
Cloud-Assisted LLL: A Secure and
Efficient Outsourcing Algorithm for

Approximate Shortest Vector Problem

Xiulan Li1,2, Yanbin Pan1,2, and Chengliang Tian3(B)

1 Key Laboratory of Mathematics Mechanization, Academy of Mathematics
and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

{lixiulan,panyanbin}@amss.ac.cn
2 School of Mathematical Sciences, University of Chinese Academy of Sciences,

Beijing 100049, China
3 College of Computer Science and Technology, Qingdao University,

Qingdao 266071, China
tianchengliang@qdu.edu.cn

Abstract. Approximating the shortest vector of a given lattice is one
of the most important computational problems in public-key cryptanal-
ysis and lattice-based cryptography. However, existing LLL reduction
algorithm and its variants for this problem are too time-consuming for
resource-constrained clients. To handle this dilemma, in this paper, we
propose an efficient and secure outsourcing algorithm under the cloud
environment. Compared with the prior Liu et al.’s algorithm, besides
realizing the privacy preservation of client’s input/output information,
satisfying verifiability and greatly reducing the local-client’s compu-
tational overhead, our algorithm is superior in the following aspects.
First, our algorithm is technically concise. The main technique ingredi-
ent involved in our algorithm is a skillful combination of the unimodular
matrix transformation and the Gram matrix, which is concise and effec-
tive. Second, our algorithm does not reduce the quality of the reduced
basis, that is, the vector finally obtained by the client is as short as that
of the vector generated by the client directly performing the existing
reduction algorithm. Last but not least, our algorithm not only works
for the LLL reduction algorithm, but also for any other algorithms that
solve (approximate-)SVP with Euclidean norm.

Keywords: Cloud computing · Outsourcing computation ·
Approximate SVP · Gram matrix · Unimodular transformation

This work is supported by National Key Research and Development Program of China
(No. 2018YFA0704705, 2020YFA0712300), National Natural Science Foundation of
China (No. 61702294, 62032009), National Development Foundation of Cryptography
(MMJJ20170126).

c© Springer Nature Switzerland AG 2021
R. Deng et al. (Eds.): ISPEC 2021, LNCS 13107, pp. 223–241, 2021.
https://doi.org/10.1007/978-3-030-93206-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93206-0_14&domain=pdf
https://doi.org/10.1007/978-3-030-93206-0_14

224 X. Li et al.

1 Introduction

A lattice is a discrete additive subgroup of Rm, which is a classic research object
in the geometry of numbers. One of the most important computational problems
in lattice theory is the Shortest Vector Problem (SVP) which aims to find the
shortest nonzero vector of arbitrary given lattice and is shown to be NP-hard
under random reduction [1].

Lattice has been widely used in mathematics and computer science, especially
in cryptography. Many different problems can be solved via solving SVP in some
lattices, such as factoring polynomials with rational coefficients [15], finding inte-
ger relations among real numbers [11], factoring integers and computing discrete
logarithms [22], and attacking RSA [7]. In addition, lattice-based cryptographic
constructions [10] have been widely considered as one of the most promising
post-quantum cryptosystems and the hardness of SVP directly determines their
theoretical security.

Due to the hardness of SVP, various lattice basis reduction algorithms have
been designed to approximate shortest vector as far as possible. The first lattice
basis reduction algorithm proposed by Lagrange [14] in 1773 is a groundbreak-
ing work, though it finds a minimal basis in two dimensions. Hermite’s proposed
second lattice basis reduction algorithm generalizes Lagrange’s algorithm to n
dimensions. After that, the first polynomial-time lattice basis reduction algo-
rithm, the LLL algorithm, was proposed by Lenstra, Lenstra and Lovász in
1982. It achieves an approximation factor of 2O(n) for the approximation vari-
ant of SVP with worst-case time complexity O(n5m log3 B), and can be used to
attack some cryptosystems, such as knapsack-based cryptosystems and special
cases of RSA [7]. To get somewhat better approximation factor (6k2)nk/2 where
k is some integer, Schnorr [21] extended the LLL algorithm by making block size
larger at the price of an increased running time in 1987.

In the last two decades, many improvements for lattice basis reduction algo-
rithm have been investigated [2,6,18,19]. In 2005, Nguyen and Stehlé [18] intro-
duced L2 algorithm, a floating-point variant of L3, to make LLL reduction algo-
rithm practical with computational complexity O(n4m(n+log B) log B). Saruchi
et al. [20] proposed an effective reduction algorithm, which is the expansion of
the algorithm proposed by Bi et al. [4]. Although these algorithms can find a rel-
atively short vector in polynomial time, they are still time-consuming in practice.
Especially, in practical applications, the dimension of the lattice is usually very
large and the user or the terminal device could be with limited computing and
storage capability. It is unrealistic for these clients to perform these algorithms
to approximate the shortest vector.

The emergence of cloud computing provides a new paradigm for resource-
constrained clients to handle heavy computational tasks, in which scenario, these
resource-constrained clients can outsource their overloaded computational task
to the resource-abundant cloud server on a pay-as-you-use manner. However,
this promising computing paradigm also brings new security concerns [13,25].
The remote cloud server is out of control, and for the sake of business interests,
it could deviate the prescribed execution rules and collect valuable information.

A Secure and Efficient Outsourcing Algorithm for Approximate SVP 225

Simultaneously, the outsourcing computational task may contain client’s privacy
and sensitive information. The exposure of this information may cause critical
loss of lift and property. Therefore, a well-designed outsourcing algorithm, apart
from ensuring the client to achieve the correct computation result at a greatly
reduced time cost, should protect the client’s privacy information and discern
the cloud server’s misbehaviors. Therefore, in-depth studies on the outsourc-
ing computation of many aspects have been conducted in recent years, such as
large-scale linear algebra operations [3,8], solving quadratic congruences [26,27],
modular exponentiations [5,12,29] and modular inversion [24] in cryptography,
heavy computations in artificial intelligence (AI) and Internet of Things (IoT)
[16,28].

In 2019, Liu et al. [17] proposed the first outsourcing computation mecha-
nism of lattice-reduction algorithm based on the work of Saruchi et al. [20]. They
utilized rounding technique and unimodular transformation matrix to encrypt
the original computation task by generating a outsourcing task B + ΔB for the
lattice basis B. The cloud server reduces it by LLL-reduction algorithm and
returns the transformation matrix. After receiving the response of the cloud
server, the client can obtain the LLL-reduced basis for the target lattice Λ(B)
finally, but with a bigger approximation factor. Their outsourcing algorithm has
high-efficiency. However, the perturbation term ΔB in their outsourcing algo-
rithm has to satisfy some special properties, which makes the algorithm complex.
Furthermore, their outsource algorithm yields a LLL-reduced basis with a big-
ger approximation factor than applying LLL-reduction algorithm directly on the
original basis, which weakens the requirement of the outsourcing computation
task.

Our Contribution. In this paper, we study the algorithm for approximate
SVP under the cloud environment, and propose a secure outsourcing algorithm
for this problem. In our design, the resource-constrained client can efficiently find
a relatively short lattice vector by leveraging the powerful computing capacity
of the cloud server.

The idea is quite simple. Roughly speaking, for any given lattice basis B,
consider the corresponding Gram matrix G = BTB. Note that for any orthog-
onal matrix O, the Gram matrix of OB is exactly G, which means that G can
protect B well. Moreover, the lattices generated by OB and B are different, but
for any integer coefficient vector z, the lattice vectors OBz and Bz has exactly
the same length under the Euclidean norm. This inspires us to send the Gram
matrix G to the cloud server, which can perform LLL algorithm on G (or some
C such that G = CTC, which can be obtained by Cholesky decomposition on
G by the cloud server). The cloud server will send the transformation matrix to
the client and the client can recover the LLL-reduced basis, since the orthogonal
transformation does not affect that properties that an LLL-reduced basis should
satisfy.

We can show that our design can protect the privacy of client’s input/output
information under CPA model, and make the client discern the cloud’s fraud

226 X. Li et al.

behavior with optimal probability 1. Hence, our design can be employed in the
algorithms that involves with LLL algorithm, such as Coppersmith’s attack [7].

Compared to Liu et al.’s work [17], our algorithm also has high-efficiency.
Besides, our algorithm is technically concise, which just involves with a simple
combination of unimodular matrix transformation and Gram matrix. Further-
more, our algorithm does not reduce the quality of the reduced basis, that is, the
vector finally obtained by the client is as short as that of the vector generated
by the client directly performing the existing reduction algorithm. Last but not
least, it is obvious that our algorithm not only works for the LLL reduction
algorithm, but also for any other algorithms that solve (approximate-)SVP with
Euclidean norm, since we employ an isometry of the lattice essentially.

Roadmap. The paper is organized as follows: Sect. 2 introduces the system
model and security definitions of the outsourcing computation. Section 3 reviews
the main computational problems in lattices and presents some necessary pre-
liminaries. In Sect. 4, we propose Gram matrix-based outsourcing algorithm for
approximate SVP. In Sect. 5, we analyze the correctness, security and efficiency
of our algorithm, followed by extensive experimental analysis to evaluate the
practical performance of our design in Sect. 6. In Sect. 7, we give a simple appli-
cation. Finally, we conclude this article in Sect. 8.

2 System Model and Security Definitions

2.1 System Model

Fig. 1. The system model

Outsourcing computation is an interaction system between two entities with
asymmetric computing capacities: the client and the cloud server, out of which,
the client is with limited computational power and storage space, and the
cloud server providing computing and storage service is resource-abundant yet
maybe untrusted. Formally, as illustrated in Fig. 1, the light-weight client C
(or customer, data user, etc.) wants to take advantage of the capacity of the
cloud server to accomplish his overloaded calculation task Φ(·) with an input x.

A Secure and Efficient Outsourcing Algorithm for Approximate SVP 227

To protect the input information form being stolen, C transforms the original
computation task Φ(·) into another computation task Φ′(·), which may be the
same as Φ, with corresponding encrypted input x′ by the previously generated
secret key sk. Then, C sends (Φ(·), x′) to the cloud server S. Next, the cloud
server S applies its resources to compute the specified task y′ = Φ′(x′) and
returns y′ to C. After that, C verifies the correctness of y′ and recovers y′ to the
actual result y = Φ(x) if it passes the verification. Otherwise, C rejects. Precisely,
the general framework of secure outsourcing computation can be formalized as a
four-tuple OCAlgΦ = (KeyGen, ProbTrans, Compute, Ver&Rec) with the
following four probabilistic polynomial-time (PPT) sub-algorithms [9]:

1. KeyGen(Φ, x, 1κ) → {sk}: Input a security parameter κ, the client C con-
ducts the randomized algorithm KeyGen to generate a secret key sk for any
input computation task (Φ, x).

2. ProbTrans(Φ, x, sk) → {Φ′, x′}: The algorithm ProbTrans utilizes the
secret key sk to transform (Φ, x) into another computation task (Φ′, x′). This
algorithm is performed by the client C.

3. Compute(Φ′, x′) → {y′}: According to the computation task Φ′ with the
encoded input x′, the cloud server S invokes the algorithm Compute to
compute y′ = Φ′(x′) and returns the encoded output y′ to the client C.

4. Ver&Rec(Φ, y′, sk) → {y}: With the secret key sk, the algorithm Ver&Rec
performs as follows. It firstly verifies the correctness of y′. Then, if y′ passes
the verification, the algorithm recovers y′ to y = Φ(x). Else, the algorithm
outputs y =⊥.

2.2 Threat Models

In an outsourcing system, the threats are mainly from the untrusted cloud server.
The potential misbehaviors of the cloud can be included into two types:

– Honest-and-curious (HC) Server. In this case, the cloud server will hon-
estly perform the assigned computation task and return the correct result to
the client. However, for financial incentive, it may collect or even sell client’s
valuable information.

– Fully-malicious (FM) Server. In this case, the cloud server not only tries
to capture client’s valuable information, but also may deliberately forge a
false result to fool the client.

Further, according to the attack abilities owned by the untrusted cloud server,
there mainly exist three kinds of attack models:

– Ciphertext-only attack (COA) Model. In COA model, the cloud server
is assumed to have only access to the computation tasks Φ,Φ′ and the blinded
input x′, and tries to recover the actual input x and the actual output y =
Φ(x).

– Known-plaintext attack (KPA) Model. In KPA model, the cloud server
knows the computation tasks (Φ,Φ′) and has the ability of collecting a poly-
nomial number of plaintexts xi (1 ≤ i ≤ �) and the corresponding ciphertexts

228 X. Li et al.

x′
i, y

′
i and δi. Given challenge ciphertexts x′ and y′ = Φ′(x′), the cloud server

tries to recover the actual input x and the actual output y = Φ(x).
– Chosen-plaintext attack (CPA) Model. In CPA model, the cloud server

knows the computation tasks (Φ,Φ′) and is allowed to adaptively choose a
polynomial number of inputs xi (1 ≤ i ≤ N) and obtain the corresponding
ciphertext x′

i, y
′
i and δi. Given challenge ciphertexts x′ and y′ = Φ′(x′), the

cloud server tries to recover the actual input x and the actual output y = Φ(x).

Overall, there exist 6 possible threat models: HC+COA, HC+KPA,
HC+CPA, FM+COA, FM+KPA, FM+CPA. Clearly, in the above-mentioned
threat models, the ability of the FM+CPA model is the most powerful. There-
fore, an outsourcing algorithm that is secure under the FM+CPA model is cer-
tainly secure under the other models, and thus, it is more meaningful to design
a secure outsourcing algorithm under the FM+CPA model.

2.3 Correctness and Security Definitions

Based on the above-mentioned system architecture and threat models, a secure
outsourcing algorithm should at least meet four requirements: correctness,
input/output privacy, verifiability and High efficiency. We now present their
strictly formalized definitions.

Correctness is a basic requirements for an outsourcing algorithm. It means
that, if the cloud server performed the specified computations in the algorithm
honestly, the client can correctly achieve the result of the original computation
task. Precisely,

Definition 1 (Correctness). A secure outsourcing algorithm OCAlgΦ(·) of
some computation task Φ is correct if the key generation algorithm gener-
ates key {sk} ← KeyGen(Φ, x, 1κ) such that, for any valid input x of Φ, if
{Φ′, x′} ← ProbTrans(Φ, x, sk) and y′ ← Compute(Φ′, x′), where y′ = Φ′(x′),
the algorithm Ver&Rec(Φ, y′, sk) outputs y = Φ(x).

Input/output privacy is a security requirement for an outsourcing algo-
rithm. It asks the outsourcing algorithm to protect the input and output infor-
mation of client’s computation task from being disclosed to the cloud server.
Here, we mainly discuss the input (resp. output) privacy with one-way notion
under the FM+CPA model. To give the strict privacy definition, we first formal-
ize the description of CPA model with the following experiments ExpIpriv

A [Φ, 1κ]
and ExpOpriv

A [Φ, 1κ].
Experiment ExpIpriv

A [Φ, 1κ]
Query and response:
x0 = σx0 = ⊥.
For i = 1, · · · , � = poly(κ)

xi ← A(Φ, (xj , σxj
)0≤j≤i−1).

ski ← KeyGen(Φ, xi, 1κ).
σxi

= (Φ′, x′
i) ← ProbTrans(Φ, ski, xi).

A Secure and Efficient Outsourcing Algorithm for Approximate SVP 229

Challenge:
x̃ ← Domain(Φ).
s̃k ← KeyGen(Φ, x̃, 1κ).
σx̃ = (Φ′, x̃′) ← ProbTrans(Φ, s̃k, x̃).
x̄ ← A(Φ, (xj , σxj

)0≤j≤�, σx̃).
if x̄ = x̃ , output ′1′;
else output ′0′.

Experiment ExpOpriv
A [Φ, 1κ]

Query and response:
x0 = σx0 = y0 = ⊥.
For i = 1, · · · , � = poly(κ)

xi ← A(Φ, (xj , σxj
, yj)0≤j≤i−1).

ski ← KeyGen(Φ, xi, 1κ).
σxi

= (Φ′, x′) ← ProbTrans(Φ, ski, xi).
y′

i ← A(Φ, (xj , σxj
, yj)0≤j≤i−1, σxi

).
yi ← Ver&Rec(Φ, ski, y

′
i).

Challenge:
x̃ ← Domain(Φ).
s̃k ← KeyGen(Φ, x̃, 1κ).
σx̃ = (Φ′, x̃′) ← ProbTrans(Φ, s̃k, x̃).
ỹ′ ← Compute(σx̃).
ỹ ← A(Φ, (xj , σxj

, yj)0≤j≤�, σx̃, ỹ′).
if ỹ = Φ(x̃), output ′1′;
else output ′0′.

Now, the input/output privacy can be exactly defined.

Definition 2 (Input/output privacy). A secure outsourcing algorithm
OCAlgΦ(·) of some computation task Φ is input-private (resp. output-private)
if, for any PPT adversary A, the probability of the experiment ExpIpriv

A [Φ, 1κ]
(resp. ExpOpriv

A [Φ, 1κ]) outputting 1 is negligible, i.e.

Pr[ExpIpriv
A [Φ, 1κ] = 1] ≤ negli(κ) (resp.Pr[ExpOpriv

A [Φ, 1κ] = 1] ≤ negli(κ)),

where negli(κ) is a negligible function of the security parameter κ.

Verifiability is another security requirement for an outsourcing algorithm.
That is, the algorithm should guarantee that the client can not be cheated by an
untrusted cloud server. Conversely, the client can verify the correctness of the
results returned from the cloud with a non-negligible probability.

Definition 3 ((1 − β)-Verifiable). A secure outsourcing algorithm OCAlgΦ(·)
of some computation task Φ is (1 − β)-verifiable if, for any valid input x,
the algorithm KeyGen outputs a secret key sk such that, if (Φ′, x′) ←
ProbTrans(Φ, x, sk) and y′ ← Compute(Φ′, x′), the probability of Ver&Rec
(Φ, y′, sk) outputting y satisfies

Pr[y = Φ(x) ← Ver&Rec(Φ, y′, sk) | y′ = Φ′(x′)] = 1,
Pr[y = Φ(x) ← Ver&Rec(Φ, y′, sk) | y′ �= Φ′(x′)] ≤ β.

230 X. Li et al.

High efficiency is a necessary requirement for an outsourcing algorithm
which refers to that the client’s calculation amount in the outsourcing algorithm
must be lower than the original computation task performed by the client itself.

Definition 4 (α-Efficient). For some computation task Φ, a secure outsourc-
ing algorithm OCAlgΦ(·) is α-efficient if tc

to
≤ α, out of which, to is the client’s

time cost of achieving the task without outsourcing, and tc represents the local-
client’s time cost of achieving the task by employing the outsourcing algorithm
OCAlgΦ(·).

3 Notations and Preliminaries

In the rest of our paper, we use bold upper-case letter to denote matrix and
use bold lower-case letter to denote vector. The frequently used notations are
described in Table 1. Next, we introduce some basic knowledge about lattices,
and then review the famous LLL reduction algorithm for solving approximate
SVP.

Table 1. Notations

Symbols Descriptions

m, n Positive integers

R
m m-dimensional Euclidean space

v A column vector in Z
m

Λ A lattice in R
m with rank n

B A basis matrix of the lattice

U An unimodular matrix in Z
n×n

λi(Λ) The ith successive minimum of the lattice Λ

κ Security parameter

3.1 Lattice

A lattice Λ is a discrete subgroup of Rm, or equivalently,

Definition 5 (Lattice). Given n(≤ m) linearly independent vectors b1,b2, . . . ,
bn ∈ R

m, the lattice Λ generated by them is the set of all integral linear combi-
nations of bi, i.e.,

Λ(b1, . . . ,bn) =

{
n∑

i=1

xibi|xi ∈ Z

}
,

where the matrix B = [b1, . . . ,bn] is called a basis of the lattice Λ and n is the
rank of the lattice. When n = m, the lattice is full-rank.

A Secure and Efficient Outsourcing Algorithm for Approximate SVP 231

The lattice generated by the basis B is also denoted as

Λ(B) = Λ(b1, . . . ,bn) = {Bx | x ∈ Z
n}.

Since there are many bases for a lattice, a natural question is how to determine
whether two bases B1,B2 generate the same lattice (i.e., Λ(B1) = Λ(B2). To
illustrate this, we need to introduce the definition of unimodular matrix.

Definition 6 (Unimodular Matrix). A matirx U ∈ Z
n×n is called unimod-

ular if detU = ±1.

Then, we have

Lemma 1. Two bases B1,B2 ∈ R
m×n are equivalent, i.e., Λ(B1) = Λ(B2) if

and only if B2 = B1U, for some unimodular matrix U.

Definition 7 (Determinant). Let Λ = Λ(B) be a lattice of rank n. The deter-
minant of Λ is defined as vol(Λ) =

√
det(BTB), where BT denotes the transpose

of the basis B.

Besides, the length of the shortest nonzero vector in the lattice Λ is denoted as
λ1(Λ), where the length refers to the Euclidean norm. That is, for any vector x,
‖x‖2 =

√∑
x2

i . The most important computational problem SVP is defined as
follows:

Definition 8 (SVP). Given a lattice basis B ∈ Z
m×n, find a nonzero vector

x ∈ Λ(B) such that ‖x‖ = λ1(Λ(B)).

So far, there is no known efficient algorithm to solve this problem. However,
we are more interested in the approximation variant, which aims to find a rela-
tively shorter lattice vector with length no bigger than γ(n)λ1(Λ). Here, n is the
dimension of the lattice and the approximation factor γ = γ(n) ≥ 1. Formally,

Definition 9 (SVPγ). Given a lattice basis B ∈ Z
m×n, find a nonzero vector

x ∈ Λ(B) such that ‖x‖ ≤ γ · λ1(Λ(B)).

3.2 LLL Reduction Algorithm and Its Properties

This section describes the famous LLL reduction algorithm of solving SV Pγ .
First, we recall what is an LLL-reduced basis.

Definition 10 [15]. A basis B = {b1, . . . ,bn} is a δ-LLL reduced basis if the
following two inequalities hold:

1. ∀1 ≤ i ≤ n, j < i, |μi,j | ≤ 1
2 .

2. ∀1 ≤ i < n, δ‖b̃i‖2 ≤ ‖μi+1,ib̃i + b̃i+1‖2.
Some useful properties are given as follows:

232 X. Li et al.

Proposition 1 [15]. Let B = {b1, . . . ,bn} be an LLL reduced basis of a lattice
Λ, then

1. vol(Λ) ≤ ∏n
i=1 ‖bi‖ ≤ 2

n(n−1)
4 vol(Λ).

2. ‖b1‖ ≤ 2
n−1
4 (vol(Λ))

1
n .

3. ∀1 ≤ i ≤ n, ‖bi‖ ≤ 2
n−1
2 λi(Λ).

Lenstra et al. [15] presented an efficient algorithm (i.e., the celebrated LLL
algorithm) to output a LLL reduced basis. Precisely,

Proposition 2 [15]. Let Λ = Λ(B) be a rank-n lattice with B ∈ Q
m×n. Then

LLL reduction algorithm can find an LLL-reduce basis within time O(n5mB3)
without fast multiplication techniques, where B = max

1≤i≤n
log ‖bi‖.

For a lattice basis B, the corresponding Gram matrix is defined as G =
BTB. Gram matrix has been used in LLL algorithm [2,18,19]. In practice, we
can directly perform LLL reduction on it to get the transformation matrix T
such that BT is LLL-reduced. Here, we summarize the result as the following
Lemma 2.

Lemma 2. Let Λ = Λ(B) be a lattice of rank n. There exists a variant of
LLL algorithm, with the input of the Gram matrix G = BTB, outputting a
transformation matrix T such that BT is LLL-reduced.

This algorithm has already been implemented in SageMath [23].

4 Our Outsourcing Algorithm for SVPγ

In this section, we first overview the design rationale, and then present our
algorithm in detail.

4.1 Design Rationale

Given some lattice basis B ∈ R
m×n, a resource-limited client aims to leverage

the computing resource of the cloud to find a non-zero shorter vector x ∈ Λ(B)
such that ‖x‖ ≤ 2

n−1
4 · (vol(Λ))

1
n , where n is the dimension of the lattice. If the

cloud server is honest, the client can directly rent the cloud server to perform
the famous LLL algorithm with input B. However, under the FM+CPA model,
the client must figure out an effective method to protect the privacy of the input
lattice basis B and the output lattice vector x. By Lemma 1, a natural idea
is to blind B with a random unimodular matrix U. Namely, compute B′ =
BU and let the cloud perform LLL algorithm on B′. However, since Λ(B) =
Λ(B′), this simple method can not ensure the privacy of the output vector x.
Enlightened by the property of the variant of LLL in Lemma 2, to protect the
output information, we can send the Gram matrix G = (B′)TB′ to the cloud and
rent the cloud to perform the variant algorithm on G to get the transformation

A Secure and Efficient Outsourcing Algorithm for Approximate SVP 233

matrix T such that B′T is LLL-reduced. After that, the cloud returns the first
column vector z of T. Finally, the client can obtain a shorter lattice vector by
computing x = B′z. Since G = (B′)TB′ = (OB′)T(OB′) for any orthogonal
matrix O, even if the cloud performs Cholesky decomposition on G and obtain
G = CTC, it can not distinguish C = B′ from C = OB′ for any orthogonal
matrix O. This ensures the input privacy. Meanwhile, the cloud only obtains
vector z, without knowing the lattice basis B′, it can not recover the shorter
lattice vector x. This ensures the output privacy. Besides, the verifiability can
be realized by checking ‖x‖ ≤ 2

n−1
4 · (

√
det(G))

1
n .

4.2 Detailed Algorithm

Note that we almost focus on the short vector in practice, such as in the lattice-
based cryptanalysis, instead of the whole LLL-reduced basis, so below we don’t
take consideration into getting the whole LLL-reduced basis, but just aims to
find a short lattice vector, and we would like to point out that it is very easy to
extend the algorithm below to compute the whole LLL-reduced basis as discussed
in Sect. 4.3.

Fig. 2. The workflow of algorithm OCAlgSV P .

Figure 2 shows the workflow of our outsourcing algorithm OCAlgSV P , which
is designed as follows:

1. Key Generation: With an inputted basis matrix B ∈ R
m×n of lattice Λ,

the client picks a secret unimodular matrix U ∈ Z
n×n in a secret finite set

consisting of unimodular matrices produced in advance.

234 X. Li et al.

2. Problem Transformation: With the secret key U, the client first computes
B′ = BU and further calculates the Gram-matrix G = (B′)TB′. Finally, G
is sent to the cloud server.

3. Computation: On receiving the matrix G, the cloud server applies the vari-
ant algorithm of LLL to G and obtains a transformation matrix T. Then, the
cloud returns the first column vector z ∈ Z

n of the matrix T to the client.
4. Recovery and Verification: After receiving the vector z ∈ Z

n, the
client computes x = B′z and checks whether the inequality ‖x‖ ≤ 2

n−1
4 ·

(
√

det(G))
1
n holds. If it holds, the vector x is the desired result. Otherwise,

the client rejects the result.

4.3 Some Remarks

Note that the secret unimodular transformation U is not necessary if no addi-
tional information about the private input B leaks to the adversary. However,
we may know some additional information about B in some cases, such as for
Coppersmith’s algorithm [7], B must be an upper (or lower) triangular matrix,
which means that the domain of the outsourcing task is not the whole R

m×n

any more and some secret information about B can be implied from the Gram
matrix. Hence, we employ a unimodular transformation to keep the privacy of
B further in our algorithm and would like to point out that it can be removed
in some cases which depends on the domain of the task.

It is obvious that if the cloud server sends the transformation T to the client,
the client can recover the LLL-reduced basis B′T for the original lattice due
to Lemma 2, which shows that the outsoucing algorithm can be extended to
compute the LLL-reduced basis easily.

Compared to Liu et al.’s work [17], since we employ an isometry of the
lattice essentially, the orthogonal transformation, our algorithm does not reduce
the quality of the reduced basis, and our algorithm can work for any other
algorithms that solve (approximate-)SVP with Euclidean norm (sometimes, a
matrix C such that G = CTC should be computed by the cloud server with
Cholesky decomposition on G).

Another way to construct the outsourcing algorithm for the client is to gen-
erate the orthogonal transformation O directly and to send OB to the cloud
server. There are many efficient ways to construct O, such as the Householder
transformation. In this paper, we adopt the Gram matrix to avoid generating
the orthogonal matrix.

5 Correctness, Security, Verifiability and Efficiency

In this section, we will present strict analysis on the correctness, input/output
privacy, verifiability and efficiency of our proposed algorithm.

A Secure and Efficient Outsourcing Algorithm for Approximate SVP 235

5.1 Correctness

Clearly, if the cloud server performs the assigned computation task honestly, the
client definitely obtains a shorter vector. In fact, by Lemma 1, B and B′ = BU
are equivalent, i.e., Λ = Λ(B) = Λ(B′). By Lemma 2, if the cloud is honest,
we have B′T is LLL-reduced. Then x = B′z ∈ Λ is the first vector of the LLL-
reduced basis B′T. According to the properties (Proposition 1) of LLL-reduced
basis, ‖x‖ ≤ 2

n−1
4 · (

√
det(G))

1
n .

5.2 Input/Output Privacy

Here, we mainly argue the privacy of our algorithm with the one-way notation
under CPA model.

Theorem 1. For any input lattice basis B, our proposed outsourcing algorithm
OCAlgSV P satisfies the input/output privacy according to Definition 2.

Proof. We first argue the input privacy. Corresponding to our design, in the
experiment ExpIpriv

A [Φ, 1κ], the computation task Φ refers to finding a non-
zero shorter vector x of some lattice Λ such that ‖x‖ ≤ 2

n−1
4 · (vol(Λ))

1
n , Φ′

represents performing the variant algorithm of LLL on the Gram-matrix G =
(B′)TB′, and κ = mn log‖B‖ = mn log max1≤i≤m,1≤j≤n |bij | denotes the bit-
size of the input lattice basis B. The adversary A can adaptively choose xi = Bi

and obtain corresponding Gram matrices Gi = (B′
i)

TB′
i for 1 ≤ i ≤ � in the

Query and response phase. In the Challenge phase, given a challenge input
lattice basis x̃ = B, the adversary tries to recover B based on the collected
information Gi = (B′

i)
TB′

i(1 ≤ i ≤ �) and G = (B′)TB′. Since G = (B′)TB′ =
(OB′)T(OB′) for any orthogonal matrix O and there exist at least exponentially
many orthogonal matrices, the probability of the adversary recovering the correct
B′ is negligible. Due to the fact that B′ = BU for some unimodular matrix U
produced in advance, the probability of the adversary recovering the correct B
is clearly negligible, i.e.,

Pr[ExpIpriv
A [Φ, 1κ] = 1] ≤ negli(κ).

Now, we argue the output privacy. Similar to the above analysis, the adversary
can adaptively choose and obtain (xi, σxi

, yi) = (Bi,Gi,xi) (or (Bi,Gi,⊥)) for
1 ≤ i ≤ � in the Query and response phase. In the Challenge phase, given
a challenge input lattice basis x̃ = B of the lattice Λ, the adversary tries to
recover a shorter vector ỹ = x ∈ Λ(B) such that ‖x‖ ≤ 2

n−1
4 vol(Λ)

1
n . Besides

the collected information in the Query and response phase, the adversary also
captures the Gram matrix x̃′ = G = (B′)TB′ = (BU)T(BU) for some secret
and random matrix U, and an integer vector ỹ′ = z, which is the first col-
umn of the transformation matrix T. Since G = (B′)TB′ = (OB′)T(OB′) for
any orthogonal matrix O and there exist infinitely many orthogonal matrices,
the probability of the adversary recovering the correct B′ is negligible. Due to

236 X. Li et al.

x′ = B′z, we have that, without knowing the correct B′, the probability of the
adversary recovering the correct x is clearly negligible, i.e.,

Pr[ExpOpriv
A [Φ, 1κ] = 1] ≤ negli(κ).

5.3 Verifiability

Theorem 2. Our proposed outsourcing algorithms OCAlgSV P is 100%-
verifiable.

Proof. Since Λ(B) = Λ(B′), we have x = B′z ∈ Λ(B). According to Lemma
2 and the Proposition 1, B′T is LLL-reduced and thus ‖x‖ = ‖B′z‖ ≤ 2

n−1
4 ·

(
√

det(G))
1
n , Hence, Pr[y = Φ(x) ← Ver&Rec(Φ, y′, sk) | y′ = Φ′(x′)] = 1. If

the cloud server returns a forged integer vector z, then the inequality ‖x‖ =
‖B′z‖ ≤ 2

n−1
4 · (

√
det(G))

1
n doesn’t hold.

5.4 Efficiency

Theorem 3. Our outsourcing algorithm OCAlgSV P is at least O(1
n2 log B)-

efficient.

Proof. The original algorithm used to approximate the shortest nonzero lattice
vector is the famous LLL-reduction algorithm with an asymptotic complexity of
O(n5m log3 B) [15], where B = max

1≤i≤n
log ‖bi‖. While the principal term of the

computational complexity on the client side in our proposed algorithm is the
time cost of matrix multiplication and determinant computation which takes
time at most O(n3m log2 B). Therefore, according to Definition 4, our algorithm
is O(n3m log2 B

n5m log3 B
) = O(1

n2 log B)-efficient.

6 Practical Performance Evaluation

6.1 Evaluation Methodology

After analyzing the correctness, verifiability, efficiency and security of our pro-
posed algorithm, we conclude that our proposed algorithm are beneficial to
the client. We next evaluate the practical performance of our proposed algo-
rithm by simulating both client and cloud on a Windows 10 machine with
Intel(R) Core(TM) i7-7500U 2.70 GHz CPU and 12 GB RAM. We implemented
our proposed algorithm in a free software SageMath [23] in which the func-
tion LLL gram() adapted from Nguyen and Stehlé’s algorithm [18] returns the
LLL transformation matrix for this Gram matrix. Because this LLL reduction
algorithm has default parameters (0.51, 0.99) meaning that the Gram-Schmidt
coefficients for the reduced basis satisfy |μi,j | ≥ 0.51, and the Lovász’s constant
is 0.99, thus we modified parameters of the function LLL() as (0.51, 0.99) for
better evaluation.

A Secure and Efficient Outsourcing Algorithm for Approximate SVP 237

In each of the experimental instances, we first constructed basis matrix
inputted by the client, whose entries were randomly chosen from interval
[−220, 220]. For the sake of convenience, basis matrices were chosen in Z

n×n

and their dimensions varied from 100 to 600. Then we produced a sufficiently
large and finite set consisting of unimodular matrices whose entries ranging from
−100 to 100. Besides, we simulated all stages of our proposed algorithm in each
of experiments to evaluate the performance more objectively. The client-side
time “Client”, which is also the time “Outsourcing”, denotes the sum of time
“Problem Transformation” and “Recovery and Verification”. The time “With-
out Outsourcing” denotes the time for the client to solve the approximation of
SVP without outsourcing. Theoretically, the value (Outsourcing/Without Out-
sourcing) is a positive number less than 1. The time “Cloud” refers to the time
for the cloud server to compute the outsourced task.

Fig. 3. Evaluation results for algorithm

6.2 Evaluation Results

Figure 3 shows the evaluation results of our proposed algorithm. In Fig. 3(a),
we make time comparison among phases. From it, we can see that the time of
“Problem Transformation” and “Recovery and Verification” increases with the

238 X. Li et al.

dimension of the lattice and it is sound. Moreover, it is obvious that “Recovery
and Verification” takes more time than “Problem Transformation”. By rigorous
analysis, we can come to the same conclusion. In the Problem Transformation
phase, the main time-consuming operation is matrix multiplication, while there
are operations for determinant and exponentiation besides matrix multiplication
in the Recovery and Verification phase. Then the second result is also rational.
After outsourcing process, the time taken by the client decreases dramatically
in Fig. 3(b), where we make time comparison between cloud server and client.
It means that our proposed algorithm works well. In Fig. 3(c), we show a visual
efficiency comparison and compare it with theoretical analysis above. Clearly,
the client takes less time in outsourcing process than implementing original algo-
rithm itself, i.e., our proposed outsourcing algorithm is very efficient.

7 Applications

Next, we take the famous Copersmith’s algorithm [7] as an example to show how
to use our outsourcing algorithm.

Copersmith’s algorithm, described in Algorithm 1, finds all small roots x0

of a univariate modular equation f(x) = 0 mod N with |x0| ≤ N
1
δ , where the

polynomial f(x) is a monic polynomial of degree δ. It has many applications in
the cryptanalysis. It can be seen that the most time-consuming step is Step 5,
running the LLL algorithm to get a short lattice vector. Hence, our outsourcing
algorithm can be used directly to obtain a short lattice vector while keeping the
privacy of input and output.

Algorithm 1. Coppersmith’s Algorithm
Require: A monic polynomial f(x) ∈ ZN [x] of degree δ, where N is a modulus with

unknown factorization.
Ensure: Set R = {x0 ∈ Z|f(x0) = 0 mod N and |x0| ≤ X}.
1: for i ← 0 to h − 1 do
2: for j ← 0 to δ − 1 do
3: gi,j(x) = Nh−i−1f(x)ixj .
4: Construct the lattice basis B, where the basis vectors are the coefficient vectors of

gi,j(xX).
5: v = LLL(B).get column(0).
6: Construct g(x) from v.
7: Find the set R of all roots of g(x) over the integers using standart techniques. For

every root x0 ∈ R check wether or not gcd(N, f(x0)) ≥ N. If it doesn’t hold then
remove x0 from R.

8 Conclusion

In this paper, we present an efficient and secure outsourcing algorithm solving
(approximate-)SVP for the client with limited computing and storage capability,

A Secure and Efficient Outsourcing Algorithm for Approximate SVP 239

which has many applications in computational number theory, cryptanalysis and
some other related areas.

Acknowledgements. We thank the anonymous referees for their valuable suggestions
on how to improve this paper.

References

1. Ajtai, M.: The shortest vector problem in L2 is NP-hard for randomized reductions
(extended abstract). In: Vitter, J.S. (ed.) Proceedings of the Thirtieth Annual
ACM Symposium on the Theory of Computing, Dallas, Texas, USA, 23–26 May
1998, pp. 10–19. ACM (1998). https://doi.org/10.1145/276698.276705

2. Backes, W., Wetzel, S.: An efficient LLL gram using buffered transformations. In:
Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2007. LNCS, vol. 4770,
pp. 31–44. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75187-
8 4

3. Benjamin, D., Atallah, M.J.: Private and cheating-free outsourcing of algebraic
computations. In: Korba, L., Marsh, S., Safavi-Naini, R. (eds.) Sixth Annual Con-
ference on Privacy, Security and Trust, PST 2008, Fredericton, New Brunswick,
Canada, 1–3 October 2008, pp. 240–245. IEEE Computer Society (2008). https://
doi.org/10.1109/PST.2008.12

4. Bi, J., Coron, J., Faugère, J., Nguyen, P.Q., Renault, G., Zeitoun, R.: Rounding
and chaining LLL: finding faster small roots of univariate polynomial congruences.
IACR Cryptol. ePrint Arch. 2014, 437 (2014). http://eprint.iacr.org/2014/437

5. Chen, X., Li, J., Ma, J., Tang, Q., Lou, W.: New algorithms for secure outsourcing
of modular exponentiations. IEEE Trans. Parallel Distributed Syst. 25(9), 2386–
2396 (2014). https://doi.org/10.1109/TPDS.2013.180

6. Cohen, H.: A Course in Computational Algebraic Number Theory, Graduate Texts
in Mathematics, vol. 138. Springer, Heidelberg (1993). https://www.worldcat.org/
oclc/27810276

7. Coppersmith, D.: Finding a small root of a univariate modular equation. In: Mau-
rer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 155–165. Springer, Heidel-
berg (1996). https://doi.org/10.1007/3-540-68339-9 14

8. Fiore, D., Gennaro, R.: Publicly verifiable delegation of large polynomials and
matrix computations, with applications. In: Yu, T., Danezis, G., Gligor, V.D. (eds.)
The ACM Conference on Computer and Communications Security, CCS 2012,
Raleigh, NC, USA, 16–18 October 2012, pp. 501–512. ACM (2012). https://doi.
org/10.1145/2382196.2382250

9. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourc-
ing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 465–482. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14623-7 25

10. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Dwork, C. (ed.) Proceedings of the 40th Annual
ACM Symposium on Theory of Computing, Victoria, British Columbia, Canada,
17–20 May 2008, pp. 197–206. ACM (2008). https://doi.org/10.1145/1374376.
1374407

11. H̊astad, J., Just, B., Lagarias, J.C., Schnorr, C.: Polynomial time algorithms for
finding integer relations among real numbers. SIAM J. Comput. 18(5), 859–881
(1989). https://doi.org/10.1137/0218059

https://doi.org/10.1145/276698.276705
https://doi.org/10.1007/978-3-540-75187-8_4
https://doi.org/10.1007/978-3-540-75187-8_4
https://doi.org/10.1109/PST.2008.12
https://doi.org/10.1109/PST.2008.12
http://eprint.iacr.org/2014/437
https://doi.org/10.1109/TPDS.2013.180
https://www.worldcat.org/oclc/27810276
https://www.worldcat.org/oclc/27810276
https://doi.org/10.1007/3-540-68339-9_14
https://doi.org/10.1145/2382196.2382250
https://doi.org/10.1145/2382196.2382250
https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1137/0218059

240 X. Li et al.

12. Hohenberger, S., Lysyanskaya, A.: How to securely outsource cryptographic com-
putations. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 264–282. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7 15

13. Hu, C., Alhothaily, A., Alrawais, A., Cheng, X., Sturtivant, C., Liu, H.: A secure
and verifiable outsourcing scheme for matrix inverse computation. In: 2017 IEEE
Conference on Computer Communications, INFOCOM 2017, Atlanta, GA, USA,
1–4 May 2017, pp. 1–9. IEEE (2017). https://doi.org/10.1109/INFOCOM.2017.
8057199

14. Lagrange, J.L.: Recherches d’arithmétique. Proc. Nouv. Mém. Acad. (1773)
15. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational

coefficients. Math. Ann. 261(4), 515–534 (1982)
16. Liu, D., Bertino, E., Yi, X.: Privacy of outsourced k-means clustering. In: Moriai,

S., Jaeger, T., Sakurai, K. (eds.) 9th ACM Symposium on Information, Computer
and Communications Security, ASIA CCS 2014, Kyoto, Japan, 03–06 June 2014,
pp. 123–134. ACM (2014). https://doi.org/10.1145/2590296.2590332

17. Liu, J., Bi, J.: Secure outsourcing of lattice basis reduction. In: Gedeon, T., Wong,
K.W., Lee, M. (eds.) ICONIP 2019, Part II. LNCS, vol. 11954, pp. 603–615.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36711-4 51

18. Nguên, P.Q., Stehlé, D.: Floating-point LLL revisited. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 215–233. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639 13

19. Nguyen, P.Q., Stehlé, D.: LLL on the average. In: Hess, F., Pauli, S., Pohst, M.
(eds.) ANTS 2006. LNCS, vol. 4076, pp. 238–256. Springer, Heidelberg (2006).
https://doi.org/10.1007/11792086 18

20. Saruchi, Morel, I., Stehlé, D., Villard, G.: LLL reducing with the most significant
bits. In: Nabeshima, K., Nagasaka, K., Winkler, F., Szántó, Á. (eds.) International
Symposium on Symbolic and Algebraic Computation, ISSAC 20, Kobe, Japan, 23–
25 July 2014, pp. 367–374. ACM (2014). https://doi.org/10.1145/2608628.2608645

21. Schnorr, C.: A hierarchy of polynomial time lattice basis reduction algo-
rithms. Theor. Comput. Sci. 53, 201–224 (1987). https://doi.org/10.1016/0304-
3975(87)90064-8

22. Schnorr, C.P.: Factoring integers and computing discrete logarithms via diophan-
tine approximation. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547,
pp. 281–293. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46416-
6 24

23. The Sage Developers: SageMath, the Sage Mathematics Software System (Version
9.2) (2020). https://www.sagemath.org

24. Tian, C., Yu, J., Zhang, H., Xue, H., Wang, C., Ren, K.: Novel secure outsourcing of
modular inversion for arbitrary and variable modulus. IEEE Trans. Serv. Comput.,
1 (2019). https://doi.org/10.1109/TSC.2019.2937486

25. Yang, Y., et al.: A comprehensive survey on secure outsourced computation and
its applications. IEEE Access 7, 159426–159465 (2019). https://doi.org/10.1109/
ACCESS.2019.2949782

26. Zhang, F., Ma, X., Liu, S.: Efficient computation outsourcing for inverting a class
of homomorphic functions. Inf. Sci. 286, 19–28 (2014). https://doi.org/10.1016/j.
ins.2014.07.017

27. Zhang, H., Yu, J., Tian, C., Xu, G., Gao, P., Lin, J.: Practical and secure out-
sourcing algorithms for solving quadratic congruences in internet of things. IEEE
Internet Things J. 7(4), 2968–2981 (2020). https://doi.org/10.1109/JIOT.2020.
2964015

https://doi.org/10.1007/978-3-540-30576-7_15
https://doi.org/10.1109/INFOCOM.2017.8057199
https://doi.org/10.1109/INFOCOM.2017.8057199
https://doi.org/10.1145/2590296.2590332
https://doi.org/10.1007/978-3-030-36711-4_51
https://doi.org/10.1007/11426639_13
https://doi.org/10.1007/11426639_13
https://doi.org/10.1007/11792086_18
https://doi.org/10.1145/2608628.2608645
https://doi.org/10.1016/0304-3975(87)90064-8
https://doi.org/10.1016/0304-3975(87)90064-8
https://doi.org/10.1007/3-540-46416-6_24
https://doi.org/10.1007/3-540-46416-6_24
https://www.sagemath.org
https://doi.org/10.1109/TSC.2019.2937486
https://doi.org/10.1109/ACCESS.2019.2949782
https://doi.org/10.1109/ACCESS.2019.2949782
https://doi.org/10.1016/j.ins.2014.07.017
https://doi.org/10.1016/j.ins.2014.07.017
https://doi.org/10.1109/JIOT.2020.2964015
https://doi.org/10.1109/JIOT.2020.2964015

A Secure and Efficient Outsourcing Algorithm for Approximate SVP 241

28. Zhang, L., Zhang, H., Yu, J., Xian, H.: Blockchain-based two-party fair contract
signing scheme. Inf. Sci. 535, 142–155 (2020). https://doi.org/10.1016/j.ins.2020.
05.054

29. Zheng, Y., Tian, C., Zhang, H., Yu, J., Li, F.: Lattice-based weak-key analy-
sis on single-server outsourcing protocols of modular exponentiations and basic
countermeasures. J. Comput. Syst. Sci. 121, 18–33 (2021). https://doi.org/
10.1016/j.jcss.2021.04.006. https://www.sciencedirect.com/science/article/pii/S00
22000021000441

https://doi.org/10.1016/j.ins.2020.05.054
https://doi.org/10.1016/j.ins.2020.05.054
https://doi.org/10.1016/j.jcss.2021.04.006
https://doi.org/10.1016/j.jcss.2021.04.006
https://www.sciencedirect.com/science/article/pii/S0022000021000441
https://www.sciencedirect.com/science/article/pii/S0022000021000441

	Cloud-Assisted LLL: A Secure and Efficient Outsourcing Algorithm for Approximate Shortest Vector Problem
	1 Introduction
	2 System Model and Security Definitions
	2.1 System Model
	2.2 Threat Models
	2.3 Correctness and Security Definitions

	3 Notations and Preliminaries
	3.1 Lattice
	3.2 LLL Reduction Algorithm and Its Properties

	4 Our Outsourcing Algorithm for SVP
	4.1 Design Rationale
	4.2 Detailed Algorithm
	4.3 Some Remarks

	5 Correctness, Security, Verifiability and Efficiency
	5.1 Correctness
	5.2 Input/Output Privacy
	5.3 Verifiability
	5.4 Efficiency

	6 Practical Performance Evaluation
	6.1 Evaluation Methodology
	6.2 Evaluation Results

	7 Applications
	8 Conclusion
	References

