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Foreword

Agriculture is an important sector of the Indian economy as more than half of its 
population relies on farming as a principal source of income and as the primary 
source of livelihood. The National Research and Extension systems play a vital role 
in generation, upscaling, and dissemination of agricultural technologies aiming at 
enhancing the income of farmers. The share of agriculture and allied sectors in gross 
value added (GVA) at current prices stood at 17.8 % in FY20. Farmers with mar-
ginal and small holdings, constituting about 86 percent, support the food security of 
the large population, but are often subjected to vulnerability of climate.

This book, divided into 5 parts and 15 chapters, presents cases from different 
countries with a main focus on agriculture, livestock, and fishery resources in the 
twenty-first century along with recent developments in these areas. It also includes 
the scope of low-cost production technologies and practices that are relevant and 
better-suited to smallholder farmers. Some of the key inclusive issues related to crop 
diversification, climate change in crop security, vulnerability of agricultural 
resources to floods and droughts, emerging new era for sustainable agriculture, miti-
gation strategies for sustainable soil health, catalyzing farmers’ livelihoods, aqua-
culture resources towards farmers' income, livestock resource management and 
practices, livestock nutrition for enhancing livestock production, and farmers' 
income have been highlighted. The book provides a comprehensive account of vari-
ous agricultural scenarios and their relative phenomena, which will benefit the aca-
demic and research community by providing information related to recent research 
innovations, problem-solving skills, and their future perspective in the field of 
agriculture.
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I congratulate the editors, Arvind Kumar, Pavan Kumar, S. S. Singh, Bambang 
Hendro Trisasongko, and Meenu Rani, and other scientists, as contributors in the 
book, across the globe along with the publisher for bringing out a timely publication 
depicting agriculture, livestock production, and aquaculture and advances for small-
holder farming systems. I am sure this would serve as reference material for differ-
ent stakeholders and institutions working in this area.  

S. Ayyappan
Industrial Suburb, Mysuru, Karnataka, India

(S. Ayyappan)

14 October 2021
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Preface

Small-scale (or smallholder) farms support the livelihoods and food security of 
people in many regions but are often underproductive and typically exposed to sub-
stantial risk from climatic and other natural hazards. The socio-economic impor-
tance of these systems is likely to remain high, and even grow, as the number of 
small-scale farms increases as part of broader agriculture expansions underway in 
much of the developing world. This book provides an overview of agriculture, live-
stock production, and aquaculture. Modern technologies like remote sensing and 
GIS with timely and accurate information help to monitor and analyze wide range 
of phenomena like culture of fish, shellfish, and algae in freshwater and marine 
environments, genetics and stock improvement, nutrition and feed production, post- 
harvest technology, economics and marketing, and future developments of aquacul-
ture. Inter-disciplinary studies are also noticed in human-environment interaction 
between stakeholders and decision makers for real-world applications. Remote 
sensing data products and their limitations are also discussed in the book. The book 
is organized into 5 parts spreading over 15 chapters. Part I discusses the advanced 
approaches to sustainable agriculture in smallholder farming system. Chapters 2, 3, 
4, 5, 6, and 7 in the second part are devoted to adaptation and mitigation strategies 
in smallholder agricultural system under climate change scenario. Various applica-
tions of advanced technology in agriculture for smart faming are presented in Chaps. 
8, 9 and 10 of Part III. In Part IV, livestock production, technology development and 
transfer, and opportunities have been discussed in Chaps. 11, 12, and 13 through 
advance modeling. Part V contains two chapters that deal with fisheries and aqua-
culture in food security and nutrition.

This book covers significant and updated contribution in the field of agriculture, 
livestock production, and aquaculture linked to climate change. The updated knowl-
edge from countries like India, Indonesia, Kenya, Taiwan, Malaysia, and Australia 
is presented in this book through selected case studies for major thematic areas that 
have basic preliminary concepts and elaborates the scientific understanding of the 
relationship between agricultural resources and climatic drivers and influence of 
climate change. This book will be of interest to researchers and practitioners in the 
field of agricultural sciences, remote sensing, geographical information, 
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meteorology, fisheries, and policy studies related to agricultural resource manage-
ment and climate change. Also, scientists and graduate and postgraduate level stu-
dents of various disciplines will find valuable information in this book. We believe 
that the book would be read by people with a common interest in sustainable devel-
opment and other diverse backgrounds within Earth observation.

The scientific quality of the book was ensured by a rigorous review process 
where leading researchers from India, Indonesia, Kenya, Taiwan, Malaysia, and 
Australia participated to provide constructive comments to improve the chapters. 
Due to confidentiality of the review process, we are unable to provide their names; 
however, we are deeply indebted and thankful for their voluntary support. On behalf 
of the team of authors, we express our gratitude to the entire staff to Springer for all 
kinds of assistance that made this endeavor successful.

Keerbergen, Belgium Luc Hens 

Preface
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Chapter 1
Drone Technology in Sustainable 
Agriculture: The Future of Farming Is 
Precision Agriculture and Mapping

Arvind Kumar, Meenu Rani, Aishwarya, and Pavan Kumar

Abstract Today, we are using machine tools and a variety of technologies in almost 
all areas of agriculture. The drone is playing an important role in these techniques. 
Climate change and environmental pollution are the major global issues of the cur-
rent era and severely impacting agricultural productivity. As seen, the current condi-
tions are not favorable for Indian agriculture: first, the outbreak of corona epidemic 
and now the locust swarm can be seen. Working in crowded and far-flung areas is a 
difficult task during the the Covid pandemic. In view of these circumstances, bring-
ing advanced changes in agriculture is becoming the need of the hour. The impact 
of ever-increasing technology on agriculture should be seen as a positive trend, as it 
can prove to be a useful means of sustenance for the growing population day by day.

Keywords Drone · India · Climate change · Farming system · Agriculture

1  Drone Technology at a Glance

Food security is the big question for Indian agriculture which should be taken 
against the backdrop of environmental degradation, pollution, and water scarcity, 
and its effective solution should be a high priority (Vanamburg et  al. 2006; 
Ruwaimana et al. 2018). All of this is one area where the use of drones can warrant 
a permanent solution. Drone technology is an unprecedented innovation in agricul-
ture that will have far-reaching implications for agriculture, changing the way we do 
hereditary farming and the way we do business. High-tech drones help farmers and 
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drone pilots improve certain aspects of the farming process and increase agricultural 
efficiency. From crop monitoring to planting, livestock management, pesticide and 
fertilizer spraying, irrigation and land mapping, and drone technology are used 
(Kalantar et al. 2017) (Fig. 1.1).

2  Application Areas of Drone in agriculture

Drone technology in agricultural sectors has been playing an important role the past 
few years, the benefits of which are becoming more apparent to farmers. In many 
countries, use of drone technology has turned out to be an essential part of precision 
farming at large scale. The high-resolution data acquired from drones assist farmers 
in managing their farm from sowing to harvesting and help them to attain the best 
possible crop yields (Bellia and Lanfranco 2019). The use of drones in the farming 
sector is gradually increasing as it provides effective approach towards sustainable 
agricultural goals. Critically, the high temporal and spatial resolution data provided 

Fig. 1.1 Drone technology and data processing

A. Kumar et al.
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by a drone can be effectively used to assess the fertility of soil, which assists farmers 
and professionals to more precisely apply fertilizer and provide a way to precision 
nutrient management without wastage of fertilizers. The robust data allow agrono-
mists, farmers, and agricultural engineers to get effective insights into their crops. 
The technology is also effectively used in natural disasters, like flood and drought, 
and help farmers to monitor their field and assess damage across terrains, which 
otherwise is not easily reached on foot. Drone applications in agriculture are moni-
toring crop treatment, health, scouting, irrigation, fertigation, and crop damage 
assessments (Suo et al. 2019; Lazzeri et al. 2021).

3  Crop Health Assessment

Monitoring of plant health is at the top of the many uses of Drone Imagery which 
has already been started with great success. Drones equipped with special imaging 
equipment can capture multispectral and visual imagery of the farm (Fig. 1.2). A 
precise crop health investigation is then made using various vegetation health indi-
ces like Normalized Difference Vegetation Index (NDVI). This allows farmers to 
continuously monitor their crops, and any problem can be quickly dealt with. The 
multispectral data also help in the detection of nutrient deficiencies in the early 

Fig. 1.2 Plant health assessment through high-resolution multispectral drone imagery

1 Drone Technology in Sustainable Agriculture: The Future of Farming Is Precision…
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stage. It allows farmers to concentrate in the plant-stressed areas rather than the 
whole field, investigate the reason of crop stress, and take action before the crop 
stress transforms into yield loss (Rossi et al. 2018; Santos et al. 2015). Although 
many farmers are already monitoring crop growth and health through satellite imag-
ery, satellite-based data are not as useful as a drone. Because drones provide very 
high-resolution data (up to few centimeters) and fly very close to fields, it is unaf-
fected by cloud cover as in the case of using satellite data. After planting any kind 
of crop, disease or pest infestation can be detected very easily through drone flight 
even at small farms and treatment can be planned in the right way (Lucieer et al. 
2014). Apart from this, drones are equipped with instruments that are capable of 
spraying the correct dosage of insect, weed, and disease control pesticides in a very 
precise and planned way that improves the overall efficacy of the products and 
therefore the overall benefit of farmers.

4  Crop Surveillance

Manually, it is not possible to assess the overall condition of crops in large agricul-
tural farms. Drone-based mapping of field crops enables farmers to have a close eye 
on the entire crop area at once, which can help the farmers to find out which particu-
lar area in the field requires special attention (Cancela et  al. 2019; Small 1973). 
Drones inspect the field with infrared cameras mounted on them, which is able to 
calculate light absorption rates to estimate crops stage. Based on this accurate and 
real-time information, problematic areas of the field can be instantly treated 
(Brunner et al. 2013; Bachrach et al. 2010; Cunha and Youcef-Toumi 2018).

5  Monitoring Field Conditions

Drone cameras are capable of monitoring the field conditions health of the soil. 
High-resolution capabilities of drones can provide elevation data and accurate map-
ping of farms, which allow growers to examine any irregularity in the field 
(Forooshani et al. 2013; Rivard et al. 2015). The efficiency of a drone to produce 3D 
maps that help in generating field elevation maps can be proved valuable in deter-
mining drainage patterns and high/low elevation spots, which require well- organized 
watering technique. Apart from this, the accurate 3D maps can be used to carry out 
soil analysis, moisture estimation, and soil erosion. Some agricultural drone traders 
and vendors also offer nitrogen level monitoring in soil. Drone technology can also 
be used very effectively for crop acreage estimation and to monitor crop growth 
stage (Ranjan et  al. 2014). Based on this information, harvest decisions can be 
planned accordingly.

A. Kumar et al.
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6  Spray Application

Drones can see the ground to detect any nutrient deficiency, disease, weed and pest 
infestation at any spot which help in monitoring plant stress. It is capable of spray-
ing the right amount of liquid, adjusting distance from the ground, and spraying real 
time for equal coverage. Southeast Asian countries are already using drones for 
spraying the crops. South Korea is using drones for agriculture spraying at approxi-
mately 30% of their total agricultural land. Drone sprayers are capable of planning 
a route in remote and hard terrain areas, like steep slope tea farms in hilly areas, and 
protecting farmers from the hardship of carrying spray tanks on their backs, which 
could be potential health risk for them. However, the drone sprayer regulations vary 
extensively from country to country. For example, it is not legal in Canada, and fly-
ing spray drones is permitted only for trained professionals in Yamaha (Jakob et al. 
2016; Zimmermann et al. 2016; Guo et al. 2018). Drone sprayers provide very pre-
cise applications of spray in a very cost-effective manner as they can be targeted to 
particular problem areas rather than the entire field to save chemical cost. A recent 
example of using agricultural drone for spraying to fight Locust swarm proved the 
efficiency of the drone, which sprayed approximately 2.5 acres in only 15 minutes 
(Xiang et al. 2019; Lally et al. 2019).

7  Monitoring Irrigation and Water Requirement

As climate change increasingly affects water resources and drought conditions, 
there is a critical need for more proficient irrigation solutions. Drones equipped with 
hyperspectral, multispectral, and thermal sensors are able to detect the deficiency of 
moisture in soil. Also, microwave sensors in drones are capable of acquiring very 
accurate soil moisture levels without any harm to crops. This information will help 
the farmers to identify which parts of a field need water or require irrigation. This 
helps in planning farm-specific irrigation schedule, and water can be dispersed in 
the field in a more organized manner (Eck and Imbach 2012; Waiser et al. 2007; 
Moseley and Zabierek 2012).

8  Scaring Birds

Birds and animals are a major problem for some crops after sowing seeds. Birds 
pluck up the seeds for food, and animals destroy seedlings with their feet while 
moving around. This requires hiring labor to protect the crop. A couple of drone 
flights can do this work to scare the animals and birds away from the field.

1 Drone Technology in Sustainable Agriculture: The Future of Farming Is Precision…
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9  Planting and Seeding

Some companies have created additional attachment below the drone systems which 
is able to shoot pods containing seed nutrients into the already prepared soil. This 
can help farmers to reduce the costs of planting (Lee et al. 2002; Ovakoglou et al. 
2016). Planting seeds is the newest and least used application of drones in agricul-
ture. Till now, the automated drone seeders are widely being used in forestry; how-
ever, its potential is more widespread. It can be used in hilly terrains for planting 
seeds, where labor cost is high in inaccessible areas (Dube et al. 2016).

10  Crop Damage Assessment

Drones are capable of providing high-resolution data that can deliver crucial infor-
mation for evaluation and documenting damage to plants/crops from unforeseen 
weather events such as floods and drought, and other factors like fires, pests, and 
disease. Data acquired from drones can be used by farmers to obtain an estimate of 
crop damage and as proof to claim crop insurance or accordingly. At the same time, 
surveillance with drones can help farmers or agricultural professionals to manage 
their fields to mitigate the impact of these disasters (Sallam et al. 2018; Ismail 2012).

11  Indian Scenario

The importance of technology in agriculture has its own importance as it is mostly 
associated with providing results, to feed the population of a country. Finding our 
way to food security due to environmental degradation, pollution, and water scar-
city is always a priority question that needs to be addressed. Irrespective of the 
contribution of Indian agriculture to India’s GDP, India has yet to increase produc-
tivity and efficiency in this sector. There are several areas and concerns that need to 
be identified, and once identified, they should be addressed with proposals. In the 
present time, there is a need to conduct the ever-increasing new experiments in 
agriculture on a small scale. According to the demand of modern times, the use of 
drones should be given place in agriculture. Therefore, the need of the hour is that 
in India too, farmers and people should be made aware of drones and digital tech-
nology by the government. It requires skilled and technical persons to operate the 
drones, which is a bit difficult in a country like India. Some expensive equipment is 
required to get high-quality data, which makes the initial cost of drones high, which 
makes such technology unsuccessful by small farmers in India (Fig. 1.3).

Drones, equipped with hyperspectral, thermal, or multispectral sensors, can eas-
ily detect the particular areas in the whole field that are too dry or require improve-
ment. In this way, survey by drone helps farmers to improve irrigation water 
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efficiency and unveil possible pooling/leaks in the farm by providing irrigation 
monitoring system. Further, vegetation indices calculated through emitted or 
reflected heat/energy help to realize the health of crops and yields estimations. The 
drone survey makes farmers capable to get information about soil conditions of 
their lands. Multispectral sensors allow farmers to grab data which are useful for 
planning seed planting patterns, comprehensive field soil moisture analysis, irriga-
tion management, and nitrogen-level management. Drones with multispectral sen-
sors can accurately spot and treat inaccessible and problematic areas. Crop spraying 
through drone restrict save time and human contact with harmful chemicals. Agri-
drones, which are designed especially for agricultural applications, can execute 
various tasks like spraying, irrigation, etc. much more rapidly than other air vehi-
cles/planes. Professionals and agricultural experts are of the opinion that aerial 
spraying via drone is five times faster as compared to other methods.

12  Drone Policy in India

Unmanned aerial vehicle (UAV), commonly referred to as “drone,” once limited to 
only a few ventures like military, surveillance, law enforcement, and safety 
inspection(s), now finds application in enormous civil and commercial work rang-
ing from agriculture, surveying, and filming to journalism, shipping, product(s) 
delivery, disaster management, etc. These devices have now pervaded the genre of 
automation and consumer use. In due course, more and more people are entwining 
around them, finding more innovative and practical usage. In the fall of 2018, the 

Fig. 1.3 The drone is playing an important role in these techniques
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Government of India (GoI) released a drone policy, enabling the use of drones 
immediately following their application in infrastructure works. This policy also 
facilitated the use of drones in the agricultural sector, but with a few restrictions like 
prohibiting drones from spraying certain agricultural chemicals like insecticides, 
etc., unless warranted imperatively. The operation of drones was managed under the 
Unmanned Aircraft System (UAS) Rule 18 (part VI). Recently, on 26 Aug 2021 
Ministry of Civil Aviation (MoCA), Govertment of India (GoI) released a new set 
of policies that materialized the draft policy presented earlier during the summer of 
2021. GoI has now decided to annul the UAS rules of 2021 and replaced them with 
more flexible and unplugged under their “Drone Rules 2021.” Some key features of 
the amendment are as follows: (1) Two types of the license were to be provided 
namely “student license” and “remote pilot license” with a renewal period of 2 and 
10 years from the date of issue. (2) Security clearance was nullified to fly nano 
(<250 g) and mini drones. Further, one can fly micro-drones (mass greater than 250 
g but less than or equal to 2 kg) also for non-commercial purposes but with a restric-
tion of not crossing the vertical height of 15 m from average ground level (AGL). 
(3) No license is required to fly drones over private spaces under the green zone, 
though for all other operations, Unique Identification Number (UIN) and Unmanned 
Aircraft Operator Permit (UAOP) shall be compulsory. (4) Yellow zone, i.e., con-
trolled airspace, which was earlier 45  km from the airport perimeter has been 
reduced to 12 km radius from the periphery of the airport. (5) A series of approvals, 
like Unique Authorization Number, certificate of manufacturing and airworthiness, 
remote pilot instructor authorization, etc., has been abrogated. Though all drones 
shall be registered online over the “digital sky platform.” This shall also make the 
process of de- registration more fluid. (6) Maximum forfeiture associated with non-
compliance of the drone is INR 100,000. On the other side, the fee for a remote pilot 
license has been positively reduced to INR 100 for all category drones. (7) Further, 
the payload limit which a drone may carry is now increased from 300 kg to 500 kg. 
The airspaces are still the same, i.e., red zone, amber zone, and the green zone, 
though as discussed earlier their boundaries are now adjusted under the new norms. 
The digital sky platform of the MoCA, GoI as usual shall act as the traffic control 
management system for the UAVs.

13  Way Forward

Drones technology has already transformed the farming industry and will expect to 
grow larger in the upcoming years. At the same time, as drone use is becoming more 
helpful for small farmers, there is still a long way to go before it develops as an 
essential part of each farmer’s equipment list, specifically in developing and under-
developed economies. Drone technology has extensive proficiency to perform a 
number of agricultural operations exceptionally fast and precisely. It can save man-
power and also accomplish the statute of social distancing during the time of pan-
demics like COVID-19 and lockdown provision. Though high initial cost and 
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restricted government policies are some of the challenges which act as hurdles in 
making the drone technology popular and farmers’ friendly. Moreover, there is a 
need to carry out more research for optimizing operation protocol for drone use and 
calibrating and validating the drone data. As there is rare research available on the 
proficiency of the operations executed of dropping insecticides/pesticides, the 
scheduling of the field spraying practice is not feasible. Undoubtedly, drone tech-
nology is far better than conventional technologies of agriculture management; still 
there are a number of other issues which strictly need more scientific study and 
fine-tuning for efficient use of drone technology in the farming sector.
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Abstract Climate change is the current and future threat to sustainable crop pro-
duction and soil resilience in rain-fed agricultural systems. The high climatic varia-
tion, especially rainfall and temperature, has rendered agricultural productivity a 
high risk venture. Practices and technologies that abate the impact of climate change 
on agricultural production systems are thus imperative. There are several empirical 
studies of best-fit agronomic practices that have shown massive potential in curbing 
the devastating effects of climate change. However, these studies are isolated and do 
not clearly bring out how various agronomic practices cushion farmers against cli-
mate change. Consequently, little is known on how best-fit agronomic practices may 
be tailor-made to reduce and/or eliminate the impact of climate change in crop pro-
duction systems. The aim of this chapter is thus to document and contextualize how 
various agronomic (herein referred to as best-fit) practices tackle climate change. It 
also looks at the policy and legal framework that strengthen the capacity of the 
practices. From the detailed literature, best-fit agronomic practices include: inte-
grated soil fertility management, suitable tillage method, cereal-legume crop rota-
tion/intercropping, greenhouse production, genetic modification, and soil and water 
conservation measures. Though the current policy and legal frameworks regulating 
the aforementioned practices are weak, there is an urgent need for them to be 
strengthened, farmer-sensitive, and implementable. There is therefore the need for 
up-scaling these practices by strengthening institutional support and adopting a 
bottom-up extension services approach.
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1  Introduction

There has been an increasingly volatile and erratic climatic pattern that has spread 
over the years (Oduor et  al. 2020). Climate plays a key role in crop growth and 
development as it dictates the soil water balance which is one of the main factors in 
crop production. The effect of climate on crop production through soil moisture 
dynamics is twofold. First, rainfall supplies the required moisture for crop growth, 
and second, temperature regulates the potential evapotranspiration losses that are 
important for the available soil moisture. Therefore, declining rainfall and rising 
temperatures – two of the most important elements of climate – which are associ-
ated with climate change, will have a direct negative effect on agricultural produc-
tion value-chain.

Climate change affects, directly or indirectly, both crops and agricultural soils. 
The high climatic variation, especially rainfall and temperature, has rendered agri-
cultural productivity a high risk venture. At least 30% of yearly deviation in global 
average yields of top-six widely grown crops (corn, wheat, rice, sweet potatoes, 
cassava, and beans) is attributed to rainfall and temperature variations (Lobell and 
Field 2007). Sub-Saharan Africa (SSA) is projected to lose about 14% of cultivable 
land and about 20% of its pasture production potential by 2080 due to the climatic 
variations (Shah et al. 2008). This situation is expected to further deteriorate as it is 
forecasted that climate change will lead to warmer and drier conditions with more 
variable and extreme weather events in the near future (Meehl et al. 2007). This 
comes at a time when the effects of climate change are already deeply rooted given 
that around 80% of the agricultural land globally is rain-fed. This land contributes 
at least two-thirds of the world’s food production (Alam and Ekhwan 2011).

The impact of climate change could be even worse in SSA where about 90% of 
staple food production is under rain-fed agriculture (Ngetich et al. 2014). The fact 
that farmers in critical regions require at least $5246.52  ha−1 of Climate Risk 
Security (CRS) prior to the year 2021 shows the extent of strain in agricultural pro-
duction. In highlighting the economic impact of climate change, Singh and Dhadse 
(2021) defined CRS as the compensation that should be extended to farmers based 
on their locality. There is need for urgent measures to reduce the current and future 
negative impacts of climate change since it is expected that the dependence on rain-
fall by most smallholder farmers will intensify in the future due to the rapid popula-
tion growth .

Crops and agricultural soils face the brunt of the changing climate and are dimin-
ishingly being resilient. This could be because agriculture has been rendered risky 
venture and attracts little to no investments. In fact, farmers are starting to focus 
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their attention on other lesser risky ventures at the expense of agriculture. This trend 
is not only detrimental to attaining sustainable food security and combating malnu-
trition, but also achieving the overall Sustainable Development Goals (SDGs). 
Formulating strategies to ensure sustainable agriculture intensification amidst the 
changes in the climatic patterns is therefore inevitable (Mupangwa et  al. 2012; 
Mutuku et al. 2020). There is need for the identification and validation of climate-
smart strategies that would sustainably improve agricultural productivity in the cur-
rent and future climatic scenarios. Most of the approaches explored have revolved 
around forecasting on the future climatic patterns to enable appropriate agricultural 
planning, adapting to the drought and dry spells, mitigating the impacts of drought 
and dry spells, modification of the climatic conditions, and enhancing rainwater use 
efficiency. Nevertheless, it is customary that the available strategies have been blan-
ket-applied with little attention to whether a production system is low or high input 
production system. Little is therefore known on how various strategies and agro-
nomic practices perform in relation to enhancing agricultural production resilience 
to climate change. This chapter thus explores how climate-smart strategies and 
agronomic practices can be applied as best-fit approaches to enhance crops and soil 
resources’ resilience to climate change in low and high input production systems.

1.1  Effect of Climate Change on Crops and Cropping Systems

Climate change, though may have some positive impacts depending on the locality 
and type of crop, has a range of devastating effects on crops and cropping systems. 
The effects can be typologically categorized into direct and indirect effects (Fig. 2.1). 
The direct and indirect effects include, but not limited to, reduced and erratic rain-
falls, unpredictable seasons onsets, high temperatures/evapotranspiration/elevated 
CO2 levels, floods and lodging, new pests and diseases, invasive species, erosions, 
soil fertility degradation, and droughts. On the other hand, indirect effects are: 
reduced land under agriculture, reduced biodiversity, and effect on wild relatives.

Though it remains unclear on how exactly climate change will affect crops in 
future, it has been widely suggested that increased adverse weather events like 
erratic rains, high temperatures and heat waves, rising carbon dioxide (CO2) levels, 
heavy and fluctuating rainfall patterns, and frequent droughts currently pose a seri-
ous threat to crop production systems (Descheemaeker et al. 2016; Mall et al. 2017; 
Descheemaeker et al. 2020). Both heavy rains and drought affect response of crops 
to soil fertility inputs. Heavy rains cause leaching of applied nutrients while erosion 
caused by the rains washes away soil and nutrients. On the other hand, drier condi-
tions occasioned by drought reduce nutrient uptake by crops. These two scenarios 
reduce nutrient use efficiency of the applied nutrients and hence reduction in crop 
yields. Also, heavy rains cause flooding, which leads to lodging and washing away 
of crops, thereby leading to loss of crops. High temperatures coupled with high 
evapotranspiration in low soil moisture regimes cause water stress to crops and may 
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lead to eventual death of the plant in adverse situations aside from enhancing soil 
water loss by evaporation.

Droughts are often characterized by high wind speed, temperatures, and evapo-
transpiration. This may cause loss in crop biodiversity as some vital species in an 
ecosystem may be more vulnerable to changes in climate than others. Cereal crops 
are very susceptible to climate variability caused by climate change (Wang et al. 
2018). The effect of climate change could also affect access to agricultural produce 
and inputs. Adverse weather conditions may affect the timely delivery of agricul-
tural inputs leading to delayed or failure to use the inputs thus further increasing the 
incapability of the cropping systems to be resilient to climate change. This could 
probably explain why, for instance, sunflower yield would reduce by 95% by the 
year 2100 under predicted climate change scenarios (Abd-Elmabod et al. 2020).

Crop improvement and control of yield losses that could be caused by weeds and 
crop pests stand to be negatively affected through the impact of climate change. 
Though it is beyond the scope of this chapter to discuss how climate change affects 
crop wild species, it is important to note that it does negatively affect crops wild 
relatively which are vital sources of genetic diversity for crop improvement. Future 
climate data covering a period beyond the year 2055 estimates that 16–22% of all 
the crop taxa will be extinct and more than half of all species are already losing their 

Fig. 2.1 Effects of climate change and interventions for resilient cropping systems and agricul-
tural soils
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range size (Jarvis et al. 2008). In fact, a prediction of a worse-case CO2 emission 
scenario by Intergovernmental Panel on Climate Change stated that there would be 
significant decrease in the yield of food crops (Luck et al. 2011). Climate change 
also affects crop production through favoring crop-pathogen interaction. For 
instance, a past study revealed that elevated atmospheric CO2 levels may favor con-
ditions in which pathogens like Fusarium pseudograminearum thrive (Luck et al. 
2011). Modifications of weeds and crop pests associated with climate change also 
pose a serious threat to crop production (Raza et al. 2019), especially in smallholder 
farms with limited financial capabilities.

Climate change has varying devastating effects on major crops across the globe. 
Changing rainfall patterns dictate and make the onset of seasons to be unpredict-
able. This could have negative impact on farm operations like land preparation and 
planting making the cropping systems less resilient. Unpredictable rainfall patterns 
could mean shortened growing period that directly reduces food crop yields 
(Malhotra 2017). This is in addition to changing climatic events rendering agricul-
tural land unsuitable for crop production (Abd-Elmabod et al. 2020). For instance, 
land under rice production in China shifted west and northwards as a result of cli-
mate change impact on agricultural land (Ye et al. 2015).

Monocropping systems are more susceptible to climate change than intercrop-
ping production systems. This is because this cropping system does not optimally 
utilize available resources such as soil moisture and nutrients in different depths due 
to root architecture of the mono crop (Huang et al. 2020; Leisner 2020; Mustafa 
et al. 2021; Xiao et al. 2021). It also limits biodiversity and only relies on one crop 
species that if affected by climate change leaves the farmer exposed to the effects of 
climate change. Moreover, monocropping may encourage mechanization, which in 
turn increases the use of fossil fuel, thus increasing emission of GHGs, thereby 
further making the system less resilient to climate change. Also the system may 
encourage the use of synthetic fertilizers to meet the nutrient requirement of crops. 
Tubiello et al. (2000) thus warned that yield of crops would be suppressed if the 
current agronomic management practices are not modified to handle the challenges 
caused by climate change. Taking rice cropping systems in southern China as our 
example, farmers in the region have significantly increased land under late double 
rice-cropping systems while deceased land under single rice- and early double rice- 
cropping systems (Ye et al. 2015) as a response to climate change.

1.2  Low and High Input Production Systems

Agricultural production systems are broadly categorized into two systems based on 
the amounts of farm inputs, such as pesticides and soil fertility amendments, used. 
These production systems are: (1) low-input production system (LIPS) and (2) 
high-input production system (HIPS). Often, LIPS is associated with biological pro-
duction management, while HIPS favors the use of synthetic production manage-
ment (Clark and Tilman 2017). It is worth noting that conventional versus 
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conservation agriculture remains controversial and inconsistent. Whereas HIPS is 
commonly practiced in developed nations, LIPS is the main production system in 
most developing countries where smallholder farmers are the dominant agricultural 
producers. This location-based difference in input application is more of a disparity 
in resources (financial) endowment rather than climatic attributes of the two regions.

The two production systems respond differently to input application. Thus, they 
are likely to be impacted differently by climatic changes. For instance, crop yields 
are not significantly reduced when input application rate is reduced in HIPS. Thus, 
at this point, the main driver of crop yield is climatic dynamics. Conversely, reduc-
ing application rates of inputs in LIPS could greatly affect crop yield. Deschee 
maeker et al. (2016) pointed that low input productions are more responsive to min-
eral fertilizer application than high input production systems. Increasing inputs 
(especially soil fertility amendments) improves crop yields in LIPS to a point that 
climate change becomes the main driving factor. Inconsistency in the reaction of the 
two production systems to climate change brings to the fore the challenge of under-
standing agricultural production systems and enhancing input efficiency (Clark and 
Tilman 2017; Kravchenko et al. 2017). Consequently, climate change-input applica-
tion/management interaction remains unclear and an area that much research atten-
tion has been devoted. Though these two production systems may be affected and 
react differently to climate change, discussed below are the best-fit agronomic man-
agement practices that improve resilience along crop production value chain.

2  Enhancing Crops’ Resilience to Climate Change

Enhancing crops’ reliance to climate change is best summed by the 4Rs. We chris-
ten this as climate-resilient 4Rs and include: farm structural re-organization; farm 
financial re-orientation; information repackaging and sharing; and policy and regu-
lation restructuring (Fig 2.2). Enhancing crops and soil resilience to climate change 
calls for urgent research, funding, and capacity building on the 4Rs. Building a 
resilient agricultural production system requires that all the four interventions (4Rs) 
are addressed concurrently. The 4Rs are simple, yet best-fit agronomic and institu-
tional adjustments that not only minimize risks associated with the changing cli-
mate but also ensure sustainable and resilient crop production systems (Mall et al. 
2017; Wang et al. 2018).

Briefly, changing of cultivation is currently being used by farmers in Europe as 
an adaptation to climatic change strategy (Tubiello et al. 2000). For instance, it has 
been revealed that combining early planting of spring-summer crops together with 
the use of slower-maturing winter cereal crops has been able to maintain crop yields 
in the modern levels (Olesen et  al. 2011).This adaptation strategy could be as a 
result of crops being more susceptible to climate change events, especially winter 
crops. They are affected by high and low rainfall, evapotranspiration, and tempera-
tures. Crops are also indirectly affected by attacks of new and mutant pests and 
diseases. It is estimated that a temperature rise up to 2  °C will have a localized 
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negative impact on crop yields (Singh and Dhadse 2021). Crops’ production is 
affected by reduced soil moisture and unpredictable planting dates. It is estimated 
that up to 10% loss in yield results as a consequence of late planting/not synchroniz-
ing planting with rainfall onset.

Enhancing crops’ resilience to the immediate and future climatic events is 
strongly dependent on abating causes of climate change such as greenhouse gas 
(GHGs) emissions in the present crop production systems. Crop production goals 
should be in tandem with reduction or elimination of GHGs emissions. Apparently, 
reduction of GHGs is not an objective in smallholder farms whose main aim is to 
maximize crop yield. This is could be because of the trade-off that exists between 
GHGs reduction and crop production (Sihvonen et  al. 2021). In most cases, the 
objective of GHGs emissions reduction is the cost of the forgone best alternative. 
We thus discuss, in the subsequent paragraphs, possible best-fit agronomic practices 
that may reduce GHGs emissions but still enhance crop resilience to climate change.

2.1  Gene Modification

Maintaining food productivity with the changes in climatic conditions is a great 
task. Climatic changes subject crops to harsh conditions that involve changes in 
rainfall amounts and drought, temperatures, new pests and diseases, and salinity 

Fig. 2.2 Conceptualized climate-resilient pathways within the 4Rs
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amongst other hazardous conditions. Reducing disruptions in crop productivity as a 
result of the changes is important in ensuring food security. Development of crop 
cultivars that can suit the changing crop growth conditions is critical. Achieving the 
desired crop cultivars that are able to withstand the impact of harsh climatic changes 
entirely depends on gene modification. A lot of studies have focused on improving 
crop tolerance to various conditions such as drought and high rainfall regimes, pests 
and diseases, temperatures, and heat waves. However, genetic modifications have 
always been done after the challenges have been experienced. There is need for the 
modifications to be tailored towards the projected conditions due to changing cli-
mates to reduce the impacts of the changes.

2.2  Spacing

Plant spacing is among the agronomic practices that significantly affect the produc-
tivity of various crops. Reduced spacing for instance could reduce sorghum tillering 
and productivity (Ara et al. 2007). This is due to root competition, which limits the 
maximum potential of expansion and utilization of soil resources. Under cassava 
and tomato production, reduced spacing was also observed to reduce productivity. 
On the other hand, increased spacing reduces plant population, thus reducing the 
overall output per land unit. Optimum plant spacing enhances better utilization of 
spaces, high yield, and quality production. Amidst climatic changes, adjusting plant 
spacing and plant density will help abate the impact of the climate changes which 
are normally associated with harsh crop growth conditions.

2.3  Rainfall Characterization

Rainfall is the major climatic factor affecting agriculture production in the rain-fed 
agriculture. Rainfall pattern has been characterized in various regions to forecast the 
likely rainfall scenarios to help in proper agricultural planning. This was to be as a 
calendar for the agronomic practices that allow farmers to plant at the right time and 
what to plant during the different cropping season. The rainfall parameters charac-
terized include the onset cessation and the length of crop growth period. The plan-
ning helps evade the impact of varying climatic patterns in agricultural production. 
In addition, it was to characterize the various seasons in terms of the length of the 
rainy season to help in deciding on the best crops to be grown with the expected 
length of crop growth period. Rainfall distribution pattern and the dry spell charac-
teristic also ensured proper planning for the within-season dry spells that have crip-
pled rain-fed agriculture production. Farmers thus could plan for the expected dry 
spell as they shall have known the expected length, magnitude, and frequency 
(Mugalavai et al. 2008; Recha et al. 2011; Ngetich et al. 2014; Kisaka et al. 2015; 
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Oduor et al. 2020). However, rainfall characterization only allow for planning, thus 
should be integrated with the use of climatic smart mitigation measures.

2.4  Drought Tolerance Crops

Drought is projected to be among the key contributors to food insecurity in Africa. 
The severity of the damage to crops depends on the crop aside from the stage of the 
crop growth. Drought-tolerant crops are able to withstand moisture stress without 
significant reduction in their productivity. Up to 25% increase in maize yield has 
been reported when a drought-tolerant maize variety was used due to its ability to 
withstand moisture stress during the dry spells. Use of drought-tolerant variety has 
been promoted in drought-prone/low rainfall to improve food security . Some of the 
widely grown and promoted drought resistance crops include sorghum, pigeon pea, 
millet, and green grams. However, the adoption rate is still low among the small- 
holder farmers. The choice of crop to be grown by the farmers is normally guided 
by market demand among other prevailing socio-economic factors. In the end, 
farmers still continue growing their traditional food crops which keep failing in 
most seasons. Besides, in most cases, the droughts and dry spells have become too 
long for the survival of most drought-tolerant crops varieties. Other interventions 
that enhance soil moisture conditions are required.

2.5  Supplemental Irrigation

Supplemental irrigation has been explored to mitigate the effect of drought and dry 
spell in both the high and low rainfall potential areas. Under rain-fed agriculture 
especially in low rainfall regions, within-season dry spells have been observed to be 
the major cause of crop failure (Oduor et al. 2020). Supplementing irrigation can 
avert the impact of drought and dry spells especially at the critical stages of crop 
growth stage, which results in improved crop productivity. It is normally employed 
where other and water conservation are unable to mitigate the impact of prolonged 
dry spell extending to 2–3 weeks. The supplemental irrigation is only done when 
soil moisture drops below the moisture stress coefficient of the crop gown, below 
which crop productivity is likely to be affected. Irrigation scheduling procedures are 
normally employed in determining when or whether to irrigate depending on the 
crop grown and the stage of crop growth. While it has boosted crop productivity in 
the drought-prone region, obtaining irrigation water is a challenge. In addition, it 
increases the cost of production, thus uneconomical for the small-holder farmers in 
the drier areas where obtaining water is costly hence the strategy is only suitable for 
growing high value crops.
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2.6  Green House

The ideal mitigation for the highly variable climatic pattern on agriculture is to 
regulate the conditions to suit the optimal crop growth requirement. Since the causes 
of climatic variations are natural, controlling climatic pattern is very difficult, espe-
cially over a wide region. Green houses can allow for regulating various crop pro-
duction factors, including climatic to optimal conditions. Green housing involves 
the growth of crops under a controlled environment that can be regulated to the 
optimal crop growth requirements. Supplemental irrigation and temperatures are 
thus regulated for optimal crop performance under the green house conditions. 
However, the installation and maintenance of the green houses are expensive and 
uneconomical for low value crops and unaffordable for the poor small-scale farmers 
who are the majority. Therefore, the green houses are normally limited to the com-
mercial high value crops for sustainability. Furthermore, the green houses are nor-
mally restricted to small land areas due to high capital investments involved. 
Alternative approaches for non-commercial small-scale farmers with low capital 
investments are thus critical to ensure sustainable productivity with the changing 
climate.

2.7  Soil Management Practices

The technology targets the conservation of available rainwater for agricultural use 
by ensuring efficient utilization of water . The technologies improve soil water infil-
tration and retention capacity, reduce water loss through evaporation and surface 
runoff, and contribute towards recharging groundwater . Soil management practices 
are among the most used approach by the small holder farmers due to the availabil-
ity of the technologies and ease of access. Most of the technologies use locally 
available resources at the farmers’ disposal, and thus widely adopted. Some of the 
practices that have been promoted in the low rainfall regions include ridging and 
tied-rides, minimum tillage and mulch, use of organic and inorganic resources, Zai 
pits, cover cropping, and cereal-legume systems.

2.8  Ridging and Tie-Rides

Ridging involves construction of sand walls conserve soil water and on which crops 
are planted. Farming is normally done on the ridges or while the furrows store the 
rainwater. The technology allows the capture and retention of rainwater for a while, 
hence reducing runoff losses. Water infiltration is also enhanced in the process, thus 
efficient utilization. However, the drawback of furrows is that they become ideal 
waterways when there is a lot of rainfall causing erosion. This can be overcome by 
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connecting the ridges every 2–3 m so that small basins are formed; this system is 
known as tied ridging, furrow diking, basin tillage, furrow blocking, soil pitting, 
micro-basin, or reservoir tillage depending on the scale of application (. The rides 
are normally higher than the ties and thus it is easier for water movement from one 
pud to another within the furrow than from one furrow to another. Normally plant-
ing is done on the ridges in high rainfall potential areas while on the furrows in low 
rainfall regions. Tied ridging reduced runoff by 49–52% and doubled grain yield in 
the CHK (Okeyo et al. 2014).

2.9  Minimum Tillage and Mulch

Minimum tillage enhances soil moisture retention, crop yield, and nutrient use effi-
ciency and reduces surface runoff (Mrabet et al. 2012 ). Ngetich et al. (2014) attrib-
uted the improved infiltration to reduced soil disturbance that encouraged the 
continuity of the soil pores. Constant soil disturbance in conventional tillage can be 
an effective compaction alleviation method when well implemented . The distur-
bance generates an initial reduction in bulk density and increase in infiltration that 
can delay runoff generation. The increased soil roughness immediately following 
tillage can also reduce runoff volume and velocity . However, the effect is short- 
lived; the created surface roughness by tillage disturbance can be degraded by rain-
drops impacts, aggregate breakdown, and collapsing . This can result in similar or 
increased soil loss as compared to non-disturbed soils under minimum or no tillage 
. The disturbed soil can also recompact easily when trafficked than the undisturbed 
. Tillage also reduces infiltration rate as a result of surface sealing and soil crusting 
(Miriti et al. 2013; Martínez-Mena et al. 2020). Additionally, it causes more tortu-
ous soil pores that reduce infiltration rate, which encourages runoff losses .

The combination of minimum tillage with organic residue mulch enhances soil 
aggregate stability, bulk density, infiltration rate, and hydraulic conductivity (Mrabet 
et al. 2012; . The organics add soil organic carbon which improves properties such 
as aggregate stability and soil water retention capacity . However, there have been 
inconsistent reports on the benefits of minimum tillage over conventional tillage 
especially in combination with other soil management practices . Furthermore, the 
effectiveness of different tillage methods varies with the climate and soil type . 
There is need to conduct more research on reduced tillage and no tillage on agricul-
tural productivity in tropical environments, especially in regions with low uptake 
like the Central Highland of Kenya before further promoting the technologies. 
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2.10  Organic and Inorganic Resources

Soil inputs like mineral fertilizer, animal manure, and Tithonia diversifolia have 
been reported to enhance crop yield and soil properties (Ngetich et al. 2014; Kiboi 
et al. 2019). Mineral fertilizer is however expensive and unaffordable to most of the 
farmers in Kenya who lack financial resources to purchase sufficient fertilizer 
amounts, considering fertilizer cost up six times more in Africa than in Europe 
(Mugwe et al. 2009; Sitienei et al. 2017). Additionally, mineral fertilizer has low 
nutrient conversion efficiency due to poor management by the farmers . The use and 
effectiveness among the farmers are therefore low. Organic inputs, e.g., animal 
manure, are needed in large quantities to be effective, because of their low nutrient 
supply capacity (Lukuyu et  al. 2011). The availability of the inputs in sufficient 
amounts is a challenge considering they face other competitive uses such as con-
struction material, in the case of animal manure (Mulumba and Lal 2008).

A combination of mineral fertilizer and organic inputs, which is within the farm-
ers’ socio-economic circumstance, emerged to have the highest and most sustain-
able gain in water productivity per unit nutrient or water used from various studies 
across SSA (Vanlauwe et al. 2010). The combination results in synergistic effect 
that improves synchronization of nutrient release and uptake by crop . However, the 
performance varies with the management. For instance, N immobilization has been 
observed when organic inputs with high C:N ratio, such as maize stover is used 
together with mineral fertilizer, which contributed to eventual reduction in crop 
yield (Liang et al. 2011). In other studies, use of organic plus mineral fertilizer has 
recorded high yield (Vanlauwe et  al. 2015). The combined use of fertilizer and 
organic inputs with other soil management practices needs further investigation.

2.11  Zai Pits

Zai is among the most renowned technology which has been developed based on 
indigenous knowledge and traditionally used to improve poor and bare soils and 
conserve water . The Zai pits are dug and filled with organic materials such as 
manure, compost, or dry biomass. This leads to increased microbial activities which 
in return increases the rate of water infiltration during the rainy season. This creates 
a micro-environment that increases drought resistance and improves crop yields. 
Zai pits are most suited for ASAL areas where infertile, encrusted soils receive low 
and often highly unreliable rainfall, causing the small-scale farmers to face constant 
challenge to produce enough food to feed their families and generate much-needed 
incomes. Consequently, Zai pits as an innovation address issues of land degradation, 
soil infertility, and moisture retention.
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2.12  Cover Cropping

Cover cropping enhanced soil surface cover which reduces soil moisture loss 
through direct evaporation and surface runoff. This is because the canopy created by 
the cover crop reduces soil temperatures thereby reducing the sun evaporation 
potential. The cover cropping also add vegetative materials to the soil, which help 
improve soil hydrological properties aside from acting as barriers to runoff loss. The 
most widely grown cover crops are sweet potatoes and other legumes such as beans, 
peas, and groundnuts.

2.13  Cereal–Legume Systems

Cereal and legumes provide an efficient utilization of environmental resources, 
decreases the cost of production, provides higher financial stability for farmers, 
decreases pest damages, inhibits weeds’ growth more than monocultures, and 
improves soil fertility through nitrogen increasing to the system and increase yield 
and quality . Cereal–legume intercropping is one of the climate-smart cropping 
practices suitable to smallholder farmers. This is due to its potential to achieve mul-
tiple benefits that relate to climate mitigation and adaptation and general risk aver-
sion via diversification . This makes the cereal legume systems more popular aside 
from the diversification of diet and maximizing the efficiency of labor to the farmers 
. Intercropping system is a type of mixed cropping and is defined as the agricultural 
practice of cultivating two or more crops in the same space at the same time .

The cereal–legume intercropping complements each other in terms of rooting 
system, growth pattern, aboveground canopy, and water and nutrient demand which 
enables efficient utilization of crop production resources, leading to improved crop 
productivity (Ngetich et al 2014). This is because the legume intercrop uses deeper 
soil resources at about 0.3–0.9  m deep while most cereals utilize the resources 
within 0–0.3 m deep avoiding the competition of water and nutrient resources aside 
from ensuring the nutrients that could have been leached are recycled . In addition, 
the legumes have the ability to replenish soil mineral nitrogen through its ability to 
biologically fix atmospheric nitrogen without competing with cereal for nitrogen 
resources . This is where the free leaving bacteria in the root nodules of the legumes 
biologically fix the nitrogen in the air into the nitrates in the soils that can be directly 
utilized by the plants. In crop rotation, legumes contribute to a diversification of 
cropping systems and as N2-fixing plant, it can reduce the mineral N fertilizer 
demand. Due to improved fertility and water use efficiency under the intercrop and 
cereal legume rotation, there is increased foliation which provides vegetative mate-
rial into the soil and improves the soil cover. Soil physical properties are further 
improved and hence low runoff and evaporation water losses. However, legumes 
have been observed to compete with cereal crops for the limited resources, which 
lowers overall productivity . Managing Beneficial Interactions in Legume Intercrops 
(MBILI), which involves alternating two rows of cereals and two rows of legumes, 
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was observed to enhance water use efficiency, reduce surface runoff, and increase 
crop yield (Ngetich et al. 2014).

3  Policy and Legal Frameworks for Resilient Crops 
Production Systems

Sustainable and climate change resilient crops production systems require strong, 
context-based and functional legal and policy frameworks. Several sustainable poli-
cies have been suggested within the Indian crop production system context, which 
include subsidizing high yield crop seeds to vulnerable farmers, insurance cover 
against failed crops as a result of climatic events, etc. (Singh and Dhadse 2021). At 
micro-level, farming communities are able to adopt remedial measures against cli-
matic change risks. The possible adaptive or remedial measures are: seasonal chang-
ing for crop types, change of crop variety, and adjusting planting dates. Nonetheless, 
these measures do not guarantee farmers’ long-term economic sustainability and 
survival because of their incapability to understand long-term climatic trends (Singh 
et al. 2016). In fact, provision of insurance cover against climate change vulnerabil-
ity may restore economic security of farmers and go a long way in ensuring their 
survival in the long term (Panda et al. 2013). In addition, most of the regulatory 
frameworks have not been accompanied by strict enforcement measures, and thus 
they are not being fully implemented.

4  Conclusion

Climate change remains the most complex biophysical factor threatening crop pro-
duction and soil resilience in SSA.  There are agronomic practices that best suit 
approaches of managing the impact of the changing climatic events. However, these 
practices have not been viewed holistically in addressing the challenges posed by 
climate change on crop production and soil resilience. Approaches/practices such as 
genetic modification, soil moisture and fertility management, planting spacing, inte-
grated weather forecasting approach, and cropping pattern can be great interven-
tions in dealing with the current and future menace of climate change. This can be 
achieved by strong, implementable, and farmer-sensitive policy and legal frame-
works. However, it is important to note that most of the approaches used in mitigat-
ing the impact of climatic changes on agricultural production have been effective 
but with limitation. No strategy in isolation has the ability to holistically mitigate 
the impact of climatic change; thus an integrated approach should be employed 
depending on the situation at hand.
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Chapter 3
Drought-Resilient Climate Smart Sorghum 
Varieties for Food and Industrial Use 
in Marginal Frontier Areas of Kenya

Symon M. Njinju, Joseph Onyango Gweyi, and Rose N. Mayoli

Abstract Sorghum bicolor (L) is classified globally as the fifth most important 
cereal crop after wheat, maize, rice, and barley. The demand for sorghum in Kenya 
is increasingly at 275,000 T per annum against the estimated production value of 
150,000 T, providing income to more than 3 million people. Apart from food, Kenya 
Breweries Limited consistently provides a ready market to a huge amount of sor-
ghum estimated at 60,000 tonnes annually and is expected to rise with time. In 
Kenya, the sorghum productivity level is at 0.7 t/ha in Arid and Semi-arid Lands 
areas (ASALs), which is far much below the potential yield ranging between 2 and 
5 ton/ha. Sorghum’s rich diversity in ASAL areas makes it suitable for adaptability 
to Climate Smart Agriculture, Technologies Innovations Management Practices. 
This makes it a worthy crop for supporting livelihoods under the harsh climatic 
condition caused by climate change. In Kenya, Sorghum crop is usually cultivated 
at 0–2200 m above sea level in Eastern, Nyanza, and Coastal regions. Being a C4 
plant, it has an efficient carbon dioxide fixation that makes it perform well in lower 
altitude areas with high temperatures, low, intermittent, and unreliable rainfall. 
Farmers in such areas opt to grow local varieties instead of the high-yielding hybrids 
due to poverty, inability to afford irrigation facilities, and essential necessities for 
production. Drought and water stress caused by inadequate and unevenly distrib-
uted rainfall in ASALs limit sorghum productivity. Also, pests, diseases, low yields, 
weeds, local planting seeds, and use of fertilizers are other challenges. On the other 
hand, enhancement of drought tolerance in arid climatic conditions involves 
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 mechanisms that maintain plant water status upon which genes and proteins are 
activated. This process most likely can affect plants resulting in a good number of 
physiological and biochemical changes that are crucial for growth and survival. 
Among them, changes in grain weight and protein content may affect the malt qual-
ity. As a defense mechanism in response to drought, sorghum landraces native to 
ASALs are likely to activate and involve participation of numerous proteins that 
may affect the grain and malt quality. It is imperative to come up with a drought-
tolerant sorghum variety with good grain and malt quality and new technologies to 
be recommended to the stakeholders for improved sorghum production.

Keywords Sorghum bicolor · Drought tolerant · Climate change

1  Introduction

Sorghum bicolor (L) ranks as the fifth most important cereal crop after wheat, 
maize, rice, and barley globally (Batista et al. 2019). The best-known sorghum vari-
eties are Sorghum vulgare and Sorghum bicolor L. Moench. Sorghum vulgare spe-
cies accounts for all annual types (Owuama 1999), while Sorghum bicolor 
L.  Moench accounts mostly for the cultivated grains in Africa (Taylor 2003). 
Sorghum production is chiefly exercised in developing countries with 90% of the 
cultivated lands being located in Asian and African countries. Africa produced a 
sizeable amount of sorghum yield which accounts for one-third of worldwide pro-
duction. This production is aided by the fact that Africa experiences tropical condi-
tions (Munda et al. 2019). In Kenya sorghum is mainly grown in Eastern, Nyanza, 
and Coast regions. This is aided by the fact that sorghum has the capability of per-
forming fairly well under unfavorable weather conditions which dominate in Sub- 
Saharan Africa (SSA). Also, it can tolerate exposures to waterlogging; in this case, 
Power et al. (2019) reported that it prominently serves as a viable cereal crop in 
most food-insecure households. In addition, subsistence farmers in the same regions 
most of the times lack necessary farm inputs as well as finances to adopt irrigation 
systems (Glantz 1987; Leichenko and O’Brien 2002). As a result, the crops are 
mechanically forced to react through production of biochemical responses for com-
pensation (Izanloo et al. 2008; Tekele 2010).

In Kenya, Sorghum is well adapted to the arid and semi-arid lands (ASALs). 
This accounts for 80% of Kenya’s total landmass, which receives less than 750 mm 
of rainfall annually. It is approximated that sorghum requires about 332 kg of water 
for 1 kg of dry matter compared to 368 kg and 514 kg of water for similar amount 
of dry matter in maize and wheat respectively, and this makes it a smart choice for 
climate smart agriculture. In Kenya, there are approximately 240,000 smallholder 
sorghum farmers with land sizes that ranges from 0.4 to 0.6 ha (KAVES, 2013). 
Though mono-cropping is greatly recommended for sorghum, only a few farmers 
adhere to this directive because of the small pieces of land (KAVES, 2013). The 
production of sorghum in the country has been rising in the recent past 
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(approximately in the last 10 years from 54,000 tonnes in 2008 to about 180,000 
tonnes in 2018 (FAOSTAT, 2019)).

In 2014, statistics showed that sorghum provided income to more than 3 million 
people in Kenya (MOALF 2014). Besides, it serves as an essential food security 
crop in semi-arid areas of Africa (Munda et al. 2019). It is estimated that more than 
half of sorghum production is consumed as food, 1% as livestock feed, about one-
fifth is processed, and about 15% lost in the field and after harvest (FAO 2019). The 
grains and sweet stalk can be utilized in food and non-food sectors for the produc-
tion of commercially valued products, such as syrups, glucose, modified starches, 
maltodextrins, jaggery, sorbitol, and citric acid (Ratnavathi et al. 2016). Also, sor-
ghum is used to manufacture wax, starch, dextrose agar, and edible oils (Dicko et al. 
2006). Sorghum is a rich source of phytochemicals including tannins, phenolic 
acids, anthocyanins, phytosterols, and policosanols, which have remarkable impact 
on human health such that it reduces chances of cardiovascular disease, cancer, and 
obesity (Awika and Rooney 2004).

Besides, it can be used as a basic ingredient in beer production as malt and 
adjunct with a big market in the brewing industry in the country. To this end the 
Kenya Breweries Limited (KBL) is reportedly to be among the top most users of 
sorghum, thus providing a ready market which stands at 60,000 tonnes of sorghum 
annually and this is expected to continue rising with a projected increase in beer 
consumption (Tegemeo, 2018). Statistics reveal that the demand for sorghum is on 
the rise at an average amount of 275,000 tonnes/year against the estimated produc-
tion level of 150,000 tonnes (FAO 2019). This was occasioned by sorghum promo-
tion strategy for its use in making beer in Upper and Lower Eastern as well as 
Western regions. This has enhanced its production and industrial use. Therefore, 
due to its huge demand by various sectors of the economy, this prompted sorghum 
to be identified as one of the priority crops for enhancement through research by 
Kenya Climate Smart Agriculture Project (KCSAP), which is being implemented in 
various counties including Baringo and Siaya counties (Fig. 3.1).

Drought is one of the most important environmental stresses that critically 
impairs plant growth and development; this limits plant production and performance 
immensely than any other environmental factors (Shao et al. 2009). Although sor-
ghum reveals resilience to the effects of water stress, some specific growth stages of 
its life cycle are more susceptible to water stress than others. For instance, drought 
inhibits sorghum establishment in early vegetative seedling growth stage through to 
the reproductive stages (pre- and post-flowering) (McKersie and Leshem 1994; 
Tuinstra et al. 1997; Kebede et al. 2001; Wani et al. 2012). However, to counter the 
effects of water stress, plants show coping mechanisms such as avoidance, toler-
ance, and escape (Tuinstra et al. 1997; Bray et al. 2000). Drought escape mecha-
nisms are revealed when plants complete their life cycle before severe water stress 
arrives, while avoidance mechanisms are brought up when the plant maintains rela-
tively high quantities of water in their tissues despite there being moisture shortage 
in the atmosphere (Shashidar et al. 2000). Finally, in drought tolerance, the plants 
balance between turgor pressure maintenance and reduction of water loss assisting 
them in surviving incidences of drought stress (Shashidar et al. 2000).

3 Drought-Resilient Climate Smart Sorghum Varieties for Food and Industrial…
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Even though water is essential for biological processes, periods of drought have 
profound effects on physiological processes. Under field conditions that are subject 
to cyclical changes with unpredictable climatical conditions, intermittent rains may 
follow a drought period prompting biochemical responses to a rehydration event 
which is a good indicator of recovery after rehydration. Crops have been found to 
exhibit a compensatory effect after exposure to such stress (Adalsteinsson 1994; 
Devnarain et al. 2016). In ASAL environments there is a tendency of intermittent 
rainfall that interferes with the plant’s biophysical processes resulting in stress. 
Though it is important to have higher drought resistance during drought periods, 
drought stress in plants is usually transient and the capacity to recover is also very 
important. Among the important aspects to consider while selecting sorghum variet-
ies for increasing yields and income in the drought-prone areas is compensatory of 
losses during drought stress.

The drought situation has been exacerbated by the effects of climate change 
which leads to erratic rainfall and salinity stress in arid and semi-arid regions 
(ASALs). This is coupled with high incidences of pests and diseases, weeds, high 
soil salinity, and low soil fertility. In addition, sorghum is less preferred by the farm-
ers as compared to maize which is more susceptible to drought (Riziki and Maina 
2013). Furthermore, sorghum production in the country in some areas has stagnated 
due to lack of adoption of suitable drought-tolerant genotypes (Timu et al. 2014). 
This has led to low sorghum yields which cannot meet its rising demand. Thus there 
is an urgent need to utilize well-adapted drought resistant sorghum varieties that 
would then help in climate change mitigation. This is because well-adapted sor-
ghum can endure high temperatures and drought and can withstand long periods of 
exposure to waterlogging, hence a good alternative for improving livelihoods.

Fig. 3.1 Map of Kenya showing sorghum-growing counties of Baringo and Siaya
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2  Traits Favoring Sorghum Production in Kenya

Sorghums varieties being grown in tropics are influenced by photo-periodism and 
thus they are categorized as short day plants. Therefore their response to day length 
is an important adaptation mechanism. Just like other C4 photosynthetic plants, 
sorghum has a CO2 fixation mechanism that is effective prompting it to perform 
well in low altitude areas experiencing incidences of high temperature and drought 
(Paterson 2008). The crop is also cultivated in altitude range (0–2200 m) above sea 
level and has a potential for increased production in Kenya since it has large ASAL 
areas accounting to 82% of the total landmass (Munyiri et al. 2010) that are charac-
terized by high temperatures and low intermittent and unreliable rainfall. However, 
all is not lost since some sorghum genotypes both landraces and improved ones are 
well adapted and can be grown successfully in these areas in combination with 
viable technologies. This is because sorghum is documented to be drought resistant 
and produces better yields with minimum precipitation and thus it is one of the 
crops of ensuring food security (Riziki and Maina 2013). The available local variet-
ies have characteristics none other than high yielding, drought resistance, and early 
maturity among others (Muui et al. 2019). Additionally, there are several hybrids 
with special attributes like high yields that have been recommended and released for 
adoption in Kenya as shown in Table 3.1.

Table 3.1 Hybrid sorghum varieties grown in Kenya

Variety
Grain 
color

Maturity 
(months) Eco zone and area Special attributes

Gadam Gray 3.5 Semi-arid lowlands of Machakos, 
Kitui, Kajiado, Embu, Makueni, 
Mwingi, Parts of Rift Valley, NEP

Tolerant to birds, stem 
borers, shoot fly, and 
foliar diseases

Seredo Brown 3.5 Wide adaptability
Serena Brown 3 Wide adaptability
KARI 
Mtama 1

White 3–3.5 Attractive to birds

KARI 
Mtama 2

White 3.5 Resistant to birds

E1291 Brown 7 Baringo, Nakuru, Koibatek, Taita 
Taveta, Narok

Dual purpose, good 
beverage

E6518 Brown 8 Good beverage
IS76 White 3 Tolerant to stem borers
BJ28 Brown 7 Dual purpose

Source: Greenlife Crop Protection Africa (2019); http://www.kari.org/ENGLISH/Sorghumfood.htm
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3  Challenges in Sorghum Production

Despite its critical roles, sorghum production margins in Kenya have stagnated for 
long, leading to importation of more than one-third of the total consumption. This is 
because sorghum production is faced with numerous challenges that lead to low 
yields. The major constraints limiting attainment of high yield include pests and 
disease, drought, weeds, and marketing. Also, there are issues to do with lack of 
certified seeds (Muui et al. 2013; Tegemeo, 2018). In addition, there is genotype 
interaction, environmental factors, and production issues. Drought is one of the 
main challenges, especially in the ASALs, that hinders growth and yield of sorghum 
(Cicek and Cakirlar 2002). In actual sense, the permanent or temporary water deficit 
severely affects plant growth and development more than any other environmental 
factors (Anjum et al. 2011).

In terms of weeds, a study by Muui et  al. (2019) revealed that low sorghum 
yields were attributed to Witchweeds, although the study also captured pests, dis-
eases, and lack of fertilizers as other important negative factors. In ASALs, water 
stress is classified as a major constraint leading to low yields in ASALs. This water 
stress is caused by inadequate, erratic, and unevenly distributed rainfall. This is 
conjoined with other factors such as farmers being poor, and therefore, they are 
unable to afford irrigation technologies and other necessary equipment due to their 
poverty-stricken characteristics (Jaetzold et al. 2006). Furthermore, there are lim-
ited efforts to deliberately avail and promote sorghum varieties that are suitable and 
well adapted.

4  Effect of Drought on Sorghum Grain and Malting Quality

Drought stress prompts manifestation of some of the main survival mechanisms, 
including the genes and proteins getting activated, and these affect many processes 
such as physiological and biochemical changes that are critical for survival and 
growth (McDowell 2011). For instance, under water stress, barley grain weight and 
protein content are known to reduce and increase, respectively, consequently wors-
ening the malt quality (Wu et al. 2017). Sorghum landraces native to ASALs are 
likely to activate several defense mechanisms that involve participation of numerous 
proteins in response to drought effects (Gong et al. 2005; Farmer and Mueller 2013; 
Calzada et al. 2019). Also, such physiological and biochemical mechanisms may 
affect the sorghum grain and malt qualities desirable to the consumers.

4.1  Grain Quality

The sorghum grain quality to a great extent depends on the grain type. It includes a 
range of properties that can be defined in terms of physical (moisture content at 
12.5%, kernel size), hygiene (fungi and mycotoxin count), and intrinsic (fat content, 
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protein content, endosperm texture, hardness, and starch content) quality character-
istics (Ratnavathi et  al. 2016). In addition, Ratnavathi et  al. (2016) reported the 
alpha amylase and diastatic activity of different cultivars.

The quality properties of a grain are influenced by their genetic makeup growth 
period, time of harvesting, handling equipment, drying system, storage practices, 
and transportation mechanisms (Ratnavathi et al. 2016). Studies have shown that 
moisture stress has notable effect on the chemical composition of sorghum varieties. 
Increased drought shows decreased protein and starch content in sorghum grains 
(Khaton et  al. 2016). Grain protein and starch contents also differ with varieties 
where drought-tolerant varieties have higher quality grains than less tolerant variet-
ies (Khaton et al. 2016).

4.2  Malt Quality

Sorghum primary processing stages involve grading, cleaning, destoning, dehull-
ing, and polishing of the grain to improve its appearance and market price while 
secondary processing involves its conversation into food products. In sorghum malt-
ing, its quality and phenolic contents provide it with important raw material 
(Embashu and Nantanga 2019). Therefore, it is necessary to select sorghum geno-
types fit for brewing considering the malt quality parameters including hot water 
extract (HWE), malting weight loss (MWL), diastatic power (DP), and free amino 
nitrogen (FAN). The actual malting procedure involves controlled grain steeping in 
water, germination in moist air, and drying (Bekele et al. 2012). Its presence assists 
in mobilizing endogenous hydrolytic enzymes (α- and β-amylases in the grain) to 
modify the structure of the grain so that it will be readily solubilized during the 
brewing process to produce fermentable worts of desirable characteristics; flavors, 
nutrients, and color with a minimum loss of dry weight.

Sorghums’ malt quality is highly affected by the malting processes, in particular 
steeping, germination, brewing conditions, and variety. This remarkably affects the 
hectoliter weight, crude protein, germination energy, and flour starch amylose con-
tent (Bekele et al. 2012). Steeping sorghum grain in dilute formaldehyde and sodium 
hydroxide enhances the malt quality in genotypes with high levels of condensed 
tannin by suppressing inhibitory effects on the malt enzyme (Taylor et  al. 2006; 
Beta et al. 2000), while sodium hydroxide increases water uptake by the sorghum 
grain (Beta et al. 2000). Also, waxy and hetero-waxy varieties have the best malting 
potential, and thus, they are usually fit in the brewing industry since their soft endo-
sperm texture allows hydrolytic enzymes ingress to starch granules that already 
have increased gelatinization in comparison with normal non-waxy sorghums 
(Taylor et al. 2006; Beta et al. 2001).

3 Drought-Resilient Climate Smart Sorghum Varieties for Food and Industrial…
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5  Opportunities for Sorghum Research in Kenya

Globally, there is a huge market potential for sorghum that needs to be exploited. 
Among the top 10 sorghum producers globally, only the USA and Argentina have 
notable volumes for exportation. On the other hand, countries like Japan, Mexico, 
and India still import huge volumes of sorghum to meet domestic consumption 
(Tegemeo 2018). In Kenya, Sorghum production has increased due to its unex-
ploited potential, which can be harnessed for poverty alleviation, income genera-
tion, employment creation, and malnutrition reduction. For these reasons, sorghum 
cultivation has been revitalized as a traditional high value crop (MOALF 2015). 
Sorghum production potential in Kenya ranges from 2 to 5 ton/ha against the real-
ized production yield of 0.7 tons/ha which is unlikely to meet the ever-increasing 
domestic market. It is grown on an estimated area of about 184,654 ha, and this has 
the ability to support over 25% of Kenyans in food supply and more than 26% for 
livestock feeds (Fig. 3.2).

Sorghum has become an important crop despite its unique viability. Sorghum can 
be utilized as a source of food and industries for the production of alcohol, biofuels, 
and livestock feeds. With the low productivity level, it is expected that the country 
will not satisfy the demand. Sorghum for consumption has the potential for value 
addition in manufacturing alternative products, for example, gluten-free flour. 
Gluten can be availed to patients with gluten-related disorders. Sorghum is pre-
ferred as an alternative to maize for making livestock feeds production because it is 
a bit cheaper to produce. Therefore, the reduction in costs of livestock feeds could 
have a notable impact on the livestock industry because the cost of feeds is one of 
the key important factors in the livestock sector.

Sorghum production offers multiple possibilities for selection of genotypes 
adaptable to both CSA and TIMPs and a wide range of uses. Sorghum has potential 
to produce a wide range of products like sorghum syrup, baking, brewing, agro-
chemical, ethanol, and bio-energy (Njagi et al. 2019). Therefore increased sorghum 
supply will not only provide required raw material for Kenya Breweries Limited, 

Fig. 3.2 Hybrid grain sorghum field in Siaya county: demonstrates the high potential for sorghum 
production in ASALs of Kenya
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but also it will create opportunities for other value chain actors. As a consequence, 
breeders and seed companies will renew their interest in investing in the production 
of sorghum seeds. Also, production inputs and extension services demand will rise 
creating more opportunities. Since Kenya has bilateral agreements with countries 
such as China, Japan, and India who are among the leading countries in utilizing 
sorghum, this can be a platform for negotiations with an aim of getting more market 
opportunities for sorghum or its products.

6  Approaches for Resolving Sorghum Shortage and Need 
for Research

The main approaches should be centered on high investment in inputs such as 
improved seeds; this is because adoption of modern varieties of sorghum is quite 
low (Gebretsadik et al. 2014). Also the focus should be on investing in fertilizers 
and related inputs for enhancement of crop intensification, commercialization, and 
value additions. Additionally, other factors to be considered include identifying and 
bringing together all the key stakeholders in the sorghum industry, and this can be 
achieved through initiatives. Also there should be formation of production cells and 
farmers will be able to receive trainings and be able to get ready market. Another 
key issue is marketing, and as a country, the focus should be in investing in the pro-
gression of market institutions, processing methods, and innovations that reduce 
marketing costs. This could be achieved effectively by embedding on the options for 
enhancing competitiveness and demand creation (e.g., food and non-food uses). 
Actually, the sorghum venture should be sustainable “market-oriented” enterprise 
enabled to successfully compete with rest of the crops. Also new technologies such 
as modelling using Agricultural Production Systems sI-Mulator (APSIM) model to 
help in designing more resilient and productive farming systems using the diverse 
sorghum genotypes available in the region. A model by Adiku et al. (2015) on the 
impact of climate change on productivity of locally important traits could help in 
developing adaptation and mitigation strategies in sorghum as no blanket approach 
is applicable.

Research programs should be on proper understanding of the mechanisms that 
underlie drought tolerance by carrying out research on the physiological and bio-
chemical processes. Although grain sorghum manifests resilience to the effects of 
water stress, particularly during the growth stages in its lifecycle, the most suscep-
tible stages to drought stress are the early vegetative stage and reproductive stages 
(that is pre- and post-flowering) where water requirement is on high demand (Anjum 
et al. 2011; Kebede et al. 2001). Water stress during pre- and post-flowering stages 
also impacts negatively on grains. Therefore the ability to withstand water deficit 
and recover after drought at these stages is of importance for increased plant growth 
and yield. Intensive research should be carried out to understand plant responses to 
water deficit, because works describing the effects of water stress and re-watering 
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on plants are limited (Takele, 2010). In addition, there are good reports indicating 
compensatory effects of crops under stress. It would be important to understand 
such compensatory effects in sorghum genotypes under different water regimes. 
Some of the main mechanisms for sorghum recovery after drought are suggested to 
be as a result of the genes and proteins which are activated. This affects many pro-
cesses in the plants causing physiological and biochemical changes of genotype. 
These changes include loss of cellular turgor, membrane fluidity and composition, 
osmotic potential, and protein–protein interaction.
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Optimizing Nitrogen Management 
for Improved Productivity, Nitrogen Use 
Efficiency, and Food and Nutrition 
Security: African Context Perspectives
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Abstract Sub-Saharan Africa (SSA) experiences a challenge of low soil fertility 
due to inadequate application of fertilizers. To achieve food sufficiency, it is recom-
mended to adopt improved nutrient management strategies specifically Nitrogen 
(N) that plays a critical role to crop productivity. Due to its reactive nature, under-
standing N cycling into the food systems is complicated. In SSA, the problem of N 
management is two-fold due to too little application of N inputs and high losses to 
the environment. Therefore, there is a need to understand the key indicators that can 
be used to monitor and benchmark performance of N into the systems. Nitrogen use 
efficiency (NUE) and budgeting are two tools that have been recommended to ana-
lyze performance of N into the food systems. N budget takes into consideration all 
N flows into and out of the system and is used to identify sources of surplus either 
in terms of excess or deficit. On the other hand, NUE presents a conceptualized 
comparison of output to inputs to depict the ranges of safe operating boundaries for 
specific crops or at farm levels. From the existing N budgets in SSA, there is a glar-
ingly higher nutrient mining due to large negatives where crop removal exceeds the 
applied N. For NUE, most of the farmers or cropping systems operate above the safe 
operating boundaries for N management, implying continuous depletion of soil fer-
tility. Although two tools (NUE and N Budget) present feasible opportunities to N 
management, there is need for strong policy and institutional linkages to benefit 
farmers through improved crop productivity and enhance a food secure Africa.
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1  Introduction

Africa is classified as one of the impoverished regions across the world with matters 
of soil fertility, economy, and living standards (Erlyset al. 2019). Due to uncertainty 
in returns on investments, farmers have not been fully convinced on application and 
purchase of mineral fertilizers. Nitrogen (N) use in sub-Saharan Africa (SSA) is 
limited due to high costs and associated difficulties in accessing it (Rware et  al. 
2016). Consequently, fertilizer use in sub-Saharan Africa is rare and has remained 
low in the distant past, with commodity use being stagnant in some countries. This 
has led to persistently lower yields as compared to other parts of the world (Rware 
et al. 2016), despite more than 66.67% of the population in the region relying on 
agriculture for livelihoods. Moreover, SSA constitutes only 3% of the total global 
fertilizer use which averages 7 kg ha−1 compared to over 150 kg ha−1 in other parts 
of the world, such as Europe and Asia (World Bank 2007), despite a clear trend of 
high soil nutrient deficits (Morris 2007). Consequently, there has been reported a 
lack of intensification of modern inputs with resultant lower average yield of crops, 
particularly cereals in SSA as compared to other most developing regions of the 
world (World Bank 2007). The main source of N supply in African cropping sys-
tems is from the existing soil N reserves. However, over-reliance of these soil N 
pools leads to soil N depletion since more is not added into the system and yet the 
reservoirs are not renewable (Smaling et al. 1997). Depleting the soil status notwith-
standing, there is positive increment in food production for the rapidly growing 
population, while causing significant problems by reducing soil fertility and releas-
ing Nr into the environment (Hutton et  al. 2017). According to Drechsel et  al. 
(2001), the estimated balances in SSA farms were negative (–) 26 kg N ha−1 year−1, 
and this depletion has escalated due to more mining of N as farmers continue to 
grow crops without balanced N replenishments. Accordingly, the phenomenal soil 
N depletion has adversely affected the African food security goals.

There is need to advocate for increased nitrogen supply for improved food pro-
ductivity and for reduced yield gap in order to feed Africa’s burgeoning population. 
However, increased fertilization will not improve the existing negative balance due 
to higher crop uptake and uncontrolled N loss pathways. Moreover, in absolute 
terms, food supply will increase land degradation and continue to be a menace in the 
cropping systems (Drechsel et al. 2001). Low agricultural yield in Africa is associ-
ated with inadequate inputs emerging from pervasive conflict, poor governance, 
unstable climatic conditions, land degradation and low fertility of agricultural land 
(Sasson 2012). The recently rampant and unplanned rural–urban shift has further 
aggravated the situation in the food market system in SSA by creating nutrient 
depletion in rural farmlands and accumulating nutrients in urban regions and cities. 
It is not only the absolute food availability that is a concern but the food quality as 
well, which is a sum total of food security. Food security refers to the ability to have 
sufficient, safe, and nutritious foods that meet the dietary needs and recommenda-
tion of human. In SSA, there is need to advocate for N optimization for better nutri-
tion security while reducing environmental threats. In the region, the challenges 
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related to managing N that is linked to both insufficient N input and excessive loss 
should first address the “too little” and “too much” paradox (Masso et al. 2017). 
Although Nr has made contributions towards dietary needs for humans, large areas 
in Africa are deficient of available N to achieve food and nutrition sufficiency 
(Alexandratos and Bruinsma 2012; Ciceri and Allanore 2019; Pradhan et al. 2015). 
Recently, the United Nations Environmental Programme has identified Nr as one of 
the top five emerging issues that impact climate, public health, and environment and 
are linked to over-reliance of Nr by the globe for food production (UNEP 2019).

2  Methodology

The materials used in this chapter are from a critical review of the papers that con-
tained data on nitrogen fertilizer use and management in African agriculture. The 
literature search was based on keywords including Nitrogen, Africa, soil fertility, 
nutrient management, nutrient depletion, nitrogen use efficiencies, fertilizer use, 
cropping systems, food security, nutrition security, and yield gap. The search based 
on keywords was also complemented with the search through the articles found in 
the literature.

2.1  Role of Nitrogen in Soil and Food Productivity in SSA

Anthropogenic N through fertilizer input is the new source of Nr to the global. 
Nitrogen has a critical role in increasing productivity and meeting the food needs of 
the populations. Availability and proper management of N promote reconciliation in 
terms of economic status and environmental consideration (Ladha et al. 2020). N 
cycling in cropping systems presents a complex challenge due to diverse pathways 
of N loss to the environment upon application, leading to adverse effects (Canfield 
et  al. 2010; Galloway et  al. 2008; Schlesinger 2009; Vitousek et  al. 2009). The 
amount of N lost and the extent of pollution caused show that currently the world 
has transgressed suitable the planetary boundary for N (Steffen et al. 2015). Major 
pathways of loss from applied N to the environment include leaching, volatilization, 
and emissions (Battye et al. 2017; Sutton et al. 2013) that lead to numerous adverse 
effects on aquatic, terrestrial, and human health (Ladha et al. 2020). Researchers 
globally are facing challenges of managing N to meet the required dietary require-
ments while lowering the flow of unused N to the environment. A feasible key 
approach that has been considered and can be applied in all regions is optimizing 
Nitrogen use efficiency (NUE); a metric that is not only considered to monitor 
improved or efficient crop productivity but also shows the extent N lost to the 
environment and the need for improved management. Taking into consideration 
the importance of N in both environment and food systems, proposals have been 
made to include NUE as an indicator to measure progress towards sustainable 

4 Optimizing Nitrogen Management for Improved Productivity, Nitrogen…



48

development goals (SDGs) (Zhang et al. 2015). Besides, recent resolutions by the 
General Assembly of the UN Environment Programme were passed to develop a 
globally coherent approach for enhancing sustainable N management (United 
Nations 2019).

Approximately 80% of food produced in SSA come from small-scale holders 
with production below the required potential to achieve the SGDS on food, nutrition 
security, and poverty reduction (Gaffney et al. 2019). The average per farmer pro-
duction in SSA is approximated at around 1 t ha−1 which is very low compared to 
what is produced by Chinese and American farmers (AGRA 2014; Morris et al. 
2007). Disaggregating at the county level reveals that many nations in SSA fall 
short of the fertilizer set target of 50 kg N ha−1 set during the Abuja 2006 fertilizer 
summit declaration (African Union 2006; Sheahan and Barrett 2017). The low/
insufficient use of N fertilizers results in extreme cycles of soil N nutrient mining, 
degradation, reduced resilience on climate adaptation, and erosion.

Approximately, 80% of the agricultural land in SSA is under N deficit and most 
of the farms have negative balances ranging from  -2kg ha−1 from the case of 
Botswana to 67kg N ha−1 in Malawi (Masso et al. 2017). The application of too little 
N for grain production in these countries has been identified as one of key the fac-
tors contributing to large yield gaps, food insecurities, and increased rates of malnu-
trition (Masso et al. 2017; FAO 2017). Obtainable yield by SSA farmers is more 
than 30% lower compared with the estimated potential in most staple crops (Timsina 
et  al. 2021). Adopting sustainable management of both organic and inorganic 
sources of nutrients is key to enriching African soil both for food and nutritional 
security (Adhikari et al. 2018). To achieve sustainable management of N in SSA, an 
increased access to efficient N to meet the required productive potential as well 
lowering the associated losses to the environment are pertinent (Ladha et al. 2020). 
Furthermore, poor agronomic practices like blanket fertilizer application and unbal-
anced N use are common. There has been advocacy for most of the countries to put 
in efforts to increase the efficiency of N use through application of the 4R nutrient 
stewardship principles of using the right source of N fertilizer, there right rate and 
timing as well right placement method (Banerjee et al. 2018). In addition, focused 
specific agronomic practices including the 4R should be integrated with other soil 
fertility management practices like site-specific management and use of improved 
seeds, organic inputs, and liming can greatly optimize NUE in cropping systems 
(Vanlauwe et al. 2010).

2.2  Nitrogen and Crop Productivity

The physiological requirements of crop N can be controlled by the efficiency at 
which N taken by the plant is converted to biomass and grain yield (Hirel et  al. 
2007). The fact that cereals are grown for grain, physiological N efficiency (PEN) 
as the change of grain yield per unit of nutrient accumulation in the aboveground 
biomass is the most relevant indicator (Cassman et al. 2002). The PEN of the crop 
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is governed by two factors: the photosynthetic mode that is genetically determined 
as either C3 or C4 photosynthetic pathways, and the concentration of N in the grain 
which is also under genetic control but affected by N supply. Examples of most 
commonly grown cereals in SSA are rice and wheat (both belong to C3) plants and 
maize that is a C4 plant. For the C4 plants, a higher PEN is observed compared to C3 
because they have a relatively higher rate of photosynthesis per unit leaf-N that 
leads to accumulation of greater biomass (Cassman et al. 2002). Managing reactive 
N and at the same time sustaining adequate content of gain N, the cereals require 
optimization of NUE that begs for innovative crop production and improved soil 
management practices. Besides, more focused strategies to enable economic benefit 
to cost ratio should be considered as it has the greatest influence towards farmers’ 
adoption of the new technologies (Shanahan et al. 2008). Although some manage-
ment practices could increase NUE while reducing losses, adoption by farmers will 
be more likely to be difficult, particularly without clear information on the eco-
nomic impact on grain and in relation to N inputs applied. Assuming that in well- 
managed crop, the recovery efficiency and profit from applied N fertilizers are 
optimized with minimal losses of N. This is achieved when the plant-available N 
pool is maintained to the minimum and required level matches the demand of the 
crop at each growth stage (Cassman et  al. 2002). Too little N can contribute to 
reduced yields and profits while too much N is vulnerable to losses to the environ-
ment, and hence the need for having a balanced synchrony.

Increment in crop yield can contribute to higher NUE since both indigenous and 
N from application and this is due to the fact that fast-growing plants have deep 
rooting systems that are more effective in exploiting available N sources (Maiti 
et  al. 2020). The applied N that is not taken by the crop or immobilized in soil 
organic pools is vulnerable to several losses including leaching, denitrification, and 
volatilization. Therefore, increasing NUE can be obtained through enhancing higher 
uptake efficiency from the applied N input through minimizing quantity of N lost to 
both organic and inorganic N pools. Besides, farmers also need to estimate the por-
tion of grain yield obtained from indigenous soil-N and yield increase from applied 
N as a way of making informed choices on how much N is required for optimal 
productivity (Ladha et al. 2005).

2.3  Key Nitrogen Management Indicators: Nitrogen Use 
Efficiencies and Budgets

The continued loss of Nr from agro-ecosystems is likely to raise a critical question 
on whether such systems could have attained an N equilibrium that prompted Ladha 
et al. (2020) to post an important question on whether such systems could be reach-
ing an N disequilibrium already. These authors went further to state that N equilib-
rium in agro-ecosystem would be in N equilibrium when the sum of N inputs 
balances the sum of N outputs, an indication that the soil is not a sink for N or its 
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source. N budgeting is not only critical for book-keeping purposes but rather an 
exercise for taking into consideration all N inputs/outputs as well as the soil N 
changes, a reflection of quantifying N cycling in crop-soil systems. However, N 
budgeting does not always serve as a tool for evaluating N management with the 
sole aim of improving N use but rather tracks the N flows in and out of the systems. 
Nitrogen budgets in crop production are mostly known as N balances and are 
applied by different stakeholders in different sectors. They provide clarification on 
N flows that quantify the potential N losses and raise awareness on nutrient manage-
ment practices. Farmers as the key managers of cropland N use N budget to help in 
making decisions regarding fertilizer and manure application rates and for manage-
ment purposes (Quemada et al. 2020). Such information are scanty or lacking in 
SSA farming setups. Policymakers globally have also started using N balance to 
monitor the environmental impacts of agricultural production and make an evalua-
tion at regional and national levels. The components forming up an N budget model 
include N inputs like synthetic fertilizer, animal manure, biological N fixation, and 
atmospheric deposition. The N outputs in the model are harvestable N in crop prod-
ucts, N losses in form of gaseous emissions (N2O and NH3) runoff and leaching 
(Zhang et al. 2021) as illustrated in Fig. 4.1.

The difference between N input and harvested N is defined as the surplus in the 
system where positive values represent excess while negative values show deficits. 
In SSA, the cropping systems present a surplus in the form of deficits that are 
revealed through negative values within the cropping systems. These negative bal-
ances are influenced by higher amount of N harvested than what was initially 
applied, leading to a situation referred to as soil N mining (Zhang et  al. 2021). 
According to Elryset al. (2021) and Masso et al. (2017), African countries present 
two major problems in N budgets and N management, which include higher N 
losses in fertilized farms and depletion in under fertilized farms. Therefore, calcu-
lating N footprints (NF) by quantifying the amount of N released to the environment 
per unit of N consumed for each of the foodstuffs considering the fertilized and 

Major N inflows into
cropping system

Major ouflows from
the cropping system

Crop harvest/
harvested N

Losses (NO-
3

leaching & run-
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N lost/ unaccounted
N
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Biological N
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Fig. 4.1 Model structure of N budgeting key components in cropping systems
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unfertilized systems is critical towards minimizing the current problems Africa 
is facing.

NUE is an “umbrella” metric applied wisely to compare the performance of N in 
agronomic, physiological, and environmental sections to evaluate the possible con-
sequences. Although the estimation of NUE focuses mostly on components of N 
budgeting, it is a bit complex since it compares the efficiency of different compo-
nents and expressed in different measures (Ladhaet al. 2005, Ntinyari and Gweyi- 
Onyango 2021). The NUE measurements are implemented for two reasons; first to 
increase production through efficient use of N fertilizers and second to reduce losses 
relating to regulatory compliance with an aim of minimizing environmental burdens 
(Hutchings et al. 2020). NUE is commonly defined as the ratio of N output to N 
input. The components considered as input for NUE model are harvested N, i.e., 
crop biomass, economic yield as the dry biomass, or the N content composition. On 
the other hand, N output considered includes synthetic N fertilizers, atmospheric 
deposited N, biologically fixed N, and N from organic sources. The three efficiency 
ratios that are used in quantification of the NUE are: agronomic efficiency (AEN), 
which is defined as the ratio of yield to N amount supplied; recovery efficiency 
(REN), which represents a ratio of plant N to the N applied; and physiological or 
internal efficiency (PEN), which is defined as the ratio of yield to plant N (Cassman 
et al. 2002). The N removal efficiency is the most used indicator as it is the easiest 
to measure based on the crop N content. NUE optimization is one of the ways for 
reducing N losses to the environment through the use of technologies that favor both 
high-input and low-input cropping systems.

Achieving an equilibrium NUE of 50-90% in the arable production systems 
would be ideal in situations where technical measures for optimizing NUE are 
applied. According to Oenema et al. (2015), an indicative NUE value of above 90% 
implies a higher risk of soil N depletion in arable land. Unfortunately, most SSA 
farmers operate above the stated percentage. Identification of safe operating bound-
aries for NUE in the cropping systems can be achieved through the use of graphical 
conceptualization with key zones including risks of soil N depletion, acceptable 
boundaries, and regions with inefficient use of N as defined by EUNEP (2015). 
Following a similar approach by the EUNEP, Ntinyari et  al. (2021) showed that 
most of the smallholder farmers in Kenya are operating in the region of soil N min-
ing with abnormally higher NUE values.

The limitation in NUE metrics used currently lies in capturing the whole N 
cycling process in cropping systems or in the farmland levels to help design sustain-
able systems that not only considers crop production but also incorporates the 
aspects of soil fertility and mitigation of environmental pollution (Congreves et al. 
2021). Another missing linkage in developing proper NUE scales for SSA cropping 
systems is the lack of proper accounting on the synchrony between availability of N 
and the plant N demand. Even in short single growing seasons, there are fluctuations 
of available N in the soil and may imply sufficient N is not available to match the 
crop demand and therefore the synchrony factor should always be considered 
(Congreves et al. 2021). The N synchronization depicts the rate at which N is avail-
able to crop being closely linked to the rate at which the growth of crop demands it. 
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Crops with higher N demands are linked to maximal genetic yield potential and 
high harvest indices, ensuring high synchrony and hence optimal NUE. Moreover, 
this kind of synchrony can also be achieved by adopting sound and improved agro-
nomical practices like biodiversity deployment and proper use of cover crops and 
with genetic modifications of the crops. Therefore, holistic N management practices 
will maximize uptake of N by crops and reduce losses of N in the soils (Udvardi 
et al. 2021). The application of the 4R framework of nutrient management denoting 
the right source, right rate, right timing, and right placement could help in the opti-
mization of the NUE values. Furthermore, several precision N tools for chlorophyll 
content detection and agronomic techniques can be put forward to support improved 
N management.

Global efforts are accelerating to improve fertilizer formulations with a target of 
optimizing NUE (Venterea et al. 2012). The formulations specifically from nano-
technology can be used to achieve a targeted release at specific profiles to supply N 
at the time of demand. Fertilizer and application technologies should also be 
designed to match the physiological needs of the crop including nutrient uptake, 
redistribution, and utilization to serve as an entry point of new fertilization develop-
ment specifically for sub-Saharan Africa where use of fertilizers is quite limited and 
still very low amounts are in use (Njoroge et al. 2019). Another practical opportu-
nity for optimizing NUE is through enhanced efficiency of fertilizers (EEFs) which 
are formulations with some coatings. These EEFs help optimize NUE by preventing 
immediate solubilization by temporarily slowing the activity of the enzymes and 
other nitrifying microbes in the soils. Li et al. (2018) reported increasing NUE by 
29% and reducing N losses by 41% in paddy rice when EEFs were used. According 
to Cassman et al. (2002), adoption of new management practices such as crop rota-
tion, which has effect on organic carbon in soil, will also cause a significant effect 
on overall N balance since the C/N ratio of soil organic matter remains relatively 
constant. In addition, when soil-N content is increasing, the amount sequestered N 
also contributes to higher NUE of the cropping systems, and conversely, a decrease 
in soil N stocks will also result in reduced NUE and recovery efficiencies (Gweyi- 
Onyango et al. 2021).

Better utilization of fertilizer in Africa can be achieved through improved agro-
nomic nitrogen use and agronomic nitrogen recoveries as reported by Gweyi- 
Onyango et al. (2021) in Kenya. These authors’ findings revealed these indicators to 
be variable but relatively low. These were not startling since previous findings show 
that the recovery of N in soil–plant systems, particularly in paddy rice, seldom go 
above 50%, which may imply the applied N leaks through different pathways such 
as volatilization and leaching (Ladha et al. 2020). The increase in the gap between 
applied N and that which is taken up by the crops has been linked to a monumental 
lowering of NUE as reported by Raza et al. (2018). Moreover, Jing et al. (2007) 
suggested that recovery of N fertilizer cannot depend on crop growth and genotype 
and also could be affected by the management practices adopted by the specific 
farmer. According to Kombali et al. (2016), it is possible to optimize fertilizer N 
recovery through the application of smaller doses since it is easier to predict the 
crop demand by splitting the whole fertilizer dosage.
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2.4  Fertilizer Subsidy, Socio-economic Status on Adoption 
of Integrated N and Other Input Management

Recent analyses have demonstrated that yield gaps have the potential of being 
reduced through increasing the current amount N application for countries where 
rice is widely grown but interventions from government subsidy (Tsujimoto et al. 
2019). Figure 4.2 shows a conceptualized framework on the role of environment 
and management of N fertilizers including access, regulations, and timing of appli-
cation, agronomic practices, and the resulting variables on nitrogen use 
efficiencies.

Similarly, an increment in use of synthetic fertilizers in SSA could be a critical 
step towards sustainable development through soil fertility and food security 
improvement (Van Ittersum et  al. 2016). This can be achieved through effective 
promotion of fertilizer input with clear communication on the economic and sus-
tainability benefits. For instance, subsidized fertilizer sources have the possibility of 
enabling farmers to gain valuable knowledge regarding the benefits of using fertil-
izer without putting much risk in the main capital outlay (Carter et al. 2014). With 
such information in mind, it is easier for farmers to continue purchasing fertilizer 
commercial even without the availability of subsidies. However, excessive subsidies 
may seem to be a burden in most national economies for SSA counties, and at the 
end, the costs may outweigh the benefits in long-term funding (Jayne et al. 2013). 
In addition, subsidies should be done with caution since excessive subsidy would 
lead to reduction in N use efficiency as evident in the case of China where use of N 
fertilizers is responsible and contributes to high environmental pollution, hence 
reducing the efficiency of fertilizers (Zhang et al. 2015).

Fig. 4.2 Environments, plant genotypes, and management issues on nitrogen use efficiency
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2.5  Policies and Institutions Influencing N Consumption 
and Management

Achieving food security in SSA for 1.3 billion people by 2050 is one of the funda-
mental issues, and hence, insufficient N and other nutrients must be resolved before 
then (Mc Carthy et al. 2018). With the current fertilizer application rates, it is chal-
lenging to attain the goals of the first three SDGs in the region. This, therefore, calls 
for urgent appeal and the need to improve the market, increasing access to credit 
services and promoting effective extension services to make fertilizer input acces-
sible and more profitable to farmers. African governments have revolutionized to 
improve agriculture through budget allocation investments (Onyiriuba et al. 2020; 
Benfica et al. 2019). Several states have also reinstated on increasing agricultural 
inputs subsidy a strategy for promoting access and improving variable success for 
farmers (Jayne et al. 2018). Previous research shows that at the nation level, factors 
including differences in policies are far more predictable due to varied agricultural 
input in comparison to socio-economic features, farm, market, and biophysical fac-
tors across 10 countries in SSA (Sheahan and Barrett 2017). Many nations lack or 
have not implemented policies on recycled organic water from cities, and nutrient 
recovery from wastewater and municipal for agricultural use which is a great 
approach to increasing nutrient availability. It is essential to understand NUE com-
ponents effectively to decide on management to maximize returns from the indige-
nous and applied N sources in the cropping. Owing to the cryptic nature of the NUE 
both public and private sectors require to execute a critical role in offering knowl-
edge to growers about the best management and technological options to influence 
N components (Bahn et al. 2021). Policies should also support strong extension and 
research programs that have the capacity to enhance intensive crop production. 
Policies should also base their recognition on possible interactions between varying 
environmental goals. Notably, profit margins should be put into consideration to 
encourage farmers to adopt improved management by taking into consideration the 
environmental regulations (Ladha et al. 2020). Preference of incentive programs for 
adoption of N-efficient management practices to enable farmers cope with stringent 
measures on environmental regulations should be given priority.

If more scientific evidence in the near future supports the need for a more drastic 
option to minimize the N loading to the environment, then a global based plan 
should be developed to enhance food crop production in agro-ecosystems that have 
great biophysical potential and the ability to maximize grain output, minimize 
losses, and prevent environmental damage. For instance, through agricultural land 
ownership and more competitive prices based on property right, farmers could 
become more sensitive to loss of the productive land and therefore apply the required 
options to maintain the quality and productivity (Deininger and Byerlee 2012). In 
addition, governments can contribute significantly to fertilizer through expanding of 
the private-sectors fertilizer supply networks and by consolidating the usage of right 
fertilizer doses in addition to investing in proper infrastructure to facilitate transpor-
tation (Bahn et al. 2021). Besides, there is need for the governments to coordinate 
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the development of polices on organic N input. Particularly it is necessary to orga-
nize and sensitize programs that inform policymakers and other actors to enhance 
beneficial gains accruing from organic N input management as well as offering 
them better chances and favorable environments to adopt the practices (Elrys et al. 
2019). Therefore, incorporating policies in African agriculture would stimulate fer-
tilizer consumption, production, provide markets in the wider context of agricul-
tural production systems, and hence poverty reduction.

3  Conclusions

Optimal management of N in sub-Saharan Africa for improved crop productivity, 
food security, and environmental sustainability is possible with the adoption of the 
right tools and policies. Through N budgeting, farmers can easily manage how 
much N is needed in the cropping systems as a way of matching the demand of the 
plant growth at different growth stages. Through extension services, farmers can 
also be assisted to define safe operating levels of N that support both soil fertility 
and minimal losses to the environment. Government subsidies on fertilizer input 
will also go hand in hand to ameliorating the problem of too little N input into the 
cropping system as well as correcting the existing negative balances in the farms. 
Moreover, government coordination should put more focus on policies that support 
organic input use and management. Adopting use of more fertilizers, for instance, 
controlled release, nitrification inhibitors, and enhanced efficiency fertilization, 
have been shown to minimize losses and increase NUE, which should be a focus for 
Africa. Improved crop varieties that are bred for higher NUE to enhance N uptake 
will enable optimal management of N at the farm level and promote more yields, 
hence contributing towards reducing the yield gaps in Africa.
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Chapter 5
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Farming Practices
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Abstract Soil organic carbon (SOC) stocks constitute a major portion of the global 
C stocks in tropical regions. It is an important component to contribute towards soil 
structure, soil fertility, crop productivity, and soil sustainability. A field experiment 
was conducted in 2016–17 to study the effect of different farming systems on vari-
ous organic carbon pools in the soil. Surface (0–15 cm) and subsurface (15–30 cm) 
soil samples were taken from organic (OF) as well as conventional fields (CF) of 
wheat, sugarcane, mustard, and barseem from two districts of Haryana state. Results 
revealed that organic fields had higher very labile carbon pool, active pool, and 
microbial biomass carbon as compared to conventional fields. Surface soils were 
observed to be repositories of higher organic carbon pools as compared to subsur-
face soils in all fields. The organic fields of mustard showed the highest very labile 
SOC pool and microbial biomass carbon. Sugarcane was observed to have the high-
est active carbon pool as compared to other crop fields. Soil microbial biomass 
carbon increased from traditional to organic farming, which explains the high 
microbial activity of the soil in organic farming practices.
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1  Introduction

The global concentrations of atmospheric CO2 have passed 410 ppm and will con-
tinue to rise (NASA 2020). This increase in atmospheric concentrations of green-
house gas (GHG) is a clear indication of anthropogenic impact on the climate (IPCC 
2014). Agriculturally induced methane and nitrous oxide contribute toward climate 
change, but soil carbon sequestration is a crucial step in agriculture to reduce these 
emissions (UNFCCC 2008). Soil carbon sequestration can be described as the pro-
cess of storing carbon dioxide (CO2) from the atmosphere into the soil. It is achieved 
through the addition of residues of various crops and various organic solids in the 
soil. The sequestration occurs in a form which is not instantly and easily re-emitted 
back to the atmosphere. This storage or “sequestration” of carbon helps in off- 
setting emissions which accrue from combustion of fossil fuels and other such 
activities which are responsible for carbon emissions. This process simultaneously 
enhances soil quality and long-term productivity. Soil carbon sequestration can be 
efficiently accomplished and improved by applying management systems that 
incorporate high levels of biomass to soil, create minimal soil disturbance, preserve 
soil and water, strengthen soil structure, and promote soil microbial activity 
(Syswerda et al. 2011). Soil organic carbon (SOC) is an important measurable com-
ponent of soil organic matter (SOM). It contributes significantly to soil structure, 
soil fertility, crop production, and soil sustainability (Gelaw et al. 2014). Different 
studies have reported varied amounts of organic carbon stocks in the soils of India 
(Table 5.1). These stocks constitute about 3% of the global C stocks of the tropical 
regions (Velayutham et al. 2000). A small increase in soil organic carbon in large 
areas under agricultural and pastoral can significantly reduce atmospheric carbon 
dioxide. For this reduction to be more efficient and long-lasting, soil organic matter 
has to be more stable or resistant to degradation.

Most of soil organic matter and hence the amount of SOC are found near the soil 
surface. Storage of organic carbon content in the topsoil is determined by the inter-
actions among topography, climate, soil type, and other aspects of crop manage-
ment which further includes crop rotation, fertilization, tillage (Peigne et al. 2007), 
irrigation, mulching, and manuring. Also, sustainability of agricultural production 
systems depends on soil quality which gets affected by the characteristics and 

Table 5.1 Estimated Organic carbon stocks in soils of World and India

Depth SOC density/stock/pool (Pg) Region References

0–30 cm 684–724 World Batjes (1996)
0–150 cm 2376–2456 World Batjes (1996)
44–186 cm 24.3 India Gupta and Rao (1994)
0–30 cm 9.55 India Bhattacharyya et al. (2000)
0–150 cm 29.92 India Bhattacharyya et al. (2000)
0–30 cm 21 India Velayutham et al. (2000)
0–150 cm 63 India Velayutham et al. (2000)
1 m to 1 km 6.8 India
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features of the farming system encompassing strategies such as cultivation with a 
single crop for a prolonged period, tillage, and removal of the crop residues. These 
factors are also responsible to accelerate the rate of decomposition of SOM which 
accounts for 20–67% of soil C loss (Yang et al. 2019). It further leads to soil degra-
dation such as diminished or degraded physicochemical and biological properties of 
the soil (Lal 2014).

Change in land use pattern has also been reported as one of the major causes of 
soil degradation and loss of soil organic carbon as carbon dioxide. Guo and Gifford 
(2002) have reported 42% of SOC loss due to change from forest land to crop and 
59% loss of SOC due to changes from pasture to crop land through meta-analysis of 
data on stocks of soil carbon and land use land cover changes. Therefore, it is neces-
sary to increase the storage of soil carbon either by enhancing the carbon pools or 
by reducing the emissions through the decomposition of organic matter to achieve 
the goals of sustainable agricultural production and better management of the 
environment.

The potential of C sequestration in cropland is reported to be about twice than 
that in managed pastureland; however, the global surface area under cropland is less 
than half. Gazdar (2020) reported that 0.4%improvement in soil organic carbon 
could sequester ≈1 gigatonne (GT) carbon per year over a period of the next three 
decades, which is equivalent to 10% of global anthropogenic emissions. Several 
management practices have been suggested to enhance SOC contents in agricultural 
lands which include organic amendments, manures, cover crops, crop rotations in 
diversified form, application of biochar and biofertilizers, reduced use of chemical 
pesticides and insecticides, no tillage, crop residue management, integrated pest and 
nutrient management, agroforestry, organic farming, and conservation agriculture. 
Conservation agriculture is in practice in about 180 mha (million hectares) all over 
the world (Kassam et al. 2017) of which Indian contribution accounts for 1.5 mha 
(Jat et al. 2012). Conservation agriculture is a farming system which emphasizes 
minimum soil disturbance through no-till farming, maintaining permanent soil 
cover in the fields by adding crop residues or retaining live mulch intact and diver-
sifying the plant species through crop rotation or intercropping. The benefits of 
conservation agriculture include enhanced biodiversity, efficient above- and below-
ground biological processes, gradual increase in SOM, increased water retention, 
infiltration and use efficiency, appropriate soil moisture conditions, better nutrient 
management and their utilization by soil biota, suppression of weed species, and 
prevention of erosion of topsoil. It also reduces the cost factor associated with the 
use of mechanical instruments, fuel, labor, and time required to till the fields. Hence, 
conservation agriculture ultimately leads to sustainable crop production system or 
sustainable intensification.

SOC content has been reported to persist in organic farming systems under diver-
sified crop rotations, intercropping, and organic fertilizers’ application. However, it 
decreases under systems of conventional farming (CF) with the application of inor-
ganic or chemical fertilizers. Under organic farming systems, the basic concept is 
rotation of components in the field, which are built on three main key elements: (1) 
the avoidance of synthetic fertilizers and pesticides; (2) the use of farmyard manure 
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to attain high soil fertility; and (3) the reduction of high-energy-consuming feed-
stuffs (Fließbach et al. 2007). Agricultural practices in organic farming (OF) systems 
are said to benefit various components of agroecosystems such as soil, surface and 
groundwater, biodiversity, and air (FAO 2003). Crop productivity in OF is dependent 
on soil nutrient transformation mechanisms. Thus, soil quality is a crucial issue in 
OF, and SOC is a key component of this system.

SOC was shown to be stable in an OF system that included ley-based crop rota-
tions and organic fertilizer application, whereas it declined in CF with mineral fer-
tilization (Gadermaier et al. 2011). Fließbach et al. (2007) and Munro et al. (2002) 
also observed organically managed top soils to have a higher percent amount of 
organic matter as compared to conventional management. The reason may be the 
addition of higher quantity of organic matter in OF. It further leads to an additional 
accumulation of SOC (Drinkwater et al. 1998).

Based on the length of residence, soil organic carbon can be classified into five 
pools: less labile, labile, highly labile, active pool, and passive pool (Parton and 
Rasmussen 1994). Under soil organic pools, the active pools include labile elements 
that provide available meal for microorganisms and are altered by fresh residue 
inputs, making them an ideal indication of soil quality (Joshi et al. 2017). The SOC 
fraction with the fastest turnover rates is the labile C pool. Despite the fact that this 
pool of SOC is critical for crop productivity, its oxidation quickly adds CO2 to the 
atmosphere, contributing to the process of global warming (Majumder et al. 2008). 
The very recalcitrant or passive pool is transformed quite slow by microbes and thus 
cannot be regarded a good indication of soil quality and production (Weiler and 
Naef 2003; Sherrod et al. 2005; Majumder et al. 2008).

Soil microorganisms play a significant role in regulating soil organic matter trends 
and nutrient availability (Six et al. 2006). Microbial biomass in soil and their interac-
tions are indeed the markers of biological soil fertility, which OF greatly improves 
(Fließbach et al. 2007). Excessive use of chemicals such as herbicides and pesticides in 
CF practices can severely alter the structure and function of microbial communities 
residing in soil, modify the terrestrial ecosystems along with substantial changes in soil 
quality and fertility (Pampulha and Oliveira 2006). Moreover, some organic additions 
have the potential to boost soil microbial activity and improve biodiversity (García-
Orenes et al. 2010). This research was designed to compare various soil carbon pools 
under conventional and organic farming systems in various crops.

2  Materials and Methods

2.1  Study Sites and Farming Practices

Four different farmer’s fields, in villages Matak Majri, Nanhera, and Pathera in 
Karnal and village Mehra in Kurukshetra districts of Haryana, India were selected 
for this study. Out of four farmers, three farmers have been practising organic 
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farming for the last 3 years, while for the fourth farmer, this span was 8 years 
(Table 5.2). Along with organic farming, all the farmers were also practicing con-
ventional farming on the remaining field. Soils of the fields were alluvial with clay 
loam texture. Wheat, berseem, mustard, and sugarcane were grown by farmers hail-
ing from the villages of Matak Majri, Nanhera, Pathera, and Mehra, respectively, 
under both organic and conventional systems.

All four organic and conventional fields were tilled as per the recommended 
package practice every year before cropping. In all organic fields, 12 t ha−1 dried 
cow manure was applied prior to seeding Kharif season crops, while prescribed 
fertilizer doses were applied in conventional fields. All the fields were irrigated with 
ground water. The crops were grown using organic agricultural practices, with no 
herbicides used. Mechanical weeding was done three times during the stages of 
emergence and leaf development. Inorganic fertilizers and insecticides are used in 
conventional systems.

2.2  Soil Sampling and Analyses

Soil samples were taken in bulk in March 2017, after 6 months of farmyard manure 
application. These samples were collected from all the eight fields. Samples were 
taken from two different depths 0–15 cm and 15–30 cm. They were then air-dried at 
a constant room temperature (25°C). After drying, the samples were then sieved (2 
mm) to eliminate coarser soil particles. In order to limit experimental error, four 
replicates for every sample were analyzed in the laboratory. Soil bulk density was 
determined with the core cylinder method (Blake and Hartge 1986). In a soil sus-
pension with deionized water (1:2.5, w/v), the pH (Guitián and Carballas 1976) and 
1:1 suspension in water EC (Smith and Doran 1996) of dried samples at 60°C for 24 
h was determined. The modified Walkley–Black method reported by Chan et  al. 
(2001) was used to separate total SOC into various C pools 6.0, 9.0, and 12.0 M 
H2SO4 (Ghosh et al. 2010). It entailed varying the quantities of 1/6 M dichromate 
solution and H2SO4. The soil was kept at room temperature for 1/2 h to react with 
the dichromate-acid mixture. Total SOC was thus allowed to divide into four pools 

Table 5.2 Farming systems under study

S. no. Farming system No. of years Crop

1 Organic (OF1) 3 Wheat
2 Organic (OF2) 3 Berseem
3 Organic (OF3) 3 Mustard
4 Organic (OF4) 8 Sugarcane
5 Conventional (CF1) – Wheat
6 Conventional (CF2) – Berseem
7 Conventional (CF3) – Mustard
8 Conventional (CF4) – Sugarcane
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based on their stability Chan et al. (2001). SOC fraction oxidized by 6.0 M H2SO4 
is considered as very labile pool, the difference between SOC fraction which is 
oxidizable by 9.0 M H2SO4 and that by 6.0 M H2SO4 estimates the labile pool, and 
the difference between SOC fraction which is oxidized by 12.0 M H2SO4 and that 
oxidized by 9.0  M H2SO4 estimates the less labile pool (Chan et  al. 2001). The 
active pool was generated from the highly labile and labile pools. Estimation of soil 
microbial biomass C was done with fresh moist soil samples by chloroform- 
fumigation- extraction according to Vance et al. (1987). Stocks of organic carbon 
(Mg ha–1) in each extracted SOM fraction of each sampling layer (0–15 cm and 
15–30 cm depth) were calculated using the below equation (Wang and Dalal 2006):

 
Carbon stock

SOC BD mm
=

× × × −( )d 1 2

10

%

 

where:

SOC: content of soil organic carbon (gkg−1),
d: thickness (cm) of the soil layer
2 mm: fractional percentage (%) of soil mineral particles >2 mm in size,
BD: soil bulk density (Mgm−3).

Statistical analyses were done using Microsoft excel.

3  Results and Discussion

3.1  EC, pH, and Bulk Density

Soil sample analysis for physicochemical properties was done for all the soil 
samples. In all the agro-system, EC significantly decreased with increasing 
depth (Table 5.3). The same trend was recorded by Ozlu and Kumar (2018). All 
the conventional farming systems recorded higher EC than OF. Among the 
organic fields, the highest EC was recorded under wheat field (194 μS). Higher 
EC values in CF are most likely connected with high salt deposition from inor-
ganic fertilizer use (Velmourougane 2016). Inorganic fertilizers contain a higher 
concentration of accessible nutrients. These nutrients get dissolved into various 
types of ions in the soil, resulting in a higher electrical conductivity (Sihi et al. 
2017). Under different agro-system, pH significantly increased with increase in 
soil depth. pH was less under OF fields as compared with CF of the same systems 
except for berseem fields with the lowest pH (7.3). Reeves and Liebig (2016) 
also observed the increase in the pH as depth increases because acidification is 
most pronounced near the soil surface. Bulk density of the soil gets affected by 
field management practices and integration of green manure. However, no varia-
tion in bulk density under varying soil depths was found in all the farming 
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systems. In all of the conventional fields, bulk density was reported to be higher 
than that in organic fields. According to a number of studies (Khaleel et  al. 
1981; Pagliai 1988; Novara et al. 2019), it has been suggested that organic mat-
ter is responsible to decrease the bulk density due to a drop in denser mineral 
component, as well as an increase in aggregation and soil pores. Hence, it is the 
improvement and enhancement in soil structure by appropriate organic manures 
addition which is responsible for decreasing bulk density in the organic fields. 
Sheeba and Kumarswamy (2001) also observed a similar trend of decreasing 
bulk density with the increasing addition of organic matter. On the other hand, 
the reason for increment in bulk density under fields of conventional farming 
can be attributed to soil structure deterioration with the application of chemical 
or synthetic fertilizers. The deterioration of soil structure may also be due to the 
less retention of crop residues into the soil. The trend of increasing bulk density 
with the application of inorganic fertilizers has also been reported by Tadesse 
et al. (2013).

3.2  Different SOC Pools

In all farming systems, different pools of SOC were observed to be decreasing 
significantly with depth increment (Table 5.4). Santos et al. (2012) also observed 
higher soil organic carbon at 0–15 cm soil depth than 15–30 cm under organic 
farming. The same trend was also recorded by Jacinthe et al. (2011). These find-
ings contradicted previous studies (Leifeld and Fuhrer 2010; Marriott and Wander 

Table 5.3 Depth-wise changes in different soil properties under different farming systems

Crop Farming system Depth (cm) EC (μS) pH BD (gm cm−3)

Wheat Organic 0–15 188.2 ± 5.74 7.6 ± 0.40 1.22 ± 0.01
15–30 169.3 ± 3.95 7.64 ± 0.11 1.2 ± 0.004

Conventional 0–15 194.0±4.21 7.9±0.15 1.24±0.02
15–30 183.8±4.50 7.92±0.17 1.23±0.02

Barseem Organic 0–15 162.8±7.81 8.2±0.17 1.2±0.02
15–30 153.8±3.78 8.3±0.26 1.21±0.01

Conventional 0–15 163.7 ± 23.2 7.3 ± 0.26 1.23 ± 0.01
15–30 152.0 ± 16.3 7.9 ± 081 1.23 ± 0.01

Mustard Organic 0–15 187.5 ± 1.73 8.1 ± 0.55 1.19 ± 0.009
15–30 169.6 ± 11.6 8.3 ± 0.40 1.21 ± 0.008

Conventional 0–15 190.1 ± 12.0 8.4 ± 0.23 1.28 ± 0.02
15–30 185.2 ± 3.95 8.4 ± 0.35 1.26 ± 0.02

Sugarcane Organic 0–15 132.9 ± 26.6 8.4 ± 0.1 1.21 ± 0.02
15–30 109.8 ± 9.46 8.7 ± 0.1 1.23 ± 0.028

Conventional 0–15 153.5 ± 11.3 8.5 ± 0.1 1.22 ± 0.01
15–30 138.1 ± 15.0 8.7 ± 0.1 1.22 ± 0.02

5 Soil Carbon Pools Under Different Farming Practices



66

2006) that found significant increase in organic carbon content of the soil with 
organic farming. However, in study sites with equivalent crop rotation, Leifeld 
and Fuhrer (2010) discovered that there is no consistent difference in soil organic 
carbon between different farming systems and cautioned against drawing hasty 
conclusions about the effects of organic farming on SOC stock restoration. 
Variations in research time and soil depth tested could potentially contribute to 
these contradictory findings. Organic fields of different farming systems recorded 
low less labile carbon rather than CF fields of the same systems. The highest 
labile carbon was recorded under conventional mustard from 0 to 15 cm depth 
(11.6 mg kg−1) which is 241% higher than OF system of that crop. Organic fields 
of wheat and sugarcane didn’t show significant change in labile carbon content 
compared to conventional of the same. According to Herencia et al. (2008), plots 
adopting organic treatments had a numerical improvement in SOC at the conclu-
sion of the conversion phase; however, it is only after four to five crop cycles that 
the SOC rise became significant. All OF fields of different farming systems 
recorded higher very labile carbon rather than CF fields of the same systems 
except berseem which is 370% lower than the organic field of that system because 
higher biomass increases higher microbial activity which further helps in increase 
in higher labile organic carbon (Xavier et al. 2006). The difference in less labile 
carbon was significant between organic and conventional farming systems 
(p < 0.05).

Table 5.4 Depth-wise distribution of different pools of SOC (mg kg−1) under different 
farming systems

Crop
Farming 
system CLL CL CVL

0–15 cm 15–30 cm 0–15 cm 15–
30 cm

0–15 cm 15–30 cm

Wheat Organic 3.3 ± 0.1 0.7  
± 0.02

4.0 ± 
0.22

3.3 ± 
0.13

6.6 ± 
0.45

6.3 ± 0.56

Conventional 9.2 ± 
0.89

8.4 ± 0.77 4.0 ± 
0.31

3.4 ± 
0.26

3.5 ± 
0.29

2.3 ± 0.33

Barseem Organic 6.1 ± 
0.35

2.3 ± 0.17 6.6 ± 
0.23

6.5 ± 
0.29

2.7 ± 
0.12

1.5 ± 
0.089

Conventional 5.3 ± 
0.68

5.2 ± 0.87 11.5 ± 
1.2

9.4 ± 1.5 12.7 ± 
2.3

2.9 ± 0.98

Mustard Organic 3.0 ± 
0.97

0.9 ± 0.06 3.4 ± 
0.75

2.6 ± 
0.83

12.3 ± 
3.2

6.9 ± 1.1

Conventional 18.9 ± 
3.5

18 ± 2.6 11.6 ± 
1.8

10.9 ± 
1.5

3.5 ± 
0.91

2.8 ± 0.81

Sugarcane Organic 15.9 ± 
3.5

10.5 ± 1.5 3.9 ± 
0.99

1.9 ± 
0.84

13.4 ± 
2.5

10.0 ± 1.9

Conventional 16.5 ± 
4.6

13.4 ± 2.6 4.0 ± 1.7 1.4 ± 
0.87

1.1 ± 
0.09

0.8 ± 0.1

SOC soil organic carbon, CLL less labile carbon, CL labile carbon, CVL very labile carbon
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3.3  Microbial Biomass Carbon (MBC)

In all fields, microbial biomass carbon significantly decreased with increasing soil 
depth (Table 5.5). Jacinthe et al. (2011) also reported the trend of decrease in MBC 
as increase in depth. These investigations (Castellazzi et al. 2004; Potthoff et al. 
2006; Babujia et  al. 2010) show a decrease in soil microbial biomass as depth 
increases. Under sugarcane and mustard organic fields, from 0 to 15  cm depth, 
higher MBC was recorded than their conventional counterpart. The differences in 
microbial biomass carbon were however not significant between organic and con-
ventional farming systems (p>0.05) of barseem and wheat. In wheat, higher MBC 
was recorded in the conventional field than that of organic (0.24  μgC gm−1). 
Considerable changes in soil microbial markers can be observed in 2–3 years of 
organic farming (Jacinthe et al. 2011). OF of mustard had the highest MBC, i.e., 
55% more than sugarcane and 53% more than wheat as well as berseem. For OF, the 
persistent input of organic residues may favor the increase of the soil microbial 
biomass (Xavier et  al. 2006). Organic fertilizer treatment significantly enhanced 
soil microbial biomass C on sampling day. Despite the fact that similar amounts of 
organic C were provided, this rise was much higher in the manure treatments than 
in the compost treatments in the majority of cases (Jannoura et al. 2014).

Table 5.5 Depth-wise changes in MBC (μgC gm−1), C stock (Mg ha−1) and active carbon pool 
under different farming systems

Crop
Farming 
system MBC (μg C gm−1) C stock (Mg ha−1)

Active pool (mg 
kg−1)

0–15 cm 15–
30 cm

0–15 cm 15–
30 cm

0–15 cm 15–
30 cm

Wheat Organic 0.21 ± 
0.07

0.16 ± 
0.03

6.0 ± 0.99 1.3 ± 
0.05

10.6 ± 
1.1

10.6 ± 
1.2

Conventional 0.24 ± 
0.08

0.18 ± 
0.02

17.1 ± 
0.13

15.5 ± 
1.1

7.5 ± 
0.98

5.7 ± 
0.55

Barseem Organic 0.21 ± 
0.02

0.13 ± 
0.09

11.0 ± 
0.52

4.2 ± 
0.21

9.3 ± 
0.99

8.2 ± 
0.56

Conventional 0.21 ± 
0.05

015 ± 
0.05

9.8 ± 0.54 9.6 ± 
0.39

24.2 ± 
2.1

12.3 ± 
1.5

Mustard Organic 0.45 ± 
0.10

0.10 ± 
0.04

5.4 ± 0.24 1.6 ± 
0.15

15.7 ± 
1.9

9.5 ± 
0.89

Conventional 0.26 ± 
0.04

0.23 ± 
0.08

36.3 ± 1.4 34.0 ± 
1.1

15.1 ± 
1.1

4.8 ± 
0.56

Sugarcane Organic 0.20 ± 
0.04

0.11 ± 
0.08

29.3 ± 1.2 19.1 ± 
1.69

15.3 ± 
1.4

13.9 ± 
1.56

Conventional 0.10 ± 
0.05

0.02 ± 
0.01

30.2 ± 1.2 24.5 ± 
1.9

5.1 ± 
0.69

2.2 ± 
0.87

MBC microbial biomass
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3.4  Carbon Stock

C stock significantly following the patterns of labile carbon pools decreased 
with depth increment (Table 5.5). SOC is regulated by soil depth in addition to 
treatments (Joshi et al. 2017), and decreased SOC with increasing soil depth has 
been found by numerous researchers (Venkatesh et al. 2013; Yang et al. 2014). 
Bhattacharyya et  al. (2011) revealed that fertilization impacted SOC up to a 
depth of 30 cm, but had no effect in the 30–45 cm soil layer. It could be associ-
ated with lesser rhizobium activities, lower rhizode position, and less biomass 
return to subsurface layers. Under OF at 0–15 cm soil depth sugarcane recorded 
the highest C stock (29.3 mg ha−1) followed by berseem (11.0 mg ha−1), (wheat 
6.0 mg ha−1), and mustard (5.4 mg ha−1). The reduced C stock in lower layers is 
due to low downward movement of crop residue and compacted soil layers 
(Liangang et  al. 2020). Litter, crop residues, organic or green manures, and 
spontaneous vegetation over the soil surface provided additional C to the first 
layer, resulting in a significant rise in SOC content. During the first 5 years after 
converting to organic farming, the rate of rise in SOC was slower. This indicates 
that pruning crop residues and other organic inputs in the form of weed biomass 
that were not absorbed into the soil will take around 5 years to become part of 
the soil. The SOC exhibited a logarithmic growth in the surface soil layer after 
the first 5 years, but not in the deeper layer (Novara et al. 2019). Under OF sys-
tems lower C stock was recorded than CF practices. This may be attributed to the 
lesser duration of OF being in practice, tillage practices, higher microbial activ-
ity with input of organic fertilizer, and other climatic conditions (Hábová et al. 
2019). Also, the difference in carbon stocks of soil in OF and CF systems was 
observed to be significant (p < 0.05).

3.5  Active Pool of Carbon

In all the studied fields active pool significantly decreased with increasing depth 
following the patterns of very labile carbon pool (Table 5.5). The application of 
easily decomposable crop residues increased the active SOC pools in the topsoil 
(Parihar et  al. 2018). As effective root systems are mostly found in the plow 
layer (0–15 cm), and litter breakdown of residues and stubble material occurs in 
the topsoil, our findings imply that the 0–15 cm soil depths have higher SOC 
content than the 15–30  cm soil depths. Some researchers have found higher 
SOC levels in the top soil layer in agricultural land (Chivenge et al. 2007; Singh 
et al. 2015). All OF in different farming systems have high active pool value than 
the CF of same crop except berseem. Among OF systems active C pool was high-
est in mustard (15.7  mg kg−1) followed by sugarcane (13.9  mg kg−1), wheat 
(10.6  mg kg−1), and berseem (9.3  mg kg−1). Active pool contains the easily 
degradable organic carbon (labile, very labile), as transitional practices from CF 
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to OF clearly impact the size of the soil microbial biomass which leads to the 
higher active pool under OF (Santos et  al. 2012). However, the differences in 
active pools of carbon between OF and CF systems in the present study were not 
significant (p > 0.05).

4  Conclusion

Current status and changes in soil properties and organic carbon pools as response 
to agronomic practices are extremely important today. The stocks of soil organic 
carbon along with agricultural practices, soil structure and texture, soil depth, 
organic and chemical fertilizers input, and climatic conditions determine the status 
of soil as a sink or source of carbon. The problems associated with conventional 
farming are attracting the concerns of farmers, researchers, and policymakers 
towards organic farming. SOC serves as a significant component for maintaining 
soil quality and productivity. The various strategies of conservational and organic 
farming such as conservation tillage, persistent cover crops, mulching, efficient 
nutrient cycling, composting, manuring, and sustainable soil and water manage-
ment practices can enhance soil quality and potentially increase soil carbon 
sequestration.

The present study also concluded that the very labile carbon pool was higher 
in OF soil as compared to CF soil because in organic farming the micro flora and 
fauna are not disturbed much, but in conventional farming, the microbial activ-
ity is altered. Higher the number of years of organic practice, higher will be the 
microbial activity which would further increase the sequestration of carbon in 
the soil. Also, organic manures and compost applications or the strategies of 
organic farming have reported to increase more of the SOC content as compared 
to the similar amount of inorganic or synthetic fertilizer applications (Chai et al. 
2015; Gregorich et al. 2001).

In the present scenario, where we are struggling with the problem of climate 
change and where agriculture is becoming a source rather than a sink of green-
house gases, we have to put more efforts in the agricultural sector. This sector 
can be a promising field as a mitigation strategy of climate change. Even 
organic farming can provide us with financial gains and prestigious status in 
agribusiness. It can offer many benefits such as sequestering more of soil car-
bon, mitigating climate change, enhancing soil quality and prolonged produc-
tivity, and improving the economic status of a country in global agribusiness. 
The percentage of SOC content has come down to 0.3–0.4% in India whereas 
it should be between 1 and 1.5% (Jaisankar 2014). The main reasons for the 
degradation can be attributed to ever-increasing atmospheric temperatures, soil 
degradation, and conventional farming practices such as extensive soil tillage, 
poor land and crop management, and inappropriate use of fertilizer. These fac-
tors also accelerate soil erosion and loss of soil fertility and productivity. There 
needs to be a massive reduction in dependency on chemical fertilizers and 
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pesticides and more use of biopesticides and organic fertilizers. Conservation 
agriculture over conventional agriculture should thus be implied to get these 
benefits at minimal costs. It should be part of any policy or development strat-
egy for its effective implementation.
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Chapter 6
Effect of Conservation Agriculture 
on Energy Consumption and Carbon 
Emission

Ajay Kumar Mishra, Roohi R., Hardeep Singh Sheoran, Sarita Mishra, 
Astha Pandey, Diksha Sah, Mohammad Amin Bhat, and Sheetal Sharma

Abstract Conventional agriculture systems with an increased cost of cultivation 
reduce partial factor productivity, and deterioration of energy, soil, water, and envi-
ronmental quality threatens food security and aggravates climate change. A holistic 
package of reduced tillage, residue recycling, crop diversification, and best-bet 
agronomic practices offered by the conservation agriculture (CA) system seems 
promising in achieving food security and developing climate resilience in the food 
production system. This study highlights the overview of CA system, global and 
national status of CA, opportunities and constraints in adoption of CA, resource 
efficiencies, particularly energy budgeting in CA, the scope of climate resilience 
and greenhouse gas emissions (GHGs) mitigation through CA adoption, indices of 
soil health and carbon sequestration potential under CA systems, and prospects and 
critical areas of research for scaling of CA systems. Synergies and trade-offs need 
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to be precisely taken care of for need-based site-specific redesigning of CA systems 
for assured farmer’s income, ecological services, and sustainable development.

Keywords Conservation agriculture · Energy use efficiency · Carbon 
sequestration · Climate change · Global warming potential · Soil health

1  Introduction

In the present climate change scenario, where the global population presently 
remains at simply over 6.7 billion and is projected to exceed 9 billion by 2050, the 
critical role of farming communities in the upcoming years is to give safe and qual-
ity food to the consistently expanding global population. Though the conventional 
farming practices that rely on improved agricultural technologies, including farm 
mechanization and release of high yielding dwarf varieties of cereals, have led to 
achieving the self-sufficiency target, it was at the expense of nature of food, deterio-
ration in environment, and degradation of natural resources. During the period from 
1965 to 2015, the population of the world has expanded by 111%. In contrast, crop 
production increased by 162% (Burney et  al. 2010). It is expected that further 
expansion in crop production and productivity would be feasible through intensive 
utilization of land resources, fertilizers, irrigation, insecticides, the latest machinery, 
and advanced innovative practices. On the other hand, intensive farming cultivation 
is causing tremendous pressure on natural assets (soil and water), bringing about 
degradation and depletion (Burney et  al. 2010) of these valuable resources. The 
decline in the quality of these resources obliges a severe hazard to the maintainabil-
ity of present farming systems that rely entirely on agrochemicals and high 
energy inputs.

Moreover, these inputs injuriously affect soil and water, causing degradation as 
erosion, salinity, alkalinity, waterlogging, acidification, and multi-nutritional insuf-
ficiencies that eventually influence the soil quality and crop productivity (Lopes 
et al. 2011). Likewise, the usage of fertilizers and pesticides in excess may cause the 
accumulation of venomous elements in the soil and their leaching from soil strata 
cause eutrophication of shallow waters and adulteration of groundwater  (Alam 
et al., 2014). When applied agrochemicals fail to reach their intended target, they 
have a deleterious influence on ecosystems by leaching/aerial drift altering the vari-
ety and populations of non-targeted microorganisms, causing adverse effects on 
ecosystem processes and trophic interactions (Pimentel and Edwards 1982). As a 
result, the scientific community has recognized and sought alternative systems that 
may make agriculture more sustainable and profitable, owing to the rising environ-
mental, economic, and social concerns of chemical-dependent traditional farming. 
Conservation agriculture (CA) systems are numerous ways of managing the farm’s 
natural resources, minimizing erosion hazards, building resilient soil systems, and 
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improving overall productivity while achieving sustainability (Mishra et al. 2018). 
In other words, CA is a long-term agricultural production strategy that aimed at 
protecting the soil against the hazards of erosion and degradation while improving 
the quality of soil along with its diversity, thereby contributing to the preservation 
of natural resources, such as soil, water, and air, while sustaining yields at optimum 
level. It is a climate change adaptation strategy being promoted for small-scale 
farmers in India. Components of CA directly put into mitigation and adaptation to 
climate change, particularly emphasizing taking it to the reach of small farmers, 
where the practical on-farm resources observed to be a significant constraint. CA 
sustainably intensifies the smallholder farming systems and positively affects the 
environment via natural processes while helping the farmers adapt to and increase 
profits in the present climate change scenario (Chaudhari et al. 2015; Kumar et al. 
2021a, b).

2  Origin of Conservation Agriculture

Agriculture has become more intensive and mechanized, threatening the sustainable 
production and components like tillage operations, mono-cropping systems, and 
heavy dependence on chemical fertilizers, and pesticides have simultaneously 
raised many severe issues like degradation of soil health and shrinking water 
resources, coupled with decline in environmental quality (Mishra et  al. 2014; 
Chaudhari et al. 2015; Srivastava et al. 2016; Mishra et al. 2016; Singh et al. 2014; 
Mishra et al. 2018, 2021). The idea of conserving soil by avoiding tillage and keep-
ing the ground covered grew in popularity throughout time. Conservation tillage 
was the name given to this method of soil protection (Friedrich et al. 2012). Tillage 
was introduced to obtain good soil tilth, ensuring a good seedbed for germination of 
seedlings, managing weeds efficiently, and nutrient cycling in soil (Hobbs et  al. 
2008). With time, emphasis is being laid on the concept of carbon sequestration, 
where soils are considered a potential sink for carbon sequestration to combat global 
warming and climate change and tillage being the single most expensive component 
of crop production in modern times’ mechanized farming system. However, the 
development of seeding machinery reduced the tillage operations considerably and 
sowing crops without tillage operations is now possible (Friedrich et  al. 2012; 
Mishra et al. 2016). During the 1970s, farmers were attracted by resource- conserving 
technologies, showed a positive trend towards these farming systems, and adapted 
to conservation agriculture where soil quality and other resources were saved 
(Haggblade and Tembo 2003). The concept of minimizing soil disturbance origi-
nated in the 1930s, during the Dust Bowl of the USA. Later, CA was coined in the 
1990s. In the 1970s, CIMMYT pioneered no-till training programs and experiments 
in Latin American on maize and wheat systems. This approach was also applied in 
agronomy initiatives in South Asia in the 1980s. In the 1990s, CIMMYT began 
conservation agriculture in Latin America and South Asia, and in the early 2000s, it 
started in Africa. Conservation agriculture is gaining popularity among the farmers 
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and their number is also increasing worldwide in adopting conservation agriculture 
(FAO 2011). Higher adaptation is based on clear evidence of CA’s effects on (1) 
reducing wind erosion by 50–60%; (2) reducing runoff by 80%; and (3) boosting 
yield by 0.60–32%. In the USA, 60% of farmers in Tennessee use CA to grow cot-
ton, wheat, maize, and soybeans. Erosion control was included in the National 
Agricultural Bill, 2005, which aided CA development. In 1995, a “No-Till” day was 
held, which attracted 1000 people in 1995 and 4000 in 2005. In the USA, the focus 
has shifted from erosion management to soil quality conservation. With almost 25 
million hectares under conservation agriculture, the USA leads the world. 
Conservation agriculture covers 23 million hectares at commercial agricultural lev-
els in Latin America, mainly Brazil. Paraguay is now the foremost country regard-
ing no-tillage adoption globally (Lamourdia and Meshack 2009). Sowing of wheat 
without tillage operations in Asia, which includes countries such as India, 
Bangladesh, Pakistan, and Nepal, has reached 5 million hectares in recent years, 
particularly in the rice-wheat cropping system (Friedrich et al. 2012), and is expected 
to continue to rise in the coming years. Research taken up by the scientific commu-
nity globally in this field could play a key role in promoting and adapting conserva-
tion agriculture by farmers to reap the fruits of a diversified cropping system.

3  Fundamentals of CA, Its Principles, and Drivers

In this era of climate change, resource conservation technologies such as CA, which 
aid in reducing and responding to the negative effects of climate change, are seen as 
critical for increasing crop output while maintaining soil health and achieving the 
goal of agricultural sustainability. Around the world, conservation agriculture is 
making land use more sustainable by relying entirely on one ecological principle 
(Behera et al. 2007; Lal 2013a, b). CA as a holistic approach relies on three inter-
connected principles: minimal or no soil disturbance, sustaining soil cover, and crop 
diversification with other complementary crop production management strategies 
(Kassam et al. 2018).

These principles include:

• Minimal or no soil disturbance: Tillage is the mechanical manipulation of soil to 
obtain fine soil tilth for crop growth. In contrast, under conservation agriculture, 
minimum or no soil disturbance is done, which means no-tillage where the direct 
placement of seed and fertilizer is carried out to achieve the objective of minimal 
soil disturbance.

• Maintaining soil cover throughout the growing season through crop residues or 
intercropping is considered another principle of conservation agriculture. To pro-
tect the soil surface from erosion, at least 30% of the crop residue is retained on 
the surface. However, it is recommended to have more than 60% residue reten-
tion cover to control soil degradation effectively. Organic matter content in soil 
increases in this method, which increases water infiltration, inhibits weed growth, 
and reduces water evaporation from the earth.
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• Crop diversification: Crop diversification refers to the inclusion of new crops/
crop species or cropping systems in existing agricultural systems on a particular 
piece of land/farm. These practices may reduce insect pests and disease  outbreaks 
by breaking their growth cycles maintained in mono-cropping systems. Moreover, 
the addition of such crops can boost soil fertility and biodiversity by adding a 
substantial amount of organic matter to the earth.

4  Global and National Status of CA

4.1  Global Status

The region under CA cropland was estimated to be 106 million hectares (75% of 
global cropland) in 2008–2009, but it has since grown to 157 million hectares (11% 
of global cropland), a difference of 51 million hectares over the long period 
(2013–2014) was found (FAO-AQUATSTAT 2014). CA cropland continued to 
expand in 2015–2016, reaching 180 million hectares (Fig. 6.1), a difference of 74 
million hectares (69%) over 7 years (2008–2009) and around 23 million hectares 
(15%) during 2 years (2013–2014) (Kassam et al. 2018). CA has grown from 2.8 
million hectares in 1973–1974 to 6.2 million hectares in 1983–1984 and 38 million 
hectares in 1996–1997 (Derpsch 1998).

Overall, reception was 45 million hectares in 1999, and by 2003, the region had 
grown to 72 million hectares. From 1999 to 2013, the CA grew at an annual rate of 

Fig. 6.1 Global uptake of CA in M ha of cropland. (Source: Kassam et al. 2018)
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around 8.3 million hectares, from 72 to 157 million hectares (Kassam et al. 2015). 
CA has recently become a rapidly developing production system for a variety of 
reasons, including increased factor productivity and farm output with lower produc-
tion costs and higher profits, greater flexibility to biotic and abiotic stresses, reduced 
soil erosion and degradation, improved soil health, and climate change adaptation 
(Kassam et al. 2017; Farooq and Siddique 2014).

The USA, Brazil, Argentina, Canada, and Australia have the most land under 
CA. As shown in Table 6.1, South America accounts for around 69.9 million hect-
ares (38.7%) of global CA cropland area, compared to 63.2% of the region’s crop-
land. In contrast, North America, primarily the USA and Canada, accounts for 63.2 
million hectares (35.0%) of global CA cropland area, or 28.1% of the region’s crop-
land. The rest of the world accounts for nearly 10.8 million hectares (6.0%) of the 
total CA region, with 5.7 million hectares in Russia and Ukraine, 3.6 million hect-
ares in Europe, and 1.5 million hectares in Africa, corresponding to about 3.6%, 
5.0%, and 1.1% of their total cropland regions, respectively.

Europe and Africa are the developing continents in terms of CA adoption. In 
2015–2016, the CA area estimated was approximately 3.6 M ha, which was more 
noticeable by 127.4% than the 1.56 M ha surveyed in 2008–2009 (Kassam et al. 
2018). While in Africa, the CA space of 1.5 million hectares in 2015–2016 repre-
sents a 211% increase from 0.48 million hectares in 2008–2009. Because numerous 
types of research have proven excellent outcomes for CA frameworks, there has 
been a massive expansion in the CA sector in Europe and Africa.

4.2  Adoption of CA India

India is still at the underlying phase of CA adoption. Zero-tillage and CA adoption 
have increased to around 1.5 million hectares (Jat et al. 2012). In the rice-wheat 
(RW) system of Indo-Gangetic plains (IGP), zero-till (ZT) in wheat is the most 

Table 6.1 CA cropland area by each region in 2015–2016; CA area as a percent of total world 
cropland, and CA area as percent of cropland area in region

Region
CA cropland area 
(M ha)

Percent of global CA 
cropland area

Percent of cropland area 
in the region

South America 69.90 38.7 63.2
North America 63.18 35.0 28.1
Australia and New 
Zealand

22.67 12.6 45.5

Asia 13.93 7.7 4.1
Russia and Ukraine 5.70 3.2 3.6
Europe 3.56 2.0 5.0
Africa 1.51 0.8 1.1
Global total 180.44 100 12.5

Source: Kassam et al. (2018)
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critical CA-based technology being used. Traditional crop management approaches 
gradually move away from intensive tillage and toward zero-tillage in other crop-
ping systems (Mishra et al. 2016). Apart from ZT, a different idea of CA should be 
mixed in the framework to enhance further and sustain agricultural productivity. 
CA-based resource conservation technologies (RCTs) include research on live-
stock, crops, land, and water management. Several attempts have been made by 
State Agricultural Universities and ICAR institutes to adopt and promote the con-
servation technologies over the last 8–10 years and the result is that farmers are 
accepting CA-based technologies. The rice-wheat cropping system dominates in the 
irrigated region of IGP, where the technique is more widely used. The planting of 
wheat through zero-till seed cum fertilizer drill in rice-wheat cropping system pro-
motes the CA and it has been documented that zero-till drill is gaining popularity 
and around 25–30% of the wheat has been planted using zero-till drill in Indo- 
Gangetic regions of India (Bhan and Behera 2014). Raised-bed planting method, 
laser land leveling equipment, residue management approaches, and alternatives to 
the rice-wheat system are other technologies that promote CA, but they are not as 
common as zero-till drill (Singh et al. 2018).

5  Prospects and Constraints in Adoption of CA Systems

Heavy machinery and improper agricultural practices are being practiced, leading to 
high crop productivity to fulfill the world population’s ever-increasing food and 
energy demands (Mishra et al. 2021). Yet, it significantly impacts natural resources, 
climate change, and global energy security. Soil deterioration, increasing produc-
tion costs, and climate change are the key threats contemporary agricultural prac-
tices pose. Shifting to no-till or minimum-tillage farming is a much-needed 
technology today to tackle the issues mentioned above. The CA has the following 
prospects:

 1. Reduce the cost of production: Several research studies have documented that 
adopting no-till technology could reduce the cost of cultivation by saving the 
diesel, labor, and input cost (FAO 2008).

 2. Reduction in weeds incidence: Under CA, crop residues affect the weed seed 
germination and emergence (Sims et  al. 2018). When spread as mulch in the 
field, surplus crop residues suppress weed seed germination by reducing light 
transmission and allelopathic effect (Vivek et al. 2019; Chauhan et al. 2012a, b). 
Weed emergence is delayed, giving the crop a competitive advantage over 
the weed.

 3. Saving in water and nutrient: About 10–15% of water and 5–10% of nutrients are 
saved under CA systems (Mishra et al. 2016; Singh et al. 2018; Mishra et al. 2021).

 4. Increased grain yields: Yield improvements have been reported under CA on dif-
ferent crops. The main factor responsible for increasing output improves physi-
cal soil conditions and soil fertility status (Govaerts et al. 2009). Edralin et al. 
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(2017) studied the influence of CA on various crop yields and discovered a con-
siderable increase in average production in plots with CA compared to 
 conventional agriculture. The same was reported by Thierfelder et  al. (2015) 
under maize crop in Southern Africa.

 5. Environmental benefits: CA with no-till cultivation provides the opportunity to 
eliminate crop residue burning, which mainly contributes to the emission of 
greenhouse gas, i.e., CO2, CH4, and N2O. Burning surplus crop residues removes 
the plant nutrient from the field, but it can be recycled if incorporated into 
the area.

 6. Crop diversification opportunities: Adoption of CA offers opportunities to adopt 
crop rotation/sequence and agroforestry system by following proper spatial and 
temporal patterns, e.g., sugarcane, chickpea, mustard, and lentil.

 7. Enhancement of resources: No-tillage or minimum tillage combined with effec-
tive crop residue management allows for the slow decomposition of organic mat-
ter, enhancing soil physico-chemical qualities by supplying necessary plant 
nutrients and organic carbon. Surface residues operate as mulch, helping to 
maintain a consistent soil temperature, reduce evaporation, and promote soil bio-
logical activity. Edralin et al. (2017) documented a potential increase in organic 
carbon content with rice mulch at 15 Mg ha−1 in CA field before planting.

5.1  Constraints in Adopting CA

Change of mindset of the farming community, extension workers, and researchers 
would help change farmers’ attitudes towards adopting no-till drill technology 
(Meena and Singh 2013). The most critical barrier in adopting CA technology is 
overcoming the mentality about tillage (Hobbs and Govaerts 2010). The most dif-
ficult challenge in implementing CA on a broad scale is persuading farmers that 
effective cultivation utilizing reduced tillage or no-tillage is even viable (Mishra 
et al. 2018). So, there is a need to call the scientific research and demonstrations at 
farmer fields, which would be more helpful for convincing farmers about the poten-
tial benefits of CA. The following are the few critical constraints that impede the 
adoption of the CA system.

 1. Burning of crop wastes: Due to less time gap between the harvested crop paddy 
and succeeding wheat, farmers choose to burn surplus crop residues in the field 
for timely sowing (Mishra et al. 2014; Singh et al. 2018). Such practice is being 
followed in the rice-wheat cropping system of North India. The government, on 
the other hand, has outlawed this practice.

 2. Competition between CA and livestock feeding: Crop residues are used for live-
stock feeding and fuel purpose. Under rain-fed conditions, farmers face scarcity 
of crop residues due to less biomass production from different crops. So, farmers 
take out the crop residues for livestock feeding, a significant constraint for the 
CA system.
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 3. Inadequate farm implements for small and medium-sized farmers: Although 
numerous efforts have been made to build wheat seeder machinery for the 
 no- tillage method, more work is needed to standardize and promote high-quality 
machines that can handle a wide range of cropping sequences. This could help 
include permanent bed and furrow planting systems and harvesting practices, 
promoting the CA system by managing crop residues.

 4. High machine and implementation costs: CA implements are extremely expen-
sive. Small and medium farmers in the IGP region may not be able to afford the 
CA implements.

 5. Lack of knowledge about CA system potential: There is a need to develop a 
whole package of practice for CA, including planting, nutrient management, irri-
gation scheduling, insect and pest control, and harvesting for easy adoption of CA.

6  Resource Efficiencies, Particularly Energy 
Budgeting in CA

For energy management, intensive agricultural production systems rely mainly on 
fossil fuel burning, which accounts for most energy input and GHG emissions (Jat 
et al. 2019). The consumption and expense of energy in agriculture have increased, 
necessitating the adoption of more energy-efficient farming practices (Soni et al. 
2018). The agricultural industry in developing economies has seen phenomenal 
improvement in farm mechanization, significantly enhancing agricultural energy 
inflows (Saad et al. 2016). Crop productivity and production economics are deter-
mined mainly by the magnitude of energy investment and the availability of 
resources (Shahbaz et al. 2017; Mishra et al. 2018). The proportion of energy con-
sumed is determined by the degree of mechanization, the amount of active agricul-
tural work performed, and the area of cultivable land available (Ozkan et al. 2004; 
Alam et  al. 2005). Energy- and input-intensive production systems raise several 
sustainability challenges (Kumar et  al. 2020). Agriculture rapidly recognizes the 
importance of non-renewable energy conservation and effective resource manage-
ment for cleaner and more sustainable production (Kumar et al. 2019). As a result, 
for increased crop and energy productivity, profitability, and resource-use efficiency 
in the region, the current agricultural situation emphasizes the use of cost-effective, 
energy-efficient, and climate-resilient strategies such as zero-tillage, crop residue 
retention, and crop diversification mostly with legumes (Singh et al. 2011; Adak 
et al. 2013; Bhattacharyya et al. 2015). Input-output analysis of energy is customar-
ily used to appraise production systems’ effectiveness and ecological impacts 
besides comparing different production systems (Mobtaker et al. 2010). Increased 
energy usage in agricultural production systems not only boosts output and profits 
for farmers, but also has an unfavorable impact on the environment, adding consid-
erably to global warming (Arora et al. 2018; Pokhrel and Soni 2019). The increase 
in population will increase food consumption which will eventually entail higher 
energy use in agriculture (Gathala et al. 2020; Deng et al. 2021).
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6.1  Crop Establishment Strategies Based on Tillage 
and the Energy Relationship

Tillage elimination or reduction could reduce non-renewable energy sources such as 
diesel in some farming systems. As a result, using less fossil fuel in conservation 
agriculture operations will reduce greenhouse gas emissions into the environment, 
thereby improving services rendered by the ecosystem (Busari et al. 2015; Gupta 
et al. 2016). Traditional cultivation approaches have a higher cost of cultivation due 
to multiple tillage operations, labor-intensive crop installation, and more significant 
investment for regular irrigation, resulting in a poor economic return to farmers. 
New resource- and energy-efficient sustainable production technologies are required 
(Jat et al. 2014; Nandan et al. 2018). Nisar et al. (2021) quantified the effect of till-
age systems with or without straw mulch on energy management. They evinced that 
no-tillage decreased input energy compared to conventional tillage, thereby signify-
ing that no-tillage combined with mulching is the most energy-efficient approach. 
Minimal tillage, residual retention, mulching, and reduced traffic are examples of 
CA-based agro-techniques that could help reduce energy use and GHG emissions 
(Lal 2015).

6.2  Crop Residue Retention and Energy Relations

Proper management of crop residues in the field affects the efficiency of applied 
fertilizers, irrigation, and other inputs in the agricultural system (Chauhan et  al. 
2012a, b). Compared to residue removal, crop residue retention reduced net energy, 
energy productivity, and energy ratio (Nandan et al. 2021). According to Jat et al. 
(2019), crop residue retention is a renewable energy input that boosts system pro-
duction by roughly 12% in conservation agriculture-based diversified systems. In 
the maize-wheat system, zero-tillage combined with CA-based residue retention 
reduced total cultivation costs by 18% compared to traditional tillage systems 
(Erenstein and Laxmi 2008).

6.3  Cropping System and Energy Relations

Cropping systems and management tactics directly impact energy use and produc-
tivity (Tuti et al. 2012; Nandan et al. 2021). The input requirement of legumes to 
complete their life cycle is low compared to other crops (Das et al. 2018) because 
legumes tend to capture N from the atmosphere via biological nitrogen fixation; 
thus, the energy for the allocation of N fertilizer is reduced (Deng et  al. 2021). 
Parihar et al. (2017) evaluated a maize-wheat-mung bean system’s energy require-
ments and productivity in a semi-arid agro-ecosystem and identified a suitable 
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cropping system to attain greater energy efficiency. Minimum tillage is an ideal 
ecologically benign technology for mitigating climate warming as it results in 
reduced energy utilization, thereby having lower global warming potential (Pratibha 
et  al. 2019). Reduced tillage is an environmentally benign technique because it 
saves significant amounts of fuel and reduces CO2 emissions (Vilma et al. 2018) 
besides mitigating the disadvantages of traditional ploughings, such as high energy 
and fuel usage (Pratibha et al. 2019).

6.4  Energy-Economics Relationship

Economics, particularly net returns, is an important judgment tool in identifying the 
composition of an entity, management alternatives, and measuring the economics, 
energy demand, and carbon footprint of systems (Choudhury et al. 2016). Among 
the various aspects of crop production, seedbed preparation is among the significant 
providers of energy input (Yadav et al. 2018). Partially mechanized tillage lowered 
the cost of cultivation by 23% compared to fully mechanized tillage, indicating that 
partially mechanized tillage is the most energy-efficient option (Kumar et al. 2021a, 
b). Pratibha et  al. (2019) suggested that using primary tillage with minimal soil 
disturbance and fewer operations results in a lower cost of cultivation with the 
slightest compromise on yield. When compared to conventional agriculture plots, 
the conservation agriculture plots produced a net return that was 110% higher than 
the maize–wheat system as a whole (Ghosh et al. 2015). Intensive tillage and crop 
establishment procedures in the rice-wheat and maize-wheat systems contribute sig-
nificantly to high energy and labor expenses, resulting in low economic returns 
(Aryal et  al. 2015; Parihar et  al. 2017). Because of lower cultivation costs and 
increased crop output, conservation agriculture-based systems delivered higher net 
returns (Choudhary et al. 2018).

7  Scope of Climate Resilience and Greenhouse Gas 
Emissions (GHGs) Mitigation Through CA Adoption

Conservation agriculture is often considered a sustainable farming practice that 
maintains or increases crop productivity, improves the quality of the environment, 
assists in carbon storage, and provides plenty of ecosystem services. According to 
The FAO (2014), CA is a “sustainable approach that could manage the agro- 
ecosystems to maintain sustainable crop production while protecting the natural 
resources and the environment” (Lal 2013a, b).

Furthermore, appropriate agricultural practice aids in sequestering the carbon in 
soil and plant biomass and reduces the emissions from combustion of fossil fuel and 
soil-associated emissions, resulting in climate change mitigation. Since soil 
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disturbance in conventional agriculture promotes soil carbon loss due to soil organic 
matter erosion and enhanced organic matter decomposition. However, zero-tillage 
practiced in CA put forth the advantage of soil carbon gain. In addition to this, 
employment of zero-tillage in CA accounts for reduced power and energy require-
ments consequently, resulting in lesser fuel consumption, slower depreciation rates 
of equipment, and lower working time; all these collectively lead to reduced emis-
sion of GHGs both from the machinery and equipment manufacturing operations as 
well as from farm operations (West and Post 2002). For instance, farmers of Indo 
Gangetic Plains (IGP), on average, could save 36 L diesel ha–1 by employing zero- 
tillage in the rice-wheat system for land preparation and crop establishment.

Consequently, this is equivalent to a reduction of CO2 emission at the rate of 
93 kg CO2 ha–1 yr–1 (Erenstein and Laxmi 2008). Since CA emphasizes the retention 
of crop residue in the field itself, it improves soil fertility and overall soil health by 
adding carbon fixed in the crop biomass through photosynthesis. This feature of 
CA, in turn, also minimizes the amount of fertilizer used and, consequently, the 
associated GHGs emission (Corsi et al. 2012). Further, in northwest IGP, electricity 
is used to pump irrigation water, while diesel pumps are employed for pumping 
irrigation water in the eastern IGP, contributing to CO2 emissions. Therefore, CA 
also saves irrigation water and consequently reduces CO2 emissions.

Along with reduced emission due to minimal power and energy utilization, CA 
also influences the emission of carbon dioxide (CO2), methane (CH4), and nitrous 
oxide (N2O) from the soil. In the context of agro-ecosystem, the decomposition of 
plant residues emits CO2, which is further amplified by soil disturbance in conven-
tional agriculture practice. Emission of methane (CH4) from soil occurs due to 
methanogenesis in the anoxic microenvironment, while in the aerobic micro- 
environment, consumption and oxidation of CH4 by methanotrophs emit CH4. 
Nitrous oxide (N2O) is mainly produced through nitrification and denitrification 
under aerobic and anaerobic soil conditions. Further, puddling and continuous 
flooding of rice fields also aid in methanogenesis, thereby increasing CH4 emission.

In contrast, safe alternate wetting and drying in CA have resulted in a noticeable 
reduction in the emission of CH4 (Yan et al. 2003). Further, in the rice-based pro-
duction systems of IGP, CH4 emission can be reduced by preceding puddling and 
tillage and judicious management of water, thereby contributing lower GHG load 
into the environment and aiding in climate resilience. In addition, the GHGs emis-
sion from the rice-wheat production system of northwest India was continuously 
monitored by employing the static chamber method in an experiment by Sapkota 
et al. (2015). It was observed that CH4 emissions were much low for rice production 
through the direct-seeded production system of CA (<50 mg CH4 m–2 d–1) as com-
pared to the puddled transplanted field with continuous flooding of conventional 
agriculture (50–250 mg CH4 m–2 d–1). In the same experiment, the GHGs emissions 
from conventional tillage based rice-wheat systems, compared with CA-based sys-
tems, showed 27% higher total cumulative GHGs emissions (emission of CO2, N2O, 
and CH4) in terms of CO2-equivalent from the former practice. Therefore, CA gen-
erally enhances soil organic carbon storage in comparison to intensive agriculture, 
particularly in the topsoil. This can ultimately help with climate resilience, water 
regulation, carbon sequestration, and reduced emission of greenhouse gases (CO2, 
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CH4, and N2O). Under CA-based management approaches, Jat et al. (2020) reported 
39% (4-year average) reduced CH4 emissions than conventional tillage based rice- 
wheat systems (Table. 6.2). This was primarily due to anaerobic conditions created 
by puddling and constant flooding, which encouraged the formation and emis-
sion of CH4.

8  Indices of Soil Health and Carbon Sequestration Potential 
Under CA Systems

Agricultural production and future food, feed, and fiber security are all threatened 
by climate extremes worldwide. Crop production losses due to extreme weather 
events cost developing countries $80 billion between 2003 and 2014. Climate 
extremes threaten crop security around the world. CA is predicted to provide signifi-
cant climate adaptation benefits worldwide (Mishra et  al. 2018; Kumar et  al. 
2021a, b; Jat et al. 2020). However, the synergistic impacts of conservation strate-
gies on yield in normal and harsh climates and the underlying regulatory systems 
are yet unknown. Thus, the adverse effects of substantial seasonal and yearly 
weather variability on natural resources and field crop output are anticipated to 
become more pronounced even in the short run.

Soil reserves are an essential link in a complex web of interrelated atmospheric 
processes. The soil system acts as a climate buffer by controlling the hydrological 
cycle, exchange energy, and heat, reducing stress on plants and biota. The basic ele-
ments of the earth’s crust have a profound effect on climate change. Proper land use 
and soil management, on the other hand, have been shown to improve the stability 
of the earth’s structure, which has led to increased permeability during heavy rain-
fall, increased water retention during droughts, and improved gas exchange through 
natural respiration and heat adaptation. Despite certain variances, soil resilience is a 
key component of “soil quality/health” and “soil degradability.” General frame-
works for soil quality assessments do not usually consider the long-term effects of 

Table 6.2 Effects of various scenarios on rice/maize, wheat, and systems’ energy usage efficiency 
and global warming potential (GWP) (based on 4-year average, 2014–2018)

Scenarios Energy use efficiency (MJ−1 MJ−1) Area scaled (GWP; kg CO2 eq. ha−1)
Rice/maize Wheat System Rice/maize Wheat System

1 3.95C 7.44C 5.05E 5043A 1409A 6451A
2 4.70C 9.65AB 6.23D 3742B 384C 3359B
3 4.85C 9.26B 6.25D 3498B 536C 2962BC
4 10.81B 7.84C 9.25C 1245C 1407A 2652C
5 13.82A 10.05A 11.92A 213D 16B 228D
6 12.68A 9.27B 10.95B 285D 51B 336D
7 12.72A 9.51AB 10.26B 250D 8B 433E

1 – conventional tillage (CT) rice and wheat; 2 – CT direct-seeded rice (CTDSR)–zero tillage (ZT) 
wheat; 3 – ZT direct seeded rice (ZTDSR)–ZT wheat; 4 – maize-fresh beds (FB); wheat–CT; 5 – 
permanent beds (PB); 6 – ZT in both the crops on flat beds; 7 – ZT in all the three crops on flat beds 
(source: Jat et al., 2020)
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soil degradation processes (e.g., soil erosion). Extremes of weather can cause physi-
cal damage to productive soil activities. Finally, external inputs such as fertilizers, 
lime, and irrigation can help maintain the stability of the outlet in the face of climate 
change without compromising soil self-regulation. For this reason, detailed infor-
mation on the type and quantity of external inputs should be used to establish a 
productivity-based assessment of soil resilience.

9  The Impact of Conservation Agriculture on Soil Properties

9.1  Physical Properties

Soil aggregate stability is defined as the soil resistance to alter due to natural or 
human activity. There is a high intermediate correlation between aggregate stability 
in water, compound size, and total organic carbon percentage (Liu et al. 2019). Most 
of the plant residues are left on the surface of the earth, which improves soil aggre-
gation and aggregate stability. It also keeps the surface particles from eroding due to 
rain and splashes. Because it is dominated by no or minimum tilled and crop remains 
retention, CA is excellent for soil aggregation and aggregate stability (Li et  al. 
2011). It also keeps the surface particles from eroding due to rain and splashes. 
Expanding micropores into the soil also increases water retention capacity and 
reduces evaporation from the surface of the earth (Kassam et  al. 2009; Palm 
et al. 2014).

9.2  Soil Moisture Content

CA allows conserving soil moisture by covering it with agricultural wastes and 
mulches. Agricultural residues left on the field have increased water intake and 
retention. Mulching helps to protect the earth from extreme heat changes and reduce 
evaporation, which is especially important in tropical and subtropical areas (Kodzwa 
et al. 2020). According to several researchers, CA saves 20–30% of irrigation water 
by reducing evapotranspiration losses from above when residues are used (Jat et al. 
2012), and more water is available because soil moisture is retained.

9.3  Exchangeable Ca, Mg, and Micronutrients

Rahman et  al. (2008) documented that exchangeable calcium, magnesium, and 
potassium were significantly higher in uncultivated soils than cultivated soils. The 
provision of soil nutrients and cycling improved with the organic crop leftover 
decomposition, which are essential for soil microbes. Compared to conservation 
tillage, micronutrients such as zinc, iron, copper, and manganese were available at 
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higher amounts under zero-tillage with residues, especially near soil (Franzluebbers 
and Hons 1996). In distinction, Govaerts et  al. (2007) found that tillage did not 
affect iron, manganese, and copper concentrations, but extractable zinc concentra-
tions were considerably more remarkable in the upper surface layer in contrast to 
conservation cultivation with full residues. Similar outcomes were outlined by Du 
Preez et al. (2001) and Franzluebbers and Hons (1996).

9.4  Soil Microbial Biomass Carbon (SMBC)

Continuous application of CA-based management strategies lowers soil distur-
bance, which can promote soil microbial biomass (SMB) and improve microbial 
activity, leading to improved soil quality and higher crop output productivity 
(Hungria et al. 2009). According to Dong et al. (2009), the annual microbial bio-
mass carbon (MBC) was significantly higher in zero tilled (ZT) with residual while 
lower in conventional tilled (CT) without residual. On similar lines, Silva et  al. 
(2010) found consistently higher concentrations of MBC and microbial biomass 
nitrogen reaching more than 100% in no-tilled (NT) as compare to CT. The major 
factor influencing the amount of SMB in soil is widely thought to be the rate of 
organic C incorporation from crop biomass. The SMB is a measure of the soil 
potential to retain nutrients cycling (C, N, P, and S) and soil organic matter with a 
high turnover rate as compared to total soil organic matter (Dick,1992; Carter et al. 
1999). According to Spedding et  al. (2004), residue management had a greater 
impact on microbial properties than tillage, and plots with residue retention had 
higher MBC and N concentrations than plots with residue removal. But, only 
0–10  cm layer showed significant variations. Over conservation tillage, the NT 
practice increased total carbon by 45%, microbial biomass by 83%, and the 
MBC:total carbon ratio by 23% to a depth of 0–5 cm after 21 years. In surface soil, 
no-tillage boosted the rate of carbon and nitrogen mineralization by 74% when 
compared to conservation tillage systems (Zhang et al. 2018).

9.5  Soil Enzymatic Activities

CA-based farming system helps to increase the enzymatic activities in the soil, due 
to the vertical distribution of organic residues and microbiological activities, which 
positively affects soil enzymes that play a key role in catalyzing reactions required 
for organic matter decomposition and nutrient cycling, as well as energy transfer, 
environmental quality improvement, and crop productivity (Dick 1992). According 
to Roldan et al. (2007), ZT produced higher dehydrogenase and phosphatase activ-
ity in the 0–5 cm soil layer than CT. The dehydrogenase enzyme activity of soil 
under the permanent bed planting technique was substantially higher (62%) than 
that under conservation tillage, according to Singh et al. (2009). Hota et al. (2014) 
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discovered that organic residues combined with ZT resulted in higher acid phospha-
tase activity than control (i.e. without residues).

Results show that CA-based rice management boosted net profitability (NP) and 
energy usage efficiency (EUE) while reducing irrigation, i.e., water-saving, global 
warming potential (GWP), and system productivity (SP) when compared to current 
farmers’ practice (FP), as shown in Fig. 6.2 (Jat et al., 2020). When CA-based maize 
was substituted for rice, similar mean profitability gains (16%) were achieved, but 
dramatic improvements in irrigation (84%), EUE (+ 231%), and GWP (95%) were 
found when compared to FP (Jat et al., 2020).

10  Conclusion

Extensive and resource-intensive traditional farming deteriorated soil, water, and 
environmental quality, as well as low profitability, which has threatened the viabil-
ity of South Asia’s foremost rice-wheat (RW) systems. Conservation agriculture- 
based management approaches have a lot of potential for increasing production, 
profitability, and mitigating climate change, but they haven’t been widely adopted. 
To achieve a holistic shift in the conventional farming system, more evidence from 
other perspectives will be required. This chapter highlighted an overview of CA 
systems worldwide and an in-depth review of the Indian subcontinent. CA systems 
enhance productivity and profitability and offer strategies for resource conservation, 
particularly energy and water, carbon sequestration, and GWP reduction.

Fig. 6.2 Multidimensional 
outcomes of rice-wheat-
based CA systems 
compared to conventional 
farming in Western IGP 
(adapted from Jat et al. 
2020). CA conservation 
agriculture, EUE energy 
use efficiency, WS 
water-saving, SP system 
productivity, GWPR global 
warming potential 
reduction and NP net 
profitability
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11  Future Prospects and Critical Areas of Research

• Need-based site-specific adjustments in CA systems will be required for higher 
adoption and scaling at mass.

• The gap of technology reach to farmers needs to be addressed, i.e., availability of 
the zero-till machine and seed cum fertilizer drill.

• Capacity development of agents of change (key farmers, extension agents, and 
officers of agriculture department).

• Networking of scientific community, agents of change, and policymakers in the 
decision system for higher adoption and broader outcomes.

• Bottom to top approach for refinement and redesigning of CA systems.
• Policy framework for transforming subsidy to ecosystem services.
• Paving ways for carbon credits to farmers for sequestering carbon and develop-

ing climate resilience.
• Recognition and incentivizing farmers for adoption of resource-conserving 

technologies.
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Chapter 7
Plant Molecular Farming: A Marvelous 
Biotechnological Approach in Agricultural 
Production

Abhishek Kumar, Ashutosh Singh, and Anshuman Singh

Abstract Plants have several advantages over the system for strategic production 
of useful biomolecules and proteins. Plant molecular farming is the genetic manipu-
lations of the plants for production of desirable proteins and other useful biomole-
cules through various biotechnological approaches. Moreover, plants have been 
recognized as potential and natural sources of pharmaceutical products including 
various types of biomolecules including vaccines, proteins, antibodies, therapeutic 
entities, and essential blood substitutes. In addition, mammalian-derived recombi-
nant DNA drugs, plant-derived antibodies, edible vaccines, and useful proteins are 
advantageous and are free of mammalian viral vector as well as other pathogens 
related to human. Plant-made biopharmaceuticals are safer, cheaper, can be com-
mercially produced, and easily stored. In this article, we have described several 
plant diverse systems for the commercial production of useful proteins, enzymes, 
antibodies, and vaccines with desirable traits. Several advantages as well as disad-
vantages of the particular system of the plant molecular farming are also discussed. 
We have also described the product of plant molecular farming currently available 
in the market on commercial basis.
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1  Introduction

Plant molecular farming is a robust way for the production of beneficial biomole-
cules or valuable metabolites to industry in the plants and has been traditionally 
used in agricultural cultivation. Practical application of plant biotechnology and 
genetic engineering in order to manipulate and produce beneficial plant-derived 
metabolites and chemicals for commercial and pharmaceuticals are the major goals 
of plant molecular farming. Plant molecular farming in the agricultural sector has 
great potential in the production of biodegradable plastics, industrial chemicals, 
pharmaceutical drugs, foods, feeds, and fodders (Franken et al. 1997). The attempt 
of molecular farming has come into existence since the successful manipulation of 
the plants was reported by Fraley and co-workers in Fraley et al. 1983. Molecular 
farming in the plant system has great potential in the production of unlimited recom-
binant proteins for use as life sciences and proper health care. Plant suspension 
culture system has a broad spectrum for the production of protein and useful bio-
mass through propagation of transformed plants (Kamenarova et  al. 2005). 
Transgenic plants can produce mammalian proteins for long-term storage. Moreover, 
the expressions of various plants now have been successfully demonstrated and 
products have reached commercial utilization.

The use of plant extract for pharmaceutical and medicinal purposes flourished in 
the seventeenth century when scientific pharmaceutical treatment for the cure of 
human diseases and disorders was recommended. Nowadays, bioengineering has 
recently grew up new opportunities for using plants as production biopharmaceuti-
cals of desirable products. In this contrast, human growth hormones were the first 
pharmaceutically proteins expressed in the transgenic tobacco. In addition, other 
plant systems and transgenics are capable of expressng a number of proteins, vac-
cines, antibodies, nutraceuticals, industrial enzymes, etc. In order to produce recom-
binant proteins, prokaryotic and eukaryotic systems have been successfully utilized. 
Prokaryotic systems of recombinant protein production are much superior and con-
venient in comparison to other mammalian systems. However, most of the mam-
malian proteins need post-transcriptional modification of the proteins for biological 
activities, and that cannot be possible by the prokaryotic system. Overall, the use of 
prokaryotic system for the expression and production of long-term storage recom-
binant proteins is therefore perhaps limited. The production costs of mammalian 
proteins are very high because of maintaining cell culture and their proper scaling 
(Ma et al. 2005).

In contrast, molecular farming from plant system is one of the cheapest and suc-
cessful strategies for the manipulation of the pathway of protein synthesis into 
desirable recombinant proteins. Production of biopharmaceuticals and heteroge-
neous at a large scale from plant sources can be achieved at the lowest cost by avoid-
ing the contamination of animal pathogens. The progress in the production of 
recombinant proteins and antibodies using plant systems with respect to several 
human disorders and diseases is illustrated in the Table 7.1.

A. Kumar et al.



99

2  Plants as Production System of Plant Molecular Farming

Several kinds of plants are available on the earth and many of them have potential 
to produce human- and animal-related proteins and other useful edible vaccines. 
Large-scale multiplication and production is now simplified by increasing the area 
of plants under cultivation. The potential use of the plant system for the production 
of useful recombinant pharmaceutical was successfully established in the year 1990 
with successful expression of proteins resembling the mammalian serum album. 
Later, the crucial advantages of the plant system come into existence after the suc-
cessful expression of the functional antibodies in the plants in the year of 1989 
(Hiatt et al. 1989).

Table 7.1 Year-wise progress in the field of plant molecular farming

S. 
no. Years Progress Sources

1. 1986 First plant-derived recombinant 
proteins

Human growth hormones in tobacco and 
sunflower (Barta et al. 1986)

2. 1989 First plant-derived recombinant 
antibody

Full-sized IgG in tobacco (Hiatt et al. 1989)

3. 1990 First human protein production in 
plants

Human serum album in tobacco and potato 
(Sijmons et al. 1990)

4. 1992 First plant-derived vaccine 
candidates

Hepatitis B virus surface antigen in tobacco 
(Mason et al. 1992)

5. 1992 First plant-derived industrial 
enzymes

Α-amylase in tobacco (Pen et al. 1992)

6. 1995 Secretory IgA production IgA production in tobacco plants (Ma et al. 
1995)

7. 1996 First plant-derived protein 
polymer

Artificial elastin in tobacco plants (Zhang et al. 
1996)

8. 1997 Commercial production and 
characterization of avidin and 
their extraction and purification

Avidin from transgenic maize (Hood et al. 
1997)

9. 1998 First clinical trial using 
recombinant bacterial antigen

Antigen delivered in transgenic potato crop 
(Tacket et al. 1998a, b)

10. 2000 Production of human growth 
hormones in tobacco chloroplast

High-yield production of a human therapeutic 
protein in tobacco chloroplasts (Jeffrey et al. 
2000)

11. 2003 Expression and assembly of 
functional antibody in algae

Expression and assembly of a fully active 
antibody in algae (Mayfield et al. 2003)

12. 2003 Commercial production of bovine 
Trypsin in maize

Maize (Zea mays)-derived bovine trypsin: 
characterization of the first large-scale, protein 
product from transgenics (Woodard et al. 
2003a, b)

13. 2016 Chloroplast genome: Diversity, 
evolution, and application in 
genetic engineering

Chloroplast genome (Daniell et al. 2016)
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Applied biotechnology is expanding the use of plant system in biopharmaceuti-
cal production across the other and medicinal boundaries. Nowadays, molecular 
farming through plant systems has covered the production area of pharmaceutical 
proteins suited with the mammalian antibodies, blood substitutes, and edible vac-
cines. The strategies that precise the plant genetic manipulation, expression of the 
recombinant DNA and proteins as well as convenient storage of the raw materials 
with reduction of the contamination of human or animal pathogens during the pro-
cessing. The generalized models of the plant molecular farming through plant sys-
tem are diagrammatically presented in the Fig. 7.1.

Moreover, recombinant protein production and expression are also successfully 
achieved from microbial system. The robust microbial systems are able to produce 
only 0.1% of the commercial proteins, i.e., very less than plant system (Giddings 
2001). Economic advantages of the plant system with respect to strategic produc-
tion of plant-derived recombinant proteins and their proper expression are very 
clear as comparison to the other older system. The production of pharmaceutical 
proteins from plant system is much safer than the microbial system and animal sys-
tem because they lack human pathogens and oncogenic nucleotide sequences of the 
DNA (Commandeur et al. 2003). The biosynthetic pathways of protein are conse-
quently conserved between plants and animals, so plants are able to fold and assem-
ble the human recombinants proteins efficiently. This is a wonderful advantage over 

Fig. 7.1 Plant farming molecular approach of biomolecules production
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the bacterial system expression of the proteins because many of the folds in bacte-
rial proteins are fails to express. The ability of plant recombinant proteins with 
respect to folding and assembling is correctly demonstrated by their capacity to 
produce functional serum antibodies (Schillberg et al. 2002; Stoger et al. 2002a, b).

A number of crops including cereals, legumes, oil-yielding crops, vegetable, and 
fruit crops have been investigated for the production of desirable proteins and nutra-
ceuticals (Hood 2002). Selection of crops for plant molecular farming is the impor-
tant factors that include biomass per hectare, easy to transport, and scalability. 
Crops like rice, wheat, tobacco, and pea have been used to express single chain 
Fv-antibodies to compare the merits and demerits of the production system (Stoger 
et al. 2002a, b). The major advantages of the production of the proteins from vege-
table and fruit crops are that the edible organs can be used as unprocessed or semi- 
processed materials (Tacket et  al. 1998a, b). The idea for the production of 
nutraceuticals and edible recombinant vaccine is so much designated for application 
(Tacket et al. 2000). Potatoes are the major source among vegetable crops for edible 
vaccine production (Richter et al. 2000). Transgenic potato crops have been admin-
istrated to humans in three clinical trials carried out till date. Several reports describe 
the production of VP6 capsid protein in the transgenic potatoes for sufficient vac-
cination against several viral infections in the human being (Yu and Langridge 
2003). Moreover, traditional and transgenic potatoes have also been used for the 
production of protein from human milk, antibody-fusion proteins, and glucanases 
(De Wilde et al. 2002). Other vegetable crops, like tomatoes, have several advan-
tages in the production of nutraceuticals and recombinant edible vaccines over the 
potato (Schunmann et al. 2002). Tomato was first time used in the production of 
rabies vaccine and has also been used for the production of several types of antibod-
ies (Chong and Langridge 2000). In fruit sources, bananas are the alternative and 
ultimate source of edible vaccine production (Mason et al. 2002). They are widely 
grown and consumed by human beings, mostly in Africa, where vaccinations are 
badly needed (Sala et al. 2003).

2.1  Suspension Culture of Model Plants

The plant cell culture and culture of other cellular compartments can help to increase 
the potential of target protein production in the plant system. Like microbes, plants 
cells are capable of carrying out many post-transcriptional modifications that occur 
in the mammalian cells. Plant cells are simply maintained in the synthetic media, 
and they are able to synthesize several classes of proteins and glycoproteins, like 
immune-globulin and interleukins (Valkova et al. 2013; Twyman et al. 2012). The 
glycoproteins synthesized in the plants as recombinant human glycoproteins show 
similarities with the N-glycon structure in comparison to the same proteins pro-
duced in other organisms such as yeast, fungi, and bacteria. Improvement in the 
yield of recombinant proteins is one of the important and countable factors which 
have significant impact on the economic value of the product.
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Targeting the improvement of intercellular compartments and improvement 
of the downstream processing techniques through improvement in the devel-
opment of novel promoters and their targeted signals can improve the recom-
binant protein stability (Schillberg et al. 2013). In addition, the intercellular 
compartment of the plan cell, such as endoplasmic reticulum, chloroplast, 
apoplasts, vacuoles, etc., is capable of synthesizing the targeted recombinant 
proteins in the culture plant cell under the suitable culture medium. The rough 
endoplasmic reticulum of the plant cell, i.e. bearing ribosomes on their sur-
face, is the important route for the processing, proper disulphide bond forma-
tion, and glycolation. Chloroplasts and other plant pigments are also important 
sub-cellular components of disulphide bond formation and proper protein fold 
formation. Storage vacuoles and rhizomes of the plant root system can also be 
helpful in the downstream processing of the strategic secretion of the recom-
binant proteins (Drake et al. 2009). Several production and purification tech-
nologies such as transformation and cell suspension culture,and other transient 
systems related to plant molecular faring come into existence since the last 
two decades, and a large number of recombinant plant biomolecules and phar-
maceuticals including vaccines, blood products, antibodies, and growth regu-
lators hormones have been produced and some of them are commercialized at 
large scale.

2.2  Advantages of Plant System for Protein Production

Advantages of higher plants for strategic production of desirable biopharma-
ceuticals and recombinant DNA proteins are easy, fast, and cheapest rather 
than transgenic animal cells. Significantly, plants do not possess any known 
human pathogen that can contaminate the final biopharmaceutical products. 
Generally, higher plants synthesized proteins from eukaryotes with meaning-
ful folding patterns, and they are directly suitable for the environment that 
reduces the degradation. Plant molecular farming is one of the success keys 
for the proper expression of recombinant protein products and their commer-
cial production. This is one of the most important advantages with regard to 
the economics. Till date, large numbers of bioengineered recombinant pro-
teins and biopharmaceuticals have been expressed in the plant system. Mostly, 
plant systems are capable of offering the cheapest and safest source of bio-
pharmaceuticals and recombinant proteins production up to commercial scale. 
Furthermore, plants have over advantages as compared with the traditional 
system of molecular farming for pharmaceutical proteins production. The 
advantage of plant molecular farming over the traditional system includes 
cheapest cost of production, absence of human pathogen, and the ability to 
fold and assemble the complex recombinant proteins.
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3  Biomolecules Production in Transgenic Plants

Transgenic plants are marvelous gifts toward the bioengineering sciences that per-
tain strategic and trustful production of biopharmaceuticals and recombinant pro-
teins. The transformation of crop species through insertion of transgenes depends 
on the availability of the desirable recombinant plants. The bio-macromolecules 
produced in the living system are used for several diagnostics purposes and dietary 
supplements. Numbers of crops including tobacco, alfalfa, potato, canola, maize, 
Arabidopsis, rice, and cowpea have been successfully used in the production of 
pharmaceutical proteins, industrial enzymes, antibodies, and vaccines.

Tobacco mosaic viruses are one of the successful models which infect tomato 
plants and express the target proteins in the plant tissues. The transgenic tomato 
plants with tobacco mosaic virus can be easily manipulated in the production of the 
targeted proteins and can be easily obtained within months. Moreover, transgenic 
plant-derived protein products are commercially available.

Maize-derived trypsin protein is one of the recent introductions of trans-
genic plant-derived protein and has significant market value. Maize-derived 
trypsin is the protease and has a variety of applications as well as processing of 
the biopharmaceuticals. Bovine is another trypsin-derived recombinant mole-
cule that helps in the commercial production of the desirable reagents. The 
maize-derived trypsin is proteolytic in nature and has been expressed in a vari-
ety of recombinant systems. The proper expression of such enzyme at commer-
cial level in maize system was possible only through expression of enzymes in 
inactive zymogen form. However, the zymogen genes were inserted into plants 
and active form of enzymes was recovered in the extract from corn seeds 
(Woodard et al. 2003a, b).

In addition to exploiting transgenic plants with respect to plant molecular 
farming, the recombinant form of bovine aprotinin from transgenic maize 
seeds was first time reported by Zhong et al. (1999) using the particle bom-
bardment method. Zhong et  al. also reported that Agrobacterium tumefa-
ciens-derived vector acts as seed-derived promoter deriving the corn bovine 
aprotinin gene. Later in Ruggiero et  al. 2000, Ruggiero et  al. reported the 
first human collagen produced in the transgenic plants. He incorporated the 
fibrillar collagen 1α3 and α22 as cDNAs that code for complete human col-
lagen chain into transgenic tobacco plants using agrobacterium with select-
able marker gene npt2. Protein synthesized in the form of triple helix and was 
much surprising since plant farming system does not contain any particular 
post-transcriptional machinery that would be needed for collagen assembly. 
Several other evidences have been reported in plant molecular farming by 
using transgenic plants in the strategic production of the plant-derived phar-
maceutical molecules and desirable proteins suited to humans and other ani-
mals (Table 7.2).
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Table 7.2 Potentially produced proteins, enzymes antibodies, and vaccines from plant sources

S. 
no. Details of beneficial plant molecular farming products

1. Proteins produced in different plant host systems
Therapeutic proteins Commercial/potential use Plant sources

(i) Hirudin Anticoagulant Canola
(ii) Protein C Anticoagulant Tobacco
(iii) Calcitonin Parathyroid gland, carcinoma, Paget 

disease, osteoporosis
Potato

(iv) Human somatotropin Hypopituitory dwarfism Tobacco
(v) Glutamate 

decarboxylase
Diabetes Tobacco

(vi) Epidermal growth 
factor

Mitogen Tobacco

(vii) Tuber growth factor Mitogen Tobacco
(viii) Erythroprotein Mitogen Tobacco
(ix) Human serum album Blood substitute Potato
(x) α haemoglobin Blood substitute Tobacco
(xi) β haemoglobin Blood substitute Tobacco
(xii) α-trycosanthin HIV therapy Tobacco
(xiii) α-interferon Viral protection, anticancer Rice
2. Industrial enzymes and proteins produced in different plant host systems

Industrial enzymes Commercial/potential use Plant sources
(i) Cellulase Industrial use Alfalfa, tobacco, 

potato
(ii) Phytase Commercial products and industrial use Alfalfa, tobacco
(iii) Manganese peroxidase Industrial use Alfalfa, tobacco
(iv) Avidin and avidinase Potential reagents in research purpose Maize
(v) α-amylase Industrial use Tobacco
(vi) β -1,4 xylanase Commercial products and industrial use Tobacco
(vii) β -1,3-1,4 glucanase Industrial use Tobacco, canola
(viii) Glucuronidase Potential reagents in research purpose Maize
3. Antibodies produced in different plant host systems

Potential use Antigen used Plant sources
(i) Plant protection Nematode antigen Tobacco
(ii) Research purpose Human creatine kinase Arabidopsis
(iii) Phytoremediation Atrazine Tobacco
(iv) Tumour associated 

antigen
ScFv–84–64 against carcino- 
embryogenic antigen

Cereals

(v) HSV–2 Glycoprotein B of HSV Soybean
(vi) Colon cancer Colon cancer antigen Tobacco
(vii) Tooth decay S. mutant antigen Tobacco
(viii) Hodgkin’s lymphoma ScFv of IgG from mouse B-Cell 

lymphoma
Tobacco

(continued)
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3.1  Expression of Recombinant Biomolecules in Plant

The expression of the recombinant DNA biomolecules and desirable proteins in 
crop-plants has been reported and commercially produced in the industries. The 
biopharmaceuticals and desirable proteins that have been expressed in the plant 
system are categorized by Horn et al. in 2004. The broad areas are related to 
therapeutics and pharmaceutical intermediates; some of the proteins are directly 
used as plant-pharmaceuticals along with the desirable recombinant DNA pro-
teins. The stable transformation of the desirable foreign DNA segments into the 
plant genome can be achieved by Agrobacterium-mediated gene transfer tech-
niques. The insertion of such types of genes through Agrobacterium results in 
the proper expression of stable recombinant DNA proteins. In addition, poly-
nucleotide transformation is possible to target the protein of interest into other 
sub-cellular locations such as plastids, cytoplasm, endoplasmic reticulum, vacu-
oles, apoplasts, and their post- transcriptional modification to be carried out on 
the expressed proteins.

Overexpression of the particular DNA sequences adjacent to the recom-
binant DNA motifs, presence of many times repeated homologous sequences, 
and methylation of the recombinant DNA and their co-suppression can also 
lead to the inactivation of the recombinant DNA. Most of the inactivation 
concern with recombinant DNA can be prevented by avoiding the line selec-
tion with proper insertion of the single transgenes, instead of using the 

Table 7.2 (continued)

S. 
no. Details of beneficial plant molecular farming products

4. Vaccines produced in different plant hosts
Antigen Disease and causal organism Plant sources

(i) Malarial antigen Malaria Tobacco
(ii) CT-B toxin Cholera Potato
(iii) Spike protein Piglet diarrhea Tobacco
(iv) LT-B toxin Traveler’s diarrhea Potato
(v) Capsid protein epitode Mink enteritis virus Cowpea
(vi) c-Myc Cancer Tobacco
(vii) Hemagglutinin Influenza Tobacco
(viii) Mouth/foot disease 

antigen
Foot and mouth disease Cowpea

(ix) Gp41 pesticide HIV-1 Cowpea
(x) Norwalk virus antigen Gastrointestinal disease Tobacco, potato
(xi) Hepatitis–B antigen Hepatitis–B Tobacco, potato
(xii) Glycoprotein B Human cytomegalovirus Tobacco
(xiii) Human 

cytomegalovirus
Human cytomegalovirus Tobacco

(iv) Rabies virus 
glycoprotein

Rabies Tomato, tobacco, 
Spinach

7 Plant Molecular Farming: A Marvelous Biotechnological Approach in Agricultural…



106

repetitive homologous DNA sequences. Stability of recombinant DNA 
inside the plant genome sometimes undergoes inactivation and results in the 
prevention of their expression in the plant cells.

Optimization of the foreign DNA sequences for their proper expression in the 
plant system is much more complicated as comparison to the animals because plant 
systems have so many different codons than animal systems. However, introgressed 
foreign genes/DNA must be optimized for the proper expression in plant systems 
and must be able to increase the translation and result in the desirable protein yield. 
Expression of the proteins can be accelerated by using tissue-specific promoters. It 
has been also tested that the use of some tissue-specific promoters is also helpful in 
avoiding adverse effect on the proper growth and development of the engineered 
plants. The other protein accelerating systems of the expression like introns in the 
recombinant DNA molecules enhance the transgene translation by addition of 
untranslated leader sequences (Maas et al. 1991).

However, the transformations of the plants with multiple genes are desirable for 
the production of multi-protein complex and multi-biopharmaceuticals and can be 
achieved with improvement in the metabolic pathways as well as their biosynthetic 
routes. Insertion of multiple genes can also be achieved by other practices by using 
internal ribosomal sites for the strategic expression of genes in the form of bicis-
tronic messengers. This is one of the novel approaches for the expression of the 
multiple genes because internal ribosomal sites are the polynucleotide sequences 
that recruit the eukaryotic ribosomes to mRNA to initiate protein translation in the 
middle of the messenger-RNA molecules needed for translation initiation 
(Houdebine and Attal 1999). The potential expression of proteins and biopharma-
ceuticals from the plant system has been reported from some plants such as tobacco, 
tomato, maize, and rice, mentioned in Table 7.2 and Fig. 7.2.

3.2  Antibody Production in Plants

Antibody production in the plant system is one of the important goals of plant 
molecular farming that can accelerate by proper and strategic utilization of bioengi-
neering and recombinant DNA techniques. Most of the antibodies are multiple units 
of the glycoproteins produced by the mammalian immune system, which allows 
them for application in thediagnostics of several diseases in humans and animals. 
Plant molecular farming is one of the robust and alternate sources of antibody pro-
duction for animals and humans. Bioengineered and genetically modified plants 
have been frequently used for antibody production against several human diseases, 
such as dental caries, rheumatoid arthritis, cholera, E. coli diarrhea, malaria, certain 
cancers, Norwalk virus, HIV, rhinovirus, influenza, hepatitis B virus, and herpes 
simplex virus (Schillberg et al. 2003). The antibodies have been produced from the 
plant systems, as mentioned in Table 7.2.
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3.3  Edible Vaccine Production

Edible vaccines came into trends after the discovery and commercial production of 
the hepatitis B vaccines from tobacco plants and tomato tubers. Most of the plant- 
derived edible vaccines are either complete unit or sub-unit of the vaccine that intro-
duced selectable genes into the plant system and facilitated the production of desired 
proteins. In addition, specific antigen inbuilt protein can be produced in plants with 
the ability to induce several hormonal responses when eaten by animals and humans. 
Protection studies have been shown on a broad spectrum when these oral vaccines 
are used. In most of the studies, it has been found that the protection was actually 
better with the edible vaccine than the edible vaccines commercially available in the 
market (Lamphear et al. 2004). Most of the edible vaccines are mucosal in nature 
and capable to stimulate systematic and mucosal immune response. Moreover, a 
number of edible vaccines from plant sources have been produced against hepatitis 
B, E. coli, V. cholera, rabies virus, human cytomegalovirus, and rotavirus. Most of 
the edible vaccines are also tested in many crops and successfully produced from 
potato, tomato, tobacco, canola, etc. (Table 7.2).

4  Commercial and Economic Opportunities for Plant 
Molecular Farming in Future

The commercial and economic prospects of the plant molecular farming prod-
ucts are quite high as compared to the traditional plant products. A large number 
of products with desired recombinant biopharmaceutical have been developed 

Fig. 7.2 Plant farming molecular approach for protein production
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from the transgenic plants and are commercialized for the prevention of several 
pathogens. There is a huge demand for plant-derived recombinant proteins 
because protein productions from plants are stable molecular transformation of 
the crop species on earth. To achieve specific recombinant protein production in 
the plant system, DNA or polynucleotides which code for the desired proteins 
and their proper synthesis must be inserted in the plant cell and may increase the 
economic production of the plant products. Commercial molecular farming is 
now exposed to the strategic production of suitable products from plant sources. 
The high value biopharmaceutical products and many recombinant proteins 
owing to their high-profit potential are under development and some of them are 
under clinical trials from large and marginal industries. However, if the products 
of molecular farming from plant sources are to be commercially successful, 
definitely in the future they must be holding competitive advantages over alter-
native products. The commercial process of plant molecular farming is still 
much an immerging industry and has the opportunity to capture new markets for 
agricultural products.

5  Conclusion

A combination of the diverse group of plant system and advanced biotechno-
logical tools and techniques may be helpful in the plant molecular farming 
strategy for the production of useful pharmaceutical proteins, antibodies, desir-
able nutraceuticals, and other edible vaccine for the nation. Molecular farming 
through utilizing plant systems is the attention of new era for shifting of tradi-
tional and basic research towards commercial exploitation of the plant system. 
Strategic and stepwise exploitation of the potential plant system for commer-
cial drug development and development of pharmaceutical produce is the major 
objective of plant molecular farming. In this context, efforts have been done by 
researchers in the plant molecular farming area. Recently, in the last decade, a 
number of products have been developed with desirable nutraceuticals and 
recombinant proteins. However, some of the limitations have been observed in 
the plant molecular farming system which are due to the less or limited expres-
sion of the proteins in the human system from the plant system. Other chal-
lenges in plant molecular farming are various environmental impacts, biosafety 
regulations, and several types of risk assessment, which reflects the release and 
commercialization of transgenic agricultural crops. These crucial issues have 
major challenging impact on the successful and commercial production of 
plant molecular farming. Improvement in such types of challenges and alterna-
tive sources will be helpful in the production of novel products through the 
plant molecular farming system.
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Chapter 8
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Abstract Agricultural applications of remote sensing have recently been extended 
to attempt detailed identification and mapping of rice growth stages. In terms of 
agricultural insurance, the information plays a critical role in the damage assess-
ment as rice plants of certain ages cannot survive flooding or drought events. In this 
research, Phased Array-type L-band Synthetic Aperture Radar (PALSAR-2) data 
were evaluated in combination with machine learning techniques. Two forms of 
PALSAR-2 images were investigated, i.e., backscatter coefficients and their combi-
nation of textural and decomposition properties. The datasets were ingested into 
seven machine learning processes so that the accuracy of each combination of tools 
and datasets for identifying rice growth stages could be evaluated. Additional SAR 
properties provided a benefit to all machine learning processes, with at least 4% 
improvement. Random Forest was the best performing algorithm with 83% overall 
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accuracy, while competing processes such as C5.0 and Extreme Gradient Boosting, 
followed closely with a margin of about 5%.

Keywords AdaBag · Extreme gradient boosting · GROWTH phase · PALSAR-2 · 
POLARIMETRY · Random forest · RICE · Support vector machine

1  Introduction

Rice is the most prolific food crop in many parts of the world, including Indonesia. 
Rice fields have been developed for centuries, and because they are essential for 
food security in many countries, they continue to be an issue of great importance for 
concerned governments. Due to their importance, rice fields must be thoroughly 
monitored. Since Indonesia’s rice-growing regions are scattered throughout the 
country, a practical yet reliable monitoring system needs to be established.

Contributions of remotely sensed images for providing continuous data supply 
for environmental monitoring purposes, including agriculture, have long been 
established. Previous crop assessment has focused on the utility of multispectral 
data by taking advantage of its long-term, repetitive records (Son et al. 2016). A 
survey of the literature showed that initially, remote sensing data were exploited for 
mapping the extent of rice fields (Van Niel and McVicar 2004), and a variety of 
classification algorithms including supervised tree-based models (Panuju et  al. 
2021) and the autonomous Iterative Self-Organizing Data Analysis Technique 
Algorithm (ISODATA) (Nguyen et  al. 2012) have been used to map rice field 
extents. Kamthonkiat et al. (2005) went beyond field extent mapping to distinguish 
between irrigated and rain-fed rice fields by exploiting time-series multispectral 
datasets. This approach allows more precise information retrieval about planting 
intensities. Irrigated rice fields could have up to three planting seasons per year, 
while rain-fed rice fields are usually planted only once. Detailed information extrac-
tion tends to involve more sophisticated image processing strategies; hence, geo- 
artificial intelligence techniques are typically employed. With the availability of 
diverse machine learning models, there is a need to understand the relative perfor-
mance of different classifiers and regression techniques for crop monitoring 
applications.

Large-scale rice monitoring involves close investigation of drought water-related 
hazards since irrigation networks may be absent or not fully functioning. Drought 
has been a primary research focus using multispectral sensors by taking the advan-
tage of vegetation indices and the thermal infrared waveband. Water deficiencies 
change the canopy structure of rice, creating conditions whereby vegetation indices 
can be exploited. Numerous vegetative-related remote sensing products have been 
presented (Sholihah et  al. 2016), which have often been combined with thermal 
bands to elevate their sensitivity (Bhuiyan et  al. 2017). Drought can also be 
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evaluated through the estimation of moisture, using either plant or soil moisture as 
a primary proxy. Sensitivity of SAR waves to moisture has been proven as a good 
candidate for this task. Brisco and Brown (1990), for instance, found that C-band 
HH-polarized backscatter coefficients provided a good medium for detecting 
drought in wheat. For regional assessment, however, data and information fusion 
exploiting multispectral and microwave data can be more beneficial (Anderson 
et al. 2012).

The impact of drought severity on rice production depends on the growth phase 
of the plants. For example, juvenile plants do not survive prolonged drought or sus-
tained flooding, which frequently occurs in many Indonesian rice field centers. 
Further information on growth status, preferably at the parcel level, would be a key 
benefit to improving the quality of agricultural datasets. The key challenge to using 
multispectral data for this task is the frequency of atmospheric disturbance. Clouds 
are almost persistent in rainy seasons, making data acquisition from optical sensors 
fairly difficult in the rainy season.

With the advent of X-, C-, and L-band Synthetic Aperture Radar (SAR) sensors, 
opportunities for data exploitation have improved. Using an X-band data series, 
Inoue et  al. (2014) concluded that VV polarization was useful to estimate grain 
yield, although it was insensitive to growth phases. Abundant C-band data from 
Envisat and Sentinel-1 satellites suggested that discrimination of planting, vegeta-
tive, reproductive, and maturity phases is generally successful (Chen et al. 2007). 
The application of L-band, unfortunately, has been lacking in this domain, perhaps 
due to limited data available to public. A survey of the literature indicates that 
L-band data only work well for the identification of rice fields if they are combined 
with multispectral data, as demonstrated by Torbick et  al. (2011) in the United 
States and Wang et al. (2015) in a Chinese site. The application of L-band SAR with 
the aid of machine learning should, therefore, be examined.

The main objectives of this article are two-fold. The first is to identify whether 
single-acquisition L-band SAR features have enough sensitivity to distinguish dif-
ferent growth phases of rice. The second is to explore augmented methods through 
adding the use of textural and decomposition features of L-band SAR and testing 
their performance using modern machine learning methods.

2  Methodology

2.1  Test Site

This research was situated in rice fields centered on Bojongpicung district, Cianjur 
regency, Indonesia (Fig. 8.1). The area has relatively flat terrain, with undulating 
and hilly terrain in the south. The soils are predominantly Grumusols, which are 
favorable for cash crop agriculture. According to the Köppen climate classification, 
the Bojongpicung area can be categorized as A-type, which is typical of tropical 
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regions with long wet seasons. This area has been one of the primary breadbaskets 
of West Java province and is supported by numerous rivers and streams. In addition, 
irrigation networks have been in use for decades and they have generally been well- 
managed. The northern part of the region is bordered by the Cirata dam, one of three 
major dams along the Citarum River.

2.2  Datasets

The primary earth observation data used in this research were Level 1.1, dual- 
polarized PALSAR-2 data, obtained from Japan Aerospace Exploration Agency 
(JAXA). The data were acquired on 8 November 2017 in ascending mode, with an 
off-nadir angle around 28.6 degrees. In order to assist the interpretation, a series of 
Sentinel-2 datasets, before and after the acquisition date, was available to this 
research. To support the analysis, ground datasets were collected and compiled in a 
database. This spatial database consisted mainly of rice field parcels with their 
respective block numbers, integrated with planting dates, the planted cultivar, and 

Fig. 8.1 Test site, Bojongpicung, Cianjur, Indonesia
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field documentation when available (Fig. 8.2). This provided the baseline for the 
sampling procedure used in classifying growth stages.

2.3  Data Preprocessing and Analysis

PALSAR-2 data were preprocessed to retrieve backscatter coefficients in HH and 
HV linear polarizations using the SNAP software package, which is freely available 
from the European Space Agency (ESA) website. The image was calibrated into β0 
to allow subsequent processing of terrain flattening. This further removed artifacts 
due to undulating terrain. In this preprocessing step, the one arc-second digital ele-
vation model (DEM) from the Shuttle Radar Topography Mission (SRTM) was 
employed. A Range-Doppler terrain correction was applied to the data and the out-
put was registered to World Geodetic System (WGS) 1984, permitting the integra-
tion with existing baseline maps. In order to minimize the speckle effect, the image 
was filtered using a 5×5 Gamma MAP filter. Finally, linear-scaled backscatter coef-
ficient images were converted to decibels (dB) for analysis.

Dual-polarized SAR images are often found inadequate to solve complex prob-
lems. Augmentation procedures, such as combining them with textural features, are 
popular options that can significantly improve classification outcomes (Panuju et al. 
2019). In this research, extending backscatter data was performed using the 

Fig. 8.2 Field documentation during surveys. Top images: early vegetative phase. Bottom left: 
late vegetative phase. Bottom right: late vegetative phase with early indications of drought
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grey-level co-occurrence matrix (GLCM) to describe textural features(Haralick 
et  al. 1973). While several GLCM features exist in the literature, this research 
employed two robust textural features, i.e., mean and variance, as summarized in 
Panuju et al. (2019).

In order to further amplify the overall accuracy, dual polarimetric decomposition 
was applied. In this research, a dual-polarized entropy-alpha angle model (Cloude 
2007) was investigated. Augmentation of backscatter data was implemented by 
inserting entropy, alpha angle, and anisotropy features. Entropy (H) quantifies ran-
domness of surface scatterers and ranges from 0 (single-type scattering) to 1 
(random- type scattering)(Cloude and Pottier 1997). Alpha angle deals with domi-
nant scattering mechanism under a specific neighborhood definition (in this case 
5×5 pixels). Generally, assessment of surface scattering is sufficient with these two 
decomposition features. Where complex conditions occur, an additional feature, the 
Anisotropy, is employed (Cloude and Pottier 1997). It aids interpretation when 
more than one dominant scatterer (0 < H < 1) is present. At the end of the prepro-
cessing, the complete set of SAR data consisted of nine layers.

The field survey indicated that only five growth stages existed during PALSAR-2 
data acquisition (Table 8.1). Forty-eight samples were available to this research and 
the training-testing ratio was set to 70:30. All analyses, including modeling and 
prediction, were done in the R programming environment. The ‘raster’ package was 
used for input/output procedures, while modeling was undertaken using the ‘caret’ 
package. In order to minimize bias, a ten-fold cross-validation technique was 
applied with three repeats. This approach, however, consumed a substantial amount 
of computing time. Parallel processing, both in the training and prediction steps, 
was done using the ‘doParallel’ package.

This research employed conventional, monolithic tree Classification and 
Regression Trees (CART) as the benchmark. The model is available from the ‘rpart’ 
package. To further investigate modern machine learners, the study also imple-
mented the C5.0, Average Neural Networks (AvNN), AdaBag (ADAB), Random 
Forest (RF), Support Vector Machine (SVM), and Extreme Gradient Boosting 
(XGB) algorithms. These techniques were selected considering the robustness of 
these classifiers in previous research (Panuju et al. 2021; Trisasongko et al. 2019; 
Trisasongko and Paull 2020). The overall accuracy was computed using the testing 
dataset for each algorithm.

Table 8.1 Class targets. The ripening stage was absent from the study area during the SAR 
acquisition date

Code Stage Growth phase Age (days after transplanting)

1 Vegetative Pre-tillering <35
2 Vegetative Tillering 35–45
3 Vegetative Stem elongation 46–56
4 Reproductive Booting 57–67
5 Reproductive Heading 68–78

B. H. Trisasongko et al.
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3  Results and Discussion

3.1  Backscatter Characteristics

Figure 8.3 depicts pattern similarity among linear polarization states during the 
juvenile to mature growth phases. Young plants weakly return incident signals to the 
antenna, especially in HV polarization. The interaction between juvenile plants and 
cross-linear polarization like HV has been found to be disturbed by soil background 
(Trisasongko and Panuju 2015). As a consequence, incoming waves are mostly 
reflected away from the sensor. Hence, recorded signals from this type of interaction 
are usually low. This phenomenon is known as the specular scattering mechanism. 
While augmented backscatter coefficients have been found in regular planting pat-
terns as shown in rice fields(Ouchi et al. 2006) or rubber plantations(Trisasongko 
and Panuju 2015), this research did not observe this distinctive condition in the 
research site.

The co-polarization (HH) backscatter coefficient in the early tillering stage 
was about –13dB, similar to previous findings(Wang et al. 2009). Rapid develop-
ment of the plant canopy in the early growth phase minimizes soil background 
and the observed scattering process changes to diffuse scattering where a greater 
amount of the incoming signal is received by the SAR antenna. This research found 
that in the tillering stage, a dense and curved rice canopy significantly increased 
returning signals, even though the SAR look angle was quite steep. While previ-
ous findings showed very low HV returns (around –24dB) (Wang et al. 2009), this 
research indicated that HV polarization of the remaining vegetative stages would be 
around –16dB. This large discrepancy was most likely rooted in different types of 
cultivars, which determines plant vigor in a given set of site conditions. While Inpari 
32 and Inpari 33 were among the popular cultivars at the research site, the Pajajaran 
and Siliwangi cultivars have also been introduced. Because the provision of new 
cultivars has caused further complexity in the backscatter patterns, models capable 
of distinguishing cultivars should be sought and developed in the near future.

Fig. 8.3 Varying 
backscatter coefficients 
due to growth phase
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Across the different vegetative phases, the behavior of backscatter coefficients 
remained similar either for HH or HV polarization. The early phase of the reproduc-
tive stage was indicated by a slight increase of backscatter coefficient, which was 
consistently shown in both HH and HV polarizations. This suggested that L-band 
SAR might be able to discriminate vegetative from reproductive stages.

3.2  Polarimetric Decomposition

Robustness of SAR data for classification or regression problems might be achiev-
able through data augmentation. There are three different approaches to SAR data 
augmentation from a polarization perspective. The first is through applying arithme-
tic procedures to backscatter coefficients, including the Canopy Structure Index 
(CSI), Volume Scattering Index (VSI), and Biomass Index (BI) as proposed by Pope 
et al. (1994). Second, derivation of textural properties from specified backscatter 
coefficients has also been reported. Although several texture filters are available, 
GLCM has been the most commonly used.

With the advent of polarization diversity in SAR remote sensing, a third alterna-
tive to the aforementioned approaches has been introduced as an aid to improve 
model accuracies. SAR polarimetric features can be derived through polarimetric 
decomposition techniques applied to phase-preserved data. In general, fully polari-
metric SAR data are ideal for data augmentation experiments or implementation 
(Trisasongko et al. 2019; Trisasongko and Paull 2020). Nonetheless, this type of 
data has been very rare and might not be available for regular monitoring schemes. 
With that condition in mind, single look complex format dual polarization SAR data 
show the greatest potential among other SAR data types.

Figure 8.4 presents the Entropy-Alpha angle plot for the data used in this experi-
ment. It shows that classes generally overlap, suggesting that discrimination solely 
based on both decomposition features is likely to fail. While the distribution of 
Entropy is shown to be feasible, the dynamic range of the Alpha angle is extremely 
low, i.e., from 0 to around 30. This suggests that odd-bounce dominated in the inter-
action between the signal and rice plants. Although ground data showed the exis-
tence of a heading period, the figure demonstrates that dipole/volume scattering 
(Alpha angle around 45°) was not met. This condition indicates strong penetration 
of L-band SAR through the rice canopy, although dense canopy was observed dur-
ing the field survey in the heading stage. Despite little indication of their contribu-
tion to the model, detailed observation of Entropy features suggests that juvenile 
plants behaved purely as single-bounce scatterers. Maturing plants would behave as 
random scatterers, with the growth of scattering objects like leaves and panicles.

The less successful discrimination based on Entropy and Alpha angle may be 
improved by incorporating Anisotropy. However, as shown in Fig. 8.5, Anisotropy 
provided trivial separation between the classes. High levels of Anisotropy designate 
that a secondary scattering mechanism could be observed, summarizing the com-
plex wave-plant interaction when L-band is employed. The importance of 
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secondary scattering mechanisms, however, is slightly diminished with growing 
plants. This could be linked to the increasing domination of volume scattering 
among the rice canopy, which was shown to have a high level of Entropy (Fig. 8.4).

3.3  Baseline Accuracy

With the specific target of providing detailed information on growth stages, this 
research explored contemporary machine learning models to further investigate 
their performance and utility. Table 8.2 presents a summary of each machine learn-
er’s capability to distinguish five growth stages. The research found that SVM per-
formed best when dual-polarized data were used. In addition to its high overall 
accuracy, the algorithm also yielded the best class-based accuracy.

It appears that monolithic, tree-based models such as CART performed poorly 
with limited predictors (only two in this case) and with sufficiently large targets to 
be resolved. This finding, alongside one previously reported (Panuju et al. 2021), 
suggested that the monolithic tree was most likely to be ineffective during modeling 
and for producing cropping maps. Interestingly, their improved versions, ensemble 
tree learners including C5.0 and RF, provided a little improvement. In this experi-
ment, as a competing model to SVM, RF was found to be less able to discriminate 

Fig. 8.4 Entropy-alpha angle plot
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complex classes, with about 10% difference between them. It appears that RF 
requires a larger number of predictors to work as expected, while SVM may be 
more suitable when there are only a few independent variables. Nonetheless, another 
type of ensemble tree-based learner, XGB, showed an ability to separate growth 
phases similar to that of SVM. Gradient boosting was reported to have a better clas-
sification accuracy than SVM (Trisasongko et al. 2020). Having access to a variety 
of machine learning approaches would be beneficial to better understand the perfor-
mance of contemporary classifiers. This research indicated that when the number of 
predictors is severely limited, tree-based models, either monolithic or ensemble, 
may not work well.

Fig. 8.5 Distribution of Anisotropy over plant growth phases

Table 8.2 Overall and class-based accuracies (in %) using the backscatter dataset

Method Overall accuracy 1 2 3 4 5

CART 54.5 94.5 70.5 61.7 50.0 50.0
C5.0 55.5 99.4 58.7 64.5 60.9 75.3
AvNN 53.5 95.6 50.0 59.2 50.0 50.0
ADAB 61.4 95.6 73.6 67.5 50.0 62.5
RF 58.4 95.6 55.7 70.2 64.2 83.2
SVM 68.3 96.2 59.7 81.3 75.3 66.6
XGB 65.4 96.2 63.7 74.6 72.0 77.5
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3.4  Accuracy Based on the Augmented Dataset

In practice, a threshold of 80–85% overall accuracy is typically required for reliable 
monitoring purposes (Panuju et al. 2019). Since the results reported in the baseline 
experiment did not reach that level, data augmentation using textural and polarimet-
ric decomposition features was implemented. Table 8.3 indicates that this strategy 
was fairly successful in elevating both overall and class-based accuracy levels.

SVM, as the best performer in backscatter-based data feed, slightly dropped the 
overall accuracy with this augmented dataset. In contrast, ensemble tree learners 
were highly responsive to additional datasets. The greatest improvement from base-
line backscatter data was achieved by RF(ca. 24.8%); C5.0, with the second largest 
improvement (around 24.7%), was only slightly less improved. The latter, in gen-
eral, provided the best option to predict all pixels, with around 83% accuracy, fol-
lowed by the C5.0 model. This suggests that tree-based learners benefit from access 
to more predictors to be able to discriminate complex problems such as detecting 
vegetative growth phase or estimating woody vegetation biomass (Trisasongko 
et al. 2019). Nonetheless, it is also acknowledged that the information contained in 
the additional data is also critical and should be regarded when data augmentation 
is considered. Insertion of weak variables may impose diminishing returns that 
could be ineffective during modeling and prediction.

The predicted growth phase map from the RF model is shown in Figure 8.6. As 
shown, all blocks are nearly homogenous as their planting date was fairly similar. 
We noticed, however, that a few blocks could be considered outliers to the general 
trend. The reason for this is unknown and this deserves further investigation in 
future research.

The overall accuracy obtained by this research was at the same level as the 
research conducted in China using SVM (Zhang et al. 2009). It should be noted, 
however, that this research employed five class targets, in comparison to only three 
growth stages used in the Chinese study. Finding comparable outcomes to this 
research in the literature is somewhat difficult as the diversity of cropping patterns, 
sampling sites, classification methods involved, etc. complicate the comparison.

With this achievable level of accuracy, L-band SAR should be useful for baseline 
monitoring of rice fields. The paucity of L-band data should be reevaluated to over-
come the data gap in fine scale studies. Although regular provision of L-band data 

Table 8.3 Overall and class-based accuracies (in %) using the augmented dataset

Method Overall accuracy 1 2 3 4 5

CART 62.4 96.2 67.8 71.9 80.3 50.0
C5.0 80.2 98.9 89.0 83.5 86.4 87.0
AvNN 62.4 95.6 49.4 70.6 80.7 50.0
ADAB 65.4 96.2 64.6 73.7 80.9 62.5
RF 83.2 98.9 89.0 86.7 90.3 87.0
SVM 65.4 95.0 76.3 69.4 66.0 68.8
XGB 79.2 99.4 78.5 85.2 89.7 79.6
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has been achieved by JAXA, the ScanSAR mode of PALSAR-2 does not fully suit 
the nature of small-scale rice patches in Indonesia, or perhaps also in many tropical 
regions, due to coarse spatial resolution. In addition, the stability of the statistical 
models investigated in this research should be reevaluated to investigate the model’s 
transferability as suggested by Trisasongko et al. (2019).

Fig. 8.6 Growth phase map derived from the Random Forest model

B. H. Trisasongko et al.
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4  Conclusion

Spatially scattered rice production and a need for identifying the most suitable 
machine learning methods to map rice growth phases have motivated this research. 
Employing L-band SAR supported by Sentinel-2 for interpretation, the robustness 
of contemporary machine learners to map rice growth phases was explored. A sig-
nificant upsurge of returned signals occurred in the tillering stage. Both HH and HV 
showed similar patterns in describing growth phases and were capable of differen-
tiating vegetative from generative stages. Augmenting backscatter datasets with tex-
ture layers improved the overall accuracy by about 8% – 27%, depending on the 
machine learning method used. The greatest increase was for C5.0 at 26.7%, fol-
lowed by Random Forest at 24.8%. Meanwhile, the highest accuracy using the aug-
mented data was generated by Random Forest at 83%. This research demonstrates 
the robustness of machine learners, which, together with suitable datasets, yields an 
overall accuracy >80%, the commonly used threshold for mapping purposes.
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Chapter 9
Mapping Prominent Cash Crops 
Employing ALOS PALSAR-2 and Selected 
Machine Learners

Dyah R. Panuju, Haerani, Armando Apan, Amy L. Griffin, David J. Paull, 
and Bambang Hendro Trisasongko

Abstract Monitoring crops area is essential in achieving food security. The pro-
duction coverage, crop types, and their growth phases are the key for monitoring 
food supply. Remote sensing plays a critical role to provide reliable data on regional 
basis supporting food production monitoring. In this research, we evaluated the use 
of Phased Array-type L-band Synthetic Aperture Radar (PALSAR-2), coupling with 
selected machine learners to map crop areas in the South Burnett, Queensland, 
Australia. Feature amendments onto dual polarimetric of ALOS PALSAR-2 were 
then assessed by means of variable importance to improve classification perfor-
mance. Four machine learners were selected based on previous research and evalu-
ated through classification accuracy. The best performer was Random Forest 
followed by C5.0, which generated accuracy at 82% and 81%, respectively. The 
response of data amendment varied over different classifiers. Random Forest and 
C5.0 seem to produce the highest accuracy at the best data-subset, while additional 
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features with contribution less than 20% tended to reduce the accuracies of the two 
classifiers. Meanwhile, extreme gradient boosting tree and support vector machine 
kept increasing their accuracies, although additional features contributed trivially.

Keywords C5.0 · Crops mapping · Extreme gradient boosting tree · PALSAR-2 · 
Polarimetry · Random forest · Support vector machine

1  Introduction

A number of 7.8 billion population with the average growth rate of 2015–2020 
at 1.09% are presently in need of consumption (United Nations 2019). 
Monitoring crop production and distribution is required to manage supply and 
demand for food provision. Valid data for both sides are crucial for realizing 
food security. Remote sensing plays a vital role for inventorying and monitoring 
crops area, which are the basis for managing food production (Courault et al. 
2016). The technology may inform spatial distribution of production area 
(Rembold et al. 2019), indicate the stage of growth (Chosa et al. 2010; Panuju 
et al. 2021), map cropping pattern (Sianturi et al. 2018), and identify cropping 
intensity (Chen et al. 2012; Gumma et al. 2014; Liu et al. 2020) and has been 
employed to estimate yield (Zhang et al. 2017; Zhou et al. 2017). All are core 
data for managing food supply.

Various imageries, including optical and microwave sensors, have been 
explored to provide reliable data for securing food supply. To deal with the 
challenge of generating such information, understanding the suitability of data 
to produce targeted figures is necessitated (Erasmi and Twele 2009; Panuju 
et al. 2020b). One should consider spatial and temporal resolutions to opt for 
appropriate imageries for delivering the information. A few options are avail-
able for indicating growth stages of seasonal crops (Panuju et al. 2020a), gen-
erally from optical sensors, such as SPOT Vegetation (Khan et  al. 2010), 
PROBA (Haerani et  al. 2018b), MODIS (Panuju et  al. 2021), Landsat, and 
Sentinel-2 (Chen et al. 2012; Liu et al. 2020). In another instance, medium to 
high spatial resolution images are required to map crop production areas which 
enable accurate estimation of food supply (Shi et  al. 2014; You and Dong 
2020). Nevertheless, cloud cover may limit the ability of optical sensors for 
monitoring those areas, especially in tropical regions (Ngo et  al. 2020). 
Microwave sensor is an option for such cases.

The employment of microwave sensor has been pivotal for mapping crop 
areas in cloud-prone regions. The exploration of synthetic aperture radar (SAR) 
for crop monitoring covers various aspects, including delineating rice fields 
(Bouvet and Le Toan 2011; Ngo et  al. 2020), identifying waterlogged field 
(Trisasongko 2019), mapping cash crops (Li et  al. 2020; Veloso et  al. 2017), 
estimating yields (Zhang et al. 2017), identifying pest infestations (Westbrook 
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and Eyster 2017), etc. Nonetheless, using radar data also faces challenges, i.e., 
speckles that have been handled by several techniques, such as speckle noise 
model (Sumantyo and Amini 2008), improved sigma filter (Lee et al. 2009), or 
extended sigma filter (Lee et al. 2015). Another challenge is limited bands of 
SAR data which are between 1 and 4 that constrain the capability for mapping 
heterogeneous spaces. To deal with such circumstances, some researchers fused 
the data with optical images or their derivatives (Cai et  al. 2019; Guo et  al. 
2019) and added decomposition or texture layers (Panuju et al. 2019). Additional 
layers have substantiated the increase of accuracies.

To date, advancing machine learning algorithms have progressed mapping 
capability when implemented on either optical or SAR data. Yet, a few have dis-
cussed the response of combining SAR amendment with various machine learners 
(Küçük et  al. 2016; Panuju et  al. 2019; Wei et  al. 2019). This chapter aims to 
document an experiment which compares selected potential machine learners, 
i.e., C5.0, Extreme Gradient Boosting Tree (XGB), Random Forest (RFO), and 
Support Vector Machine (SVM) implemented on amended SAR data with Cloude 
decomposition and texture layers for mapping prominent cash crops in the South 
Burnett, Queensland, Australia.

2  Methodology

2.1  Research Site and Dataset

This research was conducted in Kingaroy, South Burnett, Australia. Kingaroy 
is situated in eastern Queensland, having a total area of 8381.6 km2 with sub-
tropical climate, average daily temperature between 12.2°C and 25.7°C, and 
precipitation about 769 mm annually (South Burnett Regional Council 2020). 
The area is known as a high quality producer of agricultural products, such as 
peanut, navy bean, and corn (Sorby and Reid 2001). Figure 9.1 describes the 
research site with the distribution of training and testing data for the 
experiment.

We employed ALOS PALSAR-2, taken from RA6 JAXA Project, with 
acquisition date on 10 March 2016, to suit ground data. The Fine Beam Dual 
(FBD) mode of PALSAR-2 Level 1.1 was used to comprehend the impact of 
additional synthetic layers for improving the accuracy of crop mapping. The 
original SAR data comprised of horizontal transmitting and receiving signals 
(HH) and cross polarization (HV) and were provided in the form of single 
look complex (SLC) with slant-range geometry at ascending mode. The swath 
width was 70  km and the range resolution 3  m (Rosenqvist et  al. 2004). 
Moreover, Shuttle Radar Topography Mission (SRTM) 1 arc-second HGT was 
used for terrain correction, while Google Maps were employed to situate 
research site.

9 Mapping Prominent Cash Crops Employing ALOS PALSAR-2 and Selected…
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2.2  Procedure of Analyses

In general, the procedure started from image preprocessing, followed by texture 
analysis, ground sampling, classifying images with selected machine learners, iden-
tification of variable importance, selecting the best model, and generating predicted 
map prediction. Figure 9.2 describes the flow of analyses from preprocessing to 
producing the final map of crop area employing dual polarimetric ALOS PALSAR-2. 
The data were preprocessed by performing calibration, terrain correction, decom-
posing SLC data by using dual polarimetric Cloudetheorem into Entropy, Anisotropy, 
and Alpha angle components, and transferring the sigma-0 into decibel (dB). Dual 
polarimetric ALOS was terrain-processed with pixel spacing at 10 m assisted by 
SRTM. The use of dual band ALOS synthetic aperture radar data may limit the 
capability to differentiate various crops for mapping purposes. Following the works 
of D. R. Panuju et al. (2019) the amendment of the data was implemented to improve 
the accuracy. Five texture layers were generated for each HH and HV, including 
Grey Level Co-occurrence Matrix (GLCM), i.e., Mean, Variance, Correlation, 
Entropy, and Maximum Probability (MAX) for the amendment. Whole processing 

Fig. 9.1 Research site in South Burnett, Queensland, Australia (Courtesy of Google Maps)
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steps were performed in Sentinel Application Platform (SNAP) software version 
8.0, freely available from European Space Agency (ESA) website.

All layers were then utilized for classifying crop areas employing four selected 
classifiers, i.e., C5.0, RFO, SVM, and XGB. Random forest was selected due to the 
superiority in terms of accuracy to map area (Chan and Paelinckx 2008; Panuju 
et al. 2019). The classifier was often compared with SVM and some showed SVM 
outperformed RFO (Trisasongko et al. 2017), while others demonstrated compara-
ble performance between the two (Dalponte et al. 2013; Duro et al. 2012) for map-
ping purposes. C5.0 is an improved version of C4.5 which has potential for 
comparison (Fu et  al. 2019). Last, the use of extreme gradient boosting tree has 
grown, being comparable to random forest (Naghibi et al. 2020; Panuju et al. 2019), 
which indicates its capability for crop mapping. All classification, accuracy assess-
ment, and spatial prediction were coded in open access R statistical software, mainly 

ALOS2 FBD

Callibration,
Terrain correction

Decomposition based on
Cloude

Sigma0 conversion

Five layers for each HH and
HV: i.e. GLCM mean, GLCM
variance, GLCM correlation,

Entropy and Maximum
probability

21076 samples
Training:testing=75%:25%
7 classess: bare soil, corn,

mungbean, pasture, peanut,
water, woody

For each algorithm to
determine best subset (vars

contribution ��20%)

By comparing the accuracy of
classification derived from all variables

and best subset

Employed: Random forest,
Extreme gradient boosting,
Support vector machine, C5.0
Examine: features fusion
including Cloude
decomposition and textures

Preprocessing
Texture analysis

Classification

Identify variable
importance

Select best model

Map prediction

Sampling

Fig. 9.2 Procedures to map crops area employing ALOS-2 FBD and feature fusion and four algo-
rithms of machine learning
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using ‘raster’ in handling remote sensing and GIS data and ‘caret’ packages for 
modeling. In order to minimize bias, we performed ten-fold cross validation. 
Parameter tuning for each machine learning algorithm was performed automatically 
using ‘caret’ package.

Sampling was taken from the South Burnett region of Queensland, Australia, 
with a total of 28099 pixels. The samples were separated into 75% training and 25% 
testing for mapping seven classes, including (1) bare soil, (2) corn, (3) mungbean, 
(4) pasture, (5) peanut, (6) water, and (7) woody vegetation. Pictures of the ground 
truth taken during field surveys are presented in Fig. 9.3. We then compared four 
selected algorithms and selected the best performer to generate crop maps. 
Algorithms’ selection was based on the accuracies of classification being presented 
in several articles including Trisasongko et al. (2017)and Panuju et al. (2019). Data 
amendment was assessed by comparing the overall accuracy, examining variable 
importance, and selecting between the best subset and all employed variables. The 
use of variable importance to identify the best contributor for classification was 
discussed in Breiman (2001), Verikas et al. (2011), and Belgiu and Drăguţ (2016). 
The best subset composed of all variables having contribution more than 25% to 
variable importance (VI). Maps were then generated from the best and second best 
algorithms.

Fig. 9.3 Pictures representing four prominent cash crops and other land cover classes. From left 
to right: top: corn, mungbean, pasture; bottom: peanut, water, woody vegetation
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3  Results

An initial result was performed to evaluate the accuracy of dual polarimetric layers 
of ALOS PALSAR-2 and augmented datasets. Figure 9.4 describes the improve-
ment of accuracy by feature fusion. As expected, dual polarimetric layers generated 
quite low accuracy, ranging from about 51% to 58% by all four algorithms. This 
demonstrated that limited layer inputs would not be able to gain sufficient outcome, 
although modern machine learning tools have been applied. Adding three features 
from dual polarimetric Cloude decomposition improved the accuracy by about 10% 
to 17%, with the highest improvement given by RFO. More accuracy improvement 
was generated by amending textures layers, by about 14% to 24%. Again, the high-
est increase was performed by RFO, followed by C5.0 and XGB. It appears that 
SVM responded sluggishly to layer amendment.

3.1  Variable Importance

Variable importance signifies the contribution of each variable to differentiate 
classes (Breiman 2001). Each algorithm presents different levels of importance on 
the same datasets. To some degree, Fig. 9.5 shows similarity of important variables 
resulting from random forest and extreme gradient boosting tree. A few similarities 
were shown by SVM. Nonetheless, C5.0 tended to not differing contribution of vari-
ous variables, except for maximum probability of either horizontal or co- polarization 
layers which were very little or negligible.

dB
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0.0

C5.0 RFO SVM XGB C5.0 RFO
Algorithms
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Fig. 9.4 Accuracies of classification derived from dual polarimetric layers (dB), dB + Cloude 
decomposition, and dB + textures

9 Mapping Prominent Cash Crops Employing ALOS PALSAR-2 and Selected…



138

3.2  Comparing Accuracy of All Variables and the Best Subset

The very last step to get the best combination of datasets and algorithms for map-
ping the research site was by examining the accuracy of all employed features com-
pared to the best subset in which the selection was guided by variable importance. 
Figure 9.6 describes the comparison between those two datasets. In general, C5.0 
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Fig. 9.5 Variable importance of four algorithms, C5.0, Random Forest (RFO), Support Vector 
Machine (SVM), and Extreme Gradient Boosting Tree (XGB)
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Four Algorithms
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and RFO produced somewhat higher accuracies with less variables, whereas more 
variables might generate a better accuracy for SVM and XGB. It implies that vari-
able selection was essential when employing RFO and C5.0. Meanwhile, the accu-
racy of SVM and XGB may be improved by inserting additional features.

Tables 9.1 and 9.2 present the confusion matrix from the two highest accuracies 
derived from RFO and C5.0, respectively. The overall accuracy of RFO was 81.8%, 
the highest compared to other algorithms. From the user accuracy, it was shown that 
the best separation was for the water body at 99.7%. Woody vegetation and bare soil 
were the next land cover types relatively well-separated with accuracies at 92.1% 
and 87.5%, respectively. The two weakest objects within the context of class sepa-
rability were mungbean (66%.2%) and peanut (69.8%).

Table 9.2 shows the overall accuracy of C5.0 at 80.4%. Generally, the pattern of 
accuracies for all land covers was similar to RFO result. Again, according to user 
accuracies, the best separated land cover was waterbody at 100%, while the two 
least accuracies were for peanut and pasture at 61.9% and 68.1%, respectively.

3.3  Map of the Best Algorithms

From the previous evaluation, we generated two best maps derived from random 
forest and C5.0. The spatial distribution of classes is presented in Fig. 9.7. In gen-
eral, two maps depicted similar spatial distribution. Pasture predominates the extent, 
followed by woody vegetation. The classifiers accurately identified natural parks 
that were dominated by woody vegetation at the top right and top left of the figure.

Table 9.1 The accuracy of classification generated by the best subset employing random forest

Prediction Reference
User 
accuracy

Bare 
soil Corn Mungbean Pasture Peanut Water

Woody 
vegetation

Bare soil 1516 29 46 104 36 0 1 0.875
Corn 28 865 84 65 6 0 34 0.799
Mungbean 41 32 775 104 131 0 87 0.662
Pasture 64 14 58 440 31 0 5 0.719
Peanut 20 3 51 32 367 0 53 0.698
Water 1 0 0 0 0 387 0 0.997
Woody 
vegetation

2 7 52 3 55 0 1394 0.921

Producer 
accuracy

0.907 0.911 0.727 0.588 0.586 1.000 0.886

Overall 
accuracy

0.818
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Fig. 9.7 The maps derived from (a) Best Subset of Random Forest, (b) Best Subset of C5.0, and 
(c) The Google Maps

Table 9.2 The accuracy of classification generated by the best subset employing C5.0

Prediction Reference
User 
accuracy

Bare 
soil Corn Mungbean Pasture Peanut Water

Woody 
vegetation

Bare soil 1517 25 50 121 31 0 4 0.868
Corn 35 875 98 63 7 0 33 0.788
Mungbean 36 16 658 92 96 0 57 0.689
Pasture 59 13 82 419 36 0 6 0.681
Peanut 24 7 96 42 391 0 72 0.619
Water 0 0 0 0 0 387 0 1.000
Woody 
vegetation

1 14 82 11 65 0 1402 0.890

Producer 
accuracy

0.907 0.921 0.617 0.560 0.625 1.000 0.891

Overall 
accuracy

0.804
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4  Discussion

As eradicating hunger is the second goal set by the United Nations-Sustainable 
Development Goals (UN-SDG), all related measures related to food production and 
distribution need to prepare technologies to accomplish the SDG. Mapping crop has 
widely been explored, the area that remote sensing communities signify their contri-
bution onto data and information provision for managing food production. This 
research explored and assessed nominated machine learning algorithms for mapping 
various crops while improving performance of SAR data by features amendment.

This research demonstrated that limited input layers were a key drawback in 
utilizing SAR data for agricultural crop mapping. Ingesting synthetic data layers 
onto dual polarimetric ALOS PALSAR was proven effective in improving the accu-
racy of crop mapping with spatial resolution at 10 meter. The result was parallel 
with previous experiments in land cover mapping (Ngo et al. 2020; Panuju et al. 
2019). However, a 10% reduction of accuracy was noticed in comparison with 
coarser spatial resolution (PROBA at 100m) used in an earlier experiment (Haerani 
et al. 2018a). Interestingly, additional features may not always improve the overall 
accuracy, particularly for random forest and C5.0. This may relate to challenges 
when implementing feature fusion employing machine learners, such as data cor-
relation, inconsistency, and confliction (Meng et al. 2020). Redundant information 
indicated by correlation is often unwanted in statistical analysis, since it may reduce 
the goodness of fit of a model (Whitley et al. 2000). Meanwhile, less consistent and 
conflicting information may complicate the decision, which in turn may diminish 
the overall accuracy. The experiment showed that additional features with contribu-
tion less than 20% may even reduce the accuracy of classification on specific clas-
sifiers, particularly the RFO. The C5.0 model resulted in the same accuracy for the 
best model and all variables. Support vector machine and extreme gradient boosting 
tree handled amendment quite efficiently, although the contribution of added fea-
tures was less than 20%. The accuracy of the best subset and all variables depicted 
the small increase between two datasets.

Variable importance (VI) has been an effective measure to assist in the selection 
of features that contribute to the result in the classes. RFO, SVM, and XGB algo-
rithms in R have been equipped with the VI to indicate each contribution of ingested 
features in differentiating classes. C5.0 could not differentiate the contribution like 
the others. It tended to only suggest that a variable was either having or not having 
a share to the classification problem. The performance of algorithms themselves 
may be improved by other strategies like tuning parameters. The discussion can be 
found in Trisasongko et al. (2017).

The result offers an insight regarding classifiers’ performance on feature fusion 
such as the response towards data amendment and efficient contribution for differ-
ing classifiers. The responses of four machine learners on features ingestion need 
further exploration, especially on the reaction of potential learners on various data-
sets or environmental settings. By and large, variable importance seems an effective 
measure for selecting variables in order to obtain the best accuracy for machine 
learning algorithms.
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With the upcoming hybrid polarization data from several SAR missions like 
Indian RISAT-1 satellite (Kumar et al. 2017) and Canadian Radarsat Constellation 
Mission (RCM) (Touzi and Cöté 2019), supports to agricultural mapping are 
expected even greater. Hybrid polarization allows in-depth characterization of sur-
face objects through polarimetric decomposition (Raney et  al. 2012); hence, the 
dataset may be an option for future investigation. An initial result of this effort was 
presented (Trisasongko 2019), suggesting that the acquisition mode has a potential 
for agricultural applications in cloud-prone areas. In addition, taking benefits of 
dual-frequency antennas, a joint US and India mission (NISAR, NASA/ISRO 
Synthetic Aperture Radar), (Rosen and Kumar 2019) would also be an excellent 
opportunity to develop a better monitoring system for agriculture.

5  Conclusion

We explored the use of phase-preserved, dual polarimetric ALOS PALSAR-2 and 
the response of Cloude decomposition and texture layers for crop mapping. This 
research investigated four contemporary machine learners, i.e., C5.0, extreme gradi-
ent boosting tree, random forest, and support vector machine, and observed varying 
overall accuracy using all and the best subset of datasets guided by variable 
importance.

The research found that random forest outperformed other classifiers and gener-
ated the overall accuracy of crop map at 82%, followed by C5.0 at 81%. Coupling 
dual polarimetric decomposition features onto dual polarimetric data may not 
always produce a better classification accuracy. This study indicated that random 
forest generated the best accuracy at selected variables based on variable impor-
tance, while other variables either remained constant or slightly increased with each 
added feature. This research suggests that analysis employing RF should consider 
VI as a tool to optimize the outcome.

The amendment of SAR data with other feature extraction or with optical sensors 
and its derivatives coupled with the employment of various machine learners should 
be explored in the future to assist agricultural monitoring. In addition, further explo-
ration should also investigate the potentials of hybrid polarization and the upcoming 
dual-frequency SAR.
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Chapter 10
Crop Assessment and Decision Support 
Information Products Using Multi-sensor 
and Multi-temporal Moderate Resolution 
Satellite Data

Swati Katiyar

Abstract The current study is focused on the crop inventory and crop assessment 
of agricultural fields of Madhya Pradesh state, with Taluk as a spatial unit using 
decision support information product because it gives precise information about the 
condition of crop in any area in terms of health or stress condition and biodiversity 
analysis and helps in monitoring crop management activities such as rehabilitation 
and abiotic factors like temperature and rainfall. The aim of this research is to 
improve methods for quantifying and verifying inventory-based carbon pool esti-
mates for the tropical dry deciduous forests. In future, other methods and techniques 
will be found out to perform the analysis. The current study uses the satellite remote 
sensing data of LANDSAT-8 and RESOURCESAT-2 to generate the objective and 
study about Rabi season (November-December to April- May) in the year 2015–16. 
The study deals with crop yield estimation, spatial distribution, crop assessment, 
crop inventory, and developing decision support information product in the districts 
of Madhya Pradesh, i.e., Hoshangabad. Crop yield estimation and crop assessment 
of these districts are studied at the village as well as taluk level. The major Rabi 
season crops under study are wheat, jowar, and mustard. Spectral response-based 
model identifies different crop conditions of sensitive areas.

Keywords Crop inventory · Crop assessment · NDVI · LANDSAT-8 · 
RESOURCESAT-2

S. Katiyar (*) 
Department of Remote Sensing, Banasthali University, Newai, Tonk, Rajasthan, India

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93262-6_10&domain=pdf
https://doi.org/10.1007/978-3-030-93262-6_10#DOI


148

1  Introduction

India is an agriculture-dependent country and one of the principal wheat producing 
and consuming countries in the world. Almost two-third of the employed class in 
India are surviving upon agriculture as their means. Agriculture, one of the oldest 
economic practices, plays a vital role in the context of Indian society. Remote sens-
ing data can also be used for the estimation of crop area. Remote sensing techniques 
have demonstrated their potential in providing information on the character and 
distribution of various natural resources. Possible application areas related to agri-
culture are management of land and water resources, crop acreage and production 
forecasting, and crop condition. Agriculture is the backbone of the Indian economy, 
contributing about 40% towards the Gross National Product (GNP). So, for a pri-
marily agriculture-based country like India, reliable, accurate, and timely informa-
tion on types of crops grown and their production is important (Sukhatme and Pause 
1951; Singh et al. 1992, 1993). Crop monocultures vary from place to place in India. 
Using single-date imagery, it’s very difficult to generate the spectral response and 
calculate the statistics. With the invention of remote sensing technologies in the 
1970s, the study, keeping an eye on agricultural practices and improvement in 
global agricultural monitoring system, has gone a step ahead. Studying the seasonal 
crop variability, i.e., crop yield, crop acreage estimation, and crop growth, became 
an easy task. As per the data of Ministry of agriculture, the total coverage of area 
under Rabi crops as of February 13, 2015 is 615.74 lakh hectares (Singh et al. 2000; 
Ayyangar et  al. 1980a, b). Wheat’s sowing area is 306.35 lakh hectares and the 
Gram sowing area is 85.91 lakh ha, while the last year’s digits were 102.25 lakh ha. 
Monitoring and management of these crops would greatly help in ensuring food and 
nutritional security of the country. The following papers have been reviewed during 
this research.

The agricultural crop production of principal agricultural crops in the country is 
usually estimated as a product of the area under the crop. The estimates of the crop 
acreage at a district level are obtained through complete enumeration, whereas the 
average yield is obtained on the basis of crop cutting experiments conducted on a 
number of randomly selected fields in a sample of villages in the district (Tyagi 
et al. 2000; Mendelsohn et al. 1994; Deschenes and Greenstone 2007). Agriculture, 
one of the oldest economic practices, plays a vital role in the context of Indian soci-
ety. Therefore, there exists a need for timely and reliable information on crop statis-
tics generation. Crop area estimation is the foremost requirement in any crop 
monitoring program (Sakamoto  2009; Fuhrer 2003; Bausch 1993; Benefetti and 
Rossini 1993; Deering and Haas 1980; Dejong 1994; Dymond et al. 1992).

Verma et al. (2011) used remote sensing techniques in crop acreage assessment. 
In the study, crop acreages were estimated using particular seasonal imageries from 
satellite. For crop acreage estimation at district level, stratified random sampling 
and supervised classification of the data is the approach that is used. Ground-based 
observations were collected in prospect with satellite data and various crops and 
other vegetation were identified and their respective spectral signatures were drawn. 
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The sample segments were classified using these spectral signatures and crop acre-
ages in the district are estimated using standard statistical aggregation procedures. 
Esfandiary et al.’s (2009) This chapter was based on the study of multi-date medium 
resolution AWiFS data and explained the methodology as well as results obtained 
on national level wheat production in India during forecasting. The radiometrically 
and geometrically corrected multi-date Resourcesat-1 AWiFS data were classified 
using decision-based rules, which generated the various spectral profiles of winter 
season crops. Wheat acreage estimation was done by the aggregation of strata in 
stratified random sampling and wheat yields were predicted as well for meteoro-
logical subdivisions using fortnightly temperature by correlating it with weighted 
weather regression model. Production forecast and preharvest acreage estimation of 
wheat were made with the crop growth performance and analysis of previous and 
normal season study. Meng et al. (2007) explained that crop damage assessment can 
provide decision-making information for the working out of agricultural policy and 
financial aid to the affected farmers. Remote sensing helps in the detection of crop 
growth and effect if they are affected by too dry or wet climate, affected by insects, 
any fungal infestation or weed, or any other weather-related damage. Pre and post- 
dates’ qualitative assessment of satellite images was done in the study of crops if 
they are affected by hail storm, unseasonal heavy rainfall, or any untimely weather 
conditions. The images of crop damage generated using multi-date satellite imager-
ies, against the damage report generated by concerned authority, are used to study 
the severity and extent of crop damage. Rembold and Maselli (2006) integrated 
remote sensing-derived parameters in local crop simulation model (Rotask) to fore-
cast yield of wheat at regional level in southeast France. The acreage estimation 
statistics calculation includes finding representative sites of various crops and land-
cover features on image with respect to their ground truthing data and generation of 
spectral signatures for different classes and classification of image. Oza et al. (1996) 
explained that from the last two decades, numerous methods involving remote sens-
ing data were developed for crop assessment and condition monitoring, varying 
from countries and the effectiveness in the results of crop growth and monitoring 
conditions are improved greatly as well. Among these methods, some are direct 
monitoring method with remote sensing indices; in this, on the bases of the values 
of NDVI and LAI indices, we monitor crop condition and estimated that the higher 
the indices the better is crop condition. Image classification method, on which we 
first do the supervised or unsupervised classification and then with the observed 
data of growing status of seedling having some spatial and temporal attributes, cer-
tain growth labels are assigned to each category. By same-period comparing method, 
we compare the remote sensed data of crop growing status of certain period with the 
data of the same period in the past (mostly for consecutive year study is done). 
Difference and ratio indices are most commonly used in this method.

Jianping (2002) described that the filed reports of regional crop growth status 
estimation are often quite expensive to study and prone to a large number of errors 
and cannot provide real-time update as well. Remote sensing satellite system pro-
vides continuous global data cover. Along with the advancements in the remote 
sensing field and application, temporal satellite data become the most important 
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data source to monitor crops. USDA of U.S. and VI of EU, as well as FAO, all are 
working upon their own remote sensing-based crop monitoring system. Agarwal 
et al. (2001) used MODIS EVI multi-temporal imagery for major winter Australian 
crops and to determine broadacre crop area. Multi-temporal approaches use 
Harmonic analysis of time series data (HANTS); principal component analysis 
(PCA), multi-date MODIS EVI (MEVI), and two curve fitting procedures (CF1,CF2) 
are the functions that are derived and applied. These results of these approaches 
were validated against the traditional single-date approach. The crop area estima-
tion of early season was derived through development and application of a metric, 
that is at different periods before flowering collecting consecutive 16 day EVI val-
ues which are greater than or equal to 500. Czaplewski and Catts (1992) stated the 
condition of the crop is affected by factors such as availability of water and nutri-
ents, pest attack, disease outbreak, and weather conditions. Monitoring crop condi-
tion with remote sensing can get the condition of crop seedling as well as the status 
of their growth in that duration. By this, we can also get an idea about crop produc-
tion. Having the database of crop condition at early age is more fruitful then acquir-
ing information at the harvest time about exact production; especially on large scale, 
statistics are considered.

1.1  Significance of Wheat in Indian Economy

World economy’s role in wheat production is significant both in terms of cultivated 
land and food supply, feeding, and commerce. Around 80% of the area under wheat 
is irrigated. The total production of wheat in India is about 70 million tons. From a 
global view, the wheat area in India accounts to 11% of the total area under wheat 
cultivation across the globe and about 12% of the global wheat production (Sinclair 
and Seligman 1996). At present, India is the second largest producer of wheat in the 
world. Nationally, about 18% of the net cropped area is planted to wheat. Uttar 
Pradesh holds the position of having the largest share in wheat production counting 
36% of production, followed by Punjab with 19% and Haryana with 11%. These 
three northern states together contribute two thirds of the production of wheat. 
(Rossini and Benedetti 1993; Delecolle et al. 1992).

1.2  Crop Inventory

The discrimination of crops and identification as per remote sensing concepts are 
based on the terms like having unique spectral signatures and growing period. 
Different crops have different spectral signatures which is the main basis of crop 
discrimination, and they are influenced by specification of sensor characteristic and 
pattern recognition technique as well. The crop inventory procedure includes iden-
tifying the representative site of various land cover feature/crop classes in the image 
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and then validating it with ground truth collected data. Results of the study showed 
that crop identification and discrimination cannot be done with single-date data as 
the crop has different growing stages. Within this context, classification of multi- 
date data gives identifiable results with added phenologic information (Murthy et al. 
1998, 2003; Gregory 2002). The acreage estimation procedure includes identifying 
the representative site of various land cover feature/crop classes in the image and 
then validating it with ground truth collected data.

1.3  Crop Forecasting and Acreage Estimation

One of the earliest applications of remote sensing for crop acreage has been reported 
in LACJE and AGRISTARS experiments conducted in the US using land sat data. 
The first systematic attempt in India directed towards crop inventory through remote 
sensing technique was carried out under a joint ISRO-ICAR experimental project 
named Agricultural Resources Inventory and Survey Experiment (ARISE) during 
1974–75. Satellite data for crop acreage and crop production estimates for various 
major crops in the country have been made under the crop Acreage and Production 
Estimation (CAPE) project (Deschenes and Greenstone 2007). Under this approach, 
representative training sites of known class are selected. Using appropriate classifi-
cation algorithm, each unknown pixel is assigned to any one of the number of 
classes. Crop acreage is a prominent factor in determining crop production. Crop 
production forecasts and monitoring is done so that food demand and supply should 
meet the needs of population and we can balance social security in society as well. 
During the period of food shortage or surplus, the outcome shows that crop acreage 
estimation is not done properly; hence, monitoring and estimating crop acreage is a 
long-term process with long-term study and efforts. Crop acreage estimation is a 
hierarchical step-by-step process that involves developing a crop inventory-based 
mathematical model and differentiating different crops as different classes and cal-
culating the yield and crop area (Dadhwal et al. 2002).

The current study uses the satellite remote sensing data of LANDAST 8 OLI and 
Resourcesat-2 to generate the objective and study about Rabi season (November- 
December to April- May) in the year of 2015–16. The study deals with crop yield 
estimation, spatial distribution of wheat area, integrated NDVI, season maximum 
NDVI, crop assessment, crop inventory, and developing decision support informa-
tion product in Hoshangabad district of Madhya Pradesh. Crop yield estimation and 
crop assessment of these districts are studied at village as well as taluk level. The 
major Rabi season crop taken under study is wheat. The study analyzed the multi- 
temporal images of LANDAST 8 OLI and Resourcesat-2 LISS III, LISS IV for 
classifying different crops in the selected districts in the year of 2015–16 and to 
carry out spatial analysis of crop yield within the district in relation to the yield 
affecting indicators and generate the information products on crop performance.
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2  Location of Study Area

Hoshangabad is a municipality in Hoshangabad district in the Indian state of 
Madhya Pradesh. It is located on the south bank of the Narmada River and is the 
administrative center of Hoshangabad District. Hoshangabad district lies in the cen-
tral Narmada Valley and on the northern fringe of the Satpura Plateau. Hoshangabad, 
located at 22° 46″ N and 77° 44″ E, is picturesquely placed along the southern bank 
of Narmada River, while north of the river stretch to the Vindhyan hills ( Fig. 10.1). 
Madhya Pradesh has a good air connection with the other states. The major airports 
are Bhopal, Gwalior, Jabalpur, and Indore. For train route, the major stations of the 

India

Madhya 
Pradesh

Hoshangabad

Fig. 10.1 Location of study area
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state are: Jabalpur junction; Bhopal junction for west central railways; Ratlam junc-
tion for western railways; and Gwalior and Jhansi for North central railways. 
Maharashtra has Chhatrapati Shivaji international airport for reaching Mumbai. 
And many domestic airports are: Santa Cruz domestic airport, Nagpur, Pune, 
Kolhapur, and Aurangabad from where flights circulate on daily basis.

3  Material and Methodology

The current study uses the satellite remote sensing data of LANDAST8 (OLI) and 
Resourcesat 2 (LISS-III, LISS IV and AWiFS) to generate the objective and study 
about Rabi season (November-December to April-May) in the year 2015–16. The 
study deals with crop yield estimation, spatial distribution, crop assessment, crop 
inventory and developing decision support information product in the districts of 
Hoshangabad, Madhya Pradesh. Crop yield estimation and crop assessment of these 
districts are studied at the village as well as taluk level. The major rabi season crop 
taken under study is wheat.

3.1  Data Used

3.1.1  Remote Sensing Data

The aim of the study is to extract the maximum possible information about the crop 
growing year. The multi-temporal satellite data used for cropping system mapping 
were from Resourcesat-2 and LANDAST 8 Sensors. LANDAST 8 sensor has the 
capability of providing data at 16-day interval and the spatial resolution of 
LANDAST 8 is 30 m, whereas AWiFS provides the data at every 5-day interval with 
spatial resolution of 56m.

3.2  Indices Generation

3.2.1  Normalized Difference Vegetation Index (NDVI)

Spectral response characteristics of healthy vegetation can easily be characterized 
in different parts of the electromagnetic spectrum. NDVI is most widely used for 
operational crop assessment because of its simplicity in calculation, easiness in 
interpretation, and also its ability to partially compensate for the effects of atmo-
sphere, illumination geometry, etc. The Normalized Difference Vegetation Index 
(NDVI) is expressed as shown in the following equation

 

NDVI
NIR R

NIR R
ref ref

ref ref

�
�

�
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where:

NIRref  = Near-Infrared band = Band5 in L8 = Band4 in R-2 LISS-III
Rref = Red band= Band4 in L8= Band3 in R-2 LISS-III

The NDVI values for vegetation generally range from 0.1 to 0.6, the higher index 
values being associated with greater green leaf area and biomass.

3.2.2  Normalized Difference Water Index (NDWI)

The Normalized Difference Water Index employs the near-infrared band and a band 
in the short-wave infrared (SWIR) (Gao 1996). Instead of using the red band, the 
reflectance at which is affected by chlorophyll, a short-wave infrared band in the 
region between 1500 and 1750 nm is used, a region where water has high absorp-
tion. The near-infrared band is the same as with NDVI, as water does not absorb in 
this region of the electromagnetic spectrum. The NDWI index is expressed with the 
following equation:

 

NDWI
NIR SWIR

NIR SWIR
ref ref

ref ref

�
�

�

1

1
 

where:

NIRref= Near-Infrared band = Band5 in
SWIR1ref = Short-Wave Infrared band 1 = Band 6 in L8

There is only one SWIR band in R-2 LISS-III, i.e., Band 5

3.2.3  Land Surface Water Index (LSWI)

Short-wave Infrared (SWIR) band is sensitive to moisture available in soil as well 
as in crop canopy. In the beginning of the cropping season, soil background is domi-
nant, hence SWIR is sensitive to soil moisture in the top 1–2 cm. As the crop pro-
gresses, SWIR becomes sensitive to leaf moisture content. SWIR band provides 
only surface wetness information. When the crop is grown up, SWIR response is 
only from canopy and not from the underlying soil. The LSWI index is expressed 
with the following equation:

 

LSWI
NIR SWIR

NIR SWIR
ref ref

ref ref

�
�

�

2

2
 

where:

NIRref= Near Infra Red band = Band5 in L8
SSWIR2ref = Short-Wave Infrared band 2= Band7 in L8

Higher values of LSWI signify more surface wetness.
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3.3  Crop Classification

3.3.1  Supervised Classification:

Crop classification in our study is done using LANDAST 30m data. In order to 
perform crop classification, we need to perform crop inventory and extract the 
crop pixels. Vegetation from False Color Composite images is compared with its 
corresponding NDVI pattern to develop decision rules. By applying these deci-
sion rules on NDVI images in the ERDAS Imagines’ Model Maker tool, we 
extract the crop pixels. Thus, different dominating crops in the study area for 
2015–16 Rabi seasons are extracted and crop classification is done to estimate 
acreages (Figs. 10.2 and 10.3).

yes

no

Decision rules on 

NDVI

Crop inventory and 

crop pixel extraction

Crop 

classification
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unclassified area

Unsupervised 

classification

ISODATA 
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Spectral � matching techniques

�Reference profiles

�Spectral correlation

Labeling of 

classes

Labeling of 
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Fig. 10.2 Methodology for crop classification
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3.3.2  Unsupervised Classification:

Unsupervised classification is based on Iterative Self-Organizing Data Analysis 
Technique (ISODATA) clustering method. It is an iterative method. Unsupervised 
classification is done from stacked NDVI image with 36 number of classes. The 
number of clustering is based on the number of classes. The more number of 
classes assure homogeneity of pixels in the class and help in post-classification 
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stage to interpret the features more visually in feature space image. The tempo-
ral profiles of each class are derived from the NDVI time-series data of a class. 
Single-date imagery cannot provide a temporal profile of a class, so it is advan-
tageous to have time- series imagery.

3.4  Spectral Matching Techniques (SMTs)

Spectral matching techniques match the class spectra derived from classifica-
tion with an ideal spectra-derived LANDAST 30m. Time series data, such as the 
monthly OLI NDVI data, are similar to hyperspectral data. These similarities 
imply that the spectral matching techniques (SMTs), applied for hyperspectral 
image analysis, also have potential for application in identifying agricultural 
land use classes from historical time series satellite imagery. The qualitative 
Spectral Matching Techniques can be used to identify and label Historical Time 
Series (HTS) LULC classes. The identification and labeling process begins with 
qualitative spectral matching technique which visually matches the time series 
NDVI spectra of known Recent Time Series-LULC classes and/or ideal end 
member classes with time series spectra of HTS-LULC classes. This helps iden-
tify classes of similar spectral characteristics in terms of shape and magnitude 
over time. This study is aimed at evaluating the possibility of remotely sensed 
data to estimate crop acreage, monitor crop condition, and assess crop damage. 
Combination of digital image processing and classification techniques, namely, 
unsupervised classification, extraction of crop by ISODATA clustering, acreage 
estimation, and study of NDVI and LSWI timeseries profiles for crop condition 
monitoring, is performed in this study.

4  Results and Discussion

4.1  Wheat Mapping with Finer Resolution

LISS IV data, which are in 6m spatial resolution, were used to map the wheat crop 
in rabi 2015–16 season. The district is covered by two paths of LISS IV with one 
scene in each path. One data sent in November, i.e., in the beginning of the season, 
and the other in Feb/March were procured as shown in Fig 10.4. Decision rules for 
classification are shown in Table 10.1. Considering the time difference between the 
two paths and crop stage differences, the decision rules are slightly changed 
in path 2.
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4.2  Wheat Crop Distribution Among the Villages

Value addition is made to the wheat maps of the three years by generating the maps 
of wheat crop distribution among the villages of the district in all three years, as 
shown in Fig. 10.6. These maps indicate the villages where the wheat cultivation is 
intense and the villages with very less wheat area. These maps are useful planning 
related to canal water management. These maps also are extensively used in crop 
insurance and crop damage assessment-related tasks.

2 Nov15 (98_56 A)

6 Feb 2016 (98_56 A) 1 March 2016 (98_56 B)

26 Nov15 (98_56 A)

Fig. 10.4 RESOURCESAT 2 LISSIV 2015–16

Table 10.1 Decision rules for classification

DATE NDVI

Path 1 02 November 2015 <=0.2
06 February 2016 >=0.55

Path 2 26 November 2015 <=0.25
01 March2016 >=0.5
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wheat area = 266070 ha

Fig. 10.5 LISS IV-based wheat crop area delineation, Rabi 2015–16
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Fig. 10.6 Wheat crop distribution among the villages
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4.3  Mapping Early Sown and Normal Sown Wheat Area

Wheat crop mapping during the season has many uses - related to crop manage-
ment, water management, food security, etc. Detection of spatial differences in the 
phenology brings value addition to any crop map. Such information – early sown 
crop, normal, and late sown crop, if available for the command area of an irrigation 
system, has many other added advantages like achieving equity and reliability of 
irrigation service, improving irrigation efficiency, etc. Spectral indices derived from 
satellite data have been used to map rice areas and to study rice phenology. Murthy 
et al. (1998) mapped the staggering in rice transplantation, using peak NDVI derived 
from time-series NDVI profiles of IRS LISS-1 data. Raju et al. (2008), used 5-day 
interval AWiFS data over the command area of an irrigation system in India and 
detected the staggering in rice transplantation based on time of occurrence in peak 
NDVI. Motohka et al. 2009, used EVI data from MODIS to detect the phonological 
stages of rice crop. Xiao et al. 2005, used LSWI, NDVI, and EVI for mapping rice 
areas, starting from 40 days after transplantation. In this study, wheat crop area clas-
sified from satellite data was further grouped into two groups – early sown wheat 
and normal sown wheat. LANDSAT 8 OLI data of overpass dates of November 
(beginning of the season), December (growing stage of crop), and February (peak 
vegetative phase of crop), along with NDVI and LSWI for three rabi seasons 
(2015–16), are presented in Fig. 10.7.

20 Nov 2015 22 Dec 2015

(a) FCC images

(b) NDVI

(c) LSWI

8 Feb 2016

8 Feb 2016

22 Dec 201520 Nov 2015

8 Feb 2016

8 Feb 2016

22 Dec 2015

Water

-0.27 -0.26 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 > 0.6

Bare Soil Cloud Increasing Vegetation Vigour High

20 Nov 2015

Fig. 10.7 Multi-temporal LANDSAT OLI data showing the early sown wheat crop area, 
Rabi 2015–16
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In the FCCs of December images of all the three years, it is evident that south- 
western part of the district shows higher vegetation vigor compared to the rest of 
the district. NDVI and LSWI in this part of the district remain higher, indicating 
high crop vigor in this month. These pixels with high NDVI and LSWI in 
December correspond to early sown wheat crop. Interestingly, the NDVI and 
LSWI images of February month, in all the three years, do not show significant 
differences between the early sown and normal wheat crop. Seasonal NDVI pro-
files of six overpass dates from 06 Dec, 15 to 11 March, 2016, for the pixel loca-
tions of early sown and normal sown wheat. It is interesting to observe that on 22 
Dec 2015, the two wheat groups show large differences. During February, when 
the crop is in maximum vegetative phase, the two groups converge due to over-
lapping NDVI/LSWI. Village average NDVI and LSWI values of wheat crop for 
the rabi 2015–16 with seven overpass dates are shown in Fig. 10.8. The spread of 
NDVI and LSWI in December is very high followed by convergence in February. 
Thus, early sown and normal wheat crop pixels are best discriminated in 
December images. After studying the NDVI/LSWI- based signatures, among the 
wheat pixels, the NDVI and LSWI thresholds representing early and normal 
wheat crop are arrived as given in Table 10.2.

By applying the above thresholds, wheat crop map was grouped into two classes, 
namely early sown and normal sown (Fig. 10.8). These maps are validated with 
secondary data and general crop calendar information available from various 
records in the districts.

4.4  Wheat Crop Condition Analysis

Spatial variability in wheat crop condition was analyzed using the metrics 
derived from NDVI.  Use of remote sensing technology for assessing the 
response of agricultural crops to weather variations has been well-recognized. 
Satellite-derived vegetation indices, particularly NDVI, have been success-
fully used for monitoring crops, agricultural areas, stress detection, etc. 
Satellite-derived phonological metrics were used to evaluate the terrestrial 
ecosystems (Sakamoto 2005). Wu et  al. (2008) investigated the phenology 
over crop lands in China, using time series NDVI data sets, and concluded that 
significant changes took place at the start of the growing season in the past 20 
years. Time series phenological parameters over agricultural areas represent 
the impact of inter and intra-seasonal variations of climate. Phenological 
observations measure the response of vegetation to meteorological and envi-
ronmental factors.
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Fig. 10.8 Comparison of temporal NDVI of early sown and normal sown wheat (Rabi 2015–16)

Table 10.2 NDVI and LSWI thresholds of early sown and normal sown groups among the 
wheat pixels

S. no NDVI/LSWI of December NDVI/LSWI of February

Early sown wheat >=0.35 >=0.6
Normal sown wheat <0.35 >=0.6
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4.5  NDVI and LSWI Profiles of Wheat Crop

Typical profiles of NDVI (chlorophyll-based indicator) and LSWI (moisture-based 
indicator) corresponding to wheat crop of rabi 2015–16 season are shown in 
Fig. 10.9, which reveal the phenology of wheat crop. The start of the season, grow-
ing phase, and peak vegetative phase with stable and high vigor followed by decreas-
ing vigor in senescence phase are clearly seen in these profiles. The trajectories of 
NDVI and LSWI are almost close to each other.

Seasonal profiles of NDVI and LSWI for a randomly selected group of villages 
in Fig. 10.10 bring out the spatial differences in wheat phenology and crop condi-
tion, and hence, its performance in the district, which is very valuable information 
for various planning purposes.

Resourcesat 2 AWiFS data covering the study area, during the rabi season 
2015–16, were also analyzed (Fig. 10.11) to enhance the frequency of observation. 
AWiFS NDVI profiles of wheat crop are shown in Fig. 10.12, which are clearly 
depicting the phenology of the crop. Thus, 16-day frequency 30 m OLI data and 
5-day frequency 60m AWiFS data have the potential for capturing the phonological 
information on wheat crop.

Supplementary use of AWiFS with OLI to fill the gaps was also attempted in this 
study. In Rabi 2014–15, no OLI data were available in January 2015 due to cloud 
cover problem. AWiFS data of three passes 15 Jan, 20 Jan, and 25 Jan were compos-
ited to generate cloud-free NDVI. This NDVI is adjusted to get its OLI equivalent, 
through inter-sensor normalization technique described in subsequent sections. The 
seasonal OLI NDVI profiles of wheat crop for selected villages for the rabi season 
2014–15 are shown in Fig. 10.13. In these profiles, January data are drawn from 
AWiFS data. Thus, the trajectory of these profiles indicates perfect supplementation 
of AWiFS data into the OLI temporal data.

Two metrics, namely, Season’s Maximum NDVI and Season’s Integrated NDVI, 
were derived for each year using multi-date NDVI of wheat pixels. These two met-
rics adequately describe the biomass and vigor of the wheat crop in the study area. 
These metrics act as proxies to wheat yield. Spatial distribution of these two NDVI 
metrics for the three rabi seasons reveals insignificant spatial differences in the con-
dition and vigor of wheat crop. Excepting a few villages, all villages show a narrow 
range of variability. These maps are useful to plan for sampling strategies for mea-
suring yield for crop insurance purposes. Murthy et al. (2007), proposed a sampling 
design for crop yield estimation in irrigated command areas using satellite-derived 
crop area and crop yield. In similar way, the wheat crop condition images could be 
affectively used.
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5  Conclusion

Detailed analysis of moderate resolution satellite data from multiple sensors, mul-
tiple overpass dates in a season, and multiple years was performed in this study for 
wheat crop mapping, wheat crop condition analysis, and wheat yield variability 
analysis. The study area is a prominent wheat-growing Hoshangabad district of 
Madhya Pradesh. Rabi seasons of three years 2015–16 are involved in the analysis. 
Landsat 8 OLI data have been primarily used followed by Resorcesat 2 AWiFS and 
LISS IV. Normalized Difference Vegetation Index (NDVI) which represents the 
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vigor of crops and Land Surface Wetness Index (LSWI) which represents the mois-
ture status of crops were used in the analysis. Crop classification was performed by 
proven techniques of decision rules analysis. The crop area estimates were validated 
with secondary data from the respective State departments. Crop classification 
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Fig. 10.11 Multi-temporal data of RESOURCESAT 2 AWiFS covering Hoshangabad district, 
Rabi Season 2015–16
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needs more rigorous validation. Wheat mapping with 30m OLI data and 6 m LISS 
IV data showed consistency. There was no significant difference between the two 
area figures. Segregation of wheat area into early and normal sown categories was 
successfully done using NDVI. The study has proved that end of December NDVI 
better separates the early and normal sown wheat pixels than any other NDVI. During 
January and February months, the NDVI of these two groups of wheat tends to be 
overlapping, reducing the separability. Using the satellite-derived wheat maps, crop 
distribution analysis among the villages of the district in the three rabi seasons was 
carried out. With multi-temporal NDVI, early sown and normal sown wheat crop 
could be identified. By intersecting the wheat layers of three rabi seasons, spatio- 
temporal changes in wheat distribution were brought out. It was found that geo-
graphic distribution of wheat is consistent between the three years, with 80% of 
wheat fields located at the same place. Wheat crop condition analysis was performed 
with the metrics of NDVI and LSWI. Seasonal profiles of NDVI and LSWI of OLI 
and NDVI of AWiFS data have revealed the spatial differences in the wheat phenol-
ogy. AWiFS data utilization leads to increased frequency of observation. AWiFS can 
also be used to fill the gaps in OLI data availability due to cloud cover problem. 
Using two metrics, namely, Season’s Maximum NDVI/LSWI and Integrated NDVI/
LSWI, spatial maps of wheat crop condition for the three rabi seasons were gener-
ated. The wheat yield of Crop Cutting Experiments (CCE) for rabi 2014–15 repre-
senting about 450 villages and 2000 plots was analyzed. Wheat yield distribution 
analysis revealed the yield patterns and yield gap in the district. Association between 
NDVI/LSWI and yield at village level and Taluk level is found to be insignificant. 
The variability of NDVI/LSWI among the villages/Taluks is very less, whereas the 
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yield variability is high, thereby indicating that NDVI/LSWI alone could not cap-
ture the wheat yield variability. Analysis of detailed weather data such as tempera-
ture and irrigation water supplies data and its integration with satellite indices may 
explain the yield variability to a larger extent. The current study thus showcased the 
capabilities of routinely available LANDSAT 8 OLI images for crop mapping, crop 
distribution analysis, crop condition monitoring, spatial and temporal analysis 
within the districts, change detection with historic perspective, identification of 
homogenous areas with respect to crop performance, detection of hotspots, etc. All 
these spatial information products on wheat have direct relevance to crop manage-
ment, crop insurance, and water management in irrigated command areas. These 
reliable information products enable more effective planning and implementation of 
different strategies that would strengthen agribusiness chain and bring stability and 
sustenance to crop farming. A statistically robust relative radiometric normalization 
developed in this study with large sample of observations has shown very strong 
correlations between the red, NIR, and NDVI of (a) OLI and LISS III and (b) OLI 
and AWiFS. More than 90% of R2 values suggest that OLI and LISS III data can be 
used synergistically to enhance the frequency of observation. Thus, OLI and LISS 
III can be supplemented to increase the frequency of observation. Similarly, AWiFS 
NDVI can supplement the OLI NDVI and can be used to fill the gaps in OLI data. 
Correction for atmospheric differences in the multi-temporal data of the same sen-
sor (OLI) was performed using regression approach with the data’s pseudo- invariant 
features. The study has thus brought out a comprehensive analysis of multi-sensor 
data to generate a variety of information products on wheat crop in a district. These 
information products are useful for a variety of needs in crop management.
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Chapter 11
Application of Information and Electronic 
Technology for Best Practice Management 
in Livestock Production System
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and Menalsh Laishram

Abstract The demand of food, either plant or animal origin, is rising with the 
increase of human population. Due to limitation of land, water, and other natural 
resources, farming by manual processes may face challenges in near future. It is 
thus the need of the hour to find alternatives that will help to accomplish greater 
productivity and return in farming. Through the fourth industrial revolution, we are 
already in the age of digital technologies and computers and high-speed internet; 
tab and smart phone are now the most common modern technologies. Several 
advanced technologies such as computer programming, Information and 
Communication Technologies (ICTs), Internet of Things (IoT), Wireless Sensor 
Networks (WSN), cloud computing, big data analysis, Artificial Intelligence (AI), 
Machine Learning (ML), Drone technology, and Robotics have already transformed 
our everyday life with greater gains and efficiencies. These technologies have 
already reached real farms from research labs. The livestock farm industry is now 
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the hotspot for the application of these advanced technologies to monitor farm ani-
mals in real-time basis, optimize food intake, predict diseases, and improve animal 
health. Digitalization has made possible shifting of agriculture from input-intensive 
to knowledge-intensive system. There are many digital technologies for smart and 
precision livestock farming. However, the question puts forward which digital tech-
nologies could presently be practiced in the management and operations of live-
stock farm. Of particular interest is to illustrate advanced digital technologies 
available for use rationally to achieve greater efficiencies in livestock farming and 
make livestock enterprise profitable.

Keywords Wireless sensor networks · Artificial intelligence · Machine learning · 
Drone technology · Smallholder farming

1  Introduction

Farming holds a vital position in national economy, since nutritious food availability is 
continuously rising with the increase of the world population. The demand for nutritious 
foods has already been increased for enhancing immunity during the pandemic situation 
of Covid-19. One projected data indicate that the global population will be 8.6 and 9.8 
billion in 2030 and 2050, respectively, and thus the food requirement will be increased 
by 70 percent to keep the pace (Alexandratos and Bruinsma 2012). Besides, wherever 
global populations and their incomes have increased, per capita consumption of animal-
origin food has also augmented. According to Alexandratos and Bruinsma (2012), the 
demand for livestock products is expected to increase by 62% for milk and by 77% for 
meat by the year 2050 as compared to 2005-07 and the global livestock production 
needs to be doubled by 2050 from the present levels. To meet this growing demand, it is 
required to produce more products from livestock.

In the world, the livestock sector is the major livelihood for one billion of the 
poorest population (Hurst et al. 2005). About 90% of them are found in Asia and 
sub-Saharan Africa. It is also the fact that about twothirds of the rural people in 
developing countries are smallholder farmers having agricultural lands smaller than 
2 hectares (Lowder et al. 2014). In the world, the smallholder farmers represent the 
largest proportion of 570 million farms (Lowder et  al. 2016). India is a land of 
smallholder farmers, constituting more than 85% of the country’s farmers 
(Agricultural Census 2015–16). Nearly 98% of the farmers in China, 90% of the 
farmers in Ethiopia and Egypt, and 50% of the farmers in Mexico are smallholders 
(Rapsomanikis 2015). In the world scenario, the smallholder farmers produce and 
supply a considerable quantity of food to the global population. However, farming 
by manual processes is now facing enormous challenges due to limitation of land, 
water, and other natural resources. Hence, it is the need of the hour to find alterna-
tives that will help to accomplish greater productivity and return in farming.

The fourth industrial revolution has brought several advanced technologies such 
as ICTs, IoT, WSN, cloud computing, big data analysis, AI, ML, Drone technology, 

A. Haldar et al.



175

and Robotics (Ilyas and Ahmad 2020). These powerful technologies have already 
transformed several areas of our daily life with greater gains and efficiencies, and 
there is no exception in agricultural field (Wolfert et al. 2017). The application of 
these advanced technologies plays a crucial role in the value chain of agricultural 
production. Various computer-based programs have already addressed numerous 
issues in agricultural field, such as plant disease discovery (Mohanty et al. 2016), 
insect detection (Larios et al. 2008), farmland management (Adebiyi et al. 2020), 
and crop yield analysis (van Klompenburg et al. 2020). Currently, the application of 
data analytics in agriculture has helped to store, share, and analyze huge data for the 
generation of valued information that has made possible shifting of agriculture from 
input-intensive to knowledge-intensive system (Basnet and Bang 2018). The live-
stock farm industry is now the hotspot for the application of these advanced tech-
nologies to monitor farm animals in real-time basis, optimize food intake, predict 
diseases, and improve animal health. Advanced digitalization technologies for smart 
and precision livestock farming are surely the key solutions for a shifting from 
experience-driven livestock farm management practices to data-driven farming 
approaches to trim down the drudgery of repetitive farming jobs, optimize cost- 
effective contribution per animal, and justify animal welfare and environmental sus-
tainability (Klerkx et al. 2019). Thus, the concept of precision livestock farming 
(PLF) has come into play in the management of livestock farm following the prin-
ciples of process engineering (Wathes et al. 2008). These smart and precision tech-
nologies have enabled watching animals in real-time (Wolfert et al. 2017), optimizing 
food intake (Nikoloski et al. 2019), predicting diseases (VanderWaal et al. 2017), 
look up animal health (Fu et al. 2020), etc. The present interest is to figure out how 
these advanced technologies can be used rationally to achieve greater efficiencies 
and gains in livestock farming for the survival and profitability of the livestock 
enterprise. Therefore, the objective is to illustrate the scopes of application and 
explore the opportunities of using ICTs, IoT, WSN, big data analysis, AI, ML, 
Drone technology, and Robotics in livestock farming in the days to come.

2  Information and Communication Technologies

The Internet has become now an indispensable tool for communication, education, 
entertainment, shopping, and many other purposes. At present time, ICTs play a 
central role in every sphere of day-to-day life. Agricultural extension services are 
also progressively employing ICTs to deliver information and advice with newer 
approaches to the farmers and all stakeholders of agricultural activities (Baumüller 
2018). It is a cost-efficient method to share information for improving smallholders’ 
knowledge of current best agricultural practices and enhancing productivity and 
sustainable livelihoods (Afroz et al. 2014). ICT services enable us in broadcasting 
meteorological, technical, and market-oriented information to the vast farming 
community in a timely and cost-effective way using computers, telephones, televi-
sions, radio, networks, mobiles, email services, SMS messages, WhatsApp 
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messages, software tools, distance learning software tools, and video conferencing 
and other applications (Aker 2011; Deichmann et  al. 2016; Baumüller 2018). 
Nowadays, access to cyberspace is not a luxury any longer, but a necessity (Warf 
2019). For example, the use of different e-platforms for online training, seminar, 
and video conferencing could enable agricultural extension services to keep regular 
communication between the farmers and the experts in this crisis situation of pan-
demic Covid-19. The increase in internet access and the availability of user-friendly 
smartphones due to their affordability have resulted in fast growth of internet use 
that went beyond 500 million in 2019 with 40% active internet user base in rural 
India (ICEA 2020) and thus created huge scope for e-agriculture in developing 
countries like India. However, some constraints like poor literacy rate among 
women in developing countries and least-developed countries (UNESCO 2017), 
lack of infrastructure, and poor internet connectivity in rural areas in accessing ICT 
in developing and underdeveloped countries (Lekopanye and Meenakshi 2017) 
need to be addressed properly and urgently. Access to ICTs has already put forward 
huge opportunities to small and marginal farmers and many rural businesses by 
providing online training, planning, finance, and legal services as well as allowing 
users to contact markets and customers (Trendov et  al. 2019). There are several 
expert systems and ICT-based self-learning modules for easy understanding and 
information systems worldwide.

2.1  Dissemination of Information on Livestock 
Farm Management

There are several web-based platforms for disseminating information on livestock 
farm management. DairyMAP is such a web-based dairy management analysis pro-
gram for dairy herd producers to evaluate and improve the producer’s herd 
(Chellapilla 2003). Similarly, Herdman is software for swine management platform 
which permits collecting data from the herd and summarizing the data into standard 
report and plan of actions for better farm operations (Anonymous, 2021). Different 
other softwares are Farmbite for livestock record keeping and management system; 
Ranch Manager Open for detailed livestock records; EasyKeeper for goat herd man-
agement; Farm Matters for cattle, sheep, crops, medicines, and farm management; 
Bovisync for dairy and beef operations; and DairyCOMP 305 for an on-farm dairy 
management program (Anonymous 2020a). There are several self-learning modules 
for livestock farmers and extension workers such as dairy cattle management sys-
tem (Ravisankar et al. 2014), animal fertility management system (Ghasura et al. 
2012), buffalo reproduction information system (Singh and Singh 2013), etc. 
GOPALA app developed by National Dairy Development Board, India, is helping 
the farmers in buying and selling of cattle and buffaloes, choosing proper animal 
feeds and fodders, guiding for diagnosis and treatment of the animals, and sending 
alerts for deworming, vaccination, etc., and also updating farmers about different 
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government schemes (Anonymous, 2020b). Common Service Centre Scheme, one 
of the mission mode Digital India programs, helps in disseminating information, 
advisories, and timely solution in agriculture and allied sectors through direct con-
tacting the Krishi Vigyan Kendra (KVK)’s experts through video calling 
(Anonymous 2019).

2.2  Dissemination of Livestock Health Information 
and Disease Surveillance

Information systems can play a vital role in risk analysis and making information to 
take preparedness. Livestock disease surveillance is vital for quick data analysis 
including risk analysis and generation of information, detection of disease or infec-
tion, monitoring disease trends, early warning, and prevention of the spread of dis-
ease or infection (Merianos 2007; Kshirsagar et  al. 2013). Computer-based 
geographical information system (GIS) has improved animal disease surveillance 
through spatial data management, spatial statistical analyses, and graphical display 
for knowing disease incidence, prevalence, mortality, morbidity, transmission pat-
tern of diseases, or infections on the farm, region, or national levels (Yong et al. 
2006; Siddiqui et al. 2018). Internationally, the World Animal Health Information 
System (WAHIS) broadcasts information on the outbreak of animal diseases through 
its web-based e-alert system (Ben Jebara 2007). At the national level, many coun-
tries have owned Web-GIS-based information systems by which the veterinary ser-
vice providers can visualize and analyze geographic distribution of diseases on the 
Internet and make plan for the inspections and disease control measures at farms 
where outbreaks occur (Colangeli et al. 2011; Di Lorenzo et al. 2019). Livestock 
disease surveillance and information systems can potentially forecast the risk of 
disease outbreaks and eradication plan of theileriosis, trypanosomiosis (Rogers 
1991), East Coast fever (Lawrence 1991), avian influenza, Rift valley fever 
(Kshirsagar et al. 2013), and vector-borne bluetongue virus in ruminants (Legisa 
et al. 2014; Rizzo et al. 2021). In Australia, livestock disease surveillance and infor-
mation systems provide animal disease outbreak warning, disease management, and 
reporting facilities at the regional, state, and national levels (Garner 2011). Some 
self-learning modules for livestock farmers and extension workers such as dairy 
animal health information system (Phand et  al. 2013), goat health management 
information system (Roy and Tiwari 2016), etc. are important for disseminating 
information developed by different organizations in India. NADRES v2, an interac-
tive and vibrant web application developed by the National Institute of Veterinary 
Epidemiology and Disease Informatics (NIVEDI) of Indian Council of Agricultural 
Research (ICAR), provides two months’ prior warning and alert of disease occur-
rence for 13 important livestock diseases for all the 700 districts in Pan India (Suresh 
et al. 2019). Thus, preventive health measures such as vaccinations, deworming, and 
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stress reduction management may be followed at right time in the right location to 
control the outbreak of diseases or infections.

2.3  Telemedicine Services

The application of ICT in telemedicine services ranging from telephone to internet 
service is now guiding healthcare professionals as well as livestock owners for the 
treatment and management of livestock at a distant place (Mort et  al. 2003). 
Veterinary telemedicine services have been started in the 1980s in New  York 
(Robertson 1999). Nwagwu and Soremi (2015) reported that livestock farmers in 
Nigeria used mobile phones for feed formulation and also got the right information 
in emergencies about animal healthcare services from a veterinarian without any 
time lapse. The telemedicine service may effectively be used in the developing 
countries, where there is still huge shortage of veterinary doctors and veterinary 
service in animal health care and treatment in remote areas. However, the efficacy 
of telemedicine in veterinary service needs to be figured out (Mars and Auer 2006).

2.4  Early Warning System for Disaster Management

The effect of weather and natural calamities on farming is enormous. ICTs can 
make more effective communication by providing real-time information and action- 
oriented timely advice to different stakeholders for taking certain preparedness and 
management of disaster to reduce the risk during emergency situations (Mohan and 
Mittal 2020). An early warning system can offer near real-time information to the 
governments so that emergency services can be provided to the people immediately 
and also give the alert to the public so that the people become aware and can take 
action according to preparedness (Siddhartha 2017). According to the India 
Meteorological Department (PTI 2021), a total of 115 people and more than 17,000 
livestock were lost in India in 2020 because of consecutive 5 cyclones (i.e., Amphan, 
Nivar, Gati, Nisarga and Burevi). But, the causalities among human beings and the 
livestock would have been manyfolds if early warning wouldn’t have been received 
well in advance with the use of ICT.

2.5  Food Safety and Traceability System

Traceability is frequently applied from food safety point of view to export markets 
where it is essential to track and keep record of a product in the agricultural value 
chain system. In the European Union, it is mandatory for cattle, sheep, and goats to 
have unique low-frequency ID tags (ISO 1996a; ISO 1996b). Even the meats of the 
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carcass (Dabbene et al. 2013; Comba et al. 2013) as well as the meat cuts (Barge 
et al. 2013) need to have high frequency or ultra-high frequency ID tags for trace-
ability purposes. In Southern Africa, Botswana Animal Information and Traceability 
System (BAITS) is available for the farmers who can register their own cattle, effect 
ownership transfer, submit application for movement permit, report mortality, and 
record arrivals and departures of all cattle (Phokoje 2016). BAITS provides security 
for beef export market, accurate cattle census information, correct disease manage-
ment information, and easy identification of stray cattle and also furnishes a linkage 
between cattle ownership records and the national registration system (Ntokwane 
and Dibeela 2016). Agricultural and Processed Food Products Export Development 
Authority (APEDA), Government of India, has developed an internet-based trace-
ability platform named as TraceNet. This platform contains a centralized database 
and various components or techniques of sampling, testing, certification, and pack-
ing right from the farm to the retail shelves in the supply chain. TraceNet can also 
expedite dissemination of guidelines to agriculture sector stakeholders for facilitat-
ing process certification of organic products which comply with the National 
Programme for Organic Production (NPOP) standards in India (APEDA 2013). 
India has as many as 24 certifying agencies accredited by APEDA (Sood 2013). The 
Jamaica Broilers’ Group installed a computer-based inventory management system, 
Mobile Enterprise Mobility Solution, which allows it to use barcoding and scanning 
technologies to track the dressed chicken and its products in the value chain 
(Motorola 2008). Time has come to implement an animal traceability system by the 
developing countries for reliability, maintaining quality, and confirming consumer’s 
safety of the products in the value chain market (Mwanga et al. 2020).

2.6  Enhanced Access to Market

ICTs serve a big role in the agricultural marketing system. Many web-based trading 
platforms like DrumNet in Kenya, Tradenet.biz in West Africa, Foodnet in East and 
Central Africa, and MACE in Malawi have made easy trading of agricultural pro-
duces (Munyua 2008). In India, electronic National Agriculture Market (eNAM) 
trading portal has been launched for trading agricultural commodities across the 
nation (GoI 2021).

2.7  Financial Insertion

Digital financial services in agriculture cover digitization of land record and effec-
tive use of all available data resources. Successful operation of ICTs can bring a 
revolutionary change in the system of subsidy for the farmers and access to different 
schemes, insurance schemes, and financial services (Singh and Parakh 2017).
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3  Animal Identification and Traceability System

Identification of animals is of immense importance in scientific and profitable ani-
mal husbandry practice. Animal identification facilitates registration of animals, 
keeping record of animals covering date of birth, breed information and production 
record, animal ownership record, insurance claim, tracing diseased animals, etc. 
(Bowling et al. 2008). Individual identification of animal is also useful for precision 
farming and implementation of different governmental schemes and policies to ani-
mal farming.

Branding, tattooing, ear notching, ear tagging, toe clipping, etc. are well-known 
traditional identification techniques, but have risk to tissue damage, loss, or steal 
(Edwards et al. 2001; Gosalvez et al. 2007). Radio frequency identification devices 
(RFIDs) have recently been proposed for traceability purpose (Sahin et al. 2002; 
Regattieri et al. 2007). External RF devices have risk of tissue damage, tampering, 
or steal, while internal devices are invasive and difficult to maintain. DNA-based 
identification technique is perfect (Loftus 2005), but it is time-consuming and 
expensive technique. Some animals have characteristics to identify individuals like 
eyespots on the wings of butterflies, belly patches in geese, and body markings in 
zebra (Bugge et al. 2011). Fins, which display curves, notches, nicks, and tears, are 
used to identify bottlenose dolphins (Bugge et al. 2011). The cattle can be identified 
by their nose prints (Awad et al. 2013). The pigs can be identified from auricular 
venation patterns (Harrell 2009). As traditional identification systems have some 
limitations, image-based identification and deep learning systems have been used 
recently not only for individual identification, but in breed identification within the 
same or different species. These technologies are cheapest, noninvasive, and easy to 
deploy both at farm and field.

3.1  Traditional Identification System

Animal identification techniques using permanent or temporary marking are classi-
fied according to characters used and to their permanence on the animal. Ear notch-
ing is an everlasting cheap individual identification system mostly used in the swine 
industry. Both ears are scratched into “V” shape in a certain fixed place and each 
location has predefined number. The individual animal id is determined by adding 
the number based on position of the cut in the left and right ear. However, this 
method of identification is less intensively used in the cattle industry (Caja et al. 
2004). Ear tags are most commonly used for identifying livestock species. Ear tags, 
either electronic or nonelectronic, may be numerous in design, but these require 
perforation of the ear flap. Some tags have prenumber, others are supplied blank and 
can be numbered with permanent ink markers which have several color choices to 
increase coding possibilities. Branding is the procedure where marking in visible 
body part of the animal is done permanently. Freeze branding or chilled branding 
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generally uses liquid nitrogen or dry ice, whereas hot branding is applied by heating 
the branding iron. Tattoo is another method of permanent identification of animals 
when they die with sharp, needle-like projections secured on animal’s body.

3.2  Visual Biometric Identification System

Some species have unique coat patterns or markings which are used not only to clas-
sify one particular breed in same species like snakes but also for individual identifi-
cation like zebras, dolphins, etc. within the same population. The patterns are 
captured in an almost controlled environment, preprocessed, extracted unique fea-
tures from them, and matching them for individual or breed identification (Karanth 
and Nichols 1998; Burghardt et al. 2004; Lahiri et al. 2011; Duyck et al. 2015). 
Zebras and tigers have natural stripes like human fingerprints. The stripes have 
unique features like distances among the stripes, angle, etc. (Karanth and Nichols 
1998). The patterns are captured and used for individual identification in Figs. 11.1, 
11.2, and 11.3.

The fins of dolphins have a unique shape in adult stage. The shapes of fins of all 
dolphins are same in childhood and unique shapes are formed due to damage of fins 
from childhood to adult stage. It is formed due to attacks by other dolphins, accident 

Fig. 11.1 Stripe patterns captured by infrared sensor camera are used for the identification of 
individual tiger cubs (a, b) and adults (c, d). (Source:https://www.researchgate.net/
publication/289771762_Camera_trapping_the_Indochinese_tiger_Panthera_tigris_corbetti_in_a_
secondary_forest_in_Peninsular_Malaysia)
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with obstacles, or other various reasons. The damaged fins of dolphins are used as 
individual identification mark. The fin of dolphin is captured, the centroid is located, 
and lines are drawn from the centroid to the periphery with some angular differ-
ences. The lines are used as codebook for individual identification. The fin of the 
same dolphin is recaptured and a new codebook is developed. The matching is done 
between captured codebook and stored codebook in the database (Duyck et  al. 

Fig. 11.2 Stripes of Zebra. (Source: http://grevyszebratrust.org/stripe- recognition.html)

Fig. 11.3 Pointing for identification. (Source: http://grevyszebratrust.org/stripe- recognition.html)
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2015). The dolphin gets identified based on matching score (Burghardt et al. 2004). 
The fins of dolphin are shown in Fig. 11.4.

Someway, Cheetahs based on tail rings and limbs spots and African penguins 
based on black spots on their chests were identified as presented in Figs.  11.5 
and 11.6.

Fig. 11.4 Fins of dolphins. (Source: https://www.americanscientist.org/article/computing-dolphin- 
fin- photo- ids)

Fig. 11.5 Cheetah (Resy) in 2001 (left), in 2008 (Middle), and 2011 (right below). (Source: http://
marameru.org/eng/project/cheetah- identification/)
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3.3  Image-Based Animal Identification System

In image-based animal identification, different trait(s) which may be given unique 
pattern-like trait(s) used for individual human identification have been captured 
using different cameras in different lighting conditions keeping animal free or 
restrained. Each trait has been preprocessed, segmented from the images. The fea-
tures have been extracted and analyzed for individual animal identification. The 
faces, nostril, and inside the tail and ears have been captured by mobiles and camera 
(DSLR). The face images have been taken from different angles and some points 
have been marked like human detection using 22 points marked in the face (Kazimov 
and Mahmudova 2014). But most of the time, the animals do not repeat pose and 
hence the ratios of measurements of different trait(s) may be varied at different 
times for the same animal. Some dots have been found on the nostrils of some ani-
mals, like the goat. The dots are stable and have been tested for individual identifica-
tion, but the dots of nostrils have not been found in kids and young goats. Many 
wrinkles have been found inside the tail of mature animals. They may be used for 
finding unique patterns for individual identification, but wrinkles are formed due to 
age and not available in all animals. The vein distributions of ears of some animals 
like pig, rabbits, and rats have been given a unique pattern and may be used as a trait 
for individual identification (Bugge et al. 2011). Ear vein distribution of some ani-
mals may not be captured due to hair inside of ears. Recently, Dan et al. (2021) have 
developed individual pic recognition system based on ear images. It has been proved 
that retina blood vessel or vessel tree is used for individual goat identification 
(Mustafi et al. 2021). The retinal vessel tree has been found unique for individual 
animal. The structure or architecture of the eyes of all animals is not similar like in 
human, and retinal cameras have been developed for capturing the human retina in 
a control environment. The eye has to be dilated using atropine and retina images 
have been captured using retinal cameras made for capturing retina images for 
human. The animal retinal pictures have to be captured in a natural environment and 
retinal images have been used for individual identification purpose (Mustafi et al. 
2021). Iris recognition is one of the most dependable biometric techniques for 

Fig. 11.6 Black spotson Penguins chests. (Source: Burghardt et al. 2004)
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individual identification purposes. J. Daugman (2002) is the pioneer in the field of 
iris recognition. Iris can be scanned quickly and images can be obtained digitally. 
The iris recognition system is already used in humans (Daugman 2007; Feng et al. 
2008). The iris recognition has been done for cow identification (Zhang et al. 2009; 
Lu et al. 2014). The iris pattern matching has been proposed for recognition of goat 
recently (De and Ghoshal 2016; Roy et al. 2021). The photographic images of the 
iris were captured using a specialized iris identification camera. Algorithms already 
developed for human recognition using iris were not usable for recognizing animals 
like goat due to differences in the anatomical structure of their eyes. Unlike the iris 
of human, goat iris is rectangular in shape and cannot be set in any standard shape. 
Thus, iris segmentation algorithms of human would not be useful to section iris 
image of goat eye. A software iGoat developed by Roy et al. (2021) was applied to 
position the rectangular iris area in the eye and thus segment iris. The segmented iris 
was normalized and the template was generated and stored in Iris_template_data-
base. Hamming distance (Daugman 2002) was used as a metric for iris pattern 
matching and recognition. It has been observed that matching scores among the iris 
images from same goat are significantly different from iris images from other goats. 
The goat identification system using iris is given in Fig. 11.7.

3.4  Feature-Based Animal Breed Identification

The classical neural network is not efficient for image classification. The fully con-
nected layers have a huge number of parameters and each image is composed of a 
huge number of pixels. To avoid such problems, the statistical properties have been 
extracted from images and the extracted properties have been used as input of net-
work for classification. The classification model has been used mainly on breed 
classifications. Mandal et al. (2019, 2021) have proposed one model consisting of 

Fig. 11.7 Iris image-based goat recognition
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four sub-modules as layered structure (Fig 11.8). The captured images of different 
pig breeds have been preprocessed, images have been segmented based on hue- 
based algorithm, and finally color-based features have been extracted from each 
segmented image. The features have been processed in Neural Network for the pre-
diction of pig breed. The suitable training has been chosen for better performance of 
network.

3.5  Deep Learning-Based Animal Identification System

Recently, different supervised deep learning frameworks have been used for breed 
identification within the same species. The frameworks have also been used in and 
between breed classifications. The individual identification framework has also 
been developed using supervised deep learning. Deep learning frameworks have 
already been developed recently for pig and goat breeds identification (Mandal et al. 
2020; Mukherjee et al. 2020; Ghosh et al. 2021). In these frameworks, goat or pig 
breed identifications have been performed with Convolutional Neural Network 
(CNN) using individual goat or pig image. Two CNN architectures (Inception-v3 & 
VGG-16) have been compared and the better performing model was selected for 
goat breed prediction. In the third framework, goat breed prediction with localiza-
tion has been done by using an object localization algorithm called Region Proposal 
Network (RPN) on top of the CNN feature extraction backbone combined known as 
Faster R-CNN. With the success of the proposed frameworks, it can be confidently 
stated that either one can be used for solving the animal breed identification prob-
lem with high accuracy as well as intelligent livestock management.

4  Internet of Things

Internet of things (IoT) comprises of a complex interconnected network of things 
that intermingle each other at any given time and place, data collection, data 
exchange, and placing them in the cloud for further processing by intelligent algo-
rithms to accomplish collective targets. “Things” mean any physical devices like 
computers, cameras, cell phones, sensors, etc. that are attached to each other through 
the internet (Mattern and Floerkemeier 2010; Ma 2011; Qutqut et al. 2018).

IoT provides potential opportunities for using a stirring set of technologies that 
can be applied in every spare of life (XuDa et al. 2014; Li et al. 2015). Nowadays, 
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Fig. 11.8 Features-based pig breed identification
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with modern technological progress, a number of smart devices, such as sensors, 
smart phones, tablets, smart wristbands, and Radio Frequency Identification (RFID), 
have made IoT versatile and popular. Recent advances in IoT have made huge 
development in industry and agriculture for collecting and processing data in vari-
ous situations, such as environmental monitoring, human healthcare, livestock 
healthcare, precision agriculture, and tracing (Djedouboum et al. 2018). With the 
ever-increasing demand for livestock and livestock products across the globe, chal-
lenges of processing a huge data become inevitable and thus IoT can help in the 
systematic and successful processing and real-time availability of the data which 
allow the users enormously for use of the basic information involving procurement 
of input, livestock management and production, livestock disease surveillance, mar-
ket trend of livestock products, etc. In fact, the breakthroughs in IoT have made 
paradigm of prospects for livestock stakeholders. IoT is becoming an indispensible 
component of the farming society in the development and extension of the livestock 
sector to give better solutions and augment livestock production (Fig. 11.9).

A comparative study on cow population and milk production in different coun-
tries worldwide is presented in Table 11.1. The table shows India ranks first in cow 
population; however, India contributes roughly twothirds of milk that is contributed 
by the USA annually. The dairy cow population in Brazil is more than the cow 
populations present in USA or China, but cow milk production is less than the cow 
milk production recorded in USA or China. In the world scenario, the small farmers 
in developing and underdeveloped countries rear 80% of dairy cows (Kino et al. 
2019). These small farmers practice traditional farming and they are not aware of 

Fig. 11.9 IoT application for remote monitoring of livestock (Source: https://www.fareasternagri-
culture.com/live- stock/cattle/sas- iot- analytics- target- cold- chain- logistics- and- livestock-  
wellness- challenges)
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such modern digital technology. Thus, the use of such modern technology needs to 
be promoted to address the rising demand of the world.

SmartHerd management has been proposed by Taneja et al. (2019) for studying 
animal behavior and monitoring health in regard to increase milk productivity. 
Because of high initial investment, the ability of the small farmers is limited; in such 
conditions, open-source hardware may be an alternative option (Ngo et al. 2020). 
Arduino has opened opportunities for its open applications in greater ranges, such 
as collection of environmental parameters (Mesas-Carrascosa et  al. 2015), data 
mining (Patil et al. 2016), automated watering systems (Rahman 2020), IoT-based 
platforms (Saqib et al. 2020), or information monitoring systems (Trilles et al. 2018).

The use of nanotechnology in IoT-based wireless sensor networks was conceptu-
alized first by Bhargava et al. (2015) for the application in precision dairy farming. 
Kröger et al. (2016) reported sensors and network communication nodes for data 
recording and monitoring of livestock. Crowe et al. (2018) suggested an IoT-based 
semantic model for automatic heat detection and controlled direct fertility pro-
grams. Neethirajan et al. (2017) suggested an IoT-based implant device for record-
ing all sorts of medical information of an animal at a particular location. Zhang et al. 
(2018) suggested a real-time data collection system for generating momentum 
information on agroecological conditions of a particular grazing land. Germani 
et  al. (2019) recommended a long-range Low Power Wide Area Network (LoRa 
LPWAN)-based IoT technology for monitoring environmental variables as well as 
health-related various parameters of cattle. On the other hand, Maroto-Molina et al. 
(2019) put forward an IoT-based low-cost communication system consisting of 
Bluetooth tags and Sigfox network for identifying the position of a whole herd.

IoT technology was used for livestock tracking and geofencing (Ilyas and Ahmad 
2020). Geofencing is a particular area-based technique in which a location-aware 
device like GPS, RFID, or Wi-Fi can trigger an alert when an animal attached with 
a location-specific device goes in or goes out of a particular virtual geographical 
boundary, considered as a geofence. Geofence is a concept of monitoring the 

Table 11.1 Comparative studies on cow population and milk production in different countries 
worldwide

Category Country
Worldwide dairy cow 
population (%)

Worldwide cow milk 
production (%)

Developed USA 3.4 14.6
Germany 1.6 4.9
France 2.0 3.9
New 
Zealand

1.8 2.8

Developing India 16.5 8.4
China 4.7 6.0
Brazil 8.7 5.3

Underdeveloped Pakistan 3.8 2.1
Bangladesh 1.5 2.0

Source: Akbar et al. (2020)
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movement of animals within a particular virtual boundary of a farm or pasture land. 
Geofence allows monitoring the animal remotely. GPS network, Wi-Fi nodes, and 
Bluetooth beacons are used to construct a geofence around a specific location; then 
the geofence is paired with sensors attached with the animal collar, and when an 
animal comes out of the particular virtual boundary, it gives alert signal to a device 
kept by the farmer (Akbar et al. 2020).

5  Wireless Sensor Networks

Wireless sensor networks (WSNs) consist of different networks of many devices 
and sensors which are interconnected wirelessly and communicated with one 
another every second. Chong and Kumar (2003) have described in detail the evolu-
tion of WSNs. World War II ended with the rising of competition between the USA 
and the USSR, mostly the present-day Russia. Such rebellion was known the Cold 
War. In the early 1950s, the USA marked the USSR submarines as the most danger-
ous to its defense. Hence, the USA focused research and development on underwa-
ter acoustics for detecting submarines leading to the development of a sound 
surveillance system (SOSUS). In the late 1970s, the Defense Advanced Research 
Projects Agency (DARPA) of the USA discovered distributed sensor network (DSN) 
followed by the development of WSNs.

Martin and Islam (2012) have defined WSNs as self-configured and wireless 
networks that collect data on the physical or environmental conditions and then 
leave the collected data to a particular location where the data are processed, ana-
lyzed, and displayed. WSNs commonly include Bluetooth, wireless mobile com-
munication, wireless broadband, Wi-Fi, WiMax broadband, ZigBee, LoRa LPWAN, 
Sigfox, etc. A satellite navigation system plays a central role in WSN communica-
tion system. As of now, there are four satellite navigation systems to provide global 
coverage: (i) Global Positioning System (GPS) of the United States, (ii) Galileo of 
Europe, (iii) GLObal NAvigation Satellite System (GLONASS) of Russia, and (iv) 
BeiDou of China (Fig. 11.10).

The development of WSN technology has given opportunities to use it in many 
fields, such as industries, medical care, agriculture, livestock farming, transporta-
tion, environmental monitoring, and military defense (Minaie et al. 2013; Srivastava 
and Sudarshan 2013; Wang et al. 2016). The setup of livestock farms is generally 
found in remote locations. In such cases, data transmission through a wired network 
is not possible because of high cost, trouble in connecting power lines, or problem 
in signal transmission due to long lines. Hence, a network of wireless nodes tech-
nology has become popular to monitor farm environmental parameters and live-
stock as well (Llario et al. 2013; Wang et al. 2014; Murphy et al. 2015). Chen and 
Chen (2019) developed an automatic monitoring system using WSN technology 
that includes programmable logic controllers (PLC), analog-to- digital converter 
modules, RFU-400CR wireless device, and human-machine interfaces (HMI) in 
both dairy and pig farms. This WSN system removed manual data collection system 
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of the environmental conditions and manual controls of fans and water control 
valves in livestock farms as shown in Figs. 11.11 and 11.12.

5.1  Biometric Sensors

A sensor is a device that detects a physical, chemical, or biological thing (Neethirajan 
2020a). A sensor collects real-time data which are processed by big data analytics 
systems to generate real-time information for further decision-making (Neethirajan 
and Kemp 2021). The available biometric sensors may be noninvasive or invasive.

5.1.1  Noninvasive

Stationary Sensors in the Farm Area

Animals in the farm have a daily routine like feeding and milking which are repeated. 
So, the stationary sensors placed at a particular place of the farm can capture those 
activities of the animals. The stationary sensors are surveillance cameras, micro-
phones, and closed-circuit cameras for identification and monitoring of activities 
like lying time, feeding time, watering time, etc. Some other sensors include tem-
perature measurement of the udder and recording of sound in the farm (Ferrari et al. 

Fig. 11.10 WSN communication technologies application in livestock farming. (Source: https://
data- flair.training/blogs/iot- applications- in- agriculture/amp/)
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2008; Exadaktylos et al. 2014; Berckmans et al. 2015; Broom and Fraser 2015; Kim 
et al. 2015). Certain other sensors like thermometers, gas sensors, and pressure sen-
sors are commonly used to monitor animals’ health conditions, rumination, core 
body temperature, etc. for efficient management of each animal (Helwatkar et al. 
2014). The advantages of these stationary sensors are that a few sensors are needed 
to monitor the animals in the farm. However, the behavioral activities are limited 
with this sensor and longer times of exposure to the sensor are needed.

Mobile Sensors Attached to the Bodies of the Animals

The noninvasive sensors commonly used in livestock management are thermome-
ters, accelerometers, pedometers, magnetometers, RFID tags, etc., which are 
attached to the bodies of the animals to monitor an animal for a whole day in the 
most reliable way. The smart collars attached with wearable sensor systems are 
often used for animal tracking and activity monitoring of animals in an outdoor set-
ting as shown in Fig. 11.13 and 11.14. Løvendahl and Chagunda (2010) suggested 
pedometers attached with readily available low-cost sensors which recorded the 
activities of the animal, like lying time, standing time, and oestrus behavior with 
highly efficient forecasting abilities. Nowadays, low-cost GPS positioning sensors 
are attached to the neck collars of the animals so that the different positions of ani-
mals and activities like seeking for their feed, eating, lying, and standing can be 

Office cowshed

piggery
N

0 50 100 200(m)

Fig. 11.11 Aerial photo of livestock farm. (Source: Chen and Chen 2019)
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monitored. But the success rate in classification is low as 85%; therefore, they are 
incorporated with other sensors like accelerometer, etc. for better results in the field 
(Godsk and Kjærgaard 2011). Other noninvasive sensor includes micro-electro- 
magnetic system (MEMS). MEMS-based accelerometer is more reliable for moni-
toring the activity of animals. This system is efficient for carrying more data than a 
normal accelerometer in low power conditions and at a lower cost (Marchioro et al. 
2011; Helwatkar et al. 2014). Noninvasive, self-powered RFID-based digital ther-
mometers have been developed for recording real-time body temperature in goats 
(Debnath et al. 2016), cattle (Debnath et al. 2017), and Murrah buffaloes (Debnath 
et al. 2019). The advantages of these sensors are that all the physiological as well as 
the behavioral activities of the animals can be monitored in and off the farm. 
However, the sensors may be lost like neck collars and can be damaged due to wear 
and tear of the device, etc.

Monitor PC, SCADA, IOT

Database PLC
controller

Cell phone

Cloud

Control

Ethernet

Communication

Antenna

Antenna

Communication

Controller A/D

Sensors
Daily
barn
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Surf the 
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Fig. 11.12 The conceptual planning of system architecture including hardware devices for auto-
matic monitoring system in livestock farms. (Source: Chen and Chen 2019)
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5.1.2  Invasive

The study on invasive sensors in livestock is limited. Invasive sensors are generally 
swallowed by or implanted in an animal for precise measurements of physiological 
parameters. It was as early as 1970 when electronic transponders were used for 
automatic recording of data on individual feeding of cows. The first-generation 

Fig. 11.13 Data collector on the forehead of cattle. (Source: https://www.precisionag.com/in- 
field- technologies/sensors/using- iot- to- increase- efficiency- productivity- for- livestock/?amp)

Fig. 11.14 Wearable sensor system on the forehead of grazing animals for continuous monitoring. 
(Source: Ngo et al. 2020)
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transponders were attached to a collar around the neck of the animals and these 
were further miniaturized and decided to be injected under the skin. Some classical 
examples of these types of sensors include RFID microchips, rumen bolus, and 
thermometer. RFID technology allows the user to track and identify the animal with 
specific tracing systems like disease tracing, vaccinations, medications, etc. RFID 
microchips implanted subcutaneously or embedded in ear tags and collars are used 
to monitor general activity, eating, and drinking behaviors (Neethirajan 2017). 
When the RFIDs are incorporated with GSM or mobile SIM cards, the inbuilt GPS 
can also send alerts to the farmers or the competent authorities whenever there is a 
case of theft or smuggling across borders. With these wireless sensors, a huge data 
of the animal can be stored in the memory of the pc or a mobile phone and thus these 
stored data can be used later or be referred to for tracing out any kind of information 
like disease outbreaks in a region and others. These sensors could be embedded on 
animals for detecting the presence of viruses and pathogens (Posthuma-Trumpie 
et  al. 2009; Ayyar and Arora 2013; Mungroo and Neethirajan 2014; Kizil et  al. 
2015), measuring body temperature (Nogami et al. 2014; Sellier et al. 2014; Jensen- 
Jarolim and Flaschberger 2016), internal physiological measures (Helwatkar et al. 
2014), observing animal’s behavior and movement (Jaewoon et al. 2015), detecting 
stress (Lee et al. 2015), detecting pH (Kim et al. 2016), and estimating sweat con-
stituents of animals (Garcia et  al. 2016; Glennon et  al. 2016; Heikenfeld 2016). 
Invasive sensors are advantageous for their reliable measurement values that are not 
affected by conditions prevailing outside the animal’s body. Besides, continuous 
observation of the animals is possible.

5.2  Applications of Various Sensors

5.2.1  Image Capturing Sensors

Cameras can be used as image capturing sensors to collect actionable information. 
Cameras can be placed easily in barns to collect video images. These images can be 
further processed to generate algorithms that can indicate changes in animals’ pos-
ture for the diagnosis of lameness and other morbidities, if any (Jorquera-Chavez 
et al. 2019). Video images can be further processed to create algorithms that can 
help in the identification of individual animals, monitoring of animal gait, water 
intake, feed intake, and aggression (Norton et  al. 2019). Aggression of indoor- 
housed pigs and/or overall activity patterns of group-housed pigs can be tracked 
using an automated video imaging technology (Wurtz et al. 2019). Aydin (2017) 
proposed to use 3D vision camera and image process algorithm to detect lameness 
of broiler by examining locomotive behaviors. Zaninelli et al. (2017) used sensor- 
based infrared technology to monitor a flock of more than 500 hens under free- 
range extensive system of management. Benjamin and Yik (2019) suggested using 
3D image technology to estimate the body weight of pigs. Facial recognition 
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technology can also be applied to investigate any change of facial expression and 
recognize several behavior patterns of animals using machine learning computer 
algorithms (Camerlink et al. 2018; Marsot et al. 2020).

5.2.2  Sound Capturing Sensors

Microphones can easily be installed in farms to capture sounds exhibited by the 
animals. The sounds captured by microphones can be used for acoustic analysis in 
relation to monitoring vocalizations and coughing of the animals (Carpentier et al. 
2018; Friel et al. 2019; Norton et al. 2019). Rottgen et al. (2020) concluded that 
automated detection of the vocalizations of an individual cow could be a prospec-
tive means for monitoring the estrus of dairy cows. Automated sound detection 
algorithms can also be utilized in poultry farms to figure out thermal stress (Du et al. 
2018) and diagnose respiratory illness (Carpentier et al. 2019), feather pecking, or 
disease (Du et al. 2020; Mahdavian et al. 2020). Ngo et al. (2020) reported a low- 
cost, portable Wireless Location Acoustic Sensing System (WiLASS) for small-
holder farms in rural areas to generate health information of farm animals.

5.2.3  Biosensing Sensors

The development of biosensors allows the farmers for rapid biomarker detection to 
monitor animal health leading to the improvement of dairy cattle health and welfare. 
Ketosis is a serious health problem in dairy animals. In ketosis, there is often an 
increase of betahydroxybutyrate (BHBA) level which can be identified by a quan-
tum dots-based biosensor (Weng et al. 2015), ruthenium dye-sensitized graphene 
oxide (GO) nanosheets biosensor (Veerapandian et  al. 2016), and 2D MoS2 
nanostructure- based electrochemical immune sensors (Tuteja et al. 2017). A porta-
ble diagnostic reader has been developed by Jang et al. (2017) to detect progester-
one in milk. Various biosensors have been reported to detect fowl adenovirus 
(Ahmed et al. 2018), avian corona virus (Weng and Neethirajan 2018), and rumi-
nant Johne’s disease (Chand et al. 2018) which may cause huge economic losses for 
the farmers. Recently, RFID tags and accelerometers as biosensing sensors have 
been used for capturing drinking behavior and water intake of grazing cattle with 
95% accuracy (Williams et al. 2020) (Fig. 11.15).

5.3  Big Data Analytics

The application of various sensors generates huge data, called big data, which need 
to be stored, processed, and analyzed to figure out various important insights for 
better care and management of livestock. The big data are often considered as the 
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‘3V’, which stands for volume, variety, and velocity (Laney 2001). Recently, data 
science has emerged as a separate branch of study which integrates statistical analy-
sis and computer algorithms for data analytics (Wimmer and Powell 2015). 
Managing, processing, and effective use of big data in the area of remote sensing is 
a great challenge (Chi et al. 2016), which advances big data analytics (Wolfert et al. 
2017). The application of data analytics allows efficiently solidifying the farm man-
agement with optimum resource utilization, predicting future outcomes, and 
improving the decision-making process (Wolfert et al. 2017; Koltes et al. 2019).

Big data play a very important role in storing a large set of data on a remote 
server, and using highly developed technologies, it furnishes a scalable solution to 
livestock farming practices. Big data analytics allow monitoring disease transmis-
sion (VanderWaal et al. 2017) and identifying and predicting diseases (Gulyaeva 
et al. 2020). Digital farming service systems depend on big data analytics and mod-
eling in the decision-making process for nutrition, production, reproduction, health, 
and welfare issues. For example, da Rosa Righi et al. (2020) developed the MooCare 
predictive model in managing dairy farms and predicting milk production.
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6  Artificial Intelligence

Turing Test first floated the idea in the philosophy of artificial intelligence. In 1950, 
Alan Turing, a young British mathematician, published a landmark article 
"Computing Machinery and Intelligence", in which the question "Can machines 
think?" was substituted with the question "Can machines do what we can do?’ and 
he delineated how to design intelligent machines and how to examine their intelli-
gence (Harnad 2008). Thus, he proposed a test to examine the machine’s capability 
for exhibiting intelligence equivalent to human intelligence, called the Turing test 
(Turing 1950). However, the term ‘artificial intelligence’ was coined in 1956 at a 
conference at Dartmouth College, in Hanover, New Hampshire.

Artificial intelligence or AI is a set of algorithms concerned with the machine’s 
intelligence. AI is thought to be far better at predicting the situation than the human 
mind. AI integrates computer science and huge datasets in solving problems and 
making decisions. It encompasses subfields of machine learning and deep learning. 
AI truly has created a paradigm shift in every sector of today’s life. AI technologies 
are now being used in refrigerators, smoke detectors, heating systems, air condition-
ers, digital TVs, and others to make homes smart. In recent times, AI has trans-
formed livestock management, maintaining biosecurity, forecasting and tackling 
diseases, trading, and marketing in value chain a lot in recent years.

6.1  Automated and Intelligent Field Scout (AIFS)

Low power and low maintenance AI-enabled edge devices and sensor technology 
are more in practice with mobile application mapping in veterinary services. In 
contemporary times, cameras and AI are being used to develop a “smart” farm 
(https://keymakr.com/livestock.phpa). As an integral part of livestock welfare, AI 
models can promote with the help of image annotation and the peripheral observa-
tions of possible sickness features. Algorithms can label images of animals in a 
variety of states of health, allowing machine learning models to accurately assess 
the condition of any animal. This technology, in addition to other livestock data, can 
give livestock managers early warning of sickness in the herd allowing them to 
intervene. Polygon annotation and semantic segmentation techniques can be applied 
to images to allow AI models to track animal movement and chart activity levels 
like feeding and intake rates, etc. as shown in Fig. 11.16. AI-powered drone technol-
ogy is allowing farmers to count herds automatically and identify missing animals. 
Machine observation can provide the training datasets that enable AI models to 
track feeding rates, ensuring that animals are eating and growing properly.
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6.2  Machine Learning

Machine learning (ML) is a branch of artificial intelligence of computer science, 
which allows algorithms for statistical analysis and inference (Morota et al. 2018). 
Machine learning history was started in 1943, when neurophysiologist Warren 
McCulloch and mathematician Walter Pitts first presented a mathematical model of 
neural networks in an article entitled ‘A logical calculus of the ideas immanent in 
nervous activity’. In 1959, Arthur Samuel, an American IBMer and pioneer in the 
area of computer gaming and artificial intelligence, coined the term machine learn-
ing (Samuel 1959). ML is an emerging field of interest in precision livestock farm-
ing to utilize livestock farming data (captured as text, audio, videos, and images) 
and generate information for taking need-based activities for the improvement of 
livestock farm management and thus eliminate the need for a human data analyst 
(Benjamin and Yik 2019). The application of advanced technologies like AI and ML 
algorithms to use big data for analysis, classification, prediction, identification of 
deviations from standard patterns, and notification is presented in Fig. 11.17.

Around the world, automation in livestock support is highly deployed by incor-
porating soft logic-based predictive decision. These decisions depend on classified 
ML technique and annotation systems. The accurate classification depends on prior 
data set to enable the machine for near-perfect output. ML is a branch of AI algo-
rithms that construct a model based on sample data, known as "training data". 
Supervised and unsupervised learning are two major classifications of ML tasks. 
Supervised learning is a machine learning technique in which models are con-
structed using labeled data under the supervision of training data. It means some 
data already tagged/ labeled with the correct answer (training data) are provided to 
the machines as the supervisor that teaches the machines to forecast the output 

Fig. 11.16 Activity monitoring of livestock during field grazing. (Source: https://keymakr.com/
livestock.phpa)
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https://en.wikipedia.org/wiki/Arthur_Samuel
https://en.wikipedia.org/wiki/IBMer
https://en.wikipedia.org/wiki/Computer_gaming
https://en.wikipedia.org/wiki/Artificial_intelligence
https://keymakr.com/livestock.phpa
https://keymakr.com/livestock.phpa


199

correctly. Unsupervised learning is a machine learning technique in which models 
are not supervised using training dataset; however, it discovers hidden patterns from 
unlabeled data. A generalized ML procedure for the outputs in the livestock system 
is presented in Fig. 11.18.

6.2.1  Machine Learning Models for Feature Extraction

Machine learning applications in agricultural technologies pave many different 
ways of applications to get anticipated results. The most popular models in agricul-
ture are Artificial Neural Networks (ANNs), Deep Neural Networks (DNNs), 
Convolutional Neural Networks (CNNs), and Support Vector Machines (SVMs). 
Like the function of the human brain, ANNs construct a simplified model of the 
structure of the biological neural network performing complex functions such as 
pattern generation, decision making, etc. DNN is a subfield of ANN. DNN is much 
more complicated than ANN. In DNN, learning is deeper and it works for predic-
tion, creative thinking, etc. CNNs are mostly used for image and video recognition 
that is specifically designed to process pixel data, and rarely for audio recognition. 
SVMs analyze data for classification, regression analysis, and clustering.

Sensors
(captures)

big data
(processes)

ML
(analyzes)

algorithm
(notifies)

Fig. 11.17 The collection of advanced technologies to use big data and generate better outcomes. 
(Source: Neethirajan 2020a)
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Fig. 11.18 Generalized ML procedure for the outputs in livestock system
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6.2.2  Regression Analysis in Machine Learning

Regression is the appropriate algorithm to find the relation between variables for 
which the primary features data can be identified. For example, the primary features 
data for the best condition in milk production in any regulated farm condition can 
be identified using regression analysis.

The regression line may be like:

 Y b b X b X b Xn n= + + +………0 1 1 2 2  

Here Y = Amount of milk produced
X1, X2.. = Variables that are provided in the data (amount of foods, age, tempera-

ture, etc.)
b0, b1… = Coefficients obtained on regression

6.2.3  K Nearest Neighbor Algorithm to Predict Production

In dairy farming, the pertinent questions arise from the measuring of milk yield that 
is expected from a cow with the use of various food and nutrients. For a new batch 
of cow, it is difficult to know an estimate of milk production. K Nearest neighbor 
(KNN) algorithm may be applied to solve this problem. Norouzzadeh et al. (2018) 
reported various image annotation groupings for AI and ML and application of deep 
learning for classifying different action attributes in livestock management system 
as shown in Fig. 11.19. Image resources Cogito training datasets for AI are shown 
in Fig. 11.20. Intelligent computer vision for identifying each cow in the herd and 
monitoring its daily habits is presented in Fig. 11.21.

6.2.4  Applications of Machine Learning in Artificial Intelligence-Based 
Livestock Farming System

ML application is very much usable for the exact estimation of economics of live-
stock farm based on production line as well as monitoring animal behavior for the 
early detection of diseases. Liakos et al. (2018) have reviewed application of ML in 
different aspects of livestock farming as depicted in Table 11.2.

A representation of how machine learning algorithms may predict production 
potential and generate decision-making strategies in dairy farming as shown in 
Fig. 11.22.
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Fig. 11.19 Application of Deep Neural Networks (DNNs) for identifying, counting, and describ-
ing livestock grazing behavior in farm environment. (Source: Norouzzadeh et al. 2018)
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Fig. 11.20 Image resources Cogito training datasets for AI. (Source: https://www.cogito-
tech.com/)

Fig. 11.21 Intelligent computer vision for identifying each cow in the herd and monitoring its 
daily habits. (Source: https://www.cainthus.com/)
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Table 11.2 Applications of ML in livestock farming and animal welfare

Author
Animal 
species Observed features Functionality

Models/
algorithms Results

Dutta 
et al. 
(2015)

Cattle Features like 
grazing, 
ruminating, 
resting, and 
walking were 
recorded using 
collar sensors with 
three-axis 
accelerometer and 
magnetometer.

Classification of 
cattle behavior

EL/bagging 
with tree 
learner

96% accuracy

Pegorini 
et al. 
(2015)

Calf Chewing signals 
from dietary 
supplements, such 
as tifton hay, 
ryegrass with 
rumination, and 
idleness which 
were recorded 
using optical FBG 
sensors

Classification of 
chewing 
patterns in 
calves

DT/C4.5 94% accuracy

Matthews 
et al. 
(2017)

Pigs 3D motion data on 
standing, moving, 
feeding, drinking, 
etc. were collected 
using depth video 
cameras

Tracking of 
animal behavior 
and various 
activities of pigs

BM: Gaussian 
Mixture 
Models 
(GMMs)

Animal tracking: 
Mean multi-object 
tracking precision 
(MOTP) = 0.89 
Accuracy behavior 
annotation: 
Standing: Control 
R2 = 0.94, 
Treatment R2 = 
0.97 Feeding: 
Control R2 = 0.86, 
Treatment R2 = 
0.49

Craninx 
et al. 
(2008)

Cattle Milk volatile fatty 
acids (acetate, 
propionate, and 
butyrate)

Prediction of 
rumen 
fermentation 
pattern from 
milk fatty acids 
to determine 
molar 
proportions of 
volatile fatty 
acids

ANN/BPN Acetate: RMSE = 
2.65% Propionate: 
RMSE = 7.67% 
Butyrate: RMSE = 
7.61%

(continued)

11 Application of Information and Electronic Technology for Best Practice…



204

Table 11.2 (continued)

Author
Animal 
species Observed features Functionality

Models/
algorithms Results

Morales 
et al. 
(2016)

Hens Data on the farm’s 
egg production 
line were collected 
over a period of 
seven years

Early detection 
and warning of 
problems in 
commercial 
production of 
eggs

SVM 98% accuracy

 Alonso 
et al. 
(2015)

Cattle Geometrical 
relationships of 
the trajectories of 
weights along the 
time

Estimation of 
cattle weight 
trajectories for 
future evolution 
with only one or 
a few weights

SVM Angus bulls from 
Indiana Beef 
Evaluation 
Program: weights 
1, MAPE = 3.9 ± 
3.0% Bulls from 
Association of 
Breeder of 
Asturiana de los 
Valles: weights 1, 
MAPE = 5.3 ± 
4.4% Cow from 
Wokalup Selection 
Experiment in 
Western Australia: 
weights 1, MAPE 
= 9.3 ± 6.7%

Alonso 
et al. 
(2013)

Beef 
cattle

Zoometric 
measurements of 
the animals 2 to 
222 days before 
the slaughter

Prediction of 
carcass weight 
of beef cattle 
150 days prior 
to the slaughter 
day

SVM/SVR Average MAPE = 
4.27%

 Hansen 
et al. 
(2018)

Pigs 1553 color images 
with pig face 
using RFID tag

Pig face 
recognition

DNNs: 
Convolutional 
Neural 
Networks 
(CNNs)

96.7% Accuracy

Source: Liakos et al. (2018)
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7  Drones or Unmanned Air Vehicle

Over the last few years, unmanned aerial vehicles (UAVs) or drones have come up 
as one of the world’s most talked technologies which are used in a wide range of 
fields, such as defense, the entertainment world, social functions, agriculture, 

Drug/Medicine

Drug/Medicine

Feedback Stream

Algorithm for Data Analysis

Estrous Cycle

Body Movements (Lying,
Resting, Activity)

Body Weight
Index

Milk Yield Electrical Conductivity
Somatic Cell Count
Fat Measurement

Facial Temperature
Olfactory Cues

Heat Measurement

Vocalization

Sweat Signals
Eyeball Movement

Ear Position

Food Intake
Composition

Skin and Oral
Temperature Changes

Fig. 11.22 How machine learning algorithms may predict production potential and generate 
decision- making strategies in dairy farming. (Source: Neethirajan 2020a)

Fig. 11.23 Use of drone for monitoring behaviors of sheep and smart sensors to help in the early 
detection of any deviation from normal behaviors or any other issues. (Source:https://www.design-
indaba.com/articles/creative- work/drone- design- reaches- new- heights)
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livestock farming, and many others. Drones support many tasks in vigilance, sur-
veying, social functions, disaster risk management, agriculture, livestock monitor-
ing, etc. (Ayamga et al. 2020).

Drone technology has opened a whole new perspective in animal husbandry and 
agriculture at large. In agricultural operations, drones can collect and provide real- 
time data from the farm fields (Malveaux et al. 2014). GPS-enabled drones with 
better-operating cameras and sensors and customizable applications for smart 
phones and tablets with user-friendliness can provide quality data and information 
in agriculture, livestock farming, and natural resources (Hogan et al. 2017). There is 
a huge opportunity of using drones in air surveillance of poaching, precision farm-
ing, animal herding to providing healthcare, etc. (FAO 2018). Drone application in 
livestock farming for the collection of real-time data and monitoring of animals on 
the farm is shown in Fig. 11.23.

8  Robots

The use of robots in various agricultural activities, such as environmental monitor-
ing, soil analysis, planting seeds, fertilizer application, weed control, and harvesting 
has already been popular. The emerging application of robots in livestock farming 
support and management is also growing. The use of robots has made everyday 
activities easier in livestock farming, such as animal traceability, automatic heat 
detection, and automatic milking system (Edwards et al. 2015; Gargiulo et al. 2018). 
Since the 1980s, the development of milking robots has made farm activities easy 
for automated milking, cleaning, feeding of cows, automatic recording of data on 
animals, and labor engagement (Ordolff 2001). Barkema et al. (2015) summarized 
that milking robots were adopted by more than 20% of dairy farmers in Denmark 
and Sweden, between 15% and 20% of the farmers in Iceland and the Netherlands, 
between 10% and 15% in Norway and less than 10% in Finland, Germany, and 
Canada, and 6% of the farmers in Switzerland. Faromatics’ ChickenBoy (https://
faromatics.com/) is a significant intervention of robotics equipped with a series of 
sensors that are directly used in the chicken barn. These robotics devices can mea-
sure temperature, humidity, and air quality, including levels of ammonia, an indica-
tor for litter conditions whether wet or not. Through technology advances, the 
spread of technology is still restricted due to limited access to technologies, initial 
cost involvement, and lack of knowledge on technologies with cost-benefit ratio. 
Gargiulo et al. (2018) observed that the adoption of precision dairy technologies by 
the larger farms was more than small farms in Australia. Groher et al. (2020) found 
that the adoption of digital technologies was also positively correlated with the 
number of livestock animals (Fig. 11.24).
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9  Conclusions

We are already in the era of digital technologies such as high-speed internet, smart-
phones, and cheap computing programs. Currently, more than half of the world’s 
population uses the internet either through computers or smartphones. The real-time 
alert on different farm issues has already been implemented through smartphones in 
many countries across the globe. The advanced digital technologies are going to set 
in agriculture and livestock farming for improving efficiencies and gaining greater 
outputs in a bigger way in the days to come. The application of digital technologies 
in livestock production systems has come to play a more decisive role in monitoring 
the farm thoroughly, understanding the dynamics and impact of climate change, 
mitigation, animal disease surveillance, prevention of outbreak of livestock dis-
eases, and preparedness for pandemic crises. However, most of the studies have 
been done in the large and organized livestock farms of North America, Europe, and 
Australia continents. Farm data of North American, European, and Australian farms 
cannot be compared with data of smallholder farms in developing countries, since 
the socioeconomic conditions of such smallholder farms are different and thus the 
issues and challenges of smallholder farms are unique. Thus, there is a demand for 
country-wise regional or local studies under varied socioeconomic conditions. 

Fig. 11.24 The robotic rotary milking parlor. (Source: https://www.agupdate.com/farmandranch-
guide/news/dairy/new- robotic- milking- parlor- features- the- latest- in- technology/article_
eb6e9530- 9826- 11e8- ad4a- 8329f5374a69.html)
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There is a range of technology options that have high potential, but require further 
testing and refinement at the farmers’ field before they can be considered techni-
cally feasible and economically viable and culturally fit.

The present information is an important first step toward understanding the 
potential of technologies for application in livestock farm management. These tech-
nologies are still in the budding stage in livestock farming, particularly smallholder 
farming systems. The lack of awareness on the effectiveness and economic benefits 
of using digital technologies in livestock production systems is the key challenge in 
the adoption of these smart technologies. Constant education and sensitization are 
essential in order to make aware and make the farmers ready to adapt any of these 
smart technologies. Nonetheless, infrastructure facilities, internet connectivity, eco-
nomic capacity of the farmers, high start-up cost, etc. are still important challenges 
before we expect widespread adoption of digital technologies in livestock produc-
tion systems. In order to make digital technologies usable and economically viable, 
there is a need for computer science and engineering research for discovering low- 
cost hardware devices, context-specific technologies for long-term operation, effi-
cient collection and storing of large amounts of data, user-friendly computer 
programs, advances in networking, common infrastructure, sharing facilities of 
information, and delivery of best practices in real time.
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Chapter 12
Mobilizing Pig Resources for Capacity 
Development and Livelihood Security
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Abstract Livestock farming forms an important economic activity throughout the 
globe. In particular, they play a crucial role in the socio-economic prosperity of the 
developing and least developed countries by providing major support to rural liveli-
hood. Pig farming is a viable and profitable enterprise that can be easily adopted and 
adapted by smallholder farming systems. Pigs can be easily integrated into small- 
and marginal-scale farming systems and can be fed with by-products from crops 
that cannot be consumed or used more efficiently by small-scale farmers. In the 
developing nations, the piggery sector directly empowers the rural poor, precisely 
the women and tribal population. Besides providing nutrition, pig farming acts as 
insurance to the weaker section of the society against agricultural failures and loss 
of labour through sale of pig and pig products. Nevertheless, this sector is still in its 
developing stage in India and agripreneurs have started taking interest in pig rear-
ing. There are many bottlenecks in its advancement to full capacity, which need to 
be addressed. Scientific interventions and extension activities aimed to mobilize pig 
resources towards the empowerment of weaker sections of society can lead to their 
better livelihood and provide nutritional security as well.
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1  Introduction

Pig farming contributes to the livelihood of smallholder farmers, both directly and 
indirectly. It provides income through sale of pigs and their products and also pro-
vides household protein nutrition (Lemke and Valle 2008). The quick return is 
ensured by certain inherent traits of pigs like high fecundity, better-feed conversion 
efficiency, early maturity, and short generation interval (Bharati et al. 2021). Along 
with it, the investment on buildings and equipment is also very less in pig farming. 
Pigs are reared under a variety of production systems, ranging from extensive back-
yard to highly specialized intensive indoor systems (Pietrosemoli and Tang 2020); 
however, the global pig production system is dominated by smallholder pig farming 
(Oosting et al. 2014), which constitutes about 56% of the world’s pig population, 
producing 2–5 heads per year (Riedel et  al. 2012). The smallholder pig farmers 
mostly follow a mixed crop-livestock system in many countries like China, India, 
Vietnam, Thailand, Singapore, Malaysia, Indonesia, Philippines, Cambodia, etc. 
Integrated pig farming gives them an additional source of income and serves as an 
insurance against agricultural failures. Globally, China is the leading producer of 
pigs with 316 million population (FAO 2020). Figure 12.1 indicates the distribution 
of pig population in the top seven pig producing countries of the world. In most of 
the Western countries, highly developed intensive system of pig rearing is practised. 
In fact, China’s small-scale pig keepers are the largest community of pork producers 
worldwide. About 50–80% of all pigs produced in China originate from smallholder 
farms (Neo and Chen 2009). Similarly, in India, smallholder pig farming forms an 
important livelihood resource for small and marginal farmers with less than 1 hect-
are of land and especially rural tribal people and women farmers (Naskar and Das 
2007). They mostly rear pigs in small-scale unorganized farms as an integral part of 
diversified agriculture, similar to smallholder farms in other developing pig rearing 

Fig. 12.1 Distribution of pig population in the world (top 7 countries). (Data source FAO 
Stat 2019)
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nations. India occupies seventh position in Asia with 9.06 million pig population 
(Fig. 12.2). Out of these, 8.17 million pigs are reared in rural India, which forms 
about 90.12% of total pig population (20th Livestock Census, 2019, DAHD). It 
constitutes about 1.69% of total livestock population in India (Livestock census 
2019). It contributes to 2% of Asia’s pig population and 1% of global pig population 
(FAO 2020). It is mainly the socially and economically backward poor strata of 
rural poor, women, and tribal, which are closely associated with pig rearing (Kumar 
et  al. 2020). This clearly depicts the significance of the piggery sector in socio- 
economic development of smallholder systems of rural India.

In India, especially in the North-East (NE) states, pig is the most important live-
stock and pork is the most favoured meat. The high proportion of the tribal popula-
tion in states of NE, Jharkhand, and Chhattisgarh support pork consumption and pig 
rearing is an integral part of their way of life from ancient times (Payeng et  al. 
2013). Hence, the demand for pork and pork products exists at the farmgate in NE 
(Kumaresan et al. 2007). Moreover, pig farming is gaining popularity as an enter-
prise in other states, which cater to the domestic demand in NE states. Due to a 
significant share of vegetarians and Muslims in India, the demand for pork is usu-
ally limited to the hotel, restaurant, and institutional sectors (HRI). With the increase 
in urbanization and change in food habits, the taboo associated with consumption of 
pork is waning, and its demand is felt in cities, which is projected to increase in 
near future.

The piggery sector in India is gaining slow but with steady momentum. The total 
pig population has improved consistently with small growth over the past 50 years. 
India shares only 5.23% of total pork production in the world. Pig contributes 4.98% 
of total meat produced in India (Fig. 12.3) (BAHS 2019). Interestingly, about 50% 
of the country’s pork is consumed in NE India, which they get from their own pro-
duction as well as procurement of live pigs from other parts of the country (Das and 
Bujarbaruah 2005). Pork production in India is limited, representing only 9% of the 

Fig. 12.2 Distribution of pig population in Asia (top 8 countries). (Data source FAO Stat 2019)

12 Mobilizing Pig Resources for Capacity Development and Livelihood Security



222

country’s animal protein sources. India is a net importer of pork. Most pork imports 
are in the form of processed meat. In 2018, India imported over 500 metric tons of 
this meat. On the other hand, the pork exports for the same year were around 270 
metric tons.

2  Scope of Piggery Sector

The world population may increase 50% in the next 30–50 years, but that will 
increase meat consumption by twice. Moreover, by 2050, it is expected that the 
population in India would increase by 34%, which meant in the current level of 
production the meat demand will be three times. The developed countries consume 
a significantly higher amount of meat as compared to developing countries. 
Furthermore, as developing countries become more developed, meat consumption 
will concurrently increase. In order to secure food as well as nutritional security for 
a fast-growing population, there is a need for an integrated approach to livestock 
farming. Among the various livestock species, piggery offers the most potential 
source for meat production due to certain inherent traits like high feed conversion 
efficiency, litter size, and low generation interval. Pigs have the highest feed conver-
sion ratio among livestock. In fact, pigs are the most efficient feed converter meat 
animal after the broiler chicken. Apart from providing meat, it is also a source of 
bristles which are used for making brushes and manure for organic farming. Pig 
farming provides employment opportunities to seasonally unemployed rural farm-
ers and women folks, thus generating supplementary income to improve their living 
standards. Pigs can consume a wide variety of feeds and can be reared on backyard 
scavenging system, kitchen waste and agri-industrial by-products including several 
types of meat that humans don’t consume. Breeding pigs is easier and faster than 
other common livestock. A sow reaches reproductive maturity at about 7 months of 

Fig. 12.3 Contribution of different species in meat production in India. (Data source BAHS 2019)

J. Bharati et al.

https://www.statista.com/statistics/826733/india-pig-meat-imports/
https://www.statista.com/statistics/826733/india-pig-meat-imports/
https://www.statista.com/statistics/826726/india-pig-meat-exports/


223

age and thus can be bred early and can farrow up to 12–15 piglets at once, twice a 
year. Starting pig farming requires small initial investments for building sheds with 
low-cost equipment for maintenance, cleaning, feeding, and watering. The dressing 
percentage of pig is 65–80%, which directly determines the pork yield. This is quite 
higher in comparison to other livestock reared for meat purpose like poultry, goat, 
and sheep or buffalo whose dressing percentage is around 60%. Another significant 
benefit of pig farming is the production of pig manure which can be used as organic 
manure in agriculture, fish ponds, and pond fertilization. Fat deposition is faster in 
pigs than most other animals. Animal fat has huge application in soap and chemical 
processing industries.

Globally, pig meat has high demand as it is used for making value-added prod-
ucts like ham, sausages, bacon, frankfurter, pickles, curry, etc. Although the Indian 
market for processed and value-added pork products is small, the demand in the 
majority of this market is catered through imports. There exist fragmented local 
companies which manufacture value-added and traditional Indian processed pork 
products, but their presence is scanty and the industry is still in nascent stage. Due 
to changing trends in the lifestyle and food habits of people, pork is gaining popu-
larity and has felt demand. With the decrease in social taboos associated with pork 
production, the demand for pork is going to be three times higher in the near future. 
In the places where high demand for pork is felt, live pigs are transported from other 
parts of the country through various routes to meet up their requirement (NAP 
2017). The opening of NE corridor of India to southeast Asian countries will give a 
global market opportunity for pork and pork products. Hence, pig production in a 
developing country like India requires an immediate transformation from backyard 
subsidiary enterprise to a commercial venture. Therefore, looking into the prospects 
of the piggery sector to alleviate poverty, provide nutritional needs, uplift socio-
economic status of rural masses, and meet the demand of animal protein, mobiliza-
tion of pig resources for capacity development and livelihood security is for sure 
going to yield convincing results.

3  Bottlenecks in Piggery Sector

Although pig rearing plays a pivotal role in uplifting the socio-economic status of 
the weaker section of the society and a significant percentage of the tribal popula-
tion depend a greater extent on pig rearing for their livelihood, the majority of such 
population don’t have means to undertake scientific pig farming with improved 
foundation stock, proper housing, feeding, and farm management practices. In 
majority of the rural areas, free-range scavenging system predominates (Mohakud 
et al. 2020). The local pigs scavenge for the bulk of their food around homesteads, 
farms, and adjacent areas. Pigs are fed some form of supplementary feed later in the 
day, which consists of locally available feed resources like cassava, cracked cereal 
grains, or household scraps. Productivity of these village pigs is generally low with 
suboptimal growth rates and litter sizes of three to five piglets. There exists a low 
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productivity index among Indian pig breeds with respect to potential growth rates 
and mature body weight and this gap needs to be filled to develop the pork and pork- 
based industries. There are few bottlenecks in the present pig production system in 
India and other developing nations alike, which is a major hurdle in the develop-
ment of the piggery sector as an enterprise.

3.1  Insufficiency of Quality Germplasm

Good quality sows and boars are indispensable for high-performing farms. It is thus 
important to improve the genetics, rather than increasing the number of low-quality 
animals. The availability of a fewer number of breeder farmers throughout the coun-
try leads to a shortage of quality germplasm for pig farmers. Thus, the implementa-
tion of breed improvement programme might be a better strategy to address the 
required demand for good quality founder stock for pig farms. New and quality 
germplasm has been introduced by state and central governments for enhancing the 
production of pork as well as the adoption of breeding technology for the produc-
tion of lean meat using exotic and upgraded indigenous pigs. They maintain swine 
breeds of superior germplasm, which aims at upgrading local animals to enhance 
productivity and production at farmers’ field level; nevertheless, they are insuffi-
cient in fulfilling the needs of pig farmers, either due to their remote location or a 
big gap between demand and supply. With the advent of use of liquid-extended boar 
semen, which can be stored for 7–10 days under refrigerated conditions, artificial 
insemination has gained popularity among pig farmers. In India, the unorganized as 
well as organized pig farms suffer due to lack of quality semen for artificial insemi-
nation in pigs. Large-scale availability of high-grade location-specific exotic, cross-
breed, and indigenous boars, sows, and piglets needs to be maintained through 
establishment of pig breeding and multiplying units at farmers field level so that the 
availability of quality germplasm is ensured to the pig farmers in every corner of the 
country. Moreover, establishment of infrastructure and upgrading of technology 
required for preserving and distributing boar semen needs to be upscaled.

3.2  Shortage of Feed Resources

Feed, being the major input factor in all livestock production systems, is critical for 
productivity of the pig farming. The growth and development of an animal are con-
ditioned by the adequate availability of nutrient-balanced feed (Niemi et al. 2010). 
Feed costs account for most of the production costs in almost any animal production 
system, but in the pig industry, feed alone constitutes as high as 65–75 % of the pig 
production (Board 2008). Any drastic increase in feed cost can reduce the profit 
margins of pig rearing (Schmit et al. 2009). India is facing an extreme animal feed 
shortage, which is a major factor behind the recent rise in pig-rearing cost. As per 
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the estimates of the Standing Committee on Agriculture (2016–17), India, the defi-
cit in the requirement and the availability of dry fodder, green fodder, and concen-
trates will be likely 21 per cent, 40 per cent, and 38 per cent, respectively, by 2025 in 
India. The growing gaps between demand and supply are a matter of concern. 
Reduction in forest and pasture land is the reason behind the reduction in green fod-
der availability. Commercial concentrates feed comprising maize, wheat, and soy-
bean meal and other protein sources is expensive and directly competes with humans 
and other milk animal’s diet. In fact, the high cost and shortage of quality feed are 
one of the major reasons for lower productivity of Indian pig than the global aver-
age. In smallholder system, pigs are fed with rice polish, kitchen waste, vegetable, 
and fruit waste along with locally available feed resources like wheat bran, dry 
fishes, fresh squash, tapioca, tree leaves, etc. However, the farmers lack knowledge 
on the bioavailability of nutrients in these feedstuffs and feed their animals based on 
their traditional knowledge and practices. Therefore, a need arises for cost-effective 
alternative feeding strategy incorporating locally available non-conventional feed 
resources to lessen the cost of pig production and maximize profit.

3.3  Diseases

The advent of new diseases and occurrence of different infectious diseases is one of 
the important factors which affects the development of the pig industry and hampers 
the profit of the pig farmers and entrepreneurs. The presence of disease adversely 
affects feed intakes and efficient utilization of feed. There are many important dis-
eases which severely hamper the pig industry like Classical swine fever disease, 
Porcine Respiratory and Reproductive Syndrome, Foot and Mouth Disease, swine 
influenza disease, porcine circovirus disease, mastitis, porcine parvovirus disease, 
coccidiosis and respiratory diseases, Streptococcus suis infection, etc. The most 
significant ectoparasite which has serious economic impact on growing pig is 
Sarcoptic Mange. Besides ectoparasites, intestinal parasite Ascaris suum, the pig 
nematode, significantly hampers the economics of pig farming. The growth rate and 
feed efficiency may be depressed by up to 10% due to ascaris infestation. As the 
eggs of ascaris are highly resistant in nature, the infection with this parasite remains 
highly significant for the foreseeable future. Recently, the outbreak of PRRS and 
African swine fever disease has severely affected the pig industry. African swine 
fever (ASF) is a highly contagious viral disease of swine, causing 100% mortality 
in domestic pigs. This disease caused mortality of 17000 pigs in Assam state only 
till June 2020 after its 1st report in February 2020. As the mass culling of the whole 
farm is the only way to control these diseases, a major proportion of pigs have been 
culled and a great loss to farmers occurred and forced the small pig farmers to 
change their profession. To control the disease, the best way is to maintain proper 
biosecurity measures at the farm and effective management of the farm to reduce 
disease incidence. It could be done through thorough cleansing and disinfection, 
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disease diagnosis and reporting, timely vaccination against major economic dis-
eases, etc.

3.4  Veterinary Services

Most of the pigs in smallholder farming system are reared in a rural area. Rural 
tribal folks and women farmers often lack professional knowledge on health man-
agement of pigs (Balogh et al. 2009). In those pockets, the veterinary services have 
not reached sufficiently; also, along with that there is a lack of awareness pro-
grammes for pig health, routine health management practices, and biosecurity mea-
sures. In addition to lack of capital investment, they try to decrease their input costs 
by minimizing the cost of veterinary inputs, and in most cases, they do not recog-
nize the role of veterinary services in improving performance in pig breeding enter-
prises. Veterinarians, by virtue of their proficiency and their knowledge of meat 
inspection, play a broader role in facilitating the transfer of science-informed ani-
mal care recommendations and requirements to the farmers (De et  al. 2021). 
Government and industry documents on animal care and transport also include 
statements recommending that pig farmers seek veterinary advice before loading 
and unloading pigs. Even if the veterinary hospitals and services are available; the 
cold chain of different available vaccines is sometimes collapsed due to electricity 
failure in the rural interior area. These factors hamper the performance of pig farms 
located in rural interiors, which needs interventions at the level of local government 
and veterinary departments.

3.5  Safe Pork Production and Facility 
of Hygienic Slaughterhouse

Small-scaled pig farming, which dominates India’s pig production and rural farm-
ers, is less likely to adopt safe pork production practices due to the low capital 
resources with them as compared with large-scale or commercial farmers (Zhou 
et al. 2015). Investments on production and slaughter infrastructure are not feasible 
with rural women folks practicing pig farming in the backyard system. Large-scale 
pig producers can easily purchase quality inputs because of the return of scale they 
achieve, which ultimately reduces their production cost. Studies have revealed that 
production economics is an important factor influencing farmer’s safe pork produc-
tion behaviour (Wang and Wang 2012). Farmers’ education level is another major 
factor that may influence farmers’ safe production behaviour. Hence, awareness 
programmes and extension activities on safe pork production practices should be 
conducted to increase its adoption level. A major portion of the pig production in 
India as well as in South-East Asia is in the form of unorganized small-scale 
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household rural production. In those areas, the facility for the hygienic slaughter-
house for pigs is almost nil and pigs are slaughtered on the floor according to the 
traditional method. The selling of pork is also widely distributed in the unorganized 
retail sector. Most of the people purchase pork from open outlets in form of wet 
meat, since consumption of fresh local meat is more preferred which may be because 
of cultural or consumer perceptions. Pork processing and storage unit are not devel-
oped in the production pockets; however, traditional practices of increasing the shelf 
life of pork are followed to prevent spoilage of leftover pork either by preserving 
them or preparing pork products. Training programs on safe pork production prac-
tices and hygienic slaughterhouse culture need to be imparted to augment quality 
pork production in rural small-scale piggery sector.

3.6  Lack of Skilled Labour

Farm labour plays an important role in the success of the farm, especially in the 
developing and under-developed nations, where mechanization in farming is yet to 
be established. The piggery sector has experienced many changes in the manage-
ment of pig production facilities. Initially, with small-scale pig farms, it can be 
managed with the family labour, but with the increase in capacity of farm and intro-
duction of exotic breeds, the labour need also grows. Large-scale commercial farm 
and pork production unit require skilled and semi-skilled labour to manage farms 
and routine activities. Skilled labour contributes to another major production cost 
after feed on these farms. With the increase in specialization of farm units like pork 
preservation and production of value-added products, the need for a skilled labour 
force increases. Mechanization is required in case of high output on the rail slaugh-
ter house system. Mechanization demands huge input at a time as an installation 
cost, but all those works can be done cheaply in India with skilled labour. An abun-
dance of labour is a great advantage in these countries, still the deficit of skilled 
labour and reluctance of the people to get involved in the piggery-related work is 
another constrain in the pig industry. Another pressure is urbanization, which 
attracts the migration of rural young people to the cities which ultimately leads to 
labour scarcity for the piggery sector. Skill development programmes aimed at 
imparting training in specialized pig production channel are critical for fulfilling the 
labour demand of the pig industry.

3.7  Climate Change

With the change in environmental conditions, global warming, urbanization, and 
population explosion cause the shrinking of land availability and water. Furthermore, 
the increase of rainy days in some parts of India increases susceptibility to different 
diseases, and hence, piglet mortality. The changing environment sometimes 
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provides a favourable situation for the emergence of new diseases. It is expected that 
the disease pattern will change with the climate change as the life cycle of vector 
and the gastrointestinal parasite will change. Nonetheless, the chance of feed 
resource availability will face acute shortage due to destruction of cultivation area 
in flood or shortage of water. The storage life of feed is simultaneously getting ham-
pered due to humidity change supporting different detrimental fungal contamina-
tions in feed. Investments in shelter management to combat seasonal stress, mainly 
heat and cold stress, will be critical to successful outcome of pig production system. 
With these challenges, strategies need to be formulated so that the piggery sector 
can be least affected by extremes of climate change and drive a growth among the 
smallholder farmers.

4  Strategies to Tap the Potential of Piggery Sector

Meeting the future demand and secure the livelihood of the rural pig farmers is the 
prime objective. A highly motivated and productive work plan needs to be generated 
with proper incentives for smallholder system to boost the overall production capac-
ity. A consistent goal of farmers and government to reach the realized target is criti-
cal to uplift the rural economy through the piggery sector. In this regard, National 
Action Plan recommended some important strategies for overall growth and 
improvement of the sector.

4.1  Production Cost Reduction

Although most of the pig production in the present condition is backyard type with 
scavenging and semi-scavenging system in the rural sector, to fetch better return and 
meet the future huge demand, the farmers need to be mobilized into much more 
organized in their own small-scale production system. The major production cost in 
organized farms is feed cost. The feed expenditure takes the major chunk of produc-
tion cost in the pig industry. The farmers have to address the production cost through 
precision in feeding management, identifying unconventional feed resources and 
agricultural by-products and following a scientific pig rearing system, effective 
health management, and proper use of available resources. Each pig has individual 
nutrient requirements. The farmer has to fulfil the individual requirements. Excess 
feeding will cause excretion of the valuable nutrient and when the nutrient goes into 
the field through the slurry, it saturates the soil and leads to a bad environment. 
Therefore, it states the requirements of precision feeding according to their age and 
body weight. Furthermore, farmers have to consider the nutrient and micronutrient 
balance as per their physiological stages.
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4.1.1  Non-Conventional Feed Resources (NCFR)

Pigs are monogastric animals or animals that have a simple stomach. Their digestive 
system is relatively simple and they don’t have the ability to digest and utilize large 
amounts of fibrous material in their diet like ruminants do. However, these animals 
have the ability to feed resources of varying types. Pigs are omnivores and can uti-
lize both animal and plant material to aid in maintenance, growth, and production. 
Hence, non-conventional feeds can be of both plant and animal origin. The plant 
NCFR supply the energy which takes the place of maize and the animal NCFR 
supplement protein to the diet. Animal NCFR used in pig diet include meat, bone, 
fish and blood meals, feather meal, and hatchery by-products such as dead birds and 
eggs. Silkworm pupa can also be included in this list. Plant NCFR include rice pol-
ish, bananas, cassava tubers, sugarcane, potatoes, bananas, wheat millings, maize 
gluten and sorghum gluten, cotton, soybean and sunflower, molasses and sugar beet 
pulp, citrus and pineapple pulps as well as fresh fruits that were not consumed by 
humans. These non-conventional feeds can be good sources of energy, amino acids, 
and minerals in pig nutrition and can be used to promote the growth of pigs at dif-
ferent physiological states.

However, their dietary inclusion might be restricted by the presence of anti- 
nutritional factors (ANF) like tannins, trypsin inhibitors, lectins or glucosinolates, 
and high fibres, which interfere with nutrient digestibility in pigs (Woyengo and 
Nyachoti 2011). Nutrient digestibility of these feeds can be increased by interven-
tions like chaffing, heat treatment, dehulling, and enzyme digestion. Chaffing causes 
reduction of particle size for feeds, because it increases the surface area of particles 
for action of digestive enzymes (Liu et al. 2013). ANFs like trypsin inhibitors that 
are present in non-conventional feeds for pigs are heat labile, and therefore, heat 
treatments can reduce them (Jezierny et al. 2010). Seed hulls are rich in tannins and 
fiber, which reduce their nutrient utilization. Dehulling of seeds reduces the content 
of these ANFs and may increase their nutrient utilization in pigs. It was observed 
that replacement of 30% hulled faba bean with dehulled faba bean improved starch 
digestibility from 95 to 98% in diets fed to grower pigs (Van der Poel et al. 1992). 
Scarification of cereals decreases hull fiber content and also removes mold and 
mycotoxins that remain on the hulls of grains (House et al. 2003). Plant-based non- 
conventional feeds have a high proportion of phosphorus in phytate that is weakly 
digested by pigs (Woyengo and Nyachoti 2011). Moreover, phytate decreases 
absorption of other dietary nutrients by binding to them or digestive enzymes. High 
fibre in conjugation with phytate decreases nutrient digestibility in pigs (Woyengo 
and Nyachoti 2013). Therefore, adding supplemental fiber and phytate degrading 
enzymes like carbohydrases and phytases to diets can amplify the nutritive value of 
alternative feeds (Zijlstra et al. 2010). It has also been proposed that predigestion of 
fibrous feeds with exogenous enzymes before feeding to pigs may increase nutrient 
availability of non-conventional feeds, and hence, optimize their addition in pig 
diets (Columbus et al. 2010). If these resources are used judiciously in a pork value 
chain, it will produce added advantages like lowering feed costs for commercial 
producers and provide the small-scale farmers to earn a living by feed formulation 
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from NCFR. It is environmentally safe, since there is minimal wastage of industrial 
by-products. The increase in carcass quality causes high demand. Use of minimal 
chemical treatments allows pigs to be reared on a more organic diet and manure 
produced can be utilized for agriculture production. However, further research is 
required on genetic variation and growth prospective of pigs fed with NCFR.

When using alternative feed resources, the cost of inclusion of alternative feed 
resources needs to be critically considered before their inclusion in pig diets. Even 
if the product is cheaper, factors such as transportation, special processing needs, 
and storage must be taken into account (Board 2008). Moreover, for its implementa-
tion in pig diets, research on its nutritive value and the effects of including such 
alternative feedstuffs on their growth, productivity, and quality of pork is manda-
tory. Also, farmers need to be trained on how to utilize locally available non- 
conventional feed resources and optimizing their use in pig diets. Standardization of 
the level of inclusion of NCFR is critical for providing balanced feed for optimum 
growth and performance. The inclusion rate of ingredients is dependent on palat-
ability, nutrient availability, protein quality, nutrient interrelationship, and the 
method of processing as well as feeding techniques. Characterization of alternative 
feedstuffs can reduce their risk for dietary exclusion and also increases the flexibil-
ity of feed formulation. The increased awareness about the nutritional quality and 
impact on growth performance and carcass quality of alternative feedstuffs (Muthui 
et al. 2018) has increased the reliability on using these non-conventional feed in pig 
diet. However, finding low-cost and reasonably economic pig feed for different 
locations is mandatory to harness the potential of NCFR.

4.1.2  Precision Feeding

Farm animal production is frequently associated with problems of limited arable 
land and the environmental issues, and hence, improving nutrient efficiency becomes 
an essential concern because with the expected increase in the human population, 
these problems are going to get aggravated (Niemann et al. 2011). Thus, maximiz-
ing feed efficiency, with minimizing production costs, and environmental impacts 
are the main challenges for pig farming practices. Precision feeding, a major break-
through in pig nutrition, brings one of the most promising avenues to promote nutri-
ent efficiency and yield superior quality and safe pork with the lowest environmental 
impact and high animal welfare standards. It is the application of feeding techniques 
that requires animals to be fed with diets customized according to the production 
objective and individual requirements along with due consideration of environmen-
tal impact and welfare issues. It involves feeding individual animals with routine 
changes in nutrient requirements which is actually required in real time. Development 
of precision feeding systems requires correct knowledge of available nutrients in 
feed ingredients, precise diet formulation, and determination of the nutrient require-
ments of individual pigs or group of similar pigs (Pomar et al. 2009). Application of 
precision feeding systems in commercial farms can be implemented with ease 
(Banhazi et al. 2012a) compared to the smallholder pig rearing systems. However, 
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precision feeding at the individual level can yield success where measurements, 
data processing, and control actions can be implemented on individual animal 
(Wathes et  al. 2008). Hence, to further develop precision feeding systems, it is 
essential to advance our understanding of numerous animal physiological and meta-
bolic processes. Another area of concern is that precision feeding is based on math-
ematical models and nutritional concepts which are mainly developed for average 
population responses. If this principle is applied in feeding individual pigs with 
daily customized diets, it may result in inaccurate results (Remus 2018); hence, it is 
mandatory to distinguish the dietary requirements of a population from those of an 
individual pig. Besides this, the new understanding of individual metabolism and 
nutrition, rather than a group of animals, will allow pig rearing sector to flourish, 
since it will cut down the cost of feed (Pomar and Remus 2019). Precision feeding 
will yield immediate and substantial benefits to the pig farmers. But, in order to 
realize this gain for smallholder farming systems, advanced scientific knowledge in 
pig farming should be integrated with information and communication technologies 
customized for use by farmers who are literate or semi-literate. They need to be 
demonstrated and on-farm hands on training need to be provided to pig farmers, so 
that farmers can implement precision farming in practicality.

4.2  Pig Productivity Improvement

However good the feed might be, the performance of an animal cannot go beyond 
the genetics. Another avenue to increase the pig productivity can be improved 
through utilizing improved breed of a pig by breed improvement and identifying 
superior germplasm suitable to the particular agro-climatic needs. Superior genetics 
attain higher growth rate and higher feed efficiency with balanced feeding. 
Knowledge on pig breeds and their performance is requisite to attain high produc-
tion benefits.

4.2.1  Exotic Breeds

The farmers and entrepreneur having high input facility and investing power can 
adopt exotic breeds of pig for commercial pig farming. The exotic breeds have been 
recommended region wise in the country like for Northern part of India Large White 
Yorkshire (LWY) and Landrace (LR), for North-eastern India Hampshire and LWY, 
for Eastern India Hampshire and Tamworth, for Central India LR and LWY, for 
Southern India LWY, and for Western India LWY. Exotic animals have some adapt-
ability issue and disease incidence, but they have excellent growth and reproductive 
performances which attract the entrepreneurs who are interested in high return in 
short span of time.
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4.2.2  Indigenous Breeds

The farmers in the breeding tract of indigenous breeds should be encouraged to rear 
the indigenous breeds of their region. This will not only conserve the local germ-
plasm which is well-adapted to the particular regions of the country, but also main-
tain the uniqueness and purity of the indigenous breeds and thus variability in the 
pig genetic resources will be maintained. The farmers having low input for pig 
farming and not much support can do backyard farming with indigenous breeds and 
they can use these indigenous pigs for upgrading nondescript pig population. There 
are 10 indigenous breeds, like Doom breed in Assam state having superior pork 
quality, Ghoongroo breed in Bengal region is very prolific breed, Nicobari pig in 
Andaman and Nicobar islands, Niang Megha breed in Meghalaya state, Agonda 
Goan breed in coastal state Goa, Ghurrah breed in Uttar Pradesh, Tenyi Vo breed in 
Nagaland, Zovawk breed in Mizoram, Purnea breed in Bihar, and Mali breed in 
Tripura state. These breeds have been adapted to diverse climatic conditions in the 
country.

4.2.3  Crossbred Varieties

The beneficial characters of both indigenous breeds and exotic breeds can be intro-
gressed into a single animal by cross-breeding programmes. There are many cross-
bred varieties developed by cross-breeding and selection and continuous inter se 
mating to stabilize the breed characteristics after 7–8 generations of inter se mating 
and selection. These crossbreds developed have much better growth and reproduc-
tive performances than indigenous breeds and better meat quality, disease resis-
tance, and adaptability to local conditions than exotic breeds. Moreover, these 
crossbreds can be reared in medium input system; they need less input than exotic 
breeds, but more than the indigenous breeds. Thus, the farmers who have moderate 
input facilities can use the crossbreds for starting their pig farming and can gain 
better economic return.

4.3  Household Return Hike

The household income of the pig and pork producers can be enhanced through the 
processing of different value-added products for that processing plants and cold 
chain setup is essential which will facilitate diversified animal produce (Organic & 
hygienic). Nonetheless, proper waste management also can be an indirect source of 
income if they learn to organize the whole process that further generates employ-
ment. The value addition of the pork can give the farmer maximum return and 
income. Along with the value addition, the technology for improving the shelf life 
of the product through different packaging and addition of healthy functional foods 
like fruits, antioxidants, bioactive compounds, and vitamin addition has to be pro-
moted to attract consumers. Nowadays, different value-added products are available 
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which fulfil the taste of the consumer, improve quality, and optimize convenience. 
Therefore, it is time to promote the production of value-added products at utmost 
importance. Other than farm excreta, a huge amount of waste is produced during 
slaughter. Slaughterhouse waste consists of bones, tendons, skin, and the contents 
of the gastrointestinal tract, blood, and internal organs, which neither be sold as 
meat nor be used in meat by-products in India. In the present condition, our slaugh-
terhouse waste management system is very poor which demands serious thinking 
for effective utilization.

4.4  Strengthening of Marketing Chain

Unfortunately, pork production and mostly the supply of pork are the most ignored 
part in our country. Mostly, the pork is sold in the open market and may be contami-
nated with dust and dirt without any packaging for local consumption. This long- 
established conventional selling system is mostly unhygienic and disintegrates the 
image of the Indian pork industry. Furthermore, the unorganized sector also deter-
mines marginal profits for the producers. However, to sustain the global market and 
modernization of the other field, the pork industry also has to develop in the con-
temporary integration for the development of the farmer, processors, and well-being 
of the consumers. For this adequate market, infrastructure has to be developed with 
the fulfilment of the marketing facilities. Presently, there is an acute shortage of 
pork slaughterhouses and processing plants throughout the country. Therefore, it is 
essential to set up a modern slaughterhouse with a pork processing plant as the State 
of Art. Not only the slaughterhouse and processing plant, there needs to be the 
installation of cold storage for maintaining the cold chain as pork is a highly perish-
able product. Besides, proper transportation with cold chain facility also has to be 
established to distribute the pork product as per the demand in different cities and 
pocket. At least, a rural slaughterhouse is very much essential for producing hygienic 
meat for the local consumers.

4.5  Control of Emerging Disease and Prevention

Animal health always plays a key part in the production system. Incidence of dis-
ease and emergence of new diseases take a huge toll on pork production. Close 
monitoring and surveillance for the diseases are of utmost importance for control-
ling the outbreak and progress of the piggery industry. The spread of infection and 
disease not only impedes the production of pigs, but also certainly hinders the qual-
ity of the pork product. Animal health is closely related to day-to-day management 
practices and nutritional abundance. Therefore, for ensuring the optimum health of 
the pork, the management practices and feeding of the animals have to be as per 
their requirements. Through strategic control, eradication of economically impor-
tant diseases will definitely boost the total pig production in the country. A proper 
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health improvement scheme is essential to implement safeguarding the pig from 
diseases. The health improvement scheme also incorporates periodic health check-
ups, monitoring, awareness programmes, disease diagnosis, and treatment programs 
along with the supply of quality feed and supplements. The producer must follow 
the vaccination schedule and deworming schedule. The farmers and animal handlers 
have to be trained for first aid and emergency management. The morbidity and mor-
tality should always remain under control through focused veterinary health 
programmes.

The above strategies and steps are very much essential for the betterment of the 
existing farmer and pork production system. However, it is necessary to encourage 
the farmers for entrepreneurship development of the pig farming to meet the huge 
demand of the pork in the country and NE region and further export. For entrepre-
neurship development, the farmer needs bank credit and insurance cover, farmer 
cooperative, subsidy on livestock rearing input, and distribution of the quality germ-
plasm unit.

4.6  Development of Local Cooperatives for Pig Farming

Farmers’ cooperatives have proven to be a grand success in the development of 
livestock industry. They have increasingly played an important role in agricultural 
food industries, supply chain, and marketing as they connect and coordinate farm-
ers, intermediaries, and companies. The success of milk cooperatives in India is a 
shining example of a miracle they can perform in transforming the life of farmers 
and the face of milk-based industry. In a similar analogy, development of regional 
pig farmers’ cooperatives through a central system can provide pig farmers access 
to technical expertise, veterinary services, and financial resources, which would 
otherwise be inaccessible to rural smallholder farmers. Pig farmers’ cooperative 
would provide greater direction, leadership, and motivation to uneducated rural 
women folks from their local progressive farmer. The farmer-owned cooperatives 
can provide production supplies and marketing services, which are usually difficult 
for small and marginal farmers, due to the lack of transportation facility and knowl-
edge on market linkage and supply. Cooperatives must help farmers collectively 
purchase high-quality superior breeds and encourage them to use breeds reproduced 
by known farms of repute, instead of purchasing from unknown farms or compa-
nies. This would ensure that the breeds purchased are safe, prolific, and resistant to 
epidemic diseases. Cooperatives should engage veterinarian services because they 
are the professionals who can provide suggestions and treatments on health man-
agement and services for better farm performance. Process to streamline frequent 
visit of veterinarian should be in place, which can be arranged solely by coopera-
tives or jointly by the cooperatives and their collaborative companies/state/central 
governments. Cooperatives can help change farmers’ behaviour on safe pork pro-
duction substantially by increasing awareness on how to use vaccinations, health 
calendar, how to address waste, and which feeds to purchase (Chen et al. 2018). 
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Also, the significance of services related to collective selling of pig and pig by- 
products by cooperatives cannot be ruled out. Cooperatives could collaborate 
directly with downstream stakeholders or connect with pork processing industries 
to help farmers sell pigs. Thus, in this way, pig cooperatives are a promising way to 
provide critical help to improve farmers’ livelihood by providing pig selling ser-
vices and contributing to stabilization of farmers’ income from rearing pigs.

4.7  Institutional Support

In this regard, capital subsidy is provided by the Department of Animal Husbandry, 
Dairying, and Fisheries, Ministry of Agriculture, Govt. of India, for ensuring the 
viability of the pig breeding, rearing, and related activities. The goal of the scheme 
is to encourage commercial pig rearing by farmers/labourers to improve production 
performances of native breed through cross-breeding by using selected animals of 
high-performing breeds. Producer companies, partnership firms, corporations, 
NGOs, SHGs, JLGs, cooperatives, and individual entrepreneurs are eligible for 
scheme (Table 12.1).

4.8  Science and Technology-Driven Intervention

4.8.1  Introduction of Area-Specific Need-Based improved breeds

India is home to ten registered breeds and many local nondescript pig breeds, which 
are distributed in their home tract throughout the country. These indigenous pig 
breeds are adapted to the local climatic conditions and are reported to have better 
heat tolerance, meat quality, good quality bristles (Mohan et al. 2014), and early 
sexual maturity (Karunakaran et al. 2009) when compared with exotic/ crossbreds. 
However, exotic pigs introduced in India, viz. Large White Yorkshire, Hampshire, 

Table 12.1 The institutional support provided for pig farming (Source DADF, GoI)

Components Subsidy

Pig breeding farms 25% of the outlay (33 1/3 %) in NE states (including Sikkim and hilly 
areas) subject to a ceiling of Rs. 1.50 lac (Rs. 2.00 lac in NE states 
including Sikkim and hilly areas)

Pig rearing and 
fattening units

25% of the outlay (33 1/3 %) in NE states (including Sikkim and hilly 
areas) subject to a ceiling of Rs.19000/- (Rs. 25300/- for NE states 
including Sikkim and hilly areas)

Retail outlets 25% of the outlay (33 1/3 %) in NE states (including Sikkim and hilly 
areas) subject to a ceiling of Rs. 2.50 lac (Rs. 3.33 lac in NE states 
including Sikkim and hilly areas)

Facilities for live 
markets

50% of the outlay subject to a ceiling of Rs. 2.50 la
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Duroc, Landrace, etc., have higher growth and production performance. Exotic pigs 
and their crossbreds have gained popularity over indigenous breeds and are pre-
ferred for rearing by pig farmers. But they require higher inputs in terms of feed and 
farm management compared to indigenous pigs. Hence, the choice of pig breeds for 
rearing should be based on local climatic conditions and input cost available so that 
the farmer is not burdened and can gain considerable profits to expand the capacity 
of his farm. The indigenous breeds can be promoted for breeding purpose under low 
input production system (Patra et al. 2016) and exotic and their crossbreds under 
high input systems. The indigenous, crossbred, and exotic pig population dynamic 
has also changed in India. Although the crossbred and exotic pigs increased by 
12.7% from the year 2003 to 2012, the majority of the pig population in India is of 
indigenous breeds (76%). However, the increase of crossbred pigs showed a sharp 
increase in total population contribution shares from 14% in 1992 to 23.86% in 
2012. In India, on the basis of the demand from different classes of farmers and 
availability of input, different types of pigs were developed which could be utilized 
by farmers for their social and economic upliftment. In this direction, breeding units 
of pure indigenous registered breeds can be set up at the multiplier farms in their 
domestic tract so that crossbred pigs or pure indigenous breeds can be made avail-
able to farmers/entrepreneurs/ SHGs/Cooperative societies/Farmers Producer 
Organisations, etc. The list of crossbred varieties developed under All India co- 
ordinated Research Project (AICRP) centre and at ICAR-NRC on Pig is given in 
Table 12.2.

4.8.2  Adoption of Artificial Insemination in Pig Breeding

It ensures accelerated propagation and amplification of genetic merit, economic 
savings, delineated reproductive management, and disease control (Althouse and 
Rossow 2011). Hence, the availability of quality tested semen for AI in pigs through 
semen banks can help in bringing superior genetics and reduce the cost of keeping 
breeding boars at farm.

Table 12.2 Crossbred varieties developed under All India co-ordinated Research Project (AICRP) 
centre and at ICAR-NRC on Pig

Crossbred varieties Developed at state Breeds used for cross-breeding

Rani Assam 50:50 Hampshire X Ghoongroo
Asha Assam 50:50 Rani X Duroc
Mannuthy white Kerala 75:25 % for LWY and Desi of Kerala
TANUVAS KPM Gold Tamil Nadu 75:25 LWY X Desi of TN.
Lumsniang Meghalaya 75:25 LWY X Niang Megha
HDK-75 Assam 75:25 Hampshire X Doom
Landly UP 75:25 LR X Ghurrah
SVVUT 17 Telengana and Andhra 

Pradesh.
75:25 LWY X Desi of Andhra 
Pradesh.

Jharsuk Jharkhand 50:50 Tamworth X Desi of Jharkhand
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4.8.3  Training on Scientific Pig Practices

Proper training of pig farmers for timed AI, housing, breeding, feeding, reproduc-
tive management, and slaughter in pigs under different rearing systems is crucial to 
attain success in pig farming. Feeding of balanced concentrate feed according to age 
requirement to pigs is practiced in commercial-type pig rearing system, but the 
smallholder, backyard system of pig rearing hardly follows this practice. The tradi-
tional pig feeds provide inadequate nutrition to support optimal growth rates and to 
maintain good health. Even if the concentrates are readily available in the market, 
lack of knowledge and cost constraints do not allow them to follow concentrate 
feeding. Few farmers follow feed formulation by mixing feed ingredients like 
maize, wheat bran, or rice polish, or the locally available feed materials and fed it to 
pigs in addition to farm and kitchen waste. However, protein-rich feed ingredients 
or mineral and vitamin mixture are hardly added to the pig diet. This is possibly 
because pig producers lack knowledge of pig nutrition together with financial con-
straints. The productivity of pig farming is strongly linked to the feed resource 
availability and the cost of commercial feed, hence adoption of alternative feed 
resources can compensate for feed cost. Hands-on training on the development of 
area-specific alternate feed resources and silage making for profitable farming 
should be encouraged. With the advent of new emerging zoonotic diseases in pig, 
training on biosecurity measures and health management is another key area, which 
should be imparted to pig farmers. Moreover, farmers can be trained on pork pro-
cessing techniques and production of pork products by value addition for additional 
income. The development flowchart is depicted in Fig.  12.3, wherein farmer’s 
capacity building on scientific pig farming can significantly increase their income 
from pig rearing and help in changing their outlook towards this sector. This will 
change the adoption behaviour and motivate more farmers towards choosing scien-
tific pig practices over traditional methods, which will in turn result in livelihood 
upgradation of rural community as a whole.

4.8.4  Entrepreneurship Development

Development of a strategy for location-specific entrepreneurship development, with 
readymade plan for 100/200/500/1000 animal, can attract educated, unemployed 
youths from small and marginal families towards pig rearing. This plan should 
include guidance on capital investment, credits suppliers, animal procurement, feed 
formulation, and marketing strategies with complete information on value chain in 
piggery sector. For undertaking pig farming on scientific lines, mentorship should 
be provided with matters relating to policy, planning, and operations for obtaining 
agriculture credit. The window of operation should be streamlined with ground- 
level credit institutions and banks providing investment and production credit for 
various activities under piggery sectors for ensuring integrated rural development. 
Coordination of the development activities through a well-organized channel 
between technical services department and technical centres at the credit 
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institutions should be ensured. For construction of pig farms with very large out-
lays, detailed project reports need to be prepared which should include information 
on land development, construction of sheds, and purchase of the founder stock, 
equipment, feed cost, and probable income generation. Hence, training on project 
report preparation which is a prerequisite for sanction of the loan should be imparted.

4.8.5  Subsidized Supply of Inputs

Scientific pig production and hygienic slaughter require sophisticated instruments 
and setup, which are largely unaffordable for small and marginal pig farmers. In 
order to popularize pig rearing as an enterprise for rural development, incentives 
and subsidies on inputs for setting up modern slaughter house, pork processing 
units, and pig farms can boost the interest of younger agripreneurs and small and 
marginal farmers towards scientific pig production.

4.8.6  Trainings on Farm Management

Application of automatic monitoring of animals and farm resources will provide 
continuous data on health and performance of animals, which will be beneficial for 
the timely detection of estrous, farrowing, and diseases in individual animals. This 
will in turn support production decisions, decrease the use of antibiotics, and avoid 
the spread of infectious diseases (Banhazi et al. 2012b). Managing farm records and 
feeding schedule by means of advanced scientific technologies will make it possible 
to identify diseases early and apply individual treatments precisely to improve herd 
performance, reduce antibiotic use, and contribute to improved public safety. 
Adoption of scientific pig farming practices by smallholder farmers will ultimately 
augment profitability, efficiency, and sustainability of the overall pig produc-
tion system.

5  Conclusion

Livestock rearing is a key livelihood and risk mitigation strategy, especially for 
small and marginal farmers in the developing countries. Pig has always remained 
associated with the socio-economically weaker sections of the society, compared to 
any other livestock species and this signifies greater potentiality to contribute to a 
faster economic return to the farmers. Pig production system has changed dramati-
cally in the developed economies and wave of change has also affected all levels of 
the pig production system including slaughter, processing, and retailing in develop-
ing and underdeveloped economies as well. The traditional medium-sized indepen-
dent pig farming is projected to be gradually replaced by commercial-type, 
scientifically managed farms. However, looking into the vast percentage of 
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population thriving on subsistence level pig farming, a major population may still 
continue with smallholder pig farming system. Various levels of interventions 
required for mobilizing pig resources and their effects are represented in Fig. 12.4. 
It cannot be doubted that science and technology-led intervention can address the 
future challenges for growth and development in pig husbandry sector; however, 
empowerment of the economically poor rural tribal households, especially women, 
is critical for adoption of new technologies for pig rearing.

Pig rearing is yet an unorganized venture, which deserves science and technology- 
driven support to make it a full-fledged enterprise like the poultry industry. The vari-
ous stakeholders require promotion at various levels such as technology, 
entrepreneurship development, and financial support to bring Indian pig farming to 
a global level. The competitive forces of changing technology, economies of farm 
size, and consumer preferences for organic pork are sure to transform the face of the 
piggery sector and cooperatives will have a major role to play. They can provide 
new incentives and induce change in the adoption behaviour of pig farmers for sci-
entific farm management, which have significant effects on the methods of produc-
tion, economic outcome, and social well-being of the pig farmers. Moreover, the 
collective and coordinated efforts of veterinarians, scientists, cooperatives, progres-
sive farmers, and the entire pork value chain are required to create pig as a profitable 
venture. Dedicated field workers for bridging the gaps in knowledge of farmers on 
scientific practices of pig farming are critical for mobilizing the pig resources for 
advancement of this sector. Furthermore, the demand for pork products is expected 
to increase in the future, which may be strongly influenced by local socio-cultural 
values; hence, pigs reared in conventional smallholder systems may gain preference 

Fig. 12.4 Various levels of interventions required for mobilizing pig resources
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due to their closeness to natural system in comparison to highly stocked intensive 
system. For developing and least developed countries, where meat industry has not 
yet been fully explored, piggery sector has great promises to offer; however, its 
domestic and export potential needs to be fully explored. Therefore, it has immense 
potential to ensure nutritional and economic security for the weaker sections of 
society, especially for smallholder systems.
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Chapter 13
Agricultural Value Chains: A Cardinal 
Pillar for Future Development 
and Management of Farming

S. K. Dubey, Reshma Gills, Atar Singh, Uma Sah, and R. R. Burman

Abstract Agricultural research organizations worldwide consider that value chains 
are essential for the efficient and effective management of food production systems. 
More than a concept, it acts as an operational model for sustainable development 
through the economic advantages which it could make in the global competitive 
marketing economy. This chapter tries to give a detailed and structural description 
of the value chain development process as a tool for Future Development and 
Management of agriculture. This chapter starts with a discussion about the value 
chain concept as an operational model and why it is needed in agriculture. The 
chapter also contains a detailed description of the history, structure, stakeholders, 
and players in agricultural value chains. Further, the chapter deals with the process 
of value addition, different models of value chain development (Farm to fork model/
Farm to Foreign model/Local value chain development), frameworks for value 
chain development intervention like “Will-Skill” framework and Adopt-Adapt- 
Expand-Respond (AAER) Framework, and Business perspectives and Business 
development services (BDS) in agriculture value chain development. The chapter 
also gives a detailed description of different quantitative and qualitative methods for 
the value chain analysis and the role of market systems in the value chain develop-
ment process. The chapter illustrated the process of value chain development and 
the probable constraints in each stage through real-time field examples quoted from 
Indian agriculture.
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1  Value Chain: An Operational Model

The term value chain has gained worldwide attention among researchers, policy-
makers, marketing agents during the last four decades (WTO 2013) due to global-
ization, and liberalization-assisted changes in the global trade economy. The term 
has integrated with developmental activities of almost all the areas, including agri-
culture (Donovan et  al. 2015), knowledge creation (Chyi Lee and Yang 2000; 
Ermine 2018), education (Dorri et al. 2012; Pathak and Pathak 2010; O’Brien and 
Deans 1996), marketing (Zahay and Handfield 2003), health (Walters and Jones 
2001; Sharan et al. 2015), hospitality (Odoom 2012; Sharma and Christie 2010), 
emotional, and attitude (Lopez-Mosquera and Sanchez 2012) dimensions. A value 
chain is not a tangible object that everyone can see. Instead, a value chain is a way 
of indulgence in producing, marketing, buying, and selling different things by pro-
viding and integrating capital, access to various networks, markets, innovations, 
knowledge, and technologies. It describes the full array of activities that are prereq-
uisites to bring a product or service from idea conception through the transitional 
stages of production, processing, marketing, and delivery to ultimate users, after- 
sale customer services, and final discarding after use (Kaplinsky 2004; Nadja and 
Merten 2015). More precisely, the term value chain can be called the value-adding 
activities of any firm for its products, based on their understanding of their capabili-
ties and customer needs and wants (Kumar and Rajeev 2016; Kaplinsky and 
Morris 2020).

A value chain in agriculture or “Agricultural value chain” recognizes the set of 
action activities and actors involved in bringing a natural or primary agricultural 
product from the “farm to fork” for final consumption. The value is added to the 
product at each stage of its transformation (FAO 2005a; FAO 2010a). The product 
transformation might have happened in various stages through various activities like 
cleaning, grading, processing, packaging, transporting, storing, marketing, and dis-
tribution (Kidoido and Child 2014). Vertical and horizontal action networks inter-
link the transitive movement of produce in each stage. Similarly, each activity node 
of the value chain has backward and forward action networks or linkages. In the 
economic concepts, it can be termed as a miniature of an economic system in which 
upstream agents (producers/ farmers) are connected to downstream cohorts (con-
sumers at various stages) by technical, financial, territorial, organizational, and 
social relationships (Joshua et al. 2021; Yanti et al. 2021). Since agriculture plays a 
substantial role in the socio-economic and cultural development of many of the 
developing countries by its significant contribution to the total gross domestic prod-
uct (Junankar 2016), continuous monitoring, and development of agricultural value 
chains in terms of valuable resources like infrastructure, knowledge, technology, 
human, financial, and policy are needed (Donovan et  al. 2015). Since the value 
chain acts as an operational model for sustainable development, evolving value 
chains for economic advantages and identifying and upgrading the existing ones for 
the functional headways are beneficial for the agriculture-dependent countries to 
make their face in the global competitive marketing economy. Understanding the 
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different commodity value chains and their functioning makes improved infrastruc-
ture and technologies; instead, it will help make better planning and research for 
increased performance, efficiency, and cost reduction in different linking activities. 
While integrating with the value chain concept, the standardized production process 
enables the firms to manage the resources efficiently.

2  Are the Agricultural Value Chains Needed?

More than a fascinating word, the agricultural value chains are the need of the hour. 
Since the food on the plate is not a miracle but a product of a series of processes, the 
government needs to take a rational stand to assure a better price realization for the 
producer and a fair price for the consumer. To ensure national food security without 
wounding the producers’ emotions, value chains with systematic, robust, dynamic, 
and efficient building blocks are essential. We always talk about the profits at both 
ends while considering a business. If agriculture is considered a business activity, 
we can say the producers and the consumers are both ends. When the agricultural 
produce is traveling from one end to another, it was estimated that about 30% of the 
consumable food produce is wasted (Maryam and Bin 2017) in either quality or 
quantity (Ghamrawy 2019), which is equal to feeding the starving population all 
over the world. What do you consider about the relationship between the price of the 
foodstuff and the quantity of food wasted along the value chain? Yes, it is definitely 
in a linear relationship in the early phase and can be altered to the exponential rela-
tion status when the wastage is very severe and uncontrollable. How can we ensure 
a fair price for the consumer and price realization for the producer in such a situa-
tion? It is a challenging task. It can be attainable by creating and developing well- 
equipped value chains which can optimize the use of natural and financial resources 
at the same time to reduce the post-harvest losses. The agricultural value chain 
development further added to one of the fundamental objectives of SDG 12, 
Responsible Consumption and Production (UNEP 2015).

3  History of Value Chain Development

Though Micher Porter was credited with coining the “value chain” terminology dur-
ing the 1980s to analyze various activities of a firm in his work on comparative 
advantages (Porter 1985a, 1985b), the concept originated two decades before. While 
observing the developmental stages of the value chain as an operational methodol-
ogy, two distinct traditions are coming to the picture. One is the French concept of 
“filiere,” and another is Wallerstein’s concept (Faber et al. 2009; Bair 2005; Lancon 
et al. 2017). The French “filière concept” has its origin in techno- empirical com-
modity-specific agricultural research to influence the needs and requirements of 
commodity-centered colonial and post-colonial French states. This concept was 
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applied prodigiously to agricultural commodities without any specific time frame-
work since its inception (the 1960s) to the globalization era (Philip et al. 2000). 
Wallerstein’s concept of the commodity value chain was based on world- systems 
theory (Hopkins and Wallerstein 1986), elaborating the dependency theory (Daniel 
and Thomas 1982) and trying to see different nations as economic units. Later 
decades the concept has made additions on different dimensions and appeared with 
different terminologies; global commodity chain during the 1990s (Gereffi et  al. 
1994; Philip et al. 2000), world economic triangles (Messner 2002), global value 
chains 2000s (Humphrey and Schmitz 2002; Gereffi et al. 2005), and green value 
chain (Martinez and Mathiyazhagan 2020). A detailed description of the various 
value chain concepts is given in Fig. 13.1.

4  Structure of Value Chain

Even though different schools of thought originated in the value chain concept, the 
Portal’s Generic Value Chain concept is most widely used in the agriculture and 
allied sectors. Knowledge and understanding of the critical elements and structures 
of value chains are essential to make them robust to enhance efficiency (Alhassan 
and Abunga 2020). The agricultural value chain concept translates the movement of 
farm products from the farm to the plate (final consumer) through a series of activi-
ties done by many actors. The structure of any agricultural value chain consists of 
the network of activities that are interconnected in either forward and backward 
directions or vertical or horizontal directions along with the players responsible for 
the product transition to meet the needs of chain actors for commodity. Through 
this, relationships are being managed in terms of quantity, quality, time, and price 

Fig. 13.1 Comparison of various value chain concepts. (Modified and adapted from Bair 2005; 
Fabe et al. 2009; Ernst and Young 2013)
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between the agents responsible for the input supply for production (input dealers), 
persons accountable for efficient and quality production (producers), and agents 
responsible for the collection and supply of the produced products to the ultimate 
consumers (marketing channels). The generic model of the value chain given by 
Porter (1985a, b) in his book “Competitive Advantage: Creating and Sustaining 
Superior Performance” comprises primary and secondary activities. Primary activi-
ties in the value chain are directly linked to the creation or production of products, 
goods, or services. The secondary activities play a booster role in enhancing each 
actor’s effectiveness and efficiency in the product transition process of a particular 
value chain to obtain comparative or competitive advantages over the others (Pila 
et al. 2010: Lowitt et al. 2015). The primary activity in the classic value chain con-
cept consists of five generic categories, and each class is divided into several spe-
cific actions. In the context of agricultural value chains, the primary activities can be 
categorized as (a) Inbound Logistics: Collection of activities associated with pre-
production process and the production supplementary process like arranging and 
receiving inputs like seeds, fertilizers, types of machinery, labor, etc. and the spe-
cific and time-bounded production-related activities done in the field to produce the 
quality products. It is the stage of making an inventory control of the raw materials 
and managing the producer supplier relationship. (b) Operations: It encompasses 
activities involved in transforming the inputs and services into outputs with an 
added value. In this stage, the raw resources are transformed into a product ready for 
marketing or sale. Activities involved in the operations are intended to add value or 
utility to the produces in terms of time, space, or form. The functions like matching, 
sorting, branding, processing, etc. may create a form utility, and the operations like 
storing and warehousing may add time utility to the produces. At the same time, 
transportation and related logistics may add to the space value. (c) Outbound 
Logistics: It is generally comprised of the output delivery activities like collecting 
the finished product, sorting the same with quality and need parameters, scheduling 
the orders placed, and finally distributing (physically) the products to the end-users 
or consumers. (d) Marketing and Sales: It is the activities that may lead to the actual 
reach of the product to the final consumers—this aims to provide a means by which 
consumers can procure the products for their end-use. This primary activity is the 
exact tailored integration link between the producer and the consumers like a con-
ductor in each subgroup of a symphony orchestra (Singh 2013). It coordinates the 
customers’ expectations with the product production activities through proper mon-
itoring, advertisements, and feedback mechanisms. The activity of marketing and 
sale supports flexibility in the value chain and provides an essential platform that 
impacts both the supply and demand side through a collaborative relationship. (e) 
Service: Just reaching the consumer is not an end to the value chain of any product. 
It needs many transformations for the final consumption of end-use. In the case of 
non-agricultural goods, it needs installation, after-sale services, repair, etc. Similarly, 
agricultural commodities need to be garnished for the final consumption or end-use 
through various activities and services. For the competitive advantage of the value 
chain, each primary activity is vital.
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The secondary or supporting activities have four generic components: (a) 
Procurement: It is the action of purchasing or acquiring inputs and services used in 
the agricultural value chain. It can also like employing particular technologies like 
direct seeding, selecting a specific variety of vegetable seeds, etc. (b) Technology 
Development: Technologies are the principal components of any process, including 
agriculture. Technological inputs are needed in every point and stage-like produc-
tion of inputs like fertilizers, chemicals, improved crop seed development, land 
preparation, sowing, intercultural operations, harvesting, primary and secondary 
processing, marketing, transportation, final consumable product preparation, and 
customer service procedures. Scientific skills back some technology development 
processes, but others through artistic skills (cooking a food item). An array of tech-
nologies for a range of activities to improve the product and the process optimiza-
tion for the increased margin and consumer satisfaction are invented and refined 
through research and development activities. (c) Human Resource Management: It 
consists of activities referring to the selection, recruitment, hiring, personnel devel-
opment, rewarding, and training done for the value chain of either a commodity or 
firm. It supports all the stages and occurs at different levels in the value chain. (d) 
Infrastructure: It can either be a tangible property like road, vehicle, cold storage, 
machinery, etc., or intangible things like management policies and strategies, gov-
ernment support activities, quality management, financing, planning for future 
development and expansion, information management, account keeping, legal for-
malities, etc.

5  Stakeholders and Players in the Value Chain

A stakeholder is a person or group involved in any defined process or impacted by 
the activities or inertias of others in that process. Hence in the agricultural value 
chain where the farm product is produced and transformed, and transferred to the 
consumers, many stakeholders are involved (Fig.  13.2). Networks of activities 
directly or indirectly connect them.

Dubey et al. (2020a) in their study conducted in Champawat district, Uttarakhand, 
pointed that for the tomato crops different value chains were observed and various 
stakeholders were identified. They include the liquid cash providers, research insti-
tutions, and KrishiVigyan Kendra (KVK) for knowledge transmission and adviso-
ries, private-hybrid seed suppliers, infrastructure dealers to give the greenhouse and 
poly house technique, primary processors to do farm level value addition, and the 
governing agencies like government institutions and state horticultural department. 
Similar groups of stakeholders were also observed for the value chain of capsicum 
(Dubey et al. 2020b) and cocoa Claudia et al. 2020).
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6  Differentiating Supply Chain vs Value Chain 
and Horizontal vs Vertical Value Chain

While understanding the value chain structure, we might come across two different 
notions of value chain classification, i.e., supply chain vs value chain and horizontal 
vs vertical value chain. Do they differ in conceptual understanding, or difference is 
only in terminology? Let us have an account. While considering the supply chain 
and value chain, these concepts may be pronounced the same in many cases. But in 
the conceptual definition, function, and origin, these are different (Gattorna and 
Walters 1996: Walters 2002). In simple words, the supply chain is the function or 
activities that help reach the product from the producer to the consumer. At the same 
time, the value chain is the activities that add value to the raw product till it reaches 
the final consumer. Similarly, both the supply chain and value chain concepts have 
different thoughts of origin. The supply chain is based on operational management 
principles and mainly for conveyance and consumer satisfaction. The value chain 
concept originated from the business management principles intended to create 
value to the products and make a comparative advantage. The sequence of operation 
for both the supply chain and value chain also shows differences. In the supply 
chain, the activities start with a product request, and through various actions in the 
chain, it reaches the consumers, whereas in the value chain, the activities begin with 
a customer request. Based on the customer’s needs, value is added or created through 
a series of actions before it reaches the customer.

The concept of the horizontal and vertical value chain in agricultural commodi-
ties can be more palatable when looking at the value chain as a whole in a global 
marketing scenario. The horizontal value chain is the network of activities done at 
the same level of a value chain as different farmer organizations as a whole, input 
dealers, etc. The interconnected chains of activities may help them to widen the 
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Fig. 13.2 Stakeholders in the agricultural value chain
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same value chain in a different location or territorial dimension. It may help them 
have better bargaining power, better access to the markets and finance, etc. 
Simultaneously, the vertical integration or value chain indicates the networks of 
activities with different functions, but that is at the same value chain. It integrates 
various tasks in a commodity value chain (like sorting, grading, packing, process-
ing, storage, selling, etc.) to make a value chain stronger by reducing the cost of 
attaining a controlling position in the given market (McKague and Siddiquee 2014a, 
b: Saenz et al. 2015: Shrestha et al. 2015: Kletti and Deisenroth 2018).

7  Virtual Value Chain and Its Importance

Every value chain, even for an agricultural commodity or an industrial product, has 
two central parts: one is the physical value chain part through which the product 
moves or transforms for the end-user, and the other one is the virtual value chain 
(Rayport and Sviokla 1995), of information and knowledge transmission. It is 
essential to know about the virtual value chain in the current information world to 
develop the value chain development strategies properly. Think about an agricul-
tural commodity, like French fries. The physical value chain of the same indicates 
potato production, grading, packing, transportation, processing, etc. Here the actors 
and activities are physically visible. It starts from the production process, which 
leads to the potato produced at the field to prepare the French fries for the final con-
sumption as per the consumer demand. In each activity, different types of infrastruc-
ture and machinery are involved, and that is tangible. At the same time, another 
invisible network supports the physical value chain, which everyone can sense. It 
integrates the thought process of the producer to produce a particular crop, knowl-
edge regarding various varieties, information of inputs needed for the production, 
learning about the different field operations and management practices, government 
policy, information on different methods of primary and secondary processing, the 
knowledge about the recipes for the preparation of French fries, etc. These invisible 
linkages are present in every value chain, without which the proper functioning of 
the physical value chain may not be possible (Czerniawska and Potter 1998: 
Schliffenbacher et al. 1999).

8  Understanding the Value Addition Process

We used to wonder how the price of a product changes with slight modification in 
its color, shape, packing, etc. Sometimes the same product has different prices at 
different places or at another time? What may be the reason? Is it simply because 
the seller is deciding some price and imposing the same on the consumer, or it might 
be due to some defined process and actions that happened. Leave aside the unscru-
pulous activities followed in the value chain, which may lead to the highly volatile 
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price for the commodity, and we can look into the objective value addition process. 
Before going to the value addition process in detail, let us understand the term 
value-added. According to FAO (2014), value-added is the difference between con-
sumers’ willingness to pay for a particular food product or crop produce and the 
non-labor cost of producing the same. It is the total wages, margins (profits for the 
value chain stakeholders), taxes, positive or negative externalities associated with 
the product development, and the consumer surplus. In general terms, value addi-
tion is a worthwhile process as it generates high value and returns to the producer 
and greater consumer satisfaction. This process includes changing the physical state 
or form of the product, like making flour from grains, ketchup from tomato, etc., as 
in the traditional norms. Also, it includes any activity that enhances the utility of the 
product either in its time, space, or form dimensions (Lu and Dudensing 2015). 
Networks of activities are associated with each type of utility enhancement 
(Fig. 13.3).

9  Farm to Fork Model

This model is alternatively known as the “farm to table model,” in which the differ-
ent value-added activities from the production to till consumption stages are inte-
grated. The principal purpose is to reduce post-harvest losses through efficient value 
chain activities and to ensure the food safety of the population (FAO 2010b). The 
model also aims to balance the producer cost and consumer price, preserving the 
quality and freshness of the produce in the entire value chain and improving the 
economic status of the farmers. The efficiency of the value chain activities is 
enhanced by reducing the marketing chain length, improved technologies, farm gate 
collection and procurement, infrastructure creation, and mobilizing the farmers for 
better bargaining power, so that the consumer can get direct access to the products, 

Fig. 13.3 Utility enhancement activities in the agricultural value chain
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and simultaneously substantial increases of the producers share in consumers price. 
The farm to fork model also adds to the traceability of the product along the value 
chain, which is of great concern today.

10  Farm to Foreign Model

Value addition activities that enable the agricultural product to cross national bor-
ders and regions are qualified under this Farm to Foreign model of value addition. 
The process of value addition is done through multilateral trade agreements and 
multinational collaboration. This model can be treated as an output of globalization 
and liberalization policies. It can be equated with the “flying geese” pattern of value 
addition (Akamatsu 1962) by integrating the resources and value addition activities 
at different niches. This model may help procure the comparative advantages in a 
single value chain in various stages of the value addition process. It will help widen 
the reach of a commodity in different territorial and time zones, increase the profit 
for the product, and help the developing countries realize economic growth 
(Swinnen 2016).

11  Local Value Chain Development Process

The value chain development process is an intervention to create and strengthen the 
mutually advantageous linkages and networks among the different players of the 
value chain from producer to consumer to work in a synergetic mode to use the 
available market opportunities for profitability enhancement (Donovan et al. 2015, 
2016; Hainzer et al. 2019). The essential idea of the value chain development is the 
country’s economic development through strengthening the market functioning. 
Hence, value chain development interventions are wested on learning, trusting, and 
benefit-sharing principles to create a win-win situation for the players or partici-
pants (Webber and Labaste 2010; UNIDO 2011). The value chain development pro-
cess is categorized into two, i.e., global and local, based on the macro and micro 
perspective. Since Indian agriculture is predominated with small and marginal 
farms, which lack regional comparative advantages, we concentrate more on the 
local value chain (LVC) development process. The local value chains aim to inte-
grate the local sector to produce an efficient value chain and develop value chain 
levels. While analyzing with a marketing lens, each value chain competes against 
each other within the market space. In the local value chain, the competition to win 
the consumers’ preference is with the global value chains, which are importing 
identical products in the market where the local value chain (LVC) operates (Nadja 
and Merten 2015). According to Springer-Heinze (2018), the value chain develop-
ment process is based on the triple bottom line approaches of sustainable develop-
ment goals, i.e., giving importance to the nation’s economic growth, protecting 
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ecological sustainability, and allowing social inclusion in all means. While under-
taking a value chain development (Global or Local), some basic things need to be 
considered (IFDA 2014). The first and foremost thing is the consideration of market 
and market potentials as it is the primary driver for all value chains. Suppose any 
product that has an added utility by the value addition does not find any demand in 
the market. In that case, the farmers/producers and chain actors will not get any 
additional income. Hence the market and consumer demand is the essential thing 
that needs to be considered for the value chain development. Similarly, it is also 
important to note that each value chain serves a different and specific market. 
Another significant dimension is the dynamism of the value chain, which often 
changes with technology, input availability, consumer preference, marketing strate-
gies, government regulation, etc., at the micro, meso, and macro levels.

12  The Value Chain Development Cycle

The value chain development activities are in cyclic nature, as the market for which 
the value addition of the product is being done is very dynamic due to various fac-
tors associated with it. As in any program planning and implementation strategy, the 
value chain development process consists of five different stages (Fig. 13.4). The 
first stage is Identification of the sector: in the case of agricultural value chain devel-
opment, this stage involves the selection of the commodity or crop for which the 
value chains need to be developed. Before selecting a particular commodity or sec-
tor, one should need to answer the questions like, What is the objective of this 
action? Whether the contribution from the sector is enough to make the investment 
and interventions worthy? What will the sector achieve after the value chain devel-
opment? etc. Based on the target set and the answers obtained from the primary 
investigation, one needs to finalize some criteria for selecting a particular value 
chain for the development interventions. Because in the local condition, for a spe-
cific commodity or crop or produce, more than one chain of actions is available, and 
selecting the most suitable one will give the most efficient results.

The criteria for the selection of a particular sector should be developed based on 
the prospects, relevancy, capacity of the sector, feasibility of interventions, the 
quantum of profit and positive externalities, etc. The second step in the value chain 
development process is analyzing the existing marketing system and market chain 
analysis. It is the part where the value chain analysis, research, and value chain 
mapping are integrated. The interconnectedness and linkages (Springer-Heinze 
2007: Humphrey and Navas-Alemán 2010) are the core component in any value 
chain. Hence, mapping the linkages of the actors and activities is necessary to 
understand the interdependencies of various components (Stein and Barron 2017).

This visual tool and illustrative methodology will help the development partners 
to understand the key nodes in the value chain (actors or market players in quantity 
and quality dimensions), the interlinking actions (value-creating activities in size, 
intensity of competition, and the relationship terms), and the supporting 
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functionaries like government, not-for-profit organizations, financing institutions, 
input supplying industries, framer and processor associations, etc. (in terms of rules, 
laws, regulations, and non-legalized procedural formalities) (McCormick and 
Schmitz 2001; McKague and Siddiquee 2014a, b). An example is given in Fig. 13.5. 
It will also help to comprehend the opportunities, constraints, and weaknesses that 
need the intervention points (Ran et al. 2013). The value chain research and analysis 
quantifies the players’ capacity and incentives in the value chain, through which the 
market demand of the particular sector or commodity is being analyzed. It will indi-
cate future development direction, consumer preference, and motivations or drivers 
for the actors in the value chain in a quantified form (a detailed explanation is given 
in Sect. 7 of this chapter).

The third step in the value chain development process is designing interventions 
for the development activities, which help provide sustainable solutions for the 
problems identified in the value chain analysis. The intervention can be of various 
forms. Creating a new linkage, adopting a business model, accessing more informa-
tion and technological support, competing more rigorously with the other players, 
making cooperating agreements, taking an exit from the current market, or launch-
ing the product in a new and different market, etc. are some among of the market 
up-take strategies (Nadja and Merten 2015; Jochem and Trude 2015; ILO 2019a). 
After the designing of interventions, the timely and efficient implementation of the 

Fig. 13.4 The value chain development cycle
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same is essential. It is the stage in which the actual development of value chains in 
the selected sector happens. The strategic performance is not giving or developing 
choices for the actors; instead, it is about empowering them to choose a particular 
action from different alternatives (Herr 2007; Nadja and Merten 2015). The final 
stage is the monitoring and evaluation of the implemented strategies and their level 
of achievement. It is an essential activity for upscaling and out-scaling the devel-
oped value chain development models and correcting the inefficiencies in the 
adopted methods. Different triggers are there for the value chain development pro-
cess. If a selected value chain lacks efficiency in terms of cost, resources, time, and 
the functional mode, it needs a developmental intervention for reducing inefficien-
cies. Similarly, the social and environmental dimensions, needs and opportunities of 
product diversification and differentiation, business development environment and 
related factors, etc. act as triggers for the value chain development in agriculture 
(Nadja and Merten 2015; Stein and Barron 2017; ILO 2019b).

13  Frameworks for Value Chain Development Intervention

As mentioned in Sect. 4.2, successful value chain development activities depend on 
the strategies which one has planned and implemented. Though many types of inter-
ventions can be designed based on the market value chain analysis and mapping, the 
intervention which matches the available resources and situation will be the one that 
might give expected results. Different frameworks are developed to place the strate-
gies for the most efficient execution. Here we are discussing two such frameworks 
in detail.
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Fig. 13.5 Value chain mapping of capsicum in Champawat district of Uttarakhand, India. 
(Adopted from Dubey et al. 2020b)

13 Agricultural Value Chains: A Cardinal Pillar for Future Development…



256

13.1  The “Will-Skill” Framework

The Springfield Centre has developed the framework with a matrix (2 × 2) form. It 
has the skill (capacity) and will (motivation or incentives) to represent two dimen-
sions of the value chain actors’ categories (The Springfield Centre 2015; ILO 2015. 
2021). The framework has four different players based on the high-low combination 
of motivation and capacity (Fig. 13.6). The intervention strategies may vary based 
on the extent of capacity and motivation a value chain player has. (1) High will-Low 
skill (Contributors): The value chain player has the high motivation or incentive 
level to adopt a particular value chain strategy as designed but has low skill or 
capacity to execute the same. The capacity enhancement activities or skill develop-
ment may be helpful for the players to make an efficient move. The primary form of 
support is training, mentoring, advisories, etc. Similarly, the access to information 
regarding the skill development and agencies providing such supports may help 
them acquire the skills for the particular value chain development. (2) Low will- 
High skill (Potential detractors): The value chain player or agent who is highly 
skilled enough to expand the current work, i.e., launching the business in any other 
region. But the incentives by doing so may be significantly less to pursue the same 
due to the high risk associated. Here development agencies need to adopt the strat-
egy to peruse the action designed is by giving support to reduce the risk associated. 
The horizontal integration of the different chains to share the cost to reduce the risk 
and contract farming can be helpful for them. (3) Low will-Low skill (Low perform-
ers): It is the situation in which the value chain player may lack both capacity and 

Fig. 13.6 Will-skill framework for value chain development

S. K. Dubey et al.



257

incentives or motivation to adopt a particular value chain development strategy. 
Actors may be reluctant to adopt a particular strategy by asking questions (like 
What will I get from it? Am I capable of doing so?) with probably the same answer 
of impossibility. Here, the value chain development actor or agency needs plans to 
impart skill and provide motivators to make the actors part of the development pro-
cess. (4) High will-High skill (Challengers): These players have a high level of 
capacity and a high motivation to engage in the particular value chain development 
activity. To implement the value chain development strategies, they need an enabling 
environment and supporting regulatory measures. Hence, the major work of the 
value chain development agency is to find out the external factor, which promotes 
or blocks the action.

13.2  Adopt-Adapt-Expand-Respond (AAER) Framework

It is a 2 × 2 matrix framework that enables monitoring and assessing the systematic 
changes in the value chain development interventions and their implementation. 
Value chain development programs also aim to change behavior or working habitat 
of different players through different interventions for system efficiency. Like the 
Will-Skill framework, this framework also categorizes the value chain players based 
on their behavior towards the interventions. The two dimensions of the categories 
are pilot and crowding in. The adopt and adapt classes are coming under the piloting 
dimension, and the expand and respond types are in crowding in dimension. The 
framework (Fig. 13.7) will help the value chain development agency to plan what 
should be done next? (ILO 2021; Jake 2020). The pilot dimension is for engaging 

Fig. 13.7 Adopt-Adapt-Expand-Respond (AAER) framework
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different market players appropriately on various interventions designed to value 
chain development. At the same time, crowding in is enhancing the responsiveness 
of the players towards the interventions planned and implemented in a sustainable 
way through improving the support function like rules, regulations, and creation of 
a suitable environment. The adopt is how a planned intervention is introduced and 
gradually transferring its ownership to the value chain players. In this stage, the 
ultimate behavioral change need not happen. The player is motivated to adopt any 
particular intervention by giving some examples or showing its benefit. When the 
value chain actor is convinced with the incentives they gain, they gradually try to 
institutionalize or internalize the intervention. Here the ownership is transferred to 
the players, and changes occur in the behavior of the players. The process is termed 
adapt. In the expand process, the value chain players extend their actions, and more 
people benefit. Similarly, competing value chain players copy the intervention 
adopted and adapted by the other players, increasing visibility, reach, and diversity. 
The respond component is that examines the supporting function of the existing 
value chain. It analyses the pattern of change that happens in the supportive roles in 
response to the behavioral changes of the value chain players through the adoption 
and adaption of the interventions. Thus through AAER framework, the proper 
designing, placing, monitoring, and evaluation of value chain development activi-
ties and interventions are possible.

14  Business Perspectives in Agricultural Value 
Chain Development

Agriculture is no longer a farm activity alone; instead, it is a sustainable liveli-
hood supporting activity. Considering a farmer as an investor or operator of an 
enterprise is time relevant. Rural development programs in developing and under-
developed nations are more oriented to make farmers as a businessman or farming 
as agribusiness (Tohidyan Far and Rezaei-Moghaddam 2019; Beuchelt and Zeller 
2012). If a farmer is considered a simple producer, then the farmer or producer’s 
activity ends with the production process. But in the actual situation, it is extended 
to primary processing, value addition, marketing, etc., which are termed as busi-
ness activity. For efficiency enhancement and profitability, each farmer should be 
engaged in capital formation, investment, and risk-taking at each stage, which are 
the fundamental characteristics of a business. In the value chain development 
context, farming is integrated with all value creation activities and decision- 
making processes. Hence it is better to term agriculture as agribusiness (Lans 
et al. 2020).
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15  Business Development Services (BDS) in Agriculture

Business development services (BDS) are the non-financial assistance or services 
offered to meet the demand of players to develop a value chain (agribusiness) with 
an efficient and functioning marketing system. It includes entry support activities, 
growth and expansion supports, productivity enhancement support, technological 
support and advice, training for business development, infrastructure support, sus-
tainability support regulation, marketing assistance, etc. (Springer-Heinze 2008; 
Alexandra 2001). These BDS are very important, especially for the smallholder and 
marginal farmers, as those may help them have more access to financial services. A 
general classification of BDS done by the Small Enterprise Education and Promotion 
(SEEP) Network and International Labour Organization (ILO) suggest seven classes 
of BDS: (1) Input supply: the process of linking the input dealers with the farmers, 
facilitating enhanced access to the input market, etc. (2) Product development and 
technological backstopping: training on different forms of product development, 
training to use advanced technologies for product formation, etc. (3) Marketing 
facilitation and enhanced access to the market: giving accurate market information 
and market intelligence services, linkages between different market functionaries, 
advertisement and propaganda, online trading support, etc. (4) Infrastructure facili-
ties: road and transportation facilities, marketing infrastructure creation, cold stor-
age and warehousing, drinking water and electricity, etc. (5) Training and technical 
support: for production, processing, marketing, warehousing, etc. (6) Policy sup-
port: compliance training, advocacy over different policies, etc. (7) Alternative 
financial support (Alfons 2005).

16  Farmer Producer Organizations (FPOs) and Value 
Chain Management

While considering the value chain development activities, farmer producer organi-
zations (FPOs) are the significant ones to be discussed. The most crucial element 
needed in a value chain development function is enabling the producers to have 
better bargaining power. In a country like India, where the majority of the framers 
are coming under the category of marginal and small, it is essential to organize them 
for efficient and improved value chain activities. The definition states that A 
Producer Organisation (PO) is a legal entity formed by primary producers, viz. 
farmers, milk producers, fishermen, weavers, rural artisans, craftsmen (NABARD 
2015). A conceptual framework is given in Fig. 13.8. “Amul” can be cited as the 
most successful example from India under this. The main aim of the FPOs is to 
make sure better earnings for the farmers by incorporating the economics of the 
scale while marketing the product and better bargaining position while purchasing 
the inputs (Markelova et al. 2009).
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FPOs provide an enabling environment for better input availability (the whole-
sale price of the inputs are always lower), market facilities (through collective mar-
keting and sharing the marketing cost), and togetherness while arguing for 
government support for the farmers or producers (Latynskiy and Berger 2016; 
Bijman and Wijers 2019; Ravi Kumar and Babu 2021). Though the FPOs are identi-
fied as a tool to make farming a business through the integration of the farmers, its 
development needs support ecosystem services. It includes supportive policy for 
risk mitigation, licensing, and other related activities; extension and advisory ser-
vices for market selection and processing; consumer support and linkages; and sup-
port to procuring quality inputs like capital labor and other production and 
post-production inputs (NABARD 2020). Even if the establishment of an FPO is 
necessary for the value chain development activities, the process is constrained by 
many factors in different stages. The significant constraints are less involvement of 
youth or young leaders to take responsibility (Verma et al. 2020), lack of proper 
coordination among the member for different group activities (Kathiravan et  al. 
2017), lack of professional management, and access to credit facilities 
(NABARD 2020).

17  Value Chain Analysis (Quantitative) Methodologies

As discussed in Sect. 4, the quantification of the cost involved, the price gained, 
value-added, services provided, etc. are essential for the development of value 
chains in any commodity sector. The process starts with selecting a particular crop/
commodity/product for which the value chain analysis needs to be done. It is fol-
lowed by mapping of different chains of activities (primary and support activities) 
and players in it. The quantification of the cost involved, the value created, and the 
profit obtained at the micro and macro levels are the next steps. In other words, the 
value chains are analyzed based on the activities which lead to a reduction in cost or 
increase in the differentiation for comparative advantages. Since the value chain is 

Fig. 13.8 Farmer producer organizations (FPOs) and value chain management
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an input-output flow (McCormick and Schmitz 2001; Wood 2001) the analysis 
(accounting) can be conducted in two different forms: (1) physical analysis (quan-
tum of product transferred from one actor to another actor) and (2) financial and 
economic analysis (financial analysis is based on the market price; hence any mar-
ket distortion will have a direct reflection on the same, and economic analysis is 
more concentrated on the shadow price (Fabe et al. 2009). With a micro perspective 
of value chain development in mind, we concentrate more on the financial analysis 
aspect of the value chain analysis in this chapter. A standard procedure of the finan-
cial analysis of value chains is cost–benefit analysis. Here the monetizing the cost 
and benefits of a value chain and expresses the same over time or quantity of the 
product produced. According to FAO (2005b), the most critical term in the value 
chain analysis is the value-added. How will we calculate the value added to any 
product through a value chain activity? To answer this question, one needs to under-
stand how a product gains value. The value is created through series of actions that 
use several inputs in the form of materials (row inputs and product, primary pro-
cessed product, etc.) and kinds (the services in terms of labor, human power, advi-
sories, financial services, marketing support, policy support, etc.). In a market 
system, the consumer gets a value-added product with a price, which included the 
value-added in it and the cost of production of the product in the final consumption 
form. Similarly, the gross profit in the value chain is the difference between the 
value-added and the total cost of production. Hence, the value-added in the particu-
lar product can be calculated as the sum of the gross profit and the product’s cost of 
production.

 Gross Profit VA X X X X Xi i i i i i ni� � � � � �� ������( 1 2 3 4  (13.1)

where,

VAi = value-added for the ith product/ commodity
Xni = Cost of nth input for the production of ith product

In the financial value chain analysis, three essential items are generally there: (1) 
The gross product (calculated as the market price of the total quantity of the product 
produced). It includes the final product marketed, product kept for the own con-
sumption, and the product kept as intermediate inputs for making any other value- 
added product. (2) Cost of production. It indicates the cost accrued for any 
intermediate good (seeds, fertilizer, plant protection inputs, primary processed 
materials, etc.) and services (labor cost for family and the hired labor, marketing 
cost, cost of primary processing, cost incurred for the support, and advisories, etc.) 
(3) The depreciation cost of fixed assets (farm implements, buildings, vehicles, 
warehousing facilities, marketing infrastructures, etc.) used in the value chain. The 
viability of the value chain developed is measured based on the extent of the benefits 
over the cost incurred in the value chain with the help of profitability indicators. The 
significant indicators used for the value chain analysis are given in Table  13.1 
(Dizyee et al. 2017; Mango et al. 2018; Gebre et al. 2020).
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Table 13.1 Financial analysis indicators in value chain development

S. 
no Indicators Explanation Calculation

A. Farm-level analysis
1 Yield (kg/ha) 

(Y)
The total quantity of main products and the 
by-products produced at the farm level. Y y y

n

i

i
k

j

j� �
� �

? ?
1 1

2 Farm-gate price 
(Rs) (R)

The farmer selling price (either to consumers or 
to the marketing agents).

R = Rupees/Kg

3 Gross revenue 
(GR)

It the total revenue obtained for the producer by 
selling the main products and by-products.

GR = Y × R

4 Cost of 
production (C)

The total cost incurred for the inputs in the 
production process (fixed cost + variable cost).

C = VC + FC

5 Variable costs 
(VC)

Cost of seeds + fertilizers + plant protection + 
services + other inputs. VC vc

n

i

i=
=

?
1

6 Fixed cost (FC) The cost incurred for the fixed assets used in the 
production. process (implements + processing 
equipment + buildings + machinery + taxes, 
etc.).

FC fc
n

i

i=
=

?
1

7 Net farm income 
(NR)

It is the profit obtained for the producer after 
reducing the cost incurred in the production and 
processing.

NR = GR − C

8 B:C ratio (BCR) It is the ratio of the present value of all benefits 
to the total cost of the process. BCR

GR

C
=

9 Operating 
expense ratio 
(OER)

It is the ratio of operating cost for the production 
of the product to the gross revenue obtained from 
that product.

OER
VC

GR
=

10 Breakeven point 
(BEP)

It is the situation in which no loss and no benefit 
to the process or activity. BEP is the status when 
the cost of production is equal to the profit 
obtained.

BEP
FC

GR VC
=

?

B Marketing analysis
1 Marketing cost 

(MC)
The total expenses incurred for a marketing agent 
(producer in direct marketing, retailer, and 
wholesaler). It includes title changing charge 
(purchasing cost), handling costs like primary 
processing and marketing.

MC mc
n

i

i=
=

?
1

2 Market margin 
(MM)

It is the difference between the selling price (SP) 
and the buying price (BP) for the market agents 
(retailer and wholesalers), or it is the difference 
between the farm gate price and cost of 
production if the producer is directly marketing 
the product (per unit).

MM
SP PP

yn

i
i i

i

=
=

?
?1

Or
MM

R C

yn

i
i i

i

=
=

?
?1

Here n = number of 
intermediaries

(continued)
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18  Value Chain and the Market System

In the traditional value chain development practices integrated approach was miss-
ing. Value chains were developed based on the marketing chain analysis instead of 
considering the value chain as a system (market system) (ILO 2016). But in the 
recent development in the value chain analysis methodologies, the value chain anal-
ysis integrates different marketing subsystems. The production, marketing, and con-
sumption of one or more inputs and services between these subsystems 
(product-market system, labor market system, advertising and supporting market 
system, etc.) are general phenomena. The output of the market system analysis 
gives a comprehensive view of the value chain with its integrated marketing system 
(Fig. 13.9).

19  Constraints in the Value Chain Development Process: 
An Indian Scenario

The agricultural value chain development process is not devoid of challenges and 
constraints. The nature of activities, multiplicities of the actions, different sub- 
marketing systems, etc. create many challenges during the integration process. The 
limitations on value chain development in the Indian context can be grouped as 
vertical and horizontal integration challenges, technological and infrastructural con-
straints, financing challenges, policy and governance issues, and, most importantly, 
socio-cultural issues (Devaux et  al. 2018; Gills et  al. 2016, 2017). According to 
Naik and Suresh (2018), the major challenge in the value chain development pro-
cess is how to guarantee the involvement of small and marginal farmers with frag-
mented landholding in sourcing the linkages or networks. The challenges faced at 
the farm level marketing, lack of integration among the different players in the value 
chain, and inefficiency in compliance with the quality parameters required for the 
value chain entry are significant challenges associated with the horticultural value 

Table 13.1 (continued)

S. 
no Indicators Explanation Calculation

3 Consumers’ 
purchase price 
(PP)

The price at which the consumer is purchasing a 
product for the final consumption. PP y BP

n

i

i i=
=

? ?
1

4 Producers’ share 
in consumers 
price (PS)

The percentage share of the producer in 
consumer price for a product. PS

PP MC MM

R
�

�� �?

5 Marketing 
efficiency (ME)

Measures how efficient a value chain in the 
operating situation. ME

PP

MC MM
�

�
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chain development (Musa et al. 2014). Other than the techno-economic challenges, 
some other important social, cultural, and political factors also affect agricultural 
value chain development. According to FAO (2010c), the agricultural value chains 
are not gender-neutral, and poor and less literate women were severely affected by 

Fig. 13.9 Market system approach for the value chain analysis (Authors creation: source, Dubey 
et al. 2020b)
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gender stereotypes. They were entitled to lower payment and forced to work in 
more insecure conditions. Based on the regional studies on different agricultural 
commodities, the challenges of value chain development can be different and com-
bined in varying degrees of intensity. The general classification of the constraints of 
value chain development is given in Fig. 13.10.

20  Food Waste in the Value Chain

The value chains are pronounced as a tool to prevent (reduce) food losses. But in 
many of the developed nations, a huge quantity of food is being wasted in the value 
chain. Food wastage encompasses two terminologies, i.e., food losses and food 
waste. Food loss is the amount of the product being wasted till retailing in the value 
chain, and the term food waste is the product which is ready to eat form (fit for 
consumption) is being wasted. In the whole chapter, we have discussed different 
strategies for value chain development (physical), which can be treated as a silver 
bullet for food losses. But food wastage is a behavioral problem created and culti-
vated through custom, culture, habit, and tradition. More than 30% of the food is 
wasted at the plate, which is sufficient to feed the hungry people of the world (Gills 
et al. 2015). Hence to reduce food wastage in general, it is essential to have value 
chain development strategies in combination with the efforts to change the behavior 
of the people.

Fig. 13.10 Constraints of agricultural value chain development in the Indian context
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21  Conclusion

We discussed the process, methodologies, and challenges in agricultural value 
chain development in general and particularly emphasizing cases from the Indian 
context. Value chain development in agriculture is vital as it is still the primary 
employment generating sector (43%) in the Indian economy (World Bank 2021). 
Similarly, agriculture is no longer a farming activity alone; instead, it is a business 
activity with all the essence (investment and risk-taking) and structure (different 
stages of product development and title transfer till consumption). As indicated in 
the chapter, the value chain is a holistic process that includes farming, aggregation, 
transportation, primary value addition, logistics, and after-sales services. While 
closely understanding, the value chain structure has existed in the agricultural sec-
tor from historical periods. The crop and product are produced at the farm, and 
consumers consume the product in differentially accessed forms through several 
players, channels, and agents. The changes that happened in the developed world 
have triggered the systematized value chain development concept in agriculture 
through the structured organization and governance system. The ever-dynamic con-
sumer choices, pertinent system challenges, and technological progression always 
demand comprehensive and adaptive value chain development strategies. Hence, in 
this chapter, we tried to emphasize the different stages of value chain development 
and how we can build a sustainable value chain through skill, will, and adoption 
behaviors. The challenges and the constraints like lack of last-mile connectivity, 
deficiencies, and inefficiencies in the marketing system, existence of a large num-
ber of intermediaries, and unscrupulous players, information access difficulties, 
insufficient infrastructure facilities like cold storage, roads, electricity, building, 
and storage structure, financial unsustainability, risk and increased transaction cost, 
etc. are hurdles in the rural value chain development process in India. In recent 
times structural changes had happened in the policy outlook in India, and now the 
economic development is more concentrated on Atmanirbhar (“self-reliant India”) 
principles. It has a particular focus on the production of improved technologies for 
production processing and quality control, creation of marketing facilities and 
infrastructure, encouraging aggregation among the players to have more profit and 
efficiency, etc. Though the fragmented and small landholding is a challenge, the 
diversity of the crop produced and its market potentials are strengths to be har-
nessed in agricultural value chain development in India. Building the confidence 
among the farmers for aggregation, moving from subsistence farming to market-
oriented farming, subsistence farming to market-based and business-oriented agri-
culture, and enhancing the accessibility, availability, and affordability of the inputs, 
information and policy support, etc. are relevant for the creation of an enabling 
environment for the value chain development.
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Chapter 14
Climate Smart Eco-management of Water 
and Soil Quality as a Tool for Fish 
Productivity Enhancement

Puja Chakraborty and K. K. Krishnani

Abstract Climate smart eco-management is an approach for reorienting and trans-
forming the aquaculture system under changing climatic conditions to ensure food 
security for the increasing global population. Widespread alterations in tempera-
ture, rainfall pattern, and extreme weather events threaten the aquaculture produc-
tion system and amplify the risk of economic loss. These potential threats can be 
minimized by increasing the resilience capacity of the production system through 
various climate smart strategic approaches. The strategic adaptation approaches 
include species diversification, integration of agri-aquaculture such as integrated 
multitrophic aquaculture (IMTA), aquaponics, various advanced techniques like 
biofloc, recirculatory aquaculture system (RAS), culture of stress-tolerant species, 
inland saline aquaculture, implementation of BMPs in disease and environment 
management, etc. Climate smart adaptation strategies are likely to help in achieving 
‘sustainable fisheries development goal’ and create a ‘triple win’ situation for the 
practitioners and stakeholders by enhancing fish production, making the production 
system climate-resilient, and reducing the greenhouse gas emission. Moreover, exe-
cution of climate smart aquaculture approach is quite flexible, context-specific, and 
can be supported by various financial schemes and innovative policies.

Keywords Water quality · Soil quality · Climate smart eco-management · 
IMTA · RAS

1  Introduction

The menaces of climate change to natural ecosystems and human society have been 
upraised to a top priority. It is now broadly accepted that climate change is not only 
a potential threat, but has become a new reality of twenty-first century. The ongoing 
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climate change has drawn attention in the global corridor related to various devel-
opmental policies and worldwide governance (Ahmed and Solomon 2016). The 
accumulation of Greenhouse Gases (GHGs) in the atmosphere is associated with 
global warming and leads to the emergence of distinctive climate patterns in differ-
ent agro-climatic zones. Change in climatic conditions is believed to modify weather 
patterns on regional scale, resulting in extreme weather events. Climate change has 
serious repercussions causing floods, landslides, drought, tropical cyclones, hurri-
canes, cold waves, heat waves, and alterations in various climatic parameters includ-
ing rising sea levels, gradual change in water temperature, upsetting seasonal cycles, 
ocean acidification, and variations in oceanic currents. Weather extremes are cer-
tainly more traumatic and acute in nature, triggering injuries and transmission of 
communicable diseases and deaths (Hashim and Hashim 2016). These changes in 
the physical parameters can affect the ecological functions of the aquatic ecosystem 
and would also pose a challenge to the fisheries and aquaculture sector due to their 
adverse impact on reproductive ability, conception rate, sperm count, feed intake, 
and untimely mortality of the cultured species (Cochrane et al. 2009; Ahmed and 
Solomon 2016 ; Bhattacharyya et al. 2020).

Moreover, glacier melting, rising sea level, changes in precipitation rate, ocean 
acidification, and reduced groundwater level will have a significant effect on coral 
reefs, estuaries, rivers, lakes, and wetlands. Therefore, mitigative measures to 
accomplish adaptability and optimum production are required, while minimizing 
the adverse impacts of climate change on fisheries and aquaculture systems. In this 
context, it has been observed that fisheries and aquaculture practices also make a 
modest but still remarkable contribution to greenhouse gas (GHG) emissions during 
culture operations, transportation, processing, and storage of fish and fishery prod-
ucts. Although greenhouse gas emissions from fisheries and aquaculture sector are 
minimal when compared with other food production sectors, the situation can be 
improved further, with various identifiable measures and technical interventions 
(De Silva and Soto 2009).

To safeguard fish production under changing climatic scenarios, the aquaculture 
sector has to be governed efficiently. The most appropriate adaptation approach for 
the sector under changing climatic conditions could be the diversification of the 
production systems. A diversified production system is more resilient to water scar-
city, temperature change, pest attack, and disease outbreak. The adaptation methods 
are widely classified as resource relocation, use of information and communication 
technology, diet-based adaptation, and genetic management. Henceforth, the vul-
nerability of the aquaculture sector can be reduced and the resilience capacity of 
fisher communities involved in smart aquaculture practices should be strengthened. 
In the era of global climate change and higher requirements for animal protein, the 
expansion of climate smart aquaculture can potentially provide sustainable manage-
ment strategies to the fisheries and aquaculture industry (Bhattacharyya et al. 2020; 
De Silva and Soto 2009).
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2  Potential Impact of Climate Change on Fisheries 
and Aquaculture

Climate change can directly affect the performance of individual aquatic organisms 
at their various life stages through modifications in morphology, physiology, and 
behaviour. Combination of climate change along with edaphic stresses will lead to 
extreme ecological responses which include microevolutionary processes, altera-
tion in species distribution, and reduced productivity and biodiversity (Harley 
et al. 2006).

Aquaculture practice, like other agricultural activities, will suffer from the con-
sequences of deep-rooted global climate change. Among the inevitable challenges 
of global temperature rise, substantial water scarcity and ocean acidification will 
adversely impact the inland and coastal aquaculture operations (Yadav et al. 2021). 
It is evident that various abiotic stresses of physical, organic, inorganic, and bio-
toxin origin and biotic stresses of viral, bacterial, fungal, and parasitic origins are 
the major constraints in achieving optimum aquaculture production (Krishnani et al. 
1997; Krishnani and Ayyappan 2006). Besides, climate-driven changes in the 
spawning activity of the aquatic organisms will influence the successful recruit-
ment, seed production, and growth of the concerned population. Also, global warm-
ing or heat increment can strengthen the process of thermal stratification in the 
aquatic system and cause deepening of the thermocline layer and reduced nutrient 
supply to the surface water and thus plays a significant role in determining the habi-
tat distribution of various fish species (Barange and Perry 2009). Therefore, it is 
explicit that various biotic and abiotic stressors coupled with global warming will 
have synergistic effects and will further worsen the condition.

2.1  Abiotic Stresses

For sustainable aquaculture production, it is very crucial to maintain optimum soil 
and water quality conditions. Various parameters like dissolved oxygen, tempera-
ture, pH, salinity, turbidity, etc. are the determining factors that should be regulated 
throughout the culture period (Mwegoha et  al. 2010). Slight deviation in these 
parameters will hamper the nutrient uptake, growth, and metabolism of the farmed 
fish (Africa et al. 2017).

Most of the aquatic animals are poikilothermic (cold-blooded), and therefore, 
their physiological activities are dependent on external environmental conditions, 
especially on temperature. Temperature tolerance in fish can be classified as direc-
tive, controlling, and lethal temperature. It indicates that fish will start showing 
alarming responses before it reaches the extreme thermal limits (Fry 1971). Abiotic 
stresses caused by increased temperature will have negative impact on food conver-
sion, oxygen requirements, and energy expenditure of the fish (Brett 1979). 
Temperature rise beyond the level of physiological tolerance may also cause reduced 
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feeding, increased hypoxia, and mortality (Ørnholt-Johansson et  al. 2017). 
Ecological adversity arising from climate change includes coastal acidification, 
reduced benthic oxygen, coastal upwellings, freshwater runoff, phytoplankton 
blooms, and sea level rises (Kernan 2015; Fitzer et al. 2018). Rise in sea level will 
result in coastal erosion, alteration of hydrodynamics and coastal geomorphology, 
and therefore, decrease in the availability of ideal sites for aquaculture activities. 
Increase in atmospheric CO2 levels due to climate change has been suggested to 
cause depletion in the ozone layer and enhanced entry of ultraviolet radiation to the 
earth’s surface with possible effects on the oceanic process (Austin et  al. 1992). 
Ocean acidification or reduction in ocean pH will affect the process of shell forma-
tion or calcification in shellfishes. It has been reported that acidification of oceanic 
water can reduce the sperm motility and fertilization rate in sea urchin 
(Heliocidariserythrogamma), which implies that other marine organisms are also at 
similar risk (Barange and Perry 2009).

Water scarcity due to the changing climatic conditions is likely to cause conflicts 
among various water-dependent activities, thus affecting inland fisheries and aqua-
culture operations. Resuspension of sediments during extreme weather events and 
deposition of suspended solids from surface runoff can cause retarded growth and 
acute gill damage in fish while upsetting overall health conditions (Au et al. 2004). 
Also, extreme climatic conditions like strong waves and storms can potentially 
damage exposed fish cages in the coastal areas, leading to escapement of the cul-
tured species (Jackson et  al. 2015), devastation of aquaculture structures, and 
increased infrastructure costs (Dankers and Zuidema 1995).

2.2  Biotic Stresses

Global climate change and ocean acidification can adversely impact the immune 
response of the fish due to conflict between maintaining homeostasis and increased 
metabolic rate at higher temperature and fluctuating pH and salinity range. In the 
case of farmed fish, the affect can be compensated by maintaining optimum feeding 
regime, but in shellfishes, the immunity will be compromised as the changing cli-
mate may influence the availability of natural food sources. Additional stressors like 
extended photoperiod, temperature rise, depletion in dissolved oxygen content in 
water, and increased UV radiation can potentially act as immunosuppressive factors 
and make the fishes more susceptible to diseases (Markkula et al. 2007). Rise in 
temperature can stimulate the dynamics of pathogens by increasing the virulence 
factor of the pathogen and supressing immunological activity of the host. It has been 
observed that ocean acidification and increased sea surface temperature can pro-
mote the survival and growth of many opportunistic bacteria, including Vibrio spe-
cies (Baker-Austin et al. 2017).

The decay rate of viruses and larval Bonamia (oyster parasite) tends to increase 
with rising temperature (Oidtmann et al. 2018). Temperature-induced higher metab-
olism of the host organism may result in increased viral replication and easy 
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transmission of the diseases (Gubbins et al. 2013). Alteration in the environmental 
condition can lead to the evolution of the existing pathogenic strain with varying 
degrees of virulence and replication rate (Murray and Peeler 2005). Also, parasite 
prevalence in the areas of warm or moderate temperatures is the most common phe-
nomenon. Increased temperature may accelerate the maturation process of fish 
parasites like sea lice, and therefore, increasing sea surface temperature and salini-
ties may facilitate easy spread of the parasites and thus make them more infectious 
(Murray et al. 2012; Brooker et al. 2018).

Similarly, fluctuation in salinity can also affect the survival of pathogen. 
Pathogens have optimum salinity ranges for their growth and replication, but many 
viral pathogens can grow on a substantial range of salinity (Oidtmann et al. 2018). 
At higher salinity growth, oyster parasites, sea lice and Paramoebaperurans, tend to 
increase with potential infectivity (Collins et al. 2019; Brooker et al. 2018; Arzul 
et al. 2009). During the spring and winter months, decrease in salinity may lower 
the survival of fish parasites (Van West 2006). Climate-mediated stress will give rise 
to physiological responses in the host organism through which the animal tries to 
re-establish normal physiological functions. If the stressful condition persists for a 
longer period of time, it may lower the disease resistance capacity of the fishes. In 
this situation, the already stressed fishes will easily get infected by opportunistic 
pathogenic microorganisms (Raman et al. 2013).

3  Climate Smart Aquaculture

The main aim of climate smart aquaculture is to ensure food security by adapting 
potential mitigation strategies. Climate smart aquaculture deals with minimizing 
potential adverse impacts of global climate change, increasing productivity, and 
income generation. The adaptation strategies require efficient use of natural 
resources for fish production, improving the resilience capacity of the aquatic sys-
tem, sustainable development, and reducing the vulnerability of fish production 
which is most likely affected by climate change. The transition of traditional aqua-
culture practices into climate smart culture technique needs to be done at each stage, 
including national, regional, community, and individual levels. All public and pri-
vate stakeholders should get involved in the process of transition to assure that the 
concerned aquaculture sector is climate resilient (Ahmed and Solomon 2016).

4  Strategic Approaches Towards Climate Smart Aquaculture

Climate smart culture approaches in aquaculture have three main objectives such 
as achieving sustainable fish production, increasing the resilience of the sector, and 
reducing greenhouse gas emission. The strategic adaptation approach focuses on 
building resilience capacity to the consequences of climate change (Bueno and 
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Soto 2017), whereas mitigation is a long-term solution to global climate change 
and may take considerable amount of time to visualize the results (Leal Filho 
2011). Therefore, adaptation and mitigation approaches should be implemented in 
a conjoint manner for effective results.

4.1  Mitigation of Greenhouse Gases

Strategic approach towards climate change involves reduction in greenhouse gas 
emission, especially carbon-di-oxide (CO2), which can be achieved through a com-
bination of existing and new technologies, including product substitution, bio-based 
feedstock, electrification, and reducing carbon footprint (Maulu et  al. 2021). 
Aquaculture producers and stakeholders can also play a crucial role in mitigating 
global climate change by using environment-friendly practices such as renewable 
energy sources, sustainable waste management, and proper feeding practices 
(Barange et al. 2018). It has been observed that in aquaculture production improper 
utilization of feed is the major contributor to greenhouse gas emission. For instance, 
sinking feeds are more environmentally viable in comparison with floating feeds 
(Hardy 2010). Hence, application of sinking feeds will have less impact on GHG 
emission.

It has been estimated that approximately 93 % of global carbon is trapped in the 
aquatic ecosystem and approximately 30% of annual carbon emissions are gener-
ally sequestered in seaweeds, mangroves, seagrasses, coastal sediments, and flood-
plain forests (Nellemann and Corcoran 2009). Therefore, it is very crucial to save 
these habitats from destruction and enhance their sequestration ability through 
proper management practices. Well-managed seaweed farms and mangroves will 
serve as a natural breeding ground for various fish species and act as a reservoir of 
natural foods. Expansion and conservation of these sensitive ecosystems will lead to 
species richness, healthier ecosystem, and abundance of aquatic species, and thus, it 
can safeguard livelihoods and provide food security (Palombi and Sessa 2013).

4.2  Livelihood Diversification Through Integrated 
Agri- aquaculture/Advanced Culture Techniques

Another approach to climate smart aquaculture is the diversification of livelihoods, 
one of the successful keys to adaptation as it provides additional livelihood options 
to the producers and build resilience against changing climate. Diversification 
involves a combination of the aquaculture system with other agricultural sectors 
such as crops and animal husbandry either as separate or integrated systems. The 
process of diversification is extremely beneficial in the areas where agricultural pro-
duction is predicted to increase, whereas fish production is expected to decline (Bell 
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et al. 2013). In order to improve the resilience capacity of the culture system, it is 
much required to encourage the consumption of diversified fish species, usage of 
by-products, and reducing wastage throughout the processing chain. These initia-
tives can potentially stabilize the income of the fisherfolk and secure the availability 
of nutritious foods.

The expected surge in extreme climatic events resulted in competition for fresh-
water resources, while making the area prone to droughts. System-based adaptation 
measures such as water-saving biofloc technology and recirculatory aquaculture 
practices are considered a viable solution to water scarcity (Boraiah et al. 2021). 
Biofloc technology is a method of boosting water quality parameters in the aquacul-
ture system through balancing optimum nitrogen and carbon ratio. This technique is 
scrutinized as a resourceful alternative to traditional culture practices based on the 
growth of beneficial microbes in the culture medium. The technology has gained 
recognition as a sustainable culture technique for controlling water quality, mini-
mum or zero water exchange and producing in situ value-added proteinaceous feed 
(Crab et al. 2012). Likewise, to mitigate the problems of water pollution due to rapid 
expansion of aquafarming activities, the development of recirculating aquaculture 
system (RAS) has become essential. In the RAS system, the effluent pass through 
biological filters and can be reused for fish culture. Through wastewater reclama-
tion, this system can effectively minimize water requirement for fish culture (Sharrer 
et al. 2007).

Another such promising, economically rewarding, sustainable, and environment- 
friendly approach is Integrated multitrophic aquaculture (IMTA) where the fish is 
cultured in combination with other extractive species (van Osch et  al. 2019). 
Similarly, aquaponics is also considered a resilient system which can effectively 
adapt to diverse climatic conditions. This system is the integration between aquacul-
ture and without soil cultivation of agriculture or horticulture practices. In the aqua-
ponics system, two completely different production systems are combined together 
into a closed recirculating unit. The nutrient-rich effluent and organic wastes gener-
ated from the fish tank are filtered through inert substances containing plant roots. 
The plant tends to assimilate the nutrients from the effluent for their growth and the 
filtered water is then pumped back into the fish tank and can be reused for fish cul-
ture. Aquaponics system can sustainably produce additional crops along with fish, 
and therefore, enhance the profitability of the system, reduce the degree of water 
pollution and effluent discharge, and can significantly overcome the challenges of 
water scarcity, soil degradation, and climate change. Moreover, aquaponics is a con-
trolled system that maintains a high degree of biosecurity and reduces the risk of 
disease transmission (Palombi and Sessa 2013).
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4.3  Species Diversification

Aquaculture producers can also gain potential benefits from shifting the aqua-
culture activities in less vulnerable areas and culturing climate-resilient fish 
species like magur, pangasius, GIFT tilapia, etc. (Maulu et al. 2021). Selection 
of species for aquaculture purpose based on easy breeding and feed conversion 
efficiency helps to minimize the negative impacts of climate change and GHG 
emission (Sae-Lim et  al. 2017). Fish species such as Clariasmagur, 
Heteropneustesfossilis, Channastriata, Channamarulius, Channapunctata, 
and Anabastestudineuscan withstand hypoxic conditions, and species like 
Pangasionodonhypophthalmus, Oreochromisniloticus, and Jayantirohu can be 
reared under varying temperature and salinity (Boraiah et al. 2021). It is evi-
dent that stress-tolerant fish species possess improved flesh quality, increased 
fecundity, and enhanced post-spawning survival. In this context, a robust 
implementation of a selective breeding program for the development of stress- 
resistant species is the need of the hour. But genetic intervention for the pro-
duction of improved variety of fish species greatly depends upon the diversity 
and availability of genetic resources. The complete information on species 
diversity in the natural water bodies will be advantageous for exploring the 
genetic resources for future studies related to the adaptation mechanism of 
fishes towards multiple stresses (Boraiah et al. 2021).

4.4  Inland Saline Aquaculture

Soil salinization is a global concern for both developed and developing 
nations. Inland saline water is unfit for traditional aquaculture activities, and 
therefore, culture of diversified or potential alternative fish species will 
ensure considerable economic growth (Pathak et  al. 2019). Inland saline 
groundwater generally contains high concentration of calcium and lesser 
concentration of magnesium and potassium ion. This variation in ionic con-
centration adversely affects the growth and survival of fish and shrimp spe-
cies as potassium concentration of inland saline water plays a significant role 
in osmoregulation in fishes (Evans et al. 2005). After the necessary amend-
ment, inland saline water can be effectively used to culture a range of fin-
fishes, crustaceans, and algal species. Euryhaline finfish species like sea 
bream, tilapia, eels, pangasius, milk fish, pearl spot, silver perch, red drum, 
barramundi, and pampanoo, and crustacean species such as 
Litopenaeusvannamei and Penaeusmonodon can be commercially cultured in 
inland saline water with moderate to high salinity (Singh et al. 2014).
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4.5  Culture-Based Fisheries

In smaller seasonal water bodies and flooded fields, culture-based fishes can be car-
ried out as stock enhancement process. In the case of culture-based fisheries, the 
only input is stocking of the seeds and it does not require any external feed resources 
as the selected fish species can efficiently utilize the vacant food niches. Although 
the fish production from culture fisheries is relatively less compared to intensive 
farming, it is eco-friendly, cost-effective, and involves no GHG emission related to 
external feeding(Palombi and Sessa 2013).

4.6  Climate Smart Eco-management as a Tool for Fish 
Productivity Enhancement

In aquatic system management, climate smart practices are intended to prevent neg-
ative environmental impacts including water pollution. Minimization and subse-
quent reduction in pollution from point sources of fish production system are in 
demand by various public and regulatory authorities (Boyd 2003). From the aqua-
culture point of view, Better Management Practices (BMPs) are considered as one 
of the climate smart eco-management tools for responsible and sustainable farming 
of aquatic organisms, while allowing the production to be carried out in a cost- 
effective and profitable manner. Although BMPs are not certification standards, 
implementation of BMP can enhance the product quality based on animal health, 
food safety concerns, and environmental sustainability. BMPs are voluntary, 
location- based, and commodity-specific management norms that have been devel-
oped to fulfill the criteria of responsible fish farming, reducing the risk associated 
with culture operations, and profit maximization. However, BMPs are subjected to 
constant improvement, evolution, and timely revision, depending on changing cli-
matic conditions (Market 2010).

4.6.1  Environment Management of Aquaculture

Environmental management through the implementation of BMP can lead to the 
overall improvement of the aquaculture production system, including optimum 
utilization of resources, enhanced growth performance, reducing disease occur-
rence, and improved marketability of the produce while achieving the food 
quality standards. Adoption of BMP guidelines is easy without any additional 
input costs. Availability of quality soil and water is the basic requirement for 
fish culture. Different soil properties can deeply impact pond construction and 
influence aquaculture production. Prior to fish culture, the soil characteristics 
such as texture, pH, water holding capacity, organic carbon content, etc. should 
be studied carefully and the necessary adjustments should be done to make the 
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soil suitable for fish culture. Similarly, water quality parameters like pH, salin-
ity, dissolved oxygen content, hardness, alkalinity, total suspended solids, free 
ammonia content, etc. should be taken into consideration before selecting the 
aquaculture site and the species to be cultured. Adoption of BMPs provides 
strong evidence to the fact that environment- friendly culture activities make 
better business sense (Woynarovich et  al. 2011). However, the areas having 
extreme soil and water quality parameters, where amendment is impractical, can 
be used to culture various stress resilience fish variety to boost the aquaculture 
production (Boraiah et al. 2021).

4.6.2  Fish Health management

Disease is one of the prime limitations in aquaculture production causing world-
wide economic loss (Sahoo et al. 2013). Mostly, frequent disease outbreak is the 
result of intensified culture activities and complex interaction between pathogen, 
host, and environment (Bondad-Reantaso et al. 2005). Disease management in the 
aquatic system is a tough proposition due to the unique affairs where the opportu-
nistic pathogens are constantly looking for the immune-compromised host (Mishra 
et al. 2017). In many instances, the occurrence of disease is closely associated with 
environmental deterioration, poor water quality, nutritional deficiency, higher stock-
ing density, and high microbial load (Mishra et al. 2015). Therefore, the most appro-
priate approach to reduce the risk of disease outbreak is the implementation of 
Better management practices (BMPs). This can be best achieved by maintaining 
optimum water quality, providing adequate nutrition, preventing the entry of patho-
gens in the culture system, and reducing the stress by following realistic stocking 
densities. A better understanding of disease predominance, suitable detection and 
control measures, biosecurity program, usage of disease-resistant strains, and farm- 
level execution of BMPs can ascertain sustainable fish production (Mishra 
et al. 2017).

4.7  Implementation of Policies

It has been reported that extreme climatic events mostly affect the small-scale 
farmers due to their poor adaptive capability and lack of financial assistance. 
Though the concept of insurance in the field of aquaculture is relatively new, it 
is gaining remarkable attention throughout the world (Pongthanapanich et  al. 
2019). Therefore, introduction and proper implementation of insurance schemes 
could significantly assist the fish farmers to build resilience against changing 
climate (Barange et al. 2018). In this regard, the ecosystem approach to aqua-
culture (EAA) and fisheries will provide the tools and strategies for successful 
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implementation of environmental guidelines, code of conduct, and policies for 
sustainable fish production under climate variability. Proper execution of EAA 
can ensure efficient use of natural resources, promoting scientific information 
system/ integrated monitoring services, increased adaptability of the sector, and 
livelihood security (Palombi and Sessa 2013) (Fig. 14.1).

5  Conclusion

The potential impact of climate change on fisheries and aquaculture activities 
has been highlighted in this article. Aquaculture production is continuously 
being exposed to the adverse effects of climate change and affects global food 
security. To improve the resilience capacity of the culture system, it is manda-
tory to make necessary amendments in the production practices. Optimization 
of all variables may not be always possible and hence, adaptation strategies on 
a priority basis should be implemented in a given production system. Developing 
effective and rapid responses to changing climatic conditions depends upon 
wider developmental goals and significant strategic planning. However, real-
time adaptation methods for vulnerable regions with poorer economics will 
require further developmental research and execution strategies.

Fig. 14.1 Impact of climate change on aquaculture and their mitigation strategies
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Chapter 15
Advances in Nutrient Resource 
Management for Fisheries and Aquaculture

Gour Hari Pailan and Gouranga Biswas

Abstract Nutrient resource management is an important subject that determines 
the success of aquaculture. Natural fish food items such as planktons are often 
dependent on pond nutrient dynamics which is a complex subject. Therefore, atten-
tion is provided for proper management of nutrient resources in farming systems. 
During commercial farming, in addition to the inherent nutrient pool, nutrient sup-
plementation through fertilization and feeding becomes essential to support the 
growing fish stock. Further, in intensive farming systems, nutrients from natural 
sources become inadequate to cater to the need of higher fish biomass through pri-
mary productivity. So, nutrient management of farmed animals is given utmost 
importance by the provision of feed. Balancing between use of fertilizers and sup-
ply of formulated feeds is required because both have some direct and/or indirect 
effects in influencing the nutrient status of water. Fertilization supports maintenance 
of conducive pond environment that favours the farmed species to efficiently utilize 
the feed provided. To sustain the growth of aquaculture sector towards meeting up 
the increasing fish demand, the availability of both nutrient resources and feed 
needs to escalate at the same time. In this circumstance, this chapter covers con-
cisely various aspects of nutrients, their forms and sources in water, management of 
pond water nutrients through fertilization, nutrient management of cultured animals 
through feeding, and challenges in nutrient management.

Keywords Macronutrients · micronutrients · nutrient sources · nutrient requirement 
· pond fertilization · feeding management
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1  Introduction

Nutrient management is one of the key issues for successful aquaculture venture, 
but very often is not given importance or rather ignored. The dynamics of nutrients, 
natural fish food items such as planktons and fish biomass in culture environment 
are a complex subject, and aquaculturists do not often consider for their sound man-
agement (Kumar et al. 2005). Rather, arbitrary solution of pond nutrient manage-
ment is formulated without considering field situations. Therefore, these clichéd 
formulations do not serve the purpose to deal the core issue of appropriate nutrient 
management. The inherent nutrient status of any water body could support produc-
tivity up to a certain level. When scientific farming is undertaken with a target of 
commercial-level production and economic benefit, natural productivity of water 
body along with nutrient supplementation from external sources in the forms of 
fertilization and feed becomes indispensable. Hence, nutrient management for cul-
ture environment as well as for the growing animals should be taken into consider-
ation. To meet up the increasing demand for food fish with accelerating population, 
fish production from aquaculture needs expansion and intensification. In intensive 
aquaculture systems, nutrient management of farmed animals is given utmost 
importance through provision of feed. Because, in intensive systems, nutrients from 
natural sources are inadequate to contribute to fish biomass production through pri-
mary productivity. For successful semi-intensive and intensive aquaculture manage-
ment, there should be proper management steps, such as high stocking density of 
culture animal, judicious use of fertilizers, use of nutritionally balanced formulated 
feeds, and water quality management, including provision of mechanical aeration 
(Hickling 1971; Bardach et  al. 1972; Avault 1996). There should be a balance 
between the use of fertilizers and provision of formulated feeds, because both have 
some direct and/or indirect roles in influencing the nutrient status of water. However, 
fertilization often contributes to building up and maintenance of conducive pond 
environment that becomes favourable to the cultured species to efficiently utilize the 
feed provided (Green 2015). To maintain the current annual growth rate of 8–10% 
of the aquaculture sector to 2030 or beyond, the availability of nutrient resources 
and feeds will need to grow at a similar pace. In this context, this chapter outlines 
comprehensive information on nutrients, their forms and sources in water, manage-
ment of pond water nutrients through fertilization, nutrient management of cultured 
animals through feeding, and challenges in nutrient management.

2  Nutrients, their Forms and Sources in Water

Natural primary producer of water, phytoplankton requires various elements for its 
growth and propagation. These elements are classified either as macronutrients (C, 
N, P, K, H, O, Ca, Mg, Na, S, Cl) or micronutrients (B, Cu, Co, Fe, Mn, Mo, Si, V, 
Zn) (Reynolds 1984; Lin et al. 1997; Boyd and Tucker 1998). Sometimes, some of 
the micronutrients could be macronutrients for a few species. For example, silica 
acts as a macronutrient for the Chrysophyta, especially diatoms (Reynolds 1984). 
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Concentrations of these elements in surface water often vary from location to loca-
tion based on geology and climate of a particular location. However, at the same 
geographic location, concentrations of these elements are more variable in ground-
water than in surface water. Among various macro- and micronutrients required for 
growth by phytoplankton, phosphorus, nitrogen, and carbon are considered as the 
most limiting elements for primary productivity. All three are found in various 
forms in pond water.

2.1  Phosphorus

Dissolved phosphorus is present in organic and inorganic forms in water. Organic 
forms generally originate from materials due to biological processes, such as 
enzymes, nucleic acids, and adenosine triphosphate. However, inorganic forms, 
namely orthophosphate ions (H2PO4 ̶, HPO4 ̶2), originate from weathering of 
phosphate- containing minerals. Orthophosphate ions are the products of orthophos-
phoric acid (H3PO4) generated through ionization. In an aquaculture pond, both 
these orthophosphate ions are present and vary with pH. Dissolved orthophosphate 
serves as the main source of phosphorus for phytoplankton.

2.2  Nitrogen

Nitrogen also occurs in dissolved inorganic and organic forms in water. Organic 
nitrogen is a product of biogenic process and produced from free amino acids, pep-
tides, and enzymes. Most commonly occurring inorganic nitrogen forms are 
ammonia- ammonium, nitrite, and nitrate ions. Dissolved ammonia (NH3) remains 
in equilibrium with ammonium (NH4

+) and the proportions of both are affected 
mainly by pH and temperature of water. The prime sources of ammonia in water are 
decomposition of organic matter by microbes and excretion by animals. Under aer-
obic conditions, nitrification process occurs, where ammonia is converted first to 
nitrite and then nitrate by oxidizing bacteria. Among the three forms of inorganic 
nitrogen, ammonium, nitrite, and nitrate, ammonium form is the most energetically 
favourable to phytoplankton for assimilation. However, nitrite and nitrate forms can 
also be utilized by phytoplankton after those are reduced to free nitrogen (N2).

2.3  Carbon

Water contains both organic and inorganic carbon in dissolved forms. Numerous 
and variable forms of dissolved organic carbon occur in water and these include 
enzymes, nucleic acids, peptides, proteins, and carbohydrates (Green 2015). The 
main forms of inorganic carbon in water are carbon dioxide (CO2), bicarbonate 
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(HCO3), and carbonate (CO3 ̶2) ions. Dissolved CO2 in water comes from diffusion 
from atmosphere and respiration of aquatic organisms. A very meagre amount of 
dissolved CO2 reacts with water to produce carbonic acid (H2CO3), which is a weak 
acid and finally dissociates into bicarbonate. There is a relationship of inorganic 
carbon ions with pH of water. When pH increases, bicarbonate dissociates into car-
bonate. Limestone is the largest source of bicarbonate released after reaction with 
CO2. Phytoplankton readily uptakes CO2 and bicarbonate ions as carbon sources.

Growth of phytoplankton is limited by nutrient concentration in water. When the 
water is deficient of major macronutrients, phytoplankton growth will be impaired 
and supplying the deficient nutrients in required concentrations will facilitate quick 
growth. As phytoplankton growth is influenced mostly by concentration of carbon, 
nitrogen, and phosphorus in aquaculture pond, proper liming and fertilization strate-
gies are undertaken to ensure an uninterrupted surge of these nutrients. Although 
liming is not regarded as fertilization technically, it ensures phosphorus availability 
for successful application of fertilization that supplies the dissolved inorganic 
carbon in adequate level.

3  Fertilization for Management of Nutrients in Pond Water

The main purpose of fertilization in aquaculture pond is to make available of major 
nutrients essential for production of phytoplankton which serves as food for zoo-
plankton and benthic animals (Boyd 2018). Further, these planktons and residues of 
plankton known as detritus and benthos are the desirable food items of fish and 
crustaceans (Mischke 2012). Pond fertilization enhances natural productivity by 
supplying essential nutrients, minerals, and vitamins required for aquatic biota pro-
duction that serves either directly or indirectly as food for fish (Chakrabarty and Das 
2012). Therefore, the goal of fertilization is to maximize fish production through 
utilization of primary, secondary, and tertiary levels of productivity. Fertilizers and 
manures used in pond are grouped into two categories: inorganic and organic. 
Inorganic fertilizers include limestone and lime-containing fertilizers, phosphate, 
nitrogen, potassium, magnesium, and trace element fertilizers. Organic fertilizers 
are better called as manures and include excreta of livestock and agricultural waste 
and by-products. N, P, and K are known as primary fertilizing nutrients, while sec-
ondary nutrients, such as Ca, Mg, S, and trace nutrients, namely Fe, Mn, Zn, Cu, etc. 
are also present in manures and chemical fertilizers. Generally, levels of primary 
nutrients in fertilizers are calculated as percentages of N, P2O5, and K2O (Jones 1979).

3.1  Inorganic Fertilizers

The most commonly applied nutrients in aquaculture ponds are N, P, K, and Ca. 
Secondary and trace minerals are seldom used in aquaculture. Lime is regarded as 
the most common source of Ca fertilizer. Sometimes, lime is also considered as a 
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fertilizer as it supplies the essential nutrient, Ca in water (Hickling 1971). There are 
various liming materials, such as limestone or calcite (CaCO3), dolomite 
[CaMg(CO3)2], burnt or quick or unslaked lime (CaO), and hydrated or slaked lime 
[Ca(OH)2]. Based on the pH of soil and water, lime is applied. For liming to bottom 
soil, both pH and soil texture are considered (Table  15.1). For newly excavated 
pond, lime is applied before water filling, and for other ponds, to dry bottom between 
crops. In general, it requires 1000–5000 kg/ha liming materials to rectify soil acid-
ity to obtain a desirable total alkalinity (Boyd 2012). During culture, lime should be 
spread over the pond surface uniformly. In pond with water, lime is applied after 
measuring total alkalinity. One suggested approach is to apply liming material to 
ponds at 1000 kg/ha, and then measure total alkalinity after 14–21 days. When the 
desired alkalinity is not attained, liming may be repeated until it is attained 
(Boyd 2012).

The commonly used nitrogen fertilizers are urea, ammonium nitrate, ammonium 
sulphate, monoammonium phosphate (MAP), diammonium phosphate (DAP), 
ammonium polyphosphate, etc. Phosphorus fertilizers are single superphosphate 
(SSP), triple superphosphate (TSP), phosphoric acid, etc. Potassium fertilizers 
include potassium nitrate, potassium chloride, and potassium sulphate. MAP, DAP, 
and ammonium polyphosphate are used as sources of N, while potassium nitrate 
supplies both N and K. However, none of the chemical fertilizers contains all three 
primary nutrients of N, P, and K. Nutrient contents of chemical fertilizers are pro-
vided in Table 15.2. Chemical fertilizers are often mixed to prepare complete fertil-
izers containing desired levels of N, P2O5, and K2O.

3.2  Organic Manures

Freshly collected manures contain considerably high levels of moisture and have 
bulk density ranging from 0.98–1.04 g/cm3 (Lorimor 2004). Nutrient contents vary 
among organic manures based on source animals, solid or liquid states, ages, and 
methods of storage and livestock diets (Larney et  al. 2006; Morrison 1961). 
Sometimes, manures are collected as aqueous slurries which contain lower levels of 
nutrients than that of solid manures (Table 15.3). In organic manures, N and P con-
tents are often substantially lower compared to chemical fertilizers. Apart from N 

Table 15.1 Lime requirement of pond bottom soil based on soil pH and texture (Schaeperclaus 1933)

Soil pH
Lime requirement (kg/ha as CaCO3)
Heavy loams or clays Sandy loam Sand

<4.0 14320 7160 4475
4.0–4.5 10740 5370 4475
4.6–5.0 8950 4475 3580
5.1–5.5 5370 3480 1790
5.6–6.0 3580 1790 895
6.1–6.5 1790 1790 0
>6.5 0 0 0
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and P contents, organic manures contain a good amount of organic carbon 
(Table 15.4). This organic carbon contents promote growth of heterotrophic bacte-
rial biomass, which ultimately helps in nutrient mineralization to enhance primary 
and secondary productivity (Schroeder 1978; Anderson 1987; Qin et  al. 1995; 
Barkoh et al. 2005). However, during decomposition of organic manure in water, the 
bacterial population utilizes dissolved oxygen and application of manure at high 
doses may result in deficiency of pond-dissolved oxygen level in early morning 
(Qin et al. 1995). Moreover, this decomposition of organic manure and mineraliza-
tion of nutrients take longer time compared to the nutrient availability obtained 
from chemical fertilizers.

Table 15.2 Primary nutrient contents of different chemical fertilizers (Boyd and Tucker 2014)

Fertilizer
Primary nutrients (%)
N P2O5 K2O

Urea 45 0 0
Calcium nitrate 15 0 0
Sodium nitrate 15 0 0
Ammonium nitrate 33–35 0 0
Ammonium sulphate 20–21 0 0
Phosphoric acid 0 54 0
Single superphosphate 0 16 0
Triple superphosphate 0 44–54 0
Monoammonium phosphate 11 48–52 0
Diammonium phosphate 18 48 0
Ammonium polyphosphate 11–13 37–38 0
Potassium nitrate 13 0 46
Potassium chloride 0 0 60
Potassium sulphate 0 0 50

Table 15.3 Dry matter (DM) and nutrient contents of different livestock manures, chicken litter, 
and composted manures (Brown 2013; Sharpley et al. 2009)

Manure source Manure type
Concentration (%)
DM N P2O5 K2O

Swine Solid 30.8 0.93 1.12 0.68
Liquid 3.6 0.39 0.27 0.23

Dairy cattle Solid 24.1 0.72 0.46 0.73
Liquid 8.6 0.39 0.21 0.30

Beef cattle Solid 31.4 0.92 0.76 0.79
Liquid 8.6 0.37 0.18 0.28

Chicken Solid 60.6 2.71 3.02 1.74
Liquid 10.0 0.81 0.64 0.36

Horse Solid 37.4 0.50 0.34 0.52
Sheep – 32.2 0.87 0.78 0.91
Composted All types 46.4 1.09 0.78 1.00
Chicken litter – 30.8 3.10 3.43 3.00
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3.3  Application of Fertilizers

There are different ways of application of manures and fertilizers. Organic manures 
are spread on the pond bottom during inter-crop period and broadcasted over sur-
face water during crop (Boyd and Tucker 1998). Chemical fertilizers are broad-
casted over pond water surface. For effective utilization of nutrients, granular 
fertilizers are mixed in water to make slurries and distributed over pond surfaces. 
Sometimes, mixed fertilization with organic manures and inorganic fertilizers pro-
vides better results. For example, higher tilapia production of 6000  kg/ha was 
achieved when pond was fertilized with chicken manure and 4 kg N and 2.1 kg 
P2O5/ha/day in comparison to 4300  kg/ha/year in pond fertilized with chicken 
manure alone (Diana 2012). Frequency of fertilization is also an important issue for 
achieving optimum pond productivity. Sometimes, fixed-rate application strategy is 
followed, where a defined rate of fertilizer is usually applied either at weekly or 
fortnightly basis. However, as the nutrients from fertilizers get quickly utilized in 
water, application should be repeated. For effective result, application should be 
done in accordance with phytoplankton abundance, but not on a fixed rate. In a situ-
ation when phytoplankton bloom is adequate, fertilization should be delayed and 
when phytoplankton bloom is inadequate, fertilization should be repeated (Boyd 
and Tucker 1998; Knud-Hansen 2006). For this purpose, measurement of Secchi 
disc visibility as an indicator of phytoplankton abundance is performed and a trans-
parency of 20–30 cm is considered optimal. For carp culture with fixed fertilization 
rate, in case of newly excavated pond, raw cow dung is applied uniformly at 3000 kg/
ha throughout the pond bottom, followed by proper mixing to increase the water 
retention capacity. In case of undrainable pond, basal application of cattle manure at 
3000 kg/ha mixed with SSP at 30 kg/ha is done one week prior to stocking. If poul-
try manure is available, it is applied at 1500–2000 kg/ha instead of cattle manure. 
Basal application of cattle manure is not necessary when mahua oil cake at 
2000–2500 kg/ha-m is used as a piscicide. During the crop, cattle manure at 1000 kg/ 
ha, urea at 10 kg/ha, and SSP at 10 kg/ ha are mixed together with water and applied 
throughout the pond surface at 15-day intervals. However, the requirement of N and 
P fertilizers may vary as per the soil nutrient status of pond (Table 15.5).

Table 15.4 Mean and range of total carbon content (%) in livestock manures

Manure source Mean Range

Dairy cattle1 9.2 4.7–11.4
Beef cattle2 13.5 –
Swine3 12.5 11.6–13.2
Sheep3 10.1 6.9–12.4
Chicken3 19.7 13.0–23.9
Chicken litter4 25.8 12.2–33.0

1Pettygrove et al. 2009; 2Larney et al. 2006; 3Moral et al. 2005; 4Sharpley et al. 2009
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Use of both organic manures and chemical fertilizers can augment the aquacul-
ture productivity by increasing phytoplankton production in ponds. Although 
organic manures contain lower levels of N, P2O5, and K2O than that of chemical 
fertilizers, due to their low cost, they can be applied in higher quantities. Thus, when 
applied in larger quantity, organic manures can result in greater fish production than 
that of commercial fertilizers, and for better effectiveness, organic manures should 
be applied in combination with chemical fertilizers. Therefore, fertilization will 
remain to be an important nutrient management practice in aquaculture for 
future also.

4  Feed and Feeding for Nutrient Management 
of Cultured Animals

In commercial aquaculture systems, the cultured species may not get proper nutri-
tion from natural food sources because of high stocking density beyond the normal 
carrying capacity of the systems. Therefore, it becomes indispensable to feed the 
cultured animals from external sources, either completely or supplementarily. Thus, 
expenditure towards feeding fish in aquaculture accounts for 50–60% of the total 
operational cost. The feed provided to fish should be nutritionally-balanced, con-
taining all the essential nutrients that are normally received by fish from natural 
food items. Nutritionally balanced diets influence the growth performance and sur-
vival of aquatic animals in a positive manner (Lovell 1989). Before development of 
any balanced feed, nutrient requirements of cultured animals should be known, so 
that the developed feed with proper energy and nutrient contents would support the 
growth, reproduction, and health of the animals. Moreover, nutrient requirement of 
fish depends on several other factors, such as feeding habit, stage of life cycle, habi-
tat, etc.

Table 15.5 Doses of N and P fertilizers (kg/ha/month) for carp culture pond based on soil nutrient 
status (Chakrabarty et al. 1975)

Soil nutrient content - -

1. Available N (mg/100g soil).    Ammonium sulphate                  Urea
High (51–75) 70 30
Medium (26–50) 90 40
Low (up to 25) 140 60
2. Available P (mg/100g soil). SSP TSP
High (7–12) 40 15
Medium (4–6) 50 20
Low (up to 3) 70 30

SSP Single superphosphate, TSP Triple superphosphate
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4.1  Nutrient Requirements of Fish and Crustaceans

A complete diet provides all the nutrients (protein, carbohydrates, fats, vitamins, 
and minerals) required for optimal growth, survival, and health of farmed animals. 
Most of the commercially available formulated feeds contain the essential nutrients, 
including protein, lipid, carbohydrate, ash, phosphorous, moisture, minerals, and 
vitamins in the range of 18–50, 10–25, 15–20, <8.5, <1.5, <10, 0.5, and 0.5%, 
respectively (Prabu et al. 2017). In the case of indoor culture systems or enclosure 
systems, the cultured species may not obtain food from natural sources, so supply 
of nutritionally balanced supplementary feeds would only cater to the nutrient 
requirement of these animals (Craig and Helfrich 2013). The subcommittee on Fish 
Nutrition under the Committee on Animal Nutrition of the National Research 
Council (NRC) periodically examines the literature and current practices of feeding 
in aquaculture. The NRC publishes the nutritional recommendations for fishes 
and shrimp.

Protein is an essential component of fish diet and the most expensive one too. So, 
the levels more than requirement will result in higher cost of feed and increased 
level of nitrogenous wastes through excretion in water. Excessive level of protein in 
the feed is thus economically and environmentally undesirable (Lall and Tibbetts 
2009). Most of the herbivorous and omnivorous fish need 25 to 35% protein in their 
diet, whereas carnivorous species require higher levels of protein ranging from 40 
to 55% of diet (NRC 2011). Dietary protein requirement is also influenced by 
energy content and the ratio of energy to protein in the diet. Sometimes, when the 
energy to protein ratio in feed increases, the intake will decrease in fish (Cho and 
Kaushik 1990). Dietary protein primarily supplies the essential amino acids which 
are ten in numbers, including arginine, histidine, isoleucine, leucine, lysine, methio-
nine, phenylalanine, threonine, tryptophan, and valine for most of the fish species 
(Table 15.6).

Dietary lipids mainly supply the energy and essential fatty acids (EFAs) in fish 
(Chatzifotis et al. 2010). The EFA requirement of fish is only supplemented by the 
long-chain unsaturated fatty acids of linolenic (18:3, n-3) and linoleic (18:2, n-6) 
series (Table 15.7). Requirement of dietary lipid containing the appropriate levels of 
EFAs should have a range of 5–9 and 2–10% for carps and freshwater prawn, 
respectively. Lipid requirement for carnivorous fish has a range of 10–15% in the 
diet. However, salmonid and marine fish tissues contain eicosapentaenoic acid 
(20:5, n-3) and/or docosahexaenoic acid (22:6, n-3), which indicates a high dietary 
requirement for these fatty acids (Lall and Tibbetts 2009).

Generally, fish have limited ability to utilize dietary carbohydrates. However, 
herbivores and omnivores can utilize more amount of carbohydrate than the carni-
vores. In general, carbohydrate level included in the diet of carnivores is less than 
20%, whereas herbivores and omnivores can utilize about 25–50% dietary carbohy-
drates. Carbohydrate utilization is improved when it is gelatinized. Carps and prawn 
have the ability to utilize complex polysaccharides like starch more efficiently than 
simple sugars like glucose. Crude fibre (CF) in diet should not be more than 8%, 
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which cannot be digested when at higher level. For both fish and prawn, less than 
4% CF is desirable.

Fish have the physiological ability to absorb and retain minerals from food and 
water (Lall 2002). Trace minerals have role in skeletal development and physiology 
of fish. Dietary requirement of phosphorus, magnesium, zinc, iron, copper, manga-
nese, iodine, and selenium is important for different fish species (Table  15.8). 
Vitamin requirement for fish is similar to terrestrial animals. Dietary requirement of 
fat-soluble vitamins, namely vitamin A, D, E, and K, and water-soluble vitamins, 
such as thiamine, riboflavin, pyridoxine, pantothenic acid, folic acid, niacin, biotin, 
vitamin B12, vitamin C, and choline vitamins, has been reported for various fish and 
crustacean species (Table 15.9).

Table 15.6 Digestible protein and amino acid requirements (% diet) of different finfish species 
(NRC 2011)

Nutrient
Rainbow 
trout

Atlantic 
salmon

Channel 
catfish

Common 
carp Tilapia

European 
seabass Yellowtail

Protein 38 36 29 32 29 40 38
Arginine 1.5 1.8 1.2 1.7 1.2 1.8 1.6
Histidine 0.8 0.8 0.6 0.5 1.0 – –
Isoleucine 1.1 1.1 0.8 1.0 1.0 – –
Leucine 1.5 1.5 1.3 1.4 1.9 – –
Lysine 2.4 2.4 1.6 2.2 1.6 2.2 1.9
Methionine 0.7 0.7 0.6 0.7 07 – 0.8
Methionine + 
cysteine

1.1 1.1 0.9 1.0 1.0 1.1 1.2

Phenylalanine 0.9 0.9 0.7 1.3 1.1 – –
Phenylalanine + 
tyrosine

1.8 1.8 1.6 2.0 1.6 – –

Threonine 1.1 1.1 0.7 1.5 1.1 1.2 –
Tryptophan 0.3 0.3 0.2 0.3 0.3 0.3 –
Valine 1.2 1.2 0.8 1.4 1.5 – –

Table 15.7 Essential fatty acid requirements (% diet) of different finfish species (NRC 2011)

Fish species 18:3, n-3 18:2, n-6 n-3 PUFA

Rainbow trout 0.7–1.0 1.0 0.4–0.5
Atlantic salmon 1.0 – 0.5–1.0
Channel catfish 1.0–2.0 – 0.5–0.75
Common carp 0.5–1.0 1.0 –
Tilapia – 0.5–1.0 –
European seabass – – 1.0
Yellowtail – – 2.0–3.9
Japanese flounder – – 1.4
Grouper – – 1.0
Red drum – – 0.50–1.0

G. H. Pailan and G. Biswas



301

4.2  Common Feed Ingredients with Nutrient Contents

As per the sources, feed ingredients are broadly classified as plant and animal ori-
gins. Before formulating any feed, information about ingredients, their composi-
tion, and digestibility by target animals are important to meet the metabolic 
requirements and prepare good quality pellets with palatability by keeping the toxic/ 
antinutritional components within desirable levels. Therefore, preparing an exten-
sive list of common feed ingredients with their nutrient profiles (Table 15.10) is 
made beforehand based on various publications such as books (Guillaume et  al. 
2001; Hertrampf and Piedad-Pascual 2000; Halver and Hardy 2002; NRC 1982, 
2011) and web resources (http://www.fao.org/docrep/s4314e/s4314e0j.htm; http://
www.feedipedia.org/). However, the nutrient content of ingredients of animal and 
plant origins varies depending on the season, fertilization, cultivar or species, geog-
raphies, climate, processing of raw materials, and analytical method (Bureau et al. 
1999; Cromwell et al. 1999; Dozier III et al. 2003; Glencross et al. 2007).

4.3  Feeding Management in Different Culture Systems

Use of feed type and feeding management depend on culture systems to be under-
taken: extensive, semi-intensive, or intensive. Fish in the first two systems get the 
nutrients completely or partially from the natural food organisms in culture pond. 

Table 15.8 Mineral requirements (% diet or mg/kg diet) of different finfish species (NRC 2011)

Mineral
Rainbow 
trout

Atlantic 
salmon

Channel 
catfish

Common 
carp Tilapia

European 
seabass Yellowtail

Calcium, % – – 0.45 0.34 – – –
Phosphorus, 
%

0.70 0.70 0.33 0.7 0.4 0.65 –

Magnesium, 
%

0.05 0.04 – 0.04 0.05 – –

Sodium, % – – – 0.06 0.15 – –
Potassium, % – – 0.26 – 0.20–

0.30
– –

Chlorine, % – – 0.17 – 0.15 – –
Manganese, 
mg/kg

12 10 2.4 12 7 – –

Zinc, mg/kg 15 37 20 15 20 – –
Iron, mg/kg – 30–60 30 150 85 – –
Copper, mg/
kg

3 5 5 3 5 – –

Selenium, 
mg/kg

0.15 – 0.25 – – – –

Iodine, mg/kg 1.1 – 1.1 – – – –
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However, in intensive systems, such as tanks, raceways, and cages, fish completely 
rely on nutritionally balanced diets in different forms, like dry, semi-moist, or moist. 
Moreover, feed and feeding management depend on species cultured and its life 
stages. Here, feeding management practices of the most commonly cultivated spe-
cies are provided.

4.3.1  Feeding Management in Carp Culture

Nursery Phase

Though plankton is the main food for carp spawn, finely powdered mash 
(50–70 μm) prepared with groundnut cake or mustard cake and rice bran (1:1 
ratio) can also be broadcasted at 600 g / 100,000 spawn from second day of stock-
ing. The feed ration is increased 100 g subsequently per 100,000 spawn per day up 
to 13th day out of total 15 days rearing period. The larvae are starved on day 14, 
and on day 15, harvesting of fry is done. Daily allowance of feed in nursery pond 
can be fed to the fish in two equal split doses once at morning 10:00 hours and 
another at late afternoon at 17:00 hours (Biswas et al. 2006a). If possible, per day 
feeding frequency may be increased to 6–8 times, because it is more beneficial for 
tiny spawn in nursery ponds.

Table 15.9 Vitamin requirements (mg/kg diet) of different finfish species (NRC 2011)

Vitamin
Rainbow 
trout

Atlantic 
salmon

Channel 
catfish

Common 
carp Tilapia

European 
seabass Yellowtail

Vitamin A 0.75 – 0.6 1.2 1.8 31 5.6
Vitamin D 40 – 12.5 – 9 – –
Vitamin E 50 60 50 100 60 – 119
Vitamin K – <10 – – – – –
Thiamin 1 – 1 0.05 – – 11
Riboflavin 4 – 9 7 6 – 11
Vitamin B6 3 5 3 6 15 – 12
Pantothenic 
acid

20 – 15 30 10 – 36

Niacin 10 – 14 28 26 – 12
Vitamin B12 0.15 – – 1 0.06 – 0.67
Folate 1 – 1.5 – 1 – 1.2
Vitamin C 20 20 15 45 20 20 43–53
Myo-inositol 300 – – 440 400 – 420
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Table 15.10 Composition of common ingredients used for preparation of fish feeds

Ingredients
Moisture 
(%)

Crude 
protein (%)

Ether 
extract (%)

Crude 
fibre (%)

Total ash 
(%)

Nitrogen free 
extract (%)

Plant origin
Rice polish 8.4–12.6 11.4–14.5 15.3–17.3 7.5–11.0 6.0–12.9 41.0–46.8
Rice bran 7.8–10.1 2.9–12.6 4.2–11.3 5.3–19.3 3.1–20.5 36.5–37.5
Deoiled rice bran 7.2–8.1 12.1–14.3 1.3–1.8 15.2–16.7 23.8–

29.1
40.4–43.3

Wheat bran 9.0–13.0 8.2–15.8 2.6–6.6 4.0–13.5 0.2–4.2 34.5–37.6
Wheat flour 12.6–12.9 14.5–15.6 3.7–3.9 2.7–2.9 2.3–2.8 64.2–64.6
Groundnut cake 7.0–10.0 42.0–48.0 7.3–13.8 13.0–13.2 2.5–13.4 25.2–29.9
Sunflower cake 8.0–10.0 31.0–32.6 2.1–2.9 18.4–24.7 1.5–6.2 39.0–40.1
Coconut cake 8.9–9.1 12.2–13.7 4.9–5.1 25.6–26.5 2.6–2.8 45.8–46.4
Soybean meal 3.0–11.8 46.0–32.8 2.1–2.9 18.4–24.7 1.5–6.5 39.0–40.1
Cotton seed cake 7.0–8.2 37.0–42.7 7.0–10.0 12.6–13.0 1.0–8.2 27.3–35.3
Spirulina 8.7–10.1 50.5–51.3 1.0–1.8 2.1–2.6 11.0–

11.7
26.7–27.5

Mustard cake 8.5–9.2 23.6–30.8 9.3–9.6 6.2–6.3 10.3–
10.4

34.9–40.9

Gingely cake 7.9–9.0 34.0–40.0 2.0–7.8 9.6–9.7 2.9–3.1 38.2–38.4
Gingely extract 7.0–9.0 34.0–40.0 2.0–7.8 9.6–9.7 2.9–3.1 38.2–38.4
Corn or maize 10.4–10.6 4.6–5.0 7.8–8.0 3.5–4.0 1.0–2.0 72.7–75.0
Maize meal 10.4–13.5 4.6–9.5 4.0–7.8 3.5–4.0 1.0–1.5 67.5–72.7
Tapioca flour 8.0–11.5 1.8–3.1 1.3–2.3 1.8–2.0 0.2–2.3 78.8–86.9
Rice broken 10.0–10.5 12.0–12.6 4.2–4.8 5.3–5.9 3.1–3.6 65.4–69.1
Wheat broken 9.0–10.0 11.5–12.0 1.9–2.0 4.0–4.5 0.2–1.0 73.4–75.2
Rapeseed cake 11.0–11.5 35.9–36.3 0.9–1.5 13.2–13.6 6.9–7.5 32.1–33.8
Animal origin
Fish meal 9.0–14.6 14.4–72.0 2.5–10.3 0.3–30.0 2.5–20.9 7.0–29.0
Shrimp waste 3.6–15.6 22.5–34.2 1.1–8.0 7.1–35.3 18.6–

31.6
11.0–16.3

Squilla meal 14.1–14.9 46.0–47.3 2.6–3.3 13.5–15.2 18.0–
20.1

5.8–6.0

Squid meal 8.0–8.5 75.0–76.9 6.5–7.1 4.0–5.3 – –
Clam meal 7.0–8.1 50.7–52.0 8.9–11.6 3.9–5.5 6.4–6.9 22.0–23.1
Silkworm pupae 7.1–7.5 43.9–45.5 25.7–26.1 4.2–4.3 15.8–

16.4
3.3–4.0

Defatted 
silkworm pupae

8.1–9.0 68.0–69.2 2.6–3.1 1.3–1.9 7.2–8.1 12.8–13.7

Blood meal 10.0–12.9 65.3–76.6 0.5–1.1 1.0–1.9 3.8–4.3 4.6–5.1
Meat meal 8.0–10.0 50.0–71.2 4.4–13.3 0.7–6.8 5.0–5.6 25.8–26.0
Liver meal 7.0–7.5 65.0–68.3 3.4–4.2 1.2–2.0 2.4–3.1 21.0–22.3
Earthworm 5.0–6.5 51.7–55.1 3.4–4.1 12.8–13.6 12.5–

13.0
14.6–15.0
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Rearing Phase

For feeding fry in a well-prepared rearing pond for 90 days period, initially, crum-
bles of 0.5 mm dia can be used and gradually crumble size can be increased up to 
0.8–1 mm dia. Considering the plenty of live food availability, daily ration of feed 
in rearing pond is 10%, 8%, and 6% of body weight during first, second, and third 
month, respectively, and can be fed to the fish in two equal split doses once at morn-
ing 10:00 hours and another at late afternoon at 17:00 hours, if feed is broadcasted. 
Feeding frequency of 3–4 times per day is always beneficial (Biswas et al. 2006b). 
However, feeding frequency depends on feeding method. Tray (plastic or alumin-
ium) system of feeding method is always preferable for controlling the feed loss. 
Total amount of daily feed amount is taken in tray, which is then hanged from bam-
boo pole at different places of the pond 3–4 m away from the pond side. A total of 
14–16 trays are required per ha area. This method of feeding is performed once 
daily, and in the next day, trays are taken out, washed properly, and the feeding is 
continued in same way.

Grow-out Phase

During a culture period of one year or so, different types of feeds, such as dry mash, 
wet ball, cooked paste, cooked balls, or dry pellets, can be used for feeding finger-
lings and growers in composite fish culture system. Under semi-intensive culture 
system, supplementary artificial feed, and under intensive culture system, complete 
artificial feed should be provided. Fish are fed at 5% of body weight during first 
2 months, 4% of body weight during next 2 months, 3% of body weight during next 
2 months, 2% of body weight during next 2 months, and 1% of body weight during 
final 2–4 months. Depending on the feed types, either broadcast or tray or basket 
(bamboo basket) or bag (used cement bag or gunny bag) system of feeding method 
is employed in grow-out pond (Nandeesha et  al. 2013). Mixture of floating and 
sinking pellets at 2:1 ratio can be distributed in the pond twice daily once at morning 
10:00 hours and another at late afternoon at 17:00 hours. For other kinds of feeding 
methods as mentioned earlier, feeding is done once daily. Either wet ball or cooked 
paste or cooked ball or dry sinking pellets can be offered to the carps through three- 
tier system of tray or basket method in which total amount of required feed per day 
is distributed in different trays or basket which are tied up in and hanged from bam-
boo poles that are placed 3–4 m away from the pond side and trays or basket are 
submerged in the water at 1.5-, 3.5-, and 5.5-feet depth. Mash feed and also sinking 
pellets can be offered to the fish through three-tier bag system of feeding method. 
Perforated nylon or plastic cement or fertilizer bags of 20 kg capacity are generally 
used for this purpose. After distributing the daily required feed inside the bag, mouth 
is tied and bags are hanged in the same way of tray or basket method. This sort of 
arrangement is required at 14–16 places per ha area. When fish nibbles near holes, 
certain amount of feed mixture or pellets come out through holes that are consumed 
by the fish, thus this system acts as the indigenous type of demand feeder (which are 
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generally used in developed country). Tray/basket and bag system of feeding meth-
ods are useful for controlling the feed loss or waste. In composite fish culture sys-
tem, for feeding of grass carp separate arrangement is required. Chopped aquatic 
weeds, fodder grasses (Napier etc.), lawn grass, vegetable waste, etc. can be placed 
on rectangular bamboo platform fixed at corner of ponds at certain depth for feeding 
of grass carp. The grass carp should be fed until they stop eating. Usually, they con-
sume aquatic weeds about 50% of their body weight on a daily basis. Hence, it is 
advisable to feed them at least 1 hour before the application of supplementary feed 
to other fish. Sometimes, mixed feeding schedule such as 1–2 days feeding with low 
protein diet followed by 3 days feeding with high protein diet can also be practiced. 
Through proper feeding management, feed conversion ratio (FCR) in carp culture is 
possible to maintain as 2:1.

4.3.2  Feeding Management in Catfish Culture

In a pond with walking catfish, Clarias magur, artificial feed at 10–5% of body 
weight is normally dispensed or broadcasted from all sides to provide feeding 
opportunity to all fish. Feeding should be done twice daily once at very early morn-
ing and another at late evening as C. magur prefers to eat under less light 
(Imteazzaman et al. 2017). Water quality is very much important for feeding catfish. 
At low oxygen level, feeding activity of C. magur is reduced. Thus, pelleted feeds 
need to have high degree of water stability. Mash and wet balls are less preferable 
for catfish. Sometimes, molluscan meat and chopped chicken viscera can also be fed 
to catfish under pond condition. These feeds are placed at shallow zone near the side 
of the pond. Through proper feeding management, FCR can be maintained as 3–4:1 
under pond condition.

For striped catfish, Pangasianodon hypophthalmus, in pond condition, a mixture 
of rice bran, broken rice, and small quantity of trash fish can be fed to the stocked 
fingerlings for first two months. From third month onward, fish are fed various for-
mulated diets. The feed is broadcasted to fingerlings at 10% of body weight and 
gradually reduced to 5% for juvenile, grower, and adult stage. Through proper feed-
ing management in ponds, fish can attain an average weight of 1–1.5 kg with FCR 
of 4–6:1 at the end of 8–12 month-culture period (Sayeed et al. 2008).

4.3.3  Feeding Management in Tilapia Culture

In nursery ponds for 45 days, fry is given floating feed (30% protein) at an initial 
rate of 10% of biomass per day, which is gradually decreased to a final rate of 5% 
daily. Fry should be fed 3–4 times daily. In grow-out pond, supplementary diet in 
the form of floating feed is provided in addition to natural food for better growth, 
survival, and good water quality. Low protein feed is provided at 5% of biomass per 
day, which is gradually decreased to a final rate of 3% daily. Feed is provided in 2–3 
equal rations daily.
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4.3.4  Feeding Management for Giant Freshwater Prawn, 
Macrobrachium rosenbergii

In order to enhance the growth and as a precaution against cannibalism, the prawn 
juveniles are provided with feed mix (rice bran: oil cake in a ratio of 1: 1) at 25% of 
body weight for first 2 months and gradually reducing to 3% of body weight towards 
the end of culture period on daily basis or at 3–5% of body weight on daily basis for 
the first month and then at the same rate on alternate days from the second month 
onwards (Mukhopadhyay et al. 2003). However, quantity of feed should be adjusted 
through trial and error after verifying the consumption on the following morning. To 
avoid cannibalism, prawn should not be hungry. Wet balls may be prepared using 
these ingredients and provided in plastic or aluminium tray or bamboo basket hang-
ing from bamboo pole fixed 1–1.5 ft. away from the pond dike and submerged near 
the pond bottom. Ball can also be prepared with more ingredients (different oil 
cakes especially ground nut oil cake, fish meal, shrimp meal, silkworm pupae, beef 
liver meal, meat meal, squid waste, dry fish, dry Acetes, broken rice, rice bran, tapi-
oca root powder, yeast, etc.) along with vitamin-mineral mixture following improved 
formula. Farm made or commercial sinking pelleted feed may also be used and 
given through same tray/basket method. Mash feed or sinking pellets can also be 
given through perforated bag method in which bags are arranged in the similar way 
to tray method. Feed can also be broadcasted around the periphery of the pond in the 
shallow areas. Check trays kept in different areas of the pond will help in deciding 
the quantum of feed per day. As prawn has nocturnal feeding habit, the feed should 
be given at night 20:00 hours also. Besides, special diets like boiled tilapia flesh, 
chopped raw meat of gastropods or trash fish, and cooked chicken entrails at 10% of 
the bodyweight are also administered on fortnightly basis. Sometimes, compound 
chicken feed mixed with trash fish and prawn meal and formulated shrimp feed may 
be used. In monoculture, FCR is 7–9:1 for wet feed and 2–3:1 for compound dry 
feed. Prawn should be sampled using cast net on monthly basis, and based on the 
average body weight, new feeding rate may be calculated.

4.3.5  Feeding Management for Shrimp

Shrimps are fed at a fixed daily rate based on their body weight and an estimated 
total shrimp biomass of the pond or tank. Daily feed ration is usually applied manu-
ally or mechanically for 4–6 times daily. In farming condition, feed intake and uti-
lization and growth of shrimp vary depending on different biological, environmental, 
and other factors, such as stage of shrimp growth, water temperature, availability of 
natural food, feed type, feed application method, shrimp moulting stage, and health 
status (Tacon et al. 2013). Daily monitoring of feed intake is very crucial in feeding 
management for adjustment of daily ration. Feeding rate decreases with increasing 
body weight and reducing metabolic rate over the culture cycle (Table 15.11). With 
proper management of feeding, FCR in shrimp culture varies from 1.2 to 1.8:1.
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5  Challenges of Nutrient Management in Aquaculture

There are several challenges for a successful management of nutrients in aquacul-
ture. The main issue of overuse of nutrient inputs to aquaculture systems through 
fertilization and feeding remains evident always. Minimizing nutrient load from 
fertilization should be the appropriate approach according to the targeted fish pro-
duction level. Very often, fertilizers are applied without knowing the N and P ratio, 
which causes excessive nutrient influx in most of the instances. Many times, status 
of inherent nutrient levels of pond environment is either not assessed or ignored 
prior to application of fertilizers. Another important aspect of fertilization is the 
method of application. Granular fertilizers quickly sink into water and then settle to 
the bottom before being completely dissolved. Instead, use of liquid or finely pow-
dered fertilizers which can be applied after making a mixture with water is a more 
efficient alternative. This method of mixing of fertilizers with water can reduce the 
fertilizer rates by 50% or more (Boyd and Tucker 1998). In case of organic manures, 
application of raw or freshly collected matters can cause a deleterious effect upon 
their microbial decomposition and resultant oxygen depletion in water. Therefore, 
organic manures in semi- or fully decomposed condition need to be applied. The 
requirement of organic manure quantity is more compared to chemical fertilizers, 
which causes difficulty in obtaining huge amounts at a time. However, due to the 
low cost of organic manures which are mainly produced from household wastes, 
small and marginal farmers can easily afford the expense than the use of high-priced 
chemical fertilizers. The problem of waste accumulation from excess feeding is 
another biggest challenge for environmental sustainability. Moreover, manipulation 
of feed composition can reduce the metabolic waste output from the farmed ani-
mals. Amino acid composition of protein source can have a significant contribution 
towards ammonia excretion by fish. However, optimization of amino acid profile of 
fish feeds is a challenging task due to high variability of amino acids existing in 
ingredients and estimation procedures (Bureau and Hua 2010). Therefore, feed for-
mulation should be such that there will be low nutrient output by improved FCR 

Table 15.11 Feeding rate for Pacific white shrimp, Penaeus vannamei, fed with a feed containing 
35% crude protein and 8% crude lipid at varied water temperature (Tacon et al. 2002)

Body weight (g)
Feeding rate (% of estimated biomass)
21–24 °C 24–28 °C 28–32 °C

1–3 8.0 6.0 7.0
3–5 7.0 5.0 6.0
5–7 6.5 4.5 5.5
7–9 6.0 4.0 5.0
9–11 5.5 3.5 4.5
11–13 5.0 3.0 4.0
13–15 4.5 2.5 3.5
15–17 4.0 2.5 3.0
17–30 3.0 2.0 2.5
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through the adoption of proper feeding strategy (White 2013). Development and 
application of species-specific feed with high digestibility and use of suitable binder 
for getting desired stability of diet are some of the issues that need attention. 
Removal of excess nutrients which cause eutrophication and pollution of the aquatic 
environment is another difficult task. For this purpose, low-cost methods employing 
biological organisms that utilize nutrients and organic wastes could be thought of 
and integrated.

6  Conclusion

The knowledge of nutrient management in culture environment through fertilization 
and feeding has been expanding steadily over a few decades. However, works on 
management of nutrients in aquaculture pond water have started long back com-
pared to nutrition and feed development for cultured animals. Issues related to envi-
ronmental impacts of aquaculture have floated with the supply of nutrients in the 
form of feed which is actually meant for cultured animals, but unutilized or waste 
materials from feeds cause nutrient imbalance in water and sediment. Natural food 
production in pond can be enhanced through provision of nutrient sources exter-
nally by means of fertilization or feeding. This natural pond productivity could be 
increased by fertilization for growth of phytoplankton primarily and other food 
items secondarily. However, natural productivity can support yields up to a certain 
level only, 0.5 to 4 tons/ha depending on species cultured, culture duration, and 
fertilization strategy adopted. Intensification of aquaculture is inevitable to effi-
ciently produce cheap protein to feed the growing global population which will 
reach approximately 9.4 billion by 2050. Therefore, in aquaculture with high tar-
geted yield, nutrients for growth of cultured animals must be met up from external 
source in the form of a nutritionally balanced and palatable feed. However, applying 
high amount of feed does not always enhance fish production as most of the feed 
consumed is not transformed to harvestable biomass, rather, sometimes, is wasted 
causing deleterious effects on culture environment. These waste nutrients (N, P2O5, 
K2O, and other minerals) and accumulated organic matters from excretion and natu-
ral foods cause pond environmental issue of oxygen depletion due to concomitant 
decomposition. Therefore, holistic approaches for pond nutrient management need 
to be followed starting from adoption of proper fertilization and subsequent feeding 
strategies. Feeding management practice should be such that feed will be nutrition-
ally complete with high digestibility to reduce waste output and inclusion of novel 
feed ingredients that are readily available in adequate quantity to partially or com-
pletely replace the feed components which are not sustainable economically and 
environmentally. However, with utmost management measures, it is perhaps impos-
sible to avoid waste accumulation and resultant nutrient influx into aquaculture sys-
tems. Utilization of excess nutrients and organic matters is being given importance 
for achieving environmental sustainability of aquaculture. Various approaches aim-
ing at pond’s internal waste utilization in in situ manner rather than discharging into 
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natural waters, such as integration of extractive species, biofloc technology, 
periphyton- based farming system, etc., are being evolved and should be widely used 
in near future.
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 Conclusion

Pavan Kumar, Bambang Hendro Trisasongko, and Meenu Rani

Strategies for adapting climate uncertainties have been exercised. Many approaches 
could be geographically related; hence, promoting alternatives from many parts of 
the world would be one of the keys for mitigating climate impact. In the second 
volume, Kumar et al. discussed about drone technology in sustainable agriculture: 
the future of farming is precision agriculture and mapping, and Otieno et al. contrib-
ute to document crop production systems suitable to climate crisis. They found that 
aspects in soil, crop, and their management could play significant role in the adapta-
tion. Although political aspect is believed to be important, many cases showed that 
its involvement was generally weak in many parts of the world.

Technology has largely been contributing in many parts of human lives and it 
influences further research and development in climate-related issues. Genetics is 
unsparingly vital to develop varieties adapted to minimal soil moisture contents. As 
demonstrated by Njinju et al., implementing drought-tolerant varieties in marginal 
lands improves the socio-economic properties of peasant farmers. Agricultural bio-
technology, as argued by Abhishek Kumar et al., is also the key for adapting the 
climate. In addition, it helps to create a better environment if it is combined with 
suitable soil and crop management, as indicated in the Chap. 2 by Otieno et al.

Strategies for soil and crop management are generally complex due to the diver-
sity of agricultural commodities and the dynamics in soil system. While fertilizer 
technology has been advancing, nutrient management is entirely multifaceted and 
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should be done wisely to prevent further deterioration to the nature. Nitrogen, for 
instance, is a critical nutrient to plants; however, excessive or improper applications 
may lead to unfavorable situation. This book documents soil management in African 
countries as presented in a chapter by Gweyi-Onyango and Ntinyari for nitrogen 
and Hement Kumar et al. for carbon, in a hope to better understand the constraints 
and limitations among developing countries and records their adaptation strategies 
to the scarcity of soil nutrients.

Knowing point-wise soil and crop characteristics is substantial for farming. 
Nonetheless, with a larger extent or for agricultural planning, this kind of data is 
considerably insufficient. Producing maps related to any kind of agriculture-related 
data is fairly useful for stakeholders. As demonstrated by Trisasongko et al., Panuju 
et al., and Katiyar in this book, provision of spatial information will be beneficial for 
uncountable parties. These kinds of doable practice, alongside with the ones dem-
onstrated in many scientific reports, should be enriched in further publications, in 
terms of availability of data continuation, public access to toolboxes or codes, and 
geographical diversity of performance. While these information are getting abun-
dant, summary of constraints and benefits in implementing statistical models 
remains open to be fully developed in the future.

In a greater aspect, developing farming systems in ever-changing climate is a 
vivid challenge. With the diversity of native customaries and wisdom, these should 
be adapted locally. While adaptation would not be an issue for prosperous farmers, 
smallholders have lesser ability to adjust. This book provides a development scheme 
proposed by Haldar et al., involving the use of current technological advances with 
the hope that those technologies would improve the livelihood of smallholders. 
Certainly, future development should recapitulate any significant progress in all 
aspects of crop agriculture, thus allowing many parts of the world to assess possible 
best options in their case. The readers should note, however, that this development 
should not be limited to technological breakthrough, but also in post-agronomic and 
off-farm activities (see the Chap. 13 by SK Dubey et al.).

Similar agenda should be reworked for animal husbandry and aquaculture. 
Important works, such as the one reported by Bharati et al. in this book, need to be 
reassessed in different parts of the world to investigate the best strategies for manag-
ing the issue. Correspondingly, technological advancement while sustaining the 
environment like the ones presented by Chakraborty and Khrisnani or by Pailan and 
Biswas is imperative for further assessment in different geographies to better under-
stand the issues related to the technology–human–environment nexus.

This volume summarizes that replicative studies in different parts of the world 
remain important as the issues are geographically diverse, perhaps controlled by 
human attitudes and local situations. These are entirely important for developing 
countries where smallholders dominate. With the availability of diverse cases, 
stakeholders may be able to learn and to adapt from the existing instance. While 
lacking the diversity of region, especially for Central and Latin Americas, the edi-
tors would seek to tackle the issue in detail in the future version of these edited books.

Conclusion
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