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Abstract. Support vector machines (SVMs) are one of the most com-
monly used models for classification problems in machine learning. Nowa-
days there is an important scenario that many different parties jointly
perform SVM training by integrating their individual data, while at the
same time it is required that privacy of data can be preserved. At present
there are three main routes to achieving privacy-preserving SVM. First,
all parties jointly generate kernel matrices privately and then use them
for remaining training (e.g. Yu et al. 2006). Second, based on the first
route, an additional randomization is adopted to randomize kernel matri-
ces in order to (heuristically) hide information exposed by kernel matrices
(e.g. Mangasarian et al. 2008). Third, also the securest one, all parties run
MPC protocols for computing whole optimization algorithms privately
(not merely the generation of kernel matrices as the first two routes do)
(e.g. Liu et al. 2018 and Wang et al. 2020).

In this paper we propose a new efficient privacy-preserving SVM
protocol in the third route that privately realizes the gradient descent
method to optimize SVM and its security is proven in the semi-honest
model. Our protocol admits the following advantages.

– The protocol is of flexible deployment. It supports the deployment
of arbitrarily multiple servers and multiple clients.

– The protocol can tolerate dropping-out of some servers.
– The protocol admits the ability of malicious-error-message correction

(which is actually beyond the semi-honest security). If a small num-
ber of messages are corrupted, it can still recover correct messages
as desired.

We remark that none of the above advantages can be obtained by some
known work. Moreover, when compared to the privacy-preserving SVM
by Liu et al. 2018 and Wang et al. 2020, our protocol achieves higher
efficiency. We implement our protocol in Python and the experiments
verify its efficiency.
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1 Introduction

Machine learning has been widely used in various fields, in which classification is
one of the most commonly used functions and often applied in image recognition,
data mining, text analysis, anomaly detection, recommendation systems and
many other businesses. Usually sufficient perfect training data is always the
premise to ensure the accuracy of trained models. But in reality complete data
and sufficient computing power are not always held by one party, and the need
for protecting privacy prevents arbitrary flow of data among different owners.
Due to the increasing requirement of distributed machine learning and privacy
preserving, privacy-preserving machine learning has attracted more and more
attention recently.

Support vector machines (SVMs) are a widely used model in machine learn-
ing for classification problems. So there have been many achievements in the
research line of privacy-preserving SVM. Basically there are three main routes
to realizing it. The first route is that all parties jointly generate kernel matrices
privately and then use them for remaining training [15,19,21]. When data is ver-
tically partitioned and linearly separable, [21] asks each party computes its own
kernel matrix and then lets a party/server integrate them to the whole kernel
matrix. To prevent a party from obtaining the kernel matrix of someone else,
this method requires data to be held by at least three parties. [19] uses homo-
morphic encryption to compute kernel matrices under arbitrary partition based
on similar ideas. [15] also uses Paillier homomorphic encryption to calculate the
kernel matrix under vertical partition.

The second route is that based on the first route an additional randomization
is adopted to randomize kernel matrices in order to (heuristically) hide informa-
tion exposed by kernel matrices [11,12,22]. Combining random kernel functions
and matrix summation, [12] uses random linear transformations to avoid possi-
ble information leakage caused by publishing local kernel matrices. In [8] random
linear transformations are also applied to one class SVM, and transformed data
is used as a new input to calculate kernel matrices. [22] uses random kernel
functions and integer vector encryption to encrypt data sets with horizontal or
vertical partitions, allowing different parties to encrypt their data with different
keys, and train them by a single server.

The third route is that all parties run MPC/2PC protocols for comput-
ing whole optimization algorithms privately (not merely the generation of ker-
nel matrices as the first two routes do), which include SMO (Sequential Min-
imal Optimization), the kernel-adatron algorithm and gradient descent algo-
rithm [7,9,20] etc. [7] proposes protocols to implement kernel-adatron and ker-
nel perceptron learning algorithms, but without conducting experiments to ver-
ify efficiency. [9] implements a secure SMO protocol with the distributed two-
trapdoor public-key cryptosystem (DT-PKC). [20] also designs GD (gradient
descent) based secure SVM training using DT-PKC. These methods can protect
all data throughout the whole training, but also at a cost of great time.

Besides the above works specializing in SVM, there are some works aiming
at realizing privacy-preserving training for a variety of models. SecureML [14]
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applies the ABY framework with a new fixed-point multiplication protocol to
linear regression, logistic regression and neural network. Chameleon [16] and
ABY3 [13] change the setting from two servers to three servers, managing to
simplify the protocols. FLASH [1] expands to four servers, allowing at most one
malicious, proposing a framework with high robustness only by using symmetric-
key primitives. These works have made great achievements in improving effi-
ciency, but there are still some shortcomings and, for instance, the number of
servers have to be fixed to constants, which is inflexible in deployment. (In prac-
tice each data owner is usually willing to participate joint training instead of
just providing data to others. So an owner is not only a data provider, but also a
server. The present works require the number of servers small (≤4), which thus
limits their applications. Besides flexibility, another motivation to increase the
number of servers is to enhance the resistance to collusive servers. Assuming the
protocol has the (n, t)-threshold property, i.e. at least t corrupted servers of n
ones together can recover data, which makes malicious recovery more difficult
as n, t increases.)

Summary. We provide a summary to the current state of the art in privacy-
preserving SVM. The first route is essentially private-preserving matrix summa-
tion which gains high efficiency, but kernel matrices are exposed and may leak
information. The second route, adopting an additional randomization to kernel
matrices, only provides a heuristic strategy to hide kernel matrices without a
security proof. The third route is the securest, protecting all data throughout
the training but at the cost of a large loss of efficiency. Moreover, all the works,
including general privacy preserving machine learning for a variety of models,
cannot be applied to scenarios of multiple servers and cannot handle the case
that some messages are corrupted.

1.1 Our Contribution

In this paper we propose a new efficient privacy-preserving SVM protocol in the
third route that privately realizes the SGD (stochastic gradient descent) method
to optimize SVM. Our protocol admits the following advantages.

– The protocol is of flexible deployment. It supports the deployment of arbi-
trarily multiple servers and multiple clients.

– The protocol can tolerate dropping-out of some servers (up to some threshold
value).

– The protocol admits the ability of malicious-error-message correction. Error
messages caused by the adversary’s malicious behaviors are not randomly dis-
tributed and will hinder secret reconstruction, or even lead to wrong results.
If a small number of messages (up to some threshold value) are corrupted, it
can still recover correct messages as desired.

We note that none of the above advantages can be obtained by some known
work. The security of privacy preserving is established in the semi-honest adver-
sarial model. Our protocol has the ability to deal with the collusion of servers
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less than the secret sharing threshold. We remark that the third advantage above
shows that our protocol can resist some malicious-message attack, which is actu-
ally beyond the semi-honest adversarial model. For simplicity we just claim that
our protocol is secure in the semi-honest adversarial model.

Thus our protocol can be flexibly used between n servers (calculators) and
m clients (data holders), and tolerates some servers dropping out halfway. In the
running of the protocol, all clients submit the sharing of their sample data to all
servers, which then perform MPC to execute the SGD algorithm to optimize the
parameters of SVM, and finally output the shares of the optimized parameters.
We note that there is no significant difference in accuracy between the models
trained by our protocol and those trained with plain data directly.

Compared with [9,20], our protocol achieves higher efficiency. [9,20] use a
public key encryption system based on modular exponentiation, so 100 rounds
of their training takes nearly 10 h on a 236 × 13 training set. Our protocol runs
MPC based on shares, which only consists of addition and multiplication over
finite fields, so 1000 rounds of our training takes about 48 s on the breast-cancer
training set of 500 × 10 and 1000 rounds of training takes about 10 min on the
diabetes training set of 500 × 10, and 30 min on the german.number training set
of 800 × 24. The programming language used in our experiment code is Python.

Compared with [1,13,14] as well as [9,20], which should fix the number of
servers to a value among 2 to 4, our protocol can be deployed among any number
of servers (no less than 3). Also, by using Shamir’s (n, t)-threshold secret sharing
scheme, we can arbitrarily deploy n servers and tolerate dropping out of at most
n − 2t ones. Also, less than t colluding servers learn nothing in our protocol
more than what they deserve. Moreover, by introducing the Berlekamp-Welch
algorithm as an optional recovery algorithm, correct messages can be recovered
even if less than t messages/shares are corrupted. The security parameter of the
protocol is the bit length of the random number in the protocol.

Finally, we note that the SGD optimization algorithm we use (see
Algorithm 1) is for linear kernel functions originally, it can be extended for non-
linear SVM training. To train nonlinear kernel function SVMs, the input feature
x should be replaced by its mapping result φ(x) corresponding to nonlinear
kernel functions, or apply the quadratic form (see [17]).

1.2 Our Techniques

Now we present a high-level description of our protocol and sketch main tech-
niques. Assume there are m clients trying to cooperate on privacy-preserving
SVM training, while n servers provide secure computation services. Basically,
the protocol runs as follows. First the clients submit the shares of the sample
data to the servers. Then the servers jointly compute the parameters of the SVM
model using the SGD strategy. That is, the protocol consists of many repetitions,
each of which computes an iteration of the SGD method. In each repetition, the
servers have as input the shares of current values of the parameters and then
perform some MPC protocols to compute gradient iteration and finally obtain



246 W. Huang and N. Ding

the shares of the new values of the parameters. When the protocol halts, all
servers output the shares of the optimized parameters of the model.

More concretely, in the SGD for SVM, the gradient and iteration of the
parameters are given in the following formulas.

grad = α · w − C · I(yi(xi · wT ) − 1)(yixi) (1)
w = w − l · grad, (2)

where w are the parameters to be optimized, yi and xi are the label and features
of the ith sample, C is the penalty coefficient of the relaxation variable, and l
is the learning rate and C, l are constants, and I(x) is the function such that if
x > 0, I(x) = 0, and if x < 0, I(x) = 1.

According to the above formulas, each iteration of SGD only consists of
addition, multiplication and comparison operations. Thus to realize the MPC
for SGD, it suffices to show how to realize these operations privately.

Notice that the SGD algorithm is not over integers, while Shamir’s secret
sharing is built over finite fields like Zp. Recall that [3] presents secure fixed-
point addition, multiplication and truncation with respect to Shamir’s scheme.
Thus we adopt [3] to realize the secure addition and multiplication.

We introduce the Berlekamp-Welch algorithm as an optional error correction
algorithm. The algorithm takes the received codewords (i.e. shares of Shamir’s
secret sharing) as input, and recovers the correct values. In our protocol, all
communication takes place within the reveal protocol. By replacing the calcula-
tion in the reveal protocol with the Berlekamp-Welch algorithm, we can get the
correct result when there are a few errors in the received messages.

1.3 Organization

The rest of the paper is arranged as follows. In Sect. 2 we present a part of
preliminaries and relegate the rest to AppendixA due to lack of space. In Sect. 3
we present the security model. In Sect. 4 we show the details of building blocks
(i.e. secure addition, multiplication and comparison etc.). In Sect. 5, we present
our privacy-preserving SVM protocol. In Sect. 6 we give performance evaluation
of our protocol via theoretical analysis and experiments.

2 Preliminaries

We recall the notion of support vector machines and Shamir’s secret sharing
here, and relegate the Berlekamp-Welch algorithm to AppendixA.

2.1 Support Vector Machines

Support vector machines (SVM) are a classical machine learning model. The
concept of SVM was proposed by Vladimir N. Vapnik and Alexey Ya Chervo-
nenkis in 1963. The current version was proposed by Corinna Cortes and Vapnik
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in 1993 and published in 1995 [5]. As a supervised learning model, SVM is mainly
used in regression and classification problems. The principle of SVM is to find a
hyperplane to maximize the minimum distance between the hyperplane and the
two kinds of sample points.

SVM can be optimized by the gradient descent method. We consider linear
SVM which has a loss function, called hinge loss function, max(0, 1−yi(xiwT )),
where the subscript i represents the ith sample, and x and y represent the
feature data and labels. Considering slack variable ξi and regular term α ‖w‖,
the gradient of the objective function is grad = α ·w−C(yi(xi ·wT ) < 1)(yixi).
The gradient descent method of SVM uses the following algorithm to optimize
w. In the algorithm, the bias b can be optimized by directly adding an all 1
column to x.

Algorithm 1. SVM − GD

Input: features x ∈ Rt×d, labels y ∈ {±1}t, batch-size k, learning rate l, α, C, T
Output: parameters w ∈ Rd

1: Randomly initialize w, set t = 0
2: while t < T do
3: Random sample batch B
4: grad = α · w
5: grad− = C

k

∑
i∈B(yi(xi · wT ) < 1)(yixi)

6: w− = l · grad
7: t+ = 1

8: return w

2.2 Shamir’s Secret Sharing

The secret sharing decomposes a secret into several shares. It is required that
no information about the secret can be extracted from the sets of shares that
do not meet specific requirements, while the sets that do can restore the secret.
Shamir’s secret sharing [18] is a classic (n, t)-threshold secret sharing, that is, it
decomposes a secret value into n shares, and only when the number of shares is
greater than t can it be recovered the secret value. In Shamir’s secret sharing
scheme, the secret owner generates a t−1 degree polynomial f(x) = s+a1x+· · ·+
at−1x

t−1 over a finite field, where s = f(0) is set as the secret value and the other
parameters are random values. Then (f(i), i), i ∈ [1, n] are distributed to party
i as the secret shares. When parties need to reconstruct the secret, first collect
enough secret shares (at least t), and then calculate the secret value f(0) =∑

i∈A,|A|=t(f(i)
∏

j∈A,j �=i
−j
i−j ) according to the Lagrange interpolation formula.

We use [[x]] to denote the Shamir’s secret shares of x, and x ← Reveal([[x]]) is the
reconstruct protocol as described above.

Like some other secret sharing schemes, Shamir’s secret-sharing also has the
homomorphic property. The secret value can be calculated by calculating the
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shared value. When the shares corresponding to the two polynomials f1, f2 are
added accordingly, the result is exactly the share corresponding to f3 = f1 + f2.
Therefore, Shamir’s secret sharing has the property of additive homomorphism.
When we want to calculate the addition of the secret values of two corresponding
polynomials on the same finite field, we can simply add their shared values of
the same independent variable without any communication. Similarly, Shamir’s
secret sharing has similar properties to multiplication, but it should be noted that
the multiplication of two t− 1 degree polynomials will produce a 2(t− 1) degree
polynomial, which will change the threshold structure, so the degree of the new
polynomial needs to be reduced in time, which brings additional communication.

3 Security Definition for Privacy-Preserving SVM

In this section, we specify the security definition for privacy-preserving comput-
ing Algorithm 1. Assume there is a group of clients C1, · · · , Cm, which want to
train a SVM model. Each client holds some data. Assume there are n servers
S1, · · · ,Sn that provide secure computation services. Assume there is a semi-
honest adversary A that can corrupt t − 1 servers and any proper subset of
clients. Very informally, we say a protocol involving these roles secure, if the
semi-honest adversary above cannot obtain more knowledge than what can be
retrieved from outputs of the protocol.

Let x be the feature data of the samples, which is arbitrarily divided into m
pieces x1, · · · ,xm and held by m clients (i.e. data holders). Let y be the labels of
the samples, and its partition also does not affect training. Let SA denote the set
of corrupted servers, CA the set of corrupted clients. The view of the adversary,
denoted viewA(xA), is defined as (xA, rA,M, outputA), where xA are the input
held by the clients in CA, rA are the random numbers used by the servers in
SA in the protocols, M is the set of messages sent by honest participants in
protocols, and outputA is the output of the protocol that A can get. We hope
that our protocol can realize the function of Algorithm1, denoted by f , which
takes the sample data x1, · · · ,xm of m clients and the labels y as inputs, and
outputs the optimized model parameters w. Let fA denote the subset of f ’s
output that can be obtained by A. We have security definition as follows.

Definition 1. Let f : (x1, · · · ,xm,y) → w be the ideal function of Algorithm1
where x1, · · · ,xm denote the sample data of m clients, y denotes the labels of the
samples, w denote the optimized parameters. We use fA to denote the subset of
f ’s output that A can get. We say a protocol π privately–computes f against the
semi-honest adversary A described above, if for any (x1, · · · ,xm,y), the output
of the protocol π outputπ(x1, · · · ,xm,y) = f(x1, · · · ,xm,y), and there exists a
probabilistic poly-nomial-time algorithm S:

{S(xA, fA(x,y)), f(x,y)} ≡ {viewA(xA), outputπ(x1, · · · ,xm,y)}

where ≡ denotes that the distributions on both sides are statistical indistinguish-
able.
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4 Building Blocks of Our Protocol

As sketched previously, our protocol consists of many repetitions, each of which
computes an iteration of the SGD method. In each repetition, the servers have as
input the shares of current values of the parameters and then perform some MPC
protocol to compute gradient iteration and finally obtain the shares of the new
values of the parameters. According to Formula 1 and 2, each iteration of SGD only
consists of addition, multiplication and comparison operations. Thus to realize the
MPC for SGD, it suffices to show how to realize these operations privately.

Notice that the SGD algorithm is not over integers, while Shamir’s secret
sharing is built over finite fields like Zp. Recall that [2] and [3] presents secure
fixed-point addition, multiplication, truncation and less-then-zero (LTZ) proto-
col with respect to Shamir’s scheme. Thus we adopt [2] and [3] to realize the
secure addition and multiplication, which details are recalled in Sect. 4.1. Lastly
in Sect. 4.2 we show the details of how to use the Berlekamp-Welch algorithm to
correct wrong messages.

4.1 Secure Fixed-Point Calculation [2] and [3]

We now present a detailed overview of fixed-point calculations in [2] and [3],
which also explains the notations to make it easier to read the following sub-
sections. We will first introduce the representation of fixed-point numbers in
Shamir’s sharing and then recall the addition and multiplication with truncation,
and finally introduce the less-than-zero protocol. More details of the protocols
can be referred to [2] and [3] or AppendixB.

Data Type and Encoding. In this paper the target data is signed fixed-point
numbers, denoted as Q〈k,f〉 = {x̃ ∈ Q|x̃ = x̄ · 2−f , x̄ ∈ Z〈k〉}, where Z〈k〉 = {x̄ ∈
Z|−2k−1 ≤ x̄ ≤ 2k−1−1} denotes the signed integers. f is the number of decimal
places, k is the number of significant digits, and x̃ and x̄ indicate their types
Q〈k,f〉 and Z〈k〉. We use the integer function intf : Q〈k,f〉 �→ Z〈k〉, intf (x̃) = x̃ ·2f

to realize the conversion of elements between these two types. We use the p’s
complement encoding system to encode elements on Z〈k〉 onto Zp.

The p’s complement encoding system uses a sufficiently large p to generate Zp,
where p > 22k+κ, κ is the security parameter, and uses the function fld(x̄) = x̄
(mod p) mapping the element x̄ over Z〈k〉 to the element over the finite field
Zp. This mapping allows addition and multiplication of elements on Z〈k〉 to be
directly implemented through the corresponding calculations on Zp, and realizing
of the calculation of fixed-point numbers by simpler conversion. In addition,
choosing a large enough p can also ensure that the signed multiplication does
not cross the bounds, and retains many related properties.

Fixed-Point Calculation. As we have already said in the previous paragraphs,
we realize the calculation of the signed integer elements over Z〈k〉 by directly
calculating the elements over Zp, and further realizing the calculation of the
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signed fixed-point numbers over Q〈k,f〉. Since f , the number of decimal places
we set, is fixed and public, we can directly use the calculation over Z〈k〉 of the
signed integer element x̄ to implement the addition and subtraction of x̃ and
determine the sign, for intf (x̃1) + intf (x̃2) = intf (x̃1 + x̃2). But the multiplica-
tion between x̃ will cause the expansion of digits. The key difference between
fixed-point calculations and integer calculations is that in order to maintain the
number of decimal places, we need to truncate the results after performing mul-
tiplication calculations. Next, we will introduce the truncation protocol in [3]
that we will use in this paper.

Truncation. Div2mP [3] is the truncation protocol that we will use in this
paper. It takes a secret integer value ā ∈ Z〈k〉 and a public integer m ∈ [1, k − 1]
as inputs, calculates the shares of c̄ = 	ā/2m
 and rounds up or down with some
probability. Details of the protocol are shown as Protocol 5.

Using the above truncation protocol, we get the multiplication of fixed-point
numbers. As for x̃3 = x̃1x̃2 = x̄1x̄2 ·2−2f ∈ Q〈2k,2f〉, using Div2mP([[x̃3]], k+f, f)
to do the truncation, x̃3 will be turned to x̃′

3 = x̄1x̄2 · 2−f ∈ Q〈k,f〉. And this is
how FXMul works.

The Less-Than-Zero Protocol. In this subsection we introduce the LTZ pro-
tocol from [2] based on bit comparison and precise truncation Div2m for secure
comparison. According to Formula 1, we need to decide whether a number is
greater than 0. The LTZ protocol obtains the sign of the secret value by trun-
cating to only one bit remaining. Because Shamir’s secret sharing works on Zp,
we will map signed integers to Zp by modulo p, and positive numbers will be
mapped to [0, p/2], while negative numbers will be mapped to (p/2, p). There-
fore, when guaranteed to be rounded down, the truncated result of a positive
number is 0, and the result of a negative number is −1 (i.e. p − 1 in Zp), so
that the two can be distinguished. LTZ([[a]], k) outputs s = (ā < 0)?1 : 0 as
[[s]] = −Div2m([[a]], k, k − 1).

4.2 Error-Message Recovery via the Berlekamp-Welch Algorithm

Now we show the details of how to use the Berlekamp-Welch algorithm to correct
wrong messages. Assume that there are wrong messages in communication and
these error messages are corrupted shares. Notice that all the communications
in our secure computation framework are in Reveal (see Sect. 2.2), except the
initial share distribution of clients, and all situations only include the Reveal
of random values or the Reveal hidden in the degree reduction protocol. More-
over, error correction algorithms such as Berlekamp–Welch algorithm can fully
assume the role of recovering secret values from shares in the Reveal protocol, and
have the ability of error correction (see AppendixA.1). Therefore, in our secure
computation, participants can directly replace the Reveal with the RevealBW

of Berlekamp–Welch algorithm version, when they reveal the secrets after each
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Protocol 2. Div2mPBW ([[a]]p, k,m)
Input: Secret share [[a]]p, digits length k, divisor length m, random number r
Output: Secret sharing modulus result [[c]]p, where c̄ = �ā/2m� + u, and u ← {0, 1}

1: [[r′′]] ← PRandInt(k − m − 1), [[r′]] ← PRandInt(m)
2: [[r]] ← 2m[[r′′]] + [[r′]]
3: [[a′]] ← 2k−1 + [[a]] + [[r]]
4: b ← RevealBW (r[[a′]])
5: b′ ← (r−1b) (mod 2m)
6: [[c]] ← ([[a]] − (b′ − [[r′]]))2−m

7: return [[c]]

round of communication. In order to ensure correctness, we also need some other
operations.

Since the Berlekamp-Welch algorithm is proposed as a decoding algorithm,
the errors it deals with are considered as random noise. Similarly, there are
some heuristic algorithms among the following multi-polynomial reconstruction
algorithm, which clearly requires that the errors should be random. In secure
computing, error messages may be actively tampered with by malicious adver-
saries to prevent the reconstruction of secrets or even lead to the wrong results.
Such errors are obviously not random. To use these algorithms in our secure
computation, we need to randomize the errors in different distributions.

Let the received shares be [[x]], some of which are corrupted to [[x]]i + Δxi,
where Δxi is the malicious error. The participant can multiply all shares [[x]] by
a same random number r, i.e. [[x′]] = r[[x]]. So the error Δxi is turned to rΔxi,
which is a uniformly distributed random number. Then the participant can apply
Berlekamp-Welch algorithm to recover the secret x′ = rx ← RevealBW ([[x′]]). In
the end he multiplies the result x′ by the inverse of the random number r−1 to
obtain the secret value x ← r−1x′. Taking Div2mP for example, (see Protocol 5
in AppendixB.1) after introducing BW algorithm, the protocol is modified as
Protocol 2.

Finally, we summarize the error correction algorithm. We use noisy polyno-
mial reconstruction algorithms such as Berlekamp-Welch to replace the original
reveal algorithm in Shamir’s secret sharing. Since there is no change in the inter-
action, the introduced algorithm will not reduce security. On the contrary, due
to its error correction function, it can resist the dropping out and tampering of
some messages, thereby obtaining stronger security than before. As these correc-
tion algorithms increase the computational cost compared to the original Reveal,
it is sufficient to use the original Reveal under semi-honest security, so as in our
experiments.
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5 Privacy-Preserving SVM

After presenting the building blocks, this section will formally introduce our
privacy-preserving SVM protocol. Section 5.1 will give an overview of the proto-
col. Section 5.2 will explain the details of the protocol and prove its security.

Protocol 3. PPSVM − GD

Input: Features x ∈ Rt×d, labels y ∈ {±1}t, batch-size bs, learning rate r, PRG, α,
k, f , C, T
Output: shares [[w]] of parameters w ∈ Rd

1: Clients generate the shares [[x]], [[y]], and send them to the servers
2: Servers randomly initialize [[w]], set t = 0
3: calculate λ = [C·r

bs
× 2f ]

4: while t < T do
5: Get batch index according to PRG
6: grad = α · [[w]]
7: a1 = [[yi]][[xi]] //need degree reduction
8: a2 = a1 · [[w]] //need degree reduction
9: a3 = LTZ(a2 − 2f )

10: a4 = λ
∑

i a3a1 //need degree reduction
11: grad = Div2mP(grad − a4, k + f, f)
12: [[w]]− = Div2mP(r · grad, k + f, f)
13: t+ = 1

14: Servers return [[w]]

5.1 Protocol Overview

We use the above protocols based on Shamir’s secret sharing to realize the secure
training of SVM. In the training protocol, the clients submit the shares of the
sample data [[x]] and labels [[y]] to the servers. The servers use them to calculate
the homomorphism of gradient descent according to Formula (1) and (2), so as
to optimize the model parameters w in privacy, and finally output the shares of
the optimized model parameters [[w]].

Our secure training has no special requirements for the distribution of data,
whether it is horizontal or vertical. As long as the data from different clients can
form a complete training set, and this combination is public, then the servers
can do the same operation to the shares of these data. However, in order to
normalize the data before training, the horizontal distributed data may need
other additional operations to get the maximum value per column, while the
vertical distributed data can be calculated directly and locally.

5.2 Protocol Details

The following is the specific process of the protocol. Before the formal training, the
data holders (the clients) and the calculators (the servers) need to agree on the
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number of fixed-point decimal places f , as well as the parameters related to the
secure protocols, such as the modulus p of the finite field. The data holders own-
ing vertical partitioned data need to align the data. During the training, the data
holders submit the secret shares to the calculators. After coordination and sorting,
the calculators hold the shares of the same and complete sample data matrix. The
calculators use the shares to perform the secure computation of the iterations in
the SGD method according to Formula (1) and (2), as shown in the Protocol 3, and
finally get the shares of the optimized parameterw. The shares can be given to the
data holders to reveal w, or can be left to the calculators for secure classification.

While compared with the other secure machine learning protocols like
SecureML, our protocol works in the scenario of n servers and m clients, while
theirs need two to four fixed servers. And because of the (n, t) threshold prop-
erty of Shamir’s scheme, our SGD protocol can tolerate dropping out of at most
n − 2t servers.

Security: The protocol can maintain privacy when facing semi-honest adver-
saries that corrupt at most t − 1 servers. Therefore, we have the ability to deal
with the collusion of up to t − 1 servers. We believe that the protocol will not
leakage any additional information except normal output. Since our protocol is
implemented by the secure computing framework from [3] and [2], the security
of the protocol can also be reduced to their security. More specifically, we make
the following claim and proof.

Theorem 1. Protocol 3 privately computes SVM training with respect to
Definition 1.

Proof. Our model should be able to deal with such an adversary A: it can corrupt
at most t − 1 out of the total number of n servers and a subset of clients,
and executes the protocol semi-honestly. We believe that it cannot obtain any
information other than its own input and output. We set the scenario where A
corrupts t−1 servers S1,S2, · · · St−1 and m−1 clients C1, C2, · · · Cm−1. The above
two sets of servers and clients are denoted by SA and CA.

Next we start to construct a simulator S that runs algorithm S in Definition 1.
The input of S is the sample data of CA and the output of both CA and SA,
which is denoted by xA and fA.

Now we analyze the messages A gets in its view. Since all communications
take place in Reveal, all the messages A receive are shares. All the results of
Reveals contain two types of secret values. One is the random elements over the
finite field, which S can directly simulate directly with random elements over the
field, while the other is the random value generated by additive hiding. Given
a shared variable [[x]] and an unknown shared random secret value [[r]] jointly
generated by participants, calculate [[y]] = [[x]] + [[r]] mod p and reveal y = x + r
mod p. For x ∈ [0, 2k − 1], r ∈ [0, 2k+κ − 1], p > 2k+κ+1, the statistical distance
between y and r Δ(y, r) = 1

2

∑
v∈[0,2k+κ+2k−1] |Pr(x = v) − Pr(r = v)| < 2−κ,

leading to statistical privacy with security parameter κ. Therefore, as long as we
ensure that the bit length involved in addition hiding in the protocol is κ bits
longer than the actual digital range, we can also maintain the above statistical
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indistinguishability. Thus, the simulator can sample random number shares of
the same bit length for simulation.

These two are statistically indistinguishable due to the security of Shamir’s
secret sharing that a group of less than t servers cannot obtain any information
about the secret. Finally, also from the security of Shamir’s secret sharing for
homomorphic computation, the view of A and the overall output of f are also
independent of each other. Therefore, we construct such S, which outputs the
same number of random field elements corresponding to the view of A, so that

{S(xA, fA(x,y)), f(x,y)} ≡ {viewA(xA), outputπ(x1, · · · ,xm,y)}
In summary, Protocol 3 privately computes SVM training for Definition 1.

6 Evaluation

In this section, we will evaluate the proposed privacy preserving support vector
machine protocol. We will evaluate the efficiency and accuracy through theoret-
ical analysis and experimental verification. Finally, we will compare our results
with the existing works.

6.1 Theoretical Analysis

We first analyze the theoretical communication complexity of PPSVM. In each
iteration, the participants perform Div2mP protocol twice, degree reduction pro-
tocol twice, and LTZ protocol once. They need 2 rounds, 3 rounds, 3 rounds of
communication respectively, for a total of 8 rounds of communication. In these
communications, they need to make k + 6 calls of Reveal, where the revealed
original matrix size is one of s × d and k + 2 of s × 1 size, 3 of 1 × d, so the
total communication volume of each participant in one round of SVM training is
(s×d+s×(k+2)+d×3)(n−1) log p bits. In the above, n represents the number
of servers, s is the number of samples, d is the feature dimension of samples, and
k represents the bit length of secrets.

Then we discuss the computational complexity. Each calculator’s calculation
includes four element-wise multiplications, one matrix multiplication and one
comparison in each round of the original SVM training algorithm, and their
extra computational complexity comes from the security protocols. Each degree
reduction protocol needs at least 2 matrix multiplications, and for the truncation
protocol, 1 additional matrix multiplication and 2 element-wise multiplications,
while the LTZ protocol requires k−1 matrix multiplications and 8k−2 element-
wise multiplications. Therefore, each cycle introduces an additional k +7 matrix
multiplications and 8k + 4 element-wise multiplications.

6.2 Experimental Analysis

Because the calculation of long integer matrix is involved, we use Python to
program, and simulate the scene of secure multi-party SVM training on a single
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machine. The communication related time will not be included, which can be
calculated by the previous section. We use native Python for programming, so
the running speed of the experiment will be lower than the theoretical value, but
our results are still much faster than the results of [9,20]. Another significance
of the experiment is to verify that the errors brought by fixed-point number in
SVM training can be ignored.

Settings. The parameters we use are as follows: the number of calculators n = 3,
the threshold t = 2, the number of fixed-point digits f = 20, and the finite field
prime p’s length �log p
 = 120. Other parameters such as C are selected by grid
search method. Before the experiment, the sample feature data is expanded and
rounded according f , and then they are secret shared, which are used as inputs.

Table 1. Data set details

Dataset Feature Trainset Testset

Breast-cancer 10 500 183

Diabetes 8 500 268

German.number 24 800 200

Dataset. The data sets used in the experiment are three binary-class data sets
from libsvm: breast cancer, german.number and diabetes. All three datasets have
linearly scaled each attribute to [−1, 1] or [0, 1]. See Table 1 for details.

Result. We test the secure training protocol on the above three data sets and
compare it with gradient descent training using plaintext directly. We repeat
each experiment 10 times and take the average of 10 results as the final result.
The results are shown in the Table 2.

Table 2. Accuracy of normal SVM and PPSVM among datasets

Dataset T SVM PPSVM

Breast-cancer 100 98.56% (0.0210 s) 98.98% (47.98 s)

Diabetes 1000 68.28% (0.0822 s) 68.06% (677.78 s)

German.number 1000 69.90% (0.2588 s) 68.40% (1846.67 s)

Due to the different separability of the three data sets, we use different iter-
ation numbers. Obviously, the total training time is directly proportional to the
number of iterations, whether secure computation is used or not. At the same
time, the rise of feature dimension and training set size will also increase the
calculation time. Comparing the time of two models on the same data set, the
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training time of PPSVM is about 2000–8000 times that of ordinary SVM. Con-
sidering that we use a single machine to simulate three parties, this proportion
needs to be reduced to about 1/3. However, this is still quite different from the
previous theoretical analysis. We believe that the magnification outside the the-
ory comes from the native Python language and numpy library. In the secure
protocol, we use the native data type of Python to increase the number of data
bits, which will greatly reduce the efficiency of numpy library.

For accuracy, the results of the two models on the breast-cancer dataset are
the best, where the average accuracy of ordinary SVM and privacy-preserving
SVM is 98.56% and 98.98%. The results on german.number and diabetes are not
ideal, which are about 68%. This may be because the kernel function type or
penalty coefficient is not appropriate. It can be seen that the average accuracy
difference between PPSVM and ordinary SVM on the same data set is less
than 1%. Considering the randomness of gradient descent algorithm, we believe
that there is no significant difference between the results whether using secure
calculation or not. That is, when the number of fixed-point digits is sufficient, the
calculation using the number of fixed-point digits will not affect the optimization
result of gradient descent.

Table 3. Comparison among normal SVM and PPSVMs of different thresholds on
breast-cancer dataset

Time/s Single server time/s Accuracy

SVM 0.0109 96.89%

(3, 2) 81.30 27.10 96.61%

(5, 3) 127.95 25.59 96.39%

(7, 4) 195.13 27.88 96.34%

We also conduct experiments on different server numbers and secret shar-
ing thresholds to explore their impact on the efficiency of the protocol. Our
experiment is a single machine simulation, so it does not include communica-
tion, but only the total computing cost. We use three different thresholds for
experiments, each of which conduct 10 experiments and average their results,
and further divide the average results by the number of simulated servers to
obtain the approximate computing time of a single server. The results are shown
in Table 3. The time of a single server on the three thresholds is 27.10 s, 25.59 s
and 27.88 s, which are almost the same. This is consistent with our results in
theoretical analysis, that is, the number of servers only affects a small number
of matrix shapes in the matrix calculations, and has little impact on the calcula-
tion cost. When the threshold and the number of servers are small, their growth
has almost no impact on the calculation. But on the other hand, according to
the theoretical analysis above, the communication cost is linearly related to the
threshold and the number of servers, so it is more affected.
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6.3 Comparison

To conclude this section, we will compare our protocol with some previous works.
Our work is closer to the methods of [9,20]. Compared with them, our protocol
achieves higher efficiency. They use a public key encryption system based on
modular exponentiation, so their 100 rounds of training take nearly 10 h on
a 236 × 13 training set. Our protocol runs MPC based on shares, which only
contains addition and multiplication over the finite field. Therefore, our 100
rounds of training takes about 48s on the breast-cancer training set of 500 × 10,
our 1000 rounds of training takes about 10 min on the diabetes training set of
500×8, and 30 min on the german.number training set of 800×24. For efficiency,
our protocol is much faster than theirs. They need two semi-honest servers, while
we need not less than three servers.

Compared with [1,13,14] as well as [9,20], which have to fix the number of
servers to a value among 2 to 4, our protocol can be deployed among any number
of servers (no less than 3). Increased number of servers and flexible deployment
also enhance the difficulty of server collusion and enhanced the security and
generality of our protocol (for example, let some clients act as the calculators).
Also, by using Shamir’s (n, t)-threshold secret sharing scheme, we can arbitrarily
deploy among n servers and tolerate dropping out of at most n − 2t ones. More-
over, by introducing the Berlekamp-Welch algorithm as an optional recovery
algorithm, correct messages can be recovered even if less than t messages/shares
are corrupted (Table 4).

Table 4. Comparison in functionality

Functions [9,20] SecureML Ours

Efficiency Low High Medium

Non fixed number of servers � � �

Error correction � � �

7 Conclusion

We propose a new privacy preserving support vector machine protocol, which
enables no less than three servers to help several data holders train SVM models,
where the data distribution can be can be arbitrary. We introduce Shamir’s secret
sharing scheme to perform secure computation and protect privacy. We verify
the feasibility and effectiveness of the scheme through experiments.

Acknowledgements. This work was supported in part by the National Key Research
and Development Project 2020YFA0712300.
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A Preliminaries

A.1 Error-Correcting Codes and Berlekamp-Welch Algorithm

Reed Solomon code is an error correction code, which can deal with damaged
and lost symbols. Like Shamir’s secret sharing, RS code is based on polynomial
interpolation, that is, the codewords {f(x1), f(x2), · · · , f(xn)} can be generated
by polynomial f(x) = s + a1x + · · · + at−1x

t−1 from source of {s, a1, · · · , at−1},
where n is the number of participants, t is the threshold. {s, a1, · · · , at−1} is the
input message for RS coding, also the secret and randomness for Shamir’s secret
sharing.

Berlekamp-Welch algorithm [10] is a decoding algorithm of RS code. The
algorithm takes the received codewords (the share in Shamir’s secret sharing) as
input, and recovers the correct true values from by solving a system of equations
and dividing between polynomials. It can deal with up to v < (n − t + 1)/2
errors in the received codewords. The principle of Berlekamp-Welch algorithm
is based on error location polynomial. The error location polynomial is E(x) =∏

i∈E
(x− i) = e0+e1x+ · · ·+ek−1x

k−1+xk, where E represents the index set of
error messages that need to be found. The received codewords are S1, S2, · · · , Sn.
Note that when f(x) �= Sx, E(x) = 0, so there is the equation f(x)E(x) =
SxE(x). Let the left side of the equation be Q(x), and we get the equation
system {Q(x) = SxE(x)}n

x=1. As long as 2k + t + 1 ≤ n is satisfied, there are
solutions of Q(x) and E(x). After the two polynomials are obtained by solving
the linear equations, we can get f(x) by calculating Q(x)/E(x). In Shamir’s
secret sharing, Berlekamp–Welch algorithm has the same input and output as
the Reveal function, and also has the ability of error correction, so it can directly
replace the Reveal function.

Protocol 4. RevealBW

Input: codewords(shares) S1, S2, · · · , Sn ∈ Zp

Output: secrets s ∈ Zp

1: Each participant gets S1, S2, · · · , Sn from others
2: Determine the number of items of Q(x) and E(x) according to the assumed number

of error messages
3: Solve the equation system {Q(x) = SxE(x)}n

x=1

4: f(x) = Q(x)/E(x)
5: return s in f(x)

Berlekamp-Welch algorithm can only recover one secret in one calculation,
while some other further algorithms [4,6] can recover multiple polynomials at the
same time in one calculation. This problem is also called noisy multi-polynomial
reconstruction. These different algorithms have the same application in our
framework. So in our framework, we only take Berlekamp-Welch algorithm as
the representative.
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B Details of Protocols in [3] and [2]

Protocol 5. Div2mP([[a]]p, k,m) [3]
Input: Secret share [[a]]p, digits length k, divisor length m, security parameter κ
Output: Secret sharing modulus result [[c]]p, where c̄ = �ā/2m� + u, and u ← {0, 1}

1: [[r′′]] ← PRandInt(k + κ), [[r′]] ← PRandInt(m)
2: [[r]] ← 2m[[r′′]] + [[r′]]
3: b ← Reveal(2k+κ−1 + [[a]] + [[r]])
4: b′ ← b (mod 2m)
5: [[c]] ← ([[a]] − (b′ − [[r′]]))2−m

6: return [[c]]

B.1 Truncation

Div2mP [3] is the truncation protocol that we will use in this paper. It takes
a secret integer value ā ∈ Z〈k〉 and a public integer m ∈ [1, k − 1] as inputs,
calculates ā/2m and rounds up or down with some probability. Details of the
protocol are shown as Protocol 5.

The protocol uses a truncated random number r to mask the secret value
a to the garbled value b, reveals the garbled value b for truncation, and then
removes the truncated result r′ of r from the result b′. The actual output of the
protocol is c̄ = 	ā/2m + u, which contain an error u = (b′ < r′)?1 : 0. This
error is acceptable in the truncation of fixed-point numbers. The PRandInt in the
protocol is used by each participant to generate a share of an unknown random
number of a specified length without communication.

B.2 Fixed-Point Multiplication

Using the above truncation protocol, we get the multiplication of fixed-point
numbers. As for x̃3 = x̃1x̃2 = x̄1x̄2 ·2−2f ∈ Q〈2k,2f〉, using Div2mP([[x̃3]], k+f, f)
to do the truncation, x̃3 will be turned to x̃′

3 = x̄1x̄2 · 2−f ∈ Q〈k,f〉. And this is
how FXMul works.

Protocol 6. FXMul([[a1]], [[a2]], k + f, f) [3]
Input: Secret share [[a1]], [[a2]], digits length k, decimal digits length f
Output: Secret share [[a3]]p, where ā3 = ā1 · ā2

1: [[a]] ← [[a1]] · [[a2]]
2: [[a3]] ← Div2mP([[a]], k + f, f)
3: return [[a3]]

The communication required for each multiplication is a large overhead, and
the reason for communication is that the multiplication expands the degree of
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polynomials in Shamir’s secret sharing. In order to ensure subsequent successful
recovery, the number of polynomials needs to be maintained less than n through
computation.

B.3 Batch Calculation

As mentioned earlier, the communication required for the degree reduction of
each multiplication is a large overhead. Observing our goal, when calculating
SGD, we will first use multiplication and addition to calculate the inner product.
Each time the inner product is calculated, the multiplications do not interfere
with each other, so we can communicate and reduce the degree after the complete
inner product.

B.4 The Less-Than-Zero Protocol

The LTZ protocol in [2] is actually an application of the precise truncation
protocol Div2m. The above Div2mP is a truncation protocol, but it has errors
caused by random rounding. First, the protocol uses PRandM(k,m) to generate
two shares of random numbers with specified lengths k and m, and the shares
of each bit of the latter. Based on the Div2mP protocol, Div2m uses the bit
comparison protocol BitLT from [2] to obtain an accurate result of truncating
2k−1 bits and keep rounding down, thereby revealing whether the secret is less
than zero. BitLT takes a plaintext data and a set of random bit shares as input,
and outputs whether this plaintext data is less than the binary random number
represented by these bit shares. The BitLT requires 2 rounds and k+1 interactions
of Reveal online, 3 rounds and 3k − 1 interactions offline.

Using BitLT, Div2m can find out whether 2k−1 + [[a]] + [[r]] produces carry in
the least significant m bits and remove it. So that Div2mP is turned to accurate
Div2m. And finally, we have LTZ([[a]], k) outputs s = (ā < 0)?1 : 0 as [[s]] =
−Div2m([[a]], k, k − 1).

Protocol 7. Div2m([[a]]p, k,m) [2]
Input: Secret share [[a]]p, digits length k, divisor length m, security parameter κ
Output: Secret sharing modulus result [[c]]p, where c̄ = �ā/2m� + u, and u ← {0, 1}

1: ([[r′′]], [[r′]], {[[r′
i]]}m

i=1) ← PRandM(k + κ, m)
2: [[r]] ← 2m[[r′′]] + [[r′]]
3: b ← Reveal(2k+κ−1 + [[a]] + [[r]])
4: b′ ← b (mod 2m)
5: [[u]] ← BitLT(b′, {[[r′

i]]}m
i=1)

6: [[c]] ← ([[a]] − (b′ − [[r′]] + 2m[[u]]))2−m

7: return [[c]]

Security: Since all the massages exchanged in protocols above are Shamir’s
secret shares, and values masked by uniformity random numbers (also resulting
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in uniformity random values or with only negligible differences), according to
the security of secret sharing, this protocol is secure.
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