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Preface

Gene therapy for many investigators is an amazing technological platform for devel-
oping novel therapies against life-threatening diseases that are previously untreat-
able using traditional pharmaceuticals. It is highly unfortunate that controversies 
and ethical concerns also have been associated with gene therapy. As an example, 
the discovery of CRISPR-Cas9 and its application as a genome-editing tool has 
been transformative. It allows investigators quickly and more efficiently to modify 
genes which is invaluable for studying cellular functions and for developing thera-
peutics that addresses the underlying problems associated with diseases instead of 
treating their symptoms. In 2018, a scientist shocked and horrified the world by 
applying CRISPR to embryos in  vitro and creating the world’s first gene-edited 
human babies. Germ-line gene editing of humans has had a clear ethical line of cau-
tion, transparency, and rigorous oversight before it can be crossed because unfore-
seen consequences to the human genome could cascade throughout the generations. 
Since this and other controversies have been documented in scientific journals and 
disseminated to the public by news outlets, the ethics of gene therapy continues to 
be debated, and the social trust in gene therapy seems to be further eroded.

We sincerely hope 2021 marks a turning point in gene therapy. The rapid devel-
opment of novel vaccines in response to the COVID-19 pandemic has been unprec-
edented. As of September 27, 2021, over 390 million doses of both mRNA and 
adenoviral vaccines have been administered in the USA alone. In addition to show-
ing efficacy of greater than 94% for mRNA vaccines and protection against the delta 
variant, monitoring the safety of these vaccines has resulted in only rare cases of 
anaphylaxis. Once our global society recovers from the deaths due to COVID-19, 
we hope these exceptional achievements will be celebrated, mRNA vaccines will be 
recognized as the first therapeutics based on a non-viral gene therapy to be widely 
administrated in a clinical setting, and gene therapy will once again inspire other 
therapeutic advancements.

While the vaccines against COVID-19 appear to be a resounding success, other 
diseases could benefit from advancements in gene therapy. The purpose of this book 
is to highlight some of the latest developments and applications of RNA, CRISPR, 
and DNA to treat diseases ranging from cancers to degenerative disorders. This 
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book also features innovations of the delivery methods for nucleic acids ranging 
from nanodevices made from DNA and pseudo amino acids to viral vectors. We 
hope some of these proposed therapies can successfully transition from basic sci-
ence research to clinical trials resulting in new medical breakthroughs.

Akron, OH, USA� Yang H. Yun
Columbus, OH, USA � Kristine E. Yoder

Preface
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Therapeutic Potential of MicroRNAs 
and Their Nanoparticle-based Delivery 
in the Treatment of Liver Fibrosis
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Abstract  Chronic liver disease is a global health problem owing to its high mor-
bidity and the limited available treatment options. Liver fibrosis, the most common 
feature of chronic liver disease, is characterized by excessive accumulation of extra-
cellular matrix (ECM) in the liver, eventually leading to cirrhosis. Hepatic stellate 
cells (HSCs), the major contributors to hepatic fibrosis, undergo transdifferentiation 
from a quiescent to an activated/myofibroblastic state, resulting in the accumulation 
of ECM. MicroRNAs (miRNAs) are small noncoding RNAs that are involved in the 
regulation of gene expression at the post-transcriptional level. Because miRNAs 
mediate a broad range of biological functions, dysregulation of miRNAs is strongly 
associated with various diseases, including liver fibrosis. Therefore, modulation of 
miRNAs by supplementing or inhibiting them represents a novel therapeutic strat-
egy for liver fibrosis. With recent advances in our understanding of nanomedicines, 
nanoparticles are regarded as promising candidates for efficient delivery methods 
for miRNAs because of their biological and technical advantages. In this chapter, 
we review the pathogenesis of liver fibrosis, the roles of miRNAs in liver fibrosis, 
the therapeutic potential of miRNAs and their nanoparticle-based delivery for liver 
fibrosis, and the development of novel miRNA-based therapeutics for liver diseases.
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1  �Introduction

Liver is the largest internal human organ in adults and has vital roles in maintaining 
homeostasis by regulating metabolism, bile production, and detoxification [1]. The 
liver has the greatest regenerative capacity of any organ in the body. Even with 70% 
surgical removal (partial hepatectomy) of the liver mass, the remnant tissue has the 
ability to grow into the original mass and to recover its functions [2, 3]. Because of 
this outstanding capacity, the liver can self-repair and restore itself after mild injury. 
However, when the liver damage is repetitive and/or severe, the regenerative capac-
ity is impaired owing to massive death of hepatocytes, which triggers the prolifera-
tion of nonparenchymal cells, including hepatic stellate cells (HSCs), and replaces 
the damaged liver tissue [4, 5].

In the normal liver, HSCs are quiescent and function as the major storage facility 
for vitamin A metabolites known as retinoids [6]. However, when the liver is injured, 
HSCs undergo transdifferentiation from quiescent HSCs to activated/myofibroblas-
tic HSCs, which are the principal cell types that produce extracellular matrix (ECM) 
proteins in the liver [7]. Excessive deposition of fibrous ECM components replaces 
the parenchyma with fibrotic tissue, which causes severe structural and functional 
alterations, leads to liver dysfunction, and eventually develops into liver fibrosis and 
cirrhosis [4, 5]. Cirrhosis, an end-stage disease, results in liver failure in many 
patients, leading to high mortality worldwide [8, 9]. The global incidences of cir-
rhosis and other chronic liver disease has been estimated at 1.5 billion and accounts 
for two million deaths per year [9]. Hence, many researchers have focused on the 
clearance, deactivation, or inactivation of HSCs as a therapy because of the essential 
role that HSCs play in pathogenesis [10]. Nevertheless, the therapies available for 
liver fibrosis are still limited [11]. Therefore, further investigation and development 
into new therapeutic strategies for liver fibrosis/cirrhosis are urgently needed.

MicroRNAs (miRNAs) are a class of short (approximately 18–24 nucleotides) 
endogenous noncoding RNA molecules that regulate gene expression during post-
translation [12]. Since the discovery of miRNAs by Victor Ambros and his group in 
1993 [13], their biological importance has rapidly emerged in recent decades. 
Usually, miRNAs bind to the 3′ untranslated region (UTR) of their target mRNAs 
and result in the translational inhibition, degradation, or cleavage of miRNAs 
depending on the degree of complementarity [14]. As a single miRNA can target 
hundreds of messenger RNAs and a single messenger RNA can also be targeted by 
numerous miRNAs, miRNAs influence complex networks of signaling pathways 
associated with almost all biological/cellular processes, including cell growth, dif-
ferentiation, immune response, tissue remodeling, and cancer development [15–18]. 
Accumulating evidence has demonstrated that alterations in miRNA expression are 
intimately associated with the initiation and progression of human diseases, includ-
ing chronic liver disease [19–21]. Consequently, modulating miRNA expression 
could be a key strategy for developing novel therapies for liver fibrosis/cirrhosis 
[22]. The systemic dosage of therapeutic miRNAs, unfortunately, has short half-
lives in circulation and can induce toxicity; therefore, designing a delivery platform 
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that protects the therapeutic miRNAs, efficiently transporting therapeutic miRNAs 
to the liver and modulating the levels of specific miRNAs in vivo within activated 
HSCs, remains a challenge [23].

To address these obstacles, researchers are increasingly applying techniques 
developed in nanomedicines to deliver miRNA as a therapy for chronic liver disease 
[24, 25]. Our research group has developed a ‘pseudo’ poly[amino acid] polymer 
and has engineering l-tyrosine polyurethane (LTU) into biodegradable nanoparti-
cles (NPs) as a delivery system for miRNA. The biological and technical advantages 
of these NPs include protection of miRNAs from enzymatic activity, absence of 
cellular toxicity by the NPs’ degradation products, surface decoration of the NP 
with polyethylene glycol (PEG) to minimize the immune response, optimization of 
size distribution for endocytosis, and the ability to induce the proton sponge effect 
so that NPs can escape from endosomes and release nucleic acids into the cell’s 
cytoplasm [26–28]. These features (Fig. 1) make LTU NPs an ideal delivery system 
for miRNA therapy and should be explored further as a therapeutic option for liver 
diseases [27, 29]. In this chapter, we summarize the general pathogenesis of liver 

Fig. 1  A simplified model of nanoparticle (NP)-based delivery of microRNAs to target cells. 
Polymeric NPs are used as carriers of (miRNA) mimics and have substantial advantages over the 
administration of naked miRNA mimics. When miRNA is encapsulated into polymeric NPs and 
systemically administered to the body, the encapsulation prevents miRNA degradation by serum 
nucleases and results in a long period of circulation in the blood (①). Injury to tissues facilitates 
blood vessel dysfunction and gives NPs an opportunity to leak into diseased tissue and become 
endocytosed by hepatic stellate cells (②). Incorporating linear polyethylenimine into NPs can 
induce the proton sponge effect and allow NPs to escape from the endosomal/lysosomal pathway, 
and the NPs can be degraded and release miRNA in the cell’s cytoplasm (③) so that it can enter the 
nucleus to induce gene knockdown (④)

Therapeutic Potential of MicroRNAs and Their Nanoparticle-based Delivery…
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fibrosis/cirrhosis, review the current roles of miRNAs in HSC activation and liver 
fibrosis, and evaluate the therapeutic potential of miRNAs encapsulated in LTU NPs 
as a treatment for liver fibrosis.

2  �The Role of Hepatic Stellate Cells in Liver Fibrosis

Liver fibrosis is a wound-healing process in response to liver injury [4]. To date, 
substantial progress has been made in understanding the process of hepatic fibrosis, 
such as characterization of ECM components in fibrotic liver, identification of HSCs 
as the major source of ECM in liver fibrosis, and characterization of key signaling 
pathways in liver fibrosis (Fig. 2) [4, 10]. Of them, the identification and establish-
ment of HSCs as the key cellular source of ECM in the liver have been a major 
advancement in elucidating liver fibrosis. The main fibrogenic cell type in the liver 
is activated or myofibroblastic HSCs [7, 10]. In the liver, HSCs reside in the 

Fig. 2  A schematic summary of hepatic stellate cell (HSC) activation. Liver injury initiates the 
transdifferentiation/activation of quiescent HSCs to activated/myofibroblastic HSCs. Activation of 
HSCs consists of two phases: initiation and perpetuation. During the initiation phase, neighboring 
hepatic cells, including hepatocytes, Kupffer cells, liver sinusoidal endothelial cells (LSECs), and 
platelets, promote HSC activation by cytokines and other signaling molecules. Injured hepatocytes 
induce HSC activation by releasing multiple mediators, including damage-associated proteins 
(DAMPs), reactive oxygen species (ROS), hedgehog (Hh) ligands, and apoptotic bodies. Platelets 
are an important cellular source of platelet-derived growth factor (PDGF), epidermal growth factor 
(EGF), and TGF-β1, and these factors activate HSCs and promote liver fibrosis. Damaged LSECs 
produce fibroblast growth factor (FGF) and C-X-C motif chemokine ligand 12 (CXCL12), which 
are paracrine stimuli of HSCs. Activated Kupffer cells produce cytokines and chemokines, such as 
tumor necrosis factor alpha (TNF-α), transforming growth factor beta 1 (TGF-β1), interleukin-1 
beta (IL-1β), and monocyte chemoattractant protein-1 (MCP-1), which directly influence HSC 
activation. During the perpetuation phase, autocrine and paracrine stimulations maintain the acti-
vated HSC phenotype and promote the production of fibrotic extracellular matrix (ECM). In addi-
tion to paracrine stimulation, activated HSCs produce and secrete connective tissue growth factor 
(CTGF), vascular endothelial growth factor (VEGF), FGF, Hh ligands, and TGF-β1 in an autocrine 
manner, which are known to promote the activation, maintenance, and expansion of HSCs and 
ECM production. These diverse paracrine/autocrine signals that converge upon HSCs promote 
HSC activation, leading to liver fibrosis and cirrhosis

J. Kim et al.
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subendothelial space of Disse between hepatocytes and sinusoidal endothelial cells 
and represent approximately 5–8% of the total number of resident cells [6]. In a 
normal healthy liver, HSCs exist in a quiescent state and serve as the principal stor-
age site for retinoids by storing retinyl esters within lipid droplets present in the 
cytoplasm of HSCs. Following liver injury of any etiology, HSCs undergo an activa-
tion process, which involves cell transdifferentiation from quiescent cells into fibro-
genic myofibroblasts [10]. This change is characterized by the loss of lipid droplets, 
increased proliferative and migratory activities, and accumulation of contractile 
filaments, including α-smooth muscle actin (α-SMA) [10]. Quiescent HSCs are also 
known to lose epithelial markers, such as E-cadherin, and gain mesenchymal mark-
ers, such as Snail1, thus undergoing an epithelial-to-mesenchymal transition 
(EMT)-like process to acquire myofibroblastic features during HSC activation [30]. 
Although other cell types, such as portal fibroblasts, also contribute to hepatic fibro-
genesis, fate-tracing studies have confirmed that activated HSCs are the major 
source of ECM in chronically injured livers [31, 32].

Activation of HSCs consists of two phases: initiation and perpetuation [10]. 
During the initiation phase, paracrine stimulation from neighboring cells, including 
platelets, endothelial cells, and Kupffer cells, causes alterations in the gene expres-
sion and phenotype of HSCs that render them more responsive to other profibro-
genic cytokines and stimuli [7, 10]. In addition, injured/dying hepatocytes release 
paracrine factors, such as damage-associated molecular patterns (DAMPs) and 
hedgehog (Hh) ligands, which promote the activation of HSCs [33]. Autocrine and 
paracrine stimulations during the perpetuation phase maintain the activated/myofi-
broblastic HSC phenotype and promote the production of fibrotic ECM components 
such as collagen, glycoprotein, and proteoglycans [7, 10]. Initiation is largely due to 
paracrine stimulation, whereas perpetuation involves autocrine and paracrine loops. 
Various growth factors, including platelet-derived growth factor (PDGF), epidermal 
growth factor, fibroblast growth factor, connective tissue growth factor (CTGF), and 
vascular endothelial growth factor), are known to promote the expansion and activa-
tion of HSCs [10]. A simplified illustration of the complex inter- and intracellular 
events in HSC activation and liver fibrosis is depicted in Fig. 1.

The intracellular processes by which HSCs regulate the initiation and perpetua-
tion of fibrosis are complex and multifactorial involving various signal transduction 
pathways, such as the transforming growth factor-β (TGF-β), phosphatidylinositol 
3-kinase (PI3K)/protein kinase B (AKT), Wnt/β-catenin and Hh pathways [10]. 
TGF-β, a well-known profibrotic cytokine, is produced by several cell types, includ-
ing activated HSCs, platelets, and Kupffer cells, and promotes HSC activation 
through the mitogen-activated protein kinase and c-Jun N-terminal kinase pathways 
[34–36]. The PI3K/AKT pathway is activated and is required for the survival and 
proliferation of HSCs [37]. The Hh pathway, a well-characterized signal transduc-
tion pathway, is implicated in HSC activation and liver fibrosis. Hh signaling is criti-
cally involved in the proliferation and activation of HSCs, leading to liver fibrosis 
[33]. Inhibition of this pathway leads to decreased HSC activation and reduced 
hepatic fibrosis [38]. Fibrosis, if not treated, eventually progresses to advanced 
fibrosis and cirrhosis, which are the major causes of liver-related morbidity and 

Therapeutic Potential of MicroRNAs and Their Nanoparticle-based Delivery…
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mortality; therefore, the development of antifibrotic treatments that prevent and/or 
reverse liver fibrosis is urgently needed [11]. An effective method of preventing or 
halting liver fibrosis is to attenuate the activation of HSCs in response to chronic 
hepatic injuries [10]. There are several predominant strategies that contribute to the 
clearance of activated HSCs and resolution of fibrosis, such as induction of HSC 
apoptosis or senescence and reversion of HSCs to an inactivated state [39–41]. 
Although the antifibrotic activities of many drugs or compounds have been demon-
strated in vitro and in vivo, none has been clinically validated or commercialized as 
a therapy for liver fibrosis [11]. Therefore, further research is required to develop 
novel antifibrotic therapies in the treatment of chronic liver disease.

3  �The Roles of MicroRNAs in Liver Fibrosis

As the liver has essential functions in the human body that require highly orches-
trated and regulated processes, hepatic physiology is tightly controlled by a com-
plex maze of regulatory networks. Hence, disruption of these regulatory networks is 
associated with the progression of liver diseases [11]. MiRNAs are known to be 
involved in the regulation of liver homeostasis, development, regeneration, and 
metabolic functions by modulating the gene expression of their targets [19]. 
Increasing evidence suggests that alterations of intrahepatic miRNA levels have 
been associated with almost every aspect of liver disease, including liver fibrosis/
cirrhosis [19, 20]. Given that miRNAs are involved in regulating cell homeostasis 
and functions and that specific expression of miRNAs reflects the current state of 
cells, expression changes in miRNAs in liver tissues are closely associated with the 
progression of liver fibrosis. To date, more than 2500 miRNAs have been identified 
in humans [42]. MiRNA expression signatures are known to be highly tissue spe-
cific in human tissues, and approximately 300 miRNAs have been reported to be 
present in the human liver [43]. MiR-122 is the best-studied miRNA in hepatic 
miRNA pools. Most importantly, miR-122 is liver specific, and it is one of the most 
abundant miRNAs in the normal liver, making up 70% and 52% of the whole 
miRNA pools in adult mice and humans respectively [44–46]. MiR-122 is specifi-
cally expressed by healthy hepatocytes, which are the major parenchymal cells in 
the liver [44, 47] and primarily involved in normal hepatocyte functions to maintain 
liver homeostasis [48]. The level of miR-122 decreases in the injured liver and is 
related to the development of liver diseases [49–51]. MiR-122 was strongly 
decreased in the fibrotic livers of human patients with non-alcoholic steatohepatitis 
and liver fibrosis and in the hepatotoxin fibrosis model, where mice are injected 
with carbon tetrachloride (CCl4) [52, 53]. In experimental animal models, knockout 
(KO) of miR-122 in mice promotes liver fibrosis and these responses are alleviated 
and reversed by the restoration of miR-122 levels in these mice [48, 54]. The molec-
ular targets of miR-122 include profibrogenic factors, such as Krüppel-like factor 
(Klf6), TGF-β receptor, and Wnt-1 [48, 55–58]. These data suggest that miR-122 
might have antifibrotic properties; however, Schueller et  al. demonstrated that 
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miR-122 expression is neither regulated nor relevant to HSC activation [59]. As 
detectable levels of miRNAs in liver tissue vary significantly depending on the con-
ditions of the liver, the relative abundance or scarcity of miRNAs is directly influ-
enced by variations in the cell populations. Given that activated HSCs are highly 
proliferative after liver injury and produce large amounts of ECM proteins, relating 
expression changes of miRNAs to the activation status of HSCs could be critical to 
understanding and treating pathological conditions of the liver.

Many reports have profiled the differences in miRNA expression between quies-
cent and activated HSCs or between healthy and fibrotic liver tissues to identify 
miRNAs closely associated with HSC activation and liver fibrosis [60–64]. 
Examples of miRNAs that have been implicated in the development of liver fibrosis, 
activation of HSC, and deposition ECM are given Table 1. These miRNAs can be 
broadly categorized into either profibrotic or antifibrotic, which are either upregu-
lated or downregulated, respectively, during fibrogenesis [114]. However, inconsis-
tencies in dysregulated miRNAs have been reported because of the different 
methods that have used to analyze microarray results, to activate HSCs, and to 
induce hepatic injuries using different animal models. Nevertheless, several key 
miRNAs have been clearly demonstrated to play either profibrotic or antifibrotic 
roles in the regulation of HSCs and liver fibrosis, and the targets of miRNAs have 
been identified and confirmed by multiple studies [19, 20, 114]. In this section, we 
focus on miRNAs that have been well documented to have a close association with 
HSC activation and present their therapeutic potential in liver fibrosis.

3.1  �Potential Antifibrotic miRNAs

MiR-29 family members, including miR-29a, miR-29b, and miR-29c, are one of the 
best-studied miRNAs for HSCs and have been shown to be antifibrogenic [114, 
115]. The downregulation of miR-29s have been linked to human cirrhotic livers 
and rodent models of liver fibrosis induced by carbon tetrachloride (CCl4) (Fig. 3b) 
and by bile duct ligation [64]. MiR-29s are highly expressed in primary quiescent 
HSCs isolated from rodents but downregulated in activated HSCs by in vitro culture-
induced activation and in vivo activation by CCl4 injection [64, 116]. Furthermore, 
restoration of miR-29b by the administration of miR-29b mimic or miR-29b-
expressing adeno-associated virus suppresses HSC activation and liver fibrosis in 
CCl4-treated mice [76, 117]. Wang et al. showed that miR-29b inhibits HSC prolif-
eration by arresting the cell cycle in the G1 phase and induces HSC apoptosis by 
inhibiting the PI3K/AKT pathway [118]. Zhang et al. reported that miR-29b sup-
presses heat shock protein 47 (HSP47) and lysyl oxidase (LOX), which are neces-
sary for ECM maturation, and inhibits the maturation and production of collagens 
by HSCs [119]. In addition, various target genes of miR-29s have been identified, 
and the majority of them are involved in HSC activation, such as Col1α1, Col4α5, 
Col5α3, elastin, TGF-β, PI3K receptor 1, AKT3, PDGF-C, insulin-like growth fac-
tor I (IGF-I), and histone deacetylase 4 (HDAC4) [76, 77, 115, 118, 120, 121].

Therapeutic Potential of MicroRNAs and Their Nanoparticle-based Delivery…



Table 1  List of microRNAs associated with liver fibrosis

Name Pro- or anti-fibrotic Target(s) in liver fibrosis References

let-7/Lin28 Anti HMGA2 [65]
miR-15b Anti LOXL1 [66]
miR-16 Anti LOXL1, Gα 12 [66, 67]
miR-19b Anti CCR2, CTGF, TGFβRII [68, 69]
miR-21 Pro HNF4α, PDCD4, SMAD7, SPRY2 [70–73]
miR-25 Anti ADAM17, FKBP14 [74]
miR-27 Pro LXRα, SREBP1c [75]
miR-29 Anti CD36, COL1α1, HDAC4, PDGFC, SMAD3 [64, 76–79]
miR-30 Anti BECLIN1, KLF11, SNAI1 [80–82]
miR-34 Pro ACSL1, PPARγ [83, 84]
miR-101 Anti KLF6, TGFβRI [85, 86]
miR-122 Anti CTGF, PACT, P4HA1 [51, 87, 88]
miR-125b Anti SMO [89]
miR-130a Anti TGFβRI, TGFβRII [90]
miR-133a Anti COL1α1 [91]
miR-142 Anti TGFβRI [92]
miR-145 Anti ZEB2 [93]
miR-146a Anti IRAK1, TRAF6, WNT1, WNT5A [94, 95]
miR-185 Anti RHEB, RICTOR [96]
miR-193 Anti CAPRIN1, TGFβ2 [97]
miR-195 Pro SMAD7 [98]
miR-199 Pro KGF [99]
miR-200a Anti GLI2, GLI3, SIRT1 [100–102]
miR-200c Pro FOG2 [103]
miR-214 Pro MIG6, SUFU [104, 105]
miR-222 Pro CDKN1B, PPP2R2A, TIMP3 [106–108]
miR-378a Anti GLI3, PRKAG2 [62, 109]
miR-486 Anti SMO [110]
miR-542 Pro BMP7 [111]
miR-942 Pro BAMBI, PPARγ [112, 113]

ACSL1 Acyl-CoA Synthetase Long Chain Family Member 1, ADAM17 ADAM Metallopeptidase 
Domain 17, BAMBI BMP and Activin Membrane Bound Inhibitor, BMP7 Bone Morphogenetic 
Protein 7, CAPRIN1 Cell Cycle-Associated Protein 1, CCR2 C-C Motif Chemokine Receptor 2, 
CDKN1B Cyclin-Dependent Kinase Inhibitor 1B, COL1α1 Collagen Type I Alpha 1 Chain, CTGF 
Connective Tissue Growth Factor, FKBP14 FKBP Prolyl Isomerase 14, FOG2 Friend Of GATA 2, 
Gα 12 Guanine nucleotide-binding a-subunit 12, GLI GLI-Krüppel Family Member, HDAC4 
Histone Deacetylase 4, HMGA2 High Mobility Group AT-Hook 2, HNF4α Hepatocyte Nuclear 
Factor 4 Alpha, IRAK1 Interleukin 1 Receptor-Associated Kinase 1, KLF Krüppel-Like Factor, 
LOXL1 Lysyl Oxidase-Like 1, LXRα Liver X Receptor-Alpha, miR microRNA, MIG-6 Mitogen-
Inducible Gene 6, PACT PKR-Activating Protein, PDCD4 Programmed Cell Death 4, PDGFC 
Platelet-Derived Growth Factor C, PPARγ Peroxisome Proliferator-Activated Receptor Gamma, 
PPP2R2A Protein Phosphatase 2 Regulatory Subunit Alpha, PRKAG2 Protein Kinase AMP-
Activated Noncatalytic Subunit Gamma 2, P4HA1 Prolyl 4-Hydroxylase Subunit Alpha 1, RHEB 
Ras Homolog Enriched In Brain, RICTOR RPTOR Independent Companion Of MTOR Complex 
2, SMAD SMAD Family Member, SIRT1 Sirtuin 1, SMO Smoothened, SNAI1 Snail Family 
Transcriptional Repressor 1, SPRY2 Sprouty RTK Signaling Antagonist 2, SREBP1c Sterol 
Regulatory Element Binding Transcription Factor 1, SUFU Suppressor of Fused Homolog, TGFβ 
Transforming Growth Factor Beta, TGFβR TGFβ Receptor, TIMP3 Tissue Inhibitor of 
Metalloproteinases 3, TRAF6 TNF Receptor-Associated Factor 6, WNT Wnt Family Member, 
ZEB2 Zinc Finger E-Box Binding Homeobox 2
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Other antifibrogenic miRNAs in the liver are miR-30 family members including 
miR-30a, miR-30b, miR-30c-1, miR-30c-2, miR-30d, and miR-30e. Abundant 
miR-30 levels in healthy liver are also reduced in fibrotic livers in human patients 
and in experimental mice [80, 122]. In primary HSCs isolated from mice, the 
expression of miR-30 decreases during in vivo and in vitro activation of HSCs [80]. 
Re-establishment of miR-30s by administration of miR-30-expressing lentivirus 
inhibits HSC activation and prevents CCl4-induced liver fibrosis in rodents [80]. 
Direct targets of miR-30 include the following: CTGF, which is a profibrogenic 
cytokine; KLF11, which is a mediator of TGF-β signaling; and Snail1, which is a 
well-known EMT-stimulating transcription factor [80, 81, 123].

Our research group also reported that three members of the miR-378 family, 
mi-378a-3p, miR-378b, and miR-378d, are downregulated in both activated HSCs 
and cirrhotic livers of CCl4-treated mice compared with quiescent HSCs and livers 
from corn oil-treated mice [62]. Among the three miR-378 family members, 
miR-378a-3p directly inhibits GLI-Krüppel family member 3 (Gli3), which is a 
transcriptional activator of the Hh pathway, and suppresses the activity of this path-
way, leading to inactivation of HSCs [62]. In addition, restoration of miR-378a-3p 
in  vivo by administration of biodegradable NPs releasing miR-378a-3p mimic 
attenuates CCl4-induced liver fibrosis by downregulating Gli3 expression and sup-
pressing HSC activation [62]. Therefore, these findings clearly demonstrate the 
inhibitory role of miRNA in HSC activation and liver fibrosis, suggesting them as 
potential therapeutics for treating liver fibrosis.

3.2  �Potential Profibrotic miRNAs

Upregulation of miRNA during HSC activation usually plays a profibrotic role in 
liver fibrosis. MiR-222 and its paralog miR-221 are known to have oncogenic func-
tions in the liver [124] and are also associated with liver fibrosis [106–108]. Ogawa 
et al. first showed that miR-221/222 expression is upregulated in patients with HCV 

Fig. 3  Immunohistochemistry of liver sections for (a) normal, (b) carbon tetrachloride treatment, 
(c) l-tyrosine polyurethane (LTU) nanoparticle (NP) treatment for 3 weeks. Positive staining for 
α-smooth muscle actin can be observed for mice treated with carbon tetrachloride. LTU NP treat-
ment prevented the matrix protein deposition. These images originally appeared in Nature 
Communications [62]

Therapeutic Potential of MicroRNAs and Their Nanoparticle-based Delivery…
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infection and non-alcoholic steatohepatitis (NASH) with liver fibrosis, and 
miR-221/222 expressions correlate positively with the messenger RNA expression 
of col1α1 and α-SMA [108]. Increased expression of miR-221/222 is also con-
firmed in a thioacetamide (TAA)-induced mouse model of liver fibrosis [108]. In 
addition, miR-221/222 is upregulated during HSC activation and regulates the 
expression of cyclin-dependent kinase inhibitor 1B (CDKN1B) [108]. Recently, 
Jiang et al. demonstrated that liver-specific miR-221/222 KO mice treated with CCl4 
exhibit a significant reduction in liver fibrosis compared with CCl4-treated wild type 
mice [107]. In contrast, the reinduction of miR-221/222 by adenovirus infection 
worsened liver fibrosis in the CCl4-treated miR-221/222 KO mice, suggesting the 
profibrotic potential of miR-221/222 [107]. However, these researchers employed 
the albumin-cre/LoxP system to produce liver-specific miR-221/222 KO mice, and 
miR-221/222 was abolished in only albumin-expressing cells, such as hepatocytes, 
but not in activated HSCs. Given that activated HSCs express miR-221/222 in mice 
with fibrotic liver, these cell-specific miR-221/222 KO mice should be further 
investigated. The direct targets of miR-221/222 have been identified as protein 
phosphatase 2A subunit B (PPP2R2A) and tissue inhibitor of metalloproteinase-3 
(TIMP-3) [106, 107].

Another profibrogenic messenger RNA is miR-214. Fibrotic liver shows 
increased expression of miR-214 in human patients and CCl4-injected mice, demon-
strating a positive correlation with the degree of liver fibrosis [104, 125]. The level 
of miR-214 is elevated during both in vitro and in vivo activation of primary murine 
HSCs [104, 105, 125]. Furthermore, inhibition of miR-214 by antagomir-214 sup-
presses the proliferation and activation of HSCs in vitro and has ameliorated CCl4-
induced liver fibrosis in mice [104]. Ma et al. demonstrated that miR-214 directly 
inhibits the expression of suppressor-of-fused homolog (Sufu), a negative regulator 
of the Hh signaling pathway, and the knockdown of miR-214 expression in vivo 
enhances the expression of Sufu, which alleviates hepatic fibrogenesis [104].

4  �Nanoparticle-based Delivery of MiRNA for Liver 
Fibrosis Therapy

Given the importance of miRNAs in modulating HSC activation and their implica-
tions in liver fibrosis, major efforts have been made to develop miRNA-based thera-
peutics to prevent and/or cure liver fibrosis [19–21]. As abnormal expression of 
miRNA is intimately associated with pathogenesis of liver fibrosis/cirrhosis, many 
researchers have reported that modulation of miRNA levels through restoration of 
antifibrotic miRNAs or suppression of profibrotic miRNAs leads to the recovery of 
liver fibrosis in various experimental animal models [19, 20]. Despite the therapeu-
tic potential of miRNAs, the progress of miRNA-based therapeutics is hampered by 
an inability to effectively deliver miRNAs in vivo [29, 126, 127]. The major limita-
tion of miRNA delivery includes its lack of stability in a circulatory system, 
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difficulty in reaching the target tissues, and immunotoxicity [128]. Naked miRNAs 
are degraded within seconds by an abundance of serum nucleases in the blood, or 
they are cleared rapidly via renal excretion, resulting in a short half-life in systemic 
circulation [127, 128]. The presence of naked miRNAs in the circulation also trig-
gers secretion of inflammatory cytokines and type I interferons through Toll-like 
receptors, which provoke an inflammatory response and may cause systemic 
immune toxicity [29, 127, 128]. Even if miRNAs reach their target tissues, the nega-
tive charge of miRNA limits their ability to cross the cell membranes, [127] and any 
miRNAs that are endocytosed become trapped in endosomes and can be degraded 
by lysosomes [128, 129].

Viral vectors are frequently used as  carriers to deliver miRNAs because high 
infection rates can be achieved [130]. Viruses have an innate ability to protect gene 
material within their capsids, recognize specific cells, transport their genetic mate-
rial across cellular nuclear membranes, and escape from endosomes. These charac-
teristics are attractive for miRNA delivery [130, 131]. However, these vectors are 
associated with diseases and raise significant medical concerns, and the process of 
generating recombinant viruses does not reduce their potential for immunogenicity 
or inducing cancer for retroviruses [27, 130].

In contrast, nonviral approaches are becoming attractive alternatives because 
many of the beneficial viral functions can be artificially replicated in the design of 
NPs without having the possibilities of inducing the diseases associated with 
viruses. Depending upon the materials and design, NPs could have low toxicity, low 
immune responses, surface decoration for targeting cellular receptors, biodegrad-
ability, and cost-efficient production [29, 131]. Although many types of polymer are 
available, the degradation rate and toxicity of the degradation products are critical 
to the success of NPs for gene therapy. Our research group has developed a polymer 
by modifying l-tyrosine [26, 28, 132], as amino acids are the building blocks of 
proteins. Although amino acids can be polymerized using peptide bonds and folded 
within cells into secondary and tertiary structures, folding limits the amount of 
nucleic acids that can be encapsulated, which also limits manufacturing on a large 
scale. These limitations have been overcome by chemically modifying the structure 
of l-tyrosine with two linkages (Fig. 4). Desaminotyrosine, an l-Dopa analog, is 
linked to the amide functional group using a peptide bond and connects to aromatic 
functional group on the l-tyrosine through polyurethane polymerization. The car-
boxyl terminal of l-tyrosine has been protected to prevent unwanted branching and 
undesired byproducts [132]. The polymerization results in LTU with a molecular 
weight of approximately 115 kDa [132] and is classified as a ‘pseudo’ poly [amino 
acid]. LTU is soluble in chloroform and can be easily processed into NPs using 
standard techniques. Previous studies show that LTU films degrade [133] through 
hydrolytic and enzymatic linkages in LTU’s backbone. The degradation rate makes 
LTU an ideal candidate for the treatment of liver as it provides continuous release of 
nucleic acids for approximately 1 month. LTU and its degradation products also 
have been shown to be noncytotoxic. Human dermal fibroblasts incubated with 
800 mg/ml of degradation products of LTU for 24 h show no significant reduction 
in cell viability compared with cells incubated with cell culture media [28].

Therapeutic Potential of MicroRNAs and Their Nanoparticle-based Delivery…
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Nanoparticles made with LTU are encapsulated with either FITC (LTU-FITC 
NPs, Fig. 5a) or miRNA-378a-3p (LTU-miRNA NP) against Gli3 messenger RNA 
using water-in-oil-in-water emulsion technique. Prior to the formation of these 
emulsions, nucleic acids are complexed with linear polyethylenimine (LPEI, MW 
25 KDa) at a ratio of 1:1 and 5:1 respectively, which minimizes shear degradation 
when exposed to high mixing conditions. PEG-PLA, an amphiphilic copolymer that 
accumulates at the oil–water interfaces, is added to decorate the surface of NPs with 
PEG. After solvent evaporation, the NPs are washed and lyophilized. The resulting 
NPs are spherical with heterogeneous size distributions with a mean diameter of 
1647 and 340 nm, respectively. As the size of the NPs is appropriate, the mechanism 
of uptake could be through endocytosis, and fluorescence microscopy shows LTU-
FITC NPs were taken up by human hepatic stellate (LX2) cells (Fig. 5b and c).

Prior to the formation of an emulsion, nucleic acids are complexed to LEPI to 
prevent their degradation from exposure to high levels of shear stress during NP 
formation [26]. The analysis of the release studies (Fig. 5d) shows an initial burst 
release of mRNA; the release rate is initially slow (0.13 μg of mRNA per mg of 
NPs) between days 4 and 21. Afterward, the release rate rises sharply (1.2 μg of 
mRNA per mg of NPs) from week 3 to week 5 and reaches a steady state after week 
5. Overall, a biphasic release of mRNA is observed. Thus, a sustained release of 
bioactive mRNA has been observed, and these NPs should be able to provide con-
tinuous release of miRNA for 5 weeks.

Liver fibrosis has been induced in a mouse model (male C57Bl/6) by intraperito-
neal (IP) injections of carbon tetrachloride (CCl4) at a concentration of 0.4 ml/kg. 
Figure 6a shows the injection schedule of both CCl4 and LTU-miRNA NPs. Alanine 
transaminase (ALT), which is a clinical marker for liver disease, increased by 270% 
compared with control (no CCl4 injections) after the first week of CCl4 injections 
and remained high for the third week (230%, Fig. 6b). Animals injected with LTU-
miRNA NPs show attenuation of ALT levels (23% higher than normal at week 3, 
Fig. 6b). The results for aspartate transaminase (AST), also a clinical marker for 
liver disease, mirrored the ALT results (increased by 26 and 46% for weeks 2 and 3, 
respectively, for CCl4-injected mice and levels returning to 4% for LTU-miRNA 
NP-treated mice at week 3, Fig. 6c). Mice treated with CCl4 show downregulation 
of miRNA-378a-3p (−82%, −72%, and −62% for weeks 1, 2, and 3, respectively, 

Fig. 4  Chemical structure of l-tyrosine polyurethane. l-tyrosine is modified with l-dopa analog 
and polyurethane linkages
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compared with control tissues, Fig. 6d). In contrast, mice treated with LTU-miRNA 
NPs show −45% at week 1 (Fig. 6d). However, miRNA-378a-3p levels increase to 
42% and 68% for weeks 2 and 3, respectively (Fig. 6d). These enzyme markers and 
miRNA-378a-3p levels correlated with increased matrix deposition (Fig.  3b) for 
CCl4-treated mice. These results are confirmed by QRT-PCR results showing 35-, 
19-, 12-, and 67-fold increases for gli3, collagen, α-smooth muscle actin, vimentin, 
and collagen, respectively. In contrast, mice treated with LTU-miRNA NPs show 
only 11-, 5-, 5-, and 18-fold increases, respectively. Together, exposure to CCl4 initi-
ates inflammation and fibrosis, but a single treatment of LTU NPs continuously 
releasing miRNA-378a-3p over a period of 3 weeks offsets the negative effects of 
CCl4, prevents the deposition of matrix proteins (Fig. 3c), and normalizes the liver 
function (Fig. 6).

Fig. 5  Fluorescence microscopy and release profile of (a) l-tyrosine polyurethane fluorescein 
isothiocyanate LTU-FITC nanoparticles (NPs), (b) LX2 cells incubated with LTU-FITC NPs. (c) 
Confocal microscopy of LX2 cells with actin staining (red) incubated with LTU-FITC NPs, and 
(d) release profiles of LTU NPs loaded with miRNA. Images a–c originally appeared in Nature 
Communications [62]
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5  �Conclusions

Liver fibrosis is a common pathological feature for most chronic liver diseases 
regardless of the etiology and molecular progression to liver cirrhosis, which has 
high global morbidity and mortality [4]. A cure currently does not exist for liver 
fibrosis/cirrhosis, which was once thought to be irreversible, but recent medical 
evidence suggests that liver fibrosis might be reversed if treated properly. The diag-
nosis and management of liver diseases are also difficult because patients are 
asymptomatic until the advanced stages. As a substantial amount of research has 
linked a broad array of miRNAs to the pathogenesis of liver fibrosis, they also rep-
resent potential targets for the diagnosis and therapeutics of liver fibrosis [19, 22], 
and several clinical trials using miRNA-based treatment are in progress. However, 
limitations of the in  vivo application of miRNAs include unwanted side effects 

Fig. 6  Injection protocol and results. (a) Injection schedule and mRNA levels of (b) ALT, (c) AST, 
(d) miR-378-3p, (e) gli3, (f) α-SMA, (g) vimentin, and (h) collage for control  (white), CCl4 
injected (black), and LTU-miRNA NP-treated animals (gray). These images originally appeared in 
Nature Communications [62]
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owing to their target multiplicity and redundancy and the development of a suitable 
delivery system [127, 128].

It has been shown that hepatic levels of miR-378a-3p correlate inversely with 
gli3 expression, and fibric liver can be rescued by the delivery of this molecule in an 
animal model using biodegradable NPs. A broad array of miRNAs are closely asso-
ciated with the pathogenesis of liver fibrosis and represent potential targets for diag-
nosis and treatment of this disease [19, 22]. For example, Hu et al. used PLGA-based 
NPs to deliver miR-449b-5p to a rat model of ischemia/reperfusion (I/R) hepatic 
injury [134]. Although the I/R model is different from the liver fibrosis model, 
miR-449b-5p-loaded NPs inhibit the expression of high-mobility group box 1 
(HMGB1), which is a target of miR-449b-5p, and mitigates I/R-induced hepatic 
injuries in rats [134]. The results using LTU-miRNA NP are also  promising 
and underscore the valuable role of a delivery system with an intelligent design, but 
liver fibrosis has been caused by an artificial factor and treated with  only one 
miRNA.  Thus, directly translating our results  for humans could be problematic 
because liver fibrosis is a chronic disease with multifactorial causes. A comprehen-
sive strategy that delivers multiple miRNAs should be considered to advance novel 
therapies for fibrotic liver diseases, as many factors are involved in liver pathogen-
esis. A panel of miRNAs could even be identified for a specific patient and encap-
sulated into a cocktail of NPs, as technologies in high-throughput screening and 
personalized medicine have also shown recent advancements. The miRNAs for 
these types of therapies can be encapsulated into various formulations of NPs 
designed for multiple release kinetics to ensure the bioavailability of specific 
miRNA at the desired times. Table 1 gives a short list of potential targets and the 
corresponding miRNAs could be used for comprehensive miRNA delivery. 
Therefore, miRNAs are attractive for medical therapeutics because of their ability 
to regulate numerous pathways, molecular targets can be easily changed by altering 
the miRNA’s genetic sequence, and a delivery system can be designed for safe, 
effective, and targeted delivery that minimizes unwanted side effects.
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MicroRNA as a Versatile Regulator of Wnt 
the Signaling Pathway in Colorectal 
Cancer

Jehyun Nam and Sang-Woo Kim

Abstract  Colorectal cancer (CRC) is one of the leading causes of cancer-related 
death that accounted for about one million deaths in 2018 globally. CRC incidence 
and deaths have steadily increased, especially in developing nations, where people 
are adopting the Western diet and lifestyle. Obesity, red meat consumption, alcohol, 
and tobacco have been recognized as important risk factors. Wingless-related inte-
gration site (Wnt) signaling orchestrates various biological processes during early 
development and adulthood, and its aberrant regulation has been causally associated 
with human diseases, including cancer. Hyperactivation of Wnt signaling is believed 
to be involved in the initiation and progression of CRC, and found in almost all 
cases. As such, interventions in Wnt signaling using microRNAs (miRNAs) as a 
novel therapy have been actively pursued. MiRNAs are endogenous small noncod-
ing RNAs implicated in the regulation of normal cell physiology. Additionally, 
miRNAs influence numerous cancer-relevant processes, such as cell proliferation, 
stemness, epithelial-to-mesenchymal transition, and migration, and can act as either 
oncogenes or tumor suppressors. In agreement with this, many types of human can-
cers demonstrate abnormal up- or down-regulation of miRNA levels, highlighting 
therapeutic opportunities in cancer by restoring normal miRNA expression and 
function. The high mutation rates of Wnt pathway components and frequent dys-
regulation of miRNAs observed in CRC prompted us to review the interrelationship 
between Wnt signaling and miRNAs. In this chapter, we summarize the current 
knowledge concerning their interplay in CRC and discuss the therapeutic potential 
of miRNAs in the treatment of CRC.
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1  �Introduction

Colorectal cancer (CRC) is the third most commonly diagnosed cancer and the 
second leading cause of cancer-related deaths [1]. Although significant progress has 
been made in the development of diagnostic methods and therapeutic agents for 
CRC, the death rate from CRC remains high [2]. During the initiation and develop-
ment of the CRC from normal cells or tissues, accumulated mutations are observed 
in genes with important functions in regulating cell proliferation or DMA damage 
response, such as proto-oncogenes and tumor suppressor genes [3]. These genetic 
instabilities cause abnormal regulation of multiple intracellular signaling pathways 
including Wnt, epidermal growth factor receptor (EGFR), phosphatidylinositol-3 
kinase/Protein kinase B (PI3K/AKT), and mitogen-activated protein kinase (MAPK) 
pathways [3]. A genome scale analysis has identified more than 90% of CRC 
patients carried mutations in one or more of the downstream components of the Wnt 
signaling pathway, e.g., the loss-of-function mutations of adenomatous polyposis 
coli (APC) or the activating gain-of-function mutations of β-catenin [4]. 
Dysregulation of Wnt signaling by these and other mutations could disturb the nor-
mal tissue homeostasis and signaling networks, eventually leading to the malignant 
transformation of cells and the occurrence of CRC [5]. Therefore, Wnt signaling has 
attracted much attention as a potential target for developing CRC therapies.

MicroRNA is a small noncoding RNA that consists of 20–25 nucleotides and 
regulates target genes by binding to 3’untranslated region (3′UTR) of mRNAs [6]. 
MicroRNAs mediate target gene silencing via miRNA-induced silencing complex 
(miRISC), which minimally consists of the guide strand and Argonaute (AGO). The 
target specificity of miRISC is determined by the interaction between miRNA and 
the complementary sequences on target mRNA, called miRNA response elements 
(MREs). The degree of complementarity between miRNA and MRE generally 
determines whether the target mRNA is degraded or translation is repressed. Once 
complementarity between miRNA and MRE has been accomplished, the target 
mRNA is cleaved with AGO2 endonuclease activity and/or translation of the target 
mRNA is arrested, ameliorating gene expression [7]. Although most studies have 
reported inhibition of gene expression, miRNA can also promote translational acti-
vation under specific conditions [8, 9].

MicroRNAs can have multiple target genes and are involved in the regulation of 
a variety of physiological and pathological processes [10]. It has become ever more 
apparent that miRNAs are dysregulated in most cancers [11]. Many of these miR-
NAs either contribute to or repress the cancer phenotype by inhibiting the expres-
sion of tumor suppressors or oncogenes respectively [12]. The oncogenic miRNAs 
(oncomiRs) or tumor suppressor miRNAs can be used as diagnostic, prognostic, 
and/or predictive biomarkers of cancer [13]. Conceptually, if the oncomiRs or tumor 
suppressor miRNAs are to be inhibited or stimulated respectively, it could suppress 
cell proliferation, cell survival, angiogenesis, invasion, and metastasis of tumor cells 
to restore normal cell physiology, making them an attractive therapeutic target [14]. 
CRC is not an exception; therefore, increasing evidence suggests dysregulation of 
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miRNAs are implicated in the pathogenesis of CRC, and devising ways of control-
ling their expression for therapeutic purpose has been considered as a novel strategy 
for the treatment of CRC [15]. As Wnt pathway are frequently dysregulated in this 
type of cancer, miRNAs regulate the signaling components of Wnt have attracted 
much attention [16, 17]. In this chapter, we summarize the current knowledge of 
CRC pathogenesis and the role of the Wnt signaling pathway during CRC develop-
ment, illuminate the regulatory actions of miRNAs associated with the Wnt signal-
ing pathway, and the possibility of harnessing miRNAs therapeutically to treat CRC.

2  �General Pathogenesis of Colorectal Cancer

Colorectal cancer typically results from focal changes within benign and precancer-
ous polyps [18]. These polyps are condensed growths or aggregations of abnormal 
cells within the intestinal mucosa that infiltrate into the intestinal lumen. The prolif-
erating cells within these polyps accumulate genetic changes and acquire the ability 
to invade the bowel wall [19]. They eventually become more aggressive, spread to 
local lymph nodes, and finally migrate to distant organs to form metastases mostly 
in the liver and lungs. Most CRC develops through a multi-step process involving a 
series of histological, morphological, and genetic changes that accumulate over 
time [20]. These processes are not individual events but related to each other. For 
example, recurrent driver mutations in tumor suppressor genes or oncogenes, such 
as APC, TP53, SMAD4, and KRAS, play an important role during the adenoma–
carcinoma sequence and accelerate the progression of CRCs [21].

Three distinct pathways of genetic instability contributing to CRC development 
are chromosomal instability (CIN), CpG island methylator phenotype (CIMP), and 
microsatellite instability (MSI) [22]. CIN is observed in about 70% of CRC patients 
and results from a cascade of accumulating mutations including β-catenin and 
APC. CIMP is characterized by hypermethylation of the aberrant gene promoter 
region, leading to transcriptional repression of tumor suppressor and DNA repair 
genes. Changes in microsatellite repeats are demonstrated in MSI, which is caused 
by the disruption of DNA repair genes, such as mismatch repair (MMR) genes [3]. 
MSI can induce uncertain replication of repetitive DNA sequences in short-
noncoding regions and increase the possibility of additional genetic mutations. 
Each of these mechanisms significantly differs in specific pathological features, 
mechanisms of carcinogenesis, and process of tumor development [23]. The molec-
ular aspects of these pathways have been used clinically in the diagnosis, screening, 
and management of patients with CRC [24]. The relative contributions of these 
mechanisms to the development of individual CRC cases differ but are not mutually 
exclusive.

Thanks to completion of The Cancer Genome Atlas project on clinical CRC 
samples, CRC can also be categorized into hypermutated (16%, harboring over 12 
nonsilent exonic mutations per million bases) or nonhypermutated (84%, harboring 
less than 12 nonsilent exonic mutations per million bases) tumors [25]. Hypermutated 

MicroRNA as a Versatile Regulator of Wnt the Signaling Pathway in Colorectal Cancer



28

CRC samples are characterized by a high frequency of transcriptional silencing of 
the MLH1 gene, and the genes with recurring mutations in the nonhypermutated 
CRCs include APC, KRAS, and p53 [25, 26]. Each category exhibits several muta-
tions in proto-oncogenes and tumor suppressor genes, but the most prominent genes 
mutated are the components of the Wnt signaling pathway. Therefore, it is impor-
tant to understand the role of the Wnt signaling pathway in CRC.

3  �Overview of Wnt Signaling Pathways

Wnt signaling is a highly conserved pathway that is critical for both embryonic 
development and homeostasis of adult tissue, including the intestine [27]. The sig-
naling components of the Wnt pathway are differentially expressed during intestinal 
epithelial development, regulating self-renewal of stem/progenitor cells, prolifera-
tion, apoptosis, differentiation, and migration [28]. Consistently, aberration of the 
Wnt pathway has been causally associated with every stage of tumor development, 
including cell proliferation, cell survival, migration, invasion, and metastasis [29]. 
Wnt signaling is classified into two distinct pathways: canonical (β-catenin depen-
dent) and noncanonical (β-catenin independent) pathways (Fig. 1) [30].

3.1  �Canonical Pathway

β-catenin is the key effector in the canonical pathway, and its expression levels are 
regulated by committed protein complexes [31]. In the absence of a Wnt ligand, 
cytoplasmic β-catenin protein is continually degraded by the Axin complex, which 
consists of Axin, APC, casein kinase (CK1), and glycogen synthase kinase 3β 
(GSK3β) [32]. When the amino terminal region of β-catenin is sequentially 

Fig. 1  (continued) In the Wnt/Ca2+ signaling pathway (bottom right panel), the interaction of Wnt 
ligands with the ROR/RYK-Frizzled receptor complex leads to phosphorylation and activation of 
phospholipase C (PLC). Activated PLC induces intracellular Ca2+ fluxes, which in turn trigger 
activation of the PKC/CDC42 axis and regulate transcription of target genes through calcineurin 
and NFAT.  APC, adenomatous polyposis coli; BCL9L, B-cell CLL/lymphoma 9 protein like; 
β-TrCP, β-Transducin repeat containing protein; CK1, casein kinase 1; CDC42, cell division con-
trol protein 42; DAAM1, Dvl-associated activator of morphogenesis; DKK, dickkopf Wnt signal-
ing pathway inhibitor 1; Dvl, Disheveled; GSK3β, glycogen synthase kinase 3 β; LRP5/6, 
low-density lipoprotein receptor-related protein5/6; NFAT, nuclear factor of activated T cell; PCP, 
planar cell polarity; PKC, protein kinase C; ROR, bind tyrosine kinase-like orphan receptor; 
RNF43, ring finger protein 43; RYK, receptor-like tyrosine kinase; sFRP, secreted frizzled-related 
protein 1; TCF/LEF, T-cell factor/lymphoid enhancer factor
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Fig. 1  A schematic illustration of canonical and noncanonical Wnt signaling pathways. (a) Canonical 
Wnt signaling pathway. In Wnt off state (top left panel), DKK and sFRP act as antagonists of Wnt 
ligand, which prevents Wnt ligands from binding to the receptor, and RNF43 promote ubiquitination 
of Frizzled for destruction. β-catenin is phosphorylated by the destruction complex consisting of 
APC, AXIN, CK1, and GSK3β. This complex leads to the ubiquitination of β-catenin by β-TrCP and 
subsequent proteasomal degradation. Once Wnt ligands bind to the Frizzled-LRP5/6 co-receptor 
complex (top right panel), Frizzled interacts with cytoplasmic protein Dvl, an upstream regulator of 
GSK3β, which disrupts the function of β-catenin destruction complex. β-catenin has now stabilized 
and accumulated in the cytoplasm. Then, it migrates into the nucleus and regulates target gene expres-
sion, such as Myc, cyclin D1, and Axin, by interacting with TCF/LEF and other co-activators includ-
ing P300/CBP and BCL9L. (b) Noncanonical Wnt signaling pathway. In Wnt/PCP signaling (bottom 
left panel), Wnt ligands bind to the ROR-Frizzled receptor complex, activating Dvl. Then, Dvl medi-
ates activation of Rho via DAAM1, which in turn activates Rho kinase (ROCK). Dvl also activates 
Rac1. Activated Rac1 results in transcription of the target gene by stimulating cJUN via JNK.
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phosphorylated by CK1 and GSK3β, it is recognized by β-TrCP, a subunit of E3 
ubiquitin ligase, and undergoes subsequent ubiquitination and proteasomal degra-
dation. Substantial elimination of β-catenin prevents this molecule from reaching 
the nucleus and inhibits transcriptional activation of Wnt target genes. The Wnt 
pathway can be activated when Wnt ligands bind to a seven-pass transmembrane 
Frizzled (FZ) receptor and its co-receptor, low-density lipoprotein receptor related 
protein 6 (LPR6) or its close relative LRP5 [33]. The complex of Wnt-FZ-LRP6/
LRP5 recruits scaffolding protein Disheveled (Dsh) and results in phosphorylation 
and activation of LRP6 bringing in Axin complex to the receptors, which leads to 
the inhibition of GSK3β. As a result of GSK3β deactivation, β-catenin is stabilized 
and free from the degradation by the ubiquitin/proteasome systems. β-catenin is 
then accumulated in the cytoplasm and moves to the nucleus, forming complexes 
with co-regulators of transcription factors including TCF/LEF, BCL9L, and p300/
CBP [34]. These complexes regulate transcription of multiple target genes involved 
in cellular proliferation, differentiation, survival, and apoptosis such as c-Myc (Myc 
hereafter) and cyclin D1 [35].

3.2  �Noncanonical Pathway

The noncanonical Wnt signaling pathway is independent of β-catenin and may reg-
ulate both transcriptional and nontranscriptional cellular factors [36]. In terms of the 
co-receptors and downstream effectors, the Wnt/Ca2+ and planar cell polarity (PCP) 
pathways have been well characterized [37]. The Wnt/Ca2+ pathway regulates Ca2+ 
release from endoplasmic reticulum. When this pathway is activated by the Wnt 
ligands, the transcription through nuclear factor associated with T cells (NFAT), one 
of the downstream effector molecules, is activated to regulate cytoskeletal rear-
rangements, cell adhesion, migration, and tissue separation [38, 39]. In the PCP 
pathway, the stimulation of the FZ receptors activates Dvl, which triggers activation 
of Ras homolog gene family (Rho), small GTPase (RAC), and c-Jun N-terminal 
kinase (JNK) as downstream effectors to control myosin activation and actin polym-
erization [40]. This complicated signaling is integral for cytoskeletal changes, cell 
polarization, and motility during gastrulation and other developmental processes.

3.3  �Dysregulation of Wnt Signaling Pathway in CRC

Given the essential role of the Wnt signaling pathway in the homeostasis of embry-
onic and adult tissues, the hyperactivation of this pathway is regarded as an essential 
mechanism of CRC carcinogenesis [41]. Dysregulation of Wnt canonical signaling 
can affect various steps of tumorigenesis such as proliferation, growth, inhibition of 
cell death, and metastasis, resulting in polyps and carcinoma of the upper and lower 
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gastrointestinal system [42]. Aberrant regulation of this signaling is mainly caused 
by frequent mutations in the genes encoding for the components in the Wnt signal-
ing pathway.

Wnt signaling pathways are known to be activated in 93% of nonhypermutated 
CRCs and 97% of hypermutated CRCs [43]. Nonhypermutated CRCs are enriched 
for somatic mutations in the APC (81%), TP53 (60%), KRAS (43%), PIK3CA 
(18%), FBXW7 (11%), SMAD4 (10%), TCF7L2 (9%), NRAS (9%), FAM123B 
(7%), CTNNB1 (β-catenin) (5%), ACVR1B (4%), and SOX9 (4%) genes. FAM123B 
(also known as WTX) is an X-linked negative regulator of Wnt signaling, and most 
mutations involve the loss of function, which is found in about 10% of CRC tumors. 
In hypermutated CRCs, ACVR2A (63%), APC (51%), TGFBR2 (51%), BRAF 
(46%), MSH3 (40%), and MSH6 (40%) genes are frequently mutated [44]. The 
majority of these mutated genes are characterized by direct or indirect associations 
with Wnt signaling pathways [44].

Although APC mutations are initial and critical events during CRC development, 
the acquisition of further genetic and epigenetic changes, including dysregulation of 
miRNAs, is needed to evolve into a lethal metastatic carcinoma [45, 46]. In other 
words, the activation of the Wnt pathway involves either APC inactivation or 
β-catenin activation cooperating with stepwise changes in additional genes and 
miRNAs, such as KRAS, SMAD4, p53, mismatch repair genes, let-7, miR-17-92 
cluster, miR-34a, and miR-155 [15, 19, 47]. These multiple genetic and epigenetic 
aberrations involved in CRC carcinogenesis make developing targeted therapies dif-
ficult and necessitate alternative strategies for developing novel therapeutics for 
improving outcomes for CRC patients.

In 2018, patisiran (brand name, Onpattro; Alnylam Pharmaceuticals Inc.) has 
been announced as the first small interfering RNA (siRNA)-based drug approved by 
the United States Food and Drug Administration (FDA) and the European 
Commission (EC) for the treatment of polyneuropathy in people with hereditary 
variant transthyretin amyloidosis (AATRv) [48]. Patisiran is a double-stranded oli-
gonucleotide that reduces the accumulation of misfolded mutant transthyretin 
(TTR) protein fibrils. Ongoing efforts to develop miRNA drugs as therapies for a 
variety of human diseases, including cancer, continue to expand and several miR-
NAs are undergoing clinical trials (Table 1) [48–50].

4  �MicroRNA as an Important Regulator of Wnt Signaling 
Pathway in CRC Pathogenesis

MiRNAs are small noncoding RNAs consisting of 20–25 nucleotides and attenuate 
gene expression by binding to the 3′UTR of target mRNA. They play a critical role 
in the Wnt signaling pathway in normal cells by targeting the components of this 
pathway. Consistently, dysregulation of miRNAs can hyperactivate the Wnt signal-
ing pathway, which can eventually lead to colorectal carcinogenesis [47, 51]. The 
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components of the Wnt pathway targeted by miRNAs include Wnt ligands/receptors 
(Wnt, Frizzled, Dvl, and LRP5/6), β-catenin, Wnt antagonists (DKK and sFRP), 
β-catenin destruction complexes (APC, GSK3β, Axin, CK1, and β-TrCP), and tran-
scriptional co-activators (TCF/LEF, BCL9L, and p300/CBP). Components in other 
signaling pathways (TP53, TGFβ2, NUMB, and YY1) that promote CRC develop-
ment when dysregulated can also be targeted by miRNAs [17, 51]. A list of miRNAs 
and their target genes associated with Wnt signaling and CRC is shown in Fig. 2 and 
Table 2.

4.1  �MiRNAs Regulating Oncogenic Potential in CRC Via 
Wnt Signaling

It has been reported miRNAs regulate various steps of CRC pathogenesis, such as 
stemness, epithelial to mesenchymal transition (EMT), cell proliferation, and inva-
sion via Wnt signaling (Table 3) [51–54]. With regard to stemness, miRNAs associ-
ated with the canonical Wnt signaling pathway are important regulators of the 

Table 1  Representative miRNA-based clinical trials in multiple human diseases

Target 
miRNA

Therapeutic 
molecules Disease Phase status

miR-16 MesomiR-1 Mesothelioma
Lung cancer

I

miR-17 RGLS4326 Polycystic kidney disease I
miR-21 RG-012 Alport nephropathy Preclinical 

trial
miR-29 MGN-4220

MRG-201
Keloid, fibrous scar tissue formation I

miR-34 MRX34 Liver cancer, lymphoma, melanoma I
miR-92 MRG-110 Wound healing, heart failure 

Mesothelioma
Lung cancer

I

miR-122 Miravirsen
RG-101

Hepatitis C virus
Viral effect

II
IB

miR-143/145 MGN-2677 Vascular disease Preclinical 
trial

miR-155 MRG-106
(Cobomarsen)

T cell lymphoma/
Mycosis fungoides
Cutaneous T-cell lymphoma

II

miR-208 MGN-9103 Chronic heart failure Preclinical 
trial

miR-378 MGN-5804 Cardiometabolic disease Preclinical 
trial

miR-451 MGN-4893 Disorders of abnormal red blood cell 
production

Preclinical 
trial
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function of colorectal cancer stem cells (CRCSCs) [55]. For instance, epigenetically 
silenced miR-34a activates the asymmetric division process of CRCSCs, enhances 
self-renewal ability, and increases the expression of stem-cell markers by promoting 
the Wnt signaling pathway [56]. Moreover, the activated Wnt–β-catenin–TCF4–
Rab27B pathway, which is involved in vesicular fusion and trafficking, enhances 
the secretion of miR-146a-enveloped exosomes that increases the expression of 
stem cell markers and the ability to self renew in recipient CRC cells [57]. In addi-
tion, miR-146a has been shown to be transactivated by the β-catenin–TCF4 com-
plex in CRC cells in which miR-146a contributes to the symmetric division of 
CRCSCs by targeting NUMB, a protein that controls β-catenin stability through 
polyubiquitylation [58]. MiR-103/107 downregulate Axin2 to prolong the duration 
of Wnt/β-catenin signaling, thereby enhancing the expression of stem-cell markers, 
such as CD133 and Sox2, sphere formation, and cell proliferation [59]. MiR-21 
induces stemness through downregulation of TGFβR2 and activation of the β-catenin 
TCF/LEF signaling pathway [60]. MiR-92a upregulates the Wnt signaling pathway 
activity by directly targeting KLF4, GSK3β, and DKK3, negative regulators of the 
Wnt signaling pathway, which promotes stem-cell-like properties in CRC such as 
sphere formation and the expression of stem-cell markers [61].

MicroRNAs are also involved in the process of EMT through the Wnt signaling 
pathway in CRC. EMT is enhanced by miR-582, miR-183, miR-496, miR-431, and 

Fig. 2  MicroRNAs regulating the Wnt signaling pathway in CRC pathogenesis. MiRNAs regulate 
Wnt signaling pathway in multiple steps by targeting Wnt ligands/receptors and downstream com-
ponents of Wnt in CRC pathogenesis: sFRP, secreted frizzled-related protein 1; APC, adenomatous 
polyposis coli; BCL9L, B-cell CLL/lymphoma 9 protein like; β-TrCP, β-Transducin repeat con-
taining protein; CK1, casein kinase 1; DKK, dickkopf Wnt signaling pathway inhibitor 1; Dvl, 
Disheveled; GSK3β, glycogen synthase kinase 3 β; HBP, HMG-Box transcription factor 1; LRP5/6, 
low-density lipoprotein receptor-related protein5/6; TCF/LEF, T-cell factor/lymphoid enhancer 
factor; and YY1, Yin Yang 1
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Table 2  MicroRNAs regulating Wnt signaling pathway in CRC

miRNA Target References

OncomiR
miR-19a-3p FOXF2 [86]
miR-135a/b APC [87]
miR-21 TGFβR2, TCF/LEF [60]
miR-155 P130, HBP1 [88]
miR-15b β-catenin, Axin2 [89]
miR-103/107 Axin2 [59]
miR-150 P300, β-catenin [90, 91]
miR-224 GSK3β, sFRP, β-TrCP [78]
miR-29a DKK1, sFRP [92]
miR-574-5p β-catenin, QKI6/7 [67]
miR-762 Wnt [93]
miR-372/373 DKK [94]
miR-146a, miR-34a NUMB [58, 95]
Tumor suppressor miR
miR-23b Frizzled (FZD) [96]
miR-7 Ying Yang 1 (YY1) [97]
miR-26b LEF1 [98]
miR-93 SMAD [99]
miR-320b c-myc, cyclin D1 [100]
miR-34b β-catenin [66]
miR-29b, BCL9L, TCF7L, and SNAI1 [101]
miR-22, miR-214 BCL9L [64]

APC adenomatous polyposis coli; BCL9L B-cell CLL/lymphoma 9-like protein like; β-TrCP beta-
transducin repeat containing protein; DKK1 Dickkopf Wnt signaling pathway inhibitor 1; FOXF2 
Forkhead box F2; GSK3β glycogen synthase kinase 3 bet; HBP1 HMG-Box transcription factor 1; 
sFRP secreted frizzled-related protein; TGFβR2 transforming growth factor beta receptor 2; TCF/
LEF T cell-specific transcription factor/lymphoid enhancer binding factor

Table 3  Roles of microRNAs in oncogenic potential via Wnt signaling

Function miRNA References

Stemness miR-34a, miR-146a, miR-103/107, miR-21, 
miR-92a
miR-3622a

[58–61, 95, 102]

EMT miR-582, miR-496, miR-431, miR-452, miR-200c, 
miR-206, miR139-5p, miR-22, miR-214

[56, 62–64]

Cell proliferation/
invasion

miR-452, miR34b, miR-552, miR-574-5p, miR-
590-3p, miR532-3p, miR-27a

[65–68, 98, 
103–105]

Metastasis miR-452, miR-103/107, miR-532-3p, miR-26b, 
miR-762,
miR-22, miR-214, miR-27a

[59, 64, 65, 93, 98, 
104, 105]

EMT epithelial to mesenchymal transition
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miR-452 directly or indirectly, whereas miR-200c, miR-206, and miR-139-5p sup-
press EMT by targeting GSK3β [56, 62, 63]. MiR-22 and miR-214 regulate the 
EMT by directly targeting the BCL9L gene in CRC [64]. Consistent with these find-
ings, several studies have demonstrated aberrant expression of miRNAs contributes 
to cell proliferation and invasiveness of CRC. MiR-452 acts as a stimulator of Wnt 
signaling and subsequently induces CRC cell proliferation and invasion by directly 
targeting GSK3β [65]. In addition, the miR-452–GSK3β–TCF4/LEF1 positive 
feedback loop plays a central role in regulating CRC initiation and progression [65]. 
The expression level of miR-34b is significantly down-regulated in human colon 
cancer samples, and overexpression of miR-34b effectively inhibits the proliferation 
and apoptosis in colon cancer cells, possibly through the regulation of the Wnt sig-
naling pathway [66]. MiR-574-5p also increases CRC cell proliferation and inva-
sion by regulating expression of QKI6/7 [67], and miR-590-3p positively regulates 
cell proliferation via targeting WIF1 and DKK1 [68]. Considering the critical roles 
of miRNAs in the regulation of stemness, EMT and other oncogenic factors in CRC, 
restoration of the normal expression levels of these dysregulated miRNAs could be 
an effective therapeutic strategy for CRC.

4.2  �MiRNAs Regulating Drug Resistance of CRC Via 
Wnt Signaling

5-fluorouracil (5-FU) is one of the most widely applied anticancer drugs for treating 
CRC, and novel anti-CRC drugs, such as cetuximab (monoclonal antibody) and 
oxaliplatin, are also commonly used in clinical practice [69]. However, acquired 
resistance to these agents presents a major obstacle. Recent studies suggest that 
miRNAs might be associated with resistance to anti-cancer agents [70]. For instance, 
ectopic expression of miR-92a causes chemoresistance to 5-FU-induced apoptosis 
in  vitro [61]. In addition, miR-30-5p expression is significantly reduced in 
5-FU-resistant CRC cells, suggesting that this miRNA might associate with sensi-
tivity to 5-FU [71]. It has been shown miR-125b regulates the CXCL12/CXCR4 
axis by suppressing APC expression in vitro and induces 5-FU resistance in a xeno-
graft model [72]. In contrast, miR-149 and miR-320 increase 5-FU sensitivity by 
decreasing forkhead box protein M1 (FOXM1) expression and subsequent inhibi-
tion of β-catenin localization in the nucleus [73, 74]. Similarly, miR-103/107 pro-
motes the Wnt/β-catenin signaling pathway by directly inhibiting Axin2 expression, 
which contributes to oxaliplatin resistance and tumor recurrence in xenograft mod-
els of CRC [59]. In the case of cetuximab-resistant CRC, miR-100 and miR-125b 
upregulate Wnt signaling by repressing the expression of negative regulators of this 
signaling pathway [75, 76]. These studies demonstrate that aberrant miRNAs in 
CRC have been recognized as effective therapeutic targets for overcoming drug 
resistance.
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Multiple studies have been recently conducted based on the assumption that 
restoring expression of miRNAs involved in sensitivity to anti-cancer agents may 
improve therapeutic and clinical outcomes for patients with CRC by overcoming 
drug resistance [77]. It has been reported that overexpression of miR-30-5p in 
5-FU-resistant cells reduces tumor sphere formation and cell viability, whereas the 
inhibition of miR-30-5p reverses the process [71]. Moreover, ectopic expression of 
miR-30-5p attenuates the expression of Wnt signaling target genes (Axin2 and 
Myc), but antagomiR-92a significantly enhances chemosensitivity in vivo by upreg-
ulating KLF4, GSK3β, and DKK3, negative regulators of the Wnt pathway [61]. In 
addition, inhibition of miR-100 and miR-125b has been shown overcome resistance 
to cetuximab through regulation of the Wnt signaling pathway [75], whereas the 
knockdown of miR-224 restores the expression of GSK3β and SFRP2 and inhibits 
Wnt/β-catenin-mediated cell metastasis and proliferation [78]. Together, using 
miRNAs as therapeutic agents for drug resistance CRC warrants further investiga-
tion. We listed miRNAs involved in chemoresistance via the Wnt signaling pathway 
in CRC in Table 4.

4.3  �MiRNAs Regulated by the Wnt/Myc Axis and their 
Role in CRC

Upon activation of Wnt signaling, expression of a large number of target genes is 
up-regulated, such as Myc, Cyclin D, VEGF, BMP4, and Survivin [79]. A recent 
work has shown phenotype of APC deletion, which hyperactivates Wnt signaling, 
can be rescued by Myc deletion in the intestine suggesting Myc might be a critical 

Table 4  MicroRNAs modulating drug resistance via Wnt signaling pathway in CRC

miRNA Target Drug resistance Cell line/in vivo References

miR-149 FOXM1 5-fluorouracil 
(5-FU)

HCT-8, LoVo [73]

miR-320 FOXM1 5-fluorouracil 
(5-FU)

HT-29, HCT116 [74]

miR-125b APC 5-fluorouracil 
(5-FU)

HCT116, SW620
Xenograft

[72]

miR-92a GSK3β, DKK 5-fluorouracil 
(5-FU)

HT-29, HCT116
Xenograft

[61]

miR-30-5p USP22 5-fluorouracil 
(5-FU)

Caco2 [71]

miR-
100/125b

Wnt negative 
regulator

Cetuximab Caco2, SW403, 
SW948

[75]

miR-506 β-catenin Oxaliplatin HCT116 [106]
miR-103/107 Axin2 Oxaliplatin HCT116 [59]

APC adenomatous polyposis coli; DKK dickkopf–Wnt signaling pathway; FOXM1 Forkhead box 
protein M1 inhibitor; USP22 ubiquitin-specific peptidase 22
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target of the Wnt pathway [80]. Myc is a well-established oncogene in CRC and 
regulates transcription of p53, p27, ARF, Cyclin A, Cyclin E, and many other genes 
[81]. It also can exert its effect by regulating the expression of miRNAs via Myc/
miRNA axes. For example, the Myc/miR-27b-3p/ATG10 (Autophagy Related 10) 
regulatory axis has been shown to be involved in oxaliplatin resistance by regulating 
autophagy in CRC [82]. Given autophagy can protect cancer cells from the cyto-
toxic effect of chemotherapeutic drugs, Myc upregulates ATG10 and autophagy by 
inhibiting expression of miR-27b-3p, rendering CRC cells resistant to oxaliplatin 
[82]. Tumor suppressor p53 is also frequently dysregulated in CRC, which contrib-
utes to CRC pathogenesis. Our work demonstrates dysregulation of Wnt/Myc and 
p53 is interrelated through miRNAs in CRC, and hyperactivation of the Wnt/Myc 
pathway downregulates p53 expression by augmenting p53-targeting miR-552 lev-
els [83]. Expression of miR-552 is upregulated in CRC patient tumor tissues com-
pared with adjacent normal tissues, and CRC cells ectopically expressing this 
miRNA are resistant to doxorubicin-induced inhibition of cell proliferation, sug-
gesting miR-552 might be an oncogene in CRC (Fig. 3) [83]. A Myc/miRNA axis 
can also regulate the EMT and metastasis [84]. Activation of Wnt/Myc signaling 
downregulates miR-29a-3p and miR-200a, which enhances the EMT by upregulat-
ing MMP2 (Matrix Metallopeptidase 2) and ZEB1 (Zinc Finger E-Box Binding 
Homeobox 1). Astaxanthin (AXT) represses the EMT by reversing the effect of 
Myc on these two miRNAs [85]. Together, these studies suggest dysregulation 
of miRNAs by the hyperactivated Wnt/Myc signaling might be promising therapeu-
tic targets in CRC.

Fig. 3  Wnt/Myc/miR-552 axis in resistance to doxorubicin. HCT116 CRC cells were stably trans-
duced with the murine stem cell virus (MSCV)-puro retroviral control vector or MSCV-puro-
miR-552 vector, followed by selection with puromycin (1 mg/ml). Cells ectopically expressing 
control vector or miR-552 were exposed to doxorubicin (0, 0.5, 1, 2, and 4 μM) and counted 24 h 
later. Overexpression of miR-552 rendered HCT116 cells resistant to doxorubicin-induced inhibi-
tion of cell proliferation (*p < 0.05). Cell number after treatment with DMSO for 24 h was set at 
1, and the depicted cell proliferation rates after exposure to doxorubicin were normalized to DMSO 
treatment. The experiments were performed at least three times independently to confirm 
reproducibility
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5  �Conclusion and Future Direction

Two siRNA-based drugs, patisiran and givosiran, were approved by the FDA in 
2018 and 2019 respectively. Unfortunately, several obstacles currently exist before 
miRNA therapeutics can be effective in clinical applications. For example, more 
efficient tools for miRNA delivery need to be developed, and targeted nanoparticles 
can enhance cell/tissue specificity, avoiding unnecessary side effects caused by 
needless interactions with normal cells/tissues. Another concern for miRNA thera-
peutics is the likelihood of miRNAs interacting with multiple target genes, some-
times up to several hundred genes, which may cause a series of unpredictable 
consequences. However, ongoing research into miRNA therapeutics may provide 
novel strategies to improve the outcomes of patients with CRC.
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1  �Introduction

RNA activation has been known about for 15 years. In essence, it means activating 
the endogenous specific gene of cells by a small RNA, which targets the regulatory 
area of the gene in the chromatin, the promoter. There are various ways by which 
gene expression activation can occur. In the end, epigenetic marks are modified in 
the promoter, for example, silencing modifications such as trimethylation of his-
tone3 lysine 27 are lowered and activating modifications such as histone3 lysine 4 
are increased. Increasing target gene activity by epigenetic modifications using 
small RNAs offers unique possibilities for next-generation gene therapy. There are 
several methods available for inhibiting gene expression/activity, such as RNA 
interference and antibodies, but for increasing expression of a therapeutic  gene, 
only delivery of a full cDNA has been an option so far. Recently, mRNA technology 
has also become available for increasing gene expression. However, small RNAs 
have an advantage over longer RNAs for some purposes, such as cardiovascular 
gene therapy, as they are much more stable and induce fewer immunological 
responses. Vascular endothelial growth factor A, a key regulator of angiogenesis, 
has been a popular target in RNA activation studies. Effective epigenetic upregula-
tion of VEGF-A offers novel possibilities for treating ischemic diseases, such as 
myocardial infarction and peripheral artery disease.

2  �Small Noncoding RNAs

Small noncoding RNAs (sncRNAs) are a group of different sized RNAs, excluding 
only over 200 nucleotides long ncRNAs (lncRNAs). As the group includes many 
different small RNAs, their functions in the cells are also diverse. Small noncoding 
RNAs are linked to many cellular functions such as angiogenesis [1, 2], epithelial-
to-mesenchymal transition (EMT) [3], migration [4], and proliferation [5–7]. To 
emphasize their critical function in the cell, their misfunction has been linked to 
many diseases, for example, various cancers [1, 6, 7] such as glioma [8].

2.1  �Small Activating RNA Classes

Small ncRNAs consist of many groups of ncRNAs. In this review, we focus on the 
small ncRNA classes that have been shown to activate gene expression (small acti-
vating noncoding RNAs, saRNAs) (Fig. 1). Yet, there are many groups of ncRNAs 
with undiscovered functions in the cell; thus, new studies for this area are still needed.

MicroRNAs (miRNAs) are perhaps the most frequently studied ncRNA group. 
As the name infers, miRNAs are micro-sized RNAs that in their mature form are 
19–25 nucleotides in length. miRNAs are transcribed from the genome from gene 
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introns, exons, or intergenic regions. Primary miRNA transcript is sliced into pre-
cursor miRNA by the Drosha enzyme and then moved from nucleus to cytoplasm. 
In cytoplasm, the Dicer enzyme cleaves loop formation from an miRNA precursor, 
leaving only double-stranded miRNA that continues its travel. dsRNA structure is 
further unwound in single-stranded miRNAs that then bind to proteins to form the 
RNA-induced silencing complex (RISC) and execute the miRNA function. 
Canonical studies have shown that one miRNA strand is incorporated into the RISC, 
having functions in the cell, whereas the other strand (the so-called passenger 
strand) is cleaved [9]. However, newer studies show that both arms of the same 
miRNA are found as the mature form within the cells, also in the nucleus [10], thus 
indicating their nuclear function as well. MicroRNAs are considered to function via 
the RISC to mainly inhibit gene function. Yet, mature miRNAs and active RISC 
proteins are found in the nuclear fractions of the cells [11] leading to suspicion of 
the nuclear function of miRNAs. Although the exact description of the mechanism 
remains unclear, there are some studies showing activating miRNAs in the cell. For 
example, Place et al. showed that miR-373 induces expression of E-cadherin and 
cold-shock domain-containing protein C2 (CSDC2) expression by promoter 

Fig. 1  Endogenous small RNAs have been shown to activate gene expression. Besides artificially 
designed small RNAs, cellular RNAs have been indicated in gene activation. These examples 
include miRNAs (miR-373 activating E-cadherin), piRNAs (piR_1029 activating plectin), and 
snoRNAs (SNORA23 activating SYNE2). Figure created with BioRender.com

Small Activating RNA Therapy for Angiogenesis



48

targeting. Mutated miR-373 constructs did not result in the induction of genes, 
which showed that miR-373-mediated promoter activation is dependent on target 
sequence specificity on the promoter loci [12].

P-Element induced wimpy testis (PIWI)-interacting RNAs (piRNAs) are a class 
of small RNAs of 26–30 nucleotides in size that are recognized by their unique 
structure consisting of 2′-O-methylation at the 3-end and uracil bias at their 5-end 
[13]. piRNAs are mainly found in the stem cells and human reproductive cells, 
which is why they are linked to many developmental functions. piRNAs are found 
in the genome as piRNA clusters as so many individual piRNAs are transcribed at 
the same time. After transcription, piRNAs are generated either in Zuc-dependent or 
Zuc-independent way [14]. In their mature form, piRNAs interact with PIWI pro-
teins and function both via transcriptional and post-transcriptional regulators. piR-
NAs are known to target transposons but newer studies show their role in mRNA 
regulation [15]. It was shown in a study by Dai et al. that piRNAs can upregulate 
their targets by imperfect base-pairing to mRNA 3’UTRs, leading to induction of 
their translation. Five individual piRNAs were found in this study to upregulate the 
translation of their corresponding targets [16].

Small nucleolar RNAs (snoRNAs) are ncRNAs 60–300 nucleotides long that 
localize in the nucleolus and are important for ribosomal RNA maturation. snoR-
NAs can be divided into two classes based on different structures. H/ACA class 
snoRNAs function mainly in pseudouridylation, whereas C/D box family is cru-
cial for 2′-O-ribose methylation. In the genome, snoRNAs are located in the intron 
of the genes and they are spliced as precursors after transcription [17]. snoRNAs 
are often found in the introns of their target genes, suggesting their important role 
in target gene regulation. snoRNAs can also be transcribed together with other 
small ncRNAs such as miRNAs or piRNAs [18], which indicates that the regula-
tion network has more than one type of small ncRNA. As snoRNAs are important, 
especially in ribosomal RNA function, they are thought to be very conserved 
housekeeping regulators. That is why it is no surprise that they play a role in tumor 
formation, as Xia et  al. showed, for example [7]. In that study, SNORD44 was 
found to be downregulated in four glioma cell lines and its upregulation was shown 
to decrease cell proliferation both in vitro and in vivo. In another study, Cui et al. 
showed that snoRNA can activate gene expression. In that study, snoRNA 
SNORA23 was shown to be increased in human pancreatic ductal adenocarcinoma 
(PDAC) cells and its expression was linked to tumor invasion and patient survival. 
Knockdown of SNORA23 using antisense oligos (ASOs) decreased the expression 
of SYNE2. However, SYNE2 expression was not affected by double-knockdown 
of AGO2 and SNORA23, which implies that SNORA23 potentially functions via 
ribosome biogenesis instead of via the miRNA-like AGO-dependent pathway [19].
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2.2  �Small Activating ncRNA Functions in the Cells

Small noncoding RNAs have been known to exist and function for many decades. 
Small ncRNAs are traditionally thought to only function in the cells as repressors of 
gene expression. One of the most well-known mechanisms for post-translational 
gene silencing (PTGS) is miRNA-regulated mRNA inhibition. This RNA interfer-
ence (RNAi) functions via mature miRNAs connecting to specific proteins and 
together forming functional RISC.  Then, by perfect or imperfect base-pairing, 
miRNA binds to the 3’UTR of mRNA and either degrades mRNA or inhibits mRNA 
translation respectively. Most papers focus on these inhibitory effects of the small 
ncRNAs. Still, many studies today show small ncRNAs as playing a role in activat-
ing gene expression.

There are many potential mechanisms for saRNA function. First papers showing 
the induction of gene expression by small RNAs were published in 2006 and 2007 
and utilized exogenous, artificial saRNAs. Li et al. showed that synthetic promoter 
targeted double-stranded RNA (dsRNA) was able to transcriptionally activate 
E-cadherin, p21, and VEGF genes [20]. Also, Janowski et al. showed that dsRNA 
targeted the promoter region of progesterone receptor (PR) gene and by epigenetic 
changes it induced the transcription of PR gene, which lead to increased mRNA and 
protein levels [21]. Interestingly, in contrast to the study by Janowski et al., Li et al. 
also showed long-lasting induction of gene expression by dsRNA, which indicates 
possible different regulation mechanisms for different small RNAs.

In the study by Huang et al., miR-744 caused induction of cyclin B1 (Ccnb1) 
mRNA levels. Induction of Ccnb1 was achieved by miR-744-mediated epigenetic 
changes on transcription start site (TSS) of Ccnb1 [5]. He et  al. showed that 
snoRNA-derived piRNA (pi-sno75) increased its target mRNA tumor necrosis fac-
tor (TNF)-related apoptosis-inducing ligand (TRAIL) expression both at the mRNA 
and at the protein levels. Interestingly, pi-sno75 was shown to target the TRAIL 
promoter region and induce its transcription by epigenetic modifications [18].

In many studies, miRNAs are suspected to convey their function via long 
ncRNAs. Long ncRNAs would function as a target for miRNA binding, and gene 
function at the transcriptional level is regulated by affecting the lncRNA.  For 
instance, the PR promoter was further studied by Schwartz et al., and it was shown 
that dsRNA can target the PR promoter antisense transcript and thereby induce or 
decrease promoter activity in a sequence-specific manner. It was also shown that the 
binding of dsRNA to antisense transcripts recruit AGO protein to form a complex 
that acts as a scaffold on the PR promoter. This complex further lures other tran-
scription factors to the site to enable a full regulatory system of promoter activation 
[22]. Huang et al. showed in their paper that antisense lncRNA NCK1-AS1 can be 
a target of miR-138-2-3p, preventing the miRNA from silencing its target mRNA 
TRIM24. In this case, lncRNA acts as a competing endogenous RNA (ceRNA) 
target for miRNA, which leads to increased target mRNA function (translation) as 
miRNA is not silencing it [8].
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ceRNA hypothesis was first described by Salmena et al. when they showed the 
competing mechanism between mRNA and lncRNA as an sncRNA target [23]. 
Later on, other groups showed similar results [24]. It has been suggested that 
miRNA might act either in the cytoplasm (targeting mRNA) or in the nucleus (tar-
geting nuclear transcripts), depending on where its main targets are located. Also, 
Quan et  al. showed that lncRNA and mRNA compete for miRNA targets. They 
found that lncRNA AK131850 acts as sponge for miR-93-5p, inducing VEGF-A 
expression, as miRNA is not inhibiting VEGF-A mRNA [25]. In addition to other 
mechanisms described here, it cannot be ruled out that saRNA would directly bind 
the chromatin, as triplex formation has been shown to occur [26]. Meng et al. stud-
ied the saRNA duplex regulating the PR promoter. Interestingly, it was shown that 
saRNA induced PR expression by binding to sense transcripts on PR promotor or 
straight to promoter DNA (Fig. 2) [27].

Fig. 2  Different potential mechanisms of saRNA function. saRNAs are most often considered to 
bind promoter-associated long noncoding RNA at the promoter of their target genes and thus regu-
late gene expression at transcriptional level. However, direct targeting of the chromatin is also a 
possible mechanism of action (triplex forming, or binding to unwound gDNA). Promoter targeting 
is thought to induce epigenetic alterations on the chromatin that induce gene transcription. 
Activating effects on mRNA expression by saRNAs can also come from the action of ceRNAs, 
longer RNA transcripts that act as a sponge and inhibit miRNA to bind to its mRNA target, or by 
binding mRNA directly and inducing translation. Figure created with BioRender.com

P. Laitinen et al.



51

3  �Small Activating RNAs in the Regulation of Angiogenesis

Angiogenesis, i.e., vessel reformation is an important function for cell development 
and growth. Angiogenesis starts in a lack-of-oxygen (hypoxia) environment, which 
makes cells produce growth factors, especially VEGF-A. Arrival of growth factors 
to a hypoxic environment leads to existing blood vessels to sprout, which leads to 
the formation of new blood vessels.

Many studies show sncRNA interaction on angiogenesis-related genes (Fig. 3). 
Exosome-delivered miR-21-3p was able to induce angiogenesis and wound healing 
in the study by Hu et al. In that study, exosomes from human umbilical cord blood 
plasma (UCB-Exos) were extracted and injected to skin wounds in mice. This lead 
to downregulation of PTEN and SPRY1 mRNA levels, which increased fibroblast 
proliferation and migration [28]. Also, Yang et al. showed that the miR-497~195 
cluster is active in a specific bone vessel endothelium and by targeting F-box and 
WD-40 domain protein (Fbxw7) and by Prolyl 4-hydroxylase possessing a trans-
membrane domain (P4HTM), it takes part in Notch and Hif1a stability. This indi-
cates the ability of the miRNA cluster to regulate angiogenesis. Interestingly, 
upregulation of the miR-497~195 cluster induced the Hif1a protein level via stabi-
lized mRNA levels, not through increased transcription of mRNA [2].

Fig. 3  Angiogenesis is regulated by noncoding RNAs. The angiogenesis pathway is carefully 
regulated and many miRNAs participate in the maintenance of healthy vasculature. On the other 
hand, angiogenesis also plays a part in pathological conditions such as cancer, where many miR-
NAs have been linked to induced angiogenesis and metastasis in the tumor. Figure created with 
BioRender.com
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The VEGF family is a large family of growth factors that include VEGF-A, 
VEGF-B, VEGF-C, VEGF-D, VEGF-E (viral VEGF), VEGF-F (snake venom 
VEGF), and placenta growth factor (PIGF) [29]. Of these, VEGF-A is the most 
common and crucial for angiogenesis. VEGF-A gene contains eight exons and 
seven introns [30]. By alternative splicing, different isoforms of VEGF-A are 
formed. All the isoforms have five first exons transcribed, and differences are 
formed by combination and splicing of other exons. There are nine different 
VEGF-A isoforms of which VEGF165 is the most common form. VEGF proteins 
act by binding to receptors VEGFR-1 (also known as Flt-1), VEGFR-2 (KDR), 
VEGFR-3 (Flt-4), Neuropilin-1 (NP-1), Neuropilin-2 (NP-2), and soluble VEGF 
receptors (sVEGFR). VEGFR1 and VEGFR2 can be found on the surface of many 
cell types, but they are mainly expressed in endothelial cells, whereas VEGFR3 is 
characteristic of endothelial lymphatic cells [29]. VEGF-A is a dimeric glycopro-
tein containing two subunits, and requires binding to heparin for its functions. 
VEGF-A is specific to endothelial cells and can induce angiogenesis. It can also be 
secreted from the cells, thus communicating with the surrounding tissue [31].

Angiogenesis was the targeted pathway for the first in vivo study for saRNA-
mediated gene activation, which was published by Turunen et al. [32]. In that study, 
mouse VEGF-A (mVEGF-A) promoter was targeted by artificial small hairpin 
RNAs (shRNAs), which lead promoter activity to increase or to decrease, depend-
ing on the targeted sequence. Activity was achieved by lentivirus-mediated 
shRNA-451 induction, which increased open histone markers H3K4me2 and 
H3K4me3 on a mVEGF-A promoter. On the other hand, shRNA-856 increased 
closed epigenetic markers H3K9me2 and H3K27me3 and decreased open histone 
markers H3K4me2 and H3K9ac. In addition to in vitro studies, this was also shown 
in vivo in mouse hindlimb ischemia. Addition of shRNA-451 into an ischemic area 
was able to increase blood flow and vascularity compared with control. This study 
was continued by Turunen et al. with the same kind of results in the treatment of 
mouse myocardial ischemia [33]. In that study, activating shRNA-451 was shown to 
increase the expression of all mVEGF-A isoforms. In a mouse model of myocardial 
ischemia, lentivirus-mediated shRNA-451 was able to decrease the ischemic region 
of the heart. Interestingly, it was also shown that only intact, double-stranded 
shRNA can induce these effects, implying that the processing pathway is required 
for proper shRNA function in the cells.

Even though angiogenesis is crucial for the normal function of cells, it is also 
responsible for the malfunctioning stage of cells. In ischemic conditions such as 
myocardial infarction, creation of new vessels is essential for tissue survival. 
Angiogenesis is not always wanted, as in cancer it takes part in tumor formation and 
spreading. Without angiogenesis, tumors can grow by cell proliferation, but without 
new vessel formation tumors remain in a benign state, which indicates a good prog-
nosis for the patient. When angiogenesis takes place, the tumor is spreading and 
evolving to a malignant form, also called cancer.

As previously stated, besides maintaining normal activities within the body, 
many sncRNAs are also linked to the malfunctioning of cells (Fig. 3). Zhuang et al. 
showed that miR-9 is secreted by tumors and it promotes endothelial cell migration 
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and angiogenesis. This regulation functions via the JAK-STAT pathway [34]. Zhu 
et al. showed that endothelial-specific miR-126 could target PIK3R2 and VEGF-A 
and its expression was decreased in breast cancer tissue. This led authors to suspect 
that miR-126 could take part in tumor formation by regulation of the VEGF/PI3K/
AKT signal pathway and thus participate in the angiogenic features, proliferation, 
and migration of tumor [35]. Also, Zhang et al. showed that miR-532-5p regulates 
the NF-κB pathway by NCF2  in a gastric cancer model, where it was linked to 
angiogenesis and metastasis. Downregulation of miR-532-5p leads to upregulation 
of NCF2, whereas upregulation of miR-532-5p decreased NCF2 levels. Interestingly, 
miR-532-5p functioned through lncRNA LINC01410 where the expression changes 
of lncRNA changed the expression of miRNA [36].

4  �Nucleic Acid-based Therapy

Nucleic acids have been developed as therapeutics in various forms. Lately, mRNA 
vaccines used in the battle against the COVID-19 pandemic have made RNA medi-
cines known all around the world. The Moderna and Pfizer vaccines are based on 
mRNA encoding SARS-CoV2 spike protein, encapsulated in lipid nanoparticles 
[37]. This approach is new in the vaccine world and creates the potential for more 
easily and rapidly adaptable new vaccines in the future as well. Indeed, companies 
such as Moderna have been developing more vaccines for different viruses, such 
as cytomegalovirus (CMV) [38]. Along with vaccines, Moderna’s pipelines include 
other medicines based on mRNAs to treat diseases such as cancer and myocardial 
infarction [39]. Besides the COVID-19 vaccine, none of these is yet on the market, 
but some have progressed to phase II clinical trials.

Antisense oligonucleotides (ASOs) are currently in the widest use as they come 
to clinical development, as multiple drugs using the chemistry have been approved 
to enter the market by regulatory officials. ASOs are short single-stranded DNA 
molecules where the bases can be chemically modified, with different aims, such as 
improving stability and half-life in the tissue. ASOs target specific mRNA in the 
cell, binding it and inducing inhibition of translation to protein or directing splicing 
of the pre-mRNA. The first ASO drug that was approved by the Food and Drug 
Administration (FDA) in 1998 was fomivirsen for the treatment of CMV retinitis 
[40]. It contained phosphorothioate chemistry for resistance to nucleases. 
Mipomersen, approved by the FDA in 2013 for the treatment of homozygous famil-
ial hypercholesterolemia, has additional modifications to increase stability: deoxy-
ribose modifications in the middle of the molecule and 2′-O-methoxyethyl-modified 
ribose at the both ends [41]. Eteplirsen is a morpholino phosphorodiamidate ASO, 
affecting exon-skipping in DMD gene and was designed to treat Duchenne muscu-
lar dystrophy [42]. Inotersen, a 2′-O-methyoxyethyl-modified antisense oligonucle-
otide, was developed to treat hereditary transthyretin amyloidosis and was approved 
in 2018 by the European Medicines Agency (EMA) and the FDA [43]. Nusinersen 
is an ASO with 2′-O-2-methoxyethyl and phosphorothioate chemistry and is used to 
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treat spinal muscular atrophy [40]. It affects alternative splicing of the SMN2 gene. 
Nusinersen was approved by the FDA in 2016 and by the EMA in 2017. Volanesorsen, 
an ASO by Akcea Therapeutics and Ionis Pharmaceuticals, was accepted by the 
EMA in 2019, for treatment of familial chylomicronemia syndrome [44].

In addition to DNA-based ASOs, RNA can be developed for therapy as siRNA 
(RNAi) or miRNA. The first medicine based on RNAi or siRNA that was approved 
by the FDA was patisiran from Alnylam Pharmaceuticals to treat peripheral nerve 
disease in 2018 [43]. The siRNA drug inclisiran (Novartis) was approved for treat-
ment of low-density lipoprotein cholesterol in Europe in 2020, in the hope of alle-
viating the increasing burden of cardiovascular diseases [45]. Locked nucleic acid 
(LNA)-based antimir-drug MRG-110 from miRAgen Therapeutics (now Viridian 
Therapeutics) inhibits miR-92 function for treatment of cardiovascular disease and 
showed promising results in phase 1 trials, where it increased angiogenesis [46]. 
Pegaptanib (Pfizer) is a 28-bp RNA-aptamer that is used for treatment of age-related 
macular degeneration (AMD). It specifically binds and blocks the VEGF165 iso-
form, which is critical for abnormal growth and permeability of vessels, occurring 
in AMD [47].

Many types of RNA-based drugs are being developed and are already on the 
market, but most of them are based on inhibiting their targets in the cell. Only one 
saRNA is undergoing clinical trials to date. Small RNA targeting CEBPA is devel-
oped by MiNa Therapeutics and is activating CEBPA expression for the treatment 
of hepatocellular carcinoma [48]. CEBPA is a master regulator of myeloid lineage 
and activating its expression positively affects the microenvironment in the tumor. 
saRNA-induced activation of CEBPA can be combined with tyrosine kinase inhibi-
tor to enhance the effect of the drugs. Data from a phase I clinical trial with saRNA 
MTL-CEBPA were promising and pave the way for more saRNA medicines.

5  �Future Vision

Classical function of genetic information was thought for a long time to mainly 
include genetic information as a form of double-stranded DNA, from which genes 
are expressed to produce messenger RNAs, which are then translated to proteins. 
The initial findings from Fire and Mello, to whom the Nobel prize was awarded for 
the discovery of RNAi, opened a new era of research where the function of noncod-
ing RNAs was realized. For more than two decades the biotech industry has been 
developing novel therapeutics based on noncoding RNAs, mostly based on classical 
RNAi. However, as the data have been accumulating at an ever increasing pace from 
RNA-sequencing studies, because the technology has advanced and such studies 
have become more readily available owing to decreasing costs, it has become evi-
dent that noncoding RNAs have many other functions, as has been previously 
thought. The actions of noncoding RNAs in the regulation of chromatin function 
have been starting to unravel in more detail. However, a huge amount of data from 
sequencing studies also represents a major challenge for the field. How to make 

P. Laitinen et al.



55

sense of the complex relations between various RNAs spatially, in a living 3D grow-
ing cell? Maybe future technology that could combine RNA sequencing with RNA 
imaging continuously in a living cell could reveal interesting new aspects of RNA-
mediated chromatin regulation. In addition, it should be taken into account that cells 
are not isolated units in a multicellular organism but communicate with each other. 
One field of research that has been actively growing in the last decade is research on 
extracellular vesicles (EVs), such as exosomes. It is known that cells transfer mate-
rial, including noncoding RNAs, among themselves using EVs. Therefore, it is not 
surprising that developing therapeutics based on exosomes have recently gained 
much attention. However, it has been noted that naturally produced exosomes con-
tain typically only small amounts of miRNAs. This has been surprising for some 
research in the field. Our hypothesis is that many of these miRNAs could have func-
tions in the nucleus of the target cells and therefore much lower amounts are needed 
for chromatin regulatory effects compared with classical RNAi, where mRNA 

Fig. 4  saRNA medicine. saRNAs can be used as small hairpins, single-stranded small RNAs, or 
duplex RNAs. For efficient delivery, saRNAs are often loaded into carriers such as lipid nanopar-
ticles (LNP), exosomes, or expressed from viral vectors, but direct injection to the tissue can also 
be used. saRNA drug is delivered to target tissue, for example, to the heart (treatment of myocar-
dial infarction) or liver (treatment of liver cancer). saRNA binds its targets in the nucleus of target 
organ cells and regulates, e.g., VEGFA, thus inducing angiogenesis, or CEBPA, inducing myeloid 
cell differentiation. The first saRNA drug undergoing clinical trials is MTL-CEBPA by MiNa 
Therapeutics for treatment of liver cancer. Figure created with BioRender.com
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targets are typically present in much higher copy numbers than chromatin-associated 
long noncoding RNAs. However, we and others have been developing methods to 
increase the packaging of therapeutic miRNAs to exosomes. Our thought is that 
EVs as phospholipid bilayer structures encapsulating small regulatory RNAs could 
very well represent ancient RNA life. By learning from the naturally occurring 
RNA vesicles, we can develop new therapeutics (Fig. 4), which could solve effi-
ciency and immunological issues associated with classical gene therapy, typically 
using viral vectors and long cDNAs.
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Muscular Dystrophy Therapy Using Viral 
Vector-based CRISPR/Cas

Eunyoung Choi and Taeyoung Koo

Abstract  Duchenne muscular dystrophy (DMD) is a fatal X-linked genetic disor-
der caused by mutations in the DMD gene, which encodes the dystrophin protein. A 
lack of dystrophin disrupts the skeletal musculature, resulting in severe muscle 
degeneration. Currently, the clustered regularly interspaced short palindromic 
repeats (CRISPR)/CRISPR-associated (Cas) system offers an evolved and precise 
tool of programmed genomic modification and is being widely studied as a thera-
peutic tool for treating various genetic diseases. Recently, CRISPR-mediated DMD 
therapy has been intensively studied as a means of correcting or bypassing disease-
causing mutations, resulting in the permanent repair of mutated DMD gene and 
rescues of dystrophin expression. However, delivery methods remain a major bar-
rier for CRISPR-mediated genome editing. Various viral vectors have been utilized 
as vehicles for sequences encoding CRISPR/Cas components. Efforts have been 
made to optimize the viral vector systems for efficient delivery of these components 
to treat DMD. Herein, we review diverse aspects of several viral vectors combined 
with CRISPR/Cas systems for DMD therapy and discuss their therapeutic potential 
and the challenges ahead.
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1  �Introduction

Duchenne muscular dystrophy (DMD), the most common form of muscular dystro-
phy, is an X-linked recessive disorder of muscle caused by mutations in the DMD 
gene that affects approximately 1 in 3,500 newborn males worldwide. DMD patients 
exhibit severe, progressive muscle weakening due to complete abolishment of dys-
trophin, the protein encoded by DMD, and they eventually die from cardiac or respi-
ratory failure at ages ranging from their early twenties to thirties. A loss of dystrophin 
disrupts the skeletal musculature and increases membrane permeability owing to 
abnormal ion channel function, resulting in increased calcium influx and myofiber 
necrosis. Dystrophin deficiency also leads to disruption of the dystrophin-associated 
protein (DAP) complex, as do mutations in DAP complex genes in other forms of 
congenital and autosomal muscular dystrophy. Different gene therapies for DMD 
are aimed at compensating for dystrophin loss-of-function. To prevent muscle 
degeneration, around 30% of normal dystrophin levels are likely to be required [1].

Becker muscular dystrophy (BMD), an allelic form of muscular dystrophy, is 
also caused by mutations in the DMD gene. BMD muscle pathology is relatively 
benign compared with that of DMD; BMD patients exhibit mild symptoms with 
slow disease progression or can even be virtually asymptomatic because of the con-
tinued expression of truncated but partially functional dystrophin proteins in the 
affected muscles. A large gene deletion that removes the central rod domain of dys-
trophin causes mild BMD symptoms because the DMD open reading frame (ORF) 
is maintained upstream and downstream of the mutation boundaries, resulting in 
partial expression of an internally deleted dystrophin protein. Thus, different muta-
tions affecting various exon/intron regions of DMD can give rise to either DMD or 
BMD, depending upon the nature of the deletion boundaries. Dystrophin levels that 
are about 20% of the wild type results in a milder BMD phenotype [2]. Thus, alle-
viating severe symptoms for DMD patients by expressing semi-functional dystro-
phin that mimics BMD-like phenotype could be an effective therapeutic strategy.

Various pharmacological therapeutic approaches have focused on converting the 
DMD phenotype to a BMD-like phenotype by restoring the disrupted DMD reading 
frame. With such a mechanism, eteplirsen (Exondys 51; Sarepta Therapeutics), an 
antisense phosphorodiamidate morpholino oligomer (PMO) chemistry, was first 
approved by the Food and Drug Administration (FDA) for the treatment of DMD in 
2016 [3]. It induces the expression of truncated but semi-functional dystrophin by 
exon 51 skipping in the DMD gene, resulting in BMD-like phenotype in eteplirsen-
treated DMD patients. Additionally, two PMO drugs, golodirsen (Vyondys 53™; 
Sarepta Therapeutics) [4] and viltolarsen (Viltepso; NS Pharma) are prescription 
medications [5]. They induce exon 53 skipping in the DMD gene, restoring the 
expression of semi-functional dystrophin. These approaches have reduced disease 
symptoms, but none has yet eliminated the disease-causing mutation and allowed 
for long-term dystrophin expression. To address this goal, the adeno-associated 
virus (AAV) vector 2.5 was used in a phase I clinical trial to transfer a mini-
dystrophin cDNA to biceps muscles of DMD patients with two doses (2.0 × 1010 
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vector genomes (vg)/kg or 1.0 × 1011 vg/kg) [6]. However, this trial was suspended 
owing to T cell immunity against dystrophin epitopes in two patients following 
treatments.

Gene editing is a powerful method in which sequence-specific programmable 
nucleases are used to edit the target genomes in organisms ranging from animals to 
plants. Possible edits include gene knockout, base editing, or the addition of specific 
DNA fragments. These endonucleases have been developed from zinc-finger nucle-
ases [7], engineered homing endonuclease [8], transcription activator-like effector 
nucleases [9], and RNA-guided nucleases in the clustered regularly interspaced 
short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system [10]. Owing 
to its simplicity, broad target range, and high editing efficiency, the CRISPR/Cas 
system has become the most widely used platform for genome editing.

Editing of the CRISPR-mediated genome has been harnessed for permanent 
gene correction in a variety of genetic diseases. With advances in CRISPR-mediated 
therapeutic approaches, several strategies for treating DMD have exhibited great 
potential for compensating for the loss of dystrophin. Delivery of CRISPR/Cas 
components into diseased muscle tissues led to successful modification of the 
genome and the expression of semi-functional dystrophin protein, resulting in con-
version from DMD- to BMD-like phenotype. For efficient CRISPR delivery, a 
range of viral and nonviral gene transfer vectors encoding the Cas nuclease together 
with guide RNA have been tested in systems ranging from patient cells to animal 
models of DMD. Even with the aid of sophisticated nonviral delivery strategies, 
such as electrotransfer, microinjection, or chemical delivery, CRISPR delivery 
methods still have major hurdles to overcome to reach the gene-transfer efficiencies 
required for therapeutic effectiveness. Therefore, a range of viral vectors have been 
evaluated as potentially attractive delivery systems for the transfer CRISPR/Cas to 
target organs for DMD therapy  (Table 1). Safe and effective DMD gene therapy 
protocols based on the use of viral vectors are currently being developed. Viral 
vector-mediated rescue of dystrophin deficiency, which had been induced by pre-
cise CRISPR-mediated editing of the DMD gene in model organisms in conjunction 
with associated physiological improvement, has been evaluated. Here, we discuss 
diverse aspects of viral vector-mediated CRISPR systems in the field of DMD ther-
apy (Table 2).

2  �CRISPR/Cas: From Immune Systems to Genome 
Editing Tool

The CRISPR system is a prokaryotic adaptive immune system that provides resis-
tance against invading foreign phages and plasmids [10]. When foreign genetic 
materials invade the cells, the DNA fragments are incorporated as spacers in a 
CRISPR array, providing sequence-specific memory. When the same foreign mate-
rial reinvades, the CRISPR array is transcribed into a pre-CRISPR RNA (crRNA), 
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which is then processed to become a mature crRNA that corresponds to the foreign 
DNA. In some systems, a second trans-activating crRNA (tracrRNA) is involved in 
crRNA maturation. Cas nucleases are guided to specific sequences associated with 
a protospacer adjacent motif (PAM) by the generated crRNAs, after which the Cas 
protein cleaves the targeted DNA. The two guide RNA (crRNA and tracrRNA) can 
be linked into a single form to generate a programmable, single guide RNA (sgRNA) 
that shows similar efficiency and is now widely used for genome engineering 
because of its simplicity. CRISPR/Cas-mediated genome editing involves two 
endogenous cellular DNA repair mechanisms: nonhomologous end joining (NHEJ) 
and homology directed repair (HDR). After DSBs are produced by the Cas protein, 
NHEJ induces indels that can result in reframing of the open reading frame (ORF) 
or generating of premature stop codons. In contrast, the HDR pathway inserts the 
donor template containing desired sequences into the target site after indel forma-
tion to induce precise genome editing or gene knock-in. However, the HDR mecha-
nism is less efficient than NHEJ.  Moreover, HDR is restricted to the S and G2 
phases of the cell cycle, when sister chromatids are available to accept the template 
DNA; therefore, G1-arrested cells (post-mitotic cells), such as mature myofibers 
and cardiomyocytes, are not corrected efficiently by HDR-mediated gene editing.

The CRISPR systems are divided into two classes. Class I includes types I, III, 
and IV and requires several Cas proteins, such as Cas3, Cas10, and Csf1, to make 
up a functional complex. Class 2 includes types II, V, and VI and uses a single Cas 

Table 1  Comparison of viral vectors used for clustered regularly interspaced short palindromic 
repeat delivery

Virus 
types

Genetic 
materials

Vector 
genome 
forms

Capacity 
(kb) Advantages Disadvantages

AAV Single-
stranded 
DNA

Mainly 
episomal

~4.7 •	 Long-term 
transgene 
expression

•	 Minimal immuno-
genicity and 
toxicity

•	 High transfection 
efficiency in vivo

•	 Non-integrating

•	 Restriction in packag-
ing capacity

•	 Pre-existing immunity 
against natural 
serotypes

AdV Double-
stranded 
DNA

Episomal ~36 •	 Large packaging 
capacity

•	 Non-integrating
•	 Transient transgene 

expression

•	 Strong immunogenicity
•	 Difficult large scaled 

production

LV Single-
stranded 
RNA

Integrated, 
non-
integrated

~8 •	 High transduction 
efficiency in vitro

•	 Suitable for 
generating stable 
cell lines

•	 Off-target effects 
(insertional mutagenesis 
and random integration)

•	 Low delivery efficiency 
in vivo

Abbreviations: AAV adeno-associated viral vector, AdV adenoviral vector, LV lentiviral vector

E. Choi and T. Koo



65

Ta
bl

e 
2 

Su
m

m
ar

y 
of

 v
ir

al
 v

ec
to

r-
m

ed
ia

te
d 

cl
us

te
re

d 
re

gu
la

rl
y 

in
te

rs
pa

ce
d 

sh
or

t 
pa

lin
dr

om
ic

 r
ep

ea
t 

sy
st

em
s 

us
ed

 f
or

 t
re

at
in

g 
D

uc
he

nn
e 

m
us

cu
la

r 
dy

st
ro

ph
y 

(D
M

D
)

O
ri

gi
n

Ty
pe

s 
of

 
ve

ct
or

T
ro

pi
sm

 o
r 

ge
ne

ra
tio

n
St

ra
te

gi
es

N
uc

le
as

es
D

M
D

 m
ut

at
io

n
T

he
ra

pe
ut

ic
 ta

rg
et

 
ge

ne
 r

eg
io

n(
s)

M
od

el
(s

)
R

ef
er

en
ce

s

A
A

V
A

ll-
in

-o
ne

 
A

A
V

A
A

V
9

E
xo

n 
re

fr
am

in
g

C
jC

as
9

D
m

d 
fr

am
es

hi
ft

 m
ut

at
io

n 
in

 e
xo

n 
23

D
m

d 
ex

on
 2

3
D

m
d 

kn
oc

ko
ut

 m
ic

e
[2

7]

A
A

V
rh

.7
4

E
xo

n 
de

le
tio

n
Sa

C
as

9
D

m
d 

no
ns

en
se

 m
ut

at
io

n 
in

 e
xo

n 
23

D
m

d 
in

tr
on

s 
20

-2
3

m
dx

 m
ic

e
[2

5]

D
ua

l A
A

V
s

A
A

V
9

E
xo

n 
de

le
tio

n
Sa

C
as

9
D

m
d 

no
ns

en
se

 m
ut

at
io

n 
in

 e
xo

n 
23

D
m

d 
in

tr
on

s 
22

-2
3

m
dx

; 
A

i9
 m

ic
e

[2
8]

A
A

V
9

E
xo

n 
sk

ip
pi

ng
Sp

C
as

9
D

m
d 

ex
on

 4
4 

de
le

tio
n

D
m

d 
sp

lic
e 

si
te

 o
f 

ex
on

 4
5

D
m

d 
Δ

E
x4

4 
m

ic
e

[1
9]

A
A

V
9

E
xo

n 
sk

ip
pi

ng
Sp

C
as

9
D

M
D

 e
xo

n 
50

 d
el

et
io

n
D

M
D

 s
pl

ic
e 

si
te

 
of

 e
xo

n 
51

C
an

in
e 

m
od

el
 

of
 D

M
D

[2
1]

A
A

V
9

E
xo

n 
de

le
tio

n
Sp

C
as

9
D

m
d 

no
ns

en
se

 m
ut

at
io

n 
in

 e
xo

n 
23

D
m

d 
in

tr
on

s 
22

-2
3

m
dx

 m
ic

e
[2

9]

A
A

V
8

E
xo

n 
de

le
tio

n
Sa

C
as

9
D

m
d 

no
ns

en
se

 m
ut

at
io

n 
in

 e
xo

n 
23

D
m

d 
in

tr
on

s 
22

-2
3

m
dx

 m
ic

e
[2

4]

T
ra

ns
-

sp
lic

in
g 

A
A

V
s

A
A

V
9

B
as

e 
ed

iti
ng

A
B

E
7.

10
D

m
d 

no
ns

en
se

 m
ut

at
io

n 
in

 e
xo

n 
20

D
m

d 
ex

on
 2

0
D

m
d 

kn
oc

ko
ut

 
m

ic
e

[3
0]

In
te

in
-s

pl
it 

A
A

V
s

A
A

V
9

E
xo

n 
de

le
tio

n
Sp

C
as

9
D

M
D

 e
xo

n 
52

 d
el

et
io

n
D

M
D

 in
tr

on
s 

50
-5

1
D

M
D

 Δ
E

x5
2 

pi
g

[3
2]

(c
on

tin
ue

d)

Muscular Dystrophy Therapy Using Viral Vector-based CRISPR/Cas



66

Ta
bl

e 
2 

(c
on

tin
ue

d)

O
ri

gi
n

Ty
pe

s 
of

 
ve

ct
or

T
ro

pi
sm

 o
r 

ge
ne

ra
tio

n
St

ra
te

gi
es

N
uc

le
as

es
D

M
D

 m
ut

at
io

n
T

he
ra

pe
ut

ic
 ta

rg
et

 
ge

ne
 r

eg
io

n(
s)

M
od

el
(s

)
R

ef
er

en
ce

s

A
dV

A
dV

Fi
rs

t-
ge

ne
ra

tio
n 

(E
1a

nd
 E

3 
de

le
tio

n)

E
xo

n 
de

le
tio

n
Sp

C
as

9
D

m
d 

no
ns

en
se

 m
ut

at
io

n 
in

 e
xo

n 
23

D
m

d 
in

tr
on

s 
20

-2
3

m
dx

 m
ic

e
[3

6]

Se
co

nd
-

ge
ne

ra
tio

n 
(E

1 
an

d 
E

2A
 d

el
et

io
n)

E
xo

n 
de

le
tio

n
Sp

C
as

9
D

M
D

 e
xo

ns
 4

5–
52

 d
el

et
io

ns
, e

xo
ns

 
48

–5
0 

de
le

tio
ns

D
M

D
 in

tr
on

s 
52

-5
3,

 in
tr

on
s 

43
-5

4

H
um

an
 D

M
D

 
m

yo
bl

as
ts

[3
7]

E
xo

n 
sk

ip
pi

ng
Sp

C
as

9
D

M
D

 e
xo

ns
 4

5–
52

 d
el

et
io

ns
, e

xo
ns

 
48

–5
0 

de
le

tio
ns

D
M

D
 s

pl
ic

e 
si

te
 

of
 e

xo
n 

51
, 

ex
on

 5
3

H
um

an
 D

M
D

 
m

yo
bl

as
ts

[3
8]

H
C

A
dV

T
hi

rd
-g

en
er

at
io

n
E

xo
n 

de
le

tio
n

Sp
C

as
9

W
ild

 ty
pe

D
M

D
 in

tr
on

s 
50

-5
1

H
um

an
 D

M
D

 
m

yo
bl

as
ts

[4
0]

eS
pC

as
9

D
M

D
 e

xo
ns

 4
5–

52
 d

el
et

io
ns

, e
xo

ns
 

48
–5

0 
de

le
tio

ns
D

M
D

 in
tr

on
s 

43
-5

4
H

um
an

 D
M

D
 

m
yo

bl
as

ts
[4

2]

LV
LV

T
hi

rd
-g

en
er

at
io

n
E

xo
n 

de
le

tio
n

Sp
C

as
9

D
m

d 
no

ns
en

se
 m

ut
at

io
n 

in
 e

xo
n 

23
D

m
d 

in
tr

on
s 

22
-2

3
M

ou
se

 D
m

d 
iP

SC
s

[4
4]

Sa
C

as
9

D
M

D
 e

xo
ns

 4
9–

50
 d

el
et

io
ns

, e
xo

ns
 

50
–5

2 
de

le
tio

ns
, e

xo
ns

 5
1–

53
 

de
le

tio
ns

, e
xo

ns
 5

1–
56

 d
el

et
io

ns

D
M

D
 e

xo
ns

 
47

–5
8

H
um

an
 D

M
D

 
m

yo
bl

as
ts

[4
5]

Sp
C

as
9

D
M

D
 e

xo
n 

2 
du

pl
ic

at
io

ns
D

M
D

 in
tr

on
 2

 to
 

du
pl

ic
at

ed
 

in
tr

on
 2

H
um

an
 D

M
D

 
m

yo
bl

as
ts

[4
6]

Sp
C

as
9

D
M

D
 e

xo
ns

 1
8–

30
 d

up
lic

at
io

ns
D

M
D

 in
tr

on
 2

7 
to

 
du

pl
ic

at
ed

 
in

tr
on

 2
7

H
um

an
 D

M
D

 
m

yo
bl

as
ts

[4
7]

In
te

gr
at

io
n 

of
 

tr
an

sg
en

e
D

M
D

 e
xo

ns
 4

5–
52

 d
el

et
io

ns
, e

xo
ns

 
48

–5
0 

de
le

tio
ns

D
M

D
 e

xo
n 

51
, e

xo
n 

53
H

um
an

 D
M

D
 

m
yo

bl
as

ts
[3

8]

A
bb

re
vi

at
io

ns
: 

A
AV

 a
de

no
-a

ss
oc

ia
te

d 
vi

ra
l 

ve
ct

or
, 

A
dV

 a
de

no
vi

ra
l 

ve
ct

or
, 

LV
 l

en
tiv

ir
al

 v
ec

to
r, 

A
B

E
 a

de
ni

ne
 b

as
e 

ed
ito

r, 
hi

P
SC

 h
um

an
 i

nd
uc

ed
 p

lu
ri

po
te

nt
 

st
em

 c
el

l

E. Choi and T. Koo



67

protein with multiple domains, such as Cas9, Cas12a, and C2C2. Cas protein 
derived from Streptococcus pyogenes (SpCas9) is the most widely used and heavily 
engineered Cas protein, which belongs to class 2, type II. SpCas9 recognizes ′NGG′ 
or ′NAG′ PAMs located at the 3′ end of a protospacer. After targeting recognition, 
SpCas9 generates double-strand breaks (DSBs) at a site 3  bp upstream of the 
PAM. Small Cas orthologs, such as Staphylococcus aureus Cas9 (SaCas9), 
Campylobacter jejuni Cas9 (CjCas9), and CRISPR from Prevotella and Francisella 
1 (Cpf1) respectively, recognize the ′NNGRRT′, ′NNNVRYAC′, and ′TTTV′ PAMs. 
These endonucleases are smaller than SpCas9; thus, sequences encoding them can 
be efficiently packaged into small viral vectors with comparable editing efficiency 
with SpCas9 but with higher specificity [11–13].

Recently, various types of base editors, which are composed of a nickase or dead 
form of Cas protein fused to a deaminase enzyme, have been engineered to edit 
specific nucleotides without generating DSBs. The first representative example is 
cytosine base editors (CBEs), which consist of rat APOBEC1 deaminase fused to 
nickase Cas9 (nCas9) containing a D10A mutation [14]. After nCas9 nicks the non-
edited strand, APOBEC1 converts cytidines (C) into uracils (U), which are then 
converted to thymines (T). To increase editing efficiency, cellular uracil DNA-
glycosylase inhibitor, which inhibits cellular base-excision repair, is also included 
in the fusion protein [14]. Adenine base editors (ABEs), which convert adenines (A) 
into guanines (G), consist of a heterodimer of the Escherichia coli (E. coli) tRNA 
adenosine deaminase (TadA and TadA*) fused with nCas9(D10A) [15]. C-to-G 
base editor consists of nCas9(D10A), an E. coli-derived uracil DNA N-glycosylase 
and a rat APOBEC1 cytidine deaminase variant (R33A) [16].

These base editors can convert specific bases for precise editing at the target site 
yet still have limitations, such as the inability to correct deletions, insertions, or 
some classes of point mutations. More recently, prime editors were developed to 
allow more diverse editing. Prime editor consists of nCas9(H840A) and an engi-
neered Moloney murine leukemia virus reverse transcriptase (RT) domain [17]. 
nCas9 guided by pegRNA including desired edits generates a nick in the DNA 
strand and then RT processes the reverse transcription of the RT template for precise 
editing at the target locus.

3  �Strategies for CRISPR-mediated DMD 
Mutation Correction

Exon skipping. Approximately 83% of DMD cases are caused by genomic frame-
shift deletions that juxtapose out-of-phase exons in the DMD gene. Abolishing con-
served RNA splice sites to inhibit the splicing of specific exons, called exon 
skipping, can juxtapose in-phase exons to restore ORFs [18]. When CRISPR-
induced NHEJ occurs at an exon junction, the conserved RNA splice donor site or 
splice acceptor site flanking the out-of-frame exon is abolished. Splicing to the next 
available exon leads to exclusion of the target exon. As a result, a semi-functional, 
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short dystrophin protein is expressed, converting the severe DMD phenotype into a 
milder BMD phenotype. With this strategy (Fig. 1a), efficient exon skipping with 
therapeutic outcomes has been demonstrated in human induced pluripotent stem 
cells (iPSCs) and myoblasts from DMD patients [19] as well as from mouse [20] 
and canine models of DMD [21].

Exon deletion. Exon deletion approaches can be used to restore disrupted ORFs. 
Approximately 65–72% of DMD patients have deletions of one or more exons that 
disturb the DMD gene ORF. Additional deletion of one or more exons using CRISPR 
systems can restore disrupted ORF. Moreover, deletion of a mutation hotspot span-
ning exons 45–55 could treat approximately 60% of DMD patients. For precise 
exon excision, a pair of sgRNAs targeting regions flanking exon(s) of interest can 
be designed. After CRISPR-mediated DSBs occur at those sites, the internal region 
is lost, and newly adjacent in-frame exons are spliced together (Fig. 1b). As a result, 
truncated but partially functional dystrophin protein can be expressed. Exon dupli-
cation mutations, which occur in ~5% of DMD patients, can also be corrected by 
the same strategy with an advantage of only requiring a single sgRNA targeting the 
intron region adjacent to the duplicated exon.

Exon reframing. Most DMD patients have deleterious mutations that interrupt 
DMD ORF. CRISPR-induced NHEJ has been used to introduce indels into a mutated 
exon to reframe the ORF (Fig. 1c). Of note, frameshift mutations can be reframed 
correctly with a one-in-three probability when small indels are generated through 
NHEJ upstream of the premature stop codons.

Exon knock-in. NHEJ-mediated exon reframing is limited because it cannot be 
applied to mutations located within exons encoding essential dystrophin domains. 
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Fig. 1  Mechanisms of clustered regularly interspaced short palindromic repeat (CRISPR)-
mediated Duchenne muscular dystrophy (DMD) correction. (a-d) A representative example of a 
frame-shifting mutation in the DMD gene (generated by deletion of exons 48–50 from the wild 
type sequence) and therapeutic strategies to correct the mutation. (a) Exon skipping induced by 
disruption of a splice acceptor (SA) site. (b) Exon deletion using two gRNAs targeting intronic 
regions flanking the targeted exon. (c) Exon reframing by nonhomologous end joining in the 
mutated exon. (d) Precise correction by homology directed repair-mediated exon knock-in. (e) 
Base editing by an adenine base editor to correct a nonsense mutation in the Dmd exon 20. (f) 
CRISPRa-mediated upregulation of utrophin expression
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In contrast, CRISPR-mediated HDR can accurately edit a mutated DMD gene to 
generate a wild type sequence, resulting in the expression of full-length dystrophin 
protein. HDR requires simultaneous delivery of Cas9, sgRNAs targeted to regions 
flanking the mutated region, and a single-stranded oligodeoxynucleotide or a donor 
template plasmid containing the desired sequences. Donor DNA is incorporated at 
the induced DSBs (Fig. 1d). This strategy offers precise repair, yet it has obvious 
disadvantages, such as it is not applicable to G1-arrested cells, repair is limited to 
the length of the donor template, integration of an unwanted DNA fragment is pos-
sible, and the frequency of HDR is lower than that of NHEJ.  Prime editing via 
reverse transcription, the latest technology, has substantial potential to overcome 
these limitations.

Base editing. Base editing is a promising strategy for DMD therapy because it 
involves precise editing of a single base in the target site without generation of 
DSBs. Without the requirement for NHEJ-mediated repair, precise base editing of a 
single base in the targeted genome can be used to correct point mutations in the 
DMD gene, which account for approximately 27% of DMD cases (Fig. 1e) or dis-
rupt splice sites for targeted exon skipping and ORF reframing. Base editing is also 
more efficient and generates lower frequencies of off-target effects than HDR.

Transcriptional modulation. Compensating for the lack of dystrophin function 
by modulating the expression level of other proteins with similar functions could be 
a novel strategy for DMD treatment. Using a CRISPR-mediated epigenetic editing 
approach to control protein expression has some advantages: it could be applied to 
all DMD patients regardless of which mutations are present and does not generate 
DNA DSBs, which can lead to unwanted indels, unlike techniques involving func-
tional Cas9 nuclease. This strategy has been used to upregulate gene expression 
such as utrophin (Fig. 1f) and laminin or downregulate klotho and DUX4 by using 
catalytically inactivated or dead Cas9 with a transcriptional activator or repressor, 
called CRISPR activator [22] or CRISPR interference respectively [23].

4  �Adeno-Associated Viral Vector-based Delivery 
of CRISPR/Cas

AAV vectors. AAV vectors (AAVs) are based on natural adeno-associated virus, 
which is a single-stranded, nonpathogenic, DNA parvovirus with an ability to effi-
ciently transduce in both dividing and nondividing cells (such as myofibers and 
cardiomyocytes). These vectors are among the most efficient gene delivery vehicles 
and are extensively used for various gene therapies. Owing to long-term transgene 
expression without integrating into the host genome (they primarily exist episom-
ally in circular head-to-tail concatemer), the expression of CRISPR components in 
AAV vectors-treated muscle has been shown to persist in vivo for several years, 
resulting in accumulated gene-edited transcripts with long-term therapeutic effects 
[24, 25]. The target cell preference depends on the AAV serotypes. In particular, 
AAV serotypes 8 and 9 exhibit high tropism for cardiac and skeletal muscles [26]. 
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Therefore, AAV vectors with high muscle tropism have been utilized as vehicles to 
transfer CRISPR components to correct or bypass DMD mutations (Fig. 2). With 
respect to vector selection, the excellency of long-term expression of AAV-delivered 
transgenes is offset by the limited packaging capacity (<4.7 kb). To overcome the 
small cargo capacity of AAVs, various approaches to transferring CRISPR compo-
nents are in development.

All-in-one AAV-CRISPR. Although SpCas9 (encoded by 4.10 kb sequence) is 
the most wildly used Cas nucleases, sequences encoding both SpCas9 and a sgRNA 
together are too large to be packaged in a single AAV. As an alternative to SpCas9, 
smaller Cas9 orthologs such as SaCas9 (encoded by 3.19 kb) or CjCas9 (encoded 
by 2.95 kb) can be carried in an all-in-one AAV. The gene encoding CjCas9 has 
been packaged into a single AAV serotype 9 together with sgRNA targeting Dmd 
exon 23  (Fig. 2a). Intramuscular injection of AAV9-CRISPR (AAV9-CjCas9-
sgRNA) into the tibialis anterior (TA) muscles (5 × 1011 vg/muscle) of Dmd knock-
out mice that carry a frameshift mutation in exon 23-induced indels with a frequency 
of up to 8% and improved dystrophin levels to 39% of the wild type levels with no 
observable off-target effects [27]. Given that AAV exhibits long-term transgene 
expression, in vivo therapeutic effects induced by CRISPR have been shown up to 
19  months post-injection [25]. In this study, delivery of two AAV-CRISPRs 
(AAVrh.74-SaCas9-sgRNA targeting intron 20 + AAVrh.74-SaCas9-sgRNA target-
ing intron 23) into neonatal mdx mice (a model of DMD harboring a nonsense muta-
tion in Dmd exon 23) induced precise excision of exons 21–23 with a frequency of 
76.3%, leading to restoration of dystrophin levels to 11.1% of wild type level and 
improved cardiac function at 19 months of age [25]. Treated mdx mice did not show 
any detectable signs of toxicity or immunity against AAV-CRISPR for time periods 
up to 19 months indicating that a significant host response against this system was 
avoided by administration in early life [25]. These studies demonstrate the long-
term therapeutic effects of CRISPR by using an AAV delivery system to treat DMD.

Dual AAV-CRISPR. To overcome the small cargo capacity of AAVs, Cas9 and 
sgRNA can be delivered using dual AAVs. This system has been utilized for exon 
deletion or skipping. One of these studies reported that use of dual AAVs resulted in 
higher efficiency in genome editing than a single AAV platform [28]. Intramuscular 
delivery of SaCas9 coupled with paired gRNAs targeting regions flanking Dmd 
exon 23 by two AAV-CRISPR (AAV9-SaCas9 + AAV9-Dmd23 gRNAs targeting 
Dmd intron 22 and intron 23; 7.5 × 1011 vg each) resulted in excision of the targeted 
exon with a frequency of 39% in TA muscles of mdx mice harboring a nonsense 
mutation in Dmd exon 23, whereas treatment of a single vector rendered lower effi-
ciency than dual AAVs [28]. Furthermore, systemic injection of mdx mice with dual 
AAV-CRISPR induced exon 23-deleted dystrophin transcripts at a frequency of up 
to ~18% in multiple skeletal muscles and cardiac muscles, demonstrating the poten-
tial value of dual AAVs for CRISPR delivery in vivo for DMD therapy [28].

With the exon skipping strategy, disrupted ORF can be corrected, as demon-
strated previously. As an example of the study, two AAVs were generated to target 
the exon 45 splice acceptor site in DMD mice harboring a Dmd exon 44 deletion  
(Fig. 2b). Delivery of AAV-CRISPR (AAV9-SpCas9 and AAV9-sgRNA, 5×1010 vg/

E. Choi and T. Koo



71

muscle) resulted in exon 45 skipping with a frequency of 9.8%, leading to ORF 
reframing and restoration of dystrophin levels to 74% of wild type levels in treated 
TA muscles [19]. In addition, to find the optimal dose of gene editing components, 
1:1, 1:5, and 1:10 ratios of AAV9-Cas9:AAV9-sgRNA were tested with the dose of 
AAV-Cas9 fixed at 5 × 1013 vg/kg [19]. The dystrophin level reached 82% of the 

(a) All-in-one AAV (b) Dual AAVs

(c) Trans-splicing AAVs
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Fig. 2  Summary of AAV-mediated clustered regularly interspaced short palindromic repeat 
(CRISPR) systems used for treating Duchenne muscular dystrophy (DMD). Four types of recom-
binant adeno-associated virus (AAV) vectors encoding CRISPR components; (a) all-in-one AAV 
encoding Cas9 and sgRNA targeting the Dmd exon 23 for reframing of the open reading frame. (b) 
dual AAVs consisting of one AAV encoding Cas9 and the other AAV encoding a sgRNA targeting 
the splice acceptor (SA) for Dmd exon 45 skipping. (c) trans-splicing AAVs consisting of one AAV 
encoding engineered E. coli TadA (ecTadA), conjugated to the first half of nCas9 with splicing 
donor (SD) and sgRNA targeting Dmd exon 20 containing a nonsense mutation and the other AAV 
encoding the second half of nCas9 with SA for adenine base editing. (d) intein-split AAVs consist-
ing of one AAV encoding the first half of Cas9 and sgRNA targeting intron 50 and the other AAV 
encoding the second half of Cas9 and sgRNA targeting intron 51 for exon 51 deletion. ITRs, 
inverted terminal repeats
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wild type dystrophin level in treated cardiac muscle when the AAV9-Cas9:AAV9-
sgRNA ratio was 1:1; this dystrophin expression level was increased by an addi-
tional 12% at a 1:10 ratio [19].

Similarly, the effects of an exon 50 deletion in a canine model of DMD were cor-
rected with AAV9-CRISPR that targeted the region adjacent to the exon 51 splice 
acceptor site to cause exon 51 skipping and ORF reframing [21]. Intramuscular 
injection of the cranial tibialis muscles of DMD dogs with two AAV9-CRISPR 
(AAV9-SpCas9 and AAV-sgRNA targeting exon 51; 1.2  ×  1013  vg/muscle each) 
resulted in exon 51 skipping in 73% of cDNA products, leading to restoration of 
dystrophin expression up to 60% of wild type levels at 6 weeks post-injection [21]. 
Furthermore, systemic delivery of the AAV9-CRISPR (1 × 1014 vg/kg each) led to 
widespread dystrophin expression in muscles including the cranial tibialis, triceps, 
and biceps, as well as the heart in treated dogs at 8 weeks post-injection [21]. These 
results confirmed the therapeutic efficacy of the dual AAV-CRISPR system in a 
large animal model of DMD.

The choice of vector administration routes and treatment age may affect the effi-
cacy of CRISPR-mediated genome editing, as demonstrated in several studies. 
Intramuscular delivery of the dual AAV8-CRISPRs, consisting of one AAV encod-
ing SaCas9 and the other AAV encoding two gRNAs in mdx mice showed a decrease 
in genome editing over time (from 8% to 2% of frequency at 8 weeks and 6 months 
respectively) [24]. In contrast, systemic delivery of these AAV8-CRISPRs resulted 
in an increased frequency of genome editing over 1 year in the heart, TA muscle, 
and diaphragm [24]. Similarly, mdx mice co-injected with two AAV9-CRISPRs 
with different modes of delivery, including 1) intramuscular injection at postnatal 
day 12 (P12), 2) retro-orbital injection at P18, and 3) intraperitoneal injection at P1, 
restored dystrophin expression in 25.5%, 6.1%, and 1.8% of myofibers after 
6 weeks, 8 weeks, and 8 weeks respectively [29].

Trans-splicing AAV-CRISPR. To deliver large CRISPR components using 
AAVs, CRISPR molecules can be split into two parts and delivered independently 
in trans-splicing AAV systems. Each trans-splicing AAV carries one of the partial 
sequences with appropriate splice signal sequence in an AAV. In one example of 
DMD base editing using trans-splicing AAVs, ABEs have been used to correct a 
nonsense mutation in exon 20 of the Dmd gene by converting a stop codon (TAG) 
into a Gln (CAG) [30]. Because ABE is relatively large, a delivery method involving 
a trans-splicing AAV9 encoding  ABE has been developed  (Fig. 2c). The 6.1-kb 
sequence encoding one version of ABE (ABE7.10, a TadA-TadA*-nSpCas9 fusion), 
was split into two parts to overcome the packaging limits of AAV. A donor vector 
that carries the 5′ fragment of the ABE gene conjugated to a splicing donor together 
with the sgRNA. An acceptor vector carries the 3′ fragment of the ABE gene fused 
to a splicing acceptor. After co-infection of single cells in the TA muscles of a DMD 
mouse with trans-splicing AAV9 encoding ABE, one full length ABE mRNA would 
be produced following head-to-tail intermolecular recombination between the two 
independent viral genomes and subsequent splicing across the inverted terminal 
repeat (ITR) junction. The base editing efficiency (A>G) in the treated mouse was 
3.3%, leading to an increase in the dystrophin expression level to 17% of wild type 
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dystrophin with co-localization of neuronal nitric oxide synthase at the sarcolemma. 
This study demonstrates that the trans-splicing AAV system successfully carried the 
ABE into muscles for Dmd editing in the genome, demonstrating the therapeutical 
potential of base editing in a DMD animal model [30]. Additionally, HNHx-ABE is 
a more compact version of ABE in which the SpCas9-HNH domain is replaced with 
TadA and can be an option in conjunction with a single AAV vector system for 
treating DMD.

Intein-mediated split AAV-CRISPR. Intein-mediated split AAV system is 
another potential vehicle for the delivery of large CRISPR components. An intein is 
a segment of protein that has the ability to self-excise from a protein without leaving 
residual amino acids in the final product, similar to an intron being excised from an 
RNA [31]. Split-inteins (N-intein and C-intein polypeptides at the ends of two pro-
teins) catalyze protein trans-splicing to generate one longer protein. This ability is 
harnessed in intein-mediated trans-splicing AAV, which has been used to deliver 
large CRISPR components for in vivo gene editing of a pig model of DMD [32]. 
Intramuscular delivery of AAV9 carrying an intein-split Cas9 and a pair of gRNAs 
targeting sequences flanking exon 51 (2 × 1013 vg/kg each) induces expression of 
truncated dystrophin, leading to improvement of muscle function (Fig. 2d).

5  �Adenoviral Vector-based Delivery of CRIPSR/Cas

Adenoviral vectors. Adenoviral vectors (AdVs) are alternative delivery vehicles 
that have been extensively used for therapeutic applications. Owing to the large 
gene capacity of the AdVs, it can deliver CRISPR components in a single vector 
system. Cell entry by AdV generally involves binding to a cell receptor, such as the 
coxsackievirus and adenovirus receptors (CAR) or the ubiquitous cell receptor 
CD45, which is recognized by adenoviral fiber motifs [33]. There are more than 50 
different human serotypes with six groups (A to F) that have been identified [34]. 
Among them, serotype 2 and 5 belonging to group C are the most widely used as 
gene delivery vectors because of their high nuclear transfer efficiency, low pathoge-
nicity, and broad tissue tropism [34] including dividing, nondividing, and quiescent 
primary cells, which broaden the possibilities for CRISPR-based DMD therapy 
(Fig. 3).

First-generation AdVs with a deletion of the E1 viral gene can transfer cDNA 
cassettes of up to 5.1 kb in length, whereas E1/E3 deleted AdV can package up to 
8.2 kb, which has enough capacity to carry the Cas9 gene and a gRNA expression 
cassette in a single vector. However, these vectors are highly immunogenic because 
of the viral capsid and viral gene expressions, which may cause the loss of the trans-
gene expression through immune responses. To attenuate the chronic immunogenic-
ity, second-generation AdVs have been created by deletion of the E1 and E2 or E4 
viral genes, rendering an increased packaging capacity of up to 14 kb. Furthermore, 
helper-dependent or “gutless” AdVs have been developed as third-generation with 
high-capacity AdVs (HC-AdVs) and devoid of all viral genes. HC-AdVs contain 
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only the ITR and packaging signal, increasing the packaging capacity up to 36 kb, 
enabling large CRISPR components to be delivered in a single vector. Another 
important advantage of AdVs as a delivery vector for CRISPR-based gene editing is 
the non-integration of the viral genes into the host genome, which can avoid 
unwanted and sustained editing at off-target sites. In addition, these vectors do not 
elicit chronic immune responses owing to the lack of viral genes; however, acute 
immune responses elicited by the viral capsid are a major issue [35].

AdV-CRISPR. To rescue the lack of dystrophin protein in mdx mice, AdVs 
encoding SpCas9 and sgRNA have been utilized. With the aim of targeted exon(s) 

Fig. 3  Three types of recombinant adenoviral vectors (AdVs) encoding CRISPR components; (a) 
first-generation adenoviral vectors (AdVs) encode Cas9 and two sgRNAs targeting intronic regions 
flanking Dmd exons 21–23. (b) second-generation AdVs consisting of one AdV encoding Cas9 
and the other AdV encoding sgRNA targeting the splice acceptor (SA) for DMD exon 51 skipping, 
(c) third-generation AdVs encode Cas9 and two sgRNAs targeting the sites flanking DMD exons 
44–54 for exon deletion. Ψ, packaging signal; ITRs, inverted terminal repeats.
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deletion, a first-generation AdV serotype 5 containing E1 and E3 deletions was 
modified to encode either SpCas9 or two sgRNAs targeting intronic regions flank-
ing Dmd exons 21 to 23 (Fig. 3a). The AdVs were co-injected into the gastrocne-
mius muscles of neonatal mdx mice, and treated muscles exhibited exons 21–23 
deletions (23 kb) at 3 weeks post-injection, which led to restored dystrophin expres-
sion in 50% of muscle fibers [36]. Unlike first-generation AdVs, second-generation 
AdVs can infect the human muscle progenitor cells and nonmuscle cells with myo-
genic capacity expressing CD46 but not CAR, with low levels of “leaky” viral gene 
expression [33]. With these advantages for efficient transduction into DMD muscle 
cells, the “all-in-one” second-generation AdV particles with E1 and E2A deletion 
were constructed to encode SpCas9 and sgRNAs targeting intronic regions to excise 
mutated DMD exon 53 or exons 44–54 [37]. Upon transduction into patient-derived 
myoblasts (DMDΔ45–52 and DMDΔ48–50), these AdV constructs induced exci-
sion of the targeted exon(s) with a frequency of up to 13% and 18% at 7 days post-
transduction respectively, at multiplicity of infection (MOIs) of 50  IU/cell and 
75 IU/cell, leading to robust dystrophin expression in differentiated myoblasts [37]. 
This study indicates that AdV is a powerful platform for delivering the CRISPR 
system to patient-derived DMD cells.

DMD splice sites have also been targeted with AdV-CRISPR to modulate splic-
ing [38]. The AdV-Cas9 transduction at MOIs ranging from 25 to 200 IU/cell in a 
DMDΔ48–50 cell line that stably expressed sgRNAs targeting splicing acceptor 
sites adjacent to exons 51 introduced indels at the exon 51 splice acceptor site, lead-
ing to exon 51 skipping (Fig. 3b). As a result, exons 47 and 52 were joined. Similarly, 
DMDΔ45–52 cells that stably expressed sgRNAs targeting splicing acceptor sites 
adjacent to exon 53 were modified such that exon 53 was skipped, resulting in jux-
taposition of exons 44 and 54 in the mRNA and expression of truncated dystrophin 
protein.

High-capacity adenoviral vectors (HC-AdVs). Because the packaging capac-
ity of HC-AdV is up to 36 kb, it is possible to deliver not only CRISPR but also 
additional genes. Despite these advantages, CRISPR delivery with HC-AdVs has 
not been widely applied owing to the complicated handling required for large con-
structs and the time-intensive procedure necessary for vector production. To over-
come these limitations, intermediate shuttle plasmids for fast cloning of sgRNA and 
subsequent insertion of all CRISPR components into the HC-AdV genome were 
generated in a bacterial artificial chromosome [39] or the established pAdFTC plas-
mid [41]. Using this system, HC-AdV-CRISPR targeting intronic regions flanking 
DMD exon 51 was generated to treat DMD. This construct led to successful deletion 
of exon 51 at frequencies of 5.9% (at an MOI of 1) to 93.3% (at an MOI of 10) in 
primary human skeletal myoblasts [40]. At high doses, HC-AdV-CRISPR showed 
comparable genome editing efficiency but less cytotoxicity than second-generation 
AdVs [42]. HC-AdV-CRISPR targeting intronic regions flanking exons 43 to 54 
also induced deletion of the DMD mutation hotspot, leading to correction of ORFs 
with a frequency of up to 42% in DMDΔ48–50 myoblasts  (Fig. 3c) [42]. These 
studies showed that HC-AdV is an effective tool for delivering CRISPR compo-
nents for gene editing in immortalized primary myoblasts with low cytotoxicity.
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6  �Lentiviral Vector-based Delivery of CRISPR/Cas

Lentiviral vectors. Lentiviruses are spherical, single-stranded RNA viruses belong-
ing to the Retroviridae family that reverse transcribe RNA to DNA. Lentiviral vec-
tors (LVs) have been generated by deleting the pre-viral genome of a parent 
lentivirus, most often human immunodeficiency virus type 1 (HIV-1). Thus, the 
first-generation LVs were replication incompetent but maintained the ability to inte-
grate into the host genome. LVs can accommodate up to 8 kb of exogenous DNA, a 
capacity that is larger than that of AAVs, making it possible to deliver CRISPR 
components in a single LV (Fig. 4). Similar to AAV, LVs lead to long-term expres-
sion of transgene in both dividing and nondividing cells. Thus far, LVs have been 
harnessed primarily for ex vivo delivery of the CRISPR components and for creat-
ing libraries of gene knockouts by delivering a pool of sgRNAs to Cas9-expressing 
cell lines. However, the ability to integrate the viral genes into the host genome 
raises concerns for potential genotoxicity, immunogenicity, and accumulated off-
target effects by prolonged expression of Cas nucleases. To address these issues, 
integration-defective LVs have been utilized to deliver CRISPR components, exhib-
iting efficiency equal to that of integration-competent LVs in  vivo, despite the 
reduced gene editing efficiency in vitro. Second-generation LVs have been engi-
neered by deleting accessory genes in packaging vector and utilizing a split-plasmid 
system for improved safety [43]. The third-generation system further improves on 
the safety of the second-generation LVs by split-packaging two plasmids, one 
encoding Rev and one encoding Gag and Pol. 

LV-CRISPR. LV-CRISPR has therapeutic potential in that it modifies DMD 
genes in patient-derived myoblasts for treating DMD. In particular, third-generation 
LV-mediated CRISPR delivery to treat DMD has been demonstrated in several 
in vitro studies [38, 44–47]. To take advantage of the ability of LVs to integrate 
transgenes into the host genome, LV-CRISPR was utilized to generate cell lines that 
stably expressed the sgRNA targeting DMD  exon 51 or 53  in patient-derived 
DMDΔ48–50 and DMDΔ45–52 myoblasts respectively (Fig. 4a) [38]. Treatment 
of an AdV-Cas9 in these cell lines resulted in indel formation in exon 51 or 53 with 
frequencies of 8% to 53% and expression of truncated but semi-functional dystro-
phin protein. Similarly, the delivery of LVs carrying SaCas9 and two sgRNAs tar-
geting exons 47 and 58 in DMD patient-derived myoblasts corrected the reading 
frame, in which 73% of hybrid exon contained the correct junction sequences [45]. 
LV-CRISPR has also been used to treat DMD by removing duplication mutations. 
DMD patient-derived myoblasts containing a large duplication of exons 18–30 were 
transduced, with LV-CRISPR targeting the DMD intron 27 and duplicated intron 27 
(Fig. 4b). It resulted in the removal of a duplication of DMD exons 18–30 in myo-
tubes, leading to an increase in the dystrophin expression level to 4.4% of wild type 
dystrophin [47]. 
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7  �Challenges

Off-target effects. Viral vector-mediated delivery of the CRISPR system has great 
therapeutic potential, given its high delivery efficiency and ability to result in long-
term stable expression of CRISPR components; however, the potential for gener-
ating CRISPR-mediated off-target mutations in the genome must be intensively 
investigated. CRISPR-mediated off-target effects are a well-known issue for in vitro 
and in vivo genome editing [48]. Despite no accumulative off-target effects being 
described in the AAV-CRISPR treated mice over 14 months [49], long-term Cas9 
expression raises safety concerns. Off-target editing at nontargeted loci may cause 
genomic instability and interfere with normal gene functionality, raising the risk 
of targeted cells being tumors [50]. Therefore, efforts have been made to develop 
methods for the transient or conditional expression of CRISPR components. Several 

Fig. 4  Recombinant lentiviral vectors (LVs) encoding CRISPR components; (a) Generation of a 
cell line  expressing a  sgRNA targeting the  DMD exon 51 by stable integration of a sgRNA-
encoding LVs. (b) LVs encoding Cas9 and a sgRNA targeting the intronic regions of duplicated 
exons for exons 18–30 deletion. LTR, long terminal repeats
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studies have been aimed at modulating the activity of the CRISPR system by using 
inducible promoters, anti-CRISPR proteins, and chemical control of Cas pro-
tein  activity, yet these methods cannot completely regulate the CRISPR enzyme 
[51–53]. A recently developed self-deleting CRISPR may address these issues. In 
this method, cells are treated with an additional AAV that encodes a sgRNA targeting 
the Cas9 coding sequence, resulting in reduction of the Cas9 expression by 79%, and 
has high levels of on-target activity in vivo observed at 4 weeks post-injection [54].

Another strategy for transient CRISPR expression has been developed by com-
bining viral and nonviral vector systems that are eliminated from the body after 
delivery. Use of a hybrid approach that combined lipid nanoparticles encapsulating 
SpCas9 mRNA and an AAV8 containing a sgRNA to induce transient Cas9 expres-
sion could be useful for reducing Cas9-mediated cleavage at the off-target loci [55]. 
Bioinformatic off-target prediction tools can also be useful for designing gRNAs 
that are less likely to produce off-target effects. These tools include CRISPR-
OFFinder, CCTop, and CT-Finder, which predict possible off-target effects in the 
whole genome. In addition, in vitro-based assays such as CIRCLE-seq, Digenome-
seq, and GUIDE-seq account for the off-target cleavages sites that may be affected 
by genetic variation. Furthermore, engineering of the Cas protein such as eSpCas9, 
evoCas9, and HypaCas9 to improve Cas9 specificity is also making progress.

Toxicity and immune response against viral vectors. Another hurdle for viral 
vector-mediated DMD therapy is the potential toxicity of the vectors. Among viral 
vectors, AAV is known as exhibiting lower pathogenicity and immunogenicity, but 
humoral and cellular immune responses against AAV vectors and their cargo have 
been reported [56]. Because high titers of AAV are required for efficient genome 
editing, AAVs may even boost the toxicity or immune responses in the host. 
Similarly, AdVs and LVs induce inflammatory cytokines and the activation of natu-
ral killer cells and dendritic cells with associated antibody and T cell responses [35]. 
This phenomenon will likely result in stronger restrictions against using a viral 
vector-mediated CRISPR system in clinical trials. Therefore, safe dosages of viral 
vectors must be determined as a prerequisite to clinical trials that examine CRISPR-
mediated therapies.

Immune response to CRISPR components. Immune responses against Cas 
protein or CRISPR RNAs  represent a great barrier to the therapeutic success of 
CRISPR-based approaches. CRISPR components can elicit an immune response 
in vitro owing to their origin from external bacteria [57]. If a patient had been previ-
ously exposed to Cas proteins and re-exposed during CRISPR-based therapy, spe-
cific memory T cells against the Cas antigen may be activated, leading to the 
elimination of Cas endonuclease-containing cells. This process could trigger a seri-
ous immune response, greatly reduce the effectiveness of treatment, and lead to 
organ impairment. It has been reported that anti-Cas9 antibodies exist in 58–78% 
of healthy people, and T cells specific to this antigen exist in 67–78% of healthy 
people [58]. These results present the possibility that numerous DMD patients may 
exhibit severe immune responses against the Cas protein after treatment with 
CRISPR components, which could severely limit the application of CRISPR-based 
gene therapy. Several studies have been conducted with the aim of overcoming the 
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immune response by decreasing the immunogenic properties of Cas protein through 
protein engineering [59], the use of Cas9-reactive regulatory T cells [60], or modi-
fication of CRISPR RNA by removing the 5’-triphosphate [57], but further studies 
are required.

8  �Conclusions

Rapid progress is being made in the field of DMD genome editing because engi-
neering of the CRISPR system and the development of viral vectors are diverse and 
continuously advancing. Although CRISPR systems offer therapeutic tools that are 
highly effective and precise for correcting the genome in vitro and in vivo, the long-
term safety and efficacy of these strategies need to be fully evaluated in larger ani-
mal models prior to progression into clinical trials for viral vector-mediated 
CRISPR-based approaches to DMD gene therapy. In conclusion, the CRISPR sys-
tem is indeed an innovative gene-editing tool with great potential for DMD therapy 
and will offer the most effective tool for gene therapy in the near future.
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CRISPR-Cas-Based Gene Therapy 
to Target Viral Infections

Mouraya Hussein, Ben Berkhout, and Elena Herrera-Carrillo

Abstract  In recent years, there is an increasing demand for the development of 
new antiviral strategies due to the prevalence of viral infections such as those caused 
by the human immunodeficiency (HIV) or the hepatitis B and C viruses (HBV and 
HCV) and the emergence of a variety of “new” viruses including SARS-CoV-2. The 
pharmaceutical industry and the scientific community work on the development of 
new antiviral drugs, including the repurposing of previously approved drugs. But 
alternative strategies such as the development of novel RNA-based therapeutics 
based on the clustered regularly interspaced short palindromic repeats (CRISPR)-
Cas system are also welcome. Here we discuss different aspects of the use of 
CRISPR-Cas technology in the broad field of virology, ranging from applications in 
the diagnosis of viral infections to the development of novel antiviral treatments. 
After a brief introduction on the CRISPR-Cas technology, we will explore the 
advantages and limitations of this antiviral approach and discuss the future pros-
pects for improvement of diagnostics and therapeutics and their potential for future 
clinical application.

1  �Introduction

Recent technological advances have spurred the development of conventional anti-
viral strategies like antiviral drugs and vaccines. However, viral infections remain 
among the main causes of disease globally [1]. Vaccines are the most efficient tools 
in terms of prevention [2]. However, production of effective and safe vaccines in a 
short timeframe is a challenge, as demonstrated in the current severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2) pandemic [3]. Antiviral drugs face 
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other problems, including the possibility that drug-resistance develops due to the 
high mutation rate of viruses [4].

The recent outbreak of COVID-19 at the end of 2019 and the immense burden 
that it has posed on the global community turned the attention to the necessity of 
developing durable antiviral approaches. The CRISPR-Cas system is a novel, but 
very attractive player in this respect [5]. This RNA-controlled gene-editing mecha-
nism was recently discovered as a sequence-specific defense system of prokaryotes. 
It is highly efficient, also in eukaryotic cells, and fairly easy to use. The system has 
been much improved by molecular engineering to create a powerful genome-editing 
tool. The CRISPR technology allows researchers to target any specific nucleotide 
sequence and to modify any gene or noncoding sequence. Here we discuss different 
aspects of the use of CRISPR-Cas in the field of virology, ranging from its use in 
viral diagnostics to its application as antiviral approach by directly targeting the 
viral genomes or indirectly targeting of the mRNA coding for host factors that are 
critical for virus replication.

2  �Discovery and Description of the CRISPR-Cas Mechanism

The first identification of a CRISPR mechanism dates back to 1987 [6], but the 
CRISPR acronym was only coined in 2001 by Mojica and Jansen [7–9]. In 2005, the 
CRISPR sequences were proposed to be part of an adaptive immune system of pro-
karyotes with spacer sequences derived from invading genomic elements like trans-
posable elements and bacteriophages [10–12]. The protective effect of the CRISPR 
system was divided into three stages [13–15]. (1) “Adaptation,” which starts with 
the integration of short sequences of the invading pathogen into the genome of the 
prokaryotic host, (2) “Expression” when the machinery of the host expresses 
CRISPR RNAs (crRNAs) based on these foreign sequence inserts, and (3) 
“Interference” when the Cas endonuclease, guided by such a crRNA, induces 
sequence-specific cleavage of the invading genetic element [16].

In 2012, the group of Doudna and Charpentier proposed to use this mechanism 
as gene-editing tool, which revolutionized not only the molecular biology field, but 
also the gene therapy discipline [17, 18]. Both scientists were awarded with the 
Nobel Prize in Chemistry in 2020. They demonstrated that site-specific double-
stranded breaks (DSBs) are induced by the Cas9 endonuclease, which is guided by 
complex tandem RNA molecules composed of a crRNA and a trans-activating 
crRNA (tracrRNA) (Fig.  1). They redesigned this structure as a single chimeric 
RNA molecule called guide RNA (gRNA) and succeeded to induce sequence-
specific DNA breaks, providing a simple, efficient, and specific gene-editing tool. 
Since then, the CRISPR-Cas system has been optimized for many different applica-
tions. CRISPR has also been tailored for targeting of a wide range of human patho-
gens and subsequent implementation in a clinical setting. In this chapter, the 
development of the CRISPR-Cas system will be discussed specifically in the con-
text of the design of novel antiviral strategies.
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3  �CRISPR-Cas as a Gene-Editing Tool

The CRISPR-Cas system consists of two components: the gRNA and the Cas endo-
nuclease [19–21]. The gRNA is an RNA sequence that recognizes the target DNA 
in a sequence-specific manner to direct the Cas endonuclease for site-specific edit-
ing [22, 23]. According to the structure and function of the Cas endonuclease, the 
CRISPR-Cas systems can be classified into two classes (class I, class II), which are 
further subdivided into six types (type I–VI) [24, 25]. Class I includes types I, III, 
and IV, and class II includes types II, V, and VI. These endonucleases have different 
characteristics such as protein size and sequence of the protospacer adjacent motif 
(PAM) region, among many other differences. PAM sequences are short sequences, 
2–5 nt, located adjacent to the actual target sequence that anneals to the gRNA. The 
PAM is essential for Cas endonuclease action as the recognition of this short 
sequence by specific Cas proteins is needed for complex formation of the gRNA/
Cas ensemble with the target sequence. Key characteristics are summarized in 
Table 1.

The type II CRISPR-Cas9 system is clearly the most popular genome-editing 
tool. The ability to facilitate genome editing by several Cas orthologues has been 
described [26–28]. Cas9 cleaves double-stranded DNA (dsDNA) in a sequence-
specific manner led by a gRNA. The gRNA is made up of a crRNA, a 17–23 nucleo-
tide sequence complementary to the target sequence, and a tracrRNA, which serves 
as a binding scaffold for the Cas nuclease [23, 26, 29, 30]. The gRNA and Cas 
protein form a ribonucleoprotein complex that, when complexed with the PAM 
sequence (e.g., NGG for spCas9 from S. pyogenes), binds to the sequence of interest 
and cleaves one of the DNA strands 3 bases upstream of the PAM, leaving a blunt-
ended DNA double-stranded break (DSB) (Fig. 1) [31–36]. DNA breaks occur pre-
cisely three nucleotides upstream of the PAM and trigger subsequent repair by host 
DNA repair mechanisms. This involves either the error-prone nonhomologous end 
joining (NHEJ) [37] mechanism that produces small insertions or deletions (indels) 
at the cleavage site, or the homology-directed repair (HDR) [38] mechanism that 

Table 1  Characteristics of different CRISPR-Cas effector proteins

Cas9 Cas12 Cas14 Cas13

Target 
genome

dsDNA dsDNA ssDNA ssRNA

PAM Yes (G-rich) Yes (T-rich) No No
PFS No No No Orthologue 

dependent
gRNA tracrRNA + 

crRNA
crRNA tracrRNA + 

crRNA
crRNA

Cleavage Both strands
(blund end)

Both strands
(stagger end)

Target strand Target strand

Repair NHEJ and HDR NHEJ and 
HDR

No No

M. Hussein et al.
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uses an homologous repair template to generate a precise genome modification at 
the cleavage site (Fig. 1). In toto, the Cas9-gRNA system presents a simple and 
sequence-specific tool for editing and disruption of any dsDNA target.

CRISPR-Cas9 systems have also been modified to accomplish gene activation in 
a sequence-specific manner. CRISPR activation uses an inactive or dead CRISPR-
Cas9 protein (dCas9) that lacks endonuclease and thus editing activity, but that is 
able to bind to specific genes without the ability to  edit the genome [39]. Gene 
activation by dCas9, also termed CRISPRa, was initially described in 2013 [40, 41] 
but in the following years, the system was optimized, thus expanding its popularity 
in the scientific community [42–44]. CRISPRa is composed of dCas9 fused to a 
transcriptional effector to modulate target gene expression. A gRNA complemen-
tary to the sequence of interest leads dCas9 to the genome locus of interest. The 
dCas9 is unable to make a cut, but the effector activates downstream gene expres-
sion. A variety of transcriptional activator domains have been coupled to CRISPRa 
for this purpose [42–45]. CRISPR interference or CRISPRi is another variation in 
which dCas9 is fused with a transcriptional effector that represses downstream gene 
expression instead of activating it. dCas9 binding alone can also interfere with tran-
scription initiation when targeting a promoter, likely by blocking binding of RNA 
polymerases or transcription factors [46].

In addition, an atypical Cas9 from the bacterium F. novicida (FnCas9) was 
reported to target endogenously transcribed mRNA, which expands the RNA-
editing toolbox [47]. FnCas9 was proven to target and inhibit human positively-
stranded +ssRNA viruses within eukaryotic cells like hepatitis C virus [48].

Additional CRISPR-Cas systems have been discovered more recently. They 
were tested and optimized for genome-editing tasks, including the type V Cas12a 
and b systems that target and cleave dsDNA (Fig. 1) [49–54]. In the presence of a 
T-rich PAM sequence (e.g., NTTT for Cas12a), the Cas12 nuclease binds to the 
target sequence and cleaves both strands, creating a staggered-end dsDNA break 
with 4–5 nucleotides overhang distant from the PAM.  The Cas12 endonuclease 
requires only a single crRNA for successful targeting, whereas the original Cas9 
system requires both a crRNA and tracrRNA. Host DNA repair pathways ultimately 
create mutations at the cleavage site. Interestingly, the sequence signature of the 
edited sites can differ per endonuclease. Small indels (insertions or deletions) are 
most common for the Cas9 endonuclease, but we recently reported a distinct muta-
tional pattern for Cas12a: for example, by creating typical deletions that are com-
bined with a small insertion that we termed “delins” and the absence of pure 
sequence inserts (Fig. 1) [55].

More recently, an RNA-targeting type VI system (CRISPR-Cas13) with the 
crRNA guide was identified and engineered for RNA cleavage and knockdown in 
diverse environments like mammalian and plant cells (Fig. 1) [56–63]. Different 
subtypes have been recognized (a, b, c, d, X, and Y). For Cas13a-c, a so-called 
Protospacer Flanking Site (PFS) was reported important for cleavage [62, 64], 
although there is still conflicting evidence for requirement of a sequence motif adja-
cent to the target site. Cas13d and X do not have such a PFS-constraint, and Cas13Y 
has not been studied in further detail yet [65].

CRISPR-Cas-Based Gene Therapy to Target Viral Infections
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In addition, a type V CRISPR-Cas DNA-targeting enzyme (CRISPR-Cas14) was 
identified for cleavage of single-stranded DNA (ssDNA), without any restrictive 
sequence-requirement (PAM) (Fig. 1) [66]. Cas14 may have evolved in bacteria for 
the defense against ssDNA viruses or mobile genetic elements (MGEs) that propa-
gate through ssDNA intermediates. In contrast to other Cas enzymes, Cas14 has not 
been found in bacterial genomes, but in the genome of a group of Archaea, which 
may suggest that it is a primitive version of the more complex Cas9 and Cas12 pro-
teins. Cas14 associates with both the crRNA and tracrRNA molecules and cleaves 
next to the heteroduplex formed by the crRNA and target DNA. Moreover, target 
recognition by Cas14 triggers cleavage of ssDNA molecules [66]. Although ssDNA 
cleavage does not directly form a good addition to the genome-editing toolbox, 
Cas14 is a promising tool for the development of diagnostics. In the next section, we 
will describe in more detail the development of CRISPR-Cas based diagnostic kits.

4  �CRISPR-Cas as a Diagnostic Tool

CRISPR-Cas systems can also be used for the detection of viral sequences and 
allow one to differentiate between viral strains. In order to detect specific sequences, 
sequence-specific Cas9-mediated DNA cleavage was coupled to a PCR step in 
methods like CARP (Cas9-gRNAs-associated reverse PCR) or ctPCR (CRISPR-
typing PCR). These methods involve the PCR amplification of a particular target 
sequence with two physically separated Cas9 PAM sites. The PCR-generated 
dsDNA is targeted with two matching Cas9 gRNAs. Target identification is subse-
quently achieved by PCR amplification using reverse primers that only amplify a 
cleaved and ligated sequence [67], PCR amplification of the ligated adapters [67], 
or qPCR amplification [67]. These methods were used to detect the human papil-
lomavirus (HPV)  genome. In addition, NASBA-CRISPR cleavage (NASBACC) 
was developed by combining Cas9 with isothermal RNA amplification or nucleic 
acid sequence–based amplification (NASBA) and toehold sensors to quickly detect 
Zika virus (ZKV) genome sequences in plasma [68]. More recently, Cas9 was com-
bined with lateral flow methodology to develop the CRISPR-Cas9-mediated lateral 
flow nucleic acid assay (CASLFA) to quickly identify  the genomes of Listeria 
monocytogenes and African swine fever virus (ASFV) [69].

Further characterization of type V and type VI Cas proteins (Cas12, Cas14 and 
Cas13) identified a nonspecific nuclease activity termed collateral cleavage. For 
these Cas family members, cutting of the targeted nucleic acid can trigger the cleav-
age of irrelevant, but nearby single-strand DNA (ssDNA) or single-strand RNA 
(ssRNA) molecules [63, 66, 70–72]. This collateral cleavage activity can be 
exploited for nucleic acid detection purposes [66, 70, 71]. The collateral activity of 
Cas13 was used to develop the technology termed SHERLOCK (Specific High-
Sensitivity Enzymatic Reporter unlocking) (Fig. 2a) [73, 74]. Once Cas13 binds the 
target sequence, it promiscuously cleaves nearby ssRNA molecules. In 
SHERLOCK a quenched fluorophore is coupled to the collateral ssRNA substrate 
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that is released to emit fluorescence once the substrate is cleaved. The target DNA 
or RNA can first be amplified using recombinase polymerase amplification (RPA) 
or reverse transcriptase (RT)-RPA to increase the sensitivity of the assay. 
T7-mediated in  vitro transcription is used in combination with RPA to generate 
RNA that can be detected by Cas13. This technology was further optimized by 
combining 4 different Cas enzymes to allow the detection of four nucleic acid 
sequences in the same sample in a single reaction. SHERLOCK was able to detect 
the genomes of Zika virus (ZIKV) and Dengue virus (DENV) in patient samples 
[75]. More recently, SHERLOCK was shown to detect the genomes of  influenza 
virus [76], Epstein-Barr virus (EBV) [77], Japanese encephalitis virus (JEV) [77], 
SARS-CoV-2 [78], Powassan virus [79], Ebola virus (EBOV), and Lassa virus 
(LASV) [80].

The collateral activity of Cas12 was also used to develop a method called DNA 
Endonuclease Targeted CRISPR Trans Reporter (DETECTR) [71] (Fig.  2b) and 
1-Hour low-cost Multipurpose Highly Efficient System (HOLMES) [72] (Fig. 2c). 
These novel strategies do not require in vitro transcription as an intermediate step 
for the detection of dsDNA. DETECTR uses RPA to amplify the targeted DNA, 
whereas HOLMES uses PCR instead. A quenched fluorophore is added to the col-
lateral substrate, which is released upon Cas12 cleavage to allow detection. 
DETECTR was first used to detect HPV in patient samples [71] and later for the 
detection of human viruses like DENV, ZIKV, hantavirus (HANTV) [81], and 
SARS-CoV-2 [82].

With the start of the SARS-CoV-2 pandemic in late 2019, new CRISPR-based 
detection methods were quickly developed and tested (Table 2) [78, 83–93]. For 
instance, Ackerman et al. developed a method based on Cas13 termed Combinatorial 
Arrayed Reactions for Multiplexed Evaluation of Nucleic acids (CARMEN) that 
allows multiplexed detection of multiple pathogens [84]. Another example, Li et al. 
developed a method based on Cas12 termed iSCAN, which combines RT-LAMP, 
CRISPR-Cas12, and lateral flow cells to enable efficient SARS-CoV-2 detec-
tion [83].

In addition, Cas14 was integrated into the DETECTR platform to generate a new 
ssDNA detection system termed Cas14a-DETECTR [94, 95] (Fig.  2d). Cas14 
enables the high-fidelity detection of single nucleotide polymorphisms (SNPs) in 
DNA without PAM sequence constraints and has been proposed as a diagnostic tool 
to detect DNA virus infections [66].

5  �CRISPR Editing To Control Pathogenic Viruses

CRISPR-Cas systems are frequently used to induce very specific mutations in a 
gene of interest, resulting in a desired gene knock-out phenotype. But this same 
basic property can be applied in the context of targeting foreign RNA/DNA 
sequences of pathogenic viruses, aiming at neutralization of the infection. In fact, 
this application reminds us of the physiological role of the original CRISPR-Cas 
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defense systems in prokaryotes. In this chapter, we will discuss several strategies to 
develop Cas-mediated therapeutics against viral infections in humans. We will 
group the CRISPR-Cas therapeutics according to the type of viral genome that is 
targeted: DNA or RNA. We will explore the challenges of designing CRISPR-Cas 
therapeutics for the selective targeting of the viral genome, including the choice of 
a particular Cas system, the PAM constraints, and the selection of conserved viral 
target sequences as a key determinant to minimize or even avoid the emergence of 
resistant virus variants. We will deal with different representative viruses and dis-
cuss approaches directed at the virus itself versus indirect approaches that target 
critical cellular cofactors that support virus replication.

Although most research has focused on the direct targeting of viral genomes, 
targeting of host factors that play an important role in the viral replication cycle 
could be an attractive alternative strategy. A potential advantage is that the likeli-
hood of viral resistance is minimized when a constant, non-evolving cellular cofac-
tor is targeted. A possible disadvantage is toxicity due to expected or unexpected 
effects on important cellular pathways. We will explore different CRISPR-Cas-
based approaches to target viral host factors, but will also discuss the reverse strat-
egy of inducing cellular immunity by inducing the expression of antiviral restriction 
factors. Restriction factors are host cell proteins that interfere with a specific step of 
the viral replication cycle [96]. These host proteins are usually expressed at a low 
level, but their expression is induced by the interferon system that is activated upon 
virus  infection of cells. We will also discuss off-target effects and the major 

Table 2  CRISPR–Cas-based detection of SARS-CoV-2

Cas 
protein Detection method Amplification

Assay 
readout Reference(s)

Cas12 DETECTR RT-LAMP Lateral flow [82]
CASdetec RT-RPA Fluorescence [93]
CRISPR-FDS-v1.0 RT-RPA Fluorescence [90]
CRISPR-FDS-v2.0 RT-PCR
CRISPR/Cas12a-NER RT-RPA Fluorescence [258]
StopCovidv1 RT-LAMP Fluorescence [259]
StopCovidv2 Lateral flow
iSCAN RT-LAMP Fluorescence [83]

Lateral flow
Electric-field-mediated SARS-CoV-2 
detection

RT-LAMP Fluorescence [89]

Contamination-free visual Cas12 assay RT-LAMP Fluorescence [87]
Cas13 CARMEN PCR Fluorescence [84]

SHERLOCK RT-RPA Fluorescence [78]
Lateral flow

CRISPR-COVID RT-RPA Fluorescence [86]
SHINE RT-RPA Fluorescence [260]

Lateral flow
Direct, Cas13a detection – Fluorescence [86]
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bottlenecks for the clinical development of CRISPR-Cas therapeutics, including the 
major bottleneck of delivery of the therapeutics to the patient [97–99].

6  �RNA Viruses

There are 219 species of viruses that are known to infect humans, of which 214 are 
RNA viruses. RNA viruses comprise pathogens such as hepatitis C and E virus 
(HCV and HEV, respectively), human immunodeficiency virus (HIV), influenza 
virus, coronaviruses, DENV, West Nile virus (WNV), EBOV, lymphocytic chorio-
meningitis virus (LCV), measles virus (MV), polio virus (PV), and many others. 
Classification of the RNA viruses is sometimes complicated by their high mutation 
rate and ability to recombine. RNA viruses are grouped based on the type of genome 
(negative- or positive-strand RNA, single-strand or double-stranded RNA), genome 
organization, and replication strategy. Related to, but distinct from the RNA viruses 
are the viroids and the RNA satellite viruses that will be also discussed in this sec-
tion. For instance, hepatitis D virus (HDV) is a satellite of hepatitis B virus (HBV).

The Cas12, Cas13, and the atypical FnCas9 systems target RNA and could thus 
be used against RNA viruses, targeting either their RNA genome, the anti-genome 
RNA, the viral mRNA(s), or the cellular mRNAs that encode important host factors 
that support virus replication. In addition, retroviruses like HIV have an RNA 
genome, but replicate via a DNA intermediate, and could thus be targeted both by 
RNA- and DNA-targeting CRISPR-Cas systems. This will also be discussed in this 
section.

6.1  �Hepatitis C Virus

The most common causes of viral hepatitis are a variety of diverse hepatotropic 
viruses: hepatitis A, B, C, D, and E virus (HAV, HBV, HCV, HDV, HEV). HAV and 
HEV cause transient or acute infections with a relatively rapid onset, while HBV 
HCV and HDV cause chronic infections that may eventually lead to cirrhosis and 
liver cancer. HBV has a double-stranded DNA genome that is replicated via an 
RNA intermediate by the process of reverse transcription; all other hepatitis viruses 
are RNA viruses. HCV has a plus-strand single-strand RNA genome, and its repli-
cation occurs exclusively within the cytoplasm [100]. The plus-strand RNA genome 
serves as the template for synthesis of the antisense RNA copy, which serves in turn 
as template for the production of many plus-strand viral RNA genomes that serve 
either as mRNA for translation of the viral polyprotein or as viral genome that is 
packaged in new virion particles. HCV, like HBV, is able to establish a chronic 
infection of the liver, thereby increasing the risk of cirrhosis that may eventually 
lead to hepatocellular carcinoma. Unlike for HBV, there is no effective vaccine to 
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prevent HCV infection, but we nowadays have many potent antiviral drugs that 
target specific steps of the HCV replication cycle. The RNA-dependent RNA poly-
merase of HCV lacks proofreading activity, which creates genetic diversity that may 
trigger the selection of drug-resistant variants [101]. But as for HIV, a combinatorial 
drug approach can prevent this and result in a sterilizing cure, something that is 
unheard of for HIV and HBV.

6.1.1  �Targeting Viral RNA

Although the majority of Cas9 orthologues target DNA, some systems were identi-
fied or engineered to target RNA. For instance, FnCas9 was optimized and employed 
to target HCV RNA genomes [48]. The first report on FnCas9 dates back to 2013, 
when this system was shown to cleave endogenous bacterial mRNA in the cytosol 
[47]. Besides the previously mentioned tracrRNA, FnCas9 requires a so-called 
small and unique CRISPR-Cas-associated RNA (scaRNA), which interacts with 
tracrRNA in the same manner as crRNA does [102]. Price et  al. engineered an 
RNA-targeting guide RNA (rgRNA) made up of fused tracrRNA and customizable 
scaRNA, similar to the natural occurring structure, and demonstrated that FnCas9-
mediated inhibition of HCV is PAM-independent [48]. The authors targeted highly 
conserved HCV sequences and demonstrated that FnCas9 can target both the nega-
tive- and positive-sense RNA strands to inhibit both viral translation and replica-
tion. This suggest that FnCas9 could be used to target diverse viruses, potentially 
including all RNA viruses, either with a plus- or minus-strand RNA genome.

In another more recent attempt to inhibit HCV replication, the CRISPR-Cas13a 
system was employed to target the HCV RNA genome [103]. Highly conserved 
regions of the important internal ribosomal entry site (IRES) motif were attacked 
with Cas13a, causing inhibition of HCV replication and translation in Huh-7.5 cells.

6.1.2  �Targeting Host Factors

A number of different cellular cofactors required for HCV infection have been 
described in literature [104–106]. Cellular proteins that can be silenced by CRISPR-
Cas attack include VAPA, PDPK1, RAF1, and EIF2AK2 kinases that bind to NS5A 
and EIF2S3 that binds to the 5′ nontranslated region of HCV [105–107]. Some 
restriction factors that inhibit HCV entry could be candidates for CRISPR-mediated 
activation, such as Ficolin 2 [108], interferon-induced transmembrane protein 1 
(IFITM1) [109], and ezrin-moesin-radixin (EMR) protein [110]. One could also 
consider activation of TRIM14, NOS2, and IFITM3 that contribute to the suppres-
sion of HCV replication [111] or BST-2/tetherin that blocks the release of new viral 
particles [112, 113].
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6.2  �Human Immunodeficiency Virus

HIV is a positive-sense, enveloped RNA virus. The HIV genome in virion particles 
is made up of two identical ssRNA strands [114]. Upon entry into target T cells, the 
viral RNA genome is reverse transcribed into double-stranded DNA by the viral 
reverse transcriptase that requires both RNA copies to generate a single complete 
viral dsDNA (Fig. 3). The dsDNA is then imported into the cell nucleus and inte-
grated into the cellular chromosomal DNA by the viral integrase. Once integrated, 
the virus may stay transcriptionally silent, thus creating a latent viral reservoir in 
these cells. Alternatively, the integrated viral DNA can be transcribed, producing 
new RNA genomes and viral proteins that assemble into new virion particles that 
are subsequently released from the cell to ignite a spreading infection. Despite the 
potency of current combinatorial antiviral drug cocktails to treat HIV infection, the 

Fig. 3  Schematic representation of the HIV replication cycle. Upon binding, HIV enters the host 
cell and release the viral RNA genome into the cytoplasm of the target T cell. The positive-sense, 
single-strand RNA (+ssRNA) is reverse transcribed into double-stranded DNA (dsDNA). Viral 
dsDNA is transported into the nucleus and integrated into the host genome. HIV proviral DNA is 
then transcribed into viral messenger RNA (mRNA). Viral mRNA is translated into new viral 
proteins that assemble with the viral RNA to form new virion particles. New virions bud from the 
host cell and spread to infect new cells

M. Hussein et al.



97

patient is never cured [115]. The patient should therefore take these drugs lifelong, 
which may cause drug resistance and adverse effects in a minority of the patients. 
Therefore, the development of more durable therapeutic strategies remains of 
utmost importance. This includes a direct attack with CRISPR-Cas methods on the 
integrated viral DNA genome with the aim to inactivate it and to reduce and ideally 
inactivate  the viral reservoir. Alternatively, one could also target the viral RNA 
genome or host cofactors or activate cellular restriction host factors. Much research 
has been done on this HIV system.

6.2.1  �Targeting Viral RNA

CRISPR-Cas13a has been used to inhibit HIV infection by targeting HIV RNA, 
which greatly diminished viral gene expression in human cells [116]. When com-
pared to antiviral strategies based on RNAi, CRISPR-Cas13a does not only inhibit 
RNA that is expressed from the integrated DNA, but also the “incoming” viral RNA 
of virion particles upon entry into cells [116, 117]

6.2.2  �Targeting Viral DNA

HIV DNA in the viral reservoir cells can be targeted by nucleases like Cas9 and 
Cas12 [55, 118–126]. The viral long-terminal repeat (LTR) domain forms an attrac-
tive target as this motif flanks the viral genome at both the 5′ and 3′ ends. Thus, in 
principle, an LTR-targeting gRNA could result in the nearly complete removal of 
the viral DNA by a double cleavage event, excision of the intervening HIV 
sequences, and subsequent DNA ligation. Ebina et al. first demonstrated a signifi-
cant loss of gene expression driven by the LTR promoter by LTR targeting with 
CRISPR-Cas9  in a cellular latency model with an integrated HIV viral genome. 
Sequence analysis confirmed that Cas9 attack resulted in mutation of the LTR via 
indel formation and to a lesser extent by excision of all viral sequences between the 
5′ and 3′ LTR targets [120].

We and others demonstrated that HIV replication can be inhibited with a single 
antiviral gRNA, but also that the virus could escape by the acquisition of such indel 
mutations in the target site that prevent new rounds of gRNA binding and cleavage 
[121, 122, 127–129]. Interestingly, this viral escape mechanism is thus dependent 
on the cellular NHEJ system that creates these indels during DNA repair. A dual-
gRNA attack demonstrated to be more effective in preventing viral escape [130, 131].

Several groups suggested that targeting of the HIV genome with two gRNAs 
caused deletion of the viral segment between the two target sites, which is called 
excision and obviously the ideal scenario toward a cure [118, 119, 123–125]. 
However, the DNA products were analyzed by PCR using primers immediately 
upstream and downstream of the two targets, which strongly favors amplification of 
the short excision product over alternative products. We and others demonstrated 
that dual-gRNA targeting can result in three products: mutation of both target sites 
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occurs most frequently, excision can occur and in fact also reversion of the interven-
ing viral segment occurs, although to a much lesser extent [120, 132–134]. We dem-
onstrated that the introduction of indels at two otherwise very conserved viral targets 
can trigger virus inactivation, a process that we termed hypermutation to set it apart 
from excision. Thus, viral escape can be prevented by both excision and hypermuta-
tion. In fact, repeated Cas cleavage may occur if the edited target can still be recog-
nized by the gRNA, leading to increased mutational inactivation of the viral genome 
and causing the gradual loss of replication-competent virus, which means a cure of 
the infected cells [55, 131]. We reported that DNA cleavage by the Cas12 endonu-
clease and subsequent DNA repair causes mutations with a distinct sequence profile 
compared to Cas9 [55]. For instance, Cas12 does not induce the pure DNA inser-
tions that are frequently observed for Cas9. As the mutation type will affect the 
likelihood of HIV genome inactivation, this adds another variable to the selection 
criteria for chosing the best cure strategy.

More recently, CRISPR-Cas9 was demonstrated to cleave HIV DNA in trans-
genic mice. PCR analysis demonstrated the presence of both excised and non-
excised HIV genomes in different cell types [123–125]. The non-excised PCR 
fragment could represent hypermutated or wild-type genomes, but that was not 
analyzed.

Given the potential of CRISPR-Cas therapy to control HIV infection, alternative 
systems such as Cas12a were also used to target HIV DNA [50, 135, 136]. With an 
optimized CRISPR-Cas12a system, long-term inhibition of HIV replication was 
recently demonstrated with only a single gRNA, whereas Cas9 required a dual 
gRNA attack [55]. This was explained by the different architecture of the endonu-
cleases and their mechanism of action. Interestingly, repeated editing rounds are 
more likely for Cas12a as the PAM and crRNA-seed region of the target DNA do 
frequently remain unaltered upon DNA cleavage and repair due to the architecture 
of the endonuclease, thus increasing the chance of HIV inactivation.

In addition, the CRISPR-Cas technology can be used to reverse HIV latency. 
CRISPRa was used to target the U3 region of HIV LTR promoter to locate the best 
activation locus near the sites for binding of the NF-kB transcription factor [137–
140]. Such a CRISPRa approach worked more efficiently than a treatment with 
latency-reversing small molecules such as prostratin and SAHA in HIV-latency 
models in T cells [137]. Other groups similarly reactivated the latent HIV reservoir 
by targeting other U3 elements like the Sp-1-binding sites and sequences in the R 
and U5 regions, which was also tested in combination with latency-reversing 
agents [139].

6.2.3  �Targeting Host Factors

Targeting of host cell cofactors that support HIV replication has advantages and 
shortcomings. Inhibition of cofactors will be effective against all viral variants in an 
infected individual, and viral escape seems possible only by a major adaptation of 
HIV to an alternative cellular cofactor. An obvious danger of targeting cellular 
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factors is that it may cause unwanted toxic effects on cell physiology. Important 
cellular cofactors to target would be the receptors at the cell surface needed for viral 
entry (CD4, CCR5, and CXCR4) [141]. But CD4-independent virus variants exist 
and CXCR4 is usually not used by primary virus isolates; thus CCR5 is the prime 
candidate, also because this protein does not seem to have a critical physiological 
function. A proof of concept was obtained by bone marrow transplantation of a 
long-term HIV-infected individual (the “Berlin” patient) with cells from a CCR5-
minus donor. The recipient subsequently maintained an undetectable viral load in 
the absence of antiviral drugs [142, 143]. CRISPR-Cas9 has been widely used to 
disrupt the CCR5 gene, which resulted in acquired resistance to HIV in human T 
cell lines and an in vivo mouse model [21, 144–146]. For instance, Li et al. silenced 
CCR5 expression by CRISPR-Cas9 in human CD4+ T cells, which protected the 
cells from subsequent HIV infection [144]. Xu et  al. targeted CCR5  in human 
CD34+ hematopoietic stem progenitor cells (HSPCs) and achieved long-term CCR5 
disruption in vivo [146]. However, HIV could escape by switching to CXCR4 as 
alternative entry receptor, which seems dangerous as such virus variants have been 
linked to faster disease progression [147–149]. The CXCR4 coreceptor was effi-
ciently disrupted by CRISPR-Cas9 attack in CD4+ T cells of human and rhesus 
macaques [119, 150, 151]. Reduced CXCR4 expression was scored in T cells that 
showed resistance to HIV infection. Targeting both CCR5 and CXCR4 coreceptors 
protected primary CD4+ T cells against infection by single- and dual-tropic HIV 
strains [152]. However, as CXCR4 plays a role in HSPC development, this may 
raise concerns when translating this therapeutic approach to the clinic [153, 154].

One could also consider activation of restriction factors as an antiviral alterna-
tive, and in fact, many anti-HIV restriction factors have been described, including 
APOBEC3G, TRIM5α, SAMHD1, and tetherin [155]. Bogerd et al. demonstrated 
efficient induction of APOBEC3G expression in human cells, which resulted in 
profound HIV infection [156]. Serinc5 was identified more recently as HIV restric-
tion factor that could also be potentially targeted by CRISPRa [157, 158]. As some 
restriction factors target multiple human viruses, this strategy may be ideal to reach 
broad protection against several viral pathogens.

6.3  �Dengue Virus

DENV is a single-strand positive-sense RNA virus that infects humans and results 
in a mild and self-limiting febrile disease. However, more severe disease forms such 
as dengue hemorrhagic fever and dengue shock syndrome occur less frequently. 
There is still no effective vaccine to prevent against DENV infection and with 
increased global travel, dengue is increasingly becoming a serious global health 
problem. Therefore, there is a need to develop novel therapeutics for dengue 
treatment.
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6.3.1  �Targeting Viral RNA

Engineered Cas13 proteins have been demonstrated to result in a knockdown of 
DENV RNA copies upon an attack on different regions of the dengue viral RNA 
genome. Li et al. demonstrated that CRISPR-Cas13a is capable of inhibiting dengue 
virus infection at the early stage of viral replication by cleaving the incoming plus-
strand viral RNA genome [159]. Singsuksawat et al. delivered Cas13b-crRNA ribo-
nucleoprotein (RNP) to an immortalized hepatocyte-like cell line (iMHC) and 
demonstrated efficient inhibition of dengue virus infection [160].

6.3.2  �Targeting Host Factors

DENV restriction factors are a logical target for CRISPR-mediated activation of 
gene expression. A tripartite motif (TRIM) protein TRIM69 is induced by DENV 
infection and restricts DENV replication to contribute to the control of the infection 
in an immunocompetent mouse model [161]. TRIM69 binds to viral nonstructural 
protein 3 (NS3), which leads to NS3 ubiquitination and degradation. Thus, TRIM69 
is a novel interferon-inducible host antiviral factor that could be activated by 
CRISPRa to cause cellular immunity by enhanced viral protein degradation.

6.4  �Influenza A Virus

The genome of influenza viruses is segmented and composed of eight single-strand 
RNAs that differ in length and that have to be copackaged in a virion particle to 
constitute the complete viral genome. There are four types of influenza viruses: A, 
B, C, and D. Human influenza A and B viruses cause seasonal epidemics of disease 
known as the flu. Influenza A viruses (IAV) are the only influenza viruses known to 
cause flu pandemics. We will discuss here the possible CRISPR-Cas targets.

6.4.1  �Targeting the Viral Genome

Several groups employed the Cas13 endonuclease enzymes to attack the IAV RNA 
genome. Freije et al. used Cas13b-crRNAs against highly conserved IAV sequences 
and measured a reduced level of viral particles produced in the cell culture [160]. 
Abbot et al. evaluated whether the alternative Cas13d system was effective in target-
ing IAV [162]. The crRNAs were designed against highly conserved IAV sequences 
and tested in cell culture, where a reduction of the viral RNA level and inhibition of 
virus replication was scored. Blanchard et al. tested the efficacy of anti-IAV Cas13a-
crRNAs in infected mice [163]. They delivered Cas13a mRNA and the crRNAs to 
the respiratory tract using a nose nebulizer. The viral RNA in the lungs of these mice 
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was quantified by qRT-PCR. A profound reduction of the viral RNA demonstrated 
robust knockdown of the viral RNA in vivo.

6.4.2  �Targeting Host Factors

In the context of IAV, CRISPR-Cas9 has been used by several groups to target host 
factors. Two studies employed genome-wide gRNA libraries for gene disruption, 
which allows the researchers to identify important cellular cofactors that facilitate 
IAV infection [164, 165]. Such a genome-wide screen for host cofactors of virus 
replication is attractive, because custom-made gRNA-libraries are commercially 
available for human and mouse. Some host factors have been found to regulate the 
replication of IAV by interacting with the viral RNA-dependent RNA polymerase 
(RdRP), including the poly-ADP ribosyl polymerase (PARP1) [166]. Inactivation of 
such host factors by CRISPR-Cas could block IAV infection.

6.5  �Human Coronaviruses

The human coronaviruses are positive-sense RNA viruses, which typically infect 
the upper or lower respiratory tract. The world is currently facing the serious pan-
demic of coronavirus disease 2019 (COVID-19) that is caused by the severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) of unknown animal origin. 
Although several effective and safe vaccines have been approved for human use, 
which allows one to temper the spreading infection, questions remain on the dura-
bility of the protection, both in terms of the induced immunity and the appearance 
of novel virus variants. Thus, there is an urgent need for the development of potent 
and specific antiviral strategies, including small molecule inhibitors and CRISPR-
Cas approaches.

6.5.1  �Targeting Viral RNA

The RNA-targeting Cas13d system can be used to target the SARS-CoV-2 RNA 
genome. Like other Cas13 proteins, Cas13d employs a crRNA with a customizable 
spacer sequence that can direct the Cas13d protein to specific RNA molecules for 
targeted degradation.  Abbot et at. designed different crRNA sets targeting con-
served viral genome sequences. SARS-CoV-2 reporter constructs were designed, 
and the inhibitory capacity of different crRNA pools of four crRNAs was tested 
[162]. The authors demonstrated that the crRNAs were able to cleave the RNA frag-
ments in vitro, but their efficacy in spreading virus infections in cell culture remains 
to be tested. Blanchard et al. went a step further and tested these Cas13a-crRNAs in 
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hamsters, in which the Cas13 mRNA and crRNA molecules were delivered into the 
lungs with a nebulizer [163]. Single versus combination crRNA attack was com-
pared, showing a benefit of the combination with a slightly more pronounced reduc-
tion of the viral RNA level. Combination crRNA attack led to sustained inhibition 
of SARS-CoV-2 replication for 6 days and reduced the COVID-19 symptoms in this 
animal model. These initial findings suggest that Cas13 systems could be developed 
to mitigate SARS-CoV-2 infections.

6.5.2  �Targeting Host Factors

Recently, some restriction factors have been identified that impair SARS-CoV-2 
viral infection, such as the BST2 protein and the death-domain-associated protein 6 
(DAXX) [167, 168]. Activation of such host factors by CRISPRa could be used as 
an innovative therapeutic approach in the current pandemic.

6.6  �Lymphocytic Choriomeningitis Virus

LCMV is a negative strand RNA virus that has the capacity to induce meningitis in 
both human and murine hosts. Because LCMV is a noncytopathic virus, the damage 
induced in the central neural system is not caused by the virus, but rather by the 
subsequent immune response. Freije et al. performed a genome-wide LCMV screen 
and designed Cas13a-crRNAs, of which the majority was able to efficiently reduce 
the LCMV RNA levels in cell culture without an impact on the cell viability [169].

6.7  �Vesicular Stomatitis Virus

VSV is a nonsegmented, negative-strand RNA virus that infects a variety of mam-
mals including horses, cattle, swine, wild mammals, and humans, although human-
to-human transmission does not readily occur. Freije et  al. evaluated whether 
Cas13b could inhibit this neurotropic RNA virus [169]. The authors designed and 
tested crRNAs against conserved regions of the two main VSV serotypes, Indiana 
and New Jersey. Cells expressing  Cas13b and VSV-specific crRNAs showed 
decreased levels of secreted VSV RNA. They demonstrated that Cas13b can effi-
ciently and specifically cleave viral RNA. Delivery of multiple crRNAs was shown 
to enhance the antiviral effect of Cas13.
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7  �DNA Viruses

DNA viruses comprise serious pathogens such as herpesviruses, adenoviruses, pap-
illomaviruses, and smallpox viruses, among many others. DNA viruses are divided 
into three major categories: double-strand DNA viruses (e.g. herpesviruses), single-
strand DNA viruses (e.g. parvoviruses), and pararetroviruses (e.g. hepadnaviruses) 
that replicate their DNA genome through an RNA intermediate. In general, DNA 
viruses with a large genome (>10 kb) usually have double-stranded DNA, whereas 
DNA viruses with a small DNA genome usually have a circular DNA, either single 
or double stranded. Many research groups have developed CRISPR-Cas approaches 
to target the DNA genomes of several of these pathogens. In this section, we will 
present a few representative topics: CRISPR-Cas systems to target the “large” her-
pesviruses and the relatively “small” human papilloma virus (HPV) and hepatitis B 
virus (HBV).

7.1  �Herpesviruses

Herpesviruses have a linear, double-stranded DNA genome that can vary in size 
from around 125 up to 290 kb [170]. Herpesviruses establish a latent infection in the 
host that can be interrupted by periodic or rare reactivation events during which 
active virus replication is triggered. They are divided into three subfamilies, the 
alpha subfamily with members such as herpes simplex virus 1 (HSV-1) and HSV-2, 
the beta subfamily that includes the human cytomegalovirus (HCMV), and the 
gamma subfamily with prominent members like the EBV and Kaposi’s sarcoma–
associated herpesvirus (KSHV) [171]. HSV-1 and HSV-2 infections are lifelong and 
can cause cold and genital sore, respectively. HCMV infection can cause congenital 
abnormalities in neonates and serious disease in immunocompromised individuals. 
EBV is associated with infectious mononucleosis and a broad range of carcinomas, 
including Burkitt’s lymphoma or nasopharyngeal carcinoma.

7.1.1  �Targeting Viral DNA

There are efficient antivirals to treat herpesvirus infection, but they are ineffective at 
eliminating the established viral reservoir. CRISPR-Cas9 systems were proposed as 
a novel strategy to target the DNA genome of these viruses [172–176]. Single 
gRNAs effectively impaired viral infection, but replication-competent virus emerged 
after prolonged culturing of the infected cells due to outgrowth of virus variants 
with mutations that allow the expression of functional viral proteins in most gRNA-
expressing cells. As we first reported for HIV, these target mutations are introduced 
during repair of the CRISPR-cleaved target DNA [128]. Inhibition of viral replica-
tion was shown for four herpesviruses (HSV-1, HCMV, KSHV and EBV) and in 
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some cases, even clearance of seemingly all viral genomes from the infected cul-
tures was observed. For instance, Diemen et al. used CRISPR-Cas9 technology to 
suppress virus replication in both latent and lytic infection models [176]. The 
authors designed gRNAs to target EBV sequences that code for EBV miRNAs and 
tested the antiviral efficacy upon stable transduction of latently EBV-infected gas-
tric carcinoma cells. They showed that the targeted miRNA genes were edited and 
their expression downregulated in this herpesvirus latent infection model. For the 
lytic infection model, the authors designed gRNAs targeting the viral nuclear anti-
gen 1 (EBNA1) and several areas within the EBV origin of replication (OriP). They 
observed a complete loss of viral replication after a combinatorial treatment with 
multiple gRNAs. A similar approach was tested for HCMV and HSV. The effective-
ness of CRISPR-Cas9 in treating latent herpesvirus infections has been also demon-
strated in an in  vivo mouse model [177]. Viral replication was reduced in mice 
receiving gRNAs targeting the HSV viral genome. The latent HSV viral genome 
was analyzed after the CRISPR-Cas treatment. Single DSB in the viral DNA was 
repaired, which often resulted in mutations that abrogate virus replication, while a 
double DSB attack may lead to further degradation and loss of HSV genomes [177].

7.1.2  �Viral Genome Modification: Knock-out and Knock-in Strategies

Additionally, the CRISPR-Cas9 systems can be applied in basic herpesvirus 
research by engineering, targeting, activating, or repressing specific genes of inter-
est [178–182]. CRISPR-Cas systems were used as a tool for the study of the interac-
tion of the herpesvirus and the host cell. For instance, CRISPR-Cas9 technology 
was used to generate a knock-out of the viral DNA sensor IFI16 to investigate its 
role during herpesvirus infection, demonstrating that IFI16 acts as restriction factor 
of HSV-1 replication [179, 180]. Using a similar knock-out strategy, the analysis of 
KSHV-infected cells revealed a role for the viral ORF45 protein during lytic virus 
replication [182].

CRISPR-Cas technology can also be used to generate mutated DNA genomes of 
other herpesviruses [181, 183, 184]. Manipulation of large viral DNA genomes usu-
ally requires the use of bacterial artificial chromosomes (BACs). This complex tech-
nique allows maintenance of the complete infectious viral genome in the Escherichia 
coli bacterium and successful reconstitution of infectious virus in permissive 
eukaryotic cells after BAC transfection. CRISPR-mediated genome editing can also 
be used to introduce targeted mutations in the large viral genome by HDR using 
DNA templates that carry the relevant mutation. As CRISPR-Cas9 mutagenesis 
occurs directly in infected cells, this methodology avoids unwanted bottlenecks and 
selection pressures that may occur during propagation of the viral genome in bacte-
ria [185]. For instance, CRISPR-Cas9-mediated mutagenesis enabled the genera-
tion of gastric-cancer-derived EBV strains [183]. However, the efficiency of the 
HDR repair route is rather low for the insertion of large foreign genes into such rela-
tively large viral genomes. This problem was circumvented by the development of 
a nonhomologous insertion strategy that is based on the NHEJ DNA repair pathway 
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[186–189]. The use of a rationally designed nonhomologous insertion strategy 
allowed the rapid and efficient knock-in of foreign genes into the HSV genome and 
provided useful guidance for gene insertion strategies with other large DNA viral 
genomes [189]. This allows scientists to add novel functions to the viral gene reper-
toire and to study the relationship between viral genome variation and virus-
associated disease. The different technical approaches used for large fragment 
knock-in were summarized by Erwood et al [190].

7.2  �Human Papilloma Virus

Human papilloma virus (HPV) is a cancer-causing virus with a small circular 
dsDNA genome of 8 kb that may occasionally get integrated into the chromosome 
of the host cell. Integration is actually a prerequisite for the oncogenic process, such 
that each HPV-induced cancer will show integrated viral genomes. HPV infects 
cutaneous and mucosal epithelia, and different virus genotypes cause a variety of 
diseases characterized by uncontrolled cell growth, ranging from skin and genital 
warts to cervical cancer, but the latter can be prevented by vaccination strategies. 
Despite that, HPV-related cervical cancer remains the second most common cancer 
in women worldwide. There are more than 200 HPV genotypes [191], of which the 
high-risk HPV16 and HPV18 variants are associated with cervical and penile can-
cers [192], while HPV6 and HPV11 are linked to anogenital warts and laryngeal 
papillomatosis [193].

7.2.1  �Targeting Viral DNA

Direct targeting of the HPV DNA genome by CRISPR-Cas could provide an alter-
native antiviral strategy. Several groups designed CRISPR-Cas9 gRNAs to target 
the ORF encoding the oncogenic E6 and E7 proteins that are important for malig-
nant transformation of the host cell and maintenance of the malignant phenotype of 
cervical cancer [194]. These gRNAs were able to edit and inactivate those genes in 
HPV-transformed cells and reduced the tumor size in an experimental mouse 
model [195].

7.2.2  �Activation of Viral Restriction Factors

There are several restriction factors expressed by the host cell that limit HPV repli-
cation, including as p53, p56, Sp100, APOBEC, miR-145, and gamma-interferon-
inducible protein 16 (IFI16). One antiviral strategy is to activate such antiviral 
factors by CRISPRa to block HPV infection [196]. More recently, other potential 
targets for CRISPRa were described such as Sirtuin 1 (SIRT1) [197],  
microRNA-146a [198], origin recognition complex subunit 2 (ORC2) [199], 
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Bromodomain-containing protein (Brd4) [200], and CXCL12/CXCR4 [201]. For 
instance, Das et al. removed SIRT1 from cervical cancer cells, which resulted in 
enhanced HPV replication in those cells [197]. Depletion of ORC2 also stimulated 
viral replication [199].

7.3  �Hepatitis B Virus

HBV has a double-stranded DNA genome that is replicated via an RNA intermedi-
ate by the process of reverse transcription. HBV persists in infected hepatocytes due 
to the presence of covalently closed circular DNA (cccDNA), which acts as the 
template for transcription of viral RNAs. But permanent integration of HBV DNA 
into the host genome may occasionally occur, conferring the risk of viral persistence 
and future reactivation, but also hepatocellular carcinoma [202]. Current antiviral 
therapies inhibit replication of HBV DNA in the cytoplasm of infected cells, but do 
not destroy the nuclear cccDNA [203]. A vaccine comprised of the HBV surface 
antigen is currently included in many national immunization programs. The vaccine 
prevents HBV infection, but has no therapeutic benefit for already infected persons. 
Consequently, developing novel therapeutics that are capable of eradicating HBV 
has become an international research priority.

7.3.1  �Targeting Viral DNA

Several groups reported the use of CRISPR-Cas9 to edit and inactivate the HBV 
cccDNA [204–209]. First, Seeger et al. investigated the stability of cccDNA follow-
ing CRISPR-Cas cleavage and studied whether activation of an antiviral innate 
immune response could boost the antiviral effect of CRISPR-Cas9 [206]. The 
authors designed several gRNAs targeting regions of the HBV genome that are 
important for transcription of pregenomic RNA. Infection of cells transduced with 
expression constructs for the Cas9 protein and gRNAs resulted in cleavage of the 
cccDNA, but also the integrated HBV DNA. It has been argued that a global reduc-
tion in HBV cccDNA may result in a high percentage of linear viral DNA that is not 
repaired, but rather destroyed [210]. Moreover, Kennedy et al. demonstrated inhibi-
tion of cccDNA accumulation and HBV DNA production in models of both chronic 
HBV infection and de novo acute infection [207]. At the same time, Ramanan et al. 
demonstrated that gRNAs targeting conserved regions of the HBV genome cause 
strong inhibition of virus replication both in vitro and in vivo [208]. In addition, 
Stone et al. used CRISPR-Cas9 to edit the HBV genome in liver-humanized FRG 
mice chronically infected with HBV [211].

Although these studies demonstrated the effectiveness of the CRISPR-Cas9 sys-
tem in inhibiting HBV replication, supporting the potential of Cas-based therapeu-
tics in treating chronic HBV infection, a remaining challenge is the high sequence 
heterogeneity among HBV genomes [212]. Ideally, one should design gRNAs that 
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target multiple and ideally all HBV genotypes. One should also analyze the mis-
match tolerance for HBV variants that will arise during chronic HBV infection. As 
the sequence-specificity of each Cas system is specified by the PAM sequence, the 
number of potential target sites is limited. Therefore, different CRISPR-Cas9 ortho-
logues were investigated to broaden the reach of possible target sequences [209]. 
Kostyushev et  al. proposed StCas9 from Streptococcus thermophilus as an ideal 
system for development of the HBV cure as it allowed one to effectively target and 
degrade three highly conservative regions in the HBV genome. CRISPR-StCas9 
attack resulted in degradation of HBV cccDNA with very limited tolerance to nucle-
otide mismatches.

7.3.2  �Targeting Host Factors

CRISPR-Cas-mediated targeting of HBV host factors could also prevent HBV rep-
lication. One could consider to target the bile acid pump sodium taurocholate 
cotransporting polypeptide (NTCP) as its inhibition prevents HBV replication [213, 
214] or the heat stress cognate 70 (Hsc70) and Hsc90 proteins, which are essential 
cofactors for HBV replication [215, 216]. The Tyrosyl-DNA-phosphodiesterase 2 
(TDP2) could also be targeted by CRISPR-Cas and its knock-down was shown to 
reduce the cccDNA levels [217, 218]. More recently, gamma2-Adaptin was found 
to mediate the attachment of HBV to liver cells [219, 220]. Altogether, these host 
factors could be targeted by the CRISPR-Cas system to inhibit HBV infection or 
replication.

HBV restriction factors could be a target for CRISPRa. SAMHD1, a cellular 
protein with dNTPase activity, could serve as CRISPRa target, which should lead to 
depletion of cellular dNTPs that are required for virus replication [221]. One could 
also consider activation of BST-2/tetherin, which is known to block the release of a 
wide range of enveloped viruses including HBV [222–224], the myxovirus resis-
tance protein 2 (MX2) that inhibits HBV infection by reducing the cccDNA level 
[225], or the deoxyribonuclease 1 (DNASE1) enzyme that impairs HBV replication 
through degradation of the DNA genome within the capsid [226].

8  �Challenges and Limitations of CRISPR-Cas Therapeutics

This chapter discusses the use of CRISPR-Cas technology in the context of virus 
infections, both for antiviral strategies and diagnostic purposes. The antiviral effi-
cacy of different CRISPR-Cas systems was described for a variety of pathogenic 
viruses. The efficacy and specificity of the CRISPR-Cas systems were tested mainly 
in simple in vitro settings and in cell culture infections. Despite the promising early 
results, the application of CRISPR-Cas systems in vivo and translation of this tech-
nology towards clinical use remains a major endeavour [227]. Among the many 

CRISPR-Cas-Based Gene Therapy to Target Viral Infections



108

challenges are potential off-target effects and the difficulty to selectively deliver the 
CRISPR-Cas components to the virus-infected tissue.

Although the targeting specificity of Cas9 is controlled by the gRNA sequence 
and the PAM adjacent to the target sequence in the viral genome, several studies 
have revealed that Cas9 can also bind to unintended DNA sites to induce cleavage, 
termed off-target effects [35]. Off-target effects could induce genetic mutations that 
could cause a loss of gene function. Therefore, it remains a key challenge to detect 
off-target sites in a highly sensitive way. A variety of methods to detect off-target 
effects have been developed, but experimental confirmation of a lack of such poten-
tially adverse effects seems a prerequisite for further translation of this method into 
the clinic [228–231]. Moreover, scientists have altered gRNAs to minimize off-
target mutagenesis [232], either by chemical modification, by modification of the 
GC-content [233] or the gRNA length [234]. Scientists have also developed high-
fidelity Cas9 enzyme variants. For instance, a Cas9 variant from Staphylococcus 
aureus (SaCas9) recognizes an extended PAM sequence (5′-NNGRRT-3′ compared 
to 5′-NGG-3′ for SpCas9), which may potentially reduce off-target effects [235]. 
Engineered High-Fidelity SpCas9 and saCas9 variants have shown exceptional 
accuracy in human cells, exhibiting no detectable genome-wide off-target effects 
[236, 237]. Cas12 expanded the nuclease toolbox with an enzyme with low off-
target editing rate [50, 53, 238]. Of note, many colleagues have argued that RNA 
editing by Cas13 forms a safe alternative as this system will likely never introduce 
changes in the host DNA genome [57].

Cas nucleases and gRNAs can be delivered as DNA in the form of plasmids or as 
ribonucleoprotein complexes (RNPs) or gRNA and Cas-encoding mRNA. However, 
the use of mRNA is limited due to its relative instability in biological fluids and in 
cells. Therefore, direct RNP delivery may be a preferred strategy for therapeutic 
applications, but was not studied yet for antiviral applications [239]. The delivery 
method is usually key for the specificity of the approach. Transfection and electro-
poration are the most common delivery methods used in vitro. Transfection exhibits 
minimal efficacy in primary cell types, often making electroporation the preferred 
delivery method. However, electroporation requires treatment of isolated cells (ex 
vivo) and can cause toxicity by permeabilization of cell membranes [240, 241]. To 
circumvent this problem, a number of nanoparticle materials were developed to cre-
ate Cas-RNPs that can cross the cell membrane [242–244]. Although the in vivo 
applicability of these nanomaterials has been demonstrated in other fields, it was not 
applied yet in the antiviral field. On the other hand, delivery by means of viral vec-
tors is efficient and can achieve a more stable expression of relevant genes com-
pared to non-viral delivery systems, which makes it the preferred delivery method 
for some clinical applications [245].

Three viral vector systems have been used extensively: Adeno-associated viruses 
(AAV), Adenoviral vectors (AdV), and Lentiviral vectors (LV). AAV are a common 
viral vector for gene delivery as they provide a safe option due to the fact that AAV 
genomes remain episomal in the nucleus and are gradually diluted by cell division 
and not known to associate with human diseases, except a minor immune response 
[246]. However, AAV vectors have a limited packaging capacity (<4.7  kb) 
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compared to AdVs and LVs (<8 kb), which remains one of the major bottlenecks for 
viral delivery methods. Packaging all CRISPR-Cas components in a single vector 
remains challenging due to the large size of the Cas protein (e.g., 4.2 kb for spCas9) 
[247]. Moreover, sometimes more than one gRNA is needed, for example, to avoid 
the selection of virus variants that escape from the therapy. LV vectors allow the 
packaging of both Cas9 and sgRNA into the same vector. Moreover, the production 
of LV vectors is less laborious than that of AAV and the transduction efficiency is 
usually high in a wide variety of cell types, including both dividing and nondividing 
cells [248, 249]. Although there is a theoretical concern that LV integration may 
lead to oncogene activation, this has only been observed with the first-generation 
retroviral vector and not for the LV vectors in a growing number of clinical trials. In 
fact, LV integrate within introns of active transcriptional units, thereby reducing the 
danger of insertional oncogenesis [250–253]. LV vectors are also amenable to pseu-
dotyping, meaning that heterologous envelope proteins can be accommodated to 
mediate viral entry into a wide variety of cells. Another criterion to be considered is 
vector immunogenicity. AAV vectors have been shown to be less immunogenic than 
systems based on other viruses [246]. However, the immune responses elicited by 
LV or AdV do not hamper their use [254], and otherwise, a transient immunosup-
pressive treatment could be considered [255, 256].

More recently, nanoblades were engineered as protein-delivery system based on 
the friend murine leukemia virus (MLV). Nanoblades were effective in carrying 
RNPs into cell lines and primary cells in vitro and in vivo [257]. Nanoblades lack 
viral genomes, which means that they are non-infectious and non-replicative and 
they can be pseudotyped like viral vectors with different envelope glycoproteins. 
Indeed, nanoblades were successfully used for gene editing of primary hematopoi-
etic cells. These results demonstrate that nanoblades form an attractive alternative 
delivery method for many applications, ranging from the generation of transgenic 
mice to non-invasive in vivo gene editing.

9  �Conclusions

Translation of current CRISPR-Cas technologies into the clinic as a safe and effec-
tive antiviral treatment still poses many hurdles. However, the simplicity, specific-
ity, and efficiency of this technology as demonstrated in simple in vitro settings hold 
much promise for future clinical applications. Scientists continue to search for bet-
ter and safer CRISPR-Cas systems, and optimization of the delivery method is a 
topic that is pursued in many laboratories. The speed at which the CRISPR technol-
ogy for genetic engineering became commonplace in many laboratories was per-
plexing. Let us hope that a similar avalanche of technical developments will 
effectively bring a variety of CRISPR therapies into the clinic.

CRISPR-Cas-based approaches have an enormous potential as novel antiviral 
therapy because of the sequence-specificity of the gene knock-out. In a sense, 
CRISPR-Cas pays off what antisense and RNA interference technologies once 
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promised to deliver. The use of Cas nucleases enables disruption of any viral DNA 
and RNA molecule in a very specific manner. The method is also ideal for launching 
a quick attack against novel viral threats, for example, pathogenic viruses that are 
transferred from animals to humans in a zoonotic transmission event. CRISPR-Cas 
therapeutics are able to fully inactivate viral reservoirs, overcoming one of the hur-
dles of current antiviral drug treatments of chronic virus infections. The success of 
such a therapeutic approach relies on an impeccable gRNA design that must target 
highly conserved viral sequences and must combine several gRNAs to prevent viral 
escape. Optimal gRNA design combined with progressive improvement of the 
CRISPR-Cas safety and optimized delivery systems should come together to realize 
the enormous potential of CRISPR-Cas-based antiviral approaches. In addition, 
CRISPR-based viral detection systems have proven to be a rapid and sensitive man-
ner to detect viral infections.
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CRISPR Targeting the Integrated HTLV-1 
Virus

Tasha Wilkie and Amanda R. Panfil

Abstract  Human T-cell leukemia virus type 1 (HTLV-1) is a complex deltaretrovi-
rus. As the only oncogenic human retrovirus known to date, HTLV-1 is the causative 
agent of adult T-cell leukemia/lymphoma (ATL), the immune-mediated neurode-
generative disease, HTLV-1-associated myelopathy/tropical spastic paraparesis 
(HAM/TSP), and a number of other inflammatory disorders. These HTLV-1-related 
diseases develop in a portion of infected individuals after a prolonged clinical 
latency period of several decades. Unlike other oncogenic retroviruses, HTLV-1 
does not encode a host-derived oncogene or cause insertional cis-activation of a cel-
lular oncogene. Instead, the virus encodes key regulatory and accessory genes, 
which mediate cellular transformation and proliferation. A large body of research 
has found that Tax and Hbz are essential players in this process, with other acces-
sory genes likely contributing to viral pathogenesis. Over the past several decades, 
the development of animal models to study HTLV-1 infection and transformation 
has provided a useful tool to study the complex questions surrounding viral-
mediated mechanisms of disease and potential therapeutic interventions. Genome 
editing of either Tax or Hbz may disable HTLV-1-infected cell growth and survival. 
Such disruption could also prevent immune modulatory effects and ultimately dis-
rupt HTLV-1-mediated diseases. CRISPR targeting of the integrated HTLV-1 virus 
is an understudied, yet intriguing, technology that has the potential to be used as an 
HTLV-1 disease treatment. This chapter will briefly describe the HTLV-1 lifecycle, 
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how this virus mediates disease, the relevant in vitro and in vivo models used to 
study HTLV-1 pathogenesis, and, finally, the potential for gene editing as a promis-
ing HTLV-1 therapeutic.

1  �Genome Organization

HTLV-1 belongs to the family Retroviridae, in the genus Deltaretrovirus [1]. Like 
other members of this family, HTLV-1 is an enveloped virus with a diameter of 
approximately 100 nanometers. The proteolipid envelope bilayer derived from 
host cell membrane is comprised of both viral glycoproteins (envelope; Env) and 
host proteins. The viral Env protein helps the virus bind to host cell receptors and 
enter new target cells. Matrix (MA) structural proteins line the inner membrane 
where it assists in particle assembly during viral spread. An icosahedral capsid 
(CA) encases the two copies of positive sense viral RNA, the functional viral 
enzymes protease (PR), reverse transcriptase (RT), and integrase (IN) together 
within the nucleocapsid.

HTLV-1 is a complex retrovirus that encodes the standard retroviral structural 
and enzymatic genes gag, pro, pol, and env (Fig. 1). In addition, there is a unique 
pX region located downstream of the envelope gene, which encodes several regu-
latory and accessory genes on both the sense and antisense genomic strands. The 
regulatory/accessory genes encoded within the sense genomic strand include Tax, 
Rex, p30, p12/p8, p30, and p13, while only one gene—Hbz—is derived from the 
antisense genomic strand. The HTLV-1 proviral genome is roughly 9 kb in length 
and flanked by characteristic long terminal repeats (LTRs) on both the 5′ and 3′ 
ends of the viral genome. These genomic regions are exact duplicates, which con-
sist of a U3, R, and U5 region. These regions contain promoter elements, polyad-
enylation signal sequences, and other cis-acting regulatory sequences essential for 
proper viral transcription. Unlike other retroviruses, such as HIV-1, the HTLV-1 
viral genome is highly conserved with sequence homogeneity both within the 

Gag
Pro

5’LTR 3’LTR

Tax
HBZ

1Kb 2Kb 3Kb 4Kb 5Kb 6Kb 7Kb 8Kb
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p12
p13

p27
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Fig. 1  Brief schematic of the HTLV-1 proviral genome. The approximate locations of the com-
mon retroviral structural and enzymatic genes, as well as the regulatory and accessory genes tran-
scribed within the pX region are depicted
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same host and between different HTLV-1 isolates. This is somewhat surprising 
given the error-prone nature of reverse transcriptase. The genetic stability of 
HTLV-1 is largely due to the clonal expansion of infected cells versus viral repli-
cation and infection of new cells, which is more common for many other 
viruses [2–5].

2  �Geographical Distribution and Viral Transmission

Recent epidemiological studies estimate approximately 5–10  million people are 
infected with HTLV-1 worldwide [6]. However, these studies were based on known 
endemic regions where there are reliable epidemiological data. The actual number 
of infected individuals is suspected to be much higher, since other high cluster and 
populated areas such as China, India, and East Africa are less well documented. In 
addition to worldwide distribution, HTLV-1 infection is also highly endemic in sev-
eral areas worldwide including Southwestern Japan, sub-Saharan Africa, the 
Caribbean area, South America, and foci in the Middle East and Australo-Melanesia. 
The USA and Europe (with the exception of Romania) show low incidence of 
HTLV-1 [6–8]. Of those seropositive individuals, most are immigrants or their chil-
dren who originate from highly endemic regions.

HTLV-1 infection of new cells is heavily dependent on cell-to-cell transmission, 
as opposed to cell-free transmission [9–11]. Therefore, successful new infection 
requires the transfer of virus-infected cells. There are three main routes of viral 
transmission described for HTLV-1: mother-to-child (vertical transmission), 
infected blood products, and sexual transmission. Vertical transmission of HTLV-1 
occurs through breast feeding, and there is limited evidence to suggest HTLV-1 is 
able to infect a fetus across the placental barrier [12]. The risk of transmission from 
mother to child increases with the duration of breastfeeding (>6 months), as pro-
tective maternal antibodies within the infant wane [13–15]. Studies show that the 
frequency of HTLV-1 transmission through breast feeding ranges from 4% to 25% 
in highly endemic regions [16]. HTLV-1 provirus is detected in both the semen and 
cervical secretion of HTLV-1-infected individuals [17]. Transmission can occur in 
both hetero- and homosexual intercourse; however, transmission from male-to-
female is most frequent [18, 19]. As with vertical transmission, the incidence of 
infection is increased by proviral load and duration of exposure/sexual contact [20, 
21]. Blood transfusions were a major route of HTLV-1 transmission prior to the 
implementation of routine serological screening of blood donors in the early 1990s 
in several countries [22]. As a result, this route of transmission has been almost 
eliminated in these countries. Despite the risk of transmission via blood, the screen-
ing of HTLV-1 in solid organ transplant donors is sporadic or nonexistent in most 
countries. Recently, this has resulted in several well-documented cases of HTLV-1 
seroconversion and subsequent disease progression in transplant recipients 
[23–28].
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3  �Viral Lifecycle

HTLV-1 mediates cell entry through binding of the retroviral envelope protein (Env) 
to the primary receptor glucose transporter type 1 (GLUT1) [29]. Two additional 
cellular factors, neuropilin-1 (NRP1) and heparan sulfate proteoglycan (HSPG), 
function as coreceptors to facilitate viral entry [30, 31]. HTLV-1 predominantly 
immortalizes CD4+ T-cells both in vitro and in vivo; however, provirus can also be 
detected in a variety of hematopoietic cells including CD8+ T-cells, B cells, den-
dritic cells, monocytes, and macrophages [32].

Upon entry into the cell, the viral enzyme reverse transcriptase converts the viral 
RNA genome into double-stranded DNA [33, 34]. The viral DNA is then translo-
cated to the nucleus where it is integrated into the host cell DNA via the viral 
enzyme integrase. The integrated form of the viral genome is referred to as the 
provirus. HTLV-1 integration occurs at random sites throughout the cellular genome, 
occasionally contained within transcriptionally active regions [35, 36]. HTLV-1 can 
be propagated in the infected cell through infectious replication where the inte-
grated genome is expressed, packaged, and disseminated as free virus for infection 
of a target cell. More commonly, viral amplification occurs through clonal expan-
sion of infected cells, or mitotic spread. On average, >99.9% of infected cells arise 
through mitotic spread within an infected host [37, 38]. Several of the viral regula-
tory and accessory genes play important roles within the viral lifecycle. However, 
this work will focus specifically on Tax and Hbz as these two viral genes play a criti-
cal role in infection, persistence, and disease development.

The viral protein Tax is a pleiotropic, oncogenic, transactivator protein essential 
for de novo infection and immortalization of infected cells [39–43]. Tax is gener-
ated from doubly spliced mRNA from the pX region and encodes a 353 amino acid 
protein (Fig. 2). Although Tax protein has been found in both the nuclear and cyto-
plasmic compartments of infected cells, it localizes primarily to the nucleus [44, 
45]. Most notably, this protein functions as a viral transcriptional activator of the 5′ 
LTR and also various cellular signaling pathways including the CREB, NF-κB, and 
AP1 pathways [46–55]. Activation of these pathways helps stimulate clonal prolif-
eration and survival of infected cells. In addition to its role as a transcriptional 
activator, Tax has also been shown to induce DNA damage, deregulate the cell 
cycle, inhibit apoptosis, and modulate miRNA expression [56–58]. The conse-
quence of these actions leads to uncontrolled cell division, which leads to cell 

Fig. 2  Schematic of the Tax protein with relevant functional domains highlighted
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proliferation and eventual transformation. Given its defined role in viral pathobiol-
ogy, several important domains have been mapped within the Tax protein [59]:

•	 N-terminus: a CREB-binding domain and nuclear localization signal.
•	 Central portion: two leucine zipper-like motifs required for DNA interactions, 

protein dimerization, and NF-κB activation.
•	 C-terminus: ATF/CREB activation domain, p300/CBP-binding domain, and 

PDZ-binding domain.

Several of the transcriptional effects of Tax are counteracted by the viral protein 
Hbz. Hbz transcription initiates in the 3′ LTR and is regulated by viral CREs and 
several SP1-binding sites [60–62]. There are both spliced and unspliced Hbz tran-
script variants, and the proteins encoded by these transcripts have nearly identical 
amino acid sequences and functions [62]. However, spliced Hbz is more abundant 
in infected cells [63] and therefore has been well-studied. Subsequent discussion of 
Hbz refers to the major spliced variant. Hbz plays important roles in regulating 
genomic integrity, apoptosis, autophagy, and escape from the host immune system 
[64]. Interestingly, Hbz is able to stimulate proliferation of infected cells in both its 
protein and mRNA forms [61, 65]—making it a particularly intriguing genome edit-
ing target. The Hbz protein consists of 206 amino acids (Fig. 3) and is comprised of 
three functional domains: an N-terminal activation domain, a central basic region, 
and a C-terminal bZIP domain. The activation domain contains two well-studied 
LXXLL-like motifs, which enable Hbz to bind CBP/p300 [66]. The LXXLL motifs 
are also required for Hbz to activate TGF-β signaling [67]. Through interactions 
with CBP/p300, Hbz is able to sequester these factors away from Tax and repress 
Tax-mediated LTR-activation [66, 68, 69]. The bZIP domain allows Hbz to het-
erodimerize with cellular bZIP proteins of the AP1 superfamily (CREB2, c-Jun, 
JunB, JunD, CREB, MafB, and ATF3) and affects their binding to cellular DNA 
recognition sites [70–80].

The viral proteins Tax and Hbz play central roles in the HTLV-1-mediated dis-
ease process. Experimental loss of Tax through mutation or deletion prevents de 
novo spread of the virus and also HTLV-1-mediated T-cell immortalization in vitro 
[39, 43, 49]. Mutually, Tax overexpression can induce cellular transformation 
in vitro in the absence of other viral proteins and induces ATL-like disease in mice 
[40–42, 81]. These early seminal discoveries visibly identified Tax as an oncogenic 
viral protein. Identified several decades after the discovery of HTLV-1, Hbz also 
influences viral persistence and transformation. Loss of Hbz has no effect on T-cell 
immortalization in vitro, but is required for efficient viral infection and persistence 
in  vivo [82]. In addition, shRNA-mediated knockdown of Hbz decreases 

Fig. 3  Schematic of the Hbz protein with relevant functional domains highlighted
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proliferation, tumor burden, and tumor infiltration to the surrounding tissues in vivo 
[83]. Recently, Hbz was shown to prevent Tax-induced transformation and senes-
cence in a transgenic fly model [84]. The current theory within the field is that Tax 
is responsible for initiating transformation, while Hbz counteracts several Tax-
induced effects and is responsible for the long-term proliferation of transformed cells.

4  �HTLV-1-Associated Diseases

In HTLV-1-positive individuals, the virus persists within approximately 103 to 106 
individual infected T-cell clones that survive for the lifetime of the host [85]. Until 
recently, viral transcription driven from the 5′ LTR (sense or plus-strand transcrip-
tion) was believed to be silent, since plus-strand transcription from freshly isolated 
infected lymphocytes is absent. However, recent evidence has shown that Tax is 
transcribed in “intense intermittent bursts” in infected lymphocytes [86]. The fac-
tors responsible for driving these bursts are cellular stress, controlled by hypoxia, 
and glycolysis [87]. These studies also found Hbz, driven by minus-strand tran-
scription, is transcribed at lower, more consistent levels in infected cells. 
Interestingly, these studies also found Hbz is silent in a portion of the cells at various 
times. These studies confirm Tax and Hbz are expressed, and their expression is 
tightly regulated in asymptomatic HTLV-1-infected individuals. DNA analyses of 
asymptomatic HTLV-1-infected individuals show little variation in proviral sequenc-
ing [88], confirming HTLV-1 exists predominantly in a latent form where the 
genome is maintained by mitotic host cell division followed by occasional reactiva-
tion and de novo infection.

HTLV-1 is the cause of an aggressive non-Hodgkin’s peripheral T-cell malig-
nancy called adult T-cell leukemia/lymphoma (ATL) [89–91]. This disease is most 
commonly a CD4+ T-cell malignancy; however, there are rare examples of CD8+ 
T-cell origin [92]. ATL is characterized by lymphadenopathy, skin lesions, increased 
abnormal lymphocytes often called “flower” cells, frequent blood and bone marrow 
involvement, hypercalcemia, and lytic bone lesions [93]. Very little is known why 
only a fraction (~5%) of infected individuals develop ATL; however, one risk factor 
is the patient proviral load. HTLV-1-infected patients with a higher proviral load (>4 
copies/100 peripheral blood mononuclear cells; PBMCs) are at an increased risk for 
developing disease [94].

ATL is a heterogeneous disease divided into four clinical subtypes (acute, lym-
phoma, smoldering, chronic) based on several criteria [95]. The smoldering or 
chronic ATL is considered less aggressive and often involves a skin rash and mini-
mal blood involvement. The aggressive ATL subtypes are acute and lymphoma. 
These patients have large tumor burden, lymph node and blood involvement (typi-
cally >5% of total T-cells are flower cells), and hypercalcemia. Unfortunately, these 
subtypes are also accompanied by multiorgan failure and frequent opportunistic 
infections due to T-cell immunodeficiency [96]. Unfortunately, ATL is highly che-
motherapy and multidrug resistant, leading to poor prognosis. The median survival 
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rate of the least aggressive subtypes of ATL (smoldering, chronic) is 32–55 months, 
while the survival rate of aggressive subtypes of ATL (lymphoma, acute) is 
8–11 months [97].

Tax expression is typically quite low or undetectable in ATL patient cells. This 
arises through epigenetic silencing, 5′ LTR deletion, or abortive protein mutations 
within the Tax gene [98–100]. A recent study using an HTLV-1-transformed cell 
line, MT-1, discovered transient Tax expression, and this expression was critical for 
maintaining the infected cell population [101]. This transient Tax expression is 
believed to activate the antiapoptotic machinery even after Tax expression is again 
silenced or lost. Inversely, Hbz is the only viral gene that is consistently found in all 
ATL cases and is intact [61]. This evidence supports the theory that Hbz supports 
infected cell survival and the development of leukemia/lymphoma.

HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a 
slow progressing, chronic neurodegenerative disease occurring in ~5% of HTLV-1-
infected individuals [102–105]. Characterized by painful stiffness and weakness of 
the legs (lower limb spasticity) and bowel and bladder disturbances, this disease 
manifests slowly with a steady progression over several years. HAM/TSP arises 
from inflammation and subsequent swelling that occurs in the spinal cord. HTLV-1-
infected cells infiltrate the central nervous system and cause persistent immune acti-
vation against proliferating HTLV-1-infected CD4+ T-cells. HAM/TSP patients 
frequently display high proviral loads and high levels of HTLV-1-specific antibod-
ies in the cerebrospinal fluid (CSF) [106–111]. Many symptoms of HAM/TSP are 
also found in patients with MS. In fact, the clinical courses of HAM/TSP and MS 
are similar with steady worsening of neurological function without any distinct 
relapse or period of remission.

The main reservoir for HTLV-1 in HAM/TSP patients are CD4+CD25+ T-cells 
[102, 107]. Like ATL, elevated patient proviral loads are strongly correlated with 
disease pathogenesis. Tax protein is detected in the CSF cells of HAM/TSP patients, 
while Tax mRNA is detected in cells isolated from spinal cord and cerebellar sec-
tions [108, 110, 111]. The persistent expression of the highly immunogenic Tax 
protein in an immune-privileged area like the CNS leads to direct cell damage (i.e., 
axonal degeneration) and contributes to lymphocyte activation. Although Hbz 
mRNA is detected in PBMCs from HAM/TSP patients, the transcript level is lower 
than in ATL patient PBMCs and correlates with the patient proviral load and disease 
severity [112]. Hbz transgenic mice present similar immunological features of 
HAM/TSP [113], again, supporting the role of Hbz in HAM/TSP disease pathology.

5  �In Vitro and In Vivo Models of HTLV-1 Disease

HTLV-1 infects and immortalizes primary CD4+ T-cells in vitro [114]—identical to 
what is observed in HTLV-1-infected asymptomatic individuals and in the HTLV-1-
mediated diseases, such as ATL and HAM/TSP. Cell-free infection by HTLV-1 is 
extremely inefficient [9–11]; therefore, infection requires the coculture of lethally 
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irradiated HTLV-1 producer (infected) cells with naïve primary PBMCs from a 
healthy donor. Immortalization of recipient cells becomes apparent 5–6 weeks after 
coculture and can be detected by the expansion of infected cells from the peripheral 
blood lymphocyte mixed cell population. Using this technique, researchers have 
been readily able to examine the requirements of specific gene products on HTLV-1-
mediated immortalization using proviral clones [82, 115–120].

Several in vivo models exist to examine various aspects of viral pathogenesis 
from infection to tumorigenesis. A brief description of the most relevant animal 
models is described below.

Early HTLV-1 infection events can be modeled in New Zealand white (NZW) 
rabbits. NZW rabbits inoculated with irradiated HTLV-1-infected cells become per-
sistently infected and mimic early infection events in humans such as the antibody 
response against Gag and Env [82, 115, 119]. HTLV-1-infected rabbits do not 
develop disease related to HTLV-1, likely due to several factors such as lifespan 
length and immune pressure. However, this system enables the study of early viral 
infection events in the presence of a functional immune system. Long-term HTLV-1 
latency is mediated in part by the host immune response, making this an attractive 
model to study viral persistence. Similar to the in vitro immortalization assay in 
primary cells, this model also allows for the in  vivo functional study of various 
HTLV-1 proteins.

Immune-deficient mice (NOD.Cg-PrkdcSCIDIL2rgtm1Wjl/SzJ; NOG) inocu-
lated subcutaneously with various HTLV-1-infected cell lines (Hut-102, SLB-1, 
ATL-ED, TL-Om1) will develop tumors [83, 121, 122]. The transplanted HTLV-1 
tumor cell lines also secrete human IL-2Rα, which can be used as a biomarker for 
cellular proliferation in vivo. Previously, this mouse model has been successfully 
used to measure drug efficacy against ATL [121, 122] and the functional signifi-
cance of various HTLV-1 proteins on tumorigenesis. Using this model system, 
shRNA knockdown of Hbz in HTLV-1-infected cells was found to decrease prolif-
eration, tumor size, and infiltration of tumor cells to the surrounding environ-
ment [83].

Humanized immune system (HIS) mice develop T-cell tropism and lymphopro-
liferative disease after HTLV-1 infection. These mice are created by intrahepatic 
injection of human umbilical-cord stem cells into neonatal NSG mice. Within a 
period of several weeks, this will result in the development of phenotypically nor-
mal human lymphocytes [123, 124]. HIS mice inoculated with irradiated HTLV-1-
producing cells consistently reproduce several key stages (persistent infection, 
chronic proliferation of CD4+ T-cells, and lymphoproliferative disease) of HTLV-1-
mediated tumorigenesis in a relatively compact time frame of 4–5  weeks. Like 
NZW rabbits, infection in these mice can also be induced using an infectious molec-
ular clone of HTLV-1 and thus enables the in  vivo functional study of various 
HTLV-1 proteins on HTLV-1-mediated tumorigenesis.
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6  �CRISPR/Cas9 Targeting of HTLV-1

Clustered regularly interspersed short palindromic repeat (CRISPR)/Cas9 genome 
editing is a relatively new technology that utilizes a guide RNA (gRNA) to target a 
site-specific DNA double strand break (DSB) by the Cas9 endonuclease. These 
DSBs are most often repaired by the nonhomologous end-joining pathway. This 
type of repair is error prone and typically introduces insertions and deletions (indels) 
at the repair site. CRISPR gene editing can lead to disruptions within genomic read-
ing frames, DNA regulatory motifs, or the structure of encoded RNA elements. The 
use of CRISPR/Cas9 is rapidly moving into clinical trials and has been mostly 
focused on ex vivo modification of cells followed by transplant back into patients. 
This approach has been most beneficial for diseases including cancer and sickle cell 
disease [125, 126].

Future treatment of HTLV-1 diseased patients will likely involve in vivo delivery 
of CRISPR/Cas9. There are several well-known technical challenges associated 
with this type of approach including type of packaging vector, systemic versus tar-
geted delivery, editing efficiency, off-target effects, and immunogenicity [127]. 
However, several points of evidence exist to support the development of this innova-
tive and powerful genome editing technology to treat HTLV-1-mediated diseases:

	1.	 Previous studies demonstrated genome editing can disrupt HTLV-1-
mediated proliferation. Zinc finger nucleases (ZFNs) were reported to specifi-
cally recognize the HTLV-1 LTR and disrupt promoter function, ultimately 
inhibiting proliferation of HTLV-1-positive cells in cell culture [128]. Additional 
support for CRISPR targeting the HTLV-1 genome was recently reported with 
two different gRNAs targeting Hbz that disrupted ATL cell proliferation 
in vitro [129].

	2.	 HTLV-1 offers focused gRNA targeting. The viral genome is highly conserved 
with sequence homogeneity within the same host and among different viral iso-
lates [130, 131]. This is uncommon for a retrovirus given the error-prone nature 
of RT. However, HTLV-1 mostly persists within an infected host through mitotic 
host cell division [37, 38] and thus relies less on active replication compared to 
other retroviruses such as HIV-1.

	3.	 There is a strong need for innovative therapeutic approaches to treat 
HTLV-1-mediated diseases. Current treatment strategies for HTLV-1-infected 
patients involve a “watch and wait” approach, monitoring proviral load, and 
other predictive risk factors for disease development. ATL caused by infectious 
HTLV-1 is an aggressive, chemotherapy-resistant, and highly fatal malignancy. 
The median survival time of patients who develop aggressive ATL subtypes is 
less than 1  year after diagnosis. Unfortunately, ATL patients who experience 
initial treatment success will consistently relapse [132, 133]. HAM/TSP repre-
sents a challenging disease with limited treatment options [134], and many treat-
ments simply target pain or inflammation [102, 135]. Therapies that control the 
expression of HTLV-1 gene products represent an effective treatment for pre-
venting and treating HAM/TSP.
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	4.	 The most important drivers of HTLV-1-mediated transformation, prolifer-
ation, and immunological inducing effects are the Tax and Hbz genes. Tax is 
the major driver of viral transcription, transformation, and immune dysregula-
tion [136, 137], while HBZ supports proliferation and survival of HTLV-1-
transformed cells [82, 83]. HTLV-1 ATL tumor cells typically do not express 
Tax, while Tax expression directly contributes to lymphocyte activation and 
immunopathogenesis in HAM/TSP patients [109]. Conversely, Hbz is always 
expressed in HTLV-1-infected cells, PBMCs of HTLV-1-infected individuals, 
and ATL tumor cells [138]. Together, these two viral proteins are essential to the 
pathophysiology of both HAM/TSP and ATL. Disrupting the function or expres-
sion of Tax and/or Hbz through genome editing could disturb HTLV-1-infected 
cell growth and survival and thus prevent immune modulatory effects and ulti-
mately HTLV-1-associated diseases.

	5.	 Several in vitro and in vivo models exist to study HTLV-1 infection, immor-
talization, persistence, and tumorigenesis. Well-established HTLV-1 animal 
models (rabbits, NOG mice, HIS mice) and in vitro cell immortalization studies 
represent several useful tools to study the various aspects of HTLV-1 infection 
and disease development. Most importantly, as CRISPR gene editing continues 
to move into the clinic, these in vivo models represent a system to eventually test 
delivery of CRISRP/Cas9 gene editing components against measurable gRNA-
viral targets. CRISPR gene editing faces several significant obstacles including 
off-target editing, inefficient or off-target delivery, and stimulation of the host 
immune response. In vivo models could help to overcome these significant 
obstacles facing clinical application of CRISPR gene editing against HTLV-1-
mediated diseases.

7  Concluding Remarks

HTLV-1 is an oncogenic human retrovirus and the infectious cause of both a neuro-
degenerative disease called HAM/TSP and an aggressive CD4+ T-cell malignancy 
called ATL. Interestingly, both HAM/TSP and ATL develop in a portion of infected 
individuals after a prolonged clinical latency period. There is a strong need for inno-
vative treatment approaches within the HTLV field, as both of these diseases have 
limited treatment options. Within the HTLV-1 genome, the viral genes Tax and Hbz 
offer well-defined molecular targets for CRISPR gene editing. HTLV-1 is also an 
excellent model to advance retroviral genome editing technologies due to the wide 
variety of animal models available within the field. Although there are several tech-
nical challenges to in vivo delivery of CRISPR/Cas9, there are several points of 
evidence, which suggest gene editing is a promising future HTLV-1 therapeutic.
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of Monogenic Diseases
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Abstract  Gene therapy vectors derived from retroviruses are attractive for treating 
monogenic diseases due to the stable integration of a transgene in patient cells. In 
addition, retroviruses do not activate the immune system, allowing for multiple 
doses with the same viral vector. Retroviral vectors are also readily pseudotyped 
expanding their tropism to a variety of cell types. In spite of these advantages, gene 
therapy trials with gammaretrovirus murine leukemia virus (MLV) vectors led to 
leukemia in five patients. This has led to important questions about the safety of 
retroviral vectors. Lentiviral vectors have not yet been shown to cause any onco-
genic transformation and may be clinically relevant for some monogenic diseases. 
Other retroviral vectors derived from alpharetroviruses or spumaviruses are in 
development. Spumavirus vectors have been safely used for gene therapy in animals 
but have not yet been tested in humans. With continuing advances in safety, retrovi-
ral or lentiviral gene therapy vectors should continue to lead to cures of monogenic 
diseases.

1  �Introduction

Retroviruses have been engineered to create retroviral gene therapy vectors, allow-
ing stable expression of a transgene to cure monogenic diseases [1]. All retroviruses 
have two defining enzymes: reverse transcriptase and integrase [2]. The virus par-
ticles contain two genomic RNAs. Following entry into a host cell, reverse tran-
scriptase copies the genomic RNA to a linear double-stranded cDNA (Fig. 1). The 
cDNA and integrase are part of a poorly defined preintegration complex (PIC) that 
includes an assemblage of viral and host proteins. Most retroviruses require cellular 
division for the PIC to gain access to the host chromatin, while lentiviruses can 
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Fig. 1  The retroviral life cycle and transduction by retroviral vector particles. (a) The retroviral 
envelope protein determines the tropism of the virus and mediates entry to a target cell. Inside a 
cell, the viral genomic RNA (thin black lines) is reverse transcribed to a linear double-stranded 
cDNA. The viral cDNA (thick black lines) is bound by integrase, yielding a preintegration com-
plex (PIC), which will mediate covalent joining to the host genome (blue). Lentiviruses have the 
unique ability to enter the nucleus without dissolution of the nuclear membrane during cellular 
division. Viral mRNAs and genomic RNA are transcribed from the integrated provirus by host 
transcription enzymes. Virus particles leaving the cell are not infectious and require the action of 
protease to cleave viral polyproteins, leading to mature, infectious virions. (b) Retroviral vector 
particles are generally pseudotyped with a membrane protein to allow altered tropism and entry to 
different cell types. Reverse transcription and integration are the same for retroviruses and retrovi-
ral vectors. The retroviral vector RNA (thin red lines) and cDNA (thick red lines) do not encode 
viral genes. Following integration, the provirus can only express the therapeutic protein of interest
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cross an intact nuclear membrane [3, 4]. Integrase mediates the covalent joining of 
the viral cDNA to the host DNA, resulting in an integrated provirus. Integration site 
selection does not appear to be stochastic with each retrovirus displaying a unique 
preference for genomic features [5]. The proviral genome is transcribed by the host 
RNA Pol II transcription machinery to generate viral genomic RNA and mRNAs, 
which are translated in the cytoplasm. Progeny virions are assembled and released 
from the cell as immature uninfectious particles. The viral enzyme protease cleaves 
polyproteins in the virus particle, leading to an infectious virus. Retroviruses are 
classified as families: alpha (avian sarcoma and leukosis virus, ASLV), beta (mouse 
mammary tumor virus, MMTV), gamma (murine leukemia virus, MLV), delta 
(human T cell leukemia virus, HTLV-1), epsilon (walleye dermal sarcoma virus, 
WDSV), lentivirus (human immunodeficiency virus, HIV-1), and spumavirus (pro-
totype foamy virus, PFV). The alpha through epsilon families are oncogenic. The 
lentivirus family causes immunodeficiency. The spumavirus family, also known as 
foamy viruses, does not appear to cause any disease [6].

Integration of retroviral gene therapy vector genomes offers the exciting possi-
bility to cure monogenic diseases by stably introducing a corrective transgene. 
Retroviral gene therapy vectors recapitulate the early steps of the retroviral life 
cycle due to the inclusion of structural and enzymatic proteins (Fig. 1) [7–10]. The 
viral vectors are typically pseudotyped with an alternative envelope protein and the 
retroviral envelope gene is deleted. The engineered vector genome encodes a pro-
motor driving the corrective transgene (Fig. 2). It also includes viral regulatory ele-
ments necessary for packaging the genomic RNA into vector particles and reverse 
transcription [13]. The vector genome does not encode any viral genes. With the 
exception of spumaviruses, retroviral vector particles may be pseudotyped with 
alternative membrane proteins changing the tropism and permitting transduction of 
different cell types [14, 15]. Retroviral-based vectors also offer the advantage of 
minimal innate and adaptive immunity responses, particularly in comparison with 
gene therapies derived from immunogenic adenoviruses [16–19]. Retroviral gene 
therapy vectors have functionally cured several monogenic disorders, including 
X-linked chronic granulomatous disease (X-CGD), Wiskott-Aldrich syndrome 
(WAS), X-linked adrenoleukodystrophy, and X-linked severe combined immune 
deficiency (X-SCID) [11, 20, 21]. Despite these initial successes, the field of retro-
viral gene therapy was suspended when an MLV-based gene therapy vector in clini-
cal use treating X-SCID led to leukemia in several patients [22–24]. Genetic 
characterization of the tumors revealed MLV vector integration at the promoters of 
proto-oncogenes altering their expression and leading to oncogenic transformation. 
Interestingly, this is the same mechanism by which MLV infection causes leukemia 
in animals.
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2  �Retroviral Vectors Based on Gammaretrovirus MLV

The first retroviral gene therapy vectors were derived from MLV (Fig. 3). These 
vectors were used to treat X-SCID.  Hematopoietic stem cells were transduced 
ex vivo with an MLV vector expressing the interleukin 2 receptor common subunit 
gamma (IL-2RG) gene and reintroduced to patients [25]. Between 1999 and 2009, 
twenty patients were treated with this gene therapy vector. Seventeen patients were 
cured of X-SCID, but five later developed leukemia [26, 27]. In these patients, the 
MLV vector proviral genome had integrated near known oncogenes LMO-2 and 

Fig. 2  HIV-1 viral genome and lentiviral vector genome. As in all retroviruses, the HIV-1 proviral 
genome (HIV Genome) is flanked by long terminal repeats (LTRs) that are generated during 
reverse transcription and includes binding sites for integrase and host transcription factors. All 
retroviral genomes include three genes. The gag gene encodes all structural proteins of the virus, 
pol encodes viral enzymes, and env encodes the envelope proteins. HIV-1 has six accessory genes 
not found in other retroviruses, including two spliced genes tat and rev. The genome of HIV-1-
based lentiviral vectors (WW Vector) typically has deletions of the LTRs removing transcription 
factor–binding sites, termed self-inactivating (SIN). Only a gene of interest and its promoter are 
included in the vector genome. In this illustration, the Wiskott-Aldrich syndrome protein (WASP) 
gene is driven by the natural human WASP promoter (hWASP) [11]. A posttranscription regulatory 
element (PRE) is an RNA element that enhances the nuclear export of unspliced mRNA [12]

Fig. 3  Time line of developments in retroviral vectors for gene therapy

K. E. Yoder et al.



149

CCND2. The provirus dysregulated expression of these host genes, leading to onco-
genic transformation. In addition, patients treated with MLV gene therapy vectors 
for WAS and X-CGD also developed leukemia [21, 28, 29]. These clinical trials 
demonstrated the ability of retroviral gene therapy to cure monogenic diseases, but 
also revealed significant risks.

MLV was shown to favor integration near transcription start sites (TSSs, 28% 
within 5 kb of a TSS compared to a matched random control value of 4.9%) [30]. 
This integration site preference was later discovered to be the result of MLV inte-
grase binding to host BET proteins [31–33]. The family of BET proteins includes 
Brd2, 3, and 4, which are ubiquitously expressed. This protein family is involved in 
transcription, cell cycle regulation, and DNA replication. These proteins include 
two bromodomains near the amino terminus and an extra terminal (ET) domain near 
the carboxyl terminus. The bromodomains bind acetylated histone H3 and H4 tails, 
while the ET domain binds MLV integrase. Thus, the BET proteins are able to tether 
MLV integration complexes to chromatin at regions where H3 and H4 are acety-
lated including TSSs, enhancers, and super-enhancers. The MLV long terminal 
repeat (LTR) also includes strong transcriptional enhancers that can lead to inap-
propriate expression of host genes near the proviral vector genome [34]. MLV pro-
viral genomes near oncogenes can lead to their dysregulation and ultimately 
transformation [35].

It is possible to engineer mutations in MLV integrase that prevent binding to 
BET proteins [36, 37]. MLV vectors with these integrase mutants retain infectivity 
and integration activity. These mutations reduced integration near TSSs, but not 
completely [36, 38]. Importantly, the MLV integrase mutants were characterized by 
infection in a mouse model [39]. Although there was less integration at TSSs and 
decreased rate of tumorigenesis, the tumors that did occur displayed integration 
near oncogenes. These data suggest that BET-independent MLV vectors may still 
lead to oncogenesis.

3  �Lentiviral Vectors Derived from HIV-1

Retroviral gene therapy applications transitioned to lentiviral-based vectors instead 
of MLV-based vectors that led to leukemia. Lentiviruses, such as HIV-1, lead to 
immunosuppression but are not oncogenic. However, some safety concerns still 
exist. HIV-1 patients treated with antiretroviral therapy (ART) display a greater 
prevalence of non-AIDS-defining malignancies (NADM), including Hodgkin’s 
lymphoma, oropharyngeal cancer, anal cancer, hepatocellular carcinoma, and non–
small cell lung cancer [40]. Sequencing of integration sites in cells from ART treated 
patients revealed ~40% of HIV-1 latently infected cells were clonally expanded 
with the provirus at known oncogenes such as MKL2 and BACH2 [41, 42]. While 
the observation of clonal expansion by HIV-1 latently infected cells is concerning, 
there is no proven association with oncogenic transformation [43, 44]. Recent clini-
cal trials with lentiviral gene therapy vectors to treat sickle cell disease were halted 
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due to the development of acute myeloid leukemia (AML) in one patient and myelo-
dysplastic syndrome (MDS) in another [45]. Genetic analysis of tumor cells from 
the AML patient revealed genomic rearrangements and integration at the vesicle 
associate membrane protein 4 (VAMP4) gene, which is not associated with onco-
genesis. It seems likely that genomic rearrangements were the cause of AML and 
were unrelated to the lentiviral vector. The integration site in cells from the MDS 
patient has not yet been reported.

One highly attractive feature of lentiviral vectors for gene therapy is their ability 
to transduce nondividing cells [46]. Resting cells, such as naïve T cells or hemato-
poietic stem cells, may be transduced ex vivo without activation. This may allow the 
cells to better retain their functionality when reinfused to patients [47]. Early ver-
sions of lentiviral-based vectors were associated with insertional mutagenesis in 
proliferative HSCs and tumors in mice [27, 48]. Subsequent development and engi-
neering of lentiviral vectors has included multiple safety features. Virulence factors 
have been deleted, and the viral genome is encoded on multiple plasmids to reduce 
the possibility of recombination. Viral promoter elements present in the LTRs have 
been deleted, yielding self-inactivating (SIN) vectors [49, 50]. These safer lentiviral 
vectors have been used to treat WAS, metachromatic leukodystrophy, beta-
thalassemia, X-linked adrenoleukodystrophy, and metachromatic leukodystrophy 
[11, 51–53]. Lentiviral gene therapy treatment of beta-thalassemia made transfu-
sions unnecessary for several years, indicating that the transgene was successfully 
expressed on a long-term basis without any observed adverse reactions. Clonal 
expansion was observed in cells from one patient with integration at the proto-
oncogene high mobility group A2 (HMGA2) gene but did not lead to cancer [54]. 
Evaluation of cells from 22 additional patients revealed no evidence of clonal 
expansion [55].

The difference in oncogenic potential between MLV and HIV-1 derived gene 
therapy vectors is their integration site preference. While MLV integration prefers 
TSSs due to BET proteins (15–39% compared to 4.9% in matched randomized 
controls), HIV-1 prefers to integrate in the bodies of active transcribed genes 
(58%–86% compared to 45.7% in matched randomized controls) [30, 33, 56–60]. 
HIV-1 integration is directed by host protein lens epithelium–derived growth factor 
(LEDGF/p75), the first identified host cofactor for any retroviral integrase [61, 62]. 
LEDGF/p75 has a PWWP domain at the amino terminus and an integrase-binding 
domain (IBD) at the carboxyl terminus [63–65]. The PWWP domain binds to a tri-
methylation posttranslational modification of histone H3 at lysine 36 (H3K36me3) 
and the IBD binds a groove created by two HIV-1 integrase protomers [66–71]. 
Binding of LEDGF/p75 helps to stabilize the HIV-1 integration complex and tethers 
it to nucleosomes decorated with H3K36me3. H3K36me3 is found in actively tran-
scribed genes, explaining the preference for HIV-1 integration site selection [59, 72].

Other host proteins have been implicated in directing HIV-1 integration to 
genomic features without directly binding to integrase. The HIV-1 capsid core 
remains at least partially intact as the PIC enters the nucleus. Capsid binds several 
host proteins that appear to influence integration site preference including cleavage 
and polyadenylation specificity factor subunit 6 (CPSF6), nucleoporin protein 153 

K. E. Yoder et al.



151

(Nup153), and E3 SUMO-protein ligase (RANBP2 or Nup358). CPSF6 is a 
chromatin-associated factor and part of several complexes in the nucleus including 
cleavage factor Im (CFIm) complex, paraspeckles, and nuclear speckles [73, 74]. 
The interaction of CPSF6 and HIV-1 capsid directs the PIC to gene dense regions 
[75–79]. Nup153 and RANBP2 are part of the nuclear pore complex [80–83]. 
Nup153 and RANBP2 participate in nuclear import of the capsid-encased PIC and 
depletion of either protein targets integration to less dense gene regions [84–89]. 
The interactions of capsid with nuclear pore proteins could explain the observation 
of HIV-1 integration events near the nuclear pore [90]. Depletion of the capsid-
interacting proteins does not alter the preference for HIV-1 integration into active 
genes, but instead retargets integration away from gene dense regions. There have 
been no circumstances observed where HIV-1 integration occurs preferentially near 
TSSs, which correlates with oncogenesis.

4  �Retroviral Vectors Based on Alpharetrovirus ASLV 
and Spumavirus PFV

Other retroviruses have been proposed as gene therapy vectors including ASLV and 
PFV. ASLV vectors are able to transduce macaque CD34+ hematopoietic progeni-
tor cells with stable transgene expression up to 18  months [91]. There were no 
detectable integration events at enhancers or promoters [92]. In spite of these prom-
ising early results, ASLV vectors have not yet been used in human gene ther-
apy trials.

Only the spumavirus subfamily (also known as foamy viruses) of retroviruses 
has been shown to not cause any disease in animal hosts or xenotropic human infec-
tions. There are also key differences between the life cycle of foamy viruses and 
other retroviruses (reviewed in [6]). In particular, the foamy viruses are not readily 
pseudotyped like other retroviruses. However, foamy virus vectors are able to trans-
duce human primary macrophages, human and rhesus embryonic stem cells, human-
induced pluripotent stem cells, and murine hematopoietic stem cells [9, 93–97]. 
Foamy viruses do have a slight preference for integration near TSSs, but signifi-
cantly less than MLV [30, 98, 99]. Importantly, foamy viruses are not associated 
with oncogenesis.

Foamy virus vectors have not been used in human gene therapy trials but have 
treated five dogs deficient in CD18, the cause of canine leukocyte adhesion defi-
ciency (CLAD) [100–102]. Foamy vector particles transduced CD34+ hematopoi-
etic stem cells ex vivo, and the cells were infused back into the dogs [100]. Four 
dogs were disease free for at least 4–7 years [101]. Additionally, the animals did not 
develop any tumors [101, 102].

Retroviral gene therapy protocols typically include transduction of cells ex vivo, 
but foamy virus vectors have been given to dogs intravenously. Six dogs with 
X-SCID were treated with foamy virus vectors delivered intravenously [103, 104]. 
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Two of the dogs survived 2.5 years with no evidence of oncogenesis in any of the 
animals [103]. These studies suggest that foamy virus vectors may be safe for 
human gene therapy trials with little risk of oncogenesis.

5  �Conclusions

There have been efforts to engineer retroviral integration to target genetic “safe 
harbors” that will not lead to cancer in patients treated with retroviral gene therapy 
vectors [105]. However, these efforts have been largely unsuccessful. The goals of 
retroviral gene therapy are to eliminate the possibility of oncogenesis and to rescue 
gene expression for a functional cure. Of the retroviral gene therapies that have been 
used in humans, lentiviral vectors may be the closest to achieving these goals thus 
far [106, 107]. Importantly, there is no strong evidence that lentiviral vectors will 
lead to cancer in patients. The success of these gene therapies in treating several 
severe monogenic diseases suggests they will continue to be clinically 
relevant.FundingThis research was supported by NIH R01AI126742 (KEY), NIH 
R01AI150496 (KEY), and The Ohio State University Comprehensive Cancer 
Center (KEY).
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Abstract  Structural DNA Nanotechnology allows for the construction of complex, 
2D, and 3D structures via molecular self-assembly. These versatile nanoscale struc-
tures combine several advantages, which make them well suited for numerous bio-
medical applications. Particular advantages of DNA nanostructures include 
unprecedented control over nanoscale geometry and precise functionalization with 
molecules including small molecule therapeutics, nucleic acids (e.g. antisense oli-
gonucleotides or small interfering RNA), gene and gene editing molecules, and 
targeting molecules to create drug delivery devices that can target molecular pay-
loads to a variety of cells. Furthermore, recent advances have led to new capabilities 
such as tunable drug release rates and multiple approaches to improve biological 
stability. Here we provide an overview of the DNA nanostructure design, manufac-
turing, and characterization processes; briefly describe nonclinical applications; and 
focus on preclinical development of DNA nanostructures as drug delivery devices 
with an emphasis on nanostructures engineered via the DNA origami fabrica-
tion method.
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1  �Introduction

Throughout the multiple life science disciplines, DNA (deoxyribonucleic acid) typ-
ically refers to the genetic and hereditary material of the living cell. Within the 
context of the nanoengineering discipline, DNA is not only considered the genetic 
and hereditary material of life, but also as construction material to build incredibly 
complex structures at the nanoscale. From its ideation of DNA nanotechnology in 
1982 to its renaissance in 2006 with scaffolded DNA origami to 2021, the field has 
advanced from simple planar junctions to the ability to construct extremely complex 
static 2D DNA predefined nanoscale objects and further to the development of 3D 
nanoscale objects with increasing levels of complexity and curvature [1–5]. 
Throughout the 2010s, the development of a multitude of DNA nanostructure appli-
cations began to emerge including biosensing [6, 7], plasmonics [8], templating [9], 
DNA computing [10, 11], molecular machines [12, 13], and drug delivery [14–16]. 
Furthermore, the emergence of numerous, unique applications for DNA nanostruc-
tures suggests a powerful platform technology for commercial development. One of 
the most powerful properties of DNA nanostructures is the ability to add a con-
trolled number of oligonucleotide molecular attachments with a customizable 
sequence in a site-specific manner. This enables complementary sequence-specific 
attachment of virtually any sequence of DNA, RNA, and microRNA (miR) oligo-
nucleotides allowing for potential medical device development to diagnose diseases 
such as viral and microbial infection, and cancer. Furthermore, attachment of anti-
body molecules to oligonucleotides [17] allows for a platform to organize and detect 
specific peptide molecules with disease relevance. A key advantage of DNA nano-
structure medical device platforms is the ability to achieve a high degree of func-
tionalized nanostructure uniformity, which is critical for an effective diagnostic 
medical device, in addition to drug discovery.

DNA nanostructures hold great potential for multifunctional drug delivery device 
development [16], with an ability to attach small molecule intercalating agents [18–
21], antisense oligonucleotide molecules [22, 23], genes and gene editing molecules 
[24, 25], and targeting aptamers [26, 27] or antibody fragments [28] to deliver a 
therapeutic payload to intended target cells. Here we provide an overview of the 
DNA nanostructure design, manufacturing, and characterization processes; briefly 
describe nonclinical applications; and focus on preclinical development of DNA 
nanostructures as drug delivery devices with an emphasis on nanostructures engi-
neered via the DNA origami fabrication method.

2  �Design and Fabrication

The ability to design synthetic DNA nanostructures was initially conceived in 1982 
by Nadrian Seeman [1] (Fig. 1a). He proposed the idea of leveraging nucleic acid 
junctions, in particular Holliday junctions [29], to build up larger arrays and lattices. 
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This idea, which was originally conceived for applications in crystallography [1, 
30], gave rise to the field of structural DNA nanotechnology [31]. Early structures 
were constructed both from DNA and expanded to RNA, which featured motifs 
inspired by natural RNA constructs [32]. The design of these structures was limited 
to a small nanoscale size, with the design process being ad hoc and the overall struc-
ture versatility was limited. Design capabilities expanded with the development of 
DNA tiles that could be assembled into sheets, ribbons, and lattices [33, 34]. The 
field took a major step in 2006 with the development of scaffolded DNA origami 
[2]. In the DNA origami approach, a long single-stranded DNA (ssDNA) scaffold 
strand, typically ~7000–8000 nucleotides (nt) long, is folded into a compact struc-
ture through base-pairing interactions with many (~150–200) shorter ssDNA oligo-
nucleotides, typically ~25–60 bases long. The short oligo nucleotides are designed 

Fig. 1  DNA nanostructure design and concepts. (a) Seeman’s original nucleic acid junction 
design [1]. (b) A schematic of the staples design and annealing process of scaffolded DNA origami 
nanostructures [35]. (c) Rothemund’s smiley face design with AFM images of early DNA origami 
nanostructures [2]. (d) Design flow using MagicDNA from geometry conception to fabrication 
[55]. (a) is reprinted from Journal of Theoretical Biology, volume 99 Issue 2, N. Seeman, “Nucleic 
acid junctions and lattices”, pages 237–247, copyright (1982), with permission from Elsevier. (b) 
is reprinted from Trends in Molecular Medicine, volume 24 issue 7, H.  Singh, E.  Kopperger, 
F. Simmel, “A DNA nanorobot uprises against cancer”, pages 591–593, copyright (2018), with 
permission from Elsevier. (c) is reprinted from Nature, volume 440, P. Rothemund, “Folding DNA 
to create nanoscale shapes and patterns”, pages 297–302, copyright (2006), with permission from 
Springer Nature. chapter, Pages No., Copyright (Year), with permission from Elsevier [OR 
APPLICABLE SOCIETY COPYRIGHT OWNER]. (a) Seeman, N. C. Nucleic acid junctions and 
lattices. Journal of Theoretical Biology 99, 237–247 (1982). (b) Singh, Kopperger, Simmel. “A 
DNA Nanorobot Uprises against Cancer.” Trends in Molecular Medicine (2018). (c) Rothemund, 
P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006). (d) 
Huang, C.-M., Kucinic, A., Johnson, J. A., Su, H.-J. & Castro, C. E. Integrated computer-aided 
engineering and design for DNA assemblies. Nature Materials 1–8 (2021) doi: 10.1038/
s41563-021-00978-5
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to be piecewise complementary to different sections of the ssDNA scaffold strand. 
As these short strands bind to the scaffold, they pinch together part of the scaffold 
to form a designed arrangement of helices (Fig. 1b [35]); hence, they are referred to 
as staple strands, or simply staples. This approach transformed the structural com-
plexity of DNA nanostructures and overcame multiple design and fabrication chal-
lenges. For example, the use of a long scaffold strand, often derived from the 
M13mp18 bacteriophage genome, alleviated the need for careful sequence design to 
avoid unintended secondary structures.

The development of DNA origami led to significant growth in the field as well as 
the development of new applications such as templating molecules or nanoparticles 
(NPs), containers that could be triggered to open, drug delivery and other applica-
tions that leverage the precise control of shape [36]. Using the predictable nature of 
DNA hybridization allowed structures to be used as entropic springs, in single-
molecule chemical reactions, and aptamer spacing [37–41].

2.1  �Computer-Aided Design Approaches

Advances in structural and functional complexity of DNA nanostructures have pro-
ceeded hand-in-hand with computer-aided design approaches. Early design efforts 
relied on custom computer codes or other ad hoc structure and/or sequence design 
approaches (Fig.  1c) [42–46]. Leveraging the larger design space of scaffolded 
DNA origami methods quickly required more powerful software tools. The funda-
mental design steps in DNA origami include (1) conceiving of a target shape; (2) 
approximating that shape out of cylinders, which represent dsDNA helices; (3) rout-
ing the scaffold through the geometric design; (4) routing the staple strands through-
out the structure; and (5) determining the sequence of the staple strands according 
to their piecewise binding to the scaffold. In 2009, Douglas et al., developed caD-
NAno, a computer-aided design (CAD) software tool that became the primary stan-
dard of use for DNA origami design for nearly a decade [12, 27, 47–50]. CaDNAno 
greatly facilitates the aforementioned key steps of DNA origami design in user-
friendly software. The development of caDNAno [47] was critical to expansion of 
the field, since it provided an accessible graphical user interface that allowed for 
versatile design, which significantly lowered the barrier for new users to develop 
complex structures and new applications. As the design space continued to expand, 
interest in new geometries and capabilities drove a need for new design tools. In 
particular, the development of automated top-down design approaches such as 
DAEDALUS [51], vHelix [52], and others [53, 54] has been critical to facilitating 
rapid design of a wide range of wireframe structures; and the recently developed 
MagicDNA [55] integrates bottom-up and top-down approaches with convenient 
user interfaces to significantly expand the design space, especially enabling design 
of complex structures with many components (Fig. 1d).

Increasing design complexity led to a critical need for simulation tools to predict 
folded structure shapes, functional properties such as flexibility [56, 57], or even 
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folding pathways [58]. Modeling approaches have included theoretical approaches 
to predict folding pathways [59] or deformation [60, 61] and computational 
approaches spanning continuum (e.g., finite element methods [62, 63]), to fully 
atomistic molecular dynamic simulations [64]. The CANDO (Computer-Aided 
eNgineering for Dna Origami) finite element approach [63] has been a very useful 
tool for structure prediction to guide the design process of static structures; how-
ever, this continuum approach lacks molecular details that are often important for 
describing local behavior or dynamic motion. Atomistic approaches provide these 
details [64], but the computational demands severely limit the timescale of simula-
tions; hence, atomistic approaches have been limited to smaller structures and can-
not predict dynamic properties such as large conformational changes. Over the last 
decade, the emergence of powerful coarse-grained models of DNA, especially the 
coarse-grained model developed by Doye and colleagues referred to as oxDNA [65, 
66], has enabled detailed studies of the relation of molecular design parameters to 
structure and functional properties [56, 57, 67]. The advancement and development 
of new simulation tools [68] is likely to continue advancing design and function 
capabilities, for example, to directly test interactions of DNA structures with pro-
teins or other biomolecules.

2.2  �Fabrication and Scaling Up Production

After the design process, most origami structures fold robustly at high yields [2, 47, 
62]. Basic DNA origami fabrication occurs by preparing a mixture of scaffold DNA 
(usually derived from the M13 bacteriophage genome [2, 69]), and ~150–200 short-
oligonucleotides (25–70 bases long) referred to as staples, magnesium chloride (or 
other salt), and a water-based tris-EDTA buffer. To induce self-assembly, the solu-
tion is heated and then slowly cooled over a period of hours to days, though appro-
priate timing and temperatures can vary from structure to structure. Additionally, 
there are minor differences in specific protocols between laboratories, commonly 
used folding protocols are described in detail here [2, 46, 47, 62, 70]. These thermal 
annealing protocols allow for the breaking of internal secondary structure within the 
scaffold, and as the temperature cools, complementary segments between the sta-
ples and scaffold DNA form to facilitate correct placement of each staple strand.

In addition to the variability of times and temperatures, other method variations 
of folding have been shown including isothermal folding [71, 72], folding at a single 
temperature during a reduced thermal ramp [73], or in a biotechnological growth 
process [74]. In particular, the last two can be utilized to scale fabrication, as single 
temperature folding has been expanded to fold most structures in a matter of hours 
at mg scales [75], a 1500-fold increase over conventional methods. Furthermore, 
biotechnological mass production of DNA origami can create DNA origami on the 
scales required for clinical applications and drives the cost of fabrication to an esti-
mated ~$0.20/mg when scaled to an 800  L volume pilot-scale fermentor [74]. 
M13mp18 bacteriophage DNA (or cloned versions) is the most commonly used 
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scaffold for DNA origami fabrication, grown in competent E. coli cells, through 
well-established stirred flask batch reactions [62]. In addition to flask growth, 
groups have shown that growth of M13 phage DNA can be substantially increased 
by growing E. coli in high-density stirred tank bioreactors [76–78]. Although these 
processes are effective, they do leave behind a large amount of lipopolysaccharides, 
also known as endotoxins. In many clinical applications, these endotoxins can cause 
an inflammation response [79], but can be removed using detergents [49, 80] or 
commercially available kits during scaffold growth.

M13-based scaffolds are typically created in a variety of lengths (7000–9000 
bases) [2, 32, 47, 62]. Additionally, custom scaffolds have been fabricated to be 
shorter or longer, using different phagemid bases such as pBluescript [80], excision 
from M13mp18 [81], or creating hybrid scaffold [82]. Furthermore, custom design-
specific scaffolds can be created through the implementation of helper plasmids to 
control the desired sequence [83]. This process also allows for the ability to make 
more complex structures that use multiple scaffolds, which have different sequences 
[55, 83].

2.3  �Purification and Storage Methods

Various methods for purification of DNA origami are utilized, with gel electropho-
resis extraction [84] remaining the most common. The agarose gel readout using 
DNA stains and fluorescence verifies proper folding and the process of separating 
of free staples, misfolded, or aggregated structures from well-folded ones is rela-
tively simple, though it is limited in scalability. More scalable options include ultra-
filtration [85], ultracentrifugation [86], polyethylene glycol (PEG) precipitation 
[87], magnetic bead capture, FPLC [17]: each with strengths and weaknesses of 
their own.

Ultracentrifugation, or rate-zonal centrifugation, purifies a mixture of a DNA 
origami folding reaction by creating a gradient tube of various glycerol concentra-
tions and loading the mixture of origami on top and a high-speed spin in an ultra-
centrifuge [17, 86]. After running ultracentrifugation, the origami separates into the 
microlayers of the gradient. Staple strands appear in lower percent glycerol layers 
near the top, while aggregated structures sink with higher percent glycerol. The 
desired origami would be present somewhere in the middle. Reconstituting the ori-
gami in folding buffer and running gel electrophoresis on various fractions would 
show the effectiveness of the gradient method. The final product contains highly 
purified nanostructures but at a cost of yield [86].

Stahl et al. showed that various shapes of origami can be purified through PEG 
precipitation, which leverages depletion forces from PEG to cause precipitation of 
DNA origami structures during centrifugation [87]. Most notably, the shapes include 
designs incorporating up to 100 helix bundles along with straight rods, bent rods, 
and even origami shaped like a robot. The lab was able to effectively purify the 
origami through ten cycles of PEG purification. This allowed for excess staple 
strands to be removed through the supernatant. Observation of the shapes under 
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agarose gel electrophoresis showed significant purity when ran against the unpuri-
fied origami. By labelling the staples with fluorescent dye, the group demonstrated 
a near 100% success rate for removing staple strands with relatively little loss, 
although this method can exacerbate any aggregation in the sample [17, 87]. DNA 
can degrade over time, so it is vital to take appropriate precautions and extra care to 
prolong the lifetime of the structures and reagents. The company Integrated DNA 
Technologies (IDTs), which is widely used as a source for DNA strands for DNA 
origami folding, suggests that temperature and medium are the most vital factors to 
consider in DNA storage [88]. For optimum long-term storage, keeping the oligo-
nucleotides at −20 °C will allow for stability for years in TE buffer or nuclease-free 
water. Oligos can also be stored at 4 °C or as dry pellets for months. With DNA 
origami, it is vital that staples are stored effectively. By storage conditions for sta-
ples, Kielar was able to observe triangle origami through atomic force microscopy 
(AFM) on how intact they remained [89]. These tests showed that staples stored in 
−20 °C for up to 43 months could produce up to 80% intact origami. Under the 
harsher conditions, these staples stored for longer could produce up to 66% intact 
origami.

Cryopreservation is also an option for the preservation of folded DNA origami. 
Xin studied this by putting 2D and 3D DNA structures through multiple freeze–
thaw cycles [90]. After 32 cycles, 2D and 3D DNA structures were able to remain 
intact. However, ice crystal formation was noticed in the 2D structures and increased 
its sensitivity; 3D DNA under 1000 freeze cycles showed heavy damage to the 
structure. Cycles were tested at −20 °C and −196 °C. The inclusion of cryoprotec-
tants such as glycerol and trehalose resulted in 85–90% of the origami being intact 
after many freeze–thaw cycles.

3  �Characterization Methods

DNA origami is observed under various types of readouts. Most structures are first 
characterized by agarose gel electrophoresis, and then microscopy is utilized. 
Transmission electron microscopy (TEM) and AFM offer precise and detailed 
images and fluorescence microscopy can be utilized for biological interactions and 
real-time function of nanostructures. Additionally, functional DNA origami for clin-
ical applications and interactions with biological materials can be observed through 
in vitro and in vivo experiments.

3.1  �Gel Electrophoresis

Agarose gel electrophoresis (AGE) is typically the first step in evaluating a DNA 
origami self-assembly reaction, where folded DNA origami structures are made to 
run through a gel driven by an applied voltage [42]. The folded structure of the DNA 
origami influences the electrophoretic mobility in the gel. Testing a folded structure 
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against references like the ssDNA scaffold and a 1  kb ladder provides a useful 
means to identify a band corresponding to successfully folded DNA origami. 
Oftentimes, a well-folded structure will run faster than the ssDNA scaffold, but this 
depends on the structure, and confirming proper folding using imaging methods like 
TEM or AFM is critical. Generally, increased gel mobility has correlated to better 
folded structure, as observed under microscopy [69]. AGE is particularly useful for 
optimizing assembly conditions for factors such as ion concentrations or folding 
temperatures by screening and identifying conditions that lead to maximal yield in 
the well-folded structure band. Gel electrophoresis is also useful to evaluate the 
presence of excess staple strands in solution after other purification methods, aggre-
gation, in the form of dimers or larger aggregates, or attachment of functionalities 
such as aptamers or proteins to the origami that cause a gel shift [17].

3.2  �Microscopy

Visual quantification of structure is a critical step in characterization that is carried 
out through TEM or AFM imaging. The most commonly used approaches are nega-
tive stain TEM and dry AFM (detailed protocols can be found here [62]). For TEM, 
briefly, structures are deposited on an electron microscopy grid and stained with a 
heavy metal compound, most often a solution of Uranyl Formate or Uranyl Acetate, 
which enhances contrast during imaging. TEM is particularly useful for evaluating 
multilayer 3D DNA origami structures that contain bundles of dsDNA helices as 
components. Recent work has led to advances in cryogenic TEM (cryoTEM) for 
DNA origami that allow high-resolution full reconstruction of complex 3D shapes 
[91, 92] or low-resolution reconstruction of many conformations of flexible struc-
tures [93]. Similarly, AFM is a highly useful tool to visualize folded DNA struc-
tures. Since it is a scanning probe approach, it is best suited for 2D, especially flat 
single-layer structures. Although it is lower throughput and not well suited for com-
plex 3D structures compared to TEM, particular advantages include high contrast 
for single-layer structures, and possibilities for imaging in solution that allow for 
high resolution [2], dynamic binding or reconfigurations of molecules or motifs of 
interest [94, 95], or surface diffusion of structures [96].

In addition to TEM and AFM for visualization and quantification of the geome-
try, fluorescent microscopy leverages the site-specific incorporation of fluorophores 
for spatial and dynamic readouts. Early applications leveraged the nanometer con-
trol over placement of fluorescence markers to create calibration tools, or rulers, for 
various fluorescence methods [97–99]. DNA origami was also essential in the 
development of the super-resolution imaging method referred to as DNA-PAINT 
(Points Accumulation for Imaging in Nanoscale Topography) [100] and its applica-
tions [101–103]. In addition, time-resolved ensemble and single molecule fluores-
cence methods have been used to quantify the dynamic behavior of DNA origami 
devices, for example, to quantify kinetics of conformational changes [104–106]. 
Other approaches continue to emerge to characterize DNA origami properties such 
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as small angle x-ray scattering [107, 108] and microwave microfluidics [109] that 
provide advantages like label-free detection.

One of the most widely studied applications of DNA origami is as a drug carrier. 
Fluorescence imaging has played a key role in quantifying several key aspects of 
drug delivery functions such as cell binding, uptake, and drug localization [18, 
19, 26].

4  �Nontherapeutic Uses for DNA Origami

The versatility in geometry and mechanical and dynamic properties in combination 
with substantial options of moiety attachment methods that are commercially avail-
able make DNA origami a useful tool for many different functions. Here, we briefly 
highlight a few nontherapeutic areas of research that DNA origami has been 
employed.

4.1  �Biosensing

The precise nature of DNA origami and the well-characterized research of nucleic 
acids as a material allows for the usage of these nanostructures as a ruler or force 
sensor. The controllable spacing of DNA origami platforms has been utilized for 
nanoscopic ruler measurements in super-resolution microscopy [98, 110, 111]. 
Additionally, this feature has also been used in biological applications, such as 
quantifying effects of ligand spacing (Fig. 2a), used in both T-cell and B-cell activa-
tion studies [112–115]. Furthermore, dynamic DNA origami has been used as force 
sensors for the study of nucleosomes [116, 117] and real-time magnetic actuation 
with magnetic beads [118].

Origami nanostructures have also been used as biosensors, with controllable fac-
tors that could have uses in basic research sensing and therapy-based applications. 
Examples of the later include “nanorobots” that present conformation changes 
when responding to a target [26, 27] and origami with controllable lids that open 
with stimuli [44]. Additionally, there have been examples of different readouts used 
for sensing including fluorophores [119], enzyme–substrate interactions [120], and 
TEM angle readouts [116].

4.2  �Templating Nanofabrication and Plasmonics

Due to the precise control design and functionalization of DNA origami, it provides 
a natural foundation for the template of other materials. DNA origami can be 
designed to have many shapes, which can be transferred to less programmable 
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materials. One example of this is protein patterning or lithography [121, 122] where 
the cavities of DNA origami were used to directly absorb proteins. Although direct 
attachment methods can also be used to fabricate complex protein structures [123]. 
Nanostructures can also be integrated with silica, strengthening chemical, thermal, 
and mechanical properties [124, 125]. Additionally, it has been used as a tool for 
silicon lithography allowing for a minimal feature size as low as 2 nm [126].

Metallic nanoparticles invite great research interest due to their unique optical 
properties. Due to the precise design and functionalization of DNA origami, metal-
lic nanoparticles, and especially gold nanoparticles and nanorods, can be arranged 
on DNA origami nanoparticles to manipulate optical frequencies [127]. DNA oligo 
sequences are covalently linked to gold nanoparticles allowing for the precise align-
ment of gold rods. Additionally, Zhou et al. created a gold nanorod walker by using 
a combination of circularly polarized light and toehold-mediated DNA manipula-
tion (Fig.  2b) [128]. Walking plasmonic nanorods act as translocation reporters, 
delivering their own location in real time via spectroscopy. This was accomplished 
by linking a gold nanoparticle to various DNA legs and having complement toehold 
strands placed on a 2D surface of DNA. The distance between toeholds, or step size, 
was 7 nm. Similar experiments with step sizes of 6 nm measured a speed of one step 

Fig. 2  Nontherapeutic used of DNA origami nanostructures. (a) Controlled spatial arrangement 
of EphA2 antibodies on a DNA origami rod [114]. (b) A schematic of a gold nanorod walker mov-
ing across a DNA origami raft using polarized light and energy-mediated strand displacement 
[128]. (c) A schematic of toehold-mediated strand displacement for modular DNA computing 
using DNA origami [138]. (d) A 4-sided hinge, or Bennett Linkage, that shows the controlled 
nature of dynamic DNA origami nanostructures and the possibility for nanomachine mechanisms 
[12]. (c) is reprinted from Nature Nanotechnology, volume 12, G.  Chatterjee, N.  Dalchau, 
R. Muscat, A. Phillips, G. Seelig, “A spatially localized architecture for fast and modular DNA 
computing”, pages 920–927, copyright (2017), with permission from Springer Nature
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every 5 min [129]. Transportation of proteins along microtubules in cells has been 
the inspiration for nanorod walkers, but this natural phenomenon can move as fast 
as 1 μm/s. Li et al. postulated that the relatively slow speed for the man-made walk-
ers is due to a lack of optimization rather than an inherent limitation to DNA walk-
ers [130]. The fluorescent properties  and Raman scattering properties of  the 
nanoparticles allow immediate and precise locating of the walker, which may prove 
useful for evaluating future DNA locomotive devices.

4.3  �DNA Computation

The density of information contained in DNA makes it appealing for large-scale 
data storage. It can store approximately 1.7 × 1019 bytes/g, approximately 8 orders 
of magnitudes denser than traditional hard drives [131]. The data storage required 
by 2025 has been estimated to be 1.75 × 1024 bytes, which will exceed the storage 
capacity of current methods [132]. Artist Joe Davis was the first to utilize DNA as a 
storage system in 1988, storing an image in black and white pixels [133]. In 2012, 
Church et al. demonstrated that large amounts of data can be stored in DNA form 
[134]. They converted various forms of media into a 5.27-megabit bitstream and 
synthesized the oligos using an ink-jet printed, high-fidelity DNA microchip sys-
tem. This allowed for precise, rapid creation of DNA strands with excellent robust-
ness (i.e., ten errors were found out of 5.27 million base pairs in the sequence). 
DNA has been shown to be a cryptographic tool to secure data with a high degree of 
confidentiality, integrity, and availability [135], and more recent work has demon-
strated advances like the use of DNA origami for encrypted communication [136] 
and the development of approaches for random access memory [137]. Furthermore, 
Traditional computing concepts can be combined with aspects of DNA-based inter-
actions to allow for a molecular computing system. DNA is particularly well suited 
for molecular computing applications because of its potential for a higher number 
of well-defined orthogonal interactions when compared with other molecules 
because of the sequence specificity. To facilitate molecular computing, single-
stranded DNA can be used to fuel a molecular reaction, replacing one partially 
complement strand with a fully complementary one in a useful process called 
toehold-mediated strand displacement [139]. This allows for a scalable, complex 
computing system with DNA [140–142]; however, the time per computing step is 
limited by diffusion of DNA strands in solution. Recently, Chatterjee et al. demon-
strated how a domino architecture of DNA strands immobilized on a DNA origami 
structure can form a series of logic gates using spatial separation. They created OR 
and AND gates with a system of spatially separated hairpins localized on a DNA 
origami platform (Fig. 2c) [138]. This capacity to perform logic computation on 
DNA origami has exciting potential for diagnostics that can evaluate several bio-
markers [143].
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4.4  �Molecular Machines

In addition to designing precise and complex geometries at the molecular scale, 
DNA has emerged as a highly useful material to develop dynamic molecular devices 
for applications in molecular transport, biophysical measurement, controlling 
molecular interactions, and nanorobotics [144–147]. The first reconfigurable DNA 
structure was presented by Mao et  al. in 1999 based on a transition of B-DNA 
(right-handed) to Z-DNA (left-handed) driven by changes in ion conditions to 
change the handedness of a DNA structure [148]. Soon after, Yurke et al. took a 
major step with development of toehold-mediated strand displacement to reconfig-
ure a DNA-based molecular tweezer [139]. Later this concept was expanded to 
demonstrate DNA construct that can take successive steps along a DNA track [149], 
or DNA walkers, which continue to be of interest [150, 151]for applications like 
nanoscale transport [152] and molecular assembly [153]. The development of DNA 
origami [2] brought new opportunities to design more complex dynamic devices 
like containers with triggered opening [44] and structures with local reconfiguration 
of strands [154] or large-scale shape changes [155].

The ability to include single-stranded DNA (ssDNA) into DNA origami nano-
structures provides a means to selectively incorporate flexible domains into DNA 
devices. This approach has been used to design nanomachines with well-defined 
rotational and translational motion similar to hinge and sliding joints in macro-
scopic machines (Fig. 2d) [12]. More recently, a number of approaches have been 
developed to actuate these dynamics devices including toehold-mediated strand dis-
placement [141, 153], ion or temperature-based actuation [106, 156, 157], photoac-
tuation [158, 159], or even rapid electrical or magnetic actuation approaches [160, 
161]. These dynamic DNA origami devices have been demonstrated in applications 
like force sensing [104], probing molecular interactions or conformational changes 
[116, 117, 162], applying forces to biomolecules [163], and controlling molecular 
or nanoparticle assemblies [164, 165].

5  �DNA Origami for Drug Delivery Applications

DNA origami-based nanoparticles have many inherent and designed properties that 
make them attractive candidates for drug delivery. For example, DNA polymers are 
inherently soluble, biocompatible, biodegradable, and their level of bioactivity can 
be controlled based on their sequence and chemical modifications. Their most 
unique property, the precise self-assembly based on DNA sequence complementar-
ity, translates into reproducible and uniform DNA nanoparticle manufacturing with 
nanometer-level accuracy and down to a single nucleobase resolution. This in turn 
allows for the key features for drug delivery such as the precise control over nanopar-
ticle geometry, composition, degradation, and the surface topography of therapeu-
tic, targeting, and other molecules of interest [3, 166, 167]. In this manner, DNA 
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origami–based nanoparticles provide unprecedented control over their design and 
represent a promising new strategy in the drug delivery field.

5.1  �DNA Origami Stability in Physiological 
and High-Temperature Conditions

Structural stability of DNA nanostructures under physiological conditions is a criti-
cal component to optimize for drug delivery applications as the technology pro-
gresses toward the clinic [3, 16, 168, 169]. Within both in vitro and in vivo biological 
systems, DNA nanostructures are under constant assault by acidic conditions and 
molecules that cause structural degradation. In particular, in in  vitro cell culture 
media containing 10% fetal bovine serum (FBS) supplement contains a high degree 
of nuclease activity (estimated at 256 U/L equivalents of DNase I) [49]. Furthermore, 
DNA nanostructures in vivo quickly encounter nucleases in the periphery upon i.v. 
systemic administration, as well as net positively charged proteins that bind to the 
polyanionic backbone of DNA double helices [170, 171]that may interfere with 
intended drug delivery applications. Furthermore, once DNA origami nanostruc-
tures enter the cell via the endolysosomal pathway [18, 19], they will encounter 
acidic conditions (pH 4–5) upon endosome–lysosome fusion, which may further 
degrade DNA nanostructure structural integrity. Thus, addressing physiological 
conditions and biomolecules that will degrade DNA nanostructures is critical for the 
success of drug delivery experiments both in vitro and in vivo.

Previous work by Hahn et al. studied the impact of the physiological cation con-
centrations on denaturation and the presence of FBS in cell culture media on DNA 
origami nanostructure digestion [172]. Findings from their study revealed DNA 
nanostructure denaturation due to cation depletion occurred in both design- and 
time-dependent manners [172] with a nanotube structure being more stable in lower 
magnesium concentrations compared to nanooctahedon and nanorod structures 
[172], suggesting that geometry plays a role in cation-dependent structural integrity. 
DNA origami nanostructure structural stability in vitro was improved by adjustment 
of cation concentration in cell culture medium with MgSO4, which prevented dena-
turation [172]. This work also studied FBS-mediated digestion of DNA origami 
structures in the presence of heat inactivated (56 °C for 30 min) FBS added as a 
supplement to cell culture media (10%) in a time-dependent manner. In this study, 
digestion did not appear to be dependent on shape for the structures tested, and heat 
inactivation of FBS at 75 º C and addition of actin to cell culture medium inhibited 
nuclease activity. Interestingly, other findings showed that dense, rod-shaped DNA 
origami nanostructures were stable when cultured with 20% FBS for 24 h [19], sug-
gesting that multiple DNA helical layers and cross-sectional design (large vs. small 
or square lattice vs. honeycomb lattice) may influence nuclease activity. Together, 
these findings suggest that consideration of cation concentrations, geometric design 
of DNA origami nanostructures, and nuclease activity are all important when 
designing in vitro cell culture experiments with DNA origami nanostructures.
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Since previous studies reported bare DNA nanostructures were susceptible to 
nuclease-mediated digestion alone [16, 49, 62, 136, 173], and in the presence of 
10% FBS [49, 171], researchers have developed protection strategies to increase 
DNA nanostructure structural stability [171, 174]. Introduction of chemical modifi-
cations to DNA nanostructures can be advantageous to increase structural stability 
of DNA nanostructures in physiological in  vitro experimental systems. These 
include the 2’-OMe modification on RNA molecules attached to DNA nanostruc-
tures [175], ultraviolet (UV) [176], or chemical crosslinking [177, 178], encapsula-
tion in PEGylated liposomes [49], direct PEG attachment with oligolysine PEG 
conjugate molecules [179], and peptoid coating [173]. Although multiple previous 
studies have shown that chemically modifying DNA origami nanostructures 
increases structural stability in vitro, the influence of such modifications and geo-
metrical designs in terms of in vivo stability remains less well understood. Zhang 
et  al. previously performed biodistribution studies of quantum-dot labeled DNA 
origami nanostructures of varying geometries (triangle, rectangle, and rod) and 
showed that triangle-shaped DNA origami nanostructures preferentially accumu-
lated in tumor tissue at 24 h post i.v. injection [20], suggesting that geometric shape, 
accessibility, and/or surface area may play a role with respect to structural stability 
in vivo.

In order to improve DNA origami structural stability in vivo, Perrault and Shih 
previously showed that encapsulating DNA origami nanostructures with PEGylated 
liposomes significantly extended pharmacokinetics (PK) half-life [49], and also 
avoided recognition by the immune system, suggesting an innovative protection 
approach for future DNA origami drug delivery applications. Furthermore, more 
recent findings by William Shih and colleagues revealed that electrostatic attach-
ment of oligolysine–PEG conjugate molecules significantly improved PK elimina-
tion half-life of DNA origami nanostructures [179], suggesting a straightforward 
and effective nuclease protection strategy to increase DNA nanostructure structural 
stability in vivo. Although multiple DNA origami nanostructure nuclease protection 
strategies have been proposed [171, 174, 180], their impact on therapeutic payload 
in terms of delivery efficiency and PK circulation/elimination half-lives remains 
underexplored and will be important as this exciting drug delivery platform moves 
toward clinical applications, including the development of organic-specific thera-
pies [230, 231].

5.2  �Loading and Release Methods

A key advantage of DNA nanostructures is the relative ease of functionalization 
with a wide array of molecules or materials [4]. With respect to drug delivery appli-
cations, a plethora of nanomaterials and molecules, including imaging agents, 
drugs, and biologicals such as proteins and therapeutic nucleic acids (e.g., siRNA, 
mRNA) can be incorporated into DNA origami designs via diverse mechanisms [4, 
169, 181, 182]. Among these mechanisms, the ones based on nucleic acid 
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hybridization, intercalation, or programmable encapsulation/entrapment into the 
internal cavity of nanostructures are unique to DNA origami and nucleic acids 
(Fig. 3). In addition to these attractive properties, DNA is amenable for chemical 
conjugation, electrostatic interactions, enzymatic labeling, etc. [178, 183, 184].

Hybridization methods, based on DNA complementarity, offer site specificity 
and accuracy in the placement of molecules on or within DNA origami structures, 
wherein DNA origami can be thought of as a breadboard onto which molecules of 
interest are placed [98, 110]. Molecules can be incorporated either during or after 
DNA origami folding, depending on the functionalization of interest and the desired 
design and properties of the delivery system. Incorporating molecules during the 
DNA origami folding reaction generally results in a better yield of incorporation 
compared to postfolding incorporation. However, postfolding incorporation tends to 

Fig. 3  DNA-enabled loading and release methods of DNA nanoparticles. (a) Mechanism and 
binding constant for intercalation of anthracyclines to dsDNA [199]. (b) Nucleic acid aptamer 
loaded with drug molecules either by intercalation or chemical conjugation to target drug to a 
specific cell [202]. (c) A DNA origami nanorobot for specific targeted delivery and logic-gated 
payload release based on DNA sequence complementarity and aptamer reconfiguration upon bind-
ing to its target [ref]. (d) Blood coagulating agent (thrombin) is enclosed into DNA origami tube 
using DNA complementarity in order to prevent nonspecific tissue coagulation. Upon targeting 
tumor vasculature, the coagulating agent is exposed, causing coagulation and necrosis of the tumor 
site [35]. (a) is reprinted from The Journal of Physical Chemistry B, volume 118, C. Perez-Arnaiz, 
N. Busto, J.M. Leal, B. Garcia, “New insights into the mechanism of the DNA/Doxorubicin inter-
action”, pages 1288–1295, copyright (2014), with permission from the American Chemical 
Society. (b) is reprinted from Molecular Therapy Nucleic Acids, volume 3, H. Sun, X. Zhu, P. Lu, 
R. Rosato, W. Tan, Y. Zu, “Oligonucleotide aptamers: new tools for targeted Cancer therapy”, page 
e182, copyright (2014), with permission from the American Society of Gene and Cell Therapy. (c) 
is reprinted from Science, volume 335, S. Douglas, I. Bachelet, G. Church, “A logic gated nanoro-
bot for targeted transport of molecular payloads”, pages 831–834, copyright (2012), with permis-
sion from the American Association for the Advancement of Science. (d) is reprinted from Trends 
in Molecular Medicine, volume 24 issue 7, H. Singh, E. Kopperger, F. Simmel, “A DNA nanorobot 
uprises against cancer”, pages 591–593, copyright (2018), with permission from Elsevier
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be more cost-effective (i.e., may require less material). To accomplish attachment 
during the folding reaction, molecules of interest are simply conjugated to one of 
the oligonucleotides that are used to fold the scaffold into the DNA origami shape 
[99, 185]. A wide variety of conjugation chemistries can be used to accomplish this, 
described elsewhere [184, 186–188]. For postfolding attachment, the molecules are 
usually first covalently attached to oligonucleotides of desired sequence. These oli-
gonucleotides are then used to attach molecules to single-stranded complementary 
oligonucleotide extensions (also referred to as arms or overhangs), which are incor-
porated at specific locations on DNA origami. For example, researchers have used 
this strategy to attach antibodies [17]. Relevant for drug delivery, hybridization-
based attachments, when properly designed, are sufficiently stable in the biological 
environment [189, 190]. Nucleic acid hybridization is driven by complementary 
hydrogen bonding and stabilization by pi-pi molecular bond stacking; this kind of 
attachment can withstand forces of up to ~60 pN in certain configurations [191–
194], which are sufficient for biomedical applications (e.g., hydrodynamic forces in 
the bloodstream), including force measurements in cell culture [195] and likely also 
in vivo. As for the enzymatic and ion concentration-dependent stability, as well as 
the tuning release of the hybridized payloads, most of the methods described in the 
chapter for the protection of DNA origami structures can also be employed to con-
trol the rates of attachment site degradation and subsequent payload release, such as 
modifications on nucleotide bases like 2’-OMe [175]. Some additional methods for 
release can rely on DNA dissociation under physiological stimuli such as the change 
in pH, ionic concentration, temperature, encountering complementary strands, etc.

Another loading mechanism that is inherent in DNA is the intercalation of 
anthracyclines (e.g., doxorubicin (DOX), daunorubicin) and similar molecules, 
making DNA-origami-based delivery a logical choice for improving the safety and 
efficacy of chemotherapeutics [18, 20, 21, 23, 169, 196]. Although initial binding 
between DNA and DOX is driven by H bonding and electrostatic interactions, both 
nucleobases and anthracyclines can form pi bonds, allowing for stable intercalation 
and a complex stability constant between 32 and 930/km (equivalent to Kd of 
3.13 × 10−5 and 1.08 × 10−6 M) [197–199] (Fig. 3a). Moreover, while intercalation 
complexes have favorable release profiles, their release is enhanced in acidic pH, as 
found in cell endosomes, lysosomes, and the tumor extracellular matrix. The load-
ing capacity is another advantageous feature. For example, compared to the approx-
imate 12.5% (w/w) loading capacity of the gold standard and clinically approved 
liposomal nanoparticles (e.g., Doxil), DNA-based nanoparticles can approximately 
achieve 17.9% (w/w) [200]. One of the first nucleic acid designs incorporating 
doxorubicin intercalation was a trojan aptamer directed against cells in culture 
expressing the prostate‐specific membrane antigen [201]. This early work demon-
strated the potential of DNA nanoparticles as drug carriers that can be specifically 
targeted to designated molecules and cells, for example, using drug-conjugated 
aptamers [202] (Fig. 3b). More complex DNA structures followed, including DNA 
origami, which demonstrated the therapeutic efficacy and improved properties for 
withstanding the biological environment [18, 20, 203, 204]. For example, Halley 
et  al. demonstrated that daunorubicin-loaded DNA origami was stable and more 
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effective than the free drug counterpart in cell culture [196], and other groups have 
shown efficacy in tumor models in vivo [20, 24].

Besides the drug delivery potential of DNA origami as static nanoparticles, they 
offer unique delivery approaches based on dynamic structures, which represent the 
next level of control over site-specific drug delivery. Current efforts are focused on 
testing programmable DNA origami designs with stimuli-responsive mechanisms 
[27] that can trigger the release or exposure of encapsulated or entrapped therapeu-
tics (Fig. 3c). While most stimuli-responsive DNA nanodevice designs have not yet 
been utilized for cell culture or in vivo applications [205–207], the concept has been 
demonstrated in vivo using a DNA nanotube [26]. In this setup, a DNA nanotube 
loaded with thrombin, an enzyme that promotes blood coagulation, is specifically 
targeted to the tumor endothelium via a nucleolin-targeting aptamer. When the 
aptamer is bound to its target, the nucleolin, it causes the nanotube to open and 
expose thrombin in order to induce thrombosis in the tumor vasculature, cause sub-
sequent tumor necrosis, and growth inhibition (Fig. 3d [35]).

5.3  �Targeting DNA Origami Nanostructures

DNA origami nanotechnology holds potential for geometry-based and ligand-based 
targeting due to precision of its design and the ability to precisely functionalize with 
one or more targeting moieties [23, 27, 175]. The geometric features of NPs (size 
and shape) not only influence the nano-bio interface, which affects cell binding and 
intracellular transport, but also influence the hydrodynamics, diffusion, and interac-
tions with anatomical features of organs and tumors [208]. Accordingly, the major-
ity of studies using DNA-based NPs, including DNA origami, have focused on 
tumor targeting based on NP geometry, ranging from triangles, rods, etc. and using 
sizes predominantly in the range of ~2 to ~100 nm [209–212] relying primarily on 
the enhanced permeability and retention (EPR) effect for delivery. The exploration 
of DNA origami NPs for ligand-targeting applications is in the early stages of devel-
opment. Ligand-based targeting holds potential to deliver of DNA NPs to specific 
targets at the organ, tissue, cell, and subcellular levels [27, 204, 213–218]. Achieving 
ligand-based targeting tends to not only enhance the therapeutic effects of drugs, but 
also reduces the side effects associated with a particular therapy [219, 220]. As 
mentioned earlier, DNA designs can incorporate targeting [26, 27, 221], peptides 
[222, 223], and nucleic acids [211, 223–225]in a very precise and versatile manner, 
allowing for the controlled density and spatial organization of the ligands [115, 
226], as well as particular payload combinations [211].

Although ligand-targeted DNA designs are capable of specific targeting in vivo 
and in the absence of passive targeting associated with tumor biology, most studies 
have been conducted at the cell culture level or focus on in vivo efficacy studies [18, 
20, 188, 196, 203, 210] without detailed studies of specific targeting. For example, 
various spherical, triangular, rod-like, tubular, branched, and wireframe DNA 
designs have been targeted via ligands to receptors such as nucleolin, folic acid, 
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HER2, and mucin 1, as reviewed in [227]. Furthermore, nucleic acids can be refor-
mulated into targeting moieties themselves, as exemplified by DNA and RNA 
aptamers, some of which are at the clinical testing stages or have been approved for 
clinical use [228, 229]. For example, a doxorubicin-loaded aptamer can be viewed 
as the first nucleic-acid-made targeted nanocarrier that has demonstrated specific 
targeting [201]. These examples indicate applications primarily focused on the ther-
apeutic delivery of anthracyclines for cancer treatment, but immunomodulation 
[222], vaccination applications [223], and the delivery of nucleic acids (siRNA, 
mRNA, etc.) [23, 175], and genes and gene editing molecules [24, 25] are additional 
avenues being explored. Overall, the flexibility of DNA designs and the precise 
combinations of ligand and therapeutic agents onto DNA origami represent some of 
the advantages of this technology and a potential step forward in personalized tar-
geted therapy.

5.4  �Cellular Activation

The unprecedented control over placement of targeting moieties [26, 27, 221], pep-
tides [222, 223], and nucleic acids [211, 223, 224] enabled by DNA origami makes 
them ideally suited to present molecular ligands to cell surface receptors to study 
receptor-mediated signaling and biological responses. One of the first examples of 
employing DNA origami nanostructures to induce intracellular signaling and cel-
lular activation was demonstrated by Schuller, et al. where the authors showed that 
attachment of 62 cytosine-phosphate-guanine (CpG) sequences to a hollow DNA 
origami nanotube induced strong elevations in IL-6 and IL-12 (p70) relative to 
equivalent amounts of CpG alone (or delivered via lipofectamine) to murine splenic 
mononuclear cells via TLR9 receptor recognition [85], suggesting DNA origami as 
a useful system to stimulate immune cells in culture. Interestingly, Schuller et al. 
also revealed DNA origami nanotubes (with no added CpG sequences) alone acti-
vated both dendritic cells and B cells, as indicated by elevation of the immune acti-
vation surface marker CD69, in both wild-type and TLR9-deficient cells, suggesting 
DNA origami alone can stimulate immune cell activation via a TLR9-independent 
mechanism [85].

Another early study by Douglas, et al. sought to selectively deliver molecular 
payloads to induce cellular signaling and activation via a logic-gated nanorobot [27] 
(Fig. 3c). The authors constructed a DNA nanorobot that resembled a “clam-shell” 
that was loaded with antibody fragments specific to cell surface receptors and were 
closed via aptamer locks. As proof-of-principle, the study went on to show that 
DNA nanorobots may employed to selectively deliver molecules to either suppress 
cellular signaling and growth in NKL leukemia cells or induce a cellular activation 
phenotype in T cells [27]. Collectively, these findings suggest that DNA origami 
nanostructures represent an effective molecular delivery system for ligand presenta-
tion to cell surface receptors to study molecular and cellular level biological 
responses in cell culture systems in vitro.
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Taking advantage of the impeccable control over the number and spatial arrange-
ment of ligand molecules presented on the surface to cell surface receptors, a previ-
ous study by Pedersen, et  al. utilized a rectangle DNA origami nanostructure to 
induce surface receptor clustering to sensitize the Transforming Growth Factor-β 
(TGFβ) signaling pathway in NMuMG cells [226]. This was accomplished by 
incorporating 10 biotinylated staple overhangs into the central portion of the DNA 
origami rectangle, which would serve as streptavidin and subsequent biotinylated-
peptide ligands to the TGFβ receptor. The authors showed that treating NMUmG 
cells with TGFβ peptides assembled on rectangle DNA origami nanostructures 
induced Smad2/3 nuclear localization and a significant increase in a TGFβ lucifer-
ase assay upon TGFβ stimulation relative to controls. The authors hypothesized that 
the effect was due to TGFβ receptor preclustering [226], suggesting that spatial 
arrangement of ligands or peptides on the DNA origami surface influences cell sur-
face receptor signaling function.

In addition to the ability to cluster ligands on the DNA origami surface [226], 
previous studies studied how ligand spacing impacts cell surface receptor [77, 78, 
114, 115]. Shaw et al. constructed DNA origami nanostructures, rod-shaped “nano-
calipers” to present 2 ephrin ligands to EphA2 receptors on the surface of human 
breast cancer cells at precisely defined distances apart (40 and 100 nm) and showed 
that ligands spaced at 40 nm significantly increased the level of EphA2 activation 
(EphA2 receptor phosphorylation) and significantly modulated a downstream cel-
lular response (decreased cellular migration) relative to ligands spaced at 100 nm 
and control conditions [115]. More recently to further support the claim that ligand 
spacing impacts cell surface receptor function, Verheyen, et al. constructed DNA 
origami devices with either a single or 2 ephrin ligands (ephrin A5-dimers) spaced 
14, 40, or 100 nm apart to investigate EphA2 receptor activation and transcriptional 
response upon receptor ligation [114]. The authors showed that ligands spaced 
either 40 or 100 nm apart allowed for the highest level of EphA2 receptor activation 
and differentially expressed genes induced by EphA2 receptor signaling relative to 
the DNA origami nanocalipers alone that did not present ephrin-A5 [114]. 
Furthermore, Angelin, et  al. developed a rectangle DNA origami device, termed 
multiscale origami structures as interface for cells (MOSAIC) capable of binding 
either 4, 5, 8, or 12 epidermal growth factor (EGF) molecules arranged at either 
“near” or “far” configurations to study the impact on EGF–receptor (EGFR) func-
tion on MCF-7 cells [231]. Interestingly, the authors showed that EGFR activation 
was dependent upon both number of ligands where 8 and 12 ligands increased acti-
vation relative to 4 and 5, and that ligands placed at “far” configurations allowed for 
higher EGFR activation relative to the “close” configuration [231], which interest-
ingly reveals a different trend for EGFR versus EphA2. These differences could also 
be explained by solution (EphA5) versus surface (EGF) DNA origami bound ligand 
presentation and/or downstream distinct signaling mechanisms induced upon recep-
tor ligation. In another study, Wang et al. demonstrated the ability to regulate death 
receptors clustering using a DNA origami, finding the critical ligand spacing for 
inducing cell death through apoptosis [232]. Veneziano et al. recently extended this 
concept to study the role of organization and spacing of an immunogenic protein 
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domain on the activation of B cells [222] (Fig. 4a). These studies demonstrate DNA 
origami nanostructures are a useful platform to control both the number and spatial 
arrangement of biochemical ligand presentation to cell surface receptors to study 
receptor function and downstream cellular activation and responses.

In addition to studying how ligand spacing affects cell surface receptor function, 
the DNA origami platform also allows researchers to evaluate how B cell [222] and 
T cell [112, 233] antigen receptors respond to either precisely spaced antigen 
ligands or antigen receptors, as well as the impact of antigen binding on down-
stream cellular activation. Additionally, previous work by Shaw, et  al. evaluated 
how antibody spacing affects antigen binding [221]. The authors leveraged spatial 
control over antigen molecules to show that antibodies bind to 2 antigens in a biva-
lent manner at separation distances between 3–17 nm, and that binding affinities 

Fig. 4  DNA origami nanostructures for cellular activation, nucleic acid delivery, and vaccine 
development. (a) DNA origami for controlled spatial organization of immunogenic antigens to 
study the effects of number and organization on cell activation [222]. (b) A DNA nanostructure–
based vaccine, containing a model protein as an antigen and CpG as an adjuvant, is processed by 
antigen-presenting cells, allowing for T cell activation and antibody production [239]. (c) A DNA 
origami tube vaccine, decorated with peptide antigens, as well as CpG and dsRNA adjuvants, and 
capable of inducing potent cytotoxic cells against tumor antigens [223]. (d) Control over spatial 
orientation and density of targeting ligands for the modulation of siRNA therapeutic efficacy as 
demonstrated for effective gene silencing in plants [224]. (a) is reprinted from Nature 
Nanotechnology, volume 15, R.  Veneziano, T.  Moyer, M.  Stone, E.  Wamhoff, B.  Read, 
S. Mukherjee, T. Shepherd, J. Das, W. Schief, D. Irvine, M. Bathe, “Role of nanoscale antigen 
organization on B-cell activation probed using DNA origami”, pages 716–723, copyright (2020), 
with permission from Springer Nature. (b) is reprinted from Nano Letters, volume 12, X. Liu, 
Y. Xu, T. Yu, C. Clifford, Y. Liu, H. Yan, Y. Chang, “A DNA nanostructure platform for directed 
assembly of synthetic vaccines”, pages 4254–4259, copyright (2012), with permission from the 
American Chemical Society. (c) is reprinted from Nature Materials, volume 20, S. Liu, Q. Jiang, 
X. Zhao, R. Zhao, Y. Wang,Y. Wang, J. Liu, Y. Shang, S. Zhao, T. Wu, G. Nie, B. Ding, “A DNA 
nanodevice-based vaccine for cancer immunotherapy”, pages 421–430, copyright (2020), with 
permission from Springer Nature
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changed as a function of antigen distance with a distinct distance preference of 
~16 nm. Interestingly, clear differences in spatial tolerance exist between IgM and 
IgG isotypes and between low- and high-affinity antibodies [221]. Veneziano, et al. 
employed DNA origami to arrange an engineered outer domain of the HIV-1 glyco-
protein-120 (eOD-GT8), a clinical vaccine immunogen on the surface of an 
icosahedron-shaped structure and showed that B cell signaling is maximized by as 
few as 5 antigens spaced on the surface of a 40 nm viral-like particle [222]. The 
authors went on to show that antigen spacing up to ~25–30  nm monotonically 
increases B cell receptor activation and that scaffold rigidity is essential for robust 
B cell receptor triggering [222]. Lastly, very recently, Dong et al. utilized the DNA 
origami platform as a “peg board” to precisely bind up to 72 ssDNA “ligands” in a 
number and spatially arranged manner to engage a synthetic DNA chimeric antigen 
receptor (CAR) on the T cell surface to study the initiation and dynamics of syn-
thetic T cell receptor signaling [112]. The authors showed that spatial arrangement 
of receptors determines the ligand density threshold for triggering and encodes the 
temporal kinetics of downstream signaling activities, and also that signaling sensi-
tivity to a small cluster of high affinity ligands is enhanced by the presence of sur-
rounding nonstimulating low-affinity ligands [112]. Collectively, these findings 
enabled by the extremely versatile DNA origami platform that precisely controls 
ligand number and spatial arrangement will guide the development of novel vaccine 
and immunotherapy technologies.

5.5  �Vaccine Development

Vaccination is one of the most important prophylactic public measures to control, 
prevent, or eradicate infectious diseases. Despite being considered as one of the 
greatest technological achievements to better human health, only one human dis-
ease has been eradicated so far, necessitating the development of more effective and 
personalized vaccines. Moreover, rapidly customizable vaccine delivery technolo-
gies are paramount during emergency situations such as infectious disease pandem-
ics. In the light of this and the overall success of vaccination strategy, the development 
of a new generation of vaccines has been inspired, including therapeutic vaccines 
and immunotherapies to treat cancers, autoimmune disorders, as well as drug abuse 
[234]. Many of these new avenues require development of subunit vaccines, which 
have improved safety profiles compared to live or attenuated vaccines, but usually 
lack proper immunogenicity unless combined with potent adjuvants. A particularly 
promising strategy toward addressing the challenge of suboptimal immunogenicity 
is to incorporate antigen subunits and adjuvants into nanoparticles [235–237]. Since 
these nanoparticle-based vaccines resemble natural pathogens such as bacteria and 
viruses, they can enhance the immunostimulatory effects of adjuvants and antigens 
[238]. Hence, the advantage of nanoparticle-mediated vaccine delivery strategy 
does not only involve an enhanced payload of therapeutic molecules and nanopar-
ticle geometry-mediated delivery, particularly the enhanced recognition and uptake 

DNA Origami Nanodevices for Therapeutic Delivery Applications



182

of nanoparticles by the immune system, but also the multivalent display of antigens 
and adjuvants along with the adjuvant properties of nanoparticles that are beneficial 
for immunotherapy applications [238].

Although DNA can be used as a therapeutic material in vaccine formulations, it 
can also be used as a structural material to precisely and accurately assemble 
nanoparticulate vaccine forms that could integrate adjuvants, antigens, and other 
immunostimulatory agents such as check-point inhibitors, all of which can be 
placed on the same nanoparticle and with precisely controlled geometry (Fig. 4b) 
[223, 239]. Similar to targeting applications, which benefit from the precise and 
accurate surface organization of molecules such as targeting ligands, vaccine for-
mulation efficacy can be modulated by the geometry and density of antigenic and 
adjuvant molecules on the nanoparticle surface [222]. Another attractive property of 
DNA-based delivery systems is that they can be designed for the enhanced intracel-
lular delivery of vaccine components [223]. Moreover, unlike the majority of 
nanoparticle systems that are limited to the endolysosomal pathway, DNA origami 
is capable of delivering therapeutics to the endolysosomal pathway and subse-
quently the cell cytosol [18, 196, 225]. The intracellular fate of adjuvants and anti-
gens is particularly important in controlling the types of immune responses desired 
for each specific application (e.g., antibody-mediated immunity and cytotoxic T cell 
immunity) [240]. In general, cytosolic delivery capability is a requirement for the 
delivery of most biologics, including gene regulating agents (e.g., siRNA, mRNA, 
etc.) useful in potential future designs of DNA origami platforms for the delivery of 
mRNA and DNA vaccines [241].

Early studies toward the development of DNA-origami-based vaccines focused 
on demonstrating the enhanced immunostimulatory properties of adjuvants assem-
bled on DNA origami nanoparticles compared to free adjuvants [85, 242–245]. 
Soon after, a complete DNA-origami-based vaccine formulation, consisting of 
model protein antigen and a CpG oligonucleotide adjuvant, demonstrated enhanced 
antibody production against the antigen without eliciting antibodies against the car-
rier itself (i.e., against DNA origami) (Fig. 4c) [223]. By utilizing advantages of the 
DNA origami technique, another design demonstrated that it is possible to control 
the spacing and geometry of antigens on the surface of DNA origami in order to 
modulate immune responses and antibody production [222]. Recently, DNA ori-
gami vaccines have also shown promising potential in inducing strong cytotoxic 
T-cell-mediated immunity for cancer treatment [223].

5.6  �Therapeutic Oligonucleotide Delivery Including siRNA, 
Antisense, CRISPR, and Gene Delivery

The ability of the structural DNA nanotechnology platform to attach nucleic acids 
moieties in a number and spatial arranged manner has enabled drug delivery plat-
form development to deliver therapeutic oligonucleotides to diseased cells. A 
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landmark demonstration of the potential of the technology was shown by Lee et al. 
where the authors developed molecularly self-assembled DNA nanoparticles to 
deliver siRNA specifically to intended target cells in  vivo [175]. More recently, 
Zhang et al. extended this concept to demonstrate effective gene silencing in plants, 
which depended on the size and shape of the nanostructure as well as the location 
for attachment of siRNA [224] (Fig.  4d) Specific to the DNA origami platform, 
Rahman et al. revealed the potential of DNA origami nanostructures functionalized 
with antisense oligonucleotides to silence the antiapoptotic protein, Bcl-2, which 
correlated with cell growth inhibition both in vitro and in vivo [225], suggesting a 
promising systemic delivery system for antisense cancer therapy. In addition, com-
bining conventional small molecule chemotherapeutic delivery with antisense oli-
gonucleotides is straightforward using the DNA origami platform. Wang et  al. 
recently showed that tubular DNA origami nanostructures may be effectively loaded 
with both doxorubicin and siRNA molecules within the inner cavity to achieve anti-
tumor efficacy both in vitro and in vivo [211], demonstrating strong potential to 
combine small molecule and antisense chemotherapies on a single DNA origami 
drug delivery device. Furthermore, Liu et  al. combined small molecule delivery 
(doxorubicin) with gene delivery (linear tumor therapeutic gene p53) on a triangle 
DNA origami nanostructure and showed efficient gene delivery and effective inhibi-
tion of tumor growth in vitro and in vivo without apparent systemic toxicity [24]. 
And although non-DNA origami, Liu et al. showed that DNA nanostructures can 
effectively deliver a gene editing system to demonstrate efficient inhibition of tumor 
growth without apparent systemic toxicity [25], suggesting that DNA origami can 
effectively deliver gene editing molecules in addition to antisense oligonucleotides 
to diseased cells. Importantly, the versatility of DNA nanotechnology including 
DNA origami is not limited to drug delivery systems in mammalian systems. Zhang 
et al. used a panel of DNA nanostructures including the DNA origami method to 
attach siRNA molecules for delivery in plant cells, where the authors observed that 
nanostructure internalization into plant cells and corresponding gene silencing effi-
ciency depends on the DNA nanostructure size, shape, compactness, stiffness, and 
location of the siRNA attachment locus on the nanostructure [224]. Taken together, 
evidence from these studies suggests that DNA origami represents a promising and 
effective drug delivery device for therapeutic antisense oligonucleotides and gene 
editing molecules in preclinical cancer model systems.

6  �Conclusions

DNA origami nanostructures have many desirable features for therapeutic delivery 
applications including unprecedented control over nanoscale geometry, precise 
functionalization with specific number and arrangement of molecules, and large 
loading capacity (e.g., ~10–100 nucleic acids or thousands of small molecule inter-
calating drugs). These characteristics have been applied to develop nanoplasmonic 
or nanophotonic devices [246, 247], molecular machines [146], and measurement 
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devices [145], and a significant amount of research over the last decades has sought 
to leverage these features for therapeutic applications. Many studies have demon-
strated exciting results in cell culture or other model systems, and recently, a num-
ber of studies have demonstrated exciting promise in animal model systems for 
applications like anthracycline, siRNA, and vaccine delivery [23, 209, 211, 223].

DNA NPs are still in relatively early stages of development, and a number of 
challenges remain. Major challenges include biological stability, appropriate phar-
macokinetics profile, manufacturing scalability, barriers to precise intracellular 
delivery (e.g., targeting payload to cytoplasm or nucleus), and potential immunoge-
nicity, which remains not well understood. More broadly, the nonspecific interac-
tions in complex biological environments are not fully characterized. For example, 
what plasma proteins interact with DNA origami and how those interactions depend 
on surface coating or functionalization are open questions. As discussed earlier, 
significant efforts have begun to address some of these challenges, especially stabil-
ity, but additional work will be required to study how these modified more stable 
DNA origami structures behave in vivo. In addition, while manufacturing and cost 
have been perceived as a barrier, new methods for scalable manufacturing and cost-
effective scaling have been and continue to be developed [248]. In fact, recent work 
suggests that DNA origami could be cost-effective relative to other delivery systems 
[74, 75]. However, current efforts on scaling have focused on the DNA origami 
structures themselves, and it is likely that additional advances or new methodolo-
gies will be required for scaling a complete delivery system (e.g., functionalized 
with targeting moieties, modified for stability, and loaded with drug molecules).

Despite these challenges, the previously demonstrated and emerging advantages 
of DNA origami nanostructures are likely to lead to novel technologies such as 
diagnostics and a range of delivery platforms that could be applied to a variety of 
diseases. In particular, the precise control over DNA origami structure and function-
alization, combined with the relative ease of modification and rapid manufacturing, 
can lead to a new paradigm for personalized precision medicine. Current research 
remains in the proof-of-concept and preclinical development stages, but it seems 
likely that DNA origami can begin to realize its biomedical potential in the com-
ing decade.
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