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Abstract. Any technique to ensure memory safety requires knowledge
of (a) precise array bounds and (b) the data types accessed by memory
load/store and pointer move instructions (called, owners) in the pro-
gram. While this information can be effectively derived by compiler-level
approaches much of this information may be lost during the compilation
process and become unavailable to binary-level tools. In this work we
conduct the first detailed study on how accurately can this information
be extracted or reconstructed by current state-of-the-art static reverse
engineering (RE) platforms for binaries compiled with and without debug
symbol information. Furthermore, it is also unclear how the imprecision
in array bounds and instruction owner information that is obtained by
the RE tools impacts the ability of techniques to detect illegal mem-
ory accesses at run-time. We study this issue by designing, building,
and deploying a novel binary-level technique to assess the properties and
effectiveness of the information provided by the static RE algorithms
in the first stage to guide the run-time instrumentation to detect ille-
gal memory accesses in the decoupled second stage. Our work explores
the limitations and challenges for static binary analysis tools to develop
accurate binary-level techniques to detect memory errors.

1 Introduction

Buffer overflow attacks rely on exploiting illegal memory accesses by referencing a
buffer outside its legal array bounds. These attacks are mostly caused by bugs in
software written in low-level memory unsafe languages, like C or C++ [37]. Such
memory errors present an old security issue that persists in spite of advanced
exploit mitigation mechanisms and can lead to silent data corruption, security
vulnerabilities, and program crashes. In spite of solutions proposed through tech-
niques at the programmer/source-level [16,24], compiler-level [2,4,7,9,14,27,29],
and binary-level [33,36,38], the problem of memory safety persists especially in
embedded, low-level, performance critical, and legacy software systems.
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Techniques to detect memory errors require the ability to determine accu-
rate buffer bounds along with the data type referenced (called the owner in this
work) by each memory access (read/write) and pointer assignment/move instruc-
tion. This information is largely available to the source-code and compiler-level
techniques, and enables more precise memory error detection at run-time. Unfor-
tunately, techniques at this level require access to the source code and may not
be applicable to legacy software where source code may not be available. Such
techniques also involve reprogramming and/or re-compiling the code. The single
binary executable generated/deployed using these techniques cannot be easily
adapted to different risk averseness and performance overhead tolerances of end-
users. Such approaches also leaves the task of memory safety solely in the hands
of the software developer (rather than the end-user).

Binary-level techniques can overcome these challenges of source-level
approaches. However, much of the program syntax and semantic information
needed by techniques to resolve memory errors may be lost during the compila-
tion process, especially when the generated binary is stripped of debug symbols.
To overcome this limitation for binary-level techniques, researchers have devel-
oped advanced reverse engineering (RE) frameworks with sophisticated disassem-
blers, decompilers, and binary type and symbol inference algorithms that attempt
to reconstruct information lost during the source to binary translation process.

In this work we study how much of the array bounds and instruction owner
information is preserved by the compilation process (for binaries generated with
debug information and those stripped of debug symbols) and can be retrieved by
traditional disassemblers provided with contemporary RE tools. We also conduct
the first detailed study on how accurately can this information that is needed
to detect/prevent memory errors be reconstructed by the advanced decompilers
and type inference algorithms provided with modern RE frameworks for stripped
binaries. Our work explores the capabilities of two state-of-the-art RE tools,
specifically NSA’s Ghidra [28] and Hex-Ray’s IDA Pro [1], and assesses the
accuracy of the information they derive from program binaries.

Imprecision in array bounds detection and instruction owner information
obtained by static RE tools can affect the ability to detect and prevent buffer
overflows at run-time. In this work, we design and build a new binary-level run-
time tool to evaluate, for the first time, the effectiveness of the program informa-
tion gathered by the RE frameworks (in different configurations) to detect and
prevent memory errors. The tool uses the obtained static analysis information
to keep track of owners as pointers are assigned, and check relevant buffer read-
s/writes to assess the ability to ensure fine-grained memory safety at run-time.

Thus, we claim two major contributions in this work.

1. We conduct the first detailed study to determine the ability of static RE
tools, specifically Ghidra and IDA Pro, to derive precise array bounds and
instruction owner information from binary programs, which is required to
detect and prevent memory errors.

2. We design, build and employ a new decoupled binary-level execution-time
tool with the goal to assess the efficacy of the statically derived program
information to provide memory safety for binary programs.
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2 Related Works

In this section we compare our work with studies that evaluate the capabil-
ities and precision of reverse engineering frameworks to reconstruct program
information lost during the translation process. We also discuss past research in
binary-level techniques to detect and prevent memory errors.

Several prior research works have evaluated the accuracy of binary code disas-
semblers and decompilers. Meng and Miller identify challenging code constructs
that make it hard for RE tools to accurately disassemble binary code and con-
struct a correct control flow graph (CFG) [25]. Andriesse et al. compare 9 pop-
ular disassemblers and find that complex code constructs are rare in real-world
programs [3]. Inaccuracy in function start/boundary detection by current RE
tools was reported by some works [3,5]. Pang et al. analyze 9 open-source disas-
semblers to compare the algorithms and heuristics used for instruction recovery,
symbolization, function detection and CFG construction and assess their pre-
cision [31]. They find that different tools use distinct algorithms and heuristics
that complement each other, but also introduce coverage-correctness trade-offs.
Another study explores the usability and effectiveness of decompilers to recover
C output from binary code [21]. They find that while modern decompilers are
getting increasingly powerful and accurate, issues such as type recovery and
optimization still impede decompilers from generating accurate and presentable
outputs. None of these works assess the efficacy of array bounds and instruction
owner detection in RE tools.

A plethora of research has been conducted on type inference from program
binaries [6,13,17,19,20,23,30,35,39]. Most of these research efforts are focused
on prediction of basic or preliminary type information. Although some of these
approaches claim to be able to detect higher order structures or aggregate types
likes arrays, none of the approaches we know assess the accuracy of array bound
detection, or evaluate the precision of instruction owner detection for binaries.

Past researchers have developed many techniques to detect and prevent mem-
ory errors. Many past approaches rely on the source-code with access to rich
semantic program information [2,8,10,27,29,32,34].

Binary-level tools to locate fine-grained buffer overflows in memory at run-
time have also been developed. The BinArmor technique [36] to detect memory
errors relies on a tool called Howard [35] that uses past program execution traces
to extract data structures and their memory bounds. BinArmor uses information
from Howard to statically instrument the binary with checks to detect unsafe
memory accesses during later program executions. Another technique develops a
memory layout recovery algorithm to locate memory access vulnerabilities in the
program after execution of the failed run [38]. This approach requires traces from
a set of correct program executions to recover fine-grained memory layouts of
variables. The recovered memory layouts from the passed program executions are
then used to determine if the failed run exceeded any valid variable boundaries.

Both these past techniques employ a dynamic approach that relies on traces
from multiple correct prior program executions to determine or predict relevant
properties about the program, including buffer bounds. All dynamic analysis



14 R. Vaidya et al.

Fig. 1. Schematic of experimental framework setup

techniques require representative program inputs and are incomplete by design
since they cannot guaranty complete code coverage and can only protect code
and buffers that were seen by the analyzed program execution traces. Instead,
our work is the first to explore the potential, capabilities and trade offs of using a
static analysis and static type inference based approach to resolve this problem.
Similar to BinArmor, but unlike the approach by Wang et al., our technique is
designed to detect memory errors before they are triggered during program exe-
cution. Most importantly, none of these tools are available for use by researchers
in the open-source domain and none have attempted to employ these tools to
assess the extent and impact of inaccuracies in array bounds and instruction
owner detection to locate and prevent buffer overflows at run-time.

3 Benchmarks and Frameworks

In this section we describe the experimental setup, benchmarks, and tools and
frameworks used for this study.

3.1 Experimental Framework

A schematic of the overall framework is illustrated in Fig. 1. A C/C++ program
is compiled with the standard gcc compiler with the “-g” flag to generate a
binary with embedded debug symbol information. This binary is used by our ➀
Debug configuration. Later, the strip --strip-all Linux command is used
to generate another binary executable that is stripped of all symbol information.
This binary is used by our ➁ Stripped and ➂ Decomp. configurations.

Our experiments employ two stages: (a) static analysis to assess the ability of
our RE tools to derive precise array bounds and instruction owner information
from binary programs, followed by (b) dynamic binary instrumentation (DBI) to
assess the efficacy of the statically derived program information to provide mem-
ory safety for binary programs. We employ Ghidra version 9.1.2 (with Ghidra
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decompiler) [28] and IDA Pro version 7.5 (with Hex-Rays decompiler) [1] to
conduct static analysis in the first stage. We use the PIN (version pin-3.15) [22]
dynamic instrumentation engine in the second stage. All experiments are per-
formed on a cluster of x86-64 Intel Xeon processors with the Fedora 28 OS.

The static RE tools we employ work independently of the program input(s).
They include a disassembler to convert machine code to assembly code. They
also provide a decompiler that employs sophisticated type inference and code
reconstruction algorithms to raise the low-level assembly code into a higher-
level language representation (commonly, C). Our ➀ Debug and ➁ Stripped
configurations only use the disassembler. The ➂ Decomp. configuration also uses
the decompiler, which enables this configuration to recover higher-order program
structures like arrays and pointers along with their associated sizes and assists
with instruction owner detection from the stripped binary. Each configuration in
the static analysis phase outputs a distinct interface file with the array bounds
and instruction owner information that it can recover from the binary.

The stripped binary program and the statically generated interface file are
provided to Pin. Pin adds instrumentation based on previously determined
instruction owner mapping and array bounds information, tracks dynamically
allocated buffers and relevant register and memory values, and inserts security
checks to detect buffer overflows at run-time.

3.2 Benchmarks

In this work we use benchmarks from three different benchmark suites, SARD-
89 [18,26], SARD-88 [26,40], and SPEC cpu2006 [15]. The SARD-89 suite con-
tains 291 small programs that implement a taxonomy of diverse C buffer over-
flows (1164 total programs). Each test case has three versions with memory
accesses that overflow just outside, moderately outside, and far outside the buffer,
respectively. The fourth version for each test case is a patched version without
any buffer overflow. 18 of the 291 test subjects in SARD-89 benchmark suite
contain overflows that leverage library functions to succeed. Although not a
fundamental limitation of our technique or tools, we currently do not analyze
library functions, and so leave out these programs. Additionally, 152 test sub-
jects in SARD-89 overflow the buffer with an index that is a constant integer,
for example buf[2048]. We discuss these cases in more detail in Sect. 4.2. We
use the remaining 121 test programs for all experiments in this work, unless
mentioned otherwise.

The SARD-88 benchmark suite contains 14 “real-world” programs from var-
ious internet applications (BIND, Sendmail, WU-FTP) with known buffer over-
flows. Two versions are provided for each test case, one with and the other with-
out a buffer overflow (28 programs in total). We statically link library functions
like strcpy, strcmp, that can overflow in some of the SARD-88 programs. We
also employ all the SPEC cpu2006 integer benchmarks to study the scalability
and efficacy of the static tools on large programs. All benchmarks are compiled
using GCC version 9.3.1; optimized benchmarks use -O3.
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4 Static Reverse Engineering

Techniques to detect and prevent memory errors need precise information regard-
ing buffer data types, their base address and size/bound, and the data type ref-
erenced (owner) by each memory access (read/write) and pointer assignment/-
move instruction. Much of this information is lost during the compilation process.
RE frameworks employ complex algorithms and heuristics to reconstruct lost
program information from binaries. We explored the abilities of several RE tools
to identify and reconstruct program information that is required to detect and
prevent memory-related attacks in binaries, including Angr, Radare/r2, Debin,
Ghidra, and IDA Pro. We found that only Ghidra and IDA Pro provide the
capability and API for this task. In this section we present our results and
observations. To our knowledge, this is the first work that evaluates and reports
the efficacy of RE tools to extract or reconstruct the buffer/pointer bound and
instruction owner information required to detect/prevent memory errors.

4.1 Setup and Implementation Details

In this section we describe the algorithms and extensions we develop to explore
the capabilities of Ghidra and IDA Pro. Our scripts extract information relating
to the statically known object bounds (local/global variables) and instruction-
owner mappings. We use the term owner for program variables of type array or
pointer that constitute the memory operand for the memory access instructions
(of the kind MOV for the x86-64). Additionally, we have also extended the tools
with block-level data-flow algorithms to track the instructions that propagate
the pointer variables from memory to registers before they are used.

Figure 2 illustrates the information we gather from our RE tools. The figure
shows the source code, the compiler generated binary code and corresponding
IDA Pro output for a simple C program. This program has a single integer
buffer, ‘b’, an integer pointer, ‘ptr’, and an integer scalar ‘n’. The variable ‘ptr’
is the “owner” of the assembly instructions at offsets ‘8’, ‘20’ and ‘27’. ‘ptr’ is
mapped to the corresponding addresses. The pointer access on line #6 overflows
the array ‘b’ - corresponding to assembly instruction at offset ‘27’. Comparably,
the direct array access on line #7 overflows the array ‘b’ - corresponding to
assembly instruction at offset ‘32’. Memory safety algorithms need to check such
accesses to determine the invalid access at run-time.

We found that the owners of direct variable access instructions (that employ
{rbp, rsp, rip} based relative addressing, like the instructions at address ‘8’, ‘20’
and ‘32’ in Fig. 2) are determined automatically by the reverse engineering frame-
works we study. However, the owners of pointer dereference instructions (for
example, the instruction at address ‘27’ in Fig. 2) are not detected automati-
cally by our advanced tools. To analyze such memory accesses, we implement a
simple data-flow algorithm that keeps track of the variables and owners as they
move between the memory stack and registers.

Figure 2(c) shows the output of our RE scripts after analysing the binary gen-
erated using the example program shown in Fig. 2(a). This output file contains
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Fig. 2. Example showing an invalid array access: (a) C source code (b) Assembly
output (c) Output text file (interface file) after static analysis by IDA Pro

function related metadata such as owner-instruction address mapping I (listed
under addresses), function variable metadata fv - local variables along with their
position (offset) on the stack relative to the stack pointer, their size and type
(listed under locals), function boundary (fs ∪ fe), and additional metadata fm
such as number of functions, stack size, base pointer relative addressing informa-
tion, etc. This file also contains global variable metadata Gv - Variables defined
in the data or bss sections and associated with their static address; the rest of
the metadata is similar to local variables (listed under .global). This output of
the static analysis Gv ∪ ∑

fi{(fs ∪ fe), fv, fm, I} is fed to the Pin tool.

4.2 Efficacy of Reverse Engineering Tools

In this section we study the efficacy of existing reverse engineering tools to deter-
mine buffer bound and instruction owner information for programs compiled by
standard compilers with and without debug symbols and compiler optimizations.

Failures Even with Debug Symbol Information. Building a binary with
debug symbols retains useful information from the source program regarding
the function stack and the global data/bss section layout, variable types, and
buffer bounds. However, the owner information is not captured by the debug
symbols and may become hard to infer from the static binary. An example of
this challenging scenario is encountered for many SARD-89 benchmarks that
overflow the buffer with an index that is a constant integer. An example of this
case is illustrated in Fig. 3. The left-hand side of the figure shows the source code
and the right-hand side shows the corresponding assembly code. This program
declares two arrays, ‘b1[5]’ and ‘b2[10]’. The write to ‘b2[15]’ corresponds to
assembly instruction at location ‘40112e’ and the read from ‘b1[3]’ corresponds
to the assembly instruction at location ‘401135’. In the assembly code these
buffer accesses that are indexed by a constant use a displacement relative to
the stack frame pointer, rbp, rather than the base array pointer. Thus, although
these two instructions reference different buffers (and one, b2[15] is an overflow),
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Fig. 3. Ambiguous array access: (a) C source code (b) Assembly output

if these accesses are within the stack frame, then it is hard for the RE tools to
infer or predict from the assembly code if they refer to the array ‘b1’ or ‘b2’
or neither. In such cases, we found that the reverse engineering tools cannot
determine the correct instruction owner even in the presence of debug symbols.

Such failures caused due to buffer accesses by a constant numeral may be an
intrinsic limitation of binary-level techniques. Fortunately, arrays dereferenced
by a constant numeral may be a less critical hazard or attack vector in security
threat models, as many real-world buffer-overflow and stack-smashing attacks are
triggered by a malicious external input specifically devised to overflow the buffer
bound. Lack of high-level program information also prevents our RE tools from
associating the correct owner with instructions accessing individual members of
a structure. We found that there are 152 test cases in the SARD-89 benchmark
suite that our RE tools fail to analyze due to these intrinsic reasons. We leave
out these programs from the remaining experiments in this paper.

Accuracy of Type and Owner Detection for Arrays and Pointers.
Figures 4 and 6 (in Appendix A for optimized benchmarks) display the efficacy
of array and pointer type detection for programs in the SARD-89, SARD-88, and
SPEC suites. Each figure shows three configurations for each of our static RE
tools, ➀ Debug, ➁ Stripped and ➂ Decomp. We leverage the pyelftools [12]
module to design and build a new tool to extract variable information directly
from the “dwarf” [11] section of binaries1. The data from this tool is used as a
baseline to compare the results obtained in the other RE-based configurations.

Figures in the first row (4(a), 4(e), 4(i)) display array bound detection accu-
racy for corresponding benchmarks. #TP Arrays show the (True Positive, TP)
arrays detected at correct offsets regardless of their size/bound, while #FP
Arrays show the (False Positive, FP) arrays that are detected at incorrect off-
sets compared to our baseline. Figures in the second row (4(b), 4(f), 4(j)) display
the accuracy of pointer detection. The first set of bars in each of these figures
show the number of TP and FP pointers as detected directly by the reverse
engineering tools. The set of bars labeled “with Pred.” use a simple pointer pre-
diction algorithm we employed that marks every variable with “undefined type”

1 DWARF is a debugging file format used by many compilers, including the GCC
compiler used in this work, to support source level debugging.
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Fig. 4. Accuracy of array, pointers, and owner detection for SARD-89, SARD-88,
SPEC-cpu2006 benchmarks, generated without compiler optimizations

(or undetermined type) and with a size of 8 bytes as a pointer. Figures in the
third row (4(c), 4(g), 4(k)) display the accuracy of mapping the move and memory
dereference instructions to array/pointer owners. The known owners are associ-
ated with instructions by our analysis algorithm. Static instructions mapped to
owners that are scalar variables are ignored. Instructions are assigned unknown
owners when relevant owners cannot be predicted. The stripped and decompiler
results in these figures are compared against those when debug symbols are avail-
able with each respective RE tool. Finally, figures in the last row (4(d), 4(h), 4(l))
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plot the accuracy of array bounds detection for the #TP Arrays. The Y-axis in
these figures indicates the error magnitude in array bound detection.

Both Ghidra and IDA Pro show very poor efficacy with optimized programs
for most of our experiments. One reason is that these RE tools do not consider
register allocated variables which are prevalent in optimized benchmarks. This
observation suggests a critical area for future work. Given this state with opti-
mized binaries, we focus on unoptimized benchmarks for the remainder of this
section. Results for optimized binaries are presented in Fig. 6 in Appendix A.

We make the following interesting observations from the data presented in
Fig. 4: (1) Even advanced RE tools, like Ghidra and IDA Pro, can fail to appro-
priately leverage program symbol information, as seen most prominently by the
poor efficacy of the debug-ghidra configuration to accurately detect static pro-
gram pointers. (2) The debug-ghidra configuration misrepresents pointer types as
int 64 or undefined 64 in many cases. (3) With no symbol information available
in stripped binaries, disassemblers in our RE tools are unable to detect most/all
arrays and pointers. Surprisingly, our simple pointer prediction algorithm is able
to correctly detect most true pointers but also produces many false positives.
We will explore developing more sophisticated pointer detection algorithms in
the future to improve this simple prediction model. (4) Decompiler algorithms
in IDA Pro and Ghidra do a commendable job, especially in detecting arrays
and array bounds in stripped binaries. Interesting, even small programs seem to
be able to provide sufficient context information to enable effective array type
detection with these algorithms. (5) We find that the decompilers in Ghidra and
IDA Pro are more accurate in inferring arrays and array bounds than inferring
pointers. However, decompiler-based type inference algorithms often split arrays
or combine them with adjacent arrays/variables resulting in many false posi-
tives and at times large inaccuracies in bound detection. (6) We can also make
some more specific observations, like in Fig. 4(c) for SARD-89 benchmarks, many
instructions associated with a scalar in the stripped-IDA case (which are ignored
and are not plotted in the figure) are not assigned any owner (unknown owner)
in the stripped-Ghidra case. We will see the implication of this difference in the
next section. While instruction owner detection appears to works well for unop-
timized benchmarks, it is largely unsuccessful for optimized programs. These
observations reveal both the current capabilities of the static RE tools, Ghidra
and IDA Pro, and open areas for research to more accurately derive program
information that is necessary to detect memory errors at run-time.

5 Run-Time Framework to Detect Memory Errors

In this section we describe the implementation details of our run-time frame-
work that employs the static program information gathered from the RE tools
to detect spatial memory errors. We also assess the efficacy of the complete
framework to effectively use the program information extracted by the static
RE tools to detect memory errors in programs during execution. This approach
does not require access to source code or hardware support.
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Algorithm 1: Run-time Object overflow detection
Input: Function Metadata F −→ ∑

fi{(fs ∪ fe), fv, fm, I}
Input: Global Metadata G −→ Gv

1 ReadInput(Input);
2 InstrumentMallocFree();
3 Fd −→ Set of functions reached during execution;
4 Id −→ Instructions mapping per function reached during execution;
5 foreach f ∈ Fd do
6 foreach i ∈ Id do
7 if i.Address == fs then InitializeStack() ;
8 if i.Address == fe then UnInitializeStack() ;
9 if i.Owner ∈ Unknown then UnknownBoundCheck(); continue ;

10 if IsInsMemStore() then
11 if i.Owner ∈ Pointer then
12 if i.BaseReg ⊆ {rbp, rsp, rip} then BoundPropogationCheck();
13 else PtrBoundCheck();

14 end
15 else ObjBoundCheck();

16 end
17 else if IsInsMemLoad() then
18 if i.Owner ∈ Pointer then PtrBoundCheck();
19 else ObjBoundCheck();

20 end

21 end

22 end

5.1 Dynamic Tracking and Instrumentation Using Pin

Pin [22] employs information supplied by the our static RE tools in the interface
file to detect memory safety violations at run-time. We build scripts, called Pin-
tools, that use the Pin API to insert dynamic checks in the executed code. Algo-
rithm 1 explains our dynamic buffer overflow detection algorithm. Our Pintool
will add instrumentation code at run-time for pointer/array memory move/deref-
erence instructions that are mapped with corresponding instruction owners from
the interface file. Run-time instrumentation is added for the static instruction
categories mentioned below. We employ the example program in Fig. 2 to explain
the run-time algorithm and illustrate the instrumentation categories.2

I. Function Start: The InitializeStack() function in Algorithm 1 will add
instrumentation code at each function prologue to mark the locations of local
variables w.r.t. the actual value of the stack pointer in memory. Function start
(fs) address obtained from the interface file (Fig. 2(c) - line #3) determines the
instrumentation point. The dynamic array/pointer variable locations and avail-
able bounds get stored in a global metadata structure in this phase. Arguments
passed to the program are also detected in this phase by adding a special check
for function ‘main’.
II. Function End/Return: The UnInitializeStack() function in Algo-
rithm 1 will fetch the function end (fe) address from the interface file (Fig. 2(c)
- line #4) to add instrumentation at every function end. This type of instru-
mentation is required to roll-back the allocated stack and remove corresponding
meta-data when the function returns.
2 Our code can be accessed here: https://github.com/Ruturaj4/vulcan prototype.

https://github.com/Ruturaj4/vulcan_prototype
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III. Pointer Move/Propagate: This type of instrumentation is used to transfer
and assign the address/bound of the buffer to any associated pointer. The pointer
can then be used to indirectly access the buffer. Similarly, bounds can also be trans-
ferred between two pointers. Instructions at offsets ‘4’–‘8’ (from Fig. 2(b)) give an
example instruction pattern that represents pointer propagation.

l e a rax , [ rbp−0x20 ]
mov QWORD PTR [ rbp−0x8 ] , rax

Here, the lea (load effective address) instruction computes the address of buffer
‘b’ into a register (rax), and then assigns it to the pointer ‘ptr’ (at offset
‘(rbp-0x8)’ on the stack). Thus, the static analysis tools mark the owner of
instruction at offset ‘8’ as pointer ‘ptr’ (line #8 in Fig. 2(c)).

At run-time, the BoundPropogationCheck() function in our Pintool will add
instrumentation code (to the store instruction at offset ‘8’ in Fig. 2(b)) to check
the contents of the rax register to determine the location of object ‘b’ in memory.
Note that the address and bounds of ‘b’ get stored in a global map structure
during stack initialization at function start. It will then transfer these bounds
to the pointer ‘ptr’.

IV. Pointer Dereference: The following instruction triplet (instructions at
offset ‘20’–‘27’ from Fig. 2(b)) shows an example pattern for pointer dereference.

mov rax ,QWORD PTR [ rbp−0x8 ]
add rax , rdx
mov DWORD PTR [ rax ] , 0 x4

The buffer ‘b’ is accessed through pointer ‘ptr’. Here, the PtrBoundCheck()
function from Algorithm 1 will add instrumentation code (just before the store
instruction at offset ‘27’) to check whether the access is within the associated
bounds, as follows:
i f ( a c c e s s < low bound | | ac c e s s >= up bound )

abort ;

V. Array/Object Bound Check: Similar to PtrBoundCheck(), the
ObjBoundCheck() function adds code to verify that a direct array access is
within the associated bounds. An example pattern (instruction at offset ‘32’
in Fig. 2(b)) is:

mov DWORD PTR [ rbp+rax∗4−0x20 ] , 0 x9

VI. Memory Accesses with Unknown Instruction Owner: In some cases
our static RE tools are unable to determine the instruction owners for the mem-
ory access instructions in the binary. In such cases, the UnknownBoundCheck()
function will add instruction code to check that the access is within the bounds
of the current function stack.

Apart from the above instrumentation categories, we instrument dynamic
memory allocation functions like malloc, calloc, etc. We use Pin’s routine
instrumentation support to instrument these dynamic allocation functions. Our
implementation also supports pointer metadata propagation through function
calls, i.e. it propagates the pointer bounds information whenever pointers are
passed between different functions.
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5.2 Buffer Overflow Detection Accuracy

The efficacy of this framework to accurately detect memory errors is influenced
by two factors: (a) the ability of the employed static RE tools in the first stage
to correctly discover the necessary program information, and (b) the ability
of the dynamic Pin-based run-time framework to correctly detect the program
patterns that constitute valid instrumentation points. The run-time framework
should also maintain and correctly propagate the desired program state at the
relevant instrumentation points.3

We check the effectiveness of our prototype framework to detect memory
overflows using two benchmark suites – SARD-89 and SARD-88. Table 1 presents
the efficacy of the framework with the SARD-89 benchmarks. Each SARD-89
benchmark consists of four programs, one that is categorized as benign (no over-
flow), and three categorized as Malicious with a memory reference that overflows
some buffer with a Minimum, Medium, or Large amount, respectively.

Tables 1(a) and 1(b) show the efficacy results for the 121 SARD benchmarks
that overflow for an instruction with a non-constant array access, with static
analysis conducted by IDA Pro and Ghidra, respectively. For each configura-
tion and benchmark, the column labeled Basic lists the number of programs
that behave correctly or as expected (no-overflow or overflow detected at cor-
rect location) with our mechanism that does not add any instrumentation for
instructions associated with unknown owners. The columns labeled Ext. display
the results with the small extension to our run-time algorithm to add instrumen-
tation for instructions with unknown owners to detect an overflow if the access
is outside the bounds of the current stack.

Thus, we can see that, (a) All Benign cases are correctly handled. (b) All
cases with the Debug configuration are correctly detected. (c) Most Malicious
cases with the Stripped configuration cannot be detected due to missing infor-
mation from the static analysis phase. The run-time Pin extension enables the
detection of overflows outside the stack bounds for binaries analysed by Ghidra
(that contain instructions with unknown owners). This extension does not help
binaries analyzed by IDA Pro as it assigns some owner (a scalar in many cases)
to all such relevant instructions. (d) Interestingly, advanced type and bounds
detection conducted by the static tools enables the Decomp. configuration to
correctly detect a large majority of overflows for the Malicious programs.

Table 2 presents the efficacy results for the 14 SARD-88 benchmark programs
with the IDA Pro RE tool used in the first stage.4 For each SARD-88 benchmark,
the program with the odd number is malicious and contains a buffer overflow and

3 The implementation of our run-time framework can correctly process all programs
in the SARD-88 and SARD-89 suites, as well as most of the SPEC cpu2006 inte-
ger benchmarks. However, our implementation currently encounters memory/per-
formance issues with some larger SPEC benchmarks. We will address these imple-
mentation issues and improve tool robustness in our ongoing work.

4 The results with Ghidra in the first stage are similar, and are included in the
Appendix in Table 3 to conserve space. There are more failures in the Ghidra-based
configuration primarily due to poorer analysis of global strings and buffers by Ghidra.
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Table 1. SARD-89 run-time results for three experimental configurations: ➀ Debug,
➁ Stripped ➂ Decomp. (Stripped + decompiler)

Benign Malicious

Minimum Medium Large

#Total Basic Ext. #Total Basic Ext. #Total Basic Ext. #Total Basic Ext.

Debug 121 121 121 121 121 121 121 121 121 121 121 121

Stripped 121 121 121 121 1 1 121 1 1 121 1 1

Decomp. 121 121 121 121 110 110 121 110 110 121 110 110

(a) Benchmarks with non-constant array accesses (IDA Pro)

Benign Malicious

Minimum Medium Large

#Total Basic Ext. #Total Basic Ext. #Total Basic Ext. #Total Basic Ext.

Debug 121 121 121 121 121 121 121 121 121 121 121 121

Stripped 121 121 121 121 1 29 121 1 42 121 1 118

Decomp. 121 121 121 121 95 95 121 110 115 121 110 118

(b) Benchmarks with non-constant array accesses (Ghidra)

the program with the even number is benign. All results displayed here include
the Pin extension to detect memory access beyond the current function stack.

We find that while most cases with the Debug configuration are detected cor-
rectly, there are a few notable failures. Most of these failures are due to incorrect
static bound detection for global read/write buffers. We did not encounter this
case in SARD-89 benchmarks; most overflows there were in local buffers.

Programs analyzed by Ghidra encounter additional failures, even in the
Debug case, because, unlike IDA Pro, Ghidra does not detect global strings that
are usually defined in the binary’s read-only (.rodata) section. For instance,
benchmarks II, IX, XI and XIV fail when analyzed by Ghidra due to this issue.
We also observed that global read-only strings with lengths less than 4 bytes are
not detected by IDA Pro; for Ghidra this length is 5 bytes. This issue is a basic
limitation for reverse engineering tools, as reducing this lower bound can lead to
type detection conflicts with other types that may appear to be strings.5.

As expected, malicious programs in the Stripped configuration fail due to
incorrect static analysis. However, in contrast to our observation that the benign
cases with the Stripped configuration in SARD-89 are successful (no overflow
detected), we find that most benign-Stripped cases in SARD-88 fail (false positive
overflow is detected). This difference in behavior is because our RE tools make no
owner association (or unknown owner with Ghidra) for the SARD-89 programs
in this configuration; so, no check is added for programs analyzed by IDA Pro,
and the only check added is to detect out-of-stack overflows for binaries analyzed
by Ghidra. In contrast our RE tools associate an owner (global variables in many
cases) with incorrect bounds (1 in many cases) for many SARD-88 programs in
this configuration; hence, they encounter a false positive overflow.

5 https://github.com/NationalSecurityAgency/ghidra/issues/2274.

https://github.com/NationalSecurityAgency/ghidra/issues/2274
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Table 2. SARD-88 test Results (IDA Pro) for our three experimental configurations:
➀ Debug, ➁ Stripped, and ➂ Decomp. (Stripped + Decompiler)

Bechmarks Debug Stripped Decomp. Benchmarks Debug Stripped Decomp.

I 283 ✓ ✗ ✗ VIII 297 ✗ ✗ ✗

284 ✓ ✗ ✓ 298 ✗ ✗ ✗

II 285 ✓ ✗ ✓ IX 299 ✓ ✗ ✓

286 ✓ ✗ ✗ 300 ✓ ✗ ✓

III 287 ✓ ✗ ✗ X 301 ✗ ✗ ✗

288 ✓ ✗ ✗ 302 ✓ ✗ ✓

IV 289 ✓ ✗ ✗ XI 303 ✓ ✗ ✗

290 ✓ ✗ ✗ 304 ✓ ✗ ✗

V 291 ✓ ✗ ✓ XII 305 ✗ ✗ ✗

292 ✓ ✗ ✓ 306 ✓ ✓ ✓

VI 293 ✓ ✗ ✓ XIII 307 ✗ ✗ ✗

294 ✓ ✗ ✓ 308 ✓ ✓ ✓

VII 295 ✓ ✗ ✓ XIV 309 ✓ ✗ ✓

296 ✓ ✓ ✓ 310 ✓ ✗ ✓

Again, we notice that advanced array bound and type inference enables sev-
eral programs to be correctly handled in the Decomp. configuration. Of the 23
programs that are correctly detected in the Debug case, 15 are also correctly
handled in the Decomp. configuration.

5.3 Performance Overhead

Figure 7 uses different metrics to estimate the performance overhead of the run-
time framework.6 Apart from the slowdown introduced by the Pin framework
itself, the instrumentation added by our run-time algorithm is the primary source
of performance overhead. Figures 5(a) and 5(b) plot the total number of instru-
mentation points encountered by all the SARD-89 and SARD-88 programs at
run-time, respectively. The figures also highlight some interesting observations,
including, (a) the number of Stack sets is less than the number of Stack unsets
due to many programs exiting abruptly after an overflow is detected, (b) while
SARD-89 programs are dominated by array dereferences, the SARD-88 programs
encounter many more pointer dereferences, (c) the Ghidra-stripped configuration

6 In theory, the performance of our run-time framework should be comparable with
a compiler-based approach, like SoftBound [27]. Our run-time implementation is
currently in the prototype stage and was designed to primarily explore the properties
and potential of the static RE tools to detect memory errors in program binaries.
As such, we have not yet explored performance optimizations and associated trade
offs with memory error detection accuracy for the run-time framework.
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Fig. 5. Dynamic instrumentation points (subfigures (a) and (b))

assigns an unknown owner to several instruction in SARD-89, which enables the
detection of large buffer overflows that exceed the current stack bounds.

We also compare the execution time of the benchmark in three settings, (a)
native run, (b) using a minimal pintool that does not add any instrumentation,
and (c) the pintool implementing our run-time algorithm (plots are available in
Figs. 7(a) and 7(b) in Appendix C). Each program is run for 15 times and the
average execution time is plotted. Most programs in the SARD-89 and SARD-
88 suites run quickly, with an average execution time of 0.99 ms and 1.17 ms
for the native run, respectively. The startup overhead of the minimal Pin frame-
work increases the average run-time to 213.71 ms for SARD-89 and 417.99 ms for
SARD-88 programs, respectively. Finally, our run-time framework increases the
overhead to 227.85 ms for SARD-89 programs and 450.62 ms for the SARD-88
programs.

6 Conclusions and Future Work

Our goal in this work is to analyze and evaluate the ability of current state-
of-art static reverse engineering tools, especially Ghidra and IDA, to accurately
determine the required program information from binary programs to enable
the effective detection of memory errors during program execution. We find
that both Ghidra and IDA include advanced algorithms for array bound and
instruction owner identification as part of their decompiler framework. However,
more advanced techniques and algorithms are needed to further improve their
capabilities and precision, especially for optimized binaries. We built a Pin-based
run-time tool that can use the information from the static RE tools to detect
buffer overflows during execution. We found that while our run-time tool can
detect a large fraction of memory errors in our benchmarks, the accuracy of the
tool is directly proportional to the limitations in the available static program
information.
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The practicality of this approach to detect memory errors is limited by the
accuracy and completeness of the static tools and the efficiency of the run-time
framework. In the future we will explore the potential of different approaches,
including other dedicated type inference mechanisms, new static algorithms,
and combining static and dynamic analysis, to improve array bound and owner
detection, especially for optimized binaries. We will also study techniques to
improve the efficiency of our prototype run-time framework, including using a
static binary rewriting system. Finally, we will experiment with a larger bench-
mark set to more comprehensively study the properties of this approach.

Appendix A Optimized Benchmarks

Figure 6 shows the results from the static analysis phase and compares the accu-
racy of array bounds detection, pointer identification, and instruction owner
detection for optimized binaries.

Fig. 6. Accuracy of array, pointers, and owner detection for SARD-88 (Optimized),
SPEC-cpu2006 (Optimized)

Appendix B Detection Accuracy Using Ghidra

Table 3 shows the detection accuracy of Ghidra for SARD-88 benchmarks.
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Table 3. SARD-88 Test Results (Ghidra) for our three experimental configurations:
➀ Debug, ➁ Stripped, and ➂ Decomp. (Stripped + Decompiler)

Benchmarks Debug Stripped Decomp. Benchmarks Debug Stripped Decomp.

I 283 ✓ ✗ ✗ VIII 297 ✗ ✗ ✗

284 ✓ ✗ ✓ 298 ✗ ✗ ✗

II 285 ✗ ✗ ✗ IX 299 ✗ ✗ ✗

286 ✗ ✗ ✗ 300 ✗ ✗ ✗

III 287 ✓ ✗ ✗ X 301 ✗ ✗ ✗

288 ✓ ✗ ✗ 302 ✗ ✗ ✗

IV 289 ✓ ✗ ✓ XI 303 ✗ ✗ ✗

290 ✓ ✗ ✓ 304 ✗ ✗ ✗

V 291 ✓ ✗ ✓ XII 305 ✗ ✗ ✗

292 ✓ ✗ ✓ 306 ✓ ✗ ✗

VI 293 ✓ ✗ ✗ XIII 307 ✗ ✗ ✗

294 ✓ ✗ ✓ 308 ✓ ✓ ✓

VII 295 ✓ ✗ ✓ XIV 309 ✗ ✗ ✗

296 ✓ ✓ ✓ 310 ✗ ✗ ✗

Appendix C Program Execution Time Overhead
by the Pin-Based Run-Time Technique

Fig. 7. Program execution time in msec
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