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Preface

The 16th International Conference on Information Security Practice and Experience
(ISPEC 2021) was held in Nanjing, China, during December 17–19, 2021, and hosted
by the Nanjing University of Information Science and Technology (NUIST), China.

ISPEC is an annual conference that brings together researchers, scholars, and
practitioners to provide a confluence of new information security technologies, including
their applications and their integration with IT systems in various vertical sectors. In
previous years, ISPEC has taken place in Singapore (2005), Hangzhou, China (2006),
Hong Kong, China (2007), Sydney, Australia (2008), Xi’an, China (2009), Seoul,
South Korea (2010), Guangzhou, China (2011), Hangzhou, China (2012), Lanzhou,
China (2013), Fuzhou, China (2014), Beijing, China (2015), Zhangjiajie, China (2016),
Melbourne, Australia (2017), Tokyo, Japan (2018), andKuala Lumpur,Malaysia (2019).

The competition for acceptance in the conference proceedings is very fierce. This
year, the conference received 94 submissions from authors in 14 countries/regions. At
least three reviewerswere assigned to each submission. Each reviewer carefully reviewed
and discussed the submissions’ novelty, practical application, and technical quality to
reach a common conclusion. Finally, 24 of the papers were accepted and are included
in this Springer volume, giving an acceptance rate of 26%. The topics of the accepted
papers cover multiple aspects of information security, from technologies to systems
and applications. Nowadays, information security technology has penetrated all walks
of life, the importance and actual impact have been reflected in different industries and
businesses. However, there is still a broad space for innovative applications and develop-
ment. Therefore, ISPEC seeks to bring together researchers, scholars, and participators
in the area of information security to address challenges and present effective solutions
in practice.

ISPEC 2021 was organized through the joint efforts of numerous people around the
world, and we would like to thank them for their continual dedication and support. First
of all, we want to extend our sincere thanks to all the Program Committee members
for their hard work of reading, reviewing, commenting on, and debating the submitted
papers; we are deeply grateful for their contribution of time, energy, and wisdom in this
process. There is no doubt that this was highly beneficial for. The committee also invited
external reviewers to review papers, which helped expand the professional knowledge,
and we thank them for providing more diverse comments and insights.

Last but not least, we would like to express our gratitude to the authors and attendees
for their support, and we thank all of our generous sponsors.

November 2021 Guilin Wang
Jian Shen

Mark Ryan
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Efficient Construction of Public-Key
Matrices in Lattice-Based Cryptography:

Chaos Strikes Again

Zhang Kaiwei1, Ailun Ma1, Lyu Shanxiang1(B), Wang Jiabo2(B),
and Lou Shuting1

1 College of Cyber Security, Jinan University, Guangzhou 510632, China
lsx07@jnu.edu.cn

2 Beijing National Research Center for Information Science and Technology,
Tsinghua University, Beijing 100084, China

wangjiabo@mail.tsinghua.edu.cn

Abstract. In order to solve the problem of excessive communication
overhead in the public-key encryption scheme based on the Learning
With Error (LWE) problem, this paper proposes to construct the public-
key matrices based on chaotic systems. Specifically, by taking advantages
of Logistic mapping, a long pseudo-random sequence is generated from
the initial state and the bifurcation parameter. The non-uniform chaotic
sequence is further tweaked towards a pseudo-random sequence admit-
ting uniform distributions. The public-key matrix of LWE is therefore
constructed efficiently. Simulations confirm the correctness and efficiency
of our scheme.

Keywords: Chaotic sequence · Lattice-based cryptography · LWE ·
Uniform distribution

1 Introduction

The averaged-case lattice problem Learning With Errors (LWE) introduced by
Regev is ubiquitous [1], as its computational hardness can be reduced to the
worst-case problem of lattices. Given its great potential to cryptographic appli-
cations, LWE has attracted a significant amount of research interest from both
academia and industry.

In LWE, the public matrix A ∈ Z
m×n
q consists of uniformly distributed ran-

dom numbers with large dimensions, i.e. m,n are both in the order of hundreds
or thousands. This poses a great challenge for the transmission of the excessively
large amount of public information. The obvious simplification is to resort to the
“seeding” method, where only a small amount of seeds are employed to repre-
sent the total randomness, which greatly reduces the communication overhead.
Therefore, we focus on the seeding-based generation of random numbers in this
work.

c© Springer Nature Switzerland AG 2021
R. Deng et al. (Eds.): ISPEC 2021, LNCS 13107, pp. 1–10, 2021.
https://doi.org/10.1007/978-3-030-93206-0_1
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Recall that random numbers are divided into two classes: true random num-
ber (TRN) and pseudo random number (PRN). While TRN has the character-
istics of aperiodicity, unpredictability and admitting uniform distributions [2], it
often fails to meet the requirements of high-speed computer calculation. There-
fore, in order to improve the efficiency of data generation, we investigate the
efficient generation of PRN in this work. PRN is generated by a deterministic
algorithm which expand a short true random sequence (called seed) into a long
pseudo random sequence.

A plenty of research has been carried out in the construction of pseudo-
random number generators, including the linear congruence generator [3], the
non-linear congruence generator [4] and the class of pseudo-random number
generators based on carried addition and borrowed subtraction [5]. Another
avenue to construct PRN is based on chaos theory [6–9]. Due to its good pseudo-
randomness, unpredictability of orbit and extreme sensitivity to initial state and
bifurcation parameters, chaos systems are attractive candidates for PRN genera-
tors [10]. This line of works include PRNs based on the one-dimensional Logistic
mapping [11], the two-dimensional discrete chaotic mapping [12], and the three-
dimensional discrete hyper-chaotic folded-towel mapping [13]. Nevertheless, the
above PRN generators are either too complicated or too simple to guarantee suf-
ficient randomness. Moreover, these methods are generated for different purposes
in specific scenarios and are not the ideal candidates for public key encryption
schemes based on the LWE problem.

Addressing the above issues, the contributions of this paper are two-fold.
Firstly, we present a simple improvement over Logistic sequence to derive a
uniform distributions. To be specific, a long pseudo-random sequence is gener-
ated from the initial state z1 and bifurcation parameter r based on the Logistic
mapping. Using the partition parameter q, the sequence is mapped to the finite
field Zq. Secondly, we present a public-key encryption scheme where the uniform
random matrix A ∈ Z

m×n
q is built from our derived uniform sequences. In this

way, one can greatly reduce the communication overhead required by public key
storage. Moreover, the randomness consumption is also saved because far less
entropy is consumed to yield enough pseudo randomness which is computation-
ally indistinguishable from the true randomness. The storage space of matrix
A is also reduced from m × n dimension matrix to 7 parameters (initial state
z1, bifurcation parameter r, parameter q, sampling initial position i, sampling
distance d and matrix size parameters m, n); thus the public key storage space
is greatly reduced, making the lattice cipher scheme more efficient.

2 Preliminaries

2.1 The Chaotic System: Logistic Map

Chaos theory is about nonlinear systems exhibiting phenomenons of bifurca-
tions, periodic motions, etc., leading to a certain non-periodic ordered motion.
It originates from the “butterfly effect”, which means that a subtle change may
eventually lead to unpredictable results.
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Among many chaotic sequences, the one-dimensional Logistic chaotic system
has a wide range of applications due to its low complexity. Logistic chaotic
system can be expressed by the following binary recursive equation

z′
n+1 = rz′

n(1 − z′
n), (1)

where r is the bifurcation parameter. For any r ∈ (3.57, 4], the system drives into
a chaotic state. As a nonlinear system, the sequence {z′

n} has the characteristics
of aperiodicity, initial value sensitivity and ergodicity. In addition, it is difficult
to predict and analyze the output of chaotic systems.

Consider the Logistic map in the form of (1). If r = 4, the probability density
function of Eq. (1) becomes [14]

ρ(y) =

{
π−1/[y(1 − y)]1/2

, 0 < y < 1,

0, others.
(2)

It can be seen from Eq. (2) that the sequence produced is non-uniformly dis-
tributed and does not meet the conditions for generating random sequence.
Therefore, it is necessary to transform the non-uniformly distributed random
variables to uniformly distributed random variables.

2.2 LWE and the Encryption Scheme

With A ∈ Z
m×n
q uniformly generated, s ∈ Z

n
q , and e ∈ Z

m
q generated by the

distribution χ, we construct an LWE instance of b = As+ e ∈ Z
m
q . The search-

version LWE refers to finding s given b and A. The decision-version LWE refers
to judging whether b is generated from a uniform distribution or the LWE
distribution, given b and A [1]. The following is the lattice cipher scheme based
on LWE [1] :

– KeyGen(λ) : Generate uniformly random s ∈ Z
n
q , output the private key as

sk = s. Uniformly and randomly generate A ∈ Z
m×n
q , and let b = As + e ∈

Z
m
q . Output the public key as pk = (A,b).

– Enc(pk, μ ∈ {0, 1}) : Randomly select r ∈ Z
m
2 and calculate c0 = rT A,

c1 = rT b + � q
2�x. Output the cipher c = (c0, c1).

– Dec(sk, c) : Output the plaintext

m =

{
0, |c1 − c0s| < q

4 ,

1, |c1 − c0s| ≥ q
4 .

(3)

In the above process, large the public key pk (represented by a uniform ran-
dom matrix A ∈ Z

m×n
q and b = As + e ∈ Z

m
q , which is an m × (n + 1)−

dimensional matrix) will increase the communication overhead. Besides, to gen-
erate such public key consumes a lot of randomness. In order to solve these
problems, we introduce a chaotic system to construct matrix A. Using chaotic
systems, we can generate a long sequence with fewer parameters, and construct
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the matrix A with this long sequence. Therefore, the storage space of matrix
A can be greatly reduced from m × n dimension to a small number of param-
eters, which greatly saves the communication overhead and is more convenient
for the use of lattice cipher scheme based on LWE, e.g. key encapsulation scheme
(KEM).

3 The Proposed Public-Key Construction

3.1 Generating Uniform Chaotic Sequences

Generating uniform distributions from chaotic systems is not new to the com-
munity of chaos theory. Hereby we present one of such constructions from the
Logistic map [15]. Let f(t), g(t) be two probability density functions such that∫ x

a

f(t) dt =
∫ y

c

g(t) dt, (4)

where a ≤ x ≤ b, c ≤ y ≤ d. According to the properties of probability density
functions, it satisfies f(x) > 0 and g(y) > 0 for any x, y in the integral intervals.
Further we define

p(x) �
∫ x

a

f(t) dt, p(y) �
∫ y

c

g(t) dt. (5)

Therefore, the functions p(x), p(y) on are monotonically increasing, and the
probability cumulative functions p(x), p(y) admit one-to-one mapping in the
intervals [a, b], [c, d].

Let f(t) be admitting a uniform distribution in [0, 1], i.e., a = 0, b = 1. Then
we have

p(x) = x =
∫ y

c

g(t) dt, (6)

where x ∈ [0, 1]. Regarding the r.h.s. of Eq. (4), we set the function g(t) as the
Logistic density function in Eq. (2), and let [c, d] = [0, 1]. Therefore, Eq. (6) can
be reformulated as

x =
∫ y

0

1
π
√

t(1 − t)
dt

= 1 − 2
π

arccos(
√

y). (7)

The implication of this equation is that, if we transform the samples z′
1, . . . , z

′
n

of Eq. (1) by using the function 2
π arccos(

√
z′
n), then the resulting sequence {zn}

is
z1 =

2
π

arccos(
√

z′
1), . . . , zn =

2
π

arccos(
√

z′
n), (8)

admitting a uniform distribution.
We compare the Logistic sequence with the one derived by Eqs. (1) and (8) in

Fig. 1. As shown in the figure, the improved sequences better obey the uniform
distribution.
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(a)

(b)

Fig. 1. (a) Comparing the statistical histograms of Logistic sequence and the improved
sequence: Logistic sequence. (b) Comparing the statistical histograms of Logistic
sequence and the improved sequence: Improved sequence.

3.2 Public Key Matrices Constructed from Chaotic Sequences

By using the improved sequence to construct the public key matrix A, we argue
that the constructed public key A ∈ Z

m×n
q not only satisfies the characteristic

of uniform distributions, but also features low computational complexity.
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The construction steps are as follows. According to the initial sampling posi-
tion i and sampling distance d (the sampling distance d refers to the distance
between each selected element), we define a chaotic sequence Z(i, d, z1, r) =
{zi, zi+d, · · · , zi+kd, · · · }. Define an ∈ A(i, d, a0, r) as

an = �(q − 1) × zi+nd�. (9)

To construct the matrix A ∈ Z
m×n
q , it is necessary to generate a sampling

sequence with the length of m × n, and then create the public key matrix A
through this sequence as

A =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a0 · · · am(n−1)

a1 · · · am(n−1)+1

...
...

...
am−1 · · · amn−1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (10)

As the adopted chaotic sequence features good randomness and uniformity,
the public key in the chaotic lattice cipher scheme can be obtained by trans-
mitting the initial value z′

1 of the chaotic sequence and other parameters, which
greatly reduces the communication overhead of the key and improves the trans-
mission efficiency.

3.3 The Public-Key Encryption Scheme Based on LWE and Chaos

The chaotic encryption scheme based on the LWE problem proposed in this
paper uses the chaotic mapping method mentioned above. The specific encryp-
tion steps are as follows:

(1). KeyGen(λ)
First, set the initial value of chaotic system as z′

1 ∈ [0, 1] (in Eq. (1)), then
generate chaotic sequence; according to the initial sampling position i and sam-
pling distance d, we can get sequence Z(i, d, z′

1), and the each value of the
sequence Z(i, d, z′

1) is multiplied by the q−1 to get sequence {a0, a1, · · · , amn−1},
which makes the elements uniform distribution in finite domain Zq. According to
the above method, we can construct public key matrix A ∈ Z

m×n
q . We then ran-

domly select the required s ∈ Z
n
q and e ∈ Z

m
B for the LWE problem and calculate

b = As + e. Note the additional constraint that the value of B we select here
must be q/4 > mB so as to guarantee correct decoding of Regev’s algorithm [1].
Finally, we get the private key sk = s and the public key pk = (b, z′

1, i, d, q,m, n).
(2). Encrypt(pk,M ∈ {0, 1})
We encrypt each binary bit separately, and process one bit at a time. First of

all, we randomly select a nonce vector r ∈ Z
m
2 ∈ {0, 1}m, and then we calculate

the matrix A based on the public key z′
1, r, i, d, q,m, n, and then the first part of

the calculation ciphertext c0 ← rT A. Then, we calculate the second part of the
ciphertext c1 ← rT b+ �q/2�M . Finally, we output (c0, c1) as the final encrypted
ciphertext.
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(3). Decrypt(sk, ct = (c0, c1))
To recover the plaintext, we need to compute M̂ = c1 − c0 · s, then check

whether the absolute value of the result is within decoding capability
∣∣∣M̂ ∣∣∣ < q

4 .
If it is, then it gives M = 0, otherwise it gives M = 1.

4 Tests

In this section, we adopt statistical tests and gap tests to verify whether the
uniform distribution has been achieved. Moreover, we present a concrete example
of constructing the public-key matrix A.

4.1 Chi-Square Tests and K-S Tests

We firstly use chi-square tests to verify whether the finite set S is uniformly
distributed. It goes as follows:

(1). Partition interval
Partition S into r subsets S =

⋃r
j=1 Sj , called bins.

(2). Statistics of the expected number of samples and the actual
number of samples

Suppose there are samples y1, · · · , yM ∈ S. For each 1 ≤ j ≤ r, we compute
the expected number of samples in the j-th subset: cj := |Sj |M

|S| , and the actual
number of samples: tj := |{1 ≤ i ≤ r : yi ∈ Sj}|.

(3). Calculate χ2

χ2(S, y) =
∑r

j=1

(tj − cj)2

cj
.

(4). Judge whether it is evenly distributed
Suppose the samples are drawn from the uniform distribution on S. Then

the χ2 value follows the chi-square distribution with (r − 1) degrees of freedom,
which we denote by χ2

r−1.
Let Fr−1(x) denote its cumulative distribution function. That is, the sum

of the probability of occurrence of all values less than or equal to x. Choose a
confidence level parameter α ∈ (0, 1) and compute δ = F−1

r−1(α).
If χ2(S, y) ≤ δ, then the hypothesis that the sample is extracted from the

uniform distribution S is true; otherwise, the hypothesis is not true.
According to the above steps, we set the initial value z′

1 of chaotic system
(7) as 0:0.0001:1 (step size 0.001), and carried out chi-square tests (1000 times
in total) for each chaotic sequence generated by (7). It is found that most of the
chaotic sequences generated by (7) can pass the chi-square tests with the passing
rate of more than 85% (α = 0.05). Thus, the chaotic sequence generated by (7)
has the uniform distribution characteristic with a high probability.
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We further apply the Kolmogorov-Smirnov (K-S) test to judge whether the
uniform distribution hypothesis is supported (e.g., via the MATLAB function
kstest). Results prove that the constructed sequence has the uniform distribution
characteristic.

4.2 Gap Tests

Define interval (α, β) ⊂ (0, 1). Let Tn be the number of times that the random
number is in the interval (α, β); let Gn be the spacing between these degrees,
such as Gn = Tn − Tn−1 (when T0 = 0). If the random sequence is uniformly
distributed, then Gn should be geometrically distributed with parameter p =
β − α. We can verify it with the χ2 test.

A special case (α, β) ⊂ (0, 1/2) is called above average detection; when
(α, β) ⊂ (1/2, 1), it is called sub-mean detection.

Based on previous research and experience, we define the interval (α, β) =
(1/3, 2/3) and follow the steps above to calculate the Gn. Results show that Gn

is geometrically distributed and passes the χ2 test.

4.3 Construction of Keys

We select the secret initial value as z′
1 = 0.1, set the initial sampling position as

i = 3, and the sampling distance as d = 100. After 106 iterations, the chaotic
matrix generated over the finite field Z

640×8
215 is as follows:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5920 26257 · · · 1047 27498 25010
22005 30692 · · · 12247 17329 32411
7729 2102 · · · 32734 10028 2659

...
...

...
...

...
...

32312 8762 · · · 21933 13129 12563
12924 962 · · · 960 552 11223
2024 20286 · · · 26702 21399 10353

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The experimental results show that the matrix constructed by formula (7)
features good pseudo randomness and passes the χ2 test. We also plot Fig. 2(a)
to show the frequency histogram of the matrix elements and Fig. 2(b) to show
the scatter diagram of the matrix elements. They indicate that the matrix con-
structed by uniform chaotic sequence gives a distribution with good randomness
and stability.
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(a)

(b)

Fig. 2. (a) The statistical characteristics of the constructed matrix: frequency his-
togram. (b) The statistical characteristics of the constructed matrix: frequency scatter.

5 Conclusion

In this paper we proposed an efficient public key encryption scheme by judi-
ciously leveraging the advantages of chaotic systems. Through the experimental
results we have shown that the constructed sequences enjoy good randomness
and uniformity. The public key size is significantly reduced. Instead of transmit-
ting the whole public key matrix, it suffices to the transmit the initial value of
chaotic sequence only, which can effectively reduce the transmission overhead.
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Simultaneously, there is a wide range of cryptographic schemes based on
LWE, and the choice of methods and parameters is quite different. To make sure
the proposed scheme improves the efficiency while ensuring a certain security. It
is necessary to consider the security level of the LWE-based scheme under the
current parameter setting. The scheme proposed in this paper is devised based
on a standard LWE-based cipher scheme by employing a chaotic system. No
other parameters associated with the security is changed. Therefore it preserves
the security of the original scheme.

Acknowledgment. This work was supported in part by the National Natural Sci-
ence Foundation of China (61902149, 61932010 and 62032009), the Natural Science
Foundation of Guangdong Province (2020A1515010393).

References

1. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56(6), 1–40 (2009)

2. Wang, F.: Key Generation and Verification Scheme Based on Blockchain and
Pseudo Random Number Technology. Lanzhou Jiaotong University (2020)

3. Lehmer, D.H.: Mathematical methods in large-scale computing units. In: Proceed-
ings of the Second Symposium on Large Scale Digital Computing Machinery, Har-
vard University Press, vol. 26, pp. 141–146 (1951)

4. Blum, L., Blum, M., Shub, M.: A simple unpredictable pseudo-random number
generator. SIAM J. Comput. 16(2), 364–393 (1986)

5. Marsaglia, G., Zaman, A.: A new class of random number generators. Ann. Appl.
Probab. 1(3), 462–480 (1991)

6. Simin, Yu., Jinhu, L., Chen, G.: Theoretical design and circuit implementation
of multidirectional multi-torus chaotic attractors. IEEE Trans. Circ. Syst. Regul.
Papers 54(9), 2087–2098 (2007)

7. Simin, Y., Wallace, K.S., Tang, J.L., Guanrong, C.: Generation of n × m-Wing
Lorenz-like attractors from a modified Shimizu-Morioka model. IEEE Trans. Circ.
Syst. II Exp. Briefs 55(11), 1168–1172 (2008)

8. Chen, H., Li, Y.: Bifurcation and stability of periodic solutions of Duffing equations.
Nonlinearity 21(11), 2485 (2008)

9. Zhao, Y., Jiang, Y., Feng, J., Lifu, W.: Modeling of memristor-based chaotic sys-
tems using nonlinear Wiener adaptive filters based on backslash operator. Chaos
Solit. Fract. 87, 12–16 (2016)

10. Zheng, F., Tian, X., Fan, W., Li, X., Gao, B.: Digital image encryption based on
Henon map. J. Beijing Univ. Posts Telecommun. 31(1), 66–70 (2008)

11. Dabal, P., Pelka, R.: A study on fast pipelined pseudo-random number generator
based on chaotic Logistic map. In: 17th International Symposium on Design and
Diagnostics of Electronic Circuits & Systems, pp. 195–200. IEEE, Warsaw (2014)

12. Zhang, L., Min, L., Han, S.: Design of two-dimensional new chaotic system and
pseudo-random number generator. Comput. Eng. Des. 35(4), 1178–1182 (2014)

13. Qi, Y., Sun, K., Wang, H., He, S.: Design and performance analysis of hyperchaotic
pseudorandom sequence generator. Comput. Eng. Appl. 53(4), 135–139 (2017)

14. Cao, G., Kai, H., Tong, W.: Image scrambling based on logistic uniform distribu-
tion. Acta Phys. Sin. 60(11), 133–140 (2011)

15. Gan, Y., Qinwei Ye, Yu., Zhou, Z.L.: Multi-channel parallel compression sampling
based on uniform chaotic sequence. Data Commun. 2020(006), 26–31 (2017)



Explore Capabilities and Effectiveness
of Reverse Engineering Tools to Provide

Memory Safety for Binary Programs

Ruturaj Vaidya1, Prasad A. Kulkarni1(B), and Michael R. Jantz2

1 University of Kansas, Lawrence, USA
{ruturajkvaidya,prasadk}@ku.edu

2 University of Tennessee, Knoxville, USA
mjantz@utk.edu

Abstract. Any technique to ensure memory safety requires knowledge
of (a) precise array bounds and (b) the data types accessed by memory
load/store and pointer move instructions (called, owners) in the pro-
gram. While this information can be effectively derived by compiler-level
approaches much of this information may be lost during the compilation
process and become unavailable to binary-level tools. In this work we
conduct the first detailed study on how accurately can this information
be extracted or reconstructed by current state-of-the-art static reverse
engineering (RE) platforms for binaries compiled with and without debug
symbol information. Furthermore, it is also unclear how the imprecision
in array bounds and instruction owner information that is obtained by
the RE tools impacts the ability of techniques to detect illegal mem-
ory accesses at run-time. We study this issue by designing, building,
and deploying a novel binary-level technique to assess the properties and
effectiveness of the information provided by the static RE algorithms
in the first stage to guide the run-time instrumentation to detect ille-
gal memory accesses in the decoupled second stage. Our work explores
the limitations and challenges for static binary analysis tools to develop
accurate binary-level techniques to detect memory errors.

1 Introduction

Buffer overflow attacks rely on exploiting illegal memory accesses by referencing a
buffer outside its legal array bounds. These attacks are mostly caused by bugs in
software written in low-level memory unsafe languages, like C or C++ [37]. Such
memory errors present an old security issue that persists in spite of advanced
exploit mitigation mechanisms and can lead to silent data corruption, security
vulnerabilities, and program crashes. In spite of solutions proposed through tech-
niques at the programmer/source-level [16,24], compiler-level [2,4,7,9,14,27,29],
and binary-level [33,36,38], the problem of memory safety persists especially in
embedded, low-level, performance critical, and legacy software systems.
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Techniques to detect memory errors require the ability to determine accu-
rate buffer bounds along with the data type referenced (called the owner in this
work) by each memory access (read/write) and pointer assignment/move instruc-
tion. This information is largely available to the source-code and compiler-level
techniques, and enables more precise memory error detection at run-time. Unfor-
tunately, techniques at this level require access to the source code and may not
be applicable to legacy software where source code may not be available. Such
techniques also involve reprogramming and/or re-compiling the code. The single
binary executable generated/deployed using these techniques cannot be easily
adapted to different risk averseness and performance overhead tolerances of end-
users. Such approaches also leaves the task of memory safety solely in the hands
of the software developer (rather than the end-user).

Binary-level techniques can overcome these challenges of source-level
approaches. However, much of the program syntax and semantic information
needed by techniques to resolve memory errors may be lost during the compila-
tion process, especially when the generated binary is stripped of debug symbols.
To overcome this limitation for binary-level techniques, researchers have devel-
oped advanced reverse engineering (RE) frameworks with sophisticated disassem-
blers, decompilers, and binary type and symbol inference algorithms that attempt
to reconstruct information lost during the source to binary translation process.

In this work we study how much of the array bounds and instruction owner
information is preserved by the compilation process (for binaries generated with
debug information and those stripped of debug symbols) and can be retrieved by
traditional disassemblers provided with contemporary RE tools. We also conduct
the first detailed study on how accurately can this information that is needed
to detect/prevent memory errors be reconstructed by the advanced decompilers
and type inference algorithms provided with modern RE frameworks for stripped
binaries. Our work explores the capabilities of two state-of-the-art RE tools,
specifically NSA’s Ghidra [28] and Hex-Ray’s IDA Pro [1], and assesses the
accuracy of the information they derive from program binaries.

Imprecision in array bounds detection and instruction owner information
obtained by static RE tools can affect the ability to detect and prevent buffer
overflows at run-time. In this work, we design and build a new binary-level run-
time tool to evaluate, for the first time, the effectiveness of the program informa-
tion gathered by the RE frameworks (in different configurations) to detect and
prevent memory errors. The tool uses the obtained static analysis information
to keep track of owners as pointers are assigned, and check relevant buffer read-
s/writes to assess the ability to ensure fine-grained memory safety at run-time.

Thus, we claim two major contributions in this work.

1. We conduct the first detailed study to determine the ability of static RE
tools, specifically Ghidra and IDA Pro, to derive precise array bounds and
instruction owner information from binary programs, which is required to
detect and prevent memory errors.

2. We design, build and employ a new decoupled binary-level execution-time
tool with the goal to assess the efficacy of the statically derived program
information to provide memory safety for binary programs.
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2 Related Works

In this section we compare our work with studies that evaluate the capabil-
ities and precision of reverse engineering frameworks to reconstruct program
information lost during the translation process. We also discuss past research in
binary-level techniques to detect and prevent memory errors.

Several prior research works have evaluated the accuracy of binary code disas-
semblers and decompilers. Meng and Miller identify challenging code constructs
that make it hard for RE tools to accurately disassemble binary code and con-
struct a correct control flow graph (CFG) [25]. Andriesse et al. compare 9 pop-
ular disassemblers and find that complex code constructs are rare in real-world
programs [3]. Inaccuracy in function start/boundary detection by current RE
tools was reported by some works [3,5]. Pang et al. analyze 9 open-source disas-
semblers to compare the algorithms and heuristics used for instruction recovery,
symbolization, function detection and CFG construction and assess their pre-
cision [31]. They find that different tools use distinct algorithms and heuristics
that complement each other, but also introduce coverage-correctness trade-offs.
Another study explores the usability and effectiveness of decompilers to recover
C output from binary code [21]. They find that while modern decompilers are
getting increasingly powerful and accurate, issues such as type recovery and
optimization still impede decompilers from generating accurate and presentable
outputs. None of these works assess the efficacy of array bounds and instruction
owner detection in RE tools.

A plethora of research has been conducted on type inference from program
binaries [6,13,17,19,20,23,30,35,39]. Most of these research efforts are focused
on prediction of basic or preliminary type information. Although some of these
approaches claim to be able to detect higher order structures or aggregate types
likes arrays, none of the approaches we know assess the accuracy of array bound
detection, or evaluate the precision of instruction owner detection for binaries.

Past researchers have developed many techniques to detect and prevent mem-
ory errors. Many past approaches rely on the source-code with access to rich
semantic program information [2,8,10,27,29,32,34].

Binary-level tools to locate fine-grained buffer overflows in memory at run-
time have also been developed. The BinArmor technique [36] to detect memory
errors relies on a tool called Howard [35] that uses past program execution traces
to extract data structures and their memory bounds. BinArmor uses information
from Howard to statically instrument the binary with checks to detect unsafe
memory accesses during later program executions. Another technique develops a
memory layout recovery algorithm to locate memory access vulnerabilities in the
program after execution of the failed run [38]. This approach requires traces from
a set of correct program executions to recover fine-grained memory layouts of
variables. The recovered memory layouts from the passed program executions are
then used to determine if the failed run exceeded any valid variable boundaries.

Both these past techniques employ a dynamic approach that relies on traces
from multiple correct prior program executions to determine or predict relevant
properties about the program, including buffer bounds. All dynamic analysis
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Fig. 1. Schematic of experimental framework setup

techniques require representative program inputs and are incomplete by design
since they cannot guaranty complete code coverage and can only protect code
and buffers that were seen by the analyzed program execution traces. Instead,
our work is the first to explore the potential, capabilities and trade offs of using a
static analysis and static type inference based approach to resolve this problem.
Similar to BinArmor, but unlike the approach by Wang et al., our technique is
designed to detect memory errors before they are triggered during program exe-
cution. Most importantly, none of these tools are available for use by researchers
in the open-source domain and none have attempted to employ these tools to
assess the extent and impact of inaccuracies in array bounds and instruction
owner detection to locate and prevent buffer overflows at run-time.

3 Benchmarks and Frameworks

In this section we describe the experimental setup, benchmarks, and tools and
frameworks used for this study.

3.1 Experimental Framework

A schematic of the overall framework is illustrated in Fig. 1. A C/C++ program
is compiled with the standard gcc compiler with the “-g” flag to generate a
binary with embedded debug symbol information. This binary is used by our ➀
Debug configuration. Later, the strip --strip-all Linux command is used
to generate another binary executable that is stripped of all symbol information.
This binary is used by our ➁ Stripped and ➂ Decomp. configurations.

Our experiments employ two stages: (a) static analysis to assess the ability of
our RE tools to derive precise array bounds and instruction owner information
from binary programs, followed by (b) dynamic binary instrumentation (DBI) to
assess the efficacy of the statically derived program information to provide mem-
ory safety for binary programs. We employ Ghidra version 9.1.2 (with Ghidra
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decompiler) [28] and IDA Pro version 7.5 (with Hex-Rays decompiler) [1] to
conduct static analysis in the first stage. We use the PIN (version pin-3.15) [22]
dynamic instrumentation engine in the second stage. All experiments are per-
formed on a cluster of x86-64 Intel Xeon processors with the Fedora 28 OS.

The static RE tools we employ work independently of the program input(s).
They include a disassembler to convert machine code to assembly code. They
also provide a decompiler that employs sophisticated type inference and code
reconstruction algorithms to raise the low-level assembly code into a higher-
level language representation (commonly, C). Our ➀ Debug and ➁ Stripped
configurations only use the disassembler. The ➂ Decomp. configuration also uses
the decompiler, which enables this configuration to recover higher-order program
structures like arrays and pointers along with their associated sizes and assists
with instruction owner detection from the stripped binary. Each configuration in
the static analysis phase outputs a distinct interface file with the array bounds
and instruction owner information that it can recover from the binary.

The stripped binary program and the statically generated interface file are
provided to Pin. Pin adds instrumentation based on previously determined
instruction owner mapping and array bounds information, tracks dynamically
allocated buffers and relevant register and memory values, and inserts security
checks to detect buffer overflows at run-time.

3.2 Benchmarks

In this work we use benchmarks from three different benchmark suites, SARD-
89 [18,26], SARD-88 [26,40], and SPEC cpu2006 [15]. The SARD-89 suite con-
tains 291 small programs that implement a taxonomy of diverse C buffer over-
flows (1164 total programs). Each test case has three versions with memory
accesses that overflow just outside, moderately outside, and far outside the buffer,
respectively. The fourth version for each test case is a patched version without
any buffer overflow. 18 of the 291 test subjects in SARD-89 benchmark suite
contain overflows that leverage library functions to succeed. Although not a
fundamental limitation of our technique or tools, we currently do not analyze
library functions, and so leave out these programs. Additionally, 152 test sub-
jects in SARD-89 overflow the buffer with an index that is a constant integer,
for example buf[2048]. We discuss these cases in more detail in Sect. 4.2. We
use the remaining 121 test programs for all experiments in this work, unless
mentioned otherwise.

The SARD-88 benchmark suite contains 14 “real-world” programs from var-
ious internet applications (BIND, Sendmail, WU-FTP) with known buffer over-
flows. Two versions are provided for each test case, one with and the other with-
out a buffer overflow (28 programs in total). We statically link library functions
like strcpy, strcmp, that can overflow in some of the SARD-88 programs. We
also employ all the SPEC cpu2006 integer benchmarks to study the scalability
and efficacy of the static tools on large programs. All benchmarks are compiled
using GCC version 9.3.1; optimized benchmarks use -O3.
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4 Static Reverse Engineering

Techniques to detect and prevent memory errors need precise information regard-
ing buffer data types, their base address and size/bound, and the data type ref-
erenced (owner) by each memory access (read/write) and pointer assignment/-
move instruction. Much of this information is lost during the compilation process.
RE frameworks employ complex algorithms and heuristics to reconstruct lost
program information from binaries. We explored the abilities of several RE tools
to identify and reconstruct program information that is required to detect and
prevent memory-related attacks in binaries, including Angr, Radare/r2, Debin,
Ghidra, and IDA Pro. We found that only Ghidra and IDA Pro provide the
capability and API for this task. In this section we present our results and
observations. To our knowledge, this is the first work that evaluates and reports
the efficacy of RE tools to extract or reconstruct the buffer/pointer bound and
instruction owner information required to detect/prevent memory errors.

4.1 Setup and Implementation Details

In this section we describe the algorithms and extensions we develop to explore
the capabilities of Ghidra and IDA Pro. Our scripts extract information relating
to the statically known object bounds (local/global variables) and instruction-
owner mappings. We use the term owner for program variables of type array or
pointer that constitute the memory operand for the memory access instructions
(of the kind MOV for the x86-64). Additionally, we have also extended the tools
with block-level data-flow algorithms to track the instructions that propagate
the pointer variables from memory to registers before they are used.

Figure 2 illustrates the information we gather from our RE tools. The figure
shows the source code, the compiler generated binary code and corresponding
IDA Pro output for a simple C program. This program has a single integer
buffer, ‘b’, an integer pointer, ‘ptr’, and an integer scalar ‘n’. The variable ‘ptr’
is the “owner” of the assembly instructions at offsets ‘8’, ‘20’ and ‘27’. ‘ptr’ is
mapped to the corresponding addresses. The pointer access on line #6 overflows
the array ‘b’ - corresponding to assembly instruction at offset ‘27’. Comparably,
the direct array access on line #7 overflows the array ‘b’ - corresponding to
assembly instruction at offset ‘32’. Memory safety algorithms need to check such
accesses to determine the invalid access at run-time.

We found that the owners of direct variable access instructions (that employ
{rbp, rsp, rip} based relative addressing, like the instructions at address ‘8’, ‘20’
and ‘32’ in Fig. 2) are determined automatically by the reverse engineering frame-
works we study. However, the owners of pointer dereference instructions (for
example, the instruction at address ‘27’ in Fig. 2) are not detected automati-
cally by our advanced tools. To analyze such memory accesses, we implement a
simple data-flow algorithm that keeps track of the variables and owners as they
move between the memory stack and registers.

Figure 2(c) shows the output of our RE scripts after analysing the binary gen-
erated using the example program shown in Fig. 2(a). This output file contains
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Fig. 2. Example showing an invalid array access: (a) C source code (b) Assembly
output (c) Output text file (interface file) after static analysis by IDA Pro

function related metadata such as owner-instruction address mapping I (listed
under addresses), function variable metadata fv - local variables along with their
position (offset) on the stack relative to the stack pointer, their size and type
(listed under locals), function boundary (fs ∪ fe), and additional metadata fm
such as number of functions, stack size, base pointer relative addressing informa-
tion, etc. This file also contains global variable metadata Gv - Variables defined
in the data or bss sections and associated with their static address; the rest of
the metadata is similar to local variables (listed under .global). This output of
the static analysis Gv ∪ ∑

fi{(fs ∪ fe), fv, fm, I} is fed to the Pin tool.

4.2 Efficacy of Reverse Engineering Tools

In this section we study the efficacy of existing reverse engineering tools to deter-
mine buffer bound and instruction owner information for programs compiled by
standard compilers with and without debug symbols and compiler optimizations.

Failures Even with Debug Symbol Information. Building a binary with
debug symbols retains useful information from the source program regarding
the function stack and the global data/bss section layout, variable types, and
buffer bounds. However, the owner information is not captured by the debug
symbols and may become hard to infer from the static binary. An example of
this challenging scenario is encountered for many SARD-89 benchmarks that
overflow the buffer with an index that is a constant integer. An example of this
case is illustrated in Fig. 3. The left-hand side of the figure shows the source code
and the right-hand side shows the corresponding assembly code. This program
declares two arrays, ‘b1[5]’ and ‘b2[10]’. The write to ‘b2[15]’ corresponds to
assembly instruction at location ‘40112e’ and the read from ‘b1[3]’ corresponds
to the assembly instruction at location ‘401135’. In the assembly code these
buffer accesses that are indexed by a constant use a displacement relative to
the stack frame pointer, rbp, rather than the base array pointer. Thus, although
these two instructions reference different buffers (and one, b2[15] is an overflow),
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Fig. 3. Ambiguous array access: (a) C source code (b) Assembly output

if these accesses are within the stack frame, then it is hard for the RE tools to
infer or predict from the assembly code if they refer to the array ‘b1’ or ‘b2’
or neither. In such cases, we found that the reverse engineering tools cannot
determine the correct instruction owner even in the presence of debug symbols.

Such failures caused due to buffer accesses by a constant numeral may be an
intrinsic limitation of binary-level techniques. Fortunately, arrays dereferenced
by a constant numeral may be a less critical hazard or attack vector in security
threat models, as many real-world buffer-overflow and stack-smashing attacks are
triggered by a malicious external input specifically devised to overflow the buffer
bound. Lack of high-level program information also prevents our RE tools from
associating the correct owner with instructions accessing individual members of
a structure. We found that there are 152 test cases in the SARD-89 benchmark
suite that our RE tools fail to analyze due to these intrinsic reasons. We leave
out these programs from the remaining experiments in this paper.

Accuracy of Type and Owner Detection for Arrays and Pointers.
Figures 4 and 6 (in Appendix A for optimized benchmarks) display the efficacy
of array and pointer type detection for programs in the SARD-89, SARD-88, and
SPEC suites. Each figure shows three configurations for each of our static RE
tools, ➀ Debug, ➁ Stripped and ➂ Decomp. We leverage the pyelftools [12]
module to design and build a new tool to extract variable information directly
from the “dwarf” [11] section of binaries1. The data from this tool is used as a
baseline to compare the results obtained in the other RE-based configurations.

Figures in the first row (4(a), 4(e), 4(i)) display array bound detection accu-
racy for corresponding benchmarks. #TP Arrays show the (True Positive, TP)
arrays detected at correct offsets regardless of their size/bound, while #FP
Arrays show the (False Positive, FP) arrays that are detected at incorrect off-
sets compared to our baseline. Figures in the second row (4(b), 4(f), 4(j)) display
the accuracy of pointer detection. The first set of bars in each of these figures
show the number of TP and FP pointers as detected directly by the reverse
engineering tools. The set of bars labeled “with Pred.” use a simple pointer pre-
diction algorithm we employed that marks every variable with “undefined type”

1 DWARF is a debugging file format used by many compilers, including the GCC
compiler used in this work, to support source level debugging.
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Fig. 4. Accuracy of array, pointers, and owner detection for SARD-89, SARD-88,
SPEC-cpu2006 benchmarks, generated without compiler optimizations

(or undetermined type) and with a size of 8 bytes as a pointer. Figures in the
third row (4(c), 4(g), 4(k)) display the accuracy of mapping the move and memory
dereference instructions to array/pointer owners. The known owners are associ-
ated with instructions by our analysis algorithm. Static instructions mapped to
owners that are scalar variables are ignored. Instructions are assigned unknown
owners when relevant owners cannot be predicted. The stripped and decompiler
results in these figures are compared against those when debug symbols are avail-
able with each respective RE tool. Finally, figures in the last row (4(d), 4(h), 4(l))
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plot the accuracy of array bounds detection for the #TP Arrays. The Y-axis in
these figures indicates the error magnitude in array bound detection.

Both Ghidra and IDA Pro show very poor efficacy with optimized programs
for most of our experiments. One reason is that these RE tools do not consider
register allocated variables which are prevalent in optimized benchmarks. This
observation suggests a critical area for future work. Given this state with opti-
mized binaries, we focus on unoptimized benchmarks for the remainder of this
section. Results for optimized binaries are presented in Fig. 6 in Appendix A.

We make the following interesting observations from the data presented in
Fig. 4: (1) Even advanced RE tools, like Ghidra and IDA Pro, can fail to appro-
priately leverage program symbol information, as seen most prominently by the
poor efficacy of the debug-ghidra configuration to accurately detect static pro-
gram pointers. (2) The debug-ghidra configuration misrepresents pointer types as
int 64 or undefined 64 in many cases. (3) With no symbol information available
in stripped binaries, disassemblers in our RE tools are unable to detect most/all
arrays and pointers. Surprisingly, our simple pointer prediction algorithm is able
to correctly detect most true pointers but also produces many false positives.
We will explore developing more sophisticated pointer detection algorithms in
the future to improve this simple prediction model. (4) Decompiler algorithms
in IDA Pro and Ghidra do a commendable job, especially in detecting arrays
and array bounds in stripped binaries. Interesting, even small programs seem to
be able to provide sufficient context information to enable effective array type
detection with these algorithms. (5) We find that the decompilers in Ghidra and
IDA Pro are more accurate in inferring arrays and array bounds than inferring
pointers. However, decompiler-based type inference algorithms often split arrays
or combine them with adjacent arrays/variables resulting in many false posi-
tives and at times large inaccuracies in bound detection. (6) We can also make
some more specific observations, like in Fig. 4(c) for SARD-89 benchmarks, many
instructions associated with a scalar in the stripped-IDA case (which are ignored
and are not plotted in the figure) are not assigned any owner (unknown owner)
in the stripped-Ghidra case. We will see the implication of this difference in the
next section. While instruction owner detection appears to works well for unop-
timized benchmarks, it is largely unsuccessful for optimized programs. These
observations reveal both the current capabilities of the static RE tools, Ghidra
and IDA Pro, and open areas for research to more accurately derive program
information that is necessary to detect memory errors at run-time.

5 Run-Time Framework to Detect Memory Errors

In this section we describe the implementation details of our run-time frame-
work that employs the static program information gathered from the RE tools
to detect spatial memory errors. We also assess the efficacy of the complete
framework to effectively use the program information extracted by the static
RE tools to detect memory errors in programs during execution. This approach
does not require access to source code or hardware support.
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Algorithm 1: Run-time Object overflow detection
Input: Function Metadata F −→ ∑

fi{(fs ∪ fe), fv, fm, I}
Input: Global Metadata G −→ Gv

1 ReadInput(Input);
2 InstrumentMallocFree();
3 Fd −→ Set of functions reached during execution;
4 Id −→ Instructions mapping per function reached during execution;
5 foreach f ∈ Fd do
6 foreach i ∈ Id do
7 if i.Address == fs then InitializeStack() ;
8 if i.Address == fe then UnInitializeStack() ;
9 if i.Owner ∈ Unknown then UnknownBoundCheck(); continue ;

10 if IsInsMemStore() then
11 if i.Owner ∈ Pointer then
12 if i.BaseReg ⊆ {rbp, rsp, rip} then BoundPropogationCheck();
13 else PtrBoundCheck();

14 end
15 else ObjBoundCheck();

16 end
17 else if IsInsMemLoad() then
18 if i.Owner ∈ Pointer then PtrBoundCheck();
19 else ObjBoundCheck();

20 end

21 end

22 end

5.1 Dynamic Tracking and Instrumentation Using Pin

Pin [22] employs information supplied by the our static RE tools in the interface
file to detect memory safety violations at run-time. We build scripts, called Pin-
tools, that use the Pin API to insert dynamic checks in the executed code. Algo-
rithm 1 explains our dynamic buffer overflow detection algorithm. Our Pintool
will add instrumentation code at run-time for pointer/array memory move/deref-
erence instructions that are mapped with corresponding instruction owners from
the interface file. Run-time instrumentation is added for the static instruction
categories mentioned below. We employ the example program in Fig. 2 to explain
the run-time algorithm and illustrate the instrumentation categories.2

I. Function Start: The InitializeStack() function in Algorithm 1 will add
instrumentation code at each function prologue to mark the locations of local
variables w.r.t. the actual value of the stack pointer in memory. Function start
(fs) address obtained from the interface file (Fig. 2(c) - line #3) determines the
instrumentation point. The dynamic array/pointer variable locations and avail-
able bounds get stored in a global metadata structure in this phase. Arguments
passed to the program are also detected in this phase by adding a special check
for function ‘main’.
II. Function End/Return: The UnInitializeStack() function in Algo-
rithm 1 will fetch the function end (fe) address from the interface file (Fig. 2(c)
- line #4) to add instrumentation at every function end. This type of instru-
mentation is required to roll-back the allocated stack and remove corresponding
meta-data when the function returns.
2 Our code can be accessed here: https://github.com/Ruturaj4/vulcan prototype.

https://github.com/Ruturaj4/vulcan_prototype
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III. Pointer Move/Propagate: This type of instrumentation is used to transfer
and assign the address/bound of the buffer to any associated pointer. The pointer
can then be used to indirectly access the buffer. Similarly, bounds can also be trans-
ferred between two pointers. Instructions at offsets ‘4’–‘8’ (from Fig. 2(b)) give an
example instruction pattern that represents pointer propagation.

l e a rax , [ rbp−0x20 ]
mov QWORD PTR [ rbp−0x8 ] , rax

Here, the lea (load effective address) instruction computes the address of buffer
‘b’ into a register (rax), and then assigns it to the pointer ‘ptr’ (at offset
‘(rbp-0x8)’ on the stack). Thus, the static analysis tools mark the owner of
instruction at offset ‘8’ as pointer ‘ptr’ (line #8 in Fig. 2(c)).

At run-time, the BoundPropogationCheck() function in our Pintool will add
instrumentation code (to the store instruction at offset ‘8’ in Fig. 2(b)) to check
the contents of the rax register to determine the location of object ‘b’ in memory.
Note that the address and bounds of ‘b’ get stored in a global map structure
during stack initialization at function start. It will then transfer these bounds
to the pointer ‘ptr’.

IV. Pointer Dereference: The following instruction triplet (instructions at
offset ‘20’–‘27’ from Fig. 2(b)) shows an example pattern for pointer dereference.

mov rax ,QWORD PTR [ rbp−0x8 ]
add rax , rdx
mov DWORD PTR [ rax ] , 0 x4

The buffer ‘b’ is accessed through pointer ‘ptr’. Here, the PtrBoundCheck()
function from Algorithm 1 will add instrumentation code (just before the store
instruction at offset ‘27’) to check whether the access is within the associated
bounds, as follows:
i f ( a c c e s s < low bound | | ac c e s s >= up bound )

abort ;

V. Array/Object Bound Check: Similar to PtrBoundCheck(), the
ObjBoundCheck() function adds code to verify that a direct array access is
within the associated bounds. An example pattern (instruction at offset ‘32’
in Fig. 2(b)) is:

mov DWORD PTR [ rbp+rax∗4−0x20 ] , 0 x9

VI. Memory Accesses with Unknown Instruction Owner: In some cases
our static RE tools are unable to determine the instruction owners for the mem-
ory access instructions in the binary. In such cases, the UnknownBoundCheck()
function will add instruction code to check that the access is within the bounds
of the current function stack.

Apart from the above instrumentation categories, we instrument dynamic
memory allocation functions like malloc, calloc, etc. We use Pin’s routine
instrumentation support to instrument these dynamic allocation functions. Our
implementation also supports pointer metadata propagation through function
calls, i.e. it propagates the pointer bounds information whenever pointers are
passed between different functions.
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5.2 Buffer Overflow Detection Accuracy

The efficacy of this framework to accurately detect memory errors is influenced
by two factors: (a) the ability of the employed static RE tools in the first stage
to correctly discover the necessary program information, and (b) the ability
of the dynamic Pin-based run-time framework to correctly detect the program
patterns that constitute valid instrumentation points. The run-time framework
should also maintain and correctly propagate the desired program state at the
relevant instrumentation points.3

We check the effectiveness of our prototype framework to detect memory
overflows using two benchmark suites – SARD-89 and SARD-88. Table 1 presents
the efficacy of the framework with the SARD-89 benchmarks. Each SARD-89
benchmark consists of four programs, one that is categorized as benign (no over-
flow), and three categorized as Malicious with a memory reference that overflows
some buffer with a Minimum, Medium, or Large amount, respectively.

Tables 1(a) and 1(b) show the efficacy results for the 121 SARD benchmarks
that overflow for an instruction with a non-constant array access, with static
analysis conducted by IDA Pro and Ghidra, respectively. For each configura-
tion and benchmark, the column labeled Basic lists the number of programs
that behave correctly or as expected (no-overflow or overflow detected at cor-
rect location) with our mechanism that does not add any instrumentation for
instructions associated with unknown owners. The columns labeled Ext. display
the results with the small extension to our run-time algorithm to add instrumen-
tation for instructions with unknown owners to detect an overflow if the access
is outside the bounds of the current stack.

Thus, we can see that, (a) All Benign cases are correctly handled. (b) All
cases with the Debug configuration are correctly detected. (c) Most Malicious
cases with the Stripped configuration cannot be detected due to missing infor-
mation from the static analysis phase. The run-time Pin extension enables the
detection of overflows outside the stack bounds for binaries analysed by Ghidra
(that contain instructions with unknown owners). This extension does not help
binaries analyzed by IDA Pro as it assigns some owner (a scalar in many cases)
to all such relevant instructions. (d) Interestingly, advanced type and bounds
detection conducted by the static tools enables the Decomp. configuration to
correctly detect a large majority of overflows for the Malicious programs.

Table 2 presents the efficacy results for the 14 SARD-88 benchmark programs
with the IDA Pro RE tool used in the first stage.4 For each SARD-88 benchmark,
the program with the odd number is malicious and contains a buffer overflow and

3 The implementation of our run-time framework can correctly process all programs
in the SARD-88 and SARD-89 suites, as well as most of the SPEC cpu2006 inte-
ger benchmarks. However, our implementation currently encounters memory/per-
formance issues with some larger SPEC benchmarks. We will address these imple-
mentation issues and improve tool robustness in our ongoing work.

4 The results with Ghidra in the first stage are similar, and are included in the
Appendix in Table 3 to conserve space. There are more failures in the Ghidra-based
configuration primarily due to poorer analysis of global strings and buffers by Ghidra.



24 R. Vaidya et al.

Table 1. SARD-89 run-time results for three experimental configurations: ➀ Debug,
➁ Stripped ➂ Decomp. (Stripped + decompiler)

Benign Malicious

Minimum Medium Large

#Total Basic Ext. #Total Basic Ext. #Total Basic Ext. #Total Basic Ext.

Debug 121 121 121 121 121 121 121 121 121 121 121 121

Stripped 121 121 121 121 1 1 121 1 1 121 1 1

Decomp. 121 121 121 121 110 110 121 110 110 121 110 110

(a) Benchmarks with non-constant array accesses (IDA Pro)

Benign Malicious

Minimum Medium Large

#Total Basic Ext. #Total Basic Ext. #Total Basic Ext. #Total Basic Ext.

Debug 121 121 121 121 121 121 121 121 121 121 121 121

Stripped 121 121 121 121 1 29 121 1 42 121 1 118

Decomp. 121 121 121 121 95 95 121 110 115 121 110 118

(b) Benchmarks with non-constant array accesses (Ghidra)

the program with the even number is benign. All results displayed here include
the Pin extension to detect memory access beyond the current function stack.

We find that while most cases with the Debug configuration are detected cor-
rectly, there are a few notable failures. Most of these failures are due to incorrect
static bound detection for global read/write buffers. We did not encounter this
case in SARD-89 benchmarks; most overflows there were in local buffers.

Programs analyzed by Ghidra encounter additional failures, even in the
Debug case, because, unlike IDA Pro, Ghidra does not detect global strings that
are usually defined in the binary’s read-only (.rodata) section. For instance,
benchmarks II, IX, XI and XIV fail when analyzed by Ghidra due to this issue.
We also observed that global read-only strings with lengths less than 4 bytes are
not detected by IDA Pro; for Ghidra this length is 5 bytes. This issue is a basic
limitation for reverse engineering tools, as reducing this lower bound can lead to
type detection conflicts with other types that may appear to be strings.5.

As expected, malicious programs in the Stripped configuration fail due to
incorrect static analysis. However, in contrast to our observation that the benign
cases with the Stripped configuration in SARD-89 are successful (no overflow
detected), we find that most benign-Stripped cases in SARD-88 fail (false positive
overflow is detected). This difference in behavior is because our RE tools make no
owner association (or unknown owner with Ghidra) for the SARD-89 programs
in this configuration; so, no check is added for programs analyzed by IDA Pro,
and the only check added is to detect out-of-stack overflows for binaries analyzed
by Ghidra. In contrast our RE tools associate an owner (global variables in many
cases) with incorrect bounds (1 in many cases) for many SARD-88 programs in
this configuration; hence, they encounter a false positive overflow.

5 https://github.com/NationalSecurityAgency/ghidra/issues/2274.

https://github.com/NationalSecurityAgency/ghidra/issues/2274
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Table 2. SARD-88 test Results (IDA Pro) for our three experimental configurations:
➀ Debug, ➁ Stripped, and ➂ Decomp. (Stripped + Decompiler)

Bechmarks Debug Stripped Decomp. Benchmarks Debug Stripped Decomp.

I 283 ✓ ✗ ✗ VIII 297 ✗ ✗ ✗

284 ✓ ✗ ✓ 298 ✗ ✗ ✗

II 285 ✓ ✗ ✓ IX 299 ✓ ✗ ✓

286 ✓ ✗ ✗ 300 ✓ ✗ ✓

III 287 ✓ ✗ ✗ X 301 ✗ ✗ ✗

288 ✓ ✗ ✗ 302 ✓ ✗ ✓

IV 289 ✓ ✗ ✗ XI 303 ✓ ✗ ✗

290 ✓ ✗ ✗ 304 ✓ ✗ ✗

V 291 ✓ ✗ ✓ XII 305 ✗ ✗ ✗

292 ✓ ✗ ✓ 306 ✓ ✓ ✓

VI 293 ✓ ✗ ✓ XIII 307 ✗ ✗ ✗

294 ✓ ✗ ✓ 308 ✓ ✓ ✓

VII 295 ✓ ✗ ✓ XIV 309 ✓ ✗ ✓

296 ✓ ✓ ✓ 310 ✓ ✗ ✓

Again, we notice that advanced array bound and type inference enables sev-
eral programs to be correctly handled in the Decomp. configuration. Of the 23
programs that are correctly detected in the Debug case, 15 are also correctly
handled in the Decomp. configuration.

5.3 Performance Overhead

Figure 7 uses different metrics to estimate the performance overhead of the run-
time framework.6 Apart from the slowdown introduced by the Pin framework
itself, the instrumentation added by our run-time algorithm is the primary source
of performance overhead. Figures 5(a) and 5(b) plot the total number of instru-
mentation points encountered by all the SARD-89 and SARD-88 programs at
run-time, respectively. The figures also highlight some interesting observations,
including, (a) the number of Stack sets is less than the number of Stack unsets
due to many programs exiting abruptly after an overflow is detected, (b) while
SARD-89 programs are dominated by array dereferences, the SARD-88 programs
encounter many more pointer dereferences, (c) the Ghidra-stripped configuration

6 In theory, the performance of our run-time framework should be comparable with
a compiler-based approach, like SoftBound [27]. Our run-time implementation is
currently in the prototype stage and was designed to primarily explore the properties
and potential of the static RE tools to detect memory errors in program binaries.
As such, we have not yet explored performance optimizations and associated trade
offs with memory error detection accuracy for the run-time framework.
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Fig. 5. Dynamic instrumentation points (subfigures (a) and (b))

assigns an unknown owner to several instruction in SARD-89, which enables the
detection of large buffer overflows that exceed the current stack bounds.

We also compare the execution time of the benchmark in three settings, (a)
native run, (b) using a minimal pintool that does not add any instrumentation,
and (c) the pintool implementing our run-time algorithm (plots are available in
Figs. 7(a) and 7(b) in Appendix C). Each program is run for 15 times and the
average execution time is plotted. Most programs in the SARD-89 and SARD-
88 suites run quickly, with an average execution time of 0.99 ms and 1.17 ms
for the native run, respectively. The startup overhead of the minimal Pin frame-
work increases the average run-time to 213.71 ms for SARD-89 and 417.99 ms for
SARD-88 programs, respectively. Finally, our run-time framework increases the
overhead to 227.85 ms for SARD-89 programs and 450.62 ms for the SARD-88
programs.

6 Conclusions and Future Work

Our goal in this work is to analyze and evaluate the ability of current state-
of-art static reverse engineering tools, especially Ghidra and IDA, to accurately
determine the required program information from binary programs to enable
the effective detection of memory errors during program execution. We find
that both Ghidra and IDA include advanced algorithms for array bound and
instruction owner identification as part of their decompiler framework. However,
more advanced techniques and algorithms are needed to further improve their
capabilities and precision, especially for optimized binaries. We built a Pin-based
run-time tool that can use the information from the static RE tools to detect
buffer overflows during execution. We found that while our run-time tool can
detect a large fraction of memory errors in our benchmarks, the accuracy of the
tool is directly proportional to the limitations in the available static program
information.
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The practicality of this approach to detect memory errors is limited by the
accuracy and completeness of the static tools and the efficiency of the run-time
framework. In the future we will explore the potential of different approaches,
including other dedicated type inference mechanisms, new static algorithms,
and combining static and dynamic analysis, to improve array bound and owner
detection, especially for optimized binaries. We will also study techniques to
improve the efficiency of our prototype run-time framework, including using a
static binary rewriting system. Finally, we will experiment with a larger bench-
mark set to more comprehensively study the properties of this approach.

Appendix A Optimized Benchmarks

Figure 6 shows the results from the static analysis phase and compares the accu-
racy of array bounds detection, pointer identification, and instruction owner
detection for optimized binaries.

Fig. 6. Accuracy of array, pointers, and owner detection for SARD-88 (Optimized),
SPEC-cpu2006 (Optimized)

Appendix B Detection Accuracy Using Ghidra

Table 3 shows the detection accuracy of Ghidra for SARD-88 benchmarks.
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Table 3. SARD-88 Test Results (Ghidra) for our three experimental configurations:
➀ Debug, ➁ Stripped, and ➂ Decomp. (Stripped + Decompiler)

Benchmarks Debug Stripped Decomp. Benchmarks Debug Stripped Decomp.

I 283 ✓ ✗ ✗ VIII 297 ✗ ✗ ✗

284 ✓ ✗ ✓ 298 ✗ ✗ ✗

II 285 ✗ ✗ ✗ IX 299 ✗ ✗ ✗

286 ✗ ✗ ✗ 300 ✗ ✗ ✗

III 287 ✓ ✗ ✗ X 301 ✗ ✗ ✗

288 ✓ ✗ ✗ 302 ✗ ✗ ✗

IV 289 ✓ ✗ ✓ XI 303 ✗ ✗ ✗

290 ✓ ✗ ✓ 304 ✗ ✗ ✗

V 291 ✓ ✗ ✓ XII 305 ✗ ✗ ✗

292 ✓ ✗ ✓ 306 ✓ ✗ ✗

VI 293 ✓ ✗ ✗ XIII 307 ✗ ✗ ✗

294 ✓ ✗ ✓ 308 ✓ ✓ ✓

VII 295 ✓ ✗ ✓ XIV 309 ✗ ✗ ✗

296 ✓ ✓ ✓ 310 ✗ ✗ ✗

Appendix C Program Execution Time Overhead
by the Pin-Based Run-Time Technique

Fig. 7. Program execution time in msec
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Abstract. Membership inference attacks (MIAs) have powerful attack
ability to threaten the privacy of users. In general, it mainly utilizes
model-based or metric-based inference methods to infer whether a par-
ticular data sample is in the training dataset of the target model. While
several defenses have been proposed to mitigate privacy risks, they still
suffer from some limitations: 1) Current defenses are limited to defend
model-based attack and are still vulnerable to other types of attacks. 2)
They make the impractical assumption that the defender already knows
adversaries’ attack strategies. In this paper, we present Enhanced Mixup
Training (EMT) as a defense against MIAs. Specifically, EMT bene-
fits from recursive mixup training, which mixes training data by using
devised Enhanced Mix Item during the training process. Compared with
existing defenses, EMT fundamentally improves the accuracy and gen-
eralization of the target model, and hence effectively reduces the risk
of MIAs. We prove theoretically that EMT corresponds to a specific
type of data-adaptive regularization which leads to better generaliza-
tion. Moreover, our defense is adaptive and does not require knowing
how adversaries launch attacks. Our experimental results on Location30,
Purchase100 and Texas100 datasets show that our EMT successfully mit-
igates both model-based and metric-based attacks without the accuracy
loss.

Keywords: Membership inference attack · Machine learning security ·
Privacy · Privacy-enhancing technologies

1 Introduction

1.1 A Subsection Sample

Machine learning (ML) has achieved state-of-the-art performance in many real-
world tasks, such as autonomous driving [12], medical diagnosis [13] and speech
recognition [14]. However, recent studies [4,6,15,17,18] have shown that ML
c© Springer Nature Switzerland AG 2021
R. Deng et al. (Eds.): ISPEC 2021, LNCS 13107, pp. 32–45, 2021.
https://doi.org/10.1007/978-3-030-93206-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93206-0_3&domain=pdf
http://orcid.org/0000-0001-7207-2343
https://doi.org/10.1007/978-3-030-93206-0_3


Enhanced Mixup Training 33

models suffer from membership inference attacks (MIAs) due to their ability
to over-remember sensitive training data, where adversaries can infer whether
a particular data sample is used for training the target model. It has serious
privacy risks in privacy-critical applications, since large amounts of individual’s
sensitive information (such as personal photos, medical and clinical records, and
financial portfolios) are potentially included in the training dataset of the target
model. Roughly speaking, existing MIAs can be divided into two categories:
model-based attack [4] and metric-based attack [2]. Shokri et al. [4] constructed
the first model-based MIA against black-box ML models by training multiple
shadow models (similar to the target model). Specifically, an adversary takes
a sample’s probability vector predicted by shadow models as an input to train
whether it is in the training dataset of the target model. Recently, Song et al.
[2] proposed a metric-based attack, where adversaries use a sample’s probability
vector to compute specific function values and train thresholds. It will be inferred
as member samples if its function values are higher than thresholds. Song et al. [2]
experimentally showed that the metric-based attack achieve comparable success
as model-based attacks.

To mitigate the privacy risks, several defenses [4,8,11] against MIAs have
been proposed by utilizing diverse technologies, such as prediction truncation [6],
L2-norm regularizer [4], dropout [6] and differential privacy [7]. For example, Jia
et al. [1] put forward Memguard to defense against model-based attack. Inspired
by the idea of adversarial example, Memguard crafts some perturbations and add
them to the output feature vectors of the target model. Moreover, Nasr et al.
[5] proposed adversarial regularization method, called AdvReg, which trains the
target model and the attack model simultaneously. It uses the information of the
attack model to improve the generalization ability of the target model to defend
against model-based attack. Unfortunately, these defenses mainly focused on
model-based attack. Recently, the metric-based attack proposed by Song et al.
[2] can easily break the above defenses. Their experimental results [2] show that
the attack accuracy is still high although the target model has been protected
by state-of-the-art defenses such as Memguard [1] and AdvReg [5]. In fact, the
metric-based attack is more attractive since it doesn’t require training shadow
models and the attack model, while achieving comparable attack performance
to model-based attack. Moreover, prior defense methods responded to model-
based attack have poor adaptability. They are difficult to transform into defend-
ing metric-based attack. On the other hand, existing defense methods make
the impractical assumption that the defender already knows adversaries’ attack
strategies. However, in real situations, this is impractical because the adversary
may adaptively choose distinct strategies to launch attacks, which always tend to
be concealed. Therefore, it is urgent to propose an effective and general defense
that can resist both model-based and metric-based attacks and even unknown
attacks, while maintaining the target model’s performance.

In this paper, we develop Enhanced Mixup Training (EMT), a general, effec-
tive and low-cost defense method. Inspired by the success of Mixup [3] in improv-
ing the generalization of ML models, we apply and improve existing Mixup
methods to resist MIAs. The original mixup training that mixes two samples
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are still vulnerable to MIAs, because of retaining the linear relationship of sam-
ples. Therefore, we improve it by recursively mixing training data during the
training process. Specifically, we define Enhanced Mix Item to effectively mix
training samples and scale it to enhance our defense against MIAs. It corre-
sponds to adding a data-adaptive regularization to the loss function. Based on
the regularization-like method, we reduce the generalization differences between
member (training) samples and non-member (test) samples, prevent the classifier
from over-remembering the knowledge of member samples and hence effectively
resist MIAs. The contributions of our proposed scheme can be summarized as
follows:

– 1) We propose a general method (called EMT) against model-based and
metric-based attacks in black-box setting without sacrificing the accuracy.

– 2) Our EMT is practical and adaptive, since it completes the defense deploy-
ment without any prior assumption of adversaries’ attack strategies.

– 3) We prove theoretically that EMT corresponds to a specific type of data-
adaptive regularization. Besides, we experimentally compare with Memguard
and AdvReg on Location30, Purchase100 and Texas100 datasets. Evaluation
results show EMT successfully defenses model-based and metric-based attacks,
while Memguard and AdvReg fails in defending metric-based attack well.

The remainder of this paper is organized as follows. In Sect. 2, we will intro-
duce some preliminaries of MIAs and our method. Our EMT method will be
introduced in detail in Sect. 3, and compared with previous researchers’ defense
methods in Sect. 4. Finally, we analyze and summarize them in Sect. 5.

2 Preliminary

In this section, we will introduce the preliminaries about prior MIAs and Mixup
training technology.

2.1 Membership Inference Attack

The first Membership inference attack (MIA) is proposed by shokri et al.
[4], and it is a classic model-based attack. We will introduce both model-
based attack and metric-based attack simply. Assume that all training samples
xprivacy are intended to be protected and the training classifier is denoted by
F . Defenders do not want to leak them to malignant adversaries. Under the
target model’s parameter θ, the training process has an output precision vector:
foutput = F (xprivacy, θ).

Model-Based Attack: In the model-based attack setting, users (including
malicious users) can acquire the prediction vector foutput that represents output
features after or before the softmax layer. Adversaries can utilize foutput to train
an attack model H to attack the target model F , which can be denoted as:

h = Hattack(foutput, θ), h ∈ 0, 1 (1)
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where H is a binary classifiers. When H outputs 1, it represents that adversaries
guess right on member input sample while 0 is a wrong judgment. Defense goal
is to make the outputs h close to 0.5.

min ‖ h0 − h1 ‖⇒ h1,0

all sample
= 0.5 (2)

Metric-Based Attack: In the metric-based attack setting, adversaries do not
need train an attack model. Adversaries can just use the performance metrics
of target model’s predictions to attack. They compare the metrics with the pre-
setted certain threshold values to infer whether the input sample is member
or a non-member. Song et al. [2] uses four threshold tactics. The first three
are proposed by previous works. Attackers utilize the intuition that the target
model tends to predict correctly or lower entropy of prediction confidence on
member data. They used entropy or the entropy-like function mentr proposed
by Song et al. [2] to set a threshold. Icorr represents whether the data sample is
predicted correctly. Iconf utilizes the prediction confidence results to simply set
a threshold. Adversaries use these statisticses to compare with the set threshold.
If a single data sample satisfies the inequality or equality, it will be judged as
a member sample by the attacker, or otherwise. The followings are the four
different threshold inequality selection methods.

Icorr(F (x, y)) = 1{arg max
i

(F (x)i = y)}
Iconf (F, (x, y)) = 1{F (x)y ≥ ty}
Ientropy(F, (x, y)) = 1{−

∑

i

F (x)ilog(F (x)i) ≤ ty}

Imentr(F, (x, y)) = 1{mentr(F (x), y) ≤ ty}

2.2 Recent Defense Against Membership Inference Attack

Previous defense methods mainly focus on defending against model. Memguard
[1] and AdvReg [5] are reported to have highest defense ability. We will explain
their details below and compare our methods with them in Sect. 4.

Memguard. [1] is proposed by Jia et al. to defense against MIA. For given a
trained model F , they crafted noise vectors to obfuscate the output features to
mitigate MIA. The attack classifier H utilizes the model prediction F (x) and
sample label y, to output a score H(F (x), y) in the range [0, 1] for inferring: if
the score is larger than 0.5, the data sample will be inferred as member data.
The key question of adding noise n to F (x) can be formulated as the following
optimization problem:

min
ni

d(F (xi), F (xi) + ni)

subject to :arg max
i

(F (x)i + n)) = arg max
i

F (x)i

H(F (xi) + n) = 0.5
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F (x)i + ni ≥ 0, for any i
∑

i

ni = 0

Memguard [1] should be subject to two constraints. One is that the classifi-
cation result does not change after adding noise n. Another one is that the noise
can indeed confuse the predictions made by attack classifier which is trained by
defender in advance.

Adversarial Regularization. [5] is proposed to defense MIA with a Min-Max
game. Defense classifier and attack classifier will be simultaneously trained and
target to defense MIA. It uses a regularization called adversarial regularization
to punish the loss of target model. For given classifier F with parameters θ,
and attack classifier I with parameters v, attacker uses the output F (x) and
label y of F to conduct I(F (x), y) for inference attack. The range of I is in
[0,1], when the value is larger, the input prefers to be inferred as a member data
sample. At every training epoch, defender updates F and I by minimizing the
MIA accuracy and maximizing the MIA ability over the training set Dtr and
validation set Dval. l is the loss function of target classifier, and λ is a hypermeter
to control penalty.

arg max
v

∑
Dtr

log(I(F (x), y))
2|Dtr| +

∑
Dval

log(1 − I(F (x), y))
2|Dval|

arg min
θ

1
|Dtr|

∑

Dtr

l(F (x), y) + λlog(I(F (x), y))

2.3 Definition of Mixup

Mixup is the building block of our EMT, which constructs virtual training exam-
ples by mixing samples and labels. The simple definition is denoted in Zhang
et al. [3] as:

x̃ = λxi + (1 − λ)xj (3)
ỹ = λyi + (1 − λ)yj (4)

where λ ∼ BETA(α, β) and λ ∈ [0, 1] , for α, β ∈ (0,∞). (xi, yi) and (xj , yj)
are two private samples randomly selected from the training dataset. Mixup
extends training distribution by fusing linear prior knowledge. The interpolation
of output feature vectors should lead to linear interpolation of related objects.
In a conclusion, sampling from the Mixup vicinal distribution produces virtual
feature-target vectors. Mixup can be implemented in short codes with minimal
computation overhead. The Mixup hyper-parameter α controls the strength of
interpolation between feature-target pairs. However, applying Mixup directly
does not achieve the desired defense effect, and hence we will introduce Enhanced
Mixup Training next section.
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Fig. 1. High-level of enhanced mixup training.

3 Enhanced Mixup Training Against Membership
Inference Attack

As shown in Fig. 1, we provide the high-level description of EMT. We use Mixup
to mix the training samples in a variety of randomized operations, and propose
the concept of Enhanced Mix Items (EMI). It saves a part of the training
data during each epoch and continues to mix in the next iteration process to
make the EMI continue to contain more sample information. We use the mixed
data samples to train the model instead of original samples. Research shows
that this is a data argument method, but it can also be regarded as a way of
regularization. We will show from the perspective of regularization that EMI
punishes the model by using the samples of the training set itself, in order to
avoid the model over-remembering the information of the training data. In this
section, we will introduce the details of EMT.

3.1 Enhanced Mixup Training

We find out that the accuracy of H will be greatly reduced due to the influence
of fdefense. We construct EMI iteratively to make the final training samples as
far away from the original private samples as possible without at the cost of
accuracy loss. The details are as follows:

Enhanced Mixup Training: We construct EMI among input samples. First,
for training dataset D, we use mini-batch to train the model during every epoch.
Assuming the amount of mini-batch is m, we have batches:

Bori → {batch1, batch2, batch3......, batchm}. (5)

We craft EMI to train for model F , for epoch i, and copy and shuffle batchi p
times to generate new items ep(batchcopyij , λ) to get EMI bmixi. bmixi is used
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for training in every epoch. The p is the iterations number per Bmixup, and
batchcopyij represents jth copy of batchi:

batchcopy → {batchcopyi0, batchcopyi1......, batchcopyip} (6)

Bmixup → {batchmix1, batchmix2, ......, batchmixm} (7)

For a mixed batch, we shuffle the samples in the original batchi randomly to get
p different batchcopyi copies. After that, the samples in each batch are operated
by (3) and (4). It partly enhances the degree of mixing. Note the greater the p,
the higher the degree of defense. We use m batches to iteratively construct mix
items:

e0(batchcopyi0, λ) = batchi (8)
e1(batchcopyi1, λ) = λ · e0 + (1 − λ) · batchcopyi1/1 !

......

ep(batchcopyip, λ) = λ · ep−1 + (1 − λ) · batchcopyip/p !

ep(batchcopyi, λ) = (1 − λ)
p∑

j=0

batchcopyij

j !
λp−j (9)

batchmixi = ep(batchcopyi, λ) (10)
zmixi = ep(zcopyi, λ)

Where z is one of the samples of batchmixi, which can be any sample in
a batch. j is an adaptive decay factor of iteratively updating. We train model
with zmixi instead of originally private samples xi. In fact, this kind of mixing
method is to mix data in a skillful regularization way. In next section, we will
give a simple proof that the iterative method to construct the mixed term is
to construct the penalty term on the loss function. This regularization method
improves the generalization ability of the model, improves the robustness of the
model, and reduces the risk of MIAs.

3.2 Regularization Proof of EMI

Recently, Zhang et al. [16] studied how Mixup can help improve the generaliza-
tion of the model. They deduce that Mixup is essentially a regularization term
constructed with the help of the second-order derivative information of Taylor
expansion based on the sample distribution. Inspired by their method, we extend
it to p-th order derivatives and deduce that our EMI is a regularization method.

We denote a general parameterized loss as l(B, θ) with considering a training
dataset in every mini-batch B = {(x1, y1), (x2, y2), ..., (xn, yn)}, where n is the
batchsize. θ is model’s parameter. B is one of Bmixup, where θ ⊆ R

d, xi ⊆ R
k,

yi ⊆ R
r. Let �L(fθ(x), y) =

∑n
i=1 l(Batchmixi, θ)/mn, where m is the number of

batchmix. Then for the prediction function fθ(x) and target y, we get:

�L(fθ(x), y) = function(Y, p(y|x)) (11)
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= h(fθ(x)) − yfθ(x)

h can be any loss functions. If h = 1, �L ≈ hinge-loss. Common loss func-
tions can be used as �L, such as CE (Cross-Entropy), LR (Linear regression)
and so on. The form of loss function does not affect our conclusion in the def-
inition field. We study the case of a single batch in each epoch. After ran-
domly shuffle with (6), the batchmixi in current epoch has been determined, let

φ(λ) =
1
n
Ebatchmixi∼X l(batchmixi, θ) = �L(fθ(zxi), zyi), z ⊆ batchmixi. We let

1 − λ to substitute λ without changing the result, and we expand φ(λ) to p-th
by Taylor expansion:

φ(λ) =
p∑

i=0

φ(i)(0)
i !

λi + o(λ) = h(fθ(zxi)) − zyifθ(zxi)

φ′(λ) = h′(fθ(zxi)) · ∇fθ(zxi) · ∂zxi

∂λ

− zyi · ∇fθ(zxi) · ∂zxi

∂λ
− ∂zyi

∂λ
· ∇fθ(zxi) (12)

To simplify it, we take f = fθ(zxi), f ′ = ∇fθ(zxi) · ∂zxi

∂λ , into (12). h′ and φ′ are
the first derivative of their independent variables. Similarly, h(k) and φ(k) are
the k-th derivative of their independent variables.

φ′(0) = [h′ − zyi] · f ′ + (−∂zyi

∂λ
) · f

φ(2)(0) = [h(2) − 2
∂zyi

∂λ
] · f ′ + [h′ − zyi] · f ′

+ (−∂zyi

∂λ
) · f (2) + (−∂2zyi

∂2λ
)f

φ(3)(0) = [h(3)f ′ − 3z
(2)
yi ] · f ′ + [h(2)(1 + f ′) − 3

∂zyi

∂λ
] · f (2)

+ [h′(f) − zyi] · f (3) + (−∂3zyi

∂3λ
) · f (13)

According to the above equation, we can get the recursion. φ(k)(0) consists k+1
items, and we denote it as φ(k)(0) =

∑p
i=0,k=1 Ri,k, where k is kth differentia-

bility and k ≤ p:

R0,k = (−∂kzyi

∂kλ
) · f

R1,k = [h′ − zyi] · f (k)

R2,k = [h(2)(1 + (k − 2)f ′) − k
∂zyi

∂λ
] · f (k−1) (14)

......

Since the ep can be expanded to p-th order, we can substitute (14) into equations
(13):

φ′(0) = R0,1 + R1,1
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φ(2)(0) = R0,2 + R1,2 + R2,2

......

φ(p)(0) =
p∑

i=0,k=1

Ri,k (15)

Finally, we denoted Li = φ(i) · λi, then we obtain the statement:

φ(λ) = φ(0) +
p∑

i=1

Li + o(λ) (16)

�L(fθ(zxi), zyi) = �L(fθ(xi), yi) +
p∑

i=1

Li(xi, yi) + o(λ)

Since lima→0,0<a<1a = 0, Peano remainder o(λ) = 0. So
p∑

i=1

Li(xi, yi) are the

final regularization items. It avoids model over-remembering originally private
samples. We further denote as:

�̃L(fθ(zxi), zyi) = �L(fθ(xi), yi) +
p∑

i=1

Li(xi, yi) (17)

We make different hypermeter selects for the parameters of Beta distribution
for different datasets. We find that the ratio

α

β
in good experimental results tends

to be 1 when dataset is simple.

4 Experiment Results

4.1 Dataset

Texas 100: This dataset consists of real patients’ information released by the
Texas Department of State Health Services. We use the preprocessed and simpli-
fied Texas dataset provided by Shokri et al. [4]. The dataset has 67,330 samples

Algorithm 1. Enhanced Mixup Training
Input:
1: F :model need to be defending
2: batch of training: batchi

3: hypermeter: α, β, n, m
Output: F
4: get λ = BETA(α, β)
5: repeat
6: generate n shuffled batch: batchcopyi1..., batchcopyip;
7: batchmixi = ep(Batchcopyi, λ);
8: Train(batchmixi , F );
9: Optimizer(F );

10: until i < m;
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Algorithm 2. Enhanced Mix Item
Input:
1: batchi, λ, p
Output: EMI = batchmixi = ep
2: initial j = 1;
3: let e0 = batchi;
4: repeat
5: ei = λ · ei−1 + (1 − λ) · batchcopyil/j !;
6: j = j + 1;
7: until j < p;
8: return ep

each with 6,170 features including the external causes of injury, the diagnosis,
the procedures the patient underwent, and so on. We use 10,000 samples to train
a model and 10,000 samples to test the model.

Purchase 100: This dataset contains shopping records of several thousand indi-
viduals. We use a simplified and preprocessed purchase dataset from previous
work [4]. The dataset with 197,324 samples has 600 binary features which rep-
resents whether the individual has purchased it or not. Following Nasr et al. [5],
10% samples (19,732) are used to train the target model.

Location 30: This dataset is based on Foursquare dataset, which contains loca-
tion check-in records of thousand individuals. This dataset is a simplified and
preprocessed Location dataset provided by Shokri et al. [4]. The dataset con-
tains 5,010 samples with 446 binary features. Each of the features contains a
certain region or location type which represents whether the user has visited the
location or not. We will utilize 1,000 samples to train the model and other 1,000
samples to test.

4.2 Experimental Setup

We will compare our EMT with both Memguard [1] and AdvReg [5] under two
attack methods using the same experimental setting as them. Note that Texas100
and Purchase100 are trained in different network setting in their experiments,
so we will revaluate them in their respective setting. We use a simple fully-
connected neural network to follow them. We follow Jia et al. [1] to use 4 hidden
layers as the target model, and the number of neurons for the four layers are
respectively set as [1024, 512, 256, 128]. Besides, cross-entropy loss function and
stochastic gradient descent are adopted to update the model parameters.

In the first evaluation, we use classic model-based attack proposed by Shokri
et al. [4] to train an attack model. The number of neurons for three hidden
layers of the attack model is [512, 256, 128]. We assume that the attacker has
the same data distribution as the member data, and even knows the target model
architecture such that can train a shadow model with the same architecture as
the target model.



42 Z. Chen et al.

In the second evaluation, we set metric-based attack [2]. We use four differ-
ent metrics to attack, including the prediction correctness based attack (Icorr),
prediction confidence based attack (Iconf ), conventional entropy based attack
(Ientr), modified entropy attack (Imentr) [2,9,10] (details can be refered to
Sect. 2).

Table 1. Defend capability comparison

Defense Model-based Metric-based No accuracy-loss

Memguard � � �

AdvReg � � �

EMT � � �

Table 2. Defense performance under model-based attacks

Dataset Defense Train Acc Test Acc Attack Acc

L30 no 100% 60.1% 77.1%

Mem 100% 60.1% 50.1%

EMT 81% 61.1% 50.0%

P100 no 99.8% 79.4% 67.7%

Mem 99.8% 79.4% 51.3%

AdvReg 93.1% 76.5% 51.6%

EMT 80.3% 80.3% 51.3%

T100 no 99.95% 51.3% 72.1%

Mem 99.95% 51.3% 50.8%

AdvReg 56.5% 46.5% 51.1%

EMT 81.9% 57.3% 52.9%

4.3 Experimental Results

We summarise the differences between the three defense methods in Table 1.
As shown in Table 1, compared with existing defenses, EMT can defend against
model-based and metric-based attacks, without sacrificing the prediction accu-
racy and any prior knowledge of attackers. Next, we will evaluate the ability of
three defense models against two attacks in details. MIA has two main evalu-
ation indexes: the attack accuracy and the prediction accuracy. (1) The model
can successfully resist MIA so as to maintain the accuracy of MIA down to about
50%. (2) A good defense model can reduce the attack accuracy of MIA while
making the loss of model accuracy as small as possible. Table 2 and Table 3
list the prediction accuracy and attack accuracy on all defended models against
model-based and metric based attacks.
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Defense Against Model-Based Attack. From Table 2, compared with the
benchmark without defense, all three methods achieve low attack accuracy (e.g.,
about 50%), and hence all can defend model-based attack successfully. How-
ever, we find the prediction accuracy of AdvReg [5] based defense model has a
huge loss. For examples, the accuracy downs to 76.5% from benchmark 79.4%
on Purchase100, 46.5% from benchmark 51.3% on Texas100. While Memguard
[1] maintains the prediction accuracy intact, our EMT method improves the
accuracy of Texas100 dataset by nearly 6%.

Table 3. Defense performance under metric-based attacks

Data set Defense Train Acc Test Acc Attack
(Icorr)

Attack
(Iconf )

Attack
(Ientr)

Attack
(Imentr)

L30 no 100% 60.1% 68.7% 76.3% 61.6% 78.1%

Mem 100% 60.1% 68.7% 69.1% 52.1% 68.8%

EMT 81.0% 61.1% 67.4% 53.7% 53.2% 53.8%

P100 no 99.8% 79.4% 59.6% 67.1% 65.6% 67.4%

Mem 99.8% 79.4% 59.0% 61.1% 57.6% 60.1%

AdvReg 93.1% 76.5% 58.2% 59.4% 55.8% 59.5%

EMT 80.3% 80.3% 56.0% 57.4% 55.5% 57.4%

T100 no 99.95% 51.3% 74.2% 79.5% 70.1% 79.5%

Mem 99.95% 51.3% 74.2% 74.1% 54.6% 74.0%

AdvReg 56.5% 46.5% 55.1% 58.6% 53.6% 58.6%

EMT 81.0% 57.3% 57.3% 53.9% 51.3% 54.1%

Defense Against Metric-Based Attack. Next, we evaluate the defense abil-
ity and prediction accuracy of the three defense methods against the metric-
based attack [2]. Table 3 points out that Memguard [1] and AdvReg [5] are
still vulnerable to metric-based attack. The attack accuracy against the model
defended by memguard [1] is about 68% on L30, which indicates that Memguard
[1] is still vulnerable to MIAs. In addition, the model defended by AdvReg [5] suf-
fers attacks, e.g., it maintains the attack accuracy at 55%–58%. And we can see
that EMT achieves the best defense performance and least accuracy loss on three
datasets. EMT has the least attack accuracy all about 51%–57%, and reduces
2%–4% and 2%–20% compared with AdvReg [5] and Memguard [1], respectively.
In conclusion, our method can effectively resist model-based and metric-based
attacks and maintain or even improve the prediction accuracy. The main reason
is that our iterative EMT does improve the generalization of the model. In other
words, it essentially reduces the risk of privacy leakage, rather than designing
defense strategies against specific MIA methods.

5 Conclusion and Future Work

In this work, we proposed EMT method to defend the black-box membership
inference attack. EMT crafts EMI to make regularization on loss function to
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avoid over-remembering member samples. EMT has achieved good defense per-
formance against both model-based attack and metric-based attack without the
prior knowledge of attackers. Furthermore, its excellent performance makes us
believe that EMT has the potential to resist unknown attack methods. From
Table 1, our experimental result shows that EMT reduces the risks of MIAs, and
even the generalization of the model is improved. But in some specific experi-
mental results, EMT showed a little flaw which need to be made better. One of
our interesting future works is to use the idea of gene mutation to make more
fine-grained mix operations on samples randomly to improve performance.
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Abstract. Isogenies between elliptic curves act as a key role in isogeny-
based cryptography. Formulas for isogenies on different elliptic curve
models such as Weierstrass, Edwards, Huff and Hessian have been pro-
posed. In this paper, we construct isogenies on twisted Jacobi intersec-
tions for the first time including a 2-isogeny and a generalized �-isogeny
for any odd �. We also introduces ω-coordinate systems for twisted Jacobi
intersections which provides biquadratic relations like the Montgomery
model. As a result, such ω-coordinate systems would significantly sim-
plify the computation of isogenies on twisted Jacobi intersections.

Keywords: Isogenies · Post-quantum cryptography · Twisted Jacobi
intersection · ω-coordinate

1 Introduction

The supersingular isogeny-based cryptography is the most recent suggestion for
post quantum cryptosystem and is founded on the hardness of finding an isogeny
between two given supersingular elliptic curves over a finite field. It is drawing
increased attention due to its relative small key sizes and messages compared to
other post-quantum candidates. One of the instantiations is the key exchange
protocol SIDH (Supersingular Isogeny Diffie-Hellman) proposed by De Feo and
Jao [9]. Its secure key encapsulation mechanism version, named SIKE [10], was
submitted to NIST’s post-quantum cryptography standardization process and
has been selected as an alternative candidate of PKE&KE in Round 3. There are
also many other instantiations due to different choices of supersingular elliptic
curves and isogenies. For example, the CSIDH [2] proposed by Castryck et al.
in ASIACRYPT 2018 with supersingular elliptic curves over Fp, the BSIDH [4]
offered by Costello and the SiGamal [12] by Moriya et al. in ASIACRYPT 2020.
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As such, isogenies are a topic of interest in the isogeny-based cryptography as
well as in elliptic curve cryptography. However, the bottleneck of isogeny-based
cryptography is that its implementation efficiency does not meet the requirement
of real-world application. The main contributor of this is that the isogeny com-
putation is much more complicated than the traditional operations like scalar
multiplications in elliptic curve cryptography.

It is well known that the existence of isogenies between two elliptic curves is
independent of curve models. However, similar to the algebraic group arithmetic
in traditional elliptic curve cryptography, the complexity of computing isoge-
nies varies greatly from one model to another. The most famous method for
efficiently presenting explicit isogeny with Weierstrass model is given by Vélu’s
formulas [16], which is based on point addition formulas. Moody and Shumow
[13] presented formulas similar to Vélu’s for isogenies on Edwards and Huff mod-
els of elliptic curves with efficient isogeny computation. Xu et al. [17] also gave
explicit formulas for isogenies on Jacobi quartic curves.

Using the results above, cryptographers could choose corresponding curve
models to accelerate the isogeny computation in the implementation of isogeny-
based cryptography, for instants see the adaption of Montgomery model in SIDH
[9]. Hence it is motivated to study the explicit and fast formulas for isogenies
between other curve models such as the so-called twisted Jacobi intersection.

The twisted Jacobi intersections is the intersection of two quadratic surfaces
in the three dimensional space such that they are birational equivalent to elliptic
curves. It is a generalization of Jacobi intersections and was first introduced by
Feng et al. [7]. Compared to Jacobi intersections, the twisted version has faster
addition and doubling formulas. Furthermore, it was shown that every elliptic
curve in positive characteristic with three points of order 2 is isomorphic to a
twisted Jacobi intersection [7]. In [14], Silva et al. gave the explicit formula for
odd isogeny of Jacobi intersections.

In this work, we study the fast isogeny computation between twisted Jacobi
intersections model of elliptic curves. The following demonstrates the main con-
tributions of this work:

– Explicit Isogeny Formulas on Twisted Jacobi Intersections. We present the
explicit formulas for 2-isogeny and odd isogenies between twisted Jacobi inter-
sections, extending Silva et al.’s results [14]. Our formula for computing the
coefficients of curves of odd isogenies has a simple expression.

– Differential Arithmetic on Twisted Jacobi Intersections. Similar to the
ω-coordinate system on Edwards model [6] and Huff Model [8], we construct a
ω-coordinate system on twisted Jacobi intersections and prove a Montgomery-
like group law formulas on these curves. Such ω-coordinate system also induces
simple isogeny formulas for twisted Jacobi intersections, which share the same
form as those on Montgomery curves with only x-coordinate.

Our work is organized as follows. Section 2 reviews basic facts about isogenies
and twisted Jacobi intersections. Section 3 presents formulas for 2-isogenies and
odd isogenies between twisted Jacobi intersections. In Sect. 4, we construct a new
ω-coordinate system on twisted Jacobi intersections and give simplified isogeny
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formulas with this system. Finally, Sect. 5 concludes with a discussion about
further study.

2 Preliminaries

An isogeny between two elliptic curves E1 and E2 is a dense morphism φ :
E1 → E2 preserves the basepoints, i.e. φ preserves the identity element with
φ(E1) = E2. Note that φ is also an endomorphism if E1 = E2. Two elliptic
curves E1, E2 are said to be isogenous if there is an isogeny φ : E1 → E2. The
degree of an isogeny is its degree as a rational map. In particular, a separable
isogeny φ of degree � has a kernel of size �.

Recall that given an elliptic curve E and a subgroup G of E, there is a unique
isogeny E → E′ with kernel G up to isomorphism [15, III.4.12]. Hence one can
identify an isogeny by specifying its kernel. Vélu’s formula and its analogues shed
a light on computing the isogeny that corresponds to a given subgroup. This
correspondence may allow for compact representation and efficient computation
of isogeny, especially for kernels generated by points of prime order.

Let K be a finite field with char(K) = p > 3. A twisted Jacobi intersection
model of elliptic curve over K is given by

Ja,b :

{
au2 + v2 = 1

bu2 + w2 = 1
(1)

where a, b ∈ K and ab(a − b) �= 0. Note that a Jacobi intersection is a twisted
Jacobi intersection with a = 1. The j-invariant of Ja,b is

j(Ja,b) =
256(a2 − ab + b2)3

a2b2(a − b)2
.

Note that (0, 1, 1) is the identity point in the group Ja,b(K), and the negative
point of (u, v, w) is (−u, v, w).

A twisted Jacobi intersection Ja,b : au2 + v2 = 1, bu2 + w2 = 1 is bira-
tionally equivalent to an elliptic curve EW : y2 = x3 − (a + b)x2 + abx, via the
transformations [7]:

σ : Ja,b −→ EW ,

(0, 1, 1) �−→ ∞,

(0, 1,−1) �−→ (b, 0),

(u, v, w) �−→ (−a(w + 1)
v − 1

,− au

v − 1
(
a(w + 1)

v − 1
+ b)).

σ−1 : EW −→ Ja,b,

∞ �−→ (0, 1, 1),
(b, 0) �−→ (0, 1,−1),

(x, y) �−→ (− 2y

x2 − ab
,
x2 − 2ax + ab

x2 − ab
,
x2 − 2bx + ab

x2 − ab
).

(2)
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The group law on Ja,b in affine coordinates is presented as follows [7]: given
two points (u1, v1, w1) and (u2, v2, w2), the sum (u3, v3, w3) = (u1, v1, w1) +
(u2, v2, w2) is

u3 =
u1v2w2 + u2v1w1

v2
2 + au2

2w
2
1

,

v3 =
v1v2 − au1w1u2w2

v2
2 + au2

2w
2
1

,

w3 =
w1w2 − bu1v1u2v2

v2
2 + au2

2w
2
1

.

(3)

The above formulas are complete (i.e., defined for all inputs).

3 Isogenies on Twisted Jacobi Intersections

In this section we show how to present explicit (and simplified) formulas for
isogenies on twisted Jacobi intersections. For a twisted Jacobi intersection Ja,b

over K with coefficient a, b, we denote by
√

a (resp.
√

b) a square root of a
(resp. b) and write simply

√
ab for

√
a · √b.

3.1 2-Isogeny

Theorem 1. Let Ja,b be a twisted Jacobi intersection over K, then there is a
2-isogeny from the curve Ja,b as

φ2(u, v, w) = (
−u

vw
,
−√

abu2 + 1
vw

,

√
abu2 + 1

vw
), (4)

the image of φ2 is the curve Jâ,b̂, where â = −(
√

a−√
b)2 and b̂ = −(

√
a+

√
b)2.

Proof. The desired 2-isogeny φ2 can be derived as

φ : Ja,b
σ−→ E1

ψ−→ E2
σ′

−→ Jâ,b̂.

Here σ : Ja,b → E1 is given as (u, v, w) �−→ (−a(w+1)
v−1 ,− au

v−1 (a(w+1)
v−1 + b)), with

E1 : y2 = x3 − (a + b)x2 + abx.
The kernel of the desired isogeny is the set {(0,−1,−1), (0, 1, 1)}. For this

kernel, it suffices to explicitly find the maps ψ, σ′. Formulas for 2-isogenies on
Weierstrass curves are well known, see Example 4.5 of [15] for the 2-isogeny
ψ : E1 → E2 as

ψ(x, y) = (
y2

x2
,
y(ab − x2)

x2
),

where E2 : y2 = x3 + 2(a + b)x2 + (a − b)2x.
Therefore, we can get the corresponding map σ′ : E2 → Jâi,b̂i

by pulling
Weierstrass model back to a desired Jacobi intersection using the maps in Eq. (2).

Composing the maps as σ′ ◦ ψ ◦ σ leads to the stated formulas for φ2. Since
the arithmetic details are straightforward and thus we omitted them for brevity.
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3.2 Odd Degree Isogenies

Let F be a subgroup of E of odd order �, the well known Vélu formulas [16] on a
Weierstrass elliptic curve for an isogeny φ : E → E′ with kernel F are presented
here. Given a point P = (xP , yP ) ∈ E, define

φ(P ) =

{
(xP +

∑
Q∈F−{∞}(xP+Q − xQ), yP +

∑
Q∈F−{∞}(yP+Q − yQ), P �∈ F,

∞, P ∈ F.

Silva et al. in [14] gave a formula for odd degree isogeny φ on the Jacobi
intersection as

φ(P ) =

{
∞, P ∈ F,

(uP
∏

Q∈F−{∞}
uP+Q

uQ
, vP

∏
Q∈F−{∞}

vP+Q

vQ
, wP

∏
Q∈F−{∞}

wP+Q

wQ
), P �∈ F,

based on which they also gave an explicit formula for isogeies of degree �.
In this work, we imitate the above work and present a new formula for the

degree �-isogeny, which yields the following result:

Theorem 2. Let F = {(0, 1, 1), (±α1, β1, γ1), ..., (±αs, βs, γs)} be a subgroup of
the twisted Jacobi intersection Ja,b with odd order � = 2s + 1. Define

φ�(P ) = (
∏

Q∈F

uP+QwQ

vQ
,

∏
Q∈F

vP+Q

vQ
,

∏
Q∈F

wP+Q

wQ
). (5)

Then φ� is an �-isogeny with kernel F , from Ja,b to Jâ,b̂ where â = a� and

b̂ = b�
∏s

i=1
(1−aα2

i )
4

(1−bα2
i )

4 . The coordinate maps are given by

φ�(u, v, w) = (u
s∏

i=1

(u2 − α2
i )γ

2
i

(1 − abα2
i u

2)β2
i

, v

s∏
i=1

1 + abα2
i u

2 − a(u2 + α2
i )

(1 − abα2
i u

2)β2
i

,

w

s∏
i=1

1 + abα2
i u

2 − b(u2 + α2
i )

(1 − abα2
i u

2)γ2
i

).

(6)

Proof. We have φ�((0, 1, 1)) = (0, 1, 1) and φ� is invariant under the translation
by elements of F , thus F ⊆ ker(φ�). Conversely, if P ∈ ker(φ�), then there exists
some Q ∈ F such that P + Q = (0, 1, 1), which implies that P = −Q ∈ F ,
and hence F = ker(φ�). Moreover, suppose P = (u, v, w), and Q = (αi, βi, γi) �=
(0, 1, 1), then we have

uP+QuP−Q =
(β2

i γ2
i u2 − α2

i v
2w2)

(β2
i + aα2

i w
2)2

=
u2 − α2

i

1 − abα2
i u

2
,

vP+QvP−Q =
a2u2w2α2

i γ
2
i − v2β2

i

(β2
i + aα2

i w
2)2

=
1 − a(α2

i + u2) + abu2α2
i

1 − abα2
i u

2
,

wP+QwP−Q =
b2u2v2α2

i β
2
i − γ2

i w2

(β2
i + aα2

i w
2)2

=
1 − b(u2 + α2

i ) + abu2α2
i

1 − abα2
i u

2
.
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Thus it is straightforward to derive the above coordinate maps by the twisted
Jacobi intersection addition law.

It remains to derive the formulas for â and b̂ on the image curve

Jâ,b̂ :

{
âU2 + V 2 = 1

b̂U2 + W 2 = 1
, (7)

where U(P ), V (P ),W (P ) are the coordinate maps of φ�. Consider the function

G1(u, v, w) = (âU2 + V 2 − 1)(
s∏

i=1

(1 − abα2
i u2)2β4

i )

= â(u2
s∏

i=1

((u2 − α2
i )2γ4

i )) + (1 − au2)

s∏
i=1

(1 − a(α2
i + u2) + abα2

i u2)2 −
s∏

i=1

(1 − abα2
i u2)2β4

i

= (â − a�)

s∏
i=1

γ4
i u2� + lower terms with respect to u.

Setting the coeffcients of u2� to zero and thus we obtain â = a�. Similarly we
consider

G2(u, v, w) = (b̂U
2
+ W

2 − 1)(

s∏

i=1

(1 − abα
2
i u

2
)
2
β
4
i γ

4
i )

= b̂(u
2

s∏

i=1

((u
2 − α

2
i )

2
γ
8
i )) + (1 − bu

2
)

s∏

i=1

(1 − b(α
2
i + u

2
) + abα

2
i u

2
)
2
β
4
i −

s∏

i=1

(1 − abα
2
i u

2
)
2
β
4
i γ

4
i

= (b̂

s∏

i=1

γ
8
i − b

�
s∏

i=1

β
8
i )u

2�
+ lower terms with respect to u.

By using the fact that β2
i = 1 − aα2

i , γ2
i = 1 − bα2

i and by setting the coeffcients
of u2� to zero, we obtain that

b̂ = b�
s∏

i=1

β8
i

γ8
i

= b�
s∏

i=1

(1 − aα2
i )

4

(1 − bα2
i )4

.

Remark 1. While Silva et al. in [14] also gave similar formulas for odd isogeny
on Jacobi intersections, we proved it in a different way for the twisted Jacobi
intersections. Moreover, our formulas for the curve coefficients are easily trans-
formed into inversion-free version, which are expected to provide performance
advantage in isogeny computation.

4 ω-Coordinate on Twisted Jacobi Intersections

To evaluate the elliptic curve arithmetic efficiently, Farashahi and Hosseini pro-
posed ω-coordinate system on Edwards curves [6], which was also applied to
isogeny computation by Kim et al. [11]. Huang et al. [8] and Drylo et al. in
[5] presented similar ω-coordinate systems on Huff curves which provide faster
formulas for point addition and isogeny computation. In fact, such ω-coordinate
systems could be generalized to other elliptic curve models, and induce analogous
Montgomery-like formulas for group and isogeny arithmetic.
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4.1 ω-Coordinate System for Differential Addition

In this work, we introduce such kind ω-coordinate system on twisted Jacobi
intersections. We define a rational function ω by ω(u, v, w) =

√
abu2, which is

well computed for all affine points on a twisted Jacobi intersection. Let P =
(u, v, w) be a point on the curve, one can easily deduce that ω(P ) = ω(−P ).
Moreover, ω((0, 1, 1)) = 0. Denote by c =

√
b√
a
, then the equation of the twisted

Jacobi intersection can be written as:

Jc :

{
ω + cv2 = c

cω + w2 = 1
(8)

Theorem 3. Let ωi = ω(Pi) with Pi ∈ Ja,b for i = 1, 2, and let ω0 = ω(P1 −
P2), ω3 = ω(P1 + P2) and ω4 = ω(2P1). We have the following differential
addition formulas

ω3ω0 =
(ω1 − ω2)2

(ω1ω2 − 1)2
, ω4 =

4ω1(ω2
1 + (c + 1

c )ω1 + 1)
(1 − ω2

1)2
.

Proof. This can be derived from the addition formula give by Eq. (3) and hence
we omit the detail.

4.2 ω-Coordinate for Isogenies

Based on the above, we present the isogeny formulas using the ω-coordinate on
twisted Jacobi intersection Jc as Eq. (8). Note that the j-invariant

j(Jc) = j(Ja,b) =
256(1 − c2 + c4)3

c4(1 − c2)2
.

We can use the parameter c to represent the isogenous curve instead of param-
eters (a, b) in Ja,b.

Recall that ω(u, v, w) =
√

abu2 for Ja,b and write c =
√

b√
a
.

Theorem 4. Let φ2 be the 2-isogeny from Ja,b to Jâ,b̂ defined as in Theorem 1.
Then the evaluation of ω = ω(P ), P = (u, v, w) ∈ Ja,b(K) under φ2 is given by

φ2(ω) =
( 1c − c)ω

(1 − cω)(1 − ω
c )

, (9)

where the parameter for the image curve is ĉ = 1+c
1−c .

Proof. Suppose P = (u, v, w) and denote by φ(u, v, w) = (U, V,W ) the image
point. Then the ω-coordinate in Jâ,b̂ is given by ω(φ(u, v, w)) =

√
âb̂U2.
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By Theorem 1, one has
√

âb̂U2 =
√

(
√

a −
√

b)2(
√

a +
√

b)2
u2

v2w2

=
(a − b)u2

(1 − au2)(1 − bu2)

=
( 1c − c)ω

(1 − cω)(1 − ω
c )

.

Moreover, we have

ĉ =

√
b̂

â
=

(
√

a +
√

b)
(
√

a − √
b)

=
1 + c

1 − c
.

We have the following odd isogeny formula using the ω−coordinate:

Theorem 5. Let F = {(0, 1, 1), (±α1, β1, γ1), ..., (±αs, βs, γs)} be a subgroup
of the twisted Jacobi intersection Ja,b with odd order � = 2s + 1. Write ωi =
ω(αi, βi, γi) for i = 1, .., s and let φ� be the �-isogeny from Ja,b to Jâ,b̂ with
kernel F . Then the evaluation of ω = ω(P ), P = (u, v, w) ∈ Ja,b(K) under φ� is
given by

φ�(ω) = ω
s∏

i=1

(
ω − ωi

1 − ωωi
)2, (10)

with the codomain curve coefficient

ĉ = c

s∏
i=1

(c − ωi)2

(1 − cωi)2
. (11)

Proof. Note that c =
√

b/a and ω =
√

abω2, which implies bu2 = cω, au2 = ω/c.
Let P = (u, v, w) and write U(P ) the coordinate maps of φ� give in Theorem 2.

Recall that by Theorem 2, we have â = a� and

b̂ = b�
s∏

i=1

(1 − aα2
i )

4

(1 − bα2
i )4

= b�
s∏

i=1

β8
i

γ8
i

.

Then

ω̂ =
√

âb̂U(P )2 =
√

alblu2
s∏

i=1

(
β4

i

α4
i

(u2 − α2
i )γ

2
i

(1 − abα2
i u

2)β2
i

)2

=
√

alblu2
s∏

i=1

(
√

abu2 − √
abα2

i )
2

(1 − abα2
i u

2)2

= ω
s∏

i=1

(ω − ωi)2

(1 − ωωi)2
.
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Furthermore, one has

ĉ =

√
b̂

â
=

√
b

a

s∏
i=1

(1 − aα2
i )

2

(1 − bα2
i )2

= c
s∏

i=1

(c − ωi)2

(1 − cωi)2
.

4.3 Computational Cost

Let M stand for a field multiplication, S for a field squaring, C for a multipli-
cation by a curve constant, and I for a field inversion. In the following table we
list the costs of our odd isogenies compared with those proposed by Silva et al.
in [14].

Table 1. The computational costs of � = 2s+1 isogeny evaluation on (twisted) Jacobi
intersections

Work Operation cost (affine) Operation cost (projective)

Silva et al. [14] (4s + 2)M + 3S + (5s + 1)C + I (4s + 7)M + 5S + (6s + 2)C

This work (ω-coordinate) 3sM + 1S + I 4sM + 2S

It should be noted that Silva et al. in [14, Theorem 4.1] proposed the
codomain curve parameter for Jacobi intersection (setting b = 1 in the twisted
case) as â = a − 2a

∑s
i=1(

−α2
i β2

i

γ2
i

+ 2α2
i − 1), the evaluation of which costs much

more than that of our ĉ in Eq. (11).

Remark 2. The above result implies an interesting result that, the formulas of
odd � isogeny with ω-coordinate system on twisted Jacobi intersections share
the same form with those on Montgomery model in [3]. Thus we would gain
comparable cost for the isogeny computation by adopting the above formulas for
twisted Jacobi intersections. Furthermore, due to the well form of the formulas
in Eqs. (10) and (11), we can adapt the fast isogeny computation technique
proposed by Bernstein et al. in [1] to twisted Jacobi intersections, and thus
the �-isogeny mapping and its codomain curve coefficient could be evaluated in
Õ(

√
�) finite field operations.

5 Conclusion

In this work, we exploit the ω-coordinates to optimize the elliptic curve group
arithmetic formulas as well as the isogenous formulas on twisted Jacobi intersec-
tions. Our results implies that the twisted Jacobi intersections also serve as an
ideal model for isogeny-based cryptography. It was also noticed that the formulas
of odd � isogeny with w-coodinate system on twisted Jacobi intersections have
the same expression as the Kummer line in Montgomery model. We hope that
further research could find the connection between the w-coordinate systems
(resp. Kummer line) on different curve models.
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Abstract. With the advance of new technology and management
reforms, data sharing has unleashed the full potential for social produc-
tion during the past decade, especially for enterprise survival. Data poi-
soning attack is a typical attack faced by data sharing, EPSTO-ARIMA
(Electric Power Stochastic Optimization Predicting Based on Autore-
gressive Integrated Moving Average model) would increase prediction
error by generating adversarial shared data, which leads to the failure of
the prediction. In response to the EPSTO-ARIMA attack, this paper pro-
poses EPFSTO-ARIMA (Electric Power Forced Stochastic Optimization
Predicting Based on Autoregressive Integrated Moving Average model)
combined with data sanitization and data grouping. The model was val-
idated by seven sets of data from three datasets. Experimental results
indicate that EPFSTO-ARIMA can remedy the flaws of excessive accu-
racy error caused by the EPSTO-ARIMA. For publicly dataset “Col-
umn2”, the proposed EPFSTO-ARIMA achieves 30.44% lower predic-
tion error than EPSTO-ARIMA, respectively. Simultaneously, the ter-
rific results in other datasets have also been ascertained the viability
and generalization ability of our proposed EPFSTO-ARIMA.

Keywords: Stochastic sampling · Stochastic optimization ·
Adversarial examples · Inference attack · Data poisoning · Electric
power forced stochastic optimization predicting

1 Introduction

Data, as the source of all walks of life and an essential element for critical infras-
tructures, has been extremely successful used in the last decade, especially in
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energy. Among data value extraction, data sharing technology plays a pivotal role
in the whole life cycle of data. The maximization of data value has been achieved
by data sharing in multi-field applications. As a promising application of data
sharing, electricity data prediction, the amount of electricity used by different
consumers can be predicted, which can assist the government in optimizing the
planning of electricity infrastructure construction. In a nutshell, data prediction
can help countries and enterprises put the resource to good use, improve social
planning, optimize social management, and defend against cyber-attacks.

With the continuous evolution of LSTM (Long Short-Term Memory) [1], Bi-
LSTM (Bi-directional Long Short-Term Memory) [2], ARIMA (Autoregressive
Integrated Moving Average model) [3,4], the capability of data prediction has
made great progress and gradually become maturity. However, existing studies
have shown that data poisoning is widely concerned [5] in machine learning and
data poisoning attacks have gradually eroded the power sector [6,7].

EPSTO-ARIMA (Electric Power Stochastic Optimization Predicting Based
on Autoregressive Integrated Moving Average model) was proposed to increase
error of prediction by using the concept of dropout and stochastic sampling to
generate adversarial samples. The prediction error of EPSTO-ARIMA is higher
than ARIMA. Motivated by this, this paper proposed a new prediction model,
called EPFSTO-ARIMA (Electric Power Forced Stochastic Optimization Pre-
dicting Based on Autoregressive Integrated Moving Average model), which can
deal with excessive accuracy error caused by EPSTO-ARIMA with data saniti-
zation and data grouping.

Our main contributions in this paper include:

1) Reduce the prediction error caused by EPSTO-ARIMA. Data sanitization
and data grouping are used to defend EPSTO-ARIMA attack.

2) Ensure the availability of data. The EPFSTO-ARIMA prediction results are
in line with the original law of the data.

3) Explore data discipline. Utilizing EPFSTO-ARIMA, the influence of data
inference prediction results is discussed according to data grouping.

4) The results of EPFSTO-ARIMA have an enlightening influence on the defense
of poisoning attack and contribute to the defense of time series data poisoning
research.

This paper proceeds as follows. The second section reviews adversarial exam-
ples, data poisoning attack defense in literature. The third section describes our
response method. The fourth section presents the experimental conditions of
models and measures indicators of models, describes and discusses the experi-
mental results. The fifth section makes conclusions and describes future work.

2 Related Work

2.1 Data Poisoning and Adversarial Examples

The concept of adversarial example was proposed in [8], namely adding small per-
turbations to the original training data. Adversarial examples have been exten-
sively studied [9,10]. The process of model training of adversarial examples is
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called data poisoning, adversarial examples are difficult to be perceived but
become malicious for the trained model to incur erroneous results. To name a
few, Papernot et al. [11] found that the adversarial examples generated by one
model can cheat another model.

2.2 ARIMA

ARIMA is one of the most important and widely used models in time series
data prediction, which has used in energy [3], transportation [4]. Besides these,
ARIMA can be used in combination with other models [12]. But the topic of
predicting angle of attack defense is rarely considered.

2.3 Dropout

In 2012, Hinton [13] proposed dropout, which can effectively prevent over-fitting
in the training of complex feedforward neural network.

By randomly deleting some neurons on the network, dropout reduces the
complex co-adaptive relationship between neurons. Through research, Jagielski
et al. [5] found that dropping some contaminated data in training samples will
increase the error of some models. Drawing on the above ideas, EPSTO-ARIMA
was proposed to implement data poisoning.

2.4 Data Poisoning Attack Defense

In general, robustness improvement [14] and data sanitization [15] are used to
defend against data poisoning. In this paper, we use data grouping based on
data sanitization to counter data poisoning to improve the loss of prediction.

3 Our Approach

By referring to adversarial examples rapid generation method in [16] and the
automatic modulation classification based on deep learning in [17], reversing
use of the concept of data protection based on disturbance [18], following the
intuition discussed in [19] for sub-Nyquist sampling and the working principle of
Dropout [13], this paper proposed EPFSTO-ARIMA, which can realize data dis-
turbance as presented in the later sections. The algorithm of EPFSTO-ARIMA
is shown in Table 1 and Fig. 1.

We consider data poisoning and prediction scenario as shown in Fig. 1. In
Part 1, the input of the original data is illustrated. In Part 2, data were grouped,
stochastic sampling and optimized (Dropout) to generate and publish adversarial
examples. In Part 3, adversarial examples and original data were used to train
predictive models. In Part 4, the test data are used to verify the trained models
and get the predicted results.
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Fig. 1. Generation of adversarial examples vs. prediction.

3.1 Similarity Calculation

We utilize the idea of DTW (Dynamic Time Warping), a commonly used sim-
ilarity calculation algorithm to calculate the similarity distance between each
data and the average. According to similarity, the data is grouped to realize the
implementation of the forced stochastic optimization prediction.

Suppose two standard reference templates R = {R(1), ...R(m), ...R(M)} and
T = {T (1), ...T (n), ...T (N)}, among them, R is an M -dimensional vector, T is
an N -dimensional vector. The distance between R and T is shown as

D = min
c

(
N∑

n=1
[d(xi(n), yj(n)) • Wn]/

N∑

n=1
Wn) (1)

where Wn is a weighting function, which is affected by the similarity distance
of the previous data or the weight of the data. In this paper, we calculate the
similarity distance between the average and the data.

From Eq. 1, we can calculate the similarity as

Si = 1/(1 + Di) (2)

where Di represents the similarity distance between the average value and the
data, and it is default value is positive. Otherwise, its absolute value is taken.
Si represents the similarity. The larger the S, the higher the similarity.

3.2 Data Stochastic Sampling and Data Optimization

We utilize the idea of data sampling, Bayesian theory, and optimizing (Dropout)
to generate adversarial examples. Sampling data are stochastic selected from the
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Table 1. Algorithm of EPFSTO-ARIMA.

Algorithm 1:EPFSTO-ARIMA

Input:

1) Datasets;

2) The preprocessed data;

3) The start time(T1).

Initialize:

1) i=0;

2) ARIMA model.

Generate adversarial examples:

1) Calculate the DP with Eq. 4;

2) Calculate the similarity with Eq. 1, Eq. 2;

3) Grouped data according Eq. 13;

4) Stochastic sampling with Eq. 3, Eq. 5 and Eq. 13;

5) Data optimize with Eq. 4 and the Dropout algorithm [13].

Verify data and determine parameters:

1) Determine d,p,q;

2) Determine G with Eq. 13.

Import and train models:

1) Import ARIMA(p,d,q);

2) Import EPSTO-ARIMA(p,d,q,DP );

3) Import EPFSTO-ARIMA(p,d,q,G,DP );

4) Train ARIMA(p,d,q) with original data;

5) Train EPSTO-ARIMA(p,d,q,DP ) with adversarial examples;

6) Train EPFSTO-ARIMA(p,d,q,G,DP ) with adversarial examples.

Predict:

1) Compute yDP use Eq. 6, Eq. 7, Eq. 8, Eq. 9, Eq. 10;

2) Compute RMSE use Eq. 12;

3) Record the end time(T2) and compute TIME = T2 − T1.

Output:

1) Output PDP use Eq. 11;

2) Output RMSE;

3) Output TIME.

data sets according to the poisoning ratio. Each data point has the same prob-
ability of being selected, and the selected data is the optimized data (poisoned
data), which can be expressed as

yk = {x1+ki}, 0 ≤ i ≤ [(n − 1)/k] (3)

DP = no/nt (4)

P

(
n⋂

i=1

Si

)

=
n∏

i=1

P (Si) (5)
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where yk refers to the sampling data, k represents the sampling interval, DP
represents the proportion of optimized data to total data, also known as the
data poisoning ratio, no refers to the poisoned data, nt refers to the total data,
Si is the i − th data sampling, P (Si) is the generation probability of Si and

P

(
n⋂

i=1

Si

)

is the probability that independent events Si occur simultaneously.

3.3 EPFSTO-ARIMA

The data are grouped according to their similarity, and each group is stochas-
tically optimized in proportion. Suppose we divide the data into two groups of
G1 and G2. When performing data optimization with the optimized ratio DP ,
the forced stochastic optimization includes two steps: i) optimizing DP in G1 or
G2; ii) optimizing DP in the specific group according to actual needs. Compared
with the stochastic optimization, the forced stochastic optimization is specific
and can optimize data according to actual needs. We use adversarial examples
and original data to train the models.

When original data was used, the predicted results can be expressed as

yt = θ0 + φ1yt−1 + φ2yt−2 + · · · + φpyt−p + θ2et−2 + · · · + θqet−q (6)

When using adversarial examples, the predicted results can be expressed as

yDP1 = u + φ2yt−2 + · · · + φpyt−p + θ1et−1 + θ2et−2 + · · · + θqet−q (7)

yDP2 = u + φ1yt−1 + · · · + φpyt−p + θ1et−1 + θ2et−2 + · · · + θqet−q (8)

yDP3 = u + φ1yt−1 + φ2yt−2 + · · · + φpyt−p + θ2et−2 + · · · + θqet−q (9)

yDPn = u + φ1yt−1 + φ2yt−2 + · · · + φpyt−p + θ1et−1 + · · · + θqet−q (10)

where yDP denotes the value of prediction results under DP parameters, u is
estimated constant term, θ is an autoregressive coefficient, φ is moving average
coefficient.

To exclude extreme values from the prediction process, each parameter is
calculated n times, a maximum value and a minimum value are removed, respec-
tively. Then the average value is calculated, which conduces to measure the effect
of the model. The predicted value equals

PDP = (
n∑

m=1

yDPn − yDP max − yDP min)/(n − 2) (11)

where PDP denotes the mean value of prediction results,
n∑

m=1
yDPn is the sum

of all prediction results under DP parameters. Variables yDP max and yDP min

indicate the maximum value and the minimum value of the prediction results,
respectively. Lastly, n − 2 represents the number of prediction results involved
in the final calculation.
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4 Experiments and Results

4.1 Experimental Data and Parameter Description

The data sets used in this paper include ElectricityLoadDiagrams20112014 [20],
Individual household electric power consumption [21] and the Solar power [22].
The Column2, Column257, Column277 and Column314 are selected from Elec-
tricityLoadDiagrams20112014.

The parameters used in the experiments are shown in Table 2, the experimen-
tal environment is shown in Table 3. In EPSTO-ARIMA and EPFSTO-ARIMA
experiments, DP values are the same. In addition, G refers to the grouping of
data based on similarity calculation. The data is divided into two groups, as
shown in Table 4.

Table 2. Experiments parameters.

Model Column2,257,277,314 Household Solar

Parameters (p,d,q) or (p,d,q,DP) or (p,d,G,DP)

ARIMA (9,0,8) (9,0,2) (9,0,8)

EPSTO
-ARIMA

(9,0,8,DP) (9,0,2,DP) (9,0,0,DP)
(6,0,0,DP)

EPFSTO
-ARIMA

(1,0,0,2,DP)
(3,0,5,2,DP)

(1,0,3,2,DP)
(1,0,2,2,DP)

(2,0,9,2,DP)
(2,0,2,2,DP)

DP 0.001,0.002,0.003,0.004,0.005,0.006,0.007,0.008
0.009,0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.1

Table 3. Experimental environment.

Environment Parameter

Operating system Windows 10, 64bit

Processor Intel(R) Core (TM) i7-9700 CPU @ 3.00GHz

Internal storage 8.00 GB

Pycharm Professional Edition 11.0.3

Tensorflow 2.3.0

4.2 Adopted Metrics

We measure the prediction effect of EPFSTO-ARIMA in terms of RMSE (Root
Mean Squared Error). RMSE defines the deviation between the predicted value
and the real value, which can be calculated as
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Table 4. Grouping of data.

Item Column2 Column257 Column277 Column314 Household Solar

G1 [0,0.053] [0,0.0094] [0,0.0006] [0,0.00001] [0,0.002066] [0,0.1427]

G2 (0.053,1] (0.0094,1] (0.0006,1] (0.00001,1] (0.002066,1] (0.1427,1]

RMSE (X,P ) =

√
√
√
√(1/m)

m∑

i=1

(p (xi) − yi)
2 (12)

where p (xi) and yi denote the predicted and the real values, respectively.

4.3 Experiments Results

In this section, ARIMA, EPSTO-ARIMA and EPFSTO-ARIMA experiments
are carried out. In the experiments, we first check whether the data are flat and
stable. After the ACF (Auto Correlation Function) test, the method of censoring
and PACF (Partial Auto Correlation Function) diagram with the method of
tailing, the value of d, p and q is determined. The value of G can be determined by

S(i,j) = 1/(1 + D(i,j))

= 1/(1 + min
c

(
n∑

i=1

[d(yi, V ) · Wn]/
n∑

i=1

Wn))

= 1/

⎛

⎝1 + d(yi, V ) + min

⎧
⎨

⎩

D(i − 1, j)
D(i, j − 1)
D(i − 1, j − 1)

⎫
⎬

⎭

⎞

⎠

= 1/

⎛

⎝1 + d(yi, (
n∑

i=1

yi)/n) + min

⎧
⎨

⎩

D(i − 1, j)
D(i, j − 1)
D(i − 1, j − 1)

⎫
⎬

⎭

⎞

⎠

(13)

where V represents the average of the data, yi represents the value of the i − th
data.

The results presented in this section are optimal solutions under the following
two constraints. RMSE and TIME both take the minimum values. The models
use the same environment to make prediction. From the Table 5, we can observe:

1) For EPFSTO-ARIMA, we perform forced optimization on the data according
to Table 4. The RMSE is lower than that of EPSTO-ARIMA, but higher than
that of ARIMA.

2) Take Column2 as an example. The RMSE of EPFSTO-ARIMA is 30.44%
lower than that of EPSTO-ARIMA and 12.22% higher than that of ARIMA.
For the rest of the clients, similar results can be obtained.

ARIMA is optimal for resource consumption in the existing data set. In
EPFSTO-ARIMA, we optimize different amounts of data to analyze how they
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affect the results. Because EPFSTO-ARIMA has certain randomness, we carry
out many experiments for each DP and take the mean value. The results of
EPFSTO-ARIMA are shown in Fig. 2.

Table 5. RMSE of EPSTO-ARIMA (EPSTO) and EPFSTO-ARIMA (EPFSTO).

Item Column2 Column257 Column277 Column314 Household Solar

ARIMA 6.819 53.240 863.190 14105.370 412.520 0.570

EPSTO 11.000 79.604 1194.183 18190.421 418.333 1.027

EPFSTO 7.652 65.382 946.181 15345.276 414.574 0.588

Table 6. Maximum, minimum and increase rate of EPSTO-ARIMA and EPFSTO-
ARIMA RMSE.

Item Column2 Column257 Column277 Column314 Household Solar

Min1 7.124 56.36 871.369 13898.56 412.994 0.617

Max1 16.957 113.083 1726.456 24181.739 430.323 1.633

Rate1 138.03% 100.64% 98.13% 73.99% 4.20% 164.67%

Min2 7.597 65.305 931.742 15115.735 412.642 0.583

Max2 7.682 65.562 971.298 16118.49 416.001 0.600

Rate2 1.12% 0.39% 4.25% 6.63% 0.81% 2.92%

For EPFSTO-ARIMA, the data used in the experiment is divided into two
groups based on the similarity results, as shown in Table 4. According to DP ,
optimization is carried out in two groups. From Fig. 2, we can observe that:

1) The RMSE of EPSTO-ARIMA and EPFSTO-ARIMA increase with the
increase of DP . However, the increase in EPSTO-ARIMA is more prominent.

2) For EPFSTO-ARIMA, with the continuous increase of DP , RMSE shows a
slower upward trend than that of EPSTO-ARIMA. It means that EPFSTO-
ARIMA is effective in solving the problem of prediction accuracy degradation
as in EPSTO-ARIMA. According to the results, the ratio of the optimized
data in the two groups can also be calculated.

3) Take Column2 as an example. In EPSTO-ARIMA, the RMSE increases grad-
ually to about 138.03% with the increase of DP as shown in Table 6 (in
Table 6, Min1 and Min2 are the min RMSE of EPSTO-ARIMA and EPFSTO-
ARIMA, respectively. Max1 and Max2 are the max RMSE of EPSTO-ARIMA
and EPFSTO-ARIMA, respectively. Rate1 and Rate2 are the increase rate of
EPSTO-ARIMA and EPFSTO-ARIMA RMSE, respectively.). In EPFSTO-
ARIMA, RMSE also increases gradually with the increase of DP , but by only
about 1.12%. Other results are shown in Table 6.
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Fig. 2. The RMSE of EPFSTO-ARIMA and EPSTO-ARIMA.

Fig. 3. The original data vs. Prediction data.

Meanwhile, the prediction data of EPFSTO-ARIMA basically conform to
the data discipline of the original data as shown in Fig. 3.

In summary,

1) EPFSTO-ARIMA can effectively counter the excessive prediction loss caused
by EPSTO-ARIMA.

2) In the aspect of data availability, EPFSTO-ARIMA basically conform to the
data discipline of the original data.

3) In addition to the above conclusions, we also found that the time resources
used are also saved (as shown in Fig. 4), which will not be discussed in detail
in this paper.
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Fig. 4. The TIME of EPFSTO-ARIMA and EPSTO-ARIMA.

5 Conclusions and Future Work

Electricity data prediction is important for the national economy and the lives
of people. However, EPSTO-ARIMA will causes serious degradation of electric-
ity prediction service. To deal with the above challenge, we propose EPFSTO-
ARIMA, which can reduce prediction error caused by EPSTO-ARIMA. In the
meantime, the prediction result can help us to explore the discipline of data.
Through experiments, proposed EPFSTO-ARIMA outperforms in reducing pre-
diction error. In the future, the following aspects can be further analyzed:

1) EPFSTO will be tested and demonstrated in other models.
2) EPFSTO will be tested and verified under more detailed data grouping.
3) Exploring the specific effects of EPFSTO-ARIMA on model training time

and prediction time.
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Abstract. In this paper, we propose the M-method which uses the bit-
wise characteristic matrix to search impossible differentials. M-method
exploits not only the linear components but also partial information of
non-linear components. According to the principle of miss-in-the-middle,
we construct two different types of contradiction to search the impossi-
ble differentials with limited time and memory complexity by calculat-
ing Mr1

en and Mr2
de which represent r1 rounds encryption and r2 rounds

decryption, respectively. Compared with the previous methods, our tech-
nique is comprehensible and fast especially for large block size.

As a result, we find the 7-round impossible differentials of GIFT-128,
the 5-round impossible differentials of PRIDE, and the 4-round impossi-
ble differentials of Pyjamask-96. For GIFT-64, PRESENT, RECTANGLE
which are well-analyzed by MILP-method or SAT-method, we construct
new impossible differentials. Moreover, the efficiency of our method will
not be influenced by the block size, which makes us find the new 5-round
impossible differentials of the 320-bit permutation of ASCON.

Keywords: Block cipher · Characteristic matrix · Impossible
differential cryptanalysis

1 Introduction

The block cipher is of great importance in the field of cryptology. When design-
ing a block cipher, designers always obey the diffusion and confusion principle
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and guarantee them by iterating the round function which contains linear and
non-linear layers. The SPN structure and Feistel structure with SP-type round
functions are examples of the design principle. When it comes to lightweight
block ciphers, such as PRESENT [4], GIFT [2], and PRIDE [1], the designers
tend to use bitwise operations like bit permutation or cyclic shift rather than
multiplication with the matrix over the finite field and to use 4-bit S-boxes
rather than 8-bit S-boxes for efficient implementation. The diffusion of a bitwise
permutation is much slower than the matrix multiplication such as the MDS
matrix used in AES, and the confusion is weaker when the size of the S-box is
smaller. Moreover, in some S-boxes such as the S-box of PRESENT and GIFT,
certain bits of the output difference are determinate if the input difference is
fixed with specific bits. In [20], Tezcan named the bits as undisturbed points
which can simplify the differential cryptanalysis and the impossible differential
cryptanalysis.

As one of the most powerful cryptanalysis techniques, impossible differ-
ential cryptanalysis was independently proposed by Knudsen [12] and Biham
et al. [3]. Unlike the differential cryptanalysis aiming at finding high-probability
differentials, the impossible differential cryptanalysis is to find the differential
(Δin,Δout), where the input difference Δin can never propagate to Δout. Impos-
sible differential cryptanalysis usually has two phases, the first one is to find the
impossible differentials covering as many rounds as possible; the second one is
to filter the wrong keys by extending the distinguisher several rounds. There-
fore, constructing the impossible differentials is the key step that determines the
number of attacking rounds.

To search longer impossible differentials efficiently, the automatic searching
tools have been developed rapidly in the last decades. In 2003, Kim et al. [11]
published the first automatic searching tool named U-method for impossible
differentials. The U-method classifies every byte of a block into the U-set and
constructs contradictions in the middle state. In 2009, Luo et al. [14] improved
the U-method and proposed the UID-method. In 2012, Wu et al. [21] further
exploited the properties of linear operations by solving the system of linear
equations. Although the searching ability is improved rapidly compared with
manual derivation, the above automatic tools cannot make use of the details
of S-boxes and they can only cover the word-oriented block ciphers. To allevi-
ate the above limitations, researchers have turned their attention to modeling
the impossible differential searching into Mixed Integer Linear Programming
(MILP) problem or Boolean Satisfiability Problem (SAT), which have been used
maturely for optimization problems. In 2016, Cui et al. [5] extended the applica-
tions of MILP-method on searching impossible differentials. At EUROCRYPT
2017, Sasaki et al. [15] presented another MILP-based automatic tool for impos-
sible differentials searching which can cover more structures. At ASIACRYPT
2020, Hu et al. [10] proposed a new automatic search tool based on SAT-method
to model the impossible polytopic transitions and key dependent transitions
which were not considered by the previous automatic tools. In summary, the
more information of a block cipher that the automatic search tools can absorb,
the more impossible differentials can be found and in some cases the more rounds
can be covered.
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In general, the methods based on MILP or SAT can cover more structures
and find longer distinguishers, but there are also limitations. One of them is
that the computation complexity will increase rapidly while the block size is
large. In [15], the authors claimed that even if the size of the S-box is small,
it is computationally hard to evaluate a large block size of more than 256 bits.
And the automatic tools cannot tell why the differentials are impossible. Because
of the heuristic algorithms used in MILP/SAT-solvers, the process of solving is
nearly a black box. Therefore, the authors of the automatic tools always manually
verify some of the results.

While the above research found impossible differentials by automatic tools,
there is another line of research that determines the impossible differentials by
theoretical proof. At CRYPTO 2015, Sun et al. [19] proved that without con-
sidering the details of S-boxes, the WW-method [21] can find all word-oriented
impossible differentials of both Feistel structure with SP-type round functions
and SPN structure. Moreover, at EUROCRYPT 2016, Sun et al. [18] utilized the
characteristic matrix to prove the upper bound of truncated impossible differen-
tials for SPN structure. Following the line of research, Shen et al. [17] considered
the details of the S-boxes and found longer impossible differentials for Russian
standard block cipher Kuznyechik [8] and the permutation of PHOTON [9]. After
that, at ISPEC 2017, Shen et al. [16] further studied the matrix representation
of a block cipher and proposed a more precise matrix representation named
diffusion matrix. By utilizing the diffusion matrix, they constructed impossible
differentials of SIMON-like block ciphers.

Our Contributions. Along the research line of Sun et al. [18] and Shen
et al. [16], we propose the M-method which uses the bitwise characteristic matrix
to search impossible differentials for more block ciphers while Shen et al. [16]
only considered the SIMON-like block ciphers.

We first calculate the matrix representation of one round encryption which
is denoted as Men. The matrix Men contains not only the information of linear
components but also some information of the S-box. After iterating the Men

for r times, i.e. Mr
en, we get the matrix representation of the r-round encryp-

tion. By multiplying the difference with the corresponding matrix, we get the
middle state of the block cipher. The decryption is the same. Then we can con-
struct impossible differentials according to the principle of miss-in-the-middle.
Moreover, we propose the indirect contradiction where we extend the rounds of
impossible differentials by looking up the Difference Distribution Table (DDT)
of the S-box. The main results of our technique for searching impossible differ-
entials are listed in Table 1.

Compared with the MILP-based and SAT-based tools, our technique has the
following advantages:

(1) Model Large States: Our method models an n-bit block cipher by an n × n
matrix and the only computation is matrix multiplication, which is easy for
a laptop. Therefore, our method can function with nearly no compromises
no matter how large the block size is. We apply our method to the 320-bit
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Table 1. Main results

Block ciphers Search tool Rounds Ref.

GIFT-64 SAT 6 [2]

MILP 6 [10]

M-method 6 Ours

GIFT-128 M-method 7 Ours

PRIDE M-method 5 Ours

Pyjamask-96 Previous 3 [13]

M-method 4 Ours

Pyjamask-128 M-method 3 Ours

PRESENT MILP 6 [5]

M-method 6 Ours

ASCON Previous 5 [7]

M-method 5 Ours

RECTANGLE MILP 8 [15]

M-method 8 Ours

permutation of ASCON and find new impossible differentials. We also find
the 7-round impossible differentials of GIFT-128.

(2) Comprehensible Contradictions: We construct contradictions by determin-
ing the middle states with the characteristic matrices. So we are clear about
the type and the position of every contradiction. Utilizing the linear corre-
lations between different contradictions, the M-method can construct new
impossible differentials for GIFT-64, PRESENT, ASCON, RECTANGLE.

(3) Negligible time and memory complexity: After the bitwise characteristic
matrix is determinate, we can construct contradictions by combining the
column vectors in the matrix. And we only consider specific columns with
determinate entries, which is much less than the search range. During the
computation, the only thing we have to store in the memory is several n×n
matrices.

Paper Outline. In Sect. 2, we introduce necessary preliminaries. In Sect. 3, we
introduce the bitwise characteristic matrix and demonstrate the mechanism of
our searching tool for impossible differentials. In Sect. 4, we apply our tech-
nique to some block ciphers. In Sect. 5, we conclude this paper and put forward
some future works. And the necessary supplemental material is given in the
Appendixes.

2 Preliminaries

2.1 Notation

The notation in this paper is listed in Table 2.
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Table 2. Notation

F
∗
2n All non-zero elements in F2n

ei A vector with only the i-th bit being 1, others being 0

#(I) The number of elements in set I

⊕ Bitwise XOR
⊕

i∈{0,1,2} xi x0 ⊕ x1 ⊕ x2

α[i] The i-th bit of α

fn(x) f ◦ f ◦ · · · ◦ f
︸ ︷︷ ︸

n

(x)

MF The bitwise characteristic matrix of F (x)

Mij The element of M located at the i-row and the j-th column

α
F1F2−−−→ β β = F2 ◦ F1(α)

α
F1F2←−−− β α = F1 ◦ F2(β)

2.2 The Boolean Function

The n-variable boolean function is a function maps F
n
2 to F2. Let f0, f1, . . . fm−1

be n-variable boolean functions, so the vectorial boolean function maps F
n
2 to

F
m
2 is defined as:

F (x) = (f0(x), f1(x), . . . , fm−1(x)).

For any block cipher with a block size of n bits, we can treat it as a vectorial
boolean function that maps F

n
2 into F

n
2 . ANF (Algebraic Normal Form) is one

of the representations for a boolean function.
Let x ∈ F

n
2 , the ANF of a n-variable boolean function is as follows:

f(x) =
⊕

I∈P(N)

aI(
∏

i∈I

xi),

P(N) is the power set of N = {0, 1, . . . , n − 1}, aI ∈ F2. Note that all vectors in
this paper are column vectors if not specified.

3 Searching the Impossible Differentials by Bitwise
Characteristic Matrix

3.1 Description of Bitwise Characteristic Matrix

The definition of bitwise characteristic matrix can be obtained from the aspect
of boolean function. Let E be an n-bit block cipher, the input and output of one
round function are denoted as x = (x0, x1, . . . , xn−1) and y = (y0, y1, . . . , yn−1)
respectively. The bitwise characteristic matrix is defined as follows:
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Definition 1. For a given block cipher E, the ANF of yi is

yi =
⊕

I∈P(N)

aI(
∏

k∈I

xk).

Concerning the correlation between the xj and yi, the above ANF can be
expanded to

yi = p(x0, . . . , xj−1, xj+1, . . . , xn−1)xj ⊕ q(x0, . . . , xj−1, xj+1, . . . , xn−1),

p(·) and q(·) are (n − 1)-variable boolean functions independent of xj.
The bitwise characteristic matrix of E is denoted as M, Mij is defined as:

Mij =

⎧
⎪⎨

⎪⎩

0, p(x0, . . . , xj−1, xj+1, . . . , xn−1) = 0
1, p(x0, . . . , xj−1, xj+1, . . . , xn−1) = 1
?, p(x0, . . . , xj−1, xj+1, . . . , xn−1) �= 0, 1

the 0 and 1 of M are defined over F2 which are called determined points. Mij = 0
means xj is independent of yi; Mij = 1 means when xj changes, yi must change;
Mij =? means when xj changes, we can not tell whether yi changes. When all
xj and yi are analyzed according to the above process, the bitwise characteristic
matrix M of E can be obtained.

To explain the operation between the bitwise characteristic matrices, a 4-bit
S-box is constructed, and the ANF is as follows

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y0 = x0,

y1 = x0 ⊕ x1,

y2 = x0 ⊕ x1x2,

y3 = 1 ⊕ x2 ⊕ x3.

The bitwise characteristic matrix of the S-box is:

MS =

⎛

⎜⎜⎝

1 0 0 0
1 1 0 0
1 ? ? 0
0 0 1 1

⎞

⎟⎟⎠ .

Let x, y, z ∈ F
4
2, and x

S→ y
S→ z. Easy to know the ANF of z is as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

z0 = y0 = x0,

z1 = y0 ⊕ y1 = x1,

z2 = y0 ⊕ y1y2 = x0 ⊕ (x0 ⊕ x1)(x0 ⊕ x1x2) = x0x1 ⊕ x1x2 ⊕ x0x1x2,

z3 = 1 ⊕ y2 ⊕ y3 = x0 ⊕ x2 ⊕ x3 ⊕ x1x2.
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Then the bitwise characteristic matrix of two rounds S-box is:

MS◦S =

⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
? ? ? 0
1 ? ? 1

⎞

⎟⎟⎠ .

The addition and multiplication between two characteristic matrices is defined
as the following tables.

Table 3. Addition

+ 0 1 ?

0 0 1 ?

1 1 0 ?

? ? ? ?

Table 4. Multiplication

× 0 1 ?

0 0 0 0

1 0 1 ?

? 0 ? ?

According to the above calculation rules, it is easy to verify that MS◦S =
MSMS . For any two n-variable vectorial boolean functions F1 and F2, it can
be deduced that

MF2◦F1 = MF2MF1 ,

note that the order of matrix multiplication needs to be consistent with the order
of function composition.

For the above 4-bit S-box, when some bits of the input difference are fixed
to be 0, some bits of the output difference can be linear combinations of the
input bits. For example, let the input difference be α = (α0, 0, 0, ?), the output
difference is β = (α0, α0, α0, ?). These linearized bits are also called undisturbed
points in [20]. The undisturbed points correspond to the determined points in
the matrix, which is similar to the idea of Cube attack [6] where the attacker
linearizes the nonlinear function by fixing some variables in the boolean function.

For a block cipher, it is difficult to find the undisturbed points, but for the
S-box, the undisturbed points can be found easily by enumerating all input
differences of the S-box. We find that most 4-bit S-boxes of lightweight block
ciphers containing undisturbed points, such as GIFT, PRESENT, PRIDE. And
some S-boxes with sizes more than 4 bits also have undisturbed points, such as
the 8-bit S-boxes of Skinny-128 and Midori-128, the 5-bit S-box of ASCON.

Since the elements of a bitwise characteristic matrix represent the correlation
between the input and output bits, the matrix and the input difference can be
multiplied to get the output difference. In order to explain the usage of the
bitwise characteristic matrix, this section we construct a simplified 8-bit Feistel
block cipher (Fig. 1), and the function F is the 4-bit S-box constructed above.
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F
⊕

L R

L′ R′

Fig. 1. A toy cipher

Men =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 0 0 0
1 1 0 0 0 1 0 0
1 ? ? 0 0 0 1 0
0 0 1 1 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, M2
en =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 0 0 0
0 1 0 0 1 1 0 0
? ? ? 0 1 ? ? 0
1 ? ? 1 0 0 1 1
1 0 0 0 1 0 0 0
1 1 0 0 0 1 0 0
1 ? ? 0 0 0 1 0
0 0 1 1 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

According to the determined points of M2
en, some bits of the output dif-

ference can be quickly calculated. For example, let the input difference be
α = (1, 1, 0, 0, 0, 0, 0, 0), then the output difference β after two rounds of encryp-
tion is

β = M2
enα =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 0 0 0
0 1 0 0 1 1 0 0
? ? ? 0 1 ? ? 0
1 ? ? 1 0 0 1 1
1 0 0 0 1 0 0 0
1 1 0 0 0 1 0 0
1 ? ? 0 0 0 1 0
0 0 1 1 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
0
0
0
0
0
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
?
?
1
0
?
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

For an SPN cipher, the linear layer can be represented by a F2 matrix and
the S-box layer can be represented by a block diagonal matrix. So the matrix
representation of a one round SPN cipher can be denoted as MP◦S = MPMS .

3.2 Description of the Contradictions

After defining the bitwise characteristic matrix, we can construct contradictions
in the middle state by exploiting the properties of the matrix representation. We
introduce two different types of contradiction: direct contradiction and indirect
contradiction.
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Direct Contradiction: This type of contradiction happens when the middle
states after encryption and decryption are obtained by directly multiplying the
input and output differences with the corresponding matrix. Let the middle
state after r0-round encryption be α1 and after r1-round decryption be β1, the
corresponding matrix representations be Mr0

en and Mr1
de, the input difference be

α and the corresponding (r0 + r1) rounds output difference be β, we have:

α1 = Mr0
en α, β1 = Mr1

de β.

If specific bits of α1 must be 1 and the same bits of β1 must be 0, or vice versa,
we can construct the direct contradiction. For convenience, we also denote the
direct contradiction as follows:

α
encryption−−−−−−−→ α1 �= β1

decryption←−−−−−−− β.

Indirect Contradiction: This type of contradiction happens when the middle
states after encryption and decryption are obtained by multiplying the differ-
ences with the corresponding matrix and looking up the DDT of S-box before
or after the matrix multiplication. If we look up the DDT only once, there are 3
different cases:

S(α)
encryption−−−−−−−→ α1 �= β1

decryption←−−−−−−− β,

α
encryption−−−−−−−→ α1 �= β1

decryption←−−−−−−− S−1(β),

α
encryption−−−−−−−→ α1

S
� β1

decryption←−−−−−−− β.

Take the first case for example. We look up the DDT of a S-box at input layer, we
should calculate Mencryption and the input of Mencryption enumerates all possi-
ble differences after the S-box. To simplify the enumeration of DDT, we can also
choose the undisturbed points and directly sum up the corresponding columns
of the bitwise characteristic matrix. Take the S-box of GIFT for example, since
the output difference must be (?, ?, 0, ?) when the input difference is (1, 1, 1, 0),
we can make the input difference be (1, 1, 1, 0) and sum up the first, second and
fourth columns in the r-round matrix representation to get the middle state of
(r + 1)-round encryption.

By indirect contradiction, we always find new and even longer impossible
differentials than direct contradiction as we can utilize all undisturbed points of
the S-box. Therefore we can easily deduce that if there is an r-round direct con-
tradiction, there must be an r-round indirect contradiction. But the efficiency of
constructing direct contradiction is usually higher than constructing the indirect
contraction. Thus we first determine the longest direct contradiction and then
search for the longer indirect contradiction. Algorithm 1 shows the processing of
searching impossible differentials with the M-method.

In the following section, we will apply our method to several block ciphers
and detail the process of finding the impossible differentials of GIFT.
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Algorithm 1. Search the impossible differential
Input: Men, Mde, DDT of the S-box
Output: the longest impossible differential
1: r1 = r2 = 1
2: while There is (r1 + r2)-round direct contradiction do
3: r1 = r1 + 1
4: Calculate Mr1

en

5: while There is (r1 + r2)-round direct contradiction do
6: r2 = r2 + 1
7: Calculate Mr2

de

8: end while
9: end while //the longest direct contradiction is r1 + r2

10: Looking up the DDT, check if there is indirect contradiction
11: if There is indirect contradiction then
12: Output the (r1 + r2 + 1)-round impossible differential
13: end if
14: if There is no indirect contradiction then
15: Output the (r1 + r2)-round impossible differential
16: end if

4 Applications from Cryptanalysis Aspects and Main
Results

4.1 GIFT-64 and GIFT-128

GIFT [2] is an SPN lightweight block cipher proposed at CHES 2017. It is com-
posed of 4-bit S-boxes and bit-wiring. The designers of GIFT revisit the design
rationale of PRESENT and improve both security and efficiency. According to
different block sizes, GIFT can be denoted as GIFT-64 and GIFT-128. Both of
them adopt the same 4-bit S-box, the specification of the S-box in hexadecimal
notation is given in Table 5.

Table 5. 4-bit S-box of GIFT

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) 1 a 4 c 6 f 3 9 2 d b 7 5 0 8 e

Firstly, we calculate the bitwise characteristic matrices of the S-box and the
results are as follows:

MS =

⎛

⎜⎜⎝

? ? ? ?
? ? ? ?
1 ? ? ?
1 1 ? ?

⎞

⎟⎟⎠ , MS−1 =

⎛

⎜⎜⎝

? 1 ? 1
? 1 1 ?
? ? ? ?
? ? ? ?

⎞

⎟⎟⎠ .
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Moreover, there are 2 other differentials of an S-box that contain undisturbed
points which can not be modelled by bitwise characteristic matrix, they are:
(0, 1, 1, 0) S→ (?, ?, 1, ?) and (1, 1, 1, 0) S→ (?, ?, 0, ?).

Then We apply the M-method to evaluate both GIFT-64 and GIFT-128.
For GIFT-64, the designers of GIFT applied the MILP-method and found

6-round impossible differentials for GIFT-64. In our method, we construct indi-
rect contradictions for 6 rounds by looking up the DDT for the first S-box layer,
the contradiction is described as follows:

S(α) PSPS−−−−→ α1 �= β1
P−1S−1P−1S−1P−1S−1

←−−−−−−−−−−−−−−−− β.

Firstly, we determine the matrix representation of 2-round encryption and 2.5-
round decryption i.e. MS◦P◦S◦P and MS−1◦P−1◦S−1◦P−1◦S−1 , respectively.

The matrix representation of a single S-box layer is a diagonal block matrix
with every sub-block on the main diagonal is the bitwise characteristic matrix of
a single S-box. Therefore, the matrix representation of a single S-box layer can
be denoted as:

MS =

⎛

⎜⎜⎝

M 0 0 0
0 M 0 0
0 0 M 0
0 0 0 M

⎞

⎟⎟⎠ , M �

⎛

⎜⎜⎝

MS 0 0 0
0 MS 0 0
0 0 MS 0
0 0 0 MS

⎞

⎟⎟⎠ .

The bit permutation can be easily transferred into a permutation matrix,
which has exactly one non-zero entry in each column and each row. So the
matrix representation of single round encryption starting at P-layer is Men �
MS◦P = MSMP . Therefore, we can calculate the matrix representation of
2-round encryption i.e. M2

en, and the matrix representation of 3-round decryp-
tion i.e. M3

de. The specification of Men, M2
en and M3

de are given in Appendix A.
According to Men and M2

en, there is no 1-entry after 2-round encryption.
Since the matrix representations of 3-round encryption and 4-round decryption
are all ?-entries, so we can only construct 5-round direct contradiction by M2

en

and M3
de at most. But we can utilize the undisturbed points which are not

contained in the matrix representation to construct an insufficient diffusion state
after 2.5-round encryption i.e. S ◦ P ◦ S ◦ P ◦ S(x).

Let the input difference only active the first S-box in the first S-box layer.
According to the undisturbed points of the S-box, let the non-zero nibble of
the input difference be (1, 1, 1, 0) i.e. the e in hexadecimal notation, the cor-
responding output difference must be (?, ?, 0, ?), which is exactly the non-zero
nibble of the input difference of S ◦ P ◦ S ◦ P (x). Hence the output difference of
2.5-round encryption can be obtained by multiply the output difference of the
first S-box layer with the M2

en. Since there is only one non-zero column in each
Ci (i = 0, 1, 2, 3), when the input difference of M2

en contains 0-entry, the output
difference must have zero nibbles. Take an example, C3 · (?, ?, ?, 0) = (0, 0, 0, 0)
and C2 · (?, ?, 0, ?) = (0, 0, 0, 0).

Let the input difference be α = (e, 0, . . . , 0) in hexadecimal nota-
tion, so the corresponding difference after 2.5-round encryption is α1 =
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M2
en · S(α) = (?, 0, ?, ?, ?, 0, ?, ?, ?, 0, ?, ?, ?, 0, ?, ?) which means there

are 4 nibbles in α1 that must be zero. Let the output difference
β be (0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), according to M3

de, the corre-
sponding difference after 3-round decryption must be β1 = M3

deβ =
(β10, β11, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?) and the nibble β10 = (1, ?, ?, ?) and
β11 = (?, 1, ?, ?) which means β1[0] = β1[5] = 1. Since the β1[5] = 1 and α1[5] = 0
are the same bit in the same sate, we construct a 6-round impossible differential
for GIFT-64 as follows:

(e, 0, . . . , 0) 6R
� (0, 0, 0, 0, 4, 0, . . . , 0).

Moreover, since the matrix representation can reveal the linear correlations
between every bit, we can construct impossible differentials activating more
S-boxes. Besides looking up the DDT of the first S-box layer, we can also look up
the DDT of the last S-box layer, which can provide more impossible differentials
by utilizing more undisturbed points. The contradictions can be denoted as:

S(α) PSPS−−−−→ α1 �= β1
P−1S−1P−1S−1P−1

←−−−−−−−−−−−−− S−1(β).

In Appendix B, we present the difference propagation of one impossible differ-
ential which activates 8 S-boxes in the first layer and 8 S-boxes in the last layer.
The 6-round impossible differential in hexadecimal notation is

(e, c, 0, 0, e, c, 0, 0, e, c, 0, 0, e, c, 0, 0) 6R
� (9, 9, 9, 9, 4, 6, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0).

For GIFT-128, the designers only claim that GIFT-128 can achieve full
diffusion after 4 rounds. According to the full diffusion state, GIFT-128 has
no 8-round truncated impossible differentials. But the impossible differentials
which consider the information of the S-box are missing in the document. At
ASIACRYPT 2020, the SAT-method only considered GIFT-64, and there is no
impossible differential cryptanalysis of GIFT-128 in other public documents.

Utilizing the indirect contradiction, we construct 7-round impossible differ-
entials for GIFT-128. The contradiction can be denoted as:

α
SPSPSP−−−−−−→ α1

S
� β1

P−1S−1P−1S−1P−1S−1

←−−−−−−−−−−−−−−−− β,

hence we need to calculate the matrix representation of 3-round encryption and
3-round decryption denoted as M3

en and M3
de respectively. And M3

en · α = α1,
M3

de · β = β1.
Firstly, we calculate the matrix representation of 3-round encryption and the

result is as follows:

M3
en =

⎛

⎜⎜⎝

D0 D0 D1 D1

D1 D1 D0 D0

D0 D0 D1 D1

D1 D1 D0 D0

⎞

⎟⎟⎠ ,
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D0 and D1 represent two different 32 × 32 matrices, which can be denoted as
two 8 × 8 block matrices:

D0 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B0 B0 B0 B0 B0 B0 B0 B0

B0 B0 B0 B0 B0 B0 B0 B0

B0 B0 B0 B0 B0 B0 B0 B0

B0 B0 B0 B0 B0 B0 B0 B0

B0 B0 B0 B0 B0 B0 B0 B0

B0 B0 B0 B0 B0 B0 B0 B0

B0 B0 B0 B0 B0 B0 B0 B0

B0 B0 B0 B0 B0 B0 B0 B0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,D1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B1 B1 B1 B1 B1 B1 B1 B1

B1 B1 B1 B1 B1 B1 B1 B1

B1 B1 B1 B1 B1 B1 B1 B1

B1 B1 B1 B1 B1 B1 B1 B1

B1 B1 B1 B1 B1 B1 B1 B1

B1 B1 B1 B1 B1 B1 B1 B1

B1 B1 B1 B1 B1 B1 B1 B1

B1 B1 B1 B1 B1 B1 B1 B1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The definitions of B0 and B1 are as follows:

B0 =

⎛

⎜⎜⎝

0 0 0 0
? ? ? ?
0 0 0 0
? ? ? ?

⎞

⎟⎟⎠ , B1 =

⎛

⎜⎜⎝

? ? ? ?
0 0 0 0
? ? ? ?
0 0 0 0

⎞

⎟⎟⎠ .

When we focus on the difference propagation through B1, the output difference
can be denoted as (?, 0, ?, 0) which might be one of {0, 2, 8, a} in hexadecimal
notation. According to the DDT of S-box, differences in {0, 2, 8, a} can never
propagate to {2, 4, 8, c}. Hence we can deduce two bit-level truncated impossible
differentials for B1, which are (?, 0, ?, 0) S

� (1, ?, 0, 0) and (?, 0, ?, 0) S
� (?, 1, 0, 0).

From the matrix representation of 3-round encryption, it is clear that if the
input difference α = e0 � (1, 0, . . . , 0), every nibble of the corresponding output
difference is one column of B0 or B1, take a example, the 15th nibble of α1 in
binary notation is α1[60 · · · 63] = (?, 0, ?, 0).

Secondly, we calculate the matrix representation of 3-round decryption M3
de.

Since the 128 × 128 matrix M3
de is too large to present even by block matrix

representation, we only depict 4 columns of the matrix. Let the output difference
after 7-round encryption active the first S-box in the last layer, so we only need
to present the first 4 columns of M3

de.

Row[0 · · · 31] = (B6, B4, B5, B7, B6, B4, B5, B7),
Row[32 · · · 63] = (B6, B4, B5, B7, B3, B4, B5, B2),
Row[64 · · · 95] = (B6, B4, B5, B7, B6, B4, B5, B7),

Row[96 · · · 127] = (B6, B4, B5, B7, B6, B4, B5, B7).

The definitions of Bi (i = 2, 3, 4, 5, 6, 7) are as follows:

B2 =

⎛

⎜⎜⎝

? 1 1 ?
? ? ? ?
0 0 0 0
0 0 0 0

⎞

⎟⎟⎠ , B3 =

⎛

⎜⎜⎝

0 0 0 0
? 1 1 ?
? ? ? ?
0 0 0 0

⎞

⎟⎟⎠ , B4 =

⎛

⎜⎜⎝

0 0 0 0
0 0 0 0
? ? ? ?
? ? ? ?

⎞

⎟⎟⎠ ,
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B5 =

⎛

⎜⎜⎝

? ? ? ?
0 0 0 0
0 0 0 0
? ? ? ?

⎞

⎟⎟⎠ , B6 =

⎛

⎜⎜⎝

0 0 0 0
? ? ? ?
? ? ? ?
0 0 0 0

⎞

⎟⎟⎠ , B7 =

⎛

⎜⎜⎝

? ? ? ?
? ? ? ?
0 0 0 0
0 0 0 0

⎞

⎟⎟⎠ .

When the output difference β = e1 � (0, 1, 0, . . . , 0) or β = e2 �
(0, 0, 1, . . . , 0), the corresponding difference β1[60 · · · 63] = (1, ?, 0, 0).

Let α = e0 and β = e1, α1[60 · · · 63] = (?, 0, ?, 0) is exactly the input differ-
ence of the 15th S-box in the fourth round and β1[60 · · · 63] = (1, ?, 0, 0) is the
output difference of the same S-box, therefore α1

S
� β1 and (α, β) � (e0, e1) is

an impossible differential.
According to the matrix representation of 3-round encryption, the 3-round

GIFT-128 dose not achieve full diffusion and the first 16 nibbles cannot influence
the 61st bit and the 63rd bit of α1. Therefore, the input difference α can at most
activate 16 S-boxes. And by looking up the DDT of the S-box in the last round,
we can investigate more linear properties which make the output difference can
at most activate 8 S-boxes and we present one of them in Appendix C.

4.2 Other Block Ciphers

By Algorithm 1, we also make applications to many other block ciphers. Due to
the limitation of the page size, we only present the new impossible differentials
found by M-method.

For PRIDE, an 64-bit block cipher proposed at CRYPTO 2014, we find the
first 5-round impossible differentials and there are only indirect contradictions
for 5-round PRIDE, one of which is as follows:

S(α) PSPS−−−−→ α1 �= β1
P−1S−1P−1

←−−−−−−−− S−1(β).

One of the impossible differentials is as follows:

(0, 0, 8, 0, 0, 1, 0, 0, 8, 0, 8, 0, 7, 0, 0, 0)
5R
� (0, 0, 0, β0, 0, 0, 0, β1, 0, 0, β2, 0, 0, 0, β3, 0).

βi ∈ F
∗
24 (i = 0, 1, 2, 3), therefore the input difference activates 5 S-boxes and the

output difference activates 4 S-boxes.
For Pyjamask, one of the 2nd round candidates of the NIST lightweight

cryptography project, the block size has two different versions i.e. 96-bit and
128-bit. As Pyjamask adopts complex binary matrices to be the linear compo-
nent and LS-design, it can achieve full diffusion in 2 rounds which means there
is no 4-round truncated impossible differentials. For Pyjamask-96, taking into
consideration the information of the S-box, we construct 4-round impossible dif-
ferentials by indirect contradiction. And our impossible differentials surpass the
previous results which cover only 3 rounds. The contradiction for Pyjamask-96
is as follows:

S(α) PSP−−−→ α1 �= β1
S−1P−1

←−−−−− S−1(β).
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One of the impossible differentials in Octal notation is as follows:

(6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 4R
�

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, β0, 0, 2, 0, 0, 0, β1, 0, 0, 0),

βi ∈ F
∗
23 (i = 0, 1), therefore the input difference activates 1 S-boxes and the out-

put difference activates 3 S-boxes. For Pyjamask-128, we can only find 3-round
impossible differentials by direct contradictions and we construct an impossible
differential which activate 13 input S-boxes and 21 output S-boxes. And the
impossible differential is as follows:

(9, 0, 0, 9, α0, 0, 0, α1, 0, α2, 2, α3, 0, 0, 0, 0, 2, 0, 1, 0, 2, α4, 0, 0, 0, 0, 0, α5, 0, α6, 0, 0)

4R
� (β0, 0, β1, β2, β3, β4, 0, β5, β6, 0, β7, β8, 0, 0, 0, 0, β9, 0, 0, β10, β11, 0, 0, β12, β13,

β14, β15, β16, β17, β18, 0, β19) αi, βi ∈ F
∗
24 .

For ASCON, one of the finalists of the NIST lightweight cryptography
project, the block size is 320 bits and the S-box size is 5 bits, we construct
new 5-round impossible differentials by indirect contradictions. One of the con-
tradictions is as follows:

S(α) PSPSP−−−−−→ α1 �= β1
S−1P−1S−1

←−−−−−−−− β.

And one of the 5-round impossible differentials in hexadecimal notation is as
follows:

(0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 4, 0, 0, 0, 0, 7, 0, 0, 0, α0, f, 0, 0, 0, 0, 0, 0, 0, 0, c, 0, 0,

13, 0, 0, c, 0, 0, 0, 8, 0, 0, c, 0, 0, 0, 0, 0, 0, c, 0, 0, 0, 0, 0, 0, 0, 13, 0, 0, α1, 1c)
5R
� (0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, β0, 0, · · · , 0) αi, βi ∈ F
∗
25 .

For RECTANGLE, a 64-bit lightweight block cipher, we construct new
8-round impossible differentials by indirect contradictions. One of the contra-
dictions is as follows:

S(α) PSPSPSP−−−−−−−→ α1 �= β1
S−1P−1S−1P−1S−1P−1

←−−−−−−−−−−−−−−−− S−1(β).

And one of the 8-round impossible differentials in hexadecimal notation is as
follows:

(0, 0, 0, 0, 5, 0, 0, c, 0, 0, 0, 0, 0, 0, 0, 0) 8R
� (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 6, 0, 0, 0).

For PRESENT, a 64-bit block cipher proposed at CHES 2007, we construct
new 6-round impossible differentials by indirect contradictions. One of the impos-
sible differentials is as follows:

(9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9) 6R
� (5, 5, 5, 5, 5, 1, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5).
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5 Conclusion

In this paper, we defined the bitwise characteristic matrix and applied it to
search for impossible differentials. By iterating the matrix to represent r-round
block ciphers, we improve the efficiency of searching. Moreover, the M-method
can easily model block ciphers with block sizes more than 256 bits and reveal
the positions of the contradictions. And the matrix multiplication defined in
this paper can function with low time and memory complexity. As a result, we
find new impossible differentials for some block ciphers including the 7-round
impossible differentials for GIFT-128, the 5-round impossible differentials for
PRIDE, and the 4-round impossible differentials for Pyjamask-96.

Although M-method has some advantages, there are still some limitations
which are also the targets of our future works. The first one is to make our
method cover more cryptanalysis techniques such as linear cryptanalysis and
more block cipher structures such as ARX. The second one is to make our
method containing more details of the block ciphers including the key schedule.
The last but not least is to apply our method to optimize the key recovery
phases.

A The Matrix Representations of GIFT-64

Because of the page size, we can only represent each bitwise matrix as a block
matrix and the dimension of each sub-block is equal to the size of the S-box,
and the sub-block 0 in the matrix denotes a 4 × 4 matrix with all 16 entries are
0, the sub-block ? denotes a sub-block with all entries are ?.

Men =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A1 A2 A3 A0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 A1 A2 A3 A0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 A1 A2 A3 A0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 A1 A2 A3 A0

A2 A3 A0 A1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 A2 A3 A0 A1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 A2 A3 A0 A1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 A2 A3 A0 A1

A3 A0 A1 A2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 A3 A0 A1 A2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 A3 A0 A1 A2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 A3 A0 A1 A2

A0 A1 A2 A3 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 A0 A1 A2 A3 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 A0 A1 A2 A3 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 A0 A1 A2 A3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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M2
en =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0

C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1

C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2

C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3

C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0

C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1

C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2

C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3

C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0

C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1

C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2

C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3

C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0

C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1

C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2

C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

M3
de =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

R1 ? ? ? R0 ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? R1 ? ? ? R0 ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? R1 ? ? ? R0 ? ? ?

R0 ? ? ? ? ? ? ? ? ? ? ? R1 ? ? ?

? ? ? R1 ? ? ? R0 ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? R1 ? ? ? R0 ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? R1 ? ? ? R0

? ? ? R0 ? ? ? ? ? ? ? ? ? ? ? R1

? ? R1 ? ? ? R0 ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? R1 ? ? ? R0 ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? R1 ? ? ? R0 ?
? ? R0 ? ? ? ? ? ? ? ? ? ? ? R1 ?

? R1 ? ? ? R0 ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? R1 ? ? ? R0 ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? R1 ? ? ? R0 ? ?
? R0 ? ? ? ? ? ? ? ? ? ? ? R1 ? ?

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

A0 �

⎛
⎜⎝

? 0 0 0
? 0 0 0
1 0 0 0
1 0 0 0

⎞
⎟⎠ , A1 �

⎛
⎜⎝

0 ? 0 0
0 ? 0 0
0 ? 0 0
0 ? 0 0

⎞
⎟⎠ , A2 �

⎛
⎜⎝

0 0 ? 0
0 0 ? 0
0 0 ? 0
0 0 1 0

⎞
⎟⎠ , A3 �

⎛
⎜⎝

0 0 0 ?
0 0 0 ?
0 0 0 ?
0 0 0 ?

⎞
⎟⎠ , R1 �

⎛
⎜⎝

? ? ? ?
? 1 1 ?
? ? ? ?
? ? ? ?

⎞
⎟⎠ ,

C0 �

⎛
⎜⎝

? 0 0 0
? 0 0 0
? 0 0 0
? 0 0 0

⎞
⎟⎠ , C1 �

⎛
⎜⎝

0 ? 0 0
0 ? 0 0
0 ? 0 0
0 ? 0 0

⎞
⎟⎠ , C2 �

⎛
⎜⎝

0 0 ? 0
0 0 ? 0
0 0 ? 0
0 0 ? 0

⎞
⎟⎠ , C3 �

⎛
⎜⎝

0 0 0 ?
0 0 0 ?
0 0 0 ?
0 0 0 ?

⎞
⎟⎠ , R0 �

⎛
⎜⎝

? 1 1 ?
? ? ? ?
? ? ? ?
? ? ? ?

⎞
⎟⎠ .
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B New 6-Round Impossible Differential for GIFT-64
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Fig. 2. 6-round impossible differential for GIFT-64

(e, c, 0, 0, e, c, 0, 0, e, c, 0, 0, e, c, 0, 0) 6R
� (9, 9, 9, 9, 4, 6, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0)

The blue lines mean the bit must be 1 according to DDT of the S-box, the orange
lines mean the value of the bit cannot be determined. And the following figures
adopt the same notation.
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C 7-Round Truncated Impossible Differential
for GIFT-128

Fig. 3. 7-round truncated impossible differential

(α[0 · · · 64]||064) 7R
� (6, 0, 4, 0, 6, 0, 6, 0, . . . , 0︸ ︷︷ ︸

17

, 5, 0, 5, 0, 5, 0, 5, 0)

In Fig. 3, the left side denotes the 128-bit output difference and the right side
denotes the 128-bit input difference. The difference propagation in the yellow
S-box is a contradiction and the specification is given in Fig. 4.

Fig. 4. Specification of the contradiction
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Abstract. A commitment scheme is a fundamental protocol and an
essential component of basic cryptographic tasks, such as zero-knowledge
identification. In recent years, lattice-based cryptography has been inten-
sively studied owing to its potential to be promising post-quantum cryp-
tography. Therefore, the commitment schemes based on lattice assump-
tion have been studied for practical applications. Typically, many appli-
cations require to commit arbitrary vectors rather than only short ones.
In order to send such large messages, one of a crucial challenges of com-
mitment schemes is to increase the size of a message string. Various
existing studies have been done to enlarge the size of a message string so
far. Baum et al. constructed the commitment scheme, which can allow
sending large message size in 2018. However, the domain available for
message string is still being used for non-message purposes.

In this paper, by improving Baum et al.’s commitment scheme, we
propose a commitment scheme that can send a larger message size than
Baum et al.’s message string size. Furthermore, we prove that the hid-
ing property of our commitment scheme is based on the hardness of the
decisional knapsack problem, and the binding property is based on the
hardness of the module small-integer solution problem. We also show how
to achieve a statistically hiding commitment scheme by setting appro-
priate parameters.

Keywords: Commitment scheme · Hash function · Lattice-based
protocol

1 Introduction

Commitment scheme, such as zero-knowledge proofs [6], which is executed
between two parties (i.e., a sender and a receiver) through commitment and
decommitment phases, is an essential component of the cryptographic scheme.
In the commitment phase, the sender changes a message string into a commit-
ment string and sends it to the receiver. Then, in the decommitment phase, the
sender sends decommitment string, where the message is included; this allows
c© Springer Nature Switzerland AG 2021
R. Deng et al. (Eds.): ISPEC 2021, LNCS 13107, pp. 90–105, 2021.
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the receiver to verify whether the commitment string was, in fact, generated from
the message or not. The security of a commitment scheme is formalized based
on the following two properties: hiding property and binding property [9,11].
The hiding property guarantees that no receiver can receive partial information
of the messages before the decommitment phase. Simultaneously, the binding
property ensures that no sender can make more than two decommitment strings
for one commitment string.

1.1 History of Commitment Scheme

The notion of a commitment scheme with a one-way function was constructed
by Blum in 1982 [3]. However, Blum did not present a concrete design to achieve
the commitment scheme. Whereas, a concrete design was proposed later on [3].
A commitment scheme based on the hardness of factoring was introduced by
Goldwasser et al. [10] in 1988. Pedersen introduced a commitment scheme based
on discrete logarithm problem in 1991; further, a commitment scheme based
on collision resistance hash function (Message Digest) was introduced by Halevi
et al. in 1996. The study on commitment schemes has received considerable
attention from the research community because the commitment scheme is a key
tool for designing cryptographic protocols; they also have numerous applications
(e.g. threshold encryption [8], and electronic voting [4]). In particular, when
combined with zero-knowledge proofs, they can enforce “good” behavior by
adversarial parties and enhance the security of design protocols against malicious
attacks [1].

1.2 Lattice-Based Commitment Schemes

On the contrary, lattice-based cryptography has been extensively studied over
the past several years since the quantum computer is believed to break the dis-
crete logarithm and factoring problems in polynomial time. In 2008, Kawachi
et al. constructed the first lattice-based commitment scheme [12]. This com-
mitment scheme is based on the short integer solution (SIS) problem where one
commits to vectors over Z2. However, the message space is restricted to vectors of
the small norm; otherwise, the binding property is lost, such as restriction is not
observed in the standard cryptographic commitment scheme based on discrete
logarithm or factoring problems, where the message space means a domain of
messages that can be committed. Consequently, several studies have attempted
to remove the restriction of the message space in the lattice-based commitment
scheme.

In 2015, Benhamouda et al. constructed a commitment scheme based on a
ring-learning with errors (LWEs) problem [2]. This commitment scheme removes
some restrictions in the message space. However, the available size of the message
string is only one bit. Thus, a 1-bit message string is expected to be extended
to a large size of a commitment string.

In 2018, Baum et al. constructed a commitment scheme based on the knap-
sack problem [1]. They constructed a commitment scheme with the message
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space Rl
q, (where Rq is a residue ring of a polynomial ring Rq = Zq[X]/〈XN +1〉).

Thus, their commitment scheme can commit an arbitrary vector over Rl
q which is

bigger than one bit [2]. However, their commitment scheme requires n zeroes to
be appended to the message string in order to reduce the security to SKS2

n,k,β .
Thus, the size of a commitment string is exactly extended from that of a message
string.

We define a new notion of extension ratio in a commitment scheme as

“(size of commitment string)/(size of message string)”.

Then, in other words, the “optimal for message string size” commitment scheme
satisfies the extension ratio of

(size of commitment string)/(size of message string) = 1

Based on this new notion, Baum et al.’s commitment scheme is not “optimal
for message space”. We call an optimal message space commitment scheme as
message-restriction-free commitment scheme.

1.3 Our Contribution

In this paper, we propose a message-restriction-free commitment scheme by
improving the lattice-based commitment scheme in [1].

In [1], a message vector x ∈ Rm−n
q is committed to a commitment string

cBDLOP
m−n,m(x, r) for a public parameter A ∈ Rm×k

q , random vector r ∈ Sk
β , and a

positive integer n. Their scheme is expressed as follows, specifying the domain
of message string and that of commitment string:

cBDLOP
m−n,m(x, r) = A · r +

[
0n

x

]
.

Note that their protocol satisfies the binding property under SKS2
n,k,β and that

the hiding property under DKS∞
m,k,β .

On the other hand, in our commitment scheme, a message vector x ∈ Rm
q is

committed to a commitment string cm,m(x, r) ∈ Rm
q for a public parameter A ∈

Rm×k
q , random vector r ∈ Sk

β , and a positive integer n. Our scheme is expressed
as follows, specifying the domain of message string and that of commitment
string:

cm,m(x, r) = A · r + x.

As a result, our commitment scheme is optimal for a message space since it
satisfies that the expansion ratio equals 1. Note that our protocol satisfies the
binding property under Module Small Integer Solution(M − SISq,m,m+k,γ) and
that the hiding property under Decisional Knapsack Problem(DKS∞

m,k,β). We
also show how to achieve a statistically hiding commitment scheme by using our
proposed commitment scheme.

The remainder of this paper is organized as follows. Section 2 summarizes
commitment scheme and lattice-based problem. Section 3 describes building
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blocks of our construction. Then, we present our commitment scheme in Sect. 4.
We also make comparison between our commitment scheme and other related
commitment schemes in Sect. 5. Finally, we conclude our work in Sect. 6.

2 Preliminaries

In this section, we explain definitions of commitment scheme, hash functions,
etc., after summarizing notations used in this paper.

– 1k : security parameter
– Sender : sender
– Receiver : receiver
– com : commitment string
– dec : decommitment string
– message space : a domain of messages that can be committed
– m : security parameter used in the proposed commitment scheme
– ε(k) : negligible function in k
– PP : public parameter
– PPT : probabilistic polynomial time
– ⊥ : rejection output by R for invalid inputs
– Hw(x) : Hamming weight of x and called Hamming weight
– Δ(x) : The ratio of “1”s in x and called relative Hamming weight
– Com : commitment scheme
– N : set of natural numbers
– q : prime number
– N(= 2r) : degree of polynomial rings
– F2 : prime field with characteristic 2
– In each f ∈ R, let f = ΣifiX

i and
• l1 : ||f ||1 = Σi |fi|
• l2 : ||f ||2 =

(
Σi|fi|2

)1/2

• l∞ : ||f ||∞ = max|fi|
i

– ζn : primitive n-th root of unity
– In : Identity matrix with n × n
– R = Z[X]/〈XN + 1〉
– Rq = Zq[X]/〈XN + 1〉
– Sβ : Set of all elements x ∈ R with l∞-norm at most β
– C : A subset of S1 from which challenges come from
– κ : The maximum l1 norm of any element in C
– C = {c ∈ Rq s.t. ||c||∞ = 1, ||c||1 = κ}
– σ = 11 · κ · β · √

k · N : Standard deviation used in the zero-knowledge proof

We define a commitment scheme, which follows [5].



94 H. Miyaji et al.

Definition 1 (Commitment Scheme).
A commitment scheme, Com(Sender,Receiver), is a two-phase protocol between
two probabilistic polynomial-time parties Sender and Receiver, which are called
the sender and receiver, respectively.

During the first phase (commitment phase), Sender commits to a message
string a to a pair of keys (com, dec), by executing (com, dec) ←− Sender(1k, PP ).
Then, Sender sends com (commitment string) to Receiver.

During the second phase (decommitment phase), Sender sends the keys
dec (decommitment string) with a to Receiver. Then, Receiver verifies whether
the decommitment string is valid by executing Receiver(com, dec). If invalid,
Receiver(com, dec) outputs a special string, ⊥, meaning that Receiver rejects the
decommitment of Sender. Otherwise, Receiver(com, dec) can efficiently compute
the string a revealed by Sender, and verifies whether a was indeed chosen by
Sender during the first phase.
Consider the following three algorithms KeyGen, Commit, Decommit, which
have 1λ as implicit input:

– Keygen: A PPT algorithm that outputs the public parameters PP ∈
{0, 1}poly(λ) containing a definition of the message space M

– Commit: A PPT algorithm that, on input the public parameters PP and a
message x ∈ M outputs values c, r ∈ {0, 1}poly(λ)

– Decommit: A deterministic polynomial-time algorithm that, on input the pub-
lic parameters PP, a message x ∈ M and values c, r ∈ {0, 1}poly(λ) outputs a
bit b ∈ {0, 1}
The following provides security notions of the commitment scheme Com(S,R).

Definition 2 (Computational Binding Property [1]). Let a ∈ M as mes-
sage string, c as a commitment string and Adv as a PPT adversary. The com-
mitment scheme satisfies binding property if the following equation satisfies.

Pr

⎡
⎣Adv(PP ) → (a, a′, c) :

s.t. a 	= a′ ∧ keygen → PP
Decommit(PP, a, c) = Decommit(PP, a, c) = 1

⎤
⎦ < ε(k)

Next, we define the computational hiding property of a commitment scheme.

Definition 3 (Computational Hiding Property [11]). Let PPT receiver
Receiver and Receiver is given a1,a2 ∈ M. We say the commitment scheme
satisfies computational hiding property if the following satisfies

|Pr [Receiver(a1) = 1] − Pr [Receiver(a2) = 1]| < ε(k)

Next, we define the security assumption which we rely on. We define the
collision-resistance of a hash function in Definition 4.
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Definition 4 (Collision-Resistance). We have an arbitrary probabilistic poly-
nomial algorithm, Adv, given a description of the hash function and length
parameter as inputs. If the probability of Adv that outputs x, x′ ∈ {0, 1}k satis-
fying x 	= x′ and f(x) = f(x′) is negligible, the function is a collision-resistant
hash function.

Pr[Adv(f, 1k) → (x, x′) s.t. x 	= x′, f(x) = f(x′)] < ε(k).

From now on, we will define the security assumption which we use to prove
hiding property or binding property. We define the Ring-SIS problem (M −
SISq,m,m+k,γ) in Definition 5

Definition 5 (M − SISq,m,m+k,γ(Module Small Integer Solution Prob-
lem) [7]). The M − SISq,m,m+k,γ problem (over an implicit ring R) is defined
as follows. Given A′ ∈ R

m×(m+k)
q sampled uniformly at random, find z ∈ Rm+k

such that A′z = 0 and 0 < ||z||2 ≤ γ.

Next we define the Search Knapsack Problem in Definition 6

Definition 6 (SKS2
n,k,β(Search Knapsack Problem))[1]). The SKS2

n,k,β

problem is to find a short vector y ∈ Sk
β satisfying [In A′] · y = 0n when given a

random A′ ∈ R
n×(k−n)
q . SKS2

n,k,β problem asserts that for every efficient algo-
rithm Adv, the probability given by

Pr [||yi||2 ≤ β ∧ [In A′] · y = 0n|A′ ← Rn×(k−n)
q ;

0 	= y =

⎡
⎢⎣

y1
...

y2

⎤
⎥⎦ ← Adv(A′)] ≤ ε

Next, we define Decisional Knapsack Problem in Definition 7.

Definition 7 (DKS∞
m,k,β(Decisional Knapsack Problem) [1]). The

DKS∞
m,k,β problem is to distinguish whether the distribution [Im A′] · y from

the uniform distribution, for a short y = (y1, . . . , yk) ∈ Sk
β , A′ ∈ R

m×(k−m)
q and

identity matrix Im. DKS∞
m,k,β problem asserts that for every efficient algorithm

Adv, the probability given by

| Pr
[
b = 1 A′ ← Rm×(k−m)

q ;y ← Sk
β ; b ← Adv(A′, [Im A′] · y)

]

−Pr
[
b = 1 A′ ← Rm×(k−m)

q ;u ← Rm
q ; b ← Adv(A′,u)

]
|< ε(n).

3 Related Works

In this section, we explain a commitment scheme used in [1] which we call
ComBDLOP. We also explain how to achieve a statistically hiding commitment
scheme by using DKS∞

m,k,β .
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3.1 Commitment Scheme with Lattice Based Structure

The commitment scheme is constructed using algorithms of Keygen, Commit,
Decommit.
ComBDLOP(S,R):
Keygen
Public parameter A1 ∈ Rn×k

q and A2 ∈ Rl×k
q from Eq. (1) and (2).

A1 = [In A′
1], where A′

1 ← Rn×(k−n)
q (1)

A2 = [0l×n I� A′
2], where A′

2 ← Rl×(k−n−l)
q (2)

Commitment Phase by Sender
For a message string x ∈ Rl

q, choose a random string r ∈ Sk
β , and construct the

commitment string from (x, r) as

cBDLOP
m−n,m(x, r) =

[
A1
A2

]
· r +

[
0n

x

]
.

Decommitment Phase from Sender to Receiver

1. Sender sends a decommit string (x′, r′) ∈ Rl
q × Sk

β as dec to Receiver.
2. Receiver computes

cBDLOP
m−n,m(x′, r′) =

[
A1
A2

]
· r +

[
0n

x

]

from dec = (x′, r′) and verify cBDLOP
m−n,m(x, r) = cBDLOP

m−n,m(x′, r′).
3. Receiver outputs x if it satisfies cBDLOP

m−n,m(x, r) = cBDLOP
m−n,m(x′, r′) and that for

all i, ||ri||2 ≤ 4 · σ · √
N . Otherwise, Receiver outputs ⊥.

The computational binding property and computational hiding property in
ComBDLOP follow from Lemmas 1 and 2. We only describe their lemmas without
proof.

Lemma 1 ([1]). If there is an algorithm Adv who can break the hiding of
ComBDLOP with probability ε, then there is an algorithm Adv’ who can solve
the DKSm,k,β problem where m = n + l with an advantage ε.

Lemma 2 ([1]). If there is an algorithm Adv who can break the binding of
ComBDLOP with probability ε, then there is an algorithm Adv’ who can solve
the SKS2

n,k,β problem where m = n + l with an advantage ε.

They also pose very interesting conditions, where DKS∞
m,k,β and SKS2

n,k,β

problems can be transformed into unconditionally hard. Since our method uses
DKS∞

m,k,β , we can also use the conditions of DKS∞
m,k,β posed by them, which

is shown in the following Lemma 3.
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Lemma 3 ([1]). Let 1 < d < N be a power of 2. If q is a prime congruent to
2d + 1 (mod 4d) and

qn/k · 2256/(k·N) ≤ 2β <
1√
d

· q1/d

then any (all-powerful) algorithm A has advantage at most 2−128 in solving
DKS∞

m,k,β.

4 Proposed Commitment Scheme

In this section, we propose a message-restriction-free commitment scheme Com
and prove its computational hiding property and computational binding prop-
erty by DKS∞

m,k,β and M − SISq,m,m+k,γ , respectively. We also show how to
achieve a statistically hiding scheme by using Lemma 3.

We first revisit the commitment scheme ComBDLOP in Subsect. 4.1. We then
show our proposed commitment scheme Com in Subsect. 4.2 and prove its com-
putational binding property and computational hiding property in Subsect. 4.3.
Finally, we propose a commitment scheme Com based on unconditionally hard
DKS∞

m,k,β problem in Subsect. 4.4 and prove our proposed commitment scheme
Com also satisfies statistical hiding property.

4.1 (Optimal) Extension Ratio

We define properties of message-restriction-free rigorously to be considered in a
commitment scheme, and then discuss how ComBDLOPis far from the property.

Definition 8 (Message-Restriction-Free Commitment Scheme). For a
commitment scheme, Com(Sender,Receiver), the extension ratio ER of commit-
ment string to message string is defined as

ER = |size of commitment string|
|size of message string| .

If Com(Sender,Receiver) satisfies ER = 1, we call Com(Sender,Receiver) as
message-restriction-free commitment scheme.

Now we revisit ComBDLOP in Sect. 3, in which 
 message string x is embed-

ded into L =
[

0n

x

]
, and the size of commitment string becomes n + 
. Thus,

ComBDLOP satisfies

ER = n + 




> 1.

Unfortunately, the size of n, independent to a message x, cannot be reduced
because its security relies on SKS2

m,k,β . In other words, the size of the commit-
ment string is exactly expanded than that of the message string in ComBDLOP.

Our target commitment scheme which satisfies ER = 1.
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4.2 Proposed commitment scheme

We present our message-restriction-free commitment scheme, which consists of
three algorithm, Keygen, Commit, and Decommit as follows.
Com(S,R):
Keygen
Construct the public parameter A1 ∈ Rn×k

q and A2 ∈ R�×k
q from the following

Eqs. (3) and (4).

A1 = [In A′
1], where A′

1 ← Rn×(k−n)
q , (3)

A2 = [0l×n I� A′
2], where A′

2 ← R�×(k−n−�)
q . (4)

We denote the pubic parameter PP = A where A =
[

A1
A2

]
∈ Rm×k

q .

Commitment Phase by Sender

1. Choose a message string x ∈ Sm
β and a random string r ∈ Sk

β where m = n+
.

2. Set z =
(
r
x

)
where a message string x ∈ Sm

β and a random string r ∈ Sk
β

which satisfies ||ri||2 ≤ 4 · σ · √
N .

3. Construct a commitment string from (x, r) as

cm,m(x, r) =
[

A1
A2

]
· r + x.

Decommitment Phase from Sender to Receiver

1. Sender sends decommit string (x′, r′) ∈ Sm
β × Sk

β as dec to Receiver.
2. Receiver Computes

cm,m(x′, r′) = A · r′ + x′

from dec = (x′, r′) and verify cm,m(x, r) = cm,m(x′, r′).
3. If it satisfies cm,m(x, r) = cm,m(x′, r′) and ||ri||2 ≤ 4·σ ·√N , Receiver outputs

x. Otherwise, Receiver outputs ⊥.

In our protocol, the following ratio holds.

ER = |size of commitment string|
|size of message string| = m

m
= 1.

In the following Subsection, we prove the computational binding and hiding
properties of the proposed commitment scheme.
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4.3 Binding and Hiding Properties of Proposed Commitment
Scheme

We prove the computational hiding property in Theorem 1 and its computational
binding property in Theorem 2.

Theorem 1. For any x,x′ ∈ Sm
β , let k be the length of a random number r ∈ Sk

β ,
let A · r + x where m = n + l. If there exists an algorithm Adv that has an
advantage ε in breaking the hiding property of the commitment scheme Com,
then there exists another algorithm Adv’, that runs in the same time and has
advantage ε in solving the DKS∞

m,k,β.

Proof: We first assume that an Adv exists, which breaks the computationally
hiding property of the proposed commitment scheme. Then we show how the
other Adv’ tries to break DKS∞

m,k,β problem.
The Adv’ get the value (B, t) = Rn

q × Sk
β from the DKS∞

m,k,β Challenge.
If Adv’ can identify whether t is distributed from uniform distribution or the
DKS∞

m,k,β distribution in polynomial time, Adv’ can break DKS∞
m,k,β problem

in polynomial time. In here, B can be express as

[In+� B′]

where B′ constructed from B′ ∈ R
m×(k−n−l)
q . Next, Adv’ computes the matrix

A ∈ Rm×k
q which is a public parameter. The matrix A ∈ Rm×k

q is composed by
a matrix R ∈ Rn×l

q , identity matrices In and I�, and a matrix B in Eq. (5).

A =
[

In R
0l×n I�

]
· B (5)

Next, we denote how Adv’ computes the commitment string. Adv’ receive
x0,x1 ∈ Sm

β and choose either one and let xb. Then, computes c from Eq. (6).

c =
[

In R
0l×n I�

]
· t + xm

b (6)

Adv’ sends c to Adv. After Adv get the value c, he tries to guess xb and choose
b′ ∈ [0, 1]. If the probability of guessing b′ is larger than ε, then Adv can identify
the value c as a commitment string since we assume that Adv can break the
hiding property of the commitment scheme.

If t = B · r, then c can be express as follow.

c =
[

In R
0�×n I�

]
· [

In+� B′ ] · r + xm
b

= A · r + xm
b (7)

Consequently, Adv can distinguish c as commitment string in probability ε. The
probability to identify b = b′ is

Pr[b = b′] = 1
2 + ε.
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On the other hand, when t 	= B · r, the value c cannot be expressed as Eq. 7.
Consequently, the probability to identify b′ can be express as

Pr[b = b′] = 1
2

because c distinguish as a random value by Adv. In other words, the probability
that Adv outputs b′ can be arranged as follows.

– Pr[b = b′] = 1/2 + ε s.t. t 	= U
– Pr[b = b′] = 1/2 s.t. t = U

Therefore, Adv’ can distinguish whether t is distributed from uniform distribu-
tion or DKS∞

m,k,β distribution in advantage ε when Adv can break the hiding
property in Com. �
From Theorem 1, our proposed commitment scheme Com satisfy the computa-
tionally hiding property under the DKS∞

m,k,β problem.
Next, we prove the computational binding property of the proposed commit-

ment scheme in Theorem 2.

Theorem 2. For any x,x′ ∈ Sm
β , let k be the length of a random number r ∈ Sk

β ,
let A ∈ Rm×k

q as a public parameter, and m be the output length of A·r+x where
m = n + l. If there exists an algorithm Adv that has an advantage ε in breaking
the binding property of the commitment scheme which satisfies γ =

√
(m + k)·β.

Then there exists another algorithm Adv’, that runs in the same time and has
an advantage ε in solving the M − SISq,m,m+k,γ.

Proof: We assume that an Adv exists that can break the computational biding
property of the proposed commitment scheme. Then, another adversary Adv’,
tries to break the M − SISq,m,m+k,γ problem.

Adv’ get the value A =
[

A1
A2

]
∈ Rm×k

q from the M − SISq,m,m+k,γ challenge. If

the Adv’ can find the value z which satisfy A · z = 0 and ||z||2 ≤ √
(m + k) · β

in polynomial time, then Adv’ can break the M − SISq,m,m+k,γ problem in
polynomial time.
Adv’ sends A to Adv which is the public parameter in binding property of the
commitment scheme. Adv outputs

(x, r) ∈ Sm
β × Sk

β

which satisfy A · r + x = 0. Let Im as identity matrix with m × m. Then, Adv
can gain the below equation

A · r + x = 0

[A Im] ·
[
r
x

]
= 0.
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Set A′ and z as A′ = [A Im] and z =
[
r
x

]
. Adv’ can find A′ · z = 0 since the

matrix satisfies A′ ∈ R
m×(m+k)
q and z satisfies ||z||2 ≤ √

(m + k) · β. Therefore,
Adv’ can break the M − SISq,m,m+k,γ problem if another adversary can break
the binding property of the commitment scheme. �
From Theorem 2, our proposed commitment scheme satisfy the computationally
binding property under the M − SISq,m,m+k,γ problem.

4.4 Unconditional Hardness of the DKS∞
m,k,β Problem

In this subsection, we propose our commitment scheme satisfies statistical hid-
ing property when some ranges of parameters in DKS∞

m,k,β problem becomes
unconditionally hard. Before showing the conditions on the parameters of the
DKS∞

m,k,β problem for which the proposed commitment scheme Com is statis-
tically hiding, we need to explain how to parse the statistical distance. We use
the modified version of the leftover hash lemma, proved by Regev in 2009. We
explain a modified version of the leftover hash lemma in Lemma 4.

Lemma 4 (Special version of the leftover hash lemma [13]). Let G be a
finite Abelian group and let 
 be a positive integer. For any 
 elements, g1, ...., g� ∈
G, consider the statistical distance between the uniform distribution on G and
the distribution given by the sum of a random subset of g1, ...., g�. Then, the
expectation of this statistical distance over a uniform choice of g1, ...., g� ∈ G
is at most

√|G|/2�. In particular, the probability that this statistical distance is
more than 4

√|G|/2� is at most 4
√|G|/2�.

By using Lemma 4 and Lemma 3, the statistical hiding property of the pro-
posed commitment scheme Com can be shown in Theorem 3.

Theorem 3. Let 1 < d < N be a power of 2, let k be the length of a random
number r ∈ Sk

β , and m be the output length of Com, and let G as G = Rm
q . If q

is a prime congruent to 2d + 1 (mod 4d) and satisfies

qm/k · 22m/(k·N) ≤ β <
1√
d

· q1/d,

then any (all-powerful) algorithm A has advantage at most 2−m in solving
DKS∞

m,k,β.

Proof: Let Com as the commitment scheme

Com = {hA′ : Sk
β → Rm

q } where
hA′(y) = [In A′] · y.

Let g = (g1, . . . , gk). For h ∈ G, we define

Pg(h) = 1
βkN

∣∣∣∣∣
{
y ∈ Sk

β |
k∑

i=1
yigi = h

}∣∣∣∣∣ .
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The statistical distance between the distribution (A′, hA′(y)) and the uniform
distribution can be express as

Exp
g

⎡
⎣ ∑
h∈Rn

q

|Pg(h) − |1/G||
⎤
⎦ . (8)

Then, the Eq. (8) can be parsed as

Exp
g

⎡
⎣ ∑

h∈Rm
q

∣∣Pg(h) − 1/qmN
∣∣
⎤
⎦ ≤

√
qmN

βkN
(9)

from Lemma 4 and |G| = qmN . We parse the Eq. (9) as

log

√
qmN

βkN
= 1

2 log
(

qmN

βkN

)
= 1

2
{

log qmN − log βkN
}

= 1
2 {m · N · log q − k · N · log β} (10)

On the other hand, the condition qm/k · 22m/(k·N) ≤ β can be parsed as Eq. (11)

k · N · log β > m · N · log q + 2m

−k · N · log β < −m · N · log q − 2m. (11)

Equation (10) can be parsed as Equation (12) from Eq. (11).
1
2 {m · N · log q − k · N · log β} <

1
2 {m · N · log q − m · N · log q − 2m}

= 1
2 {−2m} = −m. (12)

Therefore, the statistical distance between the distribution (A′, hA′(y)) and the
uniform distribution can be parsed as

Exp
g

⎡
⎣ ∑
h∈Rm

q

∣∣Pg(h) − 1/qmN
∣∣
⎤
⎦ ≤

√
qmN

βkN
< 2−m.

�
From Theorem 3, we can prove that our commitment scheme satisfies statistical
hiding property under DKS∞

m,k,β problem.
Theorem 4. Our proposed commitment scheme Com is statistically hiding
under

qm/k · 22m/(k·N) ≤ β <
1√
d

· q1/d,

based on the DKS∞
m,k,β problem, and computationally binding based on the M −

SISq,m,m+k,γ problem.
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5 Comparison of the Commitment Schemes
In this section, we compare the commitment schemes. We define commitment
scheme ComBKLP which we introduced in Subsect. 1.2, where proposed by Ben-
hamouda et al. in 2015 [2]. In ComBKLP, a message vector x ∈ Rq is committed
to a commitment string cBKLP1,k (x, r) for a public parameter (a,b) ∈ Rk

q × Rk
q ,

random vector r ∈ Rq and some errors e ∈ Dk, (where D means density func-
tion), l is a security parameter, and k bounds in 1 < k ≤ l

||e|| ∞. The commit-
ment scheme ComBKLP can be proved its hiding property by Decision-RLWE(D-
RLWE) and proved its binding property by Information-theoretic security. How-
ever, the parameter of ER becomes

ER = |size of commitment string|
|size of message string| = k

1 > 1.

Table 1. Comparison of the commitment schemes

Commitment schemes Hiding property Binding property ER

ComBKLP [2] D-RLWE (computational) Information-theoretic security (statistical) >1
ComBDLOP [1] DKS∞

m,k,β (statistical) SKS2
n,k,β (statistical) >1

Our scheme DKS∞
m,k,β (statistical) M − SISq,m,m+k,γ (computational) =1

The commitment scheme ComBDLOP can be proved its hiding property and
binding property by DKS∞

m,k,β and SKS2
n,k,β , respectively. They also prove how

to achieve a statistically binding scheme, a statistically hiding scheme, and a
more efficient scheme that is only computationally hiding and binding. However,
the parameter of ER becomes

ER = m

m − n
> 1.

On the other hand, our proposed commitment scheme Com can be proved its
hiding property and binding property by DKS∞

m,k,β and M − SISq,m,m+k,γ ,
respectively. We also proved that the commitment scheme Com satisfies the sta-
tistical hiding property based on Theorem 4. Also. the parameter of ER becomes

ER = m

m
= 1.

Therefore, ours is the only commitment scheme that satisfies the condition
ER = 1.

6 Conclusion
In this paper, we have proposed a commitment scheme that satisfies ER = 1.
Then, we proved that its computational hiding property and computational bind-
ing property from DKS∞

m,k,β problem and M − SISq,m,m+k,γ problem, respec-
tively. We have also proved that our proposed commitment scheme Com satisfies
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statistical hiding property based on DKS∞
m,k,β problem, and satisfies computa-

tionally binding property based on the M − SISq,m,m+k,γ problem.
Our proposed commitment scheme solved the problem of the relation between

the size of the commitment string and the size of the message string. This result
will become more and more important since it can use all message space available
to construct a commitment scheme.
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Abstract. Updatable oblivious key management system (UOKMS) has
been widely applied in reality to protect outsourced data confidential-
ity. We demonstrate that existing UOKMS fails to prevent users’ private
information from being leaked. We show that an adversary can imper-
sonate any user to access her/his sensitive data in existing UOKMS, and
this problem is further exacerbated by the collusion between two entities
(i.e., a key server and a cloud server). In this paper, we propose a secure
two-layered encryption mechanism to resist impersonation and collusion
attacks. Specifically, the first layer public/secret key is generated by a
user’s password via an oblivious way, where the user’s password is hard-
ened by a set of dedicated identity servers to thwart password guessing
attacks; besides, multiple key servers secretly share a user-specific server-
side key for each user to assist the user in generating the second layer
symmetric key. We also utilize a key renewal mechanism that periodi-
cally updates the secret on each key server to resist perpetual leakage of
the secret. With these two mechanisms, we develop a password-protected
updatable oblivious key management system for cloud storage, dubbed
PUOKMS. We evaluate PUOKMS in terms of security and efficiency,
which demonstrates that PUOKMS achieves a strong security guarantee
with high efficiency.

Keywords: Password-protected encryption · Oblivious PRF · Secret
renewal · Key management · Cloud storage

1 Introduction

With the rapid growth of the total amount of data, outsourcing data to cloud
storage has been a prevalent trend for users, which would save the local storage
space, facilitate users’ multi-terminal access, centralize data management, and
so on [1,5–7]. Currently, many cloud storage providers (e.g., Google, Amazon,
Microsoft) have provided specialized services satisfying the requirements of users.
Therefore, these cloud service providers have access to any information stored on
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their infrastructure including the outsourced data of users, which raises concerns
on data security. Particularly, once the cloud service provider is compromised, the
content of outsourced data would be leaked, such that the users’ privacy could
be violated. As such, users always encrypt their data before data outsourcing,
which is the most effective method to ensure data confidentiality and thereby
becomes the most widely-used paradigm in the current cloud storage system [2].

In practice, to avoid all outsourced data ciphertexts of a target user are
compromised due to the leakage of her/his encryption key, the user, prefers to
encrypt different messages with different keys. To ensure these ciphertexts can
still be decrypted by the user, she/he needs to store all encryption keys secretly.
In such a case, the user bears additional storage overhead, which is intolerable
for resource-constrained users. Additionally, when a key is utilized to decrypt
some ciphertext, since the user stores multiple keys and does not know which
one to use, she/he needs constant trial and error, which brings in time costs.

A feasible approach is to centralize key management by introducing an inde-
pendent third party (e.g., the key server), which has been a prevalent paradigm
for provisioning cryptographic keys in the current cryptosystem (e.g., key gen-
eration, exchange, storage, destruction). The typical deployment of key man-
agement system (KMS) (including large cloud service provider such as AWS1,
Microsoft2, IBM3, Google4) is constructed on a traditional wrap-unwrap app-
roach for managing data encryption keys: a user encrypts her/his outsourced
data by randomly choosing a symmetric key; a key server (KS) wraps the sym-
metric key with a user-specific key (chosen and kept by KS); the user outsources
the wrapped result and the encrypted data to the cloud server; the user retrieves
a specific object from the cloud server; KS unwraps the attached wrap using the
user-specific key to get the symmetric key; the user retrieves the outsourced data
with the symmetric key. Such a key encapsulation mechanism has present signifi-
cant potential vulnerabilities [8]. One of the most severe problems is the security
of the encryption keys. Since users would expose encryption keys in the form of
plaintext to KS, they are anxious about the security of their keys. The security
of these keys is being put at risk due to both internal and external threats in
reality. For example, a misbehaved KS may intentionally wrap the symmetric
key of one user with a user-specific key of others to tease users. Worse still,
an adversary may compromise KS to steal users’ encryption keys. Furthermore,
such the mechanism increases the cost of rotating the user-specific key.

Oblivious key management system (OKMS) [8], a cryptographic primitive,
addresses partial vulnerabilities above and offers additional features absent in
traditional systems. In OKMS, a key server, secretly keeping a user-specific key
for each user, assists users in generating a symmetric encryption key via an
oblivious way (e.g., an oblivious pseudorandom function) [3,4]. Different from
the traditional wrap-unwrap mechanism, the symmetric encryption key is blind

1 Aws key management service cryptographic details.
2 Key storage and azure key vault.
3 https://console.bluemix.net/catalog/services/keyprotect.
4 https://cloud.google.com/kms/.

https://console.bluemix.net/catalog/services/keyprotect
https://cloud.google.com/kms/
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to the key server and does not require to be stored in OKMS. Furthermore,
to avoid the various attacks raised by the user-specific key leakage, OKMS is
extended to updatable OKMS (UOKMS) that supports the periodic rotation
of the user-specific key. Existing UOKMS schemes (e.g., [8]) require users to
publish a certified public key (also referred to as a user-specific public key)
generated by the user-specific secret key. In an interactive scenario, Bob first
chooses a randomness, with the randomness and Alice’s certified public key,
Bob generates a symmetric encryption key, encrypts a message, and sends the
wrapped message (including a public value for the randomness) to the cloud
server without interacting with Alice before. Any time Alice wants to decrypt
the message, she/he uses the public value for the randomness to retrieve the
symmetric decryption key by interacting with the key server.

Despite the great benefits brought by the UOKMS, it still suffers from criti-
cal threats. Specifically, in existing UOKMS, due to lack of identity authentica-
tion, an adversary could impersonate a user to interact with the cloud server to
retrieve the wrapped messages (including the public value for the randomness)
and then impersonate the target user to interact with the key server to obtain
the encryption key via an oblivious way. Worse still, a cloud server is a rational
entity and it may curious about the outsourced data. The honest-but-curious
cloud server may collude with the key server to unwrap the wrapped message.
Such two attacks (impersonation and collusion attacks) would extremely under-
mine the confidentiality of outsourced messages and have been a severe challenge
in existing UOKMS.

Furthermore, existing UOKMS [8] has pointed out that, UOKMS may suffer
from a single-point-of-failure problem. Such a system bears a strong assumption
that the key server is fully trusted and reliable. However, once an adversary
compromises the key server, he can recover the decryption keys and decrypt the
wrapped messages. A straightforward way is to utilize threshold cryptography,
where a group of key servers is employed to share a secret and only a threshold
number of key servers can recover the secret. Furthermore, in a long period of
time, an adversary may collect more than the threshold number of shares from
different epochs to retrieve the secret, which is called perpetual leakage attacks
and has brought in critical threats.

In this paper, we propose a password-protected updatable oblivious key man-
agement system for cloud storage to thwart these problems. Specifically, the
contributions of this paper are summarized as follows:

We analyze existing UOKMS and point out that they suffer from various
attacks. To resist these attacks, we propose a password-protected updatable
oblivious key management system for cloud storage, dubbed PUOKMS.
PUOKMS actually is a message forwarding system, where each user only needs
to keep her/his password, can she/he decrypt all messages sent to her/his.

In PUOKMS, we design a two-layered encryption mechanism. Specifically,
the first layer is password-based encryption for securing the public value for the
randomness, where the user’s password is hardened by a set of dedicated iden-
tity servers to thwart password guessing attacks. With the public value for the
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randomness, the user is able to interact with multiple key servers to generate the
second layer symmetric encryption key. Such a two-layered encryption mecha-
nism guarantees that only a user possesses her/his password, can she/he decrypt
the wrapped messages sent to her/him. Additionally, we utilize a key renewal
mechanism that periodically updates the secret on each key server and guaran-
tees high efficiency under strong security. Compared with existing UOKMS, the
key renewal mechanism cancels the participation of cloud servers and reduces
communication costs.

We define a formal security model and provide formal security proof based
on the model. We also conduct a comprehensive performance analysis to show
the efficiency of PUOKMS in terms of communication and computation.

2 Preliminaries

2.1 Technical Background

Oblivious Pseudorandom Functions. Oblivious pseudorandom function
(OPRF), firstly proposed by Freedman et al. [3], is an oblivious pseudorandom
function between a sender and a receiver, in which the receiver holds a key, but
does not learn about the sender’ input and the oblivious PRF outputs. OPRF
has been widely used in numerous applications and there are very efficient OPRF
implementations [5,6,8].

Threshold Cryptography. Threshold cryptography was proposed by Desmedt
in [12], which is used to perform some highly sensitive operations (i.e., encryp-
tion/decryption, signing). In the (t, n)-threshold cryptosystem, the message is
split into n pieces, which can be recovered by using any t pieces and are unre-
vealed even fully grasp t − 1 pieces.

Bilinear Maps. Let G be an additive group with a generator P , and GT is a
multiplicative cycle group. G and GT have the same prime order p. A bilinear
map is that e : G×G → GT with the following properties. Linearity: for all points
in G then e(P1 + P2, Q1) = e(P1, Q1) · e(P2, Q1), e(P1, Q1 + Q2) = e(P1, Q1) ·
e(P1, Q2), where P1, P2, Q1, Q2 ∈ G; Nondegeneracy: e(P, P ) �= 1, where P is
the generator of G; Bilinearity: for P3, Q3 ∈ G and a, b ∈ Z∗

p : e(aP3, bQ3) =
e(P3, Q3)ab; Computability: there exists an efficiently computable algorithm for
computing e.

Hash Functions. The hash function is a simple function that takes the input of
some length and compresses them into short, fixed-length output. A hash func-
tion H is collision-resistant, namely that it is infeasible for many probabilistic
polynomial-time algorithms to find a collision in H.

A hash function Π = (Gen,H) is collision resistant [15] if for all probabilis-
tic polynomial-time adversaries A there is a negligible function negl such that
Pr[CollA,Π(n) = 1] ≤ negl(n), where CollA,Π(n) is a collision-finding experi-
ment performed by A.
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2.2 System Model

The system is depicted in Fig. 1. There are four entities in our scheme: users, a
group of identity servers, multiple key servers, the cloud server.

Users: multiple users are involved in the scheme. Each user randomly chooses
a master key, splits it into n′ shares, and distributes them to identity servers.
Meanwhile, each user also randomly chooses a user-specific secret key, splits it
into n shares, and distributes them to key servers. In addition, each user can
send a wrapped message to a target user and the target one can recover the
message by entering her/his correct password subsequently.

Identity servers: a group of identity servers is involved in the scheme. Each
identity server keeps a master secret share for each user and assists users in gen-
erating secret and public hardened passwords. All identity servers periodically
renew their master secret shares to thwart an adversary who performs perpetual
leakage attacks.

Key servers: a set of key servers is employed to keep a user-specific secret key
for each user, which also assists the user in generating a certified public key. All
key servers periodically renew their user-specific secret shares so as to thwart
adversaries who can perpetually compromise secret shares.

Cloud server: the cloud server provides a cloud storage service, which stores
the wrapped messages for users.

user 1 user 2

user 3 user 4

…
…

…
…

Users

Identity Servers
(ID Servers)

ID server 1

ID server 2

ID server 

…
…

…
…

Key Servers

key server 1 key server 2

…
…

…
…

key server n-1 key server n

Cloud Server

public channel

Fig. 1. System model

2.3 Adversarial Model

In the adversarial model, we consider the threats from two different angles:
external adversaries and internal adversaries.

External Adversaries. An external adversary can perform the attacks as fol-
lows to break the system security.
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Impersonation attacks. An external adversary may intercept wrapped mes-
sages, impersonate a target user to generate encryption keys, and recover her/his
message.

Collusion attacks. An external adversary may intercept wrapped messages
and collude with other entities to retrieve encryption keys.

Password guessing attacks. An external adversary may exhaust all password
candidates, impersonate a target user, and compute all secret hardened password
candidates by interacting with identity servers. As such, once he intercepts a
wrapped message about the target user, he can decrypt the ciphertext and get
the message by colluding with other entities. Such an attack is called the online
password guessing attack.

Internal Adversaries. All internal adversaries can perform the attacks as fol-
lows to break the system security:

The malicious users. A malicious user may impersonate other valid users to
retrieve the encryption keys that are used to decrypt the wrapped messages of
other users.

Malicious identity servers. A malicious identity server may use its local stored
secrets and perform offline password guessing attacks to retrieve users’ pass-
words. Furthermore, in a long period of time, he may collect more than t′ − 1
secret shares to retrieve the master secret key of a user from different epochs.

Malicious key servers. In a long period of time, a malicious key server may
collect more than t − 1 secret shares to retrieve the user-specific secret key of a
user from different epochs.

Honest-but-curious cloud server. The cloud server keeps all wrapped messages
and it is curious about the ciphertexts. The cloud server is a rational entity and
it may collude with other entities to recover the messages.

2.4 Design Goals

In this paper, we aim to present a password-protected updatable oblivious key
management scheme, in which several challenging problems exist.

How to prevent impersonation attacks and collusion attacks. An adversary
may impersonate valid users to retrieve wrapped messages and even encryp-
tion keys. Furthermore, an adversary may collude with other entities to retrieve
encryption keys. How to prevent impersonation and collusion attacks has been
a severe challenge.

How to prevent password guessing attacks performed by an adversary (includ-
ing the external and internal adversaries). Specifically, an adversary may exhaust
all password candidates and collect all secret hardened password candidates by
interacting with a group of identity servers. Once the adversary intercepts a
wrapped message, he can keep trial and error to decrypt the first layer encryp-
tion and collude with other entities to recover the message. Furthermore, a mali-
cious identity server may use its local stored secrets and perform offline password
guessing attacks to retrieve users’ passwords. How to prevent password guessing
attacks is a challenging problem.
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How to resist perpetual leakage attacks. In a long period of time, a malicious
identity server may gain t′ − 1 master secret shares from different epochs to
retrieve the master secret key of a target user. A malicious key server attempts
to get the user-specific secret key of a target user in the same way. How to resist
the attack without introducing heavy costs is a severe matter.

To address the challenges under the aforementioned model, our scheme should
achieve the following objectives.

Functionality. The identity servers should authenticate users. For a user, only
if she/he possesses the password can she/he pass the identity servers’ authen-
tication. Then, the authorized user can retrieve encryption keys by interacting
with key servers. With the encryption keys, the user can decrypt the ciphertext
to retrieve the content of a message.

Security. The proposed scheme should resist impersonation attacks, collusion
attacks, password guessing attacks, and perpetual leakage attacks performed by
external and internal adversaries.

Efficiency. The communication and computation overhead on users should
be as efficient as possible. The update for the master secret key and the user-
specific server-side secret key should not introduce heavy communication costs
and other security problems.

3 The Proposed Scheme

3.1 Description of PUOKMS

Our scheme consists of four entities: a set of users {U1,U2, . . .}, multiple key
servers {KS1,KS2, . . . ,KSn}, a group of identity servers {IS1, IS2, . . . , ISn′},
and the cloud server CS. There are four phases in our scheme: Setting, Encryp-
tion, Decryption and KeyUpdate.

Setting. In this phase, public parameters are generated. Each user randomly
chooses a master secret key, splits it into n′ shares, and distributes one share
to one identity server. Meanwhile, each user randomly chooses a user-specific
secret key, splits it into n shares, and distributes one share to one key server.
Additionally, each user generates her/his public hardened password and certified
public key.

– With the security parameter l, the public parameter PP = {p, P,G,GT , e, h(·),
H(·), SKE.Enc, PKE.Enc, SKE.Dec, PKE.Dec, qL, qE} is determined. G is
an additive group with the prime order p and the generator P , GT is a
multiplicative group, e : G × G → GT is a bilinear map, h(·) : G → Z∗

p ,
H(·) : {0, 1}∗ → G, SKE.Enc is a secure symmetric encryption algorithm
(e.g., AES), PKE.Enc is a secure public encryption algorithm (e.g., RSA),
SKE.Dec is a secure symmetric decryption algorithm, PKE.Dec is a secure
public decryption algorithm. Time is divided into multiple epochs, multiple
identity servers keep a list to record the number of queries that each user has
required, which is denoted by qL and is initialized with 0 in a new epoch.
Here, qE is the limitation bound of each epoch.
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Fig. 2. Encryption process

– Each user Ui shares a master key mski for n′ identity servers and publishes
her/his public hardened password. The process is described as follows.

• Ui randomly chooses t′ − 1 independent coefficient ai,1, ai,2, . . . , ai,t′−1 ∈
Z∗

p , and builds a polynomial g(i, x) = ai,0 + ai,1x + . . . + ai,t′−1x
t′−1,

here, ai,0 = mski.
• For λ = 1, 2, . . . , n′, Ui computes the master secret key share for ISλ as

mski,λ = g(i, λ) mod p.
• Ui distributes {λ,mski,λ} to each identity server ISλ. Here, mski,λ is a

secret share and secretly stored by ISλ. Yi,λ = mski,λP is a public share
and published.

• After sharing, Ui deletes the secret key mski and publishes the public key
Yi = mskiP .

• Ui computes her/his public hardened password PTUi
= h(mski·H(pwUi

))·
P and publishes it, where pwUi

is the password of Ui. After publishing
PTUi

, Ui deletes mski and only remembers pwUi
.

– Each user Ui shares a user-specific secret key si for n key servers and publishes
her/his certified public key. The process is described as follows.

• Ui randomly chooses t − 1 independent coefficient bi,1, bi,2, . . . , bi,t−1 ∈
Z∗

p , and builds a polynomial f(i, x) = bi,0 + bi,1x + . . . + bi,t−1x
t−1, here,

bi,0 = si.
• For γ = 1, 2, . . . , n, Ui computes the secret share for KSγ as si,γ =

f(i, γ) mod p.
• Ui distributes {γ, si,γ} to each key server KSγ . Here, si,γ is a secret share

and secretly stored by KSγ . PKi,γ = si,γP is a public share and pub-
lished.

• After sharing, Ui deletes the secret key si and publishes a certified public
key PKi = siP .

Encryption. A user Uj sends a message M to Ui via CS. This process is depicted
in Fig. 2 and is described as follows.

– Uj randomly chooses r′ ∈ Z∗
p , computes ψ = r′P , encrypts ψ with the public

hardened password of Ui as c1 = PKE.Enc(PTUi
, ψ).
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– Uj computes a symmetric encryption key with Ui’s certified public key PKi.
Uj encrypts the message M with the key as c2 = SKE.Enc(r′PKi,M), and
computes c0 = H(r′PKi,M).

– Uj outsources the wrapped message (c0, c1, c2) to CS.

Decryption. Ui downloads a wrapped message from CS, authenticates her/his
identity by identity servers, and generates the decryption key by interacting with
key servers. This process is depicted in Fig. 3 and is described as follows.

– CS sends the wrapped message {c0, c1, c2} to Ui. Upon receiving the wrapped
message, Ui inputs its password pwUi

, randomly chooses α ∈ Z∗
p , and com-

putes pw∗
Ui

= αH(pwUi
). Ui sends {IDUi

, pw∗
Ui

} to all identity servers.
– For λ ∈ [1, n′], ISλ checks whether IDUi

exists in its local storage and
whether qL ≤ qE is satisfied, the query is rejected if one of the checking
fails; otherwise, ISλ updates qL = qL +1, retrieves the corresponding master
key share mski,λ, computes a blind signature σλ = mski,λ · pw∗

Ui
with its

secret share mski,λ, and sends σλ to Ui.
– Upon receiving σλ from ISλ, Ui verifies its validity by checking e(σλ, P ) ?=

e(pw∗
Ui

, Yi,λ), if the checking fails, Ui rejects.
– After receiving t′ valid signatures (for the sake of brevity, we denote these

signatures by σ1, σ2, . . . , σt′), Ui computes σ = α−1
t′
∑

λ=1

Cλσλ, where Cλ =

t′
∏

μ=1,μ�=λ

μ
μ−λ . Ui verifies the correctness of σ by checking e(σ, P ) ?= e(H(pwUi

),

Yi). If the verification passes, Ui computes the secret hardened password as
STUi

= h(σ) = h(mski · H(pwUi
)).

– Ui decrypts c1 with STUi
denoted as ψ = PKE.Dec(STUi

, c1).
– Ui randomly chooses β ∈ Z∗

p , computes ψ∗ = β · ψ, and sends ψ∗ to all key
servers.

– For γ = 1, 2, . . . , n, KSγ computes a blind signature ηγ = si,γ · ψ∗ with its
secret share si,γ , and sends ηγ to Ui.

– Upon receiving ηγ from KSγ , Ui verifies its validity by checking e(ηγ , P ) ?=
e(ψ∗, PKi,γ), if the checking fails, Ui rejects.

– After receiving t valid blind signatures (for the sake of brevity, we denote

these signatures by η1, η2, . . . , ηt), Ui computes η = β−1
t∑

γ=1
ξγηγ , where ξγ =

t∏

κ=1,κ�=γ

κ
κ−γ .

– Ui verifies e(η, P ) ?= e(ψ,PKi). If the verification passes, Ui computes η =
si · ψ = si · r′P = r′PKi as the symmetric key. Otherwise, Ui rejects.

– Ui decrypts c2 with the symmetric key η denoted as M∗ = SKE.Dec(r′PKi,
c2).

– Ui verifies the integrity of the message by checking H(η,M∗) ?= c0. If the
verification passes, Ui accepts the wrapped message from Uj ; Otherwise, Ui

rejects.
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Fig. 3. Decryption process

KeyUpdate. All identity servers and key servers renew its share, which are
described as follows.

For each key server KSγ , (γ = 1, 2, . . . , n), at the end of an epoch, it renews
its user-specific secret share si,γ for each user Ui, (i = 1, 2, . . .) as follows.

– KSγ randomly selects a polynomial lγ(x) = cγ,1x + cγ,2x
2 + . . . + cγ,t−1x

t−1

over Z∗
p with degree at most t − 1.

– KSγ sends {cγ,1P, cγ,2P, . . . , cγ,t−1P} to all other key servers. KSγ sends
lγ(ω) secretly to KSω, where ω = 1, 2, . . . , n;ω �= γ.

– After receiving lω(γ), KSγ checks lω(γ)P ?=
t−1∑

ε=1
γε · cω,εP . If the checking

fails, it rejects.

– KSγ computes a new secret key share si,γ as si,γ
′ = si,γ +

n∑

ω=1
lω(γ). The

corresponding public secret share is denoted as PKi,γ
′ = si,γ

′P.
– KSγ deletes lγ(x), {cγ,1, cγ,2, . . . , cγ,n}, and si,γ .

For each identity server ISλ, (λ = 1, 2, . . . , n′), at the end of an epoch, it
renews its master secret share mski,λ for each user Ui, (i = 1, 2, . . .) as follows.

– ISλ randomly selects a polynomial vλ(x) = dλ,1x+dλ,2x
2+ . . .+dλ,t′−1x

t′−1

over Z∗
p with degree at most t′ − 1.

– ISλ sends {dλ,1P, dλ,2P, . . . , dλ,t′−1P} to all other identity servers. ISλ sends
vλ(μ) secretly to ISμ, where μ = 1, 2, . . . , n′;μ �= λ.

– After receiving vμ(λ), ISλ checks vμ(λ)P ?=
t′−1∑

ε=1
λε · dμ,εP . If the checking

fails, it rejects.

– ISλ computes a new secret key share mski,λ as mski,λ
′ = mski,λ +

n′
∑

μ=1
vμ(λ).

The corresponding public secret share is denoted as Yi,λ
′ = mski,λ

′P.
– ISλ deletes vλ(x), {dλ,1, dλ,2, . . . , dλ,n′}, and mski,λ.
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3.2 Correctness Proof

In Encryption phase, Uj encrypts the message M with the symmetric encryp-
tion key r′ · PKi = r′ · si · P . During Decryption phase, Ui interacts with
multiple key servers to retrieve the symmetric decryption key η. The process
can be shown as follows.

η = β−1
t∑

γ=1

ξγηγ = β−1
t∑

γ=1

ηγ

t∏

κ=1

κ

κ − γ
(κ �= γ),

= β−1 · β · ψ · si = si · ψ = si · r′ · P = r′ · PKi.

3.3 Further Discussion

In this section, we additionally discuss some problems ignored in PUOKMS. The
key point of this paper is to secure the w = gr. Actually, there are two types of
methods to achieve this.

The first one is to directly add an authentication mechanism before per-
forming the Decryption operation, which ensures only a valid user can per-
form the decryption operation. Specifically, a group of dedicated identity servers
are employed. During the registration phase, a user Ui interacts with a group
of dedicated identity servers to generate a servers-derived password spUi

=
F (mski · H(pwUi

)). For each λ = {1, 2, · · · , n′}, Ui computes spλ = h(spUi
, λ)

and sends it to ISλ. Note that, spλ is the authentication token and is kept by
each ISi. During the authentication phase, Ui inputs her/his password, interacts
with identity servers, and computes spUi

. With spUi
, Ui can complete authen-

tication. The details refer to Zhang et al.’s scheme [11]. If the authentication
succeeds, Ui can get a token. With the token, she/he is able to access the cloud
server and interact with the key servers to decrypt the wrapped messages. In
such a method, w does not be encrypted. Such an authentication method is
actually password-hardening service [13,14].

Another method is to just employ a group of key servers. Specifically, each
key server keeps a master secret key share and a user-specific key share for each
user Ui. The master secret key is used to generate the public/secret hardened
password; the user-specific key is used to assist users in generating the encryp-
tion/decryption key. To secure w = gr, the two-layer encryption mechanism is
used: first, w = gr is encrypted by a target user’s public hardened password PTUi

using the public encryption algorithm; second, the message M is encrypted by
a secret key using the private encryption algorithm. To decrypt the wrapped
message, Ui interacts with key servers to generate the secret hardened password
STUi

by performing OPRF. With STUi
, the first-layer ciphertext is decrypted to

get w = gr; Then, with w, Ui interacts with key servers to retrieve the symmetric
key. Finally, Ui recovers the message M .

Note that, in this paper, we utilize the second method. To distinguish the
master secret key and user-specific key, we employ two types of servers: the
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identity servers and the key servers. Although we introduce a group of dedicated
identity servers, we do not adopt the authentication mechanism as described in
the first method. Actually, in this paper, the identity servers and the key servers
can be merged into one.

Since human-memorable passwords are inherently low-entropy, both the first
method and the second method suffer from offline and online password guessing
attacks. In Sect. 5, we will further analyze and provide formal security proofs.

In PUOKMS, we require users to randomly choose their passwords. How-
ever, such user-generated passwords suffer from critical problems as discussed
in [18,19]. Specifically, for the sake of convenience, users prefer to choose sim-
ple passwords, such as popular passwords, reusing passwords, sister passwords.
These passwords are called weak passwords that do not only compromise them-
selves, but the whole ecosystem. To prevent weak passwords, a promising app-
roach is to blacklist any weak password. Such a method enables a server to
identify popular passwords and publish a list of weak passwords that must be
avoided. Some literature [20,21] has emerged to focus on this issue. In PUOKMS,
we assume that users would prefer to choose strong passwords or we utilize the
weak password detecting mechanism.

4 Security Analysis

4.1 Impersonation Attacks and Password Guessing Attacks

In existing updatable OKMS schemes (e.g., [8]), due to lack of user identity
authentication, an adversary may intercept the interaction message between a
valid user and the cloud server and impersonate the valid user to retrieve the
wrapped message. In the following, we analyze PUOKMS can resist imperson-
ation attacks.

In the Encryption phase, we note that Uj encrypts the message M with
two layers. First, Uj encrypts ψ = r′P with Ui’s public hardened password
PTUi

in public encryption algorithm, where PTUi
= STUi

P = h(σ)P = h(mski ·
H(pwUi

))P . The security of first layer encryption relies on the security of master
key mski and the password pwUi

. Second, Uj encrypts the message M with a
symmetric encryption key r′PKi, where r′PKi = r′siP . The security of second
layer encryption relies on the security of secret key si and the randomly chosen
value r′.

Assuming that an adversary A targets to retrieve a victim Ui’s received mes-
sage M . After intercepting the interaction wrapped message (c0, c1, c2) between
Ui and CS, the first step for A to retrieve M is to decrypt the first layer by the
secret hardened password STUi

= h(σ) = h(mski · H(pwUi
)). Here, if A wants

to impersonates Ui to get STUi
, he has to guess Ui’s password.

Theorem 1. In PUOKMS, if PUOKMS is secure against password guessing
attacks, then it is secure against impersonation attacks.

Proof. In PUOKMS, before decrypting wrapped messages, each user Ui has to
interact with a group of identity servers to generate the asymmetric decryption
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key STUi
. Only with STUi

, can Ui decrypt the first layer ciphertext. A wants to
impersonate a target user Ui, he has to get STUi

. STUi
is generated by the master

key mski and the password pwUi
. Thus, the security of PUOKMS is transformed

into the security of the secret hardened password key. To get the key, the only
way is to guess passwords by performing password guessing attacks. Generally,
resisting impersonation attacks is essentially resisting password guessing attacks.

Theorem 2. PUOKMS is secure against offline password guessing attacks even
if an adversary compromises up to t′ − 1 identity servers.

Proof. In our scheme, if any identity server is compromised, the security cannot
be broken. For the sake of brevity, we assume the compromised identity server is
IS1, then the adversary obtains a signature σ1 = yi,1αH(pwUi

). However, it is
computationally infeasible to compute σ from σ1 due to the difference between
signatures generated by different identity servers. Moreover, if more identity
servers are compromised, PUOKMS still guarantees security. In our scheme,
multiple identity servers are employed to execute (t′, n′)-threshold blind signa-
ture to generate σ, which can tolerate even t′ − 1 of n′ > 2t′ − 1 identity servers
are corrupted [9]. We prove it from two aspects.

– The secret hardened password STUi
is unpredictable. That is, given a user Ui’s

password pwUi
, an adversary A cannot predict the secret hardened password

STUi
, even if A compromises up to t′ − 1 identity servers. To prove it, we

define a game.
• The environment Z initiates our scheme, generates a master secret key

mski for Ui, and splits mski into n′ shares as {mski,1,mski,2, . . . ,mski,n′}
using the threshold secret sharing protocol, and produces the public
parameter PP . Z sends PP to a simulator S. And then, S forwards
it to A.

• A randomly selects a index set T ′ = {1, 2, . . . , t′ −1} and sends it to S. S
forwards T ′ to Z. And then, Z computes {mski,1,mski,2, . . . ,mski,t′−1}
and sends it to S. S forwards it to A.

• A randomly chooses β̃ and α̃, computes c̃∗ = β̃ · H(α̃).
• For λ ∈ [1, n′]/T ′, A sends a query of σλ = mski,λc̃∗ to S. S forwards it

to Z and sets q1, q2, · · · , qn′ = 0.
• Z computes σλ and sends it to S. S forwards it to A.
• A repeats the above query on different λ. Finally, A outputs σ̃.

• If σ̃ is a valid signature on c̃∗ and
n′
∑

λ=1

qλ < t′ then A wins.

During the game, S collects up to t′ − 1 pairs {mski,λ, σλ} and σ̃. For A,
he can obtain {σ1, σ2, σt′−1} and he outputs a signature σ̃. Assuming that

A can forge t′-th signature on c̃∗, he outputs σt′ = (σ̃ −
t′−1∑

λ=1

Cλσλ) · 1
C′

t
as

the forged BLS signature, where Cλ =
t′
∏

μ=1,μ�=λ

μ
μ−λ and Ct′ =

t′
∏

μ=1,μ�=t′

μ
μ−t′ .

If A can forge the t′-th signature on c̃∗, S can use the result to break the
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BLS signature. Actually, BLS can not be forged, thus, A cannot forge t′-th
signature.

– The secret hardened password STUi
is oblivious. That is, given a user Ui’s

secret hardened password STUi
, A cannot learn anything about the corre-

sponding password pwUi
. To prove it, we define a game.

• The environment Z initiates our scheme, generates a master secret key
mski for Ui, and splits mski into n′ shares as {mski,1,mski,2, . . . ,mski,n′}
using the threshold secret sharing protocol, and produces the public
parameter PP . Z sends PP to a simulator S. And then, S forwards
it to A.

• A randomly chooses α̃ and sends it to S. S then forwards it to Z.
• Z selects computes β̃, computes σα̃ = β̃ ·mskU ·H(α̃), and sends STUi

=
F (h(σα̃), α̃) to S. S forwards STUi

to A. A repeats the above operations
at most poly(l) times.

• A chooses α0 and α1, and sends them to S. S forwards them to Z.
• Z randomly selects b ∈ [0, 1] and β. If b = 0, Z computes STUi

=
F (h(β · mskU · H(αb)), αb); otherwise, Z computes STUi

= F(αb). F
is a pseudorandom function, F is the set of all functions mapping Z∗

p to
Z∗

p . Z sends STUi
to S. S sends it to A.

• A returns b∗. If and only if b∗ = b, A wins the game. In the above
game, we construct two types of schemes that is Π and Π̃. In Π, Z uses
F to compute the secret hardened password, the probability of winning
can be denoted by Pr[PuA,Π = 1]. In Π̃, Z uses F to compute the
secret hardened password, the probability of winning can be denoted by
Pr[PuA,Π̃ = 1]. The key point is to prove the following equation holds.

|Pr[PuA,Π = 1] − Pr[PuA,Π̃ = 1| ≤ negl(l).

If Z uses F , then the view of A when runs as a subroutine by S is
identically to the view of A in experiment Pr[PuA,Π ]. Thus, Pr[PuA,Π ]
can be transferred as follows:

Pr[SF (1l) = 1] = Pr[PuA,Π = 1].

If Z uses F , then the view of A when runs as a subroutine by S is
identically to the view of A in experiment Pr[PuA,Π̃ ]. Thus, Pr[PuA,Π̃ ]
can be transferred as follows:

Pr[SF (1l) = 1] = Pr[PuA,Π̃ = 1].

Thus, for A, the key point to win the game is to distinguish F and F . As
discussed in [15], there exits an equation:

|Pr[SF (1l) = 1] − Pr[SF (1l) = 1]| ≤ negl(l).

Therefore, by reduction, we prove that the probability of winning the
game for A is negligible.
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Theorem 3. PUOKMS is secure against online password guessing attacks.

Proof. We transform Theorem 3 to a claim:

Claim: For all polynomial-time adversary A who can launch at most Q(l) online
password guessing attacks, if the following equation holds,

AdvA(l) ≤ Q(l)/|N | + ε(l),

then the scheme is secure against online password guessing attacks, where |N | is
the password space. Recently, Wang et al. have pointed out that the password
distribution matches the Zipf-distribution [18]. Following the Zipf’s law, A’s
advantage is

AdvA(l) ≤ C ′ · Qs′
(l) + ε(l),

where C ′ and s′ are the Zipf parameters, and l is the system security param-
eter. In [16,17], the claim has been proved. Thus, in this paper, we omit the
formal security proof. In PUOKMS, each user shares a master secret key in Set-
ting phase and we predetermine the rate-limiting bound of each epoch as qE in
PUOKMS. Note that, A can impersonate a target user Ui to compute STUi

at
most qE that is much less than the space of passwords. Thus, it is infeasible to
retrieve a target user’s password in PUOKMS by performing password guessing
attacks.

In Theorem 1, Theorem 2, and Theorem 3, we have prove that A cannot
obtain the secret hardened password. Thus, even A intercepts wrapped message
and impersonates a target user, it would not retrieve the plaintext message M .

4.2 Collusion Attacks

An adversary (including external and internal adversary) may perform collusion
attack to break the security of PUOKMS: the adversary A may collude with
other entities to retrieve the message plaintext M . In the following, we analyze
PUOKMS can resist collusion attacks.

Theorem 4. Users’ wrapped messages in PUOKMS are secure against collusion
attacks.

Proof. In traditional updatable OKMS schemes (e.g., [8]), A may collude with
the key server to retrieve the symmetric key. The main reason for the above vul-
nerability is that the public value ψ (respectively w in [8]) is stored in plaintext
in cloud storage. In PUOKMS, we deploy the password-authentication protocol,
where the public value is encrypted by valid user Ui’s public hardened password
with the public encryption algorithm. Only Ui can decrypt it with her/his secret
hardened password STUi

. The security of STUi
has been proved in Theorem 1,

Theorem 2, and Theorem 3. Additionally, the symmetric decryption key η can-
not be predicted, even if up to ν(ν ≤ t − 1) key servers are compromised, which
will be proved in Theorem 5.
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4.3 Perpetual Leakage Attacks

In a long period of time, a malicious key server may collect more than t − 1
secret shares to retrieve the user-specific key of Ui. Thus, in PUOKMS, the
shares of si are periodically updated. We prove that the malicious key server,
who collects t shares of si generated in two different epochs which are denoted
by {si,1, si,2, . . . , s1,ν ; s′

i,ν+1, s
′
i,ν+2, . . . , s

′
i,t}, (1 < ν < t < n), cannot retrieve si.

The secret key has the form as follows:

si =
t∑

γ=1

ξγsi,γ =
t∑

γ=1

(
∏

1≤κ≤t,κ�=γ

κ

κ − γ
)si,γ =

t∑

γ=1

(
∏

1≤κ≤t,κ�=γ

κ

κ − γ
)

n∑

ε=1

f ′
ε(γ),

=
t∑

γ=1

(
∏

1≤κ≤t,κ�=γ

κ

κ − γ
)(

n∑

ε=1

fε(γ) + fε(γ)) =
t∑

γ=1

(
∏

1≤κ≤t,κ�=γ

κ

κ − γ
)

n∑

ε=1

fε(γ).

Here, the only way the malicious retrieves si is to compute

ν∑

γ=1

ξγsi,γ +
t∑

γ=ν+1

ξγs′
i,γ = si +

t∑

γ=ν+1

(
∏

ν+1≤κ≤t,κ�=γ

κ

κ − γ
)

n∑

ε=1

lε(γ).

Since A cannot collect lε(γ) for ε = 1, 2, . . . , n and γ = ν + 1, ν + 2, . . . , t, he
cannot compute

si =
ν∑

γ=1

ξγsi,γ +
t∑

γ=ν+1

ξγs′
i,γ −

t∑

γ=ν+1

(
∏

ν+1≤κ≤t,κ�=γ

κ

κ − γ
)

n∑

ε=1

lε(γ).

In Theorem 1, we have prove that A cannot impersonate the valid user Ui

to pass the authentication of identity servers. In reality, once the secret token
STUi

is obtained, A would collude with the malicious key server to retrieve
the symmetric encryption key η. The security of the symmetric encryption η is
captured by the Theorem 5, which ensures that our scheme can resist against
the malicious key server and the adversary A.

Theorem 5. In our scheme, the symmetric encryption key η is unpredictable,
which means that even A decrypts c1 with the secret token STUi

to get ψ, he
cannot predict the symmetric encryption key η, even if he compromises up to ν
key servers.

Proof. The game is the same with Theorem 2. If A can win the game with a non-
negligible probability, S can break the BLS signature with the same probability
[10]. The proof will be identical to the proofs of Theorem 2 above.
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5 Performance Evaluation

We evaluate the performance of PUOKMS in terms of communication and com-
putation overhead in different phases. We implement an experiment in JAVA
with JPBC using a computer with a Window 10 system and a single Intel Core
i7-9700 CPU running at 3.00 GHz CPU, 32 GB RAM (31). SHA-3 is implemented
in the hash functions. We select 80 bits security level for analysis, the size of
RSA modulus is selected as |N | = 2048, the length of the symmetric key of AES
is 128 bits, and the curve of field size is 159 bits.

0 5 10 15 20 25 30 35 40 45 50
0

0.4

0.8

1.2

1.6

2

2.4

2.8

3.2

the threshold number of servers

co
m

m
u

n
ic

at
io

n
 o

ve
rh

ea
d

 (
K

B
)

user in our scheme
user in UOKMS

Fig. 4. Commu-
nication costs on
user-side

0 2 4 6 8 10 12 14 16 18 20
0

0.4

0.8

1.2

1.6

2

2.4

the number of key servers

co
m

m
u

n
ic

at
io

n
 o

ve
rh

ea
d

 (
K

B
)

update communication costs in our scheme
update communication costs in UOKMS

Fig. 5. Commu-
nication costs on
KeyUpdate

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

the threshold of identity servers

co
m

p
u

ta
ti

o
n

 o
ve

rh
ea

d
 (

s)

computation cost in our scheme
computation cost in UOKMS

Fig. 6. Computa-
tion costs on user
side (a)

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

the threshold of key servers

co
m

p
u

ta
ti

o
n

 o
ve

rh
ea

d
 (

s)

computation cost in our scheme
computation cost in UOKMS

Fig. 7. Computa-
tion costs on user
side (b)

5.1 Communication Overhead

Compared with UOKMS scheme [8], PUOKMS brings in additional communi-
cation overhead due to the interaction between users and identity servers. How-
ever, such the communication in PUOKMS guarantees that only a valid user
can obtain her/his secret hardened password from the identity servers, which
enables PUOKMS to resist the impersonation attacks of the malicious user or
an adversary.

In Fig. 4, we show the communication costs of the user in the Decryption
phase of PUOKMS and UOKMS [8], where the number of identity servers and
key servers are set 50, respectively. Compared with UOKMS, PUOKMS intro-
duces more communication costs on the user side, the additional costs are caused
by interacting with identity servers. To decrypt the wrapped messages, firstly,
the user has to retrieve her/his secret hardened password to unwrap the first
layer encryption by interacting with multiple identity servers, which ensures the
authenticity of a user’s identity. Secondly, the user communicates with a group
of key servers to obtain the symmetric encryption/decryption key. By compari-
son, in UOKMS, users’ identity authentication is not required and the user only
needs to retrieve the symmetric key by interacting with key servers, which raises
many serious security concerns as described in the adversary model (Sect. 2.3).
With the development of mobile devices, the additional communication costs
can be acceptable and would not be a bottleneck for users in practice. In the
Decryption phase, all key servers and identity servers do not need to interact
with each other. Thus, the communication costs on each key server and identity
server are constant, here, we would not analyze the communication efficiency.
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In Fig. 5, we show the communication costs in the KeyUpdate phase of
PUOKMS and UOKMS. Both schemes do not introduce a trusted party to
assist key servers in renewing the user-specific secret shares. In contrast, in
UOKMS, the key servers not only update their secret shares but also update
the user-specific secret key for each user. Furthermore, in UOKMS, the update
token should be sent to the cloud server for update. Although the communi-
cation overhead of PUOKMS is only a little less than UOKMS, the security of
PUOKMS is much stronger than it. Once the update token is stolen, the security
of UOKMS would be broken.

5.2 Computation Overhead

We first estimate the computation overhead in terms of basic cryptographic
operations. HashZ∗

p
is a hash function that maps a value into Z∗

p ; HashG is a
hash function that maps a value into G; AddZ∗

p
is an additive operation in group

Z∗
p ; MulZ∗

p
is a multiplicative operation in Z∗

p ; AddG is an additive operation in
group G; MulG is a multiplicative operation in group G; PairGT

denotes that
computing pairing e; TSKE.Enc/SKE.Dec denotes the time of performing sym-
metric encryption algorithm; TPKE.Enc/PKE.Dec denotes the time of performing
public encryption algorithm; TSig denotes the tine of performing a signature
algorithm. We show the performance of PUOKMS from three aspects: the user
side, identity server side, key server side.

In Fig. 6 and Fig. 7, we show the computation overhead between PUOKMS
and UOKMS in the Decryption phase. In PUOKMS, each user computes
her/his secret hardened password by communicating with multiple identity
servers, and decrypts the first layer encryption. Then, the user computes the
symmetric encryption/decryption key by interacting with multiple key servers,
and decrypts the second layer encryption. The total computation overhead of
user side is 2HashG + HashZ∗

p
+ (t′ + t + 5)MulG + (t′ + t − 2)AddG + (t′2 +

t2)AddZ∗
p
+(t′2 + t2 − t′ − t)MulZ∗

p
+(2t′ +2t+4)PairGT

+TSKE.Enc/SKE.Dec +
TPKE.Enc/PKE.Dec, where t′ is the threshold number of identity servers, t is the
threshold number of key servers. In Fig. 6, we show the relationship between
the computation costs on user-side and the threshold of identity servers, in
which we set the threshold of key servers is t = 10. In Fig. 7, we show the
relationship between the computation costs on user-side and the threshold of
key servers, where the threshold of identity servers is set t′ = 15. Compared
with UOKMS, PUOKMS introduces more computation costs on the user side
in the Decryption phase, the additional costs are caused by authentication
with identity servers and interacting with multiple key servers. However, these
servers ensure the security of PUOKMS, which can resist impersonation attacks
and single-point-of-failure attacks. With the development of mobile devices, the
additional communication costs can be acceptable and would not be a bottleneck
for users in practice.

In the Decryption phase, the computation cost on the identity server side is
MulG. Compared with UOKMS, PUOKMS additionally introduces a group of
identity servers to ensure the authenticity of users’ identities. In the KeyUpdate
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phase, each identity server needs to compute a new secret share to renew the
master secret key. The corresponding computation costs of each identity server
is (t′n′ − 1)MulG + (2t′n′ − 2n′ − 2t′ + 2)MulZ∗

p
+ (t′n′ − n′ − t′ + 2)AddZ∗

p
+

(t′n′ − 2n′ − t′ + 2)AddG, in which t′ is the threshold of identity servers, n′ is
the total number of key servers.

The computation costs on the key servers side in the Decryption phase are
constant (MulG). In the KeyUpdate phase, each key server needs to compute
a new secret share to renew the user-specific secret key. The corresponding com-
putation costs of each key server is (tn − 1)MulG + (2tn − 2n − 2t + 2)MulZ∗

p
+

(tn − n − t + 2)AddZ∗
p

+ (tn − 2n − t + 2)AddG, in which t is the threshold
of key servers, n is the total number of key servers. Compared with UOKMS,
PUOKMS introduces more computation costs on the key server side to prevent
single-point-of-failure attacks.

In summary, according to the efficiency analysis and performance evaluation,
we observe that PUOKMS introduces more communication and computation
overhead. However, these additional costs are mainly for protecting PUOKMS
from various attacks. Furthermore, with the development of mobile devices, these
costs would not introduce a heavy burden for current mobile devices.

6 Conclusion

In this paper, we have proposed a two-layered encryption mechanism, where
multiple identity servers are employed to assist users in generating the hardened
password-based first layer encryption key. Such a key has been used to protect
thee confidentiality of the public value. Then, a set of key servers, secretly sharing
a user-specific server-side key for each user, assists users in generating the second
layer encryption key that has been used to encrypt the messages. Furthermore,
we have utilized a key renewal mechanism that periodically updates the secret
on each key server. Finally, with these two mechanisms, we have developed a
password-protected updatable oblivious key management system for cloud stor-
age. The security analysis has shown that PUOKMS guarantees stronger security
and the performance evaluation has indicated that the efficiency of PUOKMS
would be acceptable and would not be a bottleneck for current mobile devices
for application.
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Abstract. People have personal and/or business need to share private
and confidential documents; however, often at the expense of privacy.
Privacy aware users demand that their data is secure during the entire
life cycle, and not residing in clouds indefinitely. A trending feature in
industry is to set download constraints of shared files - a file can be
downloaded for a restricted number of times and/or within a limited
time framework. Metadata privacy becomes concerning with web services
and applications providing such additional level of security control but
not hiding the metadata. There is no prior research focusing on privacy-
preserving expiration control, hence we propose OblivShare, a privacy-
preserving file sharing scheme to proactively fill the gap. The scheme is
based on ORAM for secure computation that 1) supports file expiration
at users’ control, 2) hides expiration metadata from the server, 3) server
is fully oblivious of file access pattern and expiration state of a file. We
demonstrate that our protocol has a complexity poly-logarithmic to the
number of files while achieving privacy of metadata.

Keywords: E2EE file sharing · Metadata privacy · ORAM · Secure
computation

1 Introduction

Users sharing files with other users over the Internet are common practices today.
However, data leakages and mass surveillance projects [16,27] have drawn pub-
lic attention of the vulnerability and sensitivity of personal data, and in turn
promoted privacy awareness of users. Further, existing regulations and acts to
protect personal data [19,31], also impose on service providers to grant individ-
uals control over their private information. Therefore, sharing files securely and
privately is becoming a fundamental requirement.

In order to achieve secure file sharing, systems and services have been devel-
oped to support end-to-end encryption (E2EE) [29], using which, a user encrypts
file content before it leaves their device and only authorised users are able to
c© Springer Nature Switzerland AG 2021
R. Deng et al. (Eds.): ISPEC 2021, LNCS 13107, pp. 126–146, 2021.
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decrypt the file. However, E2EE does not appear to fully protect the privacy of
user or file metadata, and a file can stay in servers indefinitely. Recent innova-
tive services [7,17] provide impermanence of data store on top of E2EE, which
offers extra security control to users over the files they share: setting files to
expire after a certain amount of time or number of downloads. On the one hand,
such services incorporate two most desired features, E2EE and ephemeral,
which meets personal needs of more secure connections and intimate sharing; on
the other hand, limitations are also apparent: 1) Users send expiration control
metadata (expiration metadata for short in the rest of the paper), i.e. download
number and time limits to check if a file has expired, to servers in plaintext,
which can be used to deduce the popularity and sensitivity of specific file(s). 2)
Expiration control is at servers’ hand and users have to fully trust a service to
honestly check if a file has expired.

Inadequate discussion has since occurred to understand the privacy of expira-
tion metadata. Therefore, we aim to propose a new protocol to solve this emerg-
ing problem with practical values. This is a first attempt to focus on secure file
expiration control, and the proposed protocol has not yet been implemented in
real cloud environment. Security and performance analysis are provided in the
paper, and we consider real experimental evaluation to illustrate the performance
in the future.

1.1 Motivation

“If you have enough metadata, you don’t really need content”, “we kill people
based on metadata” [22,23]. Sharing a file resembles calling or messaging some-
one from the perspective of metadata exposure, hence metadata privacy in file
sharing is also concerning. While increasing service providers provide expiration
control on top of E2EE, a gap exists in both industry and academia. To illus-
trate the motivation of hiding expiration metadata and oblivious file sharing, we
present some privacy issues even with E2EE file sharing systems.

Sensitivity Derived from Expiration Metadata. Alice is an oncologist, and
shares files with patients and other contacts in an E2EE system. Alice shares
medical records with her patients and sets each to expire after 1 download,
and other files without expiration conditions. With knowledge of the expiration
metadata, a curious server learns that Alice shares some files with strict access,
hence deduces they are sensitive. Bob is a patient of Alice and downloads his
report from the system. With Alice’s identity and the sensitivity of the file, the
server thus infers Bob is suspected to have cancer without decrypting the report.

1.2 Summary of Contributions

We now propose OblivShare, a secure and ephemeral file-sharing system that
for the first time provides users with advanced and oblivious expiration con-
trol. OblivShare puts forward a new framework of a file-sharing scheme that
not only supports comprehensive file expiration control, but is also expiration-
metadata-private and oblivious. This is a generic solution that can be integrated
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Table 1. Overview of techniques to achieve the goals.

Goal Technique

Expiration metadata privacy Secret sharing

Oblivious expiration control Secure two party computation

Oblivious file sharing ORAM

User IP addresses Anonymous network, e.g., Tor

into file sharing services to address metadata privacy issues. To understand our
contributions, we now outline the main challenges OblivShare aims to address.

Challenge 1: how to achieve expiration control over protected expira-
tion metadata? We define expiration metadata as: 1) User-set download con-
straints, i.e., download number and time limits to facilitate expiration control. 2)
Internal download state, i.e., current download count used to compute expiration
control outcome. Users are not able to download a file if it has expired. To the best
of our knowledge, whereas many scholars focus on protection of general security
control metadata in file sharing such as user identity and access pattern, there is
no prior research aiming to prevent leakage of expiration metadata, hence a gap
exists to address such expiration-metadata-privacy.
Challenge 2: how to make download requests of a specific file indistin-
guishable from servers? Only hiding the expiration control process, outcome
and metadata is not sufficient, as a server can still infer that a file has expired if
the specific file has not been accessed for a long time. A server not fully obliv-
ious of the file sharing process learns which file is accessed for each download
and can reasonably deduce the expiration metadata.

Contribution. OblivShare supports E2EE meanwhile protects the expiration
metadata through the entire course with oblivious file access and expiration
control. Our goals and techniques are summarized in Table 1. Overall, our con-
tributions are:

1. We are the first to address metadata privacy issues in file sharing systems
that support expiration control. User-defined download constraints are hidden
from servers through the entire course of file upload, sharing and download.
Internal download state is also protected by secret sharing between servers,
therefore the servers cannot directly learn file expiration status.

2. We use synchronised tree-based ORAMs to store both file content and meta-
data, which hides file access patterns from servers, hence the servers cannot
distinguish which file and how many times is requested so as to deduce file
expiration status and further expiration metadata.

3. We are the first to use secure computation for oblivious expiration control,
which not only guarantees that a single server cannot manipulate the expira-
tion control result, but is also efficient to implement using garbled circuits.

4. We also approve that our scheme has negligible extra computation and com-
munication overhead on top of a primitive ORAM file sharing system, which
requires one interaction with users hence not sacrifices user experience.
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Table 2. Secure file sharing services.

Product E2EE Time
limit

Number
limit

Hide expiration
metadata

Oblivious
server

OblivShare ✓ ✓ ✓ ✓ ✓

Firefox Send [17] ✓ ✓ ✓ ✗ ✗

DropSecure [7] ✓ ✓ Future ✗ ✗

SendSafely [24] ✓ ✓ ✗ ✗ ✗

WhatsApp [34] ✓ Future ✗ ✗ ✗

Digify [8] ✗ ✓ ✗ ✗ ✗

Dropbox [6] ✗ ✗ ✗ NA ✗

2 Related Work

2.1 Existing Secure File Sharing

Ephemeral content sharing is a highly pursued feature in industry [7,12,17,24,
29,34,37]. With certain expiration control, users are confident that what they
share is only accessible to dedicated users for limited time or number of times,
and never stay in a server for longer than necessary and become a vulnerability
later.

Table 2 compares several existing secure file sharing applications or web ser-
vices. We organise the comparison by the following properties: 1) Does it support
E2EE? 2) Does it support file expiration? 3) Does it hide expiration metadata?
4) Is the server oblivious of file access and expiration control if applicable?

[7,17] and [24] claim to offer zero-knowledge E2EE. [7] (premium) provides
client-side encryption that keeps a public key protected encryption key in a
key sever (isolated from the file storage server), and only a recipient’s private
key can decrypt the encryption key. [24] uses OpenPGP encryption and the file
encryption key consists of a server secret (generated by the server) and a client
secret (generated by the sender). Services such as [6] and [8], though do not
support E2EE, but provide an addition layer of password security on top of
server-side encryption. A user can double encrypt files or folders by setting a
password, and share it to recipients outside the service. [34] also offers E2EE for
file attachments and has been developing its “Expiring Messages” feature.

Our solution is aiming to address the security weakness of existing systems
mentioned in Sect. 1 with a good balance of desired features and cost.

2.2 ORAM for File Storage

Oblivious RAM (ORAM) [10] is an attempt to hide a user’s access pattern from
service providers meanwhile supporting extra operations. Traditional ORAM
schemes usually have worst-case communication complexity linear to their capac-
ity and block size even with amortized communication cost [18], and their sin-
gle client setting [10,18,25] is not suitable for file sharing. Multi-user ORAM
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Table 3. Notation

Notation Description

λ ORAM’s statistical security parameters

tsU A timestamp that denotes the upload time

tsD A timestamp that denotes the download time

tsExp A timestamp that denotes the expiration time, that is tsU + t

D An array of data content stored in ORAM

x An positive integer that denotes a file index in ORAM, up to the ORAM file
number bound, and D[x] is the data stored in ORAM

Exp An expiration policy that stores download constraints and state indexed by x

[s] A secret share of s

N The number of real data blocks in ORAM

h The height of the ORAM tree, that is �log2N�
θ A threshold of timestamp difference that is accepted by OblivShare

schemes are promising designs that can be applied in file sharing, but unfor-
tunately, very few of such works exist. Among those that support file sharing,
GORAM [14] is a system that guarantees anonymity of users and obliviousness
of data access; but it does not protect the owner of a file. PIR-MCORAM [15]
is a multi-user ORAM-based file sharing system, but has a very high overhead
hence liner worst-case complexity. There are other ORAM schemes that focus
on malicious users but do not readily support file sharing [1,11].

At the best of our knowledge, none of the existing ORAM schemes, either
hide access patterns and/or user identities or not, with linear or poly-logarithm
complexity, has addressed expiration control. With OblivShare, we propose an
efficient secure file sharing scheme that not only achieves lightweight system
design on top of ORAM (we present performance analysis in Sect. 5 that proves
OblivShare has poly-logarithmic complexity), but also enables expiration control
while hiding expiration metadata.

3 Preliminaries

OblivShare makes black box use of secure two party computation, and also
follows ORAM paradigm for metadata and file storage.

Notation. We define parameters, entities, denotations in OblivShare in Table 3.

3.1 Secure Computation

The Millionaires’ Problem first described by Yao [35] enables to solve the fol-
lowing problem: Alice and Bob have their own secret inputs, which are their
wealth xA and xB million, respectively. Yao’s protocol enables that Alice and
Bob can compute a function f(xA, xB) −→ (yA, yB) such that Alice learns only
its function output yA while Bob knows only yB, i.e., who is richer, and nothing
else about the other party’s wealth.
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Since Yao’s secure computation protocol was proposed, researchers have
advanced a number of variations and extensions to address different scenarios.
Recent secure multiparty computation (MPC) solutions includes private sort-
ing [13], private computational geometry [26], private voting [30], and private
data mining [2,9] etc.

3.2 ORAM

OblivShare deploys ORAM for oblivious data storage and retrieval. More specif-
ically, we use ORAM for secure computation [5,32,36], so as to ensure obliv-
ious data access in MPC applications. There is a class of tree-based ORAM
schemes [25,28,32] that are efficient for practical implementations especially in
MPC, among which, we consider Circuit ORAM [32] as an appropriate scheme
for our setting because of its competitive performance. Comparing to schemes
like SqrtORAM [36] and Floram [5], Circuit ORAM client has complexity that
is poly-logarithmic to the number of files, and also reduces the circuit size com-
paring to Path ORAM [28] and SCORAM [33]. Circuit ORAM is a tree-based
ORAM. To store N files, Circuit ORAM constructs a binary tree with height
h = �log2N�. The tree is composed of tree nodes, each of which has three blocks
with fixed block size; apart from that, it also has a stash (up to the stash size
bound) that temporarily stores blocks that will be later evicted to the tree. Each
block either stores the data of a file or is left empty. To store a file D[x] in a file
array D, a block contains the file index x, the file data D[x], and its position
that is the path from leaf to root. If a block is cached in the stash, the block
stores the corresponding path that the block will be evicted onto. The file index
x and its corresponding path p constitute a position map. We adapt Metal’s
protocol [3] as a underlying primitive for efficient and oblivious data access in
S2PC.

Read from ORAM. To read a file, the two servers first check the file’s leaf
label (hence corresponding path) in the position map, then search for the block
with the file index via a linear scan over both the stash and path. The servers
then read the file block stored in the block. After reading the file, they randomly
assign a new path to this block, put it back into the stash, and update the
position map accordingly.

Write to ORAM. To write a file, the steps are similar until when the two
servers add the block into the stash, and they replace it with the data to write
provided by the user.

Stash Eviction. Circuit ORAM performs a stash eviction for each read and
write operation, at which stage, blocks cached in the stash are evicted to the
ORAM tree to prevent stash overflowing. We do not elaborate the eviction algo-
rithms of Circuit ORAM in detail here, but will illustrate rearrangement steps
that are relevant to OblivShare. A generic Circuit ORAM data access operation
is provided in Algorithm1.
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Algorithm 1: ORAMAccess
1 Input op, idx, data
2 Output returnData

1. label ← PositionMap[idx]
2. {idx||label||returnData} ← ReadnRemove(idx, label)
3. PositionMap[idx] ← UniformRandom(0, ..., N − 1) //update position map
4. if op = ”read” then

(a) data ← retrunData
5. stash.add({idx||PositionMap[idx]||data})
6. Evict()
7. Outputs returnData

3.3 Synchronised Inside-Outside ORAM Trees

We identify that the synchronising inside-outside ORAM trees technique
used by METAL [3] is suitable for OblivShare. As has been introduced in
Sect. 3.2, taking Circuit ORAM as an instance, each block in an ORAM tree
contains the file index x, the file data D[x], and its position. METAL, however,
splits position map (i.e. index and path position) and actual file data, and stores
them in two ORAM trees separately: one tree contains files’ indices and positions
stays inside S2PC procedures because it is small while the other tree that stores
actual file contents stays outside S2PC. The two trees are maintained synchro-
nised during initialisation and after each data access so that the file identifier
and content can be found at the same position in the two trees. By doing so,
the position of a file can be processed and revealed securely and efficiently in
S2PC without loading large file data, and the block fetching and eviction of the
actual file data are achieved by two protocols to keep the trees re-synchronised.
METAL uses a secret-shared doubly oblivious transfer protocol to ensure that
servers fetch the actual file data after revealing the position (in secret shares),
and a distributed permutation protocol to track the movement of blocks after
eviction and apply the rearrangement to according positions, without any servers
learning the actual file’s position.

In what follows, we provide some background knowledge of METAL’s tech-
niques relevant to our setting and describe more details in AppendixA.

Secret-Shared Doubly Oblivious Transfer. In order to get the actual file
block outside S2PC, the two servers first process and reveal the file position
inside S2PC, which means that the i-th block on the path p stores the position
map and file data respectively in two ORAM trees. The S2PC then generates a
list of keys for all the blocks on the path and outputs all these keys to Server
1 that stores the ORAM of actual file data, and Server 2 receives only one key
corresponding to the actual file location i. Server 1 then needs to encrypt all the
file blocks on the path p using the corresponding keys in order and re-randomise
the encrypted blocks before sending them to Server 2. Server 2 uses its key
received from the S2PC and decrypt blocks received from Server 1 to obtain the
i-th block without either server getting the actual file location.
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Distributed Permutation. As has been mentioned in Sect. 3.2, stash eviction
is called after every read or write after fetching a data block in ORAM. Dis-
tributed permutation [3,36] captures the rearrangement of blocks, which is used
when putting the read block into stash before eviction and later evicting stash
blocks to selected paths. The two servers in S2PC generate a permutation of an
array of blocks, including the blocks in the stash, the block read and the block to
write; then secret shares the permutation; and apply permutation shares accord-
ingly. The result of the protocol is that the two ORAMs store the permuted
blocks in the same location as per the updated file position map. By following
this protocol, neither server learns the new position of the file after eviction, and
neither server knows which permutation, read or write, is performed.

4 System Overview

In OblivShare, a data owner encrypts a file and sets the file to expire at certain
conditions before uploading. OblivShare stores both the cipher file and expi-
ration policy in a secure manner. When a recipient makes a download request
to OblivShare, OblivShare first performs expiration control over download con-
straints and download state, then sends the cipher file to the recipient if the file
has not expired. To understand how OblivShare fulfils these operations securely,
we present an overview of OblivShare’s design, threats and security goals.

4.1 System Architecture

A high-level framework of OblivShare is illustrated in Fig. 1, which consists of
two servers, a data owner and multiple clients (in this paper, client is used
interchangeably with recipient):

– Owner sends upload requests to OblivShare, and shares the file index and
file encryption key embedded in a URL to recipients via secure channels.

– Recipient(s) sends download requests to the servers, and receives results
from OblivShare as per expiration check.

– Servers each takes its share of the requests as inputs to the S2PC, and
together run S2PC procedures and send the outputs from S2PC to the recip-
ients. The servers also keep updated ExpCtrlORAM and DataORAM, which
is explained in detail in Sect. 5.1.

OblivShare incorporates two major components: OblivExp for expiration
Control and OblivData for file access. OblivExp is placed in front of Obliv-
Data to conduct expiration control. A client’s request first arrives at OblivExp,
which checks whether the requested file has expired or not inside the S2PC by
the two servers. If no, the request is sent to OblivData for a file access. If yes,
the request is also dispatched to make the expiration control result indistinguish-
able to the servers, but in a manner to access dummy data instead. This is a
loose description, and detailed construction is elaborated in Sect. 5.

OblivExp updates ExpCtrlORAM after each access and the changes to
blocks as a result of stash eviction are applied to DataORAM during OblivData
via synchronisation between ExpCtrlORAM and DataORAM.
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Fig. 1. High level framework. A client sends its secret-shared request of file access to
the two servers. The request is reconstructed and executed in S2PC.

4.2 Threat Model

Assumptions. OblivShare makes the following assumptions:

At Least One Server is Honest. An attacker can compromise one of the servers
in the two party secure computation while the other is not.

Key Secrecy. A client does not reveal the URL with the key to adversaries.

Out-of-Band Communication. A data owner in OblivShare shares a URL with
recipient(s) through third party secured channels of their own control, such as
Telegram [29] and Signal [21]. OblivShare only uses such out-of-band communi-
cation once at the sharing stage, which is a common practice of other secure file
sharing systems [6,17], keeping all other activities within OblivShare.

Anonymous Network. In order to hide other metadata during file sharing,
OblivShare assumes the clients communicate with servers in an anonymous man-
ner that does not reveal network information via existing tools such as Tor [4]
or secure messaging [29] based on decentralised trust.

Secure Communication. Each client establishes secure connections with each
server, e.g., Transport Layer Security, so that data in transition are secured.

OblivShare does not address denial-of-service attacks.

Threats. OblivShare considers the following threats:

1. A server can see the expiration metadata of a file. It enables the server to
learn data sensitivity and popularity of the file, also deduces other valuable
information of encrypted data, which has been explained in Sect. 1.

2. A server on its own has control over its internal download state metadata,
hence can forge the state, e.g. a small download count or an expiration times-
tamp that never expire.
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3. A server can observe the file access pattern, hence the server is able to learn
which specific file is accessed and the number of times the file has been
accessed. If a file no longer receives download request, the server can deduce
that the file has expired hence infer the user-set expiration metadata.

4. An attacker controlling a client tries to compromise the security of a file that
has expired.

5. A recipient can forge its download timestamp so as to make an invalid down-
load pass the expiration control check.

Security Goals. We now present security goals of OblivShare with respect to
the threats given in Sect. 4.2.
1. Expiration metadata privacy. OblivShare ensures expiration metadata is

totally at a data owner’s control, and not visible in transit or at rest on either
server.

2. File confidentiality. OblivShare ensures that neither server learns the actual
file content; further, a compromised client cannot access the encrypted file and
decrypt the content after the file has expired.

3. Oblivious expiration control. OblivShare ensures both servers are oblivi-
ous of the expiration control process. Though OblivShare does not prevent a
server from manipulating its download state or a client forging its timestamp,
the S2PC procedure for expiration control will fail if it detects compromised
inputs to the S2PC. Hence such attack gains no information and little value.

4. Oblivious file sharing. OblivShare ensures neither server learns access pat-
terns so that the servers are not able to infer if a specific file has expired hence
expiration metadata.

5. Download timestamp integrity. OblivShare ensures that the download
timestamp is independent of a recipient’s input, but is controlled in S2PC.

6. General metadata protection. Recall the anonymous network assump-
tions OblivShare makes in Sect. 4.2, users’ IP addresses are garbled when
communicating with a server, and OblivShare addresses general metadata
privacy in file sharing.

OblivShare guarantees the goals above based on common cryptographic
assumptions. However, OblivShare does not address denial-of-service (DoS)
attacks, which means OblivShare does not prevent a dishonest server from deny-
ing a valid download request even if the time has not expired or the number of
downloads permissible has not been exceeded.

5 Detailed Construction

Note that in Circuit ORAM, the linear search of the file index happens within
the S2PC, the real data is too large to process. We identify that METAL’s syn-
chronised ORAM trees [3] benefits our design to reduce the data accessed inside
the S2PC. Below we introduce building blocks of OblivShare. In the following,
we present our protocol assuming each file is an single file block for simplicity,
but in practice, an uploaded file consists of multiple file blocks and is padded to
have the same size.
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Fig. 2. OblivShare has two tree ORAMs that store small metadata and large real data
respectively and synchronised in ExpCtrlORAM and DataORAM.

5.1 Synchronised ORAM Trees

OblivShare has two ORAM trees, an ExpCtrlORAM tree to store the metadata
in a recursive manner and a DataORAM tree to store the actual file data. The
two trees are synchronised so that the content and the metadata of a file are at
the same location in DataORAM and ExpCtrlORAM.

ExpCtrlORAM is a set of trees that recursively stores small metadata, includ-
ing: 1) the position map; 2) the expiration metadata, i.e. download constraints
set by the data owner and the current download state. The ExpCtrlORAM is
secret shared with two servers, and will be completed loaded and accessed inside
the S2PC. OblivShare uses the standard recursive technique [3,32] to store the
metadata in ExpCtrlORAM, and for simplicity purpose, we refer to the last tree
when using ExpCtrlORAM in the rest of the paper.

DataORAM resembles ExpCtrlORAM’s last tree but only stores the data
(encrypted file). The DataORAM tree is stored on Server 1, and only relevant
portion of the data structure will be loaded into the S2PC.

Figure 2 shows the ORAM structure in OblivShare and how two ORAMs are
synchronised by storing corresponding metadata and data at the same location.

The read and write operations of Circuit ORAM still suffice data retrieval
and update in ExpCtrlORAM but no longer fulfil fetching data from and putting
data into DataORAM. OblivShare follows MTEAL’s secret-shared doubly obliv-
ious transfer (SS-DOT) [3] protocol to fetch the i-th block on path p from
DataORAM. At the end of SS-DOT, Server 2 obtains the fetched block, i.e. the
i-th block (encrypted under ElGamal) in the array, without either server learning
i. We describe the details relevant to OblivShare in AppendixA.1. OblivShare
also follows distributed permutation to make sure ExpCtrlORAM and DataO-
RAM are re-synchronised after each eviction by tracking and permuting block
movements. At the end of distributed permutation, Server 1 stores the permuted
file blocks in DataORAM in the same location as metadata blocks in ExpCtr-
lORAM. By following this protocol, neither server learns the new location of the
evicted block. We give more details of how permutation is created, shared and
applied in AppendixA.2.
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Algorithm 2: OblivExp.Upload
1 Input of S1: [x]1, [Exp]1, [ExpCtrlORAM ]1

2 Input of S2: [x]2, [Exp]2, [ExpCtrlORAM ]2

3 Output: [ExpCtrlORAM ]1, [ExpCtrlORAM ]2

1. x ← [x]1 ⊕ [x]2, Exp ← [Exp]1 ⊕ [Exp]2, ExpCtrlORAM ←
[ExpCtrlORAM ]1 ⊕ [ExpCtrlORAM ]2; //reconstruct

2. p ← PositionMap[x]; //select a path

3. (ExpCtrlORAM
′
, ⊥) ← ORAMAccess(ExpCtrlORAM, x, Exp),

ExpCtrlORAM ← ExpCtrlORAM ′; //the distribute permutation protocol will be
invoked before and after ExpCtrlORAM’s stash eviction

4. [ExpCtrlORAM ]1 ← $, [ExpCtrlORAM ]2 ← ExpCtrlORAM ⊕ [ExpCtrlORAM ]1;
//secret share ExpCtrlORAM

5. Output to [ExpCtrlORAM ]1 to S1 and [ExpCtrlORAM ]2 to S2 respectively.

5.2 OblivExp for Expiration Control

Upload a File. During the initialisation stage at the Data Owner’s end, it
generates an expiration policy Exp locally, which is a description of file down-
load constraints and download state that is shared among the two servers. For
example, a policy of a file that expires after 10 downloads and on “21 June 2021
21:21:21” has a policy “File Index x : 10, 21-06-2021T21:21:21, 0” where x is
the file index, 10 is the download count (e.g. expire after 10 downloads) chosen
by the Data Owner, tExp is the expiration timestamp derived based on upload
timestamp (e.g. 18 June 2021 21:21:21) and download time setting (e.g. expire
after 3 days) chosen by the Data Owner, and 0 is the initial download count.
The Data Owner also encrypts a file using a secret key before the file is sent to
Server 1. Algorithm 2 shows the secure computation during Upload.

Remark. After ExpCtrlORAM’s stash eviction, evicted blocks are at new loca-
tions but the blocks in DataORAM are not rearranged. To synchronise DataO-
RAM, we use distributed permutation protocol by applying the same rearrange-
ment to data blocks in DataORAM. We will elaborate how OblivData ensures
the data blocks in DataORAM is still synchronisation in Sect. 5.3.

Download a File. When a client requests a file download by a file index, the
two servers search the file index in ExpCtrlORAM, then retrieve the path p and
the expiration policy Exp of the file following primitive ORAM read process.
The two servers then access DataORAM on the client’s behalf and return the
file block back to the client via secret shares if the expiration control check
passes; otherwise a dummy instead. Note that the S2PC locates the i-th block
on the path p in ExpCtrlORAM is the block for file x by a linear search, hence
can access the encrypted data of file x in the i-th block of the same path p in
DataORAM due to the synchrony between two ORAMs.

During the expiration control check, the two servers inside the S2PC deter-
mine a mutually agreed download timestamp (e.g. agree on a deviation threshold
θ and then take a mean of the two timestamps from each server), and run the
S2PC to compare download constraints to internal download state.
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Algorithm 3: OblivExp.Download
1 Input of S1: [x]1, [tsD]1, [ExpCtrlORAM ]1

2 Input of S2: [x]2, [tsD]2, [ExpCtrlORAM ]2

3 Public Input: θ

4 Output: [ExpCtrlORAM ]1, [ExpCtrlORAM ]2, [i]1, [i]2

1. tsD ← agree(ts1D, ts2D, θ); //agree on a download timestamp
2. if tsD = ⊥ then stop. //the procedure stops if the agreement fails
3. x ← [x]1 ⊕ [x]2, ExpCtrlORAM ← [ExpCtrlORAM ]1 ⊕ [ExpCtrlORAM ]2;
4. locked ← Exp(status); //check the current lock status
5. if locked = TRUE then stop.
6. else locked ← TRUE; //change the lock status to locked
7. (ExpCtrlORAM ‘, {p, Exp}) ←

ORAMAccess(ExpCtrlORAM, x, ⊥), ExpCtrlORAM ← ExpCtrlORAM ‘;
//run an ORAM read operation to get the expiration policy

8. i = search(x, p); //determine the i-th location on path p that stores Exp
9. r = isV alid(Exp(count), Exp(number), Exp(tsExp), tsD); //expiration check

10. if r = TRUE then Exp(count)+ = 1; //increments the current download count
11. else i ← |stash| + 3h + 1; //add a dummy at the end of the array and point i to it
12. locked ← FALSE and Exp(status) ← locked; //reset the lock status
13. Generate [ExpCtrlORAM ]1,

[ExpCtrlORAM ]2 ← ExpCtrlORAM ⊕ [ExpCtrlORAM ]1

14. Generate [i]1, [i]2 ← i ⊕ [i]1

15. Output [ExpCtrlORAM ]1, [i]1 to S1 and [ExpCtrlORAM ]2, [i]2 to S2 respectively.

The two servers in the S2PC also update lock status of a file requested on the
fly to indicate if the file is being accessed. The file is locked until the data, either
the encrypted file or a dummy, has been successfully returned to the client.

To ensure the servers do not know if a file has expired, the S2PC appends
a dummy block, and secret share the location i related to this dummy block
instead of the actual block if a file has expired (step 11 in Algorithm3).

Remark. Note that the two servers cannot simply fetch the i-th block in DataO-
RAM, after revealing i in ExpCtrlORAM as the location i is related to the block
history, i.e. a location i that is closer to the root level of the ORAM is more likely
to have been accessed and evicted recently, and vice versa [20].

To make Upload and Download indistinguishable, expiration policy is con-
structed as {File Index: download number, expiration timestamp, download
count, download timestamp, lock status}, hence {File Index: download num-
ber, expiration timestamp, 0, ⊥, FALSE} for Upload and {File Index: ⊥, ⊥, ⊥,
download timestamp, ⊥} for Download.

5.3 OblivData for File Access

In what follows, we show how the two servers in combination fetch and put a
file, which is the same for each ORAM Upload and Download.
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Fetch Data from DataORAM. In Sect. 5.2, we already provide a solution of
indistinguishable file fetch regardless of expiration status by appending a dummy
block. After OblivExp completes the expiration control, either passed or failed,
it proceeds the request to OblivData that fetches a block, either a real data block
or a dummy depending on the expiration control result, in the form of different
values of the location i. As has been briefed in Sect. 5.1, at the end of SS-DOT,
Server 2 received ElGamal cipher-texts of the data block at the i-th location on
path p in DataORAM, with neither server aware of i. Upon ElGamal decipher,
the result is either the actual file content or the dummy encrypted under a file
encryption key (shared by a data owner to dedicated recipients during the share
stage), which is finally returned to the recipient who can further decrypt the
result. Algorithm 4 in AppendixA.1 shows how the SS-DOT protocol works in
OblivData.

Remark. Note that in Algorithm 4, j is independent of i as a result of shuffle,
hence Server 2 is not aware of i all through the course.

Evict Data to DataORAM. After ExpCtrlORAM’s stash eviction, positions
of blocks are updated in ExpCtrlORAM, hence OblivData needs to ensure the
corresponding real data blocks in DataORAM are rearranged in the same man-
ner. To guarantee that the two ORAMs are still synchronised, OblivShare tracks
the block movements in ExpCtrlORAM and apply the same changes to DataO-
RAM. We use Distributed Permutation again during this stage following a similar
manner of METAL to re-synchronising trees after each eviction.

Algorithm 5 in AppendixA.2 demonstrates how the re-synchronisation is
achieved by tracking the movement of blocks in ExpCtrlORAM and applying
the same permutation to DataORAM, hence Server 1 stores the blocks in the
corresponding locations.

5.4 Security Guarantees

We now present security guarantees of OblivShare with respect to the goals given
in Sect. 4.2.

1. Expiration metadata privacy. OblivShare hides expiration metadata from
both servers yet is able to enforce the expiration control by using secret shar-
ing. The standard secret sharing technique ensures the shares of the expi-
ration metadata are of the same length hence indistinguishable, and each
share reveals no information about the secret (line 1 in Algorithm2). Also,
OblivShare uses ElGamal encryption for data blocks stored in ORAM, which
prevents the leakage of sensitive expiration metadata from the servers during
the entire course.

2. File confidentiality. Data owner of OblivShare encrypts a file before upload-
ing the file to servers and only shares the private key to authorised clients.
In addition, all data blocks in ORAM are ElGamal encrypted hence the
servers cannot decrypt the actual file content without non-trivial compu-
tation. OblivShare also prevents invalid access to expired file by returning a
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dummy instead of the encrypted file (ensured by line 11 in Algorithm3) so
that a compromised client cannot retrieve a file that has expired even with
the private key.

3. Oblivious expiration control. During OblivExp and OblivData,
OblivShare uses S2PC protocols to perform expiration control (line 7–11 in
Algorithm 3 and the first stage of SS-DOT that samples random keys in line
2(a)–2(d) in Algorithm4). The security of S2PC guarantees neither server
learns or tampers the expiration control result.

4. Oblivious file sharing. The obliviousness of ORAM guarantees that file
access patterns are hidden from the servers.

5. Download timestamp integrity. (line 1–2 in Algorithm 3) The security
of S2PC guarantees neither server learns the input timestamp of the other
hence cannot modify the actual timestamp or fabricate a new timestamp that
is used in the following expiration control operation (line 9 in Algorithm3).

6. General metadata protection. OblivShare makes the anonymous net-
work assumptions in Sect. 4.2 that users’ identities and their online activity
are encrypted during client-server communications through existing secure
tools [4,29]. OblivShare also encrypts metadata such as file name, size, type
in the same way as it does for a file hence addresses general metadata privacy
in file sharing.

Non-guarantees. As stated in Sect. 4.2, OblivShare does not address DoS
attacks by a server, neither protects from malicious server(s), which means
OblivShare does not guarantee the availability of a file if a dishonest server
denies a valid download request.

5.5 Performance

We consider the system supports N files in total (for simplicity, each file is a sin-
gle block hence N data blocks) with block size S in DataORAM. As a result of
METAL’s synchronised inside-outside ORAM trees, the cost for accessing small
metadata blocks in ExpORAM is negligible and considered as constant compar-
ing to accessing large data blocks in DataORAM [3]. We use Oλ(·) to present
the complexity, while Nblock is polynomially bounded by λ. We parameterise to
have 1

Nω(1) failure probability that is the same as Circuit ORAM [32].
The amortised computational cost of Circuit ORAM is Oλ((S+log2N ) log N)·

ω(1), and OblivShare has minimal additional cost on top of Circuit ORAM. The
file access, i.e., read and write operations in OblivShare’s Upload and Download
are indistinguishable and have the same cost that includes the cost of Circuit
ORAM, SS-DOT and distributed permutation. During Download, OblivShare’s
expiration control incurs additional cost.

The cost for creating download timestamp (line 1–2 in Algorithm 3) is Oλ(1).
Expiration control is independent of data blocks in DataORAM and has constant
cost Oλ(1) (line 3–12 in Algorithm 3). The total cost of SS-DOT, including Server
1 fetching blocks (line 1(a) in Algorithm 4), the S2PC generating keys (line 2(d)
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Table 4. Total computational complexity for Upload and Download stages.

Stage Computational complexity

Upload Oλ((S + log2
N ) log N + log N) · ω(1) = Oλ((S + log2

N ) log N) · ω(1)

Download Oλ((S + log2
N ) log N + log N + 1) · ω(1) = Oλ((S + log2

N ) log N) · ω(1)

in Algorithm 4), Server 1 encrypting blocks (line 3(b) in Algorithm4), and the
maximum cost of Server 2 decrypting blocks (line 4(b) in Algorithm4), is linear
to the number of blocks fetched on the path and in the stash (with constant
size) hence is Oλ(log N). Distributed permutation also has total cost linear to the
blocks on the paths and in the stash (line 1 in Algorithm5), therefore Oλ(log N).

Table 4 summaries the above cost and the total computational complexity
of OblivShare for both Upload and Download is Oλ((S + log2N ) log N) · ω(1).
Upload and Download have the same computational complexity and communi-
cation complexity following Metal’s protocol [3], which is linear to the file size
S and poly-logarithmic to the number of files N .

6 Conclusion

We propose OblivShare, a lightweight privacy-preserving file sharing scheme that
for the first time protects expiration metadata together with file access patterns
from servers meanwhile ensures oblivious expiration control by adopting cryp-
tography protocols like secure computation and ORAM. We prove that our pro-
tocol can achieve its security goals without additional cost that the computation
and communication complexity is poly-logarithmic to the number of files. The
current framework focuses on semi-honest thread models and we consider mali-
cious security setting as future work. Corresponding prototype implementation
and evaluation will also be part of the future work to prove practicality of the
proposed protocol.

A METAL’s Synchronised Inside-Outside ORAM Trees

A.1 Secret-Shared Doubly Oblivious Transfer

Let N be an array of the blocks in the stash and the 3h blocks on path p:

1. The two servers inside S2PC, generate n keys k1, . . . , kn such that S1 receives
as output all these keys, and S2 receives only ki. n = |stash| + 3h + 1.

2. For each j ∈ 1, . . . , n, S1 uses kj to encrypt 0 and mj to obtain cipher-texts
zj and cj respectively. S1 shuffles all the (zj , cj) pairs and sends them to S2.

3. S2 uses ki to decrypt the first cipher-text of each pair: only one zj , will decrypt
to 0. It then decrypts the corresponding cj and hence obtain mi.
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Algorithm 4: OblivData.Fetch
1 Input of S1: [i]1, p, DataORAM

2 Input of S2: [i]2

3 Output: mi

1. S1:
(a) blocks ← Fetch(DataORAM, p). //fetch all blocks in stash and on path p

2. S2PC:
(a) i ← [i]1 ⊕ [i]2

(b) blocks.Append(⊥); //add a dummy block at the end of the array
(c) n ← |blocks| + 1; //so that n = |stash| + 3h + 1

(d) for j = 1 to n do kj
$←− (0, 1)l; //generate n keys

(e) Outputs k1, . . . , kn to S1 and ki to S2.
3. S1:

(a) M ← {}[n] //initialise an array to store the encrypted pairs
(b) for j = 1 to n do (zj , cj) ← Enckj

(0, mj)); M.add((zj , cj));
(c) M.Shuffle();
(d) Sends M to S2.

4. S2:
(a) found ← FALSE;
(b) p ← 1 while p ≤ n and !found do

i. (zp, cp) ← M [p − 1]; z
′
p ← Decki

(zp);

ii. if z
′
p = 0 then found ← TRUE; mp ← Decki

(cp) = mi; //mi is the i-th
block on path p in DataORAM

iii. p + +;
(c) Outputs mi.

A.2 Distributed Permutation

Recall that Circuit ORAM selects two paths during eviction, hence we need to
track the movement of blocks in the stash and on the two paths, which has
|stash| = 6h − 3 blocks.

Before each eviction, OblivShare appends a number tracker from 1 to
|stash| = 6h − 3 to each block on the stash and two paths in ExpCtrlORAM
inside S2PC. After the ExpCtrlORAM’s stash eviction, the protocol extracts
the trackers and construct an array of the numbers. Note that some numbers no
longer exist as the attaching blocks are removed during the eviction. In order
to generate a permeation of the same |stash| = 6h − 3 elements, OblivShare
searches for the missing trackers using a linear scan and fill in the empty slots
with unused numbers.

Below, we present how the two servers in secure computation put a block
into the DataORAM’s stash before eviction:

1. The S2PC places the following in an array: the blocks in the stash, the block
read, and the block to write, which has (|stash| + 2) blocks.

2. The S2PC finds that the k-th block of the stash is vacant, then generates a
permutation σread or σwrite, which exchanges the k-th block with the read
block for σread or the block to write for σwrite. As a result, the correct block
is inserted into the stash (i.e. the first |stash| blocks of the permuted array).
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Algorithm 5: OblivData.Sync
1 Input of S2PC: M

2 Output: M
′

1. for i = 0 to |stash| + 6h − 4 do M [i].Append(i + 1); //attach a tracker to each
block before ExpCtrlORAM’s stash eviction

2. M
′ ← ExpCtrlORAM.Evict(); //extract trackers after stash eviction

3. trackers ← {}; //initialise an array to store the missing trackers
//do a linear scan to find numbers in {1, 2, . . . , |stash| + 6h − 3} that are missing

4. for t = 1 to |stash| + 6h − 3 do
(a) found ← FALSE;
(b) k ← 0 while k ≤ 18 and !found do

i. if M
′
[k] = t then found = TRUE;

ii. else k + +;
(c) if !found then

i. trackers.add(i);
(d) t + +
//do a linear scan to fill missing trackers into the empty slots

5. r ← 0
6. for j = 0 to |stash| + 6h − 4 do

(a) if M
′
[j] = ⊥ then M

′
[j] = trackers[r]; r + +; //locate the empty slots and

fill in missing trackers
(b) j + +

7. σ ← Permutation.Gen(M, M
′
) //generate a permutation σ so that M

′
= M ◦ σ

8. σ1 ← $ //sample a random permutation
9. σ2 ← σ ◦ (σ1)−1 //composition of σ and inversion of σ1

10. Outputs σ1 to S1 and σ2 to S2;
11. S1:

(a) Re-randomise the cipher-texts of blocks;
(b) M1 = M ◦ σ1; //apply σ1 to M
(c) Sends M1 to S2.

12. S2:
(a) Re-randomize the cipher-texts of the blocks in M1;

(b) M2 = M1 ◦ σ2 = M
′
; //apply σ2 to M1

(c) Sends M
′

to S1.

3. The S2PC secret shares the permutation (σread or σwrite) into two permuta-
tions σ1 and σ2, when σ2 = σ ◦ (σ1)−1. ◦ denotes composition of permutation
and σ ◦ (σ)−1 is the identity permutation.

4. S1 re-randomise the blocks, apply the permutations σ1, and sends the per-
muted blocks to S2.

5. S2 re-randomise the blocks received, apply the permutations σ2, and sends
the permuted blocks back to S1.

6. S1 stores the permuted blocks in the corresponding location in DataORAM.
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1 Introduction

Linear cryptanalysis was proposed by Matsui in 1993 [17], and it is one of the
most effective statistical analysis methods on symmetric-key ciphers. Its main
idea is to search for linear correlations between some bits of plaintext, key, and
ciphertext and use this specific property to recover some key bits. Since being
proposed, linear cryptanalysis has benefited from many improvements. For exam-
ple, linear hull cryptanalysis [21] deepens the understanding of the underlying
principles of linear attacks; multiple linear attacks [4,14], multidimensional lin-
ear attacks [12] and multivariate linear attacks [5] reduce the complexity by
exploiting several linear approximations at the same time.

For the key recovery phase of linear cryptanalysis, Matsui proposed the par-
tial key recovery attack known as Matsui’s Algorithm 2 in the form of the last
round attack [17], the data complexity is N = O(1/c2), and the time complexity
is O(N2|kr|), where c is the correlation of distinguisher and kr is the round key
of the last round. Then, Matsui pointed out that the time complexity could be
reduced to O(N +22|kr|) by a distillation phase when 2kr < N [18]. Furthermore,
Collard et al. used FWHT to reduce the time complexity to O(N + |kr|2|kr|) [7].
Subsequently, Nguyen et al. extended the FWHT-based Matsui Algorithm 2 to
multidimensional linear cryptanalysis [20]. However, the FWHT-based key recov-
ery has not been generalized to arbitrary-round key recovery until Eurocrypt
2020 [9]. Antonio et al. proposed a fast arbitrary-round key recovery method
based on FWHT and extended it to multiple and multidimensional linear crypt-
analysis. Nevertheless, they did not promote their method to Feistel structure.
There are many ciphers based on Feistel structure, so it is significant to capture
the influence of FWHT-based key recovery method on Feistel structure.

Recently, the MILP-based method is getting more and more popular in the
field of cryptanalysis [8,10,19,23,25–28]. However, the MILP-based linear crypt-
analysis [25,26] mainly focuses on the distinguisher searching phase rather than
the key recovery phase. To the best of our knowledge, only Zong et al. addressed
the automatic method for key recovery phase in FSE 2021 [31]. They proposed
a two-step strategy to search for key-recovery-attack friendly distinguishers and
applied it to GIFT-128. As they only modeled SBox and bit-wise permutation
but not COPY, AND, and XOR, we cannot directly apply their method to the
Feistel structure.

The best linear cryptanalysis on SIMON and SIMECK are derived from
dynamic key-guessing attacks [1,6,22]1. Also, there are some better linear hulls
of SIMON and SIMECK in [13,16,25,26]. However, [13,16] do not utilise the
linear hulls to carry out key recovery attack. As mentioned in [13], the process
of dynamic key-guessing attack is too cumbersome. Since each step of the attack
requires carefully manual derivation of the algorithm details, it is not easy to
quickly find the best key recovery. On the other hand, the results of Matsui
Algorithm 2 based key recovery attack in [25,26] are not as good as the results
of dynamic key-guessing attack in [6]. So, it is urgent to develop automatic tools
to calculate key recovery complexity with given linear distinguishers, such as the
FWHT-based key recovery method procedure.
1 After submitting this paper, Gaëtan et al. give better linear cryptanalysis on SIMON

and SIMECK by exploring the clustering effect [15], and they also generalize the
FWHT-based arbitrary-round key recovery method to Feistel structure.
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Our Contribution. First, we generalize the FWHT-based arbitrary-round key
recovery method proposed by Antonio et al. to Feistel structure. Furthermore,
we propose a MILP modeling strategy to automatically determine the guessed
subkeys whose size determines the time complexity of the whole linear cryptanal-
ysis. Thus the complexity can also be given automatically. Finally, using known
linear hulls, we increase the attackable rounds of SIMON64/96, SIMON64/128,
SIMON96/96, SIMON96/144, SIMECK48/96, and SIMECK64/128 by one
round to 31, 32, 38, 39, 31, and 38, respectively. The results are listed in Table 4.

Organization. In Sect. 2, we present the notations and preliminaries that will be
used throughout the paper. In Sect. 3, we generalize the FWHT-based arbitrary-
round key recovery method proposed by Antonio et al. to Feistel structure. In
Sect. 4, we implement a MILP-based automatic tool to find guessed subkeys and
introduce some strategies to search for relationship between these subkeys. In
Sect. 5, we give efficient key recovery attacks on SIMON and SIMECK using the
tool proposed in Sect. 4. The conclusion of this paper is in Sect. 6.

2 Preliminaries

2.1 Notations

– P/C : plaintext/ciphertext
– ki : subkey used in round i; i begins with 1 in this paper
– x[j] : j-th bit of x; the leftmost bit of x is denoted as x[0]
– x ≪ l : x rotates left by l bits
– ⊕ : bitwise XOR
– & : bitwise AND
– Fki

: the round function with subkey ki

– Eκ(P ) : encrypt plaintext P with master key κ.

Following are some notations only used for Feistel ciphers.

– PL/PR, CL/CR : left/right half of P and C
– Li/Ri : left/right half output of i-th round
– F : non-linear function whose input is the left half of round function input.

2.2 Linear Cryptanalysis

Linear cryptanalysis [17] was used initially to attack DES. It is a known-plaintext
attack, which assumes that the attacker knows some plaintext-ciphertext pairs.
Its main idea is to search for linear approximation functions about some bits
of the plaintext, key, and ciphertext and use this specific property to perform a
distinguishing attack or recover some bits of the key.

Matsui’s last round key recovery attack [17] separates the last round of the
cipher as follow

Eκ(P ) = (F̄ ◦ E
′
κ)(P ) ⊕ kr,

where E
′
κ is the composition of the first (R − 1) round functions and F̄ is the

last round function without key addition. To carry out linear attack, the attacker
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tries to find a correlated linear approximation α · P ⊕ β · y ⊕ γ · K of E
′
κ whose

correlation is c, where y = F−1
kr

(C) is the output of E
′
κ and K = k1|| · · · ||kr−1.

Let
f(C|χ ⊕ k̄r) = β · F̄−1(C ⊕ kr),

where C|χ and k̄r denotes the relevant bits of C and kr to decrypt part of the
last round, we call k̄r guessed subkeys. Then, given a plaintext-ciphertext
data set D of size N , the attacker can recover k̄r with Algorithm 1 based on the
assumption that for any wrong guess of k̄r, the linear approximation will have
value 0 with probability 1/2.

Algorithm 1: Matsui’s Algorithm 2 [17]
Input: A set D = {(P, C = Eκ(P ))} of N plaintext-ciphertext pairs.
Output: A probable guess for k̄r.

1 begin
2 T ← 0
3 // Compute Ti = #{(P, C) ∈ D : α · P ⊕ f(C|χ ⊕ i) = 0}
4 forall (P, C) ∈ D do

5 for i ← 0 to 2|k̄r| − 1 do
6 if α · P ⊕ f(C|χ ⊕ i) = 0 then Ti ← Ti + 1;
7 end

8 end
9 return argmaxi(|Ti − N/2|); // Find the Ti most different to N/2

10 end

Selçuk introduced advantage to measure the effectiveness of Algorithm 1
based attack [24], and we use the same description as Antonio et al. in [9].

Definition 1 (Attack Advantage [24]). An Algorithm 1 based attack
achiveves an advantage of a bits if the right key ranks among the best 2κ−a

key candidates.

Theorem 1 (Success Probability [24]). The success probability is the prob-
ability that the actual advantage surpasses a, where a is the desired advantage.
Assume the key-ranking statistical data qk has the cumulative distribution func-
tion FR for the right key guess and FW for any wrong guess, then the success
probability of the associated statistical attack for a given desired advantage a is

PS = 1 − FR(F−1
W (1 − 2−a)).

The successful probability of Algorithm 1 is reasonable when N = O(1/c2).
In 1994, Nyberg improved the successful probability by introduced the definition
of linear hull [21]. A linear hull is the set of linear approximations sharing the
same input-output masks. A linear hull with input mask α and output mask β is
denoted as (α, β). The potential of (α, β) is defined as follow, where c(α, β, γ)
is the correlation of a linear approximation.

ALH(α, β) = Expκ(c(α, β)2) =
∑

γ

c(α, β, γ)2.
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For a linear approximation with correlation c or a linear hull with potential
c2, the relationship between a and PS is shown in Table 1.

Table 1. Probability of achieving an a-bit advantage with N = 4CN |c|−2 plaintext-
ciphertext pairs [24].

a

PS CN
2−2 2−1 1 2 4 8 16 32 64

1 0.628 0.770 0.908 0.984 1.000 1.000 1.000 1.000 1.000

2 0.440 0.604 0.802 0.953 0.998 1.000 1.000 1.000 1.000

4 0.194 0.327 0.555 0.833 0.984 1.000 1.000 1.000 1.000

8 0.030 0.071 0.188 0.477 0.867 0.997 1.000 1.000 1.000

12 0.004 0.012 0.048 0.200 0.630 0.977 1.000 1.000 1.000

16 0.000 0.002 0.010 0.067 0.373 0.909 1.000 1.000 1.000

32 0.000 0.000 0.000 0.000 0.010 0.248 0.952 1.000 1.000

The time complexity of Algorithm 1 is O(N2|k̄r|) one-round decryptions with
an additional 2|κ|−|k̄r| full encryptions if attacker searches the rest of the key
exhaustively. The memory requirement is 2|k̄r| · | log N | bits. In [18], Matsui
noted that the time complexity could be reduced to O(N +22|k̄r|) by distillation
when 2|k̄r| < N , which is often the case.

In addition, Algorithm 1 can also be used in multiple-round key recovery,
which covers an arbitrary number of rounds at both the beginning and the end
of the cipher. The time complexity increases with the number of guessed subkeys.

2.3 Description of SIMON and SIMECK

SIMON is a family of lightweight block ciphers with Feistel structure pub-
lished by the NSA in 2013 [3]. It aims to achieve optimal performance in hard-
ware environment. SIMON with block size 2n-bit is denoted by SIMON2n and
SIMON2n with mn-bit key is represented by SIMON2n/mn. The parameters of
different SIMON instances are summarized in Table 2. The i-th round function
Fki

: Fn
2 × F

n
2 → F

n
2 × F

n
2 of SIMON2n is defined as

(Li, Ri) = Fki
((Li−1, Ri−1)) = (F (Li−1) ⊕ Ri−1 ⊕ ki, Li−1).

F : Fn
2 → F

n
2 is defined as follow, where (a, b, c) = (1, 8, 2).

F (Li) = (Li ≪ a)&(Li ≪ b) ⊕ (Li ≪ c).

SIMECK family of lightweight block ciphers were proposed by Yang et al. at
CHES 2015 [29]. It aims to get a more efficient hardware implementation by
combining the good components of SIMON and SPECK. SIMECK with block
size 2n-bit and key size mn-bit is represented by SIMECK2n/mn. There are
three variants of SIMECK family: SIMECK32/64 (32 rounds), SIMECK48/96
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Table 2. Parameters for SIMON2n/mn

2n/mn 32/64 48/72 48/96 64/96 64/128 96/96 96/144 128/128 128/192 128/256

Rounds 32 36 36 42 44 52 54 68 69 72

(36 rounds), SIMECK64/128 (44 rounds). The round function of SIMECK is the
same as SIMON’s except that (a, b, c) = (0, 5, 1) in SIMECK.

SIMON has linear key schedule while SIMECK reuses the nonlinear function
F in key schedule. Please refer to [3,29] for more details.

3 Efficient Key Recovery with FWHT

Collard et al. reduced the time complexity of Algorithm 1 to O(|k̄r|2|k̄r|) by
FWHT [7], and Antonio et al. generalized Collard et al.’s method to an arbitrary
number of key recovery rounds and multiple linear cryptanalysis [9]. We will
introduce Antonio et al.’s method and then generalize it to Feistel structure.

We first review the following two propositions.

Proposition 1 (Matrix Diagonalization [11]). Let f : Fm
2 → F2 be a boolean

function. We consider a matrix M ∈ Z
2m×2m

whose entries are of the form

mij = (−1)f(i⊕j), 0 ≤ i, j ≤ 2m − 1.

This matrix diagonalizes as 2mM = H2m � H2m , where H2m is the Hadamard-
Sylvester matrix of size 2m whose entries are hij = (−1)i·j, and � = diag(λ) is
a diagonal matrix, λ = H2mM·1 ∈ Z

2m

.

Hadamard-Sylvester matrices are symmetric orthogonal matrices. Proposi-
tion 1 shows that when entries in matrix M are of the form mij = (−1)f(i⊕j),
the first column of M contains the information of the entire M .

Proposition 2 (Acceleration with FWHT [30]). H2mv can be evaluated
efficiently with the Fast Walsh-Hadamard Transform (sometimes called Fast
Walsh Transform or simply FWHT or FWT) with |v|2|v| additions/substrac-
tions, where v is a 2m-dimensional column vector whose entries are integers.

See [9,30] for more details of FWHT.

3.1 Efficient Arbitrary-Round Key Recovery

The FWHT-based arbitrary-round key recovery method proposed by Antonio et
al. [9] applies to block ciphers that can be separated into

Eκ(X) = E2 ◦ EM ◦ E1(X ⊕ K0) ⊕ K3.

Note that plaintext-ciphertext is represented as (X,Y ) instead of (P,C) in this
subsection to avoid symbol confusion in Sect. 4. As shown in Fig. 1, X̂ and Ŷ
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Fig. 1. The decomposition of Eκ.

are input and output of EM . Assume the attacker knows a correlated linear
approximation (α, β) of EM . Let

f1(X|χ0 ⊕ k̄0, k̄1) = α · E1(X ⊕ K0,K1),

f2(Y |χ3 ⊕ k̄3, k̄2) = β · E−1
2 (Y ⊕ K3,K2),

(1)

where X|χ0 , Y |χ3 , k̄0, k̄1, k̄2 and k̄3 denote the relevant bits of X, Y , K0, K1,
K2 and K3 to compute α · X̂ ⊕ β · Ŷ . Given a plaintext-ciphertext data set D of
size N , for each possible guess of subkeys, the attacker need to compute

q(k̄0, k̄1, k̄2, k̄3) = #{(X,Y ) ∈ D : f1(X|χ0 ⊕ k̄0, k̄1) ⊕ f2(Y |χ3 ⊕ k̄3, k̄2) = 0}
− #{(X,Y ) ∈ D : f1(X|χ0 ⊕ k̄0, k̄1) ⊕ f2(Y |χ3 ⊕ k̄3, k̄2) = 1}

=
2|k̄0|−1∑

i=0

2|k̄3|−1∑

j=0

( ∑

(X,Y )∈D
X|χ0=i,Y |χ3=j

1
)

(−1)f1(i⊕k̄0,k̄1)(−1)f2(j⊕k̄3,k̄2).

When k̄1 and k̄2 are fixed, we can define Qk̄1,k̄2 ∈ Z
2|k̄0|×2|k̄3|

with entries qk̄1,k̄2

k̄0,k̄3
=

q(k̄0, k̄1, k̄2, k̄3). The whole linear attack turns to calculating Qk̄1,k̄2 under all
possible values of k1, k2. The top maximum arguments in Qk̄1,k̄2 indicate the
candidates of right guesses of K1,K2,K3,K4. We can decompose Qk̄1,k̄2 into
Bk̄1AM k̄2 , where A ∈ Z

2|k̄0|×2|k̄3|
, Bk̄1 ∈ Z

2|k̄0|×2|k̄0|
and M k̄2 ∈ Z

2|k̄3|×2|k̄3|
.

The entries of these matrices are

aij = #{(X,Y ) ∈ D : X|χ0 = i, Y |χ3 = j},

bk̄1
k̄0,i

= (−1)f1(i⊕k̄0,k̄1),mk̄2
j,k̄3

= (−1)f2(j⊕k̄3,k̄2).
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Matrices Bk̄1 and M k̄2 obey the structure in Proposition 1, so Qk̄1,k̄2 can be
further decomposed into

2|k̄0|+|k̄3|Qk̄1,k̄2 = H2|k̄0|diag(λk̄1
1 )H2|k̄0|AH2|k̄3|diag(λk̄2

2 )H2|k̄3| ,

where λk̄1
1 = H2|k̄0|B

k̄1
·1 , λk̄2

2 = H2|k̄3|M
k̄2
·1 . According to Proposition 2, calcu-

lation of Qk̄1,k̄2 can be accelerated by FWHT. The attack process is shown in
Algorithm 2 and the complexity of Algorithm 2 is shown in Proposition 3.

Algorithm 2: Antonio et al.’s Algorithm [9] (without final phase)
Input: A set D = {(P, C = Eκ(P ))} of N plaintext-ciphertext pairs.
Output: Some probable guesses for (k̄0, k̄1, k̄2, k̄3).

1 begin
2 // DISTILLATION PHASE

3 A ← 0
4 forall (X, Y ) ∈ D do aX|χ0 ,Y |χ3

← aX|χ0 ,Y |χ3
+ 1;

5 // ANALYSIS PHASE

6 for i ← 0 to 2|k̄0| − 1 do Ai· ← FWHT(Ai·); // FWHT on rows of A

7 for j ← 0 to 2|k̄3| − 1 do A·j ← FWHT(A·j); // FWHT on columns of A

8 for k̄1 ← 0 to 2|k̄1| − 1 do

9 for i ← 0 to 2|k̄0| − 1 do (λk̄1
1 )i ← (−1)f1(i,k̄1); // Bk̄1

·1
10 λk̄1

1 ← FWHT(λk̄1
1 ); // Eigenvalue vector of H

2|k̄0|B
k̄1

11 end

12 for k̄2 ← 0 to 2|k̄2| − 1 do

13 for j ← 0 to 2|k̄3| − 1 do (λk̄2
2 )j ← (−1)f2(j,k̄2); // M k̄2

·1
14 λk̄2

2 ← FWHT(λk̄2
2 ); // Eigenvalue vector of H

2|k̄3|M
k̄2
·1

15 end

16 for k̄1 ← 0 to 2|k̄1| − 1; k̄2 ← 0 to 2|k̄2| − 1 // Compute Qk̄1,k̄2

17 do

18 for k̄0 ← 0 to 2|k̄0| − 1; k̄3 ← 0 to 2|k̄3| − 1 do

19 qk̄1,k̄2
k̄0,k̄3

= ak̄0,k̄3
· (λk̄1

1 )k̄0
· (λk̄2

2 )k̄3
;

20 end

21 for k̄0 ← 0 to 2|k̄0| − 1 do

22 Qk̄1,k̄2
k̄0· ← FWHT(Qk̄1,k̄2

k̄0· ); // FWHT on rows of Qk̄1,k̄2

23 end

24 for k̄3 ← 0 to 2|k̄3| − 1 do

25 Qk̄1,k̄2
·k̄3

← FWHT(Qk̄1,k̄2
·k̄3

); // FWHT on columns of Qk̄1,k̄2

26 end

27 end

28 return argmax(k̄0,k̄1,k̄2,k̄3)
(|qk̄1,k̄2

k̄0,k̄3
|); // (k̄0, k̄1, k̄2, k̄3) with max |qk̄1,k̄2

k̄0,k̄3
|

29 end
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Proposition 3 (Complexity of Algorithm 2 [9]). The time complexity is

ρDN︸ ︷︷ ︸
distillation phase

+ ρA(|k̄0| + |k̄3|)2|k̄0|+|k̄3|
︸ ︷︷ ︸

analysis phase 1: FWHT on A

+ ρf12
|k̄0|+|k̄1| + ρf22

|k̄2|+|k̄3| + ρA

(
|k̄0|2|k̄0|+|k̄1| + |k̄3|2|k̄2|+|k̄3|

)

︸ ︷︷ ︸
analysis phase 2: compute eigenvalue vectors

+ 2ρM2|k̄0|+|k̄1|+|k̄2|+|k̄3| + ρA(|k̄0| + |k̄3|)2|k̄0|+|k̄1|+|k̄2|+|k̄3|
︸ ︷︷ ︸
analysis phase 3: compute Qk̄1,k̄2 for all the values of k̄1 and k̄2

+ ρC2|k̄0|+|k̄1|+|k̄2|+|k̄3|
︸ ︷︷ ︸

analysis phase 4: find probable subkeys

+ ρE2κ−a

︸ ︷︷ ︸
exhaustive search phase

.

Where ρD is the cost of checking a plaintext-ciphertext pair in distillation phase;
ρf1 and ρf2 are the costs of computing (λk̄1

1 )i and (λk̄2
2 )j, respectively, which are

usually less than one-round encryption; ρA, ρM , ρC are the costs of adding, multi-
plying and comparing two integers, respectively; ρE is the cost of full encryption;
a is the attack advantage2. The memory requirement is

2|k̄0|+|k̄3| · n
︸ ︷︷ ︸

A

+ (2|k̄0|+|k̄1| + 2|k̄2|+|k̄3|) · max{|k̄0|, |k̄3|}
︸ ︷︷ ︸

eigenvalue vectors

+ 2|k̄0|+|k̄3| · (n + |k̄0| + |k̄3|)
︸ ︷︷ ︸

Qk̄1,k̄2

bits, where n is block size. When Qk̄1,k̄2 needs to be stored in full, the last term
of memory requirement becomes 2|k̄0|+|k̄1|+|k̄2|+|k̄3| · n.

Furthermore, the dependencies between k̄0, k̄1, k̄2 and k̄3 help to reduce the
cost of computing Qk̄1,k̄2 . When (k̄1, k̄2) can only take 2|k̄1|+|k̄2|−l12 different
values, l0 bits of k̄0 can be computed from (k̄1, k̄2) and l3 bits of k̄3 can be
computed from (k̄0, k̄1, k̄2), then the time cost of evaluating Qk̄1,k̄2 becomes

2ρM2|k̄0|+|k̄1|+|k̄2|+|k̄3|−l12 + ρA2|k̄1|+|k̄2|+|k̄3|−l12

(
2|k̄0| +

(|k̄0| − l0 − 1
)
2|k̄0|−l0

)

+ ρA2|k̄0|−l0+|k̄1|+|k̄2|−l12

(
2|k̄3| +

(|k̄3| − l3 − 1
)
2|k̄3|−l3

)
,

and the memory becomes 2|k̄0|+|k̄1|+|k̄2|+|k̄3|−l12−l0−l3 · n bits.

3.2 Extended Algorithm – Efficient Arbitrary-Round Key Recovery
of Feistel Ciphers

As the precondition of FWHT-based acceleration is the diagonalization of the
matrix whose elements are of the form (−1)f(i⊕j), which is derived from defini-
tion of f1 and f2 in Eq. (1) in the linear attack. Algorithm 2 is only applicable
2 When blocksize is n, ρD is less than 2n. For two m-bit integers, ρA ≈ 2m binary

operations, ρM ≈ 3 · mlog2(3) binary operations, ρC ≈ m binary operations [9].
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to ciphers XORing the whole state with subkeys at the beginning and end of
the encryption algorithm. Since Feistel ciphers only inject the subkey into half
of the state by XOR, we cannot directly apply Algorithm 2 to Feistel ciphers.

However, we can adjust the order of key addition of second and penulti-
mate round as in Fig. 2. By setting X = (F (PL) ⊕ PR, PL), K0 = (k1, k2),
Y = (CR, F (CR) ⊕ CL), K3 = (kr−1, kr), we can tweak the Feistel network to
the framework in Fig. 1 without changing the encryption and decryption results.
Then, given a suitable linear distinguisher, we can get a probable guess for sub-
keys by Algorithm 3 with additional time complexity of N one-round encryption
and decryption. There is no additional cost of memory complexity.

Fig. 2. R-round Feistel structure.

Algorithm 3: Key Recovery of Feistel Ciphers (without final phase)
Input: A set D = {(P, C = Eκ(P ))} of N plaintext-ciphertext pairs.
Output: Some probable guesses for (k̄0, k̄1, k̄2, k̄3).

1 begin
2 // PRETREATMENT PHASE

3 foreach (P, C) ∈ D do
4 X = (F (PL) ⊕ PR, PL); Y = (CR, F (CR) ⊕ CL);
5 D.replace((P, C), (X, Y )); // Replace (P, C) with (X, Y )

6 end
7 K0 = (k1, k2); K3 = (kr−1, kr);
8 Call Algorithm 2;

9 end
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4 Getting Attack Complexity Automatically

4.1 The Automatic Model of Detecting Guessed Subkeys

Partial K0, K1, K2, and K3 should be guessed as the linear distinguisher is only
related to partial bits of X̂ and Ŷ . These subkeys are denoted as k̄0, k̄1, k̄2
and k̄3. The size of guessed subkeys and the correlation of linear distinguisher
are two decisive factors of attack complexity. Thus, it is essential to determine
the size of guessed subkeys and the relationship between them. We implement a
MILP-based automatic tool to find k̄0, k̄1, k̄2 and k̄3 for a given approximation.
The high level modeling strategy is shown in Fig. 3.

Fig. 3. The high level modeling strategy of key recovery phase. The coloring part
represents the value propagation of V -type variables.

Binary Variables for Activeness Propagation. To define whether each sub-
key and state bit will affect the value of X̂ · α ⊕ Ŷ · β or not, we assign a binary
variable for each subkey and state bit. Namely,

v =

{
1, if the subkey/state bit influences the value of X̂ · α ⊕ Ŷ · β;
0, otherwise.

If v = 1, it is active; otherwise, it is inactive. We call these binary variables
V -type variables.

Objective Function. The complexity is positively correlated with the number
of subkeys that need to be guessed, so an objective function needs to be selected
to make sure the smallest size of guessed subkeys.

Minimize
R1∑

i=1

n∑

j=1

Vk[i, j] +
R∑

i=R2

n∑

j=1

Vk[i, j].
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where Vk[i, j](j ∈ {1, · · · , n}) are V -type variables corresponding to ki, R1 and
(R − R2 + 1) are the number of rounds included in E1 and E2, respectively.

Constraints for Forward Propagation

– Initial Constraints. Let α be the mask of X̂ and the V -type variables
corresponding to X̂ be X̂V , then

X̂V [i] ≥ α[i], i ∈ {0, 1, · · · , n − 1}.

– Modeling XOR. Let (a1, · · · , at)
XOR−−−→ b, where a1, · · · , at, b ∈ F2 are bit-

level input and output V -type variables of the XOR operation. Then a1 =
· · · = at = 1 if b = 1. That is

ai ≥ b, i ∈ {1, · · · , t}.

– Modeling COPY. Let a
COPY−−−−→ (a1, · · · , at), where a, a1, · · · , at ∈ F2 are

bit-level input and output V -type variables of the COPY operation. Then
a ≥ max{a1, · · · , at}. That is

a ≥ ai, i ∈ {1, · · · , t}.

– Modeling AND. Let (a1, · · · , at)
AND−−−→ b, where a1, · · · , at, b ∈ F2 are bit-

level input and output V -type variables of the AND operation. Then a1 =
· · · = at = 1 if b = 1. That is

ai ≥ b, i ∈ {1, · · · , t}.

– Modeling SBox.3 Let (a0, a1, · · · , aω−1)
SBox−−−→ (b0, b1, · · · , bν−1), where

a0, a1, · · · , aω−1, b0, b1, · · · , bν−1 ∈ F2 are bit-level input and output V -type
variables of the ω × ν SBox operation. Then a0 = a1 = · · · = aω−1 =
1, if ∃ bj = 1 for j ∈ {0, 1, · · · ν − 1}. That is

ai ≥ bj , i ∈ {0, · · · ω − 1}, j ∈ {0, · · · ν − 1}.

Constraints for Backward Propagation

– Initial Constraints. Let β be the mask of Ŷ and ŶV be the V -type variables
corresponding to Ŷ , then

ŶV [i] ≥ β[i] , i ∈ {0, 1, · · · , n − 1}.

– Modeling Round Function. Constraints for backward and forward prop-
agation are the same, except that modeling is performed according to the
decryption and encryption process respectively. Due to the consistency of
encryption and decryption of Feistel structure, constraints for XOR, COPY,
AND, and SBox are the same for both-ward.

3 Our method to model SBox is similar to Zong et al.’s method in [31].
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Modeling Key Addition. Let (a, c) ⊕−→ b, where a, b ∈ F2 are bit-level input
and output V -type variables of key addition, c ∈ F2 is V -type variable of round
key bit, then c = b.

Additional Constraints of Feistel Structure. Let (VLi−1 , VRi−1) and
(VLi , VRi) be input and output V -type variables of one-round Feistel structure,
then {

VRi−1 = VLi for forward propagation,

VRi = VLi−1 for backward propagation.

where VLi−1 , VLi−1 , VLi−1 , VRi ∈ F
n
2 , 2n is block size.

4.2 The Strategy of Reducing Guessed Subkeys’ Size

In this subsection, we introduce some strategies to search for the relationships
between k̄0, k̄1, k̄2 and k̄3. Further, we can reduce the attack complexity or
increase the number of rounds attacked.

Assume there exits an active subkey ka such that

α · X̂ ⊕ β · Ŷ = ka ⊕ Items without ka.

Then ka is an unknown but constant bit in the algebraic normal form (ANF) of
α · X̂ ⊕ β · Ŷ , its value will not affect the value of |q(k̄0, k̄1, k̄2, k̄3)|. Although ka

is active, we do not need to guess its value during the key recovery period. As
Feistel structure injects subkeys by XOR at the end of round function, there are
many such subkeys. We can recursively extract them by tracing linear patterns.

Moreover, as suggested in [9], the dependency between k̄0, k̄1, k̄2 and k̄3 helps
to reduce the cost of key recovery phase. Particularly, for ciphers with linear key
schedules, every bit of subkeys is a linear combination of the master key bits.
And the expressions of all active subkeys form a system of linear equations,
which is denoted by A · κ = k, where κ and k = (k̄0, k̄1, k̄2, k̄3)T are binary
column vectors of master key and active subkeys, A is a matrix of size |k| × |κ|
and the inner product of i-th row of A and κ represents the i-th bit of k. When
A is full-rank, we need to guess all k; when A is not full-rank, we just need to
guess rank(A) bits of k and the remaining active subkeys can be derived from
the guessed subkeys. We can use this method to investigate the relationship
between any subset of subkeys of ciphers with a linear key schedule.

For ciphers with nonlinear key schedules, it is more difficult to detect rela-
tionships between active subkeys. It may be helpful to investigate master key
bits to which each subkey bit is related and guess these master key bits.

5 Application

In this section, we give efficient key recovery attacks on SIMON and SIMECK
using the semi-automatic tool proposed in Sect. 3 and Sect. 4. The linear hulls
used in our attack are summarized in Table 3.
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Table 3. Linear hulls for SIMON and SIMECK

Input-output masks Round ALHa Ref.

SIMON32 0x00200000 0x00002000 13 2−26.99 [25]

SIMON48 0x200022800000 0x000022800000 16 2−42.92 [26]

SIMON64 0x4000000400000001 0x1000000044000004 23 2−60.84 [16]

SIMON96 0x400000004044000000000001
0x000000001010000000004044

31 2−91.80 [16]

SIMON128 0x40000000000000440000000000000001
0x00000000000000014000000000000044

41 2−121.15 [16]

SIMECK48 0x800000000001 0x200000500001 22 2−45.68 [13]

SIMECK64 0x8000000100000005 0x0000000040000004 28 2−61.67 [13]
aThe definition of ALH in [13,16,25,26] is 1

4
of the definition in this paper.

For every linear hull in Table 3, we build a MILP model to search for active
k̄0, k̄1, k̄2 and k̄3, and minimize the size of guessed subkeys with the method
proposed in Sect. 4. The results for SIMON and SIMECK are listed in Table 4.
For SIMON32, SIMON48, and SIMECK32/64, we get no better result; for all
versions of SIMON64 and SIMON96, SIMECK48/96 and SIMECK64/128, we
improve previous results by one round; for SIMON128, we reduce the time com-
plexity and increase the success probability of the attack on SIMON128/192
and SIMON128/256. Note that the time complexities in Table 4 are converted
into ρE by method in [9]. Since the relationship between ρA and ρE in [6,22] is
uncertain, we keep time complexities in [6,22] as they are.

We take SIMON64/96 as an example to show the details. Knowing the 23-
round liner hull, we add four rounds to the beginning and the end of the linear
hull respectively by guessing some subkeys, as shown in Table 5. As the under-
lined bits have no effect on the value of |q(k̄0, k̄1, k̄2, k̄3)|, we do not need to
guess their values. Using method in Sect. 4.2, we find that all active subkeys
are independent. |k̄0| = 29, |k̄1| = 4, |k̄2| = 6, |k̄3| = 39. When N = 263.84,
we can recover 8 bit subkey with success probability 18.8%. The time com-
plexity is 263.84ρD + 284.09ρA + 279.00ρM + 278.00ρC + 265.84

31 ρE + 288ρE . As
ρE ≈ 32 · 4 · 31 = 3968, ρA ≈ 78, ρM ≈ 3 · 64log2(3) ≈ 2187 binary operations,
ρC ≈ ρA, ρD � ρE , the time complexity is about 288.00 full encryptions. The
memory requirement is at most 278 state size. Active subkeys of other versions
of SIMON and SIMECK are shown in Appendix A.

To compare the time complexity of our method with known Matsui Algorithm
2 based method, for SIMON32, we use the same linear hull as [25]. It shows that
our method increases the attackable rounds and decreases the time complexity.

To compare the time complexity of our method with the dynamic key-
guessing attack, for SIMON32 and SIMON48, we use the same linear hull as [6].
It shows that attackable rounds of each method are the same. For SIMON32,
the time complexities of each method are close. However, for SIMON48, our
complexity is higher. The main reason is that the method in Sect. 4.2 cannot
find all the correlations between the active subkeys.
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Table 4. Summary of linear key recovery attacks on SIMON and SIMECK

Cipher 2n mn Rounds Data Time Memory PS Ref.

SIMON 32 64 21 231.19 263.19 – 57.1% [25]

23 231.19 261.84ρA + 256.3ρE – 57.1% [6]

23 231.19 259.59 258 57.1% This paper

24 230.59 263.9 – 3% [1]

231.57 263.57 – – [2]

48 72 24 247.92 268.56 267 90.9% This paper

247.92 267.89ρA + 265.34ρE – 90.9% [6]

96 25 247.92 290.96 289 90.9% This paper

247.92 289.89ρA + 288.28ρE – 90.9% [6]

64 96 30 263.53 293.62ρA + 288.13ρE – 7.1% [6]

31 263.84 288.00 278 18.8% This paper

128 31 263.53 2119.62ρA + 2120.00ρE – 7.1% [6]

32 263.84 2120.00 2109 18.8% This paper

96 96 37 295.20 267.94ρA + 288ρE – 7.1% [6]

38 295.80 292.61 271 86.7% This paper

144 38 295.20 298.94ρA + 2136.00ρE – 7.1% [6]

39 295.80 2128.00 2102 37.3% This paper

128 128 49 2127.60 287.77ρA + 2120.00ρE – 7.1% [6]

49 2126.15 2122.54 290 90.9% This paper

192 51 2127.60 2155.77ρA + 2184.00ρE – 7.1% [6]

51 2127.15 2160.69 2158 95.2% This paper

256 53 2127.60 2239.77ρA + 2248.01ρE – 7.1% [6]

53 2126.15 2243.98 2242 90.9% This paper

SIMECK 32 64 23 231.91 261.78ρA + 256.41ρE – 47.7% [22]

48 96 30 247.66 292.2ρA + 288.04ρE – 86.7% [22]

31 247.92 291.13 289 86.7% This paper

64 128 37 263.09 2111.44ρA + 2121.25ρE – 47.7% [22]

38 263.67 2120.00 2104 86.7% This paper

Table 5. Active subkeys of 31-round SIMON64/96.

Round Active subkeys

k̄0 1 k1[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 18, 19, 21, 25, 30, 31]

2 k2[0, 1, 3, 4, 5, 6, 7, 10, 11, 13, 17, 29, 31]

k̄1 3 k3[2, 3, 5, 9, 30, 31]

4 k4[1, 29]

0x4000000400000001
23 round−−−−−−→ 0x1000000044000004

k̄2 28 k28[1, 5, 29]

29 k29[2, 3, 5, 6, 7, 9, 13, 30, 31]

k̄3 30 k30[0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 21, 29, 31]

31 k31[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 21, 22, 23, 25, 29, 30, 31]
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6 Conclusion

We extend the FWHT-based arbitrary-round key recovery method to Feistel
structure and build a MILP model to determine the guessed subkeys automat-
ically. Due to this, we can optimize the time complexity of linear cryptanaly-
sis. Then, using linear hulls in the existing literature, we increase the numbers
of rounds of linear cryptanalysis on some versions of SIMON and SIMECK.
Compared with dynamic key-guessing techniques, our method is more straight-
forward, easier to understand and implement. When the linear distinguisher is
known, our method avoids tedious manual derivation and automatically deter-
mines linear attacks’ complexity. Therefore, we can widely use it in the design
and analysis of cryptographic algorithms.

In the future, we will apply our method to other Feistel ciphers. Furthermore,
we expect to automatically search linear distinguishers of Feistel ciphers that
optimize the time complexity of the resulting attack.
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A Active Subkeys of SIMON and SIMECK

See Tables 6, 7, 8, 9, 10, 11, 12 and 13.

Table 6. Active subkeys of 32-round SIMON64/128

Round Active subkeys

k̄0 1 k1[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 18, 19, 21, 25, 30, 31]

2 k2[0, 1, 3, 4, 5, 6, 7, 10, 11, 13, 17, 29, 31]

k̄1 3 k3[2, 3, 5, 9, 30, 31]

4 k4[1, 29]

0x4000000400000001
23 round−−−−−−→ 0x1000000044000004

k̄2 28 k28[1, 5, 29]

29 k29[2, 3, 5, 6, 7, 9, 13, 30, 31]

30 k30[0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 21, 29, 31]

k̄3 31 k31[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 25, 29, 30, 31]

32 k32[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31]
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Table 7. Active subkeys of 38-round SIMON96/96

Round Active subkeys

k̄0 1 k1[0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 17, 33, 35, 36, 37, 41, 42, 43, 44, 45, 47]

2 k2[1, 2, 3, 5, 9, 34, 35, 41, 42, 43, 46, 47]

k̄1 3 k3[1, 33, 41, 45]

0x400000004044000000000001
31 round−−−−−−−→ 0x000000001010000000004044

k̄2 35 k35[33, 41, 45]

36 k36[1, 5, 34, 35, 41, 42, 43, 46, 47]

k̄3 37 k37[0, 1, 2, 3, 6, 7, 9, 13, 33, 35, 36, 37, 41, 42, 43, 44, 45, 47]

38 k38[0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 14, 15, 17, 21, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47]

Table 8. Active subkeys of 39-round SIMON96/144

Round Active subkeys

k̄0 1 k1[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 21, 25,
34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47]

2 k2[0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 17, 33, 35, 36, 37, 41, 42, 43, 44, 45, 47]

k̄1 3 k3[1, 2, 3, 5, 9, 34, 35, 41, 42, 43, 46, 47]

4 k4[1, 33, 41, 45]

0x400000004044000000000001
31 round−−−−−−→ 0x000000001010000000004044

k̄2 36 k36[33, 41, 45]

37 k37[1, 5, 34, 35, 41, 42, 43, 46, 47]

k̄3 38 k38[0, 1, 2, 3, 6, 7, 9, 13, 33, 35, 36, 37, 41, 42, 43, 44, 45, 47]

39 k39[0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 14, 15, 17, 21, 34, 35, 36, 37,
38, 39, 41, 42, 43, 44, 45, 46, 47]

Table 9. Active subkeys of 49-round SIMON128/128

Round Active subkeys

k̄0 1 k1[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 21, 25, 58, 59, 60, 61, 62, 63]

2 k2[0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 17, 57, 59, 60, 61, 63]

k̄1 3 k3[1, 2, 3, 5, 9, 58, 59, 62, 63]

4 k4[1, 57, 61]

0x40000000000000440000000000000001
41 round−−−−−−→ 0x00000000000000014000000000000044

k̄2 46 k46[1, 57, 61]

47 k47[1, 2, 3, 5, 9, 58, 59, 62, 63]

k̄3 48 k48[0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 17, 57, 59, 60, 61, 63]

49 k49[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 21, 25, 58, 59, 60, 61, 62, 63]
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Table 10. Active subkeys of 51-round SIMON128/192

Round Active subkeys

k̄0 1 k1[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,

20, 21, 22, 23, 25, 26, 27, 29, 33, 57, 59, 60, 61, 62, 63]

2 k2[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 21, 25, 58, 59, 60, 61, 62, 63]

k̄1 3 k3[0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 17, 57, 59, 60, 61, 63]

4 k4[1, 2, 3, 5, 9, 58, 59, 62, 63]

5 k5[1, 57, 61]

0x40000000000000440000000000000001
41 round−−−−−−−→ 0x00000000000000014000000000000044

k̄2 47 k47[1, 57, 61]

48 k48[1, 2, 3, 5, 9, 58, 59, 62, 63]

49 k49[0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 17, 57, 59, 60, 61, 63]

k̄3 50 k50[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 21, 25, 58, 59, 60, 61, 62, 63]

51 k51[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,

20, 21, 22, 23, 25, 26, 27, 29, 33, 57, 59, 60, 61, 62, 63]

Table 11. Active subkeys of 53-round SIMON128/256

Round Active subkeys

k̄0 1 k1[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,

23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 37, 41, 58, 59, 60, 61, 62, 63]

2 k2[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,

20, 21, 22, 23, 25, 26, 27, 29, 33, 57, 59, 60, 61, 62, 63]

k̄1 3 k3[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 21, 25, 58, 59, 60, 61, 62, 63]

4 k4[0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 17, 57, 59, 60, 61, 63]

5 k5[1, 2, 3, 5, 9, 58, 59, 62, 63]

6 k6[1, 57, 61]

0x40000000000000440000000000000001
41 round−−−−−−−→ 0x00000000000000014000000000000044

k̄2 48 k48[1, 57, 61]

49 k49[1, 2, 3, 5, 9, 58, 59, 62, 63]

50 k50[0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 17, 57, 59, 60, 61, 63]

51 k51[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 21, 25, 58, 59, 60, 61, 62, 63]

k̄3 52 k52[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,

19, 20, 21, 22, 23, 25, 26, 27, 29, 33, 57, 59, 60, 61, 62, 63]

53 k53[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,

23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 37, 41, 58, 59, 60, 61, 62, 63]
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Table 12. Active subkeys of 31-round SIMECK48/96

Round Active subkeys

k̄0 1 k1[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 20, 23]

2 k2[0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 15, 23]

k̄1 3 k3[0, 1, 2, 4, 5, 6, 10, 23]

4 k4[0, 1, 5, 23]

5 k5[0]

0x800000000001
22 round−−−−−−→ 0x200000500001

k̄2 28 k28[1, 3, 23]

29 k29[0, 1, 2, 3, 4, 6, 8, 23]

k̄3 30 k30[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 23]

31 k31[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 23]

Table 13. Active subkeys of 38-round SIMECK64/128

Round Active subkeys

k̄0 1 k1[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 19, 20, 29, 30, 31]

2 k2[0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 14, 15, 29, 30, 31]

k̄1 3 k3[0, 1, 2, 4, 5, 6, 9, 10, 29, 30, 31]

4 k4[0, 1, 4, 5, 29, 31]

5 k5[0, 31]

0x8000000100000005
28 round−−−−−−→ 0x0000000040000004

k̄2 34 k34[1, 29]

35 k35[1, 2, 6, 29, 30]

36 k36[1, 2, 3, 6, 7, 11, 29, 30, 31]

k̄3 37 k37[0, 1, 2, 3, 4, 6, 7, 8, 11, 12, 16, 29, 30, 31]

38 k38[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 16, 17, 21, 29, 30, 31]

References

1. Abdelraheem, M.A., et al.: Improved linear cryptanalysis of reduced-round
SIMON-32 and SIMON-48. In: Biryukov, A., Goyal, V. (eds.) INDOCRYPT 2015.
LNCS, vol. 9462, pp. 153–179. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-26617-6 9

2. Ashur, T.: Improved linear trails for the block cipher Simon. IACR Cryptol. ePrint
Arch. 2015:285 (2015)

3. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The
SIMON and SPECK families of lightweight block ciphers. IACR Cryptol. ePrint
Arch. 2013:404 (2013)

4. Biryukov, A., De Cannière, C., Quisquater, M.: On multiple linear approxima-
tions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 1–22. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8 1

https://doi.org/10.1007/978-3-319-26617-6_9
https://doi.org/10.1007/978-3-319-26617-6_9
https://doi.org/10.1007/978-3-540-28628-8_1


166 Y. Zhang et al.

5. Bogdanov, A., Tischhauser, E., Vejre, P.S.: Multivariate profiling of hulls for linear
cryptanalysis. IACR Trans. Symmetric Cryptol. 2018(1), 101–125 (2018)

6. Chen, H., Wang, X.: Improved linear hull attack on round-reduced Simon with
dynamic key-guessing techniques. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol.
9783, pp. 428–449. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-52993-5 22

7. Collard, B., Standaert, F.-X., Quisquater, J.-J.: Improving the time complexity of
Matsui’s linear cryptanalysis. In: Nam, K.-H., Rhee, G. (eds.) ICISC 2007. LNCS,
vol. 4817, pp. 77–88. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-76788-6 7

8. Cui, T., Jia, K., Kai, F., Chen, S., Wang, M.: New automatic search tool for
impossible differentials and zero-correlation linear approximations. IACR Cryptol.
ePrint Arch. 2016:689 (2016)
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Abstract. We aim to efficiently design a unified, cost-effective prim-
itive exhibiting two mutually orthogonal functionalities, namely sub-
scribed users anonymity and public-key traitor traceability in the con-
text of Broadcast Encryption (BE), and propose an explicit construc-
tion of identity-based Fully Anonymous Public-Key Trace and Revoke
(FAnoPKTR) scheme that is obtained by coupling the Identity-Based
Encryption (IBE) framework with the collusion-secure optimal proba-
bilistic fingerprinting codes. In addition to being adaptively secure, our
design is proven to be INDistinguishable Chosen-Ciphertext Attack
(IND-CCA) secure under asymmetric Decisional Bilinear Diffie-Hellman
Type-3 (DBDH-3) assumption in standard security model without ran-
dom oracles. Our asymmetric Type-3 bilinear pairing-based scheme has
communication bandwidth that grows with the size of a subscriber set
for any encryption, and the user secret-key size is constant. Moreover,
our decryption algorithm is faster, which requires only three asymmetric
pairings to recover the encrypted broadcast message.

Keywords: Broadcast encryption · Identity-based encryption ·
Collusion-secure codes · Anonymity and privacy · Fraud detection and
revocation · Type-3 bilinear map · Adaptive IND-CCA security

1 Introduction

Broadcast Encryption (BE) [15] authorizes subscribers to listen broadcast
encrypted channels after paying a one-time amount for a single or time-
limited viewing. A unique device, known as “set-top decoder box”, is given
to each subscriber to register the network. The Identity-Based Broadcast
Encryption (IBBE) [8,9,11] is an advanced form of BE in which the Public-
Key Infrastructure (PKI) is not needed. In an IBBE, the public-key of each user
c© Springer Nature Switzerland AG 2021
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https://doi.org/10.1007/978-3-030-93206-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93206-0_11&domain=pdf
https://doi.org/10.1007/978-3-030-93206-0_11


Fully Anonymous Public-Key Trace and Revoke with IND-CCA Security 169

is described utilizing a unique identifier linked with the user index (e.g., a user’s
IP, phone number or email). A Group Manager (GM), also identified as Private-
Key Generation Center (PKGC), produces corresponding secret-key of each user
employing the associated public identifier of the user. To encrypt a message, a
set of receiver’s identities along with the public parameters are used by any
broadcaster. Nonetheless, an authorized user can retrieve the correct message
utilizing its secret decryption key.

Recently, numerous privacy-preserving BE is constructed in different fla-
vors [1,5,11,18] in which the anonymity of the subscribed users from any out-
side attackers is at primary concern. These systems are known as the Outsider
Anonymous Broadcast Encryption (OAnoBE), where any subscriber, i.e., an
insider, knows the information of all other subscribers of the system. From the
real-life application point of view, a subscribed user usually expects that oth-
ers not to identify his personal information. Consequently, it is also expected
that the BE system should also protect each subscriber’s insider anonymity.
The OAnoBE system with the insider anonymity is called Fully Anonymous
Broadcast Encryption (FAnoBE) system [8,9,12,15,17].

On the other hand, aid with the full anonymity, a subscriber might make a
reprint of its secret-key to resell or even publish it on the Internet without being
bothered to be caught. Besides, such traitors’ alliance might make collusion
to build a pirate decoder bearing an obfuscated malicious program capable of
decrypting the encrypted database. Since the system is fully anonymous, the
traitors might fuse their original decoder box so that the pirate decoder box
cannot be directly connected with their own identities. In this situation, the
network system must have the capability to run an efficient tracing mechanism
that interacts polynomially many times with the pirate decoder to trace the
traitors. Tracing mechanism falls into two categories: public-key tracing [10,13]
and secret-key tracing [3,14]. In a public-key tracing, anyone can execute the
tracing algorithm using only the public parameters, whereas secret-key tracing
requires a personal input and runs only by the GM. An identity-based FAnoBE
with public-key traceability is termed identity-based Fully Anonymous Public-
Key Trace and Revoke (FAnoPKTR) system.

Our Contribution. Full anonymity and public-key traceability are mutually
orthogonal functionalities that repudiate each other regarding the recipients’
privacy. It is non-trivial to realize a secure identity-based FAnoPKTR by simply
coupling identity-based FAnoBE [8,9,15] with tracing [3,4,6,7,10,13,14], leading
to efficiency and security degradation [2]. The communication bandwidth grows
linearly with the size of maximal subscribers in FAnoBE schemes. Consequently,
if we concatenate a FAnoBE with a tracing system, the tracing algorithm runs
linearly with the size of maximal subscribers [3,4]. In this work, we have allevi-
ated this inefficiency to achieve significantly low tracing time instead of similar
results. Furthermore, the user’s storage overhead grows sub-linearly with the
maximal number of system users or polynomially with security parameter in
tracing schemes. So that if we simply combine such a scheme with a FAnoBE,
the size of user’s secret-keys also grows likewise [2]. We emphasize that in our
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identity-based FAnoPKTR, the user’s storage overhead is constant, which is a
plausible achievement. Most importantly, all the existing FAnoBE and tracing
schemes are only able to achieve adaptive INDistinguishable Chosen-Plaintext
Attack (IND-CPA) security. If we directly merge these two frameworks, it also
outputs an adaptive IND-CPA secure FAnoPKTR. Our work is the first that shows
a technique to achieve the most robust adaptive INDistinguishable Chosen-
Ciphertext Attack (IND-CCA) security while combining both these orthogonal
functionalities. Although the identity-based FAnoBE and the tracing have been
investigated separately, so far, there does not exist any identity-based BE that
accomplishes public-key traceability with the receiver’s full anonymity and adap-
tive IND-CCA security. In light of the above, we initiate the study to resolve
this difficulty and develop a construction of an identity-based FAnoPKTR with
order-of-magnitude improvements in computation, communication, and storage
without any security breach. More specifically, we summarize below our main
findings.

Table 1. Comparison among existing outsider anonymous BE schemes

Scheme Commu Storage ROM Group Type Security DecTm IBE

|CT| |PP| |SK| Model Assumption

Acharya et al. [1] O(N) poly(ln3 N) O(ln32 N) ✗ ComO,T1 SEL-IND-CPA q-wDBDHI, q-cDDH O(N2) ✗

Fazio et al. [5] O(r ln N
r

) O(N) O(ln N) ✓ PriO,T1 ADAP-IND-CPA GDH,DDH O(r ln N) ✗

Li et al. [11] O(1) O(N) O(N) ✗ PriO,T3 ADAP-IND-CPA BDHE O(L) ✓

Zhang et al. [18] O(N) O(1) O(1) ✓ PriO,T1 ADAP-IND-CPA BDH, eBDH O(N) ✗

Ours O(L) O(N) O(1) ✗ PriO,T3 ADAP-IND-CCA DBDH-3 O(L) ✓

Table 2. Comparison among existing fully anonymous BE schemes

Scheme Commu Storage ROM Group Type Security DecTm IBE

|CT| |PP| |SK| Model Assumption

He et al. [8] O(N) O(1) O(1) ✓ PriO,T1 ADAP-IND-CPA DBDH O(1) ✓

Lai et al. [9] O(N) O(1) O(1) ✓ PriO,T1 ADAP-IND-CPA DBDH O(N) ✓

Libert et al. [12] O(N) O(N) O(1) ✗ PriO,T1 ADAP-IND-CPA DDH O(N) ✗

Ren et al. [15] O(L) O(l) O(l) ✗ PriO,T3 ADAP-IND-CPA DBDH O(L) ✓

Tseng et al. [17] O(L) O(1) O(1) ✓ PriO,T1 SEL-IND-CPA gBDH O(L) ✓

Ours O(L) O(N) O(1) ✗ PriO,T3 ADAP-IND-CCA DBDH-3 O(L) ✓

N = total number of users of the system, r = total number of revoked users, L = number of sub-

scribers for an encryption, l = length of the user identity, η = security parameter, ROM = random

oracle model, Commu = communication bandwidth, DecTm = decryption time, IBE = identity-based

encryption, |CT| = ciphertext size, |PP| = public parameter size, |SK| = user secret key size,

ADAP = adaptive, SEL = selective, IND-CPA = indistinguishable chosen-plaintext attack, IND-CCA

= indistinguishable chosen-ciphertext attack, ComO = composite order, PriO = prime order, poly =

polynomial, T1 = Type-1 pairing, T3 = Type-3 pairing, GDH = gap Diffie-Hellman, DDH = deci-

sional Diffie-Hellman, BDH = bilinear Diffie-Hellman, eBDH = extended bilinear Diffie-Hellman,

BDHE = bilinear Diffie-Hellman exponent, wDBDHI = weak decisional bilinear Diffie-Hellman inver-

sion, cDDH = composite decisional Diffie-Hellman, gBDH = gap bilinear Diffie-Hellman, DBDH-3 =

decisional bilinear Diffie-Hellman type-3

• The security against adaptive INDistinguishable Chosen-Ciphertext Attacks
(IND-CCA) is the strongest and very useful notion of security, which is
not easily accomplishable for the Public-Key Encryption (PKE) schemes.
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As compared to all the existing outsider anonymous BE [1,5,11,18] (cf.
Table 1), fully anonymous BE [8,9,12,15,17] (cf. Table 2) and traceable
BE [3,4,6,7,10,13,14] (cf. Table 3), our main contribution in this paper is
that we are the first to achieve the adaptive IND-CCA security.

• As exhibited in Table 1, our construction is fully anonymous, whereas the
works [1,5,11,18] are OAnoBE without having traitor traceability. Instead of
having constant storage, the DecTm and the |CT| of [18] is linear to the total
users N , which is significantly high as compared to ours. Besides, the user’s
storage size of our design is significantly less as opposed to [1,5,11], although
the |CT| and DecTm of ours are significantly less as compared to [5] (where the
number of revoked users is higher compared to the number of subscribers).
However, the security proof of [5,18] is in the ROM and [1] is selectively
secure under the non-standard q-type security assumptions over composite
order groups. In contrast, our construction is proven to be adaptively secure
under the standard DBDH-3 assumption without the ROM.

• More interestingly, compared to the existing FAnoBE [8,9,12,15,17], our
identity-based FAnoPKTR is the first to achieve the public-key traceability
against arbitrary collusion. Table 2 shows that the DecTm of [8] and the stor-
age size of [8,9,17] are constant, whereas ours is slightly high. However, we
note that the |CT| of [8,9,12], the DecTm of [9,12] is linear to N , which are
significantly high as opposed to ours. Moreover, the work of [17] is selectively
secure and [8,9,17] are proven to be secured under ROM. Although the design
of [12] and ours have the same parameter sizes, we emphasize that if we trans-
form [12] into an identity-based FAnoPKTR using the (only known) generic
transformation of Murat et al. [2], then the storage overhead grows linearly
in the square of N , which is highly inefficient.

Table 3. Comparison among existing trace and revoke schemes

Scheme Commu Storage ROM Group Type Security DecTm IBE

|CT| |PP| |SK| Model Assumption

Boneh et al. [3] O(
√

N) O(
√

N) O(
√

N) ✗ ComO, T1 ADAP-IND-CPA D3DH, BSD O(1) ✗

Boneh et al. [4] poly(ln N, η) poly(ln N, η) poly(η) ✗ − ADAP-IND-CPA FE, iO − ✗

Garg et al. [6] poly(ln N) poly(ln N) poly(ln N) ✗ ComO, ML ADAP-IND-CPA FE − ✗

Garg et al. [7] O(
√

N) O(
√

N) O(
√

N) ✓ PriO, T1 ADAP-IND-CPA D3DH, XDH O(1) ✗

Lee et al. [10] O(r) O(η) O(ln1.5 N) ✓ PriO, T1 ADAP-IND-CPA q-SMEBDH O(1) ✗

Mandal et al. [13] poly(ln N, η) poly(ln N, η) O(1) ✗ PriO, ML ADAP-IND-CPA DHDHE, iO O(N) ✗

Nishimaki et al. [14] poly(l, |m|) poly(η) poly(l) ✗ − ADAP-IND-CPA FE, iO − ✗

Ours O(L) O(N) O(1) ✗ PriO, T3 ADAP-IND-CCA DBDH-3 O(L) ✓

|m| = length of the message, poly = polynomial, SMEBDH = simplified multi-exponent bilinear Diffie-Hellman,

D3DH = decisional (modified) 3-party Diffie-Hellman, BSD = bilinear subgroup decision, XDH = external

Diffie-Hellman, DHDHE = decisional hybrid Diffie-Hellman exponent, FE = functional encryption, iO = indis-

tinguishability obfuscation, ML = multilinear maps
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• Table 3 shows the comparison of our scheme with the existing tracing sys-
tems [3,4,6,7,10,13,14] none of which preserves receiver’s full anonymity. All
the works [3,7,10], except the design of [13], have constant DecTm which
is slightly less than ours. The DecTm in [13] is linear to N . In contrast
to [3,4,6,7,10,14], our construction has less communication bandwidth and
user’s storage overhead (i.e., user secret-key size) as L <

√
N , where L denotes

a very small number of subscribers for an encryption and N stands for the
total number of system users. Moreover, the construction of [3] uses com-
posite order group, and [10] is secure in ROM under the non-standard q-
SMEBDH with ciphertext size linear to revoked users r. However, the cipher-
text size in our construction is linear to L and our construction is proven to
be secure under the standard DBDH-3 assumption without ROM. The designs
in [4,6,13,14] require less storage for public parameters than ours. However,
these schemes utilize heavy duty cryptographic machinery such as multilinear
maps, indistinguishability obfuscation, constrained pseudorandom functions,
functional encryption, etc., secure and efficient realization of which are still
to be instantiated. Moreover, the DecTm of [4,6,14] depends on a suitable FE
scheme, which is highly inefficient.

2 Preliminaries

Proposition 1 (Chernoff Bound [2]). Let Xi be independent random vari-

ables with Pr[Xi = 1] = pi, Pr[Xi = 0] = 1− pi for i ∈ [1, n] and X =
n∑

i=1

Xi. Let

μ = E(X ) =
n∑

i=1

pi be the expectation. Then, the inequality Pr [|X − μ| ≥ a] ≤

2e
−2a2

n holds, where a = μδ represents an arbitrary constant and δ ∈ (0, 1).

2.1 Asymmetric Bilinear Pairings and Hardness Assumption [9,15]

Definition 1 (Asymmetric Bilinear Map). Let G
+ and G̃

+ be two additive
source groups with no efficient computable isomorphism from G

+ to G̃
+, and

G
×
T be a multiplicative target group. The groups G

+ and G
×
T have the same large

prime order p (> 2η), and the order of G̃
+ is some power of p. Let P , P̃ be two

generators of G
+ and G̃

+ respectively. A function e : G
+ × G̃

+ → G
×
T is said to

be asymmetric bilinear mapping if it has the following three properties.

1. Bilinearity: e(aU, bṼ ) = e(U, Ṽ )ab, ∀ U ∈ G
+, Ṽ ∈ G̃

+ and ∀ a, b ∈ Zp.
2. Non-degeneracy: The function is non-degenerate, i.e., e(P, P̃ ) is a genera-

tor of G
×
T .

3. Computability: The function e is efficiently computable.

The tuple BG = (p, G+, G̃+, G×
T , e) is known as Type-3 asymmetric bilinear sys-

tem.
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Decisional Bilinear Diffie-Hellman Type-3 (DBDH-3) Assumption

• Input: The instance
〈
Z,K

〉
, where Z =

[
BG, P, bP, cP, P̃ , aP̃ , bP̃ , cP̃

]
for

some a, b, c ∈ Z
∗
p and either K = e(P, P̃ )abc or K = X ∈R G

×
T .

• Output: 0 if K = e(P, P̃ )abc; 1 otherwise.

Definition 2 (DBDH-3 Assumption). The asymmetric DBDH-3 assumption
holds with (t

′
, ε

′
) if for every PPT adversary B with running time at most t

′
, the

advantage of solving the above problem is at most ε
′
= ε

′
(η), i.e.,

AdvDBDH-3
B (η) =

∣
∣Pr[B(Z,K = e(P, P̃ )abc) = 0] − Pr[B(Z,K = X) = 0]

∣
∣ ≤ ε

′

2.2 Tardos Codes [16]

An optimal probabilistic collusion-secure code known as Tardos codes TC =
(CodeGen, Identify), introduced by Gábor Tardos [16], consists of two randomized
algorithms, which are described below.

• (Γ,WatMTK) ← CodeGen(1η, N): The tracer executes this code generation
algorithm by taking as input η along with a positive integer N = poly(η).
It first chooses an error bound ε ∈ (0, 1) together with a maximal collusion
bound L = poly(η) ≤ N to set k = 	log (1ε )
 and code length l = 100L2k.
Then, it chooses independent and identically distributed random variables
Xi ∈ [t, 1−t] with t = 1

300L and Xi = sin2 ri, where i = 1, 2, . . . , l, ri is selected
uniformly at random from [t

′
, π
2 − t

′
] with 0 < t

′
< π

4 , and sin2 t
′

= t. It
generates a code matrix CN×l by selecting each entry cji independently from
{0, 1} with probability Pr[cji = 1] = Xi for j = 1, 2, . . . , N and i = 1, 2, . . . , l.
Note that the random variables cji and cj′ i (with j �= j

′
) are positively

correlated as both of them tend to be 1 if Xi is very large. It constructs the
code book Γ = {wj}N

j=1, where wj ∈ {0, 1}l is the j-th row of code matrix
CN×l. It computes a threshold parameter Z = 20Lk to set the watermarking
master tracing key WatMTK = (Z, {Xi}l

i=1). Finally, the algorithm outputs
the pair (Γ,WatMTK).

• (T) ← Identify(WatMTK, w): The traitor identification algorithm is run by
the tracer taking WatMTK = (Z, {Xi}l

i=1) and a l-length pirate code word
w as inputs. Suppose that S = {wj}L

j=1(⊆ Γ ) be a coalition of traitors, and
let F (S) denotes the feasible set of S containing w. Then F (S) satisfies the
marking condition: if wj [i] = b ∈ {0, 1} for all positions 1 ≤ i ≤ l, then
w[i] = b, where wj [i] is the i-th bit of wj ∈ S and w[i] represents the i-th
bit of w ∈ {0, 1}l. It extracts {Xi}l

i=1 from WatMTK, and generates a matrix
MN×l with the following entries.

mji =

⎧
⎨

⎩

√
1−Xi

Xi
, if wj [i] = 1

−
√

Xi

1−Xi
, if wj [i] = 0
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Note that the random variables mji are independent and each has expected
value 0 and variance 1. It extracts Z from WatMTK, checks whether∑l

i=1 w[i] · mji > Z and if so, then it accuses the code word wj ∈ S as a
fraud code word used in creating the pirate code word w ∈ F (S). Finally, it
outputs a set T(⊆ S) such that the members in T are accused in creating w.

Correctness: The correctness of TC follows from the following theorems.

Theorem 1 ([16]). Assume that j ∈ {1, 2, . . . , N} be an arbitrary user index.
Let S ⊆ Γ\{wj} be a coalition of size L ≤ N , and F (S) be the feasible set of S.
Then, Pr[wj ∈ T] < ε.

Theorem 2 ([16]). Let S ⊆ Γ be a coalition of size |S| ≤ L, and F (S) be the
feasible set of S. Then, Pr[(S ∩ T) = ∅] < (ε)

L
4 .

2.3 Identity-Based Fully Anonymous Public-Key Trace and Revoke

Syntax: An identity-based fully anonymous public-key trace and revoke scheme,
denoted by FAnoPKTR, is a tuple of three Probabilistic Polynomial Time (PPT)
algorithms-(Setup, KeyGen, Enc), one deterministic polynomial time algorithm
Dec and a probabilistic tracing algorithm TraceD, which are described below.

• (MPK,MSK) ← Setup(1η, l) : Taking a security parameter η along with the
length l of the user identities as input, this algorithm outputs a master public-
key MPK and a master secret-key MSK.

• (SKIDi
) ← KeyGen(MPK,MSK, IDi): On receiving (MPK,MSK) and an iden-

tity IDi ∈ {0, 1}l, the algorithm outputs the secret-key SKIDi
= (di).

• (CT) ← Enc(MPK,S,M): On input MPK, a set S of subscribed users and a
message M , the encryption algorithm outputs the ciphertext CT correspond-
ing to M .

• (M ∨ ⊥) ← Dec(MPK,SKIDi
,CT): Getting MPK, SKIDi

and CT as inputs,
it either recovers the correct message M or gets a designated symbol ⊥ indi-
cating decryption failure.

• (T) ← TraceD(MPK): Taking MPK as input, the tracing algorithm interacts
polynomially many times with the decoder D and outputs a set of users
T(⊆ S), who are accused as traitors.

Correctness: We say that the scheme is correct if for all η, M and IDi ∈ S

Pr

⎡

⎢
⎣

(MPK,MSK) ← Setup(1η, l)
M ← Dec(MPK,SKIDi

,CT) : SKIDi
← KeyGen(MPK,MSK, IDi)

CT ← Enc(MPK,S,M)

⎤

⎥
⎦ = 1
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Security: The security against message indistinguishability, receivers anonymity
and traceability are the three security attributes of a identity-based FAnoPKTR
scheme. The following three games model these security attributes.

(i) Ciphertext indistinguishability [12,15]: This game, under the adap-
tive IND-CCA security, is played between a PPT adversary A and a challenger
C. The advantage of A in winning the game is defined as AdvIND-CCA

A,FAnoPKTR(η) =
|MIAdvc(η) − 1

2 |, where MIAdvc(η) is given by the following quantity.

Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(MPK,MSK) ← Setup(1η, l)

((M∗
0 ,M∗

1 ),S∗) ← [A(1η)]O1(MPK,MSK,·),O2(MPK,·,·)

(ζ = ζ
′
) : ζ ∈R {0, 1}

(CT∗) ← Enc(MPK,S∗,M∗
ζ )

(ζ
′
) ← A(CT∗, {SKIDu

: IDu /∈ S∗}q
u=1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Here, O1(MPK,MSK, ·) denotes the key generation oracle access that allows A
to adaptively query on identities IDui

such that i ∈ I ⊆ [N ] with |I| ≤ q =
poly(η) ≤ N , and it returns (SKIDui

) ← KeyGen(MPK,MSK, IDui
) for all i ∈ I.

Also, O2(MPK, ·, ·) denotes the decryption oracle access that allows A to query
on a ciphertext CT and an identity IDui

, and it returns Dec(MPK,SKIDui
,CT).

Definition 3 (Security of Ciphertext Indistinguishability). We say that
FAnoPKTR scheme is (t, ε, q) IND-CCA secure if AdvIND-CCA

A,FAnoPKTR (η) is negligible
function of η for all PPT adversary A with runtime at most t and making at
most q secret key queries.

(ii) Anonymity [12,15]: This game is also played between a PPT adversary
A and a challenger C. The advantage of A in winning the game is defined as
AdvIND-ANO-CCA

A,FAnoPKTR (η) = |AAdvc(η) − 1
2 |, where AAdvc(η) is given by

Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(MPK,MSK) ← Setup(1η, l)

(M∗, (S∗
0 ,S∗

1 ) ← [A(1η)]O1(MPK,MSK,·),O2(MPK,·,·)

(κ
′
= κ) : κ ∈R {0, 1}

(CT∗) ← Enc(MPK,S∗
κ
,M∗)

(κ
′
) ← A(CT∗, {SKIDu

: IDu /∈ S∗
0�S∗

1}q
u=1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Here, O1(MPK,MSK, ·) and O2(MPK, ·, ·) can be defined as before.
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Definition 4 (Security of Anonymity). We say that the FAnoPKTR is
(t, ε, q) INDistinguishable ANOnymous Chosen-Ciphertext Attack (IND-ANO-
CCA)-secure if AdvIND-ANO-CCA

A,FAnoPKTR (η) is negligible function of η for all PPT adver-
sary A with runtime at most t and making at most q secret key queries.

(iii) Traceability [2]: This game is played between an adversary A and a
tracer C. The advantage of A in winning the game is defined as

AdvTTA,FAnoPKTR(η) =
∣
∣TAdvc(η)

∣
∣,

where TAdvc(η) is given by the following quantity.

Pr

⎡

⎢
⎢
⎢
⎢
⎣

(MPK,MSK) ← Setup(1η, l)

(ζ = 1) : (D) ← [A(1η,MPK, L)]O1(MPK,MSK,·),O2(MPK,·,·)

(T) ← TraceD(MPK)
If (X1 ∧ X2) holds, set ζ = 1; Else, set ζ = 0

⎤

⎥
⎥
⎥
⎥
⎦

Here, X1 is the event that D is an ε-useful decoder and X2 is the event that
T is either empty or not a subset of E = {IDui

: i ∈ I} such that all IDui

queried to O1(MPK,MSK, ·). For a randomly chosen message Mi, we say that D
is ε-useful decoder if Pr[D(Enc(MPK,S,Mi)) = Mi] ≥ ε. Here, O1(MPK,MSK, ·)
and O2(MPK, ·, ·) can be defined as before.

Definition 5 (Security of Traceability). We say that the scheme
FAnoPKTR is (t, ε) traceable if AdvTTA,FAnoPKTR (η) is negligible function of η for
all decoder, corresponding to some polynomial-sized set of identities, provided by
all PPT adversary A with run-time at most t.

3 Our Construction

The communication model of our identity-based FAnoPKTR = (Setup,KeyGen,
Enc,Dec,TraceD) scheme involves a GM, a broadcaster, several users and a tracer.
The algorithms are detailed below.

• (MPK,MSK) ← Setup(1η, l): The GM, on input the security parameter η
along with the length l of user identities, proceeds as follows. Here, the set of
all user’s identities is given by ID = {ID1, ID2, . . . , IDN}, where N = 2l.
(i) It first generates an asymmetric bilinear group system BG =

(p, G+, G̃+, G×
T , e) (cf. Sect. 2.1). Let P , P̃ be two random gen-

erators of G
+ and G̃

+ respectively. It chooses random exponents
α, β, γ, {γj , λj}l

j=1, x, y ∈ Z
∗
p and computes the following.

{
Uj = γjP, Ũj = γj P̃

}l

j=1
, U

′
= γP, Ũ

′
= γP̃ , B̃ = βP̃ , X̃ = xP̃ , Ỹ = yP̃ ,

{
Qi =

∑

IDi[k]=1

λk ·
∑

IDi[k]=1

Uk, Q̃i =
∑

IDi[k]=1

λk ·
∑

IDi[k]=1

Ũk

}N

i=1
, Ω = e(P, P̃ )αβ

Here, IDi[k] ∈ {0, 1} denotes the k-th bit of IDi ∈ {0, 1}l.
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(ii) It selects a collision resistant cryptographic hash function H :
{0, 1}∗ → Z

∗
p to set the master public key as MPK =

(BG, P, P̃ , Ω, U
′
, {Qi}N

i=1,X̃, Ỹ ,H) and the master secret key MSK =
(αB̃, Ũ

′
, {Q̃i}N

i=1). Finally, the GM publishes MPK and keeps MSK secret
to itself.

• (SKIDi
) ← KeyGen(MPK,MSK, IDi): On receiving a user identity IDi =

(IDi[1] IDi[2] . . . IDi[l]) ∈ {0, 1}l from a user i, the GM selects r ∈R Z
∗
p and

generates a secret key SKIDi
= (di,1, di,2), using the MSK and extracting P̃

from the MPK, as follows.

di,1 = αB̃ + r(Ũ
′
+ Q̃i) and di,2 = rP̃

Finally, the GM sends SKIDi
to user i through a secure communication chan-

nel between them.
• (CT) ← Enc(MPK,S,M): The broadcaster takes as input MPK, a polynomial

sized set S = {IDi : i ∈ IS} of subscribed users, and a message M ∈ G
×
T .

Here, IS is the index set of S with |IS | ≤ L = poly(η) ≤ N . It performs the
following steps to produce a ciphertext corresponding to M .
(i) The encryptor first chooses a random partition (S0,S1) of the set S, where

S0 = {ID0,i}ξ
i=1 and S1 = {ID1,i}δ

i=1 are disjoint sets with S = S0 ∪ S1,
ξ + δ = L ≤ N . It then executes the following steps for the set Sb ={
IDb,i

}m

i=1
, where either m = ξ if b = 0 or m = δ if b = 1.

(a) It extracts H from MPK to compute xb,1 = H(IDb,1), xb,2 =
H(IDb,2), . . ., xb,m = H(IDb,m). For i = 1, 2 . . . , m sets the fol-
lowing polynomials

fb,i(x) =
m∏

j=1
j �=i

(x − xb,j)
(xb,i − xb,j)

= ab,i,1 + . . . + ab,i,m (x)m−1 (modp).

Here, either fb,i(x) = 1 if x = xb,i or fb,i(x) = 0 if x = xb,j for all
i �= j.

(b) It randomly chooses s ∈ Z
∗
p. For i = 1, 2 . . . , m, it computes

Rb,i =
m∑

j=1

ab,j,i s(U
′
+ Qb,j),

and sets V = sP , W = M ·Ωs. It generates the ciphertext components
CTb = ({Rb,i}m

i=1,V,W) corresponding to Sb for b = 0, 1.

(c) It also computes θb = H
(
{Rb,i}m

i=1,V,W,M
)

and Γ̃b = s
(
X̃+

(θbỸ )
)
.

(ii) Finally, the broadcaster publishes CT =
(
CT0,CT1, Γ̃0, Γ̃1

)
as the cipher-

text.
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• (M ∨ ⊥) ← Dec(MPK,SKIDi
,CT): A subscribed user i, belonging to S =

S0 ∪ S1, with SKIDi
and MPK can recover the correct message M from the

ciphertext CT by trying to decrypt both the ciphertext components CT0 and
CT1. One of them, say CTb for b ∈ {0, 1}, leads the decryptor i to a valid
decryption when executes the following steps.
(i) Since CTb leads to a valid decryption, therefore, IDi ∈ Sb for b ∈

{0, 1}. Consequently, the identity is of the form IDi = IDb,i =
(IDb,i[1] IDb,i[2] . . . IDb,i[l]) for i belonging to either [ξ] or [δ] depend-
ing on whether IDi = ID0,i ∈ S0 or IDi = ID1,i ∈ S1 respectively.
Decryptor extracts H from MPK, and computes the followings.

xb,i = H(IDb,i),

Λb,i = Rb,1 + . . . + Rb,i(xb,i)i−1 + . . . + Rb,m(xb,i)m−1 (modp),

where {Rb,i}m
i=1 are separated from CTb, and IDb,i is the identity of i.

Note that if b = 0, then m = ξ and if b = 1, then m = δ.
(ii) It also recovers computes M

′
= W × e(Λb,i,di,2)

e(V,di,1)
and θ

′
b = H

(
{Rb,i}m

i=1,

V,W,M
′
)
.

(iii) Finally, it retrieves the correct message as follows.

M =

{
M

′
if e

(
V, X̃ + (θ

′
bỸ )

)
= e

(
P, Γ̃b

)

⊥ Otherwise

• (T) ← TraceD( MPK): To execute the tracing algorithm, the tracer, who
knows the set S, takes MPK as input and proceeds as follows.
(i) It first runs TC.CodeGen(1η, N) algorithm to generate the watermarking

master tracing key WatMTK = (Z, {Xi}l
i=1) and the code book Γ =

{wi}N
i=1 (cf. Sect. 2.2). It assigns code word wi ∈ Γ to each user i ∈ [N ]

and constructs the set S̃ = {wi : i ∈ IS} ⊂ Γ that corresponds to the
subscribed users set S. It chooses a random permutation π : [N ] → [N ]
and shuffles the indices of all the code words in the subset S̃ by employing
π. It initially sets a code word w = 0l as a pirate code word.

(ii) The tracer executes the following steps to construct a l-length pirate
code word w belonging to the feasible set F (S̃) of S̃. For each index
j = 1, 2, . . . , l, the tracer repeatedly performs the following steps.

– A partition of S, denoted by RS(j)π = (S(j)
0 ,S(j)

1 ), is constructed by
setting

S(j)
b =

{
S ∩ {IDv|wπ(v)[j] = 0,∀wv ∈ S̃}, if b = 0
S ∩ {IDv|wπ(v)[j] = 1,∀wv ∈ S̃}, if b = 1
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Due to the random choice of π, the partition RS(j)π is indistinguish-
able from the original partition (S0,S1) of S in the main encryption
algorithm.

– A random message Mrand ∈ G
×
T is chosen to construct the trac-

ing ciphertexts: CT[j] =
[
CT0[j] =

({R0,i}ξ
′

i=1,V,Wrand

)
,CT1[j] =

({R1,i}δ
′

i=1,V,W)]
corresponding to the index j and RS(j)π , where

Wrand = Mrand · Ωs, W = M · Ωs and rest of the ciphertext compo-
nents are constructed in the similar manner as shown in the main
encryption algorithm.

– It interacts with D by providing polynomially many tracing cipher-
texts CT[j] for different choices of M , Mrand ∈R G

×
T . Let p1,j be the

success probability of D in decrypting the ciphertext corresponding
to the j-th bit. The tracer will replace the j-th bit w[j] of the pirate
code word w with 1 if p1,j ≥ 1

2 .
– It outputs the pirate code cord w ∈ {0, 1}l. Note that we can estimate

w in a similar manner by considering p0,j instead of p1,j , by setting
CT1[j] to be the encryption of random message.

(iii) Finally, the tracer runs TC.Identify(WatMTK, w) algorithm of Sect. 2.2 to
get a subset Tπ(⊆ S̃) such that the elements of the set are accused in
creating the pirate code word w. Hence, the set T = {IDπ−1(t) : wt ∈ Tπ}
(⊆ S) is the set of all traitors involved in the production of the pirate
decoder D.

Approximation of the success probability p1,j of D for each index j and the
correctness of tracing algorithm are shown in Theorem5. Here, we assume that
at the beginning S is given to tracer by the broadcaster and it is entirely outside
the control of adversary. Consequently, any broadcaster, who has the knowledge
of S, plays the role of tracer.

Correctness: Assume that a subscribed user i, having its identity string IDi

belonging to S0 and valid ciphertext components, is running the decryption
algorithm. Therefore, the identity IDi will be of the form IDi = ID0,i =
(ID0,i[1] . . . ID0,i[l]) ∈ {0, 1}l. The first component of the secret-key SKIDi

is
given by di,1 = αB̃ + r(Ũ

′
+ Q̃0,i). The decryptor i will try to decrypt both

CT0 and CT1. Since CT1 corresponds to S1 and IDi /∈ S1, therefore, decryption
on CT1 will output ⊥. However, user i recovers M from CT0 by the following
computations.
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R0,1 + . . . + R0,i

(
x0,i

)i−1
+ . . . + R0,ξ

(
x0,i

)ξ−1

=
ξ∑

j=1
a0,j,1 s(U

′
+

∑

ID0,j [k]=1
λk·

∑

ID0,j [k]=1
Uk) + . . . +

ξ∑

j=1
a0,j,i s(U

′
+

∑

ID0,j [k]=1
λk·

∑

ID0,j [k]=1
Uk)(x0,i)

i−1 + . . . +
ξ∑

j=1
a0,j,ξ s(U

′
+

∑

ID0,j [k]=1
λk·

∑

ID0,j [k]=1
Uk)(x0,i)

ξ−1

=
[
a0,1,1 s(U

′
+

∑

ID0,1[k]=1
λk·

∑

ID0,1[k]=1
Uk)+

. . . + a0,ξ,1 s(U
′
+

∑

ID0,ξ[k]=1
λk·

∑

ID0,ξ[k]=1
Uk)

]
+ . . . +

[
a0,1,i s(U

′
+

∑

ID0,1[k]=1
λk·

∑

ID0,1[k]=1
Uk)+

. . . + a0,ξ,i s(U
′
+

∑

ID0,ξ[k]=1
λk·

∑

ID0,ξ[k]=1
Uk)

]
(x0,i)

i−1 + . . . +
[
a0,1,ξ s(U

′
+

∑

ID0,1[k]=1
λk·

∑

ID0,1[k]=1
Uk) + . . . + a0,ξ,ξ s(U

′
+

∑

ID0,ξ[k]=1
λk·

∑

ID0,ξ[k]=1
Uk)

]
(x0,i)

ξ−1

= s
( ξ∑

j=1
a0,1,jx

j−1
0,i

)(
U

′
+

∑

ID0,1[k]=1
λk·

∑

ID0,1[k]=1
Uk

)
+ . . . + s

( ξ∑

j=1
a0,i,jx

j−1
0,i

)(
U

′
+

∑

ID0,i[k]=1
λk·

∑

ID0,i[k]=1
Uk

)
+ · · · + s

( ξ∑

j=1
a0,ξ,jx

j−1
0,i

)(
U

′
+

∑

ID0,ξ[k]=1
λk·

∑

ID0,ξ[k]=1
Uk

)

=sf0,1(x0,i)
(
U

′
+

∑

ID0,1[k]=1
λk·

∑

ID0,1[k]=1
Uk

)
+. . . + sf0,i(x0,i)

(
U

′
+

∑

ID0,i[k]=1
λk·

∑

ID0,i[k]=1
Uk

)
+

. . . + sf0,ξ(x0,i)
(
U

′
+

∑

ID0,ξ[k]=1
λk·

∑

ID0,ξ[k]=1
Uk

)
= s

(
U

′
+

∑

ID0,i[k]=1
λk·

∑

ID0,i[k]=1
Uk

)

Therefore, Λ0,i = s
(
U

′
+

∑

ID0,i[k]=1

λk· ∑

ID0,i[k]=1

Uk

)
, since f0,i(x0,i) = 1 and

f0,j(x0,i) = 0 for all j �= i as described before.

e (V, di,1) = e
(
sP, αB̃ + r

(
Ũ

′
+ Q̃0,i

))

= e
(
sP, αB̃ + r

(
Ũ

′
+

∑

ID0,i[k]=1

λk·
∑

ID0,i[k]=1

Ũk

))

= e
(
sP, αB̃

)
e
(
sP, r

(
γ +

∑

ID0,i[k]=1

λk·
∑

ID0,i[k]=1

γk

)
P̃

)

= Ωs · e(s(γ +
∑

ID0,i[k]=1

λk·
∑

ID0,i[k]=1

γk

)
P, rP̃

)
= Ωs · e (Λ0,i, di,2)

The decryptor recovers the correct message by the following computation.

W × e
(
Λ0,i, di,2

)

e
(V, di,1

) = M · Ωs × e
(
Λ0,i, di,2

)

e
(
Λ0,i, di,2

) · Ωs
= M

Finally, we can show that for a valid message M
′

= M and valid ciphertext
components CT0 =

(
{R0,i}m

i=1,V,W
)

the following holds.

θ
′
0 = H

(
{R0,i}m

i=1,V,W ,M = M
′)

= θ0

e
(
V, X̃ + (θ

′
0Ỹ )

)
= e

(
sP, X̃ + (θ0Ỹ )

)
= e

(
P, s

(
X̃ + (θ0Ỹ )

))
= e

(
P, Γ̃0

)
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Similarly, if the user identity IDi ∈ S1, then it can recover the correct message
M from CT1 by accomplishing the similar computations.

4 Security Analysis

Theorem 3 (Ciphertext Indistinguishability). Our proposed identity-
based FAnoPKTR scheme, presented in Sect. 3, accomplishes adaptive IND-CCA
security as per the (t, ε, poly(η)) message indistinguishability security under the
standard asymmetric (t

′
, ε

′
) DBDH-3 assumption, where η is the security param-

eter and poly(η) represents a polynomial in η.

Proof. Assume that there exists a PPT adversary A that breaks the adaptive
IND-CCA security of our identity-based FAnoPKTR with a non-negligible advan-
tage, where A makes at most q = poly(η) number of secret key queries. Then,
we can construct a PPT simulator B that attempts to break the asymmetric
DBDH-3 assumption of Sect. 2.1 using A as a subroutine. At the beginning, B
obtains the DBDH-3 challenge instance

〈
Z =

[
BG, P, bP, cP, P̃ , aP̃ , bP̃ , cP̃

]
,K

〉

to decide whether K = e(P, P̃ )abc or a random element X from G
×
T , where

a, b, c ∈ Z
∗
p, BG = (p, G+, G̃+, G×

T , e) and P , P̃ are random generators of G
+

and G̃
+ respectively. Then, B proceeds as follows.

Setup: Initially, B sets an integer m = 4q and randomly chooses another integer
l
′ ∈ {0, 1, . . . , l}, where l is the length of the users’ identity. It also randomly
selects x

′
, y

′
, {wi, xi, yi, zi}l

i=1, x̂, ŷ ∈ {0, 1, . . . ,m − 1}. For a user i with the
identity IDi ∈ {0, 1}l, B defines the functions:

F(IDi) = (p − l
′
m + x

′
) +

∑

IDi[k]=1

wk·
∑

IDi[k]=1

xk,

J (IDi) = y
′
+

∑

IDi[k]=1

zk·
∑

IDi[k]=1

yk,

Q(IDi) =

⎧
⎨

⎩

0, if x
′
+

∑

IDi[k]=1

wk· ∑

IDi[k]=1

xk ≡ 0 (mod m)

1, otherwise

⎫
⎬

⎭

To publish the master public key MPK, B chooses a collusion resis-
tant cryptographic hash function H : {0, 1}l −→ Z

∗
p. Utilizing

〈
Z =

[
BG, P, bP, cP, P̃ , aP̃ , bP̃ , cP̃

]
,K

〉
, it sets the elements U

′
= (p− l

′
m+x

′
)(bP )+

y
′
P , Ũ

′
= (p − l

′
m + x

′
)(bP̃ ) + y

′
P̃ , Ω = e(bP, aP̃ ), B̃ = bP̃ , X̃ = x̂P̃ ,

Ỹ = ŷP̃ and
{
Q̃i =

∑

IDi[k]=1

wk · ∑

IDi[k]=1

xk(bP̃ ) +
∑

IDi[k]=1

zk · ∑

IDi[k]=1

ykP̃ ,

Qi =
∑

IDi[k]=1

wk · ∑

IDi[k]=1

xk(bP )+
∑

IDi[k]=1

zk · ∑

IDi[k]=1

ykP
}N

i=1
. Finally, B sends

MPK = (BG, P, P̃ , Ω, U
′
, {Qi}N

i=1, X̃, Ỹ ,H) to A.
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Phase 1: (a) The adversary A adaptively issues polynomially many user secret
key queries. It sends an identity IDi ∈ {0, 1}l of user i to B. To return a valid
secret key corresponding to IDi, B does the following.
− If Q(IDi) = 0, B aborts the game and chooses a random bit from {0, 1} to
solve the asymmetric DBDH-3 problem.
− Otherwise, B chooses an exponent r ∈R Z

∗
p to sets the secret-key components

as: di,1 = −J (IDi)
F(IDi)

(aP̃ ) +r(Ũ
′
+ Q̃i) and di,2 = − 1

F(IDi)
(aP̃ ) + rP̃ .

− Finally, B returns A the secret-key SKIDi
=

(
di,1, di,2,

)
corresponding to the

identity IDi of the user i.
Observe that SKIDi

components are valid secret-key components as that of
in the original protocol. Assume that r̂ = r − a

F(IDi)
, then

di,1 = −J (IDi)

F(IDi)
(aP̃ ) + r(Ũ

′
+ Q̃i)

= −J (IDi)

F(IDi)
(aP̃ ) + r

[
(p − l

′
m + x

′
)(B̃) + y

′
P̃ +

∑

IDi[k]=1

wk ·
∑

IDi[k]=1

xk(bP̃ )

+
∑

IDi[k]=1

zk ·
∑

IDi[k]=1

ykP̃
]

= −J (IDi)

F(IDi)
(aP̃ ) + r

[(
y

′
+

∑

IDi[k]=1

zk ·
∑

IDi[k]=1

yk

)
P̃

+
(
p − l

′
m + x

′
+

∑

IDi[k]=1

wk ·
∑

IDi[k]=1

xk

)
B̃

]

= −J (IDi)

F(IDi)
(aP̃ ) + r

[F(IDi)B̃ + J (IDi)P̃
]

= aB̃ +
( − a

F(IDi)

)[F(IDi)B̃ + J (IDi)P̃
]
+ r

[F(IDi)B̃ + J (IDi)P̃
]

= aB̃ +
(
r − a

F(IDi)

)(F(IDi)B̃ + J (IDi)P̃
)

= aB̃ + r̂
(F(IDi)B̃ + J (IDi)P̃

)
= aB̃ + r̂

(
Ũ

′
+ Q̃i

)
, and di,2 =

(
r − a

F(IDi)
P̃

)
= r̂P̃

To compute the above secret key components, B requires F(IDi) �≡ 0 (modp).
(b) The adversary A also adaptively issues polynomially many decryption
queries. For each query, A sends the ciphertext-user identity pair (CT, IDu).
The simulator B first generates the secret-key SKIDu

by executing the afore-
mentioned step (a). Finally, it returns to A the result Dec(MPK,SKIDu

,CT) by
executing the same decryption algorithm of the proposed scheme.

Challenge: The adversary A submits a challenge set S∗ of size L and two equal
length messages M∗

0 ,M∗
1 subject to the restriction that for all IDi of secret-

key queries in Phase 1, IDi /∈ S∗. Let the challenge set is of the form S∗ =
{ID∗

i }L
i=1. The simulator B aborts the game and chooses a random bit if for

any identity ID∗
i ∈ S∗, (x

′
+

∑

IDi[k]=1

wk · ∑

IDi[k]=1

xk) �= l
′
m. Observe that for

ID∗
i if (x

′
+

∑

IDi[k]=1

wk · ∑

IDi[k]=1

xk) �= l
′
m holds, then F(ID∗

i ) �≡ 0 (modp).
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As a result, A can trivially compute SKID∗
i
. Now, B randomly chooses a bit ζ ∈

{0, 1} and selects a random split (S∗
0 ,S∗

1 ) of the set S∗, where S∗
0 =

{
ID0,i

}ξ

i=1
,

S∗
1 =

{
ID1,i

}δ

i=1
are disjoint sets and S∗ = S∗

0 ∪ S∗
1 . Then, B executes the

following steps for the set S∗
b =

{
IDb,i

}m

i=1
, where either m = ξ if b = 0 or

m = δ if b = 1.

– Using H, it computes xb,1 = H(IDb,1), . . ., xb,m = H(IDb,m), and for i =
1, . . . ,m sets the polynomial

fb,i(x) =
m∏

j=1
j �=i

(x − xb,j)
(xb,i − xb,j)

= ab,i,1 + . . . + ab,i,m xm−1 (modp).

Observe that either fb,i(x) = 1 if x = xb,i or fb,i(x) = 0 if x = xb,j for all
i �= j.

– It computes
{Rb,i =

m∑

j=1

ab,j,i J (IDb,j) · (cP )
}m

i=1
, V = cP , W = M∗

ζ · K,

and sets the challenge ciphertext component corresponding to S∗
b as CT∗

b =({Rb,i

}m

i=1
,V,W)

.

– It also computes θb = H
(
{Rb,i}m

i=1,V,W,M∗
ζ

)
and Γ̃ ∗

b =
(
x̂ + θbŷ

)(
cP̃

)
.

Finally, B passes A the challenge ciphertext CT∗ =
(
CT∗

0, CT∗
1, Γ̃ ∗

0 , Γ̃ ∗
1

)
,

which is a valid ciphertext. For the first component CT∗
0, assume that s∗ = c,

K = e(P, P̃ )abc, then V = s∗P , W = M∗
ζ · K = M∗

ζ · e(P, P̃ )abc = M∗
ζ · Ωs∗

and for i = 1, . . . , ξ

R0,i =
ξ∑

j=1

a0,j,i · J (ID0,j) · (cP ) =
ξ∑

j=1

a0,j,i · s∗[F(ID0,j)(bP ) + J (ID0,j)P
]

=
ξ∑

j=1

a0,j,i · s∗
[
(p − l

′
m + x

′
)(bP ) + y

′
P +

∑

ID0,j [k]=1

wk ·
∑

ID0,j [k]=1

xk(bP )

+
∑

ID0,j [k]=1

zk ·
∑

ID0,j [k]=1

ykP
]

=
ξ∑

j=1

a0,j,i · s∗(U
′
+ Q0,j

)

Since c = s∗ is uniformly random, CT∗
0 is valid and uniformly distributed over the

ciphertext space. Observe that for a valid message M∗
ζ and the valid ciphertext

component CT∗
0, the component Γ̃ ∗

0 is also valid by the following computations.

Γ̃ ∗
0 =

(
x̂ + θ0ŷ

)(
cP̃

)
= c

(
x̂P̃ + (θ0(ŷP̃ ))

)
= s∗

(
x̂P̃ + (θ0(ŷP̃ ))

)
= s∗

(
X̃ + (θ0Ỹ )

)

Similarly, we can show that CT∗
1 is also a valid ciphertext component.

Phase 2: Same as the Phase 1.

Guess: At last, A returns a guess bit ζ
′ ∈ {0, 1} of ζ to B.
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Probability Analysis

If ζ = ζ
′
, B outputs 0, indicating that K = e(P, P̃ )abc; otherwise, it outputs 1,

indicating that K is a random element of G
×
T . The simulation of B is perfect

when K = e(P, P̃ )abc. Therefore, we have

Pr[B(Z,K = e(P, P̃ )abc) = 0] =
1
2

+ AdvIND-CCA
A,FAnoPKTR(η),

where AdvIND-CCA
A,FAnoPKTR(η) is the advantage of A in the above game. However, M∗

ζ is
completely hidden from A when K = X, a random element from G

×
T . Therefore,

we have the following probability.

Pr[B(Z,K = X) = 0] =
1
2

Hence, the advantage of B in breaking the DBDH-3 challenge is

AdvDBDH-3
B (η) = |Pr[B(Z,K = e(P, P̃ )abc) = 0] − Pr[B(Z,K = X) = 0]|

=
1
2

+ AdvIND-CCA
A,FAnoPKTR(η) − 1

2
= AdvIND-CCA

A,FAnoPKTR(η)

Therefore, if A has non-negligible advantage in correctly guessing ζ
′
, then B pre-

dicts K = e(P, P̃ )abc or random element of G
×
T (i.e., breaks DBDH-3 challenge)

with non-negligible advantage. Hence, the proof. ��
Theorem 4 (Anonymity). Assuming the asymmetric (t

′
, ε

′
) DBDH-3

assumption, our proposed FAnoPKTR scheme of Sect. 3 is indistinguishable
anonymous secure against all (t, ε, poly(η)) IND-ANO-CCA adversaries, where
η is the security parameter and poly(η) represents a polynomial in η.

Theorem 5 (Traceability). Suppose that our proposed identity-based FAnoP-
KTR is adaptive IND-CCA secure against the message indistinguishability game
proved in Theorem3. Then, assuming the (t, ε) collusion-secure optimal proba-
bilistic Tardos codes TC, detailed in Sect. 2.2, our tracing algorithm TraceD of
Sect. 3 outputs identity of at least one traitor user.

The proof of the above Theorem 4 is similar as the Theorem 3. Due to the
page restriction, the proof of the above Theorem4 is given in the AppendixA
and the proof of the above Theorem5 is also given in the AppendixB.

5 Conclusion

We have constructed an identity-based FAnoPKTR scheme, which is proven to
be adaptive IND-CCA secure under the asymmetric DBDH-3 assumption in the
standard security model without ROM. By tweaking the T3 bilinear pairing over
the Tardos codes TC, we have obtained constant size user secret-key. Moreover,
computation cost and communication bandwidth grow with the size of the sub-
scribed user’s set for an encryption.
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A Proof of the Theorem 4

Proof. Setup, Phase 1: Exactly same as the Theorem 3.

Challenge: The adversary A submits a challenge message M∗ belongs to G
×
T

and two equal sized sets S∗
0 ,S∗

1 of size L with the restriction that for all IDi

of secret-key queries in Phase 1, IDi /∈ S∗
0�S∗

1 , i.e., the identities of (S∗
0 ∪ S∗

1 )
excluding (S∗

0 ∩ S∗
1 ) have not been executed the secret key query in Phase 1.

The simulator B aborts the game and chooses a random bit for the asymmetric
DBDH-3 problem if for any identity IDi belongs to either S∗

0 or S∗
0 , the condition

(x
′
+

∑

IDi[k]=1

wk · ∑

IDi[k]=1

xk) �= l
′
m holds. Since, (x

′
+

∑

IDi[k]=1

wk · ∑

IDi[k]=1

xk) �=

l
′
m implies that F(IDi) �≡ 0 (modp) and consequently, A can compute the

secret-key SKIDi
corresponding to IDi. Now, B randomly chooses κ ∈ {0, 1}

and selects a random split (S∗
κ,0,S∗

κ,1) of the set S∗
κ
, where S∗

κ,0 =
{
IDκ,0,i

}ξ

i=1

and S∗
κ,1 =

{
IDκ,1,i

}δ

i=1
are disjoint sets and S∗

κ
= S∗

κ,0∪S∗
κ,1. Then, B executes

the following steps for the set S∗
κ,b =

{
IDκ,b,i

}m

i=1
, where either m = ξ if b = 0

or m = δ if b = 1.

– Using H, it computes xκ,b,1 = H(IDκ,b,1), . . ., xκ,b,m = H(IDκ,b,m), and for
i = 1, . . . ,m sets

fκ,b,i(x) =
m∏

j=1
j �=i

(x − xκ,b,j)
(xκ,b,i − xκ,b,j)

= aκ,b,i,1 + . . . + aκ,b,i,m xm−1 (modp)

Observe that either fκ,b,i(x) = 1 if x = xκ,b,i or fκ,b,i(x) = 0 if x = xκ,b,j for
all i �= j.

– It computes
{Rκ,b,i =

∑m
j=1 aκ,b,j,i J (IDκ,b,j) · (cP )

}m

i=1
, V = cP , W =

M∗ · K, and sets the challenge ciphertext component corresponding S∗
κ,b as

CT∗
κ,b = ({Rκ,b,i}m

i=1,V,W).

– It also computes θb = H
(
{Rκ,b,i}m

i=1,V,W,M∗) and Γ̃ ∗
κ,b =

(
x̂ + θbŷ

)(
cP̃

)
.

Finally, B passes A the challenge ciphertext CT∗ =
(
CT∗

κ,0, CT∗
κ,1

)
. Observe

that CT∗ is a valid. For the first component CT∗
κ,0, assume that s∗ = c, K =

e(P, P̃ )abc, then V = s∗P and for i = 1, . . . , ξ
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Rκ,0,i =
m∑

j=1

aκ,0,j,i J (IDκ,0,j) · (cP )

=
ξ∑

j=1

aκ,0,j,i · s∗[F(IDκ,0,j)(bP ) + J (IDκ,0,j)P
]

=
ξ∑

j=1

aκ,0,j,i · s∗
[
(p − l

′
m + x

′
)(bP ) + y

′
P

+
∑

IDκ,0,j [k]=1

wk ·
∑

IDκ,0,j [k]=1

xk(bP ) +
∑

IDκ,0,j [k]=1

zk ·
∑

IDκ,0,j [k]=1

ykP
]

=
ξ∑

j=1

aκ,0,j,i · s∗(U
′
+ Qκ,0,j

)

W = M∗ · K = M∗ · e(P, P̃ )abc = M∗ · Ωs∗

Since c = s∗ is uniformly random, CT∗
κ,0 is valid and uniformly distributed

over the ciphertext space. Observe that for a valid message M∗
ζ and the valid

ciphertext component CT∗
κ,0, the component Γ̃ ∗

κ,0 is also valid by the following
computations.

Γ̃ ∗
κ,0 =

(
x̂ + θ0ŷ

)(
cP̃

)
= c

(
x̂P̃ + (θ0(ŷP̃ ))

)
= s∗

(
x̂P̃ + (θ0(ŷP̃ ))

)
= s∗

(
X̃ + (θ0Ỹ )

)

Similarly, we can show that CT∗
κ,1 is also the valid ciphertext component.

Phase 2: Similar to Phase 1.

Guess: Finally, A returns a guess bit κ
′ ∈ {0, 1} of κ to B.

Probability Analysis. Same as the Theorem 3. Hence, the proof. ��

B Proof of the Theorem 5

Proof. The traceability of our identity-based AnoPKTR against arbitrary collu-
sion is played between a PPT adversary A and a tracer C. Here, broadcaster
plays the role of the tracer. Initially, a polynomial-sized set S is chosen by C
and interacts with the pirate decoder box D corresponding to the set S. More
precisely, the game is described as follows.

Setup: First, C runs Setup (1η, l) of the AnoPKTR and outputs the MPK and
the MSK. Then, C sends MPK to A and keeps MSK secret to itself.

KeyGen: The adversary A has the access to the key generation oracle OKeyGen
(MPK, MSK, ·) that allows A to query on a set of indices I ⊆ [N ] with |I| ≤ L ≤
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N . The oracle returns ((SKIDi
)) ← KeyGen (MPK, MSK, IDi) for all i ∈ I, where

E = {IDi : i ∈ I}.

TraceD: The tracer uses the OAnoTPK, the decoder D to execute the algorithm
TraceD (OAnoTPK) which is shown in Sect. 3. Due to random choice of π, type
(π, j) split RP(j)

π = (S(j)
0 , S

(j)
1 ) of S is indistinguishable from a random split

RP = (S0,S1) of S in main encryption algorithm. Therefore, both RP and RP(j)
π

belong to the same distribution space. The tracing phase can be divided into
two stages which are described below.

[a] Approximating success probability. Let C interacts � many times with
D by providing the tracing ciphertext corresponding to a particular split RP(j)

π =
(S(j)

0 , S
(j)
1 ), where S

(j)
0 = S ∩ {IDv | wπ(v)[j] = 0, ∀ wv ∈ S̃} and S

(j)
1 = S

∩ {IDv | wπ(v)[j] = 1, ∀ wv ∈ S̃}. For a bit b ∈ {0, 1}, we denote a tracing
split of Sb by (RP(j)

π , b). For � trials, corresponding to (RP(j)
π , b), the decoder

D has the expected success probability μb,j = � · σb,j and the observed success
probability ρb,j = � · pb,j , where σb,j and pb,j are respectively the expected
success probability and the observed success probability of D in a single trial.
Observe that throughout the entire TraceD algorithm of Sect. 3, b = 1 and π is
fixed as D is stateless and re-settable.
Using the two tailed Chernoff Bound (cf. Definition 1), we obtain the relation
between the observed value and the expected value for � trials, taking � =

48 ln (2ε ) and setting a = �
4 , as: Pr[|ρ1,j −μ1,j | ≥ a] ≤ 2e

− a2
3μ1,j ≤ 2e− a2

3� . Substi-

tuting a = �
4 and � = 48 ln (2ε ), we obtain 2e− a2

3� = 2e− �2
3·16·� = 2e− ln ( a2

3� ) = ε,
where ε is a negligible quantity that can be decreased by increasing number of
trials. Therefore, |ρ1,j − μ1,j | ≤ �

4 holds with probability at least 1 − ε. This
condition is equivalent to |p1,j − σ1,j | ≤ 1

4 . Hence, it holds with probability at
least 1 − ε.

[b] Producing pirate code word. If the code word w, produced by TraceD (see
Sect. 3), be a pirate code word, then we can prove that the code words belongs
to the set Tπ ← TC.Identify (WatMTK, w), are accused in creating w with high
probability. We show that for all j ∈ [l], if w[j] = b, then S(j)

b ∩ Tπ �= ∅ for
b ∈ {0, 1}. We now consider the following two cases.

– Case I (w[j] = 0): Due to the tracing strategy of TraceD, w[j] = 0 only when
D is unable to decrypt the ciphertext corresponding to RP(j)

π . Thus, p1,j < 1
2

holds. Assume by contradiction that S(j)
0 ∩ Tπ = ∅. Therefore, there is no

traitor in S(j)
0 who is accused in creating w. Since D is a perfect decoder,

therefore, the probabilities p0,j = σ0,j = 1. From the approximation phase, it
also holds that |σ1,j −p1,j | ≤ 1

4 with probability at least 1−ε. Substituting all
the conditions into the triangle inequality |σ0,j −σ1,j | + |σ1,j −p1,j | ≥ |σ0,j −
p1,j |, we obtain |σ0,j − σ1,j | ≥ 1

4 . Hence, we can conclude that D has a non-
negligible advantage in distinguishing the tracing ciphertexts corresponding
to (RP(j)

π , 0) and (RP(j)
π , 1). Therefore, with advantage at least 1

4 , the decoder
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can distinguish the two ciphertexts corresponding to the random message
Mrand and the actual message M . Since we assume by contradiction that S(j)

0 ∩
Tπ = ∅, we can use the distinguishing capability of D to break the message
indistinguishability with receivers anonymity security of our AnoPKTR. Thus,
we arrive at a contradiction.

– Case II (w[j] = 1): Due to our tracing strategy, w[j] = 1 only when p1,j ≥ 1
2 .

Following the Case I, we obtain σ1,j ≥ 1
4 with probability at least 1−ε. Assum-

ing the security of message indistinguishability with receivers anonymity of
our OAnoPKTR, we can conclude that the traitor belongs to the set S(j)

1 .

We repeat the above process for all j = 1, . . . , l and apply the union probability
over all the choices of j. In sum, we can conclude that w is the pirate code
word with probability at least 1− εl. Finally, the trace get a traitor user identity
belonging to T =

{
IDπ−1(t) : wt ∈ Tπ

}
with probability at least 1− ε, where the

overall failure probability of accusing an innocent user is bounded by (l + 1)ε.
Hence, the proof. ��
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Abstract. Redactable signature plays a significant role in real-life appli-
cations such as electronic health records, and has been studied extensively.
Nevertheless, how to construct a redactable signature scheme with desig-
nated redactors is still unknown. In this paper, we affirmatively answer
this problem by presenting a notion of ring trapdoor redactable signature
(RTRS). RTRS is a variant of redactable signature where the redactors
are specified. We first introduce the concept of ring trapdoor preimage
sampleable functions (RPSFs), which inherits the merit of preimage sam-
pleable functions and ring trapdoor functions, and then show an instan-
tiation of RPSFs under the assumption of inhomogeneous small integer
solution problem. We then present two concrete constructions of RTRS (a
simplified version and a full version) from a family of RPSFs and a com-
mon signature scheme. It is proved that the unforgeability, privacy and
restriction of proposed schemes relies on the security of underlying com-
mon signature schemes and ring one-way property of the RPSFs. Besides,
we also prove that our schemes satisfy the indistinguishability.

Keywords: Ring trapdoor preimage sampleable functions · Ring
trapdoor redactable signature scheme · Inhomogeneous small integer
solution problem

1 Introduction

To meet the requirements of authenticated data redaction, Johnson et al. pre-
sented the concept of redactable signatures in 2002 [11]. As an instance of
editable homomorphic signatures, the redactor can revise a signed message and
generates a valid signature for the new message without private key. That is to
say, the generation of the redacted data-signature pair can be completed inde-
pendently. Redactable signatures have found wide applications in scenarios such
as electronic health records systems, social networks, and smart grids. Privacy
is a concern on authenticated data publish [3,14,15,17,25,29].
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Unforgeability and privacy are the two basic security requirements of
redactable signatures [30]. Different from the unforgeability definition of tra-
ditional digital signatures [9], the unforgeability of redactable signatures allow
the redactor to delete some portions of the signed message. However, he cannot
generate a valid signature for any new message except for the authentic remained
message. It satisfies the requirement for the integrity and origin authentication
of the redacted data. The privacy ensures that the redacted data-signature pair
reveals no information about the deleted message. It satisfies the privacy pro-
tection requirement for the sensitive portions of the original signed data [4].

To meet different application requirements, there are other security demands
for redactable signatures, including transparency, unlinkability and accountabil-
ity. Transparency ensures that the third party cannot determine whether the
received data-signature pair is redacted or not [5]. Unlinkability ensures that
the third party cannot identify which is the original data by given the redacted
data-signature pairs [6]. Transparency and unlinkability provide stronger privacy
protection ability. Accountability demands that anyone can affirm which one gen-
erates the redacted data-signature pairs by using the evidence tags [16,27]. It
supports auditing on controversial signatures.

With the rapid development of quantum computers and quantum algorithms,
secure cryptographic algorithms against quantum computing have become the
current consensus of researchers. Almost all of the existing redactable signature
(RS) schemes to have been constructed on traditional complexity problems in
number theory, such as large number decomposition and discrete logarithm prob-
lem (DLP). But the super computing power of quantum computers will make
them totally insecure. However, to the best of our knowledge, there are few RS
schemes against quantum computing are constructed.

Related Work. A number of RS schemes have been presented since the intro-
duction of redactable signatures [11,30]. Most of the general constructions are
based on traditional digital signature schemes [3–7,14–19,25–27,29]. Specifically,
the constructions in [11,13,24,30] are based on RSA algorithms, and their secu-
rity depends on the complexity of large number decomposition. The security of
those designs using pairing in [10,12,15,22,23,28,31] depends on the complex-
ity of DLP. However, all schemes suffer from potential security threats brought
by the quantum information technologies. Furthermore, there are no quantum-
secure RS schemes, to our knowledge.

Lattice-based cryptography is well known as the post-quantum cryptography.
The notion of preimage sampleable functions (PSFs) is defined by Gentry et al.
[8]. Indeed, a collection of functions is called a family of PSFs if it satisfies
generating a function with trapdoor, domain sampling with uniform output,
preimage sampling with trapdoor and one-wayness without trapdoor. Besides,
by the sampling algorithm of discrete Gaussian probability distribution and the
trapdoor of lattice, a construction of lattice-based PSFs is presented.

In 2010, Brakerski and Kalai [2] introduce the notion of ring trapdoor func-
tions (RTFs) and it can be applied to building ring signature schemes. Ring
trapdoor functions can be viewed as a generalization of PSFs in some sense.
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In 2012, as an efficient method of trapdoor generation for lattices, the notion
of G-trapdoor is presented [20]. By this trapdoor, we can sample from a discrete
Gaussian over a desired coset of Λ⊥(A) by an efficient algorithm.

Our Contribution. We improve the notion of RTFs by present the concept
of ring trapdoor preimage sampleable functions (RPSFs) in this paper. Accord-
ing to the construction of RTFs in [2] and the method of trapdoor in [20], we
construct RPSFs under the assumption of ISIS in lattice.

In the framework of [7], anyone who receives the message-signature pair and
modification instruction can redact the message. An intriguing question of great
interest is the definition and construction of RS scheme when the redactors are
appointed. Thus we introduce the formal definition of ring trapdoor redactable
signature (RTRS), and by the notion of PRSFs, we construct a simplified version
of RTRS scheme and a full version of RTRS scheme.

2 Preliminaries

For the sake of descriptive integrality, some related definitions and properties
required by our paper are displayed in this section.

Firstly, the symbols used in our paper are listed in the following Table 1.

Table 1. Symbols used in our paper

Symbol Meaning

Z, R The families of integers and real numbers

O, ω The standard notation of growth functions

[t] {1, 2, . . . , t}
g(n) = ˜O(f(n)) ∃c ∈ R such that g(n) = O(f(n) · logc n)

g(n) = Poly(n) ∃c ∈ R with g(n) = O(nc)

g(n) = negl(n) Negligible function, i.e., g(n) = O(n−c) (∀c > 0)

Bold lowercase letters Column vectors

Bold capital letters Matrices

I Identity matrix

←r Choosing elements from the uniform distribution

(X‖Y) The columns of X are followed by the columns of Y

Besides, s1(X) = maxt‖Xt‖ (t ∈ R
m with ‖t‖ = 1) is called the largest singular

value of matrix X ∈ R
n×m.

Let b1,b2, · · · ,bm ∈ R
m×m be m linearly independent vectors and B =

(b1,b2, · · · ,bm) . Then the discrete additive subgroup

Λ = L(B) =

{
m∑

i=1

xibi : xi ∈ Z

}
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is named a m-dimensional lattice generated by B. For arbitrary matrix A ∈
Z

n×m
q where n,m, q ∈ Z

+, we can verify that

Λ⊥(A) = {x ∈ Z
m : Ax = 0 mod q}

and
Λ(A) =

{
x ∈ Z

m : x = A�y mod q for some y ∈ Z
n
q

}
form two lattices. In addition, we let Λ⊥

u (A) = {z ∈ Z
m : Az = u mod q} be

the coset for arbitrary u ∈ Z
n.

The function ρs,c : Rm −→ R defined by ρs,c(x) = exp(−π‖(x − c)/s‖2) is
called the Gaussian function, where c ∈ R

m and s > 0. For any fixed count-
ably subset Σ ⊆ Rm, we let ρs,c(Σ) =

∑
x∈Σ ρs,c(x). Then DΣ,s,c defined by

DΣ,s,c(x) = ρs,c(x)/ρs,c(Σ) for arbitrary x ∈ Σ is called the discrete Gaussian
distribution.

Lemma 1 [21]. Let Λ be a lattice with dimension n, c ∈ span(Λ), ε ∈ (0, 1) and
s ≥ ηε(Λ). We have

1 − ε

1 + ε
· ρs(Λ) ≤ ρs,c(Λ) ≤ ρs(Λ)

and

Pr
x∼DΛ,s,c

[
‖x − c‖ ≤ s

√
n
]

≥ 1 − 1 + ε

1 − ε
· 2−n.

For any n ∈ Z
+ and odd prime number q, we denote k = 	log2 q
 and

g = (1, 2, 4, · · · , 2k−1)� ∈ Z
k
q . Let G = In ⊗ g� ∈ Z

n×nk
q be a public matrix,

where “⊗” is the tensor product. The notion of G-trapdoor for the lattice Λ⊥(A),
which can be viewed as a improvement of the trapdoor of Ajtai [1], is proposed
in [20].

Definition 1 [20]. Given a matrix A ∈ Z
n×m
q with n, q,m ∈ Z and k = 	log2 q
,

if there exists some invertible matrix S ∈ Z
n×n
q such that A(R�‖Ink)� = SG,

then R ∈ Z
(m−nk)×nk
q is named a G-trapdoor for A.

In addition, the quality of any G-trapdoor is measured by the largest singular
value s1(R).

Theorem 1 [20]. Let n, q ∈ Z
+ and S ∈ Z

n×n
q be invertible matrix. For any suf-

ficiently large m = O(n log q), TrapGen(1n, 1m, q,S) is a polynomial time algo-
rithm which can output a matrix A ∈ Z

n×m
q and a G-Trapdoor R ∈ Z

(m−nk)×nk
q ,

where k = 	log2 q
. Moreover, the distribution of A is within negl(n) statistical
distance of uniform and s1(R) ≤ √

m · ω(
√

log n).
In addition, given any u ∈ Z

n
q and sufficiently large s ≥ s1(R) · ω(

√
log n),

SampleD(R,A,S,u, s) is a polynomial time algorithm which can sample from a
distribution which is negl(n)-far from DΛ⊥

u (A),s.
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Theorem 2 [20]. Let n,m, q ∈ Z
+ such that q ≥ 2 is a prime and m =

O(n log q) is sufficiently large. Then for arbitrary real s ≥ ω(log m) and for
all but at most negligible part A ←r Z

n×m
q , we have the following facts.

– If e samples from DZm,s, then the distribution of u = Ae mod q is negl(n)-
far from uniform over Z

n
q .

– For a fixed u ∈ Z
n
q , let v be a vector such that Av = u mod q. Then the dis-

tribution of x ∼ DZm,s given the condition Ax = u mod q is v+DΛ⊥(A),s,−v.

3 Ring Trapdoor Preimage Sampleable Functions

In 2010, Brakerski and Kalai introduce the notation of ring trapdoor functions
in [2]. Roughly, it can be viewed as a collection of functions which satisfies Ring
one-way and Ring Trapdoor.

Now we perfect the definition of ring trapdoor functions and present the
notion of ring trapdoor preimage sampleable functions (RPSFs). It can also be
viewed as a ring trapdoor version of preimage sampleable functions [8]. By this
notion, we construct two ring trapdoor redactable signature schemes in Sect. 4.

Definition 2 [2]. For any n ∈ N, let Xn and Gn be an efficiently recognizable
set and a commutative group, respectively. We denote X = {Xn}n∈N and G =
{Gn}n∈N. T = {Tn}n∈N, where Tn is a set of functions f : Xn −→ Gn, is called
a family of ring trapdoor functions if it satisfies the following conditions.

1. Sampling. Given 1n, one can efficiently sample f ∈ Tn according to some
fixed distribution. For the sake of convenience, we reuse notation of Tn to
denote this distribution.

2. Zero. For every integer n ∈ N, there exists a fixed element in Xn such that
the image of this element under any f ∈ Tn is 0, which is the identity element
of Gn.

3. Verifiability. For any n ∈ N and any polynomial t = t(n), one can efficiently
verify that

∑
i∈[t] fi(xi) = y by given f1, · · · , ft ∈ Tn, x1, · · · , xt ∈ Xn and

y ∈ Gn.
4. Ring one-way. For every polynomial t = t(n), it is hard to compute

x1, · · · , xt ∈ Xn such that
∑

i∈[t] fi(xi) = y by given y ←r Gn and
f1, · · · , ft ← Tn. Formally, let A be any polynomial time adversary and
t = t(n). Then the following condition holds.

RingInvt
T Adv[A] = Pr

⎡
⎣∑

i∈[t]

fi(xi) = y :
f1, · · · , ft ← Tn, y ←r Gn,
(x1, · · · , xt) ← A(1n, f1, · · · , ft, y)

⎤
⎦

=negl(n).

5. Trapdoor. Given 1n, one can efficiently sample a function f from a distri-
bution which is statistically indistinguishable from Tn and the corresponding
trapdoor td. In addition, for arbitrary polynomial t = t(n), let f1, · · · , ft ∈ Tn,
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and y ∈ Gn. Given any trapdoor tdi for fi with some i ∈ [t], one can effi-
ciently obtain x1, · · · , xt ∈ Xn such that

∑
i∈[t] fi(xi) = y. Furthermore, let

tdj be a trapdoor for fj, using tdj instead of tdi will result in a statistically
indistinguishable distribution of (x1, · · · , xt).

Furthermore, we can present the notation of ring trapdoor preimage sam-
pleable functions based on ring trapdoor functions.

Definition 3. For any n ∈ N, let Xn and Gn be an efficiently recognizable
set and a commutative group, respectively. We denote X = {Xn}n∈N and G =
{Gn}n∈N. T = {Tn}n∈N, where Tn is a set of functions f : Xn −→ Gn, is called a
family of ring trapdoor functions if it satisfies Sampling, Zero, Verifiability,
Ring one-way and the following conditions.

1. Domain sampling with uniform output. For any polynomial t = t(n),
let χt be a fixed distribution over (Xn)t. Given any f1, · · · , ft ∈ Tn,
there is a probabilistic polynomial-time algorithm RSampleDom(1n, t) samples
(x1, · · · , xt) according to the distribution χt such that

∑
i∈[t] fi(xi) follows

uniform distribution over Gn.
2. Preimage sampling with trapdoor. Given 1n, one can efficiently sample a

function f from a distribution which is statistically indistinguishable from Tn

and the corresponding trapdoor td. Besides, for arbitrary polynomial t = t(n),
any f1, · · · , ft ∈ Tn with tdi for some fixed i ∈ [t], and any y ∈ Gn, there is
a probabilistic efficient algorithm RSamplePre(t, tdi, y) can efficiently sample
(x1, · · · , xt) ∈ (Xn)t satisfying the following conditions.
(1)

∑
i∈[t] fi(xi) = y.

(2) If y follows uniform distribution over Gn, then (x1, · · · , xt) satisfies the
distribution χt over (Xn)t.

Combining the construction of ring trapdoor functions in [2] and G-trapdoor,
we can now construct a collection of RPSFs based on ISIS.

– Parameters. Let n,m, q, s be the parameters satisfying Theorem 1. The
domain is Xn = {x ∈ Z

m : ‖x‖ ≤ s
√

m}, while the co-domain Gn = Z
n
q .

– Sampling. Given 1n, one can use the algorithm TrapGen(1n, 1m, q,S) in
Theorem 1 to choose (A,R), where A ∈ Z

n×m
q and R ∈ Z

(m−nk)×nk
q . The

matrix A defines the function fA : Xn −→ Gn such that fA(x) = Ax mod q.
The matrix R is the corresponding trapdoor.

– Ring one-way. Let fA1 , · · · , fAt
← Tn and y ←r Z

n
q . If there exists an

adversary A can returns (x1, · · · ,xt) ∈ (Xn)t such that
∑

i∈[t] fA1(xi) =∑
i∈[t] Aixi = y. We denote A = (A1‖A1‖ · · · ‖At) and x = (xT

1 , · · · ,xT
t )T .

Thus Ax = y and ‖x‖ =
√∑

i∈[t] ‖xi‖ ≤ s
√

tm. That is, there exist some

adversaries B which can solve the ISIS instance (A,y). Thus we have

RingInvt
T Adv[A] ≤ ISISq,tm,s

√
tm[B].
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– Domain sampling with uniform output. By related conclusions in [20],
we have s ≥ s1(R) · ω(

√
log n) ≥ ηε(Λ⊥) for some ε(n) = negl(n). For any

polynomial t = t(n), let χt be the DZmt,s. With the standard basis of Zmt,
we can sample x = (xT

1 , · · · ,xT
t )T from DZmt,s by the algorithm presented

in [8]. According to Lemma 1, we have xi follows DZm,s for arbitrary i ∈ [t]
and xi ∈ Xn except with exponentially small probability. In addition, the
following holds: given any fA1 , · · · , fAt

∈ Tn,
∑

i∈[t] fAi
(xi) follows uniform

distribution over Gn.
– Preimage sampling with trapdoor. For any polynomial t = t(n), given

any fA1 , · · · , fAt
∈ Tn such that Ri is a trapdoor for fAi

for some i ∈ [t],
and given any y ∈ Gn, the trapdoor inversion algorithm RSamplePre(t,Ri,y)
can be described as follows.
Let A = (A1‖ · · · ‖Ai−1‖Ai+1‖ · · · ‖At). With the standard basis of Zm(t−1),
we can sample (xT

1 , · · · ,xT
i−1,x

T
i+1, · · · ,xT

t )T from DZm(t−1),s. If we denote
yi = y−

∑
j �=i fAj

(xj), then xi can be sampled by SampleD(Ri,Ai,S,yi, s).
Let x = (xT

1 , · · · ,xT
t )T . Thus we have:

•
∑

j∈[t] fAj
(xj) = y.

• xj ∈ Xn except with exponentially small probability for arbitrary j ∈ [t].
• It is clear that xj satisfies the distribution DZm,s over Xn for any j �= i. If

y follows uniform distribution over Gn, then yi also follows the uniform
distribution over Gn. Thus we deduce that xi follows the distribution
within negl(n) statistical distance of DZm,s. In addition, x1, · · · ,xt are
independent between them. Thus x follows DZmt,s.

4 Ring Trapdoor Redactable Signatures

Let us consider the following application background. A message which is signed
includes two parts. Some appointed redactors can redact the first part and return
a new valid signature pair, while the second part can not be redacted. In addition,
the second part determines who can redact the signature pair. In some sense,
the second part can be viewed as the intrinsic content of this message. For
this application, we introduce the formal definition of ring trapdoor redactable
signature.

Definition 4. A tuple of polynomial-time algorithms R = (R.Gen,R.Genred,
R.Sign,R.Ver,R.Redact) is called a ring trapdoor redactable signature (RTRS)
if R satisfies the following conditions.

– Parameters. Suppose that there are t redactors R1, · · · ,Rt in the system.
Let M = M1 × M2 be the messages space and let V : M −→ {0, 1}t be a
function such that: for arbitrary M = (M1,M2) and M ′ = (M ′

1,M
′
2) ∈ M,

V(M) = V(M ′) if M2 = M ′
2. For convenience, we denote V(M) = (v1, · · · , vt)

and IM = {i ∈ [t] : vi = 1}. Specifically, redactor Ri can revise M1 by
giving a valid signature pair (M,σ), and returns a new valid signature pair
(M ′ = (M ′

1,M2), σ′) if and only if vi = 1.
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– R.Gen(1κ) takes the security parameter κ as the input, and it outputs a veri-
fication key R.pk and a signing key R.sk.

– R.Genred(1κ) takes the security parameter κ as the input, and it outputs a
public key and a private key for the redactor.
For any i ∈ [t], let (R.pkredi

, R.skredi
) be the pair of keys of redactor Ri. We

denote R.pkred = (R.pkred1 , · · · , R.pkredt
).

– R.Sign(M,R.sk,R.pkred) takes the verification key R.sk, R.pkred and a mes-
sage M = (M1,M2) ∈ M as the input. It outputs a corresponding signature σ.

– R.Ver(M,σ,R.vk,R.pkred) takes a message M = (M1,M2) ∈ M, R.vk,
R.pkred and a signature σ as the inputs. It outputs b ∈ {0, 1}. Specifically,
b = 1 signifies “accept” and b = 0 signifies “reject”.

– R.Redact(M,σ,R.pkred, R.skredi
) takes the private key R.skredi

for the ith
redactor and a message M = (M1,M2) ∈ M, R.pkred with the corresponding
signature σ as the input. It output M ′ = (M ′

1,M2) ∈ M and σ′ as the new
data-signature pair.

The following essential requirements can be considered in RTRS scheme.

– Correctness.
• R.Ver(M,R.Sign(M,R.sk,R.pkred), R.vk,R.pkred) = 1.
• If R.Ver(M,σ,R.vk,R.pkred) = 1 and V(M) = (v1, · · · , vt) satisfying vi =

1, then

R.Ver(R.Redact(M,σ,R.pkred, R.skredi
), R.vk,R.pkred) = 1.

– Unforgeability. (R.Gen,R.Sign,R.Ver) is existentially unforgeable under
adaptive chosen-message attacks as a traditional signature scheme [9].

– Privacy. Privacy is defined by the following game G1 between adversary A
and challenger C.

• C runs R.Gen(1κ) and R.Genred(1κ) respectively, and obtains (R.pk, R.sk)
and (R.pkredi

, R.skredi
) for arbitrary i ∈ [t]. Then A is given R.pk and

R.pkredi
(i ∈ [t]).

• C accepts signing queries of messages from A.
• A sends two messages M0 = (M0

1 ,M0
2 ) and M1 = (M1

1 ,M1
2 ) with M0

2 =
M1

2 to C.
• C completes the following steps.

∗ b ←r {0, 1}.
∗ σb ← R.Sign(M b, R.sk,R.pkred).
∗ R.Redact(M b, σb, R.pkred, R.skredi

) returns (M ′, σ′) for some i sat-
isfying vi = 1, where M ′ = (M ′

1,M
b
2).

Finally, C sends (M ′, σ′) to A.
• C accepts signing queries of messages (include M0 and M1) from A.
• A guesses the value of b and returns b′ ∈ {0, 1}.

Definition 5. A RTRS scheme has privacy if the probability |Pr[b = b′] − 1
2 | in

G1 is negligible for arbitrary probabilistic polynomial time adversary A.



198 S. Yang et al.

– Restriction. For any fixed i ∈ [t], redactor Ri can redact a valid sig-
nature pair (M = (M1,M2), σ) and returns a new valid signature pair
(M ′ = (M ′

1,M2), σ′) iff V(M) = (v1, · · · , vt) satisfying vi = 1. That is to
say, Ri can not redact the valid signature pair (M = (M1,M2), σ) if vi = 0 or
return a new valid signature pair (M ′ = (M ′

1,M
′
2), σ

′) with M ′
2 �= M2. More

specifically, let us consider the following game G2 between challenger C and
redactor Ri.
1. Setup. C runs R.Gen(1κ) and R.Genred(1κ) to obtain (R.pk,R.sk) and

(R.pkredj
, R.skredj

) for arbitrary j �= i. Ri gets (R.pkredi
, R.skredi

) by
R.Genred(1κ) and publishes R.pkredi

. Ri is given R.pk and R.pkredj
(j �= i).

2. Hash queries. C accepts hash queries of message M = (M1,M2) from
redactor Ri. Let qh2 be the most number that Ri is allowed to do hash
queries of M2 such that i /∈ IM and let qh1 be the most number that Ri is
allowed to do hash queries of massage M has the same second part such
that i /∈ IM . We denote qh = qh1 · qh2.

3. Signature queries. C accepts signing queries of message M = (M1,M2)
from redactor Ri. Let qs < qh be the most number that Ri is allowed to
do signature queries with the massage M such that i /∈ IM .

4. Forge. Ri outputs a new message M∗ and a signature σ∗ = (σ∗
1 , {r∗

j }j∈[t]).

Definition 6. Let Q be the messages set required by Ri in the signature queries
phase. A RTRS scheme has restriction if for arbitrary i ∈ [t], the probability
that redactor Ri forge a valid signature (M∗ = (M∗

1 ,M∗
2 ), σ∗) such that M∗ �∈ Q

satisfies one of the following conditions is negligible.

• i �∈ IM∗ .
• For any message M = (M1,M2) ∈ Q, we have M2 �= M∗

2 .

– Indistinguishability. Anyone is infeasible to distinguish in a statistical sense
whether a signature is generated by the signer directly or it has been redacted
by some redactor Ri, except the signer and redactor Ri.

From now on, we present two concrete constructions of RTRS by a fam-
ily of RPSFs. Let (Gen,Sign,Ver) be a signature scheme satisfying existen-
tially unforgeable under adaptive chosen-message attacks. MS is the messages
space of (Gen,Sign,Ver). Let T = {Tn}n∈N be a collection of RPSFs, and let
h : {0, 1}∗ −→ Gn and H : {0, 1}∗ −→ MS be hash functions.

4.1 A Simplified Version of RTRS Scheme

For the simplified version of RTRS scheme, let M = M1 and V(M) =
(1, 1, · · · , 1) for arbitrary M ∈ M. Then a simplified version of RTRS scheme
Rs = (Rs.Gen,Rs.Genred, Rs.Sign,Rs.Ver,Rs.Redact) is constructed as follows.

– Rs.Gen(1κ): Given a security parameter κ, computer (pk, sk) ← Gen(1κ).
Then return (Rs.pk,Rs.sk) = (pk, sk).
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– Rs.Genred(1κ): Given a security parameter κ, redactor Ri can efficiently sam-
ple a function-trapdoor pair (fi, tdi) from Tn for arbitrary i ∈ [t]. Let
(Rs.pkredi

, Rs.skredi
) = (fi, tdi). For convenience, we denote Rs.pkred =

(f1, · · · , ft) and Rs.skred = (td1, · · · , tdt).
– Rs.Sign(M,Rs.sk,Rs.pkred): Given Rs.pkred, Rs.sk = sk, an message M ∈

M, computer
{ri}i∈[t] ← RSampleDom(1n, t)

and
σ1 ← Sign(sk,H(h(M) +

∑
i∈IM

fi(ri))).

Finally, return the signature σ = (σ1, {ri}i∈[t]).
– Rs.Ver(M,σ,Rs.pk,Rs.pkred): Given Rs.pk = pk,Rs.pkred, an message M ∈

M and a signature σ = (σ1, {ri}i∈[t]). It outputs 1 iff all of the following
accepted.

• ri ∈ Xn for arbitrary i ∈ [t].
• 1 ← Ver(H(h(M) +

∑
i∈[t] fi(ri)), σ1, pk).

– Rs.Redact(M,σ,Rs.pkred, Rs.skredi
): Given Rs.pkred, an message M ∈ M,

the private key Rs.skredi
= tdi for the ith redactor Ri and a valid signature σ

of M , Ri revises M to M ′. Then computer y = h(M) +
∑

i∈[t] fi(ri) − h(M ′)
and {r′

i}i∈[t] ← RSamplePre(t, tdi, y). Ri returns M ′ and σ′ = (σ1, {r′
i}i∈[t])

as the new data-signature pair.

Theorem 3. The scheme Rs defined above satisfies correctness, unforgeability,
privacy and indistinguishability.

Proof. – Correctness.
• According to the correctness of Sign, we have that σ1 is a valid signature

of H(h(M) +
∑

i∈[t] fi(ri)). It follows that

1 ← Ver(H(h(M) +
∑
i∈[t]

fi(ri)), σ1, pk).

• According to the definition of Rs.Redact, we have h(M) +
∑

i∈[t] fi(ri) =
h(M ′) +

∑
i∈[t] fi(r′

i). Thus 1 ← Ver(H(h(M ′) +
∑

i∈[t] fi(r′
i))), σ1, pk).

– Unforgeability. Let H = ∅ be an empty set and Q1 = Q2 = ∅ be two
message sets. When the challenger C is given f1, · · · ft ∈ Tn and y ←r Gn, the
game G0 between challenger C and adversary A is defined as follows.
1. Setup. C receive the public key pk of signature scheme (Gen,Sign,Ver).

Then C sends Rs.pk = pk and Rs.pkred = (f1, · · · , ft) to A. Let O be the
signature oracle of (Gen,Sign,Ver).

2. Hash queries. Let qh be the most number that A is allowed to do
hash queries. For any k ∈ [qh − 1], C samples yk ←r Gn and {rki}i∈[t]

by algorithm RSampleDom(1n). Then C keeps yk, {rki}i∈[t] and puts yk −∑
i∈[t] fi(rki) to H. The C picks j ←r [qh − 1] and put yj − y to H.

When C receive the message M from A, he randomly select a value as
the hash value of M and remove it from H. If this value is the first form,
then he puts M to Q1. Otherwise, M is put to Q2.
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3. Signature queries. Let qs < qh be the most number that A is allowed
to do signature queries.
If M ∈ Q1, then there exists k ∈ [qh − 1] such that h(M) = yk −∑

i∈[t] fi(rki). So C queries the signature of H(yk) from oracle O and
gets σ1. Then he returns σ = (σ1, {rki}i∈[t]) to A. If M ∈ Q2, then C
reports failure and terminates.

4. Forge. A outputs a new message M∗ and a signature σ∗ = (σ∗
1 , {r∗

i }i∈[t]).
Let ε be the probability that σ∗ = (σ∗

1 , {r∗
i }i∈[t]) is a valid signature of mes-

sage M∗. If M∗ ∈ Q1, then C reports failure and terminates. If M∗ ∈ Q2, then
h(M∗) = yj−y. Thus there is a message M ′ ∈ Q1 such that σ′ = (σ′

1, {r′
i}i∈[t])

is given by C with

H(h(M∗) +
∑
i∈[t]

fi(r∗
i )) = H(h(M ′) +

∑
i∈[t]

fi(r′
i)).

Otherwise, C can forge the signature of H(h(M∗) +
∑

i∈[t] fi(r∗
i )) about

scheme (Gen,Sign,Ver). Hence we get M∗ �= M ′ and

h(M∗) +
∑
i∈[t]

fi(r∗
i ) = h(M ′) +

∑
i∈[t]

fi(r′
i)

= yk

for some k ∈ [qh − 1]. If k �= j, then C reports failure and terminates. Other-
wise, C get

∑
i∈[t] fi(r∗

i ) = y without trapdoor. The successful probability of
C is (

qh−1
qs

)
(
qh

qs

) · 1
qh − qs

· 1
qh − 1

· ε ≈ 1
q2h

· ε.

This is a contradiction to the ring one-way of T . Hence, Rs is existentially
unforgeable under adaptive chosen-message attacks as a signature scheme.

– Privacy. Let us consider the following games between challenger C and adver-
sary A.
G1 is defined as follows.

• C run Rs.Gen(1κ) and Rs.Genred(1κ) respectively, and obtains the key
pairs (Rs.pk,Rs.sk) = (pk, sk) and (fi, tdi) for arbitrary i ∈ [t]. Then A
is given R.pk and R.pkredi

(i ∈ [t]).
• C accepts signing queries of messages from A.
• A sends two messages M0 and M1 to C.
• C completes the following steps.

∗ b ←r {0, 1}.
∗ σb ← Rs.Sign(M b, Rs.sk,Rs.pkred), where σb = (σb

1, {rb
i }i∈[t]).

∗ (M ′, σ′) ← Rs.Redact(M b, σb, Rs.pkred, Rs.skredi
), where σ′ =

(σb
1, {r′

i}i∈[t]).
Finally, C sends (M ′, σ′) to A.

• C accepts signing queries of messages from A.
• A guesses the value of b and returns b′ ∈ {0, 1}.
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G′
1 is the same as G1 except the step that C computes the signatures of M ′

after he receives the messages M0 and M1. C picks y ←r Gn. Then he samples
{r′

i}i∈[t] such that h(M ′) +
∑

i∈[t] fi(r′
i) = y and computes the signature of

H(y) by σ′
1 ← Sign(sk,H(y)). Finally, C get the signature σ′ = (σ′

1, {r′
i}i∈[t]).

According to the construction of Rs, we know that h(M b) +
∑

i∈[t] fi(rb
i ) in

G1 follows the uniform distribution over Gn. Thus it is statistically indistin-
guishable from the y in G′

1 at the view of the adversary. Thus A can not
distinguish between σb

1 in G1 and σ′
1 in G′

1. In addition, Rs.Redact is unre-
lated to {rb

i }i∈[t] except the value of h(M b) +
∑

i∈[t] fi(rb
i ). Thus (r′

i)i∈[t] in
G1 and G′

1 follow the distribution χt over (Xn)t. Hence, G1 is statistically
indistinguishable with G′

1 from the sense of A.
According to the construction of G′

1, σ′ = (σ′
1, {r′

i}i∈[t]) is irrelevant to M0

and M1. It can deduce that Pr(b′ = b) =
1
2
.

– Indistinguishability.
According to the property of preimage sampling with trapdoor, it is clear
that signature of message M outputted by signer has the same distribution
with the signature modified by Ri for arbitrary i ∈ [t] such that i ∈ [t].

Remark 1. In the simplified version, we have M = M1, M2 = ∅ and V(M) =
(1, 1, · · · , 1) for arbitrary M ∈ M. Thus any redactor R can revise the hole
message M . So the scheme has restriction naturally according to the definition
of restriction.

4.2 A Full Version of RTRS Scheme

A full version of RTRS scheme R = (R.Gen,R.Genred,R.Sign,R.Ver,R.Redact) is
described as follows.

– R.Gen(1κ): Given a security parameter κ, compute (pk, sk) ← Gen(1κ). Then
return (R.pk,R.sk) = (pk, sk).

– R.Genred(1κ): Given a security parameter κ, redactor Ri can efficiently
sample a function-trapdoor pair (fi, tdi) from Tn for arbitrary i ∈ [t].
Let (R.pkredi

, R.skredi
) = (fi, tdi). For convenience, we denote R.pkred =

(f1, · · · , ft) and R.skred = (td1, · · · , tdt).
– R.Sign(M,R.sk,R.pkred): Given R.pkred, R.sk = sk and an message M =

(M1,M2) ∈ M, compute V(M) = (v1, · · · , vt) and IM . Then let {ri}i∈IM
←

RSampleDom(1n, |IM |) and σ1 ← Sign(sk,H(h(M) +
∑

i∈IM
fi(ri),M2)).

Finally, return the signature σ = (σ1, {ri}i∈IM
).

– R.Ver(M,σ,R.pk,R.pkred): Given R.pk = pk,R.pkred, an message M =
(M1,M2) ∈ M and a (purported) signature σ = (σ1, {ri}i∈IM

). It outputs 1
if and only if all of the following accepted.

• ri ∈ Xn for arbitrary i ∈ IM .
• Ver(H(h(M) +

∑
i∈IM

fi(ri),M2), σ1, pk) returns 1.
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– R.Redact(M,σ,R.pkred, R.skredi
): Given R.pkred, the private key R.skredi

=
tdi for the ith redactor Ri, an message M = (M1,M2) ∈ M such that vi = 1
and a signature σ of M , Ri revises M to M ′ = (M ′

1,M2). Then compute
y = h(M)+

∑
i∈IM

fi(ri)−h(M ′) and {r′
i}i∈IM′ ← RSamplePre(|IM |, tdi, y).

Ri returns M ′ and σ′ = (σ1, {r′
i}i∈IM

) as the new data-signature pair.

Theorem 4. The scheme R defined above satisfies correctness, unforgeability,
privacy, restriction and indistinguishability.

Proof. – Correctness.
• Let According to the correctness of Sign, we have that σ1 is a valid signa-

ture of H(h(M) +
∑

i∈IM
fi(ri),M2). It follows that 1 ← Ver(H(h(M) +∑

i∈IM
fi(ri),M2), σ1, pk).

• According to the definition of R.Redact, we have h(M) +
∑

i∈IM
fi(ri) =

h(M ′) +
∑

i∈IM′ fi(r′
i). Thus we deduce that

1 ← Ver(H(h(M ′) +
∑

i∈IM′

fi(r′
i)),M2), σ1, pk).

– Unforgeability. When the challenger C is given {fj}j∈[t] ∈ Tn and y ←r

Gn, let us consider the following game G0 between the Challenger C and
adversary A .
1. Setup. Let qh2 be the most number that A is allowed to do hash queries of

M2 and let qh1 be the most number that A is allowed to do hash queries
of massage M has the same second part . We denote qh = qh1 · qh2.
Suppose Hk = ∅ be a empty set for any k ∈ [qh2], M2 = ∅ and Q1 =
Q2 = ∅ be two message sets. C receives the public key pk of signature
scheme (Gen,Sign,Ver). Then C sends Rs.pk = pk and R.pkredj

= fj to
A. Let O be the signature oracle of (Gen,Sign,Ver). In addition, A gets
(R.pkredi

, R.skredi
) by R.Genred(1κ) and publishes R.pkredi

.
2. Hash queries. C randomly select a value k∗ ←r [qh2]. When C receive

the message M = (M1,M2) from A, he responds to this query as follows:
• If M2 �∈ M2, then put M2 to M2 and let k = |M2|. For any s ∈ [qh1 −

1], C samples yks ←r Gn and {rksj}j∈IM
by algorithm RSampleDom.

Then C keeps yks, {rksj}j∈IM
and puts yks −

∑
j∈IM

fj(rksj) to Hk.
If k = k∗, then C picks sk∗ ←r [qh1 − 1] and puts yk∗sk∗ − y to Hk∗ .
Else if k �= k∗, C samples ykqh1 ←r Gn and {rkqh1j}j∈IM

and puts
ykqh1 −

∑
j∈IM

fj(rkqh1j) to Hk.
Finally C randomly select a value from Hk as the hash value of M and
remove it from Hk. If this value is the form of yks −

∑
j∈IM

fj(rksj),
then he puts M to Q1. Otherwise, M is put to Q2.

• If M2 ∈ M2 is the k-th element in M2, then C randomly select a value
from Hk as the hash value of M and remove it from Hk. If this value
is the form of yks−

∑
j∈IM

fj(rksj), then he puts M to Q1. Otherwise,
M is put to Q2.

3. Signature queries. Let qs < qh be the most number that A is allowed
to do signature queries. A responds to the query of M as follows.
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• If M ∈ Q1, then there exists k and s such that h(M) = yks −∑
j∈IM

fj(rksj). So C queries the signature of H(yks) from oracle
O and receives σ1. Finally he returns σ = (σ1, {rksj}j∈IM

) to A.
• If M ∈ Q2, then C reports failure and terminates.

4. Forge. A outputs a new message M∗ and a signature σ∗ = (σ∗
1 ,

{r∗
j }j∈IM∗ ).

Let Q be the messages set required by A in the signature queries phase
and ε be the probability that σ∗ = (σ∗

1 , {r∗
j }j∈IM∗ ) is a valid signature of

message M∗.
• If M∗ ∈ Q1, then C reports failure and terminates.
• If M∗ ∈ Q2, then h(M∗) = yk∗sk∗ − y. Thus there is a message M ′ ∈ Q1

such that σ′ = (σ′
1, {r′

j}j∈IM′ ) is given by C with

H(h(M ′) +
∑

j∈IM′

fj(r′
j),M

′
2) = H(h(M∗) +

∑
j∈IM∗

fj(r∗
j ),M∗

2 ).

Otherwise, C can forge the signature of H(h(M∗) +
∑

j∈IM∗ fj(r∗
j ),M∗

2 )
about scheme (Gen,Sign,Ver). Hence we get M∗ �= M ′, M∗

2 = M ′
2 and

h(M∗) +
∑

j∈IM∗

fj(r∗
j ) = h(M ′) +

∑
j∈IM′

fj(r′
j)

= yk∗s

for some s ∈ [qh1 − 1]. If s �= sk∗ , then C reports failure and terminates.
Otherwise, let

xj =

{
r∗
j , j ∈ IM∗

0, j �∈ IM∗ .

So C gets
∑

j∈[t] fj(xj) = y without trapdoor. The successful probability
of C is (

qh−1
qs

)
(
qh

qs

) · 1
qh − qs

· 1
qh1 − 1

· ε =
1

qh · (qh1 − 1)
· ε.

This is a contradiction to the ring one-way of T . Hence, R has restriction.
– The proof of Privacy is similar to Theorem 3.
– Restriction. When the challenger C is given f1, · · · fi−1, fi+1 · · · ft ∈ Tn and

y ←r Gn, let us consider the following game G2 between the Challenger C
and redactor Ri.
1. Setup. Let Hk = ∅ be a empty set for any k ∈ [qh2], M2 = ∅ and

Q1 = Q2 = ∅ be two message sets. C receives the public key pk of signature
scheme (Gen,Sign,Ver). Then C sends Rs.pk = pk and R.pkredj

= fj (j �=
i) to Ri. Let O be the signature oracle of (Gen,Sign,Ver). In addition, Ri

gets (R.pkredi
, R.skredi

) by R.Genred(1κ) and publishes R.pkredi
.

2. Hash queries. C randomly select a value k∗ ←r [qh2]. When C receive
the message M = (M1,M2) from Ri, he responds to this query as follows:
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• If M satisfies i ∈ IM , then C samples y ←r Gn and {rj}j∈IM
by

algorithm RSampleDom. Then he keeps y, {rj}j∈IM
and returns y −∑

j∈IM
fj(rj) to Ri.

• If M satisfies i �∈ IM , then C does the following steps.
∗ If M2 �∈ M2, then put M2 to M2 and let k = |M2|. For
any s ∈ [qh1 − 1], C samples yks ←r Gn and {rksj}j∈IM

by
algorithm RSampleDom. Then C keeps yks, {rksj}j∈IM

and puts
yks−

∑
j∈IM

fj(rksj) to Hk. If k = k∗, then C picks sk∗ ←r [qh1−1]
and puts yk∗sk∗ −y to Hk∗ . Else if k �= k∗, C samples ykqh1 ←r Gn

and {rkqh1j}j∈IM
and puts ykqh1 −

∑
j∈IM

fj(rkqh1j) to Hk.
Finally C randomly select a value from Hk as the hash value
of M and remove it from Hk. If this value is the form of
yks −

∑
j∈IM

fj(rksj), then he puts M to Q1. Otherwise, M is
put to Q2.
∗ If M2 ∈ M2 is the k-th element in M2, then C randomly select
a value from Hk as the hash value of M and remove it from Hk.
If this value is the form of yks −

∑
j∈IM

fj(rksj), then he puts M
to Q1. Otherwise, M is put to Q2.

3. Signature queries. Let qs < qh be the most number that Ri is allowed
to do signature queries. Ri responds to the query of M as follows.

• If i ∈ IM , then C get the corresponding y and {rj}j∈IM
. Thus he can

queries the signature of H(y) from oracle O. After he C receives σ1,
he returns σ = (σ1, {rj}j∈IM

) to Ri.
• If i �∈ IM , then M ∈ Q1 ∪ Q2. C does the following steps.

∗ If M ∈ Q1, then there exists k and s such that h(M) = yks −∑
j∈IM

fj(rksj). So C queries the signature of H(yks) from oracle
O and receives σ1. Finally he returns σ = (σ1, {rksj}j∈IM

) to Ri.
∗ If M ∈ Q2, then C reports failure and terminates.

4. Forge. Ri outputs a new message M∗ and a signature σ∗ = (σ∗
1 ,

{r∗
j }j∈IM∗ ).

Let Q be the messages set required by Ri in the signature queries phase and
ε be the probability that σ∗ = (σ∗

1 , {r∗
j }j∈IM∗ ) is a valid signature of message

M∗ satisfying one of the following conditions.
• i �∈ IM∗ .
• For any message M = (M1,M2) ∈ Q, we have M2 �= M∗

2 .
If M2 �= M∗

2 for any message M = (M1,M2) ∈ Q, then C can forge the
signature of H(h(M∗) +

∑
j∈IM∗ fi(r∗

j ),M∗
2 ) about scheme (Gen,Sign,Ver).

Thus we have i �∈ IM∗ and M∗ ∈ Q1 ∪ Q2.
• If M∗ ∈ Q1, then C reports failure and terminates.
• If M∗ ∈ Q2, then h(M∗) = yk∗sk∗ − y. Thus there is a message M ′ ∈ Q1

such that σ′ = (σ′
1, {r′

j}j∈IM′ ) is given by C with

H(h(M ′) +
∑

j∈IM′

fj(r′
j),M

′
2) = H(h(M∗) +

∑
j∈IM∗

fj(r∗
j ),M∗

2 ).
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Otherwise, C can forge the signature of H(h(M∗) +
∑

j∈IM∗ fj(r∗
j ),M∗

2 )
about scheme (Gen,Sign,Ver). Hence we get M∗ �= M ′, M∗

2 = M ′
2 and

h(M∗) +
∑

j∈IM∗

fj(r∗
j ) = h(M ′) +

∑
j∈IM′

fj(r′
j)

= yk∗s

for some s ∈ [qh1 − 1]. If s �= sk∗ , then C reports failure and terminates.
Otherwise, let

xj =

{
r∗
j , j ∈ IM∗

0, j �∈ IM∗ .

So C gets
∑

j �=i fj(xj) = y without trapdoor. The successful probability
of C is (

qh−1
qs

)
(
qh

qs

) · 1
qh − qs

· 1
qh1 − 1

· ε =
1

qh · (qh1 − 1)
· ε.

This is a contradiction to the ring one-way of T . Hence, R has restriction.
– Indistinguishability.

According to the property of preimage sampling with trapdoor, it is clear
that signature of message M outputted by signer has the same distribution
with the signature modified by Ri for arbitrary i ∈ IM .

5 Conclusion

The notion of ring trapdoor preimage sampleable functions (RPSFs) is presented
in this paper. According to the construction of ring trapdoor functions in [2] and
the method of G-trapdoor in [20], we introduce a construction of RPSFs under
the assumption of ISIS problem on lattice. According to some application back-
grounds such that the redactors should be designated in a redactable signature
scheme, we propose a formal definition of ring trapdoor redactable signature
(RTRS). By a family of RPSFs and a traditional signature scheme, two generic
constructions of RTRS are given, i.e., a simplified version and a full version.
Given a valid signature pair (M = (M1,M2), σ), the simplified version allows
any redactor in the system to redact the message M and present a valid sig-
nature σ′ for the new message M ′ = (M ′

1,M
′
2). While in the full version, M2

can be viewed as the essential attribute of M and can not be redacted. Besides,
M2 determines whether a redactor can redact the first part of the message and
output a valid signature σ′ for the new message M ′ = (M ′

1,M2).
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Abstract. Webshell is a code execution environment with extensions
like php, asp, and jsp, which essence is to help managers of the sys-
tem manage the web application effortlessly. Therefore, an attacker can
use weshell as a backdoor program to control the webserver similarly.
Traditional webshell detection mechanisms like rule matching and fea-
ture code detection usually suffer from poor generalization capabilities,
leading to a higher rate of false negatives. Based on the Machine Learn-
ing model N-Gram, TF-IDF to extract the webshell sample features,
three Machine Learning algorithms Multilayer Perceptron, XGBoost,
and Naive Bayesian, to train the model. Analysis through training and
testing, detection accuracy is more than 99% under the experimental
environment, which detectable scope includes php, jsp, asp, and oth-
ers. By combing the Machine Learning webshell detection model with
the Software-Defined Networks using the flow table operate method, we
implement a dynamic defense solution against webshell attackers, leading
attackers to disconnect with the target network.

Keywords: SDN · Webshell detection · Machine learning

1 Introduction

1.1 Basic Information

In recent years, with the gradual popularization of Internet technology, variousweb
applications have emerged and served our daily life. Web applications are widely
used in e-government, e-commerce, and other fields, considerably facilitating peo-
ple’s lives. However, with the evolution and development of various web applica-
tion development frameworks, the security issues associated with web applications
have gradually surfaced. Hackers with experience in offense and defense can often
exploit flaws in the server and use attacks to invade the web server.

Due to the characteristic of the webshell, once it is uploaded to the server
and parsed by the server, it will be difficult for traditional Web Application Fire-
walls (WAF) to avoid its traffic and behavior. Traditional webshell protection
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schemes mainly consist of writing keyword regular expression matching methods
to match key characters or strings with webshell characteristics. Some webshell
detection schemes target the statistical differences between webshell and tra-
ditional server programs, combining the features of Entropy, LongestWord, and
Index of Coincidence to detect webshell that are deformed and obfuscated. How-
ever, this method has poor generalization ability for webshell that have without
obfuscation. Research on machine learning methods has risen in recent years, and
solutions that use machine learning methods for webshell detection have gradu-
ally become mainstream [5]. This paper mainly focuses on PHP, JSP, ASP, and
PYTHON because these languages are suitable for webshell development.

Software-Defined Network (SDN) [16] has become the fundamental infras-
tructure of the 5G communication technology. The Clean State research group
from Stanford University propose SDN conception and implement the OpenFlow
[10] framework for reference and simulation. The SDN facilitates a fine-grained
network device management by introducing a centralized SDN controller, which
decouples the control plane from the data plane. The features provided by SDN
enable the developer to implement the real-world network devices programmat-
ically. Based on this feature, developers can develop network devices that are
more consistent with business logic. Previous studies have shown that using
controller to dynamically adjust flow rules while ensuring the security of SDN
controllers can provide reasonable protection against DoS or DDoS attacks [2].
In this research, the SDN controller plays a crucial role by combining machine
learning algorithms to detect the requested data and reduce the threat posed by
attackers to the server by modifying the flow table to block attacker traffic or
forward it to the server honeypot.

Based on machine learning methods for webshell detection, using the SDN
network can dynamically modify the network topology and flow rules. Our solu-
tion can effectively disconnect the attacker from the target servers to avoid
further damage to the target servers. WADS runs on the SDN controller. When
WADS’s machine learning model inspects that the request packet contains the
webshell, the SDN controller will supports WADS through flow update oper-
ation. By updating the flow table, the source of the attack that initiated the
upload webshell will not access the target server.

1.2 Contribution

We proposed a model based on a combination of N-Gram [3], TF-IDF with Mul-
tilayer Perceptron (MLP), XGBoost algorithm. Our method uses source code
of webshell gathered from the Github repository developed by the whitehat or
the red team attacker, including PHP, JSP, JSPX, ASP, ASPX, etc. During the
experiment, a dataset includes 11461 webshell files and 11518 benign files applied
to the model. The experimental result shows that the detection accuracy reaches
99.75% with the recall of 99.55% and precision is 99.94%. This paper orga-
nizes as follows: Sect. 2 describes background of the problem. Section 3 presents
machine learning methods and techniques that we used in this study. Section 4
proposes strategies and techniques that implement the SDN-assisted webshell
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attack defender. Section 5 presents the results, discussion that we obtained, and
finally. Section 6 presents the conclusions of this paper.

2 Background

2.1 Webshells

The attacker usually designs a malicious script using the standard web applica-
tion development language to obtain a webshell [19], which helps them achieve
long-term control of servers; after finding the flaw on the web server, they will
upload the webshell to the webserver. Once the webshell is infected, parsed by
the web server, and execute properly, it will help the attacker build up an operat-
ing interface [21] with the server. An attacker will control the server by using the
shell execution environment provided by the webshell using the connect tools.
The webshell has enough function to help the attacker manage the database,
execute as the system administrator, access the server’s file system, and so on.
We can divide webshell into three groups based on file size and functional com-
plexity: one-sentence webshell, small version webshell, and full version webshell.
One-sentence webshell is very distinctive in that they usually consist of a concise
line of code. Despite the simplicity of the code writing, attackers can obtain the
server’s information by dynamically adjusting the content of the request param-
eter vector. Miniature version webshell has more features include file transfer,
database operator, etc. Full version webshell usually has a much larger size, with
an interface that can obtain the privilege permissions of the server’s operating
system.

2.2 Webshell Detection

Once the webshell has been successfully uploaded to the server and executed,
its behavior will be challenging to capture and intercept by the web application
firewall. Detection of webshell by keyword matching alone often results in a
high rate of misses. Some researchers who combine lexical analysis techniques
with webshell detection have been able to identify web shells more accurately
when the webshell without any cryptographic scrambling [6]. Some researchers
have proposed an information entropy-based webshell detection method based
on PHP language features using the regular PHP file’s information entropy as
a threshold to identify the webshell [22]. However, this method only supports
the detection of PHP files and cannot be helpful in multi-language webshell
detection. With the development and large-scale application of machine learning
algorithms, solutions that use machine learning algorithms to detect webshell
are increasingly shifting to the mainstream. Researchers utilize packet tools to
extract the data portion of the HTTP request body and use the word vector
processing method to convert the string into a word vector that machine learning
models accept. After research, word2vec, a word vector processing method, and
machine learning techniques to design a webshell detection method can better
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achieve the detection of webshell. Researchers using the convolutional neural
network model [18] as the detection model and achieve 98.6% precision. The
webshell threat model shows in Fig. 1.

Fig. 1. Webshell threat model

2.3 Software-Defined Network

The Software-Defined Network helps the user define and build up a centralized
point to control the data flow that routes the network devices. OpenFlow is
an implementation version of software-defined networks. The SDN architecture
consists of an application plane, a control plane, and a data plane. The appli-
cation plane reflects user intent and allows developers to build the applications
based on their purpose and actual needs. In the application plane, developers
can accumulate network data such as topology and network statistics to develop
network visualization applications and network automation-related applications
that provide end-to-end solutions, which requirements were coming from the
user. The control plane is primarily responsible for managing the underlying
physical network, obtaining and maintaining the device’s statistic information
to help enhance the network’s robustness. The data plane consists of various
software/hardware-based infrastructure devices, which handle the packet follow
the instruction from the upper plane. Researchers have done a lot of work on
how to use SDN more securely as network infrastructure. By identifying and
verifying the TCP handshake packet in the flow, AvantGuard [17] introduces a
connection movement module to mitigate the attack on the SDN data plane.
Also, there has been a lot of research on machine learning-based SDN protection
mechanisms, mainly intrusion detection and DDoS attack elimination. Chen et
al. focus on SDN in the cloud environment, starting from the perspective of SDN
controllers, combining the classifier XGBoost with the collected stream packet
dataset for DDoS detection [4]. Sanda et al. use machine learning algorithms to
predict and define security rules for SDN controllers to prevent malicious users
from accessing the network [11]. This paper primarily focuses on webshell detec-
tion by utilizing the machine learning method, which combines the SDN flow
control mechanism to reduce the attacker’s influence on the target network.
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3 Machine Learning Method and Techniques

Machine learning algorithms can classify the legitimacy of network traffic
(including the upload traffic of webshell) with a high degree of accuracy. Extract
the feature from many webshell samples collected from the field using the N-
gram method. The extracted features were processed using the TF-IDF method
to achieve the goal of building the vectorized sample. This scheme uses a mul-
tilayer perceptron, XGBoost, and other models to train the data and obtain
dependable webshell detection results. To lay the groundwork for the subsequent
task of combining machine learning models with SDN controllers.

3.1 N-Gram Method

The N-Gram is the most frequently used text categorization method, which can
help build up the statistical data on the frequency of occurrence of a gram in
the NLP area. N-gram will split the text by parameter N and combine the split
words into form multiple sample sets. The N-Gram is suitable for the data with
noise [3], so we choose it as the first process method for our webshell sample.
In this scheme, the researcher introduces the Markov Assumption [7] to the N-
gram to help avoid the problem of redundant parameter spaces. The Markov
Assumption showed as follows Eq. (1).

p (w1 · · ·wn) ≈
∏

p (wi | wi−1 · · ·wi−N+1) (1)

In our experiment, parameter N takes 2, 3. When N takes 2, it is named Bi-
gram. When N takes 3, it is called Tri-gram. The Bi-gram follows as Eq. (2), and
Tri-gram follows as Eq. (3).

p (w1w2 · · ·wn) = p (w1) p (w2 | w1) · · · p (wn | wn−1) (2)

p (w1w2 · · ·wn) = p (w1) p (w2 | w1) · · · p (wn | wn−1wn−2) (3)

3.2 TF-IDF Method

TF-IDF (Term Frequency Inverse Document Frequency) is a statistical analysis
method for keywords to evaluate the significance of a word to a document set
or a corpus. As the work implies [14], TF-IDF acts by determining the related
frequency of words in a particular document compared to the inverse proportion
of that word over the complete document corpus. The TF-IDF can reveal the
importance of words to the corpus properly. The formula of TF-IDF can express
following Eq. (4).

tfidf(t, d,D) =
ft,d∑

t′∈d ft′,d
∗ log

N

|{d ∈ D : t ∈ d}| (4)

As Eq. (4) shows, ft,d denotes the count of times that term t occurs in
document d. The N indicates the count of documents in corpus and N = |D|.
The |{d ∈ D : t ∈ d}| means the number of documents in the corpus. Using the
TF-IDF approach to webshell data, we can automatically and swiftly extract
significant keywords [8] or syntax building for a webshell.
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3.3 Model Training

We collected over 10,000 webshell samples from the wild using Github’s open-
source repository. We also manually extracted webshell samples generated by
well-known tools such as Godzilla to build the training data. The model is trained
and tested by splitting the dataset according to 7-3. For the raw data, the system
will pre-process using N-gram and TF-IDF methods. The processed samples
will be applied to different Machine Learning algorithms to train the model
and adjust the hyper-parameter for better detection effects. We will compare
and evaluate the detection result to reach the approximately optimal webshell
detection model. Figure 2 shows the process imposed on the webshell sample.

Fig. 2. Feature extraction and model training process

The original data need to treat utilizing N-Gram and TF-IDF. The XGBoost,
MLP are the algorithms we practiced in training the detection model individually.
Then the detection result will estimate based on the train test split’s test samples.

We are seeking to apply more than four metrics to evaluate the model perfor-
mance that we trained before, which include classification Accuracy rate, Pre-
cision rate, Recall rate, and F1 score. Model training interval will additionally
record as a metric.

3.4 Experimental and Analysis

We use Scikit-learn [12] as a framework to write training code to pre-process
the data faster and train the machine learning model. In practice, Scikit-learn
utilizes sklearn as a package name to be called by Python, which is suitable for
developers to build up machine learning code systematically.

To obtain better model detection performance. Among them, we use
Ngramrange to denote the range of N value, Mindf called as the cut-off value,
which acting as a threshold to help ignore some low-frequency words when con-
structing word lists, Maxfeature = n denote to extract the first n words from
the frequency word lists. Finally, the Testsize describes the percentage of the
test data from the total volume.

XGBoost Algorithm. XGBoost algorithm builds up a Gradient Boosting
Decision Tree group to make the residuals of prediction in a lower scope.
XGBoost applies cache access patterns, data compression, and sharding process
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to build a better boosting system. The training situation and the information
of selected hyperparameters are shown in Table 1; meanwhile, Table 2 shows us
the XGBoost model evaluation metrics’ results, where the unit of Table 2 is %.
We use cases in the table to differentiate between different hyperparameters and
evaluation results. As the table shows, hyperparameters in case 1 work better
for the XGBoost algorithm. When Ngramrange is same, much smaller Mindf

will achieve a higher accuracy rate.

Table 1. XGBoost algorithm parameter

Case Ngramrange Mindf Maxfeature Testsize

1 1,2 1 25000 0.3

2 2,2 1 25000 0.3

3 2,2 0.1 25000 0.3

4 2,2 0.01 25000 0.3

5 2,2 0.001 25000 0.3

6 2,4 1 25000 0.3

7 2,4 1 35000 0.3

Table 2. Evaluation metrics of XGBoost

Case Accuracy rate Precision rate Recall rate F1 score

1 99.9138 99.8846 99.9422 99.9134

2 99.6983 99.5795 99.8314 99.7053

3 99.5115 99.1125 99.9134 99.5113

4 99.8276 99.6834 99.9711 99.8270

5 99.7845 99.5974 99.9711 99.7839

6 99.8276 99.6834 99.9711 99.8270

7 99.8563 99.7122 100.0 99.8559

MLP Algorithm. Multilayer perceptron (MLP) is a non-linear network that
supports classification features [15]. The different layers of the multilayer per-
ceptron are attached using the fully connected link. By introducing an activation
function, the multilayer perceptron model can adequately solve the classification
problem. The training situation and the information of selected hyperparameters
are shown in Table 3; meanwhile, Table 4 shows us the MLP model evaluation
metrics’s results.
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Table 3. MLP algorithm parameter

Case Ngramrange Mindf Maxfeature Testsize

1 1,2 1 25000 0.3

2 2,2 1 25000 0.3

3 2,2 0.1 25000 0.3

4 2,2 0.01 25000 0.3

5 2,2 0.001 25000 0.3

6 2,4 1 25000 0.3

7 2,4 1 30000 0.3

Table 4. Evaluation metrics of MLP

Case Accuracy rate Precision rate Recall rate F1 score

1 99.8132 99.8267 99.7979 99.8123

2 99.7414 99.6256 99.8556 99.7405

3 99.3248 98.7728 99.8845 99.3255

4 99.8276 99.7120 99.9422 99.8270

5 99.8132 99.7693 99.8556 99.8124

6 99.8563 99.7408 99.9711 99.8558

7 99.7701 99.6830 99.8556 99.7693

4 Design

To help mitigate the security problems mentioned before, we introduce the
WADS, an efficient, lightweight, and user-friendly webshell defense framework
based on the SDN networks.

4.1 System Architecture

The WADS Added two new functional modules based on the existing Open-
flow architecture: 1) a webshell detection module, which includes model training
function and webshell detection function based on the network packet, and 2) a
flow table modifying module, which assists the servers deployed in the SDN to
disconnect from the attacker, with the ultimate goal of weakening or blocking
the attacker’s attack traffic. The webshell detection module supports training
models dynamically and selecting the latest model to detect the traffic injected
into the network. The flow table modifying module adjusts flow table rules to
pass traffic sent by benign nodes and block traffic sent by nodes with malicious
behavior. The SDN architecture provides high-frequency monitoring and emer-
gency response features to improve the security of network assets.
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Webshell Detection Module. The machine learning detection module will
detect any messages passing through the SDN network infrastructure. The RYU
SDN framework’s packet manager will assist us in getting the critical portion
of the packet (usually the HTTP data) to be the input data of the machine
learning detection model. The data will experience a series of transformations,
as in the model training process, and eventually, compute to produce a classifica-
tion result. The system will not discard the data samples and their classification
results. Still, they will store it in a collection (webshell/normal file) maintained
by the system according to their classification result. The detection model param-
eters can train and adjust dynamically later through the scheduler of the model
training module in our solution. Due to the features of various webshell types
with high concealment, the traditional rule matching-based detection method is
hard to detect. Our approach uses XGBoost, MLP to train the detection method
in optimizing the detection model based on Machine Learning. Integrating the
detection model with the webshell detection module helps the SDN controller
mitigate the noise of the attacker to the service provider, which deploys the ser-
vice based on the SDN architecture. The architecture of WADS show in Fig. 3.

Fig. 3. WADS’s conceptutal atchitecture

Model Scheduler. We have logically implemented a model scheduler based on
the Python language to detect inbound traffic by the relatively freshest model.
The scheduler will add labels to the relevant data from the classification results
of the detection model. Also, dynamically store the data in the dataset to train.
The corresponding data can be used as input to automatically train an updated
detection model compared to the current state. The system is a new detection
model for the next phase by applying this idea of training models with the
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latest and real-time data and using newer models for detection. It is possible to
effectively improve the accuracy of detection models while taking into account
the training and use of new models. When the current detection model detects
more than 1000 webshell traffic, the cached traffic data will automatically feed
into the training module as additional webshell samples and normal samples to
train the updated detection model. The detection model schedule algorithm is
shown in Algorithm 1, where T indicates the current batch and the T + 1 shows
the next batch. And train(PT , NT ) means use PT and NT as the data sample to
train a new webshell detection model at T and make it effective at next phase.

Algorithm 1. Detection Model Schedule algorithm
Require:

The set of positive samples for current batch, PT ;
The set of negative samples for current batch, NT ;
The set of detected positive samples for current batch, DPT ;

Ensure: webshell detection model modelT exist;
loop

modeldetect ← modelT
if len(DPT ) �= 1000 then

Detect traffic tr using modeldetect
if tr is a webshell and tr not in DPT then

DPT ← DPT ∪ {tr}
else

DPT ← DPT

end if
else

PT ← PT ∪ DPT

modelT ← train(PT , NT )
end if

end loop

Attack Source Mitigator. In the TCP/IP-based Internet environment, many
attackers use multiple techniques to attack the target web system to show
off their skills or damage the target system. Common defense mainly includes
deploying Web application firewalls [13] on the server-side, security inspection
of high-frequency request traffic, etc. By adding a series of security rules at
the application layer, the WAF can help mitigate the frequency of attacks on
Web application systems to a certain extent. Unlike traditional application layer-
based security schemes, this paper provides attack source blocking features at
the network layer by adding an attack source mitigator to the system and using
the SDN controller’s feature to manipulate flow table [9]. The detection model
mitigation algorithm shows in Algorithm 2, which can help the controller block
the attack source.
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Algorithm 2. Attack source mitigate algorithm
Require:

Inbound traffic tr
Flow table record the prohibit attack source flowban

Ensure: webshell detection model modelT exist;
repeat

if detect(modelT , tr) is webshell then
BanIP = tr.ipaddr
flowban ← flowban ∪ BanIP

apply(flowban)
else

pass tr
end if

until No inbound traffic

4.2 Machine Learning Framework

Scikit-learn is a general machine learning library built on top of SciPy and writ-
ten with Python language. The Scikit-learn provides numerous statistical learn-
ing algorithms, including supervised and unsupervised algorithms [1]. Using the
efficient statistical learning language interface provided by sci-kit-learn with the
data processing framework NumPy, developers can easily use Python to quickly
train models with datasets and test them according to their needs. Among them,
NumPy provides the data type ndarray, which can store samples and their fea-
tures very well. The NumPy also provides the dot product operation internally.
The training code combine with the Scikit-learn’s module includes CountVec-
torizer and TfidfTransformer to preprocess the data samples. The pseudo-code
of the training logic is shown in Algorithm 3.

Algorithm 3. pseudo-code of the training logic
Input:

The set of positive samples for current batch, Pdata;
The set of negative samples , Ndata;

Output: trained model ModelT ;
traindata ← Pdata ∪ Ndata

Ctraindata ← CountV ectorizer(traindata)
tfCtraindata ← TfidfTransformer(Ctraindata)
if Use MLP model then

ModelT ← MLPClassifier(tfCtraindata)
Save ModelT

else
ModelT ← XGBClassifier(tfCtraindata)
Save ModelT

end if
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4.3 SDN Controller Framework

Ryu is a component-based software-defined networking framework. Ryu provides
a bunch of components that are useful for build up SDN applications. Ryu has
implemented a well-defined API that makes it easy for developers to create
new network management and control applications [20]. Ryu itself provides a
Python-based development module, which can configure by installing it using
the mininet virtual machine.

5 Experiment

We use the simple switching hub developed by Ryu as an experimental environ-
ment to verify the feasibility of our solution. The network structure shows in
Fig. 4, and Port represents the switch port to which the net asset is connected.
We have implemented the machine learning model training and detection code
in Python (over 500 LoC). The model and detection code was introduced into
the Ryu environment by writing an SDN application that suitable for the Ryu
framework (over 200 LoC). Experiment using Mininet to construct a network
topology that simulated an attacker uploading a webshell to a target server
deployed within the SDN. Table 5 shows the flow table before webshell attack.
The trained webshell model can be accessed and processed directly by the SDN
controller by reading it in the SDN application. When webshell traffic is detected,
the application will notify the controller to block the source of the attack by trig-
gering a notification. And Table 6 shows the flow table after the WADS detect
the webshell attack.

Fig. 4. Experimental network topology
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Table 5. Flow table’s item before webshell attack

Flow item In port eth destination Output port

1 1 Server 2

2 1 Normal user 3

3 2 Attacker 1

4 2 Normal user 3

5 3 Attacker 1

6 3 Server 2

Table 6. Flow table’s item after detect webshell attack

Flow item In port eth destination Output port

1 2 Normal user 3

2 3 Server 2

6 Conclusion

Due to the feature of the web development language, the webshell contains
various types and variants. This paper, based on the Machine Learning algo-
rithm, discusses a webshell detection method to detect multiple types of web-
shell and their variants. With this work, we have implemented webshell detection
model training to provide a module prototype for SDN applications capable of
using machine learning models. By implementing the SDN application’s webshell
detection functionality and the flow table control features provided by the SDN
controller, nodes in the SDN network will be protected by the SDN controller.
In addition, by combining with the SDN, this solution reduces the burden on the
WAF. WADS is not intended to replace WAF but rather reduce the risk posed
to the entire network by the source of the attack from the network layer. We will
continue to refine this solution and investigate its usability in complex network
environments in subsequent work.
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Abstract. Approximating the shortest vector of a given lattice is one
of the most important computational problems in public-key cryptanal-
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1 Introduction

A lattice is a discrete additive subgroup of Rm, which is a classic research object
in the geometry of numbers. One of the most important computational problems
in lattice theory is the Shortest Vector Problem (SVP) which aims to find the
shortest nonzero vector of arbitrary given lattice and is shown to be NP-hard
under random reduction [1].

Lattice has been widely used in mathematics and computer science, especially
in cryptography. Many different problems can be solved via solving SVP in some
lattices, such as factoring polynomials with rational coefficients [15], finding inte-
ger relations among real numbers [11], factoring integers and computing discrete
logarithms [22], and attacking RSA [7]. In addition, lattice-based cryptographic
constructions [10] have been widely considered as one of the most promising
post-quantum cryptosystems and the hardness of SVP directly determines their
theoretical security.

Due to the hardness of SVP, various lattice basis reduction algorithms have
been designed to approximate shortest vector as far as possible. The first lattice
basis reduction algorithm proposed by Lagrange [14] in 1773 is a groundbreak-
ing work, though it finds a minimal basis in two dimensions. Hermite’s proposed
second lattice basis reduction algorithm generalizes Lagrange’s algorithm to n
dimensions. After that, the first polynomial-time lattice basis reduction algo-
rithm, the LLL algorithm, was proposed by Lenstra, Lenstra and Lovász in
1982. It achieves an approximation factor of 2O(n) for the approximation vari-
ant of SVP with worst-case time complexity O(n5m log3 B), and can be used to
attack some cryptosystems, such as knapsack-based cryptosystems and special
cases of RSA [7]. To get somewhat better approximation factor (6k2)nk/2 where
k is some integer, Schnorr [21] extended the LLL algorithm by making block size
larger at the price of an increased running time in 1987.

In the last two decades, many improvements for lattice basis reduction algo-
rithm have been investigated [2,6,18,19]. In 2005, Nguyen and Stehlé [18] intro-
duced L2 algorithm, a floating-point variant of L3, to make LLL reduction algo-
rithm practical with computational complexity O(n4m(n+log B) log B). Saruchi
et al. [20] proposed an effective reduction algorithm, which is the expansion of
the algorithm proposed by Bi et al. [4]. Although these algorithms can find a rel-
atively short vector in polynomial time, they are still time-consuming in practice.
Especially, in practical applications, the dimension of the lattice is usually very
large and the user or the terminal device could be with limited computing and
storage capability. It is unrealistic for these clients to perform these algorithms
to approximate the shortest vector.

The emergence of cloud computing provides a new paradigm for resource-
constrained clients to handle heavy computational tasks, in which scenario, these
resource-constrained clients can outsource their overloaded computational task
to the resource-abundant cloud server on a pay-as-you-use manner. However,
this promising computing paradigm also brings new security concerns [13,25].
The remote cloud server is out of control, and for the sake of business interests,
it could deviate the prescribed execution rules and collect valuable information.
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Simultaneously, the outsourcing computational task may contain client’s privacy
and sensitive information. The exposure of this information may cause critical
loss of lift and property. Therefore, a well-designed outsourcing algorithm, apart
from ensuring the client to achieve the correct computation result at a greatly
reduced time cost, should protect the client’s privacy information and discern
the cloud server’s misbehaviors. Therefore, in-depth studies on the outsourc-
ing computation of many aspects have been conducted in recent years, such as
large-scale linear algebra operations [3,8], solving quadratic congruences [26,27],
modular exponentiations [5,12,29] and modular inversion [24] in cryptography,
heavy computations in artificial intelligence (AI) and Internet of Things (IoT)
[16,28].

In 2019, Liu et al. [17] proposed the first outsourcing computation mecha-
nism of lattice-reduction algorithm based on the work of Saruchi et al. [20]. They
utilized rounding technique and unimodular transformation matrix to encrypt
the original computation task by generating a outsourcing task B + ΔB for the
lattice basis B. The cloud server reduces it by LLL-reduction algorithm and
returns the transformation matrix. After receiving the response of the cloud
server, the client can obtain the LLL-reduced basis for the target lattice Λ(B)
finally, but with a bigger approximation factor. Their outsourcing algorithm has
high-efficiency. However, the perturbation term ΔB in their outsourcing algo-
rithm has to satisfy some special properties, which makes the algorithm complex.
Furthermore, their outsource algorithm yields a LLL-reduced basis with a big-
ger approximation factor than applying LLL-reduction algorithm directly on the
original basis, which weakens the requirement of the outsourcing computation
task.

Our Contribution. In this paper, we study the algorithm for approximate
SVP under the cloud environment, and propose a secure outsourcing algorithm
for this problem. In our design, the resource-constrained client can efficiently find
a relatively short lattice vector by leveraging the powerful computing capacity
of the cloud server.

The idea is quite simple. Roughly speaking, for any given lattice basis B,
consider the corresponding Gram matrix G = BTB. Note that for any orthog-
onal matrix O, the Gram matrix of OB is exactly G, which means that G can
protect B well. Moreover, the lattices generated by OB and B are different, but
for any integer coefficient vector z, the lattice vectors OBz and Bz has exactly
the same length under the Euclidean norm. This inspires us to send the Gram
matrix G to the cloud server, which can perform LLL algorithm on G (or some
C such that G = CTC, which can be obtained by Cholesky decomposition on
G by the cloud server). The cloud server will send the transformation matrix to
the client and the client can recover the LLL-reduced basis, since the orthogonal
transformation does not affect that properties that an LLL-reduced basis should
satisfy.

We can show that our design can protect the privacy of client’s input/output
information under CPA model, and make the client discern the cloud’s fraud
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behavior with optimal probability 1. Hence, our design can be employed in the
algorithms that involves with LLL algorithm, such as Coppersmith’s attack [7].

Compared to Liu et al.’s work [17], our algorithm also has high-efficiency.
Besides, our algorithm is technically concise, which just involves with a simple
combination of unimodular matrix transformation and Gram matrix. Further-
more, our algorithm does not reduce the quality of the reduced basis, that is, the
vector finally obtained by the client is as short as that of the vector generated
by the client directly performing the existing reduction algorithm. Last but not
least, it is obvious that our algorithm not only works for the LLL reduction
algorithm, but also for any other algorithms that solve (approximate-)SVP with
Euclidean norm, since we employ an isometry of the lattice essentially.

Roadmap. The paper is organized as follows: Sect. 2 introduces the system
model and security definitions of the outsourcing computation. Section 3 reviews
the main computational problems in lattices and presents some necessary pre-
liminaries. In Sect. 4, we propose Gram matrix-based outsourcing algorithm for
approximate SVP. In Sect. 5, we analyze the correctness, security and efficiency
of our algorithm, followed by extensive experimental analysis to evaluate the
practical performance of our design in Sect. 6. In Sect. 7, we give a simple appli-
cation. Finally, we conclude this article in Sect. 8.

2 System Model and Security Definitions

2.1 System Model

Fig. 1. The system model

Outsourcing computation is an interaction system between two entities with
asymmetric computing capacities: the client and the cloud server, out of which,
the client is with limited computational power and storage space, and the
cloud server providing computing and storage service is resource-abundant yet
maybe untrusted. Formally, as illustrated in Fig. 1, the light-weight client C
(or customer, data user, etc.) wants to take advantage of the capacity of the
cloud server to accomplish his overloaded calculation task Φ(·) with an input x.
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To protect the input information form being stolen, C transforms the original
computation task Φ(·) into another computation task Φ′(·), which may be the
same as Φ, with corresponding encrypted input x′ by the previously generated
secret key sk. Then, C sends (Φ(·), x′) to the cloud server S. Next, the cloud
server S applies its resources to compute the specified task y′ = Φ′(x′) and
returns y′ to C. After that, C verifies the correctness of y′ and recovers y′ to the
actual result y = Φ(x) if it passes the verification. Otherwise, C rejects. Precisely,
the general framework of secure outsourcing computation can be formalized as a
four-tuple OCAlgΦ = (KeyGen, ProbTrans, Compute, Ver&Rec) with the
following four probabilistic polynomial-time (PPT) sub-algorithms [9]:

1. KeyGen(Φ, x, 1κ) → {sk}: Input a security parameter κ, the client C con-
ducts the randomized algorithm KeyGen to generate a secret key sk for any
input computation task (Φ, x).

2. ProbTrans(Φ, x, sk) → {Φ′, x′}: The algorithm ProbTrans utilizes the
secret key sk to transform (Φ, x) into another computation task (Φ′, x′). This
algorithm is performed by the client C.

3. Compute(Φ′, x′) → {y′}: According to the computation task Φ′ with the
encoded input x′, the cloud server S invokes the algorithm Compute to
compute y′ = Φ′(x′) and returns the encoded output y′ to the client C.

4. Ver&Rec(Φ, y′, sk) → {y}: With the secret key sk, the algorithm Ver&Rec
performs as follows. It firstly verifies the correctness of y′. Then, if y′ passes
the verification, the algorithm recovers y′ to y = Φ(x). Else, the algorithm
outputs y =⊥.

2.2 Threat Models

In an outsourcing system, the threats are mainly from the untrusted cloud server.
The potential misbehaviors of the cloud can be included into two types:

– Honest-and-curious (HC ) Server. In this case, the cloud server will hon-
estly perform the assigned computation task and return the correct result to
the client. However, for financial incentive, it may collect or even sell client’s
valuable information.

– Fully-malicious (FM ) Server. In this case, the cloud server not only tries
to capture client’s valuable information, but also may deliberately forge a
false result to fool the client.

Further, according to the attack abilities owned by the untrusted cloud server,
there mainly exist three kinds of attack models:

– Ciphertext-only attack (COA) Model. In COA model, the cloud server
is assumed to have only access to the computation tasks Φ,Φ′ and the blinded
input x′, and tries to recover the actual input x and the actual output y =
Φ(x).

– Known-plaintext attack (KPA) Model. In KPA model, the cloud server
knows the computation tasks (Φ,Φ′) and has the ability of collecting a poly-
nomial number of plaintexts xi (1 ≤ i ≤ �) and the corresponding ciphertexts
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x′
i, y

′
i and δi. Given challenge ciphertexts x′ and y′ = Φ′(x′), the cloud server

tries to recover the actual input x and the actual output y = Φ(x).
– Chosen-plaintext attack (CPA) Model. In CPA model, the cloud server

knows the computation tasks (Φ,Φ′) and is allowed to adaptively choose a
polynomial number of inputs xi (1 ≤ i ≤ N) and obtain the corresponding
ciphertext x′

i, y
′
i and δi. Given challenge ciphertexts x′ and y′ = Φ′(x′), the

cloud server tries to recover the actual input x and the actual output y = Φ(x).

Overall, there exist 6 possible threat models: HC+COA, HC+KPA,
HC+CPA, FM+COA, FM+KPA, FM+CPA. Clearly, in the above-mentioned
threat models, the ability of the FM+CPA model is the most powerful. There-
fore, an outsourcing algorithm that is secure under the FM+CPA model is cer-
tainly secure under the other models, and thus, it is more meaningful to design
a secure outsourcing algorithm under the FM+CPA model.

2.3 Correctness and Security Definitions

Based on the above-mentioned system architecture and threat models, a secure
outsourcing algorithm should at least meet four requirements: correctness,
input/output privacy, verifiability and High efficiency. We now present their
strictly formalized definitions.

Correctness is a basic requirements for an outsourcing algorithm. It means
that, if the cloud server performed the specified computations in the algorithm
honestly, the client can correctly achieve the result of the original computation
task. Precisely,

Definition 1 (Correctness). A secure outsourcing algorithm OCAlgΦ(·) of
some computation task Φ is correct if the key generation algorithm gener-
ates key {sk} ← KeyGen(Φ, x, 1κ) such that, for any valid input x of Φ, if
{Φ′, x′} ← ProbTrans(Φ, x, sk) and y′ ← Compute(Φ′, x′), where y′ = Φ′(x′),
the algorithm Ver&Rec(Φ, y′, sk) outputs y = Φ(x).

Input/output privacy is a security requirement for an outsourcing algo-
rithm. It asks the outsourcing algorithm to protect the input and output infor-
mation of client’s computation task from being disclosed to the cloud server.
Here, we mainly discuss the input (resp. output) privacy with one-way notion
under the FM+CPA model. To give the strict privacy definition, we first formal-
ize the description of CPA model with the following experiments ExpIpriv

A [Φ, 1κ]
and ExpOpriv

A [Φ, 1κ].
Experiment ExpIpriv

A [Φ, 1κ]
Query and response:
x0 = σx0 = ⊥.
For i = 1, · · · , � = poly(κ)

xi ← A(Φ, (xj , σxj
)0≤j≤i−1).

ski ← KeyGen(Φ, xi, 1κ).
σxi

= (Φ′, x′
i) ← ProbTrans(Φ, ski, xi).
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Challenge:
x̃ ← Domain(Φ).
s̃k ← KeyGen(Φ, x̃, 1κ).
σx̃ = (Φ′, x̃′) ← ProbTrans(Φ, s̃k, x̃).
x̄ ← A(Φ, (xj , σxj

)0≤j≤�, σx̃).
if x̄ = x̃ , output ′1′;
else output ′0′.

Experiment ExpOpriv
A [Φ, 1κ]

Query and response:
x0 = σx0 = y0 = ⊥.
For i = 1, · · · , � = poly(κ)

xi ← A(Φ, (xj , σxj
, yj)0≤j≤i−1).

ski ← KeyGen(Φ, xi, 1κ).
σxi

= (Φ′, x′) ← ProbTrans(Φ, ski, xi).
y′

i ← A(Φ, (xj , σxj
, yj)0≤j≤i−1, σxi

).
yi ← Ver&Rec(Φ, ski, y

′
i).

Challenge:
x̃ ← Domain(Φ).
s̃k ← KeyGen(Φ, x̃, 1κ).
σx̃ = (Φ′, x̃′) ← ProbTrans(Φ, s̃k, x̃).
ỹ′ ← Compute(σx̃).
ỹ ← A(Φ, (xj , σxj

, yj)0≤j≤�, σx̃, ỹ′).
if ỹ = Φ(x̃), output ′1′;
else output ′0′.

Now, the input/output privacy can be exactly defined.

Definition 2 (Input/output privacy). A secure outsourcing algorithm
OCAlgΦ(·) of some computation task Φ is input-private (resp. output-private)
if, for any PPT adversary A, the probability of the experiment ExpIpriv

A [Φ, 1κ]
(resp. ExpOpriv

A [Φ, 1κ]) outputting 1 is negligible, i.e.

Pr[ExpIpriv
A [Φ, 1κ] = 1] ≤ negli(κ) (resp.Pr[ExpOpriv

A [Φ, 1κ] = 1] ≤ negli(κ)),

where negli(κ) is a negligible function of the security parameter κ.

Verifiability is another security requirement for an outsourcing algorithm.
That is, the algorithm should guarantee that the client can not be cheated by an
untrusted cloud server. Conversely, the client can verify the correctness of the
results returned from the cloud with a non-negligible probability.

Definition 3 ((1 − β)-Verifiable). A secure outsourcing algorithm OCAlgΦ(·)
of some computation task Φ is (1 − β)-verifiable if, for any valid input x,
the algorithm KeyGen outputs a secret key sk such that, if (Φ′, x′) ←
ProbTrans(Φ, x, sk) and y′ ← Compute(Φ′, x′), the probability of Ver&Rec
(Φ, y′, sk) outputting y satisfies

Pr[y = Φ(x) ← Ver&Rec(Φ, y′, sk) | y′ = Φ′(x′)] = 1,
Pr[y = Φ(x) ← Ver&Rec(Φ, y′, sk) | y′ �= Φ′(x′)] ≤ β.
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High efficiency is a necessary requirement for an outsourcing algorithm
which refers to that the client’s calculation amount in the outsourcing algorithm
must be lower than the original computation task performed by the client itself.

Definition 4 (α-Efficient). For some computation task Φ, a secure outsourc-
ing algorithm OCAlgΦ(·) is α-efficient if tc

to
≤ α, out of which, to is the client’s

time cost of achieving the task without outsourcing, and tc represents the local-
client’s time cost of achieving the task by employing the outsourcing algorithm
OCAlgΦ(·).

3 Notations and Preliminaries

In the rest of our paper, we use bold upper-case letter to denote matrix and
use bold lower-case letter to denote vector. The frequently used notations are
described in Table 1. Next, we introduce some basic knowledge about lattices,
and then review the famous LLL reduction algorithm for solving approximate
SVP.

Table 1. Notations

Symbols Descriptions

m, n Positive integers

R
m m-dimensional Euclidean space

v A column vector in Z
m

Λ A lattice in R
m with rank n

B A basis matrix of the lattice

U An unimodular matrix in Z
n×n

λi(Λ) The ith successive minimum of the lattice Λ

κ Security parameter

3.1 Lattice

A lattice Λ is a discrete subgroup of Rm, or equivalently,

Definition 5 (Lattice). Given n(≤ m) linearly independent vectors b1,b2, . . . ,
bn ∈ R

m, the lattice Λ generated by them is the set of all integral linear combi-
nations of bi, i.e.,

Λ(b1, . . . ,bn) =

{
n∑

i=1

xibi|xi ∈ Z

}
,

where the matrix B = [b1, . . . ,bn] is called a basis of the lattice Λ and n is the
rank of the lattice. When n = m, the lattice is full-rank.
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The lattice generated by the basis B is also denoted as

Λ(B) = Λ(b1, . . . ,bn) = {Bx | x ∈ Z
n}.

Since there are many bases for a lattice, a natural question is how to determine
whether two bases B1,B2 generate the same lattice (i.e., Λ(B1) = Λ(B2). To
illustrate this, we need to introduce the definition of unimodular matrix.

Definition 6 (Unimodular Matrix). A matirx U ∈ Z
n×n is called unimod-

ular if detU = ±1.

Then, we have

Lemma 1. Two bases B1,B2 ∈ R
m×n are equivalent, i.e., Λ(B1) = Λ(B2) if

and only if B2 = B1U, for some unimodular matrix U.

Definition 7 (Determinant). Let Λ = Λ(B) be a lattice of rank n. The deter-
minant of Λ is defined as vol(Λ) =

√
det(BTB), where BT denotes the transpose

of the basis B.

Besides, the length of the shortest nonzero vector in the lattice Λ is denoted as
λ1(Λ), where the length refers to the Euclidean norm. That is, for any vector x,
‖x‖2 =

√∑
x2

i . The most important computational problem SVP is defined as
follows:

Definition 8 (SVP). Given a lattice basis B ∈ Z
m×n, find a nonzero vector

x ∈ Λ(B) such that ‖x‖ = λ1(Λ(B)).

So far, there is no known efficient algorithm to solve this problem. However,
we are more interested in the approximation variant, which aims to find a rela-
tively shorter lattice vector with length no bigger than γ(n)λ1(Λ). Here, n is the
dimension of the lattice and the approximation factor γ = γ(n) ≥ 1. Formally,

Definition 9 (SVPγ). Given a lattice basis B ∈ Z
m×n, find a nonzero vector

x ∈ Λ(B) such that ‖x‖ ≤ γ · λ1(Λ(B)).

3.2 LLL Reduction Algorithm and Its Properties

This section describes the famous LLL reduction algorithm of solving SV Pγ .
First, we recall what is an LLL-reduced basis.

Definition 10 [15]. A basis B = {b1, . . . ,bn} is a δ-LLL reduced basis if the
following two inequalities hold:

1. ∀1 ≤ i ≤ n, j < i, |μi,j | ≤ 1
2 .

2. ∀1 ≤ i < n, δ‖b̃i‖2 ≤ ‖μi+1,ib̃i + b̃i+1‖2.
Some useful properties are given as follows:
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Proposition 1 [15]. Let B = {b1, . . . ,bn} be an LLL reduced basis of a lattice
Λ, then

1. vol(Λ) ≤ ∏n
i=1 ‖bi‖ ≤ 2

n(n−1)
4 vol(Λ).

2. ‖b1‖ ≤ 2
n−1
4 (vol(Λ))

1
n .

3. ∀1 ≤ i ≤ n, ‖bi‖ ≤ 2
n−1
2 λi(Λ).

Lenstra et al. [15] presented an efficient algorithm (i.e., the celebrated LLL
algorithm) to output a LLL reduced basis. Precisely,

Proposition 2 [15]. Let Λ = Λ(B) be a rank-n lattice with B ∈ Q
m×n. Then

LLL reduction algorithm can find an LLL-reduce basis within time O(n5mB3)
without fast multiplication techniques, where B = max

1≤i≤n
log ‖bi‖.

For a lattice basis B, the corresponding Gram matrix is defined as G =
BTB. Gram matrix has been used in LLL algorithm [2,18,19]. In practice, we
can directly perform LLL reduction on it to get the transformation matrix T
such that BT is LLL-reduced. Here, we summarize the result as the following
Lemma 2.

Lemma 2. Let Λ = Λ(B) be a lattice of rank n. There exists a variant of
LLL algorithm, with the input of the Gram matrix G = BTB, outputting a
transformation matrix T such that BT is LLL-reduced.

This algorithm has already been implemented in SageMath [23].

4 Our Outsourcing Algorithm for SVPγ

In this section, we first overview the design rationale, and then present our
algorithm in detail.

4.1 Design Rationale

Given some lattice basis B ∈ R
m×n, a resource-limited client aims to leverage

the computing resource of the cloud to find a non-zero shorter vector x ∈ Λ(B)
such that ‖x‖ ≤ 2

n−1
4 · (vol(Λ))

1
n , where n is the dimension of the lattice. If the

cloud server is honest, the client can directly rent the cloud server to perform
the famous LLL algorithm with input B. However, under the FM+CPA model,
the client must figure out an effective method to protect the privacy of the input
lattice basis B and the output lattice vector x. By Lemma 1, a natural idea
is to blind B with a random unimodular matrix U. Namely, compute B′ =
BU and let the cloud perform LLL algorithm on B′. However, since Λ(B) =
Λ(B′), this simple method can not ensure the privacy of the output vector x.
Enlightened by the property of the variant of LLL in Lemma 2, to protect the
output information, we can send the Gram matrix G = (B′)TB′ to the cloud and
rent the cloud to perform the variant algorithm on G to get the transformation
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matrix T such that B′T is LLL-reduced. After that, the cloud returns the first
column vector z of T. Finally, the client can obtain a shorter lattice vector by
computing x = B′z. Since G = (B′)TB′ = (OB′)T(OB′) for any orthogonal
matrix O, even if the cloud performs Cholesky decomposition on G and obtain
G = CTC, it can not distinguish C = B′ from C = OB′ for any orthogonal
matrix O. This ensures the input privacy. Meanwhile, the cloud only obtains
vector z, without knowing the lattice basis B′, it can not recover the shorter
lattice vector x. This ensures the output privacy. Besides, the verifiability can
be realized by checking ‖x‖ ≤ 2

n−1
4 · (

√
det(G))

1
n .

4.2 Detailed Algorithm

Note that we almost focus on the short vector in practice, such as in the lattice-
based cryptanalysis, instead of the whole LLL-reduced basis, so below we don’t
take consideration into getting the whole LLL-reduced basis, but just aims to
find a short lattice vector, and we would like to point out that it is very easy to
extend the algorithm below to compute the whole LLL-reduced basis as discussed
in Sect. 4.3.

Fig. 2. The workflow of algorithm OCAlgSV P .

Figure 2 shows the workflow of our outsourcing algorithm OCAlgSV P , which
is designed as follows:

1. Key Generation: With an inputted basis matrix B ∈ R
m×n of lattice Λ,

the client picks a secret unimodular matrix U ∈ Z
n×n in a secret finite set

consisting of unimodular matrices produced in advance.
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2. Problem Transformation: With the secret key U, the client first computes
B′ = BU and further calculates the Gram-matrix G = (B′)TB′. Finally, G
is sent to the cloud server.

3. Computation: On receiving the matrix G, the cloud server applies the vari-
ant algorithm of LLL to G and obtains a transformation matrix T. Then, the
cloud returns the first column vector z ∈ Z

n of the matrix T to the client.
4. Recovery and Verification: After receiving the vector z ∈ Z

n, the
client computes x = B′z and checks whether the inequality ‖x‖ ≤ 2

n−1
4 ·

(
√

det(G))
1
n holds. If it holds, the vector x is the desired result. Otherwise,

the client rejects the result.

4.3 Some Remarks

Note that the secret unimodular transformation U is not necessary if no addi-
tional information about the private input B leaks to the adversary. However,
we may know some additional information about B in some cases, such as for
Coppersmith’s algorithm [7], B must be an upper (or lower) triangular matrix,
which means that the domain of the outsourcing task is not the whole R

m×n

any more and some secret information about B can be implied from the Gram
matrix. Hence, we employ a unimodular transformation to keep the privacy of
B further in our algorithm and would like to point out that it can be removed
in some cases which depends on the domain of the task.

It is obvious that if the cloud server sends the transformation T to the client,
the client can recover the LLL-reduced basis B′T for the original lattice due
to Lemma 2, which shows that the outsoucing algorithm can be extended to
compute the LLL-reduced basis easily.

Compared to Liu et al.’s work [17], since we employ an isometry of the
lattice essentially, the orthogonal transformation, our algorithm does not reduce
the quality of the reduced basis, and our algorithm can work for any other
algorithms that solve (approximate-)SVP with Euclidean norm (sometimes, a
matrix C such that G = CTC should be computed by the cloud server with
Cholesky decomposition on G).

Another way to construct the outsourcing algorithm for the client is to gen-
erate the orthogonal transformation O directly and to send OB to the cloud
server. There are many efficient ways to construct O, such as the Householder
transformation. In this paper, we adopt the Gram matrix to avoid generating
the orthogonal matrix.

5 Correctness, Security, Verifiability and Efficiency

In this section, we will present strict analysis on the correctness, input/output
privacy, verifiability and efficiency of our proposed algorithm.



A Secure and Efficient Outsourcing Algorithm for Approximate SVP 235

5.1 Correctness

Clearly, if the cloud server performs the assigned computation task honestly, the
client definitely obtains a shorter vector. In fact, by Lemma 1, B and B′ = BU
are equivalent, i.e., Λ = Λ(B) = Λ(B′). By Lemma 2, if the cloud is honest,
we have B′T is LLL-reduced. Then x = B′z ∈ Λ is the first vector of the LLL-
reduced basis B′T. According to the properties (Proposition 1) of LLL-reduced
basis, ‖x‖ ≤ 2

n−1
4 · (

√
det(G))

1
n .

5.2 Input/Output Privacy

Here, we mainly argue the privacy of our algorithm with the one-way notation
under CPA model.

Theorem 1. For any input lattice basis B, our proposed outsourcing algorithm
OCAlgSV P satisfies the input/output privacy according to Definition 2.

Proof. We first argue the input privacy. Corresponding to our design, in the
experiment ExpIpriv

A [Φ, 1κ], the computation task Φ refers to finding a non-
zero shorter vector x of some lattice Λ such that ‖x‖ ≤ 2

n−1
4 · (vol(Λ))

1
n , Φ′

represents performing the variant algorithm of LLL on the Gram-matrix G =
(B′)TB′, and κ = mn log‖B‖ = mn log max1≤i≤m,1≤j≤n |bij | denotes the bit-
size of the input lattice basis B. The adversary A can adaptively choose xi = Bi

and obtain corresponding Gram matrices Gi = (B′
i)

TB′
i for 1 ≤ i ≤ � in the

Query and response phase. In the Challenge phase, given a challenge input
lattice basis x̃ = B, the adversary tries to recover B based on the collected
information Gi = (B′

i)
TB′

i(1 ≤ i ≤ �) and G = (B′)TB′. Since G = (B′)TB′ =
(OB′)T(OB′) for any orthogonal matrix O and there exist at least exponentially
many orthogonal matrices, the probability of the adversary recovering the correct
B′ is negligible. Due to the fact that B′ = BU for some unimodular matrix U
produced in advance, the probability of the adversary recovering the correct B
is clearly negligible, i.e.,

Pr[ExpIpriv
A [Φ, 1κ] = 1] ≤ negli(κ).

Now, we argue the output privacy. Similar to the above analysis, the adversary
can adaptively choose and obtain (xi, σxi

, yi) = (Bi,Gi,xi) (or (Bi,Gi,⊥)) for
1 ≤ i ≤ � in the Query and response phase. In the Challenge phase, given
a challenge input lattice basis x̃ = B of the lattice Λ, the adversary tries to
recover a shorter vector ỹ = x ∈ Λ(B) such that ‖x‖ ≤ 2

n−1
4 vol(Λ)

1
n . Besides

the collected information in the Query and response phase, the adversary also
captures the Gram matrix x̃′ = G = (B′)TB′ = (BU)T(BU) for some secret
and random matrix U, and an integer vector ỹ′ = z, which is the first col-
umn of the transformation matrix T. Since G = (B′)TB′ = (OB′)T(OB′) for
any orthogonal matrix O and there exist infinitely many orthogonal matrices,
the probability of the adversary recovering the correct B′ is negligible. Due to
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x′ = B′z, we have that, without knowing the correct B′, the probability of the
adversary recovering the correct x is clearly negligible, i.e.,

Pr[ExpOpriv
A [Φ, 1κ] = 1] ≤ negli(κ).

5.3 Verifiability

Theorem 2. Our proposed outsourcing algorithms OCAlgSV P is 100%-
verifiable.

Proof. Since Λ(B) = Λ(B′), we have x = B′z ∈ Λ(B). According to Lemma
2 and the Proposition 1, B′T is LLL-reduced and thus ‖x‖ = ‖B′z‖ ≤ 2

n−1
4 ·

(
√

det(G))
1
n , Hence, Pr[y = Φ(x) ← Ver&Rec(Φ, y′, sk) | y′ = Φ′(x′)] = 1. If

the cloud server returns a forged integer vector z, then the inequality ‖x‖ =
‖B′z‖ ≤ 2

n−1
4 · (

√
det(G))

1
n doesn’t hold.

5.4 Efficiency

Theorem 3. Our outsourcing algorithm OCAlgSV P is at least O( 1
n2 log B )-

efficient.

Proof. The original algorithm used to approximate the shortest nonzero lattice
vector is the famous LLL-reduction algorithm with an asymptotic complexity of
O(n5m log3 B) [15], where B = max

1≤i≤n
log ‖bi‖. While the principal term of the

computational complexity on the client side in our proposed algorithm is the
time cost of matrix multiplication and determinant computation which takes
time at most O(n3m log2 B). Therefore, according to Definition 4, our algorithm
is O(n3m log2 B

n5m log3 B
) = O( 1

n2 log B )-efficient.

6 Practical Performance Evaluation

6.1 Evaluation Methodology

After analyzing the correctness, verifiability, efficiency and security of our pro-
posed algorithm, we conclude that our proposed algorithm are beneficial to
the client. We next evaluate the practical performance of our proposed algo-
rithm by simulating both client and cloud on a Windows 10 machine with
Intel(R) Core(TM) i7-7500U 2.70 GHz CPU and 12 GB RAM. We implemented
our proposed algorithm in a free software SageMath [23] in which the func-
tion LLL gram() adapted from Nguyen and Stehlé’s algorithm [18] returns the
LLL transformation matrix for this Gram matrix. Because this LLL reduction
algorithm has default parameters (0.51, 0.99) meaning that the Gram-Schmidt
coefficients for the reduced basis satisfy |μi,j | ≥ 0.51, and the Lovász’s constant
is 0.99, thus we modified parameters of the function LLL() as (0.51, 0.99) for
better evaluation.
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In each of the experimental instances, we first constructed basis matrix
inputted by the client, whose entries were randomly chosen from interval
[−220, 220]. For the sake of convenience, basis matrices were chosen in Z

n×n

and their dimensions varied from 100 to 600. Then we produced a sufficiently
large and finite set consisting of unimodular matrices whose entries ranging from
−100 to 100. Besides, we simulated all stages of our proposed algorithm in each
of experiments to evaluate the performance more objectively. The client-side
time “Client”, which is also the time “Outsourcing”, denotes the sum of time
“Problem Transformation” and “Recovery and Verification”. The time “With-
out Outsourcing” denotes the time for the client to solve the approximation of
SVP without outsourcing. Theoretically, the value (Outsourcing/Without Out-
sourcing) is a positive number less than 1. The time “Cloud” refers to the time
for the cloud server to compute the outsourced task.

Fig. 3. Evaluation results for algorithm

6.2 Evaluation Results

Figure 3 shows the evaluation results of our proposed algorithm. In Fig. 3(a),
we make time comparison among phases. From it, we can see that the time of
“Problem Transformation” and “Recovery and Verification” increases with the
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dimension of the lattice and it is sound. Moreover, it is obvious that “Recovery
and Verification” takes more time than “Problem Transformation”. By rigorous
analysis, we can come to the same conclusion. In the Problem Transformation
phase, the main time-consuming operation is matrix multiplication, while there
are operations for determinant and exponentiation besides matrix multiplication
in the Recovery and Verification phase. Then the second result is also rational.
After outsourcing process, the time taken by the client decreases dramatically
in Fig. 3(b), where we make time comparison between cloud server and client.
It means that our proposed algorithm works well. In Fig. 3(c), we show a visual
efficiency comparison and compare it with theoretical analysis above. Clearly,
the client takes less time in outsourcing process than implementing original algo-
rithm itself, i.e., our proposed outsourcing algorithm is very efficient.

7 Applications

Next, we take the famous Copersmith’s algorithm [7] as an example to show how
to use our outsourcing algorithm.

Copersmith’s algorithm, described in Algorithm 1, finds all small roots x0

of a univariate modular equation f(x) = 0 mod N with |x0| ≤ N
1
δ , where the

polynomial f(x) is a monic polynomial of degree δ. It has many applications in
the cryptanalysis. It can be seen that the most time-consuming step is Step 5,
running the LLL algorithm to get a short lattice vector. Hence, our outsourcing
algorithm can be used directly to obtain a short lattice vector while keeping the
privacy of input and output.

Algorithm 1. Coppersmith’s Algorithm
Require: A monic polynomial f(x) ∈ ZN [x] of degree δ, where N is a modulus with

unknown factorization.
Ensure: Set R = {x0 ∈ Z|f(x0) = 0 mod N and |x0| ≤ X}.
1: for i ← 0 to h − 1 do
2: for j ← 0 to δ − 1 do
3: gi,j(x) = Nh−i−1f(x)ixj .
4: Construct the lattice basis B, where the basis vectors are the coefficient vectors of

gi,j(xX).
5: v = LLL(B).get column(0).
6: Construct g(x) from v.
7: Find the set R of all roots of g(x) over the integers using standart techniques. For

every root x0 ∈ R check wether or not gcd(N, f(x0)) ≥ N. If it doesn’t hold then
remove x0 from R.

8 Conclusion

In this paper, we present an efficient and secure outsourcing algorithm solving
(approximate-)SVP for the client with limited computing and storage capability,
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which has many applications in computational number theory, cryptanalysis and
some other related areas.

Acknowledgements. We thank the anonymous referees for their valuable suggestions
on how to improve this paper.
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19. Nguyen, P.Q., Stehlé, D.: LLL on the average. In: Hess, F., Pauli, S., Pohst, M.
(eds.) ANTS 2006. LNCS, vol. 4076, pp. 238–256. Springer, Heidelberg (2006).
https://doi.org/10.1007/11792086 18
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Abstract. Support vector machines (SVMs) are one of the most com-
monly used models for classification problems in machine learning. Nowa-
days there is an important scenario that many different parties jointly
perform SVM training by integrating their individual data, while at the
same time it is required that privacy of data can be preserved. At present
there are three main routes to achieving privacy-preserving SVM. First,
all parties jointly generate kernel matrices privately and then use them
for remaining training (e.g. Yu et al. 2006). Second, based on the first
route, an additional randomization is adopted to randomize kernel matri-
ces in order to (heuristically) hide information exposed by kernel matrices
(e.g. Mangasarian et al. 2008). Third, also the securest one, all parties run
MPC protocols for computing whole optimization algorithms privately
(not merely the generation of kernel matrices as the first two routes do)
(e.g. Liu et al. 2018 and Wang et al. 2020).

In this paper we propose a new efficient privacy-preserving SVM
protocol in the third route that privately realizes the gradient descent
method to optimize SVM and its security is proven in the semi-honest
model. Our protocol admits the following advantages.

– The protocol is of flexible deployment. It supports the deployment
of arbitrarily multiple servers and multiple clients.

– The protocol can tolerate dropping-out of some servers.
– The protocol admits the ability of malicious-error-message correction

(which is actually beyond the semi-honest security). If a small num-
ber of messages are corrupted, it can still recover correct messages
as desired.

We remark that none of the above advantages can be obtained by some
known work. Moreover, when compared to the privacy-preserving SVM
by Liu et al. 2018 and Wang et al. 2020, our protocol achieves higher
efficiency. We implement our protocol in Python and the experiments
verify its efficiency.
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1 Introduction

Machine learning has been widely used in various fields, in which classification is
one of the most commonly used functions and often applied in image recognition,
data mining, text analysis, anomaly detection, recommendation systems and
many other businesses. Usually sufficient perfect training data is always the
premise to ensure the accuracy of trained models. But in reality complete data
and sufficient computing power are not always held by one party, and the need
for protecting privacy prevents arbitrary flow of data among different owners.
Due to the increasing requirement of distributed machine learning and privacy
preserving, privacy-preserving machine learning has attracted more and more
attention recently.

Support vector machines (SVMs) are a widely used model in machine learn-
ing for classification problems. So there have been many achievements in the
research line of privacy-preserving SVM. Basically there are three main routes
to realizing it. The first route is that all parties jointly generate kernel matrices
privately and then use them for remaining training [15,19,21]. When data is ver-
tically partitioned and linearly separable, [21] asks each party computes its own
kernel matrix and then lets a party/server integrate them to the whole kernel
matrix. To prevent a party from obtaining the kernel matrix of someone else,
this method requires data to be held by at least three parties. [19] uses homo-
morphic encryption to compute kernel matrices under arbitrary partition based
on similar ideas. [15] also uses Paillier homomorphic encryption to calculate the
kernel matrix under vertical partition.

The second route is that based on the first route an additional randomization
is adopted to randomize kernel matrices in order to (heuristically) hide informa-
tion exposed by kernel matrices [11,12,22]. Combining random kernel functions
and matrix summation, [12] uses random linear transformations to avoid possi-
ble information leakage caused by publishing local kernel matrices. In [8] random
linear transformations are also applied to one class SVM, and transformed data
is used as a new input to calculate kernel matrices. [22] uses random kernel
functions and integer vector encryption to encrypt data sets with horizontal or
vertical partitions, allowing different parties to encrypt their data with different
keys, and train them by a single server.

The third route is that all parties run MPC/2PC protocols for comput-
ing whole optimization algorithms privately (not merely the generation of ker-
nel matrices as the first two routes do), which include SMO (Sequential Min-
imal Optimization), the kernel-adatron algorithm and gradient descent algo-
rithm [7,9,20] etc. [7] proposes protocols to implement kernel-adatron and ker-
nel perceptron learning algorithms, but without conducting experiments to ver-
ify efficiency. [9] implements a secure SMO protocol with the distributed two-
trapdoor public-key cryptosystem (DT-PKC). [20] also designs GD (gradient
descent) based secure SVM training using DT-PKC. These methods can protect
all data throughout the whole training, but also at a cost of great time.

Besides the above works specializing in SVM, there are some works aiming
at realizing privacy-preserving training for a variety of models. SecureML [14]



244 W. Huang and N. Ding

applies the ABY framework with a new fixed-point multiplication protocol to
linear regression, logistic regression and neural network. Chameleon [16] and
ABY3 [13] change the setting from two servers to three servers, managing to
simplify the protocols. FLASH [1] expands to four servers, allowing at most one
malicious, proposing a framework with high robustness only by using symmetric-
key primitives. These works have made great achievements in improving effi-
ciency, but there are still some shortcomings and, for instance, the number of
servers have to be fixed to constants, which is inflexible in deployment. (In prac-
tice each data owner is usually willing to participate joint training instead of
just providing data to others. So an owner is not only a data provider, but also a
server. The present works require the number of servers small (≤4), which thus
limits their applications. Besides flexibility, another motivation to increase the
number of servers is to enhance the resistance to collusive servers. Assuming the
protocol has the (n, t)-threshold property, i.e. at least t corrupted servers of n
ones together can recover data, which makes malicious recovery more difficult
as n, t increases.)

Summary. We provide a summary to the current state of the art in privacy-
preserving SVM. The first route is essentially private-preserving matrix summa-
tion which gains high efficiency, but kernel matrices are exposed and may leak
information. The second route, adopting an additional randomization to kernel
matrices, only provides a heuristic strategy to hide kernel matrices without a
security proof. The third route is the securest, protecting all data throughout
the training but at the cost of a large loss of efficiency. Moreover, all the works,
including general privacy preserving machine learning for a variety of models,
cannot be applied to scenarios of multiple servers and cannot handle the case
that some messages are corrupted.

1.1 Our Contribution

In this paper we propose a new efficient privacy-preserving SVM protocol in the
third route that privately realizes the SGD (stochastic gradient descent) method
to optimize SVM. Our protocol admits the following advantages.

– The protocol is of flexible deployment. It supports the deployment of arbi-
trarily multiple servers and multiple clients.

– The protocol can tolerate dropping-out of some servers (up to some threshold
value).

– The protocol admits the ability of malicious-error-message correction. Error
messages caused by the adversary’s malicious behaviors are not randomly dis-
tributed and will hinder secret reconstruction, or even lead to wrong results.
If a small number of messages (up to some threshold value) are corrupted, it
can still recover correct messages as desired.

We note that none of the above advantages can be obtained by some known
work. The security of privacy preserving is established in the semi-honest adver-
sarial model. Our protocol has the ability to deal with the collusion of servers
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less than the secret sharing threshold. We remark that the third advantage above
shows that our protocol can resist some malicious-message attack, which is actu-
ally beyond the semi-honest adversarial model. For simplicity we just claim that
our protocol is secure in the semi-honest adversarial model.

Thus our protocol can be flexibly used between n servers (calculators) and
m clients (data holders), and tolerates some servers dropping out halfway. In the
running of the protocol, all clients submit the sharing of their sample data to all
servers, which then perform MPC to execute the SGD algorithm to optimize the
parameters of SVM, and finally output the shares of the optimized parameters.
We note that there is no significant difference in accuracy between the models
trained by our protocol and those trained with plain data directly.

Compared with [9,20], our protocol achieves higher efficiency. [9,20] use a
public key encryption system based on modular exponentiation, so 100 rounds
of their training takes nearly 10 h on a 236 × 13 training set. Our protocol runs
MPC based on shares, which only consists of addition and multiplication over
finite fields, so 1000 rounds of our training takes about 48 s on the breast-cancer
training set of 500 × 10 and 1000 rounds of training takes about 10 min on the
diabetes training set of 500 × 10, and 30 min on the german.number training set
of 800 × 24. The programming language used in our experiment code is Python.

Compared with [1,13,14] as well as [9,20], which should fix the number of
servers to a value among 2 to 4, our protocol can be deployed among any number
of servers (no less than 3). Also, by using Shamir’s (n, t)-threshold secret sharing
scheme, we can arbitrarily deploy n servers and tolerate dropping out of at most
n − 2t ones. Also, less than t colluding servers learn nothing in our protocol
more than what they deserve. Moreover, by introducing the Berlekamp-Welch
algorithm as an optional recovery algorithm, correct messages can be recovered
even if less than t messages/shares are corrupted. The security parameter of the
protocol is the bit length of the random number in the protocol.

Finally, we note that the SGD optimization algorithm we use (see
Algorithm 1) is for linear kernel functions originally, it can be extended for non-
linear SVM training. To train nonlinear kernel function SVMs, the input feature
x should be replaced by its mapping result φ(x) corresponding to nonlinear
kernel functions, or apply the quadratic form (see [17]).

1.2 Our Techniques

Now we present a high-level description of our protocol and sketch main tech-
niques. Assume there are m clients trying to cooperate on privacy-preserving
SVM training, while n servers provide secure computation services. Basically,
the protocol runs as follows. First the clients submit the shares of the sample
data to the servers. Then the servers jointly compute the parameters of the SVM
model using the SGD strategy. That is, the protocol consists of many repetitions,
each of which computes an iteration of the SGD method. In each repetition, the
servers have as input the shares of current values of the parameters and then
perform some MPC protocols to compute gradient iteration and finally obtain



246 W. Huang and N. Ding

the shares of the new values of the parameters. When the protocol halts, all
servers output the shares of the optimized parameters of the model.

More concretely, in the SGD for SVM, the gradient and iteration of the
parameters are given in the following formulas.

grad = α · w − C · I(yi(xi · wT ) − 1)(yixi) (1)
w = w − l · grad, (2)

where w are the parameters to be optimized, yi and xi are the label and features
of the ith sample, C is the penalty coefficient of the relaxation variable, and l
is the learning rate and C, l are constants, and I(x) is the function such that if
x > 0, I(x) = 0, and if x < 0, I(x) = 1.

According to the above formulas, each iteration of SGD only consists of
addition, multiplication and comparison operations. Thus to realize the MPC
for SGD, it suffices to show how to realize these operations privately.

Notice that the SGD algorithm is not over integers, while Shamir’s secret
sharing is built over finite fields like Zp. Recall that [3] presents secure fixed-
point addition, multiplication and truncation with respect to Shamir’s scheme.
Thus we adopt [3] to realize the secure addition and multiplication.

We introduce the Berlekamp-Welch algorithm as an optional error correction
algorithm. The algorithm takes the received codewords (i.e. shares of Shamir’s
secret sharing) as input, and recovers the correct values. In our protocol, all
communication takes place within the reveal protocol. By replacing the calcula-
tion in the reveal protocol with the Berlekamp-Welch algorithm, we can get the
correct result when there are a few errors in the received messages.

1.3 Organization

The rest of the paper is arranged as follows. In Sect. 2 we present a part of
preliminaries and relegate the rest to AppendixA due to lack of space. In Sect. 3
we present the security model. In Sect. 4 we show the details of building blocks
(i.e. secure addition, multiplication and comparison etc.). In Sect. 5, we present
our privacy-preserving SVM protocol. In Sect. 6 we give performance evaluation
of our protocol via theoretical analysis and experiments.

2 Preliminaries

We recall the notion of support vector machines and Shamir’s secret sharing
here, and relegate the Berlekamp-Welch algorithm to AppendixA.

2.1 Support Vector Machines

Support vector machines (SVM) are a classical machine learning model. The
concept of SVM was proposed by Vladimir N. Vapnik and Alexey Ya Chervo-
nenkis in 1963. The current version was proposed by Corinna Cortes and Vapnik
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in 1993 and published in 1995 [5]. As a supervised learning model, SVM is mainly
used in regression and classification problems. The principle of SVM is to find a
hyperplane to maximize the minimum distance between the hyperplane and the
two kinds of sample points.

SVM can be optimized by the gradient descent method. We consider linear
SVM which has a loss function, called hinge loss function, max(0, 1−yi(xiwT )),
where the subscript i represents the ith sample, and x and y represent the
feature data and labels. Considering slack variable ξi and regular term α ‖w‖,
the gradient of the objective function is grad = α ·w−C(yi(xi ·wT ) < 1)(yixi).
The gradient descent method of SVM uses the following algorithm to optimize
w. In the algorithm, the bias b can be optimized by directly adding an all 1
column to x.

Algorithm 1. SVM − GD

Input: features x ∈ Rt×d, labels y ∈ {±1}t, batch-size k, learning rate l, α, C, T
Output: parameters w ∈ Rd

1: Randomly initialize w, set t = 0
2: while t < T do
3: Random sample batch B
4: grad = α · w
5: grad− = C

k

∑
i∈B(yi(xi · wT ) < 1)(yixi)

6: w− = l · grad
7: t+ = 1

8: return w

2.2 Shamir’s Secret Sharing

The secret sharing decomposes a secret into several shares. It is required that
no information about the secret can be extracted from the sets of shares that
do not meet specific requirements, while the sets that do can restore the secret.
Shamir’s secret sharing [18] is a classic (n, t)-threshold secret sharing, that is, it
decomposes a secret value into n shares, and only when the number of shares is
greater than t can it be recovered the secret value. In Shamir’s secret sharing
scheme, the secret owner generates a t−1 degree polynomial f(x) = s+a1x+· · ·+
at−1x

t−1 over a finite field, where s = f(0) is set as the secret value and the other
parameters are random values. Then (f(i), i), i ∈ [1, n] are distributed to party
i as the secret shares. When parties need to reconstruct the secret, first collect
enough secret shares (at least t), and then calculate the secret value f(0) =∑

i∈A,|A|=t(f(i)
∏

j∈A,j �=i
−j
i−j ) according to the Lagrange interpolation formula.

We use [[x]] to denote the Shamir’s secret shares of x, and x ← Reveal([[x]]) is the
reconstruct protocol as described above.

Like some other secret sharing schemes, Shamir’s secret-sharing also has the
homomorphic property. The secret value can be calculated by calculating the
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shared value. When the shares corresponding to the two polynomials f1, f2 are
added accordingly, the result is exactly the share corresponding to f3 = f1 + f2.
Therefore, Shamir’s secret sharing has the property of additive homomorphism.
When we want to calculate the addition of the secret values of two corresponding
polynomials on the same finite field, we can simply add their shared values of
the same independent variable without any communication. Similarly, Shamir’s
secret sharing has similar properties to multiplication, but it should be noted that
the multiplication of two t− 1 degree polynomials will produce a 2(t− 1) degree
polynomial, which will change the threshold structure, so the degree of the new
polynomial needs to be reduced in time, which brings additional communication.

3 Security Definition for Privacy-Preserving SVM

In this section, we specify the security definition for privacy-preserving comput-
ing Algorithm 1. Assume there is a group of clients C1, · · · , Cm, which want to
train a SVM model. Each client holds some data. Assume there are n servers
S1, · · · ,Sn that provide secure computation services. Assume there is a semi-
honest adversary A that can corrupt t − 1 servers and any proper subset of
clients. Very informally, we say a protocol involving these roles secure, if the
semi-honest adversary above cannot obtain more knowledge than what can be
retrieved from outputs of the protocol.

Let x be the feature data of the samples, which is arbitrarily divided into m
pieces x1, · · · ,xm and held by m clients (i.e. data holders). Let y be the labels of
the samples, and its partition also does not affect training. Let SA denote the set
of corrupted servers, CA the set of corrupted clients. The view of the adversary,
denoted viewA(xA), is defined as (xA, rA,M, outputA), where xA are the input
held by the clients in CA, rA are the random numbers used by the servers in
SA in the protocols, M is the set of messages sent by honest participants in
protocols, and outputA is the output of the protocol that A can get. We hope
that our protocol can realize the function of Algorithm1, denoted by f , which
takes the sample data x1, · · · ,xm of m clients and the labels y as inputs, and
outputs the optimized model parameters w. Let fA denote the subset of f ’s
output that can be obtained by A. We have security definition as follows.

Definition 1. Let f : (x1, · · · ,xm,y) → w be the ideal function of Algorithm1
where x1, · · · ,xm denote the sample data of m clients, y denotes the labels of the
samples, w denote the optimized parameters. We use fA to denote the subset of
f ’s output that A can get. We say a protocol π privately–computes f against the
semi-honest adversary A described above, if for any (x1, · · · ,xm,y), the output
of the protocol π outputπ(x1, · · · ,xm,y) = f(x1, · · · ,xm,y), and there exists a
probabilistic poly-nomial-time algorithm S:

{S(xA, fA(x,y)), f(x,y)} ≡ {viewA(xA), outputπ(x1, · · · ,xm,y)}

where ≡ denotes that the distributions on both sides are statistical indistinguish-
able.
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4 Building Blocks of Our Protocol

As sketched previously, our protocol consists of many repetitions, each of which
computes an iteration of the SGD method. In each repetition, the servers have as
input the shares of current values of the parameters and then perform some MPC
protocol to compute gradient iteration and finally obtain the shares of the new
values of the parameters. According to Formula 1 and 2, each iteration of SGD only
consists of addition, multiplication and comparison operations. Thus to realize the
MPC for SGD, it suffices to show how to realize these operations privately.

Notice that the SGD algorithm is not over integers, while Shamir’s secret
sharing is built over finite fields like Zp. Recall that [2] and [3] presents secure
fixed-point addition, multiplication, truncation and less-then-zero (LTZ) proto-
col with respect to Shamir’s scheme. Thus we adopt [2] and [3] to realize the
secure addition and multiplication, which details are recalled in Sect. 4.1. Lastly
in Sect. 4.2 we show the details of how to use the Berlekamp-Welch algorithm to
correct wrong messages.

4.1 Secure Fixed-Point Calculation [2] and [3]

We now present a detailed overview of fixed-point calculations in [2] and [3],
which also explains the notations to make it easier to read the following sub-
sections. We will first introduce the representation of fixed-point numbers in
Shamir’s sharing and then recall the addition and multiplication with truncation,
and finally introduce the less-than-zero protocol. More details of the protocols
can be referred to [2] and [3] or AppendixB.

Data Type and Encoding. In this paper the target data is signed fixed-point
numbers, denoted as Q〈k,f〉 = {x̃ ∈ Q|x̃ = x̄ · 2−f , x̄ ∈ Z〈k〉}, where Z〈k〉 = {x̄ ∈
Z|−2k−1 ≤ x̄ ≤ 2k−1−1} denotes the signed integers. f is the number of decimal
places, k is the number of significant digits, and x̃ and x̄ indicate their types
Q〈k,f〉 and Z〈k〉. We use the integer function intf : Q〈k,f〉 �→ Z〈k〉, intf (x̃) = x̃ ·2f

to realize the conversion of elements between these two types. We use the p’s
complement encoding system to encode elements on Z〈k〉 onto Zp.

The p’s complement encoding system uses a sufficiently large p to generate Zp,
where p > 22k+κ, κ is the security parameter, and uses the function fld(x̄) = x̄
(mod p) mapping the element x̄ over Z〈k〉 to the element over the finite field
Zp. This mapping allows addition and multiplication of elements on Z〈k〉 to be
directly implemented through the corresponding calculations on Zp, and realizing
of the calculation of fixed-point numbers by simpler conversion. In addition,
choosing a large enough p can also ensure that the signed multiplication does
not cross the bounds, and retains many related properties.

Fixed-Point Calculation. As we have already said in the previous paragraphs,
we realize the calculation of the signed integer elements over Z〈k〉 by directly
calculating the elements over Zp, and further realizing the calculation of the
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signed fixed-point numbers over Q〈k,f〉. Since f , the number of decimal places
we set, is fixed and public, we can directly use the calculation over Z〈k〉 of the
signed integer element x̄ to implement the addition and subtraction of x̃ and
determine the sign, for intf (x̃1) + intf (x̃2) = intf (x̃1 + x̃2). But the multiplica-
tion between x̃ will cause the expansion of digits. The key difference between
fixed-point calculations and integer calculations is that in order to maintain the
number of decimal places, we need to truncate the results after performing mul-
tiplication calculations. Next, we will introduce the truncation protocol in [3]
that we will use in this paper.

Truncation. Div2mP [3] is the truncation protocol that we will use in this
paper. It takes a secret integer value ā ∈ Z〈k〉 and a public integer m ∈ [1, k − 1]
as inputs, calculates the shares of c̄ = 	ā/2m
 and rounds up or down with some
probability. Details of the protocol are shown as Protocol 5.

Using the above truncation protocol, we get the multiplication of fixed-point
numbers. As for x̃3 = x̃1x̃2 = x̄1x̄2 ·2−2f ∈ Q〈2k,2f〉, using Div2mP([[x̃3]], k+f, f)
to do the truncation, x̃3 will be turned to x̃′

3 = x̄1x̄2 · 2−f ∈ Q〈k,f〉. And this is
how FXMul works.

The Less-Than-Zero Protocol. In this subsection we introduce the LTZ pro-
tocol from [2] based on bit comparison and precise truncation Div2m for secure
comparison. According to Formula 1, we need to decide whether a number is
greater than 0. The LTZ protocol obtains the sign of the secret value by trun-
cating to only one bit remaining. Because Shamir’s secret sharing works on Zp,
we will map signed integers to Zp by modulo p, and positive numbers will be
mapped to [0, p/2], while negative numbers will be mapped to (p/2, p). There-
fore, when guaranteed to be rounded down, the truncated result of a positive
number is 0, and the result of a negative number is −1 (i.e. p − 1 in Zp), so
that the two can be distinguished. LTZ([[a]], k) outputs s = (ā < 0)?1 : 0 as
[[s]] = −Div2m([[a]], k, k − 1).

4.2 Error-Message Recovery via the Berlekamp-Welch Algorithm

Now we show the details of how to use the Berlekamp-Welch algorithm to correct
wrong messages. Assume that there are wrong messages in communication and
these error messages are corrupted shares. Notice that all the communications
in our secure computation framework are in Reveal (see Sect. 2.2), except the
initial share distribution of clients, and all situations only include the Reveal
of random values or the Reveal hidden in the degree reduction protocol. More-
over, error correction algorithms such as Berlekamp–Welch algorithm can fully
assume the role of recovering secret values from shares in the Reveal protocol, and
have the ability of error correction (see AppendixA.1). Therefore, in our secure
computation, participants can directly replace the Reveal with the RevealBW

of Berlekamp–Welch algorithm version, when they reveal the secrets after each
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Protocol 2. Div2mPBW ([[a]]p, k,m)
Input: Secret share [[a]]p, digits length k, divisor length m, random number r
Output: Secret sharing modulus result [[c]]p, where c̄ = �ā/2m� + u, and u ← {0, 1}

1: [[r′′]] ← PRandInt(k − m − 1), [[r′]] ← PRandInt(m)
2: [[r]] ← 2m[[r′′]] + [[r′]]
3: [[a′]] ← 2k−1 + [[a]] + [[r]]
4: b ← RevealBW (r[[a′]])
5: b′ ← (r−1b) (mod 2m)
6: [[c]] ← ([[a]] − (b′ − [[r′]]))2−m

7: return [[c]]

round of communication. In order to ensure correctness, we also need some other
operations.

Since the Berlekamp-Welch algorithm is proposed as a decoding algorithm,
the errors it deals with are considered as random noise. Similarly, there are
some heuristic algorithms among the following multi-polynomial reconstruction
algorithm, which clearly requires that the errors should be random. In secure
computing, error messages may be actively tampered with by malicious adver-
saries to prevent the reconstruction of secrets or even lead to the wrong results.
Such errors are obviously not random. To use these algorithms in our secure
computation, we need to randomize the errors in different distributions.

Let the received shares be [[x]], some of which are corrupted to [[x]]i + Δxi,
where Δxi is the malicious error. The participant can multiply all shares [[x]] by
a same random number r, i.e. [[x′]] = r[[x]]. So the error Δxi is turned to rΔxi,
which is a uniformly distributed random number. Then the participant can apply
Berlekamp-Welch algorithm to recover the secret x′ = rx ← RevealBW ([[x′]]). In
the end he multiplies the result x′ by the inverse of the random number r−1 to
obtain the secret value x ← r−1x′. Taking Div2mP for example, (see Protocol 5
in AppendixB.1) after introducing BW algorithm, the protocol is modified as
Protocol 2.

Finally, we summarize the error correction algorithm. We use noisy polyno-
mial reconstruction algorithms such as Berlekamp-Welch to replace the original
reveal algorithm in Shamir’s secret sharing. Since there is no change in the inter-
action, the introduced algorithm will not reduce security. On the contrary, due
to its error correction function, it can resist the dropping out and tampering of
some messages, thereby obtaining stronger security than before. As these correc-
tion algorithms increase the computational cost compared to the original Reveal,
it is sufficient to use the original Reveal under semi-honest security, so as in our
experiments.
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5 Privacy-Preserving SVM

After presenting the building blocks, this section will formally introduce our
privacy-preserving SVM protocol. Section 5.1 will give an overview of the proto-
col. Section 5.2 will explain the details of the protocol and prove its security.

Protocol 3. PPSVM − GD

Input: Features x ∈ Rt×d, labels y ∈ {±1}t, batch-size bs, learning rate r, PRG, α,
k, f , C, T
Output: shares [[w]] of parameters w ∈ Rd

1: Clients generate the shares [[x]], [[y]], and send them to the servers
2: Servers randomly initialize [[w]], set t = 0
3: calculate λ = [C·r

bs
× 2f ]

4: while t < T do
5: Get batch index according to PRG
6: grad = α · [[w]]
7: a1 = [[yi]][[xi]] //need degree reduction
8: a2 = a1 · [[w]] //need degree reduction
9: a3 = LTZ(a2 − 2f )

10: a4 = λ
∑

i a3a1 //need degree reduction
11: grad = Div2mP(grad − a4, k + f, f)
12: [[w]]− = Div2mP(r · grad, k + f, f)
13: t+ = 1

14: Servers return [[w]]

5.1 Protocol Overview

We use the above protocols based on Shamir’s secret sharing to realize the secure
training of SVM. In the training protocol, the clients submit the shares of the
sample data [[x]] and labels [[y]] to the servers. The servers use them to calculate
the homomorphism of gradient descent according to Formula (1) and (2), so as
to optimize the model parameters w in privacy, and finally output the shares of
the optimized model parameters [[w]].

Our secure training has no special requirements for the distribution of data,
whether it is horizontal or vertical. As long as the data from different clients can
form a complete training set, and this combination is public, then the servers
can do the same operation to the shares of these data. However, in order to
normalize the data before training, the horizontal distributed data may need
other additional operations to get the maximum value per column, while the
vertical distributed data can be calculated directly and locally.

5.2 Protocol Details

The following is the specific process of the protocol. Before the formal training, the
data holders (the clients) and the calculators (the servers) need to agree on the
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number of fixed-point decimal places f , as well as the parameters related to the
secure protocols, such as the modulus p of the finite field. The data holders own-
ing vertical partitioned data need to align the data. During the training, the data
holders submit the secret shares to the calculators. After coordination and sorting,
the calculators hold the shares of the same and complete sample data matrix. The
calculators use the shares to perform the secure computation of the iterations in
the SGD method according to Formula (1) and (2), as shown in the Protocol 3, and
finally get the shares of the optimized parameterw. The shares can be given to the
data holders to reveal w, or can be left to the calculators for secure classification.

While compared with the other secure machine learning protocols like
SecureML, our protocol works in the scenario of n servers and m clients, while
theirs need two to four fixed servers. And because of the (n, t) threshold prop-
erty of Shamir’s scheme, our SGD protocol can tolerate dropping out of at most
n − 2t servers.

Security: The protocol can maintain privacy when facing semi-honest adver-
saries that corrupt at most t − 1 servers. Therefore, we have the ability to deal
with the collusion of up to t − 1 servers. We believe that the protocol will not
leakage any additional information except normal output. Since our protocol is
implemented by the secure computing framework from [3] and [2], the security
of the protocol can also be reduced to their security. More specifically, we make
the following claim and proof.

Theorem 1. Protocol 3 privately computes SVM training with respect to
Definition 1.

Proof. Our model should be able to deal with such an adversary A: it can corrupt
at most t − 1 out of the total number of n servers and a subset of clients,
and executes the protocol semi-honestly. We believe that it cannot obtain any
information other than its own input and output. We set the scenario where A
corrupts t−1 servers S1,S2, · · · St−1 and m−1 clients C1, C2, · · · Cm−1. The above
two sets of servers and clients are denoted by SA and CA.

Next we start to construct a simulator S that runs algorithm S in Definition 1.
The input of S is the sample data of CA and the output of both CA and SA,
which is denoted by xA and fA.

Now we analyze the messages A gets in its view. Since all communications
take place in Reveal, all the messages A receive are shares. All the results of
Reveals contain two types of secret values. One is the random elements over the
finite field, which S can directly simulate directly with random elements over the
field, while the other is the random value generated by additive hiding. Given
a shared variable [[x]] and an unknown shared random secret value [[r]] jointly
generated by participants, calculate [[y]] = [[x]] + [[r]] mod p and reveal y = x + r
mod p. For x ∈ [0, 2k − 1], r ∈ [0, 2k+κ − 1], p > 2k+κ+1, the statistical distance
between y and r Δ(y, r) = 1

2

∑
v∈[0,2k+κ+2k−1] |Pr(x = v) − Pr(r = v)| < 2−κ,

leading to statistical privacy with security parameter κ. Therefore, as long as we
ensure that the bit length involved in addition hiding in the protocol is κ bits
longer than the actual digital range, we can also maintain the above statistical
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indistinguishability. Thus, the simulator can sample random number shares of
the same bit length for simulation.

These two are statistically indistinguishable due to the security of Shamir’s
secret sharing that a group of less than t servers cannot obtain any information
about the secret. Finally, also from the security of Shamir’s secret sharing for
homomorphic computation, the view of A and the overall output of f are also
independent of each other. Therefore, we construct such S, which outputs the
same number of random field elements corresponding to the view of A, so that

{S(xA, fA(x,y)), f(x,y)} ≡ {viewA(xA), outputπ(x1, · · · ,xm,y)}
In summary, Protocol 3 privately computes SVM training for Definition 1.

6 Evaluation

In this section, we will evaluate the proposed privacy preserving support vector
machine protocol. We will evaluate the efficiency and accuracy through theoret-
ical analysis and experimental verification. Finally, we will compare our results
with the existing works.

6.1 Theoretical Analysis

We first analyze the theoretical communication complexity of PPSVM. In each
iteration, the participants perform Div2mP protocol twice, degree reduction pro-
tocol twice, and LTZ protocol once. They need 2 rounds, 3 rounds, 3 rounds of
communication respectively, for a total of 8 rounds of communication. In these
communications, they need to make k + 6 calls of Reveal, where the revealed
original matrix size is one of s × d and k + 2 of s × 1 size, 3 of 1 × d, so the
total communication volume of each participant in one round of SVM training is
(s×d+s×(k+2)+d×3)(n−1) log p bits. In the above, n represents the number
of servers, s is the number of samples, d is the feature dimension of samples, and
k represents the bit length of secrets.

Then we discuss the computational complexity. Each calculator’s calculation
includes four element-wise multiplications, one matrix multiplication and one
comparison in each round of the original SVM training algorithm, and their
extra computational complexity comes from the security protocols. Each degree
reduction protocol needs at least 2 matrix multiplications, and for the truncation
protocol, 1 additional matrix multiplication and 2 element-wise multiplications,
while the LTZ protocol requires k−1 matrix multiplications and 8k−2 element-
wise multiplications. Therefore, each cycle introduces an additional k +7 matrix
multiplications and 8k + 4 element-wise multiplications.

6.2 Experimental Analysis

Because the calculation of long integer matrix is involved, we use Python to
program, and simulate the scene of secure multi-party SVM training on a single
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machine. The communication related time will not be included, which can be
calculated by the previous section. We use native Python for programming, so
the running speed of the experiment will be lower than the theoretical value, but
our results are still much faster than the results of [9,20]. Another significance
of the experiment is to verify that the errors brought by fixed-point number in
SVM training can be ignored.

Settings. The parameters we use are as follows: the number of calculators n = 3,
the threshold t = 2, the number of fixed-point digits f = 20, and the finite field
prime p’s length �log p
 = 120. Other parameters such as C are selected by grid
search method. Before the experiment, the sample feature data is expanded and
rounded according f , and then they are secret shared, which are used as inputs.

Table 1. Data set details

Dataset Feature Trainset Testset

Breast-cancer 10 500 183

Diabetes 8 500 268

German.number 24 800 200

Dataset. The data sets used in the experiment are three binary-class data sets
from libsvm: breast cancer, german.number and diabetes. All three datasets have
linearly scaled each attribute to [−1, 1] or [0, 1]. See Table 1 for details.

Result. We test the secure training protocol on the above three data sets and
compare it with gradient descent training using plaintext directly. We repeat
each experiment 10 times and take the average of 10 results as the final result.
The results are shown in the Table 2.

Table 2. Accuracy of normal SVM and PPSVM among datasets

Dataset T SVM PPSVM

Breast-cancer 100 98.56% (0.0210 s) 98.98% (47.98 s)

Diabetes 1000 68.28% (0.0822 s) 68.06% (677.78 s)

German.number 1000 69.90% (0.2588 s) 68.40% (1846.67 s)

Due to the different separability of the three data sets, we use different iter-
ation numbers. Obviously, the total training time is directly proportional to the
number of iterations, whether secure computation is used or not. At the same
time, the rise of feature dimension and training set size will also increase the
calculation time. Comparing the time of two models on the same data set, the
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training time of PPSVM is about 2000–8000 times that of ordinary SVM. Con-
sidering that we use a single machine to simulate three parties, this proportion
needs to be reduced to about 1/3. However, this is still quite different from the
previous theoretical analysis. We believe that the magnification outside the the-
ory comes from the native Python language and numpy library. In the secure
protocol, we use the native data type of Python to increase the number of data
bits, which will greatly reduce the efficiency of numpy library.

For accuracy, the results of the two models on the breast-cancer dataset are
the best, where the average accuracy of ordinary SVM and privacy-preserving
SVM is 98.56% and 98.98%. The results on german.number and diabetes are not
ideal, which are about 68%. This may be because the kernel function type or
penalty coefficient is not appropriate. It can be seen that the average accuracy
difference between PPSVM and ordinary SVM on the same data set is less
than 1%. Considering the randomness of gradient descent algorithm, we believe
that there is no significant difference between the results whether using secure
calculation or not. That is, when the number of fixed-point digits is sufficient, the
calculation using the number of fixed-point digits will not affect the optimization
result of gradient descent.

Table 3. Comparison among normal SVM and PPSVMs of different thresholds on
breast-cancer dataset

Time/s Single server time/s Accuracy

SVM 0.0109 96.89%

(3, 2) 81.30 27.10 96.61%

(5, 3) 127.95 25.59 96.39%

(7, 4) 195.13 27.88 96.34%

We also conduct experiments on different server numbers and secret shar-
ing thresholds to explore their impact on the efficiency of the protocol. Our
experiment is a single machine simulation, so it does not include communica-
tion, but only the total computing cost. We use three different thresholds for
experiments, each of which conduct 10 experiments and average their results,
and further divide the average results by the number of simulated servers to
obtain the approximate computing time of a single server. The results are shown
in Table 3. The time of a single server on the three thresholds is 27.10 s, 25.59 s
and 27.88 s, which are almost the same. This is consistent with our results in
theoretical analysis, that is, the number of servers only affects a small number
of matrix shapes in the matrix calculations, and has little impact on the calcula-
tion cost. When the threshold and the number of servers are small, their growth
has almost no impact on the calculation. But on the other hand, according to
the theoretical analysis above, the communication cost is linearly related to the
threshold and the number of servers, so it is more affected.
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6.3 Comparison

To conclude this section, we will compare our protocol with some previous works.
Our work is closer to the methods of [9,20]. Compared with them, our protocol
achieves higher efficiency. They use a public key encryption system based on
modular exponentiation, so their 100 rounds of training take nearly 10 h on
a 236 × 13 training set. Our protocol runs MPC based on shares, which only
contains addition and multiplication over the finite field. Therefore, our 100
rounds of training takes about 48s on the breast-cancer training set of 500 × 10,
our 1000 rounds of training takes about 10 min on the diabetes training set of
500×8, and 30 min on the german.number training set of 800×24. For efficiency,
our protocol is much faster than theirs. They need two semi-honest servers, while
we need not less than three servers.

Compared with [1,13,14] as well as [9,20], which have to fix the number of
servers to a value among 2 to 4, our protocol can be deployed among any number
of servers (no less than 3). Increased number of servers and flexible deployment
also enhance the difficulty of server collusion and enhanced the security and
generality of our protocol (for example, let some clients act as the calculators).
Also, by using Shamir’s (n, t)-threshold secret sharing scheme, we can arbitrarily
deploy among n servers and tolerate dropping out of at most n − 2t ones. More-
over, by introducing the Berlekamp-Welch algorithm as an optional recovery
algorithm, correct messages can be recovered even if less than t messages/shares
are corrupted (Table 4).

Table 4. Comparison in functionality

Functions [9,20] SecureML Ours

Efficiency Low High Medium

Non fixed number of servers � � �

Error correction � � �

7 Conclusion

We propose a new privacy preserving support vector machine protocol, which
enables no less than three servers to help several data holders train SVM models,
where the data distribution can be can be arbitrary. We introduce Shamir’s secret
sharing scheme to perform secure computation and protect privacy. We verify
the feasibility and effectiveness of the scheme through experiments.

Acknowledgements. This work was supported in part by the National Key Research
and Development Project 2020YFA0712300.
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A Preliminaries

A.1 Error-Correcting Codes and Berlekamp-Welch Algorithm

Reed Solomon code is an error correction code, which can deal with damaged
and lost symbols. Like Shamir’s secret sharing, RS code is based on polynomial
interpolation, that is, the codewords {f(x1), f(x2), · · · , f(xn)} can be generated
by polynomial f(x) = s + a1x + · · · + at−1x

t−1 from source of {s, a1, · · · , at−1},
where n is the number of participants, t is the threshold. {s, a1, · · · , at−1} is the
input message for RS coding, also the secret and randomness for Shamir’s secret
sharing.

Berlekamp-Welch algorithm [10] is a decoding algorithm of RS code. The
algorithm takes the received codewords (the share in Shamir’s secret sharing) as
input, and recovers the correct true values from by solving a system of equations
and dividing between polynomials. It can deal with up to v < (n − t + 1)/2
errors in the received codewords. The principle of Berlekamp-Welch algorithm
is based on error location polynomial. The error location polynomial is E(x) =∏

i∈E
(x− i) = e0+e1x+ · · ·+ek−1x

k−1+xk, where E represents the index set of
error messages that need to be found. The received codewords are S1, S2, · · · , Sn.
Note that when f(x) �= Sx, E(x) = 0, so there is the equation f(x)E(x) =
SxE(x). Let the left side of the equation be Q(x), and we get the equation
system {Q(x) = SxE(x)}n

x=1. As long as 2k + t + 1 ≤ n is satisfied, there are
solutions of Q(x) and E(x). After the two polynomials are obtained by solving
the linear equations, we can get f(x) by calculating Q(x)/E(x). In Shamir’s
secret sharing, Berlekamp–Welch algorithm has the same input and output as
the Reveal function, and also has the ability of error correction, so it can directly
replace the Reveal function.

Protocol 4. RevealBW

Input: codewords(shares) S1, S2, · · · , Sn ∈ Zp

Output: secrets s ∈ Zp

1: Each participant gets S1, S2, · · · , Sn from others
2: Determine the number of items of Q(x) and E(x) according to the assumed number

of error messages
3: Solve the equation system {Q(x) = SxE(x)}n

x=1

4: f(x) = Q(x)/E(x)
5: return s in f(x)

Berlekamp-Welch algorithm can only recover one secret in one calculation,
while some other further algorithms [4,6] can recover multiple polynomials at the
same time in one calculation. This problem is also called noisy multi-polynomial
reconstruction. These different algorithms have the same application in our
framework. So in our framework, we only take Berlekamp-Welch algorithm as
the representative.
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B Details of Protocols in [3] and [2]

Protocol 5. Div2mP([[a]]p, k,m) [3]
Input: Secret share [[a]]p, digits length k, divisor length m, security parameter κ
Output: Secret sharing modulus result [[c]]p, where c̄ = �ā/2m� + u, and u ← {0, 1}

1: [[r′′]] ← PRandInt(k + κ), [[r′]] ← PRandInt(m)
2: [[r]] ← 2m[[r′′]] + [[r′]]
3: b ← Reveal(2k+κ−1 + [[a]] + [[r]])
4: b′ ← b (mod 2m)
5: [[c]] ← ([[a]] − (b′ − [[r′]]))2−m

6: return [[c]]

B.1 Truncation

Div2mP [3] is the truncation protocol that we will use in this paper. It takes
a secret integer value ā ∈ Z〈k〉 and a public integer m ∈ [1, k − 1] as inputs,
calculates ā/2m and rounds up or down with some probability. Details of the
protocol are shown as Protocol 5.

The protocol uses a truncated random number r to mask the secret value
a to the garbled value b, reveals the garbled value b for truncation, and then
removes the truncated result r′ of r from the result b′. The actual output of the
protocol is c̄ = 	ā/2m + u, which contain an error u = (b′ < r′)?1 : 0. This
error is acceptable in the truncation of fixed-point numbers. The PRandInt in the
protocol is used by each participant to generate a share of an unknown random
number of a specified length without communication.

B.2 Fixed-Point Multiplication

Using the above truncation protocol, we get the multiplication of fixed-point
numbers. As for x̃3 = x̃1x̃2 = x̄1x̄2 ·2−2f ∈ Q〈2k,2f〉, using Div2mP([[x̃3]], k+f, f)
to do the truncation, x̃3 will be turned to x̃′

3 = x̄1x̄2 · 2−f ∈ Q〈k,f〉. And this is
how FXMul works.

Protocol 6. FXMul([[a1]], [[a2]], k + f, f) [3]
Input: Secret share [[a1]], [[a2]], digits length k, decimal digits length f
Output: Secret share [[a3]]p, where ā3 = ā1 · ā2

1: [[a]] ← [[a1]] · [[a2]]
2: [[a3]] ← Div2mP([[a]], k + f, f)
3: return [[a3]]

The communication required for each multiplication is a large overhead, and
the reason for communication is that the multiplication expands the degree of
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polynomials in Shamir’s secret sharing. In order to ensure subsequent successful
recovery, the number of polynomials needs to be maintained less than n through
computation.

B.3 Batch Calculation

As mentioned earlier, the communication required for the degree reduction of
each multiplication is a large overhead. Observing our goal, when calculating
SGD, we will first use multiplication and addition to calculate the inner product.
Each time the inner product is calculated, the multiplications do not interfere
with each other, so we can communicate and reduce the degree after the complete
inner product.

B.4 The Less-Than-Zero Protocol

The LTZ protocol in [2] is actually an application of the precise truncation
protocol Div2m. The above Div2mP is a truncation protocol, but it has errors
caused by random rounding. First, the protocol uses PRandM(k,m) to generate
two shares of random numbers with specified lengths k and m, and the shares
of each bit of the latter. Based on the Div2mP protocol, Div2m uses the bit
comparison protocol BitLT from [2] to obtain an accurate result of truncating
2k−1 bits and keep rounding down, thereby revealing whether the secret is less
than zero. BitLT takes a plaintext data and a set of random bit shares as input,
and outputs whether this plaintext data is less than the binary random number
represented by these bit shares. The BitLT requires 2 rounds and k+1 interactions
of Reveal online, 3 rounds and 3k − 1 interactions offline.

Using BitLT, Div2m can find out whether 2k−1 + [[a]] + [[r]] produces carry in
the least significant m bits and remove it. So that Div2mP is turned to accurate
Div2m. And finally, we have LTZ([[a]], k) outputs s = (ā < 0)?1 : 0 as [[s]] =
−Div2m([[a]], k, k − 1).

Protocol 7. Div2m([[a]]p, k,m) [2]
Input: Secret share [[a]]p, digits length k, divisor length m, security parameter κ
Output: Secret sharing modulus result [[c]]p, where c̄ = �ā/2m� + u, and u ← {0, 1}

1: ([[r′′]], [[r′]], {[[r′
i]]}m

i=1) ← PRandM(k + κ, m)
2: [[r]] ← 2m[[r′′]] + [[r′]]
3: b ← Reveal(2k+κ−1 + [[a]] + [[r]])
4: b′ ← b (mod 2m)
5: [[u]] ← BitLT(b′, {[[r′

i]]}m
i=1)

6: [[c]] ← ([[a]] − (b′ − [[r′]] + 2m[[u]]))2−m

7: return [[c]]

Security: Since all the massages exchanged in protocols above are Shamir’s
secret shares, and values masked by uniformity random numbers (also resulting
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in uniformity random values or with only negligible differences), according to
the security of secret sharing, this protocol is secure.
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Proceedings of the 2018 on Asia Conference on Computer and Communications
Security, AsiaCCS 2018, Incheon, Republic of Korea, 04–08 June 2018, pp. 707–
721. ACM (2018). https://doi.org/10.1145/3196494.3196522

17. Sakr, C.: Analytical guarantees for reduced precision fixed-point margin hyperplane
classifiers (2017)

18. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
19. Vaidya, J., Yu, H., Jiang, X.: Privacy-preserving SVM classification. Knowl. Inf.

Syst. 14(2), 161–178 (2008). https://doi.org/10.1007/s10115-007-0073-7
20. Wang, J., Wu, L., Wang, H., Choo, K.K.R., He, D.: An efficient and privacy-

preserving outsourced support vector machine training for internet of medical
things. IEEE Internet Things J. 8(1), 458–473 (2020)

21. Yu, H., Vaidya, J., Jiang, X.: Privacy-preserving SVM classification on vertically
partitioned data. In: Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.) PAKDD
2006. LNCS (LNAI), vol. 3918, pp. 647–656. Springer, Heidelberg (2006). https://
doi.org/10.1007/11731139 74

22. Zhang, J., Yiu, S.M., Jiang, Z.L.: Outsourced privacy-preserving reduced SVM
among multiple institutions. In: Qiu, M. (ed.) ICA3PP 2020. LNCS, vol. 12453,
pp. 126–141. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60239-0 9

https://doi.org/10.1145/3196494.3196522
https://doi.org/10.1007/s10115-007-0073-7
https://doi.org/10.1007/11731139_74
https://doi.org/10.1007/11731139_74
https://doi.org/10.1007/978-3-030-60239-0_9


Lightweight EdDSA Signature
Verification for the Ultra-Low-Power

Internet of Things
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Abstract. EdDSA is a digital signature scheme based on elliptic curves
in Edwards form that is supported in the latest incarnation of the TLS
protocol (i.e. TLS version 1.3). The straightforward way of verifying an
EdDSA signature involves a costly double-scalar multiplication of the
form kP − lQ where P is a “fixed” point (namely the generator of the
underlying elliptic-curve group) and Q is only known at run time. This
computation makes a verification not only much slower than a signature
generation, but also more memory demanding. In the present paper we
compare two implementations of EdDSA verification using Ed25519 as
case study; the first is speed-optimized, while the other aims to achieve
low RAM footprint. The speed-optimized variant performs the double-
scalar multiplication in a simultaneous fashion and uses a Joint-Sparse
Form (JSF) representation for the two scalars. On the other hand, the
memory-optimized variant splits the computation of kP − lQ into two
separate parts, namely a fixed-base scalar multiplication that is carried
out using a standard comb method with eight pre-computed points, and
a variable-base scalar multiplication, which is executed by means of the
conventional Montgomery ladder on the birationally-equivalent Mont-
gomery curve. Our experiments with a 16-bit ultra-low-power MSP430
microcontroller show that the separated method is 24% slower than the
simultaneous technique, but reduces the RAM footprint by 40%. This
makes the separated method attractive for “lightweight” cryptographic
libraries, in particular if both Ed25519 signature generation/verification
and X25519 key exchange need to be supported.

1 Introduction

Digital signature schemes can be used to provide entity and data-origin authen-
tication, integrity protection, and non-repudiation services, which makes them
an essential tool for enabling secure communication over the Internet. Common
security protocols like TLS rely on these services to authenticate the server to
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the client (and optionally the client to the server) and to securely exchange the
public keys needed for the establishment of a shared pre-master secret [34]. To
date, the most widely used signature schemes are based on the RSA algorithm
[35] and a variant of the ElGamal cryptosystem, which is standardized by the
NIST [30]. However, signature schemes operating on elliptic curves, such as the
Elliptic Curve Digital Signature Algorithm (ECDSA) from [30], have gained in
acceptance over the past few years. What makes ECDSA attractive is that its
security is based on the intractability of the Elliptic Curve Discrete Logarithm
Problem (ECDLP), which allows one to use much smaller groups compared to
its classical counterpart RSA, whose security rests on the Integer Factorization
Problem (IFP). For example, it is generally accepted that ECDSA instantiated
with a 160-bit elliptic-curve group provides about the same level of security as
the RSA signature scheme using a 1024-bit modulus [19]. Smaller group sizes
directly translate into shorter signatures, which is a crucial feature in settings
where communication bandwidth is limited or data transfer consumes a large
amount of energy (e.g. battery-powered devices [15]). Another major difference
between RSA and ECDSA is the (relative) complexity of signature generation
versus signature verification. While the verification of an RSA signature is less
costly than the generation, exactly the opposite holds for ECDSA: verifying an
ECDSA signature is more demanding than signature generation.

From an arithmetic point of view, the main operation of elliptic curve cryp-
tosystems such as ECDSA is scalar multiplication, a computation of the form
R = kP where k is a positive integer and R,P are points on an elliptic curve
E over a finite field Fq. This computation can be decomposed into a sequence
of point additions and point doublings, both of which, in turn, consist of arith-
metic operations in the field Fq [12,19]. In the case of signature generation, the
scalar multiplication is performed on a point P that is fixed and known a priori
since it is part of the domain parameters (namely, it is generator of a subgroup
of prime order). Therefore, it is possible to speed up the scalar multiplication
through pre-computation of multiples of P following the comb approach or the
windows method [19]. Both techniques are suitable for resource-limited devices
with little RAM since, at any time, only one point from the table (but not the
full table) is required as input for the computation, which means the table can
actually be stored in non-volatile memory [26]. The verification of a signature is
more costly and requires a double-scalar multiplication, which is a computation
of the form R = kP + lQ where P is fixed (it is actually the same point P as in
the signature generation), while Q is the signer’s public key and, thus, becomes
only available at run time [19,30]. There exist different implementation options
for a double-scalar multiplication, whereby the most widely-used approach is to
compute the sum kP + lQ in a simultaneous fashion with “joint” doublings as
described in [19, Algorithm 3.48]. Assuming that each of the two scalars k and
l has a length of b bits, the simultaneous double-scalar multiplication technique
requires b point doublings, while the number of point additions depends on the
joint Hamming weight of the two scalars.

The Edwards-curve Digital Signature Algorithm (EdDSA) is a state-of-the-
art signature scheme using elliptic curves in (twisted) Edwards form that was
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developed with the intention of achieving both high performance (especially in
software) and high security [8,9]. A variant of EdDSA as specified in RFC 8032
[21] is one of the digital signature systems supported in the most-recent version
of the TLS protocol, i.e. TLS 1.3. EdDSA is a “Schnorr-like” signature scheme
that combines the strong security and simplicity of classical Schnorr signatures
[36] with the efficiency (and further positive implementation aspects) of twisted
Edwards curves [6]. However, unlike the original Schnorr scheme, EdDSA uses
a double-size hash function (to help alleviate concerns regarding hash-function
security) and generates the per-message secret nonces in a deterministic fashion
by hashing each message together with a long-term secret. Thus, EdDSA does
not consume fresh randomness for each message to be signed, which makes the
scheme attractive for constrained environments (e.g. embedded systems) where
the generation of random numbers is very costly due to the absence of reliable
sources of entropy. In ECDSA, on the other hand, a unique and unpredictable
random number is required for each computation of a signature, whereby even
a small weakness in the random-number generation can have fatal consequences
and may, in the worst case, leak the signer’s secret key. Thus, the deterministic
nonce generation method of EdDSA is not only a performance feature but also
a security feature. To verify an EdDSA signature, one has to check whether an
equation of the form R = kP − lQ holds or not. This is normally accomplished
by computing kP − lQ and then comparing the obtained result with R [8].

A common problem of both ECDSA and EdDSA is that the verification is
significantly slower and also consumes much more memory than the generation
of a signature. The high computational complexity of the verification operation
of curve-based signature schemes is widely recognized in the literature and has
initiated a body of research on techniques to speed up double-scalar multiplica-
tion [19]. When using a simultaneous approach to compute R = kP ± lQ, this
can be achieved by representing the two scalars k and l in such a way that the
number of required point arithmetic operations is reduced, or by reducing the
individual cost of the point arithmetic operations, or through the combination
of both (as in e.g. [7]). While the massive computational burden of verification
affects basically any implementation, the problem of high memory consumption
is mainly relevant for embedded software that runs on resource-limited devices
with little memory, such as smart cards or wireless sensor nodes. Recently, Liu
et al. [25] presented a lightweight elliptic curve software for embedded platforms
and reported that, on a 16-bit MSP430 microcontroller, the verification opera-
tion of their signature scheme consumes about 5 kB of stack memory, while the
signature generation needs a stack space of merely 1.6 kB. In other words, the
verification is roughly three times more “memory hungry” than the generation
of a signature. In the past, there was relatively little awareness of this problem
because resource-constrained devices like smart cards were exclusively used to
generate signatures, but not for verification. However, the recent growth of the
Internet of things has created a demand to support advanced security protocols
(involving verifications) on restricted devices, and in such settings the memory
consumption is indeed a serious problem, as was recently pointed out in [3].
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In this paper, we present an approach to make the double-scalar multiplica-
tion required for the verification of an EdDSA signature more “lightweight” in
terms of RAM footprint. Our basic idea is to exploit the birational equivalence
between twisted Edwards curves and Montgomery curves in order to combine
their individual arithmetic benefits. More concretely, we split the computation
of kP − lQ into two separate steps, namely the fixed-base scalar multiplication
kP carried out with a fixed-base comb method using the twisted Edwards form
of the curve, and the variable-base scalar multiplication lQ, which we perform
with the straightforward (i.e. “X-coordinate-only”) Montgomery ladder on the
birationally-equivalent Montgomery curve [29]. At the end of the ladder compu-
tation, the (projective) Y coordinate of the result is recovered according to the
formulae from [31], and the obtained projective point is then converted to the
corresponding projective point on the birationally-equivalent twisted Edwards
curve so that it can be subtracted from kP . Intuitively, one would expect this
approach to be memory-efficient since the two scalar multiplications are carried
out sequentially and both the fixed-base comb method on the twisted Edwards
curve and the variable-base Montgomery ladder on the Montgomery curve can
be optimized to have a RAM footprint of below 1 kB as shown in [26]. On the
other hand, one would also expect the “separated” approach to be slower than
a simultaneous double-scalar multiplication since it requires more point addi-
tions and doublings. The experimental results we report in this paper allow one
to analyze the trade-offs between execution time and RAM footprint these two
approaches provide. We also discuss some corner cases in the point conversion
and the recovery of the Y coordinate that require special attention.

2 Preliminaries

In this section, we first describe the EdDSA signature scheme and then give an
overview of the arithmetic properties of (twisted) Edwards curves.

EdDSA. The Edwards-curve Digital Signature Algorithm (EdDSA) is a state-
of-the-art signature scheme that provides high speed in software (especially on
64-bit platforms) and high security [8,9]. EdDSA was obviously inspired by the
classical Schnorr signature algorithm [36], which, in its original form, uses Zp as
underlying algebraic structure, but can be straightforwardly adapted for elliptic
curve groups; see e.g. [10, Sect. 4.2.3] for a formal description of a curve-based
variant. However, EdDSA comes with a number of enhancements compared to
[10] that were developed with the goal to improve the real-world security of the
scheme. The major differences between EdDSA and the EC-Schnorr signature
algorithm described in [10] are as follows.

– EdDSA is a deterministic signature scheme since it employs a deterministic
process to generate the secret scalar r (called “session key” in [8]) needed to
sign a message M . Concretely, EdDSA generates r by hashing a long-term
secret together with M . In this way, the signing operation does not require
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any fresh randomness and it is also guaranteed that a value r is never used
for different messages. On the other hand, the classical EC-Schnorr scheme
from [10] has to produce a fresh random value r for each message M to be
signed. This r must be unique for every M and chosen uniformly from the
set {1, 2, . . . , � − 1}, where � is the order of the base point. Even marginal
deviations from randomness or a slight non-uniformity of the distribution
from which r is taken can enable an attack against the EC-Schnorr scheme
that may allow an adversary to get the signer’s private key. EdDSA avoids
such problems and is, therefore, particularly suited for environments where
accessing a source of high-quality randomness is not easily possible.

– A distinguishing characteristic of curve-based Schnorr signature schemes is
that they hash the message M together with R = rB, i.e. the result of the
scalar multiplication between the secret scalar r and the base point B. The
EC-Schnorr variant specified in [10] actually computes Hash(M,xR) where
xR is the x-coordinate of R. EdDSA, on the other hand, also includes the
signer’s public key A in the hash computation; more precisely, it computes
Hash(R,A,M) as part of the signature generation. The purpose of this so-
called key-prefixing is to provide an “inexpensive way to alleviate concerns
that several public keys could be attacked simultaneously” [8]. Indeed, as
recently proven by Bernstein [5], single-user security for Schnorr signatures
tightly implies multi-user security for key-prefixed Schnorr signatures in the
standard model. Shortly after the publication of [5], Kiltz et al. [22] found
that key-prefixing is not needed to ensure multi-user security and provided
a reduction showing that “strong” single-user unforgeability tightly implies
“strong” multi-user unforgeability in the random oracle model. However, to
date, proving multi-user security using standard unforgeability assumptions
without key-prefixing remains being an open problem.

– EdDSA supports fast verification of (large) batches of signatures, which is
not (efficiently) possible when using the EC-Schnorr scheme from [10]. The
saving in execution time that can be achieved through a batch verification
of 64 signatures (versus an individual verification of 64 signatures) is more
than 52% according to the experimental results reported in [8]. To achieve
this speed-up, the designers of EdDSA modified the signature generation to
output the (compressed) point R = rB as first component of the signature
instead of Hash(M,xR) as in EC-Schnorr. This tweak does not impact the
security compared to EC-Schnorr since, given an EC-Schorr signature and
the signer’s public key, one can always recover R as in [10, Sect. 4.2.3.2].

– When designing an elliptic curve signature scheme, it is common practice to
choose a hash function with an output length matching the bit-length of the
order � of the base point B. Choosing the hash function in this way is also
recommended for the EC-Schnorr algorithm in [10]. However, the designers
of EdDSA were more conservative and recommend to employ a double-size
hash function, claiming it “helps alleviate concerns regarding hash-function
security” [8]. Specifically, they recommend to use SHA-512 when EdDSA is
instantiated with a twisted Edwards curve that is birationally equivalent to
Curve25519 and a base point B whose order � has a bit-length of 253.
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Algorithm 1. EdDSA signature generation (sketch)

Input: Domain parameters (Fq, E, B, �), signer’s key pair (a, A), signer’s long-term
secret n for session-key generation, and message M .

Output: Signature (R, s) of M .
1: r ← Hash(n, M) mod �
2: R ← rB
3: h ← Hash(R, A, M) mod �
4: s ← r + ha mod �
5: return (R, s)

Algorithm 1 specifies a (slightly) simplified version of the EdDSA signature
generation as described in [8]. We left out some details that are not relevant in
the context of the present paper. One such detail concerns the long-term secrets
a and n, which are generated by hashing a secret “master key.” In addition, the
points R and A in line 3 and 5 are actually compressed, i.e. represented by the
y-coordinate and one bit of the x-coordinate (see [8] for further details). When
using the curve promoted by the EdDSA designers, which is a twisted Edwards
curve birationally equivalent to Curve25519 [4], then a compressed point fits in
32 bytes and the complete signature has a size of 64 bytes. As shown in Algo-
rithm 1, the message M is actually hashed twice, whereby one of the inputs to
the second hash computation in line 3, namely the point R = rB, depends on
the result of the first hash computation in line 1. This dependency may require
the signer to buffer the complete message M , which could exceed the available
memory capacity when M is large. Furthermore, this “double hashing” is also
computationally expensive for large messages1. On the other hand, when M is
relatively small, then the overall execution time of the signature generation is
primarily determined by the scalar multiplication R = rB in line 2, which is, in
fact, a fixed-base scalar multiplication since B is a pre-defined point.

Algorithm 2. EdDSA signature verification (sketch)

Input: Domain parameters (Fq, E, B, �), signer’s public key A, message M , and alleged
signature (R, s).

Output: Acceptance or rejection of signature.
1: h ← Hash(R, A, M) mod �
2: return Accept if R = sB − hA and Reject otherwise

Algorithm 2 describes the operations that need to be performed in order to
verify an EdDSA signature. In particular, for short messages, one can assume

1 RFC 8032 [21] specifies besides the original EdDSA scheme also a pre-hash version
that replaces the message M in Algorithm 1 by its hash value m = Hash(M). This
pre-hashing potentially reduces the execution time and RAM requirements for large
messages, but loses the collision-resilience feature of the original EdDSA.
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that the hash computation in line 1 is relatively inexpensive, which means the
overall execution time will be mainly determined by checking whether R equals
sB − hA or not. This check can be carried out in a few different ways, but the
most common approach is to compute sB − hA using an algorithm optimized
for double-scalar multiplication (i.e. an algorithm that computes sB and hA in
an interleaved or simultaneous fashion with “joint” doublings) and compare the
result with R. The performance can be further improved by pre-computation
of multiples of the points B and A (and possibly also combinations thereof) as
well as by using a special representation of the two scalars s and h to minimize
their joint weight; see e.g. [7,12,19] for a more detailed treatment. However, on
memory-restricted devices, it generally makes sense to represent the scalars in
Joint-Sparse Form (JSF) [37] since in this case the verifier has to pre-compute
and store just two points, namely B − A and B + A. An alternative technique
to verify an EdDSA signature consists of computing R + hA and sB, and then
checking whether they are equal or not, which can be efficiently done using the
projective representations of the points (i.e. no projective-to-affine conversions
are required). However, a drawback of this approach is that the verifier has to
carry out a costly decompression of R.

Twisted Edwards Curves. EdDSA uses a special class of elliptic curves, the
so-called twisted Edwards (TE) curves, which were first described by Bernstein
et al. in 2008 [6]. A TE curve over a non-binary finite field Fq is defined by an
equation of the form

ET : ax2 + y2 = 1 + dx2y2 (1)

where a and d are distinct and non-zero. The order of a TE curve is a multiple
of four, and every TE curve contains a point of order two, which is (0,−1). An
interesting feature of TE curves is the existence of a neutral element O = (0, 1)
that is an affine point on the curve. The formula for point addition

(x3, y3)
︸ ︷︷ ︸

P3

= (x1, y1)
︸ ︷︷ ︸

P1

+ (x2, y2)
︸ ︷︷ ︸

P2

=
( x1y2 + y1x2

1 + dx1x2y1y2
,

y1y2 − ax1x2

1 − dx1x2y1y2

)

is unified and can, therefore, also be used for point doubling, i.e. it yields the
correct result when P1 = P2. Further, it is complete when a is a square and d is
a non-square in Fq, so that the correct sum is computed for any pair of points
(including special cases like P1 = O, P2 = O, P2 = −P1). The additive inverse
of a point (x, y) is the point (−x, y). Any TE curve is birationally-equivalent to
a Montgomery curve [29] (i.e. a curve defined by By2 = x3 + Ax2 + x over Fp)
and vice versa. The specific TE curve recommended by the EdDSA designers is
birationally-equivalent to Curve25519 [4] and has the parameters a = −1 and
d = −121665/121166 ∈ Fp with p = 2255 − 19. The group ET (Fp) is isomorphic
to Z� × Z8 where � is a 253-bit prime (see [8,9] for more details).

When a = −1, the extended TE coordinates introduced in [20] allow one to
perform a “mixed” point addition with only seven multiplications (7M) in the
underlying field [26]. Doubling a point in extended projective coordinates costs
three multiplications (3M) and four squarings (4S).
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3 Implementation Options for EdDSA Verification

In this section we will have a closer look at different ways the verification of an
EdDSA signature can be implemented, whereby we pay special attention to the
double-scalar multiplication sB − hA. The straightforward approach, which is
used by most (lightweight) cryptographic libraries, is to compute sB and hA in
a combined fashion (i.e. with “joint” doublings) following e.g. the simultaneous
or interleaving strategy [19]. An alternative approach is to completely separate
these two scalar multiplications and exploit the birational equivalence between
the TE form and the Montgomery form.

3.1 Simultaneous Double-Scalar Multiplication

There are two main approaches for performing the double-scalar multiplication
sB − hA in a combined fashion, namely the simultaneous method [19] and the
interleaving technique [28], which have their origin in corresponding algorithms
for multi-exponentiation. Both methods reduce the number of point doublings
by half (compared to the separate computation of sB and hA) at the expense
of increased RAM consumption for storing a pre-computed table that contains
multiples (and possibly also linear combinations2) of the two base points A and
B. Furthermore, both methods can utilize a “low-weight” representation of the
scalars, e.g. Non-Adjacent Form (NAF) or Joint-Sparse Form (JSF) [19], which
determines the actual execution time (i.e. the number of point additions) and
the size of the pre-computed table. However, when RAM is limited, it makes
generally sense to restrict the size of the table to a few points, e.g. four points
including A and B. In this case, the simultaneous double-scalar multiplication
with a JSF representation of the scalars s and h executes, on average, the same
number of point additions in the evaluation phase as the interleaving technique
with width-3 NAFs (see [19, Table 3.6] for a more detailed analysis). Since the
width-3 NAFs of s and h require more RAM than their JSF representation, we
decided to implement the simultaneous method.

The JSF utilizes a binary (i.e. radix-2) signed-digit number system with the
digit set D = {−1, 0, 1} to represent a pair of integers a, b such that they have
minimal joint Hamming weight, which means the number of non-(0, 0) columns
is as small as possible. Solinas gave in [37] a formal definition of the JSF based
on three properties and also proved both its uniqueness and optimality. More
concretely, he showed that any pair of integers has a unique JSF and that this
JSF has the least density of non-(0, 0) columns among all joint expansions. The
number of digits of the JSF representation of two positive integers exceeds the
bitlength of the larger of these two integers by at most one digit. However, since
each digit is from D and requires two bits for its representation, the JSF of the
scalars s and h needed for EdDSA verification occupies 128 bytes in RAM.

2 The main difference between the simultaneous method and the interleaving method
is that, in the latter case, the table entries are disjoint with respect to the two base
points A and B (i.e. each pre-computed value involves only a single base point).
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Algorithm 3. Simultaneous method for double-scalar multiplication.
Input: Twisted Edwards curve ET over Fq of cardinality h� where � is prime, rational

points A ∈ ET (Fq) and B ∈ ET (Fq), scalars h ∈ [0, � − 1] and s ∈ [0, � − 1].
Output: Point R = sB − hA in affine coordinates.
1: (s′, h′) ← JointSparseForm(s, h)
2: T ← [ −A, B + A, B, B − A ] {table with 2 affine and 2 proj. points}
3: T ← ProToExtAff(T ) {table with 4 extended affine points}
4: Q ← O
5: for i from Length(s′, h′) − 1 down to 0 do
6: Q ← 2Q
7: di ← 3s′

i + h′
i

8: if (di > 0) then Q ← Q + T [di − 1] end if
9: if (di < 0) then Q ← Q − T [Abs(di) − 1] end if

10: end for
11: R ← ProToAff(Q)
12: return R

Algorithm 3 shows a simplified implementation of the simultaneous method
for the double-scalar multiplication sB − hA using the JSF for the scalars. The
computation of the JSF of the scalars s and h in line 1 is relatively inexpensive
and can be done as specified in e.g. [37] or [19, Algorithm 3.50]. Thereafter, the
entries of the table T are generated, starting with the sum S = B + A and the
difference D = B − A, which we obtain using the projective addition formulae
from [6, Sect. 6]. We convert these two (projective) points to affine coordinates
by taking advantage of the simultaneous inversion technique, i.e. we invert the
product ZSZD and then obtain 1/ZS and 1/ZD by multiplying the result of the
inversion by ZD and ZS , respectively [19, Algorithm 2.26]. Next, the four affine
points −A, B, S, and D have to be represented in extended affine coordinates
of the form (u, v, w) where u = (x + y)/2, v = (y − x)/2, w = dxy [9,24] and
stored in table T . The bulk of the computation, in particular the doubling and
addition/subtraction of points, is carried out in a relatively simple loop whose
number of iterations corresponds to the length of the JSF expansion of the two
scalars (approximately the bitlength of �). In each iteration, a point doubling is
performed (line 6) and an index di to access the table T is calculated based on
the digits s′

i and h′
i (line 7). This index di is in the range [−4, 4]; depending on

its value and sign, an entry of table T may be added or subtracted as specified
in line 8 and 9. Since the negation of a point is cheap, it suffices to have a table
with only four pre-computed points. The point Q (represented with extended
projective coordinates) is initialized to the neutral element O and updated in
each iteration of the loop until it eventually holds the result sB − hA, which is
finally converted to standard affine coordinates (line 11).

Since, on average, roughly half of the columns of the JSF expansion of s and
h are not (0, 0) [37], the probability that di �= 0 is roughly 50%. Thus, it can be
expected that only in roughly half of the iterations of the loop a point addition
(or subtraction) is actually performed. On the other hand, a point doubling is
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carried out in each iteration. Using the basic cost models for a mixed addition
(7M) and projective doubling (3M + 4S) mentioned in Sect. 2, we can estimate
that, on average, 0.5 · 7 + 3 = 6.5 multiplications and four squarings in Fp are
executed per iteration. Consequently, the complete cost of the loop amounts to
about 6.5n multiplications and 4n squarings in Fp (where n is the length of the
JSF expansion), i.e. roughly 6.5M + 4S per scalar bit. The pre-computed table
T contains four points in extended affine coordinates, which means in our case
the table occupies 384 bytes in RAM (96 bytes per point).

3.2 Two Separate Scalar Multiplications

An obvious alternative to the simultaneous method for obtaining sB − hA is to
split the computation into two completely separate parts, namely a fixed-base
scalar multiplication sB, and a variable-base scalar multiplication hA. Intu-
itively, one expects this separated approach to be slower than the simultaneous
method since significantly more point doublings have to be performed, which is
likely the reason why this approach has, to our knowledge, never been analyzed
in the literature. However, this disadvantage can be mitigated by exploiting the
birational equivalence between TE curves and Montgomery curves, enabling us
to take advantage of the highly-efficient Montgomery ladder to implement the
variable-base scalar multiplication hA. The primary advantage of the separated
approach is low memory consumption (in relation to the simultaneous method)
since it requires neither a table with pre-computed points nor additional space
for a JSF representation of the two scalars.

Algorithm 4. Scalar multiplication on TE curve using Montgomery ladder
Input: Twisted Edwards curve ET over Fq of cardinality h� where � is prime, rational

point P = (x, y) ∈ ET (Fq) with ord(P ) ≥ �, scalar k ∈ [0, � − 1].
Output: Point Q = kP in projective coordinates.
1: if k = 0 then return (0 : 1 : 1)
2: if k = � − 1 then return (−x : y : 1)
3: Pm ← TedToMon(P )
4: (Q1, Q2) ← MonLadder(Pm)
5: Qr ← RecoverY(Q1, Q2, Pm)
6: Q ← MonToTed(Qr)
7: return Q

Algorithm 4 explains how one can perform a variable-base scalar multiplica-
tion kP (where P is a public key, i.e. a rational point on a TE curve) using the
Montgomery ladder on the birationally-equivalent Montgomery curve, which is
in the case of Ed25519 a curve3 that is isomorphic to Curve25519. At first, the
3 The specific Montgomery curve that is birationally-equivalent to the TE curve used

by Ed25519 has the same parameter A as Curve25519 (i.e. A = 48662 [4]), but the
parameter B differs since B = −(A + 2) = −48664 instead of B = 1.
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point P on the TE curve is mapped to the Montgomery curve with help of the
formulae given in [6]. This mapping involves a costly inversion, since to achieve
maximum performance, the input point for the Montgomery ladder needs to be
represented in affine coordinates. Thereafter, the Montgomery ladder is carried
out in a similar fashion as in X25519 key exchange [4] (i.e. the point arithmetic
involves only the projective X and Z coordinate) and, thus, achieves the same
efficiency. However, there are two deviations from the X25519 ladder, namely (i)
the Y coordinate of the resulting point has to be recovered, and (ii) the main
loop of the ladder (as specified in e.g. [17]) needs to be modified because, unlike
X25519, it can not be taken for granted that the most significant “1” bit of the
scalar is always at the same position. Finally, the resulting point in projective
(X : Y : Z) coordinates has to be converted to the corresponding point on the
TE curve. This TE point can be in projective coordinates since it is added to
the result of the fixed-base scalar multiplication sB, which is usually also given
in projective coordinates. Only at the very end, a single inversion is necessary to
get the final result (i.e. the sum of the results of the two scalar multiplications)
in affine coordinates. Although the basic principle of performing the variable-
base scalar multiplication hA on the birationally-equivalent Montgomery curve
is fairly straightforward, there are a couple of corner cases that require special
attention. Such corner cases can occur in (i) the point conversions between the
TE form and the Montgomery form, and (ii) the recovery of the Y coordinate
at the end of the Montgomery ladder.

Corner Cases of Point Conversion. An affine point (xt, yt) on a TE-form
elliptic curve ET can be converted to the corresponding point (xm, ym) on the
birationally-equivalent Montgomery curve EM using the following map [6].

φ : (xt, yt) �→ (xm, ym) =
(

1 + yt

1 − yt
,

1 + yt

(1 − yt)xt

)

(2)

Obviously, the map φ is not defined for xt = 0 or yt = 1. Since the parameters
a and d of a TE curve ET must be distinct and nonzero, there exists only one
point with yt = 1, namely the neutral element (0, 1), which corresponds to the
point at infinity O on the birationally-equivalent Montgomery curve. There are
two points on ET with xt = 0; one is the neutral element (0, 1) and the other is
the point (0,−1). This point has order 2 and corresponds to the point (0, 0) on
the Montgomery curve, which also has order 2 [6].

Given an affine point (xm, ym) on a Montgomery curve EM governed by the
equation By2 = x3 + Ax2 + x, one can compute the corresponding point on the
birationally-equivalent TE curve ET using the map

ψ : (xm, ym) �→ (xt, yt) =
(

xm

ym
,
xm − 1
xm + 1

)

. (3)

The map ψ is not regular at points with xm = −1 or ym = 0; in particular ψ is
undefined at the affine point (0, 0) on EM . Another special case for which ψ is
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irregular are the points with xm = −1. By setting xm to −1, we can write the
Montgomery-curve equation as By2

m = A − 2 to make it clear that such points
only exist when (A − 2)/B is a square in Fp, which obviously does not apply to
our curve. Hence, in summary, corner cases in the conversion of points between
the TE model and the birationally-equivalent Montgomery model can only be
caused by points of low order. However, since the input point for the variable-
base scalar multiplication hA is the signer’s public key A, it should never have
low order, provided the signer generated his/her key pair in a proper fashion as
specified in [8]. We will discuss low-order points further in the next subsection
and describe how our implementation deals with them.

Corner Cases of Y -Coordinate Recovery. Situations that require special
attention can also emerge during the recovery of the Y coordinate as described
in [31]. According to Algorithm 4, the Montgomery ladder actually returns two
points, namely Q1 = kPm and Q2 = Q1 + Pm = kPm + Pm = (k + 1)Pm (see
[13] for details). The X and Z coordinates of these two points, along with the
affine x and y coordinates of the input point Pm, allow one to re-compute the
projective Y -coordinate of Q1, which is relatively inexpensive since it requires
only ten multiplications and six additions/subtractions in Fp. Given the points
Q1 = (X1 : Z1), Q2 = (X2 : Z2), Pm = (xm, ym), a full projective representation
of Q1 (including Y coordinate) can be obtained as follows [31]:

Xr = 2BymZ1Z2X1

Yr = Z2[(X1 + xmZ1 + 2AZ1)(X1xm + Z1) − 2AZ2
1 ] − (X1 − xmZ1)2X2

Zr = 2BymZ1Z2Z1

The coordinate Zr of this new representation of Q1 is a product of ym, Z2
1 , and

Z2, but this does normally not change the value of the affine x coordinate since
xr = Xr/Zr = X1/Z1. However, the equation for Zr shows that recovering the
affine y coordinate yr = Yr/Zr does not work when (i) the y coordinate of the
ladder-input Pm is 0, or (ii) the projective Z coordinate of one of the output-
points of the ladder (i.e. Z1 or Z2) is 0. The former case is only possible when
Pm has order 2 [13], which means Pm = (0, 0) since there are no other points
in the 2-torsion group of our Montgomery curve. A pragmatic approach to deal
with this corner case is to simply reject a public key if it has low order (as we
will discuss in detail in the next subsection). Preventing low-order points from
entering the ladder also simplifies the analysis of the second corner case, i.e. the
case Z1 = 0 or Z2 = 0. Namely, when we exclude low-order points as input to
the ladder and insist that k is in the range [0, � − 1], then Z1 = 0 (i.e. Q1 = O)
is only possible when k = 0. On the other hand, Z2 = 0 (i.e. Q2 = O) implies
Q1 = −Pm since Q2 = Q1 + Pm, which can only occur when k = � − 1.

So, in summary, when the order of the ladder input Pm is at least �, there
remain only two corner cases that require special attention when recovering the
Y coordinate at the end of the ladder, namely k = 0 and k = � − 1. As shown
in Algorithm 4, our implementation handles these special cases through if-then
clauses (line 1 and 2) without actually executing the ladder.
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Single Ladder for X25519 and Ed25519. The Montgomery ladder can be
used to implement not only EdDSA verification, but also ECDH key exchange
as described in [4]. This naturally raises the question whether one and the same
ladder implementation can serve both cryptosystems and, in this way, reduce
the code size of an ECC library. As already mentioned before, there are some
subtle differences between a conventional X25519 ladder (see e.g. [17]) and the
ladder we use to compute hA as part of EdDSA verification. In particular, due
to the so-called “clamping” of scalars according to [4], the highest “1” bit of an
X22519 scalar is always at the same position, which is not guaranteed for the
scalar h computed during EdDSA verification (line 1 of Algorithm 2) since it is
a hash value reduced modulo �. Furthermore, a ladder for X25519 key exchange
has to be resistant to timings attacks, whereas a ladder for EdDSA verification
does not. Nonetheless, it is possible to implement a “unified” ladder that suits
both X25519 and Ed25519 by adopting one of the following two strategies. The
first is to initialize the ladder as usual (i.e. Q1 = (xm : 1) and Q2 = 2Q1), then
scan for the most-significant “1” bit in the scalar, and start the iteration of the
ladder loop from the next-lower bit. This scanning for the highest “1” bit does
not introduce a vulnerability to timing attacks, even when it is implemented in
a naive way, since X25519 scalars are always “clamped” as specified in [4]. An
alternative way is to initialize the ladder with Q1 = (0 : 1) and Q2 = (xm : 1)
to make it work correctly with leading “0” bits in a scalar. More precisely, this
initialization allows one to fix the number of ladder iterations for X25519 and
Ed25519 to e.g. 256 because the processing of leading “0” bits does not change
Q1 and also not the quotient X2/Z2 [13]. We implemented the first method as
it enables slightly better performance for EdDSA verification.

Computation of R = sB − hA. Besides the variable-base scalar multiplica-
tion hA, we also have compute sB, where s ∈ [0, � − 1] is extracted from the
signature to be verified and B ∈ ET (Fp) is the generator of the cyclic sub-group
specified by the parameter set for EdDSA [8]. This computation is a fixed-base
scalar multiplication and can be carried out much faster than the variable-base
scalar multiplication hA. Our software implementation executes this fixed-base
scalar multiplication via a fixed-base comb method [19] with a radix-24 signed-
digit representation for the scalar s, which means four bits of s are processed
at once. The implementation uses a look-up table of eight pre-computed points
that are stored in flash memory (and not in RAM) since B is fixed and known
a priori. Our implementation of the fixed-base comb method is, in essence, the
same as in [26], where a detailed description can be found. After computation
of the two points sB and hA, which are obtained in projective coordinates, the
latter has to be subtracted from the former. We use the (projective) addition
formulae provided in [6] for this subtraction. Finally, the point R = sB − hA is
converted to standard affine coordinates and then compressed so that it can be
compared with the compressed point contained in the signature.

Thanks to the extended projective coordinates introduced in [20], a mixed
point addition (i.e. an addition where one point is given in extended projective
coordinates and the other point in extended affine coordinates) costs just seven
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multiplications (7M) in Fp [26]. Furthermore, the doubling of a point in extend
projective coordinates requires four multiplications (4M) and three squarings
(3M). Our fixed-base comb method (with eight pre-computed points) executes
n/4 point doublings the same number of point additions, where n refers to the
bitlength of the scalar. The overall cost of the fixed-base scalar multiplication
sB amounts to (7n + 3n)/4 = 2.5n multiplications and 4n/4 = 1n squarings in
Fp, i.e. 2.5M + 1S per bit of the scalar. Thanks to the Montgomery ladder, the
variable-base scalar multiplication hA takes only 5M + 4S per scalar bit [4]. In
summary, the overall cost of the separated approach to compute sB and hA is
7.5M + 5S per bit, which is only slightly (i.e. 1M + 1S) worse than the average
number of multiplications/squarings for the simultaneous technique. Both the
simultaneous technique and the separated method also involve two inversions in
Fp, one at the beginning and one at the end of the scalar multiplications.

3.3 Compatibility with Other ECC Libraries

The initial Ed25519 specification from [8,9] does not mandate much validation
of input data and is also relatively vague when it comes to dealing with certain
“corner cases.” In particular, Ed25519 as specified in [8,9] does not validate the
signer’s public key A; it does not even carry out a partial public-key validation
(by checking cA �= O [1], where c is the cofactor, i.e. c = #E(Fp)/�) to ensure
that A does not have low order. However, due to the lack of key validation, the
Ed25519 signature scheme can not guarantee non-repudiation or resilience to
key-substitution attacks (see [11, Sect. A] for an example). Another problem is
the omission of clear guidance on how to handle corner cases, which has led to
a number of Ed25519 variants, as well as inconsistencies and incompatibilities
between implementations. As analyzed in e.g. [11,16], existing implementations
of variants or tweaks of Ed25519 differ with respect to the following aspects.

– whether a non-canonically encoded scalar s is accepted as valid input,
– whether non-canonically encoded points A, R are accepted as valid input,
– whether the points A, R are allowed to have low order,
– whether the verification procedure uses the cofactored (“batched”) equation

8R = 8(sB − hA) or the more strict cofactorless equation R = sB − hA.

The specific way how an Ed25519 implementation deals with corner cases does
not affect the verification of honestly-generated signatures, but can cause diver-
gence when the signer (or an attacker) crafts a signature so that it is accepted
by some implementations and rejected by others. This is especially problematic
when an Ed25519 signature is verified by many entities seeking for a consensus
(e.g. contract signing, electronic voting, blockchain transactions [11]).

Our software is compatible with the widely-used LibSodium library (version
1.0.16 or newer), which means it rejects an alleged signature when s, A or R is
non-canonically encoded, or when A or R has low order. Any alleged signature
passing these input checks is then verified using the cofactorless equation.
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4 Experimental Results

The target platform of our performance assessment of the two implementation
options for EdDSA verification described in the last section is the well-known
and widely-used 16-bit MSP430 architecture from Texas Instruments. MSP430
microcontrollers were designed for extremely low power dissipation; this covers
not only the active processing power, but also standby and memory read/write
power, respectively [14]. Regarding the latter it should be noted that MSP430
devices were among the first to be equipped with Ferro-electric Random Access
Memory (FRAM), which has similar attributes like SRAM (e.g. fast read and
write operations, low power dissipation, high reliability and endurance), but is
non-volatile, like EEPROM or flash memory, and can hold data even after it is
powered off. This feature makes it relatively easy to switch from active mode to
standby or sleep mode, thereby enabling energy savings even for short periods
of inactivity, since data can simply remain in FRAM. For these reasons, Texas
Instruments markets the MSP430 family as “ultra-low-power” microcontrollers
to emphasize their suitability for the Internet of Things (IoT) [14].

The MSP430 uses the von-Neumann memory model, which means code and
data share a unified address space, and there is a single address bus and single
data bus that connects the CPU core with RAM, flash/ROM, and peripheral
modules. Twelve out of a total of 16 registers (each 16 bits wide) are available
for general use; the remaining four serve a special purpose. The MSP430 archi-
tecture has a reduced instruction set consisting of 27 core instructions that can
be split into three categories: double-operand instructions (which overwrite one
of the operands with the result), single-operand instructions, and jumps. This
minimalist instruction set is orthogonal and supports seven addressing modes
altogether, including modes for direct memory-to-memory transfers without an
intermediate register holding [38]. The used addressing mode(s) determine the
latency of double-operand instructions, which can vary between one clock cycle
(when both source and destination operand are held in registers) and six clock
cycles (operands are in RAM or in flash). Some MSP430 models, including the
MSP430F1611 we use for our benchmarking, have a memory-mapped hardware
multiplier capable to carry out (16 × 16)-bit multiply and multiply-accumulate
operations [38]. Since this multiplier is a memory-mapped peripheral, it has to
be accessed by writing the two operands to specific locations in memory. The
MSP430F1611 is equipped with 10 kB RAM and 48 kB flash.

Our implementation of the field-arithmetic operations is a slightly modified
and improved version of the ECC software for MSP430(X) devices introduced
in [24]. This library is written in Assembly language and provides all low-level
operations needed to perform point addition and doubling on Montgomery and
TE curves, respectively. Since our target device is a 16-bit microcontroller, the
elements of Fp are represented as arrays of (unsigned) 16-bit words, i.e. arrays
of type uint16 t. Except for inversion, the arithmetic functions do not execute
operand-dependent conditional jumps or branches (i.e. their execution time is
constant), which contributes to preventing timing attacks against the signature
generation. Although the verification of an EdDSA signature does not involve
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Table 1. Execution time and binary code size of 255-bit field-arithmetic oper-
ations on an MSP430F1611 microcontroller.

Operation Exec. time (cycles) Code size (bytes)

Addition 322 100

Subtraction 332 140

Multiplication (incl. red.) 5388 352

Squaring (incl. red.) 3826 388

Mul. by 32-bit constant 1040 240

Inversion (incl. masking) 197102 942

any secret information, it still makes sense to use a constant-time Fp-arithmetic
library since it can be shared between the signature generation and verification
functions. The Fp-inversion of our library is based on the Extended Euclidean
Algorithm (EEA), but uses a “multiplicative masking” technique to randomize
the execution time and thwart timing attacks (see [24] for details).

Table 1 specifies the execution time (including function-call overhead) and
code size of the most important operations of our Fp-arithmetic library on an
MSP430F161 microcontroller. These timings are slightly better than the ones
reported in [24], which is due to a couple of further Assembly optimizations we
added to the source code. The code size of the full library for Fp-arithmetic is
just slightly more than 2.2 kB, which is very small compared to other MSP430
implementations, e.g. [2,18,23,27,32,33]. This small code size became possible
because our arithmetic library is not purely optimized for high performance (as
most other libraries) but aims for a trade-off between size and speed.

Table 2. Execution time, RAM footprint, and binary code size (excluding the
field arithmetic) of point-arithmetic operations on an MSP430F1611 microcon-
troller.

Operation Exec. time
(cycles)

RAM footpr.
(bytes)

Code size
(bytes)

Point addition (TE curve) 39718 72 272

Point doubling (TE curve) 33451 68 268

Point addition (Mon curve) 25811 132 220

Point doubling (Mon curve) 20776 128 184

Recovery Y coord. (Mon curve) 56117 96 302

Conversion Mon to TE 22519 124 116

Conversion TE to Mon 22521 124 112

Table 2 summarizes the execution time, RAM footprint, and (binary) code
size of some point-arithmetic operations. Point addition and point doubling on
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Table 3. Execution time, RAM footprint, and binary code size of scalar multi-
plication and full EdDSA verification on an MSP430F1611 microcontroller.

Operation Exec. time
(cycles)

RAM footpr.
(bytes)

Code size
(bytes)

Table pre-computation (TE curve) 261926 612 288

Double-scalar mul. (TE curve) 14126254 878 674 + 2230

EdDSA verification (simultaneous) 14206712 980 6143

Fixed-base scalar mul. (TE curve) 4682599 596 602 + 2230

Variable-base scalar mul. (Mon curve) 12138929 478 1356 + 2230

EdDSA verification (separated) 17516534 596 7850

a Montgomery curve is significantly faster than on a TE curve, which is little
surprising since the projective point arithmetic on the former involves only the
X and Z coordinate. The recovery of the projective Y coordinate is a bit more
costly, but this operation is performed only once. The results for the code size
in the right column cover only the size of the function itself and do not include
sub-functions like the field-arithmetic operations (this makes sense because the
field arithmetic is shared across all higher-level operations).

Finally, Table 3 compares the execution time, RAM footprint, and code size
of the simultaneous method and the separated technique for double-scalar mul-
tiplication and full EdDSA signature verification, respectively. As expected, the
separated technique is slower than the simultaneous method, but the difference
(with respect to overall verification time) is relatively small, namely about 3.3
million clock cycles, which is approximately 24% of the verification time of the
simultaneous method. On the other hand, the simultaneous method consumes
almost 1 kB RAM, which is 394 bytes more than the amount of RAM needed
for the separated technique. This significant difference can be explained by the
fact that the separated method (i) does not need to store table with four pre-
computed points in RAM, and (ii) also does not occupy RAM for storing the
JSF representation of two scalars. The execution time of EdDSA verification is
mainly dominated by the double-base scalar multiplication, which contributes
more than 98% to the overall execution time when the message to be verified
is small. The execution times for the entire EdDSA verification listed in Table 3
were determined with a message of a length of only a few bytes, which means
the compression function of the SHA-512 hash function was executed only once
to obtain the 512-bit digest. Our assembler implementation of the compression
function has an execution time of about 38500 clock cycles, which is negligible
compared to the double-scalar multiplication.

5 Conclusions

All major elliptic-curve signature schemes have in common that the verifica-
tion of a signature requires much more computation time than its generation.
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Even worse, most existing implementation results reported in the literature indi-
cate that verifying an EdDSA signature consumes significantly more RAM than
the signing operation, which poses a serious problem for resource-restricted
devices like sensor nodes that often have only a few kilobytes of RAM. The
enormous computational cost and large RAM footprint of the verification is
mainly due to the double-scalar multiplication R = sB − hA, which is normally
implemented using the simultaneous method with joint doublings. In this paper
we proposed an alternative approach that splits the computation of sB − hA
up into two separate operations: a fixed-base scalar multiplication sB and a
variable-base scalar multiplication hA. By exploiting the birational equivalence
between the twisted Edwards model and the Montgomery model, we compute
the variable-base scalar multiplication with the fast Montgomery ladder. Our
experiments show that, on a 16-bit MSP430F1611 microcontroller, the sepa-
rated method is only 24% slower than the simultaneous method, but consumes
about 40% less RAM, mainly because it does not need to store a table of pre-
computed points and also does not require a JSF-representation of the scalars.
This makes the separated approach an attractive alternative to the simultaneous
technique whenever RAM is a scarce resource.
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curve. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162,
pp. 126–141. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44709-
1 12

32. Pabbuleti, K., Mane, D., Schaumont, P.: Energy budget analysis for signature pro-
tocols on a self-powered wireless sensor node. In: Saxena, N., Sadeghi, A.-R. (eds.)
RFIDSec 2014. LNCS, vol. 8651, pp. 123–136. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-13066-8 8

33. Pendl, C., Pelnar, M., Hutter, M.: Elliptic curve cryptography on the WISP UHF
RFID tag. In: Juels, A., Paar, C. (eds.) RFIDSec 2011. LNCS, vol. 7055, pp. 32–47.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-25286-0 3

34. Rescorla, E.K.: The Transport Layer Security (TLS) Protocol Version 1.3. Internet
Engineering Task Force, Network Working Group, RFC 8446, August 2018

35. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

36. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 22

37. Solinas, J.A.: Low-weight binary representations for pairs of integers. Technical
report, CORR 2001–41, Centre for Applied Cryptographic Research (CACR), Uni-
versity of Waterloo, Waterloo, Canada (2001)

38. Texas Instruments Inc: MSP430x1xx Family User’s Guide (Rev. F). Manual, Febru-
ary 2006. http://www.ti.com/lit/ug/slau049f/slau049f.pdf

https://doi.org/10.1007/978-3-319-40253-6_6
https://doi.org/10.1007/978-3-319-40253-6_6
https://doi.org/10.1007/978-3-319-66787-4_32
https://doi.org/10.1007/978-3-319-07536-5_22
https://doi.org/10.1007/3-540-45537-X_13
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://doi.org/10.1007/3-540-44709-1_12
https://doi.org/10.1007/3-540-44709-1_12
https://doi.org/10.1007/978-3-319-13066-8_8
https://doi.org/10.1007/978-3-319-13066-8_8
https://doi.org/10.1007/978-3-642-25286-0_3
https://doi.org/10.1007/0-387-34805-0_22
http://www.ti.com/lit/ug/slau049f/slau049f.pdf


A Dummy Location Selection Algorithm
Based on Location Semantics

and Physical Distance

Dongdong Yang1,2, Baopeng Ye3, Yuling Chen1,2(B), Huiyu Zhou4,
and Xiaobin Qian5

1 State Key Laboratory of Public Big Data, College of Computer Science
and Technology, Guizhou University, Guiyang, China

ylchen3@gzu.edu.cn
2 Guangxi Key Laboratory of Cryptography and Information Security,

Guilin University of Electronic Technology, Guilin, China
3 Information Technology Innovation Service Center of Guizhou Province,

Guiyang, China
4 School of Informatics, University of Leicester, Leicester, UK

5 Guizhou CoVision Science and Technology Co., Ltd., Guiyang, China

Abstract. With the development of smart devices and mobile position-
ing technologies, location-based services (LBS) has become more and
more popular. While enjoying the convenience and entertainments pro-
vided by LBS, users are vulnerable to the increased privacy leakages of
locations as another kind of quasidentifiers. Most existing location pri-
vacy preservation algorithms are based on region cloaking which blurs
the exact position into a region, and hence prone to inaccuracies of query
results. Dummy-based approaches for location privacy preservation pro-
posed recently overcome the above problem, but did not consider the
problem of location semantic homogeneity, query probability and phys-
ical dispersion of locations simultaneously. In this paper, we propose a
dummy location selection algorithm based on location semantics and
physical distance (SPDDS) that takes into account both side informa-
tion, semantic diversity and physical dispersion of locations. SPDDS
solves a simplified problem of single objective optimization by uniting
the three objectives (location semantic diversity, query probability and
physical dispersion of locations) together. The efficiency and effective-
ness of the proposed algorithms have been validated by a set of care-
fully designed experiments. The experimental results also show that our
algorithms significantly improve the privacy level, compared to other
dummy-based solutions.
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1 Introduction

With the rapid developments of positioning capabilities and the widespread use
of wireless networks technology, the location-based service (LBS) has come into
our daily life. More and more location-based applications have emerged providing
various services for people’s work and daily life needs. For example, visitors can
send Point of Interest query to the LBS servers. Game players can share their
game positions and scores with others nearby.

However, despite the great convenience supplied by LBS, it introduces serious
challenges of personal privacy. When a user sends a query to the LBS servers, the
untrusted servers may collect the users’ personal details surreptitiously including
location information and queried interests. Then the untrusted servers can track
the user or release the user’s personal information to others, which may cause
potential damage to the user. Thus, we need to take appropriate measures to
protect users’ location privacy.

Many approaches have been taken to address such privacy problems, where
the k−anonymity (e.g. [1,8]) and location obfuscation are commonly used. The
k−anonymity model, which has been widely used in data privacy preservation,
makes the target user’s information indistinguishable from that of at least k − 1
other users, so that the probability of location leakage is therefore at most 1

k .
The location obfuscation is to blur the user’s exact location into a cloaked region,
so that adversaries cannot figure out the accurate location of the target user.
In fact, the location obfuscation and k−anonymity are often combined together
to generate a region which contains k users including the target user. However,
there are some limitations in the privacy protection model above. First, it mostly
relys on a trusted proxy, called Anonymizer, to anonymize the user’s accurate
location into a cloaked region when issued a query and refine the result according
to the exact user information finally. Once the Anonymizer is attacked by the
adversary, the privacy of all users would leak out. Second, it is difficult to balance
the service availability with location privacy. If the size of cloaked region is too
big, it will impair the Quality of Service (QoS), otherwise it will cause location
leakage.

Thus the another representative approach for location privacy protection is
to deploy dummy but exact locations instead of cloaking regions which probably
provides more precise and effective service. If k − 1 dummy locations have been
selected based on certain algorithms for every query, then we say that it also
follows the k−anonymity model. But how to select k − 1 appropriate locations
is still a challenge. For example, if these dummy locations are all too close to
the true location, the adversary can infer that the user probably is in this small
region. Besides, if location query probability distribution in the result set is not
uniform, the adversary can easily filter out some locations with low probability
such as lake, volcano and the likes. Finally, it is possible that the whole street or
area making the same business with the popularity of industrial congregation. A
lot of times ‘where are you stay’ exposes the privacy of ‘what are you doing’. To
an extreme case, the adversary infers what the user is doing with a big chance
when all locations including dummies and the real one are of the same type.
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Some algorithms have noticed one or two of the three phenomena above and
put forward some selection strategies for generating dummy locations. But none
have consider the problem of location semantic homogeneity, query probability
and location physical dispersion simultaneously. Actually, through the analysis
above, we know that all the three factors mater when generating dummy loca-
tions. Consequently, dummy-based schemes should consider these three factors
simultaneously, otherwise some of the user’s privacy may be leaked.

Therefore, we propose a dummy selection mechanism considering both
semantic diversity, physical dispersion and query probability to make the query
probability of locations in the result set as close as possible while locations spread
as far as possible both semantically and physically. The major contributions of
this paper are as follows:

(1) To protect users’ location privacy against adversary with additional context
information, we propose a new dummy selection algorithms called SPDDS
that takes into account both location semantic diversity, physical dispersion
and query probability.

(2) We conduct a set of simulation experiments based on a WiFi access point
to evaluate the performance of our algorithm. Experimental results show
that our algorithm is efficient when the adversary has additional context
information such as map information and side information in comparison
with other dummy-based algorithms.

The rest of the paper is organized as follows. We discuss the related work
in Sect. 2. Section 3 presents some preliminaries of this paper. We present the
SPDDS algorithm in Sect. 4. Section 5 shows the evaluation results. We conclude
the paper in Sect. 6.

2 Related Work

Location privacy preservation as a popular problem has been well studied in the
literature. In this section, we review major existing techniques for preventing
location privacy leakage including spatial obfuscation and deployment of location
dummies in Sects. 2.1 to 2.2, respectively.

2.1 Spatial Obfuscation

Spatial obfuscation is the most commonly location privacy approaches and its
fundamental principle is to blur an exact position into a cloaked region so that
the adversary can not find out the accurate location of the target user, thereby
unable to infer the information of the target user. It is often used together with
k−anonymity model, making that the cloaked region is sharing with at least
k users [7]. Gedik et al. [7] proposed a personalized k−anonymity algorithm
called Clique-Cloak in which it transformed the problem of finding the cloaking
user set into Maximum Clique Problem (MCP) and allowed users to adjust
their level of anonymity as needed. Mokbel et al. [12] proposed a Quad-tree-like
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algorithm to making region cloaking. Ghinita et al. [9] employed the Hibert curve
to approximate the spatial proximity between queries. Bamba et al. [2] applied
both k−anonymity and l−diversity algorithms while making region cloaking.

Spatial obfuscation might still lead to privacy issues when the user sends
continuous location queries along his/her way. An experienced adversary (e.g. the
Service Provider) which enables to collect user’s historical cloaked regions and
some side information like the user’s mobility patterns (e.g. speed limit) can link
these cloaked regions and infer the user’s location privacy [17]. Cheng et al. [5]
presented two approaches, namely patching and delaying respectively, to prevent
the user’s location from being deduced. Then Xu and Cai [18] proposed a novel
technique to deal with this problem within polynomial time complexity. Pan
et al. [15] proposed a new incremental clique-based cloaking algorithm, called
IClique- Cloak, to defend against such attacks. It extended the edge of current
cloaked region so that the last cloaked region can be fully covered by the new
maximum arrival boundary (MAB). Taking a region for an exact position, spatial
obfuscation hides the exact position of the user ensuring privacy preservation,
but impairs the quality-of-service (QoS) of each query.

2.2 Location Dummies

Location dummies are aimed to secure users’ accurate location by sending k − 1
false locations (“dummies”) together with the true location so that the probabil-
ity of location leakage is reduced to 1

k . Compared to the spatial obfuscation, this
approach sends exact positions instead of cloaked regions to a Service Provider,
which can return a more precise query result. However, the crux of this problem
is how to deploy dummies which cannot be distinguished from the true location.

Kido et al. [10] first put forward a dummy selection algorithm in consideration
of ubiquity and congestion, but the algorithm did not consider factors such
as query probability. Subsequently, although Zhao Dapeng et al. [6] proposed
the ABR algorithm based on query probability, which is lack of considering
the physical dispersion and location semantic diversity. The UPHIF algorithm
proposed by Li Chang et al. [3] protected location privacy to a certain extent, but
did not consider the location semantic diversity. Niu et al. [13] selected dummy
locations based on entropy metrics, and proposed a dummy location selection
(DLS) algorithm and its improved algorithm (enhanced − DLS). Although the
enhanced−DLS scheme consider both query probability and physical dispersion
but lacking of considering the location semantic diversity. Although [4,19] fully
considered the location semantic diversity and physical dispersion, but they did
not consider the query probability.

3 Preliminaries

We first introduce some relative definitions used in this paper, and then introduce
the system architecture based on WiFi Access Points (APs).
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3.1 Relative Definitions of Location Privacy Protection Algorithm

Definition 1. According to [4], location semantic tree (LST ), a tree structure
used to represent the semantic relations between two locations within the range
of a Wi-Fi Access Points (Wi-Fi AP), which satisfies the following requirements:

a) each non-leaf node stands for the category of its children nodes and each
leaf node for a real location l.

b) the depth of LST , denoted as h, is equal to the maximum number of layers
of categories plus 1.

c) the semantic distance dsem (li, lj) between two locations li, lj (i �= j) is the
number of hops from leaf node ni to leaf node nj .

Definition 2. User’s privacy requirements S, represented by two-tuple (k, u) that
has the following meanings:

a) k denotes the anonymous degree of our location privacy preservation model.
More specifically, each query is sent with at least k − 1 dummy locations
and its offset location (we use offset location instead of the real location),
making that the probability of offset location leakage is therefore 1

k .
b) u represents the minimum acceptable value of semantic distance between

two locations in dummy location set (DLS). In other words, it satisfies the
inequality:

min [dsem (li, lj)] ≥ u (1)

Definition 3. Location map distance. If we let Mapcur represent the map informa-
tion within the range of the current Wi-Fi AP. For any two locations li, lj (i �= j),
the location map distance is the physical distance between the two locations on
Mapcur, the value of which ranges from tens of meters to hundreds.

Definition 4. Location query probability (LQP ). As shown in Fig. 1, in a map
divided into m×m cells with equal size. Each cell has a query probability based
on the previous query history, which is denoted as

pi =
number of queries in cell i

number of queries in whole map
(2)

Where i = 1, 2, · · · ,m2,
m2
∑

i=1

pi = 1. The depth of the color in the figure indicates

LQP (the darker the color, the greater the LQP ), and the white area indicates
that the location has never had a location service request, so these locations
may be rivers, barren mountains and other places that are easily filtered by the
adversary.

For any two locations li, lj(i �= j), location query probability distance, denoted
as dque(li, lj), is the difference between query probability of two locations.

Definition 5. Location physical dispersion (PD), which has been used to mea-
sure the effectiveness of the algorithm against location homogeneity attacks, is
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Fig. 1. Location query probability diagram

obtained by computing the minimum physical distance between any two loca-
tions in a DLS. The specific process is shown in (4):

PD = Min [dphy (li, lj)] (3)

Where i, j = 1, 2, · · · , k, i �= j. The greater the minimum distance between any
two locations in the DLS, the greater the PD and the greater the coverage of
the DLS, the better the algorithm’s resistance to location homogeneity attacks.

Definition 6. θ−Secure Set of Dummy Locations. Dummy location set (DLS)
consisting of k − 1 dummy locations and the offset location, where the semantic
distance between li and lj satisfies:

1 − |SEM |
C2

k

≥ θ (4)

where SEM = {dsem |dsem (li, lj) < u}, k = |DLS| and C2
k is a combination

formulas, we call DLS a θ− secure set. We use θ as a privacy protection index of
location semantics in our experimental analysis in Sect. 5. Our aim is to achieve
the maximum θ, i.e. to make it equal to 1, such that two locations in DLS belong
to different categories.
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Definition 7. Entropy (H). We use H to measure the query probability between
two locations in DLS, which is defined as:

H = −
k∑

i=1

pi · log2pi (5)

where pi is the query probability of each location in the DLS, and
k∑

i=1

pi = 1. The

more similar the query probability between two locations in DLS are, the greater
the H. The maximum entropy is achieved when all the k possible locations have
the same probability 1

k , where the maximum entropy will be Hmax = log2k.

3.2 System Structure

The system architecture in our paper is shown in Fig. 2. We implement our idea
by using WiFi Access Points (APs), which has been widely used in mobile envi-
ronments [11,13,14,16]. As one of the most widely used wireless communication
technologies, WiFi technology has getting more and more focus. Governments
have started offering ubiquitous WiFi for public use which has much stronger
signal, larger covered range and more computing power and storage compared
to the home WiFi. In our architecture, APs not only offer the network support
but also provide data for selecting dummy location by saving and maintaining
the local location semantic tree.

In our approach, the WiFi APs collect the location semantic information
within its radio range and save it as a location semantic tree. Since the utilities
of a location is not often change, the local location semantic tree in an AP
is relative stable and not update frequently and hence put little impact on the
function of AP. Before forwarding a query, the mobile user first requests the local
location semantic tree from the WiFi AP which he is connecting with and then
selects k − 1 dummy locations meeting its own privacy requirements according
to the dummy selection mechanism. Next, the user sends its queries with the
real location as well as the dummies to the Service Provider. Then the Service
Provider returns a candidate results based on the locations sent by the mobile
user. And the user refines the result and get the target one of current query.

4 The Algorithm

Based on the analysis above, the final dummy location set not only needs to
make locations in the result set spread as far as possible both semantically and
physically but also to make ones query probability as close as possible. In other
words, the final dummy location set needs to simultaneously satisfy (6), (7)
and (8):

DLS = arg min {max [dque (li, lj)]} (6)

DLS = arg max {min [dsem (li, lj)]} (7)
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Fig. 2. System structure

DLS = arg max {min [dphy (li, lj)]} (8)

Where li, lj ∈ DLS, i �= j. It can be formulated as a Multi-Objective Optimiza-
tion Problem (MOP) since three factors are considered simultaneously. However,
we put forward a simpler objective formulae considering the complexity of MOP.
In each dummy location set we would like to make sure that (9) can be satis-
fied. Consequently, we propose a dummy location selection algorithm based on
location semantics and physical distance (SPDDS).

DLS = arg max
{

min [dsem (li, lj) + r · dphy (li, lj)]
max [dque (li, lj) + 1]

}

(9)

Where li, lj ∈ DLS, i �= j. dque (li, lj)+ 1 is to avoid the situation where the two
locations have the same probability, that is, the difference between the query
probability of the two locations is 0. Here r is a controllable factor for balancing
the share of semantic distance, physical distance and query probability distance
since dsem (li, lj) ≤ 2 · (h − 1), where h is the depth of LST , and hence is usually
less than 10 while dphy (li, lj), as Wi-Fi transmission distance, ranges from hun-
dreds of meters to thousands, whereas the query probability distance is always
less than 1. Consequently, we set r = 0.03.

The main purpose of this algorithm is to generate a set of dummy locations,
in which the query probability of locations as close as possible while locations
spread as far as possible both semantically and physically. Generally speak-
ing, our SPDDS algorithm needs to search a big database to find an optimal
set of dummy locations, in which all locations satisfy (9). Given a user’s pri-
vacy requirement S, besides the real location, we need to determine the other
k-1 cells to assign the dummy locations. The following shows how the SPDDS
algorithm addresses this problem.

(1) As the first step, a particular user needs to determine a proper privacy
requirement S, where the degree of anonymity k is closely related to the
user’s location privacy and the system overhead. Specifically, a bigger k
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leads to higher degree of anonymity but also higher overhead due to the
cost incurred by the selected dummy locations.

(2) Formula (9) is satisfied when any two locations in the submitted k loca-
tions both have the smallest location query probability distance dque(.),
the biggest location map distance dphy(.) and location semantic distance
dsem(.). At the beginning of our SPDDS algorithm, the user divides the
Mapcur as the sample space into m×m grids and generates a dummy loca-
tion candidate set (DLCS) for all pi > 0 locations in the whole grid space.
Next, the user generates semantic distance matric (SDM) according to the
LST , geographic distance matrix (GDM) according to the Mapcur and
probability distance matric (PDM) according to the LQP respectively.
And then the user filters out such locations in DLCS whose semantic dis-
tance with newly added locations in DLS are all less than or equal to u
according to SDM . Later the user chooses Loc ∈ DLCS as BestLoc in
such a way that Loc is chosen with the biggest value of m which is computed
by Formula (10) according to SDM , GDM and PDM .

m =
dsem(Loc,DLS.last) + r · [dphy(Loc,DLS.last)]

dque(Loc,DLS.last)
(10)

(3) Finally, a set consisting of the user’s real location and k−1 dummy locations
is generated. Algorithm 1 shows the formal description of the SPDDS
algorithm.

5 Experimental Evaluation

In this section, we compare the performance of our proposed SPDDS algorithm
with serval existed dummy-based algorithms from three assessment metrics as
follows: 1) PD. It means the minimum physical distance of all locations in DLS
indicating the level of locations’ physical dispersion. The greater PD is, the more
dispersed the dummy locations in the DLS. 2) θ. As shown in Definition 6, it
refers to the level of semantic diversity in the result set. The greater θ is, the
higher level of semantic diversity is. 3) H. As shown in Definition 7, it reflects
the query probability distribution in DLS. The greater H is, the more similar
the query probability of two locations in DLS is.

5.1 Experimental Setup

Our algorithm is implemented in MATLAB and performed on a Windows 10 PC
with an Intel Core i5-8500 CPU, a 3.00 GHz processor and a 8.00 GB main mem-
ory. We use a real road map of Guangzhou from Google Maps, since Guangzhou
as a provincial capital in southern China is a big city with enough users in LBS
and its central urban area has been covered by Wi-Fi APs in 2016. The cov-
erage area of each Wi-Fi AP is about 700–800 m, the sample space is divided
into 13 × 13 cells with equal size, and a total of 13559 sample trajectories are
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Algorithm 1. A dummy location selection algorithm based on location semantic
and physical distance (SPDDS)
Input: l: user’s real location; S: user’s privacy requirement; Mapcur: map infor-

mation in current Wi-Fi AP; LST : location semantic tree; LQP : location
query probability;

Output: DLS: dummy location set;
1: divide the Mapcur as the sample space into m × m grids;
2: generate a dummy location candidate set (DLCS) for all pi > 0 locations in

the whole grid space;
3: generate semantic distance matric (SDM) according to the LST , geo-

graphic distance matrix(GDM) according to the Mapcur and probability
distance matric (PDM) according to the LQP respectively;

4: DLS = {l};
5: remove l from DLCS;
6: while |DLS|< k do
7: if DLCS = φ then
8: anonymity failed;
9: else

10: max = 0; BestLoc = φ;
11: for each Loc in DLCS do
12: if dsem(Loc,DLS.last) ≤ u then
13: remove Loc from DLCS;
14: continue;
15: else
16: m = dsem(Loc,DLS.last)+r·[dphy(Loc,DLS.last)]

dque(Loc,DLS.last) ;
17: compute the maximum value of m according to SDM , GDM

and PDM , which is recorded with max, and then assign the corresponding
Loc to BestLoc;

18: end if
19: end for
20: DLS = DLS ∪ {BestLoc};
21: remove BestLoc from DLCS;
22: end if
23: end while
24: return DLS

used as historical data to calculate the historical query probability of each cell.
Besides, all locations in our experiments are divided into 6 categories semanti-
cally as follows: Education and Science, Administration and Housing, Medical
care, Shopping malls, Public places, Catering and Entertainment. The value
ranges of the main parameters u and k of the experiment are 3 ≤ u ≤ 7 and
2 ≤ k ≤ 30 respectively.
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5.2 Experimental Results

Figure 3(a) shows the PD comparison chart of SPDDS, MaxMinDistDS [4],
SimpMaxMinDistDS [4], and enhanced−DLS [13] algorithms. As we can see,
the PD of SPDDS, enhanced − DLS, and MaxMinDistDS are close when
k ≤ 4; at k ≥ 5, the PD of MaxMinDistDS is slightly larger than that of
SPDDS and enhanced − DLS. Under the same value of k, the PD of SPDDS
and enhanced − DLS is slightly larger than that of SimpMaxMinDistDS. In
additional, with the increase of k, the PD of the four algorithms are both reduced
gradually. The reason for this is obvious: it becomes harder to maintain a high
level of dispersion with more and more dummies. In summary, MaxMinDistDS
has the largest PD, SPDDS, enhanced − DLS, and SimpMaxMinDistDS
decrease in order, which means that the MaxMinDistDS behaves better in
keeping physical dispersion than the other three algorithms, but the SPDDS
algorithm is also acceptable.
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Fig. 3. SPDDS’s performance evaluation

In Fig. 3(b), we compare the value of θ between SPDDS, MaxMinDistDS [4],
SimpMaxMinDistDS [4], and enhanced − DLS [13] algorithms. As shown in
the Figure, with the increases of k, the value of θ of SPDDS, MaxMinDistDS
and SimpMaxMinDistDS algorithms hardly change and close to the maximum
value 1. However, that of enhanced−DLS algorithms is always at a relative low.
The reason is that the SPDDS, MaxMinDistDS, and SimpMaxMinDistDS
algorithms all consider the semantic information of the location when selecting
dummy locations, thereby ensuring semantic diversity, while the enhanced −
DLS algorithms only consider the query probability of each location point
instead of considering the situation that each location point may have the same
semantic information. Moreover, the location points with higher query prob-
ability are often in hotspot areas, between which the semantic information is
very similar and therefore not satisfying the semantic diversity. Consequently,
the enhanced − DLS behaves badly in the semantic diversity. In summary, the
KLPPS scheme can effectively resist location similarity attacks.

We compare the value of entropy H between SPDDS, MaxMinDistDS
[4], SimpMaxMinDistDS [4], and enhanced − DLS [13] algorithms in Fig. 3c.
As we can see, H increases with k. Among these algorithms, the enhanced −
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DLS has the biggest value of H (log2k) since all the k locations in DLS have
the same probability to be treated as the real user; while the SPDSS is the
second since the query probabilities of the k locations in DLS are as close as
possible but not the same. Both MaxMinDistDS and SimpMaxMinDistDS
are the worst since they only consider location semantic diversity and location
physical dispersion instead of location query probability when generating dummy
locations. Comparing our SPDDS with enhanced − DLS, we can see that the
entropy of enhanced − DLS is a little bit better than SPDDS, which results
from that SPDDS sacrifices some entropy to maximize PD and θ.

6 Conclusion

In this paper, we proposed a dummy location selection algorithm called SPDDS.
First, we select all locations that satisfy the semantic diversity with the existing
locations in the current dummy location set (DLS) as dummy location candidate
set (DLCS). Second, we select an optimal location in the DLCS as BestLoc,
which is added in the DLS. Finally, a set consisting of the user’s real location
and k − 1 dummy locations is generated, and the query probability of locations
in the result set as close as possible while locations spread as far as possible
both semantically and physically. A series of experiments have been conducted
to evaluate our algorithm and the results show that our proposed algorithm
behave well in incorporating map information and compare favorably with the
existing methods.

Acknowledgements. This study is supported by Foundation of National Natural
Science Foundation of China (Grant Number: 61962009); Major Scientific and Techno-
logical Special Project of Guizhou Province (20183001); Science and Technology Sup-
port Plan of Guizhou Province ([2020]2Y011); Foundation of Guangxi Key Laboratory
of Cryptography and Information Security (GCIS202118).

References

1. Atallah, M.J., Frikken, K.B.: Privacy-preserving location-dependent query pro-
cessing. In: The IEEE/ACS International Conference on Pervasive Services, 2004.
ICPS 2004. Proceedings, pp. 9–17. IEEE (2004)

2. Bamba, B., Liu, L., Pesti, P., Wang, T.: Supporting anonymous location queries
in mobile environments with privacygrid. In: Proceedings of the 17th International
Conference on World Wide Web, pp. 237–246 (2008)

3. Chang, L., Xing, Z., Fei, Y., Wanjie, L., Shuai, L.: Fake location generation scheme
based on user preference selection. Comput. Eng. Des. 40(4), 914–919 (2019)

4. Chen, S., Shen, H.: Semantic-aware dummy selection for location privacy preser-
vation. In: 2016 IEEE Trustcom/BigDataSE/ISPA, pp. 752–759. IEEE (2016)

5. Cheng, R., Zhang, Yu., Bertino, E., Prabhakar, S.: Preserving user location privacy
in mobile data management infrastructures. In: Danezis, G., Golle, P. (eds.) PET
2006. LNCS, vol. 4258, pp. 393–412. Springer, Heidelberg (2006). https://doi.org/
10.1007/11957454 23

https://doi.org/10.1007/11957454_23
https://doi.org/10.1007/11957454_23


A Dummy Location Selection Algorithm 295

6. Dapeng, Z., Guangxuan, S., Yuanyuan, J., Xiaoling, W.: Query probability-based
location privacy protection approach. J. Comput. Appl. 37(2), 347–351 (2017)

7. Gedik, B., Liu, L.: Location privacy in mobile systems: a personalized anonymiza-
tion model. In: 25th IEEE International Conference on Distributed Computing
Systems (ICDCS 2005), pp. 620–629. IEEE (2005)

8. Ghinita, G., Kalnis, P., Khoshgozaran, A., Shahabi, C., Tan, K.L.: Private queries
in location based services: anonymizers are not necessary. In: Proceedings of the
2008 ACM SIGMOD International Conference on Management of Data, pp. 121–
132 (2008)

9. Ghinita, G., Kalnis, P., Skiadopoulos, S.: Prive: anonymous location-based queries
in distributed mobile systems. In: Proceedings of the 16th International Conference
on World Wide Web, pp. 371–380 (2007)

10. Kido, H., Yanagisawa, Y., Satoh, T.: An anonymous communication technique
using dummies for location-based services. In: ICPS 2005. Proceedings. Interna-
tional Conference on Pervasive Services, 2005, pp. 88–97. IEEE (2005)

11. Luo, W., Hengartner, U.: Veriplace: a privacy-aware location proof architecture.
In: Proceedings of the 18th SIGSPATIAL International Conference on Advances
in Geographic Information Systems, pp. 23–32 (2010)

12. Mokbel, M.F., Chow, C.Y., Aref, W.G.: The New Casper: query processing for
location services without compromising privacy. In: Proceedings of the 32nd Inter-
national Conference on Very Large Data Bases, pp. 763–774 (2006)

13. Niu, B., Li, Q., Zhu, X., Cao, G., Li, H.: Achieving k-anonymity in privacy-aware
location-based services. In: IEEE INFOCOM 2014-IEEE Conference on Computer
Communications, pp. 754–762. IEEE (2014)

14. Niu, B., Li, Q., Zhu, X., Cao, G., Li, H.: Enhancing privacy through caching in
location-based services. In: 2015 IEEE Conference on Computer Communications
(INFOCOM), pp. 1017–1025. IEEE (2015)

15. Pan, X., Xu, J., Meng, X.: Protecting location privacy against location-dependent
attacks in mobile services. IEEE Trans. Knowl. Data Eng. 24(8), 1506–1519 (2011)

16. Saroiu, S., Wolman, A.: Enabling new mobile applications with location proofs.
In: Proceedings of the 10th Workshop on Mobile Computing Systems and Appli-
cations, pp. 1–6 (2009)

17. Xu, J., Tang, X., Hu, H., Du, J.: Privacy-conscious location-based queries in mobile
environments. IEEE Trans. Parall. Distrib. Syst. 21(3), 313–326 (2009)

18. Xu, T., Cai, Y.: Location anonymity in continuous location-based services. In:
Proceedings of the 15th Annual ACM International Symposium on Advances in
Geographic Information Systems, pp. 1–8 (2007)

19. Yongbing, Z., Qiuyu, Z., Zongyi, L., Hongxiang, D., Moyi, Z.: A k-anonymous
location privacy protection method of dummy based on approximate matching.
Control Decision 35(1), 55–64 (2020)



DenseGAN: A Password Guessing Model Based
on DenseNet and PassGAN

Chaohui Fu1, Ming Duan1,2(B), Xunhai Dai1, Qiang Wei1, Qianqiong Wu1,
and Rui Zhou1

1 Information Engineering University, Zhengzhou 450001, China
mdscience@sina.com

2 Henan Key Laboratory of Network Cryptography, Zhengzhou 450001, China

Abstract. Password authentication has become one of the most significant
authentication methods because of low cost and convenience, and its security
is getting more and more attention. The vulnerability of password security mainly
lies in the password construction method which inevitably has many human char-
acteristics. With the development of deep learning, these human characteristics
are more and more explored, which bring new challenges to password security. In
2019, a PassGAN password guessing model was proposed, and its performance
is remarkable when the maximum training password length is 10. However, when
the length is extended to 15, the performance gets worse.

To address this issue, in this paper an approach is proposed to innovate the
structure of PassGAN by using DenseNet, and two novel password guessing
DenseGANmodels are proposed, which both can generate high-quality password
guesses. With the first DenseGAN model, when the maximum training password
length is 15, the generated passwords were able to match 2.7–4.8% of the pass-
words in the testing datasets more than PassGAN. Specifically, with the second
DenseGANmodel, when the maximum training password length is 10, the gener-
ated passwords were able to match 0.5% of the passwords in the testing datasets
more than PassGAN,when themaximum training password length is 15, thematch
is 6.2% to 12.5% of the passwords more than PassGAN.

Keywords: Password guessing · DenseNet · PassGAN

1 Introduction

As an important means of identity authentication, password is widely used. Specifically,
with the development of the Internet of Things, more and more network entities use
passwords for interconnection because of the convenience. Therefore, password authen-
tication is still one of themost important authenticationmethods in the foreseeable future,
and its security is getting more and more attention. The vulnerability of password secu-
rity mainly lies in the password construction method which inevitably has many human
characteristics, for example easy-to-remember, short length, reuse, personal information
correlation, natural language correlation and so on.
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Traditional password guesses generally use key search and word list dictionary [1].
There also have been probability attack methods based on the password relevant char-
acteristics, for example n-grams Markov [2] and PCFG [3], and password distribution
methods based on Zipf [4], and a parameterized by desired success rate method [5].

In recent years, the ability of deep learning has been greatly developed in natural
language processing. Similarly, it has also been developed in password guessing. A
methodusing long-short termmemory (LSTM)model [6] is proposed in 2016byWilliam
Melicher. Themodel’s performance is better thanMarkov and other traditional algorithm
models.

The framework of Generative Adversarial Nets [7] is proposed in 2017 by Ian Good-
fellow, then it was used in PassGAN [8] model for password guessing. Its performance
is remarkable when the maximum training password length is 10. However, when the
length is extended to 15, the performance gets worse.

In December 2017, Teng Nanjun proposed a PG-RNN [9] model based on RNN. The
performance of this model is about 1.2% better than PassGAN. In 2019, Sungyup Nam
proposed a Recurrent Neural Network GAN password Cracker on the basis of PassGAN
[10]. Two approaches were developed to improve the performance of PassGAN. The
first is to change the generative and discriminative network based on CNN into RNN.
The second is to use the dual-discriminator GAN. The performance of the improved
PassGAN base on RNN is 10–15% better than PassGAN base on CNN. However, in
practice the computational complexity of the model training is far more than PassGAN
base on CNN.

To improve the PassGAN’s performance and avoid the huge computational complex-
ity, in this paper an approach is proposed to innovate the structure of PassGAN model
by using DenseNet, and two novel password guessing DenseGAN model are proposed,
which can generate high-quality password guesses. With the first DenseGAN model,
when the maximum training password length is 15, the generated passwords were able
to match 2.7–4.8% of the passwords in the testing datasets more than PassGAN. Specif-
ically, with the second DenseGANmodel, when the maximum training password length
is 10, the generated passwords were able to match 0.5% of the passwords in the testing
datasets more than PassGAN, when the maximum training password length is 15, the
match is 6.2% to 12.5% of the passwords more than PassGAN.

2 Background

2.1 Generative Adversarial Nets

Generative Adversarial Nets (GAN) [7] is a neural network proposed by Ian Goodfellow
in 2014. It’s the basis of PassGAN and our models. GAN is composed of a generative
model and a discriminative model. In our model the generative model is used to capture
the distribution of real training passwords, and the discriminative model is used to
estimate the probability that a password sample comes from real training dataset. The
generative model G and discriminative model D can be various neural models, such as
CNN, RNN, etc.
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The goal of GANs is to train the generative model to make a fake sample without
being detected and to train the discriminative network to detect the fake sample. Dur-
ing the training, first fix the generative model parameters and train the discriminative
model. After that training, fix the parameters of the discriminative model, then train the
generative model and repeat the above process until the generative model can cheat the
discriminative model. In the constant confrontation between the two, a Nash equilibrium
will be reached in the end.

2.2 PassGAN

PassGAN is a password guessing model based on GAN developed by Stevens Institute
of technology in 2017. Unlike the traditional password generation method, PassGAN
can learn the distribution characteristics and statistical character rules of password set,
and use the obtained characteristics to generate passwords. PassGAN have been proved
that it can generate high-quality artificial passwords. Taking some RockYou datasets as
the training set, the passwords generated by the trained model can match 21.9% of the
LinkedIn testing set with the size of 40593596 and 34.6% of the RockYou testing set
with the size of 1978367. The Generative Adversarial Nets used in PassGAN is IWGAN
[11], which can better solve the problems of training instability and failing to converge
of WGAN [12].

2.3 DenseNet

DenseNet [13] was proposed by Gao Huang in 2016. The main idea of DenseNet is
to make each layer of the deep learning network to be connected to the other layer
in a feed-forward fashion. We use DenseNet to improve our model by choosing and
connecting some layers together. The DenseNet model has some advantages in solving
the vanishing-gradient problem, strengthening feature propagation, encouraging feature
reuse and reducing the number of parameters. And in the benchmark tests it is proved
that DensNet model has a high performance.

3 DenseGAN

Wecall the PassGANmodel improved byDenseNet asDenseGAN. The original purpose
of this improvement is to improve the utilization of features in each layer, so the layers
of residual block are connected as shown in Figs. 1, 2, 3 and 4.

Connected layers with different depths in the network allow information flow across
many layers unimpededly, and forms a highway network [14], can obtain more features
and solve the gradient disappearance problem, which have been proved to be effective.
This point is further supported by DenseNet and ResNets [15]. In DenseNet each layer is
connected to the other layers, while in ResNets identity mapping is used in the residual
block. Inspired by the ideas we add some outputs of the upper layers in the deep learning
network to the next layers. In order to avoid disorder and weakening characteristics,
we reduce the number of the layers to be added. Crucially, this approach is different
from DenseNet. Firstly, the basic block of DenseNet is convolutional block, and the
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basic block of our model is residual block. Secondly, the features are combined by
concatenating them in Densenet model, while they are combined through summation
before being passed into a next layer. The summation is used in the residual block too.
Therefore, although the model draws on the idea of DenseNet connecting some layers
to enhance feature extraction, it is more like an enhanced residual network.

In order to demonstrate the idea’s effectiveness, we constructed two DenseGAN
models, selected several datasets, and carried out the deep learning network training,
password generation, password match and so on. In addition, the parameters of the
networkmodel are reset, the batch size is set to 1024, and the number of training iterations
is adjusted for different sizes of training sets. Adam optimizer’s coefficients β1 and β2

is set to 0.5 and 0.9, and the learning rate is set to 10−4.
The following figures show the two DenseGAN models’ network topology, and the

twomodels are namedDenseGAN1 andDenseGAN2. In the figures, the blocks represent
layers of the network, the lines with arrow indicates the flow of the layers’ states, and
the lines without arrow indicate that the output state of the previous layer is added to the
input state of the next block.

Residual
Block1

Residual
Block2

Residual
Block3

Residual
Block4

Residual
Block5LinearInput

Noise

Conv1D So�max Output

Fig. 1. Generator architecture of DenseGAN1.

Residual
Block1

Residual
Block2

Residual
Block3

Residual
Block4

Residual
Block5Conv1DInput

Linear Output

Fig. 2. Discriminator architecture of DenseGAN1

Let’s write rb_i (i = 1, 2, …, 5) for Residual Block1, Residual Block2, …, Residual
Block5. The input of the Conv1D layer in Fig. 1 and the input of the Linear layer in
Fig. 2 can be separately represented as:

InputConv1d = OutputLinear +
3∑

i=1

0.3 ∗ Outputrb_i + Outputrb_5

InputLinear = OutputConv1d +
3∑

i=1

0.3 ∗ Outputrb_i + Outputrb_5
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Residual
Block1

Residual
Block2

Residual
Block3

Residual
Block4

Residual
Block5LinearInput

Noise

Conv1D So�max Output

Fig. 3. Generator architecture of DenseGAN2.

Some layers’ inputs in this figure can be represented as:

Inputrb_1 = OutputLinear

Inputrb_2 = Outputrb_1 + 0.3 ∗ OutputLinear

Inputrb_i = 0.3 ∗ Outputrb_(i−1) + Inputrb_(i−1) (i = 3, 4, 5)

InputConv1D = 0.3 ∗ Outputrb_5 + Inputrb_5

Residual
Block1

Residual
Block2

Residual
Block3

Residual
Block4

Residual
Block5Conv1DInput

Linear Output

Fig. 4. Discriminator architecture of DenseGAN2.

Some layers’ inputs in this figure can be represented as:

Inputrb_1 = OutputConv1D

Inputrb_2 = Outputrb_1 + 0.3 ∗ OutputConv1D

Inputrb_i = 0.3 ∗ Outputrb_(i−1) + Inputrb_(i−1) (i = 3, 4, 5)

InputLinear = 0.3 ∗ Outputrb_5 + Inputrb_5
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Table 1. Training and testing datasets.

Dataset Password number Filtered password
number

Training password
number

Testing password
number

CSDN 6428632 6428280 5142624 1285656

RockYou 32584881 32584847 26067878 6516969

Yahoo 442811 442808 354246 88562

RenRen 4768600 4739010 3791209 947802

4 Datasets

During the password match, the datasets used are mainly public datasets collected from
the network, for example CSDN, RockYou, Yahoo and RenRen. In practice we removed
the Unicode passwords from the datasets. The training set and testing set account for
80% and 20% of the total dataset respectively, which are not intersecting. The following
two tables gives the details of the datasets.

Table 1 shows the numbers of the datasets. Table 2 shows the password length
distribution. The distribution shows that passwords with 1–15 lengths account for more
than 98.9% of the total passwords, and those with 11–15 lengths account for more than
8%, especially in theCSDNdataset, passwordswith 11–15 lengths account for 21.72%of
the total passwords. Therefore, it is necessary to expand the password guessing length
to 15 lengths. And some interesting things can be seen from this table, for example,
passwords of length 6 in the CSDN dataset account for only 1.29%, while passwords of
the same length in the RockYou dataset account for 26.06%, indicating that CSDN users
who are mostly related to the IT industry are more security conscious than RockYou
users.

Table 2. Password length distribution.

Password length 6 1–5 1–10 1–15 11–15

CSDN 1.29% 0.63% 77.19% 98.91% 21.72%

RockYou 26.06% 4.32% 90.86% 99.22% 8.36%

Yahoo 17.98% 1.93% 88.90% 99.71% 10.82%

RenRen 25.40% 6.82% 89.98% 99.71% 9.72%

5 Experiments

In this section, the passwordmatchperformances betweenDenseGANandPassGANwill
be evaluated. Firstly, the DenseGAN models is to be trained with the training datasets.
Secondly, the trained model is used to generate 1 billion passwords, which is called
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generative set. Thirdly, count the number of the same passwords in the testing dataset
and in the generative set, named match num. Fourthly, the match number is divided by
the number of the passwords in testing set, and the result is named match rate. Fifthly,
calculate the PassGAN’s match rate similarly. Finally, compare the match rates of the
two model. To get a superior match rate, a single DenseGAN or PassGAN model must
be trained and saved with various training epochs, correspondingly the passwords must
be generated.

5.1 Experiments on DenseGAN1

In order to compare the performance, two PassGAN and two DenseGAN models were
trained by CSDN and RockYou datasets respectively. The training password length
corresponding to the model is 1–15. The following Table 3 gives the details of the match
rate of DenseGAN1 and PassGAN.

Table 3. Match rate of DenseGAN1 and PassGAN.

Model Training set Testing set Password length Match rate

PassGAN CSDN CSDN 1–15 33.55%

DenseGAN1 CSDN CSDN 1–15 38.36%

PassGAN RockYou RockYou 1–15 38.54%

DenseGAN1 RockYou RockYou 1–15 41.29%

The table shows the DenseGAN1’s match rate is about 4.8% higher than PassGAN’s
with the CSDN dataset, and is about 2.7% higher with the RockYou dataset.

5.2 Experiments on DenseGAN2

In order to compare the performance of DenseGAN2 and PassGAN model, the cor-
responding PassGAN and DenseGAN2 models are trained with CSDN and RockYou
datasets respectively. The training password length corresponding to themodels are 1–10
and 1–15.

Match in the Same Datasets. In this experiment, the training set and the testing set
comes from the same dataset. Eight models were trained, and 8 match rates were cal-
culated. The following Table 4 gives the details of the match rates of DenseGAN2 and
PassGAN with the same datasets.

The table shows that when the maximum training password length is 10, the
DenseGAN2’s match rate is 0.5% higher than PassGAN’s, when the maximum length
is 15, the DenseGAN2’s match rate is 6.2–12.5% higher than PassGAN’s.

Match in the Different Datasets. In order to test the generalization ability of the two
models, the testing dataset is set different from the training dataset. The followingTable 5
gives the details of the match Rate of DenseGAN2 and PassGANwith different datasets.
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Table 4. Match rate of DenseGAN2 and PassGAN with same datasets.

Network type Training set Testing set Password length Match rate

PassGAN CSDN CSDN 1–10 40.43%

DenseGAN2 CSDN CSDN 1–10 40.92%

PassGAN RockYou RockYou 1–10 49.46%

DenseGAN2 RockYou RockYou 1–10 49.92%

PassGAN CSDN CSDN 1–15 33.47%

DenseGAN2 CSDN CSDN 1–15 39.61%

PassGAN RockYou RockYou 1–15 38.54%

DenseGAN2 RockYou RockYou 1–15 51.04%

Table 5. Match rate of DenseGAN2 and PassGAN with different datasets.

Network type Training set Testing set Password length Match rate

PassGAN CSDN RenRen 1–10 56.06%

DenseGAN2 CSDN RenRen 1–10 56.50%

PassGAN RockYou Yahoo 1–10 34.53%

DenseGAN2 RockYou Yahoo 1–10 34.53%

PassGAN CSDN RenRen 1–15 42.57%

DenseGAN2 CSDN RenRen 1–15 43.65%

PassGAN RockYou Yahoo 1–15 25.50%

DenseGAN2 RockYou Yahoo 1–15 35.84%

The table shows that when the testing dataset and training dataset come from dif-
ferent dataset the DenseGAN2’s match rate is higher than that of PassGAN’s. That is,
DenseGAN has a slightly better generalization ability.

From the comparison of the results, when the training password length is 1–10 or
1–15, DenseGAN2’s match rate is slightly better than PassGAN’s. Specially, when the
training password length is 1–15 and the training set is RockYou and the testing set is
Yahoo, DenseGAN2’s match rate is about 10% higher than PassGAN’s.

5.3 Comparison Between DenseGAN1 and DenseGAN2

Although DenseGAN1 performs well when the password length is 1–15, when the
password length is 1–10, the match rate of DenseGAN1 is slightly lower than that of
PassGAN andDenseGAN2, and the performance of DenseGAN1 in other aspects is also
lower than that of DenseGAN2.

In the first model, when the blocks are connected together, a kind of Cascade-
Correlation [16] structure is established. The connected block becomes a complex feature
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detector in the network, which enhances the ability of feature acquisition. At the same
time, too many addition operations destroy some features of password distribution and
distort some features, so the performance of DenseGAN1 decreases.

In a residual block, the underlying mapping H(x) [15] can be represented by the
stacked nonlinear layers F(x) and the identity mapping x as H(x) = F(x) + x. Because
of the identity mapping, the degradation problem was solved, and the accuracy can be
gained from greatly increased depth. In our second model, the underlying mapping is
H(x) = F(x)+ x+ 0.3x, and the features can be magnified without being destroyed and
transferred to the deeper layers, so the performance of DenseGAN2 is better.

6 Conclusion

In 2019, a PassGAN password guessing model was proposed, and its performance is
remarkable when the training maximum password length is 10. However, when the
length is extended to 15, the performance gets worse. To address this issue, in this
paper an approach is proposed to innovate the structure of PassGAN model by using
DenseNet, and two novel password guessing DenseGAN models are proposed, and
three experiments are performed. With the first DenseGAN model, when the maximum
training password length is 15, the generated passwords were able to match 2.7–4.8%
of passwords more than PassGAN in the testing datasets. Specifically, with the second
DenseGAN model, when the maximum training length of training passwords is 10, the
generated passwords were able to match 0.5% of passwords more than PassGAN in
the testing datasets, when the maximum length is 15, the match is 6.2% to 12.5% of
passwords more than PassGAN. When the testing dataset and training dataset come
from different datasets the DenseGAN2’s match rate is higher than that of PassGAN,
which shows DenseGAN has a slightly better generalization ability. The comprehensive
experimental results show that the performance of the improved DenseGAN is better
than PassGAN, and the approach to improve PassGAN inspired by DenseNet is useful.
We predict the approach is also available to other password guessing models. At the end,
because the hyperparameter and the connections between the layers are set empirically
and subjectively we believe a better performance DenseGAN model can be obtained by
more detailed tuning of hyperparameters.
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Abstract. ACE is a block cipher proposal that entered the 2nd round
of the NIST Lightweight Cryptography Standardization process. So far,
not much cryptanalysis has been devoted to the ACE permutation and
specifically impossible differential distinguishers covering more than 10-
steps have not been specified yet. In this article, a MILP (Mixed Integer
Linear Programming) model that describes the propagation of word-
oriented trails is employed (also considered in [15]), which serves as a
basis for a new automatic cryptanalytic tool for finding impossible dif-
ferential distinguishers. As an application, the cryptographic security of
the ACE permutation can be evaluated using this new tool. Specifically,
we show that impossible differential distinguishers for the ACE permu-
tation can be built for up to 12 steps, essentially covering the largest
number of steps so far by an impossible differential distinguisher. Due
to the high efficiency of our method, we can explore all possible linear
permutations to modify the original one. The security of these modified
ACE permutations against integral and impossible differential attacks
can then be evaluated by using our MILP model of word-oriented trails.
In particular, the modified ACE that uses a linear permutation (4, 2, 3,
0, 1) instead of its original version offers better security against integral
and impossible differential cryptanalysis. At the same time, ACE with
the modified linear permutation preserves the same resistance against
differential and linear cryptanalysis.

Keywords: Impossible differential distinguishers · Integral
distinguishers · MILP · Automatic cryptanalytic tool · ACE
permutation

1 Introduction

With the development of the Internet of Things, information security has become
even more essential research discipline. Block ciphers constitute an important
family of cryptographic primitives, primarily used for establishing the secrecy
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of communication. From the security aspects, their ability to withstand vari-
ous cryptanalytic attacks is of crucial importance. These attacks include differ-
ential cryptanalysis [4], linear cryptanalysis [10], impossible differential crypt-
analysis [3,7], integral cryptanalysis [8] and many other methods that evolved
during the last thirty years. Recently, using MILP-like techniques, some new
automated search tools for evaluating the security of block ciphers against linear
or differential attacks [18–20] have been proposed. Apart from these standard
techniques, impossible differential and integral cryptanalysis have also been effi-
ciently applied in cryptanalysis of many block ciphers [5,11–13]. Thus, devising
an efficient automatic method/algorithm aimed at searching for impossible and
integral distinguishers is a quite important research task.

Impossible differential cryptanalysis was independently introduced by Knud-
sen [7] and Biham [3]. In order to obtain an impossible differential distinguisher,
two (truncated) differentials with probability one need to be constructed by
the cryptanalyst, which are applied in the forward (encryption) and backward
(decryption) direction, respectively. Having the situation that these two differ-
entials are mismatched in the middle stage of the cipher, essentially leads to
the specification of an impossible differential distinguisher. Then, using such
a distinguisher, a key-recovery attack can be mounted by prepending and/or
appending additional rounds. Those encryption (secret) keys that give rise to an
impossible differential are the wrong ones and therefore can be excluded from the
set of candidate keys. Recently, some automated methods that employ MILP-
based techniques for finding impossible differential distinguishers were proposed
in [5,11].

Integral cryptanalysis [8] was proposed by Knudsen in 2002. The first step
is to obtain an integral distinguisher. Let P be a set of plaintext blocks, where
certain parts of plaintexts are active whereas the remaining words are kept fixed
(commonly set to zero). After the r-th encryption round, it is required that the
sum of the corresponding ciphertexts over the entire values of C is zero in some
output bits. In this case, an r-round integral distinguisher of the considered block
cipher is obtained. We also mention the so-called division property [12] intro-
duced by Todo which is an efficient method to construct integral distinguishers.
Especially, based on the MILP model of the division property proposed by Xiang
et al. [13], some automatic cryptanalytic tools have been designed to evaluate
the security of various ciphers [6,17]. However, for relatively large block sizes
(e.g. dealing with blocks of more than 256 bits), the MILP model that describes
the division property (through linear inequalities whose number grows exponen-
tially) becomes infeasible to handle computationally when the number of rounds
gets large.

The Related Work. The ACE cipher has successfully entered the 2nd round
stage in the NIST LWC (Light Weight Cryptography) competition. In [2], the
designers of ACE provided 8-step integral distinguishers, and additionally they
made a claim that any distinguisher obtained by using the miss/meet-in-the-
middle technique cannot cover more than 10 steps. In [9], based on the use of
characteristic matrices, the authors constructed two 8-step impossible differential
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distinguishers and also claimed that impossible differential distinguishers of the
ACE permutation can not cover more than 8 steps. However, these claims have
become questionable especially with the development of some new cryptanalytic
methods.

A new method for finding impossible differential and integral distinguishers,
implicitly using the concept of word oriented trails, was proposed by Zhang et al.
[16] in FSE 2020. The main idea is that the expression of the internal state can be
represented by the words of plaintexts or ciphertexts. By counting the number of
times that each word appears in the state expression, the resistance against the
impossible differential and integral cryptanalysis can be evaluated. Nevertheless,
in order to acquire the internal state expression, a lot of man-made work is
necessary. For decreasing this workload, a method that describes the propagation
of every word of plaintexts or ciphertexts was needed. To solve this problem a
new automatic tool for finding integral distinguishers was proposed in [15] and it
was successfully used in the specification of a 12-step integral distinguisher of the
ACE permutation. This result further compromises the security claims made by
the designers regarding the strength of the ACE permutation. Since the security
of AEC also heavily relies on the choice of its linear layer, an important question
is the existence of other linear permutations that may provide better security
than the original choice. This is also the main research motivation of this work.

Our Contributions. In this paper, using a MILP-model of word-oriented
trails, an automatic search tool for finding impossible differential distinguish-
ers is designed. To show the efficiency of our method, related to the security of
ACE [2] and in particular its permutation, we first demonstrate the existence of
an impossible differential distinguisher (in difference to 12-step integral distin-
guisher in [15]) that covers up to 12 steps. Therefore, to strengthen its design,
we investigate other linear permutations than the one used in ACE and estimate
the security of these tweaked designs against impossible differential and integral
cryptanalysis. The main conclusion is that replacing the original linear permuta-
tion by (4, 2, 3, 0, 1) induces better security margins of the tweaked ACE cipher,
thus having a better resistance against integral and impossible differential crypt-
analysis than the original version. At the same time, the modified ACE cipher
has the same resistance against differential and linear cryptanalysis compared to
its original version. The summary on the cryptanalysis of ACE and its tweaked
version is listed in Table 1 and 2, respectively.

Organization of This Paper. The rest of this paper is organized as follows.
In Sect. 2, a brief description of the ACE permutation and similar kind of per-
mutations is given. In Sect. 3, the concept of word-oriented trails is defined,
and additionally we describe a method of constructing the MILP model for
word-oriented trails. In Sect. 4, a new automatic search technique for integral
distinguishers is presented. We also estimate the security of the ACE-class per-
mutations (including different linear permutations) with respect to the existence
of integral distinguishers (covering maximum number of steps). Similarly, based
on the MILP model for word-oriented trails, we also propose an automatized
search for impossible differential distinguishers. To demonstrate the efficiency of
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our approach, some impossible differential distinguishers for the original ACE
permutation are given in Sect. 5. Thereafter, we estimate the security of the
ACE-class permutations against impossible differential attacks for different lin-
ear permutations and conclude that there exist better choices. Some concluding
remarks are given in Sect. 6.

Table 1. Summary of attacks on the ACE cipher

Steps Distinguishers Resource

8 ID [2]

12 ID [15]

8 IDD [9]

12 IDD New

Table 2. Summary of attacks on the ACE-class cipher

Linear permutation
ρ in ACE

The maximum
number of steps
of ID

The maximum
number of steps
for IDD

The minimum number
of active S-boxes in
16-step encryption

(2, 4, 1, 0, 3) (original) 12 12 21

(4, 2, 3, 0, 1) (new) 10 11 21

ID: Integral distinguisher; IDD: Impossible differential distinguisher.

2 Preliminaries

2.1 Integral Property

The integral property [8] was first considered by Knudsen et al. in [8]. An inte-
gral distinguisher can be specified by using the following properties related to a
multiset of ciphertexts after a certain number of encryption rounds:

(a) If the elements in the multiset are taking all possible values and each value
is equally frequent, such a multiset is called active; the symbol a is used to
represent this set.

(b) If the XOR of all elements in the multiset is zero, then the multiset is called
balanced; the symbol b is used to represent this set.

(c) If the value of each element in the multiset is the same, then the multiset is
called constant; the symbol c is used to represent this set.

(u) If the multiset cannot be distinguished from a random set, then the multiset
is called the unknown set; the symbol u is used to represent this set.

The above types of multisets have the following propagation properties.
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Property 1. If the input of a bijective component (commonly S-box) is an active
or constant set, then the output is also an active or constant set [8].

Property 2. The sum of two active sets is a balanced set (the XOR sum of all
elements in the multiset is zero), the sum of two balanced sets is also a balanced
set [8].

2.2 The ACE Permutation

The ACE-AEAD (Authenticated Encryption with Associated Data) algorithm,
which entered the 2nd round of the lightweight crypto standardization pro-
cess [1], was proposed by Mark Aagaard et al. [2]. The ACE permutation is
a core component of ACE-AEAD, thus having an enormous impact on the secu-
rity of ACE-AEAD.

The ACE permutation uses 16 steps/rounds and acts on the 320-bit state.
The input to the ACE permutation is processed through the step/round function.
More specifically, the nonlinear operation in each round is achieved using the
unkeyed reduced-round Simeck [14] block cipher (with block size of 64 bits and 8
encryption rounds), whereas the linear operation is based on the XOR operation
on 64-bit blocks.

In the r-th step, the input data X r−1 of the ACE permutation, consisting of
320 bits, is split into five 64-bit data blocks (X r−1[0],X r−1[1],X r−1[2],X r−1[3],
X r−1[4]), where X r−1[k] ∈ F 64

2 for 0 ≤ k ≤ 4. The output of the r-th step is
X r and the use of three different S-boxes in the r-th round is denoted by SBr

j ,
where 1 ≤ r ≤ 16, 0 ≤ j ≤ 2. The S-boxes SBr

0 , SBr
1 and SBr

2 are applied
to X r−1[0], X r−1[2] and X r−1[4], respectively. The ACE permutation has two
types of constants, the round constants RC r

j are used in the Simeck S-boxes
SBr

j , and the step constants SC r
j are used in each round to XOR the words

X r−1
1 ,X r−1

3 ,X r−1
4 . We refer to [2] for more details about the constants used in

the ACE permutation. Figure 1 visualizes the structure of ACE.
The linear permutation in ACE is quite simple and the notation

ACEρ refers to the (permuting) action of ρ on the set of five 64-
bit elements X [i], for i = 0, . . . , 4. For example, the action of ρ =
(3, 2, 0, 4, 1) on the state (X [0],X [1],X [2],X [3],X [4]) results in a new state
(X [2],X [4],X [1],X [0],X [3]), thus X [i] is moved to the ρi-th position. These
permutations, specified by the action of ρ, are called ACE-class permutations.

2.3 Permutation Functions in Cryptosystems

Definition 1 (Permutation Function). Let Y = f(X), where X and Y are
elements of F

n
2 (a vector space of binary vectors of length n). If Y is taking

all possible values in F
n
2 when X ranges through F

n
2 , then f is a permutation

function of X.

Now, considering the ACE permutation and referring to Fig. 1, assuming the
absence of the step constants, we can derive the relationship between the input
X r−1 and output X r of the ACE step function as follows:
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Fig. 1. Structure of the ACE permutation

X r[0] = X r−1[3] ⊕ SBr
2(X

r−1[4])

X r[1] = SBr
1(X

r−1[2])

X r[2] = SBr
0(X

r−1[0])

X r[3] = SBr
2(X

r−1[4])

X r[4] = X r−1[1] ⊕ SBr
1(X

r−1[2])

(1)

Now, referring to the first two rounds of the ACE permutation, again neglecting
the step constants, the expression for X 2[0] becomes SB1

2(X
0[4])⊕SB2

2(X
0[1]⊕

SB1
1(X

0[2])). From this expression, we deduce that X 0[4] only appears once in
the expression for X 2[0]. Assuming that X 0[4] is taking all possible of values
in F 64

2 (keeping the other words fixed), then since the S-box of the ACE per-
mutation is bijective we conclude that X 2[0] is also taking all possible values
in F 64

2 . Therefore, X 2[0] is a permutation function of X 0[4]. In accordance to
this conclusion, we can specify the following property related to the permutation
function.

Property 3. Consider a word-based block cipher whose round function is f :
Fn×m
2 → Fn×m

2 and its S-box is a bijection. Let the initial state be X 0 =
(X 0[0],X 0[1], . . . ,X 0[m−1]), where X 0[i] ∈ F

n
2 , 0 ≤ i ≤ m−1, and denote the

internal state after r encryption rounds by X r = (X r[0],X r[1], . . . ,X r[m−1]),
where X r[j] ∈ F

n
2 , 0 ≤ j ≤ m − 1. If X 0[i1] appears once in the algebraic

representation of X r[j1], when the other words of X 0 are fixed, then X r[j1] is
a permutation of X 0[i1], where 0 ≤ i1, j1 ≤ m − 1.
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Notice that Property 3, using the permutation function as a basis, implies the
possibility of specifying certain impossible differential and integral distinguishers,
as demonstrated in [16]. However, in order to get a permutation function, the
internal state expression needs to be specified manually which becomes tedious
when the number of rounds increases. Hence, the design of an automatic search
method for finding distinguishers that employ the concept of a permutation
function is highly desirable.

3 Word-Oriented Trails and Its MILP Model

3.1 Word-Oriented Trails

Let f : Fn×m
2 → Fn×m

2 be the round function, where m and n represent the
number of words and bits in each word, respectively. In order to count the
number of words of input plaintexts that appear in the internal state, we have
to provide the state expression as a function of these input words. Neglecting
the internal structure of a nonlinear transformation, the main goal is to obtain
the output expression after r encryption rounds by iterating the expression of a
single round function.

For instance, considering the ACE permutation, based on the Eq. (1) we
can get the expression of any internal state. Then, using these expressions, one
can determine the exact number of appearances of any input word in these
expressions. For example, without considering the elimination of identical words
in XOR operations, the upper bound on the number of times that the word
X 0[0] appears in the internal expression of different blocks X r[i] of any round
r and 0 ≤ i ≤ 4, denoted by N r

0, is listed as follows.

N 0
0 = (1, 0, 0, 0, 0)

fACE→ N 1
0 = (0, 0, 1, 0, 0)

fACE→ N 2
0 = (0, 1, 0, 0, 1)

fACE→ N 3
0 = (1, 0, 0, 1, 1)

fACE→ N 4
0 = (2, 0, 1, 1, 0) · · · fACE→ N 7

0 = (4, 1, 1, 3, 3).
(2)

For every word, the number of times it appears in the state expression is fixed.
Based on this property, the notion of word-oriented trails, originally introduced
in [15], is defined as follows.

Definition 2 (Word-oriented trails). Let f : Fn×m
2 → Fn×m

2 be the round
function in encryption direction, the initial input state be X0 = (X0[0],
X0[1], . . . , X0[m−1]) ∈ Fn×m

2 , the input state expression in r-th round is Xr−1,
and denote the corresponding output by Xr. Let N r

j = (N r
j [0], . . . ,N r

j [m − 1]),
0 ≤ j ≤ m − 1, denote the upper bound on the number of times that X0[j]
appears in the expression of each element of Xr. The following trail is called the
word-oriented trail of X0[j]:

N0
j

f→ N1
j

f→ N2
j

f→ · · · . (3)
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This definition immediately implies the following property of word-oriented
trails.

Property 4. Let f : Fn×m
2 → Fn×m

2 denote the round function of a specific block
cipher. If N r

j [k] = 0 or N r
j [k] = 1, then N r

j [k] is the number of times that X 0[j]
appears in the expression of X r[k]. When N r

j [k] ≥ 2, then N r
j [k] is the upper

bound on the number of times that X 0[j] appears in the expression of X r[k],
0 ≤ j, k ≤ m − 1.

Proof. In word-oriented trails, the cancellation of identical words due to the XOR
operation is not considered. If N r

j [k] = 0 or N r
j [k] = 1, we can therefore deduce

that N r
j [k] is the actual number of times that X 0[j] occurs in the expression of

X r[k]. When N r
j [k] ≥ 2, we cannot determine whether there is a cancellation of

the same words (XOR operation does not act directly on these words), and N r
j [k]

is the upper bound on the number of appearances of X 0[j] in the expression for
X r[k].

In the decryption direction, one considers the inverse round function (f)−1 :
Fn×m
2 → Fn×m

2 . The definition of word-oriented trails in this (backward) direc-
tion is similar to Definition 2, the difference is that the input state expression of
the r-th round is Y r−1, and the upper bound on the number of times of Y 0[j]
appears in each element of Y r is denoted by W r

j = (W r
j [0], · · · ,W r

j [m − 1]),
0 ≤ j ≤ m − 1. Notice that in this direction the ciphertext corresponds to
Y 0 = (Y 0[0], . . . ,Y 0[m−1]) and the state after r decryption rounds is denoted
by Y r = (Y r[0], . . . ,Y r[m − 1]).

3.2 The MILP Model of Word-Oriented Trails

In order to obtain the word-oriented trails, we have to efficiently derive the
internal state expression (in an automatized manner) that depends on the input
words. For this purpose, a linear inequality system which describes the word-
oriented trails is introduced.

The number of occurrences of each word in the input and output expression
of a bijective S-box is the same, thus the S-box operation has no effect on word-
oriented trails. Therefore, we only need to make the linear inequality system
(describing the word-oriented trails) which is affected by the linear operations
used. For a specific word-based block cipher, the basic linear operations are
XOR operation and linear permutation. Hence, we only need to describe the
word-oriented trails with respect to these operations by using linear inequalities.

Property 5. Modelling word-oriented trails w.r.t a linear permutation:
Let the round function f : Fn×m

2 → Fn×m
2 be applied in the r-th round. If

there is a swapping operation X r[k] → X r[k1] (two words of the internal state
changing their position), based on the definition of word-oriented trails, we can
use the following equation to describe the trail of the j-th word.

N r
j [k] − N r

j [k1] = 0, 0 ≤ j, k, k1 ≤ m − 1 (4)
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Property 6. Modelling word-oriented trails w.r.t. XOR operation: Let
the round function f : Fn×m

2 → Fn×m
2 be applied in the r-th round. If there is

a relationship (XOR) X r[k1]⊕X r[k2]⊕ · · · ⊕X r[kl] = X r+1[k], we can use the
following equation to describe the trail of the j-th word.

N r
j [k1] + N r

j [k2] + · · · + N r
j [kl] = N r+1

j [k] 0 ≤ j, k, . . . , kl ≤ m − 1 (5)

In a word-based block cipher, its linear layer operates simultaneously on every
word. Therefore, in order to obtain its word-oriented trails, these linear opera-
tions should be split into XOR and linear permutations and then using Prop-
erty 4–6 we can construct the model of word-oriented trails based on these basic
operations. Finally, the MILP model of the round function can be constructed
by employing the structure of these word-oriented trails. In what follows, the
model of word-oriented trails for an r-round encryption or decryption is denoted
by Mr

e or Mr
d , respectively.

4 Automated Search for Integral Distinguishers
of Word-Based Block Ciphers and Its Applications

4.1 Searching for Integral Distinguishers in the Encryption
Direction

For a block cipher whose round function is f : Fn×m
2 → Fn×m

2 , in order to
construct its model of word-oriented trails, the initial input of the word trail
needs to be assigned. According to the definition of word-oriented trails, if we
want to determine word-oriented trails of the j-th word in the input plaintext
block, we assume that the word X 0[j] appears only in the expression for the j-th
word of the plaintext and not in the remaining words. Therefore, we can use the
following equations to describe the initial word-oriented trails of the constituent
words in the plaintext.{

N 0
j [k] = 1, if j = k, 0 ≤ k, j ≤ m − 1,

N 0
j [k] = 0, k �= j.

(6)

According to Property 3, if X 0[j] appears exactly once in the algebraic
expression of X r[k] and the other words in X 0 are fixed, then X r[k] is a per-
mutation function of X 0[j]. Furthermore, if X 0[j] is taking all possible values
in F

n
2 and the other words in X 0 are fixed to a constant in F

n
2 , then the sum of

X r[k] must be equal to 0n (where 0n denotes the all-zero vector of length n).
Therefore, if in a word-oriented trail (considering the j-th word say)

N 0
j

f→N 1
j

f→N 2
j

f→· · · f→N r
j there exists some elements in N r

j which are equal
to 1, then we can conclude that there exists an r-round integral distinguisher.
Based on the above discussion, the following property can be stated.

Property 7. Let N r
j = (N r

j [0],N r
j [1], . . . ,N r

j [m−1]) be the upper bound on the
number of times that the j-th word of plaintext occurs in the expression for each
element in X r, where 0 ≤ j ≤ m − 1. If min(N r

j) = 1, then we can determine
that there is an r-round integral distinguisher.
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In order to determine whether there exists an r-round integral distinguisher,
we need to construct the model Mr

e which describes r-round word-oriented trails.
Then, the Eq. (6) and min(N r

j) = 1 need to be added into this model Mr
e . At this

point, we have transformed the problem of searching for integral distinguisher
into a MILP problem. If the model Mr

e has feasible solutions, then there is an
r-round integral distinguisher for the considered block cipher.

For convenience of the reader, we specify the details of the Mr
e model which

is entered into Algorithm 1. For simplicity, we consider the example mentioned
in (2) and provide the constraints used in Algorithm1.

M7
e =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Objective function : None

N 0
0[0] = 1

N 0
0[k] = 0, 1 ≤ k ≤ 4

N r−1
0 [3] + N r−1

0 [4] − N r
0[0] = 0

N r−1
0 [2] − N r

0[1] = 0
N r−1

0 [0] − N r
0[2] = 0

N r−1
0 [4] − N r

0[3] = 0
N r−1

0 [1] + N r−1
0 [2] − N r

0[4] = 0
1 ≤ r ≤ 7
min(N 7

0) = 1

(7)

To reduce the time complexity, we use a binary search to decrease the number
of calls to the MILP solver. For a cipher whose total number of rounds is R,
let the maximal number of rounds for which an integral distinguisher can be
obtained (using j-th word-oriented trails) be denoted by re

j . Also, let the upper
and lower bound on re

j (with 0 ≤ j ≤ m−1) be denoted by ru and rl, respectively.
Furthermore, the initial value of r = �(ru + rl)/2	 = �(R + 0)/2	 is R/2. Taking
into account the structure of a cipher, we need to construct the MILP model
Mr

e which describes the r-round word-oriented trails. After that, we add the
constraint min(N r

j) = 1 into Mr
e . If the model is feasible, the lower bound on

re
j is R/2, i.e. rl = R/2; if the model is infeasible the upper bound on re

j is R/2,
i.e. ru = R/2. Then, we repeat the above process iteratively. The iteration is
stopped as soon as ru − rl ≤ 1. In this way, the number of iteration used to
determine the value of re

j is at most 
log2(R)�.
Algorithm 1 in the appendix is used to describe the above process. The first

returned value in Algorithm1, denoted by re
j , is the number of rounds when

the j-th word of initial state is first diffused to each word of the output. The
second returned value of Algorithm1 is a vector whose entries indicate balanced
words in the output after re

j encryption rounds, assuming that the j-th word
of initial state is taking all possible values in F

n
2 and the other words are fixed.

The function (α, β) = check min(X) in Algorithm 1 determines the minimum
value α in X and returns the corresponding index β, where X is a set, each
element of this set is a positive integer.
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4.2 Extending the Integral Distinguisher in Decryption Direction

In this section, we consider how to extend the integral distinguisher discussed
above in the opposite (decryption) direction. Let the inverse round function
be denoted by f−1 : Fn×m

2 → Fn×m
2 and the r-round decryption be given by

(f−1)r : Fn×m
2 → Fn×m

2 . In the decryption direction, let the ciphertext be
Y 0 = (Y 0[0], . . . ,Y 0[m − 1]) so that the intermediate state (after r rounds of
the decryption process) can be represented by Y r = (Y r[0], . . . ,Y r[m − 1]),
where each word in Y 0 and Y r is a block of n bits.

If Y 0[k] does not appear in the expression of Y r[k′], where 0 ≤ k, k′ ≤
m−1, then Y 0[k] does not effect the value of Y r[k′] in the decryption direction.
Consequently, we can use the following equation to represent this relationship

Y r[k′] = (f−1)r(Y 0\Y 0[k]), (8)

where Y 0\Y 0[k] is a vector with Y 0[k] removed. If Y r[k′] is fixed to a constant
δ in F

n
2 , then the corresponding solutions of (8) constitute the set v δ, whose

cardinality is 2n×(m−2).
On the other hand, in the case that Y r\Y r[k′] takes all possible values

in F
n×(m−1)
2 and Y r[k′] is fixed to a constant δ in Fn

2 , then after performing r
encryption rounds the state of Y 0 constitutes the set V . The set V is composed
of 2n×(m−2) subsets V i, 0 ≤ i < 2n×(m−2). The subset V i is obtained by letting
the word Y 0[k] take all possible values in Fn

2 , when the state of Y 0\Y 0[k] is
fixed to the i-th element of the set v δ.

In order to extend the integral distinguisher in the decryption direction,
let Y 0 = X 0, where Y 0[k] does not appear in the expression of Y r[k′] in
the decryption direction and X r′

[k′′] is a permutation function on X 0[k] in
the encryption direction, 0 ≤ k, k′, k′′ ≤ m − 1. Figure 2 further explains the
relationship between these elements. Since Y r\Y r[k′] is taking on all possible
values in F

n×(m−1)
2 , then after r encryption rounds the corresponding output set

is composed of 2n×(m−2) subsets V i. For each such subset, there is the following
relationship ⊕

X 0 is taking on all values in Vi

X r′
[k′′] = 0n, (9)

and then

2n×(m−2)>i⊕
i=0

⊕
X 0 is taking on all elements in Vi

X r′
[k′′] = 0n. (10)
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Fig. 2. rd
k + re

k rounds integral distinguisher

Therefore, if we want to extend our integral distinguisher in the decryption
direction, we need to determine the maximum integer rd

k so that the k-th word
in Y 0 is not fully diffused in Y rd

k . Using the definition of word-oriented trails,
we can use the following constraint to determine whether the k-th word in Y 0

is fully diffused after r rounds of decryption, thus checking if

min(W r
k) = 0, (11)

where W r
k denotes the upper bound on the number of times the k-th word in

Y 0 occurs in the expression of each element in Y r, 0 ≤ k ≤ m − 1.
To efficiently determine the value of rd

k, we again use a binary search as
discussed before. This procedure is described in Algorithm 2 in the appendix.

4.3 An Integral Distinguisher for the ACE-Class Permutation

For a specific cipher whose round function is f : Fn×m
2 → Fn×m

2 , by using the
following steps (in the specified order), we can obtain integral distinguishers of
maximal length (w.r.t. the number of rounds covered) by using the word-oriented
trails.

(1) Construct a MILP model using word-oriented trails for the round function
in the encryption and decryption direction.

(2) By using Algorithm 1 and Algorithm 2, the values of re
j , ωj , rd

j , φj can be
determined, 0 ≤ j ≤ m − 1.

(3) Calculate the value of {rin,ϕ} = check max (re
0 + rd

0 , r
e
1 + rd

1 , . . . , r
e
m−1 +

rd
m−1), where the function check max (X ) is used to obtain the maximum

value α in the set X and to return the corresponding index ϕ.

By applying the above steps, we can show that (using word-oriented trails)
the original ACE permutation admits integral distinguishers covering at most
12 steps. The form of this integral distinguishers is listed in Table 3 [15].



318 T. Ye et al.

Table 3. The 12-step integral distinguisher of the original ACE permutation

The form of input The form of output

c64a64a64a64a64 u64b64u64u64u64

In the above table, c64 is a 64-bit constant word, a64 is a 64-bit active word,
b64 is a 64-bit balanced word, and u64 is a 64 bit unknown word, see Preliminaries
for these notions.

The linear permutation ρ in ACE largely affects its security. The original
linear permutation in ACE is given by ρ = (2, 4, 1, 0, 3) (acting on words). It
can be shown that this permutation induces 21 active S-boxes when designed for
16 encryption steps/rounds, which is affected by the employed Simeck S-boxes.
Furthermore, the ACE permutation (again considering 16 rounds) is resistant to
both differential and linear cryptanalysis. Nevertheless, there might exist better
choices of linear permutations, for instance offering better protection against
integral distinguishers whereas at the same time having the same (or even better)
resistance against differential and linear cryptanalysis. In order to address this
problem, the security of the ACE-class (linear) permutation against integral
attacks is therefore evaluated.

Thus, replacing the original linear ACE permutation with a linear permuta-
tion ρ, the model of word-oriented trails in the r-th step is given below for the
encryption direction:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

N r−1
j [0] − N r

j [ρ[0]] = 0
N r−1

j [1] + N r−1
j [2] − N r

j [ρ[1]] = 0
N r−1

j [2] − N r
j [ρ[2]] = 0

N r−1
j [3] + N r−1

j [4] − N r
j [ρ[3]] = 0

N r−1
j [4] − N r

j [ρ[4]] = 0
j ∈ [0, 5).

(12)

Similarly, the same model in the decryption direction is given as:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

W r
j [ρ[0]] − W r−1

j [0] = 0
W r

j [ρ[1]] + W r
j [ρ[2]] − W r−1

j [1] = 0
W r

j [ρ[2]] − W r−1
j [2] = 0

W r
j [ρ[3]] + W r

j [ρ[4]] − W r−1
j [3] = 0

W r
j [ρ[4]] − W r−1

j [4] = 0
j ∈ [0, 5).

(13)

After applying r iterations (steps) of the Eqs. (12) and (13), we can specify
the MILP models Mr

e and Mr
d of r-step word-oriented trails in the encryption and

decryption direction for ACEρ . Then, an integral distinguisher can be specified
by using Algorithm 1 and 2.
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Due to the high efficiency of our method, we were able to examine all possi-
ble linear permutations ρ on five 64 bits words that might possibly have better
properties than the original linear permutation used in ACE. Most notably, we
managed to find good linear permutations which only admit integral distin-
guishers covering at most 10 steps. These results are listed in Table 4, where the
third column is the corresponding minimum number of active S-boxes during
the 16-step encryption process.

Table 4. Linear permutations ACEρ having at most 10-step integral distinguishers

ρ The number of steps for
integral distinguishers

Minimum number of active S-boxes
in 16 steps ACE-class permutation

(2, 0, 3, 4, 1) 10 17

(2, 3, 1, 4, 0) 10 19

(4, 2, 0, 1, 3) 10 16

(4, 2, 3, 0, 1) 10 21

To accommodate for the number of active S-boxes of the original linear per-
mutation, thus ensuring the same resistance to differential and linear cryptanal-
ysis, we only consider ρ given by (4, 2, 3, 0, 1). The specification of the integral
distinguisher (covering 10 steps only) is given in Table 5, where the same notation
is used as previously.

Table 5. The form of integral distinguisher of ACE(4,2,3,0,1)

The form of input The form of output

c64a64c64a64a64 u64b64u64u64u64

5 A Novel Search for Impossible Differential
Distinguishers for Word-Based Block Ciphers

5.1 A Search for Impossible Differential Distinguishers

The notion of impossible differential distinguishers greatly relies on the con-
cept of miss-in-the-middle. For a specific pair of input and output differences
(�i

input,�j
output), 0 ≤ i, j ≤ m − 1, where �i

input represents the difference hav-
ing only its i-th word active, we first need to determine whether the correspond-
ing word of the internal state is active, inactive, or unknown. This needs to be
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done both in the encryption and decryption direction. Then, having ensured that
meeting in the middle is impossible, one can deduce that (�i

input,�j
output) is an

impossible differential.
According to the definition of word-oriented trails, we can find the impossible

differential distinguisher by checking the number of times that each word appears
in the internal state expression. Let again f : Fn×m

2 → Fn×m
2 denote the round

function, �i
input be the input difference, and let the output difference be �j

output.
If we want to determine whether there is an rid-round impossible differential
distinguisher, where rid = r1 + r2 and r1 and r2 denote the number of rounds in
the encryption and decryption direction, respectively, the following constraints
need to be added into the MILP model Mid:

N r1
i [k′] + W r2

j [k′] = 1, (14)

where r1 + r2 = rid, 0 < r1 < rid, and 0 ≤ i, j, k′ ≤ m − 1.
Furthermore, the existence of an rid-round impossible differential distin-

guisher implies that we need to perform the same task when the variables in
{r1, r2, i, j, k

′} take on all possible values. For some specific choice of these vari-
ables, denoting by Mid an initially empty model, we need to construct an r1-
round MILP model of word-oriented trails in the encryption direction and sim-
ilarly an r2-round MILP model in the decryption direction. Then, we update
the model Mid (originally empty) by adding these two models in the encryp-
tion/decryption direction. Also, the equation (14) needs to be added into the
updated model Mid. At this point, we have transformed the problem of search-
ing for impossible differential distinguisher into a MILP instance. If the partic-
ular model Mid has feasible solutions, we can deduce that there is an rid-round
impossible differential distinguisher and return the values of i, j, k′ and r1. Tak-
ing into account the results returned from the solver, we can determine the form
of impossible differential distinguishers, specify the input difference �i

input and
the impossible output difference �i

output.
According to the above discussion, the method of searching for impossible dif-

ferential distinguishers for word-based block ciphers is described by Algorithm3
in the appendix. To reduce the number of times the solver is used, binary search
is used to determine impossible differential distinguishers that cover the max-
imal number of rounds. The purpose of lines 4 to 33 in Algorithm3 is exactly
to determine impossible differential distinguishers of maximal length. The line
34 in Algorithm 3 is used to determine the form of input difference, the form
of impossible output difference, and the words causing a contradiction in the



Impossible Differential Cryptanalysis and Integral Cryptanalysis 321

middle state; all the values being entries of a vector in this specific order. These
vectors are also added into the set D as the second return value of Algorithm3.
The first return value of Algorithm3 is the maximal number of rounds that the
specified impossible differential distinguisher can cover.

5.2 Impossible Differential Distinguisher of ACE-Class Permutation

By using Algorithm 3, the security of the original ACE permutation against
impossible differential cryptanalysis can be evaluated. This algorithm returns
the values of rid and D . The returned value of rid is 12, and the set D is given
by D = {(3, 2, 4, 5), (3, 2, 3, 6), (3, 2, 0, 7), (3, 2, 2, 8), (3, 2, 1, 9)}.

Moreover, we can consider all possible linear permutations ρ on five words, for
the purpose of modifying the original linear permutation in ACE. Then, applying
Algorithm 3 to these (linear) permutations instead, we can evaluate the security
of the variants of ACE against impossible differential cryptanalysis. We were
able to find linear permutations for which impossible differential distinguishers
(using word-oriented trails) of the tweaked ACE algorithm exist only up to 10
encryption rounds. These linear permutations are listed in Table 6.

Table 6. Linear permutations ρ in ACEρ admitting impossible differential distinguish-
ers for at most 10 steps

ρ Minimum number of active
sboxes for 16-step ACEρ

(1, 2, 4, 0, 3) 19

(3, 0, 1, 4, 2) 17

However, the minimum number of active S-boxes is not equal to 21 (as for the
original linear permutation) for the 16-step encryption process and consequently
the linear permutations listed in Table 6 do not provide the same resistance
against differential and linear cryptanalysis.

On the other hand, if the linear permutation (4, 2, 3, 0, 1) specified in Sect. 4.3
is used to replace the linear permutation of ACE, by using Algorithm3, it turns
out that this particular permutation will result in impossible differential distin-
guishers covering at most 11 steps. The results are listed in Table 7.
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Table 7. The impossible differential distinguisher of ACE{4,2,3,0,1}

Step The index of word

that has nonzero

difference in plaintext

The index of word

that has nonzero

difference in ciphertext

The contradiction

word in the

middle

The number of

steps in encryption

direction

11 3 4 0 4

11 3 4 4 5

11 3 4 1 6

Compared to the original linear permutation used in ACE which allows for
specifying integral and impossible differential distinguishers that cover 12 steps,
the use of linear permutation (4, 2, 3, 0, 1) only induces integral distinguisher for
at most 10 rounds and impossible differential distinguishers (both using word-
oriented trails) covering at most 11 rounds. Moreover, the original linear permu-
tation of ACE and the above mentioned one induce the same security against
differential and linear cryptanalysis. Therefore, we can conclude that the secu-
rity of ACE that uses the linear permutation (4, 2, 3, 0, 1) is stronger than its
original version.

6 Conclusions

In this article, the automatic cryptanalytic tool, based on a MILP model of
word-oriented trails, to search for impossible differential and integral distin-
guishers is proposed. Using this approach, we could specify an impossible dif-
ferential distinguisher of the ACE permutation covering 12 encryption rounds.
Moreover, to improve the security of this design, we have found a linear permu-
tation (4, 2, 3, 0, 1) which (replacing the original permutation of ACE) admits at
most 11-round impossible differential distinguishers and 10-round integral dis-
tinguishers using our MILP model of word-oriented trails. This permutation also
ensures the same resistance against the differential and linear cryptanalysis as
the original one. Although the proposed distinguishers of ACE do not threat
the security of ACE-AEAD, we believe that modelling word-oriented trails as an
MILP instance is useful in both cryptanalysis and design of word-based block
ciphers.
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A Appendix 1

Algorithm 1. Determine re
j by using word trails

1: input: The total number of rounds is R, the index of active word is j, 0 ≤ j ≤ m−1
2: output: re

j and ωj

3: Let ru = R, rl = 0, re
j = 0, r = 0, flag = 0

4: while ru - rl > 1 do
5: r = �(ru + rl)/2�
6: Construct model Mr

e by using Property 5 and 6
7: Mr

e .con ← N 0
j [j] = 1, N 0

j [j
′] = 0, min(N r

j ) = 1 j′ �= j, 0 ≤ j, j′ ≤ m − 1
8: if Mr

e is feasible then
9: rl = r, flag = 1

10: else
11: ru = r, flag = 0
12: end if
13: end while
14: if flag == 1 then
15: re

j = r
16: else
17: re

j = r − 1
18: end if
19: (1, ωj) = check min(N

re
j

j )

Algorithm 2. Determine rd
k by using word-oriented trails

1: input: The number of total rounds is R, the index of active word is k, 0 ≤ k ≤ m−1
2: output: rd

k and φk

3: Let ru = R, rl = 0, rd
k = 0, r = 0, flag = 0

4: while ru - rl > 1 do
5: r = �(ru + rl)/2�
6: Construct model Mr

d by using Property 5 and 6
7: Mr

d .con ← W 0
k[k] = 1, W 0

k[k′] = 0, min(W r
k) = 0 0 ≤ k, k′ ≤ m − 1, k′ �= k

8: if Mr
d is feasible then

9: rl = r, flag = 1
10: else
11: ru = r, flag = 0
12: end if
13: end while
14: if flag == 1 then
15: rd

k = r
16: else
17: rd

k = r − 1
18: end if

19: (0, φk) = check min(W
rd
k

k )
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Algorithm 3. Search for impossible differential distinguishers by using word-
oriented trails
1: input: The total number of rounds is R
2: output: rid, the set D
3: Let ru = R, rl = 0, r = 0, flag = 0, Mid = ∅, D = ∅
4: while ru - rl > 1 do
5: flag = 0
6: r = �(ru + rl)/2�
7: for 0 < r1 < r do
8: for 0 ≤ i ≤ m − 1 do
9: for 0 ≤ j ≤ m − 1 do

10: for 0 ≤ k′ ≤ m − 1 do
11: Construct the model Mr1

e and Mr2
d by using Property 5 and 6

12: Mid.con ← Mr1
e , Mid.con ← Mr2

d

13: Mid.con ← N 0
i [i] = 1,N 0

i [i
′] = 0, i′ �= i, 0 ≤ i′ ≤ m − 1

14: Mid.con ← W 0
j [j] = 1,W 0

j [j
′] = 0, j′ �= j, 0 ≤ j′ ≤ m − 1

15: Mid.con ← N r1
i [k′] + W r2

j [k′] = 1
16: Solve the MILP model Mid

17: if The model Mid is feasible then
18: rl = r, flag = 1
19: The program jumps to line 5
20: end if
21: end for
22: end for
23: end for
24: end for
25: if flag == 0 then
26: ru = r
27: end if
28: end while
29: if flag == 1 then
30: rid = r
31: else
32: rid = r − 1
33: end if
34: Let r = rid, and execute lines 7 to 24 of this procedure. If the model Mid is feasible,

then the vector [i, j, k′, r1] is saved in D
35: return rid and D
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Abstract. In this paper, we propose a privacy-preserving contact trac-
ing protocol for smart phones, and more specifically Android and iOS
phones. The protocol allows users to be notified, if they have been a
close contact of a confirmed patient. The protocol is designed to strike
a balance between privacy, security, and scalability. Specifically, the app
allows all users to hide their past location(s) and contact history from the
Government, without affecting their ability to determine whether they
have close contact with a confirmed patient whose identity will not be
revealed. A zero-knowledge protocol is used to achieve such a user pri-
vacy functionality. In terms of security, no user can send fake messages
to the system to launch a false positive attack. We present a security
model and formally prove the security of the protocol. To demonstrate
scalability, we evaluate an Android and an iOS implementation of our
protocol. A comparative summary shows that our protocol is the most
comprehensive and balanced privacy-preserving contact tracing solution
to-date.

1 Introduction

The COVID-19 pandemic has significantly changed many aspects of our soci-
ety, with both short-term impacts (e.g., temporary lockdowns, and social and
physical distancing) and long-term impacts (e.g., economic [9]). In recent times,
a number of cities, states, and countries are re-opening, where some businesses
and activities are allowed to operate and proceed with certain limitations (e.g.,
wearing of personal protection equipment, and practising social/physical distanc-
ing). However, there is also the possibility of individuals, and in some instances
large number of individuals, coming in close proximity with another person with
undetected COVID-19 infection (e.g., the individual is asymptomatic or display

c© Springer Nature Switzerland AG 2021
R. Deng et al. (Eds.): ISPEC 2021, LNCS 13107, pp. 327–344, 2021.
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mild symptoms) unknowingly. A recent high profile example is the recent inci-
dent involving the sitting U.S. president [11,25]. This highlights the importance
of contact tracing [17,22], particularly in the current climate where there is
the potential of a subsequent wave of COVID-19 affecting the public. The U.S.
Centers for Disease Control and Prevention (CDC), for example, has released
resources, such as contact tracing communications toolkit and guidelines for var-
ious stakeholder groups. The effectiveness of contact tracing, particularly digital
contact tracing, has also been the focus of recent studies. For example, in a recent
Science article, Ferretti et al. [12] reported that “Improved sensitivity of testing
in early infection could also speed up the algorithm and achieve rapid epidemic
control”.

Contact tracing allows relevant stakeholders, such as healthcare authorities,
to identify and reach out to potentially infected individuals, so that appropriate
measures can be taken (e.g., further testing, self-quarantine, and/or hospitaliza-
tion). However, there are limitations in contact tracing. For example, how can we
ensure that individuals who have unknowingly come into contact with a person
with undetected COVID-19 infection be identified and subsequently contacted?
This reinforces the importance of leveraging technologies, such as smart devices
with built-in features such as Bluetooth communication and geolocation (e.g.,
mobile and wearable devices), to facilitate contact tracing.

A number of automated contact tracing protocols and applications (apps)
have been developed, and examples include those designed by Apple Inc. and
Google Inc. (GAEN) [1,2], the decentralized privacy-preserving proximity trac-
ing (DP-3T) app [23], and those reported in [7,21]. A security analysis is provided
in [10] for some of these schemes, such as GAEN, DP-3T, etc. The approaches
in [7,21] rely on the use of smart devices to learn and possibly share the
device user’s location and associated timestamp with other users. However, such
approaches may reveal certain metadata about the user’s device (e.g., make and
model) and contact information. Hence, there have been studies on the security
of these approaches [15]. For example, it was revealed that DP-3T is vulnerable
to relay and replay attacks, and an interactive scheme designed to prevent relay
and replay attacks without affecting the existing features was presented [24].
In addition, a non-interactive scheme to counter relay and replay attacks in
DP-3T [23] and the approaches of [7,21] was introduced in [20], using ‘delayed
authentication’. This is a novel message authentication code (MAC) in which
the verification step is done in two phases, where the key is not required in one
phase and the message is not in the other phase. A fake exposure notification
attack on GAEN-based schemes is described in [4].

Similar to other healthcare frameworks [3,8,16,18], there are also privacy
considerations in the use of such contact tracing apps. Individual citizens may
not wish to be traced, particularly when they are participating in sensitive
events (e.g., political demonstrations). As recent as January 2021, the Singa-
pore Government reportedly contact tracing data will be made available to the
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law enforcement agency to facilitate the investigation of serious criminal cases1.
This clearly has privacy implications. This reinforces the importance of having a
privacy-preserving contact tracing system. However, designing secure, privacy-
preserving, and scalable contact tracing apps remains a challenge, and this is
the challenge we seek to address in this proposal.

Our Contributions. In this paper, we will design a privacy-preserving COVID-
19 contact tracing protocol for Bluetooth-enabled smartphone users. The proto-
col allows users to record their close contacts in a privacy-preserving yet authenti-
cated manner (i.e., prevents the sending of fabricated identification information).
The ‘closeness’ can be customized based on existing medical advice, say within
6 ft. The zero-knowledge proof allows the user to preserve his/her privacy, in the
sense that users can hide their prior locations and contact histories, for example
from unauthorized entities. For example, when a user has been determined to be
infected, (s)he proves using the zero-knowledge protocol to the medical doctor
all his/her previous close contacts. Without gaining direct access to the contacts,
information required to notify the related individuals is published, without the
public learning the identity of the patient. Hence, the medical doctor does not
learn the patient’s contacts, including the location, name or any identification
information. However, the individual been notified can be assured that (s)he is
a close contact of an infected person. The probability of this particularly indi-
vidual of correctly guessing the infected person among a list of close contacts
is not better than a wild guess. The zero-knowledge protocol also ensures that
no one is able to send any fabricated message, in the sense that if a user is not
determined by a medical doctor to be infected, (s)he will not be able to convince
others using the app. In addition, a confirmed infected patient will not be capa-
ble of convincing anyone who is not a close contact to be a close contact. As the
notification does not include any link to any website or contain any attachment,
this reduces the risk of malware/ransomware infection.

The layout of this paper is as follows. We present the system and threat mod-
els in Sect. 2. The cryptographic primitives that underpin our proposed system
are presented in Sect. 3. We then present our proposed system in Sect. 4, and
describe the implementation and evaluation findings in Sects. 5 and 6 respec-
tively. The last two sections present our discussion and conclusion. The recent
literature will be reviewed in the full version [19]. Remark: We also want to
remind readers that the references on preprints posted on arXiv or IACR eprint
are not peer-reviewed by arXiv or IACR; they should not be relied upon without
context to guide clinical practice or health-related behavior and should not be
reported in news media as established information without consulting multiple
experts in the field.

1 https://www.technologyreview.com/2021/01/05/1015734/singapore-contact-
tracing-police-data-covid/, last accessed January 13, 2021.

https://www.technologyreview.com/2021/01/05/1015734/singapore-contact-tracing-police-data-covid/
https://www.technologyreview.com/2021/01/05/1015734/singapore-contact-tracing-police-data-covid/
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2 System and Threat Models

2.1 System Model

Our system comprises the following entities:

– Bulletin board BB: Once information has been posted on the BB, it cannot
be erased. The BB can be instantiated by using a blockchain system.

– User: User refers to an individual who has our contact tracing app installed
on their smartphone. In the rest of this paper, we will use Alice and Bob to
denote two individual users who have come into close contact.

– Medical doctor D: Individuals can be only be confirmed to be positive by a
practising D, who is also affiliated with a medical institution (e.g., medical
practice or hospital).

– Government GV: GV is responsible for the registration of users and their app.
This is not an unreasonable requirement, since users need to provide proof
of identification when signing up for their smartphones. GV’s public/private
key pair is (PKGV , SKGV), and clearly PKGV is known to the public.

In our system model, we assume that no one is able to modify the app,
and the owner can read all data generated, stored and communicated via the
app installed on an Internet-connected and Bluetooth-enabled smartphone (e.g.,
WiFi). We also assume that users will not reveal their infection status publicly
(e.g., social media posts) or share their own secret keys.

2.2 Threat Model

The adversary is assumed to be honest-but-curious, in the sense that they follow
the defined algorithms but are sufficiently curious to learn more information.
Also in our threat model, we only include cryptographic attack. In other words,
network attacks (e.g. distributed denial of service), software attacks (e.g. modify-
ing the app and uploading the modified app to a third-party app store), physical
attacks (e.g. stealing the smartphone), etc., are out of scope. Under these con-
ditions, we define the following threat model to our system (see also Fig. 1):

1. [Traceability Completeness] All close contacts of a confirmed infected
individual (hereafter referred to as patient) will be notified of the contact
date(s). All honest-but-curious cryptographic adversaries should not be able
to prevent any close contact of the patient from being notified. In Fig. 1, Bob
and John are the close contacts of Alice, and both Bob and John should be
notified as a close contact of a patient (without learning that the patient is
Alice).

2. [False Positive (case 1)] Anyone who is not a patient cannot impersonate
as one and send out messages to their close contacts (e.g., ask them to self-
quarantine). In Fig. 1, Andy cannot send any “close contact message” to Ben
and Bob. Peter also cannot send any “close contact message” to Bob.
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Fig. 1. Threat model

3. [False Positive (case 2)] Patients can only send messages to their close
contacts (e.g. ask them to self-isolate). For example, as shown in Fig. 1, Alice
is not able to send any “close contact message” to Ben, who is not her close
contact. Here, we do not consider the medical doctor as an adversary in both
cases (2) and (3).

4. [Patient Privacy] Other than the medical doctor who certified that the
user is infected, no one else should not be able to find out the identity of the
patient (in the sense not better than a wild guess). For example, as shown
in Fig. 1, Ben does not know any information about the patient. Bob, a close
contact of Alice, who had met both Andy and Peter, can correctly guess Alice
as the patient with a probability of 1/3. John, another close contact of Alice,
will know Alice is the patient.

5. [Contact Privacy] No one, except the owner of the app, should be able to
find out the identity or location of the close contact of a patient, as shown
in Fig. 1. An cryptographic adversary may attempt to (unsuccessfully) locate
information about the close contact of a patient.

3 Cryptographic Primitives

3.1 Signature Scheme

A signature scheme consists of three algorithms, which are defined as follow:

– (SK,PK) ← KeyGen(λ) as a PPT algorithm that on input a security param-
eter λ ∈ N outputs a secret/public key pair (SK,PK).
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– σ ← Sign(SK,M) that on input a secret key SK and a message M produces
a signature σ.

– accept/reject ← Verify(PK, σ,M) that on input a public key PK, a message
M and a signature σ returns accept or reject. An accept output implies that
the message-signature pair is valid.

A secure signature scheme should provide existential unforgeability against adap-
tive chosen-message attacks, based on the standard definition of [14]. Existential
unforgeability under a weak chosen message attack (a.k.a. weakly unforgeable) is
a weaker definition [6], where the adversary submits all signature queries prior
to seeing the public key.

3.2 Group Signature Scheme

A group signature allows a user to sign on behalf of the group, while the verifier
only knows that the signer is one of the users of this group without knowing the
signer’s identity. In this setting, there is a group manager tasked with setting up
of the group (e.g., publication of the group public key) and issuing of individual
user’s secret key. The group manager may also have the ability to open the
signature, that is, to find out who the actual signer is.

There are several algorithms in a group signature scheme. For simplicity, we
only state the algorithms related to our system here:

– σ ← GSign(USK,GPK,M) that on input a user secret key USK (issued
by the group manager), group public key GPK (generated by the group
manager) and a message M produces a signature σ.

– accept/reject ← GVerify(GPK, σ,M) that on input a group public key GPK,
a message M and a signature σ, returns accept or reject. An accept output
implies that the message-signature pair is valid.

We follow the standard security definition of group signature in [5], including
anonymity and traceability which also implies unforgeability.

3.3 Mathematical Assumptions

Bilinear Pairings. Let G1, G2 and GT be cyclic groups of prime order q. u is a
generator of G1 and g denotes a generator of G2. A function e : G1 × G2 → GT

is a bilinear map if the following properties hold:

– Bilinearity: e(Ax, By) = e(A,B)xy for all A ∈ G1, B ∈ G2 and x, y ∈ Zq;
– Non-degeneracy: e(u, g) �= 1, where 1 is the identity of GT ;
– Efficient computability: there exists an algorithm that can efficiently compute

e(A,B) for all A ∈ G1 and B ∈ G2.

Assumption 1 underpins our contact privacy (see Sect. 2.2), which is similar
to the truncated decision (q′ + 2)-ABDHE problem [13].

Definition 1 (Assumption 1). Suppose that ũ ∈R G1, g ∈R G2, b ∈R Zq,

Z0 ∈R GT and Z1 = e(ũ, g)bq
′+2

. When given (ũ, ũb, . . ., ũbq
′
) ∈ G1 and g, gb ∈

G2, no PPT adversary can distinguish Z0 and Z1 with non-negligible probability.
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3.4 Zero-Knowledge Proof

A zero-knowledge proof is a two-party protocol that allows one party to con-
vince the other party that the topic presented is true without revealing anything
else. In this paper, we are interested in zero-knowledge proof for NP language.
Specifically, let R be a polynomial time decidable binary relation and LR be
the NP language defined by R, i.e., LR = {x|∃w s.t.(x,w) ∈ R}. We say w is
a witness for statement x. The zero-knowledge proof protocol we considered in
this paper is known as Σ-Protocol, which is a 3-move protocol between prover
P and verifier V such that the second message (from V to P ) is just the random
coins of V . A Σ-protocol between P and V satisfies the following properties.

– Completeness: If x ∈ LR, prover P with auxiliary input w convinces V with
overwhelming probability.

– Special Soundness: Given two transcripts (t, c, z) and (t, c′, z′) for statement
x, there exists an algorithm that outputs w s.t. (x,w) ∈ R.

– Honest Verifier Zero-Knowledge (HVZK): Given x and c, there exists an
algorithm that outputs (t, z) such that (t, c, z) is indistinguishable to the real
transcript between P with auxiliary input w and V .

Σ-Protocol can be converted to full zero-knowledge in the common refer-
ence string model using standard techniques. Also, it can be converted to non-
interactive zero-knowledge argument in the random oracle model by replacing
the random coins of the verifier with the output of a cryptographic hash function
on the first message of the prover.

4 Our Proposed System

There are four phases in our system. In the Registration Phase, each user
chooses his/her secret key and public key, and uploads the public key to the
Government website for registration. This allows the Government to link the
public key with the user’s name or identity. This is to provide accountabil-
ity and prevent double or multiple registration of the same user. This process
will repeat each day with a new key pair registered. A medical doctor gets an
additional individual secret key issued by his/her affiliated organization (e.g.,
hospital), which is used to generate a group signature on behalf of the affiliated
organization.

In the Meeting Phase, each user’s app will use Bluetooth to broadcast a
package to other users’ smartphones (and the apps) at a regular time interval
(e.g., a minute). Upon receiving a threshold number of the same package within
a certain timeframe (e.g., 15 min), the app will confirm the relevant user as a
close contact. After a mutual validation (of package) process, the two apps will
jointly generate two different credentials to be stored on each smartphone. The
credential will be used later to prove to the medical doctor (in zero-knowledge)
that the other person is a close contact, if one party is medically confirmed to
be infected.
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In the Medical Treatment Phase, the patient executes the zero-knowledge
proof protocol with the medical doctor, to prove (s)he has close contact with
other individuals. However, the doctor is not able to learn the identities, public
keys, or location of the close contact(s). The doctor signs the zero-knowledge
proof using the group signature user secret key (on behalf of his/her affiliated
organization), and posts the signature together with the proof to the bulletin
board for public awareness (e.g., statistics about the number of infected individ-
uals).

In the Tracing Phase, each user checks whether the new entry in the bulletin
board is related to them, based on computations using their own secret key. This
can be performed either manually (e.g., pull) or automatically (i.e., having the
checks pushed to apps).

Next, we will present the detailed description of each phases.

4.1 The Phases

Setup Phase: In this phase, GV first generates the parameters and the users
register with GV. Users also need to update the key with GV daily, unless they
are medically confirmed as infected. The detailed steps are outlined below:

1. (Parameter Generation) The input 1λ ∈ N is a security parameter, and
let G1, G2 and GT be cyclic groups of prime order q such that q is a λ-bit
prime. Also, let e : G1 × G2 → GT be a bilinear map. GV selects generators
u, u1, u2 ∈ G1 and g, g1, g2 ∈ G2. Let H : {0, 1}∗ → Zq be a cryptographic
hash function. GV also selects its secret and public key pair (SKG, PKG) ←
KeyGen(λ). GV publishes public parameters (λ,H, PKG, u, u1, u2, g, g1, g2).
In practice, these parameters can also be embedded into the user’s app which
can be downloaded from the official app stores.

2. (User Registration) On each day, non-infected user (e.g., Alice) chooses
a secret key SKA as a ∈ Zq and computes the public key PKA as A = ga.
The user, say Alice, registers with GV by uploading her personal information
and PKA

2. GV also randomly generates an identifier IDA ∈ Zq for Alice.
GV generates a signature σA ← Sign(SKG, {‘‘-VE’’, PKA, IDA, DATE}) and
sends σA and IDA back to Alice, where DATE is the current date. Alice checks
the signature by running Verify(PKG, σA, {‘‘-VE’’, PKA, IDA, DATE}). If
this is valid, Alice stores σA and IDA in her app. Otherwise, she aborts.
NOTE: GV will give a signature with {‘‘+VE’’, PKA, IDA, DATE} (instead of
the typical ‘‘-VE’’ message) to confirmed infected user. This is to distinguish
a confirmed case from others. The infected user’s public key will also not be
updated.

3. (Additional step taken by the medical doctor) Each medical doctor
D gets an additional group signature user secret key GSK from the hospital
manager (who acts as the group manager of the group signature) in the app.
Each hospital also publishes the group signature group public key GPK.

2 GV may record the related identification information (e.g., name, phone, email)of
the user if this is a first-time registration.
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Meeting Phase: In this phase, each non-confirmed user (e.g. Alice) will use
bluetooth to broadcast the hash hA = H(‘‘-VE’’, IDA, PKA, σA) to the sur-
rounding people periodically (e.g. every minute). For any confirmed user, a
‘‘+VE’’ package (e.g. without hashing (‘‘+VE’’, IDP , PKP , σP ) denoting the
owner of the app who has been confirmed by the medical doctor as positive)
will be broadcasted instead. If it has been received, other users should report to
GV immediately after verifying the signature σP . Otherwise once another user
(e.g. Bob) has received a number of the same hash broadcast within a certain
time (e.g. receive 15 packages in 15 min), they (Alice and Bob) are considered
as close contact. In below, we describe a protocol executed between Alice and
Bob so that Alice will record Bob’s information as her close contact. Bob will
also Alice’s information as his close contact at the end of the protocol.

1. (Package Validation) After receiving (a threshold number of) Alice’s hash
hA, Bob(‘s smartphone) pairs with Alice(‘s smartphone) and Bob needs
to validate Alice’s package. Bob first asks Alice to send him the tuples
(IDA, PKA, σA). Then, Bob computes h′

A = H(‘‘-VE’’, IDA, PKA, σA) and
checks if hA = h′

A. Bob aborts if it is not equal; otherwise, he continues and
randomly generates a challenge number rB ∈R Z and sends rB to Alice. Alice
uses her SKA (a ∈ Zq) to generate a Schnorr signature on the message rB ,
as follow:

(a) Randomly chooses k ∈R Zq.
(b) Computes t = H(gk, rB).
(c) Computes s = k − at mod q.
(d) Outputs the signature σ′

A = (s, t) for message rB .

Alice sends σ′
A to Bob for verification. Bob first verifies PKA (A ∈ G2) by

running
Verify(PKG, σA, {PKA, IDA, DATE}). (1)

If it is valid, Bob verifies Alice’s Schnorr’s signature σ′
A = (s, t) by checking

if
t = H(gsAt, rB)

If it is equal, Bob stores Alice’s package (IDA, A, σA) in his app. Otherwise,
aborts the protocol.
Similarly for Alice, Bob’s package (IDB , B, σB) will be stored in Alice’s app

if the verification is successful.
2. (Identity Mutual Commitment) Alice and Bob need to store each other’s

identification information and subsequently generate a zero-knowledge proof
to D as a close contact to a patient (if either of them is confirmed). In order
to ensure the correct generation of the proof, we need to have an additional
mutual commitment in this phase.
Bob uses his secret key b ∈ Zq and Alice’s identifier IDA to generate

σ′′
B = u

1
H(IDA)+b
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and sends σ′′
B to Alice. Alice checks if

e(σ′′
B , gH(IDA)B) = e(u, g)

If it is equal, Alice stores (B, IDB, σ′′
B , DATE) in her app.

Alice uses her secret key a ∈ Zq and Bob’s identifier IDA ∈ Zq to generate

σ′′
A = u

1
H(IDB)+a

and sends σ′′
A to Bob. Bob checks if

e(σ′′
A, gH(IDB)A) = e(u, g)

If it is equal, Bob stores (A, IDA, σ′′
A, DATE) in his app.

The meeting phase is illustrated in Fig. 2.

Fig. 2. Meeting phase

Medical Treatment Phase: In this phase, we assume Alice is determined to be
infected by the medical doctor D. Alice also informs D of her close contacts dur-
ing the dates required, without revealing their identifiers or public keys. Instead,
she (Alice’s app) will generate a pseudo-public key of each of her close contacts
(e.g., Bob) together with a zero-knowledge proof from the mutual commitment
generated in the Meeting Phase – see Step (2) to prove that she has contacted
with the people. D then publishes the pseudo-public key to BB and the public
can check whether this pseudo-public key is associated with them.

D and Alice execute the following protocol:

1. (Authentication of Alice) D authenticates Alice by executing Meeting
Phase Step (1) (Package Validation) and obtains her identifier IDA.
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2. (Contact Retrieval) Alice retrieves her contacts that she came into contact
with during the incubation period, say DATEi. Suppose Alice was in contact
with Bob on May 13, then Alice retrieves (IDB , B, σ′′

B , 13th May) from her
app.

3. (Pseudo-Public Key) Alice generates the pseudo-public key for Bob, by
first randomly choosing x ∈R Zq and computing:

h = e(u, g)x, ̂B = e(u,B)x = e(u, gb)x = hb (2)

Then, (h, ̂B) is sent to D.
4. (Zero-Knowledge Proof) Alice needs to prove to D that (h, ̂B) is correctly

formed. Correct means Alice has received a valid signature σ′′
B under the

public key B = gb and ̂B = hb, h = e(u, g)x. Note that D also knows Alice’s
identifier IDA. Conceptually, Alice needs to prove in zero-knowledge that

PK{(σ′′
B , B, x) :

h = e(u, g)x, ̂B = e(u,B)x, e(σ′′
B , gH(IDA)B) = e(u, g)}. (3)

In order to instantiate this proof, Alice first randomly generates s1, s2, t ∈R Zq

and computes

A1 = gs1
1 gs2

2 , A2 = Bgs2
1 , C = σ′′

But
1

Alice sends A1, A2, C to D and proves that

PK{(s1, s2, t, α1, α2, β1, β2, x) :
A1 = gs1

1 gs2
2 ∧ Ax

1 = gα1
1 gα2

2 ∧
At

1 = gβ1
1 gβ2

2 ∧ h = e(u, g)x ∧ ̂B = e(u,Ax
2g−α2

1 )∧
e(Cu−t

1 , gH(IDA)A2g
−s2
1 ) = e(u, g)} (4)

This can be turned into a non-interactive zero-knowledge proof, using the
following algorithm:

[Proof Generation]
(a) Randomly chooses r1, r2, r3, r4, r5, r6, r7, r8 ∈R Zq.
(b) Computes

T1 = gr1
1 gr2

2 , T2 = A−r6
1 gr4

1 gr5
2 , T3 = A−r3

1 gr7
1 gr8

2 ,

T4 = e(u, g)r6 , T5 = e(u,Ar6
2 g−r5

1 ),

T6 = e(ur3
1 , gH(IDA)A2)e(Cr2u−r8

1 , g1)

(c) Computes the hash

c = H(T1, T2, T3, T4, T5, T6, ̂B, h,A1, A2, C, DATE)

where DATE is the current date.
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(d) Computes

z1 = r1 − cs1 mod q

z2 = r2 − cs2 mod q

z3 = r3 − ct mod q

z4 = r4 − cs1x mod q

z5 = r5 − cs2x mod q

z6 = r6 − cx mod q

z7 = r7 − cs1t mod q

z8 = r8 − cs2t mod q

(e) Outputs the proof π : (c, z1, z2, z3, z4, z5, z6, z7, z8).
[Proof Verification] Computes

T ′
1 = Ac

1g
z1
1 gz2

2

T ′
2 = A−z6

1 gz4
1 gz5

2

T ′
3 = A−z3

1 gz7
1 gz8

2

T ′
4 = hce(u, g)z6

T ′
5 = ̂Bce(u,Az6

2 g−z5
1 )

T ′
6 =

(

e(C, gH(IDA)A2)
e(u, g)

)c

e(uz3
1 , gH(IDA)A2)e(Cz2u−z8

1 , g1)

Accepts the proof if, and only if,

c = H(T ′
1, T

′
2, T

′
3, T

′
4, T

′
5, T

′
6,

̂B, h,A1, A2, C, DATE)

5. (Publish Pseudo-Public Key) If the proof is correct, D generates a group
signature σD ← GSign(USK,GPK,M) on message M = (h, ̂B, DATE) and
publishes (σD, h, ̂B, DATE) into BB. D also informs GV that Alice (with iden-
tifier IDA and public key A) has been confirmed as positive. GV will update
its entry on Alice: {‘‘+VE’’, PKA, IDA, DATE} and sign this entry every date
(update DATE only) until Alice has deemed to be fully recovered (and no
longer infectious).

Tracing Phase: At the end of each day (e.g., 23:59:59 h), each non-infected
user, say Bob, executes the following step:

Bob scans through BB for all new entries. For each entry

(σD, h, ̂B, DATE)

Bob first retrieves his secret key SKB (b ∈ Zq) corresponding to that DATE and
checks if:

̂B = hb. (5)

If yes, Bob then verifies the signature by running GVerify(σD, GPK,

{h, ̂B, DATE}). If it is valid, he has been in close contact with a confirmed patient
on DATE.
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4.2 Security Discussion

We first state our lemmas in the context of the threat model outlined in Sect. 2.2,
while the detailed analysis of each lemma will be presented in the full version [19].

1. [Traceability Completeness]

Lemma 1. Our system provides Traceability Completeness if our protocol is
correct.

2. [False Positive (case 1)]

Lemma 2. Our system does not have Case 1 False Positive error if the under-
lying group signature scheme (Sect. 3.2) is unforgeable.

3. [False Positive (case 2)]

Lemma 3. Our system does not have Case 2 False Positive error if the zero-
knowledge proof in Eq. (3) is sound and the Boneh-Boyen signature [6] is weakly
unforgeable.

4. [Patient Privacy]

Lemma 4. Our system provides Patient Privacy from the public uncondition-
ally, and from the patient’s close contacts if the underlying signature scheme
(Sect. 3.1) is unforgeable.

5. [Contact Privacy]

Lemma 5. Our system provides Patient Privacy if the zero-knowledge proof in
Eq. (3) and its instantiations are zero-knowledge and Assumption 1 (on page 6)
holds in the random oracle model.

5 Implementation

We have launched the contact tracing app for both Android and iOS platforms.
We tested the Android version on Android 8.0 and 10.0, while the iOS version on
iOS 13.7. Figure 3 illustrates its architecture. The contact tracing app consists of
four main modules, namely Bluetooth service, device discovery service, Crypto
manager, and utility module. When the app is installed for the first time, the
Crypto manager will be initialised with a set of operations such as key generation,
downloading public keys or parameters from other parties, etc. Then, the app
will start two background services which will interact with other components:

– Crypto manager module encapsulates most of aforementioned operations of
Crypto algorithms, such as signing, verification, and etc. The module also
helps the user generate key pairs ((SKA, PKA)) on a daily basis. Then, it
will upload the user’s personal information and PKA to GV for finishing the
registration, and will wait for the identifier IDA and the signature σA from
GV, which will be stored in the storage module along with SKA, PKA and
other user information.



340 J. K. Liu et al.

Fig. 3. A diagram of the workflow and architecture of our implementation.

– The device discovering service is a background service listening to nearby
Bluetooth advertising packets and filtering out irrelevant packets. When the
number of packets received from other devices running our contact tracing
app exceeds a predefined threshold, which is set to 15 packets within 15 min
from the same sender by default, it will pair with that device for further
communication.

– The Bluetooth service is another background service listening to nearby Blue-
tooth pair and connection requests. It also advertises the user’s own hash of
message periodically to nearby devices.

– The Utility component handles regular tasks such as user interface activities,
Network IO, to support other components of this app. For example, user may
need to download information from Bulletin Board, which is running on the
servers maintained by governments or hospitals.

6 Evaluation

We have conducted experiments to carefully evaluate the performance of our
contact tracing system. We install the app in a Google Pixel 4 and a Google
Pixel 2 smartphones for emulating the interactions of two people, and execute
the tool for doctor in a PC (Macbook Pro, Core i7, 16 GB RAM). As to run
the test for the iOS version, we use an iPhone 11 and an iPhone SE2 as test
machines.



Privacy-Preserving Contact Tracing Protocol for Mobile Devices 341

To characterize the latency required by our solution, we measure the three
phases in the contract tracing app, including meeting, medical treatment and
tracing phase. We execute the process including advertising data, receiving and
processing packets, for 100 times and compute the latency of each phase. In the
Android tests, the mean delay and the standard deviation for them are 94 ms
(49), 144 ms (19), 5 ms (0.3), respectively, When it comes to the iOS tests, the
latency of these three phases is 136 ms (48), 187 ms (11), 5 ms (0.2).

Moreover, we evaluate the time required by the tool for a doctor to finish
the verification. By running the tool to conduct the verification for 100 times,
we observe the mean elapsed time is 515 ms and standard deviation is 224.

Note that the mean time for tracing phase includes 1 checking on Eq. (5)
plus one verification of a group signature. In reality, there should be a very
large number of checking on Eq. (5) (e.g., 10000) which represents the number
of new contacts made by the overall number of new patients. Therefore we also
separately evaluate the time of executing this equation. The mean time is only
72 ms. The running of the verification of a group signature should be only a few
(e.g., 2 or 3). We can argue that even if there are 100 new patients confirmed
each day, and each patient has around 20 to 30 close contacts (and overall a
few hundred contacts over the past two weeks), the running time for the tracing
phase is still acceptable, and can be completed within a few hours in this extreme
case. We have also addressed a practical consideration for this case in the next
section.

7 Discussion

In addition to the findings presented in the preceding section, we will discuss a
few practical issues for privacy-preserving contact tracing.

7.1 Cluster Identification and Formation

Cluster formation is essential to the analysis of how diseases spread in the com-
munity. For example, the identification of clusters can inform government mitiga-
tion strategy as observed in the responses in Singapore and Hong Kong. Specif-
ically, once clusters in Singapore (e.g., foreign workers’ dormitories) were iden-
tified, individuals in these clusters were quarantined. Similarly, in Hong Kong,
the identification of a cluster (in the same residential building) facilitated the
scientists in narrowing the specific cause of the spread (in this context, leaking
toilet pipes).

In our privacy-preserving contact tracing app, the meeting location for users
is hidden from the Government and the medical doctor. We propose that cluster
identification and formation should be performed after the contact tracing phase.
Suppose that Alice is infected and she has contact with Bob and John. If John
is not infected, the meeting location of Alice and John should be kept private. If
Bob is infected, then the Government can perform normal cluster identification
and formation between Alice and Bob (e.g., to determine if they worked in the
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same organization, visited the same venues, or lived in the same building), based
on information provided by the patients or their devices.

7.2 Privacy Leakage

In our proposal, we also consider privacy leakage that stems from the medical
doctor. For example, if the medical doctor is a pediatrician, then it is likely
that the patient is a child. Therefore, we use the anonymity property of group
signature to ensure that such information is not leaked through the doctor’s
signature on the bulletin board.

On the other hand, it is also possible for the Government to host COVID-
19 information website with an appropriate access control policy, rather than
relying on the bulletin board. Only authorized medical doctors can post on this
website and the identity of the medical doctor is hidden. Then, we can replace
the group signature and the bulletin board with a standard signature (from
the doctor) and the COVID-19 information website. All users should trust the
validity of the information posted on this website.

7.3 Improving System Performance

The number of computation required in the tracing phase is directly proportional
to the number of newly confirmed patients each day. In other to improve the
system performance in a country with a large number of new confirmed cases
each day, we suggest that our protocol can be parameterized to the state, city, or
county level. This can be easily achieved by adjusting the group signature so that
the state, city, or county forms a group (instead of a hospital) and users from
the state, city, or county only needs to check those entries signed by the medical
doctors in the state, city, or county. In this case, the checks can be significantly
simplified.

8 Conclusion

In this paper, we proposed a privacy-preserving COVID-19 contact tracing app.
Using zero knowledge proof, our apps allows the notification of close contacts,
without revealing the location and identification of these close contacts (to gov-
ernments). We formally proved the security of our approach, and the findings
from our evaluation of the Android and iOS prototype demonstrated the utility
of the app in a real-world setting. Future research includes extending the eval-
uation to a broader population, such as the students and staff members of the
authors’ institutions.
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Abstract. With the help of multi-signature technology, multiple sig-
natures on the same message could be compressed into one compact
signature, which is efficient for financial applications such as blockchain
for saving storage space and transmission bandwidth costs. Due to the
advantage of no certificate and no escrow feature, certificateless signa-
ture is widely used in many applications since its introduction in 2003.
Unfortunately, traditional signature schemes may face serious security
threats with the advent of quantum computers as their underlying secu-
rity assumptions (RSA or discrete logarithm problems) may no longer
hold anymore. Lattice-based cryptography is considered to be quan-
tum secure. Therefore, we propose a novel certificateless multi-signature
(CLMS) scheme over NTRU lattices in this paper, which is provably
secure in the random oracle model based on the ring version of the short
integer solution assumption (Ring-SIS). To the best of our knowledge, our
scheme is the first lattice-based CLMS scheme. Compared with closely
related works in the literature, our scheme is based on certificateless
cryptography, which not only solves the key escrow problem, but also
relieves the certificate management problem effectively.

Keywords: Multi-signature · Certificateless multi-signature · NTRU
lattices · Ring-SIS

1 Introduction

1.1 Multi-signature

In real world, it is needed that some different individuals or units are required
to sign on a common document in order to make the document effective. Multi-
signature is a key technology to solve this problem in the era of digital infor-
mation. In 1983, the notion of multi-signature was firstly proposed by Itakura
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and Nakamura [26], which requires a group of signers to sign on a common
message m and jointly construct a final multi-signature which could be verified
with their public keys {pk1, · · · , pkn}. Obviously, the simplest way to generate
a multi-signature is to set σm = {σ1, · · · , σn}, called trivial multi-signature [15].
However, it is composed of n individual signatures, causing its size to be lin-
ear with the number of signers, which is not efficient for applications. Aiming to
save storage space and transmission bandwidth costs efficiently, the size of multi-
signature is desired to be much smaller than the trivial one, even approximately
close to the size of an individual signature. According to [7], in standard multi-
signature schemes, security is commonly defined through an experiment with a
single honest “target” signer, effectively viewing all other signers as corrupted.
Security requires that it be infeasible to forge a multi-signature involving the tar-
get signer, after seeing many signatures on messages of its choice. Multi-signature
is widely used in modern applications, such as blockchain bitcoin transactions
[5], electronic medical record [17], electronic contract signing [18] and so on.

At the beginning, multi-signature schemes mainly work in the public key
infrastructure (PKI) [10], in which a user’s public key and private key is gen-
erated by itself. However, in order to authorize the relationship between a user
and the corresponding public key, a trusted third-party called certificate author-
ity (CA) should be involved in the system to issue a digital certificate for users.
Therefore, it does require more storage space and computing consumption to gen-
erate certificates and verify them, respectively. As the number of users increases,
the burden of managing certificates becomes huge, causing the certificate man-
agement problem.

To deal with the aforementioned problem, Shamir proposed the identity-based
cryptography (IBC) in 1984 [41]. In such a new cryptosystem, the public keys
of users are selected from their system identities like email address, physical
IP address and etc. There is no need to issue certificates for users anymore,
thereby solving the certificate management problem. Therefore, many identity-
based multi-signature schemes have been proposed by researchers. However, the
private keys of users are generated by a trusted third-party called private key
generator (PKG). Since the PKG masters the secret private keys of all the users,
identity-based cryptosystems suffer from key escrow problem.

To solve the key escrow problem in IBC, a new notion of certificateless public
key cryptography (CL-PKC) was introduced by Al-Riyami and Paterson in 2003
[1]. In this new cryptosystem, PKG is still involved in the system, but it only
generates partial secret keys for users. Each user chooses another private key
component. As a result, the PKG does not know the full private keys of users.
Therefore, CL-PKC efficiently solves the key escrow problem in IBC, and also
relieves the certificate management problem in PKI effectively. Since the proposal
of CL-PKC, it has attracted the interests of many researchers and lots of related
works have been presented. Therefore, we mainly study the certificateless multi-
signature in this paper.
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On the other hand, with the development of quantum computing technol-
ogy, traditional security assumptions (RSA or discrete logarithm problem) may
no longer hold anymore, which makes traditional multi-signature schemes may
not be secure as before. Concretely, Shor [42] presented efficient algorithms to
solve integer factorization problem and discrete logarithm problem on a quan-
tum computer in 1994. Subsequently, a quantum mechanical search algorithm
was introduced by Grover with the advantage that it is polynomially faster
than classic algorithms [16]. As a result, traditional signature schemes based on
the hardness of these problems are facing huge security challenge. To solve this
problem, some new alternatives have been proposed, among which lattice-based
cryptography is the most concerned. At present, lattice-based cryptosystems are
potential to be quantum secure. There is no known polynomial-time algorithm
to solve hard lattice problems even on a quantum computer. Therefore, we aim
to construct a lattice-based certificateless multi-signature scheme in this paper
in order to resist the quantum attacks, which is very important for financial
applications.

1.2 Related Works

The notion of multi-signature was firstly proposed by Itakura and Nakamura
in 1983 [26]. Since then, a large number of multi-signature schemes including
the works in [29,31] have been presented by researchers. However, most of these
schemes could not provide a convincing security proof. As a matter of fact, only
works in [37] and [39] provide convincing security models to prove the security
of the schemes. The difference among them is that the security model of [37] is
stronger than the other one. However, the scheme of [37] has the issue that the
group of signers must be known in advance, which is not suitable in practice.
Subsequently, Bellare and Neven constructed a six-move multi-signature scheme
in 2006, which is provably secure in the plain public key model [7]. The novelty
of the model is that it only requires that all users should have a correspond-
ing public key in the system. Note that their signing protocol is interactive.
Afterwards, aiming to improve the scheme of [7], Bagherzandi et al. [3] and
Ma et al. [35] proposed two-round multi-signature schemes in 2008 and 2010,
respectively. In 2016, Syta et al. [44] constructed a new multi-signature scheme
which supports highly scalable functionality. Subsequently, Maxwell et al. [36]
proposed a multi-signature scheme in 2018, which implements key aggregation
in multi-signature. Afterwards, Boneh et al. [8] presented new pairing-based
multi-signature schemes supporting key aggregation and batch verification. In
order to avoid the certificate management problem in PKI-based schemes, many
identity-based multi-signature schemes have been proposed such as the works in
[2,4,6,24,46]. Regarding certificateless multi-signature schemes, a lot of works
were proposed by the researchers such as the schemes in [22,23,25,45], to solve
the key escrow problem on the identity-based schemes.
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However, all the above-mentioned multi-signature schemes are mainly based
on traditional security assumptions (RSA or discrete logarithm problems) which
may no longer hold anymore with the development of quantum computing tech-
nology. As a result, these signature schemes may no longer be secure as before.
In 2013, Kong et al. [28] proposed two multi-signature schemes. One is a triv-
ial broadcast multi-signature scheme in which the multi-signature size is linear
with the number of users. The other is a sequential multi-signature scheme with
a constant signature size. Afterwards, Choi and Kim [9] constructed a linear
homomorphic multi-signature scheme based on lattice in 2016. Unfortunately,
their scheme suffers from a complex reset process when new members join in
the system. In 2016, Bansarkhani and Sturm [5] constructed a broadcast multi-
signature scheme based on the hard lattice problem, which is provably secure in
the plain public key model. Its multi-signature size is approximately close to an
individual signature. Based on the work in [5], new lattice-based multi-signature
schemes were presented by Ma et al. [34] and Fukumitsu et al. [12] in 2019,
respectively. Subsequently, a lattice-based multi-signature scheme was presented
by Peng et al. [40] in 2020, in which a multi-signature consists of individual
signatures and an NIWI proof [38]. However, its multi-signature size is linear
with the number of users. Recently, Kansal et al. [27] proposed a lattice-based
multi-signature scheme that is proven to be secure in the plain public key model.
The scheme supports public key aggregation. On the other hand, NTRU lattices
are popularly used in constructing post-quantum secure cryptosystems, such as
[11,19–21,47].

To the best of our knowledge, the existing lattice-based multi-signature
schemes are mainly based on the public-key infrastructure, which leads to the
complex certificate management problem. There is no quantum-secure certifi-
cateless multi-signature scheme up to now.

1.3 Our Contributions

In order to solve the aforementioned problem, we propose a certificateless multi-
signature (CLMS) scheme based on the hard lattice problem in this paper. Con-
cretely, we make contributions in this paper as follows.

1. We propose a CLMS scheme over NTRU lattices in this paper. To the best
of our knowledge, it is the first lattice-based CLMS scheme in the literature.
Our signing algorithm is a six-move interactive protocol among all the signers,
while the verification algorithm is non-interactive, which could be operated
by each individual verifier.

2. Our CLMS scheme is provably secure in the random oracle model based on
the ring version of the short integer solution assumption (Ring-SIS) which is
widely used to construct lattice-based cryptographic schemes.

3. Compared with the CLS scheme [47] which is a lattice-based certificateless sig-
nature (not multi-signature) scheme, our CLMS is a multi-signature scheme
and the multi-signature size of our scheme is much smaller than a bundled sig-
nature consisting of N individual signatures (of CLS scheme), as we perform
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an accumulation operation on N signatures instead of simply concatenat-
ing them. Compared with the existing PKI-based multi-signature schemes
[5,12,27,34], our CLMS is the first lattice-based multi-signature scheme con-
structed in the certificateless setting, which could solve key escrow problem
and alleviate the certificate management problem effectively.

2 Preliminaries

2.1 Notations

In this paper, n is a positive power-of-two integer and q represents a prime that
is convergent to 1 modulo 2n. Zq denotes a integer set, of which the elements
are belong to the range [−(q − 1)/2, (q − 1)/2]. ˜B = {˜b1, ˜b2, · · · , ˜bn} defines
the Gram-Schmidt orthogonalization form of B = {b1,b2, · · · ,bn}. R denotes
the ring Z[x]/(xn + 1) and Rq represents the ring Zq[x]/(xn + 1). The elements
of both rings are polynomials with max degree n − 1 and coefficients that are
belong to Z and Zq, respectively. f =

∑n−1
i=0 fix

i is a polynomial in Rq. So
is g =

∑n−1
i=0 gix

i. Also, we could represent a polynomial f by using a vector
[f0, f1, ..., fn−1] which consists of its coefficients. Among two polynomials f and
g, we define two mathematical operations as shown in Eq. (1). One is addition
f + g in Rq, the other defines multiplication f · g in Rq.

f + g =
n−1
∑

i=0

(fi + gi) xi (mod q)

f · g =
n−1
∑

k=0

⎛

⎝

∑

i+j=k (mod n)

figj

⎞

⎠ xk (mod q)

(1)

2.2 Anticirculant Matrices

Definition 1 (Anticirculant matrix). For a polynomial f =
∑N−1

i=0 fix
i, we

could define an N-dimensional anticirculant matrix as follows.

AN (f) =

⎛

⎜

⎜

⎜

⎝

(f)
(x · f)

...
(xN−1 · f)

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

f0 f1 · · · fN−1

−fN−1 f0 · · · fN−2

...
...

...
...

−f1 −f2 · · · f0

⎞

⎟

⎟

⎟

⎠

(2)

In the rest of this paper, we will omit the subscript N and take A(f) to represent
the anticirculant matrix.
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2.3 NTRU Lattices

Definition 2 (NTRU lattices). Assume that q is a positive integer, n is a
power-of-two integer, and h = g · f−1 mod q with f, g ∈ Rq. The NTRU lattice
used in this paper is

Λh,q =
{

(u, v) ∈ R2
∣

∣ u + h · v = 0 mod q
}

. (3)

Λh,q is a full-rank lattice of Z
2n, which could be generated by

Ah,q =
(−A(h) In

qIn On

)

, (4)

where In and On represent the unit matrix and null matrix, respectively.

However, when h is uniformly distributed in Rq, Ah,q will suffer from a
complex Gram-Schmidt orthogonalization process. To deal with this problem,
Hoffstein et al. [19] constructed another basis

Bf,g =
(

A(g) −A(f)
A(G) −A(F )

)

, (5)

where F,G ∈ Rq and f ·G−g ·F = q. According to [11], Bf,g is a short basis for
Λh,q. With the help of [11,13], our trapdoor generation algorithm is constructed
as follows.

Lemma 1 [11]. With a power-of-two integer n, a prime q, and σf = 1.17
√

q
2n

(σf chosen such that ‖˜Bf,g‖ ≤ 1.17
√

q), we could construct a probabilistic
polynomial-time (PPT) algorithm TrapGen(q, n), of which the output result is
a polynomial h = g · f−1 mod q statistically close to uniform in Rq and a short
basis Bf,g of Λh,q.

2.4 Gaussian Distribution and Rejection Sampling

Definition 3 (Gaussian Distribution). Assuming the center c ∈ R
n and the

standard deviation s > 0, the continuous Gaussian distribution over R
n could be

defined as follows.

ρs,c(v) =
(

1√
2πs

)n

e
−‖v−c‖2

2s2 , (6)

where v ∈ R
n.

Take a symbol ρs,c(Λ) to represent
∑

v∈Λ ρs,c(v) for any lattice Λ ∈ R
n.

Then the discrete Gaussian distribution over R
n could be defined as DΛ,s,c(v) =

ρs,c(v)/ρs,c(Λ), where v ∈ Λ. When c = 0, we will take DΛ,s and ρs to represent
DΛ,s,0 and ρs,0, respectively.
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In the lattice-based signature scheme, rejection sampling technique [21,32] is
used to make sure that the distribution of the output signature is independent
of that of the signing key. When a signer signs a message with the signing key
SID, the signature algorithm generally includes the following three steps:

(1) Choose a vector y ∈ DZn,σ;
(2) Compute a candidate signature z = SID ·c+y, where c represents the hash

value associated with the message;
(3) Output the signature z with probability min [F (z)/M · G (z), 1], which

means it outputs candidate signature z if F (z) ≤ M ·G (z) holds and rejects
it otherwise.

In the algorithm, F is the target distribution of the output signature z
(independent of the signing key SID). If there is a probability distribution G
and a real number M > 0, satisfying that for all v, F (v) ≤ M · G (v) always
holds, then the probability of successfully outputting candidate signature z is
F (z)/M · G (z), where M is the expected number of repetitions for successfully
outputting a signature.

2.5 Sampling Algorithm

Definition 4 (Sampling Algorithm). Assuming that q is a prime number,
Bf,g is a short basis of NTRU lattice Λh,q and a polynomial t ∈ Rq. If the
Gaussian parameter s ≥ ‖ ˜Bf,g‖ω(

√
log 2n) and 0 < ε < 1, then for u = (t,0) ∈

Z
2n
q , we could obtain the following conclusions [11,13,30]:

(1) Pr
[

x ← DΛh,q,s,u : ‖x − u‖ > s · √2n
] ≤ (1 + ε)/(1 − ε) · 2−2n.

(2) There exists a PPT algorithm SampleGau(Bf,g, s,u) that could output
(s1, s2) ∈ R2

q satisfying s1 + h · s2 = t and ‖(s1, s2)‖ ≤ s · √
2n.

2.6 Hardness Assumption

Definition 5 (Ring-SISm,q,β Problem). Given a vector a = (a1, a2, · · · ,
am)T ∈ Rm

q consisting of m polynomials chosen uniformly from Rm
q , Ring-

SISm,q,β problem is to find a nonzero vector of small polynomials x =
(x1, x2, · · · , xm)T ∈ Rm satisfying aT x =

∑m
i=1 ai · xi = 0 mod q and 0 <

‖x‖ ≤ β.

3 Definition and Security Model of CLMS

3.1 Definition of CLMS

With an identity set ID = {ID1, ID2, · · · , IDN} and a message m, a certifi-
cateless multi-signature scheme (CLMS) includes the following seven algorithms
[5,34,47]:
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– Setup(1n): Taking as input the security parameter 1n, the setup algorithm
computes private key SPKG of the private key generator (PKG) and sys-
tem public parameters params, and outputs the system public parameters
params.

– Extract-Partial-Private-Key(IDi, SPKG, params): Taking as input an
identity IDi of the signer i, the system master private key SPKG and the
system public parameter params, this algorithm outputs a partial private
key Di corresponding to the signer i.

– Set-Secret-Value(IDi, params): Taking as input an identity IDi of the
signer i and the system public parameter params, this algorithm outputs a
secret value Si corresponding to the signer i.

– Set-Private-Key(Di, Si, params): Taking as input the partial private key
Di and the secret value Si of the signer i and the system public parame-
ter params, this algorithm outputs a private key SKi corresponding to the
signer i.

– Set-Public-Key(Si, params): Taking as input the secret value Si of the
signer i and the system public parameter params, this algorithm outputs a
public key PKi corresponding to the signer i.

– CL-Sign(ID, m, params): Taking as input an identity set ID =
{ID1, ID2, · · · , IDN}, a message m and the system public parameters
params, this algorithm outputs a multi-signature θ or a symbol ⊥ repre-
senting failure. In some CLMS schemes, the multi-signature generation algo-
rithm is an interactive protocol that requires all the signers to interact with
each other before outputting the final multi-signature. In such a protocol, the
private keys of signers are seen as their local input.

– CL-Verify(ID, m, PK, θ, params): Taking as input the identity set ID
of all the signers, a message m, the public key set PK of all the signers, a
multi-signature θ and the system public parameters params, this algorithm
outputs 1 (“accept”) if the multi-signature θ is valid, otherwise it outputs 0
(“reject”).

Correctness: If all signers honestly follow the CL-Sign protocol to sign on
a common message m, a multi-signature θ will be generated, which satisfies
CL-Verify(ID, m, PK, θ, params) = 1.

3.2 Security Model of CLMS

In this paper, our CLMS scheme considers two types of adversaries according
to [47]. One is the external adversary A1 that can replace user’s public key but
cannot access the system master secret key. The other is the internal adversary
A2 that controls the PKG and leads the generation of the system master secret
key, but cannot replace the user’s public key. According to [7], we assume that
there is only one honest signer in the signing group with the identity ID∗. The
adversary can run the CL-Sign algorithm and interact with the honest user
by taking as input the signers’ identity set ID = {ID1, ID2, · · · , IDN} and a
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message m, where ID∗ ∈ ID. Subsequently, we introduce the first game between
the adversary A1 and the challenger C as follows.

(1) Setup. The challenger C runs the Setup algorithm to generate master pri-
vate key SPKG and system public parameters params. It retains SPKG and
sends params to the adversary A1.

(2) Queries. The adversary A1 can adaptively issue polynomially many queries
as follows.
– Partial-Private-Key-query. When A1 queries a signer’s partial private

key with IDi, C runs the Extract-Partial-Private-Key algorithm to
generate Di, and returns Di to the adversary A1.

– Create-User-query. When A1 issues a query with IDi, C generates the
user’s secret value Si, private key SKi and public key PKi, and returns
{PKi, SKi} to the adversary A1.

– Replace-Public-Key-query. When A1 issues a query with IDi and
PK ′

i, C replaces the user’s public key PKi with PK ′
i.

– Sign-query. When A1 queries a multi-signature with the identity set
ID = {ID1, ID2, · · · , IDN} and message m, C runs the CL-Sign algo-
rithm to generate a multi-signature θ, and returns θ to the adversary
A1.

(3) Forgery. A1 outputs a multi-signature tuple
(

m′, ID∗, ID′,PK′, θ′). If the
following conditions are met, the adversary A1 wins the game.

(a) CL-Verify(ID′,m′,PK′, θ′, params) = 1;
(b) ID∗ ∈ ID′, and ID∗ has not been issued during the Partial-Private-

Key-query phase; and
(c)

(

ID′,m′) has not been issued during the Sign-query phase.

Next, we introduce the second game between the adversary A2 and the chal-
lenger C as follows.

(1) Setup. The challenger C runs the Setup algorithm to generate master pri-
vate key SPKG and system public parameters params, and sends them to
the adversary A2.

(2) Queries. The adversary A2 can adaptively issue polynomially many queries
as follows.
– Create-User-query. The same as that in the first game.
– Public-Key-query. When A2 queries a signer’s public key with IDi, C

returns the public key PKi to the adversary A2.
– Sign-query. The same as that in the first game.

(3) Forgery. A2 outputs a multi-signature tuple
(

m′, ID∗, ID′,PK′, θ′). If the
following conditions are met, the adversary A2 wins the game.

(a) CL-Verify(ID′,m′,PK′, θ′, params) = 1;
(b) ID∗ ∈ ID′, and ID∗ has not been issued during the Create-User-query

phase; and
(c)

(

ID′,m′) has not been issued during the Sign-query phase.
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Definition 6 (EUF-ID-CMA). For any PPT adversary A1 and A2, if both
probabilities of A1 winning the first game and A2 winning the second game are
negligible, the CLMS scheme is existentially unforgeable under adaptive chosen-
identity and chosen-message attacks.

Besides, if adversaries are required to submit the challenge identity ID∗

before seeing any system public parameter, the CLMS scheme is existentially
unforgeable under selective-identity and chosen-message attacks (EUF-SID-
CMA secure).

4 Our CLMS Scheme over NTRU Lattices

Our CLMS scheme is constructed as follows.

– Setup. Given the system security parameter 1n, the PKG selects two real
numbers s, σ > 0 and a prime number q, and then runs the TrapGen(q, n)
algorithm to generate a polynomial h = g · f−1 mod q and a short basis Bf,g,
where ‖f‖ ≤ s

√
n, ‖g‖ ≤ s

√
n and

Bf,g =
(

A(g) −A(f)
A(G) −A(F )

)

∈ Z
2n×2n
q . (7)

Next, the PKG chooses three hash functions H0 : {0, 1}∗ → Z
n
q , H1 : Z

n
q →

Z
n
q , and H2 : {0, 1}∗ → {e|e ∈ {−1, 0, 1}n, ‖e‖1 ≤ λ}. Subsequently, the

PKG sets the system master private key SPKG = Bf,g and the system public
parameters params = 〈h,H0,H1,H2〉, where h represents the system master
public key. Finally, the PKG secretly keeps SPKG and outputs the system
public parameters params.

– Extract-Partial-Private-Key. Given an identity IDi ∈ {0, 1}∗, the PKG
runs the SampleGau(Bf,g, s, (H0(IDi), 0)) algorithm to generate (si,1, si,2)
satisfying si,1 + h · si,2 = H0(IDi) and ‖(si,1, si,2)‖ ≤ s · √

2n. Finally, the
PKG sends the partial private key Di = (si,1, si,2) to signer i through a secure
channel. According to [33], it is hard to recover Di when given h and H0(IDi).

– Set-Secret-Value. Given an identity IDi ∈ {0, 1}∗, the signer i randomly
selects two secret values s′

i,1, s
′
i,2 ∈ DZn,s and ‖(s′

i,1, s
′
i,2)‖ ≤ s ·√2n, and sets

the secret value Si = (s′
i,1, s

′
i,2).

– Set-Private-Key. Given a user’s partial private key Di and secret value Si,
this algorithm sets the user’s private key SKi = (Di, Si).

– Set-Public-Key. Given a user’s secret value Si, it sets the public key PKi =
s′

i,1 + h · s′
i,2.

– CL-Sign. Given an identity set ID = {ID1, ID2, · · · , IDN} and a message
m, the CL-Sign algorithm works as follows (see Fig. 1). At first, each signer
i selects Yi = (yi,1, yi,2), Y ′

i = (y′
i,1, y

′
i,2) and computes ri = yi,1 + h · yi,2,

r′
i = y′

i,1 + h · y′
i,2, respectively. The signer then obtains di = H1(ri) and

d′
i = H1(r′

i). Note that di and d′
i could be seen as commitments for ri and

r′
i to ensure the correct transmission of ri and r′

i. Subsequently, the signer i
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broadcasts (di, d
′
i) to other signers and obtains all (dj , d

′
j) from them. The

signer then broadcasts (ri, r
′
i) to other signers and receives all (rj , r

′
j) from

them. Afterwards, every signer could check the validity of (rj , r
′
j) and compute

r =
∑N

j=1 rj mod q and r′ =
∑N

j=1 r′
j mod q. Subsequently, the signer i com-

putes ci = H2(IDi, r, r
′, ID,m), generates a signature sigi = SKi ·ci+(Yi, Y

′
i )

with probability min [DZn,σ(sigi)/MDZn,σ,SKi·ci(sigi), 1] where M = O(1),
and broadcasts it to other signers. After receiving all sigj from other signers,
the signer i computes sig =

∑N
j=1 sigj and outputs the final multi-signature

(sig, r, r′).

Fig. 1. Concrete CL-Sign algorithm
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– CL-Verify. Given a multi-signature (sig, r, r′) on message m with the iden-
tity set ID = {ID1, ID2, · · · , IDN} and public key set PK, it computes
ci = H2(IDi, r, r

′, ID,m), and outputs 1 (“accept”) if ‖z‖ , ‖z′‖ ≤ 2N ·σ√
2n,

z(1)+h ·z(2) = r+
∑N

i=1(H0(IDi)·ci) and z′(1)+h ·z′(2) = r′+
∑N

i=1(PKi ·ci),
and 0 (“reject”) otherwise.

5 Security Analysis

Theorem 1. If the Ring-SIS2,q,β problem on NTRU lattice Λh,q is intractable,
the CLMS scheme is EUF-SID-CMA secure against any PPT external adversary
A1 in the random oracle model.

Proof. Assuming that there is a PPT forger A1, who can query the random
oracles (including H0, H1, H2) at most 
H times, invoke the signing algorithm
with the honest signer at most 
S times, and successfully provide a forgery with
non-negligible probability δ. Then we could construct an algorithm B to solve
the Ring-SIS2,q,β problem on NTRU lattice Λh,q. On input h1, h2, · · · , h�H+�S ∈
{e|e ∈ {−1, 0, 1}n, ‖e‖1 ≤ λ}, algorithm B runs the forger A1 as follows.

(1) Initialization. A1 sends the identity ID∗ of the honest signer to B.
(2) Setup. Given the system parameter 1n, B randomly chooses a polynomial

h ∈ Rq, sets the system public parameter params = 〈h,H0,H1,H2〉 and
returns params to A1, where H0, H1, and H2 are random oracles controlled
by B.

(3) Queries. B initializes two counters ctr1, ctr2 to zero, and defines five ini-
tially empty lists L0[·], L1[·], L2[·, ·], L3[·] and LC [·]. Concretely, L0, L1 and
L2 are used to simulate the random oracles H0, H1 and H2. L3 assigns a
unique index 1 ≤ j ≤ 
H +N ·
S to each IDi that is either a signer’s identity
in a signing query or the first parameter of H2 query. LC stores the results
of Create-User-query phase. Besides, B sets L3[ID∗] ← 0 for the tar-
get identity, randomly chooses s1, s2 ∈ DZn,s satisfying ‖(s1, s2)‖ ≤ s

√
2n

and sets D∗ = (s1, s2). It then computes P ∗ = s1 + h · s2 and sets
L0[ID∗] ← (P ∗,D∗). Finally, B responds to the queries issued by A1 as
follows.

(a) H0-query. When A1 queries the oracle H0 with IDi, B converts L0[IDi]
into (Pi,Di) and responds Pi to A1, if L0[IDi] has been defined. Other-
wise, B randomly selects si,1, si,2 ∈ DZn,s satisfying ‖(si,1, si,2)‖ ≤ s

√
2n,

computes Pi = si,1 + h · si,2 and sets L0[IDi] ← (Pi,Di = (si,1, si,2)).
Finally, B returns Pi to A1.

(b) H1-query. When A1 queries the oracle H1 with ri, B responds L1[ri] to
A1 if L1[ri] has been defined. Otherwise, B chooses di ∈ Z

n
q at random

and sets L1[ri] ← di. Finally, B returns di to A1.
(c) H2-query. When A1 queries the oracle H2 with (IDi, Q) where Q =

(r, r′, ID,m), B increases ctr2 and sets L3[IDi] = ctr2, if L3[IDi] has not
been defined. B sets index = L3[IDi]. If L2[index,Q] has been defined,
B responds L2[index, Q] to A1. Otherwise, B selects cj from {e|e ∈
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{−1, 0, 1}n, ‖e‖1 ≤ λ} and sets L2[j,Q] ← cj for 1 ≤ j ≤ 
H + N · 
S . B
increases ctr1 and assigns L2[0, Q] = hctr1. Finally, B returns L2[index,Q]
to A1.

(d) Partial-Private-Key-query. When A1 queries a signer’s partial private
key with IDi, B first checks whether Di has already been in L0. If so,
B responds to A1 with Di. Otherwise, B issues the H0(IDi) query to
generate Di and returns it to A1.

(e) Create-User-query. When A1 issues a query with IDi, B first checks
whether LC [IDi] has been defined. If so, B returns the user’s key pair
{PKi, SKi} to A1. Otherwise, B issues the Partial-Private-Key-query
with IDi to generate Di when IDi �= ID∗. If IDi = ID∗, B sets
Di =⊥. Subsequently, B performs the Set-Secret-Value algorithm, Set-
Private-Key algorithm, and Set-Public-Key algorithm to generate the
user’s Si, SKi and PKi. B then assigns LC [IDi] ← {Di, Si, SKi, PKi}.
Finally, B returns {PKi, SKi} to A1.

(f) Replace-Public-Key-query. When A1 issues a query with IDi and
PK ′

i, B replaces the user’s public key PKi with PK ′
i.

(g) Sign-query. When A1 queries a multi-signature with identity set ID =
{ID1, ID2, · · · , IDN} and message m, B responds to A1 as follows.
(i) B first checks whether ID∗ ∈ ID. If not, it stops the protocol and out-

puts ⊥. If ID1 �= ID∗, B then swaps the positions of ID1 and ID∗ and
reassigns ID = {ID1 = ID∗, ID2, · · · , IDN}. Subsequently, B checks
whether L3[IDk] has been defined for 2 ≤ k ≤ N . If not, it increases
ctr2 and sets L3[IDk] = ctr2. B then increases ctr1 and assigns c1 =
hctr1. Subsequently, B randomly selects zi,1, zi,2, z

′
i,1, z

′
i,2 ∈ DZn,σ and

computes r1 = Az1 − H0(ID1) · c1, r′
1 = Az′

1 − PK1 · c1. B then
queries d1 = H1(r1) and d′

1 = H1(r′
1). Finally, B broadcasts (d1, d′

1)
to other signers.

(ii) After receiving (dk, d′
k) from A1 (playing the role of other signers) for

2 ≤ k ≤ N , B checks whether L1[rk] = dk holds for each dk. If not,
B aborts the protocol and outputs ⊥. In the same way, B checks the
validity of each d′

k. Subsequently, B computes r =
∑N

k=1 rk mod q and
r′ =

∑N
k=1 r′

k mod q. B then sets L2[0, r, r′, ID,m] = c1, randomly
chooses values from the set {e|e ∈ {−1, 0, 1}n, ‖e‖1 ≤ λ} and saves
to L2[j, r, r′, ID,m] for 1 ≤ j ≤ 
H + N · 
S . Finally, B broadcasts
(r1, r′

1) to other signers.
(iii) After receiving (rk, r′

k) from A1 for 2 ≤ k ≤ N , B checks whether dk =
H1(rk) holds for each rk. If not, B ceases the protocol and outputs
⊥. In the same way, B checks the validity of each r′

k. Subsequently, B
broadcasts (z1, z′

1) to other signers.
(iv) After receiving (zk, z′

k) from A1 for 2 ≤ k ≤ N , B computes z =
∑N

k=1 zk and z′ =
∑N

k=1 z′
k. Finally, B returns the multi-signature

θ = (z, z′, r, r′) to A1.
(4) Forgery. A1 forges a valid multi-signature (z, z′, r, r′) on message m and

identity set ID with non-negligible probability δ. Note that ID∗ ∈ ID, ID∗

has not been issued during the Partial-Private-Key-query phase and
(ID,m) has not been issued during the Sign-query phase.
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Assume that the index J satisfies 1 ≤ J ≤ 
H + 
S . According to the suc-
cessful forgery provided by A1, we obtain the first tuple (z, z′, r, r′, hJ ), and we
could possess another tuple (ẑ, ẑ′, r̂, r̂′, ̂hJ ) using the forking lemma [7]. Accord-
ing to the forking lemma, the interactive environments are identical before the
first query H2(ID∗, r, r′, ID,m) or H2(ID∗, r̂, r̂′, ̂ID, m̂). So we could obtain
L2[0, r, r′, ID,m] = hJ and L2[0, r̂, r̂′, ̂ID, m̂] = ̂hJ , where m = m̂, ID = ̂ID,
r = r̂ and r′ = r̂′. Besides, all entries L3[IDi] and ci = L2[L3[IDi], r, r′, ID,m]
are assigned before the setting L2[0, r, r′, ID,m] = hJ . Consequently, we could
obtain ci = ĉi in both performances for IDi �= ID∗. On the contrary, we pos-
sess c∗ = hJ and ĉ∗ = ̂hJ for ID∗ where hJ �= ̂hJ . Subsequently, assume
that I∗ represents the number of occurrences of ID∗ in ID. According to
Az − ∑N

i=1 H0(IDi)ci = r = r̂ = Aẑ − ∑N
i=1 H0(IDi)ĉi, the following equa-

tion could be obtained:

A(z − ẑ + |I∗| · D∗(ĉ∗ − c∗)) = 0. (8)

Owing to ‖z‖ , ‖ẑ‖ ≤ 2N · σ
√

2n and ‖D∗c∗‖ , ‖D∗ĉ∗‖ ≤ λ · s
√

2n, we could
obtain ‖z − ẑ + |I∗| · D∗(ĉ∗ − c∗)‖ ≤ 4N · σ

√
2n + 2|I∗| · λs

√
2n. According to

the preimage min-entropy property [13], we could obtain D′ = (s′
1, s

′
2) satisfying

s′
1+h·s′

2 = H0(ID∗) and D′ �= D∗. As a result, (z−ẑ+|I∗|·D∗(ĉ∗−c∗))−(z−ẑ+
|I∗| ·D′(ĉ∗ −c∗)) = |I∗| · (D∗ −D′)(ĉ∗ −c∗) �= 0. If (z − ẑ + |I∗| ·D∗(ĉ∗ −c∗)) = 0,
then (z − ẑ + |I∗| · D′(ĉ∗ − c∗)) �= 0. So (z − ẑ + |I∗| · D∗(ĉ∗ − c∗)) �= 0 with
non-negligible probability. With A = (1, h) and D∗ = (s1, s2) we possess the
following equation.

(z(1) − ẑ(1) + |I∗| · s1(ĉ∗ − c∗)) + h · (z(2) − ẑ(2) + |I∗| · s2(ĉ∗ − c∗)) = 0 (9)

According to Eq. (9) and [14,32], we could obtain two polynomials u1 and u2

with small (nonzero) coefficients to satisfy u1 + h · u2 = 0. Therefore, we could
solve Ring-SIS2,q,β for β ≤ 4N · σ

√
2n + 2|I∗| · λs

√
2n, which is believed to be

hard [43].
Finally, B can solve Ring-SIS2,q,β with probability sol at least

(

1
2

− 2−100

)

· δ ·
(

δ


H + 
S
− 1

|DH2 |
)

≈ δ2

2(
H + 
S)
, (10)

where DH2 denotes the range of random oracle H2. If δ is non-negligible, so is
sol. Therefore, our CLMS scheme is existentially unforgeable against any PPT
external adversary A1 in the random oracle model. ��
Theorem 2. If the Ring-SIS2,q,β problem on NTRU lattice Λh,q is intractable,
the CLMS scheme is EUF-SID-CMA secure against any PPT internal adversary
A2 in the random oracle model.

Due to the page limit, we leave the proof of Theorem 2 to the full version.
According to Theorem 1 and Theorem 2, our CLMS scheme is EUF-SID-

CMA secure against any PPT adversary in the random oracle model.
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6 Comparison

As shown in Table 1, we make a comparison between CLS scheme [47] and our
CLMS scheme in terms of the number of signers, the sizes of signing key and
signature, and security property.

Table 1. Comparison CLS scheme [47] and our CLMS scheme

Schemes Signers’ number Signing key size Signature size Security

CLS [47] 1 ≤ 4n log (s
√

n) 4n log 12σ + λ(log n + 1) EUF-ID-CMA

CLMS N ≤ 4n log (s
√

n) 4n log (N · 12σ) + 2n log q EUF-SID-CMA

Legends: n: the system parameter; λ: positive integers; N : signers’ number;

s =
∥
∥
∥B̃f,g

∥
∥
∥ ω(

√
log 2n); σ = 12λs

√
n.

Compared with the CLS scheme [47] which is a lattice-based certificateless
signature (not multi-signature) scheme, our CLMS is a multi-signature scheme
and the multi-signature size of our scheme is much smaller than a bundled sig-
nature consisting of N individual signatures (of CLS scheme) as we perform an
accumulation operation on N signatures instead of simply concatenating them.
To the best of our knowledge, the existing lattice-based multi-signature schemes
are mainly based on the public-key infrastructure such as [5,12,27,34], which
leads to the complex certificate management problem. Our CLMS is the first
lattice-based multi-signature scheme constructed in the certificateless setting,
which could solve key escrow problem and alleviate the certificate management
problem effectively.

7 Conclusion

In this paper we proposed a certificateless multi-signature (CLMS) scheme over
NTRU lattices which is provably secure in the random oracle model based
on Ring-SIS assumption. To the best of our knowledge, it is the first lattice-
based CLMS scheme in the literature. Compared with the CLS scheme [47], our
CLMS is a multi-signature scheme and the multi-signature size of our scheme
is much smaller compared to a bundled signature using N individual signatures
(of CLS) as we perform an accumulation operation on N signatures instead
of simply concatenating them. Compared with the existing PKI-based multi-
signature schemes [5,12,27,34], our CLMS is the first lattice-based certificate-
less multi-signature scheme, which could solve key escrow problem and alleviate
the certificate management problem effectively. Finally, we leave the problem of
constructing a CLMS scheme with stronger security as one of our future research
directions.
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Abstract. Most studies use the negative effect of perturbation to mis-
lead the neural network, such as adversarial examples, while ignoring the
positive effect of improving neural networks’ performance. In this work,
we use enhanced samples with positive perturbation to improve target
classifiers’ performance and propose an algorithm of strong generative
adversarial networks (StrGAN) to generate enhanced samples. StrGAN
directly generates enhanced samples of unlabeled data. Since StrGAN
and the target classifier are independent of each other, it can effec-
tively reduce the classifier’s computing resources and training time while
improving the performance. The experiment shows that the enhanced
samples generated by StrGAN have higher accuracy than original sam-
ples, and its accuracy can increase by up to 28.6%.

Keywords: Adversarial examples · Enhanced samples · Generative
adversarial networks

1 Introduction

With the rapid development of artificial intelligence technology, machine learn-
ing and deep learning algorithms have been widely used in many complex fields,
such as target detection [8,21,25], face recognition [1,9,23], natural language
processing [4,20,22], and image classification [12,13,18]. However, some studies
find that deep neural networks are susceptible to tiny perturbations which can
cause changes in the network judgment. Adversarial examples [19] use the neg-
ative effect of perturbation to make the network produce wrong judgments. We
consider using the positive effect to enhance the network judgment and call these
kinds of samples with positive perturbations as enhanced samples. By using the
enhanced samples can effectively improve the performance of the target network.
Therefore, the study of enhanced samples is of great significance for improving
the performance of the neural network.

However, the current methods of generating adversarial examples are mainly
divided into traditional and generative adversarial networks based. Goodfellow
et al. [6] proposed FGSM, which generates adversarial examples by adding
a small perturbation in the gradient direction. Moosavi-Dezfooli et al. [15]
c© Springer Nature Switzerland AG 2021
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https://doi.org/10.1007/978-3-030-93206-0_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93206-0_22&domain=pdf
https://doi.org/10.1007/978-3-030-93206-0_22


364 J. Wu et al.

proposed Deepfool, which uses iterative calculations to generate adversarial
perturbations. Carlini and Wagner [2] proposed the C&W method, limiting the
L∞, L2, and L0 norms to generate invisible adversarial perturbations. These
traditional methods can generate adversarial perturbation effectively, but their
adversarial characteristics are hardly robust. Goodfellow et al. [5] proposed
Generative Adversarial Networks (GAN), which brings new directions for the
research of adversarial examples. Chaowei Xiao et al. [24] proposed the Adv-
GAN, which adds a classifier to the original GAN architecture to make the
prediction label close to the target label. On this basis, Mangla et al. [14] pro-
posed an improved method AdvGAN++, which introduces the hidden layer of
the classifier as a feature extractor to directly enable the generator to learn the
transition from the latent feature space to the adversarial example.

These methods are all designed based on the idea that negative perturbations
in adversarial examples can mislead the network. As far as we know, there are
no related works that use positive perturbations to improve classification perfor-
mance. In this paper, we consider adding positive perturbations to the sample to
convey useful information that enhances judgment instead of causing misjudg-
ment. This work is to make the target classifier maintain the original correct
judgment of the sample and change the original wrong judgment. Based on the
in-depth study of various methods of generating adversarial examples, inspired
by the ideas of AdvGAN [24] and AdvGAN++ [14], we proposed StrGAN to
generate enhanced samples. First, train different target classifiers so that they
can identify each class relatively accurately. Then, re-divide the datasets to make
the training set and test set maintain a low accuracy and use them for training
StrGAN to generate enhanced samples. Finally, the accuracy of the enhanced
samples generated by StrGAN is improved compared with the original samples.

Section 2 introduces the specific design of this scheme in detail. Section 3
will compare and analyze the experimental results. Section 4 summarizes the
advantages and disadvantages of StrGAN and looks forward to future work.

2 Proposed Method

2.1 Overall Architecture

Fig. 1. Evaluation process of the proposed method.
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Figure 1 shows the evaluation process of the proposed method, in which the
StrGAN we proposed is used to generate enhanced samples. The classifiers used
in this work respectively are AlexNet [11], VGG16 [17], and ResNet18 [7].

As shown in Fig. 1, by inputting the original sample X of unknown label into
the trained StrGAN to directly get the corresponding enhanced sample Xstr,
then respectively send X and the corresponding Xstr into the target classifier
to get their respective accuracy PX and PXstr

. Comparing PXstr
with PX can

directly observe the effectiveness of this algorithm.

Fig. 2. StrGAN architecture.

Figure 2 illustrates the overall architecture of StrGAN. The core idea of Str-
GAN is to directly map the input samples into enhanced samples through the
generator. The discriminator is used to constrain the generated enhanced sam-
ples to appear similar to the original samples. The target classifier is used to
constrain the predicted labels to be close to the original labels. After training,
the generator can instantly produce enhanced samples for any input samples
without requiring access to the target classifier.

As shown in Fig. 2, StrGAN is composed of three parts: a generator G, a
discriminator D, and the target classifier F . The generator G takes the original
sample x as its input and generates the corresponding enhanced sample G(x).
The discriminator D takes x and G(x) as input and outputs the result of one
neuron for judging whether the input is an original sample. The purpose of D is
to make the generated sample indistinguishable from the original sample.

In order to improve the performance of the target classifier F , F takes G(x)
as its input and outputs the corresponding predicted label y′. By calculating the
difference between the original label y and the predicted label y′ to constrain the
label y′ equal to the label y. To bound the magnitude of the perturbation, we
use l2 norm to calculate the distance between G(x) and x. During the training,
the parameters of the target classifier are fixed. By solving the min-max game
to get the optimal parameters of the generator and the discriminator, thereby
obtain the final enhanced sample G(x). Among them, LGAN , Lstr, and Lpert

are part of the optimized loss function, and their specific implementation details
will be introduced in Sect. 2.4.
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2.2 Generator Designment

The generator is the most important part of StrGAN, and its architecture is
shown in Fig. 3. It can be seen from Fig. 3 that the original samples are processed
first before being input into the generator for convolution. Here use the method of
converting RGB to YCbCr [10] to process the original sample, and the conversion
formula is shown in Eq. (1).

⎧
⎪⎨

⎪⎩

Y = 0.299 ∗ R + 0.587 ∗ G + 0.114 ∗ B

Cb = −0.1687 ∗ R − 0.3313 ∗ G + 0.5 ∗ B + 128
Cr = 0.5 ∗ R − 0.4187 ∗ G − 0.0813 ∗ B + 128

(1)

YCbCr is widely used in computer systems, where Y refers to the bright-
ness component, Cb refers to the blue chroma component, and Cr refers to the
red chroma component. Processing the sample into YCbCr format may make
the generator only learn its transformation matrix. In order to better learn the
sample features, we remove the red chroma component Cr (remove Cb is also
possible), which has no effect on the image quality, so the channels are changed
from three to two. Although the Cr channel is removed, the generator can roughly
guess the information of the Cr channel from the information of the Y and Cb
channels, and learn how to add positive perturbations on the Cr channel to
improve the classification performance.

Fig. 3. Generator architecture.

The generator consists of one encoder, one decoder, and four residual blocks
(ResNet-Block). The first two are responsible for the encoding and decoding of
the sample, and the residual blocks are used for identity mapping. The gener-
ator has sixteen layers, in which the encoder and the decoder each have four
layers, and the rest layers are residual blocks. The encoder uses down-sampling
to convolve the input samples from 2× 224× 224 to 256× 55× 55, during which
the number of channels increases exponentially. As the network depth increases,
the sample size and the number of channels remain unchanged in the residual
blocks. The decoder uses up-sampling and takes the output of the residual block
as its input for deconvolution. Samples are deconvolved from 256 × 55 × 55 to
3 × 224 × 224 which is the same size as original samples, and the number of
channels decreases exponentially during this period.
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2.3 Discriminator Designment

The discriminator uses a five-layers network, including four convolutional layers
and one fully-connected layer. The overall architecture of the discriminator is
shown in Fig. 4.

Fig. 4. Discriminator architecture.

Convolutional layers in discriminator are similar to the encoder in the genera-
tor, and they use down-sampling to convolve the input sample from 3 × 224 × 224
to 256 × 14 × 14. The fully-connected layer takes the output of convolutional
layers as its input and outputs one neuron. In the process of downsampling, the
size of the convolution kernel is 4, the step size is 2, and the padding is 1. After
each convolution, the sample becomes half the size of the previous sample, and
the number of channels is doubled. In the final output layer, only one neuron is
included to represent the two classifications, and the sigmoid function is used to
compress the output result to between 0 and 1.

2.4 Loss Functions

The objective loss function is formulated with adversarial loss, classification loss,
and perturbation loss as:

L = LGAN + αLstr + βLpert (2)

where α and β are hyperparameters, which are used to balance the Lstr and
Lpert.

Adversarial Loss. LGAN is defined as:

LGAN = ExlBCE [D(x), 1] + ExlBCE [D(G(x)), 0] (3)

where Ex refers to calculate the expected value about original sample x, which
represents the same meaning in all functions used in this paper. D(·) and G(·)
denote the output of discriminator and generator. lBCE refers to the binary
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cross-entropy loss calculation. Here we use 1 for true and 0 for false. For the
generator, the purpose is to make the value of D(G(x)) close to 1, while the
discriminator is to make the value of D(x) close to 1, and the value of D(G(x))
close to 0. By solving the min-max game between generator and discriminator
to achieve the optimal value of the adversarial loss.

Classification Loss. Lstr is expressed as:

Lstr = ExlCE [F (G(x)), y] (4)

where y represents the real label corresponding to the original sample x, F (·)
denotes the output of the target classifier. lCE refers to the cross-entropy loss
calculation. By minimizing the cross-entropy loss between the predicted label of
the generated sample G(x) and the real label to make F (G(x)) close to y.

Perturbation Loss. Lpert is presented as:

Lpert = Ex‖x − G(x)‖2 (5)

where ‖ · ‖2 refers to L2 norm calculation. By minimizing the L2 norm of the
difference between the original sample x and the generated sample G(x) to make
G(x) be close to x.

2.5 Implementation Details

The learning rate of the target classifier and StrGAN are all set to 0.0001, and
the optimizer is Adam. When training StrGAN, we set the epoch to 120 and the
image batch size to 20. In the process of optimizing the loss function (as shown
in Eq. 2), we set α = 100 and β = 0.01, which is to make the generator pay more
attention to the change of image labels instead of image visual quality.

3 Experiments

3.1 Datasets

We perform experiments on ImageNet [3] and the cats&dogs [16] datasets. Two-
class, three-class, and five-class datasets are designed corresponding to 25000,
30000, and 50000 samples. The target classifier’s classification accuracy is trained
at about 80% to ensure its normal performance so that it can identify each class
relatively accurately. Then further divide the datasets into lower accuracy to
train StrGAN so that it can better reflect the improved performance of Str-
GAN. The redivided two-class, three-class, and five-class datasets correspond to
10000, 15000, and 25000 samples. We train StrGAN on the training set and do
evaluations on the test set.
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3.2 Performance Evaluation

StrGAN Based on AlexNet. When using AlexNet as the target classifier, the
results of enhanced samples generated by StrGAN are shown in Table 1. The first
column is the dataset class. The second and third columns are the accuracy of
the original sample and the corresponding enhanced sample. The fourth column
shows the best accuracy during the test. As shown in the table, the accuracy of
the enhanced sample is higher than that of the original sample. The improved
accuracy of the two-class sample is highest at 18.4%.

Table 1. Enhanced samples generated for AlexNet (YCbCr)

Class Original-acc Enhanced-acc Best-acc

Two 53.8% 69.9% 72.2%

Three 63.3% 78.3% 79.1%

Five 60.9% 69.2% 69.7%

StrGAN Based on VGG16. When taking VGG16 as the target classifier,
the results of enhanced samples generated by StrGAN are shown in Table 2. The
table is the same as Table 1. From the table, we can see the improved accuracy
of the three-class sample is the highest at 17.5%.

Table 2. Enhanced samples generated for VGG16 (YCbCr)

Class Original-acc Enhanced-acc Best-acc

Two 63.1% 72.2% 74.1%

Three 61.4% 75.9% 78.9%

Five 59.0% 64.3% 65.9%

StrGAN Based on ResNet18. The results of enhanced samples generated
by StrGAN for ResNet18 are shown in Table 3. This table is the same as Table 1
and Table 2. As shown in the table, we can see the improved accuracy of the
three-class sample is the most obvious, which is 28.6%.

Table 3. Enhanced samples generated for ResNet18 (YCbCr)

Class Original-acc Enhanced-acc Best-acc

Two 58.8% 77.6% 77.7%

Three 59.5% 87.2% 88.1%

Five 65.0% 78.6% 78.6%
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The YCbCr at the end of the title of Table 1, 2 and Table 3 means that the
original samples are processed into YCbCr format before generating enhanced
samples. From Table 1, 2 and Table 3, it can be seen that the accuracy of the
enhanced samples is generally higher than that of the original samples. Among
them, the improvement effect based on ResNet18 is the most obvious. Experi-
mental results show that the enhanced samples generated by StrGAN effectively
improves the performance of the target classifier.

3.3 Comparison and Analysis

To further confirm the correctness of the idea in this paper, we changed the
method of sample processing. Instead of converting the sample to YCbCr, we
directly add random gaussian noise to the original sample. We compare the
improved accuracy of different classifiers after YCbCr and noise processing, and
the comparison results are shown in Table 4.

Table 4. Comparison of improved accuracy with different processing on different clas-
sifiers

Class Classifiers Improved (YCbCr) Improved (Noise)

Two AlexNet 18.4% 21.1%

VGG16 11.0% 14.0%

ResNet18 18.9% 17.8%

Three AlexNet 15.8% 16.0%

VGG16 17.5% 16.6%

ResNet18 28.6% 25.3%

Five AlexNet 8.8% 7.6%

VGG16 6.9% 7.0%

ResNet18 13.6% 13.1%

As shown in Table 4, the first column is the class, the second column is the
classifier, and the third and fourth columns respectively represent the improved
accuracy of the enhanced samples generated after different processing. Among
them, YCbCr means that the original sample is processed into YCbCr format
before input into the generator of our StrGAN, and Noise means that the original
sample is added with a random noise before input into the generator of our
StrGAN.

Table 4 shows that the improved accuracy of enhanced samples generated after
noise processing is similar to the YCbCr processing, indicating that the generation
of enhanced samples does not focus on the samples’ processing but the algorithms’
realization. Among the three target classifiers, the improvement effect based on
ResNet18 is the most obvious. The improved accuracy of the three-class samples
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is 28.6%, which is significantly higher than the other two. Because of the simple
architecture of the AlexNet, its training time is the shortest.

Original StrGAN(YCb) StrGAN(Noise)

Fig. 5. Comparison of enhanced samples and original samples

Figure 5 shows the comparison of enhanced samples and original samples.
The first column represents the original sample, the second and third columns
are the enhanced samples generated after YCbCr preprocessing and its absolute
difference with the original sample, and the fourth and fifth columns correspond
to the results after noise preprocessing. In our experiment, all YCbCr prepro-
cessing represents YCb format with the Cr component removed. It can be seen
from Fig. 5 that the visual quality of the enhanced samples generated after the
two preprocessing methods is somewhat different from the original image, but
the overall layout is similar. From their absolute difference images, we can see
that the samples after YCb processing are smoother than that of noise processing
and the edge effect is more obvious.

Overall, the experiment shows that the enhanced sample can improve the
performance of the target classifier, and the improvement effect is significant.
However, there are still some problems. When the classes of samples increase,
the improvement effect decreases or even becomes negative. The overall visual
quality of the enhanced samples is not high, and some even affect human eye
recognition. It is believed that the improvement of these problems can further
promote the development of enhanced samples.

4 Conclusion

This paper proposes enhanced sample to improve the performance of neural net-
works. The so-called enhanced samples refer to those samples with positive per-
turbations. To generate enhanced samples, we proposes an algorithm StrGAN.
StrGAN can directly map the input samples into enhanced samples to achieve
the purpose of enhancing the network. Since StrGAN and the target classifier
in the model are independent of each other, it can effectively reduce the classi-
fier’s computing resources and training time. But StrGAN has some overfitting
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problems, and the perturbation in enhanced samples is quite apparent. In future
work, we plan to reduce the over-fitting problem while focusing on enhancing
the samples’ visual quality to generate high-quality enhanced samples.
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Abstract. With the continuous development of the Internet of Things
(IoT) and people’s demand for telemedicine, smart healthcare technol-
ogy is developing rapidly. Wearable sensors, the basic components in
smart healthcare, contain patients’ sensitive data such as physiological
data and personal health information. Meantime, during the transmission
and interaction of those sensitive data, patients’ privacy may leak which
causes harm to them. Therefore, data security for wearable sensors is
essential to protect patient’s privacy. In our paper, a secure and privacy-
preserving data transmission scheme in the healthcare framework is pro-
posed. In particular, the k-out-of-n OT technology is introduced, and a
lightweight (OT )nk protocol is designed to ensure the two-way privacy
of the communication parties and reduce the communication overhead
during transmission. In addition, theoretical and experimental analyses
indicate that the proposed scheme is practical for data transmission with
high security and efficiency.

Keywords: Data transmission · Privacy-preserving · Oblivious
transfer · Wearable sensor

1 Introduction

Currently, the smart healthcare framework is composed of sensor technology and
healthcare infrastructure, which can employ wearable sensors to remotely moni-
tor the physiological parameters of patients [17]. Generally, three layers compose
a smart healthcare framework, that is, the data collection layer, the data pro-
cessing layer and the medical service layer [14]. The data collection layer mainly
includes patient physiological data (heart rate, body temperature, blood oxy-
gen, etc.), exercise data, environmental data, etc. collected by various wearable
sensors, and then are transmitted to the phone. At the data processing layer, the
server stores data, and performs calculation and analysis on the data. The med-
ical service layer allows doctors and nurses to interact with the server to ensure
that they can access patient data and provide timely diagnosis or advice for
patients. This framework effectively assist doctors in understanding the health
c© Springer Nature Switzerland AG 2021
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status of patients, predict the health status or disease of patients, and play an
early warning role. However, it involves the problem of easy leakage of sensitive
data regardless of the stages of collection, transmission, and interaction [16].

Consider the following situation: nowadays, the COVID-19 is still continuing.
Once the certain area is classified as an epidemic area, the treatment of basic
diseases will be postponed, except for emergency diseases. At this time, how
to establish a secure and privacy-preserving Internet of Medical Things, which
employs the patients’ wearable devices to diagnose in a timely manner, is partic-
ularly important. And, the wearable sensor includes physiological data, exercise
data and environmental data, etc., which involve the user’s private information.
This requires the confidentiality of sensor data. To meet the mentioned goal, a
higher level of security algorithm to encrypt the data is applied in some proto-
cols, sacrificing the efficiency of those. In addition, if the data is monitored or
stolen by malicious users during transmission, the user’s disease, behavior and
lifestyle habits will be leaked. Worse, malicious users can analyze group living
habits and laws via monitoring multi-person sensor data, such as understanding
people suffering from diseases through big data, and people taking the subway
at 8 o’clock every day, and so on. Thus, how to ensure that the user’s privacy
is not leaked during the sensors data transmission phase is one of the main
contents of our scheme. Moreover, doctors only have the privilege to access the
data of patients under his charge, but do not realize the others. In case the
patient’s physiological data is leaked, malicious users may understand the data,
learn about and spread the patient’s condition, which may cause discrimination
against him by others.

The oblivious transfer (OT) algorithm is a good method to solve the prob-
lem mentioned above. Various OT protocols have been put forward, including
1-out-of-2 OT, 1-out-of-k OT and k-out-of-n OT. These OT protocols have been
employed to ensure the privacy-preserving of data in various environments, such
as medical record system [11], VANETs [19] and so on.

Motivation of This Paper: As it is mentioned above, some data transmis-
sion protocols are not suitable for the healthcare framework with the wearable
sensors. Therefore, a secure data transmission scheme is proposed in our paper,
which protects the privacy of wearable sensors and users in the data transmission
phase based on oblivious transfer and ciphertext-policy attribute-based encryp-
tion (CP-ABE) technologies. The OT algorithm is used to ensure the privacy-
preserving of patients. The OT algorithm can ensure that the servers are unable
to figure out that which medical records the doctors select, so as to prevent the
servers from investigating the health status of patients. And CP-ABE scheme is
used to encrypt the medical records. To accomplish this goal, the following three
crucial issues should be considered for us. First, the confidentiality of data of
wearable sensors should be guaranteed in the transmission phase. The security
of sensor data is the basis of our protocol. If there is a problem with the data,
the subsequent phases are directly terminated. Sensor data mainly includes the
patient’s physiological data, medical data, etc., which are related to the patient’s
life safety. If the data is tampered with, it will affect the diagnosis. Second, ensure
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privacy among wearable sensors, devices, servers and users under the healthcare
framework. On the one hand, doctors only learn the data of users managed by
them during the (OT )n

k phase, but have no right to obtain the others. On the
other hand, the server cannot realize which data is accessed by the doctor. In
addition, the storage traces of data are hidden from malicious persons. Malicious
persons cannot infer the user’s area by analyzing which server the data comes
from.

1.1 Main Contributions

We design a secure and privacy-preserving data transmission scheme in the
healthcare framework that is to resolve the above issues. The main contribu-
tions are as follows.

– A secure and privacy-preserving healthcare framework with wear-
able sensors is designed, which assures the security of data during
transmission. Assuming that a patient u1 has many wearable sensors si,
and their data is transmitted to servers via the gateway or mobile phone.
Then, doctors d1 access the patient data according to the authority. In the
above process, sensors, gateways, and servers all contain u1’s private data.
There is also a risk of privacy leakage or data tampering by malicious users
during the data transmission phase between entities. Through applying the
proposed healthcare framework, u1’s medical data can not be obtained, and
the privacy of each entity will be protected. Figure 1 shows the healthcare
framework with wearable sensors.

– A lightweight (OT )n
k protocol that protect the privacy between

servers and users is proposed. Normally, doctors d1 employ the stored
keys to decrypt data of servers. It is worth noting that d1 should store a
large number of keys, and the cost of key update is high. To solve the above
security breaches, we integrate CP-ABE technology into OT protocol and
design a lightweight (OT )n

k protocol. The server can only find data based on
uid and category provided by d1, but it does not learn those data which d1
looks forward to accessing. Moreover, d1 can not gain the other data, expect
for the required data, which effectively protects the two-way privacy between
servers and doctors.

– Data confidentiality is efficiently ensured and the computation of
our scheme is effectively reduced. Through analysis and proof, the secu-
rity of our protocol satisfies the definition in the security model. Besides, the
computation and storage resources of sensors are limited. The protocol we
designed for data encryption and transmission is lightweight. We compare
our protocol with similar protocols from different phases through theoretical
performance analysis and experiment analysis.
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Fig. 1. The healthcare framework with wearable sensors

1.2 Related Work

In order to facilitate the timely treatment of patients, smart healthcare sys-
tem continues to develop [12,13]. It can quickly collect the physiological data of
patients and provide it to doctors, then doctors can analyze and diagnose the
patient’s symptoms in a timely manner. Following this, the healthcare frame-
work was gradually established to standardize the various stages of smart medical
care. In 2009, three forms of healthcare system transformation are determined
by Wendt et al. [20], which also address the need to establish a comprehensive
conceptual framework for analyzing healthcare systems and their transforma-
tions. As wearable sensors continue to improve, the amount of data that can
be collected is increasing exponentially. A patient-centered framework which
brings big data to personalized healthcare is proposed via Chalwa et al. [3],
which demonstrates its applicability to patient-centered outcomes, meaningful
use, and reducing re-admission rates. Then, in 2021, a novel healthcare monitor-
ing framework based on the cloud environment and a big data analytics engine
is proposed by Ali et al. [1], which can precisely store and analyze healthcare
data, and to improve the classification accuracy.

In addition, healthcare data are sensitive data involving patients. Once pri-
vacy is leaked, it will cause harm to patients. In order to protect the privacy,
in 2018, Sharma et al. have proposed a privacy preservation scheme for WSN
based healthcare application employing the concepts of secret sharing and hash-
ing function [15]. Then, an efficient and privacy-preserving disease risk prediction
scheme for e-healthcare is proposed by Yang et al. [21], which unitizes a super-
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increasing sequence and a homomorphic cryptographic algorithm. In 2021, a
scheme of forward privacy preserving for IoT-enabled healthcare systems is pro-
posed by Wang et al. [18], which mainly includes a searchable encryption scheme
to achieve privacy preserving and searchable function.

Moreover, k-out-of-n OT technology is combined with our scheme to protect
the privacy among doctors and servers. In 2020, an accountable and efficient data
sharing scheme for industrial IoT by Huang et al. [9], which decentralizes a k-out-
of-n oblivious transfer protocol together with a zero-knowledge proof technique
to enable the data receiver’s private key. In 2021, Wang et al. propose a scheme
to protect the users’ privacy in the situation of VANET’s feature matching based
on a k-out-of-n OT and Private Set Intersection protocol [19].

1.3 Organization

The rest of this paper is organized as follows. Section 2 presents some prelimi-
naries in cryptographic. Section 3 describes the system model, design goals and
threat model. Section 4 introduce the proposed scheme in details. Section 5 and
6 demonstrate the security analysis and performance analysis of our scheme,
respectively. Finally, conclusions of this paper and our work are given in Sect. 7.

2 Preliminaries

2.1 Notations

Some frequently used notations and corresponding meanings are given in Table 1.

Table 1. Notations in our scheme

Symbol Description

G,GT Cyclic multiplicative groups

g Generator of G

h1, h2 One-way hash function

(ski, pki) The private and public key pair of sensors in registration

(sks, pks) The private and public key pair of sensors in authentication

sek The symmetric key to encrypt data

kt The encrypted sek

wy The y-th number of data my to be required

Md The encrypted data via sek

D The set of doctor attributes

P The set of patient attributes

A The attributes set
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2.2 Smooth Projective Hashing

The definition of smooth projective hashing (SPH) is proposed by Cramer et al.
[6,10]. There are two keys in VSPH, skv is the private hash key, pkv is the public
hash key. The tuple of SPH is denoted as H = (H,K,X,L,B, β, α). The set of
hash functions with K(ξ) as the key is {Hk : X → B}k∈K , where X is the data
set, B is the set of hash values and K is the set of hash function’s key. Then,
defines the projective hashing function β : k → α, that is, α = β(k) holds, where
α is the set of projective key. The difficult subset membership problem illustrates
two finite non-empty sets X,W ⊆ 0, 1ploy|k| and a relationship R ⊂ X × W for
each instance ξ. In other words, ξ = (X,W,R) makes the corresponding L =
{x : ∃w.s.t(x,w) ∈ R} non-empty.

Definition 2.1 Smooth Projective Hashing: (H,K,B, β, α) is the projective
hashing function of difficult subset membership problem M . Each instance ξ ∈
M exists a function f which f(x;β(k), w) = Hk(x) holds, where x ∈ L(ξ),
k ∈ K(ξ) and α = β(k) establish.

2.3 Ciphertext Policy Attribute Based Encryption

Our protocol uses the ciphertext policy attribute based encryption algorithm
(CP-ABE) proposed by Fuchun Guo et al. [7] It is mainly divided into four
steps, which is described as follows.

– Setup: Input a security parameter s and a set of attributes A =
{A1, A2, · · · , An}, the public parameters pkm and a master secret key msk
are output via the setup algorithm.

– Encrypt: Input the public parameters pkm, a access policy P and a data d,
the encrypt algorithm Enc(P, d) is performed to output the ciphertext CT .

– KeyGen: Input the public parameter pkm and a master secret key msk and
a subset of attributes A, the decryption key of skA is output via the key
generation algorithm.

– Decrypt: Input a ciphertext CT which is constructed by a access policy P,
the public parameter pkm and the key skA, the data d is computed by the
decryption algorithm. Otherwise, aborts the scheme.

2.4 k-out-of-n Oblivious Transfer Protocol

This k-out-of-n OT protocol is proposed by Chu et al. [5], which supports to
choose k message by a receiver. The OT protocol not only protect the privacy
of a receiver, but also a sender.

Input: parameters g, h1, h2,Gq, where Gq is the subgroup of Z∗
q , h1, h2 are

hash functions and g ∈ Gq holds. The sender has data {m1,m2, · · · ,mn} and a
receiver selects the number of data {δ1, δ2, · · · , δk}.

Output: mδ1 ,mδ2 , · · · ,mδk
.
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Fig. 2. System model

1. A receiver computes wδj
= h1(δj) and Aj = wδj

gaj , where aj ∈ Z
∗
q and

j = 1, 2, · · · , k hold. Then, he sends A1, A2, · · · , Ak to the sender.
2. A sender constructs y = gx, Dj = (Aj)x, wi = h1(i) and ci = mi ⊕ h2(wx

i ),
where x ∈ Z

∗
q , i = 1, 2, · · · , n and j = 1, 2, · · · , k establish.

3. A sender sends y,D1,D2, · · · ,Dk and c1, c2, · · · , cn to the receiver.
4. A receiver computes Kj = Dj/yaj and mδj

⊕ h2(Kj). Finally, the receiver
obtains the required data mδ1 ,mδ2 , · · · ,mδk

.

3 Problem Statement

3.1 System Model

A healthcare framework with wearable sensors is proposed to transfer secure
data, while it also protect the privacy of all entities. On the one hand, the privacy
of sensitive data in the sensor is protected. The data is encrypted to store in
sensor, and malicious users cannot obtain the data directly. Meantime, even if
a malicious user steals k sensor keys sks and the input value ci which has been
used to generate the key, he also could not understand the physical unclonable
function by guessing. On the other hand, protect the privacy of servers. The
doctor can only learn the requested data, and other data in the server cannot
be learned. In addition, the dynamic joining or exit of groups are supported by
this protocol, and it can also resist collusion attacks by revoked or malicious
users. The system model contains four entities, wearable sensors, phone/devices,
servers and doctors. Figure 2 shows a system model of the proposed scheme.

Patients wear a variety of sensors, including hospital-specific sensors for cer-
tain diseases. These sensors can facilitate a determined doctor to know the
patient’s condition in time. Meantime, it is also convenient for doctors to con-
duct multidisciplinary medical consultations in the cloud. Therefore, the sen-
sor mainly includes the patient’s physiological data, movement data, etc., those
involves the patient’s privacy. In addition, patients will move at any time, and
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data will be stored in the cloud to ensure that doctors in different hospitals can
obtain the data. A many-to-many secure transmission model between users (doc-
tors and patients) and servers is constructed by our scheme. First, the sensor/
phone completes the registration phase, and employs zero-knowledge proof to
prove that the sensor has generated a key for a phone. Then, a set of attributes
of users such as doctors and patients is generated. Secondly, two-way authentica-
tion is performed between the sensor and the mobile phone to prevent a certain
device from forging its identity. Only the sensor that has been authenticated,
its ID will be stored by the phone. Then, the sensor encrypts data and trans-
mits it to the phone. Also apply a symmetric key to re-encrypt the private key
so that a phone decrypt the sensor data. Third, the OT protocol is employed
between doctors and sensors for secure data transmission, which also protects
the privacy of both parties. The doctor sends k request to servers via data
serial numbers. They perform OT protocol to transfer data. Consequently, sev-
ers return k accessed data. Finally, the doctor executes the CP-ABE algorithm
to decrypt the re-encrypted key, then applies this key to decrypt ciphertext.

3.2 Security Model

The (OT )n
k protocol can be utilize to ensure the privacy preserving during the

data transmission. A secure (OT )n
k protocol should satisfy the following security

requirements.

Reviewer’s Security. We assume that A is the adversary who can conspire
with the data sender. We can say that the protocol ensures the reviewer’s security
if the adversary A is not able to figure out what data the receiver has selected.
The game between the challenger C and the adversary A is presented as follows.

– Setup: The challenger C selects secret keys and generates system parameters
of (OT )n

k protocol. And it sends secret keys and system parameters to the
adversary A. Besides, C sets uy for data my, where 1 ≤ y ≤ n.

– Query I: The adversary A can query about MAj
adaptively in this phase. A

inputs the reviewer’s choice j and the challenger C returns MAj
and add it

into the Q list;
– Challenge: The adversary A inputs his/her target (j0, j1). The challenger C

selects b ∈ {0, 1} and computes MAb
. If MAb

∈ Q, the game aborts. Other-
wise, C sends MAb

to the adversary A.
– Query II: This phase is the same as Query I, expect that the adversary A can

not query about j0 or j1 in this phase.
– Guess: The adversary A outputs his/her guess b∗. If b∗ = b, A wins. Other-

wise, A fails.

Sender’s Security. We assume that A is the adversary who can conspire with
the data reviewer. We can say that the protocol ensures the sender’s security
if the adversary A is not able to obtain data other than the data he/she has
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selected. The game between the challenger C and the adversary A is presented
as follows.

– Setup: The challenger C selects secret keys and generates system parameters of
(OT )n

k protocol. And it sends system parameters to the adversary A. Besides,
C sets uy for data my, where 1 ≤ y ≤ n.

– Query I: The adversary A can query about θj adaptively in this phase. A
inputs his/her choice j. The challenger C returns θj to A and adds the j into
the Q̂ list;

– Challenge: The adversary A onputs his/her target j∗. If j∗ ∈ Q, the game
aborts.

– Query II: This phase is the same as Query I, expect that the adversary A can
not query about j∗ in this phase.

– Test: The adversary A outputs θj∗ . If θj∗ , A wins. Then A can compute Yj∗

via f(gTwj∗ , θj∗ , wj∗) and obtain mj∗ = pj∗ ⊕ Yj∗ . Otherwise, A fails.

4 Our Proposed Scheme

The proposed scheme is described in details in this section. Our scheme are
divided into four parts, in which initialization phase is introduced in section
A, registration phase is presented in section B, mutual authentication phase is
stated in section C, k-out-of-n OT (OT )n

k -data transmission phase and decryp-
tion phase are illustrated in section D and section E, respectively.

4.1 Initialization Phase

Assume that there are j wearable sensors (WS1, WS2, · · · , WSj), a phones/
devices (Pa), b servers (S1, S2, · · · , Sb) which each server has n stored data.

Set two multiplicative cyclic groups G and GT, bilinear mapping e : G×G →
GT , and denote the generator of G as g. Set the hash functions h1 : G × G ×
{0, 1}n × Z

∗
p → Z

∗
p and h2 : Z∗

p → G, where n is the fixed value. And then, the
phone inputs a security parameter s, computes its public key pkp and private
key skp, and sets a value v. Besides, the setup algorithm in CP-ABE scheme is
executed to generate pubic-private keys pair (pt, ps), set a universe of attributes
{A1, A2, · · · , An} and form a access policy P with the security parameter λ as
input.

Key generation center (KGC) generates keys for doctors via the KeyGen
algorithm in the CP-ABE scheme. The doctor inputs his attributes A and the
KGC outputs the private key skd = KeyGenABE(A, pt, ps).

4.2 Registration Phase

We employ physical unclonable function (PUF) to assistant wearable sensors to
generate the key. Sensors compute and send the zero-knowledge proofs to the
phone, which proves to phone the key which has been generated, to accomplish
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the registration. When the phone successfully verifies proofs, it can store ID
and other necessary information of sensors. The registration phase of our scheme
includes three steps, they are described briefly below.

– Step 1: For 1 ≤ i ≤ v, the sensor selects ci
R← Z

∗
p as the input of

the PUF. Then, it computes private key ski = PUF (ci) and public key
pki = gski . Meantime, it applies the public key pkp of phone to calculate
Ti = e(pkp, h2(ci)).

– Step 2: The sensor selects ri
R← Z

∗
p, constructs the commitment value Mi =

gri , challenge value Hi = h1(Mi||pki||ci||ID), and response value Ri = ri −
Hi × ski. Finally, it sends the proof πi to the phone.

πi = (ci,Mi, pki,Hi, Ri) (1 ≤ i ≤ v)

– Step 3: The phone generates H ′
i = h1(Mi||pki||ci||ID) and checks whether the

following formulas H ′
i

?= Hi and Mi
?= gRipki

H′
i hold. If those formulas do not

hold, the scheme aborts. Otherwise, the phone stores a list (ci, pki)(1 ≤ i ≤ v)
for the sensor ID.

4.3 Mutual Authentication Phase

In the healthcare framework, only after sensors and phones are mutually authen-
ticated to ensure that the device is in a trusted state, can data be transmitted.
In this phase, sensors and the phone perform the following steps.

– Setp 1 - Connection Request
1. Case 1: Sensor actively sends an authentication request to the phone.

Sensor send its ID to the phone. The phone randomly picks pair (c′, pk′)
from the list (ci, pki)(1 ≤ i ≤ v) of sensor ID, and then computes BLS
signature σ(c′) = h2(c′)skp . At last, it sends c′ and σ(c′)to the sensor.

2. Case 2: The phone actively sends an authentication request to sensors. It
confirms the identity ID of sensor which requests authentication. Then, it
randomly picks pair (c′, pk′) from the list (ci, pki) (1 ≤ i ≤ v) of sensor
ID, and then computes BLS signature σ(c′) = h2(c′)skp . At the end, it
sends c′ and σ(c′)to the sensor.

– Step 2 - Sensor → Phone Authentication
1. According to values c′, the sensor figures out T ′ to check whether T ′ ?=

e(g, σ(c′)). If the equation is true, the phone has been certified by sensors.
Otherwise, the algorithm aborts since the value c′ has been tempered
with.

2. The sensor inputs c′ into the PUF and computes private key sk′ =
PUF (c′) and public key pk′

s = gsk′
. Then, it selects r′ R← Z

∗
p,

generates the commitment value M ′ = gr′
, challenge value H ′ =

h1(M ′||pk′
s||c′

s||ID), and respond value R′ = r′ − H ′ × sk′
s. Finally, it

generates the proof π′ as follows.

π′ = (c′,M ′, pk′
s,H

′, R′)
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3. The sensors randomly selects a symmetric key sek to encrypt its data
Md = Encs(sek, d). Then, it performs ELGammal algorithm to encrypt
the above symmetric key sek by utilizing the public key of the phone (i.e.
CT = Enc(pkp, sek)), so that the ciphertext can be decrypted by the
phone. Finally, the sensor sends (π′,Md, CT ) to the phone.

– Step 3 - Phone → Sensor Authentication
1. The phone extracts pk′

s from π′ and checks pk′ ?= pk′
s. If it is not true, the

protocol aborts. Then, the phone verifies whether the following equations
H ′ ?= h1(M ′||pk′||c′||ID) and M ′ ?= gR′

pk′H′
hold. If they are true, the

mutual authentication is completed. Otherwise, the scheme aborts.
2. Then, the phone decrypts CT to obtain the symmetric key sek =

Dec(CT, sk′). After that, the phone employ sek to decrypt Md, which
d = Dec′(sek′,Md) holds.

4.4 Data Transmission Phase

The data can be transmitted in the channel after it is encrypted. To solve the
problem of exposing server location privacy, this phase encrypt data via the
CPABE algorithm. That is, only authorized doctors can get the private key.
This prevents doctors from storing a large number of server private keys and
reduces the waste of resources. When the encrypted data has stored in servers,
the doctor can access the authorized user. Then, he performs OT protocol to
obtain Fig. 3. The specific steps are as follows.

Fig. 3. The steps of (OT )nk algorithm
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– Step 1: CT ← Encrypt(P, sek)
The phone sets the access policy P for the data, executes CP-ABE algo-
rithm to encrypt sek, and uploads the ciphertext CT to cloud, which
CT = EncABE(P, sek) holds. Meanwhile, it sets tag w for the data Md and
uploads (w,Md) to cloud.

– Step 2: k − out − of − n OT protocol ((OT )n
k )

Hypothesis that the cloud has n ciphertext my, where 1 ≤ y ≤ n constructs.
Data my corresponding to tag wy.
1. The cloud randomly chooses numbers x, fy ∈ Z

∗
p, computes T = 2�log p�

and generates ξ = gx and uy = gTfy . Then, it utilizes the VSPH algorithm
to calculate Yy = Hfyx(g2wy ) and py = my ⊕Yy. Finally, the cloud publics
(uy, py, wy, CTy)(1 ≤ y ≤ n).

2. The doctor selects k data according to the tag wj , where 1 ≤ j ≤ k holds.

Then, he randomly chooses number αj
R← Z

∗
p, and computes MAj

= u
αj

j .
At last, he sends k parameters MAj

to the cloud.
3. The server computes and sends k parameters ηj = Mx

Aj
to the doctor.

4. The doctor computes k parameters θj = η
1

αj

j , T = 2�log p�,
f(gTwj , θj , wj) = Y ′

j , and mj = pj ⊕ Y ′
j finally.

4.5 Decryption Phase

When the doctors obtain the ciphertext to perform the following steps to decrypt.
The doctor utilizes his private key to decrypt the ciphertext CTj to obtain

the symmetric key sekj .

sekj = DECABE(CTj , skd, pt)

Then, the doctor utilizes the symmetric key sekj to decrypt mj to obtaining the
data.

5 Security Analysis

In this section, the formal security proofs are presented to illuminate that
the proposed (OT )n

k protocol satisfies reviewer’s security and sender’s security.
Besides, the security analysis are given to prove the data transmission protocol
is secure and privacy preserving.

Theorem 1: The proposed (OT )n
k protocol satisfies reviewer’s security when

the decisional Diffie-Hellman (DDH) assumption holds.

AdvA ≤ n × εDDH

Proof: The game between the challenger C and the adversary A has been
described in security model. To prove Theorem1, we need to prove that A′s
advantage of breaking reviewer’s security is a negligible function. We expand
and improve the game to reduce the above problem to DDH problem.
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Table 2. Computational cost comparison

Entities Authentication
phase

Transmission
phase

Decryption
phase

(OT )nk protocol

Sensors 4Tp + Te+
Th1 + ENC

/ / /

Phones 4Tp + Th1+
Th2 + DEC

ENC−CP −ABE / /

Cloud / [offline](3n+1)Tp

+[online]kTp

/ [offline]3(n+1)Tp

+[online]kTp

Doctors / [offline]kTp

+[online]3kTp

DEC + DEC
−CP −ABE

[offline]kTp

+[online]3kTp
aTx: XOR Operation; Te: Weil Operation; Th1 : Hash Operation in h1; Th2 : Hash
Operation in h2; and TE : Power Operation.
bn: The number of data; ENC: The symmetric encryption; DEC: The symmetric
decryption.

– Setup: The challenger C is the solver of DDH problem. C will obtain a DDH
tuple (G, g, ga, gb, Z), where Z = gab(the probability is 1

2 ) or Z
R← G (the

probability is 1
2 ). The Setup phase is the same as that in the security model

expect that the challenger guess A′s target j′ and set uj′ = ga C when he/she
sets uy for data my.

– Query I: The adversary A inputs the choice j. The challenger C chooses
αj

R← Z
∗
p, computes MAj

= u
αj

j and returns it to A.
– Challenge: The adversary A outputs his/her targets (j0, j1). If j0 
= j′ ∧

j1 
= j′, the game aborts. Otherwise, the challenger C sets jb = j′, αjb
= b,

MAb
= Z and sends MAb

to A.
– Query II: The adversary A inputs the choice j. If j = j0 or j = j1, the game

aborts. Otherwise, C chooses αj
R← Z

∗
p, computes MAj

= u
αj

j and returns it
to A.

– Guess: The adversary A outputs his/her guess b∗. If b∗ = b, the challenger C
outputs Z = gab. Otherwise, C outputs Z

R← G.

Now, we consider C′s advantage of solving the DDH problem. We assume that
A′s advantage of breaking reviewer’s security is ε. We denote p = 1 and p = 0
as the events that the value Z C achieved is gab or the random value from Z

∗
p.

And we denote p∗ as C′s guess. Besides, we denote E as the event that the game
aborts. We can easily obtain that Pr[p = p∗|E] = 1

2 , Pr[p∗ = p|¬E ∧ p = 0] = 1
2

and Pr[p∗ = p|¬E ∧ p = 1] = 1
2 + ε.



A Secure and Privacy-Preserving Data Transmission Scheme 387

AdvC = Pr[p = p∗] − 1
2

= Pr[p = p∗|E] × Pr[E] + Pr[p = p∗|¬E] × Pr[¬E] − 1
2

=
1
2

Pr[E] + Pr[p = p∗|¬E ∧ p = 0] × Pr[¬E] × Pr[p = 0]

+ Pr[p = p∗|¬E ∧ p = 1] × Pr[¬E] × Pr[p = 1] − 1
2

=
1
2
(1 − Pr[¬E]) +

1
4

× Pr[¬E] + (
1
4

+
ε

2
) × Pr[¬E] − 1

2
=

ε

2
× Pr[¬E]

Since Pr[¬E] = 2
n , where n is the number of data, AdvC = ε

2 × 2
n = ε

n . Therefore,
AdvA = ε = n × AdvC = n × εDDH .

Theorem 2: The proposed (OT )n
k protocol satisfies sender’s security when the

computational Diffie-Hellman (CDH) assumption holds.

AdvA ≤ n × εCDH − n − 1
p

.

Proof: The game between the challenger C and the adversary A has been
described in security model. To prove Theorem2, we need to prove that A′s
advantage of breaking sender’s security is a negligible function. We expand and
improve the game to reduce the above problem to CDH problem.

– Setup: The challenger C is the solver of CDH problem. C will obtain a CDH
tuple (G, g, ga, gb). C sets x = a, ξ = ga and generates other system parame-
ters. Then C sends ξ and system parameters to A. When C sets uy for data
my, he/she guesses A′s target j′ and sets fj′ = b

T , uj′ = gb.
– Query I: The adversary A his/her choice j. The challenger computes θj = ξTfj

and sends ξ, uj = gTfj , θj to the adversary A. Besides, C adds j into Q̂ list.
– Challenge: The adversary A outputs his/her target j∗. If j′ 
= j∗ or j∗ ∈ Q̂,

the game aborts.
– Query II: It is the same as Query I expect that the adversary should not

query about j∗.
– Test: The adversary A outputs his/her result θj∗ and C takes θj∗ as the

solution of CDH problem.

Assume that the A′s advantage of outputting right θj∗ is ε. E is denoted as
the event that the game aborts. Therefore, we can get that AdvC = Pr[A →
θj∗ |E] × Pr[E] + Pr[A → θj∗ |¬E] × Pr[¬E] = 1

p (1 − Pr[¬E]) + ε × Pr[¬E].
Since Pr[¬E] = 1

n , AdvC = n−1
np + ε

n . Thus, AdvA = ε = n × AdvC − n−1
p =

n × εCDH − n−1
p .

Theorem 3: The proposed data transmission protocol is secure and privacy-
preserving.
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Proof: The proposed (OT )n
k protocol has been proved to satisfy reviewer’s secu-

rity and sender’s security. The CP-ABE proposed by Guo et al. has been proved
to be secure under aMSE-DDH assumption in [7]. Besides, the smooth projective
hashing adopted in this paper is secure under the Nth residuosity assumption [8].
Thus, the proposed data transmission protocol is secure and privacy-preserving
under DDH, CDH, aMSE-DDH and Nth residuosity assumptions.

6 Performance

In this section, we first analyse the proposed scheme and provide a simplified
comparison in Table 2. And then, we conduct a comparative in OT algorithm
analysis with POT and BP-OT. POT scheme was proposed by Biesmans et al.
[2] to ensure the privacy of users and the security of providers in the mobile
pay-TV. There are many comments and knowledge proofs that are needed to
be generated in POT scheme. Thus, it’s time cost is large. And BP-OT was
proposed by Chen et al. [4]. Chen et al. utilized bilinear pair, which costs a lot,
to put forward a k-out-of-n OT protocol.

6.1 Performance Analysis

Most of computation cost come from the hash operation in h1, hash operation
in h2, power operation, weil operation and XOR operation, which are described
as Th1 , Th2 , Tp, Te and Tx. Normally, the overhead of the XOR operation Tx is
ignored. In Table 2, n presents the number of data, ENC describes the symmetric
encryption, DEC is the symmetric decryption.

In mutual authentication phase, a phone verifies signatures from sensors and
sensors determined the identity of the phone via proof, which cost computation
overhead 8Tp +Te +2Th1 +Th2 +ENC +DEC. The encryption and decryption
algorithms are employed to hide private key and assist transmission phase to
transfer the data. In the data transmission phase, servers and cloud perform
k-out-of-n OT protocol to deliver the required data, which cost 4kTp + ENC −
CP −ABE computation overhead. In particular, in k-out-of-n OT protocol, the
initial processing of data and the calculation of some parameters by the cloud
can be calculated offline, and those calculation overhead is ignored. In addition,
at this phase, the phone applies CP-ABE algorithm to re-encrypt the key, but
note that the data has been encrypted in the authentication stage. Meantime,
both the doctor and server privacy are ensured via this phase. At decryption
phase, the doctor decrypts the re-encrypted key to obtain sek after passing the
access policy. Then, he uses the key sek to decrypt the ciphertext, which costs
the computation overhead DEC + DEC − CP − ABE. This method effectively
guarantees the confidentiality of the data. And, group users can also dynamically
join and exit.
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6.2 Performance Evaluation

Fig. 4. The comparison of our scheme and other schemes

The C language with PBC library (pbc-0.5.14) and GMP library (GMP-6.1.2)
are employed for simulating our proposed (OT )n

k protocol, BP-OT protocol and
POT protocol. All simulations on a desktop with features as follows: 1) CPU:
Intel(R) Core(TM) i5-9500 CPU @ 3.00 GHz 3.00 GHz; 2) ROM: 6.0 GB; 3) Stor-
age: 20G; 4) system type: 64-bit. It’s worth noting that we perform experiments
on a virtual machine. So only four of the CPU’s six cores are used.

The computational comparison of three protocols on the sender is provide in
Fig. 4-sender. n describes the number of data, which is supposed as 50. k presents
the numbers of required data. The X-axis introduced the parameter k. The Y-
axis represents the time cost to perform k-out-of-n OT protocol about sender-
side. As described in Fig. 4-sender, the least overhead is cost by our protocol.
In particular, we only considered k-out-of-n OT protocol in POT protocol, and
none of the other technologies used for verification calculate the overhead, such
as signatures and zero-knowledge proofs.

The computational comparison of two protocols on the receiver is provide in
Fig. 4-receiver. The X-axis and Y-axis have the same meaning with the above.
As the computation overhead of BP-OT increases with the value of k, the time
will reach 30 s, which does not match the actual situation, so it is not included
in the Fig. 4-receiver.

7 Conclusion

In this paper, a data transmission scheme in the healthcare framework is pro-
posed to protect the privacy of entities and ensure the confidentiality of data.
Based on the CP-ABE technology, the proposed secure transmission protocol
realizes the secure access of authorized users and also protects the security of
key sek. Meantime, the two-way privacy of servers and doctors is protected
through k-out-of-n OT protocol. In addition, the protocol of authentication and
transmission phase is lightweight, which reduces a lot of computational over-
head and makes our protocol more realistic. After analyzing the security of our
scheme, it is proved that our scheme protects data confidentiality, and is also
secure.
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