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Abstract. With the advance of new technology and management
reforms, data sharing has unleashed the full potential for social produc-
tion during the past decade, especially for enterprise survival. Data poi-
soning attack is a typical attack faced by data sharing, EPSTO-ARIMA
(Electric Power Stochastic Optimization Predicting Based on Autore-
gressive Integrated Moving Average model) would increase prediction
error by generating adversarial shared data, which leads to the failure of
the prediction. In response to the EPSTO-ARIMA attack, this paper pro-
poses EPFSTO-ARIMA (Electric Power Forced Stochastic Optimization
Predicting Based on Autoregressive Integrated Moving Average model)
combined with data sanitization and data grouping. The model was val-
idated by seven sets of data from three datasets. Experimental results
indicate that EPFSTO-ARIMA can remedy the flaws of excessive accu-
racy error caused by the EPSTO-ARIMA. For publicly dataset “Col-
umn2”, the proposed EPFSTO-ARIMA achieves 30.44% lower predic-
tion error than EPSTO-ARIMA, respectively. Simultaneously, the ter-
rific results in other datasets have also been ascertained the viability
and generalization ability of our proposed EPFSTO-ARIMA.

Keywords: Stochastic sampling · Stochastic optimization ·
Adversarial examples · Inference attack · Data poisoning · Electric
power forced stochastic optimization predicting

1 Introduction

Data, as the source of all walks of life and an essential element for critical infras-
tructures, has been extremely successful used in the last decade, especially in
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energy. Among data value extraction, data sharing technology plays a pivotal role
in the whole life cycle of data. The maximization of data value has been achieved
by data sharing in multi-field applications. As a promising application of data
sharing, electricity data prediction, the amount of electricity used by different
consumers can be predicted, which can assist the government in optimizing the
planning of electricity infrastructure construction. In a nutshell, data prediction
can help countries and enterprises put the resource to good use, improve social
planning, optimize social management, and defend against cyber-attacks.

With the continuous evolution of LSTM (Long Short-Term Memory) [1], Bi-
LSTM (Bi-directional Long Short-Term Memory) [2], ARIMA (Autoregressive
Integrated Moving Average model) [3,4], the capability of data prediction has
made great progress and gradually become maturity. However, existing studies
have shown that data poisoning is widely concerned [5] in machine learning and
data poisoning attacks have gradually eroded the power sector [6,7].

EPSTO-ARIMA (Electric Power Stochastic Optimization Predicting Based
on Autoregressive Integrated Moving Average model) was proposed to increase
error of prediction by using the concept of dropout and stochastic sampling to
generate adversarial samples. The prediction error of EPSTO-ARIMA is higher
than ARIMA. Motivated by this, this paper proposed a new prediction model,
called EPFSTO-ARIMA (Electric Power Forced Stochastic Optimization Pre-
dicting Based on Autoregressive Integrated Moving Average model), which can
deal with excessive accuracy error caused by EPSTO-ARIMA with data saniti-
zation and data grouping.

Our main contributions in this paper include:

1) Reduce the prediction error caused by EPSTO-ARIMA. Data sanitization
and data grouping are used to defend EPSTO-ARIMA attack.

2) Ensure the availability of data. The EPFSTO-ARIMA prediction results are
in line with the original law of the data.

3) Explore data discipline. Utilizing EPFSTO-ARIMA, the influence of data
inference prediction results is discussed according to data grouping.

4) The results of EPFSTO-ARIMA have an enlightening influence on the defense
of poisoning attack and contribute to the defense of time series data poisoning
research.

This paper proceeds as follows. The second section reviews adversarial exam-
ples, data poisoning attack defense in literature. The third section describes our
response method. The fourth section presents the experimental conditions of
models and measures indicators of models, describes and discusses the experi-
mental results. The fifth section makes conclusions and describes future work.

2 Related Work

2.1 Data Poisoning and Adversarial Examples

The concept of adversarial example was proposed in [8], namely adding small per-
turbations to the original training data. Adversarial examples have been exten-
sively studied [9,10]. The process of model training of adversarial examples is
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called data poisoning, adversarial examples are difficult to be perceived but
become malicious for the trained model to incur erroneous results. To name a
few, Papernot et al. [11] found that the adversarial examples generated by one
model can cheat another model.

2.2 ARIMA

ARIMA is one of the most important and widely used models in time series
data prediction, which has used in energy [3], transportation [4]. Besides these,
ARIMA can be used in combination with other models [12]. But the topic of
predicting angle of attack defense is rarely considered.

2.3 Dropout

In 2012, Hinton [13] proposed dropout, which can effectively prevent over-fitting
in the training of complex feedforward neural network.

By randomly deleting some neurons on the network, dropout reduces the
complex co-adaptive relationship between neurons. Through research, Jagielski
et al. [5] found that dropping some contaminated data in training samples will
increase the error of some models. Drawing on the above ideas, EPSTO-ARIMA
was proposed to implement data poisoning.

2.4 Data Poisoning Attack Defense

In general, robustness improvement [14] and data sanitization [15] are used to
defend against data poisoning. In this paper, we use data grouping based on
data sanitization to counter data poisoning to improve the loss of prediction.

3 Our Approach

By referring to adversarial examples rapid generation method in [16] and the
automatic modulation classification based on deep learning in [17], reversing
use of the concept of data protection based on disturbance [18], following the
intuition discussed in [19] for sub-Nyquist sampling and the working principle of
Dropout [13], this paper proposed EPFSTO-ARIMA, which can realize data dis-
turbance as presented in the later sections. The algorithm of EPFSTO-ARIMA
is shown in Table 1 and Fig. 1.

We consider data poisoning and prediction scenario as shown in Fig. 1. In
Part 1, the input of the original data is illustrated. In Part 2, data were grouped,
stochastic sampling and optimized (Dropout) to generate and publish adversarial
examples. In Part 3, adversarial examples and original data were used to train
predictive models. In Part 4, the test data are used to verify the trained models
and get the predicted results.
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Fig. 1. Generation of adversarial examples vs. prediction.

3.1 Similarity Calculation

We utilize the idea of DTW (Dynamic Time Warping), a commonly used sim-
ilarity calculation algorithm to calculate the similarity distance between each
data and the average. According to similarity, the data is grouped to realize the
implementation of the forced stochastic optimization prediction.

Suppose two standard reference templates R = {R(1), ...R(m), ...R(M)} and
T = {T (1), ...T (n), ...T (N)}, among them, R is an M -dimensional vector, T is
an N -dimensional vector. The distance between R and T is shown as

D = min
c

(
N∑

n=1
[d(xi(n), yj(n)) • Wn]/

N∑

n=1
Wn) (1)

where Wn is a weighting function, which is affected by the similarity distance
of the previous data or the weight of the data. In this paper, we calculate the
similarity distance between the average and the data.

From Eq. 1, we can calculate the similarity as

Si = 1/(1 + Di) (2)

where Di represents the similarity distance between the average value and the
data, and it is default value is positive. Otherwise, its absolute value is taken.
Si represents the similarity. The larger the S, the higher the similarity.

3.2 Data Stochastic Sampling and Data Optimization

We utilize the idea of data sampling, Bayesian theory, and optimizing (Dropout)
to generate adversarial examples. Sampling data are stochastic selected from the
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Table 1. Algorithm of EPFSTO-ARIMA.

Algorithm 1:EPFSTO-ARIMA

Input:

1) Datasets;

2) The preprocessed data;

3) The start time(T1).

Initialize:

1) i=0;

2) ARIMA model.

Generate adversarial examples:

1) Calculate the DP with Eq. 4;

2) Calculate the similarity with Eq. 1, Eq. 2;

3) Grouped data according Eq. 13;

4) Stochastic sampling with Eq. 3, Eq. 5 and Eq. 13;

5) Data optimize with Eq. 4 and the Dropout algorithm [13].

Verify data and determine parameters:

1) Determine d,p,q;

2) Determine G with Eq. 13.

Import and train models:

1) Import ARIMA(p,d,q);

2) Import EPSTO-ARIMA(p,d,q,DP );

3) Import EPFSTO-ARIMA(p,d,q,G,DP );

4) Train ARIMA(p,d,q) with original data;

5) Train EPSTO-ARIMA(p,d,q,DP ) with adversarial examples;

6) Train EPFSTO-ARIMA(p,d,q,G,DP ) with adversarial examples.

Predict:

1) Compute yDP use Eq. 6, Eq. 7, Eq. 8, Eq. 9, Eq. 10;

2) Compute RMSE use Eq. 12;

3) Record the end time(T2) and compute TIME = T2 − T1.

Output:

1) Output PDP use Eq. 11;

2) Output RMSE;

3) Output TIME.

data sets according to the poisoning ratio. Each data point has the same prob-
ability of being selected, and the selected data is the optimized data (poisoned
data), which can be expressed as

yk = {x1+ki}, 0 ≤ i ≤ [(n − 1)/k] (3)

DP = no/nt (4)

P

(
n⋂

i=1

Si

)

=
n∏

i=1

P (Si) (5)
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where yk refers to the sampling data, k represents the sampling interval, DP
represents the proportion of optimized data to total data, also known as the
data poisoning ratio, no refers to the poisoned data, nt refers to the total data,
Si is the i − th data sampling, P (Si) is the generation probability of Si and

P

(
n⋂

i=1

Si

)

is the probability that independent events Si occur simultaneously.

3.3 EPFSTO-ARIMA

The data are grouped according to their similarity, and each group is stochas-
tically optimized in proportion. Suppose we divide the data into two groups of
G1 and G2. When performing data optimization with the optimized ratio DP ,
the forced stochastic optimization includes two steps: i) optimizing DP in G1 or
G2; ii) optimizing DP in the specific group according to actual needs. Compared
with the stochastic optimization, the forced stochastic optimization is specific
and can optimize data according to actual needs. We use adversarial examples
and original data to train the models.

When original data was used, the predicted results can be expressed as

yt = θ0 + φ1yt−1 + φ2yt−2 + · · · + φpyt−p + θ2et−2 + · · · + θqet−q (6)

When using adversarial examples, the predicted results can be expressed as

yDP1 = u + φ2yt−2 + · · · + φpyt−p + θ1et−1 + θ2et−2 + · · · + θqet−q (7)

yDP2 = u + φ1yt−1 + · · · + φpyt−p + θ1et−1 + θ2et−2 + · · · + θqet−q (8)

yDP3 = u + φ1yt−1 + φ2yt−2 + · · · + φpyt−p + θ2et−2 + · · · + θqet−q (9)

yDPn = u + φ1yt−1 + φ2yt−2 + · · · + φpyt−p + θ1et−1 + · · · + θqet−q (10)

where yDP denotes the value of prediction results under DP parameters, u is
estimated constant term, θ is an autoregressive coefficient, φ is moving average
coefficient.

To exclude extreme values from the prediction process, each parameter is
calculated n times, a maximum value and a minimum value are removed, respec-
tively. Then the average value is calculated, which conduces to measure the effect
of the model. The predicted value equals

PDP = (
n∑

m=1

yDPn − yDP max − yDP min)/(n − 2) (11)

where PDP denotes the mean value of prediction results,
n∑

m=1
yDPn is the sum

of all prediction results under DP parameters. Variables yDP max and yDP min

indicate the maximum value and the minimum value of the prediction results,
respectively. Lastly, n − 2 represents the number of prediction results involved
in the final calculation.
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4 Experiments and Results

4.1 Experimental Data and Parameter Description

The data sets used in this paper include ElectricityLoadDiagrams20112014 [20],
Individual household electric power consumption [21] and the Solar power [22].
The Column2, Column257, Column277 and Column314 are selected from Elec-
tricityLoadDiagrams20112014.

The parameters used in the experiments are shown in Table 2, the experimen-
tal environment is shown in Table 3. In EPSTO-ARIMA and EPFSTO-ARIMA
experiments, DP values are the same. In addition, G refers to the grouping of
data based on similarity calculation. The data is divided into two groups, as
shown in Table 4.

Table 2. Experiments parameters.

Model Column2,257,277,314 Household Solar

Parameters (p,d,q) or (p,d,q,DP) or (p,d,G,DP)

ARIMA (9,0,8) (9,0,2) (9,0,8)

EPSTO
-ARIMA

(9,0,8,DP) (9,0,2,DP) (9,0,0,DP)
(6,0,0,DP)

EPFSTO
-ARIMA

(1,0,0,2,DP)
(3,0,5,2,DP)

(1,0,3,2,DP)
(1,0,2,2,DP)

(2,0,9,2,DP)
(2,0,2,2,DP)

DP 0.001,0.002,0.003,0.004,0.005,0.006,0.007,0.008
0.009,0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.1

Table 3. Experimental environment.

Environment Parameter

Operating system Windows 10, 64bit

Processor Intel(R) Core (TM) i7-9700 CPU @ 3.00GHz

Internal storage 8.00 GB

Pycharm Professional Edition 11.0.3

Tensorflow 2.3.0

4.2 Adopted Metrics

We measure the prediction effect of EPFSTO-ARIMA in terms of RMSE (Root
Mean Squared Error). RMSE defines the deviation between the predicted value
and the real value, which can be calculated as
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Table 4. Grouping of data.

Item Column2 Column257 Column277 Column314 Household Solar

G1 [0,0.053] [0,0.0094] [0,0.0006] [0,0.00001] [0,0.002066] [0,0.1427]

G2 (0.053,1] (0.0094,1] (0.0006,1] (0.00001,1] (0.002066,1] (0.1427,1]

RMSE (X,P ) =

√
√
√
√(1/m)

m∑

i=1

(p (xi) − yi)
2 (12)

where p (xi) and yi denote the predicted and the real values, respectively.

4.3 Experiments Results

In this section, ARIMA, EPSTO-ARIMA and EPFSTO-ARIMA experiments
are carried out. In the experiments, we first check whether the data are flat and
stable. After the ACF (Auto Correlation Function) test, the method of censoring
and PACF (Partial Auto Correlation Function) diagram with the method of
tailing, the value of d, p and q is determined. The value of G can be determined by

S(i,j) = 1/(1 + D(i,j))

= 1/(1 + min
c

(
n∑

i=1

[d(yi, V ) · Wn]/
n∑

i=1

Wn))

= 1/

⎛

⎝1 + d(yi, V ) + min

⎧
⎨

⎩

D(i − 1, j)
D(i, j − 1)
D(i − 1, j − 1)

⎫
⎬

⎭

⎞

⎠

= 1/

⎛

⎝1 + d(yi, (
n∑

i=1

yi)/n) + min

⎧
⎨

⎩

D(i − 1, j)
D(i, j − 1)
D(i − 1, j − 1)

⎫
⎬

⎭

⎞

⎠

(13)

where V represents the average of the data, yi represents the value of the i − th
data.

The results presented in this section are optimal solutions under the following
two constraints. RMSE and TIME both take the minimum values. The models
use the same environment to make prediction. From the Table 5, we can observe:

1) For EPFSTO-ARIMA, we perform forced optimization on the data according
to Table 4. The RMSE is lower than that of EPSTO-ARIMA, but higher than
that of ARIMA.

2) Take Column2 as an example. The RMSE of EPFSTO-ARIMA is 30.44%
lower than that of EPSTO-ARIMA and 12.22% higher than that of ARIMA.
For the rest of the clients, similar results can be obtained.

ARIMA is optimal for resource consumption in the existing data set. In
EPFSTO-ARIMA, we optimize different amounts of data to analyze how they
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affect the results. Because EPFSTO-ARIMA has certain randomness, we carry
out many experiments for each DP and take the mean value. The results of
EPFSTO-ARIMA are shown in Fig. 2.

Table 5. RMSE of EPSTO-ARIMA (EPSTO) and EPFSTO-ARIMA (EPFSTO).

Item Column2 Column257 Column277 Column314 Household Solar

ARIMA 6.819 53.240 863.190 14105.370 412.520 0.570

EPSTO 11.000 79.604 1194.183 18190.421 418.333 1.027

EPFSTO 7.652 65.382 946.181 15345.276 414.574 0.588

Table 6. Maximum, minimum and increase rate of EPSTO-ARIMA and EPFSTO-
ARIMA RMSE.

Item Column2 Column257 Column277 Column314 Household Solar

Min1 7.124 56.36 871.369 13898.56 412.994 0.617

Max1 16.957 113.083 1726.456 24181.739 430.323 1.633

Rate1 138.03% 100.64% 98.13% 73.99% 4.20% 164.67%

Min2 7.597 65.305 931.742 15115.735 412.642 0.583

Max2 7.682 65.562 971.298 16118.49 416.001 0.600

Rate2 1.12% 0.39% 4.25% 6.63% 0.81% 2.92%

For EPFSTO-ARIMA, the data used in the experiment is divided into two
groups based on the similarity results, as shown in Table 4. According to DP ,
optimization is carried out in two groups. From Fig. 2, we can observe that:

1) The RMSE of EPSTO-ARIMA and EPFSTO-ARIMA increase with the
increase of DP . However, the increase in EPSTO-ARIMA is more prominent.

2) For EPFSTO-ARIMA, with the continuous increase of DP , RMSE shows a
slower upward trend than that of EPSTO-ARIMA. It means that EPFSTO-
ARIMA is effective in solving the problem of prediction accuracy degradation
as in EPSTO-ARIMA. According to the results, the ratio of the optimized
data in the two groups can also be calculated.

3) Take Column2 as an example. In EPSTO-ARIMA, the RMSE increases grad-
ually to about 138.03% with the increase of DP as shown in Table 6 (in
Table 6, Min1 and Min2 are the min RMSE of EPSTO-ARIMA and EPFSTO-
ARIMA, respectively. Max1 and Max2 are the max RMSE of EPSTO-ARIMA
and EPFSTO-ARIMA, respectively. Rate1 and Rate2 are the increase rate of
EPSTO-ARIMA and EPFSTO-ARIMA RMSE, respectively.). In EPFSTO-
ARIMA, RMSE also increases gradually with the increase of DP , but by only
about 1.12%. Other results are shown in Table 6.
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Fig. 2. The RMSE of EPFSTO-ARIMA and EPSTO-ARIMA.

Fig. 3. The original data vs. Prediction data.

Meanwhile, the prediction data of EPFSTO-ARIMA basically conform to
the data discipline of the original data as shown in Fig. 3.

In summary,

1) EPFSTO-ARIMA can effectively counter the excessive prediction loss caused
by EPSTO-ARIMA.

2) In the aspect of data availability, EPFSTO-ARIMA basically conform to the
data discipline of the original data.

3) In addition to the above conclusions, we also found that the time resources
used are also saved (as shown in Fig. 4), which will not be discussed in detail
in this paper.
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Fig. 4. The TIME of EPFSTO-ARIMA and EPSTO-ARIMA.

5 Conclusions and Future Work

Electricity data prediction is important for the national economy and the lives
of people. However, EPSTO-ARIMA will causes serious degradation of electric-
ity prediction service. To deal with the above challenge, we propose EPFSTO-
ARIMA, which can reduce prediction error caused by EPSTO-ARIMA. In the
meantime, the prediction result can help us to explore the discipline of data.
Through experiments, proposed EPFSTO-ARIMA outperforms in reducing pre-
diction error. In the future, the following aspects can be further analyzed:

1) EPFSTO will be tested and demonstrated in other models.
2) EPFSTO will be tested and verified under more detailed data grouping.
3) Exploring the specific effects of EPFSTO-ARIMA on model training time

and prediction time.
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