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Abstract. Low Earth Orbit (LEO) satellites are an important part of
Space-Air-Ground Integrated Networks (SAGIN), which play an irre-
placeable role in providing global communication and emergency com-
munication. With the development of phased array technology, many
satellites begin to try to use staring beam technology, which can make
the beam serve a hot spot on the ground as long as possible by adjusting
its phased array parameters, so as to reduce the impact of fast switching
on the service performance of LEO satellites. In the satellite service time,
how to balance the load of each satellite and meet the communication
needs of hot spots is an important problem to be considered. Excel-
lent beam allocation strategy can reduce the network handover rate and
signaling overhead. In this paper, the satellite staring beam scheduling
problem is transformed into a two-dimensional model, and we propose a
novel satellite beam scheduling strategy based on multi-agent reinforce-
ment learning that aims to maximize system performance. Each satellite
is regarded as an individual agent, and the decision is to provide commu-
nication beam for the current hot spot area. Compared with the beam
allocation algorithm based on KM, simulation results show that the pro-
posed strategy can effectively reduce the handoff rate of hot spots when
the coverage is satisfied.

Keywords: Low orbit satellite · Multi-agent reinforcement learning ·
Staring beam scheduling

1 Introduction

Satellite communication can provide seamless wireless signal coverage to support
and expand ground communication, which has become an important research
direction of 5G and future 6G [1–3]. With the large-scale deployment of OneWeb,
StarLink, TeleSat and other mega constellations, LEO satellite shows its advan-
tages in reducing communication delay, providing wide area coverage, and not
affected by the ground environment. However, due to the high mobility of LEO
satellite, terminals need to switch frequently to maintain the connection of com-
munication links. This will increase the signaling overhead and drop call rate
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of the system, and seriously affect the system throughput. Therefore, more and
more scholars have studied the handoff problem of LEO satellite, hoping to
reduce the impact of high-speed mobility.

According to whether the direction angle of satellite beam in LEO system is
adjustable, LEO system is usually divided into two types: one is satellite fixed
cell system (SFCS), the other is earth fixed cell system (EFCS) [4]. EFCS is
also called staring beam satellite system. In [5], a new satellite handoff strategy
based on the potential game of mobile terminal in LEO satellite communication
network is proposed. In the software defined satellite network (SDSN) architec-
ture, the author regards satellite handoff as a bipartite graph and proposes a
terminal random-access algorithm based on the target of user space maximiza-
tion. In [6], a fixed beam LEO satellite model is introduced, and the author
proposes a method to analyze the throughput of fixed beam according to its
coverage time. In [7], the authors propose a performance comparison of fixed
and dynamic channel allocation techniques in a LEO satellite system, and they
study the case of earth-fixed cell systems with different kinds of fixed and mobile
users. In [8], the author presented a comprehensive literature review on applica-
tions of deep reinforcement learning (DRL) in communications and networking.
In [9], a dynamic channel reservation (DCR) strategy based on deep Q network
is proposed for multi-service LEO satellite communication system, which can
improve the overall quality of service (QoS) of the system. Inspired by this, we
will try to solve the staring beam scheduling problem by reinforcement learning.

The rest of the paper is organized as follows. In Sect. 2, we introduce the LEO
satellite beam scheduling system model and an optimal problem is proposed
under the constraints of the number of satellite beams and satellite capacity. In
Sect. 3, we solve the problem by using a multi-agent DQN learning algorithm.
Simulation results are analyzed in Sect. 4 and conclusions are drawn in Sect. 5.

2 System Model

We consider the problem of LEO satellite beam scheduling during satellite oper-
ation, as shown in Fig. 1. The set of satellites is denoted by M = {1, 2, ...,M}.
In this paper, the satellite is equipped with a multi beam phased array antenna
system, so it can gaze at one or more hot spots by adjusting the parameters of
the antenna array. Each satellite can form up to K beams, which is denoted by
K = {1, 2, ...,K}. The earth’s surface is divided into a fixed number of hot spots
according to the degree of user service demand, and the set of communication
hot spots is denoted by N = {1, 2, ..., N}. Figure 1 shows the coverage of two
orbiting satellites to the hot spot area on the ground. The yellow dotted line
is the satellite orbit. From t1 to t2, area A is within the coverage of Leo1, so
Leo1 can adjust the antenna to maintain the connection to area A. At t3, leo1
exceeds the visible range of area A and starts to serve area F. At t2, because
both leo1 and leo2 are within the visible range of area A, that is, a region may
have multiple satellites covering at the same time. Also when the service satel-
lite of a region leaves, it is necessary for this region to access another satellite to
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Fig. 1. LEO satellite system model of staring beam.

ensure that the communication will not be interrupted. Therefore, staring beam
satellite system mainly involves global satellite beam scheduling problem.

In order to simplify the model, this paper uses a two-dimensional plane model
to model the staring beam scheduling problem, as shown in Fig. 2. A series of
hot spots (red spots) are evenly distributed in the plane area. The satellite (blue
dot) moves along the fixed orbit (yellow dotted line) at the same speed. When
the satellite moves beyond the plane area, it will appear from the other side
of the map and continue to move along the track. Each satellite can provide
staring services for one or more regions at the same time, which is constrained
by the maximum number of beams and the elevation angle between the satellite
and the staring region. And each region can also accept the service of multiple
satellites.

When the satellite serves a hot spot area, this paper assumes that the satellite
can completely cover this area to avoid the discussion of incomplete beam cov-
erage. When dealing with staring beam scheduling, there are three main factors
considered in this paper:

1) Satellites should provide services to the nearest hot spots as far as possible
to improve the service quality;

2) When the satellite moves out of a hot spot area, other satellites should con-
tinue to cover the area to reduce the drop rate of the area;

3) The satellite load capacity and the capacity of hot spot area should be consid-
ered in beam scheduling. If the satellite capacity is not enough to fully serve
the current region, other nearby satellites should participate in the service to
ensure the service quality.

Assume that the capacity of the satellite is U = {u1, u2, . . . , uN}, the remain-
ing beam of each satellite is B = {b1, b2, . . . , bM}, and the capacity requirement
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Fig. 2. Two dimensional model of staring beam satellite system.

of hot spot area is L = {l1, l2, . . . , lN}. When satellite i is connected with hot
spot j, satellite i will provide services for hot spot j as much as possible. At this
time, the remaining capacity of satellite i is:

s′
i = si − min (ui, lj) (1)

the remaining capacity requirement of hot spot j is:

u′
j = uj − min (ui, lj) (2)

and the number of remaining beams of satellite i is:

b′
i = bi − 1 (3)

Considering the two-dimensional plane model we built, the elevation rela-
tionship between the hot spot area and the satellite will be transformed into the
Euclidean distance between them. If the satellite i coordinate is (xi,1, xi,2) and
the hot spot area j coordinate is (yj,1, yj,2), then the Euclidean distance between
the satellite and the hot spot area can generate the weight matrix of M rows
and N columns:

W =

⎡
⎢⎢⎢⎣

w11 w12 · · · w1N

w21 w22 · · · w2N

...
...

. . .
...

wM1 wM2 · · · wMN

⎤
⎥⎥⎥⎦ (4)
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where wij =
√∑2

k=1 (xik − yjk)
2
, xi ∈ X, yj ∈ Y . Then we introduce the beam

allocation matrix F of satellite and hot spot area as follows:

F =

⎡
⎢⎢⎢⎣

f11 f12 · · · f1N
f21 f22 · · · f2N
...

...
. . .

...
fM1 fM2 · · · fMN

⎤
⎥⎥⎥⎦ (5)

where fm,n ∈ {0, 1}, fm,n = 1 means that satellite m allocates a beam to hot
spot area n. The service radius of the satellite is R. And the matrix F can be
obtained by:

fm,n =
{

0, wm,n > R, or um = 0, or lj = 0
1, others

(6)

We introduce ci,j to represent the capacity of satellite i allocated to hot spot
area j, then the capacity allocation matrix C can be expressed as:

C =

⎡
⎢⎢⎢⎣

c11 c12 · · · c1N
c21 c22 · · · c2N
...

...
. . .

...
cM1 cM2 · · · cMN

⎤
⎥⎥⎥⎦ (7)

In this paper, incomplete service rate, handover rate and insufficient capacity
rate are used to measure the performance of beam allocation. Incomplete service
rate Pb refers to the proportion of hot spot area whose business requirements
can’t be met. It can be given by:

Pb =

∑
j∈N

gj

N
(8)

where gj is:

gj =

{
0,

∑
i∈M

Cij < lj

1, others
(9)

Handover rate Ph is used to measure the frequency of satellite switching hot
spots in the service process, which is given by:

Ph =

∑
n∈N

∑
m∈M

ht
m,n

∑
n∈N

∑
m∈M

f t
m,n

(10)

where ht
m,n is:

ht
m,n =

{
0, f t

m,n = f t+1
m,n

1, others (11)



28 H. Zhu et al.

Pc is the insufficient capacity rate of hot spot area demand, which is a sup-
plement to Pb. It can be expressed as:

Pc =

∑
i∈M

∑
j∈N

ci,j

∑
j∈N

lj
(12)

Then the staring beam scheduling problem is formulated as follows:

min
cm,n

P = α1Pb + α2Ph + α3Pc (13)

s.t.
∑
n∈N

fm,n ≤ K, ∀m ∈ M (13a)

∑
n∈N

cm,n ≤ um, ∀m ∈ M (13b)

fm,n ∈ {0, 1}, ∀m ∈ M, ∀n ∈ N (13c)
cm,n ∈ [0, um], ∀m ∈ M, ∀n ∈ N (13d)

where α1, α2, and α3 are positive parameters.

3 Multi-agent Deep Q-Learning Algorithm

Deep Q-Learning (DQN) algorithm is a classic and effective reinforcement learn-
ing algorithm, which can solve complex problems in many communication sce-
narios. We extend the deep Q-learning to the multi-agent cases to solve the
problem of staring beam scheduling. In the multi-agent DQN model, the learn-
ing and decision of each agent are realized by DQN algorithm. sm,k

e,t , am,k
e,t , rm,k

e,t ,
and sm,k

e,t+1 represent the state, action, reward and the next state of agent (satel-
lite) i at time t of the e-th training round. The online Q function fitted by neural
network and the objective Q function are randomly initialized. With the contin-
uous interaction between the agent and the environment, the generated action
sequence is stored in the experience pool. In order to minimize the error function
L (θm), a batch of sequences are randomly selected from the experience playback
pool every certain interval. L (θm) is given by

L (θm) =
(

rmj + γ max
Ai

Qm
(
smj+1, a

m; θm−) − Qm
(
smj , am

j ; θm
))2

(14)

where γ is the discount factor, θm− is the parameters of target value network,
and θm is the parameters of online value network.

The multi-agent deep Q-learning algorithm is shown in Algorithm 1. State
sme,t =

[
W i

e,t, a
m
e,t−1, a

m
e,t−2, C

m
e,t

]
represents the allocation state of the k-th beam

of satellite m of the e-th round during training at the time t. The reward for
satellite m performing action am,k

e,t under the k-th beam at the time t in the e-th
round is rm,k

e,t . and it can be expressed as

rm,k
e,t = −r lm,k

e,t − a × r bm,k
e,t + b × r cm,k

e,t (15)
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Algorithm 1. Multi-Agent Deep Q-Learning Algorithm
1: Initilization:

• Satellite capacity set S, hot spot area capacity demand set U , satellite beam
number set B, satellite coverage radius R, satellite geographic coordinates
(xi,1, xi,2), i ∈ M,hot spots area geographic coordinate (yj,1, yj,2), j ∈ N ;

• Initialize the status of each satellite sm,k
1,1 , m ∈ M, k ∈ K;

• Initialize the action value function of each agent with random parameters
Qi

(
si, ai; θi

)
, i ∈ M;

• epoch = {1, 2, ..., E} , time = {1, 2, ..., T};

2: for e ∈ epoch do
3: for t ∈ time do
4: for k ∈ K do
5: for m ∈ M do
6: Using ε-greedy based exploration strategy πε

(
sm,k

e,t

)
to get

action am,k
e,t , the reward rm,k

e,t , and the transition state sm,k
e,t+1,

store sequence
(
sm,k

e,t , am,k
e,t , rm,k

e,t , sm,k
e,t+1

)
in Dm,

update U , L, F , and C;
7: end for
8: if t > 200 and t%5 == 0 then
9: for m ∈ M do

10: Select a batch of sequence
(
sm,k

j , am,k
j , rm,k

j , sm,k
j+1

)
from

Dm randomly;

11: Set ym
j =

{
rm

j

rm
j + γ maxAm Qm

(
sm

j+1, a
m; θm−) ;

12: L (θm) =
(
yj − Qm

(
sm

j , am
j ; θm

))2
;

13: Gradient descent update θm from L (θm);
14: update θm− = θm;
15: end for
16: end if
17: end for
18: end for
19: end for

where a is the penalty coefficient of disconnection, and b is the reward coefficient
of connection.

Here r lm,k
e,t is the distance penalty, which aims to make the satellite serve the

nearest area as far as possible. r bm,k
e,t is the disconnection penalty and r cm,k

e,t is
the connection reward. In this way, the handover rate can be reduced. And the
three parameters is given by

r lm,k
e,t =

√√√√
2∑

k=1

(xik − yjk)
2
, xi ∈ X, yj ∈ Y (16)
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r bm,k
e,t =

{−La ct−1
m,n = 1 and ctm,n �= 1

0 else (17)

r cm,k
e,t =

⎧
⎪⎨
⎪⎩

√
2∑

j=1

(xm,j − yn,k)
2
, xm ∈ X, yan

∈ Y ct−1
m,n = ctm,n = 1

0 else
(18)

By synthesizing the three kinds of rewards and adjusting their coefficients, the
agent is expected to learn the corresponding strategies to meet the performance
requirements.

4 Simulation Results

In this section, we present the simulation results of proposed strategy what we
called multi-agent DQN and compare it with Beam scheduling algorithm based
on KM. In this paper, we consider that a reasonable beam scheduling scheme
should minimize the sum of the connection distances between the satellite and
the hot spot region, that is, to find the minimum value of the edge weight of
the bipartite graph G = (V,E). So the problem is transformed into the optimal
matching of bipartite graph, which can be solved by the classical KM algorithm.

The simulation parameters are summarized in Table 1. We consider a square
area with 500 km side length, where hot spot areas are randomly distributed
within the area. When the number and capacity of satellites are fixed, we focus
on the impact of the maximum number of beams and the number of hot spots
on the algorithm performance. In terms of satellite capacity, refer to StarLink
single satellite capacity (17 Gbps) and Iridium system single satellite capacity
(7.5 Gbps), the satellite capacity is set to 3 Gbps and the maximum capacity
demand of hot spot area is 1 Gbps.

Table 1. Simulation parameters

Parameter Value

Number of satellites M 5

Number of satellite beams K 3

Maximum service range of satellite R 250 km

Maximum capacity of satellite smax 3 Gbps

Number of hot spots N 15

Maximum capacity demand of hot spots umax 1 Gbps

Area size La2 250 × 250 km2

Satellite velocity v 10 km/s

Simulation duration T 300 s
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Fig. 3. The performance of the system varies with the penalty coefficient a of discon-
nection.

Fig. 4. The performance of the system varies with the reward coefficient b of connection.
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In Fig. 3 and Fig. 4, we compared the effect of the penalty coefficient a of
disconnection and the reward coefficient b of connection on the beam scheduling
performance. It can be found that when a = 1.0 and b = 0.75, the handover
rate of the system reaches the lowest, and the rate of incomplete service and
insufficient capacity rate are also at a low value. So we set a = 1.0 and b = 0.75
in the following simulation.

Figure 5 shows the influence of the number of beams of satellite on the
handover rate, incomplete service rate and insufficient capacity rate. With the
increase of the maximum number of beams, the performance of KM algorithm
and multi-agent DQN algorithm is improved. When the number of beams is
small, the performance of KM algorithm is better than that of multi-agent DQN
algorithm. However, with the increase of the number of beams, their coverage
performance is almost the same, but the multi-agent DQN is significantly bet-
ter than KM algorithm in the handover rate. This is because the punishment
of satellite switching is strengthened in the training, so the satellite connection
strategy is adjusted.

Fig. 5. The performance of the system varies with the maximum number of beams.

Figure 6 shows the influence of the number of hot spot area on the handover
rate, incomplete service rate and insufficient capacity rate. As the number of
hot spots increases, the performance of both algorithms decreases. The handover
rate of multi-agent DQN algorithm is always better than that of KM algorithm.
But its coverage performance is not as good as KM. In general, by adjusting the
reward setting, the reinforcement learning algorithm achieves better performance
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Fig. 6. The performance of the system varies with the number of hot spot area.

in the handover rate. In the future, when the number of satellites is increasing,
the coverage performance will not be the main consideration, while reducing the
handover rate can greatly reduce the signaling overhead of the system, which
indicates that multi-agent DQN algorithm is a desirable staring beam scheduling
algorithm.

5 Conclusion

In this paper, we have investigated the staring beam scheduling problem in LEO
satellite network. By establishing a two-dimensional model, an optimal problem
is proposed under the constraints of the number of satellite beams and satellite
capacity. We have solved the problem by multi-agent DQN algorithm. Compared
with the beam scheduling algorithm based on KM, multi-agent DQN algorithm
can adjust the weight to change the scheduling strategy to meet the optimization
requirements. Simulation results have shown that the proposed algorithm can
reduce the handover rate, which is of great significance to reduce the network
signaling overhead.
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