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Abstract. In this paper, we propose the M-method which uses the bit-
wise characteristic matrix to search impossible differentials. M-method
exploits not only the linear components but also partial information of
non-linear components. According to the principle of miss-in-the-middle,
we construct two different types of contradiction to search the impossi-
ble differentials with limited time and memory complexity by calculat-
ing Mr1

en and Mr2
de which represent r1 rounds encryption and r2 rounds

decryption, respectively. Compared with the previous methods, our tech-
nique is comprehensible and fast especially for large block size.

As a result, we find the 7-round impossible differentials of GIFT-128,
the 5-round impossible differentials of PRIDE, and the 4-round impossi-
ble differentials of Pyjamask-96. For GIFT-64, PRESENT, RECTANGLE
which are well-analyzed by MILP-method or SAT-method, we construct
new impossible differentials. Moreover, the efficiency of our method will
not be influenced by the block size, which makes us find the new 5-round
impossible differentials of the 320-bit permutation of ASCON.

Keywords: Block cipher · Characteristic matrix · Impossible
differential cryptanalysis

1 Introduction

The block cipher is of great importance in the field of cryptology. When design-
ing a block cipher, designers always obey the diffusion and confusion principle
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and guarantee them by iterating the round function which contains linear and
non-linear layers. The SPN structure and Feistel structure with SP-type round
functions are examples of the design principle. When it comes to lightweight
block ciphers, such as PRESENT [4], GIFT [2], and PRIDE [1], the designers
tend to use bitwise operations like bit permutation or cyclic shift rather than
multiplication with the matrix over the finite field and to use 4-bit S-boxes
rather than 8-bit S-boxes for efficient implementation. The diffusion of a bitwise
permutation is much slower than the matrix multiplication such as the MDS
matrix used in AES, and the confusion is weaker when the size of the S-box is
smaller. Moreover, in some S-boxes such as the S-box of PRESENT and GIFT,
certain bits of the output difference are determinate if the input difference is
fixed with specific bits. In [20], Tezcan named the bits as undisturbed points
which can simplify the differential cryptanalysis and the impossible differential
cryptanalysis.

As one of the most powerful cryptanalysis techniques, impossible differ-
ential cryptanalysis was independently proposed by Knudsen [12] and Biham
et al. [3]. Unlike the differential cryptanalysis aiming at finding high-probability
differentials, the impossible differential cryptanalysis is to find the differential
(Δin,Δout), where the input difference Δin can never propagate to Δout. Impos-
sible differential cryptanalysis usually has two phases, the first one is to find the
impossible differentials covering as many rounds as possible; the second one is
to filter the wrong keys by extending the distinguisher several rounds. There-
fore, constructing the impossible differentials is the key step that determines the
number of attacking rounds.

To search longer impossible differentials efficiently, the automatic searching
tools have been developed rapidly in the last decades. In 2003, Kim et al. [11]
published the first automatic searching tool named U-method for impossible
differentials. The U-method classifies every byte of a block into the U-set and
constructs contradictions in the middle state. In 2009, Luo et al. [14] improved
the U-method and proposed the UID-method. In 2012, Wu et al. [21] further
exploited the properties of linear operations by solving the system of linear
equations. Although the searching ability is improved rapidly compared with
manual derivation, the above automatic tools cannot make use of the details
of S-boxes and they can only cover the word-oriented block ciphers. To allevi-
ate the above limitations, researchers have turned their attention to modeling
the impossible differential searching into Mixed Integer Linear Programming
(MILP) problem or Boolean Satisfiability Problem (SAT), which have been used
maturely for optimization problems. In 2016, Cui et al. [5] extended the applica-
tions of MILP-method on searching impossible differentials. At EUROCRYPT
2017, Sasaki et al. [15] presented another MILP-based automatic tool for impos-
sible differentials searching which can cover more structures. At ASIACRYPT
2020, Hu et al. [10] proposed a new automatic search tool based on SAT-method
to model the impossible polytopic transitions and key dependent transitions
which were not considered by the previous automatic tools. In summary, the
more information of a block cipher that the automatic search tools can absorb,
the more impossible differentials can be found and in some cases the more rounds
can be covered.
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In general, the methods based on MILP or SAT can cover more structures
and find longer distinguishers, but there are also limitations. One of them is
that the computation complexity will increase rapidly while the block size is
large. In [15], the authors claimed that even if the size of the S-box is small,
it is computationally hard to evaluate a large block size of more than 256 bits.
And the automatic tools cannot tell why the differentials are impossible. Because
of the heuristic algorithms used in MILP/SAT-solvers, the process of solving is
nearly a black box. Therefore, the authors of the automatic tools always manually
verify some of the results.

While the above research found impossible differentials by automatic tools,
there is another line of research that determines the impossible differentials by
theoretical proof. At CRYPTO 2015, Sun et al. [19] proved that without con-
sidering the details of S-boxes, the WW-method [21] can find all word-oriented
impossible differentials of both Feistel structure with SP-type round functions
and SPN structure. Moreover, at EUROCRYPT 2016, Sun et al. [18] utilized the
characteristic matrix to prove the upper bound of truncated impossible differen-
tials for SPN structure. Following the line of research, Shen et al. [17] considered
the details of the S-boxes and found longer impossible differentials for Russian
standard block cipher Kuznyechik [8] and the permutation of PHOTON [9]. After
that, at ISPEC 2017, Shen et al. [16] further studied the matrix representation
of a block cipher and proposed a more precise matrix representation named
diffusion matrix. By utilizing the diffusion matrix, they constructed impossible
differentials of SIMON-like block ciphers.

Our Contributions. Along the research line of Sun et al. [18] and Shen
et al. [16], we propose the M-method which uses the bitwise characteristic matrix
to search impossible differentials for more block ciphers while Shen et al. [16]
only considered the SIMON-like block ciphers.

We first calculate the matrix representation of one round encryption which
is denoted as Men. The matrix Men contains not only the information of linear
components but also some information of the S-box. After iterating the Men

for r times, i.e. Mr
en, we get the matrix representation of the r-round encryp-

tion. By multiplying the difference with the corresponding matrix, we get the
middle state of the block cipher. The decryption is the same. Then we can con-
struct impossible differentials according to the principle of miss-in-the-middle.
Moreover, we propose the indirect contradiction where we extend the rounds of
impossible differentials by looking up the Difference Distribution Table (DDT)
of the S-box. The main results of our technique for searching impossible differ-
entials are listed in Table 1.

Compared with the MILP-based and SAT-based tools, our technique has the
following advantages:

(1) Model Large States: Our method models an n-bit block cipher by an n × n
matrix and the only computation is matrix multiplication, which is easy for
a laptop. Therefore, our method can function with nearly no compromises
no matter how large the block size is. We apply our method to the 320-bit
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Table 1. Main results

Block ciphers Search tool Rounds Ref.

GIFT-64 SAT 6 [2]

MILP 6 [10]

M-method 6 Ours

GIFT-128 M-method 7 Ours

PRIDE M-method 5 Ours

Pyjamask-96 Previous 3 [13]

M-method 4 Ours

Pyjamask-128 M-method 3 Ours

PRESENT MILP 6 [5]

M-method 6 Ours

ASCON Previous 5 [7]

M-method 5 Ours

RECTANGLE MILP 8 [15]

M-method 8 Ours

permutation of ASCON and find new impossible differentials. We also find
the 7-round impossible differentials of GIFT-128.

(2) Comprehensible Contradictions: We construct contradictions by determin-
ing the middle states with the characteristic matrices. So we are clear about
the type and the position of every contradiction. Utilizing the linear corre-
lations between different contradictions, the M-method can construct new
impossible differentials for GIFT-64, PRESENT, ASCON, RECTANGLE.

(3) Negligible time and memory complexity: After the bitwise characteristic
matrix is determinate, we can construct contradictions by combining the
column vectors in the matrix. And we only consider specific columns with
determinate entries, which is much less than the search range. During the
computation, the only thing we have to store in the memory is several n×n
matrices.

Paper Outline. In Sect. 2, we introduce necessary preliminaries. In Sect. 3, we
introduce the bitwise characteristic matrix and demonstrate the mechanism of
our searching tool for impossible differentials. In Sect. 4, we apply our tech-
nique to some block ciphers. In Sect. 5, we conclude this paper and put forward
some future works. And the necessary supplemental material is given in the
Appendixes.

2 Preliminaries

2.1 Notation

The notation in this paper is listed in Table 2.
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Table 2. Notation

F
∗
2n All non-zero elements in F2n

ei A vector with only the i-th bit being 1, others being 0

#(I) The number of elements in set I

⊕ Bitwise XOR
⊕

i∈{0,1,2} xi x0 ⊕ x1 ⊕ x2

α[i] The i-th bit of α

fn(x) f ◦ f ◦ · · · ◦ f
︸ ︷︷ ︸

n

(x)

MF The bitwise characteristic matrix of F (x)

Mij The element of M located at the i-row and the j-th column

α
F1F2−−−→ β β = F2 ◦ F1(α)

α
F1F2←−−− β α = F1 ◦ F2(β)

2.2 The Boolean Function

The n-variable boolean function is a function maps F
n
2 to F2. Let f0, f1, . . . fm−1

be n-variable boolean functions, so the vectorial boolean function maps F
n
2 to

F
m
2 is defined as:

F (x) = (f0(x), f1(x), . . . , fm−1(x)).

For any block cipher with a block size of n bits, we can treat it as a vectorial
boolean function that maps F

n
2 into F

n
2 . ANF (Algebraic Normal Form) is one

of the representations for a boolean function.
Let x ∈ F

n
2 , the ANF of a n-variable boolean function is as follows:

f(x) =
⊕

I∈P(N)

aI(
∏

i∈I

xi),

P(N) is the power set of N = {0, 1, . . . , n − 1}, aI ∈ F2. Note that all vectors in
this paper are column vectors if not specified.

3 Searching the Impossible Differentials by Bitwise
Characteristic Matrix

3.1 Description of Bitwise Characteristic Matrix

The definition of bitwise characteristic matrix can be obtained from the aspect
of boolean function. Let E be an n-bit block cipher, the input and output of one
round function are denoted as x = (x0, x1, . . . , xn−1) and y = (y0, y1, . . . , yn−1)
respectively. The bitwise characteristic matrix is defined as follows:
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Definition 1. For a given block cipher E, the ANF of yi is

yi =
⊕

I∈P(N)

aI(
∏

k∈I

xk).

Concerning the correlation between the xj and yi, the above ANF can be
expanded to

yi = p(x0, . . . , xj−1, xj+1, . . . , xn−1)xj ⊕ q(x0, . . . , xj−1, xj+1, . . . , xn−1),

p(·) and q(·) are (n − 1)-variable boolean functions independent of xj.
The bitwise characteristic matrix of E is denoted as M, Mij is defined as:

Mij =

⎧
⎪⎨

⎪⎩

0, p(x0, . . . , xj−1, xj+1, . . . , xn−1) = 0
1, p(x0, . . . , xj−1, xj+1, . . . , xn−1) = 1
?, p(x0, . . . , xj−1, xj+1, . . . , xn−1) �= 0, 1

the 0 and 1 of M are defined over F2 which are called determined points. Mij = 0
means xj is independent of yi; Mij = 1 means when xj changes, yi must change;
Mij =? means when xj changes, we can not tell whether yi changes. When all
xj and yi are analyzed according to the above process, the bitwise characteristic
matrix M of E can be obtained.

To explain the operation between the bitwise characteristic matrices, a 4-bit
S-box is constructed, and the ANF is as follows

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y0 = x0,

y1 = x0 ⊕ x1,

y2 = x0 ⊕ x1x2,

y3 = 1 ⊕ x2 ⊕ x3.

The bitwise characteristic matrix of the S-box is:

MS =

⎛

⎜⎜⎝

1 0 0 0
1 1 0 0
1 ? ? 0
0 0 1 1

⎞

⎟⎟⎠ .

Let x, y, z ∈ F
4
2, and x

S→ y
S→ z. Easy to know the ANF of z is as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

z0 = y0 = x0,

z1 = y0 ⊕ y1 = x1,

z2 = y0 ⊕ y1y2 = x0 ⊕ (x0 ⊕ x1)(x0 ⊕ x1x2) = x0x1 ⊕ x1x2 ⊕ x0x1x2,

z3 = 1 ⊕ y2 ⊕ y3 = x0 ⊕ x2 ⊕ x3 ⊕ x1x2.



Out of Non-linearity 75

Then the bitwise characteristic matrix of two rounds S-box is:

MS◦S =

⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
? ? ? 0
1 ? ? 1

⎞

⎟⎟⎠ .

The addition and multiplication between two characteristic matrices is defined
as the following tables.

Table 3. Addition

+ 0 1 ?

0 0 1 ?

1 1 0 ?

? ? ? ?

Table 4. Multiplication

× 0 1 ?

0 0 0 0

1 0 1 ?

? 0 ? ?

According to the above calculation rules, it is easy to verify that MS◦S =
MSMS . For any two n-variable vectorial boolean functions F1 and F2, it can
be deduced that

MF2◦F1 = MF2MF1 ,

note that the order of matrix multiplication needs to be consistent with the order
of function composition.

For the above 4-bit S-box, when some bits of the input difference are fixed
to be 0, some bits of the output difference can be linear combinations of the
input bits. For example, let the input difference be α = (α0, 0, 0, ?), the output
difference is β = (α0, α0, α0, ?). These linearized bits are also called undisturbed
points in [20]. The undisturbed points correspond to the determined points in
the matrix, which is similar to the idea of Cube attack [6] where the attacker
linearizes the nonlinear function by fixing some variables in the boolean function.

For a block cipher, it is difficult to find the undisturbed points, but for the
S-box, the undisturbed points can be found easily by enumerating all input
differences of the S-box. We find that most 4-bit S-boxes of lightweight block
ciphers containing undisturbed points, such as GIFT, PRESENT, PRIDE. And
some S-boxes with sizes more than 4 bits also have undisturbed points, such as
the 8-bit S-boxes of Skinny-128 and Midori-128, the 5-bit S-box of ASCON.

Since the elements of a bitwise characteristic matrix represent the correlation
between the input and output bits, the matrix and the input difference can be
multiplied to get the output difference. In order to explain the usage of the
bitwise characteristic matrix, this section we construct a simplified 8-bit Feistel
block cipher (Fig. 1), and the function F is the 4-bit S-box constructed above.
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F
⊕

L R

L′ R′

Fig. 1. A toy cipher

Men =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 0 0 0
1 1 0 0 0 1 0 0
1 ? ? 0 0 0 1 0
0 0 1 1 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, M2
en =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 0 0 0
0 1 0 0 1 1 0 0
? ? ? 0 1 ? ? 0
1 ? ? 1 0 0 1 1
1 0 0 0 1 0 0 0
1 1 0 0 0 1 0 0
1 ? ? 0 0 0 1 0
0 0 1 1 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

According to the determined points of M2
en, some bits of the output dif-

ference can be quickly calculated. For example, let the input difference be
α = (1, 1, 0, 0, 0, 0, 0, 0), then the output difference β after two rounds of encryp-
tion is

β = M2
enα =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 0 0 0
0 1 0 0 1 1 0 0
? ? ? 0 1 ? ? 0
1 ? ? 1 0 0 1 1
1 0 0 0 1 0 0 0
1 1 0 0 0 1 0 0
1 ? ? 0 0 0 1 0
0 0 1 1 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
0
0
0
0
0
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
?
?
1
0
?
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

For an SPN cipher, the linear layer can be represented by a F2 matrix and
the S-box layer can be represented by a block diagonal matrix. So the matrix
representation of a one round SPN cipher can be denoted as MP◦S = MPMS .

3.2 Description of the Contradictions

After defining the bitwise characteristic matrix, we can construct contradictions
in the middle state by exploiting the properties of the matrix representation. We
introduce two different types of contradiction: direct contradiction and indirect
contradiction.
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Direct Contradiction: This type of contradiction happens when the middle
states after encryption and decryption are obtained by directly multiplying the
input and output differences with the corresponding matrix. Let the middle
state after r0-round encryption be α1 and after r1-round decryption be β1, the
corresponding matrix representations be Mr0

en and Mr1
de, the input difference be

α and the corresponding (r0 + r1) rounds output difference be β, we have:

α1 = Mr0
en α, β1 = Mr1

de β.

If specific bits of α1 must be 1 and the same bits of β1 must be 0, or vice versa,
we can construct the direct contradiction. For convenience, we also denote the
direct contradiction as follows:

α
encryption−−−−−−−→ α1 �= β1

decryption←−−−−−−− β.

Indirect Contradiction: This type of contradiction happens when the middle
states after encryption and decryption are obtained by multiplying the differ-
ences with the corresponding matrix and looking up the DDT of S-box before
or after the matrix multiplication. If we look up the DDT only once, there are 3
different cases:

S(α)
encryption−−−−−−−→ α1 �= β1

decryption←−−−−−−− β,

α
encryption−−−−−−−→ α1 �= β1

decryption←−−−−−−− S−1(β),

α
encryption−−−−−−−→ α1

S
� β1

decryption←−−−−−−− β.

Take the first case for example. We look up the DDT of a S-box at input layer, we
should calculate Mencryption and the input of Mencryption enumerates all possi-
ble differences after the S-box. To simplify the enumeration of DDT, we can also
choose the undisturbed points and directly sum up the corresponding columns
of the bitwise characteristic matrix. Take the S-box of GIFT for example, since
the output difference must be (?, ?, 0, ?) when the input difference is (1, 1, 1, 0),
we can make the input difference be (1, 1, 1, 0) and sum up the first, second and
fourth columns in the r-round matrix representation to get the middle state of
(r + 1)-round encryption.

By indirect contradiction, we always find new and even longer impossible
differentials than direct contradiction as we can utilize all undisturbed points of
the S-box. Therefore we can easily deduce that if there is an r-round direct con-
tradiction, there must be an r-round indirect contradiction. But the efficiency of
constructing direct contradiction is usually higher than constructing the indirect
contraction. Thus we first determine the longest direct contradiction and then
search for the longer indirect contradiction. Algorithm 1 shows the processing of
searching impossible differentials with the M-method.

In the following section, we will apply our method to several block ciphers
and detail the process of finding the impossible differentials of GIFT.
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Algorithm 1. Search the impossible differential
Input: Men, Mde, DDT of the S-box
Output: the longest impossible differential
1: r1 = r2 = 1
2: while There is (r1 + r2)-round direct contradiction do
3: r1 = r1 + 1
4: Calculate Mr1

en

5: while There is (r1 + r2)-round direct contradiction do
6: r2 = r2 + 1
7: Calculate Mr2

de

8: end while
9: end while //the longest direct contradiction is r1 + r2

10: Looking up the DDT, check if there is indirect contradiction
11: if There is indirect contradiction then
12: Output the (r1 + r2 + 1)-round impossible differential
13: end if
14: if There is no indirect contradiction then
15: Output the (r1 + r2)-round impossible differential
16: end if

4 Applications from Cryptanalysis Aspects and Main
Results

4.1 GIFT-64 and GIFT-128

GIFT [2] is an SPN lightweight block cipher proposed at CHES 2017. It is com-
posed of 4-bit S-boxes and bit-wiring. The designers of GIFT revisit the design
rationale of PRESENT and improve both security and efficiency. According to
different block sizes, GIFT can be denoted as GIFT-64 and GIFT-128. Both of
them adopt the same 4-bit S-box, the specification of the S-box in hexadecimal
notation is given in Table 5.

Table 5. 4-bit S-box of GIFT

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) 1 a 4 c 6 f 3 9 2 d b 7 5 0 8 e

Firstly, we calculate the bitwise characteristic matrices of the S-box and the
results are as follows:

MS =

⎛

⎜⎜⎝

? ? ? ?
? ? ? ?
1 ? ? ?
1 1 ? ?

⎞

⎟⎟⎠ , MS−1 =

⎛

⎜⎜⎝

? 1 ? 1
? 1 1 ?
? ? ? ?
? ? ? ?

⎞

⎟⎟⎠ .
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Moreover, there are 2 other differentials of an S-box that contain undisturbed
points which can not be modelled by bitwise characteristic matrix, they are:
(0, 1, 1, 0) S→ (?, ?, 1, ?) and (1, 1, 1, 0) S→ (?, ?, 0, ?).

Then We apply the M-method to evaluate both GIFT-64 and GIFT-128.
For GIFT-64, the designers of GIFT applied the MILP-method and found

6-round impossible differentials for GIFT-64. In our method, we construct indi-
rect contradictions for 6 rounds by looking up the DDT for the first S-box layer,
the contradiction is described as follows:

S(α) PSPS−−−−→ α1 �= β1
P−1S−1P−1S−1P−1S−1

←−−−−−−−−−−−−−−−− β.

Firstly, we determine the matrix representation of 2-round encryption and 2.5-
round decryption i.e. MS◦P◦S◦P and MS−1◦P−1◦S−1◦P−1◦S−1 , respectively.

The matrix representation of a single S-box layer is a diagonal block matrix
with every sub-block on the main diagonal is the bitwise characteristic matrix of
a single S-box. Therefore, the matrix representation of a single S-box layer can
be denoted as:

MS =

⎛

⎜⎜⎝

M 0 0 0
0 M 0 0
0 0 M 0
0 0 0 M

⎞

⎟⎟⎠ , M �

⎛

⎜⎜⎝

MS 0 0 0
0 MS 0 0
0 0 MS 0
0 0 0 MS

⎞

⎟⎟⎠ .

The bit permutation can be easily transferred into a permutation matrix,
which has exactly one non-zero entry in each column and each row. So the
matrix representation of single round encryption starting at P-layer is Men �
MS◦P = MSMP . Therefore, we can calculate the matrix representation of
2-round encryption i.e. M2

en, and the matrix representation of 3-round decryp-
tion i.e. M3

de. The specification of Men, M2
en and M3

de are given in Appendix A.
According to Men and M2

en, there is no 1-entry after 2-round encryption.
Since the matrix representations of 3-round encryption and 4-round decryption
are all ?-entries, so we can only construct 5-round direct contradiction by M2

en

and M3
de at most. But we can utilize the undisturbed points which are not

contained in the matrix representation to construct an insufficient diffusion state
after 2.5-round encryption i.e. S ◦ P ◦ S ◦ P ◦ S(x).

Let the input difference only active the first S-box in the first S-box layer.
According to the undisturbed points of the S-box, let the non-zero nibble of
the input difference be (1, 1, 1, 0) i.e. the e in hexadecimal notation, the cor-
responding output difference must be (?, ?, 0, ?), which is exactly the non-zero
nibble of the input difference of S ◦ P ◦ S ◦ P (x). Hence the output difference of
2.5-round encryption can be obtained by multiply the output difference of the
first S-box layer with the M2

en. Since there is only one non-zero column in each
Ci (i = 0, 1, 2, 3), when the input difference of M2

en contains 0-entry, the output
difference must have zero nibbles. Take an example, C3 · (?, ?, ?, 0) = (0, 0, 0, 0)
and C2 · (?, ?, 0, ?) = (0, 0, 0, 0).

Let the input difference be α = (e, 0, . . . , 0) in hexadecimal nota-
tion, so the corresponding difference after 2.5-round encryption is α1 =
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M2
en · S(α) = (?, 0, ?, ?, ?, 0, ?, ?, ?, 0, ?, ?, ?, 0, ?, ?) which means there

are 4 nibbles in α1 that must be zero. Let the output difference
β be (0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), according to M3

de, the corre-
sponding difference after 3-round decryption must be β1 = M3

deβ =
(β10, β11, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?) and the nibble β10 = (1, ?, ?, ?) and
β11 = (?, 1, ?, ?) which means β1[0] = β1[5] = 1. Since the β1[5] = 1 and α1[5] = 0
are the same bit in the same sate, we construct a 6-round impossible differential
for GIFT-64 as follows:

(e, 0, . . . , 0) 6R
� (0, 0, 0, 0, 4, 0, . . . , 0).

Moreover, since the matrix representation can reveal the linear correlations
between every bit, we can construct impossible differentials activating more
S-boxes. Besides looking up the DDT of the first S-box layer, we can also look up
the DDT of the last S-box layer, which can provide more impossible differentials
by utilizing more undisturbed points. The contradictions can be denoted as:

S(α) PSPS−−−−→ α1 �= β1
P−1S−1P−1S−1P−1

←−−−−−−−−−−−−− S−1(β).

In Appendix B, we present the difference propagation of one impossible differ-
ential which activates 8 S-boxes in the first layer and 8 S-boxes in the last layer.
The 6-round impossible differential in hexadecimal notation is

(e, c, 0, 0, e, c, 0, 0, e, c, 0, 0, e, c, 0, 0) 6R
� (9, 9, 9, 9, 4, 6, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0).

For GIFT-128, the designers only claim that GIFT-128 can achieve full
diffusion after 4 rounds. According to the full diffusion state, GIFT-128 has
no 8-round truncated impossible differentials. But the impossible differentials
which consider the information of the S-box are missing in the document. At
ASIACRYPT 2020, the SAT-method only considered GIFT-64, and there is no
impossible differential cryptanalysis of GIFT-128 in other public documents.

Utilizing the indirect contradiction, we construct 7-round impossible differ-
entials for GIFT-128. The contradiction can be denoted as:

α
SPSPSP−−−−−−→ α1

S
� β1

P−1S−1P−1S−1P−1S−1

←−−−−−−−−−−−−−−−− β,

hence we need to calculate the matrix representation of 3-round encryption and
3-round decryption denoted as M3

en and M3
de respectively. And M3

en · α = α1,
M3

de · β = β1.
Firstly, we calculate the matrix representation of 3-round encryption and the

result is as follows:

M3
en =

⎛

⎜⎜⎝

D0 D0 D1 D1

D1 D1 D0 D0

D0 D0 D1 D1

D1 D1 D0 D0

⎞

⎟⎟⎠ ,
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D0 and D1 represent two different 32 × 32 matrices, which can be denoted as
two 8 × 8 block matrices:

D0 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B0 B0 B0 B0 B0 B0 B0 B0

B0 B0 B0 B0 B0 B0 B0 B0

B0 B0 B0 B0 B0 B0 B0 B0

B0 B0 B0 B0 B0 B0 B0 B0

B0 B0 B0 B0 B0 B0 B0 B0

B0 B0 B0 B0 B0 B0 B0 B0

B0 B0 B0 B0 B0 B0 B0 B0

B0 B0 B0 B0 B0 B0 B0 B0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,D1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B1 B1 B1 B1 B1 B1 B1 B1

B1 B1 B1 B1 B1 B1 B1 B1

B1 B1 B1 B1 B1 B1 B1 B1

B1 B1 B1 B1 B1 B1 B1 B1

B1 B1 B1 B1 B1 B1 B1 B1

B1 B1 B1 B1 B1 B1 B1 B1

B1 B1 B1 B1 B1 B1 B1 B1

B1 B1 B1 B1 B1 B1 B1 B1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The definitions of B0 and B1 are as follows:

B0 =

⎛

⎜⎜⎝

0 0 0 0
? ? ? ?
0 0 0 0
? ? ? ?

⎞

⎟⎟⎠ , B1 =

⎛

⎜⎜⎝

? ? ? ?
0 0 0 0
? ? ? ?
0 0 0 0

⎞

⎟⎟⎠ .

When we focus on the difference propagation through B1, the output difference
can be denoted as (?, 0, ?, 0) which might be one of {0, 2, 8, a} in hexadecimal
notation. According to the DDT of S-box, differences in {0, 2, 8, a} can never
propagate to {2, 4, 8, c}. Hence we can deduce two bit-level truncated impossible
differentials for B1, which are (?, 0, ?, 0) S

� (1, ?, 0, 0) and (?, 0, ?, 0) S
� (?, 1, 0, 0).

From the matrix representation of 3-round encryption, it is clear that if the
input difference α = e0 � (1, 0, . . . , 0), every nibble of the corresponding output
difference is one column of B0 or B1, take a example, the 15th nibble of α1 in
binary notation is α1[60 · · · 63] = (?, 0, ?, 0).

Secondly, we calculate the matrix representation of 3-round decryption M3
de.

Since the 128 × 128 matrix M3
de is too large to present even by block matrix

representation, we only depict 4 columns of the matrix. Let the output difference
after 7-round encryption active the first S-box in the last layer, so we only need
to present the first 4 columns of M3

de.

Row[0 · · · 31] = (B6, B4, B5, B7, B6, B4, B5, B7),
Row[32 · · · 63] = (B6, B4, B5, B7, B3, B4, B5, B2),
Row[64 · · · 95] = (B6, B4, B5, B7, B6, B4, B5, B7),

Row[96 · · · 127] = (B6, B4, B5, B7, B6, B4, B5, B7).

The definitions of Bi (i = 2, 3, 4, 5, 6, 7) are as follows:

B2 =

⎛

⎜⎜⎝

? 1 1 ?
? ? ? ?
0 0 0 0
0 0 0 0

⎞

⎟⎟⎠ , B3 =

⎛

⎜⎜⎝

0 0 0 0
? 1 1 ?
? ? ? ?
0 0 0 0

⎞

⎟⎟⎠ , B4 =

⎛

⎜⎜⎝

0 0 0 0
0 0 0 0
? ? ? ?
? ? ? ?

⎞

⎟⎟⎠ ,
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B5 =

⎛

⎜⎜⎝

? ? ? ?
0 0 0 0
0 0 0 0
? ? ? ?

⎞

⎟⎟⎠ , B6 =

⎛

⎜⎜⎝

0 0 0 0
? ? ? ?
? ? ? ?
0 0 0 0

⎞

⎟⎟⎠ , B7 =

⎛

⎜⎜⎝

? ? ? ?
? ? ? ?
0 0 0 0
0 0 0 0

⎞

⎟⎟⎠ .

When the output difference β = e1 � (0, 1, 0, . . . , 0) or β = e2 �
(0, 0, 1, . . . , 0), the corresponding difference β1[60 · · · 63] = (1, ?, 0, 0).

Let α = e0 and β = e1, α1[60 · · · 63] = (?, 0, ?, 0) is exactly the input differ-
ence of the 15th S-box in the fourth round and β1[60 · · · 63] = (1, ?, 0, 0) is the
output difference of the same S-box, therefore α1

S
� β1 and (α, β) � (e0, e1) is

an impossible differential.
According to the matrix representation of 3-round encryption, the 3-round

GIFT-128 dose not achieve full diffusion and the first 16 nibbles cannot influence
the 61st bit and the 63rd bit of α1. Therefore, the input difference α can at most
activate 16 S-boxes. And by looking up the DDT of the S-box in the last round,
we can investigate more linear properties which make the output difference can
at most activate 8 S-boxes and we present one of them in Appendix C.

4.2 Other Block Ciphers

By Algorithm 1, we also make applications to many other block ciphers. Due to
the limitation of the page size, we only present the new impossible differentials
found by M-method.

For PRIDE, an 64-bit block cipher proposed at CRYPTO 2014, we find the
first 5-round impossible differentials and there are only indirect contradictions
for 5-round PRIDE, one of which is as follows:

S(α) PSPS−−−−→ α1 �= β1
P−1S−1P−1

←−−−−−−−− S−1(β).

One of the impossible differentials is as follows:

(0, 0, 8, 0, 0, 1, 0, 0, 8, 0, 8, 0, 7, 0, 0, 0)
5R
� (0, 0, 0, β0, 0, 0, 0, β1, 0, 0, β2, 0, 0, 0, β3, 0).

βi ∈ F
∗
24 (i = 0, 1, 2, 3), therefore the input difference activates 5 S-boxes and the

output difference activates 4 S-boxes.
For Pyjamask, one of the 2nd round candidates of the NIST lightweight

cryptography project, the block size has two different versions i.e. 96-bit and
128-bit. As Pyjamask adopts complex binary matrices to be the linear compo-
nent and LS-design, it can achieve full diffusion in 2 rounds which means there
is no 4-round truncated impossible differentials. For Pyjamask-96, taking into
consideration the information of the S-box, we construct 4-round impossible dif-
ferentials by indirect contradiction. And our impossible differentials surpass the
previous results which cover only 3 rounds. The contradiction for Pyjamask-96
is as follows:

S(α) PSP−−−→ α1 �= β1
S−1P−1

←−−−−− S−1(β).
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One of the impossible differentials in Octal notation is as follows:

(6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 4R
�

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, β0, 0, 2, 0, 0, 0, β1, 0, 0, 0),

βi ∈ F
∗
23 (i = 0, 1), therefore the input difference activates 1 S-boxes and the out-

put difference activates 3 S-boxes. For Pyjamask-128, we can only find 3-round
impossible differentials by direct contradictions and we construct an impossible
differential which activate 13 input S-boxes and 21 output S-boxes. And the
impossible differential is as follows:

(9, 0, 0, 9, α0, 0, 0, α1, 0, α2, 2, α3, 0, 0, 0, 0, 2, 0, 1, 0, 2, α4, 0, 0, 0, 0, 0, α5, 0, α6, 0, 0)

4R
� (β0, 0, β1, β2, β3, β4, 0, β5, β6, 0, β7, β8, 0, 0, 0, 0, β9, 0, 0, β10, β11, 0, 0, β12, β13,

β14, β15, β16, β17, β18, 0, β19) αi, βi ∈ F
∗
24 .

For ASCON, one of the finalists of the NIST lightweight cryptography
project, the block size is 320 bits and the S-box size is 5 bits, we construct
new 5-round impossible differentials by indirect contradictions. One of the con-
tradictions is as follows:

S(α) PSPSP−−−−−→ α1 �= β1
S−1P−1S−1

←−−−−−−−− β.

And one of the 5-round impossible differentials in hexadecimal notation is as
follows:

(0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 4, 0, 0, 0, 0, 7, 0, 0, 0, α0, f, 0, 0, 0, 0, 0, 0, 0, 0, c, 0, 0,

13, 0, 0, c, 0, 0, 0, 8, 0, 0, c, 0, 0, 0, 0, 0, 0, c, 0, 0, 0, 0, 0, 0, 0, 13, 0, 0, α1, 1c)
5R
� (0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, β0, 0, · · · , 0) αi, βi ∈ F
∗
25 .

For RECTANGLE, a 64-bit lightweight block cipher, we construct new
8-round impossible differentials by indirect contradictions. One of the contra-
dictions is as follows:

S(α) PSPSPSP−−−−−−−→ α1 �= β1
S−1P−1S−1P−1S−1P−1

←−−−−−−−−−−−−−−−− S−1(β).

And one of the 8-round impossible differentials in hexadecimal notation is as
follows:

(0, 0, 0, 0, 5, 0, 0, c, 0, 0, 0, 0, 0, 0, 0, 0) 8R
� (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 6, 0, 0, 0).

For PRESENT, a 64-bit block cipher proposed at CHES 2007, we construct
new 6-round impossible differentials by indirect contradictions. One of the impos-
sible differentials is as follows:

(9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9) 6R
� (5, 5, 5, 5, 5, 1, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5).
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5 Conclusion

In this paper, we defined the bitwise characteristic matrix and applied it to
search for impossible differentials. By iterating the matrix to represent r-round
block ciphers, we improve the efficiency of searching. Moreover, the M-method
can easily model block ciphers with block sizes more than 256 bits and reveal
the positions of the contradictions. And the matrix multiplication defined in
this paper can function with low time and memory complexity. As a result, we
find new impossible differentials for some block ciphers including the 7-round
impossible differentials for GIFT-128, the 5-round impossible differentials for
PRIDE, and the 4-round impossible differentials for Pyjamask-96.

Although M-method has some advantages, there are still some limitations
which are also the targets of our future works. The first one is to make our
method cover more cryptanalysis techniques such as linear cryptanalysis and
more block cipher structures such as ARX. The second one is to make our
method containing more details of the block ciphers including the key schedule.
The last but not least is to apply our method to optimize the key recovery
phases.

A The Matrix Representations of GIFT-64

Because of the page size, we can only represent each bitwise matrix as a block
matrix and the dimension of each sub-block is equal to the size of the S-box,
and the sub-block 0 in the matrix denotes a 4 × 4 matrix with all 16 entries are
0, the sub-block ? denotes a sub-block with all entries are ?.

Men =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A1 A2 A3 A0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 A1 A2 A3 A0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 A1 A2 A3 A0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 A1 A2 A3 A0

A2 A3 A0 A1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 A2 A3 A0 A1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 A2 A3 A0 A1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 A2 A3 A0 A1

A3 A0 A1 A2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 A3 A0 A1 A2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 A3 A0 A1 A2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 A3 A0 A1 A2

A0 A1 A2 A3 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 A0 A1 A2 A3 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 A0 A1 A2 A3 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 A0 A1 A2 A3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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M2
en =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0

C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1

C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2

C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3

C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0

C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1

C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2

C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3

C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0

C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1

C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2

C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3

C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0

C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1

C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2

C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

M3
de =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

R1 ? ? ? R0 ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? R1 ? ? ? R0 ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? R1 ? ? ? R0 ? ? ?

R0 ? ? ? ? ? ? ? ? ? ? ? R1 ? ? ?

? ? ? R1 ? ? ? R0 ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? R1 ? ? ? R0 ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? R1 ? ? ? R0

? ? ? R0 ? ? ? ? ? ? ? ? ? ? ? R1

? ? R1 ? ? ? R0 ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? R1 ? ? ? R0 ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? R1 ? ? ? R0 ?
? ? R0 ? ? ? ? ? ? ? ? ? ? ? R1 ?

? R1 ? ? ? R0 ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? R1 ? ? ? R0 ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? R1 ? ? ? R0 ? ?
? R0 ? ? ? ? ? ? ? ? ? ? ? R1 ? ?

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

A0 �

⎛
⎜⎝

? 0 0 0
? 0 0 0
1 0 0 0
1 0 0 0

⎞
⎟⎠ , A1 �

⎛
⎜⎝

0 ? 0 0
0 ? 0 0
0 ? 0 0
0 ? 0 0

⎞
⎟⎠ , A2 �

⎛
⎜⎝

0 0 ? 0
0 0 ? 0
0 0 ? 0
0 0 1 0

⎞
⎟⎠ , A3 �

⎛
⎜⎝

0 0 0 ?
0 0 0 ?
0 0 0 ?
0 0 0 ?

⎞
⎟⎠ , R1 �

⎛
⎜⎝

? ? ? ?
? 1 1 ?
? ? ? ?
? ? ? ?

⎞
⎟⎠ ,

C0 �

⎛
⎜⎝

? 0 0 0
? 0 0 0
? 0 0 0
? 0 0 0

⎞
⎟⎠ , C1 �

⎛
⎜⎝

0 ? 0 0
0 ? 0 0
0 ? 0 0
0 ? 0 0

⎞
⎟⎠ , C2 �

⎛
⎜⎝

0 0 ? 0
0 0 ? 0
0 0 ? 0
0 0 ? 0

⎞
⎟⎠ , C3 �

⎛
⎜⎝

0 0 0 ?
0 0 0 ?
0 0 0 ?
0 0 0 ?

⎞
⎟⎠ , R0 �

⎛
⎜⎝

? 1 1 ?
? ? ? ?
? ? ? ?
? ? ? ?

⎞
⎟⎠ .
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B New 6-Round Impossible Differential for GIFT-64
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Fig. 2. 6-round impossible differential for GIFT-64

(e, c, 0, 0, e, c, 0, 0, e, c, 0, 0, e, c, 0, 0) 6R
� (9, 9, 9, 9, 4, 6, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0)

The blue lines mean the bit must be 1 according to DDT of the S-box, the orange
lines mean the value of the bit cannot be determined. And the following figures
adopt the same notation.
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C 7-Round Truncated Impossible Differential
for GIFT-128

Fig. 3. 7-round truncated impossible differential

(α[0 · · · 64]||064) 7R
� (6, 0, 4, 0, 6, 0, 6, 0, . . . , 0︸ ︷︷ ︸

17

, 5, 0, 5, 0, 5, 0, 5, 0)

In Fig. 3, the left side denotes the 128-bit output difference and the right side
denotes the 128-bit input difference. The difference propagation in the yellow
S-box is a contradiction and the specification is given in Fig. 4.

Fig. 4. Specification of the contradiction
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