi, vj} ∈ EI ∧ i < j}∪{aq

i : 1 ≤ i, q ≤ n+1}.
Essentially, each color ci,j encodes an edge {vi, vj} ∈ E, with 1 ≤ i < j ≤ n,

each color aq
i , 1 ≤ q ≤ n, encodes the fact that vi is not adjacent to vertex vq.

Notice that aq
i �= aq

i .
Now, we define the function c. For the vertices in Vi, with 1 ≤ i ≤ n, c is

defined as follows:

– c(vi,0) = a0
i

– c(vi,x) = ci,x, if {vi, vx} ∈ E and 1 ≤ i < x ≤ n
– c(vi,x) = cx,i, if {vi, vx} ∈ E and 1 ≤ x < i ≤ n
– c(vi,x) = ax

i , 1 ≤ i, x ≤ n, if {vi, vx} /∈ E
Notice that c(vi,i) = ai

i, for each i with 0 ≤ i ≤ n, as we assume that GI does
not contain self loops.
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For the vertices of Vn+1, the function c is defined as follows: c(vn+1,x) =
an+1,x, 0 ≤ x ≤ n.

Next, we define the set of temporal edges of G. For each time interval T (Vi),
1 ≤ i ≤ n+1, G contains a colorful temporal path p(Vi) induced by the vertices
vi,x with 0 ≤ x ≤ n. The temporal edges active in interval T (Vi) are defined as
follows. At timestamp t = n(i−1)+i+x, with 0 ≤ x ≤ n−1, {vi,x, vi,x+1, t} ∈ E;
notice that {vi,x, vi,x+1, t} is the only active temporal edge of G at timestamp t.

The temporal path p(Vi) resulting from these edge is then:

p(Vi) = vi,0 {vi,0, vi,1, n(i − 1) + i} vi,1 {vi,1, vi,2, n(i − 1) + i + 1} . . .

. . . {vi,n−1, vi,n, ni + i − 1} vi,n

Notice that, since by construction two intervals T (Vi), T (Vj), 1 ≤ i < j ≤
n, are disjoint, the colorful temporal paths p(Vi), p(Vj) are active in disjoint
intervals.

The set E contains also temporal edges defined to connect temporal colorful
paths p(Vi), 1 ≤ i ≤ n. At timestamp t = (n + 1)i, 1 ≤ i ≤ n, the following
temporal edges belong to E:

– {vi,n, vz,0, t}, with 1 ≤ i < z ≤ n, such that edge {vi, vz} /∈ EI

– {vi,n, vn+1,0, t}

This completes the definition of the vertex-colored temporal graph G =
(V,E, T , c). We prove now a property of G.

Lemma 1. (�) Let GI = (VI , EI) be an instance of Max IS and let G =
(V, T , E, c) be the corresponding instance of Max CPTG. Then:

1. Each temporal path p(Vi), with 1 ≤ i ≤ n + 1, is colorful
2. The vertices in temporal paths p(Vi), p(Vj), with 1 ≤ i < j ≤ n and {vi, vj} /∈

EI , have different colors.

Now, we show how to construct in polynomial time a solution of Max CPTG
from a solution of Max IS.

Lemma 2. Let GI = (VI , EI) be an instance of Max IS and let G = (V, T , E, c)
be the corresponding instance of Max CPTG. Given a solution I ⊆ VI of Max IS,
we can construct in polynomial time a solution of Max CPTG of length at least
(|I| + 1)(n + 1).

Proof. Consider an independent set I = {vi,1, vi,2, . . . , vi,b} of VI , where i1 <
i2 < · · · < ib. Then define a solution p of Max CPTG as follows. The temporal
path p includes the colored temporal paths p(Vix) in interval T (Vix), 1 ≤ x ≤ b,
and the temporal colored path p(Vn+1) in interval T (Vn+1). These colored paths
are connected in p by the following temporal edges: p(Vix) and p(Vix+1), 1 ≤ x ≤
b − 1 are connected by temporal edge {vix,n, vix+1,0, t} with t = (n + 1)ix; p(Vib)
and p(Vn+1) are connected by temporal edge {vib,n, vn+1,0, t} with t = (n+1)ib.
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Since vi,x, vi,y ∈ VI , with 1 ≤ x < y ≤ b, are not adjacent in GI , it follows
from Lemma 1 that the vertices in p(Vix) and p(Viy ) do not share any color.
Since each vertex in p(Vn+1) has a color distinct from the other vertices in V ,
it follows that p is colorful. Furthermore, notice that by construction, since the
paths p(Vi), 1 ≤ i ≤ n + 1, are defined over disjoint intervals, p is a temporal
path. Finally, notice that p consists of |I| + 1 paths p(Vi) each of length n + 1,
thus concluding the proof. 	


A solution of Max IS can be computed in polynomial time starting from a
solution of Max CPTG.

Lemma 3. (�) Let GI = (VI , EI) be an instance of Max IS and let G =
(V, T , E, c) be the corresponding instance of Max CPTG. Given a solution of
Max CPTG of length (q + 1)(n + 1), we can construct in polynomial time an
independent set of GI of size at least q.

The inapproximability of Max CPTG follows from Lemma 2, Lemma 3 and
from the inapproximability of Max IS [24].

Theorem 1. (�) Max CPTG is not approximable within a factor O(|V |1/2−ε)
unless P = NP.

4 A Heuristic for Max CPTG

In this section, we present our efficient heuristic, called Colorful Temporal Path
Local Search (CTPLS), for Max CPTG problem. CTPLS consists of two phases:
(1) A greedy preliminary step that computes an initial solution, (2) A local
search step that looks for a possible improvement of the solution.

We start by describing the preliminary greedy step. Given a vertex-colored
temporal graph Gc = (V,E, T , c), first the step computes a segmentation of the
time domain T in |C| disjoint intervals of equal length. Then it greedily looks for
a temporal edge to be added to the path p computed so far in each interval. The
path p is initialized as a temporal edge in the first interval. In the next intervals,
the greedy step looks for a temporal edge that connects the last vertex of p to a
vertex v that is not included in p.

Then CTPLS applies a local-search strategy, consisting of two different pos-
sible modifications of p (unless p contains all the colors).

1. LS1 (Edge replacement): starting from the first edge of p, a temporal edge
{u, v, t} is possibly replaced with two temporal edges {u, x, t1}, {x, v, t2},
with t1 < t2; notice that vertex x is not already in p and it must be colored
differently from the vertices already in p; furthermore, all the temporal edges
of the new path must satisfy the time constraint.

2. LS2 (Vertex replacement): starting from the first vertex in the solution, it
possibly replaces a vertex x in p and the temporal edges incident in x, with
two vertices y and z and three temporal edges so that the new path satisfies
the time constraint. Notice that y and z must not be in p and must have
different colors from the vertices of p (except for the replaced vertex x).
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5 Experimental Results

In this section, we present an experimental evaluation of CTPLS on synthetic
and real networks. The CTPLS heuristic described in Sect. 4 is implemented in
Python 3.7 using the NetworkX package for managing networks [14]. We perform
the experiments on MacBook-Pro (OS version 11.4) with processor 2.9 GHzIntel
Core i5 and 8 GB 2133 MHz LPDDR3 of RAM.

Synthetic Networks. In the first part of our experimental evaluation, we
analyse the performance of CTPLS on synthetic datasets. We start by describing
the synthetic datasets, then we discuss the results of CTPLS.

Datasets. Each synthetic graph is built as follows. First, we generate a temporal
graph consisting of 500 vertices over 90 timestamps, such that the topology of the
graph is based on one of the following models: Erdös-Renyi (ER) with parameter
p = 0.1, Erdös-Renyi with parameter p = 0.4 and Barabasi-Albert (BA) with
parameter equal to 10. |C| vertices of the graph are then chosen randomly,
assigned distinct colors and it is defined a temporal path that connects them.
This ensures that each synthetic graph contains an optimal solution including
all the colors in C, thus allowing to compare the solutions returned by CTPLS
with an optimal one. Then each of the remaining vertices of the graph is assigned
uniformly random colors from C. We consider the following sizes of C: 10, 20,
30 and 50 colors. For each graph model and for each size of C considered, we
generated 20 independent synthetic graphs.

Outcome. We present in Table 1 the results of our experimental evaluation on
the synthetic datasets. In particular, we report the minimum, maximum, average
and standard deviation of the returned solutions of CTPLS over 20 instances for
each color set and each graph model. Furthermore, we report the average running
time (in seconds).

As reported in Table 1, the performances of CTPLS degrade with the increas-
ing of the number of colors. For the BA-based graphs, for example, for a set of
10 colors the returned solutions contain on average at least 91% of the colors in
C, for 50 colors the average number of colors contained in the returned solutions
is 17.2 out of 50. The experimental results show also that the performances of
CTPLS depend on the specific graph models. For the ER model with p = 0.4,
the solutions returned are within 84% of the optimal solutions (for 50 colors).
The performances are worse on ER with p = 0.1, within 28.6% of the optimal
solution (for 50 colors). For the BA model, the solutions returned by CTPLS are
close to the optimum only for the case of 10 colors (within 91% of the optimal
solution) and are on average 83.75%, 47.5% and 34.4% for 20, 30 and 50 colors,
respectively. It has to be pointed out that the Max CPTG problem is hard to
approximate, as shown in Sect. 3, so it is not surprising that for some datasets
the lengths of the solutions returned by CTPLS are not close to the optimum.

The method is always fast on synthetic datasets, requiring at most 0.68
seconds average running time (ER model with p = 0.4 and 50 colors).
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Table 1. Performance of CTPLS on synthetic datasets, varying colors from 10 to 50.
We report minimum, maximum, average and standard deviation over 20 independent
synthetic networks for each different color set. The average running time is in seconds.

BA Color 10 Color 20 Color 30 Color 50

Path Time Path Time Path Time Path Time

Min 8 – 10 – 12 – 14 –

Max 10 – 16 – 17 – 21 –

Average 9.1 0.06 13.1 0.08 14.25 0.11 17.2 0.13

SD 0.79 – 1.41 – 1.65 – 2.28 –

ER p = 0.1 Color 10 Color 20 Color 30 Color 50

Path Time Path Time Path Time Path Time

Min 9 – 11 – 9 – 5 –

Max 10 – 19 – 25 – 30 –

Average 9.85 0.09 16.75 0.15 18.45 0.14 14.3 0.11

SD 0.37 – 1.86 – 4.67 – 8.35 –

ER p = 0.4 Color 10 Color 20 Color 30 Color 50

Path Time Path Time Path Time Path Time

Min 10 – 19 – 25 – 38 –

Max 10 – 20 – 30 – 46 –

Average 10 0.24 19.8 0.35 28.3 0.66 42.4 0.68

SD 0 – 0.41 – 1.17 – 1.82 –

Real Networks. In the second part of our experimental evaluation, we analyse
the performance of CTPLS on four real-world datasets.

Datasets. We consider four different real-world temporal graphs taken from
SNAP [17] for testing CTPLS1: College messages (CollegeMsg), Email EU core
(email-Eu-core-temporal), Bitcoin alpha (soc-sign-bitcoinalpha) and Bitcoin otc
(soc-sign-bitcoinotc). These temporal graphs are not colored, hence, following
the same approach of [19], we assigned uniformly random colors from a set of
30 colors and from a set of 50 colors. We consider two variants for each of
this network, since the length of an optimal solution of Max CPTG on these
graphs is unknown. Hence, in order to evaluate the results of CTPLS, for each
real-world temporal graph we consider the original graph (denoted by NO-OP)
and a modified temporal graph, called YES-OP, obtained by adding a temporal
colorful path that contains each colors in C. This latter temporal graph contains
an optimal solution of length |C|.

The first dataset, CollegeMsg, is taken from private messages sent on an
online social network at the University of California, Irvine, where temporal
edges represent private messages sent between users at a given time. The dataset

1 http://snap.stanford.edu/data/.

http://snap.stanford.edu/data/
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contains 59835 temporal interactions, 1899 vertices and time domain T of length
|T | = 58911. The email-Eu-core-temporal dataset is generated based on incoming
and outgoing emails between members of a large European research institution,
where temporal edges represent emails sent between users at a given time. This
dataset contains 332334 temporal interactions, 986 vertices and time domain T of
length |T | = 207880. soc-sign-bitcoinalpha and soc-sign-bitcoinotc are datasets
of members who trade using Bitcoin on platforms called Bitcoin Alpha and
Bitcoin OTC, respectively, to prevent transactions with risky users. A temporal
edge {u, v, t} represents a rate of member v given by member u at time t. soc-
sign-bitcoinalpha contains 24186 temporal interactions, 3783 vertices and time
domain T of length |T | = 1647, soc-sign-bitcoinotc contains 35592 temporal
interactions, 5881 vertices and time domain T of length |T | = 35445.

Outcome. In Table 2 we report the number of colors included in the solutions
returned by CTPLS and the running time (in minutes) for the two groups of
real datasets we considered (NO-OP and YES-OP). As shown in Table 2, for the
NO-OP networks with 30 colors, CTPLS found in the worst case a path contain-
ing 20 out of 30 colors (soc-sign-bitcoinalpha) and in the best case an optimal
solition (email-Eu-core-temporal). For the other two networks, CollegeMsg and
soc-sign-bitcoinotc networks, CTPLS found suboptimal solutions that contains
a significative number of colors, 27 and 25 colors out of 30, respectively.

For the YES-OP networks with 30 colors, we don’t report the result for
email-Eu-core-temporal, as CTPLS was able to find an optimal solution for this
dataset in NO-OP network. The results are not significantly different from the
corresponding NO-OP datasets. CTPLS found in one case, the CollegeMsg, a
path with the same number of colors as for the corresponding NO-OP network.
In one case, (soc-sign-bitcoinotc) CTPLS found a larger number of colors (27
instead of 25 out of 30), in another case (soc-sign-bitcoinalpha) CTPLS found a
slightly smaller number of colors (19 instead of 20 out of 30 colors). This decreas-
ing is due to the fact that CTPLS considers a temporal edge that belongs to the
YES-OP instance and not to the NO-OP instance and this prevents CTPLS to
include all the vertices of the solution of the NO-OP instance.

For the NO-OP networks with 50 colors, CTPLS found in the worst case a
path containing 36 colors (soc-sign-bitcoinalpha) and in the best case (email-
Eu-core-temporal) 49 out of 50 colors. For the other two networks, CollegeMsg
and soc-sign-bitcoinotc networks, CTPLS found 38 and 40 colors out of 50,
respectively. For networks with 50 colors, CTPLS found the same number of
colors in both YES-OP and NO-OP networks.

The experiments on real-world datasets confirm that CTPLS is able to pro-
duce suboptimal results even for networks with 50 colors. For the networks with
30 colors, CTPLS found solutions with at least 63% colors compared to the
optimum (soc-sign-bitcoinalpha) and in one case an optimal solution. For the
networks with larger number of colors (50 colors) CTPLS found solutions with
at least 72% and at most 98% colors compared to the optimum. Except for
(soc-sign-bitcoinalpha), the quality of solution returned by CTPLS starts slowly
to degrade going from 30 colors to 50 colors. However, this deterioration is less
pronounced than in synthetic datasets.
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As for the running time, CTPLS is able to find a solution of Max CPTG
in reasonable time, even for a set of 50 colors (notice that this value is larger
than what has been considered in [19]). The running time varies considerably
depending on the size of the temporal network and, in particular, on the length
of the time domain. CTPLS indeed has highest running time on CollegeMsg and
email-Eu-core-temporal whose time domain consists respectively of 207880 and
58911 timestamps. On the other hand, CTPLS requires at most 0.51 min on
soc-sign-bitcoinalpha (NP-OP, 50 colors), which has the smallest time domain
(1647 timestamps).

Table 2. Performance of CTPLS on real datasets. The value of the time (in minutes)
and the value of return solution (path) for the Max CPTG problem is reported for two
different color set (30 and 50).

NO-OP Color 30 Color 50

Path Time Path Time

CollegeMsg 27 144.71 38 27.91

email-Eu-core-temporal 30 52.60 49 129.05

soc-sign-bitcoinalpha 20 0.34 36 0.51

soc-sign-bitcoinotc 25 10.98 40 10.35

YES-OP Color 30 Color 50

Path Time Path Time

CollegeMsg 27 149.68 38 29.09

email-Eu-core-temporal – – 49 148.33

soc-sign-bitcoinalpha 19 0.16 36 0.22

soc-sign-bitcoinotc 27 6.34 40 9.82

6 Conclusion

In this paper, we have introduced a problem called Max CPTG for finding a
colorful temporal path of maximum length in a vertex-colored temporal graph.
We have studied the approximation complexity of the problem and we have
provided an inapproximability lower bound. Then we have presented a heuristic
(CTPLS) based on a greedy preliminary step and local search. We have provided
an experimental evaluation, both on synthetic and real-world graphs.

Future works include the application of CTPLS to larger temporal networks.
It would also be interesting to consider whether it is possible to apply the alge-
braic approach proposed in [19] to the Max CPTG problem and compare its
performance with CTPLS.
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