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Abstract. People have personal and/or business need to share private
and confidential documents; however, often at the expense of privacy.
Privacy aware users demand that their data is secure during the entire
life cycle, and not residing in clouds indefinitely. A trending feature in
industry is to set download constraints of shared files - a file can be
downloaded for a restricted number of times and/or within a limited
time framework. Metadata privacy becomes concerning with web services
and applications providing such additional level of security control but
not hiding the metadata. There is no prior research focusing on privacy-
preserving expiration control, hence we propose OblivShare, a privacy-
preserving file sharing scheme to proactively fill the gap. The scheme is
based on ORAM for secure computation that 1) supports file expiration
at users’ control, 2) hides expiration metadata from the server, 3) server
is fully oblivious of file access pattern and expiration state of a file. We
demonstrate that our protocol has a complexity poly-logarithmic to the
number of files while achieving privacy of metadata.

Keywords: E2EE file sharing · Metadata privacy · ORAM · Secure
computation

1 Introduction

Users sharing files with other users over the Internet are common practices today.
However, data leakages and mass surveillance projects [16,27] have drawn pub-
lic attention of the vulnerability and sensitivity of personal data, and in turn
promoted privacy awareness of users. Further, existing regulations and acts to
protect personal data [19,31], also impose on service providers to grant individ-
uals control over their private information. Therefore, sharing files securely and
privately is becoming a fundamental requirement.

In order to achieve secure file sharing, systems and services have been devel-
oped to support end-to-end encryption (E2EE) [29], using which, a user encrypts
file content before it leaves their device and only authorised users are able to
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decrypt the file. However, E2EE does not appear to fully protect the privacy of
user or file metadata, and a file can stay in servers indefinitely. Recent innova-
tive services [7,17] provide impermanence of data store on top of E2EE, which
offers extra security control to users over the files they share: setting files to
expire after a certain amount of time or number of downloads. On the one hand,
such services incorporate two most desired features, E2EE and ephemeral,
which meets personal needs of more secure connections and intimate sharing; on
the other hand, limitations are also apparent: 1) Users send expiration control
metadata (expiration metadata for short in the rest of the paper), i.e. download
number and time limits to check if a file has expired, to servers in plaintext,
which can be used to deduce the popularity and sensitivity of specific file(s). 2)
Expiration control is at servers’ hand and users have to fully trust a service to
honestly check if a file has expired.

Inadequate discussion has since occurred to understand the privacy of expira-
tion metadata. Therefore, we aim to propose a new protocol to solve this emerg-
ing problem with practical values. This is a first attempt to focus on secure file
expiration control, and the proposed protocol has not yet been implemented in
real cloud environment. Security and performance analysis are provided in the
paper, and we consider real experimental evaluation to illustrate the performance
in the future.

1.1 Motivation

“If you have enough metadata, you don’t really need content”, “we kill people
based on metadata” [22,23]. Sharing a file resembles calling or messaging some-
one from the perspective of metadata exposure, hence metadata privacy in file
sharing is also concerning. While increasing service providers provide expiration
control on top of E2EE, a gap exists in both industry and academia. To illus-
trate the motivation of hiding expiration metadata and oblivious file sharing, we
present some privacy issues even with E2EE file sharing systems.

Sensitivity Derived from Expiration Metadata. Alice is an oncologist, and
shares files with patients and other contacts in an E2EE system. Alice shares
medical records with her patients and sets each to expire after 1 download,
and other files without expiration conditions. With knowledge of the expiration
metadata, a curious server learns that Alice shares some files with strict access,
hence deduces they are sensitive. Bob is a patient of Alice and downloads his
report from the system. With Alice’s identity and the sensitivity of the file, the
server thus infers Bob is suspected to have cancer without decrypting the report.

1.2 Summary of Contributions

We now propose OblivShare, a secure and ephemeral file-sharing system that
for the first time provides users with advanced and oblivious expiration con-
trol. OblivShare puts forward a new framework of a file-sharing scheme that
not only supports comprehensive file expiration control, but is also expiration-
metadata-private and oblivious. This is a generic solution that can be integrated
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Table 1. Overview of techniques to achieve the goals.

Goal Technique

Expiration metadata privacy Secret sharing

Oblivious expiration control Secure two party computation

Oblivious file sharing ORAM

User IP addresses Anonymous network, e.g., Tor

into file sharing services to address metadata privacy issues. To understand our
contributions, we now outline the main challenges OblivShare aims to address.

Challenge 1: how to achieve expiration control over protected expira-
tion metadata? We define expiration metadata as: 1) User-set download con-
straints, i.e., download number and time limits to facilitate expiration control. 2)
Internal download state, i.e., current download count used to compute expiration
control outcome. Users are not able to download a file if it has expired. To the best
of our knowledge, whereas many scholars focus on protection of general security
control metadata in file sharing such as user identity and access pattern, there is
no prior research aiming to prevent leakage of expiration metadata, hence a gap
exists to address such expiration-metadata-privacy.
Challenge 2: how to make download requests of a specific file indistin-
guishable from servers? Only hiding the expiration control process, outcome
and metadata is not sufficient, as a server can still infer that a file has expired if
the specific file has not been accessed for a long time. A server not fully obliv-
ious of the file sharing process learns which file is accessed for each download
and can reasonably deduce the expiration metadata.

Contribution. OblivShare supports E2EE meanwhile protects the expiration
metadata through the entire course with oblivious file access and expiration
control. Our goals and techniques are summarized in Table 1. Overall, our con-
tributions are:

1. We are the first to address metadata privacy issues in file sharing systems
that support expiration control. User-defined download constraints are hidden
from servers through the entire course of file upload, sharing and download.
Internal download state is also protected by secret sharing between servers,
therefore the servers cannot directly learn file expiration status.

2. We use synchronised tree-based ORAMs to store both file content and meta-
data, which hides file access patterns from servers, hence the servers cannot
distinguish which file and how many times is requested so as to deduce file
expiration status and further expiration metadata.

3. We are the first to use secure computation for oblivious expiration control,
which not only guarantees that a single server cannot manipulate the expira-
tion control result, but is also efficient to implement using garbled circuits.

4. We also approve that our scheme has negligible extra computation and com-
munication overhead on top of a primitive ORAM file sharing system, which
requires one interaction with users hence not sacrifices user experience.
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Table 2. Secure file sharing services.

Product E2EE Time
limit

Number
limit

Hide expiration
metadata

Oblivious
server

OblivShare ✓ ✓ ✓ ✓ ✓

Firefox Send [17] ✓ ✓ ✓ ✗ ✗

DropSecure [7] ✓ ✓ Future ✗ ✗

SendSafely [24] ✓ ✓ ✗ ✗ ✗

WhatsApp [34] ✓ Future ✗ ✗ ✗

Digify [8] ✗ ✓ ✗ ✗ ✗

Dropbox [6] ✗ ✗ ✗ NA ✗

2 Related Work

2.1 Existing Secure File Sharing

Ephemeral content sharing is a highly pursued feature in industry [7,12,17,24,
29,34,37]. With certain expiration control, users are confident that what they
share is only accessible to dedicated users for limited time or number of times,
and never stay in a server for longer than necessary and become a vulnerability
later.

Table 2 compares several existing secure file sharing applications or web ser-
vices. We organise the comparison by the following properties: 1) Does it support
E2EE? 2) Does it support file expiration? 3) Does it hide expiration metadata?
4) Is the server oblivious of file access and expiration control if applicable?

[7,17] and [24] claim to offer zero-knowledge E2EE. [7] (premium) provides
client-side encryption that keeps a public key protected encryption key in a
key sever (isolated from the file storage server), and only a recipient’s private
key can decrypt the encryption key. [24] uses OpenPGP encryption and the file
encryption key consists of a server secret (generated by the server) and a client
secret (generated by the sender). Services such as [6] and [8], though do not
support E2EE, but provide an addition layer of password security on top of
server-side encryption. A user can double encrypt files or folders by setting a
password, and share it to recipients outside the service. [34] also offers E2EE for
file attachments and has been developing its “Expiring Messages” feature.

Our solution is aiming to address the security weakness of existing systems
mentioned in Sect. 1 with a good balance of desired features and cost.

2.2 ORAM for File Storage

Oblivious RAM (ORAM) [10] is an attempt to hide a user’s access pattern from
service providers meanwhile supporting extra operations. Traditional ORAM
schemes usually have worst-case communication complexity linear to their capac-
ity and block size even with amortized communication cost [18], and their sin-
gle client setting [10,18,25] is not suitable for file sharing. Multi-user ORAM
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Table 3. Notation

Notation Description

λ ORAM’s statistical security parameters

tsU A timestamp that denotes the upload time

tsD A timestamp that denotes the download time

tsExp A timestamp that denotes the expiration time, that is tsU + t

D An array of data content stored in ORAM

x An positive integer that denotes a file index in ORAM, up to the ORAM file
number bound, and D[x] is the data stored in ORAM

Exp An expiration policy that stores download constraints and state indexed by x

[s] A secret share of s

N The number of real data blocks in ORAM

h The height of the ORAM tree, that is �log2N�
θ A threshold of timestamp difference that is accepted by OblivShare

schemes are promising designs that can be applied in file sharing, but unfor-
tunately, very few of such works exist. Among those that support file sharing,
GORAM [14] is a system that guarantees anonymity of users and obliviousness
of data access; but it does not protect the owner of a file. PIR-MCORAM [15]
is a multi-user ORAM-based file sharing system, but has a very high overhead
hence liner worst-case complexity. There are other ORAM schemes that focus
on malicious users but do not readily support file sharing [1,11].

At the best of our knowledge, none of the existing ORAM schemes, either
hide access patterns and/or user identities or not, with linear or poly-logarithm
complexity, has addressed expiration control. With OblivShare, we propose an
efficient secure file sharing scheme that not only achieves lightweight system
design on top of ORAM (we present performance analysis in Sect. 5 that proves
OblivShare has poly-logarithmic complexity), but also enables expiration control
while hiding expiration metadata.

3 Preliminaries

OblivShare makes black box use of secure two party computation, and also
follows ORAM paradigm for metadata and file storage.

Notation. We define parameters, entities, denotations in OblivShare in Table 3.

3.1 Secure Computation

The Millionaires’ Problem first described by Yao [35] enables to solve the fol-
lowing problem: Alice and Bob have their own secret inputs, which are their
wealth xA and xB million, respectively. Yao’s protocol enables that Alice and
Bob can compute a function f(xA, xB) −→ (yA, yB) such that Alice learns only
its function output yA while Bob knows only yB, i.e., who is richer, and nothing
else about the other party’s wealth.
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Since Yao’s secure computation protocol was proposed, researchers have
advanced a number of variations and extensions to address different scenarios.
Recent secure multiparty computation (MPC) solutions includes private sort-
ing [13], private computational geometry [26], private voting [30], and private
data mining [2,9] etc.

3.2 ORAM

OblivShare deploys ORAM for oblivious data storage and retrieval. More specif-
ically, we use ORAM for secure computation [5,32,36], so as to ensure obliv-
ious data access in MPC applications. There is a class of tree-based ORAM
schemes [25,28,32] that are efficient for practical implementations especially in
MPC, among which, we consider Circuit ORAM [32] as an appropriate scheme
for our setting because of its competitive performance. Comparing to schemes
like SqrtORAM [36] and Floram [5], Circuit ORAM client has complexity that
is poly-logarithmic to the number of files, and also reduces the circuit size com-
paring to Path ORAM [28] and SCORAM [33]. Circuit ORAM is a tree-based
ORAM. To store N files, Circuit ORAM constructs a binary tree with height
h = �log2N�. The tree is composed of tree nodes, each of which has three blocks
with fixed block size; apart from that, it also has a stash (up to the stash size
bound) that temporarily stores blocks that will be later evicted to the tree. Each
block either stores the data of a file or is left empty. To store a file D[x] in a file
array D, a block contains the file index x, the file data D[x], and its position
that is the path from leaf to root. If a block is cached in the stash, the block
stores the corresponding path that the block will be evicted onto. The file index
x and its corresponding path p constitute a position map. We adapt Metal’s
protocol [3] as a underlying primitive for efficient and oblivious data access in
S2PC.

Read from ORAM. To read a file, the two servers first check the file’s leaf
label (hence corresponding path) in the position map, then search for the block
with the file index via a linear scan over both the stash and path. The servers
then read the file block stored in the block. After reading the file, they randomly
assign a new path to this block, put it back into the stash, and update the
position map accordingly.

Write to ORAM. To write a file, the steps are similar until when the two
servers add the block into the stash, and they replace it with the data to write
provided by the user.

Stash Eviction. Circuit ORAM performs a stash eviction for each read and
write operation, at which stage, blocks cached in the stash are evicted to the
ORAM tree to prevent stash overflowing. We do not elaborate the eviction algo-
rithms of Circuit ORAM in detail here, but will illustrate rearrangement steps
that are relevant to OblivShare. A generic Circuit ORAM data access operation
is provided in Algorithm1.
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Algorithm 1: ORAMAccess
1 Input op, idx, data
2 Output returnData

1. label ← PositionMap[idx]
2. {idx||label||returnData} ← ReadnRemove(idx, label)
3. PositionMap[idx] ← UniformRandom(0, ..., N − 1) //update position map
4. if op = ”read” then

(a) data ← retrunData
5. stash.add({idx||PositionMap[idx]||data})
6. Evict()
7. Outputs returnData

3.3 Synchronised Inside-Outside ORAM Trees

We identify that the synchronising inside-outside ORAM trees technique
used by METAL [3] is suitable for OblivShare. As has been introduced in
Sect. 3.2, taking Circuit ORAM as an instance, each block in an ORAM tree
contains the file index x, the file data D[x], and its position. METAL, however,
splits position map (i.e. index and path position) and actual file data, and stores
them in two ORAM trees separately: one tree contains files’ indices and positions
stays inside S2PC procedures because it is small while the other tree that stores
actual file contents stays outside S2PC. The two trees are maintained synchro-
nised during initialisation and after each data access so that the file identifier
and content can be found at the same position in the two trees. By doing so,
the position of a file can be processed and revealed securely and efficiently in
S2PC without loading large file data, and the block fetching and eviction of the
actual file data are achieved by two protocols to keep the trees re-synchronised.
METAL uses a secret-shared doubly oblivious transfer protocol to ensure that
servers fetch the actual file data after revealing the position (in secret shares),
and a distributed permutation protocol to track the movement of blocks after
eviction and apply the rearrangement to according positions, without any servers
learning the actual file’s position.

In what follows, we provide some background knowledge of METAL’s tech-
niques relevant to our setting and describe more details in AppendixA.

Secret-Shared Doubly Oblivious Transfer. In order to get the actual file
block outside S2PC, the two servers first process and reveal the file position
inside S2PC, which means that the i-th block on the path p stores the position
map and file data respectively in two ORAM trees. The S2PC then generates a
list of keys for all the blocks on the path and outputs all these keys to Server
1 that stores the ORAM of actual file data, and Server 2 receives only one key
corresponding to the actual file location i. Server 1 then needs to encrypt all the
file blocks on the path p using the corresponding keys in order and re-randomise
the encrypted blocks before sending them to Server 2. Server 2 uses its key
received from the S2PC and decrypt blocks received from Server 1 to obtain the
i-th block without either server getting the actual file location.
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Distributed Permutation. As has been mentioned in Sect. 3.2, stash eviction
is called after every read or write after fetching a data block in ORAM. Dis-
tributed permutation [3,36] captures the rearrangement of blocks, which is used
when putting the read block into stash before eviction and later evicting stash
blocks to selected paths. The two servers in S2PC generate a permutation of an
array of blocks, including the blocks in the stash, the block read and the block to
write; then secret shares the permutation; and apply permutation shares accord-
ingly. The result of the protocol is that the two ORAMs store the permuted
blocks in the same location as per the updated file position map. By following
this protocol, neither server learns the new position of the file after eviction, and
neither server knows which permutation, read or write, is performed.

4 System Overview

In OblivShare, a data owner encrypts a file and sets the file to expire at certain
conditions before uploading. OblivShare stores both the cipher file and expi-
ration policy in a secure manner. When a recipient makes a download request
to OblivShare, OblivShare first performs expiration control over download con-
straints and download state, then sends the cipher file to the recipient if the file
has not expired. To understand how OblivShare fulfils these operations securely,
we present an overview of OblivShare’s design, threats and security goals.

4.1 System Architecture

A high-level framework of OblivShare is illustrated in Fig. 1, which consists of
two servers, a data owner and multiple clients (in this paper, client is used
interchangeably with recipient):

– Owner sends upload requests to OblivShare, and shares the file index and
file encryption key embedded in a URL to recipients via secure channels.

– Recipient(s) sends download requests to the servers, and receives results
from OblivShare as per expiration check.

– Servers each takes its share of the requests as inputs to the S2PC, and
together run S2PC procedures and send the outputs from S2PC to the recip-
ients. The servers also keep updated ExpCtrlORAM and DataORAM, which
is explained in detail in Sect. 5.1.

OblivShare incorporates two major components: OblivExp for expiration
Control and OblivData for file access. OblivExp is placed in front of Obliv-
Data to conduct expiration control. A client’s request first arrives at OblivExp,
which checks whether the requested file has expired or not inside the S2PC by
the two servers. If no, the request is sent to OblivData for a file access. If yes,
the request is also dispatched to make the expiration control result indistinguish-
able to the servers, but in a manner to access dummy data instead. This is a
loose description, and detailed construction is elaborated in Sect. 5.

OblivExp updates ExpCtrlORAM after each access and the changes to
blocks as a result of stash eviction are applied to DataORAM during OblivData
via synchronisation between ExpCtrlORAM and DataORAM.
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Fig. 1. High level framework. A client sends its secret-shared request of file access to
the two servers. The request is reconstructed and executed in S2PC.

4.2 Threat Model

Assumptions. OblivShare makes the following assumptions:

At Least One Server is Honest. An attacker can compromise one of the servers
in the two party secure computation while the other is not.

Key Secrecy. A client does not reveal the URL with the key to adversaries.

Out-of-Band Communication. A data owner in OblivShare shares a URL with
recipient(s) through third party secured channels of their own control, such as
Telegram [29] and Signal [21]. OblivShare only uses such out-of-band communi-
cation once at the sharing stage, which is a common practice of other secure file
sharing systems [6,17], keeping all other activities within OblivShare.

Anonymous Network. In order to hide other metadata during file sharing,
OblivShare assumes the clients communicate with servers in an anonymous man-
ner that does not reveal network information via existing tools such as Tor [4]
or secure messaging [29] based on decentralised trust.

Secure Communication. Each client establishes secure connections with each
server, e.g., Transport Layer Security, so that data in transition are secured.

OblivShare does not address denial-of-service attacks.

Threats. OblivShare considers the following threats:

1. A server can see the expiration metadata of a file. It enables the server to
learn data sensitivity and popularity of the file, also deduces other valuable
information of encrypted data, which has been explained in Sect. 1.

2. A server on its own has control over its internal download state metadata,
hence can forge the state, e.g. a small download count or an expiration times-
tamp that never expire.



OblivShare 135

3. A server can observe the file access pattern, hence the server is able to learn
which specific file is accessed and the number of times the file has been
accessed. If a file no longer receives download request, the server can deduce
that the file has expired hence infer the user-set expiration metadata.

4. An attacker controlling a client tries to compromise the security of a file that
has expired.

5. A recipient can forge its download timestamp so as to make an invalid down-
load pass the expiration control check.

Security Goals. We now present security goals of OblivShare with respect to
the threats given in Sect. 4.2.
1. Expiration metadata privacy. OblivShare ensures expiration metadata is

totally at a data owner’s control, and not visible in transit or at rest on either
server.

2. File confidentiality. OblivShare ensures that neither server learns the actual
file content; further, a compromised client cannot access the encrypted file and
decrypt the content after the file has expired.

3. Oblivious expiration control. OblivShare ensures both servers are oblivi-
ous of the expiration control process. Though OblivShare does not prevent a
server from manipulating its download state or a client forging its timestamp,
the S2PC procedure for expiration control will fail if it detects compromised
inputs to the S2PC. Hence such attack gains no information and little value.

4. Oblivious file sharing. OblivShare ensures neither server learns access pat-
terns so that the servers are not able to infer if a specific file has expired hence
expiration metadata.

5. Download timestamp integrity. OblivShare ensures that the download
timestamp is independent of a recipient’s input, but is controlled in S2PC.

6. General metadata protection. Recall the anonymous network assump-
tions OblivShare makes in Sect. 4.2, users’ IP addresses are garbled when
communicating with a server, and OblivShare addresses general metadata
privacy in file sharing.

OblivShare guarantees the goals above based on common cryptographic
assumptions. However, OblivShare does not address denial-of-service (DoS)
attacks, which means OblivShare does not prevent a dishonest server from deny-
ing a valid download request even if the time has not expired or the number of
downloads permissible has not been exceeded.

5 Detailed Construction

Note that in Circuit ORAM, the linear search of the file index happens within
the S2PC, the real data is too large to process. We identify that METAL’s syn-
chronised ORAM trees [3] benefits our design to reduce the data accessed inside
the S2PC. Below we introduce building blocks of OblivShare. In the following,
we present our protocol assuming each file is an single file block for simplicity,
but in practice, an uploaded file consists of multiple file blocks and is padded to
have the same size.
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Fig. 2. OblivShare has two tree ORAMs that store small metadata and large real data
respectively and synchronised in ExpCtrlORAM and DataORAM.

5.1 Synchronised ORAM Trees

OblivShare has two ORAM trees, an ExpCtrlORAM tree to store the metadata
in a recursive manner and a DataORAM tree to store the actual file data. The
two trees are synchronised so that the content and the metadata of a file are at
the same location in DataORAM and ExpCtrlORAM.

ExpCtrlORAM is a set of trees that recursively stores small metadata, includ-
ing: 1) the position map; 2) the expiration metadata, i.e. download constraints
set by the data owner and the current download state. The ExpCtrlORAM is
secret shared with two servers, and will be completed loaded and accessed inside
the S2PC. OblivShare uses the standard recursive technique [3,32] to store the
metadata in ExpCtrlORAM, and for simplicity purpose, we refer to the last tree
when using ExpCtrlORAM in the rest of the paper.

DataORAM resembles ExpCtrlORAM’s last tree but only stores the data
(encrypted file). The DataORAM tree is stored on Server 1, and only relevant
portion of the data structure will be loaded into the S2PC.

Figure 2 shows the ORAM structure in OblivShare and how two ORAMs are
synchronised by storing corresponding metadata and data at the same location.

The read and write operations of Circuit ORAM still suffice data retrieval
and update in ExpCtrlORAM but no longer fulfil fetching data from and putting
data into DataORAM. OblivShare follows MTEAL’s secret-shared doubly obliv-
ious transfer (SS-DOT) [3] protocol to fetch the i-th block on path p from
DataORAM. At the end of SS-DOT, Server 2 obtains the fetched block, i.e. the
i-th block (encrypted under ElGamal) in the array, without either server learning
i. We describe the details relevant to OblivShare in AppendixA.1. OblivShare
also follows distributed permutation to make sure ExpCtrlORAM and DataO-
RAM are re-synchronised after each eviction by tracking and permuting block
movements. At the end of distributed permutation, Server 1 stores the permuted
file blocks in DataORAM in the same location as metadata blocks in ExpCtr-
lORAM. By following this protocol, neither server learns the new location of the
evicted block. We give more details of how permutation is created, shared and
applied in AppendixA.2.
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Algorithm 2: OblivExp.Upload
1 Input of S1: [x]1, [Exp]1, [ExpCtrlORAM ]1

2 Input of S2: [x]2, [Exp]2, [ExpCtrlORAM ]2

3 Output: [ExpCtrlORAM ]1, [ExpCtrlORAM ]2

1. x ← [x]1 ⊕ [x]2, Exp ← [Exp]1 ⊕ [Exp]2, ExpCtrlORAM ←
[ExpCtrlORAM ]1 ⊕ [ExpCtrlORAM ]2; //reconstruct

2. p ← PositionMap[x]; //select a path

3. (ExpCtrlORAM
′
, ⊥) ← ORAMAccess(ExpCtrlORAM, x, Exp),

ExpCtrlORAM ← ExpCtrlORAM ′; //the distribute permutation protocol will be
invoked before and after ExpCtrlORAM’s stash eviction

4. [ExpCtrlORAM ]1 ← $, [ExpCtrlORAM ]2 ← ExpCtrlORAM ⊕ [ExpCtrlORAM ]1;
//secret share ExpCtrlORAM

5. Output to [ExpCtrlORAM ]1 to S1 and [ExpCtrlORAM ]2 to S2 respectively.

5.2 OblivExp for Expiration Control

Upload a File. During the initialisation stage at the Data Owner’s end, it
generates an expiration policy Exp locally, which is a description of file down-
load constraints and download state that is shared among the two servers. For
example, a policy of a file that expires after 10 downloads and on “21 June 2021
21:21:21” has a policy “File Index x : 10, 21-06-2021T21:21:21, 0” where x is
the file index, 10 is the download count (e.g. expire after 10 downloads) chosen
by the Data Owner, tExp is the expiration timestamp derived based on upload
timestamp (e.g. 18 June 2021 21:21:21) and download time setting (e.g. expire
after 3 days) chosen by the Data Owner, and 0 is the initial download count.
The Data Owner also encrypts a file using a secret key before the file is sent to
Server 1. Algorithm 2 shows the secure computation during Upload.

Remark. After ExpCtrlORAM’s stash eviction, evicted blocks are at new loca-
tions but the blocks in DataORAM are not rearranged. To synchronise DataO-
RAM, we use distributed permutation protocol by applying the same rearrange-
ment to data blocks in DataORAM. We will elaborate how OblivData ensures
the data blocks in DataORAM is still synchronisation in Sect. 5.3.

Download a File. When a client requests a file download by a file index, the
two servers search the file index in ExpCtrlORAM, then retrieve the path p and
the expiration policy Exp of the file following primitive ORAM read process.
The two servers then access DataORAM on the client’s behalf and return the
file block back to the client via secret shares if the expiration control check
passes; otherwise a dummy instead. Note that the S2PC locates the i-th block
on the path p in ExpCtrlORAM is the block for file x by a linear search, hence
can access the encrypted data of file x in the i-th block of the same path p in
DataORAM due to the synchrony between two ORAMs.

During the expiration control check, the two servers inside the S2PC deter-
mine a mutually agreed download timestamp (e.g. agree on a deviation threshold
θ and then take a mean of the two timestamps from each server), and run the
S2PC to compare download constraints to internal download state.
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Algorithm 3: OblivExp.Download
1 Input of S1: [x]1, [tsD]1, [ExpCtrlORAM ]1

2 Input of S2: [x]2, [tsD]2, [ExpCtrlORAM ]2

3 Public Input: θ

4 Output: [ExpCtrlORAM ]1, [ExpCtrlORAM ]2, [i]1, [i]2

1. tsD ← agree(ts1D, ts2D, θ); //agree on a download timestamp
2. if tsD = ⊥ then stop. //the procedure stops if the agreement fails
3. x ← [x]1 ⊕ [x]2, ExpCtrlORAM ← [ExpCtrlORAM ]1 ⊕ [ExpCtrlORAM ]2;
4. locked ← Exp(status); //check the current lock status
5. if locked = TRUE then stop.
6. else locked ← TRUE; //change the lock status to locked
7. (ExpCtrlORAM ‘, {p, Exp}) ←

ORAMAccess(ExpCtrlORAM, x, ⊥), ExpCtrlORAM ← ExpCtrlORAM ‘;
//run an ORAM read operation to get the expiration policy

8. i = search(x, p); //determine the i-th location on path p that stores Exp
9. r = isV alid(Exp(count), Exp(number), Exp(tsExp), tsD); //expiration check

10. if r = TRUE then Exp(count)+ = 1; //increments the current download count
11. else i ← |stash| + 3h + 1; //add a dummy at the end of the array and point i to it
12. locked ← FALSE and Exp(status) ← locked; //reset the lock status
13. Generate [ExpCtrlORAM ]1,

[ExpCtrlORAM ]2 ← ExpCtrlORAM ⊕ [ExpCtrlORAM ]1

14. Generate [i]1, [i]2 ← i ⊕ [i]1

15. Output [ExpCtrlORAM ]1, [i]1 to S1 and [ExpCtrlORAM ]2, [i]2 to S2 respectively.

The two servers in the S2PC also update lock status of a file requested on the
fly to indicate if the file is being accessed. The file is locked until the data, either
the encrypted file or a dummy, has been successfully returned to the client.

To ensure the servers do not know if a file has expired, the S2PC appends
a dummy block, and secret share the location i related to this dummy block
instead of the actual block if a file has expired (step 11 in Algorithm3).

Remark. Note that the two servers cannot simply fetch the i-th block in DataO-
RAM, after revealing i in ExpCtrlORAM as the location i is related to the block
history, i.e. a location i that is closer to the root level of the ORAM is more likely
to have been accessed and evicted recently, and vice versa [20].

To make Upload and Download indistinguishable, expiration policy is con-
structed as {File Index: download number, expiration timestamp, download
count, download timestamp, lock status}, hence {File Index: download num-
ber, expiration timestamp, 0, ⊥, FALSE} for Upload and {File Index: ⊥, ⊥, ⊥,
download timestamp, ⊥} for Download.

5.3 OblivData for File Access

In what follows, we show how the two servers in combination fetch and put a
file, which is the same for each ORAM Upload and Download.
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Fetch Data from DataORAM. In Sect. 5.2, we already provide a solution of
indistinguishable file fetch regardless of expiration status by appending a dummy
block. After OblivExp completes the expiration control, either passed or failed,
it proceeds the request to OblivData that fetches a block, either a real data block
or a dummy depending on the expiration control result, in the form of different
values of the location i. As has been briefed in Sect. 5.1, at the end of SS-DOT,
Server 2 received ElGamal cipher-texts of the data block at the i-th location on
path p in DataORAM, with neither server aware of i. Upon ElGamal decipher,
the result is either the actual file content or the dummy encrypted under a file
encryption key (shared by a data owner to dedicated recipients during the share
stage), which is finally returned to the recipient who can further decrypt the
result. Algorithm 4 in AppendixA.1 shows how the SS-DOT protocol works in
OblivData.

Remark. Note that in Algorithm 4, j is independent of i as a result of shuffle,
hence Server 2 is not aware of i all through the course.

Evict Data to DataORAM. After ExpCtrlORAM’s stash eviction, positions
of blocks are updated in ExpCtrlORAM, hence OblivData needs to ensure the
corresponding real data blocks in DataORAM are rearranged in the same man-
ner. To guarantee that the two ORAMs are still synchronised, OblivShare tracks
the block movements in ExpCtrlORAM and apply the same changes to DataO-
RAM. We use Distributed Permutation again during this stage following a similar
manner of METAL to re-synchronising trees after each eviction.

Algorithm 5 in AppendixA.2 demonstrates how the re-synchronisation is
achieved by tracking the movement of blocks in ExpCtrlORAM and applying
the same permutation to DataORAM, hence Server 1 stores the blocks in the
corresponding locations.

5.4 Security Guarantees

We now present security guarantees of OblivShare with respect to the goals given
in Sect. 4.2.

1. Expiration metadata privacy. OblivShare hides expiration metadata from
both servers yet is able to enforce the expiration control by using secret shar-
ing. The standard secret sharing technique ensures the shares of the expi-
ration metadata are of the same length hence indistinguishable, and each
share reveals no information about the secret (line 1 in Algorithm2). Also,
OblivShare uses ElGamal encryption for data blocks stored in ORAM, which
prevents the leakage of sensitive expiration metadata from the servers during
the entire course.

2. File confidentiality. Data owner of OblivShare encrypts a file before upload-
ing the file to servers and only shares the private key to authorised clients.
In addition, all data blocks in ORAM are ElGamal encrypted hence the
servers cannot decrypt the actual file content without non-trivial compu-
tation. OblivShare also prevents invalid access to expired file by returning a
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dummy instead of the encrypted file (ensured by line 11 in Algorithm3) so
that a compromised client cannot retrieve a file that has expired even with
the private key.

3. Oblivious expiration control. During OblivExp and OblivData,
OblivShare uses S2PC protocols to perform expiration control (line 7–11 in
Algorithm 3 and the first stage of SS-DOT that samples random keys in line
2(a)–2(d) in Algorithm4). The security of S2PC guarantees neither server
learns or tampers the expiration control result.

4. Oblivious file sharing. The obliviousness of ORAM guarantees that file
access patterns are hidden from the servers.

5. Download timestamp integrity. (line 1–2 in Algorithm 3) The security
of S2PC guarantees neither server learns the input timestamp of the other
hence cannot modify the actual timestamp or fabricate a new timestamp that
is used in the following expiration control operation (line 9 in Algorithm3).

6. General metadata protection. OblivShare makes the anonymous net-
work assumptions in Sect. 4.2 that users’ identities and their online activity
are encrypted during client-server communications through existing secure
tools [4,29]. OblivShare also encrypts metadata such as file name, size, type
in the same way as it does for a file hence addresses general metadata privacy
in file sharing.

Non-guarantees. As stated in Sect. 4.2, OblivShare does not address DoS
attacks by a server, neither protects from malicious server(s), which means
OblivShare does not guarantee the availability of a file if a dishonest server
denies a valid download request.

5.5 Performance

We consider the system supports N files in total (for simplicity, each file is a sin-
gle block hence N data blocks) with block size S in DataORAM. As a result of
METAL’s synchronised inside-outside ORAM trees, the cost for accessing small
metadata blocks in ExpORAM is negligible and considered as constant compar-
ing to accessing large data blocks in DataORAM [3]. We use Oλ(·) to present
the complexity, while Nblock is polynomially bounded by λ. We parameterise to
have 1

Nω(1) failure probability that is the same as Circuit ORAM [32].
The amortised computational cost of Circuit ORAM is Oλ((S+log2N ) log N)·

ω(1), and OblivShare has minimal additional cost on top of Circuit ORAM. The
file access, i.e., read and write operations in OblivShare’s Upload and Download
are indistinguishable and have the same cost that includes the cost of Circuit
ORAM, SS-DOT and distributed permutation. During Download, OblivShare’s
expiration control incurs additional cost.

The cost for creating download timestamp (line 1–2 in Algorithm 3) is Oλ(1).
Expiration control is independent of data blocks in DataORAM and has constant
cost Oλ(1) (line 3–12 in Algorithm 3). The total cost of SS-DOT, including Server
1 fetching blocks (line 1(a) in Algorithm 4), the S2PC generating keys (line 2(d)
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Table 4. Total computational complexity for Upload and Download stages.

Stage Computational complexity

Upload Oλ((S + log2
N ) log N + log N) · ω(1) = Oλ((S + log2

N ) log N) · ω(1)

Download Oλ((S + log2
N ) log N + log N + 1) · ω(1) = Oλ((S + log2

N ) log N) · ω(1)

in Algorithm 4), Server 1 encrypting blocks (line 3(b) in Algorithm4), and the
maximum cost of Server 2 decrypting blocks (line 4(b) in Algorithm4), is linear
to the number of blocks fetched on the path and in the stash (with constant
size) hence is Oλ(log N). Distributed permutation also has total cost linear to the
blocks on the paths and in the stash (line 1 in Algorithm5), therefore Oλ(log N).

Table 4 summaries the above cost and the total computational complexity
of OblivShare for both Upload and Download is Oλ((S + log2N ) log N) · ω(1).
Upload and Download have the same computational complexity and communi-
cation complexity following Metal’s protocol [3], which is linear to the file size
S and poly-logarithmic to the number of files N .

6 Conclusion

We propose OblivShare, a lightweight privacy-preserving file sharing scheme that
for the first time protects expiration metadata together with file access patterns
from servers meanwhile ensures oblivious expiration control by adopting cryp-
tography protocols like secure computation and ORAM. We prove that our pro-
tocol can achieve its security goals without additional cost that the computation
and communication complexity is poly-logarithmic to the number of files. The
current framework focuses on semi-honest thread models and we consider mali-
cious security setting as future work. Corresponding prototype implementation
and evaluation will also be part of the future work to prove practicality of the
proposed protocol.

A METAL’s Synchronised Inside-Outside ORAM Trees

A.1 Secret-Shared Doubly Oblivious Transfer

Let N be an array of the blocks in the stash and the 3h blocks on path p:

1. The two servers inside S2PC, generate n keys k1, . . . , kn such that S1 receives
as output all these keys, and S2 receives only ki. n = |stash| + 3h + 1.

2. For each j ∈ 1, . . . , n, S1 uses kj to encrypt 0 and mj to obtain cipher-texts
zj and cj respectively. S1 shuffles all the (zj , cj) pairs and sends them to S2.

3. S2 uses ki to decrypt the first cipher-text of each pair: only one zj , will decrypt
to 0. It then decrypts the corresponding cj and hence obtain mi.
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Algorithm 4: OblivData.Fetch
1 Input of S1: [i]1, p, DataORAM

2 Input of S2: [i]2

3 Output: mi

1. S1:
(a) blocks ← Fetch(DataORAM, p). //fetch all blocks in stash and on path p

2. S2PC:
(a) i ← [i]1 ⊕ [i]2

(b) blocks.Append(⊥); //add a dummy block at the end of the array
(c) n ← |blocks| + 1; //so that n = |stash| + 3h + 1

(d) for j = 1 to n do kj
$←− (0, 1)l; //generate n keys

(e) Outputs k1, . . . , kn to S1 and ki to S2.
3. S1:

(a) M ← {}[n] //initialise an array to store the encrypted pairs
(b) for j = 1 to n do (zj , cj) ← Enckj

(0, mj)); M.add((zj , cj));
(c) M.Shuffle();
(d) Sends M to S2.

4. S2:
(a) found ← FALSE;
(b) p ← 1 while p ≤ n and !found do

i. (zp, cp) ← M [p − 1]; z
′
p ← Decki

(zp);

ii. if z
′
p = 0 then found ← TRUE; mp ← Decki

(cp) = mi; //mi is the i-th
block on path p in DataORAM

iii. p + +;
(c) Outputs mi.

A.2 Distributed Permutation

Recall that Circuit ORAM selects two paths during eviction, hence we need to
track the movement of blocks in the stash and on the two paths, which has
|stash| = 6h − 3 blocks.

Before each eviction, OblivShare appends a number tracker from 1 to
|stash| = 6h − 3 to each block on the stash and two paths in ExpCtrlORAM
inside S2PC. After the ExpCtrlORAM’s stash eviction, the protocol extracts
the trackers and construct an array of the numbers. Note that some numbers no
longer exist as the attaching blocks are removed during the eviction. In order
to generate a permeation of the same |stash| = 6h − 3 elements, OblivShare
searches for the missing trackers using a linear scan and fill in the empty slots
with unused numbers.

Below, we present how the two servers in secure computation put a block
into the DataORAM’s stash before eviction:

1. The S2PC places the following in an array: the blocks in the stash, the block
read, and the block to write, which has (|stash| + 2) blocks.

2. The S2PC finds that the k-th block of the stash is vacant, then generates a
permutation σread or σwrite, which exchanges the k-th block with the read
block for σread or the block to write for σwrite. As a result, the correct block
is inserted into the stash (i.e. the first |stash| blocks of the permuted array).
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Algorithm 5: OblivData.Sync
1 Input of S2PC: M

2 Output: M
′

1. for i = 0 to |stash| + 6h − 4 do M [i].Append(i + 1); //attach a tracker to each
block before ExpCtrlORAM’s stash eviction

2. M
′ ← ExpCtrlORAM.Evict(); //extract trackers after stash eviction

3. trackers ← {}; //initialise an array to store the missing trackers
//do a linear scan to find numbers in {1, 2, . . . , |stash| + 6h − 3} that are missing

4. for t = 1 to |stash| + 6h − 3 do
(a) found ← FALSE;
(b) k ← 0 while k ≤ 18 and !found do

i. if M
′
[k] = t then found = TRUE;

ii. else k + +;
(c) if !found then

i. trackers.add(i);
(d) t + +
//do a linear scan to fill missing trackers into the empty slots

5. r ← 0
6. for j = 0 to |stash| + 6h − 4 do

(a) if M
′
[j] = ⊥ then M

′
[j] = trackers[r]; r + +; //locate the empty slots and

fill in missing trackers
(b) j + +

7. σ ← Permutation.Gen(M, M
′
) //generate a permutation σ so that M

′
= M ◦ σ

8. σ1 ← $ //sample a random permutation
9. σ2 ← σ ◦ (σ1)−1 //composition of σ and inversion of σ1

10. Outputs σ1 to S1 and σ2 to S2;
11. S1:

(a) Re-randomise the cipher-texts of blocks;
(b) M1 = M ◦ σ1; //apply σ1 to M
(c) Sends M1 to S2.

12. S2:
(a) Re-randomize the cipher-texts of the blocks in M1;

(b) M2 = M1 ◦ σ2 = M
′
; //apply σ2 to M1

(c) Sends M
′

to S1.

3. The S2PC secret shares the permutation (σread or σwrite) into two permuta-
tions σ1 and σ2, when σ2 = σ ◦ (σ1)−1. ◦ denotes composition of permutation
and σ ◦ (σ)−1 is the identity permutation.

4. S1 re-randomise the blocks, apply the permutations σ1, and sends the per-
muted blocks to S2.

5. S2 re-randomise the blocks received, apply the permutations σ2, and sends
the permuted blocks back to S1.

6. S1 stores the permuted blocks in the corresponding location in DataORAM.
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