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Abstract. Isogenies between elliptic curves act as a key role in isogeny-
based cryptography. Formulas for isogenies on different elliptic curve
models such as Weierstrass, Edwards, Huff and Hessian have been pro-
posed. In this paper, we construct isogenies on twisted Jacobi intersec-
tions for the first time including a 2-isogeny and a generalized �-isogeny
for any odd �. We also introduces ω-coordinate systems for twisted Jacobi
intersections which provides biquadratic relations like the Montgomery
model. As a result, such ω-coordinate systems would significantly sim-
plify the computation of isogenies on twisted Jacobi intersections.

Keywords: Isogenies · Post-quantum cryptography · Twisted Jacobi
intersection · ω-coordinate

1 Introduction

The supersingular isogeny-based cryptography is the most recent suggestion for
post quantum cryptosystem and is founded on the hardness of finding an isogeny
between two given supersingular elliptic curves over a finite field. It is drawing
increased attention due to its relative small key sizes and messages compared to
other post-quantum candidates. One of the instantiations is the key exchange
protocol SIDH (Supersingular Isogeny Diffie-Hellman) proposed by De Feo and
Jao [9]. Its secure key encapsulation mechanism version, named SIKE [10], was
submitted to NIST’s post-quantum cryptography standardization process and
has been selected as an alternative candidate of PKE&KE in Round 3. There are
also many other instantiations due to different choices of supersingular elliptic
curves and isogenies. For example, the CSIDH [2] proposed by Castryck et al.
in ASIACRYPT 2018 with supersingular elliptic curves over Fp, the BSIDH [4]
offered by Costello and the SiGamal [12] by Moriya et al. in ASIACRYPT 2020.
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As such, isogenies are a topic of interest in the isogeny-based cryptography as
well as in elliptic curve cryptography. However, the bottleneck of isogeny-based
cryptography is that its implementation efficiency does not meet the requirement
of real-world application. The main contributor of this is that the isogeny com-
putation is much more complicated than the traditional operations like scalar
multiplications in elliptic curve cryptography.

It is well known that the existence of isogenies between two elliptic curves is
independent of curve models. However, similar to the algebraic group arithmetic
in traditional elliptic curve cryptography, the complexity of computing isoge-
nies varies greatly from one model to another. The most famous method for
efficiently presenting explicit isogeny with Weierstrass model is given by Vélu’s
formulas [16], which is based on point addition formulas. Moody and Shumow
[13] presented formulas similar to Vélu’s for isogenies on Edwards and Huff mod-
els of elliptic curves with efficient isogeny computation. Xu et al. [17] also gave
explicit formulas for isogenies on Jacobi quartic curves.

Using the results above, cryptographers could choose corresponding curve
models to accelerate the isogeny computation in the implementation of isogeny-
based cryptography, for instants see the adaption of Montgomery model in SIDH
[9]. Hence it is motivated to study the explicit and fast formulas for isogenies
between other curve models such as the so-called twisted Jacobi intersection.

The twisted Jacobi intersections is the intersection of two quadratic surfaces
in the three dimensional space such that they are birational equivalent to elliptic
curves. It is a generalization of Jacobi intersections and was first introduced by
Feng et al. [7]. Compared to Jacobi intersections, the twisted version has faster
addition and doubling formulas. Furthermore, it was shown that every elliptic
curve in positive characteristic with three points of order 2 is isomorphic to a
twisted Jacobi intersection [7]. In [14], Silva et al. gave the explicit formula for
odd isogeny of Jacobi intersections.

In this work, we study the fast isogeny computation between twisted Jacobi
intersections model of elliptic curves. The following demonstrates the main con-
tributions of this work:

– Explicit Isogeny Formulas on Twisted Jacobi Intersections. We present the
explicit formulas for 2-isogeny and odd isogenies between twisted Jacobi inter-
sections, extending Silva et al.’s results [14]. Our formula for computing the
coefficients of curves of odd isogenies has a simple expression.

– Differential Arithmetic on Twisted Jacobi Intersections. Similar to the
ω-coordinate system on Edwards model [6] and Huff Model [8], we construct a
ω-coordinate system on twisted Jacobi intersections and prove a Montgomery-
like group law formulas on these curves. Such ω-coordinate system also induces
simple isogeny formulas for twisted Jacobi intersections, which share the same
form as those on Montgomery curves with only x-coordinate.

Our work is organized as follows. Section 2 reviews basic facts about isogenies
and twisted Jacobi intersections. Section 3 presents formulas for 2-isogenies and
odd isogenies between twisted Jacobi intersections. In Sect. 4, we construct a new
ω-coordinate system on twisted Jacobi intersections and give simplified isogeny
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formulas with this system. Finally, Sect. 5 concludes with a discussion about
further study.

2 Preliminaries

An isogeny between two elliptic curves E1 and E2 is a dense morphism φ :
E1 → E2 preserves the basepoints, i.e. φ preserves the identity element with
φ(E1) = E2. Note that φ is also an endomorphism if E1 = E2. Two elliptic
curves E1, E2 are said to be isogenous if there is an isogeny φ : E1 → E2. The
degree of an isogeny is its degree as a rational map. In particular, a separable
isogeny φ of degree � has a kernel of size �.

Recall that given an elliptic curve E and a subgroup G of E, there is a unique
isogeny E → E′ with kernel G up to isomorphism [15, III.4.12]. Hence one can
identify an isogeny by specifying its kernel. Vélu’s formula and its analogues shed
a light on computing the isogeny that corresponds to a given subgroup. This
correspondence may allow for compact representation and efficient computation
of isogeny, especially for kernels generated by points of prime order.

Let K be a finite field with char(K) = p > 3. A twisted Jacobi intersection
model of elliptic curve over K is given by

Ja,b :

{
au2 + v2 = 1

bu2 + w2 = 1
(1)

where a, b ∈ K and ab(a − b) �= 0. Note that a Jacobi intersection is a twisted
Jacobi intersection with a = 1. The j-invariant of Ja,b is

j(Ja,b) =
256(a2 − ab + b2)3

a2b2(a − b)2
.

Note that (0, 1, 1) is the identity point in the group Ja,b(K), and the negative
point of (u, v, w) is (−u, v, w).

A twisted Jacobi intersection Ja,b : au2 + v2 = 1, bu2 + w2 = 1 is bira-
tionally equivalent to an elliptic curve EW : y2 = x3 − (a + b)x2 + abx, via the
transformations [7]:

σ : Ja,b −→ EW ,

(0, 1, 1) �−→ ∞,

(0, 1,−1) �−→ (b, 0),

(u, v, w) �−→ (−a(w + 1)
v − 1

,− au

v − 1
(
a(w + 1)

v − 1
+ b)).

σ−1 : EW −→ Ja,b,

∞ �−→ (0, 1, 1),
(b, 0) �−→ (0, 1,−1),

(x, y) �−→ (− 2y

x2 − ab
,
x2 − 2ax + ab

x2 − ab
,
x2 − 2bx + ab

x2 − ab
).

(2)
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The group law on Ja,b in affine coordinates is presented as follows [7]: given
two points (u1, v1, w1) and (u2, v2, w2), the sum (u3, v3, w3) = (u1, v1, w1) +
(u2, v2, w2) is

u3 =
u1v2w2 + u2v1w1

v2
2 + au2

2w
2
1

,

v3 =
v1v2 − au1w1u2w2

v2
2 + au2

2w
2
1

,

w3 =
w1w2 − bu1v1u2v2

v2
2 + au2

2w
2
1

.

(3)

The above formulas are complete (i.e., defined for all inputs).

3 Isogenies on Twisted Jacobi Intersections

In this section we show how to present explicit (and simplified) formulas for
isogenies on twisted Jacobi intersections. For a twisted Jacobi intersection Ja,b

over K with coefficient a, b, we denote by
√

a (resp.
√

b) a square root of a
(resp. b) and write simply

√
ab for

√
a · √b.

3.1 2-Isogeny

Theorem 1. Let Ja,b be a twisted Jacobi intersection over K, then there is a
2-isogeny from the curve Ja,b as

φ2(u, v, w) = (
−u

vw
,
−√

abu2 + 1
vw

,

√
abu2 + 1

vw
), (4)

the image of φ2 is the curve Jâ,b̂, where â = −(
√

a−√
b)2 and b̂ = −(

√
a+

√
b)2.

Proof. The desired 2-isogeny φ2 can be derived as

φ : Ja,b
σ−→ E1

ψ−→ E2
σ′

−→ Jâ,b̂.

Here σ : Ja,b → E1 is given as (u, v, w) �−→ (−a(w+1)
v−1 ,− au

v−1 (a(w+1)
v−1 + b)), with

E1 : y2 = x3 − (a + b)x2 + abx.
The kernel of the desired isogeny is the set {(0,−1,−1), (0, 1, 1)}. For this

kernel, it suffices to explicitly find the maps ψ, σ′. Formulas for 2-isogenies on
Weierstrass curves are well known, see Example 4.5 of [15] for the 2-isogeny
ψ : E1 → E2 as

ψ(x, y) = (
y2

x2
,
y(ab − x2)

x2
),

where E2 : y2 = x3 + 2(a + b)x2 + (a − b)2x.
Therefore, we can get the corresponding map σ′ : E2 → Jâi,b̂i

by pulling
Weierstrass model back to a desired Jacobi intersection using the maps in Eq. (2).

Composing the maps as σ′ ◦ ψ ◦ σ leads to the stated formulas for φ2. Since
the arithmetic details are straightforward and thus we omitted them for brevity.
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3.2 Odd Degree Isogenies

Let F be a subgroup of E of odd order �, the well known Vélu formulas [16] on a
Weierstrass elliptic curve for an isogeny φ : E → E′ with kernel F are presented
here. Given a point P = (xP , yP ) ∈ E, define

φ(P ) =

{
(xP +

∑
Q∈F−{∞}(xP+Q − xQ), yP +

∑
Q∈F−{∞}(yP+Q − yQ), P �∈ F,

∞, P ∈ F.

Silva et al. in [14] gave a formula for odd degree isogeny φ on the Jacobi
intersection as

φ(P ) =

{
∞, P ∈ F,

(uP
∏

Q∈F−{∞}
uP+Q

uQ
, vP

∏
Q∈F−{∞}

vP+Q

vQ
, wP

∏
Q∈F−{∞}

wP+Q

wQ
), P �∈ F,

based on which they also gave an explicit formula for isogeies of degree �.
In this work, we imitate the above work and present a new formula for the

degree �-isogeny, which yields the following result:

Theorem 2. Let F = {(0, 1, 1), (±α1, β1, γ1), ..., (±αs, βs, γs)} be a subgroup of
the twisted Jacobi intersection Ja,b with odd order � = 2s + 1. Define

φ�(P ) = (
∏

Q∈F

uP+QwQ

vQ
,

∏
Q∈F

vP+Q

vQ
,

∏
Q∈F

wP+Q

wQ
). (5)

Then φ� is an �-isogeny with kernel F , from Ja,b to Jâ,b̂ where â = a� and

b̂ = b�
∏s

i=1
(1−aα2

i )
4

(1−bα2
i )

4 . The coordinate maps are given by

φ�(u, v, w) = (u
s∏

i=1

(u2 − α2
i )γ

2
i

(1 − abα2
i u

2)β2
i

, v

s∏
i=1

1 + abα2
i u

2 − a(u2 + α2
i )

(1 − abα2
i u

2)β2
i

,

w

s∏
i=1

1 + abα2
i u

2 − b(u2 + α2
i )

(1 − abα2
i u

2)γ2
i

).

(6)

Proof. We have φ�((0, 1, 1)) = (0, 1, 1) and φ� is invariant under the translation
by elements of F , thus F ⊆ ker(φ�). Conversely, if P ∈ ker(φ�), then there exists
some Q ∈ F such that P + Q = (0, 1, 1), which implies that P = −Q ∈ F ,
and hence F = ker(φ�). Moreover, suppose P = (u, v, w), and Q = (αi, βi, γi) �=
(0, 1, 1), then we have

uP+QuP−Q =
(β2

i γ2
i u2 − α2

i v
2w2)

(β2
i + aα2

i w
2)2

=
u2 − α2

i

1 − abα2
i u

2
,

vP+QvP−Q =
a2u2w2α2

i γ
2
i − v2β2

i

(β2
i + aα2

i w
2)2

=
1 − a(α2

i + u2) + abu2α2
i

1 − abα2
i u

2
,

wP+QwP−Q =
b2u2v2α2

i β
2
i − γ2

i w2

(β2
i + aα2

i w
2)2

=
1 − b(u2 + α2

i ) + abu2α2
i

1 − abα2
i u

2
.
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Thus it is straightforward to derive the above coordinate maps by the twisted
Jacobi intersection addition law.

It remains to derive the formulas for â and b̂ on the image curve

Jâ,b̂ :

{
âU2 + V 2 = 1

b̂U2 + W 2 = 1
, (7)

where U(P ), V (P ),W (P ) are the coordinate maps of φ�. Consider the function

G1(u, v, w) = (âU2 + V 2 − 1)(
s∏

i=1

(1 − abα2
i u2)2β4

i )

= â(u2
s∏

i=1

((u2 − α2
i )2γ4

i )) + (1 − au2)

s∏
i=1

(1 − a(α2
i + u2) + abα2

i u2)2 −
s∏

i=1

(1 − abα2
i u2)2β4

i

= (â − a�)

s∏
i=1

γ4
i u2� + lower terms with respect to u.

Setting the coeffcients of u2� to zero and thus we obtain â = a�. Similarly we
consider

G2(u, v, w) = (b̂U
2
+ W

2 − 1)(

s∏

i=1

(1 − abα
2
i u

2
)
2
β
4
i γ

4
i )

= b̂(u
2

s∏

i=1

((u
2 − α

2
i )

2
γ
8
i )) + (1 − bu

2
)

s∏

i=1

(1 − b(α
2
i + u

2
) + abα

2
i u

2
)
2
β
4
i −

s∏

i=1

(1 − abα
2
i u

2
)
2
β
4
i γ

4
i

= (b̂

s∏

i=1

γ
8
i − b

�
s∏

i=1

β
8
i )u

2�
+ lower terms with respect to u.

By using the fact that β2
i = 1 − aα2

i , γ2
i = 1 − bα2

i and by setting the coeffcients
of u2� to zero, we obtain that

b̂ = b�
s∏

i=1

β8
i

γ8
i

= b�
s∏

i=1

(1 − aα2
i )

4

(1 − bα2
i )4

.

Remark 1. While Silva et al. in [14] also gave similar formulas for odd isogeny
on Jacobi intersections, we proved it in a different way for the twisted Jacobi
intersections. Moreover, our formulas for the curve coefficients are easily trans-
formed into inversion-free version, which are expected to provide performance
advantage in isogeny computation.

4 ω-Coordinate on Twisted Jacobi Intersections

To evaluate the elliptic curve arithmetic efficiently, Farashahi and Hosseini pro-
posed ω-coordinate system on Edwards curves [6], which was also applied to
isogeny computation by Kim et al. [11]. Huang et al. [8] and Drylo et al. in
[5] presented similar ω-coordinate systems on Huff curves which provide faster
formulas for point addition and isogeny computation. In fact, such ω-coordinate
systems could be generalized to other elliptic curve models, and induce analogous
Montgomery-like formulas for group and isogeny arithmetic.
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4.1 ω-Coordinate System for Differential Addition

In this work, we introduce such kind ω-coordinate system on twisted Jacobi
intersections. We define a rational function ω by ω(u, v, w) =

√
abu2, which is

well computed for all affine points on a twisted Jacobi intersection. Let P =
(u, v, w) be a point on the curve, one can easily deduce that ω(P ) = ω(−P ).
Moreover, ω((0, 1, 1)) = 0. Denote by c =

√
b√
a
, then the equation of the twisted

Jacobi intersection can be written as:

Jc :

{
ω + cv2 = c

cω + w2 = 1
(8)

Theorem 3. Let ωi = ω(Pi) with Pi ∈ Ja,b for i = 1, 2, and let ω0 = ω(P1 −
P2), ω3 = ω(P1 + P2) and ω4 = ω(2P1). We have the following differential
addition formulas

ω3ω0 =
(ω1 − ω2)2

(ω1ω2 − 1)2
, ω4 =

4ω1(ω2
1 + (c + 1

c )ω1 + 1)
(1 − ω2

1)2
.

Proof. This can be derived from the addition formula give by Eq. (3) and hence
we omit the detail.

4.2 ω-Coordinate for Isogenies

Based on the above, we present the isogeny formulas using the ω-coordinate on
twisted Jacobi intersection Jc as Eq. (8). Note that the j-invariant

j(Jc) = j(Ja,b) =
256(1 − c2 + c4)3

c4(1 − c2)2
.

We can use the parameter c to represent the isogenous curve instead of param-
eters (a, b) in Ja,b.

Recall that ω(u, v, w) =
√

abu2 for Ja,b and write c =
√

b√
a
.

Theorem 4. Let φ2 be the 2-isogeny from Ja,b to Jâ,b̂ defined as in Theorem 1.
Then the evaluation of ω = ω(P ), P = (u, v, w) ∈ Ja,b(K) under φ2 is given by

φ2(ω) =
( 1c − c)ω

(1 − cω)(1 − ω
c )

, (9)

where the parameter for the image curve is ĉ = 1+c
1−c .

Proof. Suppose P = (u, v, w) and denote by φ(u, v, w) = (U, V,W ) the image
point. Then the ω-coordinate in Jâ,b̂ is given by ω(φ(u, v, w)) =

√
âb̂U2.
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By Theorem 1, one has
√

âb̂U2 =
√

(
√

a −
√

b)2(
√

a +
√

b)2
u2

v2w2

=
(a − b)u2

(1 − au2)(1 − bu2)

=
( 1c − c)ω

(1 − cω)(1 − ω
c )

.

Moreover, we have

ĉ =

√
b̂

â
=

(
√

a +
√

b)
(
√

a − √
b)

=
1 + c

1 − c
.

We have the following odd isogeny formula using the ω−coordinate:

Theorem 5. Let F = {(0, 1, 1), (±α1, β1, γ1), ..., (±αs, βs, γs)} be a subgroup
of the twisted Jacobi intersection Ja,b with odd order � = 2s + 1. Write ωi =
ω(αi, βi, γi) for i = 1, .., s and let φ� be the �-isogeny from Ja,b to Jâ,b̂ with
kernel F . Then the evaluation of ω = ω(P ), P = (u, v, w) ∈ Ja,b(K) under φ� is
given by

φ�(ω) = ω
s∏

i=1

(
ω − ωi

1 − ωωi
)2, (10)

with the codomain curve coefficient

ĉ = c

s∏
i=1

(c − ωi)2

(1 − cωi)2
. (11)

Proof. Note that c =
√

b/a and ω =
√

abω2, which implies bu2 = cω, au2 = ω/c.
Let P = (u, v, w) and write U(P ) the coordinate maps of φ� give in Theorem 2.

Recall that by Theorem 2, we have â = a� and

b̂ = b�
s∏

i=1

(1 − aα2
i )

4

(1 − bα2
i )4

= b�
s∏

i=1

β8
i

γ8
i

.

Then

ω̂ =
√

âb̂U(P )2 =
√

alblu2
s∏

i=1

(
β4

i

α4
i

(u2 − α2
i )γ

2
i

(1 − abα2
i u

2)β2
i

)2

=
√

alblu2
s∏

i=1

(
√

abu2 − √
abα2

i )
2

(1 − abα2
i u

2)2

= ω
s∏

i=1

(ω − ωi)2

(1 − ωωi)2
.
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Furthermore, one has

ĉ =

√
b̂

â
=

√
b

a

s∏
i=1

(1 − aα2
i )

2

(1 − bα2
i )2

= c
s∏

i=1

(c − ωi)2

(1 − cωi)2
.

4.3 Computational Cost

Let M stand for a field multiplication, S for a field squaring, C for a multipli-
cation by a curve constant, and I for a field inversion. In the following table we
list the costs of our odd isogenies compared with those proposed by Silva et al.
in [14].

Table 1. The computational costs of � = 2s+1 isogeny evaluation on (twisted) Jacobi
intersections

Work Operation cost (affine) Operation cost (projective)

Silva et al. [14] (4s + 2)M + 3S + (5s + 1)C + I (4s + 7)M + 5S + (6s + 2)C

This work (ω-coordinate) 3sM + 1S + I 4sM + 2S

It should be noted that Silva et al. in [14, Theorem 4.1] proposed the
codomain curve parameter for Jacobi intersection (setting b = 1 in the twisted
case) as â = a − 2a

∑s
i=1(

−α2
i β2

i

γ2
i

+ 2α2
i − 1), the evaluation of which costs much

more than that of our ĉ in Eq. (11).

Remark 2. The above result implies an interesting result that, the formulas of
odd � isogeny with ω-coordinate system on twisted Jacobi intersections share
the same form with those on Montgomery model in [3]. Thus we would gain
comparable cost for the isogeny computation by adopting the above formulas for
twisted Jacobi intersections. Furthermore, due to the well form of the formulas
in Eqs. (10) and (11), we can adapt the fast isogeny computation technique
proposed by Bernstein et al. in [1] to twisted Jacobi intersections, and thus
the �-isogeny mapping and its codomain curve coefficient could be evaluated in
Õ(

√
�) finite field operations.

5 Conclusion

In this work, we exploit the ω-coordinates to optimize the elliptic curve group
arithmetic formulas as well as the isogenous formulas on twisted Jacobi intersec-
tions. Our results implies that the twisted Jacobi intersections also serve as an
ideal model for isogeny-based cryptography. It was also noticed that the formulas
of odd � isogeny with w-coodinate system on twisted Jacobi intersections have
the same expression as the Kummer line in Montgomery model. We hope that
further research could find the connection between the w-coordinate systems
(resp. Kummer line) on different curve models.
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