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Preface

This edited book collects six surveys on modeling, qualitative analysis, and
simulation of active matter focusing on specific applications in natural sciences.
It is a follow-up to volumes 1 and 2 under the same title. The book, as in the
preceding volumes, blends together contributions which indicate the diversity of
the subject matter in theory and applications within an interdisciplinary framework
which requires the use of different mathematical tools. Indeed, this new frontier
of science offers a range of new challenging problems which requires advanced
mathematical tools and, in some cases, new mathematical theories. The contents are
as follows:

Chapter “Variability and Heterogeneity in Natural Swarms: Experiments and
Modeling,” by Ariel, Ayali, Be’er, and Knebel, focuses on some of the fundamental
properties of heterogeneous collectives in nature, with an emphasis on two widely
used model organisms—swarming bacteria and locusts. The aim consists in explain-
ing the observed phenomena in view of laboratory experiments. Surprisingly, the
authors observe that while heterogeneity typically discourages collectivity, there
are several natural examples where it has the opposite effect. A detailed study of
heterogeneity is a key feature of this chapter.

Chapter “Active Crowds,” by Bruna, Burger, Pietschmann, and Wolfram, enlight-
ens the multiscale aspects of the dynamics of human crowds, where heterogeneity
is considered as a common feature of all living systems. The chapter is devoted to
show how macroscopic models can be derived from the underlying description at
the microscopic scale by tools inspired by methods of statistical physics.

Chapter “Mathematical Modeling of Cell Collective Motion Triggered by Self-
Generated Gradients,” by Calvez, Demircigil, and Sublet, develops a robust strategy
to model how a group of cells find its way during a long journey. Various scenarios
for modeling traveling waves are studied for cells that constantly deplete a chemical
cue, and so create their own signaling gradient all along the way are studied.
Analytic problems refer also to the celebrated model by Keller and Segel for
bacterial chemotaxis.

Chapter “Clustering Dynamics on Graphs: From Spectral Clustering to Mean
Shift Through Fokker-Planck Interpolation,” by Craig, García Trillos, and Slepčev,
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vi Preface

proposes a unifying framework to interpolate between density-driven and geometry-
based algorithms for data clustering and, specifically, to connect the mean shift
algorithm with spectral clustering at discrete and continuum levels. New forms of
mean shift algorithms on graphs provide a new theoretical insight on the behavior
of the family of diffusion maps in the large sample limit.

Chapter “Random Batch Methods for Classical and Quantum Interacting Particle
Systems and Statistical Samplings,” by Jin and Li, deals with the random batch
methods for interacting particle systems with the aim of reducing the computational
cost. These methods are referred to both classical and quantum systems, the
corresponding theory, and applications from molecular dynamics and statistical
samplings to agent-based models for collective behavior and quantum Monte-Carlo
methods.

Chapter “Trends in Consensus-Based Optimization,” by Totzeck, delivers an
overview of the consensus-based global optimization algorithm and its recent
variants. The contents start from the formulation and analytical results of the original
model, then the focus moves to variants using component-wise independent or
common noise. The authors discuss the relationship of consensus-based optimiza-
tion with particle swarm optimization, a method widely used in the engineering
community.

Finally, we mention the project Ki-Net—an NSF Research Network focused on
“Kinetic description of emerging challenges in multiscale problems of natural sci-
ences” (www.ki-net.umd.edu)— fostered a series of activities with main intellectual
focus on development, analysis, computation, and application of quantum dynamics,
network dynamics, and kinetic models of biological processes. Therefore, the
project contributed to the research activity during the editing of volumes 1 and 2.
The scientific legacy of the Ki-Net project is still a strong motivation to develop the
research activity in the field as witnessed by the chapters which have contributed to
this book.

Turin, Italy Nicola Bellomo
Oxford, UK José Antonio Carrillo
College Park, MD, USA Eitan Tadmor

www.ki-net.umd.edu
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Random Batch Methods for Classical and Quantum Interacting
Particle Systems and Statistical Samplings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Shi Jin and Lei Li

Trends in Consensus-Based Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Claudia Totzeck

vii



Variability and Heterogeneity in Natural
Swarms: Experiments and Modeling

G. Ariel, A. Ayali, A. Be’er, and D. Knebel

Abstract Collective motion of large-scale natural swarms, such as moving animal
groups or expanding bacterial colonies, has been described as self-organized
phenomena. Thus, it is clear that the observed macroscopic, coarse-grained swarm
dynamics depend on the properties of the individuals of which it is composed. In
nature, individuals are never identical and may differ in practically every parameter.
Hence, intragroup variability and its effect on the ability to form coordinated motion
is of interest, both from theoretical and biological points of view. This review
examines some of the fundamental properties of heterogeneous collectives in nature,
with an emphasis on two widely used model organisms: swarming bacteria and
locusts. Theoretical attempts to explain the observed phenomena are discussed
in view of laboratory experiments, highlighting their successes and failures. In
particular we show that, surprisingly, while heterogeneity typically discourages
collectivity, there are several natural examples where it has the opposite effect.
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1 Introduction

Collective behavior is ubiquitous in living organisms at all levels of complexity.
An important type of collective behavior is the translocation of groups, known
as collective motion (Krause et al. 2002). Here, we refer to collective motion as
macroscopic, synchronized, or coordinated movement of individuals that arises
from small-scale, local inter-individual interactions (Giardina 2008; Sumpter 2010;
Vicsek and Zafeiris 2012). Collective motion is found in the context of foraging for
food, shelter seeking, or predator evasion, but also in other, less clearly defined or
recognized circumstances (Herbert-Read et al. 2017). As noted, it can be found
in practically all phylogenetic groups, from single cells (Be’er and Ariel 2019;
Schumacher et al. 2016) to humans (Barnett et al. 2016; Castellano et al. 2009;
Faria et al. 2010; Helbing 2001), as well as in synthetic entities like simulated agents
(Kennedy and Eberhart 1995), self-propelled inanimate particles (Bär et al. 2020),
or motile robots (Dorigo et al. 2020).

More than three decades ago, the phenomenon of collective motion has been
described as emergent and self -organizing (Ben-Jacob et al. 2000; Vicsek et al.
1995; Vicsek and Zafeiris 2012), i.e., the congruence of local interaction to macro-
scopic, group-level dynamics. The field has evolved into an active, interdisciplinary
research field, comprising physicists and mathematicians, computer scientists,
engineers, and biologists; all trying to identify principles that are fundamental to
the self-organized emergent phenomenon and its intricate connection to movement
and migration. The key questions that are common to collective motion research are
related to the identification of interactions between the individual, the collective,
and the environment and to understanding how these converge into coherent
synchronized motion (e.g., Ariel and Ayali 2015; Bär et al. 2020; Couzin et al. 2005;
Edelstein-Keshet 2001; Giardina 2008; Tadmor 2021; Vicsek and Zafeiris 2012).

These questions have attracted renewed interest in light of recent technological
advances, in particular computer-vision based tracking methods. This has spurred
intense experimental research of collective motion under controlled laboratory
environment, which lent itself to quantitative analysis of individual and crowd
movement. For example, automated individual tracking systems based on body-
marks recognition or on miniature barcodes allow continuous and consistent
simultaneous high-precision monitoring of all individuals in animal groups, in an
attempt to decipher the intricate underlying interactions. In addition, new methods
allow collecting data on the movements and interactions of multiple animals in their
natural environmental setting. This facilitates testing interactions of the collective
with complex environments.

Much of the progress that has been made in our understanding of the causes
and consequences of collective motion has been gained by comparing experimental
observations with mathematical and computational models. At the same time,
ample theoretical work on collective motion includes a wide range of theoretical
approaches, suggesting explanations for the emergence of collective motion, its
robustness and evolutionary advantages (e.g., Ariel and Ayali 2015; Be’er and Ariel
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2019; Carrillo et al. 2010; Degond and Motsch 2008; Giardina 2008; Ha and Tadmor
2008; Tadmor 2021; Toner et al. 2005; Wensink et al. 2012 and the references
therein).

In general, modeling approaches can be categorized as either continuous models,
written in terms of integro-differential equations, or discrete agent-based mod-
els (ABMs). Continuous models typically describe the coarse-grained density
of animals and other system constituents as continuous fields, e.g., by coupled
reaction-diffusion equations or, following a kinetic approach, by hydrodynamic
or Boltzmann equations (Ben-Jacob et al. 2000; Carrillo et al. 2010; Degond and
Motsch 2008; Edelstein-Keshet 2001; Ha and Tadmor 2008; Tadmor 2021; Toner et
al. 2005; Wensink et al. 2012). One of the main drawbacks of continuous models
is the difficultly of relating actual properties of individual animals (e.g., body shape
and size, hunger, and other internal states) to specific details of the model (Edelstein-
Keshet 2001). This is one of the reasons why much of the current theoretical
work related to collective motion of real animal experiments comprise agent-based
simulations, which are useful for generating the dynamics from the point of view of
the individual animal (“Umwelt” in biology or “Lagrangian description” in physics).
The dynamics in ABMs, also referred to as self-propelled particles (SPPs), are
given by specifying the internal state of each animal, its interaction with others
(conspecifics), and its interactions with the environment (Bär et al. 2020; Edelstein-
Keshet 2001; Giardina 2008). However, such models are limited by the number of
agents that can be simulated due to computational capacities (very far, for example,
from the millions of individuals comprising a locust swarm or trillions of cells in a
bacterial colony). In addition, they do not provide a macroscopic, or coarse-grained,
description of the swarm dynamics as a whole, and additional mathematical tools
may be needed to interpret the results. Accordingly, the theoretical modeling of
coarse-graining ABMs is a highly challenging research topic (Carrillo et al. 2010;
Degond and Motsch 2008; Ha and Tadmor 2008; Ihle 2011; Toner et al. 2005;
Wensink et al. 2012).

One important aspect of collective motion research, experimental and theoretical
alike, is that of the level of similarity between the individuals composing the group,
also referred to as the group homogeneity. Collective motion requires consensus in
the sense that individuals need to adjust their behavior according to conspecifics.
In other words, it is expected that collectivity will result in some homogenization
among the individuals forming the group. At the same time, the group dynamics
should somehow be a function of its constituents, i.e., depend on the different
traits of the individuals composing it. A group can be heterogeneous at many
different levels, including permanent differences or transient ones (e.g., due to
different interactions with the surroundings), as will be discussed in the following
sections. This heterogeneity can have important consequences on collective motion,
leading to distinct group properties and variability between different groups (del
Mar Delgado et al. 2018; Herbert-Read et al. 2013; Jolles et al. 2020; Knebel et al.
2019; May 1974; Ward et al. 2018).

These general statements bring about ample open questions that are related to the
cross-dependency between individual heterogeneity and collective motion (Giardina
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2008; Sumpter 2010; Vicsek and Zafeiris 2012). For example, which traits of the
individual are adjusted in order for it to become part of the synchronized group?
On the other direction, it is not clear whether variability supports or interferes with
collectivity, and under what circumstances is heterogeneity biologically favorable?
One of the main goals of this review is to develop a general methodology for
addressing these issues and its application to experiments. Deciphering the bi-
directional interactions between individual and group properties is essential for
understanding the swarm phenomenon and predicting large-scale swarm behaviors.

To this end, we begin with a review of the different sources of variability in
biology, relevant to collective motion (Sect. 2). Section 3 describes the impact
of variability on collective motion as observed in experiments. We will see that,
while variability is typically a limiting factor for collectivity, in some cases it
may enhance it. Moreover, reduced order is not always a disadvantage. Section 4
surveys the literature on modeling heterogeneous collective motion, providing a
historical overview, spanning some 50 years of progress. A few examples comparing
theoretical predictions with experiments will be discussed. We conclude in Sect. 5
with our own perspective on interesting directions for future research.

2 Sources of Variability in Nature

Variability is a key concept in biology. Whether structural, functional, or behavioral,
variability among animals and within an individual along time is essential for
adaptability to the environment and for survival. One important aspect in which
variability plays a dominant role is in the context of collective behavior, in particular
during movement. Both permanent and transient differences among and within
animals may be instrumental in the dynamics and organization of the group, ranging
from local interactions between conspecifics to macroscopic organization. In this
section, we outline several biological sources of variability that affect collective
motion.

2.1 Development as a Source of Variation

All animals change and develop during their lifetime. Ultimately, through this
process, individuals go from immature early stages to being able to reproduce and
give rise to surviving offspring. Yet, the degree of such changes differs greatly
among taxa. As the time scale of developmental changes is typically longer than
the characteristic time scale in which swarming occurs or is observed, groups
that are composed of individuals at different developmental levels are intrinsically
heterogeneous.

For example, insects can be classified into two major groups according to their
ontogeny: Holometabola, in which the insect goes through an extreme metamor-
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phosis during its development; and hemimetabola, in which the changes between
immature and mature individuals are milder.

Holometabola insects go through several distinct life stages, differing in their
anatomy and morphology, as well as in physiology and behavior: the larva (hatching
from eggs), pupa and imago (adult insect). Among the Holometabola one finds
many of the truly social (called eusocial) insects, i.e., insects that live in cooperative
colonies such as bees and ants. Their collective behavior is complex, both on the
inter-individual communication level and the exhibited behaviors.

Hemimetabola insects go through a series of larval stages. The basic anatomy
and many features of the behavior of the larvae (or nymphs) and adults are
rather similar (except for flight and reproduction related ones). Locusts are one
of the prominent examples of hemimetabola insects exhibiting collective motion,
notorious for forming swarms composed of millions of individuals. The non-adult
(non-flying) insects migrate in huge marching bands. These often include nymphs
of different developmental stages or different larval instars, thus introducing many
aspects of variation to the group, for example, in body size, walking speed, and
food consumption (Ariel and Ayali 2015). To the best of our knowledge, no research
specifically addressed the influence of instar variance (i.e., swarms of nymphs at a
mixture of developmental stages) upon the swarm’s dynamics.

Fish go through continuous development. They hatch from the egg into a larva
state, characterized by the ability for exogenous (external) feeding. Next, fish go
through juvenile phases, in which the body structure changes, and eventually mature
into sexually active adult fish (the exact definition of these stages is ambiguous; see
Penaz 2001). During this development, fish grow and change their behavior. The
developmental level is critical to the formation of schools, as part of the behavioral
change, which is highly relevant to the collective motion of the school or shoal.
In particular, the level of attraction to conspecifics was shown to increase during
juvenile development (Hinz and de Polavieja 2017).

Mammals show a very distinctive maturation that includes no metamorphosis.
Offspring are born in rather small batches and are highly dependent on their mother
for feeding and protection. As a result, collective behavior in mammals includes co-
behavior of several generations at once. This inter-generational composition might
be instrumental for understanding animal packs (Ákos et al. 2014; Leca et al. 2003;
McComb et al. 2011; Strandburg-Peshkin et al. 2015, 2017) and human crowds
(Barnett et al. 2016; Faria et al. 2010).

2.2 Transient Changes in the Behavior of Individuals

Rarely, if at all, will a moving animal maintain constant dynamics on the go.
Such changes include speed, switching between moving and pausing, and more.
When moving in a group, individual kinematic changes increase the propensity
for variability within the group, and thus, essentially add noise to a synchronized
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collective. However, such temporal variations at the individual level may also
contribute to the overall movement and success of group-level tasks (Viscido et al.
2004).

For example, locusts walk in a pause-and-go motion pattern (Ariel et al. 2014;
Bazazi et al. 2012), i.e., they intermittently switch between walking and standing.
The durations of walking and pausing bouts have different distributions: while
walking bout durations are approximately exponentially distributed, pauses show
an approximate power-law tail. This indicates that while the termination of walking
bouts reflects a random, memory-less process (Reches et al. 2019), the termination
of pauses is based on information processing with a memory (Ariel et al. 2014).
What kind of information is being processed? Looking into the pause episodes of
marching locusts, the termination of pauses was found to depend on the locusts’
social environment. Both tactile stimulation and visual inputs make a locust stop
standing and engage in walking. Thus, when a locust is touched by another locust or
alternatively is seeing locusts depart from its front visual field or appear at its rear,
its probability to start walking increases. Moreover, as locusts rarely turn during a
walking bout, the shift from standing to walking is crucial for directional changes
in order to align with the crowd (Ariel et al. 2014; Knebel et al. 2021).

2.3 Environmentally Induced Variations

The behavior of a moving organism is affected by external conditions, including
the physical habitat (Strandburg-Peshkin et al. 2017), the ecological niche (Ward
et al. 2018) and the topology of the environment (Amichay et al. 2016; May
1974; Strandburg-Peshkin et al. 2015). Therefore, differences in environmental
characteristics can also exert different constraints on collective motion, inducing
inter-environment variability. For example, predation is an environmental factor that
can shape the behavioral strategies of many organisms. The abatement of predation
risk, e.g., through predator confusion and increased vigilance, was suggested as one
of the dominant advantages of aggregation (Ioannou et al. 2012; Krause et al. 2002).
Thus, this may be a major evolutionary pressure leading to collective animal motion.
The relation between predation and collective motion was demonstrated in fish. For
example, fish that are grown in high predation-risk environments showed higher
group cohesiveness (Herbert-Read et al. 2017). This exemplifies how the ecological
niche can dictate group dynamics by modulating local individual decisions.

2.4 Social Structure

The social environment is another factor that affects variance (Smith et al. 2016;
Ward and Webster 2016). The level of disparity in social rank among individuals
can vary depending on the society being a complete egalitarian one, or one based on
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an hierarchical structure (Ákos et al. 2014; Couzin et al. 2005; Garland et al. 2018;
Jacoby et al. 2016; Leca et al. 2003; Lewis et al. 2011; Nagy et al. 2010; Smith et al.
2016; Strandburg-Peshkin et al. 2015; Watts et al. 2017). Below we discuss a few
natural examples.

In clonal raider ants, a queen-less species in which each ant can reproduce by
parthenogenesis (reproduction without fertilization), the size of the colony dictates
the division of labor structure (an organizational regime in which individual ants are
assigned to different tasks in the colony). If the colony is small, then each ant fulfills
various tasks, both within and outside the nest. However, in large colonies, different
ants occupy different roles (Ulrich et al. 2018).

Flocks of pigeons exhibit outstanding flight synchronization. The flock is
organized through a hierarchical network, where different individuals have different
influence on other pigeons. It is estimated that such hierarchical structure, rather
than egalitarian alternatives, is more efficient for coordinated flight in small flocks
(Nagy et al. 2010).

Many birds use thermals to climb up, thereby reducing their costly need to flap
their wings. Yet, the use of thermals can differ between individuals, as was shown
for white storks that form flocks with leader–follower relations (Flack et al. 2018).
Leaders tend to explore for thermals, while the followers enjoy their findings. Yet,
followers exit the thermals earlier than leaders, rise less, and must flap their wings
more. Thus, leader–follower social relations combine with environmental factors.
On the one hand, shared knowledge decreases variation, while on the other, different
exploitation of resources increases it.

Social structure may go beyond a linear ranking scale. Indeed, the social network
of relatedness and familiarities can influence the stability of swarm dynamics and
the organization within it (Barber and Ruxton 2000; Barber and Wright 2001; Croft
et al. 2008).

2.5 Inherent/Intrinsic Properties and Animal Personality

Inherent variability among individuals is, perhaps, what makes biological systems
essentially different from ideal theoretical models. Each biological “agent” is
unique and has its own properties. These can be anatomical features like body
size or physiological parameters such as metabolic rate. Individuals may also have
personal behavioral characteristics that are consistent across different contexts, also
referred to as animal personality (Wolf and Weissing 2012). For example, properties
such as boldness, aggressiveness, activity level, and sociability were considered as
behavioral tendencies that make up an animal personality in a range of organisms,
from insects to mammals (Gosling 2001). Such features induce differences in the
behavior and decisions of individuals, which are influential in the formation of
collective behavior.
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For example, feral guppies show consistent variance in their boldness, activity
level, and sociability (Brown and Irving 2014). However, the exploratory behavior
of the groups they form was found to be independent of the average personality
characteristics of its members. Nonetheless, low exploratory behavior did correlate
with the activity score of the least active member in the group. Conversely, high
exploratory behavior correlated with the sociality rank of the most social member
(Munson et al. 2021). Therefore, extreme personalities of single individuals are
critical for the entire group.

Body size is a parameter that covers many anatomical and physiological mea-
surements, such as body mass, volume, and muscularity. These, of course, affect
movement kinematics but also the relative impact of individuals on others. For
example, the order within groups of schooling fish has been shown to reflect the
heterogeneity of the member’s body size. Larger fish tend to occupy the front
and edges of a school, while smaller ones populate the center and the back.
Consequently, larger fish tend to have a higher influence on the group direction of
movement (Jolles et al. 2020). Other experiments found different spatial distribution
of body sizes within the swarm, depending on species (Romey 1997; Theodorakis
1989), suggesting that the effect of body size is coupled to other properties (Sih
1980).

2.6 Variability in Microorganisms

Microorganisms grow in nature in a variety of habitats, from aquatic niches and soil,
to waste and within hosts. In much of these systems, several species, or variants of
the same species, occupy the same niche, creating a heterogeneous population with
a diverse range of interactions between them (Ben-Jacob et al. 2016). For example,
Bacillus subtilis is a model organism used in swarm assays. Typical swarms of B.
subtilis form a multilayered colonial structure composed of billions of cells. Grown
from a single cell, colonies become a mixed population of two strikingly different
cell types. In one type the transcription factor for motility is active, and in the other
one motility is off and the bacteria are placed in long chains of immobile cells
(Kearns and Losick 2005). Cell population heterogeneity could enable B. subtilis
to exploit its present location through the production of immobile cells as well as
to explore new environmental niches through the generation of cells with different
motility capabilities, resistance to harmful substances, and response to chemical
cues (Kearns and Losick 2005).

Multispecies communities cooperate and at the same time compete in order to
survive harsh conditions (Ben-Jacob et al. 2016). Examples of experimental studies
include biofilms (Nadell et al. 2016; Rosenberg et al. 2016; Tong et al. 2007),
plant roots (Stefanic et al. 2015), neighboring colonies of Bacillus subtilis forming
boundaries between non-kin colonies, swarming assays (showing either mixing or
population segregation depending on species) (Tipping and Gibbs 2019), mixtures
of motile and non-motile, antibiotic resistant species (Benisty et al. 2015; Ingham
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et al. 2011), and other collectively moving bacteria (Zuo and Wu 2020). In other
works, it was shown that species diversity can lead to a non-transitive symbiosis in a
“rock-paper-scissors” manner that leads to stable coexistence of all the species (Kerr
et al. 2002; Reichenbach et al. 2007). Exploitation competition can lead to growth
inhibition when one bacterial species changes its metabolic functions (Hibbing et
al. 2010).

3 Experiments with Heterogeneous Swarms

Extensive experimental research has been devoted to understanding the effect of
variability among individuals on the group’s collective behavior—ranging from
bacteria to primates (see Ben-Jacob et al. 2016; del Mar Delgado et al. 2018; Gosling
2001; Herbert-Read et al. 2013; Jolles et al. 2020; Ward and Webster 2016; Wolf
and Weissing 2012 for recent reviews, and Dorigo et al. 2020 for investigation of
heterogeneity in the context of swarm robotics). Indeed, it has been suggested that
the inherent differences among members of the group can translate into distinct
group characteristics (Brown and Irving 2014; Jolles et al. 2018; Knebel et al. 2019;
Munson et al. 2021; Strandburg-Peshkin et al. 2017). Namely, different groups
composed of individuals with distinctive features may adopt different collective
behaviors. However, the interactions between variability in specific aspects of the
individuals’ behavior and group-level processes are complex and bi-directional.
This leads to a practical difficulty in distinguishing between the inherent variability
between individual features and the results of their interaction with the crowd. We
stress that we focus on the interplay between variability and collective motion, not
on other forms of collectivity, for example, shared resources or decision making.

Surprisingly, despite extensive research on the effect of heterogeneity on col-
lective motion, general conclusions are scarce and simplistic. In some cases, the
effect of heterogeneity is subtle and does not determine the movement of the group
(Brown and Irving 2014). However, three main effects are generally accepted: First,
collectivity reduces the inherent variability between individuals (Knebel et al. 2019;
Planas-Sitjà et al. 2021). This is not surprising, as individuals are exposed to similar
“averaged-out” environments. Second, heterogeneity quantitatively reduces order
and synchronization (Jolles et al. 2017; Kotrschal et al. 2020; Ling et al. 2019). Note
that reduced order is not necessarily disadvantageous. For example, it can assist in
collective maneuvering around obstacles (Feinerman et al. 2018; Fonio et al. 2016;
Gelblum et al. 2015) and enhance accurate sensing of the environment (Berdahl et
al. 2013). Last, individual differences can determine the spatial organization within
the swarm (Jolles et al. 2017). For example, faster individuals are typically at the
front (Pettit et al. 2015).

Below, we focus on several examples, including a couple of exceptions going
beyond these general conclusions.
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3.1 Fish

Golden shiners are well known for their schooling behavior. In order to maintain
group formation, individuals tend to stay at a small distance away from their closest
neighbor, yet avoid proximity (approximately 1 body length (Katz et al. 2011)).
They do so by adjusting their velocity according to the relative position and velocity
of conspecifics. It has been found that fish swimming at higher speeds affect their
neighbors to a greater extent. Thus, individual variation in speeds is instrumental in
inter-fish interactions, serving as a key element in fish schooling (Jolles et al. 2017).

Guppy is a fish species with rather low shoaling behavior, in which different
fish exhibit different collectivity tendencies. These tendencies, to some extent, pass
from mothers to offspring. In a recent study (Kotrschal et al. 2020), selecting and
breeding females who were swimming in high coordination with conspecifics led
to increasingly higher collectivity scores. Therefore, individual tendencies to make
appropriate social decisions might take role in the natural selection of swarming
communities. Guppies also differ in individual shy-bold responses. It was shown
that the composition of the small groups according to this trait affects foraging
success (Dyer et al. 2009). In particular, groups that have bold fish find food
faster. However, an all-bold school is not optimal as more fed fish are found in
mixed groups. This observation was explained by the tendency of shy fish to follow
bold ones and thus reach the food source immediately after them. Therefore, inter-
individual heterogeneity can maximize groups’ ability to use resources.

Experiments with giant danio showed that temporal variability in the speed and
polarity leads to the emergence of several preferred collective states (Viscido et al.
2004).

3.2 Mammals

The effect of social structure on collective movement of mammals has been explored
in several species (Smith et al. 2016), including monkeys (Leca et al. 2003;
Strandburg-Peshkin et al. 2015, 2017), dolphins (Lewis et al. 2011), and family
dogs (Ákos et al. 2014).

For example, baboons live in groups of up to 100 individuals, exhibiting multiple
forms of collective behaviors, including collective motion (Strandburg-Peshkin
et al. 2015, 2017). Unlike other, smaller animals, Baboons are studied in their
natural habitat, imposing constraints on the ability to perform highly controlled
experiments. Recent experiments applied high resolution GPS tracking (Strandburg-
Peshkin et al. 2015) and unmanned aerial vehicle photography (Strandburg-Peshkin
et al. 2017) to reconstruct animal trajectories in the wild. Some degrees of variations
within the packs were found. For example, when on the move, different individuals
show different preferred positions (central or peripheral) within the pack (Farine et
al. 2017). The structure of the group and its navigational decisions were also shown
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to be highly dependent on the physical characteristics of the habitat and thereby
change depending on the environment.

3.3 Insects

When an ant comes across goods which are too heavy for it to carry alone, it
recruits other ants for assistance. Once a team is gathered, its members engage
in a complex process of cooperative transport of the good to the nest. During this
process, ants either pull or lift the item, but do not push. Thus, they arrange around
it, with individuals facing the direction of movement lifting, while the ones on the
opposite side pulling (Gelblum et al. 2015). As turns and angular modifications
take place, ants may change their relative position in respect to the movement
direction and switch roles, resulting in transient roles. These variations are essential
for steering maneuvers and successful navigation to the nest. As carrying ants have
limited sensing ability of the environment, they are assisted by freely moving ants
around them. The latter, which are more knowledgeable about the path back to the
nest, intermittently attach themselves to the load and pull in the required direction.
However, their influence on the group is limited for a few seconds, after which other
freely moving ants join the steering (Feinerman et al. 2018; Gelblum et al. 2015).
Overall, individuals with different realizations of the environment participate in the
collective effort, introducing small, cumulative changes to the direction of motion.

A plague of locusts can involve millions of individuals. Yet, under lab conditions,
even a small group of 10 locusts can exhibit collective motion when placed in a ring-
shaped arena. In such experiments, the group shows a consistent tendency to walk in
either clockwise or counterclockwise direction with considerable agreement among
the individuals (Buhl et al. 2006; Knebel et al. 2019). Despite this general formation
of marching, different groups show different kinematic properties (e.g., the fraction
of time spent walking and speed). Interestingly, while the differences among groups
are significantly high, within each group (i.e., among the individuals) the differences
are low. This indicates that each group develops a distinctive internal dynamic with
specific kinematic features that are, on one hand, unique to the group, while on
the other side practiced by all group members similarly (see Fig. 1). In (Knebel
et al. 2019), it was shown that the origin of both the intergroup heterogeneity and
the intragroup homogeny is in the individual socio-behavioral tendencies: different
animals have different propensity of joining a crowd of walking conspecifics.
Thus, the specific composition of locusts grouped together determines the specific
dynamic the group eventually develops.

Not only are locust swarms intrinsically heterogeneous, recent laboratory exper-
iments found that the connection between the properties of individuals changes
fundamentally during collective motion. In Knebel et al. (2021), the walking
kinematics of individual insects were monitored before, during, and after collective
motion under controlled laboratory settings. It was found that taking part in
collective motion induced unique behavioral kinematics compared with those
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Fig. 1 Heterogeneity of locust swarms. Experiments with marching locust in a circular arena
showed that locust groups developed unique, group-specific behavioral characteristics, reflected
in large intergroup and small intragroup variance. (a) Picture of the experimental setup. (b) Data
comprised three types: single animals in the arena, groups of 10 animals in the arena (real groups),
and fictive groups constructed by shuffling the data of the real groups (shuffled groups). (c)
Example kinematic results showing the median (ci) and inter quartile range (IQR) among the
groups’ members (cii) in the fraction of time spent walking, the median (ciii) and IQR (civ) in
walking speeds. While different groups show different kinematic properties, within each group
(i.e., among the individuals) the differences are significantly lower. This indicates that each group
develops a distinctive internal dynamic with specific kinematic features, which is, on one side
unique to the group, and on the other side, practiced by all group members similarly. (d) Results
from a simplified Markov-chain model with parameters that were either derived from experiments
with real groups, the shuffled groups or homogeneous ones (same for all group members) equal
to the average value of each simulated group (homogenized within groups), or the average of all
simulated groups (homogenized across groups). (di) The median in each group. (dii) The IQR.
Reproduced from Knebel et al. (2019)
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exhibited in control conditions, before and during the introduction to the group.
These findings (see Fig. 2) suggest the existence of a distinct behavioral mode in the
individual termed a “collective-motion-state.” This state is long lasting, not induced
by crowding per se, but only by experiencing collective motion, and characterized by
behavioral adaptation to a social context. It was shown that the “collective-motion-
state” improves the group’s ability to maintain inter-individual order and proximity.
Simulations verify that this behavioral state shortens the average time an animal
rejoins the swarm if it departs from it (Knebel et al. 2021). Thus, different socio-
environmental circumstances and experiences shape the behaviors of individuals to
fit and strengthen the structure of the collective behavior.

The existence of such a “collective-motion-state” is an extreme example of
adaptable interactions that enhance a swarms’ stability. It suggests that collective
motion is not only an emergent property of the group, but is also dependent on a
behavioral mode, rooted in endogenous mechanisms of individuals.

3.4 Microorganisms

Self-organizing emergent phenomena bear critical biological consequences on
bacterial colonies and their ability to expand and survive (Grafke et al. 2017; Zuo
and Wu 2020). Hence, the properties of mixed swarms are of great significance to
our understanding of realistic bacterial colonies.

We begin with a macroscopic point of view that studies the effect of mixed
bacterial populations on the overall structure and expansion rate of the entire colony.
To this end, we present here new experiments with mixed B. subtilis mutants with
different cell lengths.1 Figure 3 shows results obtained with mixed colonies of wild-
type and one of three other mutants that vary in their mean length (but have the
same width). To distinguish between the strains in a colony, the strains were labeled
with a green or red fluorescence protein. Figure 3a is a global view of the colony,
showing qualitatively the spatial distribution of the different strains (WT and long
mutant) approximately 5 h after inoculation. Figure 3b shows the fraction (in terms
of the surface coverage) of the mutant strain at the tip of the expanding colony. On
their own, the colony’s expansion rate is independent of the cell shape, regardless of

1 Experimental conditions: Rapidly/slow moving colonies were grown on soft (0.5%) or hard agar
(0.9%) plates, respectively, supplemented with 2 g/l peptone. These growth conditions certify the
same expansion rates for all strains while grown separately. Strains used are: “short” DS1470 with
aspect ratio 4.1 ± 1.4, “medium” DS860 with aspect ratio 4.7 ± 0.8, wild-type (also medium
length) with aspect ratio 4.9 ± 1.7, and “long” DS858 with aspect ratio 8.0 ± 2.3. This method of
fluorescence labelling does not affect cell motility, surfactant production, colonial expansion speed
or any other quantity that we have tested. The growing colonies were incubated at 30 ◦C and 95%
RH, developed a quasi-circular colonial pattern and were examined microscopically to obtain the
ratio between strains at the colonial edge of (Zeiss Axio Imager Z2 at 40×, NEO Andor, Optosplit
II). Initially, all the strains were tested axenically for their expansion colonial speed, yielding a fair
similarity between them all.



Fig. 2 Collective motion as a distinct behavioral state of the individual. (a) A schematic flow of the
experimental procedure. The experiments comprised the following consecutive stages: (1) isolation
for 1 h in the arena; (2) grouping for 1 h; and (3) re-isolation for 1 h. Each stage is characterized by
a different internal state with unique kinematic characteristics. In particular, in each stage animals
show different average walking bout and pause durations. (b) Agent-based simulations show the
influence of different walking bout and pause durations on the collectivity parameters in simulated
swarms. (bi) The regions in parameters space indicating the behavioral states. (bii) The order
parameter (norm of the average), (biii) The average number of steps to regroup in a small arena
(comparable to experimental conditions) and in a larger one (biv). Simulations show that these
states may be advantageous for the swarm integrity, shortening the regrouping time if an animal
gets separated from the swarm. Reproduced from (Knebel et al. 2021)
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Fig. 3 The macroscopic density distribution in a bacterial colony of Bacillus subtilis with a mixed
population of cells with different lengths. (a) Fluorescent microscope image showing wild-type
cells (∼7 μm length, green) and an extra-long mutant (∼19 μm length, red). The scale window
size is about 1 cm. (b) The fraction of the mutant strain at the edge of the colony as a function of
the fraction at the inoculum. On a soft, moist subtract, all cell types can move easily. As a result,
the two populations are well-mixed on the macroscopic scale and both populations make it to the
front of the colony, where nutrients are abundant. On a hard, dry subtract, wild-type cells spread
faster compared to other mutants (either too short or too long) and the colony segregates into wild-
type-rich and mutant-rich regions. Thus, the details of the dynamics and the interaction between
the species and the environment determine the macroscopic state of the swarm

the substrate on which they are grown. However, in mixed colonies, results depend
on the hardness of the substrate. On soft agar (left column), all bacteria can move
easily and fast. As a result, the ratios between strains in the initial inoculum are
same as the one obtained at the colony’s edge, indicating that all strains migrate
at similar speeds with no apparent competition between them. On the other hand,
movement on hard agar (right column) is slower, and the ratio between strains in the
initial inoculum is different from the one obtained at the edge. In particular, strains
that are either shorter or longer compared to the wild-type show a disadvantage. For
example, in a mix of short cells and wild-type, the short cells do not make it to the
edge at all unless their initial concentration is above 65%.
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In a second example, Deforet et al. (Deforet et al. 2019) studied a mixed colony of
wild-type Pseudomonas aeruginosa with a mutant that disperses ∼100% faster but
grows ∼10% slower (possibly due to resources redirected to grow extra flagellum).
Thus, their experiment tests the trade-off between growth and dispersal. Although a
model predicts that in some cases, better growth rate may win over faster dispersal,
all experiments showed the opposite, i.e., that getting first to the front of the colony
(where nutrients are abundant) is the bottleneck for fast colony expansion.

The two experiments described above clearly show that the coupling between
species competition and the environment results in complex macroscopic spatial
patterns that is difficult to predict based on first principles.

Next, we concentrate on the microscopic properties of swarming bacteria. One
of the main challenges in studying heterogeneous systems of microorganisms is
in distinguishing between biological and physical interactions. Microorganisms
belonging to different species and strains typically have many differences, ranging
from mechanical properties such as cell size, different physical responses to
external ques. (e.g., different effective drift-diffusion parameters) to species-specific
metabolic processes. In order to untangle all these effects, Peled et al. (2021)
focused on mixtures of same species swarms differing only in cell size.

Bacterial swarms are composed of millions of flagellated, self-propelled cells
that move coherently in dynamic clusters forming whirls and jets. Dominated by
hydrodynamic interactions and cell–cell steric forces, the characteristics of the
individuals dictate the dynamics of the group (Be’er and Ariel 2019). Empirically,
active cells tend to elongate prior to swarming, and their length (or rather aspect
ratio) was shown to play a crucial role in determining their collective statistics,
suggesting a length selection mechanism. In Ilkanaiv et al. (2017), it was shown
that although homogeneous colonies of bacteria with different aspect ratios spread
at the same speed, their microscopic motion differs significantly. Both short and
long strains were moving slower, exhibiting non-Gaussian statistics; however, the
wild-type, and strains that are close in size to the wild-type, were moving faster
with Gaussian statistics. Overall, bacteria are thought to have adapted their physics
to optimize the principle functions assumed for efficient swarming.

Surprisingly, introducing a small number of cells with a different length than the
majority can have a significant effect on the dynamics of the swarm (Peled et al.
2021). The cooperative action of many short cells mixed with a few longer cells
leads to longer spatial correlations (indicating a more ordered swarming pattern)
and higher average cell speeds. Figures 4 and 5 show that a small number of
long cells helps organizing the dynamics of the bacterial colony, with long cells
acting as nucleation sites, around which aggregates of short, rapidly moving cells
can form. Increasing the fraction of long cells (i.e., increasing heterogeneity), the
average speed drops as the long cells become jammed, serving as a bottleneck for
efficient swarming. The impact of long cells was reproduced in a simple model
based on hydrodynamic interactions, indicating a purely physical mechanism behind
the beneficial effects of a few long cells on spatial organization and motion of all
cells in the swarm. To the best of our knowledge, this is a first example showing that
heterogeneity can promote order and increase swarm speeds.
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Fig. 4 The microscopic density distribution in a bacterial colony of Bacillus subtilis with a mixed
population of cells with different lengths. (a, b) The wild-type in red and the elongated cells in
green. When the mixing ratio is about 50:50, the swarm is well-mixed. (c, d) Cohesive moving
clusters (false-colored for illustration purposes). When the fraction of long cells is small, short
cells cluster around elongated ones, moving together. The figures shows two such clusters in two
consecutive snapshots, 0.3 s apart. We find that the ratio between the two populations determines
the spatial distribution and the dynamics of the swarm. Reproduced from Peled et al. (2021)

4 Modeling Heterogeneous Collective Motion

Theory and simulations of active matter establish that heterogeneous systems
of self-propelled agents show a range of interesting dynamics and a wealth of
unique phases that depend on the properties of individuals. In accordance with the
discussions above, researchers studied two main sources of variability. The first type
assumes fixed properties (at least on the time scale of the dynamics of interest), for
example, individuals with different velocities (Hemelrijk and Hildenbrandt 2011;
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Fig. 5 Microscopic dynamics in a mixed bacterial swarm. (a, b) Experiments and (c, d) Agent-
based simulations. (a, c) The average swarm speeds in heterogeneous populations with a small
fraction of elongated cells (10%) as a function of the total area fraction. (b, d). The average swarm
speeds in heterogeneous populations with a large fraction of elongated cells (90%). Surprisingly,
introducing a small number of cells with a different aspect ratio than the majority increases swarm
speeds. Reproduced from Peled et al. (2021)

McCandlish et al. 2012; Schweitzer and Schimansky-Geier 1994; Singh and Mishra
2020), noise sensitivity (Ariel et al. 2015; Benisty et al. 2015; Menzel 2012; Netzer
et al. 2019), sensitivity to external cues (Book et al. 2017), and particle-to-particle
interactions (Bera and Sood 2020; Copenhagen et al. 2016; Hemelrijk and Kunz
2005; Khodygo et al. 2019). It was found that the effect of heterogeneity ranges from
trivial (the mixed system is equivalent to an average homogeneous one) to singular
(one of the sub-populations dominates the dynamics of the group as a whole) (Ariel
et al. 2015). The second type of heterogeneity refers to identical individuals whose
properties change due to different local environments, for example, local density
of conspecifics (Castellano et al. 2009; Cates and Tailleur 2015; Helbing 2001) or
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topology of the environment (Berdahl et al. 2013; Khodygo et al. 2019; Shklarsh
et al. 2011; Torney et al. 2009). Such differences may have a significant effect on
the ability of swarms to organize and, in particular, navigate towards required goals
(Berdahl et al. 2013; Khodygo et al. 2019; Shklarsh et al. 2011; Torney et al. 2009).
Coupling between the different populations and heterogeneous environments may
lead to the evolution of territories (Alsenafi and Barbaro 2021). Note that here, we do
not consider uniform distribution of obstacles (e.g., Chepizhko et al. 2013; Rahmani
et al. 2021) as heterogeneity.

4.1 Continuous Models

To the best of our knowledge, the first theoretical works on the effect of hetero-
geneity on collective motion approached the question from the point of view of
population dynamics in heterogeneous environments. In the mid-1970s, Comins
and Blatt (1974), Roff (1974a, b), Roughgarden (1974) and subsequently Levin
(1976) studied the dynamics of a finite number of migrating populations using
continuous models. Local dynamics was modeled, for example, by logistic growth,
while migration was taken into account by a linear diffusion (or a discrete
analogue). The biological motivation for this point of view is migration in a patchy
environment. Patches (or niches) were characterized by different parameters, for
example, carrying capacities. One of the main conclusions of these studies was that
movement can have a stabilizing effect on the dynamics, for example, suppressing
oscillations in predator–prey models (Comins and Blatt 1974).

At the same time, Horn and MacArthur (1972), followed by Segel and Levin
(1976), and Gopalsamy (s1977) considered continuous two-species spatial models.
Again, movement was modeled using diffusion. The main goal was to study the
effect of migration on the stability of communities. Conditions, in which initially
mixed species evolve into spatially segregated regions were found particularly
interesting. See Kareiva (1990) for a review of this perspective. The coupling
between two-species competition and heterogeneous environments was studied by
Dubois, motivated by plankton populations (Dubois 1975) and McMurtrie (1978).
They study different forms of models with non-uniform dispersal and drift. For
example, McMurtrie (1978) propose a one-dimensional (1D) model involving a two-
species predator–prey system of the form

∂n

∂t
= an (1 − bp)+ μ∂

2n

∂x2
+ α sgn(x)

∂n

∂x
∂p

∂t
= dp (−1 + cn)+ ν ∂

2p

∂x2 + β sgn(x)
∂p

∂x
,

where n(t, x) and p(t, x) are the density of predators and prey, respectively. The
constants a, b, c, and d are the standard Lotka–Volterra parameters, μ and ν are
diffusion constants. The terms involving α and β describe preferential dispersal
towards the center of the habitat.
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Motivated by works on single species spatial distribution patterns, as well as
analogue models of gas flow in porous medium, (in the 1980s) modeling shifted
towards nonlinear reaction-diffusion equations in which the flux term depends on
the local concentration (Aronson 1980; Namba 1980, 1989). Thus, the description
inherently takes into account a heterogeneous environment, as movement is density
dependent. Two-species versions were also explored (Bertsch et al. 1984; Mimura
and Kawasaki 1980; Namba and Mimura 1980; Shigesada et al. 1979; Witelski
1997). The main goals were again to classify under which conditions populations
mix or segregate. For example, Mimura and Kawasaki (1980) study a 1D predator–
prey model with nonlinear self and cross-diffusion of the form

∂n

∂t
= an (1 − bp − en)+ ∂2

∂x2 [(α + β1p) n]

∂p

∂t
= dp (−1 + cn+ fp)+ ∂2

∂x2 [(α + β1n) p] .

Traveling wave solutions (Gurtin and Pipkin 1984) later (in the 1990s) proved to
be important to modeling of expanding bacterial colonies (Ben-Jacob et al. 2000).

New forms of models were derived by coarse-graining agent-based models.
The first approaches, such as those of Toner-Tu (Toner et al. 2005) and Swift-
Hohenberg (Wensink et al. 2012) applied phenomenological models that were based
on physical principles and the underlying symmetries in collective systems. More
rigorous approaches derived coarse-grained equations of agent-based models under
appropriate limits (e.g., Carrillo et al. 2010; Degond and Motsch 2008; Ha and
Tadmor 2008). Much research involves density dependent parameters (Frouvelle
2012), in particular speed dependence (see Cates and Tailleur 2015; Degond
et al. 2017) and the references therein. For example, derived from microscopic
considerations, Cates and Tailleur (2015) consider the stochastic partial differential
equation

∂ρ (t, x)

∂t
= −∇ · J

J = −D (ρ)∇ρ + V (ρ) ρ + √
2D (ρ) ρẆ ,

where Ẇ is white noise and V(ρ), D(ρ) are density dependent drift-diffusion
coefficients, typically taken as linearly decreasing in ρ. The main conclusion is
that density dependent motility may lead to the so-called motility induced phase
separation, in which the system self-segregates into coexisting low-density/high-
speed that are characterized by high-density/low-speed regions. Density dependent
speeds are also fundamental to understanding traffic and pedestrian dynamics
through the so-called fundamental diagram, relating the flux of individuals to the
local density (Castellano et al. 2009; Helbing 2001).

Similarly, considerable research has been devoted to continuous descriptions
of binary self-propelled particle mixtures. Models included variability in motility
(Book et al. 2017; Deforet et al. 2019; Navoret 2013), noise (Menzel 2012), strength
of alignment (Yllanes et al. 2017), cross interactions between species (Burger et
al. 2018; Chertock et al. 2019; Di Francesco and Fagioli 2013), or cross-diffusion
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(Alsenafi and Barbaro 2021; Book et al. 2017; Carrillo et al. 2018, 2020; Di
Francesco et al. 2018). The results vary significantly in the level or rigor. Again, a
key question of interest is the effect of heterogeneity on the order-disorder transition
and spatial phase segregation. For example, Carrillo et al. (2018) extend previous
models and study a nonlinear and non-local model with cross-diffusion of the form

∂n

∂t
= ∇ · [n∇ (W11 ∗ n+W12 ∗ p + ε (n+ p))]

∂p

∂t
= ∇ · [p∇ (W22 ∗ p +W21 ∗ n+ ε (n+ p))] ,

where Wij are interaction terms, typically of power-law form (e.g., Lennard-Jones),
characteristic functions (steric repulsion), or exponential (Morse potential), ε > 0 is
the coefficient of cross-diffusion (Carrillo et al. 2018), and * denotes the convolution
operator.

4.2 Agent-Based Models

With the availability of large-scale computer simulations and the success of newly
suggested simplified ABMs (Giardina 2008; Vicsek and Zafeiris 2012), much of
the theoretical research on collective motion, especially models that study concrete
biological systems, shifted towards discrete models. Most works are either based
on the three zones model of Aoki and Reynolds (Aoki 1982; Reynolds 1987) or
the Vicsek model (Vicsek et al. 1995). In the three zones model, each agent is
either repelled, aligned, or attracted to conspecifics with fixed interaction ranges.
Typically, the repulsion range, which describes collision avoidance, is shortest. The
attraction range, allowing long range group cohesion, is the largest. In between,
agents align their direction of movements according to the local average. In contrast,
the Vicsek model only has local alignment, which is countered by added angular
noise. To be precise, N particles with positions xi ∈ R

2 and velocity vi ∈ R
2 move

with a fixed speed |vi| = v0 in a 2D rectangular domain with periodic boundaries. At
each simulation step, each agent aligns with the average direction of movement of
all particles within a fixed interaction range. Then, the average direction is perturbed
randomly. The equations of motion at each simulation step are

xi ← xi + vi
vi ← �φi

∑

{j :|xi−xj |≤R} vi∣
∣
∣
∣
∑

{j :|xi−xj |≤R}vi
∣
∣
∣
∣

v0
,

where φi are independent random variables, uniformly distributed in the segment
[−σπ , σπ ], 0 ≤ σ ≤ 1. The main prediction of this model is the characterization of
two regimes (or phases), depending on the noise level σ and the average density—a
disordered phase, in which the average velocity agents goes to zero in the limit of
an infinite system, and an ordered phase in which it does not (Vicsek et al. 1995).



22 G. Ariel et al.

Context-dependent interactions within the three-zone model were first studied by
Torney et al. (2009). The main idea was that individuals weigh their own information
regarding the environment and the local movement of conspecifics dynamically,
according to local conditions or available information. In Shklarsh et al. (2011),
a particular simple adaptable 2D model studied the rate in which a collection of
SPPs can reach a maximum of a fixed external potential c(x). The model, which is
essentially a three zones model, assumes that in each simulated step, the direction
in which an agent moves, denoted d̂i , is a weighted sum of two terms: ûi , denoting
group interaction following the three zones model, and v̂i , which is the particle
velocity at the previous step

di ← ûi + wv̂i
d̂i = di/

∣
∣di
∣
∣ .

The main idea of Shklarsh et al. (2011) is to make the weight w a function of the
environment c(x). Denoting by�ci(t) the difference in c(x) between two consecutive
steps of agent i, they take

wi(t) =
{

1 |�ci(t)| > const
0 otherwise

.

In words, the external cue shuts down if the gradient in c(x) in the direction of
movement is too small. This strategy proved efficient in sensing the environment
(Berdahl et al. 2013; Shaukat and Chitre 2016). Other examples of adaptable
models, e.g., density dependent speeds (Mishra et al. 2012), were found to be
sufficient to induce phase separation between dense and dilute fluid phases (Cates
and Tailleur 2015) and to increase the stability of swarms (Gorbonos and Gov 2017;
Ling et al. 2019).

Over the past decade, collective motion of binary self-propelled particle mixtures
has been extensively researched theoretically using agent-based models. The effect
of fixed variability (i.e., non-adaptable) in motility (Agrawal and Babu 2018;
Benisty et al. 2015; Copenhagen et al. 2016; Khodygo et al. 2019; Kumar et al.
2014; McCandlish et al. 2012), weight of alignment interactions (del Mar Delgado
et al. 2018; Knebel et al. 2021; Kunz and Hemelrijk 2003; Peled et al. 2021;
Soni et al. 2020), effective noise (Ariel et al. 2015; Guisandez et al. 2017; Menzel
2012), and interaction range (Farine et al. 2017) were studied. The main questions
considered are the effect of heterogeneity on the ability of swarms to form ordered
phases (Agrawal and Babu 2018; Ariel et al. 2015; Benisty et al. 2015; Copenhagen
et al. 2016; del Mar Delgado et al. 2018; Kumar et al. 2014; Peled et al. 2021;
Soni et al. 2020), the type of the order-disorder transition (first or second order)
(Guisandez et al. 2017), spatial segregation of the two species (Copenhagen et al.
2016; Khodygo et al. 2019; McCandlish et al. 2012), or the organization within
the swarm (Farine et al. 2017; Hemelrijk and Hildenbrandt 2008, 2011; Hemelrijk
and Kunz 2005; Peled et al. 2021), and the rate of convergence towards the ordered
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steady state (Knebel et al. 2021). Not surprisingly, and as confirmed experimentally
(see the previous section), heterogeneity typically lowers order. If the variation
between individuals is sufficiently large, the ordered phase may either disappear
completely or, alternatively, the system may segregate into coexisting, spatially
separated phases. As mentioned before, low order has its own benefits—and perhaps
reducing order by heterogeneity is not a bug but a feature.

For example, Ariel et al. (2015) study, using simulations, a variation of the Vicsek
model with two populations that are distinguished by the amount of noise they have.
In the original Vicsek model, the noise level σ is the same for all particles. In Ariel
et al. (2015), it is assumed that a fraction f of the agents has noise level σ 1, while the
rest have σ 2. In order to quantitatively compare homogeneous and heterogeneous
systems, one needs to identify the appropriate statistics (corresponding to the
relevant thermodynamic variables). Following Porfiri and Ariel (2016) and Ariel
et al. (2015), the circular mean of distribution of the random turns plays the role
of (1 minus) an effective temperature, in the sense that it determines the order
parameter and phase (here, an ordered phase means that the mode in the distribution
of the instantaneous order parameter is not zero). Moreover, it satisfies a fluctuation–
dissipation relation (Porfiri and Ariel 2016). In heterogeneous systems, the two
sub-populations interact non-additively: Within a large range of parameters, the
dynamics of the system can be described by an equivalent homogeneous one with
the same average temperature fT1+(1-f ) T2. However, if one of the sub-populations
is sufficiently “cold,” i.e., σ 1 or σ 2 (or equivalentrly, the effective temperaturese
T1 or T2) is below a threshold, it dominates the dynamics of the group as a whole.
Specifically, it determines the phase and order parameter of the mixed system, see
Fig. 6 for a phase diagram. Interestingly, this phenomenon does not occur in mean-
field random-network models of collective motion, but depends on emergence of
spatial heterogeneities (Netzer et al. 2019).

Finally, ABMs were used to study the effect of a social structure of the ability of
swarms to synchronize. Leadership was studied in Couzin et al. (2005) and Garland
et al. (2018). In Xue et al. (2020), a hierarchical swarm model in the spirit of the
Vicsek model showed that introducing a simple hierarchical structure (via a linear
ordering of agents) not only shifts the order–disorder phase transition, but also
changes its type (first or second order).

4.3 Specific Examples: Locust

A few groups attempted to address the dynamics of locust swarms theoretically.
Topaz et al. (2012) studied a continuous binary-system model, describing the density
of solitarious and gregarious locusts. The main assumption is that individuals can
switch between phases (solitarious and gregarious) with rates that depend on the
overall local density. Thus, while the sum of the two densities is a conserved
quantity, satisfying a continuity equation, each density on its own does not.
The difference between the phases is in its interaction with conspecifics: while



24 G. Ariel et al.

Fig. 6 Simulation results for a two-species Vicsek model with distinct noise levels. A heteroge-
neous system with 50,000 particles, half with effective temperature (the circular mean of random
turns) T1, and half with effective temperature T2. (a) The phase diagram. Red dots indicate an
ordered phase, while blue dots are disordered. (b) The difference between the observed temperature
(1-order parameter) and the average effective temperature (T1 + T2)/2. If T1 or T2 is small enough,
level curves are close to horizontal or vertical lines. Otherwise, they are diagonal lines, indicating
a constant temperature. The dashed curve shows the homogeneous T1 = T2 line. The dotted line is
the constant temperature curve passing through the homogeneous critical temperature. Reproduced
from Ariel et al. (2015)

solitarious individuals are repelled from other locusts, gregarious individuals are
attracted. The interaction term is non-local. The model is used to study band
formation. In particular, numerical solutions reveal transiently traveling clumps of
gregarious insects.

Another binary-system model, taking only gregarious locust into account, studied
the impact of the pause-and-go walking pattern of locust on the spatial distribution
of marching bands. In Bernoff et al. (2020), the authors study both an ABM and
a simple continuous realization of a two-species model describing stationary and
moving insects. Heterogeneous environments are also taken into account in the form
of position dependent resource consumption rate. One of the main new assumptions
is that the rate at which locusts transition between moving and stationary (and vice
versa) is enhanced (diminished) by resource abundance.

Lastly, a recent work (Georgiou et al. 2020) combines the two approaches,
studying the dynamics of solitarious and gregarious insects in a heterogeneous
environment in terms of the available food resources.

4.4 Specific Examples: Microorganisms and Cells

Previous modeling approaches of heterogeneous active matter or self-propelled
particles have been used, with some levels of success to study several aspects of
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mixed bacterial communities (Blanchard and Lu 2015; Book et al. 2017; Deforet
et al. 2019; Kai and Piechulla 2018; Kumar et al. 2014). For example, on the
macroscopic, colony-wide scale, continuous models of mixed bacterial colonies
with different motility and growth rates show the balance between reproduction
rates and the importance of moving towards the colony edge, where nutrients are
abundant (Book et al. 2017; Deforet et al. 2019). Peled et al. (2021) studied a
two-species agent-based model (with different cell-length) that is derived from the
balance of forces and torques on each cell. The model follows the approach of
Ariel et al. (2018) and Ryan et al. (2011), assuming each bacterium is essentially
a point dipole where the size is incorporated through an excluded-volume potential
and the shape is accounted for in the interaction of the point dipole’s orientation
with the fluid. The model reproduces the speed dependence of both cell types at the
entire range of densities tested. However, in contrast with experiments, the simulated
spatial distributions of short (wild-type) and long cells are not correlated. Therefore,
hydrodynamic models of swarming bacteria fall short at describing the full breadth
of the dynamics.

A detailed, mixed population, agent-based 2D model that includes both excluded
volume and hydrodynamic interactions was studied by Jeckel et al. (2019). In this
model, agents are elongated ellipsoids with a distribution of lengths, motility, and
friction coefficients, as observed experimentally for different phases during the
growth of bacterial colonies. The model successfully reproduces the motile phases
observed experimentally in an expanding colony of swarming B. subtilis.

Finally, we briefly discuss collective cell migration, which plays a pivotal role
in a range of biological processes such as wound healing, cancer invasion and
development (Schumacher et al. 2016, 2017). Heterogeneity, both between cells
and in the environment (typically non-uniform tissues) has been identified as a key
parameter in the regulation and differentiation of cells, for example, in development
of tips vs. stalks (Rørth 2012). Of course, cells are not organisms. However, the
theory of collective cell migration shares many of the universal properties of other
collective motion phenomena (Chauviere et al. 2007; Gavagnin and Yates 2018;
Szabo et al. 2006), for example, a kinetic phase transition from a disordered to
ordered state (Szabo et al. 2006), spatial segregation and “task specification” (Rørth
2012).

5 Summary and Concluding Remarks

Variability is inherent to practically all groups of organisms. As discussed above,
the sources of variations among members of a group are diverse, from differences
rooted in ontogeny and development, via changes due to physiological adaptations,
to distinct behavioral states. Accordingly, the variations may be transient or lasting.
Collective motion, manifested by coordinated or synchronized group movement
requires, by definition, a level of similarity between the individuals composing
the group. Furthermore, the groups exert a homogenizing effects on its members.
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This alleged discrepancy, or tug-of-war type interaction, between the group and the
individual (i.e., variability vs. homogeneity) is at the basis of much of the rich and
complex dynamics seen in collective motion.

This review presents both the state-of-the-art and a historical perspective of
experimental and theoretical aspects of heterogeneity in real, natural swarms.
We focus on natural-biological systems only; however, the main points are also
relevant to humans and human made systems (pedestrians, cars, robots, etc.).
The conclusion of most theoretical work is rather straightforward, i.e., a higher
heterogeneity diminishes the order, as one could intuitively expect. However, as
evident from the different examples discussed, heterogeneity may be contributory
and even instrumental in the interaction leading to the self-emergence of collective
motion. The disparity between the rather simplistic theoretical conclusions and the
known biological prevalence and significance of variability in nature raises a major
open question (critically important to biological systems) of the ecological and
evolutionary consequences of heterogeneity within collectives. In particular, it is not
clear under what circumstances is heterogeneity, and its consequences on collective
motion, evolutionary advantageous, or is it merely a natural, unavoidable reality that
interferes with collectivity. Such considerations are often not taken into account in
simplified mathematical models.

The challenges ahead of us include deciphering these interactions in new, diverse
systems and at different types of environments. Also, there is currently very
little work on continuous distribution of heterogeneities, as well as on coupling
between different properties, which are more biologically realistic. By utilizing a
comparative approach for developing general rules, we will be able to provide a
further solid theoretical framework for the development of collectivity in light of
variability and heterogeneity.
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Active Crowds

Maria Bruna, Martin Burger, Jan-Frederik Pietschmann,
and Marie-Therese Wolfram

Abstract This chapter focuses on the mathematical modelling of active particles
(or agents) in crowded environments. We discuss several microscopic models found
in the literature and the derivation of the respective macroscopic partial differential
equations for the particle density. The macroscopic models share common features,
such as cross-diffusion or degenerate mobilities. We then take the diversity of
macroscopic models to a uniform structure and work out potential similarities and
differences. Moreover, we discuss boundary effects and possible applications in life
and social sciences. This is complemented by numerical simulations that highlight
the effects of different boundary conditions.

1 Introduction

The mathematical modelling of active matter has received growing interest recently,
motivated by novel structures in physics and biology on the one hand (cf. [7, 34, 38,
40, 60, 66, 69]), but also active matter in a wider sense of agent systems like humans
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or robots (cf. [8, 22, 29, 30, 54, 53, 37]). In many of these systems, a key issue is
the interplay of the particles’ own activity with crowding effects, which leads to the
formation of complex and interesting patterns. In this chapter, we aim at unifying a
variety of models proposed for such systems, discuss the derivation of macroscopic
equations from different microscopic paradigms and highlight some of their main
properties.

First, we would like to emphasise that the definition of active particles varies in
the literature, e.g. between condensed matter, life sciences and engineering and that
we will adopt a generous point of view in this chapter. We will discuss not only
models for actual active matter systems but also systems that might be considered
passive (or force-driven) in the physics literature but have been used to model
active matter systems. A common feature of these models is that the particles have
a preferred direction of motion and can use energy to move there; the preferred
direction can however change in time. This setting includes models for multiple
species (with fixed directions or biases) and systems with boundary conditions that
impose steady currents. From a mathematical point of view, we can distinguish
whether models exhibit a gradient-flow structure (cf. [4]) or not, respectively, and
whether there are stationary solutions with vanishing flux. In the case of a gradient-
flow structure, there is a natural entropy–energy functional to be dissipated (cf.
[25]), and in the other cases, such functionals may increase (linearly) in time or it is
not apparent what the correct choice of the functional is. We shall see in particular
that gradient-flow structures are destroyed if particles change directions completely
randomly, while there is an active transport in that direction.

In the following, we will consider models with a finite number of preferred
directions or a continuum of it. While the former has been proposed and investigated
in many applications like pedestrian dynamics or cell motility, continuum directions
received far less attention in the mathematical literature. In the continuum case, one
can consider angular diffusion and derive an equation for the density of particles in
the phase-space of spatial and angular variables. We discuss different microscopic
models, based either on Brownian motions with hard sphere potentials or on lattice-
based models with size exclusion, which allow to derive appropriate macroscopic
partial differential equations (PDEs) for the phase-space density. These PDEs have a
rather similar structure—all have a nonlinear transport term and additional diffusion
terms in space and angle (or possibly nonlocal diffusion for the latter). This general
structure allows us to define a general entropy functional and investigate the long-
time behaviour.

This chapter is organised as follows: we present several microscopic models for
active particles and their corresponding mean-field limits using different coarse-
graining procedures in Sect. 2. Section 3 discusses the respective modelling
approaches and limiting equations for externally activated particles (systems that
would be considered passive in the physics literature). We then present a general
formulation of all these models and state their underlying properties, such as energy
dissipation or a possible underlying gradient-flow structure in Sect. 4. The important
role of boundary conditions on the behaviour of these systems is discussed in
Sect. 5. Section 6 presents several examples of active and externally activated
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particle models in the life and social sciences. Numerical experiments illustrating
the dynamics and behaviour of the respective models are presented in Sect. 7.

Throughout this chapter, we use the notion of particles or agents interchangeably.
Furthermore, we discuss the respective models on the line or in R

2, with the
obvious generalisation to three dimensions. We will keep the presentation informal,
assuming that all functions satisfy the necessary requirements to perform all limits
and calculations.

2 Models for Active Particles

Here, we discuss microscopic models for active particles and their corresponding
macroscopic kinetic models using different coarse-graining procedures. The key
ingredients of active particles are that, in addition to their positions, they have an
orientation that determines the self-propulsion direction. We subdivide these models
into continuous, discrete or hybrid random walks depending on how the position and
the orientation of each particle are represented.

2.1 Continuous Random Walks

We consider N identical Brownian particles with free translational diffusion
coefficient DT moving in a periodic box � ⊂ R

2 with unit area. Each particle has
a position Xi (t) and an orientation �i(t) with t > 0, i = 1, . . . , N , that determines
the direction e(�i) = (cos�i, sin�i) of self-propulsion at constant speed v0. The
orientation�i also undergoes free rotational diffusion with diffusion coefficientDR .
In its more general form, particles interact through a pair potential u(r, ϕ) which
implies the total potential energy

U = χ
∑

1≤i<j≤N
u(|Xi − Xj |/�, |�i −�j |), (1)

where χ and � represent the strength and the range in space of the potential u,
respectively. The coupled equations of motion are

dXi = √2DT dWi − ∇xi Udt + v0e(�i)dt, (2a)

d�i = √2DRdWi − ∂θiUdt. (2b)

We note that isotropic pair potentials (u = u(r) only) are more commonly
used in the literature [10, 46]. System (2) is complemented with identically and
independently distributed initial conditions, (Xi (0),�i(0)) ∼ f0(x, θ) and periodic
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boundary conditions on ϒ = � × [0, 2π) (we will discuss alternative boundary
conditions later in Sect. 5).

The starting point for all is to define the joint probability density for N particles
evolving according to the SDEs (2), that is, FN(�ξ, t) with �ξ = (ξ1, . . . , ξN ) and
ξi = (xi , θi). Using the Chapman–Kolmogorov equation, we obtain

∂tFN(�ξ, t) =
N∑

i=1

∇xi ·
[
DT∇xi FN − v0e(θi)FN + ∇xi U(

�ξ)FN
]

+ ∂θi
[
DR∂θiFN + ∂θiU(�ξ)FN

]
, (3)

for t ≥ 0, �ξ ∈ ϒ̄ , where ϒ̄ ⊆ ϒN is the domain of allowed configurations (more on
this below).

The goal is to obtain a macroscopic model for the one-particle density f (ξ, t),
which we can describe by picking the first particle since all particles are identical,
i.e.

f (ξ1, t) =
∫

ϒN
FN(�ξ)δ(ξ − ξ1)d�ξ . (4)

To this end, keeping in mind all the particles are indistinguishable, we integrate (3)
with respect to ξ2, . . . , ξN . Using periodicity, all the terms for i ≥ 2 in the right-
hand side of (3) vanish, and we are left with

∂tf (ξ1, t) = ∇x1 ·
[
DT∇x1f − v0e(θ1)f + UT (ξ1, t)

]+∂θ1
[
DR∂θ1f + UR(ξ1, t)

]
,

(5a)
with

UT (ξ1, t) = χ
∫

ϒN−1
FN(�ξ, t)

N∑

i=2

∇x1u(|x1 − xi |/�, |θ1 − θi |)dξ2, . . . , dξN

= χ(N − 1)
∫

ϒ

F2(ξ1, ξ2, t)∇x1u(|x1 − x2|/�, |θ1 − θ2|)dξ2,
(5b)

UR(ξ1, t) = χ
∫

ϒN−1
FN(�ξ, t)

N∑

i=2

∂θ1u(|x1 − xi |/�, |θ1 − θi |)dξ2, . . . , dξN

= χ(N − 1)
∫

ϒ

F2(ξ1, ξ2, t)∂θ1u(|x1 − x2|/�, |θ1 − θ2|)dξ2,
(5c)
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using that particles are undistinguishable, where F2 is the two-particle density

F2(ξ1, ξ2, t) =
∫

ϒN−2
FN(�ξ, t)dξ3 . . . dξN .

Depending on the scalings χ, � of the interaction potential u, we can expect
different macroscopic limits of (2). On the one end, we can consider long-range
weak repulsive interactions and obtain a mean-field limit equation. On the other
extreme, we can consider short and strong repulsive interactions (even hard-core
interactions such as u(r) = +∞ if r < 1, and 0 otherwise), which lead to local
nonlinear PDE models.

Mean-Field Scaling
The mean-field scaling corresponds to χ = 1/N and � = O(1) so that we have a
weak and long-range interaction in the limit of N → ∞. In this limit, one expects
propagation of chaos leading to

F2(ξ1, ξ2, t) ≈ f (ξ1, t)f (ξ2, t).

Substituting this into (5), we arrive at

∂tf (ξ1, t) = ∇x1 · [DT∇x1f − v0e(θ1)f + f∇x1U
]+ ∂θ1

[
DR∂θ1f + ∂θ1U

]
,

(6a)
with interaction term, taking N → ∞,

U(f ) =
∫

ϒ

f (ξ2, t)u(|x1 − x2|/�, |θ1 − θ2|)dξ2. (6b)

In the case of an isotropic interaction potential, the term ∂θ1U in (6a) drops, and
the interaction term (6b) can be simplified to

U(f ) =
∫

�

ρ(x2, t)u(|x1 − x2|/�)dx2, (7)

where ρ is the spatial (macroscopic) density

ρ(x, t) =
∫ 2π

0
f (x, θ, t) dθ. (8)

The spatial density describes the probability that a particle is at position x at
time t irrespective of its orientation. We obtain the following equation for ρ by
integrating (6a) with the potential (7) with respect to θ ∈ [0, 2π) and using
periodicity:

∂tρ(x1, t) = ∇x1 · [DT∇x1ρ − v0p + ρ∇x1U
]
. (9)
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This equation is not closed as it depends on the polarisation p (also known as the
order parameter):

p(x, t) =
∫ 2π

0
e(θ)f (x, θ, t) dθ. (10)

The polarisation gives the average orientation of particles at position x at any given
time t .

2.1.1 Excluded-Volume Interactions

Excluded-volume interactions are very common in biological applications and arise
from the impenetrability between cells, bacteria, animals etc. These are very strong
and short-range interactions, whereby an individual only interacts locally in the
range of its body size. For these reasons, the mean-field scaling is not suitable
to model such interactions, which are often modelled using singular short-range
potentials (� � 1 in (1)) or even hard-core potentials. Examples of interaction
potentials used in the literature to model excluded-volume interactions include
inverse power-law potentials (such as the Lennard-Jones potentials), exponential
potentials (e.g. the Morse potential) or the Yukawa potential.

The following model, proposed by [65], includes excluded-volume interactions
via a short-range interaction potential u(r):

∂tf + ∇ · (ve(ρ)f e(θ)) = De(φ)�f +DR∂2
θ f, (11)

where f = f (r, θ, t), De(φ) is an effective diffusion depending on how crowded
the system is (given by φ), and ve = v0(1 − φρ) is a nonlinear effective speed. The
hydrodynamic equations for the spatial density ρ and the polarisation p are obtained
by integrating (11),

∂tρ + ∇ · (ve(ρ)p) = De(φ)�ρ, (12)

∂tp + ∇P(ρ) = De(φ)�p − p, (13)

with the so-called pressure P(ρ) = ve(ρ)ρ/2. This model displays a motility-
induced phase transition [65]: at low densities (φρ small), the effective swimming
speed is close to the free speed v0, whereas at high densities, the effective swimming
goes to zero. The result is a phase separation, with regions of high density where
particles are trapped and do not move, and very dilute areas with fast speeds.
This is shown via a linear stability analysis as well as numerical simulations of
the microscopic system using the repulsive Weeks–Chandler–Andersen (WCA)
potential (which corresponds to a truncated and shifted upwards Lennard-Jones
potential). Through an adiabatic approximation, they cast equation (12) into a
gradient flow of an effective free energy of the form of a conventional Ginzburg–
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Landau function. According to [65], this is consistent with ‘the mapping of active
phase separation onto that of passive fluids with attractive interactions through a
global effective free energy’.

An alternative derivation of a macroscopic model for active Brownian particles is
considered in [17] using the hard-core interaction potential, u(r) = +∞ for r < ε
and 0 otherwise. In this case, the microscopic model changes from (2) to

dXi = √2DT dWi + v0e(�i)dt, |Xi − Xi | > ε,∀j �= i, (14a)

d�i = √2DRdWi. (14b)

This represents particles as hard disks of diameter ε: particles only sense each other
when they come into contact, and they are not allowed to get closer than ε to each
other (mutual impenetrability condition). In comparison with the mean-field scaling,
here instead the scaling is χ = 1, � = ε � 1 so that each particle only interacts
with the few particles that are within a distance O(ε), the interaction is very strong.
Using the method of matched asymptotics, from (14), one obtains to order φ the
following model:

∂tf+v0∇ · [f (1 − φρ)e(θ)+φpf ] = DT∇ · [(1 − φρ)∇f + 3φf∇ρ] +DR∂2
θ f.

(15)

Here, φ is the effective occupied area φ = (N − 1)ε2π/2. Model (15) is obtained
formally in the limit of ε and φ small. Note that this equation is consistent with the
case N = 1: if there is only one particle, then φ = 0 and we recover a linear PDE
(no interactions). The equation for the spatial density is

∂tρ + v0∇ · p = DT∇ · [(1 + 2φρ)∇ρ] , (16)

which indicates the collective diffusion effect: the higher the occupied frac-
tion φ, the higher the effective diffusion coefficient. We note that, due to the
nature of the excluded-volume interactions, models (11) and (15) are obtained via
approximations (closure at the pair correlation function and matched asymptotic
expansions, respectively) and no rigorous results are available. A nice exposition
of the difficulties of going from micro to macro in the presence of hard-core
non-overlapping constraints is given in [52]. In particular, they consider hard-core
interacting particles in the context of congestion handling in crowd motion. In
contrast to (14), the dynamics involve only position and are deterministic. Collisions
can then be handled via the projection of velocities onto the set of feasible velocities.
In [52], they do not attempt to derive a macroscopic model from the microscopic
dynamics but instead propose a PDE model for the population density ρ(x, t) that
expresses the congestion assumption by setting the velocity to zero whenever ρ
attains a saturation value (which they set to one).
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2.2 Discrete Random Walks

Next, we discuss fully discrete models for active particles with size exclusion
effects. We start by considering a simple exclusion model for active particles on
a one-dimensional lattice, which has been investigated in [48]. The brief description
of the microscopic lattice model is as follows: N particles of size ε evolve on a
discrete ring of 1/ε sites, with occupancy φ = εN ≤ 1. Each lattice is occupied
by at most one particle (thus modelling a size exclusion), and particles can either be
moving left (− particles) or right (+ particles). The configuration can be represented
using occupation numbers σi at site i with values in {−1, 0, 1}. The dynamics
combine three mechanisms:

(a) Diffusive motion: for each bond (i, i + 1), σi and σi+1 are exchanged at rate
DT \ε2.

(b) Self-propulsion and size exclusion: for each bond (i, i + 1), a + particle in i
jumps to i + 1 if σi+1 = 0, or a − particle in i + 1 jumps to i if σi = 0, both at
rate εv0.

(c) Tumbling: particles switch direction σi → −σi at rate ε2λ;

see Fig. 1 for an illustration of these effects. Rescaling space and time as εi and
ε2t , respectively, and a smooth initial condition, the macroscopic equations can be
derived exactly as [48]

∂tf+ + v0∂x[f+(1 − φρ)] = DT ∂xxf+ + λ(f− − f+),

∂tf− − v0∂x[f−(1 − φρ)] = DT ∂xxf− + λ(f+ − f−),
(17)

(a)

(b)

(c)

(a’)

Fig. 1 Sketch illustrating the update steps for + (right moving) and − (left moving) particles
outlined in Sect. 2.2. The left column shows the initial set-up and the right one the configuration
after a single time step
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where f+ and f− are the probability densities corresponding to the + and −
particles, respectively, and ρ = f+ + f−. Introducing the number densities

r(x, t) = Nf+(x, t), b(x, t) = Nf−(x, t), (18)

which integrate to N1 and N2, respectively, we can rewrite (17) as

∂t r + v0∂x[r(1 − ρ̄)] = DT ∂xxr + λ(b − r),
∂tb − v0∂x[b(1 − ρ̄)] = DT ∂xxb + λ(r − b), (19)

with ρ̄ = ε(r+b). One can also consider the same process in higher dimensions with
a finite set of orientations ek, k = 1, . . . , m. The most straightforward generalisation
of (17) is to consider a two-dimensional square lattice with m = 4 directions,
namely e1 = (1, 0), e2 = (0, 1), e3 = (−1, 0) and e4 = (0,−1) (see Fig. 1 in [48]).
In this case, the configuration would take five possible values, σi = {−1,−i, 0, i, 1},
and the resulting macroscopic model would consist of a system of four equations for
the densities of each subpopulations

∂tfk+v0∇ · [fk(1−φρ)ek] = DT�fk+λ(fk+1 +fk−1 −2fk), k = 1, . . . , 4,
(20)

where now φ = ε2N , fk(x, t) stands for the probability density of particles
going in the ek direction, and ρ = ∑

k fk . Periodicity in angle implies that
f5 = f1, f−1 = f4.

Note how the model in [48] differs from an asymmetric simple exclusion
processes (ASEP) in that particles are allowed to swap places in the diffusive step
(see (a) above). As a result, the macroscopic models (17) and (20) lack any cross-
diffusion terms. We can also consider an actual ASEP process, in which simple
exclusion is also added to the diffusive step, that is, point (a) above is replaced by

(a′) Diffusive motion: a particle in i jumps to i + 1 at rate DT \ε2 if σi+1 = 0 (and
similarly to i − 1).

In this case, the resulting macroscopic model is

∂tfk + v0∇ · [fk(1 − φρ)ek] = DT∇ · [(1 − φρ)∇fk + φfk∇ρ]
+ λ(fk+1 + fk−1 − 2fk), k = 1, . . . , 4. (21)

2.3 Hybrid Random Walks

In the previous two subsections, we have discussed models that consider both the
position and the orientation as continuous or discrete. Here, we discuss hybrid
random walks, that is, when positions are continuous and orientations finite, or vice
versa.
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Fig. 2 Sketch of the 2D
hybrid random walk outlined
in Sect. 2.3. The arrow within
each particle corresponds to
its orientation, and the colour
of the neighbouring sites
relates to πk . The darker the
colour, the greater the
likelihood to jump into the
cell

The first hybrid model we consider is an active exclusion process whereby the
orientation is a continuous process in [0, 2π) evolving according to a Brownian
motion with diffusion DR , (2b), while keeping the position evolving according to a
discrete asymmetric exclusion process (ASEP) [17]. The advantage of this approach
is to avoid the anisotropy imposed by the underlying lattice. Here, we present the
model in two dimensions so that we can compare it to the models presented above.

We consider a square lattice with spacing ε and orientations ek, k = 1, . . . , 4 as
given above. A particle at lattice site x can jump to neighbouring sites x + εek if the
latter is empty at a rate πk(θ) that depends on its orientation θ , namely

πk(θ) = αε exp(βεe(θ) · ek),

where αε = DT /ε
2 and βε = v0ε/(2DT ). Therefore, the diffusive and self-

propulsion mechanisms in (17) are now accounted for together: jumping in the
direction opposite to your orientation reduces the rate to ∼ αε(1 − βε), whereas the
there is a positive bias ∼ αε(1 + βε) towards jumps in the direction pointed to by
e(θ), see Fig. 2. The tumbling (point 3 above) is replaced by a rotational Brownian
motion. Taking the limit ε → 0 while keeping the occupied fraction φ = Nε2 finite,
one obtains the following macroscopic model for f = f (x, θ, t):

∂tf + v0∇ · [f (1 − φρ)e(θ)] = DT∇ · ((1 − φρ)∇f + φf∇ρ)+DR∂2
θ f.

(22)

This model can be directly related to the fully discrete model (21): they are
exactly the same if one considers (21) as the discretised-in-angle version of (22)
by identifying

DR∂
2
θ fk ≈ DR fk+1 + fk−1 − 2fk

(2π/m)2
,

that is, λ = DRm2/(2π2), wherem is the number of orientations in the fully discrete
model.

The other possible hybrid model is to consider a continuous random walk with
interactions in space (2a), while only allowing a finite number of orientations, �i ∈



Active Crowds 45

{θ1, . . . , θm}. In its simplest setting, we can consider that θk are equally spaced in
[0, 2π) and a constant switching rate λ between the neighbouring angles. The N
particles evolve according to the stochastic model:

dXi = √2DT dWi − ∇xi Udt + v0e(�i)dt, (23a)

�i = {θk}mk=1, θk
λ−→ θk+1 (mod 2π), θk

λ−→ θk−1 (mod 2π). (23b)

If we assume excluded-volume interactions through a hard-core potential, the
resulting model is [67]

∂tfk + v0∇ · [fk(1 − φρ)ek + φpfk] = DT∇ · [(1 − φρ)∇fk + 3φfk∇ρ]

+ λ (fk+1 + fk−1 − 2fk) , (24)

where ρ = ∑m
k=1 fk , p = ∑m

k=1 fke(θk), and ek = e(θk). The density fk(x, t)
represents the probability of finding a particle at position x at time t with orientation
θk (naturally, we identify fm+1 = f1 and f−1 = fm). Here, φ = (N − 1)ε2π/2
represents the effective excluded region as in (15). We note how this model is
consistent with the continuous model (15), in that if we had discretised angle in (15),
we would arrive at the cross-diffusion reaction model (24).

A variant of the hybrid model (23) is to allow for jumps to arbitrary orientations
instead of rotations of 2π/m, namely, from θk to θj (mod 2π), j �= k, at a constant
rate λ independent of the rotation. This is a convenient way to model the tumbles of
a run-and-tumble process, such as the one used to describe the motion of E. coli [9],
see also Sect. 6.2. In this case, the reaction term in (24) changes to

∂tfk + v0∇ · [fk(1 − φρ)e(θk)+ φpfk] = DT∇ · [(1 − φρ)∇fk + 3φfk∇ρ]

+ λ
∑

j �=k

(
fj − fk

)
. (25)

We may generalise the jumps in orientation by introducing a turning kernel
T (θ, θ ′) as the probability density function for a rotation from θ ′ to θ . That is, if
�i(t) is the orientation of the ith particle at time t and the jump occurs at t∗,

T (θ, θ ′)dθ = P
({
θ ≤ �i(t∗+) ≤ θ + dθ | �i(t∗−) = θ ′}) .

Clearly, for mass conservation, we require that
∫
T (θ, θ ′)dθ = 1. The jumps may

only depend on the relative orientation θ − θ ′ in the case of a homogeneous and
isotropic medium, in which case T (θ, θ ′) ≡ T (θ − θ ′). This is the case of the two
particular examples above: in (24), the kernel is

T (θ, θ ′) = 1

2

[
δ(θ − θ ′ −�)+ δ(θ − θ ′ +�)] , � = 2π

m
,

whereas the rotation kernel in (25) is
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T (θ, θ ′) = 1

m− 1

m−1∑

k=1

δ(θ − θ ′ + k�), � = 2π

m
,

where the argument of the delta function is taken to be 2π -periodic. If the turning
times t∗ are distributed according to a Poisson process with intensity λ, the resulting
macroscopic model for the phase density f = f (x, θ, t) with a general turning
kernel T becomes

∂tf + v0∇ · [f (1 − φρ)e(θ)+ φpf ] = DT∇ · [(1 − φρ)∇f + 3φf∇ρ]

− λf + λ
∫ 2π

0
T (θ, θ ′)f (x, θ ′, t)dθ ′. (26)

We note that the microscopic process associated with (26) is continuous (and not
hybrid) if the support of T has positive measure.

3 Models for Externally Activated Particles

In this section, we go from active to passive particles and consider models with time
reversal at the microscopic level. As mentioned in the introduction, the defining
factor of active matter models is the self-propulsion term, which makes them out
of equilibrium. Mathematically, this can be expressed by saying that even the
microscopic model lacks a gradient-flow structure (either due to the term e(θ) in the
transport term, see (15), or due to the reaction terms in (17) and (20), see Sect. 4).

In the previous section, we have seen the role the orientation θ plays. If it is
kept continuous, the resulting macroscopic model is of kinetic type for the density
f (x, θ, t). If instead only a fixed number m of orientations are allowed, then these
define a set of m species, whereby all the particles in the same species have the
same drift term. This motivates the connection to cross-diffusion systems for passive
particles, which are obtained by turning off the active change in directions in
the models of Sect. 2 and look at the resulting special cases. This is a relevant
limit in many applications, such as in pedestrian dynamics (see Sect. 6.1). Once
the orientations are fixed, we are left with two possible passive systems: either
originating from a spatial Brownian motion or from a spatial ASEP discrete process.

3.1 Continuous Models

The starting point is the microscopic model (2) taking the limit DR → 0. We
could still keep the interaction potential as depending on the relative orientations,
which would lead to different self- and cross-interactions (which might be useful in
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certain applications). Here, for simplicity, we assume interactions are all the same
regardless of the orientations:

dXi = √2DT dWi − ∇xi Udt + v0e(�i)dt, (27a)

�i(t) = θk, if i ∈ Ik, k = 1, . . . , m, (27b)

where Ik is the set of particles belonging to species k. The number of particles in
each species is |Ik| = Nk .

The mean-field limit of (27) is given by (taking N =∑k Nk → ∞ as in (6a))

∂tfk(x, t) = ∇x · [DT∇xfk − v0e(θk)fk + fk∇x(u ∗ ρ)] , (28)

and ρ(x, t) = ∑
k fk . For consistency with the active models, here, we do not take

fk to be probability densities but to integrate to the relative species fraction, whereas
as before the total density ρ has unit mass:

∫

�

fk(x, t)dx = Nk

N
,

∫

�

ρ(x, t)dx = 1. (29)

Thus, fk = fk(x, t) describes the probability that a particle is at position x at time t
and is in the Ik set.

The microscopic model (27) with the interaction term U replaced by a hard-core
potential for particles with diameter ε can be dealt with via the method of matched
asymptotics. In this case, the resulting cross-diffusion model is

∂tfk + v0∇ · [fkek + φkl(el − ek)fkfl] = DT∇ · [(1 + φkkfk)∇fk
+φkl(3fk∇fl − fl∇fk)] , l �= k,

(30)

where φkk = (Nk − 1)N/Nkε2π , φkl = Nε2π/2 for l �= k and fk(x, t) are defined
as above. This model was first derived in [14] for just two species but in a slightly
more general context, whereby particles may have different sizes and diffusion
coefficients (also, note that in [14], (30) appears written in terms of probability
densities). Equation (30) can be directly related to model (24) with λ = 0 if in
both models we assume Nk large enough such that Nk − 1 ≈ Nk,N − 1 ≈ N :

∂tfk + v0∇ · [fk(1 − φρ)e(θk)+ φpfk] = DT∇ · [(1 − φρ)∇fk + 3φfk∇ρ] ,
(31)

where φ = Nε2π/2, ρ = ∑
k fk , and p = ∑

k fke(θk). Model (31) is the cross-
diffusion system for red and blue particles studied in [16] in disguise. First, set the
number of species to m = 2 and define the number densities

r(x, t) = Nf1(x, t), b(x, t) = Nf2(x, t), (32)
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which integrate to N1 and N2, respectively. Then, define the potentials Vr =
−(v0/DT )e(θ1) · x and Vb = −(v0/DT )e(θ2) · x. In terms of these new quantities,
system (31) becomes

∂t r = DT∇ · [(1 + 2ϕr − ϕb)∇r + 3ϕr∇b + r∇Vr + ϕrb∇(Vb − Vr)] ,
(33a)

∂tb = DT∇ · [(1 + 2ϕb − ϕr)∇b + 3ϕb∇r + b∇Vb + ϕrb∇(Vr − Vb)] ,
(33b)

where ϕ = ε2π/2. This is exactly the cross-diffusion system for particles of the
same size and diffusivity studied in [16] for d = 2 (see Eq. (11) in [16]).1

3.2 Discrete Models

In this category, there are discrete processes in space without changes in orienta-
tions. The most well-known model in the context of excluded-volume interactions
is ASEP, which was used above in combination of either continuous change in angle,
see (22), or discrete jumps, see (21). We obtain the corresponding passive process
by setting either DR or λ to zero, respectively. The resulting model in either case is

∂tfk+v0∇ · [fk(1−φρ)e(θk)]=DT∇ · [(1 − φρ)∇fk + φfk∇ρ], k = 1, . . . , m,
(34)

where fk satisfy (29) as before, and φ = Nε2. We notice three differences with
its continuous passive counterpart (31): in the latter, the effective occupied fraction
φ has a factor of π/2, the coefficient in the cross-diffusion term fkρ has a factor
of three and the transport term has an additional nonlinearity that depends on the
polarisation. The cross-diffusion system (34) was derived in [63] and analysed in
[24] for two species (m = 2). Specifically, if we introduce the number densities r, b
and general potentials Vr, Vb as above, it reads

∂t r = DT∇ · [(1 − ρ̄)∇r + r∇ρ̄ + r(1 − ρ̄)∇Vr ] (35a)

∂tb = DT∇ · [(1 − ρ̄)∇b + b∇ρ̄ + b(1 − ρ̄)∇Vb] , (35b)

where ρ̄ = ε2(r + b) = ε2(N1f1 +N2f2) (compare with (3.7)–(3.8) in [24]).2

1 We note a typo in [16]: the coefficient β below system (11) should have read β = (2d − 1)γ .
2 In the system (3.7)–(3.8) of [24], r and b are volume concentrations, thus having a factor of ε2

compared to those used in (35), and the diffusivities of the two species are 1 and D instead of DT
for both.



Active Crowds 49

4 General Model Structure

We now put the models presented in the previous sections into a more general
picture. We assume that f = f (x, θ, t), where θ is a continuous variable taking
values in [0, 2π) or a discrete variable taking values θk for k = 1, . . . , m (ordered
increasingly on [0, 2π)). For now on, we consider the density rescaled by φ instead
of a probability density. This implies that φ disappears from the equations and enters
the mass condition as

∫∫
f = ∫

ρ = φ. In the latter case, we shall also use the
notation fk(x, t) = f (x, θk, t). We also recall the definition of the space density ρ
and the polarisation p:

ρ(x, t) =
∫ 2π

0
f (x, θ, t) dμ(θ) and p(x, t) =

∫ 2π

0
e(θ)f (x, θ, t) dμ(θ),

where the integral in θ is either with respect to the Lebesgue measure for continuum
angles or with respect to a discrete measure (a finite sum) for discrete angles.

The models presented have the following general model structure:

∂tf + v0∇ · (f (1 − ρ)e(θ)+ aφpf ) = DT∇ · (B1(ρ)∇f + B2(f )∇ρ)+ c�θf,
(36)

with a ∈ {0, 1}. In (36), the derivative operator ∇ is the standard gradient with
respect to the spatial variable x, while the Laplacian �θ is either

• the second derivative ∂θθf in the Brownian case
• the second-order difference or discrete Laplacian

D2f = (fk+1 + fk−1 − 2fk),

with cyclic extension of the index k, in the case of fixed discrete rotations (or in
one spatial dimension where there are only two possible orientations)

• the graph Laplacian with uniform weights

DGf =
∑

j �=k
(fj − fk),

in the run-and-tumble case (25) where arbitrary rotations are allowed.

Let us mention that similar structures and results hold true for graph Laplacians
with other non-negative weights. We provide an overview of the respective differ-
ential operators and constants for most of the presented models in Table 1.

Small and Large Speed
Natural scaling limits for the general system (36) are the ones for small and large
speed, i.e. v0 → 0 and v0 → ∞, respectively. The first case is rather obvious, since
at v0 = 0, the model is purely diffusive, i.e.
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Table 1 Table recasting most models in the general form of (36)

Eq. No. �θ a B1 B2 c

(11) ∂θθ 0 1 0 DR

(15) ∂θθ 1 (1 − ρ) 3f DR

(20) D2 0 1 0 λ

(21) D2 0 (1 − ρ) f λ

(22) ∂θθ 0 (1 − ρ) f DR

(24) D2 1 (1 − ρ) 3f DR

(25) DG 1 (1 − ρ) 3f DR

(30) None 0 (1 − ρ) 3f 0

(34) None 0 (1 − ρ) f 0

∂tf = DT∇ · (B1(ρ)∇f + B2(f )∇ρ)+ c�θf.

The model can then be written as a gradient-flow structure (or a generalised gradient
structure in the case of discrete angles, see for example [50, 55]) for an entropy of
the form

E(f ) =
∫∫

f log f dx dθ + b2

∫

(1 − ρ) log(1 − ρ) dx, (37)

with b2 ∈ {0, 1, 3} corresponding to the coefficients of B2. In the case v0 small
but finite, the gradient-flow structure is broken, but we still expect the diffusive part
to dominate. In particular, we expect long-time convergence to a unique stationary
solution.

In the case v0 → ∞, there are two relevant time scales. At a small time scale
L/v0, where L is a typical length scale, the evolution is governed by the first-order
equation

∂τ f + ∇ · (f (1 − φρ)e(θ)+ aφpf ) = 0,

where τ = tv0/L. The divergence of the corresponding velocity field u = (1 −
φρ)e(θ)+ aφp is given by

∇ · u = −φ∇ρ · e(θ)+ aφ∇ · p.

In particular, in the case of a = 0, we see that the question of expansion or
compression of the velocity field is determined by the angle between ∇ρ and the
unit vector e(θ). Unless ∇ρ = 0, the velocity field is compressible for a part of the
directions and expansive for the opposite directions. A consequence to be expected
is the appearance of patterns with almost piecewise constant densities (see, for
example, Figs. 8 and 9). Inside the structures with constant densities (∇ρ = 0),
the velocity field is incompressible, while the compression or expansion arises at
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the boundaries of such regions. This is rather described by a large time scale, i.e. the
equation without time rescaling. Then, one expects a slow interface motion, which
is also observed in numerical simulations. In a simple case with only one direction,
this has been made precise in [18].

Small and Large Rotational Diffusion
The limit of small rotations rate c → 0 corresponds to a more standard nonlinear
Fokker–Planck system with a given linear potential,

∂tf + v0∇ · (f ((1 − φρ)e(θ)+ aφp)) = DT∇ · (B1(ρ)∇f + B2(f )∇ρ),

as described in Sect. 3. Models of this kind have been investigated previously, see
for example [24, 23]. They tend to develop patterns such as jams or lanes, depending
on the initial condition. This happens in particular for large speeds v0 (see Figs. 11
and 13).

The case of large rotational diffusion c → ∞ will formally lead to f being
constant with respect to θ at leading order. The corresponding equation at leading
order can thus be obtained by averaging (36) in θ . Since f does not depend on θ ,
the polarisation is zero, that is

p =
∫ 2π

0
f e(θ) dθ = 0,

and the transport term drops out in all the models. Indeed, the nonlinear diffusion
terms in any case average to linear diffusion with respect to x. Hence, the evolution
of f at leading order is governed by a linear diffusion equation.

4.1 Wasserstein Gradient Flows

We have seen above that microscopic models for externally activated particle have
an underlying gradient-flow structure, which should ideally be maintained in the
macroscopic limit. Adams et al. [1] showed in their seminal work that, then, the
Wasserstein metric arises naturally in the mean-field limit (under suitable scaling
assumptions). However, this limit is only well understood in a few cases (for
example, for point particles) and rigorous results are often missing. In case of
excluded-volume effects, as discussed in Sects. 2.1.1 and 2.3, the only known
rigorous continuum models are derived in 1D [59, 11, 39], with only approximate
models for higher space dimension. We see that these approximate limits often lack
a full gradient-flow structure but are sufficiently close to it. In the following, we
give a brief overview on how Wasserstein gradient flows and energy dissipation
provide useful a priori estimates that can be used in existence proofs or when
studying the long-time behaviour of solutions. These techniques are particularly
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useful for systems with cross-diffusion terms, for which standard existence results
do not necessarily hold.

We will outline the main ideas for functions f = f (x, θ, t), where θ is either
continuous or taking discrete values θk with k = 1, . . . m. As before, we use ξ =
(x, θ). We say that a macroscopic model has a Wasserstein gradient-flow structure
if it can be written as

∂tf (x, θ, t) = ∇ξ · (M(f )∇ξw
)
, (38)

where M is the mobility operator and w = δf E the variational derivative of
an entropy/energy functional E with respect to f . Note that for discrete θk , k =
1, . . . m, the mobility M is a positive definite matrix in R

m×m and δf E is replaced
by the vector δfkE . We have seen a possible candidate for energies in (37); they
usually comprise negative logarithmic entropy terms of the particle distribution and
the total density (corresponding to linear and nonlinear diffusion relating to the
operators B1 and B2) as well as potentials.

If the system has a Wasserstein gradient-flow structure (38), then the entropy E
changes in time as

dE
dt

=
∫∫

∂tfw dxdθ = −
∫∫

M̄(w)|∇ξw|2 dxdθ, (39)

where M̄ is the mobility matrix M written in terms of the entropy variable w. If
M̄ is positive definite, then the energy is dissipated. In the next subsection, we will
define an entropy for the general model (36) and show that the system is dissipative
for several of the operator choices listed in Table 1.

Note that these entropy dissipation arguments are mostly restricted to unbounded
domains and bounded domains with no-flux or Dirichlet boundary conditions. It is
possible to generalise them in the case of non-equilibrium boundary conditions, as
such discussed in Sect. 5, but a general theory is not available yet. We will see in
the next subsection that entropy dissipation may also hold for systems, which do not
have a full gradient-flow structure.

Since system (38) is dissipative, we expect long-time convergence to an equilib-
rium solution. The respective equilibrium solutions f∞ to (38) then correspond to
minimisers of the entropy E . To show exponential convergence towards equilibrium,
it is often helpful to study the evolution of the so-called relative entropy, that is,

RE(f, f∞) := E(f )− E(f∞)− 〈E ′(f∞), f − f∞〉.

In general, one wishes to establish the so-called entropy–entropy dissipation
inequalities for the relative entropy

dRE
dt

≤ −CRE,
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with C > 0. Then, Gronwall’s lemma gives desired exponential convergence. This
approach is also known as the Bakry–Emery method, see [6].

We discussed the challenges in the rigorous derivation of continuum models in
the previous sections and how often only formal or approximate limiting results
are available. These approximate models are often ‘close’ to a full gradient flow,
meaning that they only differ by higher order terms (which were neglected in the
approximation). This closeness motivated the definition of so-called asymptotic
gradient flow, see [16, 15]. A dynamical system of the form

∂t z = F(z; ε) (40)

has an asymptotic gradient-flow structure of order k if

F(z; ε)+
2k∑

j=k+1

εjGj (z) = −M(z; ε)E ′(z, ε),

for some parametric energy functional E . For example, (30) exhibits a GF structure
if the red and blue particles have the same size and diffusivity but lacks it for
differently sized particles (a variation of the model not discussed here). The
closeness of AGF to GF can be used to study, for example, its stationary solutions
and the behaviour of solution close to equilibrium, see [3, 2, 16].

4.2 Entropy Dissipation

Next, we investigate the (approximate) dissipation of an appropriate energy for the
general formulation (36). The considered energy functional is motivated by the
entropies of the scaling limits considered before. In particular, we consider

E(f ) =
∫∫

f log f + V (x, θ)f dx dμ(θ)+ b2

∫

(1 − ρ) log(1 − ρ) dx, (41)

for which the models can be formulated as gradient flows in the case c = 0 (no
active self-propulsion) with b2 ∈ {0, 1, 3} chosen appropriately. For simplicity, we
set φ = 1 as well as DT = 1 in the following. As before, we interpret integrals in θ
with respect to the Lebesgue measure for continuum angles and with respect to the
discrete measure (sum) in case of a finite number of directions. We recall that the
potential V is given by

V (x, θ) = −v0 e(θ) · x = −v0 (cos θx + sin θy).

In the following, we provide a formal computation assuming sufficient regularity of
all solutions. We have
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dE
dt

=
∫∫

∂tf (log f + V − b2 log(1 − ρ)) dx dθ

= −
∫∫

∇ [log f + V − b2 log(1 − ρ)] {−v0f [(1 − ρ)e(θ)+ ap]

+B1(f, ρ)∇f + B2(f, ρ)∇ρ} dx dθ

+ c
∫∫

(log f + V − b2 log(1 − ρ))�θf dx dθ.

Let us first investigate the last term. Since ρ is independent of θ , using the
properties of the generalised Laplacian �θ with periodic boundary conditions, we
have

∫

log(1 − ρ)�θf dθ = log(1 − ρ)
∫

�θf dθ = 0.

Using the fact that �θe(θ) is uniformly bounded in all cases, we find

∫∫

[log f + V − b2 log(1 − ρ)]�θf dx dθ = −
∫∫

Fθ (f )− v0�θ e(θ) · xf dx dθ,

≤ C|v0|
∫

|x|f dx dθ = C|v0|
∫

|x|ρ dx,

where Fθ (f ) ≥ 0 is the Fisher information with respect to the generalised Laplacian
�θ

Fθ (f ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

|∂θf |2
f

for �θ = ∂θθ ,
|fk+1 − fk|2
M(fk, fk+1)

for �θ = D2,

∑

j

|fj − fk|2
M(fj , fk)

for �θ = DG,

where

M(f, g) = f − g
log(f )− log(g)

is the logarithmic mean.
Now, we further investigate the first term for the models with a = 0 (no p term

in the equation for f ), where, for the respective b2, we obtain

∫∫

∇[log f +V −b2 log(1−ρ)] [v0f (1 − ρ)e(θ)− B1(f, ρ)∇f − B2(f, ρ)∇ρ] dx dθ

= −
∫∫

f (1 − ρ)|∇[log f + V − b2 log(1 − ρ)]|2 dx dθ ≤ 0.
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Overall, we finally find

dE
dt

≤ C |v0|
∫

|x|ρ dx ≤ C |v0|
√∫

|x|2ρ dx.

Thus, the growth of the entropy in time is limited by the second moment. Note that
for a = 1, one can employ analogous reasoning to obtain the above negative term.
However, it is unclear how to control the additional term

∫∫ ∇[log f +V −c log(1−
ρ)]v0pf dx dθ . The bounds obtained provide useful a priori estimates, which can
be used in existence results, and to study the long-time behaviour, see for example
[21, 45].

5 Boundary Effects

So far, we have focused on domains with periodic boundary conditions. In this
section, we discuss non-zero-flux boundary conditions, which can be used to
impose non-zero steady currents and externally activate or force the passive models
described in Sect. 3 out of equilibrium [27]. We remark that the in-flux boundary
conditions are difficult to deal with in the case of interacting continuous random
walks. Thus, we only mention a few aspects and comment in more detail on the
time-discrete situation which is easier to tackle, see Remark 5.1.

5.1 Mass Conserving Boundary Conditions

We first discuss conditions (other than periodic boundaries) that conserve the total
mass, i.e. the total number of particles in the microscopic models, or the integral
of the density φ in the macroscopic models. In case of the coupled SDE model (2),
we are interested in conditions that ensure that particles remain inside the domain.
Intuitively, particles need to be reflected whenever they hit the boundary. However,
as we are dealing with a problem that is continuous in time, we have to ensure
that the particle path remains continuous. In his seminal paper [64], Skorokhod
solved this problem by introducing an additional process that increases whenever
the original process hits the boundary, see [57] for a detailed discussion. For the
microscopic models on a lattice, such boundary conditions correspond to aborting
any jumps that would lead a particle outside of the domain. For the macroscopic
models, mass conservation corresponds to no-flux boundary conditions that are
implemented by setting the normal flux over the boundary to zero, i.e.

J · n = 0 a.e. in ϒ × (0, T ), (42)
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where, using the general form (36), the flux density is given as

J = v0(f ((1 − φρ)e(θ)+ aφp))−DT (B1(ρ)∇f + B2(f )∇ρ). (43)

5.2 Flux Boundary Conditions

Apart from periodic or no-flux boundary conditions, there is also the possibility for
boundary conditions that allow for the in- or outflow of particles (mass) via the
boundary. Such effects are of particular interest in the context of this chapter, since
they yield an out-of-equilibrium system even if the motion of the particles within
the domain is purely passive (i.e. due to diffusion).

For the SDE model (2), such boundary conditions correspond to partially
reflecting or radiation conditions. Intuitively, once a particle reaches the boundary it
is, with a certain probability, either removed or otherwise reflected, see [41] and [49,
Section 4]. For the discrete models of Sect. 2.2, let us consider first the special case
of a single species in two dimensions with two open and two closed boundaries.
This corresponds to the asymmetric simple exclusion process (ASEP) with open
boundary conditions, the paradigmatic models in non-equilibrium thermodynamics,
[28]. The dynamics of such a process is well understood and can be solved explicitly
[33, 32] (see also [68]). We denote by α and β the rates by which particles enter
(at the left boundary) and exit (at the right boundary) the lattice. Then, the key
observation here is that in the steady state, system can be in one of the three distinct
states, characterised by the value of the one-dimensional current and the density as
follows:

• Low density or influx limited (α < min{β, 1/2}): the density takes the value α
and the flux α(1 − α).

• High density or outflux limited (β < min{α, 1/2}): the density is 1 − β and the
flux β(1 − β).

• Maximal current (α, β > 1/2): the density is 1/2 and the flux 1/4.

A similar behaviour can be verified for the macroscopic passive model (35) (or
also (19) with λ = 0) for a single species on the domain � = [0, L], which reduces
to a single equation for the unknown density r , i.e.

∂t r + ∂xj = 0 with j = −DT ∂xr + r(1 − r)∂xV .

We supplement the equation with the flux boundary conditions

−j · n = α(1 − r) at x = 0 and j · n = βr at x = 1, (44)

see [20]. Indeed, one can show that for positive DT > 0, stationary solutions are
close to one of the regimes, and as DT → 0, these attain the exact values for flux
and density. Interestingly, for positiveDT , it is possible to enter the maximal current
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regime for values of α and β strictly less than 1/2. The long-time behaviour of these
equations, using entropy–entropy dissipation inequalities, has been studied in [20].

For the macroscopic active models (15) and (22), a similar condition can be
formulated for the unknown quantity f . However, as f depends not only on x and
t but also on the angle θ , the coefficients may also depend on it. In the most general
situation, we obtain

J · n = −α(θ,n)(1 − φρ)+ β(θ,n)f, (45)

with J defined in (43). Here, the choice of the functions α and β is subject to
modelling assumptions or properties of microscopic stochastic models for the inflow
and outflow. Typically, one has a separation into inflow and outflow regions, which
means that α is supported on inward pointing directions e(θ) · n > 0, while β is
supported outward pointing directions e(θ) · n > 0.

5.3 Other Boundary Conditions

Let us also discuss other types of boundary conditions. Homogeneous Dirichlet
boundary conditions can be applied to all types of models: for the SDE (2), one
has to remove a particle once it reaches the boundary. The same holds for the
discrete random walk models. For the macroscopic models, one sets the trace at the
boundary to zero. Finally, also mixed boundary conditions are possible, combining
the effects described above on different parts of the boundary. Another type of
boundary condition useful in the context of self-propelled organisms is no-slip or
alignment type boundary conditions, whereby the particles align their orientations
with the boundary (e(θ) · n = 0). A notable example of this can be seen in ant
foraging networks and lab experiments with ants walking on bridges [36, 35].

Remark 5.1 (Boundary Conditions for Discrete-Time Random Walks) We briefly
comment on the situation for time-discrete random walks, that is, when the SDE (2)
is replaced by the time-discrete system

Xi (t +�t) = Xi (t)+�t
√

2DT ζi −�t∇xi U +�tv0e(�i), (46a)

�i(t +�t) = �i(t)+�t
√

2DRζ̄i −�t∂θiU, (46b)

for some time step size�t > 0 and where ζi and ζ̄i are normally distributed random
variables with zero mean and unit variance. To implement boundary conditions, one
has to calculate the probability that Xi (t + �t) /∈ � (considering also the case
that the particles leave the domain but move back into it within the time interval
[t, t+�t]), see [5] for detailed calculations in the case of pure diffusion. If a particle
is found to have left the domain, it can either be removed with probability one
(corresponding to homogeneous Dirichlet boundary conditions) or less than one,
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called a partially reflective boundary condition (corresponding to Robin boundary
conditions). In our setting, this probability can depend on the current angle of
the particle, �i(t), allowing for additional modelling. It is also possible to add a
reservoir of particles at the boundary to implement flux boundary conditions in the
spirit of (45) by prescribing a probability to enter the domain. In the case of excluded
volume, the probability to enter will depend on the number of particles close to the
entrance.

6 Active Crowds in the Life and Social Science

6.1 Pedestrian Dynamics

A prominent example of active and externally activated dynamics in the context of
socio-economic applications is the motion of large pedestrian crowds. There is an
extensive literature on mathematical modelling for pedestrians in the physics and
the transportation community, which is beyond the scope of this chapter. We will
therefore review the relevant models in the context of active crowds only and refer
for a more comprehensive overview to [30, 51].

Microscopic Models for Pedestrian Flows
Microscopic off-lattice models are the most popular approach in the engineering and
transportation research literature. Most software packages and simulations are based
on the so-called social force model by Helbing [43, 42]. The social force model is a
second-order SDE model, which does not take the form of active models considered
here. However, it is easy to formulate models for pedestrians in the context of active
particles satisfying (2). For example, assume that all pedestrians move with the same
constant speed in a desired direction�d avoiding collisions with others. Then, their
dynamics can be described by the following second-order system:

dXi = −∇Xi Udt + v0
e(�i)−�d

τ
dt +√2DT dWi (47a)

d�i = −∂�iUdt +√2DR dWi . (47b)

The potential U takes the form (1), where the pairwise interactions u should be
related to the likelihood of a collision. One could for example consider

u(|Xi − Xj |/�,�i −�j) = C �i −�j|Xi − Xj | ,

where C ∈ R
+ and � relates to the personal comfort zone. Another possibility

corresponds to a Lennard-Jones type potential to model short-range repulsion
and long-range attraction. Another popular microscopic approach is the so-called
cellular automata, which correspond to the discrete active and externally activated
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models discussed before. In cellular automata, a certain number of pedestrians can
occupy discrete lattice sites and individuals move to available (not fully occupied)
neighbouring sites, with transition rates. These transition rates may depend on
given potentials, as discussed in the previous sections, which relate to the preferred
direction.

There is also a large class of microscopic on-lattice models, so-called cellular
automata, see [47], which relate to the microscopic discussed in Sect. 3.2. In cellular
automata, pedestrians move to neighbouring sites at given rates, if these sites are
not already occupied. Their rates often depend on an external given potential, which
relates to the desired direction�d . Cellular automata often serve as the basis for the
macroscopic pedestrian models, which will be discussed in the next paragraph, see
for example [19, 22].

Macroscopic Models for Pedestrian Flows
Mean-field models derived from microscopic off-lattice approaches have been used
successfully to analyse the formation of directional lanes or aggregates in bi-
directional pedestrian flows. This segregation behaviour has been observed in many
experimental and real-life situations. Several models, which fall into the category of
externally activated particles introduced in Sect. 3.2, were proposed and investigated
in this context. These models take the form (35), in which the densities r and b relate
to different directions of motion. For example, in the case of bi-directional flows in a
straight corridor, ‘red particles’ correspond to individuals moving to the right, while
blue ones move to the left. We will see in Sect. 7.1 that we can observe temporal as
well as stationary segregated states. Depending on the initial and inflow conditions,
directional lanes or jams occur. Then, the gradient-flow structure can then be used to
investigate the stability of stationary states using for example the respective entropy
functionals. Due to the segregated structure of stationary solutions, one can also use
linear stability analysis around constant steady states to understand for example the
formation of lanes, see [56].

More pronounced segregated states and lanes can be observed when allowing
for side-stepping. In the respective microscopic on lattice models, individuals step
aside when approached by a member of the other species. The respective formally
derived mean-field model has a perturbed gradient-flow structure, which can be used
to show existence of solutions, see [22]. More recently, a model containing both an
active and a passive species has been studied in [29].

6.2 Transport in Biological Systems

Another example where active particles play an important role is transport process
in biological systems. We will discuss two important types of such processes in the
following: chemotaxis and transport in neurones.

Chemotaxis
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We consider bacteria in a given domain that aim to move along the gradient of
a given chemical substance, called chemoattractant and modelled by a function
c : � → R+. Due to their size, bacteria cannot sense a gradient by, say, comparing
the value of c at their head with that at their tail. Thus, they use a different
mechanism based on comparing values of c at different time instances and different
points in space, called run and tumble. In a first step, they perform a directed motion
into a fixed direction (run) and then rotate randomly (tumble). These two steps are
repeated, and however, the probability of tumbling depends on c as follows: if the
value of c is decreasing in time, bacteria tumble more frequently as they are not
moving up the gradient. If the value of c increased, they turn less often. Roughly
speaking, this mechanism reduces the amount of diffusion depending on the gradient
of c. Here, we consider a slightly different idea that fits into the hybrid random walk
model introduced in (23), assumingDT to be small (run), and the rate of change for
the angle depends on c. To this end, λ is taken different for each angle (thus denoted
by λk) and is assumed to depend on the difference of the external signal c at the
current and past positions, only. Denoting by tk , k = 1, 2, . . ., the times at which the
angle changes, at time tn, we have λk = λk((c(Xi (tn))− c(Xi (tn−1)). Additionally,
we introduce a fixed baseline turning frequency λ̄ and consider

λk = λ̄+ (c(Xk(tn−1))− c(Xk(tn))).

Now, going from discrete to time-continuous jumps, i.e. tn − tn−1 → 0, and
appropriate rescaling, we obtain via the chain rule

λk = λ̄− Ẋk · ∇c(Xi ).

However, due to the stochastic nature of the equation governing the evolution Xk , its
time derivative is not defined. Thus, as a modelling choice, we replace this velocity
vector by v0e(θk), i.e. the direction of the active motion of the respective particle.
This is also motivated by the fact that for DT = 0 and U = 0 in (23a), this is exact.
We obtain

λk = λ̄− v0e(θk) · ∇c(Xi ).

In the particular case on one spatial dimension with only two possible angles
(denoted by + and −) and for v0 = 1, this reduces to

λ± = λ̄∓ ∂xc,

which is exactly the model analysed in [58]. There, it was also shown that using an
appropriate parabolic scaling, one can obtain a Chemotaxis-like model with linear
transport but nonlinear diffusion in the diffusive limit.

Transport in Neurones
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Another interesting example is transport processes within cells, and we focus on
the example of vesicles in neurones. Vesicles are small bubbles of cell membrane
that are produced in the cell body (soma) and are then transported along extensions
of the cell called axons. The transport itself is carried out by motor proteins that
move along microtubules and are allowed to change their direction of motion.
This situation can be modelled using the discrete random walks from Sect. 2.2
by considering the one-dimensional case which, in the macroscopic limit, yields
Eq. (17). Since we are now dealing with two species f− and f+, denoting left- and
right-moving complexes, we also have to adopt our boundary conditions as follows:
denoting by j+ and j− the respective fluxes,

−j+ = α+(1 − φρ), j− = β−f− at x = 0,

−j− = α−(1 − φρ), j+ = β+f+ at x = 1.

System (17) has, to the best of our knowledge, not yet been considered with these
boundary conditions. From an application point of view, it is relevant to study
whether these models are able to reproduce the almost uniform distribution of motor
complexes observed in experiments, see [13, 12] for an analysis.

More recently, the influence of transport in developing neurites has been studied
in [44] with an emphasis on the mechanism that decides which of the growing
neurites becomes an axon. To model this situation, the concentration of vesicles
at some and growth cones is modelled separately by ordinary differential equations
which are connected to instances of (35) via flux boundary conditions.

7 Numerical Simulations

7.1 One Spatial Dimension

In the following, we present numerical examples in one spatial dimension com-
paring a subset of models presented above. All simulations in this subsection are
based on a finite element discretisation in space (using P1 elements). The time
discretisation is based on the following implicit–explicit (IMEX) scheme:

f n+1 − f n
τ

+ v0∇ · [f (1 − φρn)e(θ)+ aφpf ] = DT∇ · (B1(ρ
n)∇f n+1

+ B2(f
n)∇ρn+1)+ c�θf n,

in which the superscript index n refers to the nth time step, that is, tn = nτ , τ > 0.
Here, transport and rotational diffusion are taken explicitly, while in the diffusive
part terms of second order are treated implicitly. Thus, in every time step, a linear



62 M. Bruna et al.

system has to be solved. All schemes were implemented using the finite element
library NgSolve, see [62].

We will illustrate the behaviour of solutions for models (19), (33), (35), in case
of in- and outflux (44), no-flux (42) or periodic boundary conditions in case of
two species, referred to as red r and blue b particles. We use subscript r and b,
when referring to their respective inflow and outflow rates as well as diffusion
coefficients. Note that while for the models (19) and (35), the one-dimensional
setting is meaningful, for model (33), the simulations are to be understood as two-
dimensional but with a potential that is constant in the second dimension. For all
simulations, we discretised the unit interval into 150 elements and chose time steps
of size τ = 0.01.

Flux Boundary Conditions
Figures 3 and 4 show density profiles for the respective models at time t =
0.5, 2, 3, 30. In Fig. 3, we chose rather low rates (in particular below 1/2) and with
αr > βr as well as αb < βb which resulted in species r being in a outflux limited and
species b an in-flux limited phase. We observe that for these low rates, all models
are quite close to one another, yet with different shapes of the boundary layers. The
slope of solutions at the boundary seems to be influenced by the respective diffusion
terms, in particular the cross-diffusion terms in (33) and (35).

In Fig. 4, we chose rates above 1/2 to obtain the maximal current phase. There,
interestingly, it turns out that the dynamics of model (33) shows a completely dif-
ferent behaviour. This constitutes an interesting starting point for further analytical
considerations on the phase behaviour. Figure 5 displays the evolution of the total
mass of the respective species for different inflow and outflow rates. We observe
that the reaction–diffusion (19) and the lattice-based cross-diffusion system (35)

(a) (b) (c) (d)

Fig. 3 Flux boundary conditions with λ = 0.01, Dr = 0.1, Db = 0.1, αr = 0.02, βr =
0.01, αb = 0.01 and βb = 0.02, which yields the in-flux-limited phase for species r and outflux-
limited for b. (a) t = 0.5. (b) t = 2. (c) t = 3. (d) t = 200
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(a) (b) (c) (d)

Fig. 4 Flux boundary conditions with λ = 0.01,Dr = 0.1, Db = 0.1, αr = 0.6, βr = 0.8, αb =
0.7, βb = 0.9 which yields the maximal current phase. (a) t = 0.5. (b) t = 2. (c) t = 3. (d)
t = 200

(a) (b) (c)

Fig. 5 Evolution of the total mass for different flux boundary conditions and withDr = Db = 0.1
and λ = 0.01 in all cases. (a) αr = 0.02, βr = 0.01, αb = 0.01, βb = 0.02. (b) αr = 0.6, βr = 0.8,
αb = 0.7, βb = 0.9. (c) αr = 0.1, βr = 0.2, αb = 0.2, βb = 0.4

show a similar quantitative behaviour in several inflow and outflow regimes, while
the cross-diffusion system obtained via asymptotic expansion (33) behaves only
qualitatively similar.
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(a) (b) (c) (d)

Fig. 6 Periodic boundary conditions with Dr = Db = 0.01 and λ = 0.01. All models converge
to constant stationary solution. (a) t = 0. (b) t = 0.4. (c) t = 1. (d) t = 3.9

Periodic Boundary Conditions
For periodic boundary conditions, noting that the velocity is constant, thus periodic,
we expect constant stationary solutions whose value is determined by the initial
mass. This is indeed observed in Fig. 6. However, for earlier times, their dynamics
differs substantially, in particular for (35), the influence of cross-diffusion (‘jams’)
is most pronounced.

Confining Potential
Finally, in Fig. 7, we consider the situation of no-flux conditions together with a
confining potential V (x) = (x − 1

2 )
2. Here, we observe very similar behaviour for

all models, probably due to the fact that the transport term dominates the dynamics.

7.2 Two Spatial Dimensions

In this subsection, we reproduce numerical examples in two spatial dimensions
from [17]. In particular, we show examples of the active continuous model (15),
the active hybrid model (22) and the passive version of the latter (35), which
corresponds to setting DR = 0 in (22) and choosing an initial condition in angle
of the form δ(θ − θ1) + δ(θ − θ2) with θi such that Vr = −(v0/DT )e(θ1) · x and
Vb = −(v0/DT )e(θ2) · x. Throughout this subsection, we use periodic boundary
conditions in the spatial domain � = [0, 1]2, as well as in the angular domain
[0, 2π ] for the active models (15) and (22). We use the first-order finite-volume
scheme of [17], which is based on [26, 61]. The scheme is implemented in Julia.
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(a) (b) (c) (d)

Fig. 7 No-flux boundary conditions with Dr = Db = 0.1, λ = 0.01 and a confining potential
Vr = Vb = 5(x − 0.5)2. (a) t = 0. (b) t = 0.5. (c) t = 2. (d) t = 10

Fig. 8 Hybrid model for active particles (22) with periodic boundary conditions in [0, 1]2×[0, 2π ]
at different times, starting from a 3D random perturbation around the homogeneous solution. The
first row shows the total density ρ(x, t) with mass φ and the second row the mean direction
(x, t) (48). Parameters used: DT = DR = 1, v0 = 60, φ = 0.7

We use a discretisation with 21 points in each direction and a time step �t ≤ 10−5

satisfying the CFL condition given by Theorem 3.2 in [26].
Figures 8 and 9 show the outputs of the two active models (15) and (22) using

the same parameters, DT = DR = 1, v0 = 60, φ = 0.7. In both case, we observe
the formation of motility-induced phased separation (MIPS), namely a separation
into dilute and dense regions and a polarisation of particles in the boundary between
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Fig. 9 Hybrid model for active particles (22) with periodic boundary conditions in [0, 1]2×[0, 2π ]
at different times, starting from a 3D random perturbation around the homogeneous solution. The
first row shows the total density ρ(x, t)with mass φ and the second row the mean direction (x, t).
Parameters used: DT = DR = 1, v0 = 60, φ = 0.7

these two regions pointing towards the dense region. We show the rescaled spatial
density ρ(x, t) = φ ∫ f dθ as well as the mean direction

(x, t) :=
∫
f eθdθ∫
f dθ

. (48)

Figures 10 and 11 show a comparison between the active hybrid model (22) and
its corresponding passive model (30), which we obtain by setting DR = 1 and a
discretisation in angle with only two grid points (which define the two species r and
b with respective travel directions θ1 = −π/2 and θ2 = π/2). We observe different
types of segregation in each case. In the active case, we observe a blob with high
density that is well-mixed in its centre (namely, orientations are uncorrelated as it
corresponds to small, see bottom right plot in Fig. 10). In contrast, in the passive
case, in addition to the separation into dilute and dense regions (see first row in
Fig. 11), we observe a segregation of the two species within the dense phase: the red
particles, which want to move downwards, are met below by a layer of blue particles,
which want to move upwards (see second and third rows in Fig. 11). A similar
structure in the active model (22) can be observed if the final pattern is mappable
to a one-dimensional pattern, as in the case shown in Fig. 12 (which corresponds
to different values of φ and v0 and a different initial condition). In this case, ‘left’-
moving particles concentrate at one boundary and ‘right’-moving particles at the
other. For these same parameters, the passive model (30) displays four instead of
two lanes (see Fig. 13).

Finally, we show simulation examples of the stochastic models corresponding to
the active (22) and the passive (30) macroscopic models. Simulations are performed
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Fig. 10 Hybrid model for active particles (22) with periodic boundary conditions in [0, 1]2 ×
[0, 2π ] at different times, starting from a 3D random perturbation around the homogeneous
solution. The first row shows the total density ρ(x, t) with mass φ and the second row the mean
direction (x, t) (48). Parameters used: DT = DR = 1, v0 = 60, φ = 0.6

Fig. 11 Discrete model for passive particles (30) with periodic boundary conditions in [0, 1]2 at
different times, starting from a 3D random perturbation around the homogeneous solution. The first
row shows the total density ρ(x, t) = r+b with mass φ, while the densities of the red r and the blue
b species are given in the second and third rows, respectively. Parameters used: DT = DR = 1,
v0 = 60, φ = 0.6
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Fig. 12 Hybrid model for active particles (22) with periodic boundary conditions in [0, 1]2 ×
[0, 2π ] at different times, starting from a 3D random perturbation around the homogeneous
solution. The first row shows the total density ρ(x, t) with mass φ and the second row the mean
direction (x, t) (48). Parameters used: DT = DR = 1, v0 = 40, φ = 0.7

Fig. 13 Discrete model for passive particles (30) with periodic boundary conditions in [0, 1]2 at
different times, starting from a 2D random perturbation around the homogeneous solution. The first
row shows the total density ρ(x, t) = r+b with mass φ, while the densities of the red r and the blue
b species are given in the second and third rows, respectively. Parameters used: DT = DR = 1,
v0 = 40, φ = 0.7
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Fig. 14 Example configurations of two microscopic models corresponding to ASEP in position
and different rules in orientation. (Left column): hybrid model with Brownian motion in angle
with corresponding macroscopic model (22). (Right column): passive orientations as given by the
initial condition, here either θ = ±π/2, corresponding to the macroscopic model (30) for two
species of red and blue particles. Snapshots at T = 0.5 using fixed time steps of �t = 10−4

and parameters φ and v0 as indicated above each plot. The colormap shows the strength of the
polarisation |q|

using the agent-based modelling package Agents.jl [31] in Julia and as described in
[17]. In both cases, N particles perform an ASEP [(a’), (b) and (c) mechanisms of
Sect. 2.2] on a square lattice with M lattice sites such that the occupied fraction is
φ = N/M . In the former case, particles’ orientation diffuses with DR in [0, 2π ], so
that the direction of the asymmetric jump process for each particle changes in time.
In the latter case, particles are initialised as either red (pointing downwards) or blue
(pointing upwards) and their orientations are fixed over time. We observe MIPS in
all four cases shown in Fig. 14, with the active system displaying either a strip or
blob pattern (left column) and the passive system having dilute–dense boundaries



70 M. Bruna et al.

and red–blue boundaries running left to right as we had already seen in the PDE
simulations (right column). The colormap in the figure shows the absolute value of
the mean orientation in (48) computed using a Moore neighbourhood in each
lattice: | | = 0 in purely isotropic regions (and in empty regions) and | | = 1
in regions with perfectly aligned particles, which happens within each segregated
region of blue and red particles in the passive case and, to a lesser extent, in the
boundary between dilute and dense regions in the active case.
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Mathematical Modeling of Cell Collective
Motion Triggered by Self-Generated
Gradients

Vincent Calvez, Mete Demircigil, and Roxana Sublet

Abstract Self-generated gradients have attracted a lot of attention in the recent
biological literature. It is considered as a robust strategy for a group of cells to find
its way during a long journey. This note is intended to discuss various scenarios
for modeling traveling waves of cells that constantly deplete a chemical cue and so
create their own signaling gradient all along the way. We begin with one famous
model by Keller and Segel for bacterial chemotaxis. We present the model and
the construction of the traveling wave solutions. We also discuss the limitation of
this approach and review some subsequent work addressing stability issues. Next,
we review two relevant extensions, which are supported by biological experiments.
They both admit traveling wave solutions with an explicit value for the wave speed.
We conclude by discussing some open problems and perspectives, and particularly
a striking mechanism of speed determinacy occurring at the back of the wave. All
the results presented in this note are illustrated by numerical simulations.

1 Introduction

It has been now 50 years that Evelyn F. Keller and Lee A. Segel published their
article “Traveling bands of chemotactic bacteria: A theoretical analysis” [40],
which is part of a series of works about the modeling of chemotaxis in bacteria
Esherichia coli and amoebae Dictyostelium discoideum (shortnamed as Dicty in the
following) [37, 38, 39, 40]. This article described in a simple and elegant way the
propagation of chemotactic waves of E. coli in a one-dimensional space, echoing
the remarkable experiments by Adler performed in a capillary tube [1].
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In the present contribution, the seminal ideas of Keller and Segel are discussed
from a modern perspective, after half a century of intense activity at the interface of
mathematics and biology. Our goal is not to review exhaustively various directions
of research in the modeling of chemotaxis. Our narrow objective consists in setting
the focus on the notion of self-generated gradients (SGG), which has recently shed a
new light on several biological processes, both in bacterial collective motion and in
some aspects of developmental biology [69, 67]. SGG are at the heart of the model in
[40], in which cells create their own signaling gradient by consuming some nutrient
while moving collectively from one side of the domain to the other. There, collective
motion results from the averaged biases in the individual trajectories, in response to
nutrient heterogeneities, a process called chemotaxis. This concept of SGG can be
generalized to any situation where the signal depletion and chemotaxis functions
overlap within the same cells [58, 68, 69].

SGG in Waves of Bacteria The work of Keller and Segel has initiated a wealth of
studies on bacterial chemotaxis. We refer to the comprehensive review of Tindall
et al. [65], and also the recent studies [29, 17] for new biological questions in this
topic. Most of the works discussed in this note consider short time experiments,
or experiments at low level of nutrients, neglecting the effect of cell division.
This makes a clear distinction between SGG and reaction–diffusion waves, as the
celebrated Fisher/Kolmogorov–Petrovsky–Piskunov (F/KPP) equation [27, 41, 3].
For this reason, we shall not comment further about the numerous modeling
contributions following the patterns reported by Budrene and Berg [8, 9, 7] (ring
expansion followed by formation of bacteria spots with remarkable symmetries).
Chemotaxis has been shown to be crucial in the emergence of such patterns.
However, the dynamics of ring expansion are mainly driven by growth and diffusion
such as described by F/KPP (but see [17] for a recent study where chemotaxis has
been shown to enhance range expansion).

There exist many modeling contributions of chemotaxis in bacteria [65, 31], with
a particular emphasis on the derivation of macroscopic models from individual rules
through kinetic transport equations; see, e.g., [2, 49, 50, 15, 26, 14, 4]. In contrast,
the number of contributions about mathematical analysis of traveling waves without
growth beyond [40] is relatively scarce. We refer to [33], for an (algebraic) extension
of [40] with more general chemotaxis functions and uptake rates. We also refer to
the series of articles by Z.A. Wang and co-authors; see [73] for a preliminary review
and below for further discussion.

SGG in Development and Cancer In developmental biology, cell movement over
long distances is mediated by navigating cues, including chemotactic factors [45]. It
is commonly postulated that external, pre-patterned gradients, drive cellular migra-
tion. One of the key conceptual advantages of SGG is to free the developmental
process from the requirement of pre-imposed long-range chemoattractant gradients.
In contrast, SGG travel together with the cells, so that they can experience similar
environmental conditions (chemical concentration, gradient steepness) all over the
journey. This is thought to provide robustness to the developmental system [68, 67].
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Recently, SGG have been shown to occur during embryogenesis, and in particular
during the initiation of the posterior lateral line in zebrafish [22, 72]. More precisely,
migrating cell cohorts (consisting of approximately a hundred of cells) can generate
and sustain gradients of chemoattractants across their length. This experimental
work is of great importance as being the first proof of the occurrence of SGG in
vivo.

Self-generated gradients are also under investigation during cancer invasion
and metastasis. This includes modeling in silico (see [59] and references therein),
and experiments with cell cultures in vitro [47]. In particular, we highlight the
work of [58], in which an astonishing self-guidance strategy in cancer epithelial
cell populations was unravelled. In fact, cells were put in microfluidic mazes,
without any pre-existing external gradients. Most of them could find their way
out of the mazes by generating their own navigating cues. Experimental studies
with increasingly complex mazes were also performed with Dicty cells, with quite
remarkable outcomes [70].

Plan and Purpose of the Chapter In Sect. 2.1 we recall the basic construction of
traveling waves in the seminal article [40]. The lack of positivity of the chemical
concentration is illustrated by some numerical simulations (Sect. 2.2). The issue of
instability is also reviewed. Section 2.3 briefly presents some possible variations
of the original article from the literature. It is one of the main goals of the
present contribution to discuss in detail two possible extensions that are biologically
relevant (that is, supported by experiments). Section 3 contains an overview of past
work where another attractant signal is added to prevent cell dispersion during
propagation. This results in competing cell fluxes, with stronger advection at the
back of the wave than at the edge. Section 4 reports on a piece of recent work
including signal-dependent phenotypical switch (division/migration). This results
in a wave sustained by cell division restricted to the edge.

All mathematical results proven here are simple, namely involving explicit
construction of one-dimensional traveling waves (whose respective stabilities are
supported by numerical simulations of the Cauchy problems). The last construction
is original, up to our knowledge; see Theorem 4.2. It could be of interest for
experts in reaction–diffusion equations, as it exhibits a possibly new phenomenon
of selection of the minimal speed at the back of the wave.

2 The Keller–Segel Model and Variations

2.1 The Construction of Waves by Keller and Segel

In this section, we recall briefly the model and analysis in [40]. The cell density
(bacteria) is denoted by ρ(t, x), for time t > 0, and position along the channel axis
x ∈ R, whereas the concentration of the signaling molecule is denoted by S(t, x).
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(2.1)

The equation on ρ combines unbiased (diffusive) motion with directed motion in
response to the logarithmic signaling gradient (see below for further discussion
about this specific choice), with intensity χ > 0.

On the one hand, the equation on ρ is conservative, and the total mass of cells
in the channel, which is an invariant of the system, is denoted by M , so that M =∫
R
ρ(0, z) dz = ∫

R
ρ(t, z) dz. On the other hand, the chemical concentration decays

globally in time, and the limiting value at ∞ is denoted by Sinit, which can be viewed
as the initial, homogeneous, concentration in the channel associated with the Cauchy
problem.

Noticeably, the consumption term in the equation on S, namely −kρ, does not
involve S itself, precluding any guarantee about the positivity of S in the long time.
Nevertheless, the existence of positive traveling wave solutions ρ(x−ct), S(x−ct)
was established in [40] by means of explicit computations, in the absence of signal
diffusion D = 0 (for mathematical purposes), and with the condition χ > d. The
wave under interest has the following structure: ρ ∈ L1+(R), with limz→±∞ ρ(z) =
0, and S ∈ L∞+ (R) is increasing with limz→−∞ S(z) = 0, and limz→+∞ S(z) =
Sinit, the reference value of the chemical concentration.

Theorem 2.1 (Keller and Segel [40]) Assume D = 0, and χ > d. Then, there
exist a speed c > 0 (depending on M , k, and Sinit, but not on χ nor on d) and a
stationary solution of (2.1) in the moving frame (ρ(x−ct), S(x−ct)), such that ρ is
positive and integrable,

∫
R
ρ(z) dz = M , and S is increasing between the following

limiting values:

{
limz→−∞ S(z) = 0 ,

limz→+∞ S(z) = Sinit .

Before we recall briefly the construction of the wave solution, let us comment on
the value of the wave speed c that can be directly obtained from the second equation
in (2.4), whatever the value of D ≥ 0 is. Indeed, the equation in the moving frame
reads

−cdS
dz

= Dd
2S

dz2 − kρ .

By integrating this equation over the line, and using the extremal conditions at ±∞
(that can be verified a posteriori), we find

cSinit = k
∫

R

ρ(z) dz = kM . (2.2)
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Strikingly, the wave speed depends only on the dynamics of establishment of the
gradient. In particular, it does not depend on the intensity of the chemotactic
response χ . This is in contrast with several conclusions to be drawn from alternative
models in the sequel (see Sects. 3 and 4).

Proof The speed c is given a priori by the relationship (2.2).
The first step in the construction of traveling wave solutions is the zero-flux

condition in the moving frame z = x − ct , namely

−cρ − d dρ
dz

+ χρ d log S

dz
= 0 ⇔ d log ρ

dz
= − c

d
+ χ

d

d log S

dz

⇔ ρ(z) = a exp
(
− c
d
z+ χ

d
log S

)
,

where a is a (positive) constant of integration. The second step consists in solving
the following ODE (assuming D = 0):

c
dS

dz
= ka exp

(
− c
d
z+ χ

d
log S

)

⇔
(

1 − χ

d

)−1
(

S
1− χ

d

init − S(z)1− χ
d

)

= kad

c2 exp
(
− c
d
z
)
.

By re-arranging the terms, we obtain

(
S(z)

Sinit

)1− χ
d = 1 +

(χ

d
− 1
)(kad

c2
S
χ
d
−1

init

)

exp
(
− c
d
z
)
.

Suppose that χ < d, then the right-hand side goes to −∞ as z → −∞, which is
a contradiction. Hence, the calculations make sense only if χ > d. By translational
invariance, the constant a can be chosen so as to cancel the prefactor in the right-
hand side (provided χ > d), yielding the simple expression:

S(z)

Sinit
=
(

1 + exp
(
− c
d
z
)) d

d−χ
. (2.3)

The corresponding density profile is

ρ(z) = a′ exp
(
− c
d
z
) (

1 + exp
(
− c
d
z
)) χ

d−χ
, (2.4)

for some constant a′, that can be determined explicitly through the conservation of
mass. ��
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2.2 Positivity and Stability Issues

Despite its elegance, the previous construction suffers from two drawbacks. First
of all, the positivity of the signal concentration S is not guaranteed in the Cauchy
problem. Actually, numerical solutions soon break down because of this positivity
issue. This occurs starting from a generic initial data (Fig. 1a), and even from
the traveling wave solution (ρ(z), S(z)) given by the expressions (2.3)–(2.4), after
accumulation of numerical errors (Fig. 1b). Nevertheless, the positivity can be
manually rescued by setting Sn+1 = max(Sn, ε) for some arbitrary threshold ε � 1,
as suggested in [32]. In that case, the wave seems to propagate in a stable way in the
long term; see Fig. 1c.

Second, and somewhat related, is the problem of stability of the wave constructed
in Sect. 2.1. Linear stability was addressed first in [53], where it was proven that
the spectral problem admits no real positive eigenvalue. However, the linearized
problem is not self-adjoint, so that this preliminary result is largely incomplete
from the perspective of stability. Few years later, it was proven in [48] that the
(essential) spectrum of the linear operator intersects the right half-plane, meaning
that the wave is linearly unstable. The authors proved a refined instability result,
when perturbations are restricted to a class of exponentially decreasing functions.
Noticeably, their results cover both D = 0 and D > 0. This analysis has been
largely extended in [18, 19] where it was proven that the wave is either transiently
(convectively) unstable; that is, the spectrum is shifted in the open left half plane
in a two-sided exponentially weighted function space [55], when χ > d is not
too large, but it is absolutely unstable when χ is above some threshold, that is,
χ
d
> β0

crit(D), where, e.g., β0
crit(0) is the unique real root above one of an explicit

10th order polynomial; see [19, Theorem 2.1].
Recently, it has been established the existence and nonlinear stability of station-

ary solutions for the problem (2.1) set on a half-line {x > 0}, with, respectively,
Neumann boundary condition for ρ, and positive Dirichlet boundary condition for S
at the origin [13]. The motivation comes from the study of spike solutions stabilized
by a sustained amount of chemical concentration at the boundary. The stability
result in [13] imposes quite stringent conditions on the decay of the initial data
at +∞. Nevertheless, local stability of the stationary spike does not preclude loss of
positivity in the numerics when initiating the Cauchy problem with initial conditions
far from equilibrium; see Fig. 2.

Remark 2.2 Many of the references mentioned above also discuss and analyze the

case of a degenerate consumption rate ∂S
∂t

= D∂2S
∂x2 − kρSm (m < 1), without

changing much of the global picture.
The case m = 1 differs significantly, however. It can be viewed directly from

the case D = 0 that the logarithmic gradient of the putative wave in the moving
frame, that is, d log S

dz
cannot have a positive limit as z → −∞, simply because it

satisfies the relationship −c d log S
dz

= −kρ, the latter being integrable. Consequently,
advection cannot balance diffusion at −∞, preventing the existence of a traveling



Fig. 1 Positivity and stability issues in the numerical simulations of (2.1). (a) Starting from
a generic initial data, the numerical scheme quickly breaks down because the signal becomes
negative at some point. The initial condition is shown in dashed line, and the final state in plain
line (last time before numerical breakdown). (b) Aligning the initial data on the exact density and
signal profiles (ρ(z), S(z)), (2.3)–(2.4), yields the same conclusion. The cell density is shown in
space/time. The numerical breakdown occurs at approximately t = 0.6. (c) The propagation of the
wave can be rescued by setting manually Sn+1 = max(Sn, 1E − 12) after each time step, as in
[32]. For all the figures, the parameters are (d = 1, χ = 2,D = 0, k = 1)
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Fig. 2 Numerical solutions of (2.1) with, respectively, Neumann boundary condition for ρ, and
positive Dirichlet boundary condition for S at the origin. (a) Local stability, as established in [13]
is illustrated numerically, for an initial condition chosen near the stationary state, and a relatively
large diffusion of the chemical (d = 1, χ = 2,D = 1, k = 1). (b) Nonetheless, the numerical
solution may become nonpositive when the initial condition is far from the stationary state, and
diffusion of the chemical is not too large (d = 1, χ = 2,D = 0.25, k = 1). For each figure, the
initial condition is shown in dashed line, and the final state in plain line (last time before numerical
breakdown in (b))
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wave. The same conclusion holds in the case D > 0, for which u = d log S
dz

is a
homoclinic orbit of the following first-order equation:

du

dz
= − c

D
u− u2 + k

D
ρ ,

that leaves the origin u = 0 at z = −∞ and gets back to the origin u = 0 at
z = +∞; see [10, Proposition 6.3].

2.3 Variations on the Keller–Segel Model

As mentioned above, the seminal work [40] gave rise to a wealth of modeling
and analysis of traveling bands of bacteria. Many extensions were proposed soon
after Keller and Segel’s original paper, with various sensitivity functions (other than
the logarithmic sensitivity), and various consumption rates. The models have the
following general form:

⎧
⎪⎪⎨

⎪⎪⎩

∂ρ

∂t
+ ∂

∂x

(

−d ∂ρ
∂x

+ ρχ
(

S,
∂S

∂x

))

= 0 ,

∂S

∂t
= D∂

2S

∂x2
− k(S, ρ) ,

(2.5)

where the chemotactic sensitivity χ can be a function of both the signal concentra-
tion and its gradient (as well as the diffusion coefficient d—dependency not reported
here for the sake of clarity). These variations were nicely reviewed by Tindall et al.
[65], and we are not going to comment them, but the contribution of Rivero et al.
[51]. The latter follows the approach of Stroock [64] and Alt [2]. These approaches
make the connection between the individual response of bacteria to space–time
environmental heterogeneities and the macroscopic flux, hence making sense of the
aforementioned averaging, by means of individual biases in the trajectories (see,
e.g., [49, 50, 15, 26, 14, 4], and more specifically [24, 56, 60, 74] for bacterial
populations). Interestingly, Rivero et al. postulate a chemotactic advection speed χ ,
which is nonlinear with respect to the chemical gradient at the macroscopic scale,
namely

χ

(

S,
∂S

∂x

)

= χ tanh

(

f (S)
∂S

∂x

)

, (2.6)

where f is a decreasing function containing the details of signal integration by a
single cell.

Up to our knowledge, none of the models in the long list of existing variations
could exhibit traveling waves while preserving positivity of S and keeping the total
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mass
∫
R
ρ constant (that is, ignoring growth). The minimal requirement for ensuring

positivity would essentially be that the uptake function k(S, ρ) is dominated by S
at small concentration, typically: lim supS→0

k(S,ρ)
S

< ∞. However, this intuitively
leads to a shallow (logarithmic) gradient at the back of the wave, unable to guarantee
the effective migration of cells left behind; see Remark 2.2. Cell leakage has long
been identified in the biological literature but not considered as a major issue; see,
for instance, a discussion in [29], and also the addition of a linear growth term in
[57] so that the loss of cells at the back is qualitatively compensated by cell division
(for a realistic value of the division rate).

It is interesting to discuss the natural choice −k(S, ρ) = −kSρ (combined with
logarithmic sensitivity), which has been widely studied using tools from hyperbolic
equations (after performing the Hopf–Cole transformation) by Z.A. Wang and co-
authors; see the review [73], and further stability results in [35, 42]. The issue
of shallow gradients is overcome by the boundary conditions at infinity, ρ being
uniformly positive at least on one side. Clearly, the traveling wave solutions are not
integrable. This hints to the conflict of conservation of mass and chemical positivity,
which seem not concilable.

This leakage effect is a major mathematical issue, because most of the analytical
studies build upon the existence of a wave speed and a wave profile, which is
stationary in the moving frame.

2.4 Beyond the Keller–Segel Model: Two Scenarios for SGG

In the next two sections, we discuss two relevant modeling extensions, motivated
by biological experiments, for which traveling waves exist and are expected to be
stable. In the first scenario, cell leakage is circumvented by enhanced advection at
the back of the wave, with an asymptotic constant value of the transport speed at
−∞. In the second scenario, cell leakage occurs, but it is naturally compensated by
growth at the edge of the propagating front.

For each scenario, we discuss briefly the biological motivations. Then we present
the explicit construction of the traveling wave solutions, together with the formula
for the wave speed. When possible, we discuss the connections with some other
works in the literature.

3 Scenario 1: Strongest Advection at the Back

In this section, we present some study performed a decade ago, revisiting original
Adler’s experiment; see Fig. 3. Inspired by massive tracking analysis, Saragosti
et al. [56] proposed a simple model for the propagation of chemotactic waves of
bacteria, including two signals (see also [75] for an analogous approach developed
independently at the same time). The macroscopic model is the following:
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Fig. 3 Cartoon of the experiments performed in [56] and [57]. A band of bacteria is traveling from
left to right in a microfluidic channel. Videomicroscopy allows tracking individual trajectories
inside the wave, revealing heterogeneous behaviors: biases are stronger at the back of the wave
than at the edge

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ρ

∂t
+ ∂

∂x

(

−d ∂ρ
∂x

+ ρ
(

χSsign

(
∂S

∂x

)

+ χAsign

(
∂A

∂x

)))

= 0 ,

∂S

∂t
= DS ∂

2S

∂x2 − k(S, ρ) ,

∂A

∂t
= DA∂

2A

∂x2 + βρ − αA .

(3.1)

As compared to (2.5), it is supplemented with a second chemical signal, A, which
plays the role of a communication signal released by the cell population (hence, the
source term +βρ) and naturally degraded at a constant rate α > 0. Indeed, bacteria
are known to secrete amino acids, which play the role of a chemo-attractant as part
of a positive feedback loop [5, 46].

Moreover, bacteria are assumed to respond to the signal in a binary way at the
macroscopic scale: the advection speed associated with each signal (S,A) can take
only two values, respectively, ±χS and ±χA, depending on the direction of the
gradients. Then, the total advection speed is simply the sum of the two components.
This was derived in [56] from a kinetic model at the mesoscopic scale, assuming a
strong amplification during signal integration; see also [10] for a discussion. This
can be viewed as an extremal choice of the advection speed proposed by Rivero et al.
[51], in the regime f → +∞ (2.6). The biophysical knowledge about the details of
signal integration in bacteria E. coli have increased in the meantime [66, 36, 34, 61].
Actually, the logarithmic sensing is a good approximation in a fairly large range of
signal concentrations. However, we retain this simple, binary, choice for theoretical
purposes.

As for the Keller–Segel model, traveling waves for (3.1) have the great advantage
of being analytically solvable, essentially because the problem reduces to an
equation with piecewise constant coefficients. Introduce again the variable z =
x − ct in the moving frame at (unknown) speed c. Then, we have the following
result:
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Theorem 3.1 (Saragosti et al. [56]) There exist a speed c > 0 and a positive limit
value S− < Sinit, such that the system (3.1) admits a stationary solution in the
moving frame (ρ(x−ct), S(x−ct), A(x−ct)), such that ρ is positive and integrable,∫
R
ρ(z) dz = M , A decays to zero on both sides, and S is increasing between the

following limiting values:
{

limz→−∞ S(z) = S− ,
limz→+∞ S(z) = Sinit .

Moreover, the speed c > 0 is determined by the following implicit relation:

χS − c = χA c
√
c2 + 4αDA

. (3.2)

Proof Contrary to the proof of Theorem 2.1, the wave speed c cannot be computed
by a direct argument.

As a preliminary step, we should prescribe the environmental conditions, as they
are expected heuristically to be seen by the bacteria; see Fig. 4. On the one hand, we

seek an increasing profile S, hence sign
(
dS
dz

)
= +1, and the equation on the density

profile ρ is decoupled from the dynamics of S. On the other hand, we assume that
the communication signal A reaches a unique maximum, which can be set at z = 0
by translational invariance. The validation of this ansatz, a posteriori, will set the
equation for c (3.2).

The equation for ρ has now piecewise constant coefficients in the moving frame:

−cdρ
dz

+ d

dz

(

−d dρ
dz

+ ρ (χS + χAsign (−z))
)

= 0 .

Fig. 4 Sketch of the chemical environment viewed by the cell density in model (3.1). It is
characterized by stronger advection at the back (the two signals have the same orientation), than
at the edge (the two gradients have opposite orientations). When chemotactic speeds coincide
(χS = χA), then we simply have diffusion on the right side of the peak
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Hence, ρ is a combination of two exponential functions:

ρ(z) =

⎧
⎪⎨

⎪⎩

exp (λ−z) for z < 0, λ− = −c + χS + χA
d

(signals are aligned),

exp (−λ+z) for z > 0, λ+ = c − χS + χA
d

(signals are competing).

Next, the attractant concentration A can be computed explicitly, by convolving
the source term βρ with the fundamental solution of the elliptic operator −c d

dz
−

DA
d2

dz2 + α, denoted by A, that is, A = βA ∗ ρ. Coincidentally, A shares the same
structure as ρ, namely A(z) = a0 exp(μ−z) for z < 0 and A(z) = a0 exp(−μ+z)
for z > 0, with μ± = 1

2DA

(
±c +

√
c2 + 4αDA

)
, and a0 is a normalizing factor.

It remains to check the preliminary ansatz, that is, A changes monotonicity at
z = 0. A straightforward computation yields

dA

dz
(0) = βa0

(

− 1

1 + λ−/μ+
+ 1

1 + λ+/μ−

)

.

Therefore, the construction is complete, provided λ−μ− = λ+μ+, which is
equivalent to (3.2). ��

To partially conclude, let us highlight the fact that cohesion in the wave is
guaranteed by the local aggregation signal A. To put things the other way around, in
the absence of the driving signal S, the cells can aggregate thanks to the secretion of
A, and the density reaches a stationary state (standing wave). In turn, this cohesive
state can travel (with some deformation) in the presence of the (self-generated)
driving signal S, see Fig. 5 for a numerical illustration. To make the link with SGG

Fig. 5 Numerical simulation of model (3.1) for a half-Gaussian initial density of bacteria
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in developmental biology [22], let us point to the modeling study [63], which is
devoted to the migration of cell collectives in the lateral line during development
of the zebrafish. There, it is assumed that the rod of cells maintains its shape per se
with a constant length, which is a parameter of the model; see also [12] for biological
evidence of cell attraction during collective motion.

4 Scenario 2: Cell Leakage Compensated by Growth

In this section, we present a recent model of SGG, including localized (signal-
dependent) growth [16]. This work was motivated by aerotactic waves of Dicty
observed in vertically confined assays, in which oxygen is consumed by the cells
and is soon limited at the center of the colony; see Fig. 6. We refer to [16] for the
experimental details. The model introduced in [16] was referred to as a “go-or-grow”
model, a term coined in a previous work by Hatzikirou et al. [30] in the context
of modeling cell invasion in brain tumors. There, the basic hypothesis was that
cells could switch between two states, or phenotypes: a migrating state “go” (with
enhanced random diffusion), and a proliferating state “grow” (with enhanced rate

Lateral exchange
of Oxygen

Initial layer of cells Cover glass

Lateral exchange
of Oxygen

Ring of cells Hypoxic region

a

b

Fig. 6 Schematic view of the experimental setup in [16]. (a) An initial layer of Dicty cells is
deposited at the center of the plate and covered with a large glass coverslip (after [21]). This
vertical confining reduces drastically the inflow of oxygen within the plate, by restricting it
to lateral exchanges. (b) Soon after the beginning of the experiment, a ring of cells emerges,
which is traveling over several days at constant speed with a well-preserved shape. The moving
ring consumes almost all the available oxygen, so that the center of the colony is at very low
concentration, below 1%
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of division), following previous works in the same context (see, e.g., [25]). In [30]
it was assumed that hypoxia (lack of oxygen) triggers the switch in the long-term
dynamics of the system, by selection of the migrating phenotype, but in a global
manner (oxygen supply was accounted for via the constant carrying capacity, as one
parameter of the cellular automaton). Later contributions considered PDE models
with density-dependent switch (see [62], as opposed to [25] where the switching rate
is not modulated, and also the experimental design of density-dependent motility in
bacteria [44]).

In [16], the go-or-grow hypothesis was revisited, by studying an expanding ring
of Dicty cells, with limited supply of oxygen. Figure 7a shows the cell density pro-
file, as it is observed in experiments. Figure 7b summarizes the minimal assumption
of an oxygen-dependent switch, as proposed in [16]. It was hypothesized that
the transition between the proliferating state and the migrating state is modulated
by the level of oxygen, with a sudden change of phenotype at some threshold
S0. Above this threshold, when oxygen is available in sufficient quantity, cells
exhibit slow random (diffusive) motion and divide at some constant rate. Below
this threshold, when oxygen is limited, cells stop dividing and move preferentially
up the oxygen gradient. The latter hypothesis (directional motion) is different
from the aforementioned go-or-grow models [25, 30, 62]. It is consistent with the
observations of individual tracking within the cell population in the bulk of the wave
in [16].

The following model recapitulates these assumptions:

⎧
⎪⎪⎨

⎪⎪⎩

∂ρ

∂t
+ ∂

∂x

(

−d ∂ρ
∂x

+ ρχ
(

S,
∂S

∂x

))

= r(S)ρ ,

∂S

∂t
= D∂

2S

∂x2 − k(S, ρ) .
(4.1)

with the specific choice

χ

(

S,
∂S

∂x

)

= χsign

(
∂S

∂x

)

1S<S0 , r(S) = r1S>S0 . (4.2)

This can be viewed as another variation of (2.5) including growth. It can also be
viewed as an extension of the celebrated F/KPP equation, with a signal-dependent
growth saturation, and including advection (we refer to [54, 11, 76] and references
therein for more classical synthesis of the F/KPP equation and the Keller–Segel
model of cellular aggregation). Interestingly, an analogous model was proposed
in [28], following a general motivation, and beginning with the statement that
proliferation is necessary to sustain wave propagation. As compared with (4.1)–
(4.2), in the latter work, the reproduction rate r is signal dependent with a linear
dependency, and there is no threshold on the chemosensitivity χ , which is simply
a linear function of the gradient ∂S

∂x
. As a consequence, the wave speed cannot be

calculated analytically, in contrast with (4.1)–(4.2) (see Theorem 4.1 below).
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Fig. 7 Graphical description of the “go-or-grow” model (4.1). (a) Individual cell tracking in [16]
shows different cell behaviors depending on the relative position with respect to the tip of the ring:
(I) ahead of the moving ring, cells exhibit unbiased motion, together with division events; (II)
inside the ring, cells exhibit clear directional motion (which indeed results in the formation and
maintenance of the ring); (III) the trail of cells that are left behind exhibit unbiased motion, again,
with more persistent trajectories (but this last observation is neglected in the model, because it was
shown to have limited effect). (b) We hypothesize a single transition threshold S0 such that cells
can divide above the threshold while they move preferentially up the gradient below the threshold,
when oxygen is limited. The unbiased component of cell motion (diffusion) is common to both
sides of the threshold

Before we show the construction of traveling wave solutions for (4.1)–(4.2),
let us comment on the reason why such solutions can exist. The expected density
profile exhibits a plateau of cells left behind the wave; see Fig. 7a. In the vertical
confining assay experiment with Dicty, this corresponds to cells that are still highly
motile but have lost the propension to move directionally. They cannot keep pace
with the self-generated oxygen gradient. The increasing amount of cells that are left
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behind is compensated by the growth at the edge of the pulse. This localized growth
term (above the oxygen threshold) creates a flux term (negative flux in the moving
coordinate), which is key to the mathematical construction of the wave.

We can be more precise about the negative flux issued from cell division
by looking at the traveling wave equation (4.1)–(4.2) in the moving coordinate
z = x − ct .

− cdρ
dz

+ d

dz

(

−d dρ
dz

+ ρχ
(

S,
dS

dz

))

= r(S)ρ . (4.3)

Below the oxygen threshold, S < S0, the right-hand side vanishes, and we are left
with a constant flux:

− cρ − d dρ
dz

+ ρχ
(

S,
dS

dz

)

= −J . (4.4)

By integrating (4.3) on {S > S0}, and using the continuity of the flux at the interface
{S = S0}, we find

J = r
∫

{S>S0}
ρ(z) dz . (4.5)

Note that the continuity of the flux is a prerequisite for the well-posedness of (4.1)–
(4.2); see [20] for a rigorous analysis of this problem, and unexpected mathematical
subtleties.

Theorem 4.1 (Cochet et al. [16], Demircigil [20]) There exist a speed c > 0 and
a positive limit value ρ− > 0, such that the system (4.1)–(4.2) admits a stationary
solution in the moving frame (ρ(x − ct), S(x − ct)), such that ρ and S have the
following limiting values:

{
limz→−∞ ρ(z) = ρ− ,
limz→+∞ ρ(z) = 0 ,

{
limz→−∞ S(z) = 0 ,

limz→+∞ S(z) = Sinit .

Moreover, the speed is given by the following dichotomy:

c =
⎧
⎨

⎩

2
√
rd if χ ≤ √

rd ,

χ + rd

χ
if χ ≥ √

rd .
(4.6)

Interestingly, the dichotomy in (4.6) depends on the relative values of the
advection speed (up the gradient) χ , and half the reaction–diffusion speed of the
F/KPP equation

√
rd. When the aerotactic biases are small (low advection speed

χ ), then the wave is essentially driven by growth and diffusion. When biases are
large, then the wave is mainly driven by aerotaxis. This has interesting implications
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in terms of maintenance of genetic diversity inside the wave (see [6, 52] for
diversity dynamics among reaction–diffusion traveling waves). In fact, the so-called
dichotomy between pulled and pushed waves is at play here; see [16, 20] for more
details and discussion.

In contrast to the original Keller–Segel model (2.2), the wave speed does not
depend on the features of oxygen consumption and diffusion.

Proof As in Sect. 3, the wave speed is not given a priori. We seek a monotonic
oxygen profile, such that dS

dz
> 0. Therefore, the first equation reduces to

−cdρ
dz

− d d
2ρ

dz2 + d

dz

{
0 if S > S0

χρ if S < S0

}

=
{
rρ if S > S0

0 if S < S0

}

.

By translational invariance, we assume that S = S0 occurs at z = 0.
For z < 0, we have by (4.4)–(4.5),

d
dρ

dz
= J + (χ − c)ρ , J > 0 . (4.7)

Suppose that c ≤ χ . Then, d dρ
dz

≥ J > 0, which is a contradiction with the
positivity of ρ. Hence, we must have c > χ . The solution of (4.7) is unbounded
unless it is constant, that is ρ = J

c−χ , and this is the natural choice we make for the
construction.

For z > 0, we have the standard linear problem arising in the F/KPP equation (at
small density):

−cdρ
dz

− d d
2ρ

dz2
= rρ .

We look for exponential solutions exp(−λz). The characteristic equation dλ2−cλ+
r = 0 has real roots when c2 ≥ 4rd. Then, we proceed by dichotomy.

� The case c = 2
√
rd. The general solution for z > 0 is of the form (a +

bz) exp(−λz), with λ =
√
r
d

the double root. The constant a coincides with J
c−χ

by continuity of the density (its value does not really matter here). Continuity of
the flux at the interface z = 0 yields −d(b−aλ) = χa, hence bd = a(√rd−χ).
Thus, the solution is admissible (b ≥ 0) if and only if χ ≤ √

rd.
� The case c > 2

√
rd. Standard arguments in the construction of reaction–

diffusion traveling waves imply to select the sharpest decay on the right side

[3, 71], namely ρ = a exp(−λz), with λ = 1
2d

(
c + √

c2 − 4rd
)

. Continuity of

the flux at the interface now writes −d(−aλ) = χa, which is equivalent to

2χ − c =
√
c2 − 4rd ⇔

(

c = χ + rd

χ

)

&
(
χ >

c

2

)
.
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Fig. 8 Numerical simulation of model (3.1) for an initial plateau of cells restricted to the interval
{x < 10}

It must be checked a posteriori that c > 2
√
rd, which is immediate. The last

inequality constraint ensures that χ >
√
rd, in contrast to the other side of the

dichotomy.

Thus, the construction is complete. ��
The wavefront constructed above appears to be numerically stable, driving the

long-time asymptotics; see Fig. 8. However, the very strong advection at the back of
the wave creates a decreasing density profile, which is actually constant at the back
of the wavefront, in contrast to the experiments showing a non-monotonic pulse
(Fig. 7). Several extensions were discussed in [16].

Logarithmic Sensitivity Below, we discuss a natural, yet original, extension of
the previous result, restoring the logarithmic gradient in the advection term. More
precisely, we consider (4.1) again, with the following choice of functions, instead
of (4.2):

χ

(

S,
∂S

∂x

)

= χ log

(
∂S

∂x

)

1S<S0 , r(S) = r1S>S0 . (4.8)

We present below a preliminary result about the existence of traveling waves,
followed by heuristic arguments about the determination of the speed, and some
numerical investigation.

Theorem 4.2 Assume D = 0, and k(S, ρ) = kρS for some k > 0. There exist a
speed c > 0 and a positive limit value ρ− > 0, such that the system (4.1)–(4.8)
admits a stationary solution in the moving frame (ρ(x − ct), S(x − ct)), such that
ρ and S have the following limiting values:
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{
limz→−∞ ρ(z) = ρ− ,
limz→+∞ ρ(z) = 0 ,

{
limz→−∞ S(z) = 0 ,

limz→+∞ S(z) = Sinit .

Moreover, the speed is given by the following dichotomy:

c = 2

√

r max

{

d, χ log

(
Sinit

S0

)}

. (4.9)

Proof We proceed similarly as in the proof of the previous statement. The assump-
tion D = 0 enables expressing the logarithmic gradient in terms of the density:

− cd(log S)

dz
= −kρ . (4.10)

For z < 0, we have a constant (negative) flux at equilibrium in the moving
frame (4.4):

− cρ − d dρ
dz

+ χρ d(log S)

dz
= −J < 0 . (4.11)

Combining (4.10) and (4.11), we get the ODE satisfied by the cell density profile at
the back:

d
dρ

dz
= −cρ + kχ

c
ρ2 + J . (4.12)

This ODE comes with a sign condition, for the discriminant of the right-hand side to
be nonnegative (otherwise ρ cannot be positive for all z < 0 when dρ

dz
is uniformly

positive), that is,

c3

4kχ
≥ J . (4.13)

This condition is complemented by the integration of (4.10) over {z > 0}:

c log

(
Sinit

S0

)

= k
∫ +∞

0
ρ(z) dz = k

r
J ,

where the last identity follows from (4.5). This yields the constraint

c3

4rχ
≥ c log

(
Sinit

S0

)

⇔ c2 ≥ 4rχ log

(
Sinit

S0

)

. (4.14)

This is one part of the condition in (4.9). The second part comes naturally from the
constraint on the characteristic equation on {z > 0}, namely c2 ≥ 4rd. It can be
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shown by simple phase plane analysis that admissible solutions exist in both cases
when the inequality (4.9) is an equality. ��

The previous analysis calls for a few comments:

1. Contrary to the former construction in Theorem 4.1, the latter construction does
not come naturally with an equation for c. This is because there is no clear way
to remove one degree of freedom on {z < 0} under the sign condition (4.13).
Indeed, the solution of (4.12) is naturally bounded for any initial condition, in
opposition to (4.7).

2. Surprisingly, the additional restriction (4.14) results from conditions imposed on
the solution at the back of the wave on {z < 0}, in opposition to the standard case,
say for F/KPP and related equations, where it always comes from conditions on
{z > 0} (as it is the case for the classical restriction c2 ≥ 4rd).

At this point, we conjecture that the minimal speed (4.9) giving rise to admissible
solutions is selected when the Cauchy problem is initiated with localized initial data.

Claim 4.3 Starting from a compactly supported initial data, the asymptotic spread-
ing speed of solutions to (4.1)–(4.8) is given by (4.9).

This claim is supported by numerical exploration of the system in some range
of parameters; see Fig. 9 for one typical set of parameters. On the one hand, the
claim is not surprising in the case of small bias, when c = 2

√
rd. In fact, this

corresponds to the standard mechanism of speed determination at the edge of the
front in reaction–diffusion equation with pulled waves. This was indeed confirmed
in the previous model (4.1)–(4.2) [16, 20]. On the other hand, we emphasize that

it does look surprising in the case of large bias, when c = 2

√

rχ log
(
Sinit
S0

)
. In

the latter case, the selection of the minimal speed would come from a discriminant
condition at the back of the wave, which would be a quite original phenomenon, up
to our knowledge.

5 Conclusion and Perspectives

We exposed the original contribution of Keller and Segel devoted to chemotactic
waves of bacteria and discussed its limitations. These limitations are mainly
concerned with the possible lack of positivity of the chemical concentration in the
model. A pair of extensions were described. They both resolve the positivity issue
while keeping analytical solvability of the waves, thanks to the specific choice of
piecewise homogeneous models. In addition, they are both supported by biological
experiments, respectively, with bacteria E. coli and Dicty cells.

To conclude, let us mention some open problems, either on the mathematical or
on the modeling side.
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a

b

c

Fig. 9 (a) Traveling wave propagation obtained after long time simulations of the Cauchy
problem (4.1)–(4.8) with parameters (d = 1, χ = 2, r = 1,D = 0, k = 1, Sinit = 8, S0 = 2).
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Determinacy of the Speed at the Back of the Wave The result stated in Theorem 4.2
appeared quite unexpectedly. If further numerical exploration with alternative
schemes tends to confirm our Claim 4.3, we believe that understanding the
mechanism of speed selection is an interesting and possibly original problem per
se. We stress out that this mechanism occurs at z = −∞, in the sense that the sign
condition on the discriminant in (4.12) ensures that the cell density remains positive
for negative z. Alternatively speaking, we face a situation that is the mirror of the
standard mechanism of speed determinacy at z = +∞ in the F/KPP equation.

Traveling Waves with Nonzero Chemical Diffusion Figure 10 shows the numerical
simulation of the Cauchy problem (4.1)–(4.8) with a chemical diffusion coefficient
D of order one. It seems that the solution converges toward a traveling wave profile
as t → +∞ with reduced speed as compared to the case without chemical diffusion
(Fig. 9). Moreover, the numerical wave plotted in the phase plane shows a similar
pattern (compare Fig. 9c, b), suggesting similar mechanisms occurring at z = −∞
(in particular, a vanishing discriminant in the super-critical case c > 2

√
rd).

However, since the relationship (4.10) is not satisfied with nonzero diffusion, we
are lacking one equation to perform explicit computations. There exist multiple
works extending the construction of waves for the original model (2.1) to the case
of nonzero chemical diffusion. This may give some hints to address this question.

Stability Although stability in the Keller–Segel model (2.1) has drawn some
attention, with a nearly complete picture by now, stability of the traveling wave
solutions to the models presented in Sects. 3 and 4 is almost entirely open. The first
author and Hoffmann proved local non-linear stability of standing waves for (3.1)
(without the SGG signaling S), assuming that the attractant concentrationA is quasi-
stationary (solving an elliptic equation at any time). They performed a change of
coordinates to bypass the discontinuity of the advection coefficient and used higher-
order energy methods to handle the singular term of the coupling.

Nevertheless, numerical investigation performed at the occasion of this work,
with simple finite volume, semi-implicit, upwind schemes, argues in favor of
stability of all the waves described in Sects. 3 and 4.

Spatial Sorting Another open problem is the theoretical analysis of spatial sorting
in bacteria collectives when the individuals have different chemotactic sensitivities.

�
Fig. 9 (continued) (b) The density profile is shown at successive times in the moving frame.
Note the low decay at the back of the wave, which is the signature of singular point in the ODE
(4.12) together with the choice of J that cancels the discriminant in (4.13). The numerical speed is
cnum ≈ 3.17, close to the theoretical one, 2

√
log(4) ≈ 3.33. (c) To better assess our Claim 4.3, the

numerical solution is plotted in the phase plane (ρ, ρ′) (black dots), against the theoretical curves,

that is, ρ′ = −λρ (for z > 0), and ρ′ = kχ
cd

(
ρ − c2

2kχ

)2
(4.12) (red lines). The isolated point on

the right corresponds to the transition at z = 0, where the expected theoretical profile has a C1

discontinuity. We believe that the discrepancy is due to numerical errors



98 V. Calvez et al.

Fig. 10 Same as in Fig. 9,
except for the diffusion
coefficient of the chemical
that is set to D = 1. (a) We
observe propagation of a
traveling wave in the long
time asymptotic with a
reduced speed. Clearly, the
wave profile differs
significantly from Fig. 9b. (b)
In particular, the solution in
the phase plane does not align
with the theoretical
expectation available in the
case D = 0 (red plain
curves). It aligns much better
with the theoretical
expectation computed from
Eqs. (4.10)–(4.14) taking the
reduced numerical speed as
an input (red dashed curves).
We believe that the
discrepancy is due to
numerical errors

a

b

In [29], remarkable experiments on bacteria E. coli, together with a very elegant
analytical argument, indicated that cells can move together despite their differences.
The argument of [29] goes as follows: assume that there exist multiple types of
bacteria consuming a single nutrient S and that each type is characterized by a
chemotactic sensitivity χi ; suppose that, for each type, the chemotactic advection
is of the form χ i

(
S, ∂S

∂x

) = χi
∂F(S)
∂x

, say the logarithmic gradient as in the original
model (2.1); suppose that the solution of each type converges toward a traveling
wave in the long time, with a common speed c, so that the flux is asymptotically
zero in the moving frame for each type:

(∀i) − c − d d
dz
(log ρi)+ χi d

dz
F (S) = 0 . (5.1)

Evaluating (5.1) at the maximum point of the density ρi , say z∗i , we would get that

c = χi d
dz
F (S)(z∗i ) . (5.2)
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Differentiating (5.1) at z = z∗i , it could be deduced that

d2

dz2F(S)(z
∗
i ) = d d

2

dz2 (log ρi) (z
∗
i ) ≤ 0 . (5.3)

The combination of (5.2) and (5.3) says that the peaks (z∗i ) of the densities (ρi)
that are traveling together are restricted to the interval where F(S) is concave.
Moreover, they are ordered in such a way that (χi < χj ) ⇒ (z∗i < z∗j ).
This nice calculation indicates that different phenotypes could migrate collectively
despite their differences. The intuitive reason, which can be read on (5.2), is that
larger chemosensitivity χi naturally pushes the cells ahead, where they experience
shallower gradients. Nonetheless, the analysis in [29] is not complete, as the
existence of stable traveling waves of different types with a common speed is taken
for granted.

There exist previous theoretical works about collective migration of different
phenotypes within the same chemical environment. We refer, for instance, to [43],
which adopted the framework of the original model by Keller and Segel (2.1).
In view of the discussion above, the stability of their theoretical outcomes is
questionable. In [23], the authors extend the framework of Sect. 3, including two
subpopulations with different chemotactic phenotypes. This work was supported by
experimental data. However, the discussion in [29] makes it clear that the framework
of [23] is not directly compatible with their findings. Actually, it is one consequence
of the advection speed discontinuity in (3.1) that the maximum peak density is
located at the sign transition, whatever the chemosensitivity coefficient is, hence
violating the nice relationship (5.2).

Preliminary investigations suggest that the framework of Sect. 4 cannot be readily
extended as well. Indeed, signal-dependent growth counterbalances the fact that
more efficient chemotactic types experience shallower gradients, because they have
better access to nutrient. This triggers natural selection of the more efficient type by
differential growth (results not shown).

To our knowledge, there is no clear mathematical framework to handle the
remarkable experiments and biological insights as shown in [29], at the present time.
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Clustering Dynamics on Graphs: From
Spectral Clustering to Mean Shift
Through Fokker–Planck Interpolation

Katy Craig, Nicolás García Trillos, and Dejan Slepčev

Abstract In this work, we build a unifying framework to interpolate between
density-driven and geometry-based algorithms for data clustering and, specifically,
to connect the mean shift algorithm with spectral clustering at discrete and con-
tinuum levels. We seek this connection through the introduction of Fokker–Planck
equations on data graphs. Besides introducing new forms of mean shift algorithms
on graphs, we provide new theoretical insights on the behavior of the family of
diffusion maps in the large sample limit as well as provide new connections between
diffusion maps and mean shift dynamics on a fixed graph. Several numerical
examples illustrate our theoretical findings and highlight the benefits of interpolating
density-driven and geometry-based clustering algorithms.

1 Introduction

In this work we establish new connections between two popular but seemingly
unrelated families of methodologies used in unsupervised learning. The first family
that we consider is density based and includes mode seeking clustering approaches
such as the mean shift algorithm introduced in [15] and reviewed in [9], while the
second family is based on spectral geometric ideas applied to graph settings and
includes methodologies such as Laplacian eigenmaps [3] and spectral clustering
[32]. After discussing the mean shift algorithm in Euclidean space and reviewing
a family of spectral methods for clustering on graphs, we seek these connections
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in two different ways. First, motivated by some heuristics at the continuum level
(i.e., infinite data setting level), we take a suitable dynamic perspective and
introduce appropriate interpolating Fokker–Planck equations on data graphs. This
construction is inspired by the variational formulation in the Wasserstein space
of Fokker–Planck equations at the continuum level and utilizes recent geometric
formulations of PDEs on graphs. Second, we revisit the diffusion maps from [12]
(with an extended range for the parameter indexing the family) and in particular
show that, when parameterized conveniently and in the large data limit, the family
of diffusion maps is closely related to the same family of continuum dynamics
motivating our Fokker–Planck interpolations on graphs. At the finite data level, we
show that by taking an extreme value of the parameter indexing the diffusion maps
we can retrieve a specific graph version of the mean shift algorithm introduced
in [25]. Our new theoretical insights are accompanied by extensive numerical
examples aimed at illustrating the benefits of interpolating density and geometry-
driven clustering algorithms.

To begin our discussion, let us recall that unsupervised learning is one of the
fundamental settings in machine learning where the goal is to find structure in a data
set X without the aid of any labels associated with the data. For example, if the data
set X consisted of images of animals, a standard task in unsupervised learning would
be to recognize the structure of groups in X without using information of the actual
classes that may be represented in the data set (e.g., {dog, olinguito, caterpillar,
. . . }); in the literature, this task is known as data clustering and will be our main
focus in this chapter. Other unsupervised learning tasks include dimensionality
reduction [41] and anomaly detection [22], among others.

When clusters are geometrically simple, for example, when they are dense sets of
points separated in space, elementary clustering methods, like k-means or k-median
clustering, are sufficient to identify the clusters. However, in practice, clusters are
often geometrically complex due to the natural variations that objects belonging to
the cluster may have and also due to invariances that some object classes posses.
To handle such data sets, there is a large class of clustering algorithms, including
the ones that will be explored in this chapter, which are described as two-step
procedures consisting of an embedding step and an actual clustering step where
a more standard, typically simple, clustering method is used on the embedded data.
In mathematical terms, in the first step, the goal is to construct a map

� : X → Y

between the data points in X and a space Y (e.g., Y = R
k for some small k, or in

general a metric space) to “disentangle” the original data as much as possible, and
in the second step, the actual clustering is obtained by running a simple clustering
algorithm such asK-means (if the set Y is the Euclidean space, for example). While
both steps are important and need careful consideration, it is in the first step, and
specifically in the choice of �, that most clustering algorithms differ from each
other. For example, as we will see in Sect. 1.1, in some version of mean shift, � is
induced by gradient ascent dynamics of a density estimator starting at the different
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data points (when the data points are assumed to lie in Euclidean space), whereas in
spectral methods for clustering in graph-based settings the map � is typically built
using the low-lying spectrum of a suitable graph Laplacian. At its heart, different
choices of � capture different heuristic interpretations of the loosely defined notion
of “data cluster.” Some constructions have a density-driven flavor (e.g., mean shift),
while others are inspired by geometric considerations (e.g., spectral clustering). The
notions of density-based and geometry-based algorithms, however, are not mono-
lithic, and each individual algorithm has nuances and drawbacks that are important
to take into account when deciding whether to use it or not in a given situation;
in our numerical experiments, we will provide a series of examples that highlight
some of the qualitative weaknesses of different clustering algorithms, density or
geometry driven. Our main aim is to introduce a new mathematical framework to
interpolate between these two seemingly unrelated families of clustering algorithms
and to provide new insights for existing interpolations like diffusion maps.

In the rest of this introduction, we present some background material that is used
in the remainder.

1.1 Mean Shift-Based Methods

Let X = {x1, . . . , xn} be a data set in R
d . One heuristic way to define data “clusters”

is to describe them as regions in space of high concentration of points separated by
areas of low density. One algorithm that uses this heuristic definition is the mean
shift algorithm; see [9]. In essence, mean shift is a hill climbing scheme that seeks
the local modes of a density estimator constructed from the observed data in an
attempt to identify data clusters.

To make the discussion more precise, let us first describe the setting where the
points x1, . . . , xn are obtained by sampling a probability distribution supported on
the whole R

d with (unknown) smooth enough density ρ : Rd → R. The first step
in mean shift is to build an estimator for ρ of the form:

ρ̂(x) := 1

nδd

n∑

i=1

κ

( |x − xi |
δ

)

,

where κ : R+ → R+ is an appropriately normalized kernel, and δ > 0 is
a suitable bandwidth; for simplicity, we can take the standard Gaussian kernel
κ(s) = 1√

2π
exp−s2/2. Then, for every point xi , one considers the iterations:

xi(t + 1) = xi(t)+ ∇ log ρ̂(xi(t)) (1.1)

starting at time t = 0 with xi(0) = xi . Each data point xi is then mapped to its
associated xi(T ) for some user-specified T , implicitly defining in this way a map
� as described in the introduction. It is important to notice that mean shift is, in
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the way introduced above, a monotonic scheme, i.e., ρ̂(xi(t)) is non-decreasing as a
function of t ∈ N. In [8], this is shown to be a consequence of a deeper property that
in particular relates mean shift with the expectation-maximization algorithm applied
to a closely related problem. The name mean shift originates from the fact that iterate
xi(t+1) in (1.1) coincides with the mean of some distribution that is centered around
the iterate xi(t), and thus (1.1) can be described as a “mean shifting” scheme.

We now introduce the continuum analogue of the mean shift algorithm (1.1).
Namely, (1.1) can be seen as the iterates of the Euler scheme, for time step h = 1 of
the following ODE system:

{
ẋi (t) = ∇ log ρ̂(xi(t)), t > 0

xi(0) = xi.
(1.2)

In the remainder, we will abuse the terminology slightly and refer to the above
continuous time dynamics as mean shift. We note that the ρ̂ is monotonically
increasing along the trajectories of (1.2).

To utilize the mean shift dynamics for clustering, for some prespecified time
T > 0 (that at least theoretically can be taken to be infinity under mild conditions
on ρ), we consider the embedding map:

�MS(xi) := xi(T ), xi ∈ X .

When the number of data points n in X is large, and the bandwidth h is small enough
(but not too small), one can heuristically expect that the gradient lines of the density
estimator ρ̂ resemble those of the true density ρ; see for example [2]. In particular,
with an appropriate tuning of bandwidth δ as a function of n, and with a large value
of T defining the time horizon for the dynamics, one can expect �MS to send the
original data points to a set of points that are close to the local modes of the density
ρ. In short, mean shift is expected to cluster the original data set by assigning points
to the same cluster if they belong to the same basin of attraction of the gradient
ascent dynamics for the density ρ.

If the density ρ is supported on a manifold, M, embedded in R
d , and that

information is available, one can consider mean shift dynamics restricted to the
manifold. Indeed, to define manifold mean shift, we just need to consider the flow
ODE (1.2), where ∇ is replaced by the gradient on M, which for manifolds in R

d

is just the projection of ∇ to the tangent space TxM. We notice that this extends to
manifolds with boundary where at boundary point x ∈ ∂M one is projecting to the
interior half-space T inx M. We denote the projection to the tangent space (interior
tangent space at the boundary) by PTM and write the resulting ODE as

{
ẋi (t) = PTM∇ log(ρ̂)(xi(t)), t > 0

xi(0) = xi ∈ M.
(1.3)
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1.1.1 Lifting the Dynamics to the Wasserstein Space

Looking forward to our discussion in subsequent sections where we introduce mean
shift algorithms on graphs, it is convenient to rewrite (1.2) in an alternative way
using dynamics in the Wasserstein space P2(R

d). As it turns out, the ODE (1.2) is
closely related to an ODE in P2(R

d) (i.e., the space of Borel probability measures
over Rd with finite second moments). Precisely, we consider

∂tμt + div(∇ log(ρ̂)μt ) = 0, t > 0, (1.4)

with initial datum μ0 = δxi ; equation (1.4) must be interpreted in the weak sense
(see Chapter 8.1. in [1]). Indeed, when μ0 = δxi , it is straightforward to see that
the solution to (1.4) is given by μt = δxi(t), where xi(·) solves the ODE (1.2) in
the base space R

d . What is more, in the same way that (1.2) can be understood as
the gradient descent dynamics for − log(ρ̂) in the base space R

d , it is possible to
interpret (1.4) directly as the gradient flow of the potential energy:

E(μ) := −
∫

Rd

log(ρ̂(x))dμ(x), μ ∈ P2(R
d) (1.5)

with respect to the Wasserstein metric dW , which in dynamic form reads

d2
W(ν, ν̃) = inf

t∈[0,1]!→(νt , �Vt )

∫ 1

0

∫

Rd

| �Vt |2 dνtdt, (1.6)

where the infimum is taken over all solutions (νt , �Vt ) to the continuity equation

∂tνt + div(νt �Vt ) = 0,

with ν0 = ν and ν1 = ν̃.
The previous discussion suggests the following alternative definition for the

embedding map associated with mean shift:

�MS(xi) := μi,T ∈ P2(R
d),

where in order to obtain μi,T , we consider the gradient flow dynamics E in the
Wasserstein space initialized at the point μ0 = δxi (i.e., Eq. (1.4)). While this new
interpretation may seem superfluous at first sight given that μi,T = δxi(T ), we will
later see that working in the space of probability measures is convenient, as this
alternative representation motivates new versions of mean shift algorithms for data
clustering on structures such as weighted graphs; see Sect. 2.2.
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1.2 Spectral Methods

Let us now discuss another family of algorithms used in unsupervised learning
that are based on ideas from spectral geometry. The input in these algorithms is
a collection of edge weights w describing the similarities between data points in X ;
we let n = |X |. For simplicity, we assume that the weight function w : X ×X → R

is symmetric and that all its entries are non-negative. We further assume that the
weighted graph G = (X , w) is connected in the sense that for every x, x′ ∈ X there
exists a path x0, . . . , xm ∈ X with x0 = x, xm = x′ and w(xl, xl+1) > 0 for every
l = 0, . . . , m− 1. At this stage, we do not assume any specific geometric structure
in the data set X or on the weight function w (in Sect. 4, however, we focus our
discussion on proximity graphs).

Let us now give the definition of well-known graph analogues of gradient,
divergence, and Laplacian operators. To a function φ : X → R, we associate a
discrete gradient, a function of the form ∇Gφ : X × X → R defined by

∇Gφ(x, x′) := φ(x′)− φ(x).

Given a functionU : X ×X → R (i.e., a discrete vector field), we define its discrete
divergence as the function divGU : X → R given by

divG U(x) := 1

2

∑

x′
(U(x′, x)− U(x, x′))w(x, x′).

With these definitions, we can now introduce the unnormalized Laplacian associ-
ated with the graph G as the operator �G : L2(X ) → L2(X ) defined according
to

�G := divG ◦ ∇G

or more explicitly as

�Gu(xi) =
∑

j

(u(xi)− u(xj ))w(xi, xj ), xi ∈ X , u ∈ L2(X ). (1.7)

From the representation �G = divG ◦ ∇G , it is straightforward to verify that
�G is a self-adjoint and positive semi-definite operator with respect to the L2(X )
inner product (i.e., the Euclidean inner product in R

n after identifying real-valued
functions on X with R

n). It can also be shown that�G has zero as an eigenvalue with
multiplicity equal to the number of connected components of G (in this case 1 by
assumption); see [45]. Moreover, even when the multiplicity of the zero eigenvalue
is uninformative about the group structure of the data set, the low-lying spectrum
of �G still carries important geometric information for clustering. In particular,
�G’s small eigenvalues and their corresponding eigenvectors contain information
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on bottlenecks in G and on the corresponding regions that are separated by them; the
connection between the spectrum of�G and the bottlenecks in G is expressed more
precisely with the relationship between Cheeger constants and Fiedler eigenvalues;
see [45]. With this motivation in mind, [3] introduced a nonlinear transformation of
the data points known as Laplacian eigenmap:

xi ∈ X !−→
⎛

⎜
⎝

φ1(xi)
...

φk(xi)

⎞

⎟
⎠ ∈ R

k,

where φ1, . . . , φk are the eigenvectors corresponding to the first k eigenvalues of
�G . The above Laplacian eigenmap and other similar transformations serve as the
embedding map in the first step in most spectral methods for partitioning and data
clustering. Said clustering algorithms have a rich history, and related ideas have been
present in the literature for decades, see [32, 35, 45] and the references within. For
example, some versions of spectral clustering consider a conformal transformation
of the Laplacian eigenmap in which coordinates in the embedding space are rescaled
differently according to corresponding eigenvalues and the choice of a timescale
parameter. More precisely, one may consider

�̂SC(xi) :=
⎛

⎜
⎝

e−T λ1φ1(xi)
...

e−T λkφk(xi)

⎞

⎟
⎠ ∈ R

k, xi ∈ X ,

for some T > 0, where in the above λl represents the eigenvalue corresponding to
the eigenvector φl . In Sect. 2, we provide a dynamic interpretation of the map �̂SC .

Remark 1.1 There are several other ways in the literature to construct the embed-
ding maps � from graph Laplacian eigenvectors. In [32], for example, an extra
normalization step across eigenvectors is considered for each data point. By
introducing this extra normalization step, one effectively maps the data points into
the unit sphere in Euclidean space. The work [34] argues in favor of this type of
normalization and proposes the use of an angular version of k-means clustering
on the embedded data set. The work [17] also analyzes the geometric structure
of spectral embeddings, both at the data level and at the continuum population
level. The normalization step in [32] can also be motivated from a robustness to
outliers perspective if one insists on running k-means with the �2 metric and not
with for example the �1 metric. As discussed in the introduction, constructing a
data embedding is only part of the full clustering problem. What metric and what
clustering method should be used on the embedded data are important practical
and theoretical questions. In subsequent sections, our embedded data points will
have the form of probability vectors. Several metrics could then be used to cluster
the embedded data points (T V,L2,W2, etc), each with its own advantages and
disadvantages (theoretical or computational). The emphasis of our discussion in the



112 K. Craig et al.

rest of the chapter, however, will be on the embedding maps themselves. We leave
the analysis of the effect of different metrics used to cluster the embedded data for
future work.

1.2.1 Normalized Versions of the Graph Laplacian

Different versions of graph Laplacians can be constructed to include additional
information about vertex degrees as well as to normalize the size of eigenvalues.
We distinguish between two ways to normalize the graph Laplacian �G . One is
based on reweighing operators and the other on renormalizing edge weights.

Operator-Based Renormalizations To start, we first write the graph Laplacian �G
in matrix form. For that purpose, let W = [w(xi, xj )]i,j be the matrix of weights,
and let

d(xi) =
∑

xj �=xi
w(xi, xj ) (1.8)

be the weighted degrees; in the remainder, we may also use the notation di = d(xi)
whenever no confusion arises from doing so. Let D = diag(d1, . . . , dn) be the
diagonal matrix of degrees. The Laplacian�G can then be written in matrix form as

�G = D −W. (1.9)

In terms of this matrix representation, the normalized graph Laplacian, as introduced
in [45], can be written as

L = D− 1
2�GD− 1

2 = I −D− 1
2WD− 1

2 . (1.10)

Notice that the matrixL is symmetric and positive semi-definite as it follows directly
from the same properties for �G . The random-walk graph Laplacian, on the other
hand, is given by

Lrw = D−1�G = I −D−1W. (1.11)

Remark 1.2 It is straightforward to show that the matrix Lrw is similar to the
matrix L, and thus the random-walk Laplacian has the same eigenvalues as the
normalized graph Laplacian. Moreover, if we explicitly use the representation
Lrw

T = D1/2LD−1/2, where Lrw
T

is the transpose of Lrw, we can see that if ũ
is an eigenvector of L with eigenvalue λ, then φ = D1/2φ̃ is an eigenvector of Lrw

T

with eigenvalue λ. In particular, since L is symmetric, we can find a collection of
vectors φ1, . . . , φn ∈ R

n that form an orthonormal basis (with respect to the inner
product 〈D−1·, ·〉) for Rn and where each of the φl is an eigenvector for Lrw

T
.

We use the above observation in Sect. 1.2.2 and later at the beginning of Sect. 2.



From Spectral Clustering to Mean Shift 113

Edge Weight Renormalizations Here, the idea is to adjust the weights of the graph
G = (X , w) and use one of the Laplacian normalizations introduced before on the
new graph. One of the most popular families of graph Laplacian normalizations
based on edge reweighing was introduced in [12] and includes the generators for
the so-called diffusion maps which we now discuss.

For a given choice of parameter α ∈ (−∞, 1], we construct new edge weights,
wα(x, y), as follows:

wα(x, y) := w(x, y)

d(x)αd(y)α
,

where recall d is the weighted vertex degree. On the new graph (X , wα), one can
consider all forms of graph Laplacian discussed earlier. In the sequel, however, we
follow [12] and restrict our attention to the reweighed random-walk Laplacian which
in matrix form can be written as

Lrwα = I −D−1
α Wα,

where Wα is the matrix of edge weights of the new graph and Dα its associated
degree matrix, i.e., dα(x) = ∑

y �=x wα(x, y). We note that the weight matrix Wα is
still symmetric.

LetQrwα be the weighted diffusion rate matrix

Qrwα := −CαLrwα ,

where Cα is a positive constant that we introduce for modeling purposes. In
particular, in Sect. 4, we will see that, in the context of proximity graphs on
data sampled from a distribution on a manifold M, by choosing the constant Cα
appropriately, we can ensure a desirable behavior of Qrwα as the number of data
points in X grows. Notice that we may alternatively writeQrwα as a function:

Qrwα (x, y) := Cα
⎧
⎨

⎩

wα(x,y)∑
z �=x wα(x,z)

if x �= y,
−1 if x = y.

(1.12)

Remark 1.3 In this chapter, we consider the range α ∈ (−∞, 1] and not [0, 1]
as usually done in the literature. One important point that we stress throughout the
chapter is that by considering the interval (−∞, 1], we obtain an actual interpolation
between density-based (in the form of some version of mean shift) and geometry-
driven clustering algorithms.
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1.2.2 More General Spectral Embeddings

Following Remark 1.2, for a given α ∈ (−∞, 1], we consider an orthonormal basis
(relative to the inner product 〈D−1

α ·, ·〉) φ1, . . . , φn of eigenvectors of Lrw
T

α with
corresponding eigenvalues λ1 � λ2 � · · · � λn and define

�̂ ′
α(xi) :=

⎛

⎜
⎝

e−T λ1 φ̃1(xi)
...

e−T λk φ̃k(xi)

⎞

⎟
⎠ ∈ R

k, xi ∈ X , (1.13)

where, in the above, φ̃l = D−1/2
α φl . We can see that the map �̂ ′

α has the same form
as the map �̂SC at the beginning of Sect. 1.2. In Sect. 2, we provide a more dynamic
interpretation of the map �̂ ′

α .

1.3 Outline

Having discussed the mean shift algorithm in Euclidean setting (or in general on
a submanifold M of Rd ), as well as some spectral methods for clustering in the
graph setting, in what follows we attempt to build bridges between geometry-based
and density-driven clustering algorithms. Our first step is to introduce general data
embedding maps� associated with the dynamics induced by arbitrary rate matrices
on X . We will then define data graph analogues of mean shift dynamics. We do
this in Sect. 2 where we define a new version of mean shift on graphs inspired
by the discussion in Sect. 1.1.1 and review other versions of mean shift on graphs
such as Quickshift [44] and KNF [25]. In Sect. 3.1, we discuss two versions of
Fokker–Planck equations on graphs which serve as interpolating dynamics between
geometry- and density-driven dynamics for clustering on data graphs. One version
is based on a direct interpolation between diffusion and mean shift (the latter
one as defined in Sect. 2.2.1) and is inspired by Fokker–Planck equations at the
continuum level. The second version is an extended version of the diffusion maps
from [12] obtained by appropriate reweighing and normalization of the data graph.
In Sect. 3.2, we show that the KNF mean shift dynamics can be seen as a particular
case of the family of diffusion maps when the parameter indexing this family is sent
to negative infinity. This result is our first concrete connection between mean shift
algorithms and spectral methods for clustering. In Sect. 4, we study the continuum
limits of the Fokker–Planck equations introduced in Sect. 3 when the graph of
interest is a proximity graph. This analysis will allow us to provide further insights
into diffusion maps, mean shift, and spectral clustering. In Sect. 5, we present
a series of numerical experiments aimed at illustrating some of our theoretical
insights.
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2 Mean Shift and Fokker–Planck Dynamics on Graphs

Consider a weighted graph G = (X , w) as in Sect. (1.2). Let P(X ) denote the set
of probability measures on X which we identify with n-dimensional vectors. All of
the dynamics we consider can be written as (continuous time) Markov chains on
graphs.

Definition 2.1 A continuous time Markov chain u : [0, T ] → P(X ) is a solution
to the ordinary differential equation

{
∂tut (y) =∑x∈X ut (x)Q(x, y), t > 0

u0 = u0,
(2.1)

where u0 ∈ P(X ) and Q : X × X → R is a transition rate matrix Q; that is, Q
satisfiesQ(x, y) � 0 for y �= x andQ(x, x) = −∑y �=x Q(x, y).

Notice that in terms of matrix exponentials, the solution to (2.1) can be written
as

ut (y) =
∑

x∈X
u0(x)(etQ)(x, y).

Remark 2.2 The operation on the right-hand side of the first equation in (2.1) can
be interpreted as a matrix multiplication of the form utQ, where ut is interpreted
as a row vector. Alternatively, we can use the transpose of Q and write QT ut if we
interpret ut as a column vector.

Remark 2.3 (Conservation of Mass and Positivity) For any transition rate matrix,
we have

∑

x∈X
Q(x, y) = 0, ∀y ∈ X ,

which ensures that
∑
x ut (x) = ∑

x u0(x) = 1 for all t � 0. Note that, in practice,
this is often accomplished by specifying the off-diagonal entries of the transition rate
matrix, Q(x, y) for x �= y, and then setting the diagonal entries to equal opposite
the associated diagonal degree matrix, d(x, x) = ∑y �=x Q(x, y). Likewise, for any
transition rate matrix, the fact thatQ(x, y) � 0 for y �= x ensures that if u0(x) � 0,
then ut (x) � 0 for all t � 0.

Remark 2.4 Notice that Q = −�G , where we recall �G is defined in (1.7), is
indeed a rate matrix and thus induces evolution equations in P(X ). Likewise, the
weighted diffusion rate matrix Qrwα from (1.12) is a rate matrix as introduced in
Definition 2.1.

For a general rate matrixQ, we define the data embedding map:
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�̂Q(xi) := ui,T ,Q ∈ P(X), xi ∈ X , (2.2)

where ui,T ,Q represents the solution of (2.1) when the initial condition u0 ∈ P(X )
is defined by u0(x) = 1 for x = xi and u0(x) = 0 otherwise. In the sequel, and
specifically in our numerics section, we will use the L2(X ) metric between the
points �̂Q(xi) in order to build clusters through K-means regardless of the rate
matrix Q that we use to construct the embedding �̂Q. Remember that by L2(X )
distance we mean the quantity:

∑

x′
(ui,T ,Q(x

′)− uj,T ,Q(x′))2.

In the next subsections, we discuss some specifics of the choice Q = Qrwα and
then introduce two classes of rate matricesQ that give meaning to the idea of mean
shift on graphs.

2.1 Dynamic Interpretation of Spectral Embeddings

When we take Q = Qrwα , we abuse notation slightly and write �̂α instead of �̂Qrwα
and ui,T ,α instead of ui,T ,Qrwα . In the next proposition, we make the connection

between the embedding map �̂α and the spectral embedding �̂ ′
α from (1.13)

explicit.

Proposition 2.5 For every α ∈ (−∞, 1], we can write

ui,T ,α(x) =
n∑

l=1

e−T λl φl(xi)

(dα(xi))1/2
φl(x), ∀x ∈ X ,

where the φ1, . . . , φn form an orthonormal basis for Rn (with respect to the inner
product 〈D−1

α ·, ·〉) and each φl is an eigenvector of Lrw
T

α with eigenvalue λl . In
other words, the coordinates of the vector �̂ ′

α(xi) correspond to the representation
of �̂α(xi) in the basis φ1, . . . , φn.

Proof This follows from a simple application of the spectral theorem using
Remark 1.2. ��
Remark 2.6 An alternative way to compare the points �̂α(xi) and �̂α(xj ) is to
compute their weighted distance:

∑

x′

(
ui,T ,Q(x

′)√
dα(x′)

− uj,T ,Q(x
′)√

dα(x′)

)2

.
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This construction is introduced in [12] and is referred to as diffusion distance. It is
worth mentioning that, as pointed out in [12], the diffusion distance between �̂α(xi)
and �̂α(xj ) coincides with the Euclidean distance between �̂ ′

α(xi) and �̂ ′
α(xj )

when k = n. Notice that the diffusion metric is conformal to the L2(X ) metric.

Remark 2.7 We remark that the embedding maps �̂SC and �̂Q for Q = −�G are
connected in a similar way as the maps �̂ ′

α and �̂α are. Indeed, if we let φ1, . . . , φn
be an orthonormal basis for L2(X ) consisting of eigenvectors of �G (remember
that �G is positive semi-definite with respect to L2(X )), then the coordinates of
�̂SC(xi) are precisely the coordinates of the representation of ui,T ,Q in the basis
φ1, . . . , φn.

2.2 The Mean Shift Algorithm on Graphs

In the next two subsections, we discuss two different ways to introduce mean shift
on G = (X , w). In both cases, we define an associated rate matrixQ.

2.2.1 Mean Shift on Graphs as Inspired by Wasserstein Gradient Flows

The discussion in Sect. 1.1.1 shows that the mean shift dynamics can be viewed
as a gradient flow in the spaces of probability measures endowed with Wasserstein
metric. Recent works [14, 29] provide a way to consider Wasserstein type gradient
flows which are restricted to graphs. This allows one to take advantage of the
information about the geometry of data that their initial distribution provides. More
importantly, for our considerations, it allows one to combine the mean shift and
spectral methods.

The notion of Wasserstein metric on graphs introduced by Maas [29] provides
the desired framework. Here, we will consider the upwind variant of the Wasserstein
geometry on graphs introduced in [14] since it avoids the problems that the metric
of [29] has when dealing with the continuity equations on graphs, see Remark 1.2
in [14].

In particular, we actually consider a quasi-metric on P(X ) (and not a metric)
defined by

d̂2
W(v, ṽ) := inf

t∈[0,1]!→(vt ,Vt )

∫ 1

0

∑

x,y

|Vt (x, y)+|2 vt (x, y)w(x, y)dt,

where the infimum is taken over all solutions (vt , Vt ) to the discrete continuity
equation:

∂tvt + divG(vt · Vt ) = 0,
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with v0 = v and v1 = ṽ and where Vt is anti-symmetric for all t . In the above, the
constant Cms > 0 is introduced for modeling purposes and will become relevant in
Sect. 4. We use the upwinding interpolation [11, 14]:

vt (x, y) :=
{
vt (x) if Vt (x, y) � 0,

vt (y) if Vt (x, x) < 0
(2.3)

and interpret the discrete vector field vt · Vt as the elementwise product of vt and
Vt . Finally, we use a+ to denote the positive part of the number a.

Next, we consider the general potential energy:

Ê(u) := −
∑

x∈X
B(x)u(x), u ∈ P(X ),

for some B : X → R. This energy serves as an analogue of (1.5).
Following the analysis and geometric interpretation in [14], it is possible to show

that the gradient flow of Ê with respect to the quasi-metric d̂W takes the form:

∂tut (y) =
∑

x∈X
ut (x)Q

B(x, y), (2.4)

whereQB is the rate matrix defined by

QB(x, y) :=
{
(B(y)− B(x))+w(x, y), for x �= y,
−∑z �=x(B(z)− B(x))+w(x, z), for x = y. (2.5)

In Sect. 4.1, we explore the connection between the graph mean shift dynam-
ics (2.4) and the mean shift dynamics on an m-dimensional submanifold of Rd as
introduced in Sect. 1.4. This is done in the context of proximity graphs over a data
set X = {x1, . . . , xn} obtained by sampling a distribution with density ρ on M. In
particular, we formally show that the graph mean shift dynamics converges to the
continuum one if

B(x) = − Cms
ρ(x)

, x ∈ M.

In practice, however, since ρ is in general unavailable, ρ above can be replaced
with a density estimator ρ̂. Given such an estimator ρ̂ (which in principle can
be considered on general graphs, not just ones embedded in R

d ), we define the
transition kernel for the graph mean shift dynamics as

Qms(x, y) := Cms
⎧
⎨

⎩

(
− 1
ρ̂(y)

+ 1
ρ̂(x)

)

+w(x, y), for x �= y,
−∑z �=x

(
− 1
ρ̂(z)

+ 1
ρ̂(x)

)

+w(x, z), for x = y, (2.6)
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where the constant Cms > 0 just sets the timescale. It will be specified in Sect. 4.1
so that the equation has the desired limit as n → ∞. For data in R

d , it is natural
to consider a kernel density estimator ρ̂. In particular, in all of our experiments, we
consider the following kernel density estimator:

ρ̂δ(x) := 1

n

∑

y∈X
ψδ(x − y), ψδ(x) = 1

(2π)m/2δm
e−|x|2/(2δ2). (2.7)

For an abstract graph G (i.e., X is not necessarily a subset of Euclidean space), one
can consider the degree of the graph at each x ∈ X as a substitute for ρ̂ in the above
expressions.

From the previous discussion and in direct analogy with the discussion in
Sect. 1.1.1, we introduce the data embedding map:

�̂ms(xi) := ui,T ,Qms ∈ P(X ). (2.8)

Remark 2.8 The quasi-metric d̂W and the geometry of the PDEs on graphs that it
induces have been studied in [14]. One important point made in that paper (see
Remark 1.2. in [14]) is that the support of the solution to the induced equations may
change and move as time increases. For us, this property is essential as we initialize
our graph mean shift dynamics at Diracs located at each of the data points.

We now provide a couple of illustrations comparing the mean shift dynam-
ics (1.2) and the graph mean shift dynamics defined by (2.6). We consider data
on manifold M = [0, 4] × {0, 0.7}. The measure ρ has uniform density on the two
line segments. We consider 280 data points sampled from ρ, Fig. 1, and sampled
from ρ with Gaussian noise of variance 0.1 in vertical direction, Fig. 3a.

We compare the dynamics on M for different bandwidths δ of the kernel density
estimator. In particular, we consider a value of δ that is small enough for the strips
to be seen as separate and a value of delta that is large enough for the strips to be
considered together, Fig. 2. For large δ, we see rather different behavior of the two
dynamics. The standard mean shift quickly mixes the data from the two lines and
the information about the two clusters is lost. On the other hand, while the driving

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

Fig. 1 Initial data for the experiments below. There are 280 points sampled from a uniform
distribution on two line segments
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(a)Mean shift at intermediate time
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(b)Mean shift at long time
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(c) Graph mean shift at long
time. Brightness indicates
mass.
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(d) Mean shift at t = 0. Ar-
rows represent velocity
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(e)Mean shift at intermediate time
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(f) Graph mean shift at long time

Fig. 2 We compare the dynamics for the mean shift (1.2) and graph mean shift (2.4)–(2.6). The
top row shows the dynamics for δ = 1

4 bandwidth of the KDE. Both approaches give similar
results. The stripes evolve independently and there are spurious local maxima due to randomness.
The bottom row shows the dynamics for a larger δ = 1√

2
. The KDE has a unique maximum. Mean

shift quickly mixes the stripes into one, which then collapses to a point. On the other hand, since
graph mean shift dynamics is constrained to the sample points the stripes do not mix and a single
mode is identified in each stripe. (a) Mean shift at intermediate time . (b) Mean shift at long time.
(c) Graph mean shift at long time. Brightness indicates mass. (d) Mean shift at t = 0. Arrows
represent velocity. (e) Mean shift at intermediate time. (f) Graph mean shift at long time
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(a) t = 0
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(b) t = ∞

Fig. 3 Graph mean shift for δ = 1√
2

. If noise is added to the data above, most of the dynamics

behave as before. The exception is shown. The graph mean shift does not reach the modes as on
Fig. 2f. Namely due to geometric roughness of the data the dynamics gets trapped at blue points.
(a) t = 0. (b) t = ∞

force is the same, in the graph mean shift the dynamics is restricted to the data, thus
preventing the mixing. In particular, separate modes are identified in each clump.

We note that this desirable behavior is somewhat fragile when noise is present,
Fig. 3b. In particular, the roughness of the boundary prevents the mass to reach the
mode. We will discuss later that this is mitigated by adding a bit of diffusion to the
dynamics, see Sect. 5.2.6.
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2.2.2 Quickshift and KNF

There are some alternative definitions of mean shift on graphs that are popular
in the literature. One such algorithm is Quickshift [44], which is similar to an
earlier algorithm by Koontz, Narendra, and Fukunaga [25]. Both algorithms can be
described as hill climbing iterative algorithms for the maximization of a potential
function B̂.

Let B̂ : X → R be the potential for which we want to define “gradient ascent
dynamics” along the graph (X , w). Let D̂(x, y) � 0 be a notion of “distance”
between points x and y which is typically defined through the weights w. Both the
Quickshift and KNF algorithms have a Markov chain interpretation that we describe
in a general form that allows for the (unlikely) existence of non-unique maximizers
of B̂ : X → R around a given node x ∈ X . To describe the associated rate matrices,
let us define for every x ∈ X the sets

MQS,x :=
{

y ∈ X : y maximizes:
1

D̂(x, y)
1
B̂(y)>B̂(x)

}

and

MKNF,x :=
{

y ∈ X : y maximizes:
(B̂(y)− B̂(x))+

D̂(x, y)
1
D̂(x,y)<r

}

.

The Quickshift and KNF algorithms are then the paths in the Markov chains with
rate matrices:

QQS(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

1
�MQS,x

if y ∈ MQS,x,
−1 if y = x,
0 otherwise,

(2.9)

QKNF (x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

1
�MKNF,x

if y ∈ MKNF,x,
−1 if y = x,
0 otherwise,

(2.10)

respectively. In Sect. 3.2, we establish a connection between the family of rate
matricesQrwα andQKNF .
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3 Fokker–Planck Equations on Graphs

3.1 Fokker–Planck Equations on Graphs via Interpolation

The first type of interpolation between density- and geometry-driven clustering
algorithms that we discuss in this chapter is based on a direct interpolation of the
rate matricesQms andQrw1 . Namely, for β ∈ [0, 1], we consider

Qβ := βQms + (1 − β)Qrw1 . (3.1)

It is straightforward to see that the resultingQβ continues to be a rate matrix and as
such it induces dynamics in the space P(X ). We can then use the framework from
Sect. 2 and abuse notation slightly to write �̂β instead of �̂Qβ as well as ui,T ,β
instead of ui,T ,Qβ .

The choice of rate matrixQβ is motivated by the Fokker–Planck equation:

∂tft = βdiv(∇φft )+ (1 − β)�ft
on a submanifold M of Rd , which in the context of Sect. 4 can be proved to be a
formal continuum limit of the evolution induced byQβ as the number of data points
grows. On the other hand, we notice that when we take β = 1 inQβ , we recover the
mean shift dynamics from Sect. 2.2.1. If on the contrary we set β = 0, we obtain the
dynamics induced by the rate matrix Qrw1 , which, at least in the context of Sect. 4,
can be shown to be connected in the large sample limit to the heat equation on a
manifold M where the data density plays no role.

3.2 Fokker–Planck Equation on Graphs via Reweighing and
Connections to Graph Mean Shift

Another interpolation between density-driven and geometry-based clustering
dynamics is induced by the family of rate matrices {Qrwα }α∈(−∞,1]. Indeed, in
Sect. 4.2, we prove that in the proximity graph setting, the discrete dynamics
associated with the rate matrices Qrwα are closely related, in the large data limit, to
the same family of Fokker–Planck equations at the continuum level mentioned in
Sect. 3.1. What is more, without taking a large sample limit, we see that the family
{Qrwα }α∈(−∞,1] interpolates between Qrw1 and a rate matrix inducing graph mean
shift dynamics, only that this time the version of mean shift that is meaningful is a
particular case of the KNF formulation from Sect. 2.2.2. We prove this in the next
proposition.

Proposition 3.1 Let (X , w) be an arbitrary weighted graph satisfying the condi-
tions at the beginning of Sect. 1.2. Set Cα = 1 for every α ∈ (−∞, 1]. Then,
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lim
α→−∞Q

rw
α = Qrw−∞, (3.2)

where

Qrw−∞(x, y) := −1y=x +
⎧
⎨

⎩

w(x,y)∑
z∈MKNF,x w(x,z)

if y ∈ MKNF,x
0 otherwise,

(3.3)

where in the definition of MKNF,x we are using B̂(z) = d(z), D̂(x, y) = 1 if
w(x, y) > 0 and D̂(x, y) = ∞ if w(x, y) = 0, and r > 1.

We notice that this is essentially the KNF rate matrix defined in (2.10) with only
a difference in the way ties are broken when the maximum of d around a point is
not unique. This distinction is mostly irrelevant since generically we may expect no
ties. On the other hand, if for some reason there are ties but the non-zero weights in
the graph are equal, then the two tie-breaking rules coincide.

Proof As the cases are analogous, let us consider only the case y �= x. Note that

Qrwα (x, y) = wα(x, y)
∑
z �=x wα(x, z)

= w(x, y)d(x)−αd(y)−α
∑
z �=x w(x, z)d(x)−αd(z)−α

= w(x, y)d(y)−α
∑
z �=x w(x, z)d(z)−α

.

If y �∈ MKNF,x , consider z ∈ MKNF,x . Then,

Qrwα (x, y) �
w(x, y)

w(x, z)

(
d(y)

d(z)

)−α
→ 0 as α → −∞.

If y ∈ MKNF,x , then

Qrwα (x, y) = w(x, y)

∑
z �=x w(x, z)

(
d(z)
d(y)

)−α → w(x, y)
∑
z∈MKNF,x w(x, z)

as α → −∞.

��

4 Continuum Limits of Fokker–Planck Equations on Graphs
and Implications

In this section, we further study the Fokker–Planck equations introduced in Sect. 3
and discuss their connection with Fokker–Planck equations at the continuum level.
For such connection to be possible, we impose additional assumptions on the
graph G = (X , w). In particular, we assume that G is a proximity graph on
X = {x1, . . . , xn}, where the xi are assumed to be i.i.d. samples from a distribution
on a smooth compact m-dimensional manifold without boundary M embedded in
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R
d and having density ρ : M → R with respect to the volume form on M. By

proximity graph, we mean that the weights w(xi, xj ) are defined according to

w(x, y) := ηε(|x − y|), ηε(r) = 1

εm
η
( r

ε

)
, (4.1)

where ε > 0 is a bandwidth appropriately scaled with the number of samples n, η
is a function η : [0,∞) → [0,∞) with compact support, and |x − y| denotes the
Euclidean distance between x and y.

4.1 Continuum Limit of Mean Shift Dynamics on Graphs

In order to formally derive the large sample limit of equation (2.4), we study the
action ofQms on a smooth function u : M → R. That is, we compute

∑

x∈X
u(x)Qms(x, y) = −Cms

∑

x∈X

[
(B(x)− B(y))+ u(y)− (B(x)− B(y))−u(x)

]
w(x, y)

as n → ∞ and ε → 0 at a slow enough rate. Since our goal below is to deduce
formal continuum limits, we will assume that M is flat. We note that when M
is a smooth manifold, the deflection of the manifold from the tangent space is at
most quadratic, and thus the error introduced is small when ε is small. In this way,
we can avoid using the notation and constructions from differential geometry as
well as some approximation arguments that obscure the reason why the limit holds.
Providing a rigorous argument for the convergence of the dynamics remains an open
problem.

In what follows, we use ρn = 1
n

∑
x∈X δx to denote the empirical distribution on

the data points; here, we use the notation ρn to highlight the connection between the
data points and the density function ρ. We also consider the constants

Cms = 1

nε2ση′
, ση′ = 1

2m

∫

Rm

|z|2η(|z|)dz,

and assume that the potential B is a C3(M) function. With the above definitions,
we can explicitly write

−
∑

x∈X
u(x)Qms(x, y) = 1

nεm+2ση′

∑

x∈X

[
(B(x)− B(y))+ u(y)− (B(x)− B(y))−u(x)

]

× η
( |x − y|

ε

)

(4.2)

and using the smoothness of u and B equate the above to
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= 1

εm+2ση′

∫

M
[
(B(x)− B(y))+ u(y)− (B(x)− B(y))−u(x)

]
η

( |x − y|
ε

)

ρn(x)dx

= 1

εm+2ση′

∫

M
[
(B(x)− B(y))+ (u(y)− u(x))

+ ((B(x)− B(y))+ − (B(x)− B(y))−
)
u(x)

]
η

( |x − y|
ε

)

ρn(x)dx

= 1

εm+2ση′

∫

M
[
(B(x)− B(y))+ (u(y)− u(x))+ (B(x)− B(y)) u(x)

]
η

×
( |x − y|

ε

)

ρn(x)dx

≈ 1

εm+2ση′

∫

M
[
(B(x)− B(y))+ 〈∇u(y), y − x〉 + 〈∇B(y), x − y〉u(x)] η

×
( |x − y|

ε

)

ρn(x)dx

+ 1

2εm+2ση′

∫

M

[
(B(x)− B(y))+ 〈D2u(y)(x − y), y − x〉

+〈D2B(y)(x − y), x − y〉u(x)
]
η

( |x − y|
ε

)

ρn(x)dx

=: A1 + A2 + A3 + A4.

Next, we analyze each of the terms A1, A2, A3, and A4. For A1, we see that

A1 ≈ 1

εm+2ση′

∫

M
(B(x)− B(y))+ 〈∇u(y), y − x〉η

( |x − y|
ε

)

ρ(x)dx

≈ − 1

εm+2ση′

∫

〈x−y,∇B(y)〉�0
〈∇u(y), x − y〉〈x − y,∇B(y)〉η

( |x − y|
ε

)

ρ(x)dx

≈ − ρ(y)

εm+2ση′

∫

〈x−y,∇B(y)〉�0
〈∇u(y), x − y〉〈x − y,∇B(y)〉η

( |x − y|
ε

)

dx

= −ρ(y)
ση′

∫

〈z,v〉�0
〈v′, z〉〈z, v〉η(|z|)dz,

(4.3)

where v = ∇B(y) and v′ = ∇u(y); notice that in the first line we have replaced the
empirical measure ρn with the measure ρ(x)dx (introducing some estimation error)
and in the second line we have considered a Taylor expansion of B around y. On
the other hand, notice that

∫

〈z,v〉�0
〈v′, z〉〈z, v〉η(|z|)dz = 〈Sv, v′〉,
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where S is a rank one symmetric matrix which can be written as S = aζ ⊗ ζ for
some vector ζ and some scalar a. Now, a〈ζ, v〉2 is equal to

〈Sv, v〉 =
∫

〈z,v〉�0
〈v, z〉2η(|z|)dz = |v|2 1

2m

m∑

l=1

∫

〈el, z〉2η(|z|)dz

= |v|2 1

2m

∫

|z|2η(|z|)dz = ση′ |v|2.

The above computation shows that ζ can be taken to be v, and a = σ ′
η

|v|2 . Thus,

A1 ≈ −ρ(y) 〈∇u(y),∇B(y)〉 . (4.4)

Regarding A2, we have

A2 ≈ 1

εm+2ση′

∫

M
〈∇B(y), x − y〉u(x)η

( |x − y|
ε

)

ρ(x)dx,

introducing an estimation error to replace the integration with respect to the
empirical measure with integration with respect to the measure ρ(x)dx. We can
further decompose the computation introducing an approximation error:

A2 ≈ A21 + A22 + A23,

where

A21 := 1

εm+2ση′

∫

M
〈∇B(y), x − y〉〈∇u(y), x − y〉η

( |x − y|
ε

)

ρ(y)dx,

A22 := 1

εm+2ση′

∫

M
〈∇B(y), x − y〉u(y)η

( |x − y|
ε

)

ρ(y)dx,

A23 := 1

εm+2ση′

∫

M
〈∇B(y), x − y〉〈∇ρ(y), x − y〉u(y)η

( |x − y|
ε

)

dx.

By symmetry, the term A22 is seen to be equal to zero. On the other hand, the
terms A21 and A23 are computed similarly to the second expression in (4.3) only
that in this case there is no sign constraint in the integral. From a simple change of
variables, we can see that for arbitrary vectors v and v′, we have

∫

〈z,v〉�0
〈v′, z〉〈z, v〉η(|z|)dz =

∫

〈z,v〉�0
〈v′, z〉〈z, v〉η(|z|)dz.
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In particular,

∫

〈v′, z〉〈z, v〉η(|z|)dz = 2
∫

〈z,v〉�0
〈v′, z〉〈z, v〉η(|z|)dz = 2σ ′

η〈v, v′〉,

and thus

A21 = 2ρ(y)〈∇B(y),∇u(y)〉, A23 = 2u(y)〈∇B(y),∇ρ(y)〉.

In summary,

A2 ≈ 2ρ(y)〈∇B(y),∇u(y)〉 + 2u(y)〈∇B(y),∇ρ(y)〉. (4.5)

It is straightforward to see that A3 = O(ε) and so for our computation we can
treat A3 as zero:

A3 ≈ 0. (4.6)

For the final term A4, we start by introducing an estimation error to write

A4 ≈ 1

2εm+2ση′

∫

M
〈D2B(y)(y − x), x − y〉u(x)η

( |x − y|
ε

)

ρ(x)dx.

We can further replace the term u(x) with u(y) (and ρ(x) with ρ(y)) in the formula
above. This replacement introduces anO(ε) term that we can ignore. It follows that

A4 ≈ u(y)ρ(y) 1

2εm+2ση′

∫

M
〈D2B(y)(x − y), x − y〉η

( |x − y|
ε

)

dx

= u(y)ρ(y) 1

2ση′

∫

〈D2B(y)z, z〉η(|z|)dz

= u(y)ρ(y)�B(y).

Combining the above estimate with (4.4), (4.5), and (4.6), we see that

∑

x∈X
u(x)Qms(x, y) ≈ − (ρ(y) 〈∇u(y),∇B(y)〉 + 2u(y)〈∇B(y),∇ρ(y)〉

+u(y)ρ(y)�B(y))

= − 1

ρ
div
(
uρ2∇B

)
.

Note that the graph dynamics takes place on the provided data points, that is, on
P(X ) ⊂ P(M). As n → ∞, P(X ) approximates P(M). This partly explains
that had we carried out the argument above in the full manifold setting the resulting
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dynamics would be restricted to the manifold and in particular both the divergence
and the gradient above would take place on M. That is, for data on a manifold,

∑

x∈X
u(x)Qms(x, y) ≈ − 1

ρ
divM

(
uρ2∇MB

)
.

Remark 4.1 Notice that with the choice B(x) := log(ρ(x)), the above becomes

− 1

ρ
divM (uρ∇Mρ) ,

whereas with the choice B(x) = − 1
ρ(x)

, we get

− 1

ρ
divM (uρ∇M log(ρ)) .

The above analysis suggests that the formal continuum limit of the evolution (2.4)
when B = − 1

ρ
is the PDE:

∂tut = − 1

ρ
divM(utρ∇M log(ρ)).

Notice, however, that the solution ut of the above equation must be interpreted as a
“density” with respect to the measure ρ(x)dV olM (ρ(x)dx in the flat case). Thus,
in terms of “densities” with respect to dV olM, we obtain

∂tft = −divM(ft∇M log(ρ)),

where ft := utρ. We recognize this latter equation as the PDE describing the mean
shift dynamics (1.3).

4.2 Continuum Limits of Fokker–Planck Equations on Graphs

In this section, we formally derive the large sample limit of the two types of Fokker–
Planck equations on G that we consider in this chapter, i.e., Eq. (2.1) whenQ = Qrwα
(for α ∈ (−∞, 1]) and whenQ = Qβ (for β ∈ [0, 1]).

We start our computations by pointing out that after appropriate scaling and under
some regularity conditions on the density ρ, the diffusion operator Lrwα converges
toward the differential operator:

Lαv := − 1

ρ2(1−α) divM(ρ2(1−α)∇Mv). (4.7)
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To be precise, if we set

Cα = 1

σηε2
, ση :=

∫

Rm

|z|2η(|z|)dz
/∫

Rm

η(|z|)dz,

then, for all smooth v : M → R, we have

−
∑

y∈X
Qrwα (x, y)v(y) = Cα

∑

y

Lrwα (x, y)v(y)→ Lαv(x),

as n → ∞ and ε → 0 at a slow enough rate. This type of pointwise consistency
result can be found in [37] and [12]. Furthermore, eigenvalues and eigenvectors of

the graph Laplacians converge as n → ∞ and ε → 0 (with ε #
(

ln n
n

)1/d
) to

eigenvalues and eigenfunctions of the corresponding Laplacian on M, see [18]. If
M is a manifold with boundary, then the continuum Laplacian is considered with
no-flux boundary conditions. We note that the results from [18] are only stated for
the case α = 0, i.e., for the standard random-walk Laplacian, but the proof in [18]
adapts to all α ∈ (−∞, 1] assuming that the density ρ is smooth enough and is
bounded away from zero and infinity.

Now, to understand the large sample limit of the dynamics (2.1) whenQ = Qrwα ,
we actually need to study the expression:

∑

x∈X
u(x)Qrwα (x, y), y ∈ X , (4.8)

which in matrix form can be written as Qrw
T

α u provided we view u as a column
vector. For that purpose, we consider two smooth test functions g and h on M. By
definition of transpose,

1

n

n∑

i=1

h(xi)(Q
rwT

α g)(xi) = 1

n

n∑

i=1

g(xi)(Q
rw
α h)(xi). (4.9)

At the continuum level, the definition of Lα and integration by parts provide that

∫

M
h(x)

1

ρ(x)
divM

(

ρ2(1−α)∇M
(

g

ρ1−2α

))

ρ(x)dV olM(x)

= −
∫

M
g(x)Lαh(x)ρ(x)dV olM(x)

By the convergence of Qrwα toward −Lα as n → ∞, we can conclude that right-
hand sides converge, and thus the left-hand sides do too; notice that the ρ(x)dx
on both sides appear because in both sums in (4.9) the points xi are distributed
according to ρ. From this computation, we can identify the limit of (4.8) as
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1

ρ(y)
divM

(

ρ2(1−α)∇M
(

u

ρ1−2α

))

.

In turn, we obtain the formal continuum limit of the dynamics (2.1) whenQ = Qrwα :

∂tut = 1

ρ
divM

(

ρ2(1−α)∇M
(
ut

ρ1−2α

))

,

where ut represents the density with respect to ρ(x)dx. If we consider

ft (x) := ut (x)ρ(x), (4.10)

that is, ft is a probability density w.r.t. dx, we see it satisfies

∂tft=divM
(

ρ2(1−α)∇M
(

ft

ρ2(1−α)

))

=�Mft − 2(1 − α)divM(ft∇M log(ρ)),

(4.11)

where the last equality follows from an application of the product rule to the term

∇M
(

f

ρ2(1−α)
)

. Notice that after considering a time change t ← t
3−2α , we can

rewrite Eq. (4.11) as

∂tft = (1 − βα)�Mft − βαdivM(ft∇M log(ρ)), (4.12)

where βα = (2 − 2α)/(3 − 2α) ∈ [0, 1].
Using the above analysis and Remark 4.1, we can also conclude that the (formal)

large sample limit of equation (2.1) with Q = Qβ and potential B = − 1
ρ

is given
by

∂tft = (1 − β)�Mft − βdivM(ft∇M log(ρ)), (4.13)

that is, the same continuum limit as for the Fokker–Planck equations constructed
using the rate matrixQα for α such that β = βα .

Remark 4.2 Notice that when β = 1, Eq. (4.13) reduces to the heat equation on M
where no role is played by ρ. In this case, clustering is determined completely by
the geometric structure of M. On the other hand, when β = 0, Eq. (4.13) reduces
to mean shift dynamics on M as discussed in Sect. 1.1.

Remark 4.3 Several works in the literature have established precise connections
between operators such as graph Laplacians built from random data and analogous
differential operators defined at the continuum level on smooth compact manifolds
without boundary. For pointwise consistency results, we refer the reader to [37, 21,
20, 4, 40, 19]. For spectral convergence results, we refer the reader to [46] where the
regime n → ∞ and ε constant has been studied. Works that have studied regimes
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where ε is allowed to decay to zero (where one recovers differential operators and
not integral operators) include [36, 5, 16, 28, 6, 13, 48]. Recent work [10] considers
the spectral convergence of Lα with self-tuned bandwidths and includes the α < 0
range. The work [7] provides regularity estimates of graph Laplacian eigenvectors.

The case of manifolds with boundary has been studied in papers like [43, 39,
28, 18]. It is important to highlight that the specific computations presented in our
Sect. 4.1 would have to be modified to take into account the effect of the boundary,
in particular on the kernel density estimate. However, we remark that the tools
and analysis from the papers mentioned above can be used to generalize these
computations.

Remark 4.4 A connection between Fokker–Planck equations at the continuum level
and the graph dynamics induced by Qrwα when α = 1/2 was explicitly mentioned
in [31]. To establish an explicit link between mean shift and spectral clustering,
however, we need to consider the range (−∞, 1] for α. In the diffusion maps
literature, the interval [0, 1] is considered as natural range for α, but the analysis
presented in this section explains why (−∞, 1] is in fact a more natural choice.

Remark 4.5 Besides the Fokker–Planck interpolations considered in Sect. 3.1,
another family of data embeddings that are used to interpolate geometry-based and
density-driven clustering algorithms is based on the path-based metrics studied in
[26, 27].

4.3 The Witten Laplacian and Some Implications for Data
Clustering

In the previous section, we presented a (formal) connection between Fokker–Planck
equations on proximity graphs and Fokker–Planck equations on manifolds. In this
section, we use this connection to illustrate why the Fokker–Planck interpolation is
expected to produce better clusters in settings like the blue sky problem discussed
in our numerical experiments in Sect. 5.2.6 where both pure mean shift and pure
spectral clustering perform poorly. For simplicity, we only consider the Euclidean
setting.

We start by noticing that Eq. (4.13) can be rewritten as

∂t f̃t = −��f̃t , (4.14)

after considering the transformation:

f = exp

(

−1 − β
2β

�

)

f̃ , � := − log(ρ).
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In the above, the operator �� is the Witten Laplacian (see [47] and [30]) associated

with the potential 1−β
2 � which is defined as

��v := −β2�v + (1 − β)2
4

|∇�|2v − β(1 − β)
2

(��)v. (4.15)

From the above, we conclude that the Fokker–Planck dynamics (4.13) can be
analyzed by studying the dynamics (4.14). In turn, some special properties of the
Witten Laplacian �� that we review next allow us to use tools from spectral theory
to study equation (4.14) and in turn also the type of data embedding induced by our
Fokker–Planck equations on graphs.

To begin, notice that

�� =
(

−βdiv + (1 − β)
2

∇�
)(

β∇ + (1 − β)
2

∇�
)

. (4.16)

From the above, we see that 〈��f, g〉L2(M) can be written as

〈��g, h〉L2(M) =
∫

M

〈

β∇g + g (1 − β)
2

∇�, β∇h+ h(1 − β)
2

∇�
〉

dx,

from where we conclude that 〈��f, g〉L2(M) is a quadratic form with associated
Dirichlet energy:

D(f ) :=
∫

M

∣
∣
∣
∣∇f + f (1 − β)

2
∇�
∣
∣
∣
∣

2

dx. (4.17)

When M is compact, it is straightforward to show that there exists an orthonormal
basis {�k}k∈N for L2(M) consisting of eigenfunctions of �� with corresponding
eigenvalues 0 = λ1 < λ2 � λ2 � . . . that can be characterized using the Courant–
Fisher minmax principle. Using the spectral theorem, we can then represent a
solution to (4.14) as

f̃t =
∞∑

k=1

e−tλk 〈f̃0, �k〉L2(M)�k

and conclude that the dynamics (4.14) are strongly influenced by the eigenfunctions
with smallest eigenvalues.

We now explain the implication of the above discussion on data clustering.
Suppose that we consider a data distribution in R

2 as the one considered in
Sect. 5.2.6 modeling the blue sky problem, so that in particular it has product
structure, i.e., ρ(x, y) = ρ1(x)ρ2(y). In this case, we can use the additive structure
of the potential � = − log(ρ(x, y)) = − log(ρ1(x))− log(ρ2(y)) =: �1(x)+�2(y)

to conclude that the set of eigenvalues of�� and a corresponding orthonormal basis
of eigenfunctions can be obtained from
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λ1,i + λ2,j , �1,i (x)�2,j (y),

where (λ1,i , �1,i ) are the eigenpairs for the 1D Witten Laplacian ��1 and
(λ2,j , �2,j ) are the eigenpairs for ��2 . In particular, the first non-trivial
eigenvalue of �� and its corresponding eigenfunction (which will be the effective
discriminators of the two desired clusters if λ3 is considerably larger than λ2) are
either λ1,2 and �1,2(x)�2,1(y) or λ2,2 and �1,1(x)�2,2(y). This discussion captures
the competition between a horizontal and a vertical partitioning of the data in the
context of the blue sky problem from Sect. 5.2.6. While we are not able to retrieve
the desired horizontal partitioning by setting β = 0 or β = 1, we can identify the
correct clusters by setting β strictly between zero and one (closer to one than to
zero). We notice that the results from [30] can be used to obtain precise quantitative
information on the small eigenvalues of the 1D Witten Laplacians ��1 and ��2

when β is close to one (i.e., the diffusion term is small), which we can use to
determine whether λ2,2 < λ1,2 or vice versa.

5 Numerical Examples

We now turn to the details of our numerical method and examples illustrating
its properties. We begin, in Sect. 5.1, by describing the details of our numerical
approach. We provide Algorithm 5.1 for its practical implementation.

In Sect. 5.2, we consider several numerical examples, beginning with examples
in one spatial dimension. In Fig. 4, we illustrate how the graph dynamics for
the transition rate matrices Qβ and Qrwα can be visualized as the evolution of a
continuum density, and in Fig. 5, we illustrate the good agreement between the
graph dynamics and the dynamics of the corresponding continuum Fokker–Planck
equation. In Fig. 6, we show how the clustering performance of our method depends
on the balance between drift and diffusion (β), the time of clustering (t), and the
number of clusters (k); we also illustrate the benefits and limitations of using the
energy of the k-means clustering to identify the number of clusters. In Fig. 7, we
consider the role of the kernel density estimate in clustering dynamics, showing
how adding diffusion to mean shift dynamics can help the dynamics overcome
spurious local minimizers in the kernel density estimate, leading to better clustering
performance. In Fig. 8, we illustrate the interplay between the underlying data
distribution and the balance between drift and diffusion (β) .

Next, we consider several examples in two dimensions. In Figs. 10 and 11, we
consider a model of the blue sky problem, in which data points are distributed
over two elongated clusters that are separated by a narrow low-density region. We
illustrate how diffusion dominant dynamics prefer to cluster based on the geometry
of the data, leading to poor performance. Similarly, pure mean shift dynamics can
exhibit poor clustering due to local maxima in the kernel density estimate. By
interpolating between the two extremes, we observe robust clustering performance,
for a wide range of graph connectivity (ε). Finally, in Figs. 12 and 13, we consider an
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example in which three blobs are connected by two bridges: one wide, low-density
bridge and another narrow, high-density bridge. This example is constructed so that
there is no correct clustering into two clusters. Instead, a geometry-based clustering
method would prefer to cut the thin bridge, and a density-based clustering method
would prefer to cut the wide bridge. We show how varying the balance between drift
and diffusion in our method (β) allows our method to cut either bridge.

5.1 Numerical Method

For our numerical experiments, we consider a domain � ⊆ R
d and a density ρ :

� → [0,+∞) normalized so that
∫
�
ρ = 1. All PDEs on � will be considered

with no-flux boundary conditions, as the solutions of the graph-based equations
converge to the solutions of PDE with no-flux boundary conditions (observed in
[12] and rigorously proved in [18] for Laplacians).

We draw n samples {xi}ni=1 from ρ on �. These samples are the nodes of our
weighted graph, and for all simulations, the weights on the graph are given by a
Gaussian weight function

w(xi, xj ) = ϕε(|xi − yj |), ϕε(a) = e−a2/2ε2

(2πε2)d/2
, a ∈ R. (5.1)

In our one-dimensional simulations, we take the graph bandwidth parameter ε to be

ε = √
2 max

i
min
j :j �=i |xi − xj |; (5.2)

that is, ε equals the maximum distance to the closest node. We note that even in
higher dimensions, the ε above scales as (ln n/n)1/d with the number of nodes n.
This has been identified as the threshold, in terms of n, at which the graph Laplacian
is spectrally consistent with the manifold Laplacian [18]. In Fig. 11, we illustrate
how the choice of ε impacts dynamics and, ultimately, clustering performance.

With this graphical structure, we now recall the weighted diffusion transition
rate matrix Qrwα , for α ∈ (−∞, 1], as in Eq. (1.12), with the constant Cα = ((3 −
2α)ε2)−1,

Qrwα (x, y) := 1

(3 − 2α)ε2

⎧
⎨

⎩

wα(x,y)∑
z �=x wα(x,z)

if x �= y,
−1 if x = y,

(5.3)

wα(x, y) := w(x, y)

d(x)αd(y)α
, d(xi) =

∑

xj �=xi
w(xi, xj ). (5.4)
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Similarly, we recall the transition rate matrix Qβ , for β ∈ [0, 1], as in Eq. (3.1),
with the constant Cms = (ε2n)−1,

Qβ := βQms + (1 − β)Qrw1 , (5.5)

Qms(x, y) := 1

ε2n

⎧
⎨

⎩

(
− 1
ρ̂δ(y)

+ 1
ρ̂δ(x)

)

+w(x, y), for x �= y,
−∑z �=x

(
− 1
ρ̂δ(z)

+ 1
ρ̂δ(x)

)

+w(x, z), for x = y, (5.6)

ρ̂δ(x) := 1

n

∑

y∈X
ϕδ(x − y). (5.7)

Unless otherwise specified, we take the bandwidth δ in our kernel density estimate
for our one-dimensional examples to be

δ = √
2

( |�|
n

)0.5

. (5.8)

With these transition rate matrices in hand, we may now consider solutions ut
of (2.1) whenQ = Qrwα or whenQ = Qβ . We solve the ordinary differential equa-
tions describing the graph dynamics by directly computing the matrix exponential
etQ in each case; see Definition 2.1. Following the discussion in Sect. 4.2, we know
that for each of these dynamics, as n → +∞ and ε, δ → 0 (at an n dependent
rate that is not too fast), the measures

∑n
j=1 ut (xj )δxj are expected to converge to

solutions ft of the following Fokker–Planck equation:

∂tft = (1 − β)�ft − βdiv(ft∇ log(ρ)), (5.9)

where for theQrwα dynamics, we take

β = βα = (2 − 2α)/(3 − 2α) (5.10)

The steady state of the equation is the corresponding Maxwellian distribution

cρ,β ρ
β/(1−β)(x), (5.11)

where cρ,β > 0 is a normalizing constant chosen so that the distribution integrates
to one over �. Note that, if d(xi) represents the degrees of the graph vertices, as in
Eq. (1.8), then the function ut (xi)d(xi) likewise converges to ft (x) as the number of
nodes in our sample n→ +∞. Consequently, when comparing our graph dynamics
to the PDE dynamics, we will often plot ut (xi)d(xi) and ft (x).

Finally, we use the embedding maps �̂α and �̂β from Sects. 2.1 and 3.1 to
cluster the nodes. In particular, we apply k-means to the vectors {�̂α(xi)}ni=1

and {�̂β(xi)}ni=1, obtaining in this way a series of maps from nodes {xi}ni=1 to
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cluster centers {lm}km=1. Nodes mapped to the same cluster center are identified as
belonging to the same cluster. While we will not discuss at any depth the methods
to select the best number of clusters, we note that a number of methods to do so
(in particular the elbow method and the gap statistics [38]) rely on the value of the
k-means energy,

Ek = 1

n

n∑

i=1

min
m=1,...k

|�(xi)− lj |2, (5.12)

for each relevant �. Note that Ek always decreases with k. While a large decrease
in the energy as k increases is indicative of the improved approximation of data
by cluster centers, the size of the jumps is truly telling only if we compare it with
the relevant model for the data considered, see [38] and discussion in Sect. 5.2.3.
For ease of visualization, in our numerical examples, we will plot the normalized
k-means energy, which is rescaled so that energy of a single cluster equals one,

Enorm
k = Ek/E1. (5.13)

All of our simulations are conducted in Python, using the Numpy, SciPy, Sci kit-
learn, and MatPlotLib libraries [42, 24, 23, 33]. In particular, we use the Sci kit-learn
implementation of k-means to cluster the embedding maps.

Algorithm 1 Dynamic clustering algorithm forQβ orQrwα
Input: {xi}ni=1, ε, δ, t , k
Q = Qβ orQ = Qrwα
�̂Q(xi) = (etQ)(i,j=1,...n) for i = 1, . . . , n
lm = Kmeans.fit(�̂Q(x1), . . . , �̂Q(xn)) with nclusters = k

5.2 Simulations

We now turn to simulations of the graph dynamics, PDE dynamics, and clustering.

5.2.1 Graph Dynamics as Density Dynamics

In Fig. 4, we illustrate how the dynamics on a graph can be visualized as the
evolution of a density on the underlying domain� = [−1.5, 1.5]. The right column
of Fig. 4 illustrates two choices of data density (blue line),

ρtwo bump(x) = 4cϕ0.5(x + 0.5)+ cϕ0.25(x − 1.25)
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Fig. 4 Illustration of the graph dynamics ut for Qβ , β = 0.25, from initial condition δxi , xi =
−0.1, for two choices of data density: ρtwo bump (top) and ρuniform (bottom). The first three
columns show the evolution of ut (x)d(x) at times t = 0.1, 0.5, and 8.0, with the color of the
markers representing the value of ut (xi)d(xi) at each node. The last column depicts the data density
(blue line) from which the nodes of the graph {xi}ni=1 (black markers) are sampled, as well as the
steady state of the dynamics (thick black line)

and ρuniform(x) = 1

3
, x ∈ R. (5.14)

The constant c > 0 is chosen so that the integral of both densities over the domain
equals one. We sample the nodes of the graph {xi}ni=1 (black markers) from each
density, with n = 147 nodes sampled for ρtwo bump and n = 140 nodes sampled
for ρuniform. The first three columns show the evolution of the graph dynamics
ut (x)d(x) from Eq. (2.1) for Q = Qβ with β = 0.25 and initial condition δxi ,
xi = −0.1, where the top row corresponds to the graph arising from ρtwo bump
and the bottom row corresponds to the graph arising from ρuniform. The color of
the markers represents the value of ut (xi)d(xi) at each node. We observe in both
rows that ut (x)d(x) approaches the steady state of the corresponding continuum
PDE (5.11), depicted in a thick black line in the fourth column.

The fact that d(x)ut (x) appears more jagged in the bottom row compared to the
top row is due to the smaller value of ε in the graph weight matrix: see Eqs. (5.1–
5.2). Since our sample of the data density in the top row has an isolated node at
xi = 1.44, this leads to a significantly larger value of ε in the simulations on the top
row (ε = 0.13), compared to the bottom row (ε = 0.03).

5.2.2 Comparison of Graph Dynamics and PDE Dynamics

In Fig. 5, we compare the graph dynamics to the corresponding Fokker–Planck
equation (5.9). We consider the data density given by ρtwo bump and initial
condition δxi , for xi = −0.1. The graphs are built from n = 625 samples of the
data density, and solutions are plotted at times t = 0.5, 1.0, 8.0.
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Fig. 5 Comparison of the graph dynamics for Qβ (top) andQα (middle) with the PDE dynamics
(bottom). The data density is ρtwo bump, and the initial data is δxi for xi = −0.1. The graphs are
built from n = 625 samples of the data density. The steady states are obtained from equation (5.15)
for the graph dynamics and equation (5.11) for the finite difference dynamics

The top row illustrates the graph dynamics ut (x)d(x) arising from the transition
rate matrix Qβ , for β = 0, 0.25, 0.5, 0.75. The middle row illustrates ut (x)d(x)
arising from Qrwα for α = 1.0, 0.83, 0.5,−0.5. (The values of α are chosen
to give the same balance between drift and diffusion as in the top row; see
equation (5.10).) The last row shows a finite difference approximation of the
Fokker–Planck equation (5.9). We compute solutions of the PDEs using a semi-
discrete, upwinding finite difference scheme on a one-dimensional grid, with 200
spatial gridpoints and continuous time. This reduces the PDEs to a system of ODEs,
which we then solve using the SciPy odeint method.

The steady states we plot for the graph dynamics are given by the following
equation:

cn,δ,β(ρ̂γ (x))
β/(1−β), ρ̂γ (x) = 1

n

∑

y∈X
ψγ (x − y), ψγ (x) = 1

(2π)1/2γ
e−|x|2/(2γ 2),

(5.15)
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where cn,δ,β is a normalizing constant chosen, so the steady state integrates to one
over �. For the Qβ dynamics, we choose the standard deviation γ = δ, and for the
Qrwα dynamics, we choose γ = ε. Recall that ρ̂δ is the kernel density estimator used
in the construction of the transition matrix Qβ ; see Eq. (2.7). The steady states for
the PDE dynamics are given by Eq. (5.11).

Interestingly, even though there is no explicit kernel density estimate of the
data in the construction of the transition rate matrix Qrwα , the above simulations
demonstrate better agreement of these dynamics as t → +∞ with the steady state
arising from a kernel density estimate (5.15) than with the steady state arising
directly from the data density (5.11). This can be seen by observing the good
agreement at time t = 8.0 with the solid black line shown in the middle row,
rather than the solid black line shown in the bottom row. This suggests that the
Qrwα operator effectively takes a KDE of the data density with bandwidth ε > 0,
corresponding to the scaling of the weight matrix on the graph.

5.2.3 Clustering Dynamics

In Fig. 6, we illustrate how the graph dynamics ut of the transition rate matrix Qβ
can be used for clustering. The underlying data density is ρtwo bump, from which
we choose n = 204 samples. We consider β = 0.25, 0.9, and 1.0, corresponding to
the three columns of the figure. The top portion of the figure shows the results of the
k-means clustering algorithm for k = 2, 3, 4. Each plot depicts the data samples at
times t = 10−1, 1, 10, coloring the samples according to which cluster they belong.
The top right panel on the figure shows the data distribution and the kernel density
estimate of the data distribution, which is used to construct the transition rate matrix
Qβ . The bottom of the figure shows the value of the k-means energy Ek (5.13) for
each clustering normalized so that k = 1 clustering (all nodes in a single cluster)
has energy E1 = 1.

For all β and k, there is poor clustering behavior early in time, t = 0.1,
suggesting that the Fokker–Planck dynamics have not had time to effectively mix
within clusters. This can be seen by comparing the colors of the nodes to the data
distribution displayed on the right: a correct clustering should identify one cluster
for the large bump and another cluster for the small bump. This can also be seen
by considering the k-means energy, which is largest at t = 0.1, and shows little
variation for different choices of k.

On the other hand, we observe the best clustering performance for β = 0.9
and time t = 10. Examining the colors of the nodes for k = 2 reveals that the
correct clusters are found. Furthermore, this clustering remains fairly stable as k is
increased. This can also be seen in the k-means energy, which shows a substantial
decrease from k = 1 to k = 2, but remains stable for k = 3, 4, suggesting that two
clusters are the correct number of clusters.

While β = 0.25 and β = 1 do not offer good clustering performance, they
do shed light on key properties of our method, once time is sufficiently large to
have allowed the dynamics to effectively mix, t = 10. For example, when β =
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Fig. 6 Clustering performance of the graph dynamics for the transition rate matrix Qβ . The top
portion of the figure shows the results of the k-means clustering algorithm for k = 2, 3, 4 (rows)
and β = 0.25, 0.9, 1.0 (columns). The color of a node indicates the cluster to which it belongs. On
the top right, we show the data density from which n = 204 nodes are sampled and the KDE of
the data density used to constructQβ . The bottom of the figure shows the value of the normalized
k-means energy

0.25, diffusion dominates the dynamics, so that the density of the data distribution
does not play a strong role in clustering. In fact, we see that the clusters are almost
entirely driven by the geometry of the data distribution, which is fairly uniform on
the domain: when k = 2, the clusters are essentially even halves of the domain;
when k = 3, they are even thirds; and when k = 4, they are even quarters. The lack
of awareness of density when β = 0.25 inhibits correct cluster identification.

We observe the opposite problem when β = 1. In this case, the dynamics
are driven entirely by density, with no diffusion. However, the density driving the
dynamics is not the exact data density, but the kernel density estimate. Due to noise
in the KDE, an artificial local minimum appears near x = −0.75, causing k = 2 to
cluster the nodes to the left and right of this local minimum and causing k = 3 to
cluster the nodes into three even groups, separated by the two local minima of the
KDE. Unlike in the case β = 0.9, when β = 1.0, there is no diffusion to help the
dynamics overcome spurious local minima in the KDE, leading to inferior clustering
performance.

We close by considering the role of the k-means energies in identifying the
correct number of clusters. First, consider the case of a uniform data distribution.
In this case, the k-means energy for k = 2 would be 1

4 and for k = 3 would be 1
9 .
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Consequently, while the correct number of clusters for the uniform data distribution
is one, the k-means energy still drops significantly as k is increased. For this reason,
we caution that looking for the largest drop of the energy alone is not a good criterion
for determining the correct number of clusters. Determining the correct number of
clusters remains an active area of research, including, for example, the study of gap
statistics [38], in which the energy is compared to the energy one would have if the
data were uniform.

5.2.4 Effect of the Kernel Density Estimate on Clustering

Figure 7 illustrates the effect that the bandwidth δ of the kernel density estimate of
the data distribution has on clustering, see Eq. (2.7). The data distribution is given
by a piecewise constant function, shown in the rightmost column. The number of
samples chosen is n = 680, and the clustering is performed at time t = 30. The
graph connectivity parameter ε is chosen as in Eq. (5.2), equaling 0.015. The top
two rows show clustering performance for Qβ for β = 0.25, 0.9, 1, and the bottom
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Fig. 7 Effect of the bandwidth of the kernel density estimator on clustering, for n = 676 samples
clustered at time t = 30. First two rows show the clustering with Qβ , (5.5) for KDE bandwidths
δ = 0.2 and δ = 0.015, while the third shows the dynamics of Qrwα , (5.3). The first three columns
show clustering performance for different balances of drift and diffusion, and the fourth column
shows the data distribution and kernel density estimate. Note that, since no explicit kernel density
estimate is used in the construction of Qrwα , none is shown in the third row. The colors of the
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corresponds to a single cluster (k = 1), the next one represents two clusters (k = 2), then three and
four clusters
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row shows clustering performance for Qrwα for α = 0.83,−3.5,−50, where the
values of α are chosen to give a comparable balance between drift and diffusion at
the level of the continuum PDE; see Eqs. (5.9–5.10).

The first three columns show the clustering results for β = 0.25, 0.90, 1.00. The
color of a marker indicates the cluster to which it belongs, and the height of the
marker in the frame represents the value of the normalized k-means energy (5.13).
Since the normalized k-means energy is decreasing in k, the top row of markers
in each frame corresponds to a single cluster (k = 1), the next one represents two
clusters (k = 2), then three and four clusters.

In the top row, the bandwidth of the kernel density estimate used to construct
Qβ is δ = 0.20, and in the middle row, δ = 0.015. The effect of the bandwidth
on the kernel density estimate can be seen in the rightmost column: the larger value
of δ in the top row leads to a more accurate estimator of the data density than the
smaller value of δ in the middle row. As no explicit kernel density estimate is used
to construct the transition rate matrix Qrwα , no estimator is shown in the rightmost
column of the bottom row. However, our previous numerical simulations in Fig. 5
suggest that the dynamics ofQrwα most closely match the continuum Fokker–Planck
equation with a steady state induced by a kernel density estimate with bandwidth
δ = ε (5.15). This is the motivation behind our choice of δ = 0.015 = ε in
the second row, since it provides the closest comparison between the clustering
dynamics of Qβ and Qrwα . Finally, we note that the choice of δ we suggest in
Eq. (5.8) would lead to the choice δ = 0.07, which is between the values considered
in the top and middle rows of the figure, and leads to very similar performance for
β < 1.

In the top row, when the bandwidth in the KDE is large, we observe good
clustering performance for β = 0.9 and 1.0 and k = 2. On the other hand, β = 0.25
performs poorly, since the large amount of diffusion causes the dynamics to ignore
the changes in relative density and cluster based on the fairly uniform geometry
of the sampling. In the middle row, when the bandwidth in the KDE is small,
we still observe good performance for β = 0.9, though β = 1.0 clusters poorly:
without diffusion, the dynamics cluster based on spurious local maxima. As before,
β = 0.25 identifies incorrect clusters, since it lacks information about density.
Finally, as we expected, the clustering performance in the bottom row is similar
to the middle row, due to the fact that the bandwidth in the middle row was chosen
to match the bandwidth of the implicit kernel density estimate which appears to
drive the dynamics of Qrwα . Note that, for the bottom row, the only way to increase
the bandwidth of the implicit kernel density estimate would be to increase the graph
connectivity parameter ε, which, for compactly supported graph weights, would
lead to a more densely connected graph and thus higher computational cost.

5.2.5 Effect of Data Distribution on Clustering

Figure 8 illustrates the effect that different choices in data distribution have on the
clustering method based on Qβ , for n = 160 nodes and at time t = 30. Each row
considers a different data distribution: ρtwobump (see Eq. (5.14)) and
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Fig. 8 Illustration of the effect that different choices of data distribution have on the clustering
method based on Qβ for n = 160 samples at time t = 30. The first three columns illustrate
different choices of β, where the color of a marker indicates the cluster it belongs to for k = 1, 2, 3,
and the height of the marker in the frame represents the value of the normalized k-means energy

ρdeep valley(x) = 7c0ϕ0.5(x + 0.5)+ 3c0ϕ0.15(x − 1.25),

ρthree bump(x) = c1ϕ0.1(x − 0.5)+ c1ϕ0.1(x − 1.1)+ 4c1ϕ0.4(x + 1),

where c0, c1 > 0 are normalizing constants chosen, so the densities integrate to one
on� = [−1.5, 1.5]. The right column shows the data density, the sample of n = 160
nodes, and the kernel density estimate used to construct the transition rate matrix
Qβ . The first three columns show the clustering results for β = 0.25, 0.90, 1.00.
The color of a marker indicates the cluster to which it belongs for k = 1, 2, 3, and
the height of the marker in the frame represents the value of the normalized k-means
energy (5.13).

In the top row, for ρtwo bump, we observe good clustering performance for all
β � 0.9 and poor performance for β = 0.25: due to the good behavior of the KDE
for this data distribution, problems do not arise as β → 1, and as usual, β = 0.25
suffers due to the dominance of diffusion. In the middle row, for ρdeep valley,
we again observe good performance for all β � 0.9, and we even observe good
performance for β = 0.25 when k = 2. This is due to the sparse sampling at
the deep valley, which leads to a change in the geometry of the nodes: a gap
that even diffusion dominant dynamics can detect. Finally, in the bottom row, for
ρthree mountains, we observe good performance for β � 0.9. Again, β = 0.25 is
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Fig. 9 Graph dynamics ofQβ on ρblue sky for n = 965 samples for β = 0.20 (top) and β = 0.95
(bottom). The initial condition is δxi ,yi for (xi , yi ) = (−0.26,−0.29). In the first three columns,
the dots represent the locations of the samples, and the colors of the markers represent the value of
ut (xi)d(xi). In the fourth column, we plot the steady state of the corresponding continuum PDE
(5.15)

able to capture some correct information when k = 2, due to the sparsity of the data
near the left valley, but it fails at the most relevant k = 3.

5.2.6 Blue Sky Problem

In Fig. 9, we consider the graph dynamics of Qβ on a two-dimensional data
distribution inspired by the blue sky problem from image analysis, for n = 965
samples on the domain � = [−1.5, 1.5] × [−1, 1]. We choose ε = 0.04 and
δ = 0.10, in order to optimize agreement between the discrete dynamics and the
steady state of the continuum PDE (5.15).

In simple terms, the blue sky problem can be described as a setting in which data
points are distributed over two elongated clusters that are separated by a narrow
low-density region. For concreteness, we model this with a density of the form:

ρblue sky(x, y) = ϕ1.0(x) ∗ (ϕ0.09(y − 0.32)+ ϕ0.09(y + 0.32)).

In the top row, we choose β = 0.20, and in the bottom row, we choose β = 0.95. In
both cases, we choose the initial condition for the dynamics to be δxi ,yi for (xi, yi) =
(−0.26,−0.29). As in Fig. 4, the markers in the first four columns represent the
locations of the samples, which form the nodes of our graph, and the colors of the
markers represent the value of ut (xi)d(xi) at each node. In the rightmost column,
we plot the steady state of the continuum PDE (5.15). We observe good agreement
between the graph dynamics and the steady state by time t = 10.0. In the case
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Fig. 10 Illustration of the clustering behavior of Qβ on ρblue sky for n = 965 samples at time
t = 10. The first three rows show the clustering behavior for k = 2, 3, 4, with each node colored
according to which cluster it belongs. The fourth row shows the normalized k-means energy for
each number of clusters k

β = 0.95, the diffuse profile of the steady state illustrates that there is significant
diffusion, in spite of the fact that β is close to one.

In Fig. 10, we show the clustering behavior of Qβ on ρblue sky for n = 965
samples at time t = 10. The columns correspond to β = 0.2, 0.95, 1.0. The first
three rows show the clustering behavior for k = 2, 3, 4, with each node colored
according to which cluster it belongs. In the fourth row, we show the normalized
k-means energy for each choice of β.

We observe the best clustering performance for β = 0.95 and k = 2.
Furthermore, in this case, the plot of the normalized k-means energy indicates that
higher values of k do not lead to significant decreases of the energy, providing
further evidence that k = 2 is the correct number of clusters. The clustering
performance deteriorates for both β = 0.2 and β = 1.0. In the case of β = 0.2,
diffusion dominates and the clustering is based on the geometry of the sample
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Fig. 11 For the same data distribution as in Fig. 10, we investigate how the clustering behavior of
Qβ depends on the graph connectivity length scale ε for β = 0.20, 0.95, 1.00

points, preferring to cluster by slicing the sample points evenly in two pieces via the
shortest cut through the data set. In the case of β = 1.0, we expect that inaccuracies
in the kernel density estimation lead to spurious local minima, and in the absence
of diffusion to help overcome these local minima, incorrect clusters are found.
Note that simply increasing the bandwidth δ of kernel density estimate in this case
would not necessarily improve performance for β = 1.0, since for a large enough
bandwidth, the two lines would merge into one line.

Finally, in Fig. 11, we investigate how the clustering behavior of Qβ for
ρblue sky depends on the graph connectivity ε; see Eq. (5.1). The columns
correspond to β = 0.20, 0.95, 1.00 and the rows correspond to ε =
0.01, 0.03, [0.04, 0.11], and 0.12. We note that for a wide range of ε, the diffusion-
dominated regime β = 0.2 prefers to make shorter cuts even over parts of the
domain where data are dense, which is undesirable for the data considered. On the
other hand, the pure mean shift suffers, as in other examples, from the tendency to
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represent the locations of the samples, and the colors of the markers represent the value of
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(5.15)

identify spurious local maxima of KDE as clusters. We observe the best clustering
performance over the wide range of ε for β = 0.95. Considered together with other
experiments, this suggests that adding even a small amount of diffusion goes a long
way toward correct clustering.

5.2.7 Density vs. Geometry

In Fig. 12, we consider the graph dynamics of Qβ on a two-dimensional data
distribution chosen to illustrate how the competing effects of density and geometry
depend on the parameter β. We choose n = 966 samples, ε = 0.07, and δ = 0.05,
in order to optimize agreement between the discrete dynamics and the continuum
steady state.

The data density, which we refer to as ρthree blobs, is given by a piecewise
constant function that is equal to height one on the three circles of radius 0.25,
as well as on the wide rectangle [0.25, 0.75] × [−0.125, 0.125] on the top. On
the narrow rectangle [−0.75, 0.25] × [−0.04, 0.04] on the bottom, the piecewise
constant function has height four. Finally, the data density is multiplied by a
normalizing constant so that it integrates to one over the domain� = [−1.5, 1.5]×
[−1, 1].

In Fig. 12, we choose β = 0.7 and initial condition for the dynamics to be δxi ,yi
for (xi, yi) = (0.07, 0.10). The locations of the markers represent the samples from
the data distribution, and the colors of the markers represent the value of ut (xi)d(xi)
at each node. In the right column, we plot the steady state of the corresponding
continuum PDE (5.15). We observe good agreement with the graph dynamics and
the steady state by time t = 10.

In Fig. 13, we show the clustering behavior of the Qβ on ρthree blobs for n =
966 samples at time t = 10. The two columns correspond to β = 0.7 and 0.75. The
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Fig. 13 Illustration of the
clustering behavior of theQβ
on ρthree blobs for n = 966
samples at time t = 10. The
first three rows show the
clustering behavior for
k = 2, 3, 4, with each node
colored according to which
cluster it belongs. In the
fourth row, we show the
normalized k-means energy
for each choice of k.
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first three rows show the clustering behavior for k = 2, 3, 4, with each node colored
according to which cluster it belongs. In the fourth row, we show the normalized
k-means energy for each choice of k.

This simulation provides an example of a data distribution where there is no
single “correct” choice of clustering for k = 2: a “good” clustering algorithm might
seek to cut either the thin, high density rectangle on the bottom or the wide, low
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density rectangle on the top. For small values of β � 0.7, diffusion dominates, and
the clusters are chosen based on the geometry of the data, preferring to cut the thin,
high density rectangle. For large values of β � 0.75, density dominates, and the
clustering prefers to cut the wide, low density rectangle. For intermediate values of
β, there is a phase transition for which the clustering becomes unstable.
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Random Batch Methods for Classical
and Quantum Interacting Particle
Systems and Statistical Samplings

Shi Jin and Lei Li

Abstract We review the Random Batch Methods (RBM) for interacting particle
systems consisting of N -particles, with N being large. The computational cost of
such systems is of O(N2), which is prohibitively expensive. The RBM methods
use small but random batches so the computational cost is reduced, per time step,
to O(N). In this article we discuss these methods for both classical and quantum
systems, the corresponding theory, and applications from molecular dynamics,
statistical samplings, to agent-based models for collective behavior, and quantum
Monte Carlo methods.

1 Introduction

Interacting particle systems arise in a variety of important phenomena in physical,
social, and biological sciences. They usually take the form of Newton’s second
law that governs the interactions of N -particles under interacting forces that vary
depending on different applications. Such systems are important in physics–from
electrostatics to astrophysics, in chemistry and material sciences–such as molec-
ular dynamics, in biological and social sciences–such as agent-based models in
swarming [95, 16, 15, 21], chemotaxis [51, 8], flocking [19, 45, 2], synchronization
[17, 44], and consensus [83]).

These interacting particle systems can be described in general by the first order
systems

dr i = b(r i ) dt + αN
∑

j :j �=i
K(r i − rj ) dt + σ dW i , i = 1, 2, · · · , N, (1.1)

or the second order systems
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dr i = vi dt,

dvi =
[
b(r i )+ αN

∑

j :j �=i
K(r i − rj )− γ vi

]
dt + σ dW i .

(1.2)

We use i = 1, · · · , N to denote the labels for the particles. We will loosely call
r i the “locations” or “positions,” and vi the velocities of the particles, though
the specific meaning can be different in different applications. The function K(·)
and b(·) : R

d → R
d are the interaction kernel and some given external field

respectively. The stochastic processes {W i}Ni=1 are i.i.d. Wiener processes, or the
standard Brownian motions. If γ = σ = 0 and b = −∇V for some potential V ,
one has a Hamiltonian system in classical mechanics. For the molecules in the heat
bath [62, 14], r i and vi are the physical positions and velocities, described by the
underdamped Langevin equations, where σ and γ satisfy the so-called fluctuation-
dissipation relation

σ = √2γ /β, (1.3)

where β is the inverse of the temperature. (we assume all the quantities are scaled
and hence dimensionless so that the Boltzmann constant is absent.) The first order
system (1.1) can be viewed as the overdamped limit (when γ → ∞ and the time
rescaled as γ t) of the second order systems (1.2). When the fluctuation-dissipation
relation (1.3) is satisfied so that the diffusion coefficient in (1.1) is given by

√
2/β.

In the case αN = 1
N−1 , as N → ∞, the dynamics of the so-called mean-field

limit of (1.1) is given by the nonlinear Fokker-Planck equation

∂tμ = −∇ · ((b(x)+K ∗ μ)μ)+ 1

2
σ 2�μ, (1.4)

where μ(dx) ∈ P(Rd). (the notation P(E) for a Polish space E means the set of all
probability measures on E.) This means that the empirical measure defined by

μN(t) := 1

N

N∑

i=1

δ(· − r i (t)), (1.5)

and the one-particle marginal distribution converges (in the weak topology) to the
weak solution of the Eq. (1.4). See [79, 92, 37, 40, 52, 69] for some references about
the mean-field limit. The regime αN = c/N + o(1/N), N → ∞ is thus naturally
called the mean-field regime. Correspondingly, the mean-field limit of the second
order system (1.2) is

∂tf = −∇x · (vf )− ∇v · ((b(x)+K ∗x f − γ v)f )+ 1

2
σ 2�vf, (1.6)
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where f (dx, dv) ∈ P(Rd × R
d) and ∗x means that the convolution is performed

only on the x variable.
If one directly discretizes (1.1) or (1.2), the computational cost per time step is

O(N2). This is undesired for large N . The Fast Multipole Method (FMM) [90] is
able to reduce the complexity to O(N) for fast enough decaying interactions. How-
ever, the implementation of FMM is quite involved. A simple random algorithm,
called the Random Batch Method (RBM), has been proposed in [54] to reduce
the computation cost per time step from O(N2) to O(N), based on the simple
“random mini-batch” idea. Such an idea is famous for its application in the so-
called stochastic gradient descent (SGD) [89, 11, 13] for machine learning problems.
The idea was also used for Markov Chain Monte Carlo methods like the stochastic
gradient Langevin dynamics (SGLD) [98], and the computation of the mean-field
flocking model [2, 16], motivated by Nanbu’s algorithm of the Direct Simulation
Monte Carlo method [10, 84, 5].

The key behind the “mini-batch” idea is to find some cheap unbiased random
estimator using small subset of data/particles for the original quantity with the
variance being controlled. Depending on the specific applications, the design can
be different. For instances, the random grouping strategy was proposed in the
RBM regarding general interacting particle systems in [54] (see also Sect. 2 and
Lemma 2.1 below for details), while the importance sampling in the Fourier space
was proposed for the Random Batch Ewald method for molecular dynamics in [59].
Compared with FMM, the accuracy of RBM is lower, but RBM is much simpler
and is valid for more general potentials (e.g., the SVGD ODE [67]). The method
converges due to the time average, and thus the convergence is like that in the Law of
Large Numbers, but in time. For long-time behaviors, the method works for systems
that own ergodicity and mixing properties, like systems in contact with heat bath
and converging to equilibria. A key difference from SGD or SGLD is that the RBM
algorithms proposed are aiming to approximate and grasp the dynamical properties
of the systems as well, not just to find the optimizer or equilibrium distribution.

The rigorous analysis of RBM has been established for some cases and RBM
has been shown to be asymptotic-preserving in the mean-field limit [54]. RBM for
interacting particle systems has already been used or extended in various directions,
from statistical sampling [67, 70, 57] to molecular dynamics [59, 68], control of
synchronization [9, 65], and collective behavior of agent-based models [46, 43, 64].
RBM has been shown to converge for finite time interval if the interaction kernels
are good enough [67, 54], and in particular, an error estimate uniformly inN was first
obtained in [54]. A convergence result of RBM for N -body Schrödinger equation
was established in [41].

The goal of this review is to introduce the basics of the RBM, the fundamental
theory for the convergence and error estimates, and various applications.
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2 The Random Batch Methods

In this section, we describe the RBM for general interacting particle systems
introduced first in [54]. We use bold fonts (e.g., r i , xi , vi , ui) and capital letters
(Xi, Yi) to denote the quantities that are functions of time t associated with the
particles, use usual letters like xi, vi to represent a point in the state space (often
R
d ), and use letters like x, v to represent quantities in the configurational space

R
Nd .

2.1 The RBM Algorithms

Let T > 0 be the simulation time, and choose a time step �t > 0. Pick a batch
size 2 ≤ p � N that divides N (RBM can also be applied if p does not divide N ;
we assume this only for convenience). Consider the discrete time grids tk := k�t ,
k ∈ N. For each subinterval [tk−1, tk), the method has two substeps: (1) at tk−1,
divide theN particles into n := N/p groups (batches) randomly; (2) let the particles
evolve with interaction only inside the batches.

The above procedure, when applied to the second order system (1.2), leads to
Algorithm 1. The version for first order systems is similar.

RBM requires the random division, and the elements in different batches are dif-
ferent. This is in fact the sampling without replacement. If one allows replacement,
one has the following version of RBM 2, which is simpler to implement. In this
version, for one iteration of k, some particles may not be updated while some maybe
drawn more than once. However, the method is expected to be correct statistically.

Algorithm 1 (RBM for (1.2))
1: for m in 1 : [T/�t] do
2: Divide {1, 2, . . . , N = pn} into n batches Cq , 1 ≤ q ≤ n randomly.
3: for each batch Cq do
4: Update r i , vi (i ∈ Cq ) by solving for t ∈ [tm−1, tm) the following

dr i = vi dt,

dvi =
[
b(r i )+ αN(N − 1)

p − 1

∑

j∈Cq ,j �=i
K(r i − rj )− γ vi

]
dt + σdW i .

(2.1)

5: end for
6: end for
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Algorithm 2 (RBM-r)
1: for m in 1 : [T/�t] do
2: for k from 1 to N/p do
3: Pick a set Ck of size p randomly with replacement.
4: Update r i ’s (i ∈ Ck) by solving the following SDE for time �t .

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dxi = ui dt,

dui =
[
b(xi )+ αN(N − 1)

p − 1

∑

j∈Ck ,j �=i
K(xi − xj )− γui

]
dt + σ dW i .

xi (0) = r i , ui (0) = vi ,

(2.2)

i.e., solve (2.2) with initial values xi (0) = r i ,ui (0) = vi , and set r i ← xi (�t),
vi ← ui (�t).

5: end for
6: end for

We now discuss the computational cost. Note that random division into n batches
of equal size can be implemented using random permutation, which can be realized
in O(N) operations by Durstenfeld’s modern revision of Fisher-Yates shuffle
algorithm [28] (in MATLAB, one can use “randperm(N)”). After the permutation,
one takes the first p elements to be in the first batch, the second p elements to be
in the second batch, etc. The ODE solver per particle per time step (2.2) requires
merely O(p) operations, thus for all particles, each time step costs only O(pN).
Since p � N the overall cost per time step is significantly reduced from O(N2).

However, one might encounter the issue of having to use a much smaller time
step, which could be of O(N) times smaller, in the RBM implementation. For RBM
to really gain significant efficiency, one needs �t to be independent of N . This is
justified by an error analysis to be presented in the next subsection.

2.2 Convergence Analysis

In this subsection, we present the convergence results of RBM for the second order
systems (1.2) in the mean-field regime (i.e., αN = 1/(N − 1)), which was given in
[56]. We remark that the proof relies on the underlying contraction property of the
second order systems under certain conditions [78, 30]. Due to the degeneracy of
the noise terms, the contraction should be proved by suitably chosen variables and
Lyapunov functions, and we refer the readers to [56] for more details.

Denote (r̃ i , ṽi ) the solutions to the random batch process (2.1) with the Brownian
motion used being W̃ i . Consider the synchronization coupling as in [54, 55]:

r i (0) = r̃ i (0) ∼ μ0, W i = W̃ i . (2.3)
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Let C(k)q (1 ≤ q ≤ n) be the batches at tk , and define

C(k) := {C(k)1 , · · · , C(k)n }, (2.4)

to be the random division of batches at tk . According to the Kolmogorov extension
theorem [27], there exists a probability space (�,F ,P) such that the random
variables {r i0,W i, C(k) : 1 ≤ i ≤ N, k ≥ 0} are all defined on this probability
space and are independent. Let E denote the integration on � with respect to the
probability measure P, and consider the L2(·) norm of a random variable

‖ζ‖ =
√

E|ζ |2. (2.5)

For finite time interval, the convergence of RBM is as follows.

Theorem 2.1 Let b(·) be Lipschitz continuous, and assume that |∇2b| has polyno-
mial growth, and the interaction kernel K is Lipschitz continuous. Then,

sup
t∈[0,T ]

√

E|r̃ i (t)− r i (t)|2 + E|ṽi (t)− vi (t)|2 ≤ C(T )
√
�t

p − 1
+�t2, (2.6)

where C(T ) is independent of N .

Often the long-time error estimates are important since one could use RBM as a
sampling method for the invariant measure of (1.2) (see Sect. 5). For this we need
some additional contraction assumptions:

Assumption 2.1 b = −∇V for some V ∈ C2(Rd) that is bounded from below (i.e.,
infx V (x) > −∞), and there exist λM ≥ λm > 0 such that the eigenvalues of
H := ∇2V satisfy

λm ≤ λi(x) ≤ λM, ∀ 1 ≤ i ≤ d, x ∈ R
d .

The interaction kernel K is bounded and Lipschitz continuous. Moreover, the
friction γ and the Lipschitz constant L of K(·) satisfy

γ >
√
λM + 2L, λm > 2L. (2.7)

Then the following uniform strong convergence estimate holds:

Theorem 2.2 Under Assumption 2.1 and the coupling (2.3), the solutions to (1.2)
and (2.1) satisfy

sup
t≥0

√

E|r̃ i (t)− r i (t)|2 + E|ṽi (t)− vi (t)|2 ≤ C
√
�t

p − 1
+�t2, (2.8)
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where the constant C does not depend on p and N .

Clearly, these error estimates imply that the RBM can also grasp the dynamical
properties. The error estimates above are consequence of some intuitive results,
which we summarize here (see [54]).

For given x := (x1, . . . , xN) ∈ R
Nd , introduce the error of the interacting force

for the ith particle.

χi(x) := 1

p − 1

∑

j∈C
K(xi − xj )− 1

N − 1

∑

j :j �=i
K(xi − xj ). (2.9)

Here, C is the random batch that contains i in a random division of the batches.

Lemma 2.1 Consider a configuration x that is independent of the random division.
Then,

Eχi(x) = 0. (2.10)

Moreover, the (scalar) variance is given by

Var(χi(x)) =
(

1

p − 1
− 1

N − 1

)

 i(x), (2.11)

where

 i(x) := 1

N − 2

∑

j :j �=i

∣
∣
∣K(xi − xj )− 1

N − 1

∑

�:� �=i
K(xi − x�)

∣
∣
∣
2
. (2.12)

Lemma 2.1 in fact lays the foundation of the convergence of RBM-type algo-
rithms. The first claim implies that the random estimates of the interacting forces
are unbiased in the sense that the expectation is zero. This gives the consistency–in
expected value–of the RBM approximation, although each random batch approxi-
mation 1

p−1

∑
j∈C K(xi − xj ) to the true interacting force 1

N−1

∑
j :j �=i K(xi − xj )

gives an O(1) error (which is clear from
√

Var(χi(x)) = O(1)). Being a Monte
Carlo like methods, the boundedness of the variance ensures the stability of the
RBM as can be seen in the proof [56, 55]. The intrinsic mechanism why such
type of methods work is the independent resampling in later time steps, and due to
some averaging effect in time these O(1) errors become small. This Law of Large
Numbers type feature in time guarantees the convergence of RBMs (as indicated by
the error bound

√|Var(χ)|τ ∼ √|Var(χ)|/NT in Theorems 2.1 and 2.2).
As another remark, the nonzero variance of the RBM approximation gives some

effective noise into the system. This could bring in some “numerical heating” effects
when RBM is applied for some interacting particle systems. When the system has
some dissipation, or in contact with a heat bath as in Sect. 4 , RBM approximation
can be valid for long time and can capture the equilibrium.
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In both Theorems 2.1 and 2.2, the error bound is independent of N so that
the time step can be chosen independent of N for a fixed accuracy tolerance ε.
Hence, for each time step, the cost of RBM is O(1/N) of that for direct simulation,
but it does not need to take O(N) times longer to finish the computation. Such
convergence results were first established for first order systems (1.1) [54] and
then extended to disparate mass cases [55]. The weak convergence has also been
discussed in [55].

2.3 An Illustrating Example: Wealth Evolution

To illustrate the algorithms, we consider the model proposed by Degond et. al. [22]
for the evolution ofN market agents with two attributes: the economic configuration
Xi and its wealth Yi .

Ẋi = V (Xi, Yi),

dYi = − 1

N − 1

∑

k:k �=i
ξik�(|Xi −Xk|)∂yφ(Yi − Yk) dt +

√
2DYidWi.

(2.13)

The first equation describes the evolution of the economic configuration, which is
driven by the local Nash equilibrium and it is related to mean-field games [66].
The second equation describes the evolution of the wealth. The quantity

√
2D is

the volatility. The function φ is the trading interaction potential, while ξik�(|Xi −
Xk|) is the trading frequency. This model is an interacting particle systems with
long-range interactions and multiplicative noise, for which we will apply the RBM
method. We also point out that the RBM version of (2.13) can be viewed as a new
model in which one agent may only trade with a small number of random agents
during a short time in the real world.

For numerical experiments, [54] considers the homogeneous case when the
wealth dynamics is independent of the position in the economic configuration space.
Then, the dynamics of the wealth is reduced to the following

dYi = − κ

N − 1

∑

k:k �=i
∂yφ(Yi − Yk) dt +

√
2DYidWi. (2.14)

The corresponding mean-field dynamics has an equilibrium distribution given by

ρ∞(y) ∝ exp

(

−α(y)
D

)

,

where α satisfies
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Fig. 1 Wealth distribution obtained by RBM compared with the reference curve

∂yα(y) = − 1

y2F(y)+
2D

y
.

In Fig. 1, the empirical distribution of the wealth obtained by RBM for the case
φ(y) = 1

2y
2 is compared to the reference curve (an inverse Gamma distribution),

which is

ρ∞(y) = (κη/D)κ/D+1

!(κ/D + 1)
y−(2+κ/D) exp

(

− κη
Dy

)

1y>0, η =
√

2√
π
.

Clearly, the distribution obtained by RBM agrees perfectly with the expected wealth
distribution at t = 3 already.

This example has two distinguished features: long range and multiplicative
noises so that it does not fit the assumptions of the convergence results presented in
Sect. 2.2, which were established for regular interacting potentials K and additive
noises. As shown by this and more examples in [54], and those in later sections,
the RBM algorithms are applicable to much broader classes of interacting particle
systems, including long-range, singular (like the Lennard-Jones and Coulomb)
potentials (see Sect. 4 below), and with multiplicative noise.

3 The Mean-Field Limit

It is known that theN -particle system (1.1) with αN = 1/(N−1) has the mean-field
limit given by the Fokker-Planck equation (1.4). Namely, the empirical measure
or the one-particle marginal distribution of the particle system (1.1) is close, in
Wasserstein distance, to μ in (1.4). Thus, when N is large, one may use the RBM
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Algorithm 3 (RBM for first order systems)
1: for k in 1 : [T/�t] do
2: Divide {1, 2, . . . , N} into n = N/p batches randomly.
3: for each batch Cq do
4: Update r i ’s (i ∈ Cq ) by solving the following SDE with t ∈ [tk−1, tk).

dr i = b(r i )dt + 1

p − 1

∑

j∈Cq ,j �=i
K(r i − rj )dt + σ dW i . (3.1)

5: end for
6: end for

Algorithm 4 (Mean-field dynamics of RBM (3.1))
1: μ̃(·, t0) = μ0.
2: for k ≥ 0 do
3: Let ρ(p)(· · · , 0) = μ̃(·, tk)⊗p be a probability measure on (Rd )p ∼= R

pd .
4: Evolve the measure ρ(p) to find ρ(p)(· · · ,�t) by the following Fokker-Planck equation:

∂tρ
(p) = −

p∑

i=1

∇xi ·
⎛

⎝
[
b(xi)+ 1

p − 1

p∑

j=1,j �=i
K(xi − xj )

]
ρ(p)

⎞

⎠+ 1

2
σ 2

p∑

i=1

�xi ρ
(p).

(3.2)

5: Set

μ̃(·, tk+1) :=
∫

(Rd )(p−1)
ρ(p)(·, dy2, · · · , dyp,�t). (3.3)

6: end for

as a numerical (particle method) for (1.4). Indeed, since the error bounds obtained
in the previous section are independent of N , one could hope that when N → ∞,
the one-particle marginal distribution of the RBM should be close to μ. To justify
this, one first needs to derive the mean-field limit of the RBM, for fixed �t , then
compare it with (1.4). In addition, the RBM could be viewed as a random model for
the underlying physics, hence it is also natural to ask what its mean-field limit is.

Consider the RBM for the first order system (1.1) with αN = 1/(N − 1), shown
in Algorithm 3. The mean-field limit was derived and proved in [53]. We summarize
the results in this section.

Intuitively, when N # 1, the probability that two chosen particles are correlated
is very small. Hence, in theN → ∞ limit, two chosen particles will be independent
with probability 1. Due to the exchangeability, the marginal distributions of the
particles will be identical. Based on this observation, the following mean-field limit
for RBM can be obtained for the one-particle distribution:

The dynamics in Algorithm 4 naturally gives a nonlinear operator G∞ :
P(Rd)→ P(Rd) as
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μ̃(·, tk+1) =: G∞(μ̃(·, tk)). (3.4)

Corresponding to this is the following SDE system for t ∈ [tk, tk+1)

dxi = b(xi ) dt + 1

p − 1

p∑

j=1,j �=i
K(xi − xj ) dt + σ dW i , i = 1, · · · , p,

(3.5)

with {xi (tk)} drawn i.i.d from μ̃(·, tk). Then, μ̃(·, tk+1) = L(x1(t
−
k+1)), the law of

x1(t
−
k+1). Note that all xi have the same distribution for any tk ≤ t < tk+1. Without

loss of generality, we will impose x1(t
−
k ) = x1(t

+
k ). For other particles i �= 1, xi (t)

in [tk−1, tk) and [tk, tk+1) are independent and they are not continuous at tk . In fact,
in the N → ∞ limit, xi , i �= 1 at different subintervals correspond to different
particles that interact with particle 1 as in Algorithm 3.

Hence, in the mean-field limit of RBM, one starts with a chaotic configuration,1

the p particles evolve by interacting with each other. Then, at the starting point
of the next time interval, one imposes the chaos condition so that the particles are
independent again.

In [53], this intuition has been justified rigorously for finitely many steps under
the following assumptions.

Assumption 3.1 The moments of the initial data are finite:

∫

Rd

|x|qμ0(dx) <∞, ∀q ∈ [2,∞). (3.6)

Assumption 3.2 Assume b(·) : R
d → R

d and K(·) : R
d → R

d satisfy the
following conditions.

• b(·) is one-sided Lipschitz:

(z1 − z2) · (b(z1)− b(z2)) ≤ β|z1 − z2|2 (3.7)

for some constant β;
• K is Lipschitz continuous

|K(z1)−K(z2)| ≤ L|z1 − z2|.

1 By “chaotic configuration,” we mean that there exists a one-particle distribution f such that for
any j , the j -marginal distribution is given by μ(j) = f⊗j . Such independence in a configuration
is then loosely called “chaos.” If the j -marginal distribution is more close to f⊗j for some f , we
loosely say “there is more chaos.”
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μ̃
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N

μ
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μ̃

N → ∞

N → ∞
One marginal of RBM Mean field limit of RBM

μ̃(·, tk) = Gk
∞(μ0)

Nonlinear Fokker-Planck

μ = � dx

μ̃
(1)
N (·, tk) = G(k)

N (μ0)

One marginal of N particle system

μ(·, t) = S(t)(μ0)

Δ
t
→

0

Δ
t
→

0

Fig. 2 Illustration of the various operators and the asymptotic limits

Corresponding to the operator (3.4), one may define the operator GkN : P(Rd)→
P(Rd) for RBM with N particles as follows. Let r i (0)’s be i.i.d drawn from μ0, and
consider (3.1). Define

GkN (μ0) := L(r1(tk)). (3.8)

Recall that L(r1) denotes the law of r1, thus the one-particle marginal distribution.
Conditioning on a specific sequence of random batches, the particles are not
exchangeable. However, when one considers the mixture of all possible sequences
of random batches, the laws of the particles r i (tk) (1 ≤ i ≤ N ) are identical. In
Fig. 2, we illustrate these definitions and various limits. With these setup introduced,
we may state the first main result in [53] as follows:

Theorem 3.1 Under assumptions 3.1 and 3.2, for any fixed k, it holds for any q ∈
[1,∞) that

lim
N→∞Wq(G

k∞(μ0),GkN (μ0)) = 0. (3.9)

Here,Wq is the Wasserstein-q distance [91]:

Wq(μ, ν) =
(

inf
γ∈"(μ,ν)

∫

Rd×Rd

|x − y|qdγ
)1/q

, (3.10)

where"(μ, ν) is the set of “transport plans,” i.e., a joint measure on R
d ×R

d such
that the marginal measures corresponding to x and y are μ and ν respectively.

The next questions are whether the one-particle marginal distribution μ(1)N :=
L(r1) of the RBM converges to μ. Denote the solution operator to (1.4) by S:

S(�)μ(t1) := μ(t1 +�), ∀t1 ≥ 0,� ≥ 0. (3.11)

Clearly, {S(t) : t ≥ 0} is a nonlinear semigroup.
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We make more technical assumptions here.

Assumption 3.3 The measure μ0 has a density �0 that is smooth with finite
moments

∫
Rd

|x|q�0 dx <∞, ∀q ≥ 1, and the entropy is finite

H(μ0) :=
∫

Rd

�0 log �0 dx <∞. (3.12)

If �0(x) = 0 at some point x, one defines �0(x) log �0(x) = 0. We also introduce
the following assumption on the growth rate of derivatives of b and K , which will
be used below.

Assumption 3.4 The function b and its derivatives have polynomial growth. The
derivatives of K with order at least 2 (i.e., DαK with |α| ≥ 2) have polynomial
growth.

Based on these conditions, it can be shown that μ has a density �(·, t). For
convenience, we will not distinguish μ from its density �. Sometimes, one may
also assume the strong confinement condition:

Assumption 3.5 The fields b(·) : R
d → R

d and K(·) : R
d → R

d are smooth.
Moreover, b(·) is strongly confining:

(z1 − z2) · (b(z1)− b(z2)) ≤ −r|z1 − z2|2 (3.13)

for some constant r > 0, and K is Lipschitz continuous |K(z1)−K(z2)| ≤ L|z1 −
z2|. The parameters r, L satisfy

r > 2L. (3.14)

With the assumptions stated, we can state the second main result in [53].

Theorem 3.2 Suppose Assumptions 3.2, 3.3 and 3.4 hold. Then,

sup
n:n�t≤T

W1(Gn∞(�0), �(n�t)) ≤ C(T )�t. (3.15)

If Assumption 3.5 is assumed in place of Assumption 3.2 and also σ > 0, then

sup
n≥0
W1(Gn∞(�0), �(n�t)) ≤ C�t. (3.16)

These theorems show that the dynamics given by G∞ can approximate that of
the nonlinear Fokker-Planck equation (1.4), with the W1 distance to be of O(�t) .
Thus, the two limits limN→∞ and lim�t→0 commute, as shown in Fig. 2.
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4 Molecular Dynamics

Molecular dynamics (MD) refers to computer simulation of atoms and molecules
and is among the most popular numerical methods to understand the dynamical
and equilibrium properties of many-body particle systems in many areas such as
chemical physics, soft materials and biophysics [18, 34, 33]. In this section, we
discuss the relevant issues and the applications of RBM and its modifications.

Consider N “molecules” with masses mi’s (each might be a model for a real
molecule or a numerical molecule that is a packet of many real molecules) that
interact with each other. The equations of motion are given by

dr i = vi dt,

midvi =
[

−
∑

j :j �=i
∇φij (r i − rj )

]
dt + dξ i . (4.1)

Here, φij (·) is the interaction potential and dξ i means some other possible terms
that change the momentum,. Typical examples of the potential include the Coulomb
potentials

φij (x) = qiqj

r
,

where qi is the charge for the ith particle and r = |x|, and the Lennard-Jones
potential

φij (x) = 4

(
1

r12 − 1

r6

)

.

Between ions, both types of potential exist and between charge-neutral molecules,
the Lennard-Jones potential might be the main force (the Lennard-Jones interaction
intrinsically also arises from the interactions between charges, so these two types are
in fact both electromagnetic forces) [34, 33]. To model the solids or fluids with large
volume, one often uses a box with length L, equipped with the periodic conditions
for the simulations. Below, we will assume φij ≡ φ independent of i, j for the
convenience of discussions except explicitly stated otherwise.

To model the interaction between the molecules with the heat bath, one may
consider some thermostats so that the temperature of the system can be controlled
at a given value. The thermostats are especially good for RBM approximations
as the effective noise introduced by RBM approximation can be damped by the
thermostats, reducing the “numerical heating” effects [59]. Typical thermostats
include the Andersen thermostat, the Langevin thermostat and the Nosé-Hoover
thermostat [34]. In the Andersen thermostat [34, section 6.1.1], one does the
simulation for dξ i = 0 between two time steps, but a particle can collide with
the heat bath at each discrete time. Specifically, assume the collision frequency is ν,
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so in a duration of time t � 1 the chance that a collision has happened is given by
the exponential distribution

1 − exp(−νt) ≈ νt, t � 1.

If a collision happens, the new velocity is then sampled from the Maxwellian
distribution with temperature T (i.e., the normal distribution N (0, T )). In the
underdamped Langevin dynamics, one chooses

dξ i = −γ vi dt +
√

2γ

β
dW i ,

so that the “fluctuation-dissipation relation” is satisfied and the system will evolve
to the equilibrium with the correct temperature T = β−1. It is well-known that the
invariant measure of such systems is given by the Gibbs distribution [72]

π(x, v) ∝ exp

(

−β(1
2

N∑

i=1

|vi |2 + U(x))
)

, U(x) = 1

2

∑

i,j :i �=j
φ(xi − xj ),

where x = (x1, · · · , xN) ∈ R
Nd and v = (v1, · · · , vN) ∈ R

Nd . The Nosé-
Hoover thermostat uses a Hamiltonian for an extended system of N particles plus
an additional coordinate s [85, 50]:

HNH =
N∑

i=1

|p̃i |2
2mis2 + U({r i})+ p2

s

2Q
+ L ln s

β
.

Here, p̃i is the momentum of the ith particle. The microcanonical ensemble
corresponding to this Hamiltonian reduces to the canonical ensemble for the real
variables pi = p̃i/s. Hence, one may run the following deterministic ODEs, which
are the Hamiltonian ODEs with Hamiltonian HNH in terms of the so-called real
variables,

ṙ i = pi ,

ṗi = −∇r i U − ξpi ,

ξ̇ = 1

Q

(
∑

i=1

|pi |2
mi

− 3N

β

)

.

The time average of the desired quantities will be the correct canonical ensemble
average. As one can see, when the temperature of the system is different from T ,
the extra term −ξpi will drive the system back to temperature T , thus it may give
better behaviors for controlling the temperature.
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4.1 RBM with Kernel Splitting

In molecular dynamics simulation, the interaction force kernel

K(x) := −∇φ(x), x ∈ R
d ,

is often singular at x = 0. Hence, the direct application of RBM could lead to poor
results. The reason is that some particles in different batches may get too close after
a time step and thus the interaction between them becomes large if they happen to
be in the same batch in the next time interval, resulting in numerical instability. To
resolve this issue, one can adopt the splitting strategy in [77, 49] and decompose the
interacting force K into two parts:

K(x) = K1(x)+K2(x). (4.2)

Here, K1 has short range that vanishes for |x| ≥ r0 where r0 is a certain cutoff
chosen to be comparable to the mean distance of the particles. K2(x) is a bounded
smooth function. One then applies RBM to the K2 part only. The resulting method
is shown in Algorithm 5. Now, K1 is of short range so that one only considers
the close neighbors to compute the summation in K1 for each given i, and the
resulting cost is of O(1) using data structures like Cell List [34, Appendix F].
SinceK2 is bounded, RBM can be applied well due to the boundedness of variance,
without introducing too much error. Hence, the cost per time step is again O(N).
For practical applications, one places the initial positions of the molecules on the
grid of a lattice, and the repulsive force K1 will forbid the particles from getting too
close so that the system is not too stiff.

Algorithm 5 RBM with splitting for (1.2)
1: Split K =: K1 +K2, where K1 has short range, while K2 has long range but is smooth.
2: for m in 1 : [T/�t] do
3: Divide {1, 2, . . . , N = pn} into n batches randomly.
4: for each batch Cq do
5: Update (r i , vi )’s (i ∈ Cq ) by solving for t ∈ [tm−1, tm)

dr i = vi dt,

dvi =
[
b(r i )+ αN

∑

j :j �=i
K1(r i − rj )− γ vi

]
dt

+ αN(N − 1)

p − 1

∑

j∈Cq ,j �=i
K2(r i − rj ) dt + σ dW i .

(4.3)

6: end for
7: end for
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Fig. 3 The pressure obtained by Andersen-RBM and Langevin-RBM for Lenard-Jones fluid with
N = 500: the blue circles are those by Andersen-RBM while the red squares are by Langevin-
RBM. The reference curves (black solid line) are the fitting curves in [60]. (a) ν = γ = 10,
�tk = 0.001/ log(k + 1). (b) ν = γ = 50, �t = 0.001

Using this splitting strategy, one may apply RBM to the MD simulations with
different thermostats. In Fig. 3, we show the numerical results from [56] for a
Lennard-Jones fluid with temperature β−1 = 2 and the length of box L = (N/ρ)1/3
for a given density ρ. The results are obtained using the Andersen thermostat
and the Langevin thermostat respectively, with the splitting and RBM strategy, for
particle number N = 500. In the first figure, the decreasing step sizes �tk =
0.001/ log(k+ 1) are taken to reduce the numerical heating effect brought by RBM
when the collision coefficient are not so big (ν = γ = 10). The results show that
RBM with splitting strategy can work reasonably well for the Lennard-Jones fluid
in the considered regime.

4.2 Random Batch Ewald: An Importance Sampling in the
Fourier Space

In the presence of long-range interactions such as the Coulomb interactions, the
molecular dynamics simulation becomes computationally expensive for large N ,
especially when the periodic box is used to represent a system with large size. A
lot of effort has already been devoted to computing such long-range interactions
efficiently. Some popular methods include lattice summation methods such as the
particle-particle mesh Ewald (PPPM) [76, 23], and multipole type methods such as
treecode [7, 25] and fast multipole methods (FMM) [42, 101]. These methods can
reduce the complexity per time step from O(N2) to O(N logN) or even O(N),
and have gained big success in practice. However, some issues still remain to be
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resolved, e.g., the prefactor in the linear scaling can be large, or the implementation
can be nontrivial, or the scalability for parallel computing is not high.

In this section, we give a brief introduction to the recently proposed Random
Batch Ewald (RBE) method for molecular dynamics simulations of particle systems
with long-range Coulomb interactions in a periodic box, which achieves an O(N)
complexity [59] with a high parallel efficiency. A natural splitting that breaks the
Coulomb potential into the short range singular part and long-range smooth part
as in Sect. 4.1 is the Ewald splitting. Due to the periodic setting, direct application
of RBM to the long-range smooth part needs to group the particles chosen (with
net charge zero) together with their periodic images. This works but the variance
is not very small. The interesting observation in [59] is that the Ewald sum for
the long-range part can be written in the Fourier space with a discrete Gaussian
weight. Then, an important sampling mini-batch strategy can be used to reduce
the variance significantly. In one sentence, the RBE method is based on the Ewald
splitting for the Coulomb kernel with a random “mini-batch” type technique applied
in the Fourier series for the long-range part.

Compared with PPPM where the Fast Fourier Transform is used to speed up
the computation in the Fourier space, the RBE method uses random batch type
technique to speed up the computation.

Consider N physical or numerical particles inside the periodic box with side
length L, assumed to have net charge qi (1 ≤ i ≤ N ) with the electroneutrality
condition

N∑

i=1

qi = 0. (4.4)

The forces are computed using F i = −∇r i U , where U is the potential energy of the
system. Since the Coulomb potential is of long range, with the periodic boundary
condition, one must consider the images so that

U = 1

2

∑

n

′
N∑

i,j=1

qiqj
1

|r ij + nL| , (4.5)

where n ∈ Z
3 ranges over the three-dimensional integer vectors and

∑′ is defined
such that n = 0 is not included when i = j .

Due to the long-range nature of the Coulomb potential, the series (4.5) converges
conditionally, thus a naive truncation would require a very large r to maintain the
desired numerical accuracy. The classical Ewald summation separates the series into
long-range smooth parts and short range singular parts:

1

r
= erf(

√
αr)

r
+ erfc(

√
αr)

r
, (4.6)
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where erf(x) := 2√
π

∫ x
0 exp(−u2)du is the error function and erfc = 1 − erf.

Correspondingly,

U1 = 1

2

∑

n

′∑

i,j

qiqj
erf(

√
α|r ij + nL|)

|r ij + nL| , (4.7)

U2 = 1

2

∑

n

′∑

i,j

qiqj
erfc(

√
α|r ij + nL|)

|r ij + nL| . (4.8)

The computation of force can be done directly using

F i = −∇r i U = −∇r i U1 − ∇r i U2 =: F i,1 + F i,2.

The second part F i2 corresponds to the short range forces whose computational
cost is relatively low, since, for each particle, one just needs to add a finite number
of particles in its close neighborhood. We now focus on the first part.

The slow decay of U1 in r , corresponding to the long-range, can be dealt with in
the Fourier space thanks to its smoothness (see [34, Chap. 12]):

U1 = 2π

V

∑

k �=0

1

k2 |ρ(k)|2e−k2/4α −
√
α

π

N∑

i=1

q2
i , (4.9)

where k = |k| and ρ(k) is given by ρ(k) := ∑N
i=1 qie

ik·r i . The divergent k =
0 term is usually neglected in simulations to represent that the periodic system is
embedded in a conducting medium which is essential for simulating ionic systems.
Then

F i,1 = −
∑

k �=0

4πqik

V k2
e−k2/(4α)Im(e−ik·r i ρ(k)), (4.10)

where we recall r ij = rj − r i , pointing toward particle j from particle i. Note that
the force F i,1 is bounded for small k. In fact, k ≥ 2π/L, so V k ≥ 2πL2. Let us

consider the factor e−k2/(4α), and denote the sum of such factors by

S :=
∑

k �=0

e−k2/(4α) = H 3 − 1, (4.11)

where

H :=
∑

m∈Z
e−π2m2/(αL2) =

√

αL2

π

∞∑

m=−∞
e−αm2L2 ≈

√
αL2

π
(1 + 2e−αL2

),

(4.12)
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Algorithm 6 (Random batch Ewald)
1: Choose α, rc, and kc (the cutoffs in real and Fourier spaces respectively), �t , and batch size
p. Initialize the positions and velocities of charges r0

i , v
0
i for 1 ≤ i ≤ N .

2: Sample sufficient number of k ∼ e−k2/(4α), k �= 0 by the MH procedure to form a set K.
3: for n in 1 : N do
4: Integrate Newton’s equations (4.1) for time �t with appropriate integration scheme and

some appropriate thermostat. The Fourier parts of the Coulomb forces are computed using
RBE force (4.14) with the p frequencies chosen from K in order.

5: end for

since often αL2 # 1. Hence, S is the sum for all three-dimensional vectors k except
0. Then, one can regard the sum as an expectation over the probability distribution

Pk := S−1e−k2/(4α), (4.13)

which, with k �= 0, is a discrete Gaussian distribution and can be sampled
efficiently. For example, one can use the Metropolis-Hastings (MH) algorithm
(see [48] for details) by choosing proposal samples from the continuous Gaussian
N (0, αL2/(2π2)), the normal distribution with mean zero and variance αL2/(2π2).
It should be emphasized that this sampling can be done offline, before the iteration
begins. Once the time evolution starts one just needs to randomly draw a few (p)
samples for each time step from this pre-sampled Gaussian sequence.

With this observation, the MD simulations can then be done via the random
mini-batch approach with this importance sampling strategy. Specifically, one
approximates the force F i,1 in (4.10) by the following random variable:

F i,1 ≈ F ∗
i,1 := −

p∑

�=1

S

p

4πk�qi

V k2
�

Im(e−ik�·r i ρ(k�)). (4.14)

The corresponding algorithm is shown in Algorithm 6.
Similar to the strategy in the PPPM, one may choose α such that the time cost

in real space is cheap and then speed up the computation in the Fourier space.
Compared with PPPM, the only difference is that PPPM uses FFT while RBE uses
random mini-batch to speed up the computation in the Fourier space. Hence, we
make the same choice

√
α ∼ N1/3

L
= ρ1/3

r ,

which is inverse of the average distance between two numerical particles. The
complexity for the real space part is O(N). By choosing the same batch of
frequencies for all forces (4.14) (i.e., using the same k�, 1 ≤ � ≤ p for all
F ∗
i,1, 1 ≤ i ≤ N ) in the same time step, the complexity per iteration for the
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frequency part is reduced to O(pN). This implies that the RBE method has linear
complexity per time step if one chooses p = O(1).

To illustrate the performance of the RBE method, consider an electrolyte with
monovalent binary ions (first example in [59]). In the reduced units ([34, section
3.2]), the dielectric constant is taken as ε = 1/4π so that the potential of a charge
is φ(r) = q/r and the temperature is T = β−1 = 1. Under the Debye-Hückel
(DH) theory (linearized Poisson-Boltzmann equation), the charge potential outside
one ion is given by

−ε�φ =
{

0 r < a

qρ∞,+e−βqφ − qρ∞,−eβqφ ≈ βq2ρrφ, r > a

where ρ∞,+ = ρ∞,− = N/(2V ) are the densities of the positive and negative ions
at infinity, both being ρr/2. The parameter a is the effective diameter of the ions,
which is related to the setting of the Lennard-Jones potential (in real simulations,
besides the Coulomb interactions computed using the RBE method, the Lennard-
Jones potential is also considered). In the simulations, a = 0.2 and the setting
of Lennard-Jones potential can be found in [59]. This approximation gives the net
charge density ρ = −ε�φ for r # a,

ln(rρ(r)) ≈ −1.941r − 1.144.

The results in the left panel of Fig. 4 were obtained by N = 300 (i.e., 150 cation
and anion particles respectively) in a periodic box with side length L = 10.
The thermostat was Andersen’s thermostat with collision frequency ν = 3. These
parameters are chosen such that they give comparable results. Clearly, all the three
methods give correct results, agreeing with the curve predicted by the DH theory.
Regarding the efficiency, the right figure shows the time consumed for different
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Table 1 Relative error of
potential energy for the RBE
method against PPPM
method with different
densities and batch sizes

p = 10 p = 20 p = 50 p = 100

ρr = 0.1 0.15% 0.13% 0.13% 0.08%

ρr = 0.3 0.10% 0.08% 0.04% 0.09%

ρr = 1 0.66% 0.18% 0.11% 0.04%

ρr = 4 7.83% 2.38% 0.71% 0.31%

Fig. 5 The parallel efficiency of the PPPM and the RBE methods for all-atom simulation of pure
water system (Left) 3 × 105 atoms; (Right) 3 × 107 atoms

particle numbers inside the box with the same side length L = 10. Both the PPPM
and RBE methods scale linearly with the particle numbers. However, even for batch
size p = 100, the RBE method consumes much less time. The relative accuracies of
the potential obtained by RBE against the PPPM are listed in Table 1, for different
densities ρr = N/L3. Clearly, the RBE method has the same level of accuracy
compared with the PPPM method for the densities considered.

Next, in Fig. 5, the parallel efficiency of the PPPM and RBE methods from [71]
for the all-atom simulation of pure water systems is shown. As can be seen, due
to the reduction of communications for the particles, the RBE method gains better
parallel efficiency. This parallel efficiency is more obvious when the number of
particles is larger. In [71], the simulation results of pure water system also indicate
that the RBE type methods can not only sample from the equilibrium distribution,
but also compute accurately the dynamical properties of the pure water systems.

5 Statistical Sampling

Sampling from a complicated or even unknown probability distribution is crucial
in many applications, including numerical integration for statistics of many-body
systems [34, 29], parameter estimation for Bayesian inference [93, 12], etc.. The
methods that rely on random numbers for sampling and numerical simulations are
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generally called the Monte Carlo (MC) methods [61, 29]. The law of large numbers
[27] validates the usage of empirical measures for approximation of the complicated
or unknown probability measure. By the central limit theorem [27], the error of the
MC methods scales like O(N−1/2) which is independent of the dimension d, hence
the MC methods overcome the curse of dimensionality. The Markov Chain Monte
Carlo (MCMC) methods [39, 35] are among the most popular MC methods. By
constructing Markov chains that have the desired distributions to be the invariant
measures, one can obtain samples from the desired distributions by recording the
states of the Markov chains. A typical MCMC algorithm is the Metropolis-Hastings
algorithm [81, 48].

Unlike the MCMC, the Stein variational Gradient method (proposed by Liu
and Wang in [74]) belongs to the class of particle based variational inference
sampling methods (see also [88, 20]). These methods update particles by solving
optimization problems, and each iteration is expected to make progress toward the
desired distribution. As a non-parametric variational inference method, SVGD gives
a deterministic way to generate points that approximate the desired probability
distribution by solving an ODE particle system, which displays different features
from the Monte Carlo methods.

We describe in this section two sampling methods that use RBM to improve
the efficiency. The first method, Random Batch Monte Carlo, is a fast MCMC that
costs only O(1) per iteration to sample from the Gibbs measures corresponding to
many-body particle systems with singular interacting kernels. The second method,
RBM-SVGD, is an interesting application of RBM to the Stein variational gradient
descent ODE system, which is an interacting particle system.

5.1 Random Batch Monte Carlo for Many-Body Systems

Suppose that one wants to sample from the N -particle Gibbs distribution

π(x) ∝ exp
[−βH(x)] , (5.1)

with x = (x1, · · · , xN) ∈ R
Nd (xi ∈ R

d , and d ≥ 1, d ∈ N), β being a positive
constant, the N -body energy

H(x) :=
N∑

i=1

wiV (xi)+
∑

i,j :i<j
wiwjφ(xi − xj ), (5.2)

and V being the external potential assumed to be smooth. Here,wi’s are the weights.
In the molecular regime, wi’s are often taken to be 1, while in the mean-field regime
[92, 37, 66], one may have w ∼ N−1.

In [70], Li et. al. proposed the Random Batch Monte Carlo method, which costs
O(1) per time step for sampling from equilibrium distributions (Gibbs measures)



176 S. Jin and L. Li

corresponding to particle systems with singular interacting kernels. Similarly to [77,
49] and the MD methods above, the interacting potential is decomposed into two
parts

φ(x) = φ1(x)+ φ2(x), (5.3)

where we suppose that φ1 has long range but is smooth and bounded, while φ2 is
singular and of short range. The algorithm is based on the following splitting Monte
Carlo, which is a special case of the Metropolis-Hastings algorithm:

Suppose there are N particles located at xj for j = 1, · · · , N . Let us consider
the following method for a Markovian jump.

Step 1 —Randomly choose a particle i.
Step 2 —Move the particle using φ1 with overdamped Langevin equation:

dr i=−
⎛

⎝ ∇V (r i )
w(N − 1)

+ 1

N − 1

∑

j :j �=i
∇φ1(r i−rj )

⎞

⎠ dt+
√

2

(N − 1)w2β
dW i ,

r i (0) = xi,
(5.4)

where xj ’s are fixed. Evolve this SDE with some time t > 0 and obtain r i (t)→
x∗
i as a candidate position of particle i for the new sample.

Step 3 —Use φ2 to do the Metropolis rejection. Define

acc(xi, x
∗
i ) = min

⎧
⎨

⎩
1, exp

[
− β

∑

j :j �=i
w2(φ2(x

∗
i − xj )− φ2(xi − xj ))

]
⎫
⎬

⎭
.

(5.5)

With probability acc(xi, x∗
i ), accept x∗

i and set

xi ← x∗
i . (5.6)

Otherwise, xi is unchanged. Then, a new sample {x1, · · · , xN } is obtained for the
Markov chain.

Note that the overdamped Langevin equation satisfies the detailed balance
condition so the above algorithm is a special case of the Metropolis-Hastings
algorithm, thus can correctly sample from the desired Gibbs distribution. Due to the
short range of φ2, Step 3 can be done in O(1) operations using some standard data
structures such as the cell list [34, Appendix F]. The idea is to use the random mini-
batch approach to Step 2. Hence, one discretizes the SDE with the Euler-Maruyama
scheme [63, 82]. The interaction force is approximated within the random mini-
batch idea. This gives the following algorithm.
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Algorithm 7 (Random batch Monte Carlo algorithm)
1: Split φ := φ1 +φ2 such that φ1 is smooth and with long range; φ2 is with short range. Generate
N initial particles; choose Ns (the total number of samples), p > 1, m ≥ 1

2: for n in 1 : Ns do
3: Randomly pick an index i ∈ {1, · · · , N} with uniform probability
4: r i ← xi
5: for k = 1, · · · ,m do
6: Choose ξ k , zk ∼ N (0, Id ), �tk > 0 and let,

r i ← r i −�tk
⎡

⎣ ∇V (r i )
w(N − 1)

+ 1

p − 1

∑

j∈ξ k

∇φ1(r i − xj )
⎤

⎦+
√

2�tk
(N − 1)w2β

zk

7: end for
8: Let x∗

i ← r i . Compute the following using cell list or other data structures:

α = min

⎧
⎨

⎩
1, exp

[
− β

∑

j :j �=i
w2(φ2(x

∗
i − xj )− φ2(xi − xj ))

]
⎫
⎬

⎭

9: Generate a random number ζ from uniform distribution on [0, 1]. If ζ ≤ α, set

xi ← x∗
i

10: end for

It has been proved in [70] that the mini-batch approximation has an error control
for the transition probability so that the method is correct with some systematic
error. The computational cost is O(1) for each iteration and the efficiency could be
higher since there is no rejection in Step 2.

We now present a numerical result from [70] to illustrate the efficiency of RBMC.
Consider the Dyson Brownian motion [31]:

dλj (t) = −λj (t) dt + 1

N − 1

∑

k:k �=j

1

λj − λk dt +
1√
N − 1

dWj , j = 1, · · · , N,

(5.7)

where {λj }’s represent the eigenvalues of certain random matrices (compared with
the original Dyson Brownian motion, N − 1 instead of N is used in (5.7); there
is little effect due to the replacement N → N − 1). In the limit N → ∞, the
distribution obeys the following nonlocal PDE

∂tρ(x, t)+ ∂x(ρ(u− x)) = 0, u(x, t) = π(Hρ)(x, t) = p.v.
∫

R

ρ(y, t)

x − y dy,
(5.8)
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Fig. 6 (Left) Empirical densities with 1e7 sampling iterations (1e7N sample points). The blue
curve is the analytical curve given by the semicircle law (5.9). (Right) error versus CPU time

where H(·) is the Hilbert transform on R, π = 3.14 · · · is the circumference ratio
and p.v. represents the Cauchy principal value. From this PDE, one finds that the
limiting equation (5.8) has an invariant measure, given by the semicircle law:

ρ(x) = 1

π

√
2 − x2. (5.9)

Figure 6 shows the sampling results of RBMC and MH methods for empirical
measures with particles from the joint distribution

π(dx) ∝ exp

⎛

⎝−
(N − 1

2

∑

i

x2
i −

∑

i<j

ln |xi − xj |
)
⎞

⎠ ,

which is the invariant measure for the interacting particle system (5.7). The
empirical measure is expected to be close to the semicircle law when N is large
enough. In the simulations, the particle number was fixed as N = 500. In the
RBMC, the splitting was done for ln r at r = 0.01, and the time step was chosen
as �t = 10−4. The MH algorithm uses a certain Gaussian proposal for the random
movement of a chosen particle. The left panel of Fig. 6 shows that both methods
yield results that agree with the semicircle law reasonably well. The right panel
plots the relative error with respect to the semicircle law versus CPU time. Clearly,
the RBMC method only needs 10% of the time for the MH method to get the error
tolerance considered.
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5.2 RBM-SVGD: A Stochastic Version of Stein Variational
Gradient Descent

Suppose that one is interested in some target probability distribution with density
π(x) (x ∈ R

d ). In SVGD, one sets V = − logπ , chooses some symmetric positive
definite kernel K(x, y), and solves the following ODE system for given initial points
{r i (0)}Ni=1 (see [74, 73]):

ṙ i = 1

N

N∑

j=1

∇yK(r i , rj )− 1

N

N∑

j=1

K(r i , rj )∇V (rj ), i = 1, · · · , N, (5.10)

where N is the number of particles for the sampling purpose. The subindex “y” in
∇y means that the gradient is taken with respect to the second variable in K(·, ·);
i.e., ∇yK(r i , rj ) := ∇yK(x, y)|(x,y)=(r i ,rj ). When t is large enough, the empirical
measures constructed using {r i (t)}Ni=1 is expected to be close to π , i.e.,

1

N

N∑

i=1

δ(x − r i (t)) ≈ π(x) dx, t # 1.

SVGD provides consistent estimation for generic distributions as Monte Carlo
methods do, but it seems to be more efficient than some Monte Carlo methods in
practice level for approximating the desired measure, when the number of particles
is small [74, 24]. Interestingly, it reduces to the maximum a posterior (MAP) method
when N = 1 [74].

The ODE system (5.10) clearly is an interacting particle system but now the
interaction kernel is no longer translation invariant and is not symmetric. The kernel
can even grow as |r i − rj | → ∞. Clearly, for such systems, RBM is applicable.
Applying the RBM to this special kernel and using any suitable ODE solvers, one
gets a class of sampling algorithms, which is called RBM-SVGD in [67]. The
discrete algorithm (with possible variant step size) is shown in Algorithm 8. Clearly,
the complexity is O(pN) for each iteration.

Here, NT is the number of iterations and {ηk} is the sequence of time steps,
which play the same role as learning rate in SGD [11, 13]. For some applications,
one may simply set ηk = η � 1 to be a constant and get relatively good results.
However, in many high dimensional problems, choosing ηk to be constant may yield
divergent sequences [89]. One may decrease ηk to obtain convergent data sequences.
For example, one may simply choose ηk = 1/k as in SGD. Another frequently used
strategy is the AdaGrad approach [26, 97].

We recall the gradient flow under the so-called Stein metric in the space of
probability measures [73, 36]:
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Algorithm 8 RBM-SVGD
1: for k in 0 : NT − 1 do
2: Divide {1, 2, . . . , pn} into n batches randomly.
3: for each batch Cq do
4: For all i ∈ Cq ,

r
(k+1)
i ← r

(k)
i + 1

N

(
∇yK(r(k)i , r(k)i )− K(r(k)i , r

(k)
i )∇V (r(k)i )

)
ηk +#k,iηk,

where

#k,i = N − 1

N(p − 1)

∑

j∈Cq ,j �=i

(
∇yK(r(k)i , r(k)j )− K(r(k)i , r

(k)
j )∇V (r(k)j )

)
. (5.11)

5: end for
6: end for

∂tρ = ∇ ·
(

ρK ∗ (ρ∇ δE
δρ
)

)

, (5.12)

where K ∗ g = ∫ K(x, y)g(y) dy. Consider taking the energy functional as the
Kullback–Leibler (KL) divergence between ρ and the target distribution π , where
KL divergence is also known as the relative entropy defined by

KL(μ||ν) = EY∼μ log

(
dμ

dν
(Y )

)

. (5.13)

Here dμ
dν

is the well-known Radon–Nikodym derivative. Then, Eq. (5.12) becomes

∂tρ = ∇ · (ρK ∗ (ρ∇V + ∇ρ)). (5.14)

It is easy to see that π ∝ exp(−V ) is invariant under this PDE. See [73, 75] for
some relevant studies.

The above theory encounters difficulty for empirical measures because the
KL divergence is simply infinity. One benefit of the of the “Stein metric” is
that the gradient may be moved from ∇ρ onto the kernel K(x, y) so that the
flow (5.12) becomes (5.10), which is then well-defined. In fact, if {r i} solves the
ODE system (5.10), then the corresponding empirical measure is a measure solution
to (5.14) (see [75, Proposition 2.5]). Hence, one may reasonably expect that (5.10)
will give approximation for the desired distribution π .

For numerical illustration, we take an example from [67]. Consider the logistic
regression for binary classification on the Covertype dataset, with 581012 data
points and 54 features [38]. The inference is applied on posterior p(x|D) with the
parameter x = [w, logα] being of dimension 55. Here,D is 80% of the data and the
remaining data were used for test. Figure 7 shows the performance of SVGD and
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Table 2 Average runtime of 6000 iterations

RBM-SVGD SVGD

p 2 4 8 16 32 128 512

Runtime(s) 8.59 11.24 16.28 26.15 21.66 19.42 47.01

Speedup 5.5x 4.2x 2.9x 1.8x 2.2x 2.4x

RBM-SVGD with N = 512 particles and kernel K(x, y) = k(x−y) for a Gaussian
kernel k(·). Clearly, RBM-SVGD gives comparable results with SVGD, both results
being as good as some traditional methods.

Table 2 shows the CPU time and speedup of RBM-SVGD. Clearly, for compara-
ble results, RBM-SVGD is more efficient.

6 Agent-Based Models for Collective Dynamics

Collective behaviors of self-propelled particles (agents) are ubiquitous in nature, for
example, synchronous flashing of fireflies and pacemaker cells, swarming of fish,
flocking of birds and herding of sheep. We refer to [1, 19, 83, 94, 100] for survey
articles and related literature.

While the RBM was introduced as an efficient algorithm for interacting particle
systems, one can also view it as a (random) model of the underlying problem, which
takes into account only a small number of interactions randomly at discrete time
steps. Two natural questions arise with such models: (a) How accurate are these
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“new” random models compared to the original, full batch models? (b) Do these
random models still capture the main features of the original model, such as the
collective or long-time behavior, and under what conditions? Here we review some
recent results that address these issues for two representative problems, the Cucker–
Smale model for flocking and the consensus model.

6.1 The Cucker–Smale Model

We begin with the Cucker–Smale (CS) model [19]:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dxi

dt
= vi , t > 0, i = 1, . . . , N,

dvi

dt
= κ

N − 1

∑

j :j �=i
ψ(|xj − xi |)(vj − vi ),

(xi (0), vi (0)) = (xini , vini ),

(6.1)

where xi and vi are the position and velocity of the i-th CS particle, respectively, κ
is the non-negative coupling strength and ψ , the communication weight measuring
mutual interactions between agents, is positive, bounded, and Lipschitz continuous
and satisfies the monotonicity conditions:

0 ≤ ψ(r) ≤ ψM, ∀ r ≥ 0, ‖ψ‖Lip <∞,
(ψ(r1)− ψ(r2))(r1 − r2) ≤ 0, r1, r2 ∈ R+.

(6.2)

Here ψM > 0 is a constant. The emergent dynamics of (6.1), flocking, in which all
particles will eventually stay in a bounded domain with the same velocity, has been
extensively studied in literature [45, 47].

Consider the RBM approximation for (6.1):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dx̃i

dt
= ṽi , t ∈ [tm−1, tm), m = 1, 2, · · · ,

d ṽi

dt
= κ

p − 1

∑

j∈C(k)i ,j �=i
ψ(|x̃j − x̃i |)(ṽj − ṽi ),

(x̃i (0), ṽi (0)) = (xini , vini ), i = 1, . . . , N.

(6.3)

Assume that ψ is long-ranged:

1/ψ(r) = O(rβ) as r → ∞ for some β ∈ [0, 1). (6.4)

For example, one can take
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ψ(r) = 1

(1 + r2)β/2
, β ∈ [0, 1).

Then [46] establishes the following emergence of a global flocking: there exist
positive constants x̃∞ and C such that

sup
0≤t<∞

E

( 1

N2

N∑

i,j=1

|x̃i − x̃j |2
)
< x̃∞ and

E

( 1

N2

N∑

i,j=1

|ṽi − ṽj |2
)

≤ C exp
[

− C(p − 1)

(N − 1)(1 +�t) t (1 + t)−β
]
,

(6.5)

where C depends only on ψ , β, κ and the initial data.
Furthermore, the following uniform-in-time error estimate was also proved:

when ψ has a positive lower bound ψ0,

ψ(r) ≥ ψ0 for r ≥ 0, (6.6)

then

E

( 1

N

N∑

i=1

|ṽi (t)− vi (t)|2
)

≤ C�t
(

1

p − 1
− 1

N − 1

)

+ C�t2

+ C(1 +�t) exp(−κψ0t),

(6.7)

where the dependency of the constant C is the same as in (6.5).
Note that the positive lower bound assumption (6.6) corresponds to the case of

β = 0 in the long-ranged communication (6.4). However, the third time-decaying
term in the right-hand side of (6.7) is independent of p and N .

6.2 Consensus Models

Let qi ∈ R
d , 1 ≤ i ≤ N be a collection of agents that seek for a consensus,

governed by the Cauchy problem:

⎧
⎪⎨

⎪⎩

dq i

dt
= νi + κ

N − 1

∑

j �=i
aij!(qj − q i ), t > 0,

q i (0) = qini , i = 1, · · · , N,
(6.8)

where κ is a non-negative coupling strength and νi is the intrinsic velocity of the i-
th agent. Here ! is an interaction function satisfying the following properties: there
exists C1 > 0 such that
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! ∈ C2(BC1(0)), !(−q) = −!(q), ∀ q ∈ BC1(0)). (6.9)

Here Br(x) is the open ball with radius r and center x. We assume, without loss of
generality, that the total sum is zero:

N∑

i=1

νi = 0,

and the adjacency matrix (aij )Ni,j=1 represents the network structure for interactions
between agents satisfying symmetry and non-negative conditions:

aij = aji ≥ 0, 1 ≤ i, j ≤ N.

Note that the first term on the R.H.S. of (6.8) induces the “dispersion effect”
due to the heterogeneity of νi . The second term in the R.H.S. of (6.8), modeled
by the convolution type consensus force, generates “concentration effect.” The
overall dynamics of (6.8) is determined by the competitions between dispersion and
concentration.

Below we present the study on RBM to this problem in [64]. Consider the RBM
approximation where the interaction term is approximated by the random mini-batch
at each time step. Then the relative state |q̃i − q̃j | for RBM approximation can
be unbounded even if the original relative state |qi − qj | is uniformly bounded.
Thus to balance dispersion and interaction in the RBM, one also needs to apply
the RBM in the dispersion part as well. A sufficient framework leading to the
uniform boundedness of relative states is to introduce suitable decomposition of
the dispersion term νi as a sum of N -dispersion terms ν̄ij :

ν̄ij = −ν̄j i , νi = κ

N − 1

N∑

j=1

ν̄ij , i, j = 1, . . . , N. (6.10)

Then, the original Cauchy problem (6.8) is equivalent to the following problem:

⎧
⎪⎨

⎪⎩

dq i

dt
= κ

N − 1

∑

j �=i

(
νij + aij!(qj − qi )

)
, t > 0,

qi (0) = qini , i = 1, · · · , N,
(6.11)

and the RBM samples dispersions and interactions proportionally,

⎧
⎪⎪⎨

⎪⎪⎩

dq̃i

dt
= κ

p − 1

∑

j∈C(k)i ,j �=i

(
ν̄ij + aij!(q̃j − q̃ i )

)
, t ∈ (tk, tk+1),

q̃i (0) = qini , i = 1, . . . , N, k = 0, 1, 2, . . . .

(6.12)



Random Batch Methods for Classical and Quantum Interacting Particle. . . 185

We first state the main result for the one-dimensional case. Assume that the
coupling function ! is strongly dissipative in the sense that

(!(q1)− !(q)) · (q1 − q) ≈ |q1 − q|2, ∀ q, q1 ∈ [−C1, C1],

and also the full system (6.8) has an equilibrium # = (φ1, · · · , φN) ∈ (−C1, C1)
N

with initial data sufficiently close to #. The main result is the following uniform
error estimate, under the condition that the underlying network topology is con-
nected strongly enough:

sup
0≤t<∞

[ 1

N

N∑

i=1

E|q̃i (t)− qi (t)|2
]
�
[
�t

(
1

p − 1
− 1

N − 1

)

+�t2
]
.

For the multi-dimensional setting with q i ∈ R
d , the same error analysis can be

obtained under one more extra assumption, which guarantees that the states Q :=
(q1, · · · , qN) and Q̃ := (q̃1, · · · , q̃N) are confined in the symmetric interval.

Now, we give two main results on the emergent dynamics of (6.12) proved in
[43]. Introduce two functionals for Q̃ = (q̃1, · · · , q̃N):

M2(Q̃) := 1

N

N∑

j=1

|q̃j |2, D(Q̃) := max
1≤i,j≤N |q̃i − q̃j |.

The first main result is concerned with the exponential decay of the second moment
of q̂Ri : there exists a positive constant  1 =  1(N, P, τ, κ, L1) satisfying

E

(
M2(Q̃(t))

)
≤ e− 1tE

(
M2(Q̃(0))

)
, t ≥ 0.

The second main result deals with almost sure (a.s.) convergence of Q̃: there
exists a positive constant  2 =  2(N, P, τ, κ, L1, L2) such that

D(Q̃(t)) ≤ D(Q̃(0))Ce− 2t , t ≥ 0.

We remark that although the exponential decay rates in above results depend on
N , numerical results in [43] show that the decay rates are in not sharp, and they are
independent of N .
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7 Quantum Dynamics

In this section, we have a review of the applications of RBM to interacting
particles in the quantum regime. In particular, we first present and comment on the
convergence results of RBM applied to the N -body Schrödinger equation in [41],
and then have a review of the application of RBM to quantum Monte Carlo (QMC)
methods in [57].

7.1 A Theoretical Result on the N -Body Schrödinger Equation

The first principle computation is based on solving for complex-valued wave
function �N ≡ �N(t, x1, . . . , xN) ∈ C of the N -body Schrödinger equation

ih̄∂t�N(t, x1, . . . , xN) = HN�N(t, x1, . . . , xN) , �N
∣
∣
t=0 = �inN , (7.1)

where t ≥ 0 is the time while xm ∈ R
d(1 ≤ m ≤ N) is the position of the mth

particle, HN is the quantum Hamiltonian for N identical particles with unit mass:

HN :=
N∑

m=1

− 1
2 h̄

2�xm + 1
N−1

∑

1≤�<n≤N
V (x� − xn) , (7.2)

while h̄ is the reduced Planck constant. The N particles in this system interact via
a binary (real-valued) potential V assumed to be even, bounded, and sufficiently
regular (at least of class C1,1 on R

d ). The coupling constant 1
N−1 is chosen in order

to balance the summations in the kinetic energy (involving N terms) and in the
potential energy (involving 1

2N(N − 1) terms).
When solving (7.1), the computation is exceedingly expensive due to the

smallness of h̄, which requires small time steps �t and small mesh sizes of order
h̄ for the convergence of the numerical scheme, due to the oscillation in the
wave function �N with frequency of order 1/h̄ (see [6, 58]). On top of this, any
numerical scheme for (7.1) requires computing, at each time step, the sum of the
interaction potential for each particle pair in the N -particle system, which needs
O(N2) operations. The RBM described below reduces the computational cost to
O(N) per time step.

Below we follow the presentation of [41]. Assume for simplicity that N ≥ 2 is
an even integer. Let σ1, σ2, . . . , σj , . . . be a mutually independent and uniformly
distributed random sequence of permutations. Each permutation σ ∈ SN defines a
partition of {1, . . . , N} into N/2 batches of two indices:

{1, . . . , N} =
N/2⋃

k=1

{σ(2k − 1), σ (2k)} .



Random Batch Methods for Classical and Quantum Interacting Particle. . . 187

Set

Tt (�, n) :=
⎧
⎨

⎩

1 if {�, n} =
{
σ[ t
�t

]+1(2k−1), σ[ t
�t

]+1(2k)
}

for some k ≤ N
2 ,

0 otherwise,
(7.3)

and consider the time-dependent random batch Hamiltonian

H̃N(t) :=
N∑

m=1

− 1
2 h̄

2�xm +
∑

1≤�<n≤N
Tt (�, n)V (x� − xn) . (7.4)

The RBM then solves the random batch Schrödinger equation

ih̄∂t �̃N (t, x1, . . . , xN) = H̃N(t)�̃N(t, x1, . . . , xN) , �̃N
∣
∣
t=0 = �̃inN . (7.5)

Clearly, for each time step the cost of computing the interaction potential is reduced
from O(N2) to O(N).

As we have seen, RBM is known to converge in the case of classical dynamics.
It is therefore natural to seek an error estimate for the quantum RBM. The major
difficulty here is to obtain an error estimate that is independent of h̄ and N .

7.1.1 Mathematical Setting and Main Result

It will be more convenient to carry out the analysis on the corresponding von
Neumann equations

ih̄∂tRN(t) = HNRN(t)− RN(t)HN =: [HN,RN(t)] , RN(0) = RinN . (7.6)

Here we denote H := L2(Rd;C) and HN = H⊗N & L2((Rd)N ;C) for eachN ≥ 2.
The algebra of bounded operators on H is denoted by L(H), while L1(H) ⊂ L(H)
and L2(H) are respectively the two-sided ideals of trace-class and Hilbert-Schmidt
operators on H. The operator norm of A ∈ L(H) is denoted ‖A‖. A density operator
on H is a trace-class operator R on H such that

R = R∗ ≥ 0 and traceH(R) = 1 .

The set of density operators on a separable Hilbert space H is henceforth denoted
D(H).

The random batch von Neumann equation is

ih̄∂t R̃N (t) = [H̃(t), R̃N (t)] , R̃N (0) = RinN . (7.7)
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In order to find an error estimate for the RBM that is independent of the particle
number N , one first needs to define in terms of RN(t) and R̃N (t) quantities of
interest to be compared that are independent of N. A common practice when
considering large systems of identical particles is to study the reduced density
operators, which unfortunately does not lead to N -independent error estimates
[41]. Assume that RinN has an integral kernel rin ≡ rin(x1, . . . , xN ; y1, . . . , yN)

satisfying the symmetry

rin(x1, . . . , xN ; y1, . . . , yN) = rin(xσ(1), . . . , xσ(N); yσ(1), . . . , yσ(N)) (7.8)

for each permutation σ ∈ SN . Then, for each t ≥ 0, the N -body density operator
RN(t) solution of (7.6) satisfies the same symmetry, i.e., its integral kernel of the
form r(t; x1, . . . , xN ; y1, . . . , yN) also satisfies

r(t; x1, . . . , xN ; y1, . . . , yN) = r(t; xσ(1), . . . , xσ(N); yσ(1), . . . , yσ(N)) (7.9)

for each permutation σ ∈ SN . The 1-particle reduced density operator of RN(t) ∈
D(HN) is RN,1(t) ∈ D(H) defined by the integral kernel

r1(t, x, y) :=
∫

(Rd )N−1
r(t; x, z2, . . . , zN ; y, z2, . . . , zN)dz2 . . . dzN . (7.10)

Even if RinN satisfies the symmetry (7.8), in general R̃N (t) does not satisfy the
symmetry analogous to (7.9) for t > 0 (with r replaced with r̃ , an integral kernel
for R̃N (t)) because the random batch potential

∑

1≤�<n≤N
Tt (�, n)V (x� − xn)

is not invariant under permutations of the particle labels. For that reason, the 1-
particle reduced density operator of R̃N (t) one needs is R̃N,1(t) ∈ D(H) defined for
all t > 0 by the integral kernel

r̃1(t, x, y) := 1

N

N∑

j=1

∫

(Rd )N−1
r̃(t;Zj,N [x], Zj,N [y])dẐj,N , (7.11)

with the notation

Zj,N [x] := z1, . . . , zj−1, x, zj+1 . . . , zN , dẐj,N = dz1 . . . dzj−1dzj+1 . . . dzN .

(Obviously (7.11) holds with r1 and r in the place of r̃1 and r̃ respectively because
of the symmetry (7.9).)

We also need to introduce the Wigner functions of the density operators RN(t)
and R̃N (t). Let s ≡ s(x, y) ∈ L2(Rd × R

d) be an integral kernel of operator
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S ∈ L2(H). Then the Wigner function of S is defined by the formula

Wh̄[S](x, ·) := 1
(2π)d

F(y !→ s(x + 1
2 h̄y, x − 1

2 h̄y)
)

for a.e. x ∈ R
d , (7.12)

where F is the Fourier transform on L2(Rd).
For each integerM ≥ 1, we also introduce the dual norm

|||f |||−M

:= sup

⎧
⎪⎨

⎪⎩

∣
∣
∣
∣

∫∫

Rd×Rd

f (x, ξ)a(x, ξ)dxdξ

∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣

a ∈ Cc(Rd × R
d) , and

max
|α|,||≤M
|α|+||>0

‖∂αx ∂a
ξ ‖L∞(Rd×Rd )≤1

⎫
⎪⎬

⎪⎭
.

(7.13)

The main results in [41] are the following theorem.

Theorem 7.1 Assume that N ≥ 2 and that V ∈ C(Rd) is a real-valued function
such that

V (z) = V (−z) for all z ∈ R
d , lim|z|→+∞V (z) = 0 ,

and
∫

Rd

(1 + |ω|2)|F(V )(ω)|dω <∞ .

Let RN,1(t) and R̃N,1(t) be the single-particle reduced density operators defined
in terms of RN(t) and RRN(t) respectively by (7.10). Then there exists a constant
γd > 0 depending only on the dimension d of the configuration space such that, for
each t > 0, one has

|||Wh̄[ER̃N,1(t)] −Wh̄[RN,1(t)]|||−[d/2]−3

≤ 2γd�te
6t max(1,

√
dL(V )) (V )(2 + 3t (V )max(1,�t)+ 4

√
dL(V )t�t) ,

(7.14)

where

L(V ) := 1
(2π)d

∫

Rd

|ω|2|V̂ (ω)|dω ,  (V ) := 1
(2π)d

∫

Rd

d∑

μ=1

|ωμ||V̂ (ω)|dω ,

with ων the ν-th component of ω.

This error estimate gives an error independent of h̄ and N . It was also pointed
out in [41] that the error bound obtained in above theorem is small as�t → 0, even
for moderate values of N for which the factor 1

N−1 is insignificant. Therefore the
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result applies to N -body quantum Hamiltonians without the 1
N−1 normalization of

the interaction potential, as a simple corollary for each finite value of N ≥ 2.

Remark 7.1 Note that the dual norm (7.13) is a kind of weak norm. The error bound
O(�t) is consistent with the weak error estimate in [55].

7.2 Quantum Monte Carlo Methods

Computing the ground state energy of a many-body quantum system is a fundamen-
tal problem in chemistry. An important tool to determine the ground state energy
and electron correlations is the quantum Monte Carlo (QMC) method [96, 4].

Consider the Hamiltonian,

H =
N∑

i=1

− h̄
2

2m
'xi +

∑

i �=j
W(xi − xj )+

N∑

i=1

Vext(xi). (7.15)

Here Vext is the external potential given by

Vext(xi) =
M∑

α=1

U(xi − Rα), (7.16)

where Rα , for instance, can be the position of an atom.
Up to some global phase factor, the ground state takes real values and is non-

negative everywhere. The ground state and the corresponding eigenvalue can be
obtained via the Rayleigh quotient,

E = min
#N

∫

(R3)N
#NH#Ndx

∫

(R3)N
|#N |2dx

, (7.17)

where the minimizer #N corresponds to the ground state wave function. The
main computational challenge here is the curse of dimensionality due to the high
dimensional integral.

In the variational Monte Carlo (VMC) framework, the ground state is approxi-
mated by selecting an appropriate ansatz#N ≈ #0. Traditionally,#0 is constructed
using the one-body wave functions, by taking into the effect of particle correlations
described by the Jastrow factors [32]. For example, in the Boson systems like the
liquid Helium interacting with a graphite surface [80, 99, 86], the following ansatz
has been proven successful,
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#0 = e−J (x)"Ni=1φ(xi), J (x) = 1

2

∑

i,j :i �=j
u(|xi − xj |),

u(r) =
(a

r

)5 + b2

r2 + c2
. (7.18)

The non-negative one-particle wave function is often taken as

φ(xi) =
M∑

α=1

e−θ(xi−Rα), (7.19)

for some function θ . This form has been used in [99] and the parameters were
obtained by solving a one-dimensional Schrödinger equation. With the approxi-
mation of #N being fixed, the multi-dimensional integral is then interpreted as a
statistical average. In fact, introducing the probability density function (PDF),

p(x) ∝ |#0(x)|2, (7.20)

the ground state energy is the average of Etot under p(x), where

Etot(x) = H#0

#0
. (7.21)

Hence,E can be computed by a Monte Carlo procedure, and such a method is called
the VMC, which is a typical QMC method.

In the VMC methods, the ground state is not updated. Instead, one may
use another QMC method–the diffusion Monte Carlo (DMC) method [3, 87]–to
compute the ground state and the energy. In particular, one solves a pseudo-time
Schrödinger equation (TDSE) which is a parabolic equation [87]

∂t�N = (ET − HN)�N. (7.22)

Here, t represents a fictitious time. The energy shift ET is adjusted on-the-fly based
on the change of magnitude of the wave function. Instead of solving (7.22) directly,
it is often more practical to find f (r, t) with

f (x, t) = �N(x, t)#0(x). (7.23)

By choosing �N(x, 0) = #0(x), f (x, 0) = |#0|2 ∝ p(x). Hence, a VMC
method may be used to initialize f (x, t). Clearly, f solves the following differential
equation [87],

∂tf = −∇ · ( h̄
2

m
v(x)f

)+ h̄2

2m
∇2f − (ET − Etot(x)

)
f, (7.24)
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where v = (v1, · · · , vN) ∈ R
Nd and

vi(x) = ∇ logφ(xi)−
∑

j :j �=i
∇xi u(|xi − xj |).

The average energy E(t) is then defined as a weighted average,

E(t) =

∫

(R3)N
f (x, t)Etot(x)dx

∫

(R3)N
f (x, t)dx

, (7.25)

where the correctness can be seen by E(t) = ∫ �NH#0dx/

∫

�N#0dx. If �N is

close to the eigenstate, this will be close to E.
The key observation is that the dynamics (7.24) can be associated with a

stochastic process, in which the particles are experiencing birth/death while driven
by drift velocity and diffusion. This process can be implemented by a number of
walkers together with birth/death processes [3, 87].

7.2.1 The Random Batch Method for VMC

With (7.18), the density (7.20) can be found as

p(x) ∝ e−2V , V = − ln�0 = −
∑

i

logφ(xi)+ 1

2

∑

i

∑

j �=i
u(|xi − xj |),

(7.26)
and the total energy can be expressed as

Etot(x) = − h̄
2

2m
'V − h̄2

2m
‖∇V ‖2 +

∑

i �=j
W(xi − xj )+

N∑

i=1

M∑

α=1

U(xi − Rα).
(7.27)

To sample from p(x), one may make use of the Markov chain Monte Carlo
(MCMC) methods. Consider the overdamped Langevin dynamics,

dr i = ∇ logφ(r i )dt −
∑

j :j �=i
∇r i u(|r i − rj |)dt + dW i (t), 1 ≤ i ≤ N. (7.28)

Under suitable conditions [78], the dynamical system with potential given by (7.26)
is ergodic and the PDF p(x) in (7.26) is the unique equilibrium measure of (7.28).
By the classical Euler-Maruyama method [63], the underdamped Langevin can be
discretized to a Markov Chain:
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r i (t +�t) = r i (t)+ ∇ logφ(r i )�t

−
∑

j �=i
∇r i u(|r i (t)− rj (t)|)�t +�Wi, 1 ≤ i ≤ N, (7.29)

where �Wi is again sampled from N (0,�t). It is clear that O(M + N) operations
should be taken for each particle at each time step.

The cost of the above MCMC is high. The strategy in [57] is to apply a RBM
strategy with replacement. In particular, at each step, one randomly picks two
particles, i and j , and compute their interactions, ∇r i u(|r i − rj |), then updates
their positions as follows,

{
r i (t +�t) = r i (t)+ ∇ logφ(r i )�t + (N − 1)∇r i u(|r i − rj |)�t +�Wi,
rj (t +�t) = rj (t)+ ∇ logφ(rj )�t + (N − 1)∇rj u(|r i − rj |)�t +�Wj .

(7.30)
For the one-body term ∇ logφ(r i ),

∇ logφ(r i ) =
M∑

α=1

−∇θ(r i − Rα)qiα, qiα = e−θ(r i−Rα)
∑M
β=1 e

−θ(r i−Rβ) , (7.31)

where the coefficients qiα’s are non-negative and
∑
α q

i
α = 1. To reduce the cost,

one may further use a direct Monte Carlo method: pick just one term α randomly.
Specifically, assume that one starts with α and computes eold = θ(r i−Rα), and then
one randomly picks 1 ≤ β ≤ M and computes enew = θ(r i − Rβ). β is accepted
with probability

pacc ∝ exp
[− (enew − eold)

]
. (7.32)

For the detailed algorithm see [57]. As a result of the random sampling of the
one- and two-body interactions, updating the position of each particle only requires
O(1) operations per time step. Another practical issue emerges when the interaction
u(|x|) has a singularity near zero. One can use the splitting idea as mentioned in
Sect. 4.1, i.e., applying RBM only to the long-range smooth part.

It was shown in [57] that the above random batch algorithm, when applied to one
batch of two particles, has the same accuracy as the Euler-Maruyama method over
a time step of 2�t/N. One full time step in Euler-Maruyama method corresponds
to N/2 such steps in the random batch algorithm. This corresponds to the random
batch method with replacement.

We show a numerical experiment performed in [57] on 4He atoms interacting
with a two-dimensional lattice. The CPU times taken to move the 300 Markov
chains for 1000 steps were compared. In this comparison, the cost associated with
the energy calculations was excluded in the random batch and Euler-Maruyama
methods. From Table 3, one clearly sees that the RBM is more efficient than
the Euler-Maruyama method. It is much more efficient than the random walk
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Table 3 CPU times (seconds) for several VMC methods

Random walk metropolis-hastings Euler-Maruyama Random batch

CPU time for a
1000-step sampling
period

1503 469 54

Metropolis-Hastings algorithm, mainly because the latter method requires the
calculation of the energy at every step.

7.2.2 The Random Batch Method for DMC

Viewing (7.24), one may consider an ensemble of L copies of the system, also
known as walkers [3]. For each realization, one first solves the SDEs corresponding
to the drift and diffusion, which is the same as the overdamped Langevin as in VMC
up to a time scaling. Hence, the same Random Batch Algorithm in the VMC can be
used for this part.

The relaxation term −(ET −Etot)f is then done by using a birth/death process to
determine whether a realization should be removed or duplicated. For each walker,
one computes a weight factor,

w(t +�t) = exp
[
�t
(
ET − 1

2 (Etot(r)+ Etot(r
′))
)]
. (7.33)

This weight determines how the walker should be removed or duplicated. See [57]
for more details. The primary challenge is that computing the energy at each step
requires O((N +M)N) operations in order to update the position of N particles. To
reduce this part of the computation cost, one rewrites the total energy as

Etot(r) =
N∑

i=1

E1(r i )+
∑

1≤i<j≤N
E2(r i , rj )+

∑

1≤i<j<k≤N
E3(r i , rj , rk), (7.34)

where

E1(r i ) = − h̄
2

2m
∇2 lnφ(r i )− h̄2

2m
|∇ lnφ(r i )|2 +

M∑

α=1

U(r i − Rα),

E2(r i , rj ) = − h̄
2

m
∇2 ln u(rij )+ h̄2

m

(∇ lnφ(r i )− ∇ lnφ(rj )
) · ∇u(rij )

+ h̄2

m
|∇u(rij )|2 +W(rij ),
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E3(r i , rj , rk) = h̄2

m

[
∇u(rij ) · ∇u(rik)+∇u(rji) · ∇u(rjk)+∇u(rki) · ∇u(rkj )

]
.

(7.35)

Here, r ij = r i − rj and rij = |r ij |. The three-body terms arise because of the
‖∇V ‖2 term in (7.27).

In the random batch algorithm proposed in [57], one randomly picks a batch
CI with three particles: CI = {i, j, k}. One first updates the position of the three
particles (drift and diffusion) by solving the overdamped Langevin dynamics using
the random batch algorithm with batch size 3. Then, one then defines a local energy,

EI (r i , rj , rk) =E1(r i )+ E1(rj )+ E1(rk)

+ N−1
2

[
E2(r i , rj )+ E2(rj , rk)+ E2(rk, r i )

]
,

+ (N−1)(N−2)
2 E3(r i , rj , rk),

(7.36)

where in E1, the sum
∑M
α=1 can be further reduced by a mini-batch strategy.

Computing this local energy is clearly O(1). To avoid frequent removal and
duplication of walkers, the branching process is applied after N/3 batches of
particles are updated. In this case, the weight function is defined by collecting the
local energy from each batch (denoted by Im here),

w(r) = exp
[
�t
(
ET − Ẽtot

)]
, Ẽtot =

N/3∑

m=1

EIm. (7.37)

Because of the smallness of �t , the expectation of wI equals w(t + �t) modulus
an error of O(�t2). See [57] for the verification using the Green’s functions.

The detailed algorithm can be found in [57] and we omit it here. Now we
show a test of the RBM-DMC algorithm conducted in [57], which compares the
results with the direct DMC method. For the initialization, a VMC method using
the ansatz (7.18) for the wave function #0 was first applied. The random walk
Metropolis-Hastings Monte Carlo method is used in both methods so that they start
at the same states. 300 ensembles are created by sub-sampling one sample out of
every 500 steps from the VMC runs to avoid correlations among the ensembles. For
both methods,�t = 10−4 was used and 200,000 steps of simulations were run. The
CPU runtime is recorded for various system sizes. More specifically, the system size
is increased from the original 168 particles, to N = 378, N = 672, and N = 1050
particles, and in each case, the direct DMC and the RBM-DMC were run for 1000
steps. As shown in Fig. 8, the CPU time for the direct DMC method increases much
more rapidly as N increases.
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Fig. 8 A comparison of the CPU runtime (in seconds) for running 1000 steps of DMC
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Trends in Consensus-Based Optimization

Claudia Totzeck

Abstract In this chapter we give an overview of the consensus-based global opti-
mization algorithm and its recent variants. We recall the formulation and analytical
results of the original model, and then we discuss variants using component-wise
independent or common noise. In combination with mini-batch approaches those
variants were tailored for machine learning applications. Moreover, it turns out
that the analytical estimates are dimension independent, which is useful for high-
dimensional problems. We discuss the relationship of consensus-based optimization
with particle swarm optimization, a method widely used in the engineering commu-
nity. Then we survey a variant of consensus-based optimization that is proposed
for global optimization problems constrained to hyper-surfaces. We conclude the
chapter with remarks on applications, preprints and open problems.

1 Introduction

Global optimization tasks arise in various fields such as economics, finance, physics,
clustering and artificial intelligence. In the most general form, these read

min
x∈X f (x)

for a given objective function f and state space X. Despite its simple description,
the problem is nontrivial for nonconvex f with possibly many local minima or
constraint state spaces X; see Fig. 1. Its importance in various disciplines attracted
the attention of many researchers to seek for solution strategies. Here, we focus
on agent-based methods: on the one hand, there are biologically inspired methods
as the ant colony optimization [1], artificial bee colony optimization [2] or firefly
optimization [3].
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Fig. 1 Plot of the Ackley [4] benchmark function for global optimization in two dimensions with
trajectories of one realisation of (6) with 20 particles visualized in the xy-plane

On the other hand, wind-driven optimization (WDO) [5] is physically inspired
as it models weather phenomena such as pressure and wind. The most popular
agent-based global optimization algorithms are the Particle Swarm Optimization
(PSO) and Simulated Annealing (SA). In PSO agents explore the state space while
encountering a randomized drift towards the global best position seen by all the
agents and a second drift towards their personal best positions. We will see more
details on PSO below in Sect. 3 where similarities and differences of CBO and
PSO are discussed. SA is physically inspired, again, agents explore the state space.
They are driven by noise terms that are diminishing as time evolves. The decrease of
stochastic influence is called cool down and the particles are expected to concentrate
at the best position seen by the particles during the exploration phase.

Most of the global optimization approaches are heuristics that have proven to
give useful results in applications but lack a rigorous analysis. Some proofs of
convergence exist for SA. The ones in the context of image restoration and global
optimization are mostly in the discrete setting and based on Markov chains; see the
survey [6] for more details. Another proof considers a kinetic formulation of SA [7].
It was then generalized to Langevin-based SA in [8].

A main objective in the modelling of the CBO scheme was to treat all particles
identically, in particular, to circumvent the selection of a current best particle. In this
way, one expects to have a corresponding mean-field scheme that can be utilized for
the convergence analysis. Having this in mind, the CBO method is proposed as
a system of stochastic differential equation (SDE) that mimics interacting agents
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communicating over a weighted mean. By construction, the particles are expected
to build a consensus at the position of the weighted mean that is located near the
global minimizer of the functional.

To achieve this behaviour, CBO combines ideas of swarm intelligence [9]
with approaches from consensus formation [10] in order to obtain a scheme that
minimizes the objective function. CBO was first introduced in [11], where formal
relations to the mean-field equation and promising numerical results were shown.
The main feature of the CBO algorithm is a weighted mean, vf . Particles with
small function values have more influence in the weighted mean than particles with
large function values. In this way the weighted mean is expected to be a good
approximation of the global minimizer. All particles are driven by two terms. A
drift term forcing them to move towards the weighted mean and a scaled diffusion
allowing for exploration. In fact, whenever a particle is far away from the weighted
mean, it explores its surroundings and tries to find a better position than the weighted
average has. The scaling of the diffusion depends on the distance of the particle to
the weighted mean. If the two coincide, the diffusion vanishes. Hence, the scheme
allows for concentration at the position of the weighted mean.

The fact that the global minimizer is approximated with the help of the weighted
mean is crucial when it comes to the mean-field limit. In particular, using the
weighted mean the scheme circumvents to label any particle as current leader, or
current global best, which would make the particles distinguishable and prevent
us to carry out the mean-field limit. Formally, the limiting equation for ‘number of
particles to infinity’ is the PDE corresponding to the McKean process resulting from
Itô calculus applied to the SDE system [11, 12]. In [12] a rigorous analysis of the
PDE method is performed. In particular, it is shown that the method converges to the
minimizer of the global optimization scheme under some appropriate conditions.

Another advantage of the communication via the weighed mean is a reduction of
the computational effort. In fact, the communication with the weighted mean is of
order O(N) forN particles in the swarm. In other consensus algorithms each particle
communicates with all other particle separately, leading to an effort of O(N2), which
suffers the curse of dimensionality when the swarm size grows.

Recently, variants and extensions were proposed to improve the CBO method.
Some approaches aim to enhance the performance in high-dimensional problems
such as the ones arising in machine learning. Others extend the class of problems to
be solved with CBO, for example, they allow for constrained state space X.

In this survey we discuss these advances and compare them to the original
method. The main part covers models that have been approved by peer review. At the
end, we shed some light on recent preprints as well. Before we go into the details,
we shortly describe the ideas covered in the following.

In [13] the diffusion term was replaced by a component-wise diffusion, leading
to a scheme that is robust with respect to the dimension of the state space. Indeed,
the authors were able to show that many of the estimates shown in [12] hold without
dimension dependence for the scheme with component-wise diffusion. Moreover,
the article introduces a mini-batch idea for the computation of the weighted mean.
This reduces the computational cost and has positive effects on the performance in
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high-dimensional scenarios. More details on this variant are discussed in Sect. 2.2.
The authors of [14] replace the component-wise independent noise of the above
variant by a component-wise common noise. This adaption facilitates the analysis of
the scheme on the particle level. In fact, the authors show convergence of the variant
directly on the particle level in contrast to [12, 13], where the PDE formulation is
employed for the analysis. A variant that incorporates global in time information
in order to approximate the personal best position seen by each of the particles is
proposed in [15]. It is shown that this variant is robust even if the initial distribution
of particles is inconvenient. We discuss the scheme with global in time information
and its relationship to PSO in Sect. 3.

In addition, there are variants that take care of optimization problems on
constrained sets. Box constraints are rather simple to handle. Dynamics constrained
to hyper-surfaces, for example the sphere, need more sophisticated ideas [16].
We discuss approaches for constraint sets in Sect. 4, and in Sect. 5 we briefly
comment on the performance of the CBO variants. For example in [13] are
comparisons to stochastic gradient descent (SGD) methods and several studies for
global optimization benchmarks reported. We conclude with an outlook to future
work and open problems.

1.1 Notation and Assumptions

Let us first fix the notation and assumptions that are consistently used in the
following sections. This has the advantage that the sections are self-consistent and
one might jump to the variant of most interest right after the introduction.

We denote the dimension of the state space by d ∈ N and N ∈ N is the number
of agents or particles in the swarm. The two notions, agents and particles, are
used equally throughout the text. The state of the i-th agent is given by a vector
Xi : [0, T ] → R

d , i = 1, . . . , N,, and we collect the states of all agents at time
t ∈ [0, T ] in the vector X(t) = (X1(t), . . . , XN(t)) ∈ R

dN . The initial condition of
the particles is denoted by Xi0 ∈ R

d for i = 1, . . . , N , and we assume that Xi0 are
independent and identically distributed with law(Xi0) = ρ0 ∈ P(Rd). The constants
λ, σ ≥ 0 denote the drift and diffusion parameters, respectively. Some schemes
incorporate a Heaviside function H or a regularization Hε thereof, which we fix as

H(x) =
{

1, for x ≥ 0,

0, else
, Hε(x) = 1

2
+ 1

2
tanh

(x

ε

)
.

Moreover, we denote by Wi, i = 1, . . . , N , independent d-dimensional Brownian
motions. We consider the minimization problem

min
x∈X f (x), (P)
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where f : Rd → R≥0 is a continuous function that admits a unique global minimizer
X∗ ∈ R

d and X = R
d except for Sect. 4.1, where we discuss state constraints and

minimize f on some hyper-surface ! ⊂ R
d .

1.1.1 The Weighted Average

As mentioned above, a weighted average or weighted mean plays a crucial role in
all variants of CBO. For simplicity, we fix the weight function to be

ωfα (x) = exp(−αf (x)) (1)

throughout this review. Other choices are possible as well, but the weight function
should be tailored to represent the task of finding a global minimum.

Unless otherwise stated, the notion weighted mean refers to the vector

vf = 1
∑N
i=1 ω

f
α (Xi(t))

N∑

i=1

Xi(t)ωfα (X
i(t)). (2)

Note that the objective function enters into the weight. Hence, due to (1) agents at
locations with lower function values have more weight in the mean than agents
located at positions with high function values. The parameter α controls this
separation effect. Indeed, for α = 0 all particles have the same weight and for
α → ∞ we expect vf to approximate the global best of the agents, i.e.,

vf ≈ argmini=1,...,N f (X
i(t)).

Note that the argmin may be set-valued in general. For simplicity, we assumed above
that f attains a unique minimizer.

The argument for α → ∞ is related to the Laplace principle from large deviation
theory [17]. In fact, under the assumption that the processes Xi(t) are independent,
we formally pass to the limit N → ∞ to obtain

1
∑N
i=1 ω

f
α (Xi(t))

N∑

i=1

Xi(t)ωfα (X
i(t))→ 1

∫
ω
f
α (x)dρt

∫

xωfα (x)dρt

in distributional sense, with ρt ∈ Pac(Rd) being the Borel probability measure
describing the one-particle mean-field distribution. Here Pac(Rd) denotes the space
of Borel probability measures that are absolutely continuous w.r.t. the Lebesgue
measure dx. Then, by Laplace principle [11] we have

Proposition 1 Assume that f ∈ Cb(Rd ,R), f ≥ 0, attains a unique global
minimum at the point X∗ ∈ R

d , and let ρ ∈ Pac(Rd). Then, it holds
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lim
α→∞

(

− 1

α
log

(∫

R
d
e−αf dρ

))

= f (X∗).

This property is the main motivation to choose the ωfα as given in (1); see [11,
Proposition 2.1] for details. Note that uniqueness of the minimizer plays a role. If
there were several global minimizers, the weighted mean would be in the convex
hull of these and, in general, have a greater function value.

In the following section we recall the original statement of the CBO scheme, then
we discuss recent variants. Readers familiar with the original scheme may jump
directly to the variant of their interest.

2 Consensus-Based Global Optimization Methods

We begin this section with the original method as proposed in [11] and analysed in
[12]. Then we move on to recent variants that were tailored to improve the method
for high-dimensional applications as arising in machine learning. The variants
replace the diffusion term with either component-wise independent or component-
wise common diffusion.

2.1 Original Statement of the Method

The ideas behind and main features of CBO [11] are explained on the particle level.
Then we formally pass to the mean-field level and review analytical results that
discuss the formation of consensus near the global minimizer [12].

2.1.1 Particle Scheme

Consensus-based optimization was first introduced in [11] as a swarm dynamic that
consists of N coupled stochastic differential equations (SDEs). The equation of the
i-th agent is given by

dXi(t) = −λ(Xi(t)− vf )Hε(f (Xi(t))− f (vf ))dt +
√

2σ |Xi(t)− vf |dWi(t),

(3)
for i = 1, . . . , N and supplemented with initial data X(0) = X0. The system is
coupled by the weighted average, vf , which appears in the equation of every agent.
The first term on the right-hand side models a drift towards vf . The greater the
distance of the agent’s position to vf , the stronger the drift. The Heaviside function
assures that the particle only moves towards vf , if the function value of vf is better,
i.e. smaller than the function value of the particle. The idea behind the diffusion
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term is similar. The diffusivity is scaled with the distance of |Xi(t)− vf |, an agent
far away from vf is allowed to explore its neighbourhood and possibly find a better
position than vf . While an agent close to vf is less diffusive and tends to keep its
position. In particular, the diffusion of particle i vanishes if Xi = vf . This allows
for concentration of the particles at vf .

Remark 1 Let us emphasize some advantages of this dynamic:

1. Indistinguishable particles: Compared to other swarm intelligence schemes the
dynamic does not depend on argminXi f (X

i), but only on its approximation vf .
Therefore, we may formally derive a limiting equation in mean-field sense as
N → ∞, compare Sect. 2.1.2, and use the PDE for the analytical investigation.

2. Interaction scales with N : The coupling via vf has a huge advantage as well
from a numerical point of view as we do not have binary interactions. The effort
for the interaction of the agents scales only linearly in N . This is in contrast
to many interaction models for crowd dynamics, where agents interact with all
other agents at the same time, leading to a convolution term of order O(N2).

3. Exploration of full space: Due to the term |Xi(t)−vf |dWi(t), exploration takes
place in R

d even if the Xi are initially spanning only a subspace of Rd . This has
a positive effect on the exploration if N � d.

Heaviside Function
In the original model, the Heaviside function was imposed to make concentration in
local minima less probable. As reported in [11], the deterministic scheme, σ = 0,
with Heaviside function allows for stationary solutions consisting of several Dirac
measures located at level sets of f . For σ > 0, these solutions have probability zero,
due to the Brownian motion. Moreover, it turned out in numerical studies that the
scheme works fine without the multiplication of the Heaviside function, and for the
analytical investigation in [12], it was neglected. Therefore, we mainly focus on the
scheme without Heaviside function in the following.

2.1.2 Mean-Field Limit

Properties of the scheme were investigated on the mean-field level. Up to the
author’s knowledge, there is no rigorous proof of the limiting equation so far. We
therefore have to assume that propagation of chaos holds in order to derive the mean-
field equation formally.

Let us assume that the propagation of chaos property holds, that means the
distribution of all agents X, νNt , satisfies νNt ≈ ρ⊗N

t ,N # 1, and therefore Xi(t)
are approximately independently ρt -distributed. Then,

1

N

N∑

i=1

ωfα (X
i(t)) ≈

∫

Rd
ωfα (x)dρt ,

1

N

N∑

i=1

Xi(t)wfα (X
i(t)) ≈

∫

R
d
xωfα (x)dρt ,
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due to the law of large numbers. Hence, vf ≈ vf [ρt ] and we obtain the McKean
nonlinear process

dX̄(t) = −λ(X̄(t)− vf [ρt ]) dt +
√

2σ |X̄(t)− vf [ρt ]|dWt , (4a)

where the weighted average reads

vf [ρt ] = 1
∫

R
d ωαf dρt

∫

R
d
x ωαf dρt , ρt = law(X̄(t)). (4b)

Equation (4a) may be equivalently expressed as the Fokker–Planck equation:

∂tρt = �(κ[ρt ]ρt )+ div(μ[ρt ]ρt ), (5a)

κ[ρt ](x) = σ 2|x − vf [ρt ]|2, μ[ρt ](x) = −λ(x − vf [ρt ]), (5b)

which describes the evolution of the law corresponding to the McKean nonlinear
process {X̄(t) ∈ R

d | t ≥ 0}.
The presence of vf makes the Fokker–Planck equation nonlinear and nonlocal in

both the drift and the diffusion part. This is nonstandard in the literature and raised
several analytical and numerical questions that were addressed in [12]. We recall the
main results in the following.

2.1.3 Analytical Results for the Original Scheme Without Heaviside
Function

The first statement considers the well-posedness of the particle dynamic; see
Theorem 2.1 in [12] for the proof.

Theorem 1 Let the objective function f be locally Lipschitz continuous. For every
N ∈ N, system (3) has a unique strong solution {XNt : t ≥ 0} for any initial

condition X(N)0 satisfying E|X(N)0 |2 <∞.
For the original particle scheme, there is neither a proof for consensus formation

nor for convergence to the global minimizer. These kinds of results were only
addressed on the mean-field level after a formal limiting procedure as N → ∞.
A rigorous proof of this limit is open up to the author’s knowledge. The following
results and some first estimates in the direction of a rigorous proof of the mean-field
limit are reported in [12].

Well-posedness of the mean-field equation is established for two classes of
objective functions. One result considers only bounded objective functions, and the
other result is for objective functions with quadratic growth at infinity. Both versions
are based on the following assumption:



Trends in Consensus-Based Optimization 209

Assumption 1 To obtain the well-posedness results of the mean-field equation, we
assume that it holds:

1. The cost function f : Rd → R is bounded from below with f := inf f .
2. There exist constants Lf and cu > 0 such that

⎧
⎨

⎩

|f (x)− f (y)| ≤ Lf (|x| + |y|)|x − y| for all x, y ∈ R
d ,

f (x)− f ≤ cu(1 + |x|2) for all x ∈ R
d .

(A1)

Definition 1 We say that a function has quadratic growth if there exist constants
M > 0 and cl > 0 such that

f (x)− f ≥ cl |x|2 for |x| ≥ M. (A2)

Theorem 2 Let f be bounded or have quadratic growth, let Assumption 1 hold
and ρ0 ∈ P4(R

d). Then there exists a unique nonlinear process X̄ ∈ C([0, T ],Rd),
T > 0, satisfying

dX̄t = −λ(X̄t − vf [ρt ]) dt + σ |X̄t − vf [ρt ]|dWt , ρt = law(X̄t ),

in the strong sense, and ρ ∈ C([0, T ],P2(R
d)) satisfies the corresponding Fokker–

Planck equation (5) in the weak sense with limt→0 ρt = ρ0 ∈ P2(R
d).

Both proofs are based on Schauder’s fixed-point argument and can be found in [12].
The main difference of the two versions is the argument for the bound of the second
moment. This bound is needed in order to apply Gronwall’s theorem and to close
the Schauder argument.

Convergence of the scheme towards the global minimizer of the objective
function is shown in two steps. The first step assures only the consensus formation.
The second one shows that for appropriate parameter choices the consensus location
is positioned near the global minimizer. Both results are of asymptotic nature. The
consensus formation occurs for t → ∞, and the approximation of the global
minimizer depends on the choice of the weight parameter α. For α → ∞, the
location of consensus tends towards the global minimizer. For the concentration
result, we need this assumption.

Assumption 2 We assume that f ∈ C2(Rd) satisfies additionally

1. inf f > 0.
2. ‖∇2f ‖∞ ≤ cf and there exist constants c0, c1 > 0, such that

�f ≤ c0 + c1|∇f |2 in R
d .

To show the concentration, we investigate the expectation and the variance of the
density, which are defined by
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E(ρt ) =
∫

X xdρt and V (ρt ) = 1

2

∫

X |x − E(ρt )|2dρt .

The details of the concentration procedure are given in [12].

Theorem 3 Let f satisfy Assumption 2, and let the parameters α, λ and σ satisfy

2αe−2αf (c0σ
2 + 2λcf ) <

3

4
, 2λb2

0 −K − 2dσ 2b0e
−αf ≥ 0,

with K = V (ρ0) and b0 = ‖ωαf ‖L1(ρ0)
. Then V (ρt ) ≤ V (ρ0)e

−qt with

q = 2
(
λ− (dσ 2/b0)e

−αf ) ≥ K/b2
0.

Furthermore, there exists a point x̃ ∈ R
d for which E(ρt ) → x̃ and vf [ρt ] → x̃ as

t → ∞.

So far, we just know that the density will concentrate at some point, x̃, and the
location of this point remains unknown. Finally, the following result assures that
the concentration takes place in a neighbourhood of the global minimizer for
appropriately chosen parameters.

Theorem 4 Let f satisfy Assumption 2. For any given 0 < ε0 � 1 arbitrarily
small, there exist some α0 # 1 and appropriate parameters (λ, σ ) such that uniform
consensus is obtained at a point x̃ ∈ Bε0(x∗). More precisely, we have that ρt → δx̃
for t → ∞, with x̃ ∈ Bε0(x∗).
Note that due to W2(ρt , δx̃)

2 ≤ V (t) + |E(t) − x̃|2 −→ 0, the convergence of ρt
towards δx̃ is at least in W2 sense. With this result, we conclude the survey of the
analytical results on the original scheme of consensus-based global optimization
proposed in [11] and analysed in [12].

2.1.4 Numerical Methods

It is important to notice that the success of the CBO method is far more dependent
on the function evaluations than on the accuracy of the numerical scheme. In fact,
whenever a particle hits the global minimum of the function, the weighted average
vf is assumed to move to this position and then concentration takes place.

Having this in mind, most of the numerical simulations use basic algorithms such
as the Euler–Maruyama scheme [18].

In [11] the formal mean-field limit is underlined by the comparison of numerical
results on the particle level with the solution of the candidate equation on the mean-
field level. The PDE is solved with the help of a discontinuous Galerkin approach
in combination with a Strang splitting. The convective part is solved with the local
Lax–Friedrichs scheme and the diffusion part semi-implicitly.
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In the following we discuss variants of this method that aim to enhance the
performance or extend the class of optimization problems admissible for CBO. We
begin with a variant that appears like a slight modification of the above algorithm.
However, it has a major impact on the convergence results, especially in high
dimensions.

2.2 Variant 1: Component-Wise Diffusion and Random
Batches

At first glance, the variant with component-wise independent noise in [13] seems
to be a minor modification of the original dynamic. Nevertheless, it turns out that
the estimates of the convergence results become independent of the dimension of
the state space. This is an advantage, especially when the method is considered for
high-dimensional problems, for example, arising in machine learning. In addition to
the component-wise diffusion, the authors propose to use mini-batches, a popular
approach in many stochastic gradient descent methods [19].

2.2.1 Component-Wise Geometric Brownian Motion

The dynamic with component-wise geometric Brownian motion reads

dXi(t) = −λ(Xi(t)− vf )dt + σ̂
d∑

k=1

(Xi(t)− vf )kdWi
k(t)ek, (6)

for i = 1, . . . , N and is supplemented with initial data X(0) = X0. Here ek denotes
the k-th unit vector in R

d , (Xi(t)−vf )k is the k-th entry of the difference andWi
k are

independent standard Brownian motions. The weighted mean, vf , is given in (2).

Remark 2 Let us mention two differences between (3) and (6):

1. Component-wise noise: The component-wise diffusion in (6) scales the distance
of Xik and vf element-wise. In case one component of the two coincides, this
component of Xi does not change.

2. Diffusion constants: The slight difference between the diffusion constants in (3)
and (6) σ̂ = √

2σ has no significant influence on the performance of the scheme.

The aforementioned dimension independence of the component-wise diffusion
can be seen with the help of a simple computation [13]. Let us fix the weighted
average vf at an arbitrary position a. Then, for the dynamics in (3) we find
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d

dt
E|X(t)−a|2=−2λE|X(t)−a|2+σ 2

d∑

i=1

E|X(t)−a|2 = (−2λ+σ 2d)E|X(t)−a|2.

This investigation of the second moment shows that concentration occurs whenever
the condition 2λ > σ 2d is satisfied. In contrast, the same computation for (6) yields

d

dt
E|X(t)−a|2=−2λE|X(t)−a|2+σ 2

d∑

i=1

E|X(t)−a|2i = (−2λ+σ 2)E|X(t)−a|2.

The condition for concentration changes to 2λ > σ 2. In particular, it is independent
of the dimension d.

It can be proven that all estimates needed for the analysis of well-posedness,
concentration and convergence towards the global minimizer on the mean-field level
are independent of the dimension for the component-wise diffusion variant. Instead
of rewriting the statements here, we refer to [13] for all details and proceed with the
second interesting feature proposed in the article.

2.2.2 Random Batch Method

The second novelty proposed in [13] is to apply the random-mini batch strategy [20]
in two levels: first, instead of evaluating f (Xi(t)) for every particle i = 1, . . . , N
in every time step, q random subsets J θ ⊂ {1, . . . , N} with size |J θ | = M � N

and θ = 1, . . . , q are drawn and for each of them an empirical expectation f̂ (Xθ )
is computed. Based on these function evaluations, a weighted mean is calculated for
every batch. Now, one can choose to update the positions of particles by (6) only
for the particle in the batch or apply the dynamics to all N particles. For simplicity,
we present a version of the algorithm in [13] adapted to the general problem (P).
Note that there is an additional parameter, γk,θ , called learning rate following the
machine learning terminology.

Algorithm 1

Generate {Xi0 ∈ R
d}Ni=1 according to the same distribution ρ0. Set the remainder set

R0 to be empty. For k = 0, 1, 2, . . ., do the following:

– Concatenate Rk and a random permutation Pk of the indices {1, 2, . . . , N} to

form a list Ik = [Rk,Pk]. Pick q = )N+|Rk |
M

* sets of size M � N from the
list Ik in order to get batches Bk1 , B

k
2 , . . . , B

k
q and set the remaining indices to be

Rk+1. Here, |Rk| means the number of elements in Rk .
– For each Bkθ (θ = 1, . . . , q), do the following:

1. Calculate the function values (or approximated values) of f at the location of
the particles in Bkθ by f j := f (Xj ), ∀j ∈ Bkθ .

2. Update vk,θ according to the following weighted average:
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vk,θ = 1
∑
j∈Bkθ μj

∑

j∈Bkθ
Xiμj , with μj = e−αf j .

3. Update Xj for j ∈ Jk,θ as follows:

Xj ← Xj−λγk,θ (Xj−vk,θ )+σk,θ√γk,θ
d∑

i=1

ei (Xj−vk,θ )i , zji , zji ∼ N(0, 1),

where γk,θ is chosen suitably and there are two options for Jk,θ :

partial updates : Jk,θ = Bkθ , or full updates : Jk,θ = {1, . . . , N}.

– Check the Stopping criterion:

1

d
‖�x‖2

2 ≤ ε,

where ‖·‖2 is the Euclidean norm and �v is the difference between two most
recent vk,θ . If this is not satisfied, repeat.

Note that due to the mini-batch evaluation additional noise is added to the
algorithm. The authors discuss in [13] that this additional noise causes the algorithm
to work fine even without the geometric Brownian motion. For details and additional
ideas on how to improve the convergence for objective functions with a typical
machine learning structure, we refer to [13].

We conclude this section with some ideas on the numerical implementation
and the performance of the algorithm with random batches and component-wise
geometric Brownian motion.

2.2.3 Implementation and Numerical Results

A typical challenge is to avoid overshooting, which refers to oscillations around v
in our context. The authors propose two approaches to do so.

First, the drift and diffusion parts of the scheme can be split. Then the drift part
can be computed explicitly using

X̂
j
k = vk + (Xjk − vk)e−λγ ,

which corresponds to a scheme for solving the ODE dXj = −λ(Xj − v) on the
interval t ∈ [kγ, k(γ + 1)]. The diffusion update is given by
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X
j

k+1 = X̂jk + σ√
γ

d∑

i=1

ei
(
X̂
j
k − v

)

i
z
j
i .

Second, they propose to freeze the weighted average over fixed time intervals.
On each of these intervals, the geometric Brownian motion can be solved by

X
j

k+1 = v +
d∑

i=1

ei
(
X̂
j
k − v

)

i
exp

((

−λ− 1

2
σ 2
)

γ + σ√
γ z
j
i

)

.

Moreover, they report that the splitting and the freezing approach lead to comparable
results in most numerical simulations. For more details, see [13].

The aforementioned paper reports results of three numerical studies. The first
is a proof of concept using a one-dimensional objective function with many local
minima and oscillatory behaviour. The second study compares the method to the
performance of a stochastic gradient descent method applied to the MNIST data set.
Finally, results for a test function in high dimensions with many local minima are
provided.

The test cases show that the proposed CBO algorithm with component-wise
Brownian motion and mini-batches outperforms the stochastic gradient descent
algorithm. Moreover, it turns out that the version with mini-batches leads to better
results than the one with full evaluations in case of the MNIST data set. For more
detailed discussions and studies of the influence of α and N on the performance, we
refer the reader to the original article [13].

2.3 Variant 2: Component-Wise Common Diffusion

The idea of component-wise diffusion plays a role as well in [14, 21] with the main
difference that the component-wise noise is common for all particles, that means the
dynamic is given by

dXi(t) = −λ(Xi(t)− vf )dt + σ̂
d∑

k=1

(Xi(t)− vf )kdWk(t)ek, (7)

where Wk are i.i.d. one-dimensional Brownian motions. The dynamic is supple-
mented with initial conditions Xi(0) = Xi0 and vf as above. Note that the
Brownian motion does not depend on the specific particle i and therefore all
particles encounter a common noise.

In addition to the continuous-time particle scheme given above, the article
discusses a time-discrete version. Let h > 0 denote the time step, i.e. t = nh,
we set Xin := Xi(nh). The discrete algorithm reads
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Xin+1 = Xin − λh(Xin − vf )+ σ
√
h

d∑

k=1

(Xin − vf )kZknek, (8)

where {Zkn}n,k are i.i.d. standard normal distributed random variables, Zkn ∼
N(0, 1). Note that compared to [14] the notation was adjusted for the sake of a
consistent presentation.

2.3.1 Analytical Results

The common noise approach has the advantage that a convergence study can be
done directly on the level of particles without passing to the mean-field level. Similar
to the strategy of the proof on the mean-field level, the convergence proof for the
common noise scheme is split into two parts: first, under certain conditions on the
drift and diffusion parameters, a general convergence to consensus result for t → ∞
is shown. In a second step the authors provide sufficient conditions on the system
parameters and initial data, which guarantee that the location of the consensus is in
a small neighbourhood of the global minimum almost surely. The conditions on the
parameters are independent of the dimension similar to Variant 1 (see Sect. 2.2).

Despite these two main results, some properties of the continuous and discrete
deterministic schemes are discussed. In fact, it is proven that the convex hull of
the particles following the deterministic (both time-continuous and time-discrete)
schemes are contractive as time evolves. The convergence to a consensus state is a
direct consequence.

The same contraction property is not given for the scheme with noise. Neverthe-
less, for the common noise approach the relative difference of two particles satisfies
a geometric Brownian motion. Hence, an exact solution can be established using
stochastic calculus. This implies that the relative state difference converges almost
surely. The details of the theorem are as follows.

Theorem 5 Let Xi(t) be the i-th agent of a solution to (7). Then for i �= j =
1, . . . , N it holds

E|Xi(t)−Xj(t)|2 = e−(2λ−σ 2)t
E|Xi0 −Xj0 |2, t > 0.

In particular L2-consensus emerges if and only if λ− σ 2

2 > 0.

A similar result is obtained for the time-discrete dynamic (8). The condition for
the convergence depends on σ, λ and h. In fact, several different conditions are
discussed. For details, we refer to [14].

The second step that shows that for well-chosen parameters the consensus state
is located in a neighbourhood of the global minimizer is more involved. Here, we
only state the main result that needs the following assumption.
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Assumption 3 We assume that f and the initial conditions satisfy:

1. f ∈ C2
b(R

d) with inf
x∈Rd

f (x) > 0 and

CL := max
{

sup
x∈Rd

‖∇2f (x)‖2, max
1≤l≤d sup

x∈Rd
|∂2
l f (x)|

}
<∞.

2. For some ε ∈ (0, 1), the initial conditions Xi0 are i.i.d. with Xi0 ∼ Xin for some
random variable Xin that satisfies

(1 − ε)E[e−αf (Xin)] ≥ 2λ+ σ 2

2λ− σ 2
CLαe

−αf (X∗)
d∑

l=1

E

[

max
1≤i≤N(X

i
0 − vf (0))l

]

.

Theorem 6 Let Assumption 3 hold and suppose 2λ > σ 2. Then for a solution X
to (7) it holds

lim
t→∞ essinfω f (X

i
t (ω)) ≤ essinfω f (Xin(ω))+ E(α)

for some function E(α) with lim
α→∞E(α) = 0. In particular, if the global minimizer

X∗ is contained in the support of law(Xin) = ρ0, then

lim
t→∞ essinfω f (X

i
t (ω)) ≤ f (X∗)+ E(α).

The convergence of the time-discrete algorithm was not established in [14] due to
the lack of a discrete analogue of Itô’s stochastic calculus. In a subsequent article
[21] the authors give an elementary convergence and error analysis for the time-
discrete version (8) under some additional regularity conditions on f . Moreover,
exponential decay rates of the distances between the particles are established. The
proofs are rather technical and go beyond the scope of this survey. We therefore
refer the interested reader to [21].

2.3.2 Numerical Results

A priori it is not clear how the common noise algorithm performs compared to
the well-tested component-wise noise version in Sect. 2.2. In [14] some numerical
results of the common noise algorithm are provided. They underline the analytical
results on the convergence of the distance of two particles and indicate that also
the common noise version leads to reasonable results. A large-scale comparison of
Variant 1 and the common noise scheme of this section is missing up to the author’s
knowledge.
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3 Relationship of CBO and Particle Swarm Optimization

Consensus-based optimization is inspired by Particle Swarm Optimization (PSO)
schemes [9]. It is worthwhile to compare the methods to gain further insight to their
behaviour, performance and the qualities. Let us recall the formulation of the PSO
dynamic [22]: the update for the i-th particle is given by

Xi ← Xi + V i, i = 1, . . . , N

V i ← ωV i +
d∑

k=1

(
Ui1,k(ppersonal −Xi)k + Ui2,k(pglobal −Xi)k

)
,

where Ui1/2 are d-dimensional vectors of random numbers, which are uniformly
distributed in [0, φ1] and [0, φ2], respectively. pglobal denotes the best position that
any of the particles has seen, and ppersonal denotes the best position particle i has
seen. The parameters φ1,2 define the magnitude of the stochastic influences, and ω
can be interpreted as inertia parameter. V i is originally kept within box constraints,
given by the range [−Vmax, Vmax]. In contrast to the first-order dynamic of CBO,
PSO is of second order, which may lead to inertia effects. Moreover, the stochastic
influence does not vanish, and therefore one cannot expect any kind of consensus
formation. The approximation of the global best is pglobal whenever the PSO
algorithm is stopped. The global best information in PSO prevents a direct passage
to the mean-field limit.

The main ingredient of CBO is the weighted average vf . For α # 1, it can
be interpreted as an approximation of the current best particle position. Here, we
use best in the sense that the function value is the lowest compared to the function
values of all other particles. This current best particle does move only slightly, as
its distance to vf is small and therefore the drift and diffusion terms are small.
Therefore the current best particle can as well be interpreted as the global best
position seen so far. Hence, vf is the analogue of pglobal in PSO. In addition,
the PSO dynamic includes the so-called local best position, which refers to the best
position that each of the particles has seen. This local best is modelled in [15] using
a memory effect. The same local best is mentioned as well in a recent preprint [23],
which additionally considers a continuous description of PSO and computes the
corresponding macroscopic equations to clarify the relationship of PSO and CBO.
The details of the CBO with local or personal best information are given in the
following.

3.1 Variant 4: Personal Best Information

Consensus-based optimization with global and local best in the sense of PSO is
proposed in [15] and based on the component-wise diffusion variant (see Sect. 2.2).
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The dynamic reads as follows:

dXi(t) =
[
−λ(t,X)(Xi(t)− vf )− μ(t,X)(Xi(t)− pi(t))

]
dt

+ √
2σ

d∑

k=1

(Xi(t)− vf )kdWi
k(t)ek, i = 1, . . . , N, (9)

with vf as given above and the personal best is modelled by

pi(t) =
⎧
⎨

⎩

Xi0, t = 0,
∫ t

0 X
i(s) exp(−βf (Xi(s)))ds

/∫ t
0 exp(−βf (Xi(s)))ds, otherwise.

This personal best approximation uses the same idea as vf but with respect to time
in contrast to the integral over the state space. Again by Laplace principle (see
Proposition 1), we expect that pi(t) approximates the best position that particle
Xi has seen up to time t.

Remark 3 To circumvent the integral over time, it is tempting to rewrite the
numerator and denominator of pi as SDE. Notice that the initial condition of each
personal best would need to be positioned at zero in order to obtain the exact
definition above.

To make sure that particles do not get stuck in the middle, each particle has to choose
whether it moves towards vf or towards its personal best pi. As we aim for a global
minimizer, we assume that this decision is based on the cost functional values, which
motivates to set the prefactors λ and μ as

λ(t,X) = H(f (Xi(t))− f (vf ))H(f (pi)− f (vf )),
μ(t,X) = H(f (Xi(t))− f (pi))H(f (vf )− f (pi)).

This is leading to the following behaviour:

– If f (vf ) is smaller than f (Xi) and f (pi), the particle moves towards vf .
– If f (pi) is smaller than f (Xi) and f (vf ), the particle moves towards pi .
– If none of the above holds, the particle still explores the function landscape via

Brownian motion until it reaches the global best vf .

Using a regularized version of the Heaviside function,Hε, the well-posedness of the
above system is proven in [15]. There are no mean-field result and no convergence
result reported.
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3.1.1 Performance

Note that the additional evaluation of the personal best position has minor impact
on the computational costs, as the time integrals in pi allow for an accumulative
computation. Note further that even though the Heaviside function needs to be
regularized for the analysis, the numerical results can work with the original
Heaviside formulation.

The numerical results indicate that the personal best information raises the
probability of finding the global best position, if few particles are involved in the
search. As the number of particles needed for satisfying results depends on the
dimension of the state space, this result is particularly important in high dimensions.
If the number of particles is large enough, no significant influence of the personal
best information is noted.

4 CBO with State Constraints

Many global optimization tasks have a constrained state space. The simplest
version of constraints are box constraints. These can be included into each of the
aforementioned CBO versions by projecting particles back into the box, whenever
they are about to leave it.

The situation is more complicated, when the state space is given in the form of a
hyper-surface of Rd . For example the sphere

S
2 = {x ∈ R

3 : |x| = 1}

is a hyper-surface of R
3. In [16, 24] a variant of CBO on such hyper-surfaces

is proposed. The first paper is concerned with the well-posedness and the mean-
field limit of the variant, and the second article discusses the convergence to global
minimizers and applications in machine learning. A major advantage of this variant
is the fact that compactness is assured by the constraint. Therefore the mean-field
limit can be established rigorously. In the following we discuss the details [16].

4.1 Variant 5: Dynamics Constrained to Hyper-Surfaces

The restriction to the hyper-surface leads to a new formulation of the optimization
problem

min
x∈! f (x),
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where ! represents the hyper-surface and f : Rd → R as above. We assume
that ! is a connected and smooth compact hyper-surface embedded in R

d , which
is represented as zero-level set of a signed distance function γ with |γ (x)| =
dist(x, !) leading to

! = {x ∈ R
d : γ (x) = 0}.

If ∂! = ∅, we assume for simplicity that γ < 0 on the interior of ! and γ > 0
on the exterior. The gradient, ∇γ, is the outward unit normal on ! whenever γ is
defined. In addition, we assume that there exists an open neighbourhood !̂ of ! such
that γ ∈ C3(!̂). All these assumptions allow us to work with the Laplace–Beltrami
operator. For example, for the sphere S

d−1 we can choose

γ (x) = |x| − 1 with ∇γ (x) = x

|x| and �γ (x) = d − 1

|x| .

In [16] a Kuramoto–Vicsek-type dynamic is proposed as

dXi(t) = −λP (Xi(t))(Xi(t)− vf )dt + σ |Xi(t)− vf |P(Xi(t))dBi(t)

− σ 2

2
(Xi(t)− vf )2�γ (Xi(t))∇γ (Xi(t))dt, i = 1, . . . , N,

(10)

with initial condition X(0) = X0. In contrast to the aforementioned schemes there
appears a projection operator P defined by

P(x) = I − ∇γ (x)∇γ (x)T .

For the sphere, we obtain the P(x) = I − x xT

|x|2 . In addition to this projection there
appears a third term in (10). The two mechanisms ensure that the dynamics stays on
the hyper-surface !.

Remark 4 Note that the dynamic is described in R
d . On the one hand this allows

for a simple statement of the scheme. On the other hand it is likely that the weighted
average is not positioned at !, i.e. vf /∈ !. This is caused by the averaging of
particles on a hyper-surface. Nevertheless, for α # 1, vf approximates the current
best particle, which is contained in ! due to the projection and correction terms.

The constraint enables us to give rigorous arguments for the limit N → ∞,
which results in the nonlocal, nonlinear Fokker–Planck equation:

∂tρt = λ∇! · [P(x)(x − vf )ρt ] + σ 2

2
�!(|x − vf |2ρt ), t > 0, x ∈ !,
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with initial condition ρ0 ∈ P(!). The operators ∇! and �! denote the divergence
and Laplace–Beltrami operator on the hyper-surface !, respectively. In the follow-
ing we summarize the analytical results for this variant, which are reported in [16].

4.1.1 Analytical Results

The following analytical results focus on the well-posedness and the rigorous mean-
field limit of the constrained scheme.

As the dynamic is living in R
d , there are some technical issues with P,�γ and

∇γ. In fact, these are not defined for x = 0 and the authors propose to replace them
with regularizations. Moreover, a regularized extension of f, called f̃ , is introduced.

Assumption 4 Let f̃ be globally Lipschitz continuous and such that it holds:

f̃ (x) = f (x) for x ∈ !̂,
f̃ (x)− f̃ (y) ≤ L|x − y| for all x, y ∈ R

d for L > 0,

−∞ < f̃ := inf f̃ ≤ f̃ ≤ sup f̃ := f̃ < +∞.

The authors emphasize that the regularization f̃ is introduced only for technical
reasons and that it does not the influence the optimization problem, as it can be
shown that the dynamic stays on the hyper-surface whenever it is initialized there.

The well-posedness results for the particle and the mean-field scheme [16] read
as follows.

Theorem 7 Let Assumption 4 hold and f with 0 ≤ f be locally Lipschitz.
Moreover, let ρ0 ∈ P(!). For every N ∈ N, there exists a path-wise unique strong
solution X = (X1, . . . , XN) to the system (10) with initial condition X(0) = X0.

Moreover, it holds Xi(t) ∈ ! for all i ∈ {1, . . . , N} and t > 0.

The well-posedness of the PDE is established similar to Theorem 2 in Sect. 2.2
with the help of an auxiliary mono-particle process X̄ satisfying

dX̄(t) = −λP (X̄(t))(X(t)− vf )dt + σ |X̄(t)− vf |P(X̄(t))dW(t)

− σ 2

2
(X̄(t)− vf )2�γ (X̄(t))∇γ (X̄(t))dt, (11)

in strong sense for any initial data X̄(0) ∈ ! distributed according to ρ0 ∈ P(!). It
holds law(X̄(t)) = ρt , which allows to define vf = vf [ρ] as in (4b). For details on
the well-posedness of the PDE, we refer the interested reader to [16]. We proceed
with the ideas leading to the rigorous mean-field limit result.

Using N independent copies of this mono-particle process allows to obtain
the rigorous mean-field limit with the well-known technique of Sznitman [25]. In
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contrast to the unconstrained case, where the rigorous proof of the mean-field limit
is open, the compactness of the hyper-surface makes the difference.

Theorem 8 Let Assumption 4 hold and f be locally Lipschitz. For any T > 0,
let Xi(t) and X̄i(t), i = 1, . . . , N , be solutions to (10) or the corresponding mono-
particle process, respectively, up to time T with the same initial dataXi(0) = X̄i(0)
and the same Brownian motions Wi(t). Then there exists a constant C > 0
depending only on parameters, regularizations and constants, such that

sup
i=1,...,N

E[|Xi(t)− X̄i(t)|2] ≤ CT

N

(
1 + CT eCT

)

holds for all 0 ≤ t ≤ T .
Remark 5 In addition to these results, there is a preprint [24] that reports on the
convergence to the global minimizer and simulation results for applications in
machine learning for the CBO scheme constrained to hyper-surfaces (10).

With this, we conclude the survey of the variants. In the next section we briefly
discuss some applications and performance results of the variants.

5 Overview of Applications

The CBO variants were studied in various test problems. Initially, benchmark
functions from global optimization were used to get first results. As the variants are
tailored for high-dimensional applications arising in machine learning problems,
they are tested against stochastic gradient descent. The preprint [24] shows some
first results for the constraint method for the Ackley function on the sphere and
machine learning scenarios.

5.1 Global Optimization Problems: Comparison to Heuristic
Methods

In [11, 26] benchmark functions from global optimization with various local minima
and only one global minimum such as the Ackley, Rastrigin, Griewank, Zakharov
and Wavy function were employed to test CBO against PSO and WDO. It turns
out that CBO shows the best overall performance. In particular in scenarios where
PSO and WDO have a very low success rate, CBO leads to reasonable results with
success rates >50%.
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5.2 Machine Learning

Variants 2 and 3 were tailored for applications in machine learning. A comparison
between Variant 2 and the stochastic gradient descent is reported in [13]. For a
global optimization problem with an objective function that has many local minima,
the CBO variant outperforms SGD in terms of the success rate. The authors explain
that this is caused by the fact that SGD needs a lot of time to escape from basins of
local minima. A comparison with fixed computational cost is missing up to author’s
knowledge.

Another test case considers the well-known MNIST data set. Here, the differ-
ences between Variant 2 and SGD are less obvious. Nevertheless, CBO leads to
slightly better results. See [13] for more details.

5.3 Global Optimization with Constrained State Space

The preprint [24] investigates global optimization problems from signal processing
and machine learning that are naturally stated on the sphere. The first one is phase
retrieval, where the task is to recover an input vector z from noisy quadratic
measurements. The simulation results show that Variant 5 is able to match state-
of-the-art methods for phase retrieval.

The second applications is robust subspace detection. Here, the task is to find
the principal component of a given point cloud. The performance of Variant 5 is
reported to be equally good as the one of the Fast Median Subspace method applied
to synthetic data. Then a computation of eigenfaces based on real-life photos from
the 10k US Adult Faces Database is studied. It turns out that the results of Variant 5
are more reliable than the ones by SVD when outliers are present in the data set.

5.4 PDE Versus SDE Simulations

In many applications of statistical physics, for example, particles in a plasma,
electrostatic force or vortices in an incompressible fluid in two space dimensions, the
mean-field equation is used to reduce computational cost [27]. For consensus-based
optimization, we strongly recommend using the particle level for simulations. This
is due to the fact that not too many particles are needed for reasonable results and for
high-dimensional problems the computation of the PDE solution is infeasible. The
comparison of SDE and PDE results shown in [11] is just to underline the formal
limit numerically and thus to justify the analysis of the scheme on the PDE level.
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6 Conclusion, Outlook and Open problems

In this survey we collected the main results on consensus-based optimization
algorithms. First, we stated the original scheme on the particle level and the
analytical results after a formal mean-field limit. Then we discussed variants with
component-wise independent and common noise and mini-batch approaches that are
tailored for high-dimensional applications arising from machine learning. A variant
with component-wise common noise allows for analytical results on the particle
level without passing to the limit N → ∞.

Consensus-based optimization has similarities to the well-known Particle Swarm
Optimization algorithms. Those were addressed in Sect. 3, where we considered a
variant that involves the personal best state of each particle in the dynamic. The
survey on the variants was completed with a section on the variants for constrained
global optimization problems, which involves the divergence and Laplace–Beltrami
operator for hyper-planes. Then we shortly summarized some performance results of
the CBO variants and mentioned comparisons to PSO, WDO and SGD. We conclude
the survey with remarks on recent preprints and open problems.

Recent Preprints
This survey chapter discusses recent advances of the CBO model that have
been published in peer-reviewed journals. Despite these, there are some preprints
available, which have not passed the peer review at the time of the final version of
this survey:

– A recent preprint [28] proposes CBO with adaptive momentum estimation
(ADAM) scheme, which is well-known in the community of stochastic gradient
descent methods. The article claims that the new scheme has high success rates
at a low cost. Moreover, it can handle nondifferentiable activation functions in
neural networks.

– As mentioned in Sect. 3, there is a preprint [23] that discusses a SDE version of
the PSO model that allows for passing to the limit N → ∞. A formal analysis
on the mean-field level compares properties of CBO and PSO.

– In Sect. 4.1 the preprint concerning the convergence to the global minimizer and
machine learning application for CBO constrained to hyper-surfaces [24] was
mentioned.

– Preprint [29] discusses a rigorous proof of the mean-field limit. Compactness is
established using probabilistic and stochastic arguments.

– An alternative proof of the convergence to the global optimizer is provided in
[30]. The results show that CBO performs a convexification of a very large class
of optimization problems, as the number of optimizing agents goes to infinity.
Moreover, the article proves a quantitative nonasymptotic Laplace principle,
which may be of independent interest.

– A sampling approach based on CBO ideas is proposed in [31]. The method
allows for the generation of approximate samples from a given target distribution.
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Interesting applications are the determination of the maximum a posteriori
estimator and sampling from the Bayesian posterior.

Open Problems
Let us mention some interesting open problems in the context of CBO:

– Despite the fact that a rigorous mean-field limit for the unconstrained method in
R
d was established in [29], a quantitative convergence rate is still open.

– A convergence analysis on the particle level was only done for the component-
wise common noise algorithm. A rigorous convergence analysis for other variants
on the particle level remains open.

– For comparison and qualitative performance results, an estimate on the speed of
convergence of the particles to the consensus-point would be of great interest.
This point was mentioned in [21] and is still open up to the author’s knowledge.

– In most application the structure of the objective functions is unknown, and
therefore one cannot guarantee the existence of a unique global minimum.
This can lead to difficulties with vf for symmetric objective functions. A
symmetry breaking generalization to problems with multiple global minima
would therefore be very interesting.

Altogether, the analytical results and the numerical performance of the CBO variants
are very promising and motivate for further research.
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