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Preface

The 15th International Conference on Algorithmic Aspects in Information and Man-
agement (AAIM 2021), was held online during December 20–22, 2021. The confer-
ence was held virtually due to the COVID-19 pandemic.

The AAIM conference series, which started in 2005 in Xi’an, China, aims to
stimulate various fields for which algorithmics has become a crucial enabler, and to
strengthen the ties of various research communities of algorithmics and applications.
AAIM 2021 seeks to address emerging and important algorithmic problems by
focusing on the fundamental background, theoretical technological development, and
real-world applications associated with information and management analysis, mod-
eling, and data mining. Special considerations are given to algorithmic research that
was motivated by real-world applications.

We would like to thank the two keynote speakers, Ovidiu Daescu from the
University of Texas at Dallas, Texas, USA and Amo Tong from the University of
Delaware, Delaware, USA, for their contributions to the conference.

We would like to express our appreciation to all members of the Program Com-
mittee and the external referees whose efforts enabled us to achieve a high scientific
standard for the proceedings. We would also like to thank all members of the Orga-
nizing Committee for their assistance and contribution which was essential to the
success of the conference. In particular, we would like to thank Anna Kramer and her
colleagues at Springer for meticulously supporting us in the timely production of this
volume. Last but not least, our special thanks go to all the authors and participants for
their contributions to the success of this event.

November 2021 Weili Wu
Hongwei Du
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Constant-Approximation
for Prize-Collecting Min-Sensor Sweep

Coverage with Base Stations

Wei Liang and Zhao Zhang(B)

College of Mathematics and Computer Science, Zhejiang Normal University,
Jinhua 321004, Zhejiang, China

hxhzz@sina.com

Abstract. A sweep cover is a set of routes for mobile sensors such that
each target point v is visited by mobile sensors at least once in every time
period tv. In this paper, we propose a new sweep coverage paradigm,
prize-collecting min-sensor sweep coverage problem (PCMSSC). Instead
of requiring each target point to be periodically visited, PCMSSC selec-
tively discards some target points and bears the loss arising therefrom.
To be precise, a target point v which is not covered incurs a penalty π(v).
The objective is to minimize the sum of the cost of mobile sensors and
the total penalty on uncovered target points. For PCMSSC with con-
stant number of stations, we present a polynomial time algorithm with
approximation ratio at most 5. For this purpose, we propose the prize-
collecting forest with k components problem and design a 2-approximation
algorithm for it, which might be interesting in its own sense.

Keywords: Sweep-coverage · Prize-collecting · Approximation
algorithm

1 Introduction

Coverage problems are among the most fundamental issues in wireless sensors
networks (WSN). Due to the fast development of WSN during the past two
decades, coverage problem is extensively studied under various models [1,2,7,
14,15,17,19]. Many concerns are put on coverage quality, energy consumption,
node mobility, data collection, coverage scheduling, etc.

The first paper studying sweep cover problem is [5], in which Cheng et al. con-
sidered the problem with the objective to minimize the number of mobile sensors
(call the min-sensor sweep cover problem (MSSC)) and proved a lower bound
of approximation ratio 2. Gorain and Mandal [10] proposed a 3-approximation
algorithm for MSSC when all target points have the same sweep-period and all
mobile sensors move at the same velocity.

Since a mobile sensor is often powered by a battery with limited energy, some
researchers considered the MSSC problem with base stations for replenishment
[4,8,11,14].
c© Springer Nature Switzerland AG 2021
W. Wu and H. Du (Eds.): AAIM 2021, LNCS 13153, pp. 3–14, 2021.
https://doi.org/10.1007/978-3-030-93176-6_1
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In real applications, satisfying the covering requirement of all target points
might be too expensive. It might be more economic to pay for some uncovered
points. In this paper, we propose a new sweep coverage problem, prize-collecting
min-sensor sweep coverage with base stations problem (PCMSSCBS) and design
an approximation algorithm for PCMSSCBS with a theoretically guaranteed
approximation ratio.

1.1 Related Work

The sweep coverage problem was first proposed by Cheng et al. [5] with the aim
of minimizing the number of mobile sensors.

By reducing the traveling salesman problem (TSP) to MSSC, it was shown
that MSSC cannot be approximated within factor 2. Early works focused on the
case when mobile sensors work independently in the sense that every sensor is
responsible for a distinct set of target points [6,12]. Later, Gorain and Mandal
[10] found that it would be more effective if mobile sensors are grouped to coop-
eratively accomplish the sweep coverage task. They proposed a 3-approximation
algorithm for MSSC on a graph whose edge lengths are metric. So far, this is still
the best known approximation ratio for MSSC. There are also a lot of heuristic
algorithms for MSSC, such as Du’s MinExpand algorithm [6], Wang’s MinMobi-
leGrowth algorithm [18], and Huang’s ant colony optimization-based algorithm
[3], etc.

Liang et al. [13] considered a budgeted version of the sweep coverage problem,
the goal of which is to find the routes for a given set of mobile sensors such that
the total weight of target points whose sweep-cover requirements are satisfied is
maximized. They studied the case when all target points are on a line. When
sensors have the same velocity, an optimal solution can be computed in polyno-
mial time. When the sensors have different velocities, the problem was proven
to be NP-hard, and they proposed a 1

2 -approximation algorithm when sensors
have a constant number of velocities, and a (12 − 1

2e )-approximation algorithm
for the general case.

There are also some other variants of sweep cover problems. For example,
due to energy limitation of mobile sensors, Nie et al. [16] considered the general
energy restricted min-sensor sweep coverage problem by assuming that energy
consumption of mobile sensors may vary in different road sections. They designed
a constant-factor approximation algorithm.

1.2 Our Contribution

Assume that all target points have the same sweep-period t, all mobile sen-
sors are homogeneous and move at the same velocity a. Our contributions are
summarized as follows:

– We propose a new sweep coverage problem: prize-collecting min-sensor sweep
coverage with base stations (PCMSSCBS). This problem is more practical
from the economic point of view: paying penalties for those distant points
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might save cost. Having base stations is also common in real practice, and
the number of base stations will not be too much.

– We design a 5-approximation algorithm for PCMSSCBS . In fact, the result
is stronger, it is a 5-LMP algorithm. And r-LMP will be formally defined in
Sect. 2.

– As a step stone for the 5-LMP for PCMSSCBS , we propose the prize-collecting
forest with k components problem (PCFk), which might be interesting in its
own sense, and design a 2-LMP for PCFk.

The rest of this paper is organized as follows: The problem is defined in
Sect. 2, together with some preliminary results. A 2-LMP algorithm for PCFk

is presented in Sect. 3, based on which a 5-LMP approximation algorithm for
PCMSSCBS is presented in Sect. 4. Section 5 concludes the paper.

2 Problem Formulation and Preliminaries

In this paper, we focus on the sweep coverage problem on a graph with metric
edge lengths. The related terminologies are defined as follows.

Definition 1 (sweep-cover). Suppose G is a graph on vertex set V and edge
set E, each vertex v ∈ V is associated with a sweep period tv. For a set of routes
scheduled for a set of mobile sensors moving with speed a, a vertex v is said to
be sweep-covered if v is visited at least once in every time period tv, where v gets
visited if and only if a mobile sensor goes through the location of vertex v.

MSSC requires all vertices to be sweep covered [10]. But in many applica-
tions, visiting distant vertices might be too costly. This consideration leads to
the prize-collecting min-sensor coverage problem (PCMSSC). Note that in real
applications, it is common that mobile sensors are dispatched from base stations.
In this paper, we consider the PCMSSC problem with constant number of base
stations.

Definition 2 (prize-collecting min-sensor sweep coverage with base
stations (PCMSSCBS)). Given a graph G = (V,E) with a metric edge weight
function w : E �→ R

+, a set of base stations B located at some vertices of V ,
each vertex v is associated with a sweep period tv and a penalty π(v), determine
a set of mobile sensors S dispatched from B and design their trajectories to
minimize the cost of mobile sensors plus the total penalty on vertices which are
not sweep-covered, that is, c · |S|+∑

v/∈C(S) π(v), where C(S) is the set of vertices
sweep-covered by S, and c is the cost of a mobile sensor.

Note that not all base stations are needed to dispatch mobile sensors, there-
fore, the problem also requires us to determine those base stations to be used.
Throughout this paper, we assume that all vertices have the same sweep periods
tv ≡ t (∀v ∈ V ).

For Problem 2, we shall present a Lagrangian multiplier preserving algorithm
with factor 5, which is stronger than a 5-approximation.
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Definition 3 (Lagrangian multiplier preserving algorithm with factor
r (r-LMP)). An algorithm for Problem 2 is said to be an r-LMP, if for any
instance I of Problem 2, the algorithm can find in polynomial-time a set of
sensors S ′ with

c · |S ′| + r ·
∑

v/∈C(S′)

π(v) ≤ r · opt(I),

where opt(I) is the optimal value for Problem 2 on instance I.

To solve Problem 2, we need a solution to the following problem.

Definition 4 (prize-collecting forest with k components (PCFk)). Given
a graph G = (V,E), a positive integer k, a set R = {r1, r2, . . . , rk} ⊆ V of k
roots, a weight function w on E, and a penalty function π on V , the goal is to
find a forest F with k components, each component contains exactly one root,
such that w(F ) + π(V \V (F )) is minimized, where V (F ) is the set of vertices in
F , π(V \V (F )) =

∑
v∈V \V (F ) π(v) is the penalty on those vertices not covered

by F , and w(F ) =
∑

e∈F w(e).

3 A Primal-Dual Algorithm for PCFk

In this section, we present a 2-LMP algorithm for Problem 4 using primal-dual
method. Our algorithm is inspired by [9] for PCF1, with more cares devoted to
how to deal with the challenge brought by the required number of components.

We first write out an integer program for PCFk. Given a graph G = (V,E),
define an indicator variables xe for whether e ∈ E is selected or not. Use δ(S)
to denote the set of edges having exactly one end vertex in S. For an edge set
F , denote x(F ) =

∑
e∈F xe. And define a variable pT to indicate whether T is

the vertex set that is punished. Then PCFk can be formulated as the following
integer program:

min
∑

e∈E

wexe +
∑

T⊆V \R

(
∑

v∈T

πv

)

pT (1)

s.t. x(δ(S)) +
∑

T⊆V \R:S⊆T

pT ≥ 1, ∀S ⊆ V \R,

xe ∈ {0, 1}, ∀e ∈ E,

pT ∈ {0, 1}, ∀T ⊆ V \R,

where the second term of the objective says that if T is the vertex set to be
punished, then all vertices in T are punished; the first constraint says that any
vertex set S that should be punished is contained in the biggest vertex set T
that should be punished.
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Relax 1 into a liner program (LP) by replacing the variable constraints by
xe ≥ 0 and pT ≥ 0, and write out its dual LP:

max
∑

S⊆V \R

yS (2)

s.t.
∑

S⊆V \R:e∈δ(S)

yS ≤ we, ∀e ∈ E

∑

S⊆T

yS ≤
∑

v∈T

πv, ∀T ⊂ V \R

yS ≥ 0, ∀S ⊆ V \R

The details of the primal-dual algorithm for PCFk are described in
Algorithm 1. It maintains a forest F and use C to denote the collection of connected
components of G[F ]. Some components in C are active, meaning that their dual
variables are allowed to be increased (the dual variable corresponding to C ∈ C
is yV (C), or abbreviated as yC), and those non-active components in C have their
dual variables frozen. We use label λ(C) = 1 to indicate that component C ∈ C
is active, and λ(C) = 0 to indicate a non-active component C. Initially, F = ∅,
and every root forms a non-active component of C, and every vertex in V \R forms
an active component of C. Stating from dual feasible solution {yS ≡ 0}, the algo-
rithm simultaneously increases dual variables, keeping dual feasibility all the time,
and takes primal variables corresponding to the first tightened dual constraints
to construct primal solutions. Note that there are two types of constraints in (2).
Depending on which constraint becomes tight first (a constraint is tight if equality
holds), there are two types of operations. If a first-type constraint becomes tight
at edge e (see line 6 of the algorithm), then e is added into F . Since only active
components are allowed to increase their dual variables,

such edge e has its two ends in different connected components of G[F ], (3)

so adding e will merge two components into one. If the merged component con-
tains a root, then it is labeled as non-active, otherwise, it is active. Because
only active components can have their dual variables increased, so e cannot
have its two ends in two non-active components, and thus if the merged compo-
nent is non-active, then it contains exactly one root. If a second-type constraint
becomes tight at an active component C ∈ C (see line 7 of the algorithm), then C
is deactivated. To simplify the calculation, d(v) is used to record the accumulated
amount of increase on vertex v, that is,

∑
S:v∈δ(S) yS , and h(C) is used to record

the accumulated amount of increase on component C, that is
∑

S:S⊆V (C) yS . The
above process (in the while loop) terminates when all connected components of
G[F ] are non-active. By Property 3, the resulting F is a forest. Denote by FR

the sub-forest of F consisting of all those connected components of G[F ] having
nonempty intersection with R. The final output is obtained from FR by a reverse
deletion of edges.

In fact, in each iteration, either an edge is added to decrease the number
of connected components, or an active component is deactivated and thus the
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Algorithm 1. PCFk(G,R)
Input: A graph G = (V, E) with edge length function w on E and penalty function
π on V , and a set of k roots R = {r1, . . . , rk} ⊆ V .
Output: A forest FR with k components, each component contains one root.

1: l ← 0; F ← ∅; C ← {{v} : v ∈ V }; yC ← 0 and h(C) ← 0 for each C ∈ C;
2: for each C = {v} ∈ C, set λ(C) ← 1 if v ∈ V \R and λ(C) ← 0 if v ∈ R;
3: set d(v) ← 0 for ever v ∈ V ;
4: while ∃C ∈ C with λ(C) = 1 do
5: l ← l + 1;

6: ε1 ← mine=uv,u∈C∈C,v∈C′∈C,C �=C′
{

we−d(u)−d(v)
λ(C)+λ(C′)

}
, ê ← arg ε1;

7: ε2 ← minC∈C:λ(C)=1

{∑
v∈C πv − h(C)

}
, Ĉ ← arg ε2;

8: ε ← min{ε1, ε2};
9: for every C ∈ C with λ(C) = 1 do

10: h(C) ← h(C) + ε; yC ← yC + ε; for every v ∈ C, d(v) ← d(v) + ε;
11: end for
12: if ε = ε2 then
13: λ(Ĉ) ← 0
14: else
15: F ← F ∪ {ê}
16: C ← C ∪ {C ∪ C′}\{C, C′} where C, C′ are the components containing the

two ends of ê;
17: h(C ∪ C′) ← h(C) + h(C′)
18: If C ∪ C′ contains some root, then λ(C ∪ C′) ← 0, otherwise λ(C ∪ C′) ← 1;
19: end if
20: end while
21: FR ← the set of connected components of G[F ] containing roots.
22: for edges e in FR in reverse order of their addition into F do
23: if e is an edge incident with a leaf non-active component Ce of the contract

forest where components refer to the iteration when e is added then
24: FR ← FR − e − C;
25: end if
26: end for
27: return FR ← the set of connected components of G[F ] containing roots.

number of active components is reduced, it can be easily checked that the
Algorithm 1 runs in time O(nm).

The following lemma shows that the output FR of Algorithm 1 is a 2-LMP.

Lemma 1. For the forest FR output by Algorithm 1,
∑

e∈FR

we + 2
∑

v∈V \V (FR)

πv ≤ 2 · opt,

where opt is the optimal value for the PCFk instance.
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Proof. Since the set of variables {yS}S⊆V \R is a feasible solution to the dual LP
2 throughout the algorithm, by Duality Theory, we have

∑

S⊆V \R

yS ≤ opt. (4)

Suppose at the end of the algorithm, the sets of connected components of G[F ]
not containing roots are C1, . . . , Cq. Then V \V (FR) is the disjoint union of
V (C1) ∪ · · · ∪ V (Cq). For each i = 1, . . . , q, the reason for the deactivation of Ci

is because the second-type constraint corresponding to Ci is tight. So

∑

v∈V \V (FR)

πv =
q∑

j=1

∑

v∈V (Cj)

πv =
q∑

j=1

∑

S:S⊆V (Cj)

yS . (5)

For an edge e ∈ FR, it is added into F because the first-type constraint corre-
sponding to e is tight. So,

∑

e∈FR

we =
∑

e∈FR

∑

S:e∈δ(S)

yS =
∑

S:S⊆V

yS · |FR ∩ δ(S)|. (6)

Combining expressions (4), (5) and (6), to prove the lemma, it suffices to prove

∑

S:S⊆V

yS · |FR ∩ δ(S)| + 2
q∑

j=1

∑

S:S⊆V (Cj)

yS ≤ 2
∑

S:S⊆V \R

yS . (7)

In the following, we prove that inequality (7) holds for {yS} in every iteration
of the while loop. Initially, all yS ≡ 0, and thus inequality (7) trivially holds.
Suppose (7) is true at the beginning of the ith iteration, we show that in the ith
iteration,

the left-side increase of (7) is no more than the right-side increase of (7). (8)

Let Cactive and Cnon be the set of active components and the set of non-
active components at the beginning of the ith iteration, and let C(1), C(2) be the
subsets of Cactive which are contained in V (FR) and V \V (FR), respectively. Note
no component C ∈ C(1) can be contained in a Cj , and any component C ∈ C(2)

has FR ∩ δ(V (C)) = ∅. So the left-hand increase of (7) is
∑

C∈C(1) ε · |FR ∩
δ(V (C))| + 2

∑
C∈C(2) ε. While the the right-hand increase of 7 is 2ε|Cactive|. So,

to prove (8), it suffices to prove
∑

C∈C(1)

|FR ∩ δ(V (C))| ≤ 2|C(1)|. (9)

Consider one component of FR, call it TR. Let CTR
be the set of connected

components at the beginning of the ith iteration which are contained in V (TR),
and denote Cactive

TR
and Cnon

TR
the subsets of active and non-active components in

CTR
, respectively. Contracting every component of CTR

into a super node, the
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subgraph spanned by TR is a tree. By the reverse deletion step, all but at most
one leaf node (namely the component of Cnon

TR
containing the root) are active.

So all but at most one non-active node has degree at least two in the contracted
tree. It follows that

∑

C∈CTR

|TR ∩ δ(V (C))| =
∑

C∈Cactive
TR

|TR ∩ δ(V (C))| +
∑

C∈Cnon
TR

|TR ∩ δ(V (C))|

≥
∑

C∈Cactive
TR

|TR ∩ δ(V (C))| + 1 + 2(|Cnon
TR

| − 1). (10)

On the other hand, using Shaking Hands Lemma on the contracted tree,
∑

C∈CTR

|TR ∩ δ(V (C))| = 2|E(TR)| = 2(|CTR
| − 1), (11)

where the second equality comes from the fact that the contracted subgraph is
a tree. Combining inequalities (10) and (11), we have

∑

C∈Cactive
TR

|TR ∩ δ(V (C))| < 2|Cactive
TR

| (12)

Then inequality (9) follows from summing (12) over all components of FR. As
analyzed before, this implies the validity of the lemma.

4 5-LMP for PCMSSC

The algorithm for PCMSSC is described in Algorithm 2. It takes the 2-LMP
algorithm PCFk(G,R) in Sect. 3 as a subroutine and consists of two stages. In
the first stage, for each guessed positive integer k and each guessed set of roots
R with R ⊆ B and |R| = k, it calls PCFk(G,R) to calculate a forest FR with
k components. The vertex set of each component of FR form one group with
exactly one base station. In the second stage, for each group, find a Hamiltonian
cycle using Remark 1.

Suppose the Hamiltonian cycle has length L, then �L/at� mobile sensors
are uniformly deployed along the cycle and move in the same direction with
speed a, forming a sweep coverage for this group. If a group has only one vertex,
namely a base station, then a mobile sensor is stationed at this vertex, providing
a continuous monitoring of this base station.

Remark 1 (finding Hamiltonian cycle). Given a minimum spanning tree T on a
graph G with a metric edge length w, a Hamiltonian cycle can be constructed in
the following way: double every edge of T to form an Eulerian graph F ; follow an
Eulerian tour of F , and short-cut repeated vertices; the resulting Hamiltonian
cycle H has w(H) ≤ w(F ) = 2w(T ).
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Algorithm 2. 5-LMP for PCMSSCBS

input: A graph G = (V, E) with metric edge length w, and a set of base stations B.
output: A schedule of routes for a set of mobile sensors.

1: for k = 0, 1, 2, . . . , |B| do
2: for each R ⊆ B with |R| = k do

3: FR ← PCFR(G, R) with components T
(R)
1 , T

(R)
2 , . . . , T

(R)
k ;

4: nR ← 0;
5: for i = 1, 2, . . . , k do
6: if |V (T

(R)
i )| ≥ 2 then

7: nR ← nR +

⌈
2w(T

(R)
i )

at

⌉
;

8: else
9: nR ← nR + 1;

10: end if
11: end for
12: end for
13: end for
14: (k̂, R̂) ← arg mink∈{0,1,...,|B|},R⊆B,|R|=k{c · nR + 5

∑
v∈V \V (FR) π(v)};

15: for each subtree T (R̂) of FR̂ do

16: if |V (T (R̂))| ≥ 2 then

17: Construct a Hamiltonian cycle C(R̂) on V (T (R̂)) using Remark 1;

18: Uniformly deploy 	w(C(R̂))/at
 mobile sensors along C(R̂) and let them

move along C(R̂) in the same direction at speed a;
19: else
20: Deploy one mobile sensor at the unique vertex of T (R̂);
21: end if
22: end for
23: return the above deployment.

To analyze the performance of Algorithm 2, we assume, w.l.o.g, that

at

c
=

4
5
. (13)

This can be done by scaling both c and π without changing the objective c · |S|+
r · ∑

v/∈C(S) π(v) to be minimized.

Theorem 1. Algorithm 2 is a 5-LMP for PCMSSC and the running time is
O(|B||B|+1nm).

Proof. Suppose an optimal solution uses k∗ mobile sensors and X∗ is the set of
non-covered vertices. During time interval [0, t], the trajectories of these mobile
sensors form a subgraph of G spanning vertex set V \X∗. Suppose this subgraph
contains b∗ base stations from B. Let m∗ = min{k∗, b∗}. Deleting some edges if
necessary, we can modify this subgraph into a forest containing m∗ components,
still spanning V \X∗, and each component contains at least one base station.
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Let the set of these base stations be R∗ and denote the modified forest as
F ∗

R∗ . Note that
w(F ∗

R∗) ≤ k∗at. (14)

When R∗ is guessed by Algorithm 2, a forest FR∗ is obtained. Since
PCF|R∗|(G,R∗) is a 2-LMP algorithm, and by (14), we have

w(FR∗) + 2π(V \V (FR∗)) ≤ 2(k∗at + π(V \V (F ∗
R∗))) = 2(k∗at + π(X∗)), (15)

For each component T
(R∗)
i of FR∗ , the number of mobile sensors deployed to

cover group V (T (R∗)
i ) is at most

w(C(R∗)
i )
at

+ 1 ≤ 2w(T (R∗)
i )

at
+ 1.

Denote by S∗ the set of mobile sensors deployed when R∗ is guessed. Then

c|S∗| + 5π(V \C(S∗)) ≤ c ·
m∗
∑

i=1

(
2w(T (R∗)

i )
at

+ 1

)

+ 5π(V \V (FR∗))

=
2cw(FR∗)

at
+ cm∗ + 5π(V \V (FR∗))

≤ 5w(FR∗)
2

+ ck∗ + 5π(V \V (FR∗))

=
5
2

(w(FR∗) + 2π(V \V (FR∗))) + ck∗,

where the second inequality uses (13) and the fact m∗ ≤ k∗. Making use of 15,

c|S∗| + 5π(V \C(S∗)) ≤ 5 (k∗at + π(X∗)) + ck∗,

Again using (13), 5k∗at + ck∗ = 5ck∗, and thus

c|S∗| + 5π(V \C(S∗)) ≤ 5 (ck∗ + π(X∗)) = 5opt.

For the time complexity, there are
∑|B|

k=0

(|B|
k

)
= O(|B||B|+1) guesses for R.

For each guessed R, computing FR requires time O(mn),
finding a Hamiltonian cycle using Remark 1 needs time O(n), and all the

other steps can be easily done in time O(n). Hence the time complexity is
O(|B||B|+1nm).

5 Conclusion and Future Work

In this paper, we proposed the prize-collecting min-sensor sweep coverage problem
with base stations, and designed a 5-LMP algorithm. As a step stone, we presented
a 2-LMP for the prize-collecting forest problem with exactly k components.
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Note that the time complexity of the algorithm depends exponentially on
the number of base stations. Since we have assumed a constant number of base-
stations, the algorithm runs in polynomial time. If there is no base station,
then guessing the number of connected components of the forest might be time
consuming. Whether there is a constant approximation algorithm for the prize-
collecting sweep cover problem without base stations is a topic which might be
theoretically challenging.

Acknowledgment. This research work is supported in part by NSFC (U20A2068,
11771013), and ZJNSFC (LD19A010001).
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Abstract. Correlation clustering problem is an elegant clustering problem and
has many applications in protein interaction networks, cross-lingual link detec-
tion, etc. In this paper, we introduce the capacitated correlation clustering prob-
lem with penalties by combining the capacitated correlation clustering problem
and the correlation problem with penalties. There are two main contributions in
this paper. The first one is that we give an integer programming for the capac-
itated correlation clustering problem with penalties. The second one is that we
provide an LP-based (4/(4 − 5α), 8/α)-bi-criteria approximation algorithm for
this problem, where parameter α ∈ (0, 4/9].

Keywords: Correlation clustering · Capacitated · Penalties · Approximation
algorithm · LP-rounding

1 Introduction

Correlation clustering is a classical clustering problem, which has applications in pro-
tein interaction networks, cross-lingual link detection, and communication networks,
etc. The correlation clustering problem was first introduced by Bansal et al. [5], which
was motivated from a document clustering problem in which one has a pairwise similar-
ity function f learned from past data, and the goal is to partition the current set of doc-
uments in a way that correlates with f as much as possible. In the correlation clustering
problem, we are given a complete graph G = (V,E). Each edge (u, v) ∈ E is labeled
by + or − based on the similarity of vertex u and vertex v. If two vertices are similar,
the label is positive and vice versa. Compared with other clustering problems, we do not
have to restrict the number of clusters in the correlation clustering problem. The goal of
the problem is to partition set V into several clusters such that the vertices in the same
c© Springer Nature Switzerland AG 2021
W. Wu and H. Du (Eds.): AAIM 2021, LNCS 13153, pp. 15–26, 2021.
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cluster are similar and the vertices between two clusters are dissimilar. Let each positive
edge whose endpoints lie in the same cluster and each negative edge whose endpoints
lie in two clusters be an agreement. On the contrary, let each positive edge whose end-
points lie in two different clusters and each negative edge whose endpoints lie in one
cluster be a disagreement. Form the purpose of the correlation clustering problem, there
are two different versions of this problem: minimizing disagreements and maximizing
agreements. The goal of the former one is to minimize the number of disagreements
while the latter one is to maximize the number of agreements. In this paper, we only
focus on the minimizing disagreements.

The correlation clustering problem is NP-hard [5], and many approximation algo-
rithms have been proposed for this problem [4,6,15,18]. The first constant approxima-
tion algorithm for correlation clustering problem is provided by Bansal et al. [5] with
an approximation ratio of 17433. Charikar et al. [8] gave a nature integer programming
for the correlation clustering and proved that the integrality gap of the LP formulation
is 2. Then, they provided a 4-approximation algorithm for this problem based on LP-
rounding technique. They also presented an O(log n)-approximation algorithm for the
correlation clustering on general graphs. Chawla et al. [9] provided an LP-rounding
2.06-approximation algorithm based on the LP formulation given by Charikar et al. [8].
At present, the 2.06-approximation algorithm is the best deterministic approximation
algorithm for the correlation algorithm, which achieving an approximation ratio almost
matching the integrality gap 2.

Besides the correlation clustering, several meaningful variants of the correlation
clustering problem have also been studied extensively [1–3,13,16,17]. In the above
problems, we are particularly interested in the capacitated correlation clustering prob-
lem and the correlation clustering problem with penalties.

Capacity constraint is a natural constraint in combinatorial optimization problems
[7,11,12,19]. In capacitated correlation clustering problem, we are given a complete
graph G = (V,E) and an upper bound U on capacity. The goal of this problem is to
partition the vertices into several clusters, subject to a capacitated constraint, so as to
minimize the number of disagreements. Puleo and Milenkovic [17] first introduced the
capacitated correlation clustering problem and provided a 6-approximation algorithm
for this problem based on the 4-approximation algorithm for this problem [8].

Penalty constraint is also an important constraint in combinatorial optimization
problems [10,14,20]. In the correlation clustering problem with penalties, there is a
penalty cost for each vertex. Each vertex needs to be clustered or penalized. The goal
of the correlation clustering problem with penalties is to select a penalized set and then
partition the remain vertices into several clusters so as to minimize the sum of the total
number of disagreements and the penalty cost. Aboud and Rabani [1] first introduced
the correlation clustering problem with penalties and provided a 9-approximation algo-
rithm based on primal-dual schema for the problem.

In this paper, we introduce the capacitated correlation clustering problem with
penalties. In this problem, we are given a labeled completed graph, there is a penalty
cost for each vertex. Each vertex needs to be clustered or penalized. Moreover, there is
an upper bound U on capacity. The goal of this problem is to select a penalized set and
then partition the remain vertices into several clusters, subject to a capacity constraint,
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so as to minimize the sum of the total number of disagreements and the penalty cost.
Here the number of disagreements is the sum of the number of positive edges whose
two endpoints are not penalized and lie in different clusters and the number of negative
edges whose two endpoints are not penalized and lie in a same clusters. There are two
main contributions in this paper.

(1) We provide an integer programming for the capacitated correlation clustering prob-
lem with penalties. The difficulty in the construction process is that once a vertex
is penalized, it does not affect the number of vertices in any cluster, so we need to
carefully identify the number of vertices in each cluster.

(2) Given a parameter α ∈ (0, 4/9], we provide an LP-based (4/(4 − 5α), 8/α)-bi-
criteria approximation algorithm and its theoretical analysis for the capacitated
correlation clustering problem with penalties. We skillfully select the vertices to
be penalized and cluster the remaining vertices, so as to analyze the upper bound
of the penalty cost, the upper bound on the number of disagreements and the upper
bound on the number of vertices in each cluster.

The rest of this paper is organized as follows. In Sect. 2, we first provide the defi-
nition of the capacitated correlation clustering problem with penalties, then we give an
integer programming as well as its LP-relaxation for the problem. In Sect. 3, we provide
our bi-criteria approximation algorithm and the theoretical analysis. Some conclusions
are given in Sect. 4.

2 Preliminaries

In this section, we first give a detailed definition of the capacitated correlation clustering
problem with penalties. Then, we provide an integer programming and its LP relaxation
for the capacitated correlation clustering problem with penalties. For each integer t,
denote set [t] := {1, 2, . . . , t}, then the capacitated correlation clustering problem and
the capacitated correlation clustering problem can be defined as follows.

Definition 1 (Capacitated Correlation clustering problem). Given a labeled com-
plete graph G = (V,E), an upper bound U . The correlation clustering problem is to
find a partition V = {V1, V2, . . . , Vt} of V with |Vi| ≤ U, i ∈ [t] such that

1
2

∑

v∈Vi,i∈[t]

(|{(u, v) ∈ E+, u ∈ V \Vi}| + |{(u, v) ∈ E−, u ∈ Vi}|)

is minimized, where E+ is the set of positive edges and E− is the set of negative edges.

Definition 2 (Capacitated correlation clustering problem with penalties). Given a
labeled complete graph G = (V,E), an upper bound U , and a penalty cost pv for
each vertex v ∈ V . The capacitated correlation clustering problem with penalties is
to find a subset P ⊆ V as well as a partition V = {V1, V2, . . . , Vt} of V \P with
|Vi| ≤ U, i ∈ [t] such that

1
2

∑

v∈Vi,i∈[t]

(|{(u, v) ∈ E+, u ∈ V \(Vi ∪ P )}| + |{(u, v) ∈ E−, u ∈ Vi}|) +
∑

v∈P

pv
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is minimized, where E+ is the set of positive edges and E− is the set of negative edges.

First, we introduce the following four types of binary variables:

– For each edge (u, v) ∈ E, let xuv indicates whether vertex u and vertex v lie in the
same cluster. If vertex u and vertex v lie in the same cluster, then we let xuv = 0.
Otherwise, let xuv = 1.

– For each edge (u, v) ∈ E, let wuv indicates whether both vertex u and vertex v are
both clustered. If both vertex u and vertex v are clustered, then we let wuv = 0.
Otherwise, let wuv = 1.

– For each vertex v ∈ V , let yv indicate whether vertex v is penalized. If vertex v is
penalized, then we let yv = 1. Otherwise, let yv = 0.

– For each edge (u, v) ∈ E, let zuv indicate whether edge (u, v) is a disagreement. If
edge (u, v) is a disagreement, then we let zuv = 1. Otherwise, let zuv = 0.

Based on above variables, we can give an integer programming for the capacitated
correlation clustering problem with penalties.

min
∑

(u,v)∈E

zuv +
∑

v∈V

pvyv

s. t. xuv + xvw ≥ xuw, ∀u, v, w ∈ V,

wuv ≤ yu + yv ≤ 2wuv, ∀u, v ∈ V,

wuv + zuv ≥ 1 − xuv, ∀(u, v) ∈ E−,

wuv + zuv ≥ xuv, ∀(u, v) ∈ E+,

xuv ≥ zuv, ∀(u, v) ∈ E+, (1)
∑

(u,v)∈E+,u∈V

(1 − wuv − zuv) +
∑

(u,v)∈E−,u∈V

zuv ≤ U, ∀v ∈ V,

xvv, zvv, wvv = 0, ∀v ∈ V,

xuv, zuv, yu, wuv ∈ {0, 1}, ∀u, v ∈ V.

The value of the objective function is the number of disagreements and the penalty
cost of the penalized vertices. There are seven types of constraints in Programming (1).
The first one is a triangle inequality, which guarantees that the solution returned by
Programming (1) is a feasible solution of the correlation clustering problem. The second
to the fifth constraints give the condition for a edge to become a disagreement. To be
specific, for each positive edge (u, v), variable zuv = 1 iff vertex u and vertex v are both
clustered and lie in different clusters. For each negative edge (u, v), variable zuv = 1
iff vertex u and vertex v are both clustered and lie in the same cluster. The sixth and
the seventh one ensure that there are at most U vertices in each cluster. By relaxing the
variables, we obtain the following LP relaxation of (1):

min
∑

(u,v)∈E

zuv +
∑

v∈V

pvyv

s. t. xuv + xvw ≥ xuw, ∀u, v, w ∈ V,

wuv ≤ yu + yv ≤ 2wuv, ∀u, v ∈ V,
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wuv + zuv ≥ 1 − xuv, ∀(u, v) ∈ E−,

wuv + zuv ≥ xuv, ∀(u, v) ∈ E+,

xuv ≥ zuv, ∀(u, v) ∈ E+, (2)
∑

(u,v)∈E+,u∈V

(1 − wuv − zuv) +
∑

(u,v)∈E−,u∈V

zuv ≤ U, ∀v ∈ V,

xvv, zvv, wvv = 0, ∀v ∈ V,

xuv, zuv, yu, wuv ∈ [0, 1], ∀u, v ∈ V.

3 Bi-criteria Approximation Algorithm and Analysis

This section is the core section of this paper. In Subsect. 3.1, we provide our bi-criteria
approximation algorithm for the capacitated correlation clustering problem with penal-
ties. The theoretical analysis of our algorithm are provided in Subsect. 3.2.

3.1 Bi-criteria Approximation Algorithm

Before giving Algorithm 1, we first provide a high level description for it. There are
three main phases in this algorithm. The first phase is a computational process. In this
phase, we solve Programming (2) to obtain the optimal fractional solution (x∗, y∗, z∗).
For each value x∗

uv , we can be regard it as the distance between vertex u and vertex v.
The second phase is a penalized process. In this phase, we select a set P of vertices to
be penalized based on the value of y∗ and parameter α/8. For each vertex v ∈ V , if
y∗
v ≥ α/8, then we make vertex v as a penalized vertex. Otherwise, we cluster it. The
last phase is an iterative clustering process, which is based on the 4-approximation for
the correlation clustering problem [8]. In each iteration, we first a vertex v is selected
randomly from the un-clustered vertices as a center. Then we select a set Tv from the
un-clustered vertices based on the value of x∗ and parameter α. At last, we decide
whether to set vertex v and set Tv as a cluster according to parameter α/2 as well as the
average distance between the vertices in Tv and the center v. We repeat the clustering
process until all the vertices are clustered.

3.2 Theoretical Analysis

In this section, we mainly analyze three parts. The first part is the upper bound on the
penalty cost of penalized vertices returned by Algorithm 1. The second part is the upper
bound on the number of disagreements returned by Algorithm 1. The final part is the
upper bound on the number of vertices of each cluster returned by Algorithm 1.

Penalty Cost. Without loss of generality, we assume that C := {v1, v2, . . . , vk}. The
penalized set is P and the partition of V \P is C := {Cv1 , Cv2 , . . . , Cvk

}. The penalty
cost is ∑

v∈P

pv,

and its upper bound is shown in Lemma 1.
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Algorithm 1.
Input: A labeled complete graph G = (V, E), parameter α ∈ (0, 4/9]
Output: A partition of vertices
1: Solve (2) to obtain the optimal fractional solution (x∗, y∗, z∗)
2: Initialize S := V , P := ∅ and C := ∅
3: Update P := {v ∈ V : y∗

v ≥ α/8}, S := V \P
4: while S �= ∅ do
5: Select a vertex v from S randomly and update C := C ∪ {v}
6: Let Tv := {u ∈ S : x∗

uv ≤ α}
7: if

∑
u∈Tv

x∗
uv

|Tv| ≥ α

2
, then

8: Let Cv = {v}
9: else
10: Let Cv = Tv

11: end if
12: Update S := S − Cv

13: end while
14: return set P and the partition C := {Cv : v ∈ C} of V \P

Lemma 1. The penalty cost can be bounded by

8
α

∑

v∈V

pvy
∗
v .

Proof. From the construction of P , for each vertex v ∈ P , we have y∗
v ≥ α/8, which

indicates that ∑

v∈P

pv ≤ 8
α

∑

v∈P

pvy
∗
v ≤ 8

α

∑

v∈V

pvy
∗
v .

The lemma is concluded. �

Disagreements. The number of disagreements generated by positive edges is

∑

i∈[k−1]

∣∣(u, v) ∈ E+ : v ∈ Cvi
, u ∈ ∪t∈[k]\[i]Cvt

∣∣ ,

and the number of disagreements generated by negative edges is

∑

i∈[k]

|(u, v) ∈ E−, u, v ∈ Cvi
|.

Since each cluster Cvi
, i ∈ [k] must be one of the following two types:

– Type 1: Cvi
:= {vi};

– Type 2: Cvi
:= Tvi

.
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Then, we analyze the upper bound of disagreements by above two types.

Type 1 of Cluster: Because cluster Cvi
belongs to Type 1, the number of new disagree-

ments generated by Cvi
equals |(vi, v) ∈ E+, v ∈ ∪t∈[k]\[i]Cvt

|, the upper bound of
on number of disagreements is analyzed by Lemma 2.

Lemma 2. If Cvi
is of Type 2, then the upper bound on the number of disagreements

generated by the positive edges satisfies:

(i) The number of disagreements from positive edges (vi, v) ∈ E+, v ∈ Tvi
can be

bounded by
4
α

∑

v∈Tvi

z∗
vvi

.

(ii) The number of disagreement from positive edge (vi, v) ∈ E+, v ∈ ∪t∈[k]\[i]Cvt
\

Tvi
can be bounded by

4
3α

z∗
vvi

.

Proof. We prove (i) and (ii) of Lemma 2, respectively.

(i) From Steps 6-8 of Algorithm 1, we have
∑

v∈Tvi
x∗
vvi

|Tvi
| ≥ α

2
.

From the definition of Tvi
, for each v ∈ Tvi

we have 1 − x∗
vvi

≥ x∗
vvi

, which
indicates that

∑
(vi,v)∈E+,v∈Tvi

x∗
vvi

+
∑

(vi,v)∈E−,v∈Tvi
(1 − x∗

vvi
)

|Tvi
| ≥ α

2
. (3)

Combining Step 3 of Algorithm 1, inequality (3), the second constraint, the third
constraint and the fourth constraint of Programming (2), we can obtain

∑
v∈Tvi

z∗
vvi

|Tvi
| ≥ α

2
− 2 · α

8
=

α

4
.

Then, the number of disagreements generated by positive edges (vi, v), v ∈ Tvi
is

no more than |Tvi
|, and it can be bounded by

4
α

∑

v∈Tvi

z∗
vvi

.

(ii) For each positive edges (vi, v) ∈ E+, v ∈ ∪t∈[k]\[i]Cvt
\Tvi

, from the construction
of Tvi

and the constraints of Programming (2), we have

z∗
vvi

≥ x∗
vvi

− 2 · α

8
≥ 3α

4
.
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The lemma is concluded. �

Type 2 of Cluster:AsCvi
is of Type 2, There are two kinds of disagreements generated

by Cvi
. One is the disagreements generated by positive edges whose two endpoints lie

in different clusters. The other one is the disagreements generated by negative edges
whose two endpoints lie in the same cluster. The corresponding upper bound is shown
in Lemmas 3 and 4.

Lemma 3. If Cvi
is of Type 2, then the upper bound on the number of disagreements

generated by the positive edges satisfies:

(i) The number of disagreement from positive edge (v, q) ∈ E+, v ∈ Cvi
, q ∈

∪t∈[k]\[i]Cvt
with x∗

qvi ≥ 3α/2 can be bounded by

4
α

z∗
vq.

(ii) The number of disagreements from positive edges (v, q) ∈ E+, v ∈ Cvi
, q ∈

∪t∈[k]\[i]Cvt
with α ≤ x∗

qvi < 3α/2 can be bounded by

4
α

∑

v∈Cvi

z∗
vq.

Proof. We prove (i) and (ii) of Lemma 3, respectively.

(i) For each positive edge (v, q) ∈ E+, v ∈ Cvi
, q ∈ ∪t∈[k]\[i]Cvt

with x∗
qvi ≥ 3α/2,

we have

z∗
vq ≥ x∗

vq − 2 · α

8
≥ x∗

qvi − x∗
vvi

− α

4
≥ α

2
− α

4
=

α

4
.

Therefore, the disagreement generated by positive edge (v, q) can be bounded by

4
α

z∗
vq.

(ii) For each q ∈ ∪t∈[k]\[i]Cvt
with α ≤ x∗

qvi < 3α/2. Denote by Pq the number of
positive edges (v, q) ∈ E+ with v ∈ Cvi

, and Nq the number of negative edges
(v, q) ∈ E− with v ∈ Cvi

. Then, we have
∑

v∈Cvi

z∗
vq

≥
∑

(v,q)∈E+,v∈Cvi

(
x∗
qvi − x∗

vvi − 2 · α

8

)
+

∑

(v,q)∈E+,v∈Cvi

(
1 − x∗

qvi − x∗
vvi − 2 · α

8

)

≥ Pq

(
x∗
qvi − α

4

)
+ Nq

(
1 − x∗

qvi − α

4

)
−

∑

v∈Cvi

x∗
vvi
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≥ Pq

(
x∗
qvi − α

4

)
+ Nq

(
1 − x∗

qvi − α

4

)
− α

2
(Pq + Nq)

>
(
α − α

4

)
Pq +

(

1 − 3

2
α − α

4

)

Nq − α

2
(Pq + Nq)

=
α

4
Pq.

Therefore, the number of disagreements generated by positive edges (v, q) ∈
E+, v ∈ Cvi

, q ∈ ∪t∈[k]\[i]Cvt
with α ≤ x∗

qvi < 3α/2 can be bounded by

4
α

∑

v∈Cvi

z∗
vq

The lemma is concluded. �

Lemma 4. If Cvi
is of Type 2, then the upper bound on the number of disagreements

generated by the negative edges satisfies:

(i) The number of disagreement from negative edge (v, q) ∈ E−, v, q ∈ Cvi
with

x∗
vvi

, x∗
qvi ≤ 3α/4 can be bounded by

4
4 − 7α

z∗
vq.

(ii) The number of disagreements from negative edges (v, q) ∈ E−, v, q ∈ Cvi
with

x∗
vvi

≤ x∗
qvi and x∗

qvi > 3α/4 can be bounded by

4
4 − 7α

∑

v∈Cvi
,x∗

vvi
≤x∗

qvi

z∗
vq.

Proof. We prove (i) and (ii) of Lemma 4, respectively.

(i) For each negative edge (v, q) ∈ E−, v, q ∈ Cvi
with x∗

vvi
, x∗

qvi ≤ 3α/4, we have

z∗
vq ≥ 1 − x∗

vq − 2 · α

8
≥ 1 − x∗

vvi
− x∗

qvi − α

4
≥ 1 − 3

2
α − α

4
= 1 − 7α

4
,

which indicates that the number of disagreement generated by edge (v, q) can be
bounded by

4
4 − 7α

z∗
vq.

(ii) For each q ∈ Cvi
with x∗

qvi > 3α/4. Denote by P
′
q the number of positive edges

(v, q) ∈ E+, v ∈ Cvi
with x∗

vvi
≤ x∗

qvi , and N
′
q the number of negative edges

(v, q) ∈ E−, v ∈ Cvi
with x∗

vvi
≤ x∗

qvi . Then, we have

∑

v∈Cvi
,x∗

vvi
≤x∗

qvi

z∗
vq

≥
∑

(v,q)∈E+,v∈Cvi
,x∗

vvi
≤x∗

qvi

(
x∗
qvi − x∗

vvi
− 2 · α

8

)
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+
∑

(v,q)∈E+,v∈Cvi
,x∗

vvi
≤x∗

qvi

(
1 − x∗

qvi − x∗
vvi

− 2 · α

8

)

≥ P
′
q

(
x∗
qvi − α

4

)
+ N

′
q

(
1 − x∗

qvi − α

4

)
−

∑

v∈Cvi

x∗
vvi

>
α

2
P

′
q +

(
1 − α − α

4

)
N

′
q − α

2
(P

′
q + N

′
q)

≥
(
1 − 7

4
α

)
N

′
q.

The number of disagreements from negative edges (v, q) ∈ E−, v < q ∈ Cvi
with

x∗
qvi > 3α/4 can be bounded by

4
4 − 7α

∑

v∈Cvi
,x∗

vvi
≤x∗

qvi

z∗
vq.

The lemma is concluded. �
Combining Lemma 1–Lemma 4, we can obtain the following Lemma.

Lemma 5. The sum of disagreements and penalty cost can be bounded by

8
α

⎡

⎣
∑

(u,v)∈E

z∗
uv +

∑

v∈V

pvy
∗
v

⎤

⎦ .

The Upper Bound on the Vertices in Each Cluster of Type 2. In each clusterCvi
, i ∈

[k] of Type 2, the upper bound on the number of vertices in Cvi
can be analyzed by the

following Lemma.

Lemma 6. The number of vertices in Cvi
can be bounded by

4
4 − 5α

U.

Proof. From the third, the fifth and the sixth constraints of Programming (2), we can
obtain for each positive edge (u, v) we have 1−w∗

wu − z∗
uv ≥ 1− 5α/4. Moreover, for

each negative edge (u, v) we have z∗
uv ≥ 1 − 5α/4. Therefore, we can obtain

|Cvi
| ≤ 4

4 − 5α

⎡

⎣
∑

(u,v)∈E+,u∈V

(1 − w∗
uv − z∗

uv) +
∑

(u,v)∈E−,u∈V

z∗
uv

⎤

⎦

≤ 4
4 − 5α

U.

The lemma is concluded. �
Combining Lemma 5 and Lemma 6, we can obtain our main result.

Theorem 1. Algorithm 1 is a

(
4

4 − 5α
,
8
α

)
-bi-criteria approximation algorithm for

the capacitated correlation clustering problem with penalties, where α ∈ (0, 4/9].
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4 Conclusions

In this paper, we introduce the capacitated correlation clustering problemwith penalties.
We provide an integer programming and an LP-based (4/(4 − 5α), 8/α)-bi-criteria
approximation algorithm for this problem, where parameter α ∈ (0, 4/9]. There are two
interesting future work for the capacitated correlation clustering problem with penalties.
One is to design a constant approximation algorithm for this problem. Another one
is to study other interesting variants of the capacitated correlation clustering problem
with penalties, such as the capacitated correlation clustering problem with penalties
on general graphs and the min-max capacitated correlation clustering problem with
penalties.
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Abstract. In this paper, we study the maximum bounded connected
bipartition problem (2-BCBP): given a vertex-weighted connected graph
G = (V,E;w) and an upper bound B, the vertex set V is partitioned
into two subsets denoted as (V1, V2) such that both subgraphs induced
by V1 and V2 are connected and the total weight of these two subgraphs
is maximized, where the weight of the subgraph is the minimum of the
sum of the weight of all vertices and B. The 2-BCBP is a hybrid variant
of the maximum balanced connected partition problem on connected
graphs and the maximum total early work problem in scheduling theory.
In this paper, we consider the 2-BCBP and present an 8

7
-approximation

algorithm. In particular, we consider the 2-BCBP on interval graphs and
present a fully polynomial-time approximation scheme.

Keywords: Connected bipartition problem · Interval graph ·
Approximation algorithm · FPTAS

1 Introduction

Balanced connected graph k-partitioning (BCPk) is one of the most important
research fields in operations research and combinatorial optimization. Given a
vertex-weighted connected graph G = (V,E,w), the balanced connected graph
k-partition is to partition vertex set V into k subsets V1, V2, . . . , Vk such that
the subgraph induced by each part is connected and the weights of these k
parts are as balanced as possible. In the max-min BCPk model, the objective
is to maximize the minimum weight of the k subsets. In the min-max BCPk

model, the objective is to minimize the maximum weight of the k subsets. Many
applications have been found in many areas such as image processing, databases,
operating systems, and cluster analysis [3,4,21–23].

For max-min BCPk, Dyer and Frieze [11] proved that it is NP -hard on either
bipartite graphs or planar graphs for the uniformly vertex-weighted graph and
k ≥ 2. Chleb́ıková [9] proved that for any ε > 0 it is NP -hard to approximate

c© Springer Nature Switzerland AG 2021
W. Wu and H. Du (Eds.): AAIM 2021, LNCS 13153, pp. 27–37, 2021.
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max-min BCP2 for the uniformly vertex-weighted bipartite graph G = (V,E)
with an absolute error guarantee of |V |1−ε. Chataigner et al. [4] further proved
that max-min BCPk on k-connected graphs for any fixed k ≥ 2 is NP -hard
and that there is no (1 + ε)-approximation algorithm for max-min BCP2 unless
P = NP , where ε ≤ 1

|V |2 . In particular, when k is an input, Chataigner et
al. [4] showed that max-min BCPk does not admit an approximation algorithm
with a ratio smaller than 6

5 , unless P = NP . Chleb́ıková [9] presented a 4
3 -

approximation algorithms for max-min BCP2. Chataigner et al. [4] presented
two 2-approximation algorithms for max-min BCP3 and max-min BCP4 on 3-
connected graphs and on 4-connected graphs, respectively. Chen et al. [5] pre-
sented a 5

3 -approximation for max-min BCP3 on connected graphs. For max-min
BCPk on grid graphs, Becker et al. [1] proved that it is NP -hard if the graph
has at least three rows (the number of columns is arbitrary). Then, Becker
et al. [2] presented a polynomial-time algorithm to solve max-min BCPk on lad-
ders (grid graphs with only two rows). Wu [30] presented a 5

4 -approximation
algorithm for the max-min BCP2 problem on grid graphs and presented a fully
polynomial-time approximation scheme (FPTAS) for a fixed number of rows.
Wu [28] improved a polynomial-time 7

6 -approximation algorithm for max-min
BCP2 on grid graphs. For max-min BCPk on interval graphs, Wu [29] proved
that it is NP -hard and presented an FPTAS for this problem.

The min-max BCPk problem is also called the minimum spanning k-forest
problem. Dyer and Frieze [11] proved that it is NP -hard on either bipartite
graphs or planar graphs for uniformly vertex-weighted images and k ≥ 2. Chen
et al. [5] presented a 3

2 -approximation for the min-max BCP3 problem, and
they also showed that the algorithm by Chleb́ıková [9] is also a 5

4 -approximation
algorithm for the min-max BCP2 problem. Chen et al. [8] presented another 3

2 -
approximation algorithm for the min-max BCP3 problem and then extended it to
become a k

2 -approximation for the min-max BCPk problems with any constant
k ≥ 3. Furthermore, they proposed an improved 24

13 -approximation algorithm
for the min-max BCP4 problem. If graph G is a tree, Becker and Perl [3] gave
an O(k3rd(T ) + k|V |)-time exact algorithm, where rd(T ) is the radius of T .
Then, Frederickson [13] and Frederickson and Samson [14] improved the time
complexity to O(|V |). More related results can be found in [16,18,24,25].

If graph G is a completed graph, the min-max BCPk problem is the par-
allel schedule problem introduced by Graham [15], which is another important
research field in operations research and combinatorial optimization. Given a
set M of m machines and a set J of n jobs such that each job has to be pro-
cessed on one of the machines in nonoverlapping and nonpreemptive way, where
pj denotes the time for a machine to process job Jj ∈ J , the parallel schedule
problem aims to minimize the maximum load over all machines, where the load
of a machine is the total processing time of the jobs assigned to it. Early work
scheduling is a new field in scheduling theory, and early work denotes a part of
a job executed before its due date [7,17,20,26]. Early work scheduling on par-
allel machines with a common due date (P |dj = d|X) schedules n jobs to m
identical parallel machines such that the total early work of jobs is maximized,
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where early work denotes a part of a job executed before the common due date.
P |dj = d|X has many practical applications in control systems, agriculture,
manufacturing systems, and software engineering [6,27]. For P2|dj = d|X, i.e.,
m = 2, Sterna and Czerniachowska [27] proposed a polynomial-time approxima-
tion scheme (PTAS) based on structuring problem input. Chen et al. [7] proved
that the classical largest processing time first heuristic is a 10

9 -approximation
algorithm. Based on a dynamic programming approach, Chen et al. [6] proposed
an FPTAS for Pm|dj = d|X with fixed m. For P |dj = d|X, i.e., m is an input,
Györgyi and Kis [17] proposed a PTAS. Recently, Li [20] improved the results
of PTAS and FPTAS by Györgyi and Kis [17] and Chen et al. [6], respectively.
Choi [10] presented a pseudopolynomial-time algorithm to solve the weighted
Pm|dj = d|X problem with fixed m.

Fig. 1. An example of farmlands with mountains, rivers and houses

In the real world, due to restrictions on mountains, rivers, houses and so on,
a harvester may not be able to directly reach adjacent farmlands (see Fig. 1).
Therefore, when harvesters harvest crops, we not only need to consider how to
harvest the most crops in a given time but also need to consider the route of the
harvesters in the farmlands. Motivated by BCPk and P |dj = d|X, we propose a
new problem, called the maximum bounded connected bipartition problem (2-
BCBP), which is defined as follows. Given a vertex-weighted connected graph
G = (V,E;w) and an upper bound B, the vertex set V is partitioned into two
subsets denoted as (V1, V2) such that both subgraphs induced by V1 and V2 are
connected and the total weight of these two subgraphs is maximized, where the
weight of the subgraph is the minimum of the sum of the weight of all vertices
and B. In this paper, we present an 8

7 -approximation algorithm for this problem.
In particular, when G is an interval graph, we present an FPTAS.

The remainder of this paper is structured as follows. In Sect. 2, we provide a
formal problem statement. In Sect. 3, for the 2-BCBP, inspired by [9] and [30],
we present an 8

7 -approximation algorithm. In Sect. 4, we consider a special case
on interval graphs and present an FPTAS, based on a pseudopolynomial-time
algorithm, which is a modification of the algorithm in [29].
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2 Preliminaries

Let G = (V,E) be a graph and V ′ ⊆ V be a subset of V . The subgraph induced
by V ′ is denoted by G[V ′] = (V ′, E′), where E′ = {(v, v′) ∈ E|v ∈ V ′ and v′ ∈
V ′}. Graph G is connected if there is a path from v to v′ on G for any v, v′ ∈ V ,
and we define that G[{v}] is connected for any v ∈ V . In particular, graph G is
called biconnected if G[V \{v}] is connected for any v ∈ V .

Given a connected graph G = (V,E;w;B), where w : V → R≥0 is a nonneg-
ative vertex weight function, and B is an upper bound. The 2-BCBP partitions
the vertex set V into two subsets denoted as (V1, V2) such that subgraphs G[V1]
and G[V2] are connected. The objective is to maximize the weight wB(V1, V2),
where

wB(V1, V2) = min{
∑

v:v∈V1

w(v), B} + min{
∑

v:v∈V2

w(v), B}.

To simplify the notation, we use w(V ′) to represent the sum cost of the vertices
in set V ′; i.e.,

w(V ′) =
∑

v:v∈V ′
w(v), ∀V ′ ⊆ V,

and let w(∅) = 0.
Related to the 2-BCBP, there are two problems max-min BCP2 and min-max

BCP2: one objective is to maximize the minimum weight of the 2-subset; the
other objective is to minimize the maximum weight of the 2-subset. As shown in
Fig. 2, for max-min BCP2, the objective value of (V1, V2) is w(V2); for min-max
BCP2, the objective value of (V1, V2) is w(V1). For the 2-BCBP, the objective
value of (V1, V2) is w(V2) + B by w(V1) > B.

Fig. 2. A bipartition (V1, V2) such that both subgraphs G[V1] and G[V2] are connected.

For any instance G = (V,E;w;B), let OPT be the optimal value of the
2-BCBP.

Lemma 1. For any instance G = (V,E;w;B) of the 2-BCBP on connected
graphs, we have

OPT ≤ min{w(V ), 2B}.
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Proof. Let (V ∗
1 , V ∗

2 ) be an optimal bipartition for the 2-BCBP, so the objective
value is

OPT =

{
min{w(V ∗

1 ), B} + min{w(V ∗
2 ), B} ≤ w(V ∗

1 ) + w(V ∗
2 ) = w(V ),

min{w(V ∗
1 ), B} + min{w(V ∗

2 ), B} ≤ B + B = 2B.

Thus, the lemma holds.

3 2-BCBP

In this section, based on st-numbering, we first present a linear-time 8
7 -

approximation algorithm for the 2-BCBP on biconnected graphs by modifying
the algorithms in [30] and [9]. Using the ideas in [9], based on this algorithm,
it is easy to obtain a linear-time 8

7 -approximation algorithm for the connected
graphs.

The st-numbering method proposed by Lempel et al. [19] provides a definition
for connected graphs. Given a biconnected graph G = (V,E) and any edge
(s, t) ∈ E, the vertices of G can be labeled from 1 to |V | so that vertex s is labeled
as vertex 1 and vertex t is labeled as vertex |V |; for any vertex v ∈ V \ {s, t},
it is adjacent both to a lower-numbered and a higher-numbered vertex. This
numbering is called st-numbering for G. Even and Tarjan [12] presented an EJ
algorithm to solve the st-numbering problem.

Lemma 2 [12]. For any (s, t) ∈ E, the EJ algorithm can output st-numbering
in linear-time.

Inspired by [9] and [30], we begin our algorithm by finding two vertices s and
t with the largest and the second-largest weights. If w(s) ≥ 1

2w(V ), let V1 = {s}
and V2 = V \ {s}. (V1, V2) are output and the algorithm stops. In Lemma 3, we
prove that (V1, V2) is an optimal bipartition. Otherwise, using the EJ algorithm
in [12], an st-numbering scheme is found for G; in particular, edge (s, t) is added
to E if (s, t) /∈ E. For convenience, we rearrange the indices of the vertices in V
according to the st-numbering scheme, which satisfies

λ(vi) = i, ∀vi ∈ V.

Then, we find an integer k that satisfies

w(V (k)) ≤ 1
2
w(V ) and w(V (k + 1)) >

1
2
w(V ),

where V (k) = {vi|1 ≤ i ≤ k} is the first k vertex in V .
If w(V (k)) ≥ w(V )−w(V (k+1)), let V1 = V (k) and V2 = V \V (k); otherwise,

let V1 = V (k + 1) and V2 = V \V (k + 1). (V1, V2) are output and the algorithm
stops. We propose the detailed algorithm in Algorithm 1.
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Algorithm 1: [9,30]
Input: A biconnected graph G = (V,E;w) and an upper bound B.
Output: A feasible bipartition (V1, V2).

1 Let s := argmaxv:v∈V w(v) and t := argmaxv:v∈V \{s} w(v). Set V1 := {s}.
2 if w(s) ≥ 1

2
w(V ) then

3 Let V2 := V \V1 and output (V1, V2).

4 if (s, t) /∈ E then
5 E := E ∪ {(s, t)}.
6 Using the EJ algorithm in [13], find an st-numbering scheme for G, then

rearrange the indices of vertices in V according to the st-numbering scheme as
above. Set k := 1.

7 while w(V1) ≤ 1
2
w(V ) do

8 k := k + 1 and V1 := V1 ∪ {vk}.
9 if w(V1\{vk}) ≥ w(V ) − w(V1) then

10 V1 := V1\{vk}.
11 Let V2 := V \V1 and output (V1, V2).

Lemma 3. For any vertex v in a biconnected graph G, if w(v) ≥ 1
2w(V ), then

({v}, V − {v}) is an optimal bipartition for the 2-BCBP.

Proof. Since graph G is biconnected, for any vertex v ∈ V , G[V \{v}] is connected
for any v ∈ V , which means that ({v}, V − {v}) is a feasible bipartition for the
2-BCBP.

Let v∗ be the vertex with w(v∗) ≥ 1
2w(V ). If w(v∗) ≤ B, then w(V \{v∗}) ≤

1
2w(V ) ≤ B and

wB({v∗}, V \{v∗}) = min{w(v∗), B} + min{w(V \{v∗}), B} = w(V ).

This statement and Lemma 1 imply that ({v∗}, V \{v∗}) is an optimal bipartition
for the 2-BCBP. Otherwise, for w(v∗) > B, let (V1, V2) be a feasible bipartition
for the 2-BCBP. Without loss of generality, we assume that v∗ ∈ V1. Then, the
objective value of (V1, V2) is

wB(V1, V2) = min{
∑

v:v∈V1

w(v), B} + min{
∑

v:v∈V2

w(v), B}

≤ B + min{
∑

v:v∈V2

w(v) +
∑

v:v∈V1\{v∗}
w(v), B}

= wB({v∗}, V \{v∗})

This means that ({v∗}, V \{v∗}) is an optimal bipartition for the 2-BCBP. There-
fore, the lemma holds.

Formally, we have the following theorem, and the proof is placed in Appendix,
due to the limitation of space.

Theorem 1. For the 2-BCBP on a biconnected graph, Algorithm 1 is a linear-
time 8

7 -approximation algorithm.
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4 2-BCBP on an Interval Graph

In this section, we consider the 2-BCBP on interval graphs and present an
FPTAS based on a pseudopolynomial-time algorithm, which is a modification of
the algorithm in [29].

An interval is usually defined by [l, r], where l < r and l(or r) is the left
(or right) endpoint of the interval. A graph G = (V,E) is an interval graph
if each of the vertices can be represented by an interval such that there is an
edge between the two vertices if and only if the two intervals intersect. We
assume that the input interval graph is given by its interval representation and
V = {vi ∈ [li, ri]|1 ≤ i ≤ n} such that li ≤ li+1 for 1 ≤ i < n, see Fig. 3.

Fig. 3. An example of interval graph

Our algorithm is basically the same as the algorithm in [29], except for the
way in which the output solution is determined. Consistent with the symbols in
[29], let l(vi) and r(vi) be the left and right endpoints represented by the interval
of vertex vi, respectively. For any V ′ ⊆ V , let

r(V ′) = max{r(vi)|vi ∈ V ′}.

Let V (k) = {v1, v2, . . . vk} be the first k vertices in V . For any k, let (V1(k), V2(k))
be a feasible bipartition of G[V (k)] induced by V (k). Assuming r(V1(k)) ≤
r(V2(k)), we can use the pair (x, y) to record this feasible bipartition, where
x = r(V1(k)) and y = w(V1(k)). Then, we present a pseudopolynomial-time
algorithm to generate the set Pn of all possible pairs for feasible bipartition of
G[V (n)], where w(vi) is an integer for any vi ∈ V .

Since w(vi) is an integer for any vi ∈ V , set Pi contains at most nw(V ) pairs
for any i ∈ {1, 2, . . . , n}. Each pair can be found in O(1), so the running time of
Algorithm 2 is O(n2w(V )). Thus, the following lemma is obvious.

Lemma 4. When w(vi) is an integer for any vi ∈ V , The 2-BCBP on an inter-
val graph can be solved in time O(n2w(V )).

Theorem 2. For the 2-BCBP on an interval graph, there is an FPTAS with
running time O((1/ε)n3).
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Algorithm 2: [29]
Input: An interval graph G = (V,E;w) and an upper bound B, where w(vi) is

an integer for any vi ∈ V .
Output: A feasible bipartition (V1, V2).

1 Initially, set P1 = {(0, 0)} and Pi = ∅, ∀i = 2, 3, . . . , n.
2 for i = 2 to n do
3 for (x, y) ∈ Pi−1 do
4 add pair (x, y) to Pi

5 if l(vi) ≤ x or x = 0 then
6 if r(vi) < r(V (i − 1)) then
7 add pair (max{x, r(vi)}, y + w(vi)) to Pi

8 else
9 add pair (r(V (i − 1)), w(V (i − 1)) − y) to Pi

10 Let (x′, y′) := argmax(x,y):(x,y)∈Pn min{y,B} +min{w(V ) − y,B} and output
the bipartition (V1, V2) corresponding to the pair (x′, y′).

Proof. Given a reduction factor f = ρB
2n . For any instance G = (V,E,w;B),

construct an auxiliary interval graph G′ = (V,E,w′;B), where w′(v) = 	w(v)
f 
.

Using Algorithm 2, we can obtain an optimal bipartition (V1, V2) of G′. Then,
we have

min{w′(V1), B} + min{w′(V2), B} ≥ min{w′(V ∗
1 ), B} + min{w′(V ∗

2 ), B}, (1)

where (V ∗
1 , V ∗

2 ) is the optimal bipartition of G = (V,E,w;B).
Since w(v)

f ≥ w′(v) =
⌊

w(v)
f

⌋
> w(v)

f − 1, we have w(v) ≥ fw′(v) ≥ w(v) −
f, ∀v ∈ V and

OUT = min{w(V1), B} + min{w(V2), B}
≥ min{fw′(V ∗

1 ), B} + min{fw′(V ∗
2 ), B}

≥ min{w(V ∗
1 ), B} + min{w(V ∗

2 ), B} − 2fn

= OPT − 2fn,

where the first inequality follows from inequality (1), and OPT is the objective
value of the optimal bipartition (V ∗

1 , V ∗
2 ).

If w(V ) ≤ B, for any feasible bipartition (V ′
1 , V ′

2) of G, we have w(V1) ≤ B
and w(V2) ≤ B. Thus, we have

min{w(V ′
1), B} + min{w(V ′

2), B} = w(V1) + w(V2) = w(V ),

and (V ′
1 , V ′

2) is an optimal bipartition of G by Lemma 1. Otherwise, w(V ) >
B. Since (∅, V ) is a feasible bipartition of G, we have OPT ≥ min{0, B} +
min{w(V ), B} = B and

f =
ρB

2n
≤ ρOPT

2n
.
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Thus,

OUT ≥ OPT − 2fn ≥ OPT − ρB ≥ OPT − ρOPT = (1 − ρ)OPT.

For any ε > 0, we set ρ = ε
1+ε ; then,

OPT

OUT
≤ 1

1 − ρ
= 1 + ε.

By Lemma 4, the time complexity is

O(n2w′(V )) = O(n2 w(V )
f

) = O(n2 w(V )
ρB/(2n)

) = O
(
(1/ε)n3

)
.

5 Conclusion

In this paper, we consider the 2-BCBP, which is a hybrid variant of the maximum
balanced connected partition problem on connected graphs and the maximum
total early work problem in scheduling theory. We present an 8

7 -approximation
algorithm. In particular, we consider the 2-BCBP on interval graphs and present
an FPTAS.

The topic could be further studied in the following ways. It is also challenging
to design a better algorithm for the 2-BCBP. The grid graph and bipartite graph
for this problem are worth considering, since graphs may have different proper-
ties in the real world. Moreover, for the maximum bounded connected multiple
partitions problem, algorithms under this setting could be further developed.

Acknowledgements. The work is supported in part by the National Natural Science
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Yunnan Province [No. 202005AE160006].
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Abstract. We consider the heterogeneous Chinese postman problem
(the HCPP), which is modelled as follows. Given a weighted graph G =
(V, E;w; r) with a length function w : E → R+ satisfying the triangle
inequality, a fixed depot r ∈ V , and k vehicles having k nonuniform
speeds λ1, λ2, . . . , λk, respectively, we are asked to find k tours for these
k vehicles, each starting and ending at the same depot r, such that
every edge in G is traversed at least once by one of these k vehicles.
The objective is to minimize the maximum completion time, where the
completion time of each vehicle is the total traveling length divided by
its speed.

In this paper, we design a 20.8765(1+ δ)-approximation algorithm to
solve the HCPP for any small number δ > 0.

Keywords: Combinatorial optimization · Chinese postman tours ·
Nonuniform speeds · Approximation algorithm

1 Introduction

The capacitated vehicle routing problem, especially including the traveling sales-
man problem (the TSP) and the Chinese postman problem (the CPP), form a
much-studied family of combinatorial optimization problems, due to their many
important practical applications [5,9,10], such as routing of street sweepers, snow
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plows, household refuse collection vehicles, the spraying of roads with salt-grit
to prevent ice formation, the inspection of electric power lines, and gas or oil
pipelines for faults.

The heterogeneous traveling salesman problem (the HTSP) addressed in 2016
by Gørtz et al. [6] is one of the important capacitated vehicle routing problems,
which is modelled as follows. Given a complete weighted graph G = (V,E)
equipped with a length function w : E → R+ that satisfies the triangle inequality,
a fixed depot r ∈ V and k vehicles that have nonuniform speeds λ1, λ2, . . ., λk,
respectively, it is asked to find k cycles for these k vehicles, each starting and
ending at the same depot r, such that every vertex in G is traveled at least once
by one of these k vehicles. The objective is to minimize the maximum completion
time, where the completion time of a vehicle is the total traveling length divided
by its speed. Using a new approximate minimum spanning tree construction,
Gørtz et al. [6] presented a constant factor approximation algorithm to solve the
HTSP.

The metric traveling salesman problem (�-TSP or metric-TSP) [11] is a spe-
cial case of the HTSP, where k = 1, i.e., only using one vehicle. Using techniques
to solve the minimum spanning tree problem [8] and the minimum perfect match-
ing problem [3] specialized to weighted graphs that have the triangle inequality,
Christofides [1] in 1976 designed a 1.5-approximation algorithm to solve the
�-TSP. The k-traveling salesman problem (the k-TSP) originally considered in
1978 by Frederickson et al. [4] is also a special case of the HTSP, where λi = 1 for
each i ∈ {1, 2, . . . , k}, i.e., all vehicles having a uniform speed. Using a splitting
technique, Frederickson et al. [4] designed a (52 − 1

k )-approximation algorithm to
solve the k-TSP.

The k-Chinese postman problem (the k-CPP) originally addressed in 1978
by Frederickson et al. [4] is modelled as follows. Given a weighted graph G =
(V,E;w) equipped with a length function w : E → R+ that satisfies the triangle
inequality, a fixed depot r ∈ V and k vehicles, where we may assume that these
k vehicles have uniform speeds, it is asked to find a tour for each vehicle, starting
and ending at the depot r, such that every edge in G is traveled at least once
by one of these k vehicles. The objective is to minimize the maximum total
length among these k tours, where the total length of a vehicle is the sum of
edge lengths that vehicle travels in that tour. Equivalently, the objective is to
minimize the maximum completion time, where the completion time of a vehicle
is the total traveled length divided by its speed for the case of these k vehicles
having uniform speeds. The 1-CPP is exactly the Chinese postman problem (the
CPP) addressed in 1960 by Guan [7]. Using an efficient algorithm for solving the
maximum weighted matching problem [2], Edmonds and Johnson [3] in 1973
designed an optimal algorithm to solve the CPP in polynomial time. Using a
splitting technique, Frederickson et al. [4] presented a (2 − 1

k )-approximation
algorithm to solve the general k-CPP.

Motivated by some applications in reality practices of the HTSP, it is nat-
ural for us to consider one problem similar to a generalization of the k-CPP
and the HTSP, where these k vehicles have nonuniform speeds. We address the
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heterogeneous Chinese postman problem (the HCPP), which is modelled as fol-
lows. Given a weighted graph G = (V,E;w) equipped with a length function
w : E → R+ that satisfies the triangle inequality, a fixed depot r ∈ V and k
vehicles that have k nonuniform speeds λ1, λ2, . . . , λk, respectively, it is asked
to find k tours C = {Ci | i = 1, 2, . . . , k} for these k vehicles, each starting and
ending at the same depot r, such that every edge in G is traversed at least once
by one of these k vehicles. The objective is to minimize the maximum com-
pletion time, where the completion time of each vehicle is the total traveling
length divided by its speed. In a mathematical way, the makespan objective is
to minimize the value of max{w(Ci)

λi
| i = 1, 2, . . . , k}.

As far as what we have known, the HCPP has not been considered in the
literature. Given any small number δ > 0, we shall design a 20.8765(1 + δ)-
approximation algorithm to solve the HCPP.

This paper is organized as follows. In Sect. 2, we present some terminologies
and fundamental lemmas to ensure the correctness of our algorithm; In Sect. 3,
we design an approximation algorithm with constant factor to solve the HCPP;
In Sect. 4, we provide our conclusion and further research.

2 Terminologies and Fundamental Lemmas

Given a graph G = (V,E), a new graph G′ = (V ′, E′) is called a subgraph
of G if V ′ ⊆ V and E′ ⊆ E. If E′ = {uv ∈ E | u, v ∈ V ′}, the subgraph
G′ = (V ′, E′) is called the subgraph induced by V ′, and denoted by G[V ′].
Similarly, if V ′ = {u, v ∈ V | there exists an edge uv ∈ E′}, then the subgraph
G′ = (V ′, E′) is called the subgraph induced by E′, and denoted by G[E′].

Given a graph G = (V,E), a walk P connecting a vertex vi1 and a vertex
vik+1 is an alternating sequence π := vi1ei1vi2ei2vi3 · · · vikeikvik+1 such that, for
each integer 1 ≤ j ≤ k, two end-vertices of edge eij are vij and vij+1 , and we
may simply write this walk as Pvi1 ,vik+1

= vi1vi2vi3 · · · vikvik+1 . A walk P is
called a tour with k edges if vi1 = vik+1 . In addition, a walk P is called a path
if the vertices in P are all distinct, and we may simply denote this path P as a
vi1-vik+1 path in G.

A graph G = (V,E) is called connected if, for any two vertices x and y in V ,
there exists a path Pxy connecting x and y, where each edge e = uv on such a
path Pxy may be traversed either from u to v or from v to u on that edge e. The
maximal connected subgraphs of a graph G are called its connected components.
When G is a weighed graph, for an x-y path Pxy, we denote by w(Pxy) the total
length of all edges in Pxy, and denote by d(x, y) the length of a shortest path
from x to y, i.e., d(x, y) = min{w(Pxy) | Pxy is a path connecting x and y}.

When we plan to design some approximation algorithm to solve the HCPP,
we shall use the following definition in [6], which is called the assignable subtours.

Definition 1 [6]. Given a weighted graph G = (V,E;w) with two constants
M > 0 and ε > 0, where w : E → R+, let Ti be a set of tours in G, each starting
and ending at the same vertex r, for each integer i ≥ 0. Then the collection



The Heterogeneous Chinese Postman Problem 41

⋃
i≥0 Ti is said to be (α, β)M,ε-assignable if this collection has the following two

properties

(1) w(C) ≤ α · (1 + ε)iM for each i ≥ 0 and every C ∈ Ti;
(2)

∑
j≥i w(Ti) ≤ βM · Λ((1 + ε)i−1) for each i ≥ 0, where Λ((1 + ε)i−1) is

the sum of speeds that are at least (1 + ε)i−1 and w(Ti) =
∑

C∈Ti
w(C) =∑

C∈Ti

∑
e∈C w(e).

For convenience, we denote {Ti}i≥0 instead of
⋃

i≥0 Ti.
Using Definition 1 and the ASSIGN algorithm [6], we can obtain the following

Lemma 1 [6]. Given an (α, β)M,ε-assignable collection {Ti}i≥0 of tours, each
starting and ending at the same depot r, the ASSIGN algorithm can assign
{Ti}i≥0 in polynomial time to k vehicles, each of which starts and ends at
the same depot r, such that the completion time of any vehicle is at most
((1 + ε)α + β)M .

3 The Heterogeneous Chinese Postman Problem

In this section, we consider the heterogeneous Chinese postman problem (the
HCPP). Without loss of generality, we may assume that graphs considered are
all connected, otherwise there is no feasible solution to the HCPP.

By Lemma 1, we want to use the following strategies to design an algorithm
to solve the HCPP, i.e.,

(1) Find an (α, β)M,ε-assignable collection of subtours that cover all edges;
(2) Assign subtours in the collection to k vehicles such that the completion time

on any vehicle is minimized as soon as possible.

Given a weighted graph G = (V,E;w; k) with two current values M and ε
(the precise value to be fixed later), we may partition the set V into subsets
V1, V2, . . ., where V0 = {v ∈ V | d(r, v) ≤ M}, and Vi = {v ∈ V | (1 + ε)i−1M <
d(r, v) ≤ (1 + ε)iM} for each i ≥ 1. Similarly, we may partition the set E into
subsets E0, E1, E2, . . ., where E0 = {rv ∈ E | d(r, v) ≤ M}, and Ei = {vv′ ∈
E | d(r, v) ≤ (1 + ε)iM and (1 + ε)i−1M < d(r, v′) ≤ (1 + ε)iM} for each i ≥ 1.
For each i ≥ 1, we denote V≤i :=

⋃
j≤i Vj , V≥i :=

⋃
j≥i Vj , E≤i :=

⋃
j≤i Ej and

E≥i :=
⋃

j≥i Ej .
Our approximation algorithm, denoted by the HCP algorithm, to solve the

HCPP is described in details as follows.

Algorithm: HCP
Input: A weighted graph G = (V,E;w; k) with a depot r ∈ V , a length function

w : E → R+, k vehicles having nonuniform speeds λ1, λ2, . . ., λk and ε > 0;
Output: A set C = {Ci | i = 1, 2, . . . , k} of k tours in G.
Begin
Step 1 Set M = maxvv′∈E{d(r,v)+w(vv′)+d(v′,r)

λmax
}, where λmax = max{λi | i =

1, 2, . . . , k};
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Step 2 Using two current values M and ε (the precise value to be fixed later), we
may partition the edge-set E into subsets E0, E1, E2, . . . as mentioned above;
For convenience, we may assume that the number of subsets partitioned is t,
i.e., (1 + ε)t−1M < max{d(r, v) | v ∈ V } ≤ (1 + ε)tM ;

Step 3 If (w(E≥l) > M · Λ((1 + ε)l−1) holds for some l ∈ {1, 2, . . . , t}) then
Set M := (1 + δ)M , where δ > 0 is a small constant, and go to Step 2;

Step 4 Set Sm
0 (= S0) = {r} ∪ G[E0], γ = ε

(2+ε)(1+ε) ;
Step 5 For all i ∈ {1, 2, . . . , t}, determine all connected components, denoted by

Si, in G[Ei], and set Sm
i = ∅ and Su

i = ∅;
Step 6 For all i ∈ {1, 2, . . . , t}, η ∈ Si do:

If (w(η) ≥ γ · (1 + ε)iM) then
Set Sm

i := Sm
i ∪ {η};

Else
Set Su

i := Su
i ∪ {η};

Step 7 For all i ∈ {1, 2, . . . , t}, σ ∈ Su
i do:

Determine a connected component π(σ) in G[Ei−1], having π(σ)∩σ �= ∅;
Step 8 For all i ∈ {0, 1, 2, . . . , t − 1}, τ ∈ Sm

i do:
(8.1) Set Dangle(τ) = {σ ∈ Su

i+1 | π(σ) = τ};
(8.2) Find an Eulerian tour of (τ ∪ Dangle(τ)) by “doubling” its edges,

and split the resulting Eulerian tour into maximal paths of total length at
most 2(1 + ε)i+1M each, denote them in turn by P1, P2, . . ., Pq;

(8.3) For each j ∈ {1, 2, . . . , q}, augment Pj by adding two shortest
paths from r to the end vertices of Pj (when q = 1, then both end-vertices
are defined as the vertex closest to r in Pj), to obtain a set of subtours, each
starting and ending at the same depot r, denote it by Ti(τ);

Step 9 For each i ∈ {0, 1, . . . , t}, set Ti =
⋃

τ∈Sm
i

Ti(τ); Using the ASSIGN
algorithm [6], we may combine {Ti}i≥0 =

⋃
i≥0 Ti into k tours C = {Ci | i =

1, 2, . . . , k}, corresponding to k vehicles;
Step 10 Output “k tours C = {Ci|i = 1, 2, . . . , k} corresponding to k vehicles”.
End

By the HCP algorithm, we can obtain the following

Lemma 2. Given a weighted graph G = (V,E;w; k) with a depot r ∈ V as an
instance of the HCPP, if OPT ≤ M , then w(E≥l) ≤ M · Λ((1 + ε)l−1) holds
for each integer l ≥ 0, where OPT is an optimal value of this weighted graph
G = (V,E;w; k), and Λ((1+ε)l−1) is the sum of speeds, each of which is at least
(1 + ε)l−1.

Proof. Consider an edge e = vv′ ∈ E≥l, we assume that e is traveled by a vehicle
of speed λ′ in an optimal solution for the HCPP. Since max{d(r, v), d(r, v′)} ≥
(1 + ε)l−1M , we have λ′ · OPT ≥ max{d(r, v), d(r, v′)} ≥ (1 + ε)l−1M . Since
M ≥ OPT , we deduce that a vehicle of speed λ′ travels distance at most λ′ ·
OPT ≤ λ′ · M . Thus, we obtain λ′ · M ≥ λ′ · OPT ≥ (1 + ε)l−1M , implying
λ′ ≥ (1 + ε)l−1.

In an optimal solution, it is clear that every edge in E≥l must be traveled by
some vehicle, and then we have w(E≥l) ≤ OPT ·Λ((1+ε)l−1). Since OPT ≤ M ,
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we obtain OPT · Λ((1 + ε)l−1) ≤ M · Λ((1 + ε)l−1), then we have w(E≥l) ≤
OPT · Λ((1 + ε)l−1) ≤ M · Λ((1 + ε)l−1), implying w(E≥l) ≤ M · Λ((1 + ε)l−1).

This completes the proof of the lemma. �
By executing Steps 6–7 in the HCP algorithm, we can obtain the following

Lemma 3. For any i ≥ 1 and σ ∈ Su
i , there exists π(σ) ∈ Si−1. Moreover,

π(σ) ∈ Sm
i−1.

Proof. For an element σ ∈ Su
i , it is clear that w(σ) < γ · (1 + ε)iM . By the

definition of Su
i , we have v ∈ V≤i for every v ∈ V (σ), implying v ∈ Vi ∪ Vi−1.

Otherwise, we may assume that vv′ ∈ E(σ), where v ∈ Vi and v′ ∈ V<i−1, it
follows that w(σ) ≥ w(vv′) ≥ d(r, v) − d(r, v′) > (1 + ε)i−1M − (1 + ε)i−2M >
γ · (1 + ε)iM , which contradicts the fact σ ∈ Su

i . This shows that v ∈ Vi ∪ Vi−1

for every v ∈ V (σ).
Since the given graph G is connected, we conclude that there is some edge

yx ∈ E(σ) satisfying y ∈ V≤i−1 and x ∈ Vi, which implies y ∈ Vi−1 (due to
v ∈ Vi ∪ Vi−1 for every v ∈ V (σ)). Hence, there exists an element π(σ) ∈ Si−1

to satisfy π(σ) ∩ σ �= ∅.
Secondly, we shall prove π(σ) ∈ Sm

i−1. When i = 1, we have π(σ) = S0, and
it is obvious to obtain that π(σ) ∈ Sm

0 . When i ≥ 2, from the arguments above,
we obtain π(σ) ∈ Si−1, thus there is z ∈ π(σ) that satisfies z ∈ V<i−1. Using the
triangle inequality twice, we obtain the following

d(z, y) + d(y, x) ≥ d(z, x) ≥ d(r, x) − d(r, z).

Since x ∈ Vi and z ∈ V<i−1, we have d(r, x) − d(r, z) > (1 + ε)i−1M − (1 +
ε)i−2M = ε(1+ε)i−2M , implying d(z, y)+d(y, x) > ε(1+ε)i−2M . Since σ ∈ Su

i ,
we have d(y, x) = w(yx) ≤ w(σ) < γ · (1 + ε)iM . Thus, we obtain the following

w(π(σ)) ≥ dπ(σ)(z, y) ≥ d(z, y) > ε(1+ε)i−2M −γ · (1+ε)iM = γ · (1+ε)i−1M,

implying π(σ) ∈ Sm
i−1.

This completes the proof of the lemma. �
By executing Step 8 in the HCP algorithm and using the similar argument

as in [6], we determine the two following lemmas.

Lemma 4. For any C ∈ Ti(τ), we have w(C) ≤ (4 + 4ε)(1 + ε)iM .

Proof. Note that every tour C ∈ Ti(τ) consists of a path Pj (for some 1 ≤ j ≤ q)
and shortest paths from r to both end-vertices of Pj . Based on the construction
of Pj , we have w(Pj) ≤ 2(1 + ε)i+1M . Since Pj only includes edges in E≤i+1,
it follows that the total length of two additional shortest paths is at most 2(1 +
ε)i+1M . Thus, we obtain w(C) ≤ 4(1 + ε)i+1M = (4 + 4ε)(1 + ε)iM . �

Lemma 5.
∑

C∈Ti(τ)
w(C) ≤ max{4 + 4

ε , 6} · w(τ ∪ Dangle(τ)).
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Proof. We may divide the analyses into two cases, depending on q.

Case 1: q = 1, i.e., Ti(τ) only includes a subtour C.
If i = 0, then τ includes r and w(C) ≤ 2w(τ ∪ Dangle(τ)). When i > 0,

it is clear that τ has a vertex u ∈ V<i. Based on the construction of C, we
have w(C) ≤ 2(1 + ε)i−1M + 2w(τ ∪ Dangle(τ)). Since τ ∈ Sm

i , we can assert
w(τ) ≥ γ · (1 + ε)iM , implying (1 + ε)i−1M ≤ 2+ε

ε · w(τ). Thus, we obtain
w(C) ≤ 2(1 + ε)i−1M + 2w(τ ∪ Dangle(τ)) ≤ (2 · 2+ε

ε + 2) · w(τ ∪ Dangle(τ)) =
(4+ 4

ε ) ·w(τ ∪Dangle(τ)), which means
∑

C∈Ti(τ)
w(C) = w(C) ≤ (4+ 4

ε ) ·w(τ ∪
Dangle(τ)).

Case 2: q ≥ 2.
By Step 8, we have 2w(τ ∪ Dangle(τ)) > (q − 1) · 2(1 + ε)i+1M , namely,

(1 + ε)i+1M < w(τ∪Dangle(τ))
q−1 . Since E(τ ∪ Dangle(τ)) ⊆ E≤i+1, it follows that

V (τ ∪ Dangle(τ)) ⊆ V≤i+1, implying that each shortest path added from r has
total length at most (1 + ε)i+1M . Hence, we have

∑
C∈Ti(τ)

w(C) ≤ 2q · (1 +
ε)i+1M +2w(τ ∪Dangle(τ)) ≤ ( 2q

q−1 +2)·w(τ ∪Dangle(τ)) ≤ 6·w(τ ∪Dangle(τ)).
Combining the two preceding arguments in Cases 1–2, we obtain∑

C∈Ti(τ)
w(C) ≤ max{4 + 4

ε , 6} · w(τ ∪ Dangle(τ)). �
Using Lemmas 3–5, we obtain the following

Lemma 6. If w(E≥i) ≤ M · Λ((1 + ε)i−1), then the collection {Ti}i≥0 obtained
from Step 8 is (α, β)M,ε-assignable, where α = 4 + 4ε, β = max{6, 4 + 4

ε} and
Ti =

⋃
τ∈Sm

i
Ti(τ).

Proof. We shall prove that the collection {Ti}i≥0 satisfies the two properties in
Definition 1. By Lemma 4, it is clear that the property (1) in Definition 1 holds.
Now, we only need to show that

∑
j≥i w(Tj) ≤ max{6, 4 + 4

ε} · w(E≥i).
In the HCP algorithm, we note that {Dangle(τ) | τ ∈ Sm

j } is a partition of
Su

j+1, implying
∑

j≥i(w(Sm
j ) + w(Su

j+1)) ≤
∑

j≥i w(Sj) = w(E≥i).
Using Lemma 3, we have

∑
τ∈Sm

j
w(τ ∪ Dangle(τ)) = w(Sm

j ) +
w(Su

j+1). Using Lemma 5, we can ensure w(Tj) =
∑

τ∈Sm
j

w(Tj(τ)) =
∑

τ∈Sm
j

∑
C∈Tj(τ)

w(C) ≤ max{4 + 4
ε , 6} ·

∑
τ∈Sm

j
w(τ ∪ Dangle(τ)), which gives

w(Tj) ≤ max{4 + 4
ε , 6} · (w(Sm

j ) + w(Su
j+1)). Thus, it follows that

∑

j≥i

w(Tj) ≤ max{4 +
4
ε
, 6} ·

∑

j≥i

(w(Sm
j ) + w(Su

j+1)) ≤ max{4 +
4
ε
, 6} · w(E≥i).

This completes the proof of the lemma. �
Using Lemmas 1–2 and 6, we obtain the following

Theorem 1. The HCP algorithm is a constant factor approximation algorithm
to solve the HCPP, and it runs in polynomial time.

Proof. By Lemma 2, the decision condition in Step 3 does not hold whenever
M ≥ OPT . Based on the update rule for M , we deduce that Steps 4–10 are
executed with M ≤ (1 + δ) · OPT .
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When fixing ε = 0.5652, using Lemma 6, we can obtain a (6.2608, 11.07714)-
assignable collection {Ti}i≥0. By Lemma 1, Step 9 can assign in polynomial time
{Ti}i≥0 to k vehicles, satisfying that the completion time on any vehicle is at
most 20.8765 · M , which means OUT ≤ 20.8765 · M ≤ 20.8765(1 + δ) · OPT .

Notice that every step in the HCP algorithm can be executed in polyno-
mial time. We shall bound the number of iterations. By using the arguments
mentioned-above, the HCP algorithm stops before M > (1 + δ)OPT , where

(1 + δ)OPT ≤ (1 + δ) ·
∑

uv∈E(d(r, u) + w(uv) + d(v, r))
λmax

≤ (1 + δ)|E| · maxuv∈E(d(r, u) + w(uv) + d(v, r))
λmax

Since M is initialized at maxuv∈E(d(r,u)+w(uv)+d(v,r))
λmax

, and increased by an
(1 + δ)-factor for each iteration, we conclude that the number of iterations is at
most O( 1δ log |E|). Hence, the HCP algorithm can be implemented in polynomial
time.

This completes the proof of the theorem. �

4 Conclusion and Further Work

In this paper, we consider the heterogeneous Chinese postman problem (the
HCPP), and design a 20.8765(1 + δ)-approximation algorithm in polynomial
time to solve the HCPP for any small number δ > 0.

In further work, a challenge is to design a constant factor approximation algo-
rithm in polynomial time to solve the HCPP with added capacity constraint, and
we shall study other versions of the routing problems with nonuniform speeds.
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Abstract. In the stochastic facility location problem, there are two-stage pro-
cesses for the decision. A set of facilities may be opened without information
for the demand of clients at the first stage; an additional set of facilities may fur-
ther be opened at the second stage where the scenario of the clients is realized
according to some given distribution. One has to take the risk into consideration
and make decision on the open facilities in each stage and each scenario such
that the total expected cost of the opening and service is minimized. In this paper,
we consider a global cardinality constraint in this model, i.e., there is an upper
bound k for the number of open facilities at the second stage. This model gen-
eralizes both stochastic facility location and the k-median. Our main result is a
provable efficient approximation algorithm with a performance ratio of 6 based
on primal-dual schema.

Keywords: Stochastic facility location · k-facility location · Approximation
algorithm · Primal-dual

Facility location is one of the most fundamental and classical models in the fields of
applied mathematics, operations research and management science. Traditional facil-
ity location solves a subset from a given candidates of facilities to open in order to
minimize the total cost of connecting each client to its nearest open facility plus the
opening cost. This problem is somehow well studied in the literature. The state-of-
the-art approximation algorithm hits a performance ratio of 1.488 by Li [12], which is
very close to the inapproximability bound of 1.463 proved by Guha and Khuller [8]
under the assumption of NP ⊆ DTIME[nO(log log n)] and strengthened to P �= NP by
Sviridenko (Personal Communication). Facility location problem has lots of variants,
such as, robust facility location (c.f. [9]), capacitated facility location (c.f. [10]), facil-
ity location with penalties (c.f. [5]). In traditional facility location, all parameters are
deterministic and known before making decisions. A new research trend focuses on the
uncertainty study in facility location decisions. In stochastic facility location, uncertain
parameters are governed by a certain probability distribution that are known and the
decision maker should take the risk into consideration before make a decision. And a
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common goal is to optimize the expected value of some cost or profit function in this
stochastic situation.

Stochastic features are introduced to facility location by Ermoliev and Leonardi [6].
In the stochastic facility location, the decision maker is required to choose locations
before the uncertain demands are known, and react once the uncertain scenario has been
realized. Louveaux and Peeters [14] extends the approaches proposed for determinis-
tic facility location and first present a heuristic dual-based procedure for this problem.
One of the mainstream study for stochastic facility location is a scenario-based stochas-
tic one that considers two-stage decision processes where at the first stage one has to
choose the location before the uncertain demand of clients realized, and at the second
stage one has to decide the location as well as the assignment for each scenario may
occur. The facilities can be opened in either the first stage or the second with a fixed
opening cost under the assumption that the opening cost is higher in the second stage.
Gupta et al. [7] give a 8.45-approximation algorithm for this problem. Ravi and Sinha
[18] improve this to reach a performance ratio of 8 based on LP rounding algorithm
for deterministic facility location. Swamy and Shmoys [19] improve upon a family
of optimization models including stochastic facility location using a convex program
relaxation and specific rounding approach which achieves a (3.04 + ε)-approximation.
Furthermore, the two-stage nature of stochastic facility location makes it a popular
application of general stochastic programming methods [3]. Also, multi-stage decision
processes in stochastic facility location is considered by Hochreiter and Pflug [11] who
view this problem as multi-dimensional facility location and conclude that as least good
heuristic algorithms exists. Basciftci et al. [2] consider distributioinally robust facility
location problem in which we are just given the moment information of the distribution
of the demand.

Another attractive problem in facility location family is the k-median. Traditional
k-median problem seeks for at most k facilities in a given set to open so as to minimize
the total distance from the clients to their nearest open facilities. The state-of-the-art
approximation results for this problem is proposed by Byrka et al. [4] using a novel
dependent rounding approach which gives a (2.675+ ε)-approximation. The k-median
is extended to a more generalized model called k-facility location in which opening cost
is also considered in the objective. For this problem, Zhang [21] proposes a (2+

√
3+ε)-

approximation algorithm which is currently the state-of-the-art. Stochastic features are
introduced to the k-median before which is well studied. However, the uncertainty in
the k-median concerns mainly the costs [1,17,20], and a different stream of studies
concerns the uncertainty of the locations [16].

To the best of our knowledge, the connection between stochastic facility location
and stochastic k-median is first considered by Louveaux [13], who mainly study from
the modeling instead of algorithmic perspective. In this paper, we propose the so-called
stochastic k-facility location problem (SkFLP) which is a common generalization of
stochastic facility location and k-median. Based on primal-dual schema and Lagrange
multiplier preservation property, we give a provable efficient approximation algorithm
for SkFLP with a performance ratio of 6.
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1 Preliminaries

In the SkFLP, there are two stages in the location process. At the first stage, we are given
the facility set F . Each facility can be opened to serve the client realized latter. The
opening cost for facility at this stage is f0

i . Moreover, we are also given the distribution
of the demand to be served at the second stage. The client set Dt need to be served
with the probability qt (note that

∑T
t=1 qt = 1). At the second stage, the client set is

realized. We are allowed to open more facility as the supplement with higher opening
cost. The opening cost in scenario s (that is, the client set Ds is realized) is fs

i . The
metric service cost is cij between the facility i and client j. There is also an upper
bound k of the number of the opened facilities. The goal of the problem is to decide
which facilities to open at both stages such that the expected total cost including the
opening cost and connection cost is minimized. Then, the SkFLP

min
F0,Ft⊆F

⎧
⎨

⎩

∑

i∈F0

f0
i +

∑

t=1,2,··· ,T

qt

⎡

⎣
∑

i∈Ft

f t
i +

∑

j∈Dt

min
i∈F0∪Ft

cij

⎤

⎦

⎫
⎬

⎭
.

For easy to describe the problem, we denote some new notations as follows.

– facility-scenario set F := {(i, s) : i ∈ F, s = 0, 1, 2, · · · , T}, if s = 0 means the
facility is at the first stage;

– client-senario set D := {(j, t) : j ∈ Dt, t = 1, 2, · · · , T};
– the connection cost between (i, s) ∈ F and (j, t) ∈ D

cst
ij :=

{
cst
ij , if s = 0 or t;
+∞, otherwise.

Therefore, the SkFLP is equivalent to the problem that we are given the facility-scenario
set F and the client-scenario set D. The facility-scenario pair (i, s) ∈ F is qsf

s
i (set

q0 = 1). The connection cost between facility pair (i, s) ∈ F and (j, t) ∈ D is cst
ij . The

demand of the client-scenario pair (j, t) is qt. Then, we need to decide which facility-
scenario pairs opened such that the total cost including the opening cost and connection
cost is minimized. Based on the above description, we introduce the variables y0

i to
show whether the facility i is opened at the first stage, ys

i to show whether the facility i
is opened in scenario s at the second stage, xst

ij to show whether the client j in scenario
t is severed by the facility i opened in scenario s (note that, s = 0 or s = t). Thus, we
have the following formulation

min
∑

(i,s)∈F
qsf

s
i ys

i +
∑

(i,s)∈F

∑

(j,t)∈D
qsc

st
ijx

st
ij

s. t.
∑

(i,s)∈F
xst

ij ≥ 1, ∀(j, t) ∈ D, (1)

xst
ij ≤ ys

i , ∀(i, s) ∈ F , (j, t) ∈ D,
∑

(i,s)

ys
i ≤ k,

xst
ij , y

s
i ∈ {0, 1}, ∀(i, s) ∈ F , (j, t) ∈ D.
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The first constraint shows that there must be connected to a facility-scenario pair for
each client-scenario (j, t); The second constraint shows that if the client-scenario pair
(j, t) is connected to facility-scenario pair (i, s), the facility-scenario pair (i, s) should
be opened. The objective is the total expected total cost of the problem.

Relaxing the integer constraint of program (1), we obtain the linear program as
follows.

min
∑

(i,s)∈F
qsf

s
i ys

i +
∑

(i,s)∈F

∑

(j,t)∈D
qsc

st
ijx

st
ij

s. t.
∑

(i,s)∈F
xst

ij ≥ 1, ∀(j, t) ∈ D, (2)

xst
ij ≤ ys

i , ∀(i, s) ∈ F , (j, t) ∈ D,
∑

(i,s)

ys
i ≤ k,

xst
ij , y

s
i ≥ 0, ∀(i, s) ∈ F , (j, t) ∈ D.

Then, the dual program of the relaxation is

max
∑

(j,t)

αt
j − k · λ

s. t.αt
j ≤ βst

ij + qtc
st
ij , ∀(i, s) ∈ F , (j, t) ∈ D, (3)

∑

(j,t)∈D
βst

ij ≤ qsf
s
i + λ, ∀(i, s) ∈ F ,

αt
j , β

st
ij ≥ 0, ∀(j, t) ∈ D, (i, s) ∈ F ,

In the above program, we can observe that αt
j means the budget of (j, t) to connect to

a facility-scenario pair, βst
ij means the contribution of (j, t) to open (i, s). If λ is fixed,

k · λ is a constant. Given a fixed λ, we propose the dual program of (3) after dropping
the term of the constant k · λ.

min
∑

(i,s)∈F
(qsf

s
i + λ)ys

i +
∑

(i,s)∈F

∑

(j,t)∈D
qsc

st
ijx

st
ij

s. t.
∑

(i,s)∈F
xst

ij ≥ 1, ∀(j, t) ∈ D, (4)

xst
ij ≤ ys

i , ∀(i, s) ∈ F , (j, t) ∈ D,

xst
ij , y

s
i ≥ 0, ∀(i, s) ∈ F , (j, t) ∈ D.

The above program is a stochastic facility location problem without the constraint of k,
where the facility cost is qsf

s
i + λ. If λ is big enough, we just open few facilities (less

than k) to obtain fewer opening cost. If λ is 0, we can open more faciities (more than
k) to obtain fewer connection cost.
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2 Main Results

In this section, we will propose our primal-dual algorithms for the stochastic k-facility
location problem, along with their performance guarantee. Our algorithm is two-setps
algorithm. Firstly, a dual ascending process will produce an integer solution for a fixed
λ. We run the process twice for two different values of λ to obtain k1 > k facilities and
k2 ≤ k facilities to open, separately. Secondly, we construct an integer solution with
exact k facilities.

Now, the primal-dual process for a fixed λ can be give as follows (c.f. Primal-dual
(λ)).

In the Algorithm 2, we obtain a feasible solution for stochastic facility location
problem with fs

i + λ as the facility-scenario pair opening cost. We estimate the cost of
the solution with the constant λ. Firstly, we estimate the facility opening cost.

Lemma 1. The facility cost Costf (F̂) of the solution obtained by the Algorithm 2 is∑
(i,s)∈F̂

∑
(j,t)∈D̃1

(i,s)
βst

ij .

Proof. By the case 2 in Step 1.2 in the Algorithm 2, we have

∑

(i,s)∈F̂
(fs

i + λ) =
∑

(i,j)∈F̂

∑

(j,t)∈D
βst

ij

=
∑

(i,s)∈F̂

∑

(j,t)∈D̃1
(i,s)

βst
ij

The second equality holds since D̃1
(i,s) is disjoint for different (i, s).

Secondly, we give the estimation of the connection cost for the client-scenario pairs
which have contribution to the facility-scenario pairs in F̂ . Indeed, for these client-

scenario pair, the connection cost is no more than
αt

j−βst
ij

qt
, where (i, s) is the facility-

scenario pair in F̂ which (j, t) has positive contribution.
Thirdly, we give the estimation of the connection cost for the client-scenario pairs

which does not have contribution to the facility-scenario pairs in F̂ .

Lemma 2. The connection cost costc({j, t}) for the client-scenario pair which does

not have contribution to is no more than 3αt
j

qt
.

Proof. We consider the facility-scenario pair (i, s) which is the fist such that the dual
variables of (j, t) stop increasing. By the Step 2, there must be another facility-scenario
pair (i′, s′) ∈ F̂ such that D̃1

(i,s) ∩ D̃1
(i′,s′) �= ∅. Assume (j′, t′) is a client-scenario pair

in D̃1
(i,s) ∩ D̃1

(i′,s′). Note that s′ = s or 0. Then, the client-scenario pair (j, t) can be
connected to (i′, s′). Thus,
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Algorithm 1. Primal-dual(λ)
Input: The facility-scenario pair set F , the client-scenario pair set D, the connection cost cstij ,
the probability qt for each scenario t, the opening cost fs

i for each facility-scenario pair, and a
fixed λ.

Step 1. Constructing a dual feasible solution.
Step 1.1 Initially, set all dual variables αt

j := 0 and βst
ij := 0 for all (j, t) ∈ D, (i, s) ∈ F .

All facility-scenario pairs are close, that is, set F̃ = ∅. All client-scenario pairs are not
connected, that is, set D̃ := ∅.

Step 1.2 Increasing the dual variable αt
j with the rate qt, the following cases will happen.

case 1 There is a facility-scenario pair (i, s) ∈ F\F̃ and a client-scenario pair
(j, t) ∈ D\D̃ such that

αt
j = qtc

st
ij .

In this case, we start to increase the corresponding βst
ij with the same rate of

αt
j .

case 2 There is a facility-scenario pair (i, s) ∈ F\F̃ such that

∑

(j,t)∈D
βst
ij = qsf

s
i + λ.

In this case, we temporarily open the pair (i, s), that is, set F̃ := F̃ ∪ {(i, s)}.
For the proof convenience, we denote D̃1

(i,s) and D̃2
(i,s) be the set in which

the client-scenario pair in in D has positive contribution to (i, s) and the set in
which the set in which the client-scenario pair inD\D̃ has positive contribution
to (i, s). That is,

D̃1
(i,s) := {(j, t) ∈ D : βst

ij > 0},

and
D̃2

(i,s) := {(j, t) ∈ D\D̃ : βst
ij > 0}.

Moreover, we connect all client-scenario pairs in D̃ to facility-scenario pair
(i, s) who have positive contribution to (i, s), that is, D̃ := D̃ ∪ {(j, t) ∈
D̃|βst

ij > 0}. The dual variables αt
j and all β

st
ij stop increasing in D̃.

case 3 There is a facility-scenario pair (i, s) ∈ F̃ and a client-scenario pair (j, t) ∈ D̃
such that

αt
j = qtc

st
ij .

In this case, connec the client-scenario pair (j, t) to facility-scenario pair (i, s),
that is, D̃ := D̃ ∪ {(j, t)}.

Repeat the above until all client-scenario pairs are connected, that is, D̃ = D.
Step 2. Constructing a primal integer feasible solution. Two facility-scenario pairs are depen-

dent if there is a client-scenario pair such that it has positive contribution to both two
facility-scenario pairs. Order the facility-scenario pair (i, 0) in F̃ first, then, order the
facility pair (i, 1) in F̃ , and go on. Find the maximal independent set F̂ in F̃ .
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Costc({j, t}) ≤ cs′t
i′j

≤ cst
ij + cst′

ij′ + cs′t′
i′j′

≤ αt
j

qt
+

αt′
j′

qt′
+

αt′
j′

qt′

≤ 3
αt

j

qt
.

Lastly, we can give the estimation of the algorithm of Primal-dual (λ).

Lemma 3. The cost of the solution obtained by the algorithm of Primal-dual(λ) has
∑

(i,s)∈F̂
(qsf

s
i + λ) +

∑

(j,t)∈D
costc({j, t}) ≤ 3

∑

(i,t)∈D
αt

j .

Proof. Combining Lemma 1 and Lemma 2, we have
∑

(i,s)∈F̂
(qsf

s
i + λ) +

∑

(j,t)∈D
costc({j, t})

=
∑

(i,s)∈F̂

∑

(j,t)∈D̃1
(i,s)

βst
ij +

∑

(i,s)∈F̂

∑

(j,t)∈∪(i,s)∈F̂ D̃1
(i,s)

qt

αt
j − βst

ij

qt

+3
∑

(i,s)∈F̂

∑

(j,t)/∈∪(i,s)∈F̂ D̃1
(i,s)

qt

αt
j

qt

≤ 3
∑

(j,t)∈D̃
αt

j .

When we run the algorithm of Primal-dual(λ) with two different λ1 and λ2, we
can obtain two solutions F̂1 with cardinality k1 ≤ k and F̂2 with cardinality k2 > k.
Based on these two solutions, we construct an integer feasible solution with k opened
facilities. We set constants a and b such that ak1 + bk2 = k and a + b = 1. Then,
Algorithm2 gives the process of constructing the integer feasible solution.

Algorithm 2. Integer feasible solution

Step 1 For each facility-scenario pair in F̂1, find the closest facility in F̂2. Let F̂ ′ ⊆ F̂2 be the
facility-scenario pair set. If |F̂ ′| < k1, pick the facility-scenario pair in F̂2\F̂ ′ arbitrarily
adding to F̂ ′ such that |F̂ ′| = k1.

Step 2 With probability a, open all facilities in F̂1, and with probability b (note that b = 1− a),
open all facilities in F̂ ′. Moreover, open k − k1 facilities randomly in randomly from
F̂2\F̂ ′.
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Theorem 1. Algorithm 2 is a 6-approximation algorithm for the SkFLP.

Proof. Firstly, we estimate the expected opening cost. All probability of the facility-
scenario pair in F̂1 and F̂2 is a and b. Then, the expected opening cost is

a
∑

(i,s)∈F̂1

qsf
s
i + b

∑

(i,s)∈F̂2

qsf
s
i .

Secondly, we estimate the connection cost. For each (j, t), we denote (i1, s1) and
(i2, s2). Then, we have the following cases.

Case 1. (i1, s1) is opened in the integer solution. The probability of the case is a. The
connection cost of (j, t) is cs1t

i1j .
Case 2. (i1, s1) is not opened, but (i2, s2) is opened in the integer solution. The proba-

bility of the case is (1 − a)b = b2. The connection cost of (j, t) is cs2t
i2j .

Case 3. Both (i1, s1) and (i2, s2) are not opened in the integer solution. The probability
of the case is (1 − a)(1 − b) = ab. We connect (j, t) to the nearest facility-scenario
pair of (i1, s2) which is open in F̂2. The connection cost of (j, t) is no more than
cs1t
i1j + cs2t

i2j .

Thus, the expected connection cost of (j, t) is

acs1t
i1j + b2cs2t

i2j + ab
(
cs1t
i1j + cs2t

i2j

)
.

Then, we have that the expected connection cost is no more than

(1 + max{a, b}) (
as1t

i1j + bcs2t
i2j

)
.

Then, the expected integer feasible solution is no more than

a
∑

(i,s)∈F̂1

qsf
s
i + b

∑

(i,s)∈F̂2

qsf
s
i

+ (1 +max{a, b})
∑

(j,t)∈D

(
acost1c({j, t}) + bcost2c({j, t})) ,

where cost1c({j, t}) and cost2c({j, t}) is the connection cost of (j, t) in the solution F̂1

and F̂2, respectively. By Lemma 3, we have

a
∑

(i,s)∈F̂1

(qsf
s
i + λ) + a

∑

(j,t)∈D
cost1c({j, t})

+ b
∑

(i,s)∈F̂2

(qsf
s
i + λ) + b

∑

(j,t)∈D
cost2c({j, t})

≤ 3
(
aαt

j(1) + bαt
j(2)

)
,
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where αt
j(1) and αt

j(2) is the dual variables in the solution F̂1 and F̂1, respectively.
Thus, we obtain

a
∑

(i,s)∈F̂1

qsf
s
i + b

∑

(i,s)∈F̂2

qsf
s
i

+ a
∑

(j,t)∈D
cost1c({j, t}) + b

∑

(i,s)∈F̂2

cost2c({j, t})

≤ 3
(
aαt

j(1) + bαt
j(2)

) − kλ. (5)

The RHS of (5) is a feasible dual solution of (3). Then

a
∑

(i,s)∈F̂1

qsf
s
i + b

∑

(i,s)∈F̂2

qsf
s
i

+ (1 +max{a, b})
∑

(j,t)∈D

(
acost1c({j, t}) + bcost2c({j, t}))

≤ 6OPT, (6)

where OPT is the optimal solution of SkFLP.

Moreover, we view the stochastic k-median problem is a special case of the SkFLP
if the opening cost if the opening costs are all 0.

Theorem 2. There is a 6-approximation algorithm for the stochastic k-median
problem.
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Abstract. Broadcasting in networks is one of the most important infor-
mation dissemination processes. It is known that finding the optimal
(minimum) broadcast time is NP-hard. Some of the follow-up researches
focus on approximations/heuristics to find the broadcast center, a set of
nodes from which the broadcast time in the network is minimum, in a
given network by assuming the problem is hard without an actual proof.
In this paper, we show that answering the questions “is a set of vertices
a broadcast center to the given graph”, and “does the given graph has a
broadcast center of size smaller than k” are both NP-hard under Turing
reductions.

1 Introduction

Broadcasting is an information dissemination process in an interconnected net-
work and has been studied over the past decades. In this paper, we follow the
basic assumptions (listed below), and model the network as a graph G = (V,E).
The vertex set and the edge set for a given graph G can be denoted by V (G)
and E(G). The distance between two vertices v and u is denoted by d(v, u).

1. The process of broadcasting is split into discrete time units.
2. Initially, only one vertex (originator) has the message.
3. In each time unit, a vertex with the message (sender) can call at most one

uninformed neighbor (receiver).
4. All the calls are in parallel during the same time unit.
5. If all the vertices in the graph have the message, the process halts.

Each call can be represented by an ordered pair of two vertices (u, v), where u
is the sender and v is the receiver. The set Ci consists of all calls in time unit
i. And the sequence of calls (C1, C2, · · · , Ct) presents the process of broadcast,
named broadcast scheme, where Ci = {(u, v)—for all calls from informed vertex
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u to uninformed vertex v in time unit i and the index i = 1, 2, · · · , t represents
the time unit. A vertex v is idle in time unit t if v is informed before time t but
does not make any call in time t.

Because all non-originating vertices can only be informed by exactly one
vertex, the broadcast scheme forms a spanning tree (broadcast tree) rooted at
the originator. We are also free to omit the direction of each call in the broadcast
tree. The broadcast time for a vertex v in a given graph G, denoted by b(G, v),
is the minimum number of time units required by broadcasting from the vertex
v in G, formally b(G) = minv∈V (G)(b(G, v)). Consequently, an optimal broadcast
scheme, denoted by S(G, v) uses b(G, v) time units. From the assumption 3,
the number of informed vertices are at most doubled in each time unit. So, the
number of informed vertices up to time unit i is no greater than 2i in general.
By taking the inverse, b(G, v) ≥ �log n�, where n is the number of vertices in G.
Obviously, b(G) ≥ �log n�. A graph G is a broadcast graph if b(G) = �log n�. G
is a minimum broadcast graph on n vertices if |E(G)| is the minimum among
all broadcast graphs on n vertices. Intuitively, a broadcast graph is the best
topology structure in the sense of fast broadcasting, and a minimum broadcast
graph has the lowest cost in terms of number of edges in such graphs.

We can distinguish two main lines of research on broadcasting in graphs.
The first seeks to construct graphs (networks) with given broadcast times; the
ongoing search for minimum broadcast graphs is an example. The second is given
a graph and message originator and seeks to find the broadcast time; the work
of this paper is an example.

The broadcast time problem (BTP ) is defined as

Problem 1. BTP
Instance: (G, v, t), where G = (V,E) is a graph, v ∈ V is the originator, and t
is a natural number.
Output: “Yes” if b(G, v) ≤ t; “No” otherwise.

The broadcast center BCG = {v|∀u ∈ V (G), b(G, v) ≤ b(G, u)} refers to the
set of vertices whose broadcast time is minimum in the graph G. We define the
broadcast center deciding problem (BCD) and the broadcast center size problem
(BCS) as follows.

Problem 2. BCD
Instance: (G,U), where G = (V,E) is a graph and U is a subset of V .
Output: “Yes” if U is a subset of BCG; “No” otherwise.

Problem 3. BCS
Instance: (G, x), where G = (V,E) is a graph and x is a natural number.
Output: “Yes” if |BCG| ≥ x; “No” otherwise.

The study of broadcast center can be traced back to [29]. Slater, Cockayne, and
Hedetniemi defined the broadcast center and proposed a linear algorithm to find
the broadcast center of a tree. In the same paper, the authors also proved that

Theorem 1. BTP is NP-hard.
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As a consequence, the follow-up research assumed that finding broadcast cen-
ters was also not easy and only focused on certain classes of graphs, even the
complexity of finding broadcast centers remains open.

Harutyunyan, Liestman, and Shao designed a linear algorithm for k-
broadcast center of trees [22]. Maraachlian studied the broadcast center of uni-
cyclic graphs [24] and tree cluster networks [23]. In [30], Su, Lin, and Lee pre-
sented a linear algorithm for finding the broadcast time and broadcast centers
in heterogeneous trees. More recently, Cevni and Zerovnik studied the broadcast
center for cactus graphs [27].

On the opposite of the broadcast time problem, researchers also show a lot
of interests in the constructions of broadcast graphs. Many construction meth-
ods have been proposed in the past 40 years; direct construction from binomial
trees [14,19], vertex addition/deletion methods [5,15,19,20], and compounding
multiple existing broadcat graphs [1,4,17–19]. However, similar to the BCS
problem, the complexity of deciding whether a given graph is a broadcast graph
or not remains open. For more algorithms of the broadcast time problem, see
[2,3,7,8,15]. For more broadcast graph constructions see [6,9,10,13,16,28,31].
And for more broadcasting in general, see [11,21,25,26]. For the details of NP-
completeness and more complexity classes, readers are referred to [12].

In this paper, we prove that BCD and BCS are both NP-hard under
polynomial-time Turing reductions, denoted by ≤p from BTP . Note that Tur-
ing reductions are different from Karp reductions, which are commonly used in
NP-complete proofs.

2 Preliminaries

This section presents some well-studied graphs which are usefull to our reduction.
Similar discussions can be found in [15].

Definition 1. A path on n vertices is a graph L = (V,G), where V =
{v1, v2, · · · , vn} and E = {(vi, vi+1)|1 ≤ i ≤ n − 1}. The vertex v1 and vn are
the two end vertices (leaves) of L. The length of the path L is length(L) = n−1.

Observation 1. In a path L as it is defined above,

b(L, vi) =

{
max(i − 1, n − i) if i − 1 �= n − i

i otherwise

The proof of the observation is simple. The optimal broadcast scheme originated
from one of the two end vertices simply make calls along the path, which takes
d(v1, vn) = length(L) time units. For the origninator vi other than the two end
vertices, it needs to call along the direction to the farther end vertex first, and
the other direction second, which is max(d(v1, vi), d(vi, vn)) = max(i− 1, n− i).
If the originator is right in the middle of the path, calling which direction first
makes no difference. Broadcasting on one direction takes d(v1, vi) = d(vi, vn)
time units. But the broadcast time b(L, vi) requires one extra time unit. So it is
equal to d(v1, vi) + 1 = i.
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Observation 2. The broadcast center BCL of the path L on n vertices is

– {vn
2
, vn

2 +1} if n is even;
– {vn+1

2 −1, vn+1
2
, vn+1

2 +1} if n is odd.

Proof. The proof is done by illustrating the broadcast time from different origi-
nators for all cases. Assume n is even.

– If the originator is vn
2
, n

2 −1 �= n− n
2 . By Observation 1, b(L, vn

2
) = max(n2 −

1, n − n
2 ) = n

2 .
– Similarly, for the originator vn

2 +1, b(L, vn
2 +1) = n

2 .
– If the originator vi is neither vn

2
nor vn

2 +1, assume i < n
2 without lose of

generality. Since i−1 < n− i and by Observation 1 again, b(L, vi) = max(i−
1, n − i) = n − i > n

2 .

Therefore, BCL = {vn
2
, vn

2 +1} when n is even.
When n is odd, the proof is similar. The only difference is that vn+1

2
is the

vertex in the middle because n+1
2 − 1 = n − n+1

2 . 	

Definition 2. A star on n vertices is a graph S = (V,G), where V =
{v1, · · · , vn} and E = {(v1, vi)|2 ≤ i ≤ n}. v1 is the center while v2, · · · , vn
are the leaves.

Observation 3. For any vertex vi in S, b(S, vi) = deg(v1) = n − 1.

Proof. If the originator is the center vertex v1, all of v1’s neighbors are pendent
vertices which are only adjacent to v1. To finish broadcasting, v1 needs to inform
them one by one. So, the broadcast time b(S, v1) = n − 1.

If the originator is a leaf vi, vi informs the center v1 in the first time unit.
Then, v1 calls other neighbors one by one. Thus, b(S, v1) = n − 1. 	

From Observation 3, we directly get

Observation 4. For a star S, the broadcast center BCS = V (S).

3 NP-Hardness of BCD

Our proof of NP-hardness of BCD is simple. We assume that there is an oracle
B which solves BCD in polynomial time and try to construct an algorithm to
solve BTP in polynomial time by calling the oracle as a subroutine.

The sketch of the reduction is as follows. Assume that an instance for BTP
is (G, v, t). Directly calling the oracle B on the instance (G, {v}) does not work
because it can only tell whether {v} is a subset of the broadcast center or not.
That is, whether broadcasting from the vertex v uses shorter time than from
other vertices, but not the broadcast time from v in the graph G. Thus, we
construct a new graph G′ by attaching a path L to the originator v in the graph
G (see Fig. 1 for example). Broadcasting from v in G′ can be regarded as two



The Complexity of Finding a Broadcast Center 61

separated broadcastings, one from v in the graph G and the other one from v
in L.

Now, let us consider broadcasting from an arbitrary vertex u in G′. By the
construction of G′, u can be either a vertex in G or a vertex in L. If u is a
vertex in G, u has to inform v before informing all other vertices on the path
L. There is no other way to call the vertices on the path without going through
v. Thus, if the broadcast time from v to all vertices on the path L is large, say
more than b(G, u) for example, the optimal broadcast scheme S(G′, u) needs to
inform v as quickly as possible and let v call other vertices in L immediately.
So, the broadcast time b(G′, u) depends on the time it takes informing v from
the originator u, plus the time it takes informing all other vertices of L from v.
This time is obviously larger than the time it takes from v to other vertices in L.
In addition, if the optimal broadcast scheme S(G′, v), originating from v, lets v
call the vertices in L first when b(L, v) > b(G, v), we can trivially conclude that
b(G′, u) > b(G′, v). In other words, if b(L, v) is large enough, broadcasting from
v takes a shorter time than from another vertex u, such that u is in the graph
G. And by Observation 1, b(L, v) = length(L) because v is an end of L.

A similar analysis can be done on the vertices in L. And the conclusion is
that when the length of L is small enough, broadcasting from v takes a shorter
time than from those on the path. After combining the results from the above
discussions, when the length of L is carefully selected, broadcasting from v in
G′ requires the minimum time among all vertices. Then, v is in the broadcast
center.

To find the correct length of L, our reduction loops on the length of L from
a small value. Each iteration calls the oracle B, which solves BCD problem in
polynomial time, to check whether the vertex v is in the broadcast center. Note
that in our real reduction, some additional conditions need to be verified, even
when B(G′, v) returns a positive answer. This condition checking is for handling
some exceptions.

The reduction is formally presented as in Algorithm 1. Lines 2 and 3 give
the initial construction of G′. Suppose L denotes the path {(v, v1), (v1, v2)}. G′

is defined as graph G and attached path L at the vertex v. The length of L is
represented by i, and is equal to 2 initially. In each iteration, if v and v2 are not
both in BCG′ , the algorithm extends L by attaching one vertex to the end of L
on the opposite side of v.

The initialization and each iteration of the algorithm obviously takes a con-
stant time. Next, if the “While” loop excutes in polynomial time, then the algo-
rithm is a polynomial-time reduction. The poof is split into several lemmas. At
the same time, we prove the reduction is correct.

Lemma 1. If length(L) > b(G, v) + 2, then v �∈ BCG′ .

Proof. To prove v �∈ BCG′ , we will show that b(G′, v1) < b(G′, v). Assume vi is
the last vertex on the path L. If the originator is v, then the broadcasting from
originator v takes at least d(v, vi) = length(L) time units to broadcast along the
path. Thus, b(G′, v) ≥ length(L).
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Algorithm 1: BTP ≤p BCD

Input : Graph G = (V,E) on n ≥ 3 vertices and a vertex v.
Output: The broadcast time originated from v in G

1 begin
2 Construct a new graph G′ = (V ′, E′);
3 Let V ′ = V ∪ {v1, v2} and E′ = E ∪ {(v, v1), (v1, v2)};
4 i ←− 2;
5 while B(G′, {v, v2}) = 0 do
6 V (G′) ←− V (G′) ∪ {vi};
7 E(G′) ←− E(G′) ∪ {(vi−1, vi)};
8 i + +;
9 end

10 Return i − 2;
11 end

Then, we consider the broadcasting from v1. Since v1 is on the path, it has
only two neighbors, v and v2. So, broadcasting from v1 has only two choices.

1. v1 informs v2 in the first time unit. Then, v2 makes calls along the path.
In parallel, v1 informs v in the second time unit. Then, v broadcasts in G.
This broadcast scheme takes t1 = max{length(L)−1, b(G, v)+2} time units.
length(L) − 1 is given by the distance from the vertex v1 to vi. b(G, v) + 2
appears here because v is informed in the second time unit, and broadcasting
from the originator v to all other vertices in G takes b(G, v) time.

2. v1 informs v in the first time unit and v2 in the second time unit. The rest
of broadcasting are the same as in case 1. Similarly, this broadcast scheme
takes t2 = max{length(L), b(G, v) + 1} time units.

Therefore, the optimal broadcast scheme from the originator v1 depends on the
values of t1 and t2. From the assumption of Lemma 1, length(L) > b(G, v) + 2
and length(L) − 1 > b(G, v) + 1. Thus, t1 = length(L) − 1 < t2 = length(L).
Then, b(G′, v1) = length(L) − 1.

Comparing with b(G′, v) ≥ length(L), b(G′, v1) is smaller. Therefore, v is not
in the broadcast center of G′, v �∈ BCG′ . 	

Lemma 2. If length(L) < b(G, v) + 2, then v2 �∈ BCG′ .

Proof. Similar to Lemma 1, we can show that b(G′, v1) < b(G′, v2). As a conse-
quence, v2 �∈ BCG′ .

If the originator is v2, then v2 needs at least 2 time units to let v get the
information. Then, v needs at least b(G, v) time units to broadcast within the
graph G. Thus, b(G′, v2) ≥ b(G, v) + 2.

If the originator is v1, one can easily derive

b(G′, v1) = min{max{length(L) − 1, b(G, v) + 2},max{length(L), b(G, v) + 1}}
From the assumption, length(L) < b(G, v) + 2. Thus, b(G′, v1) = min{b(G, v) +
2, b(G, v) + 1} = b(G, v) + 1, which is smaller than b(G′, v2) ≥ b(G, v) + 2.



The Complexity of Finding a Broadcast Center 63

(a) (b)

(c) (d)

Fig. 1. This is an example to show how the reduction works. Each G′ consists of the
original graph G and a path L. The solid edges are the edges in G. The dashed edges
are the ones on the path L. And the hollow vertices are the ones in the broadcast
center. The number beside each vertex is the broadcast time. Initially (a), L contains
only three vertices v, v1, and v2. If v and v2 are not both in the broadcast center (a–c),
length(L) < b(G, v) + 2 and the algorithm attaches one extra vertex to L at the other
end. When v and v2 are both in the broadcast center (d), length(L) = b(G, v) + 2 and
the algorithm stops.

Therefore, broadcasting from v1 in G′ takes a shorter time than from v2.
Hence, v2 is not in the broadcast center of BCG′ , vi �∈ BCG′ . 	

When we summarize Lemma 1 and Lemma 2, we get that

1. if v ∈ BCG′ , then length(L) ≤ b(G, v) + 2;
2. if v2 ∈ BCG′ , then length(L) ≥ b(G, v) + 2.

Therefore,

Lemma 3. If v, v2 ∈ BCG′ , length(L) = b(G, v) + 2.

So, the “While” loop in Algorithm 1 stops when {v, v2} is a subset of BCG′

and B(G′, {v, v2}) = 1. Then, the algorithm obtains b(G, v) by returning i− 2 =
length(L) − 2.

Furthermore, the length of L is initialized as 3 since the reduction needs to
make sure that length(L) < b(G, v)+2 initially. So, v2 cannot be in BCG′ when
the algorithm starts. Then, as length(L) increases, v and v2 are both in BCG′

when length(L) = b(G, v) + 2. The assumption of the reduction ensures that
length(L) < b(G, v)+2 at the begining. The input graph G is on n ≥ 3 vertices.
Thus, b(G, v) ≥ �log(3)� = 2, which is larger than length(L) − 2 = 3 − 2 = 1.

Therefore, the reduction is correct. At the same time, the “While” loop runs
b(G, v) + 2 − 2 = b(G, v) rounds. Thus, the reduction takes polynomial time.
Figure 1 shows an example when G has 6 vertices and b(G, v) = 3.

Theorem 2. BCD is NP-hard.
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4 NP-Hardness of BCS

Following Theorem 2, we can also show that finding the size of the broadcast
center for a given graph (BCS) is NP-hard in general. The reduction is again
from BTP . Recall that (G, v, t) is an instance of BTP , and (G′′, x) is an instance
of BCS. In the text below, we restrict the input graph of BCS being denoted by
G′′ to distinguish between graphs G or G′. However, the difference in notation
should not cause misunderstanding because we will consider our initial problems
of BTP and BCS. Suppose that the oracle C(G′′, x) solves BCS in polynomial
time. The reduction is similar to Algorithm 1.

First note that, the direct construction of the graph G′′ by attaching a path
L to G similar to the construction of graph G′ for BCD problem, does not
provide a correct reduction BTP ≤p BCS. The key point for the reduction
BTP ≤p BCD is to let {(v, v1), (v1, v2)} form a bridge between G and the
rest of part L. When v and v2 are both in the broadcast center, then the two
sides of the bridge are “balanced” in the sense of broadcasting. This works for
BCD because the oracle B can varify whether some specific vertices are in the
broadcast center or not. But for BCS, the oracle C can only tell the size of the
broadcast center but cannot decide if some vertices are in the broadcast center.
If G′′ is constructed by attaching the path, then the function call of C needs to be
C(G′′, 2) or C(G′′, 3) since by Observation 2, the broadcast center of a path has
only 2 or 3 vertices. Then, the main issue is that when the function call C(G′′, 2)
returns positive, we cannot guarantee that v and v2 are in the broadcast center.
It is possible that some totally different vertices in G or on the path L are in
BCG′′ . As a consequence, the broadcast time cannot be derived by the length
of L when C(G′′, 3) is positive.

In fact, following Observation 4, every vertex in a star is in the broadcast
center of the star graph. This property helps the reduction from BTP to BCS
because here we gain the control on the size of the broadcast center. Therefore,
the graph G′′ is constructed by attaching a star S on i+1 vertices to the vertex v
in the graph G. Formally, V (G′′) = V (G)∪{v1, v2, · · · , vi} and E(G′′) = E(G)∪
E(S) where E(S) = {(v, v1), (v1, v2), (v1, v3), · · · , (v1, vi)}. And the vertex set
of the star S is V (S) = {v, v1, v2, · · · , vi}. So, the center of S is v1 of degree
deg(v1) = i and the size of S is size(S) = deg(v1) + 1 = i + 1.

From the construction the edge (v, v1) is a bridge between G and S. If S is
heavier in the sense of broadcasting, then the center v1 is in the broadcast center,
because it is the only vertex that can call other vertices in S. At the same time,
the other leaves are also in the broadcast center because it makes no difference
which leaf is called by v1 first, as long as size(S) is large enough. On the other
hand, if G is heavier, then the leaves of S cannot be in the broadcast center. Thus,
the reduction starts from size(S) = n + 2 (which is greater than b(G, v)); make
function calls C(G′′, size(S)); reduce size(S) by one if the subroutine returns
“Yes”; and keep doing this until the C(G′′, size(S)) returns “No”. The above two
cases are formally proved later to ensure correctness of the reduction. Formally,
the reduction is as follows.
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Algorithm 2: BTP ≤ pBCS

Input : Graph G = (V,E) on n ≥ 3 vertices and a vertex v ∈ V .
Output: The broadcast time originated from v in G

1 begin
2 Construct a new graph G′′ = (V ′′, E′′);
3 Let V ′′ = V ∪ {v1, v2, · · · , vn+1} and

E′′ = E ∪ {(v, v1), (v1, v2), (v1, v3), · · · , (v1, vn+1)};
4 i ←− n + 3;
5 while C(G′′, i) and i ≥ 1 do
6 V (G′′) = V (G′′)\{vi−1};
7 E(G′′) = E(G′′)\{(v1, vi−1)};
8 i − −;
9 end

10 return i − 2;
11 end

The variable i on Line 4 is equal to size(S), which is initialized to be n + 3.
In iteration, if C(G′′, i) returns positive, the leaves are in the broadcast center.
Line 6 and 7 removes one leaf from the star. Then, the algorithm continues the
loop.

The construction of G′′ takes O(n) time to attach the star S; and the “While”
loop runs in at most n + 3 iterations. Thus, the algorithm is a polynomial time
reduction. Next, we only need to prove the correctness of our reduction.

Lemma 4. If size(S) ≥ b(G, v) + 3, V (S) = BCG′′ .

Proof. We prove the lemma by showing

1. b(G′′, v2) = b(G′′, v3) = · · · = b(G′′, vi) = size(S) − 1;
2. b(G′′, v1) = size(S) − 1;
3. b(G′′, v) = size(S) − 1;
4. For all u ∈ V (G)\{v}, b(G′′, u) > size(S) − 1

Case 1: Since all of v2, v3, · · · , vi are leaves of the star S. Thus, without loss
of generality, the proof considers only the case when v2 is the originator.

To inform all vertices in S, v2 needs 1 time unit1 to call the center v1. Then,
v1 needs another deg(v1) − 1 = size(S) − 2 time units to inform all other leaves
in S. Thus,

b(G′′, v2) ≥ size(S) − 1 (1)

Next, consider the following broadcast scheme. v2 informs v1 in the first time
unit. v1 informs v in the second time unit. Then, in parallel v broadcasts in G in
the next b(G, v) time units; and v1 calls other leaves in S in the next deg(v1)−2
time units. By counting the time units, b(G′′, v2) ≤ max{b(G, v)+2, deg(v1)} =
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max{b(G, v)+2, size(S)−1}. Sine the lemma assumes that size(S) ≥ b(G, v)+3,
we obtain

b(G′′, v2) ≤ size(S) − 1 (2)

Combining Eq. 1 and 2, we get that b(G′′, v2) = size(S) − 1.

Case 2: When the broadcasting originates from v1, v1 needs at least one time
unit to inform v. Then, v can broadcast in G. At the same time, v1 can call
other leaves. Thus, b(G′′, v1) = max{deg(v1), b(G, v) + 1} = max{size(S) −
1, b(G, v) + 1}. In fact, size(S) − 1 ≥ b(G, v) + 1 because Lemma 4 has assumed
size(S) ≥ b(G, v) + 3. So, b(G′′, v1) = size(S) − 1.

Case 3: If the originator is v, we further assume v1 is informed by v in time
unit t in the optimal broadcast scheme. After v1 is informed, it needs another
deg(v1) − 1 time units to call other leaves. So, the broadcasting in S finishes
in time unit deg(v1) − 1 + t = size(S) − 2 + t, for t ≥ 1. Then, consider the
broadcasting on the side of the graph G. v has to waste one time unit to call
v1. So, the broadcasting in G is delayed by one time unit and finishes in time
unit b(G, v) + 1. Thus, b(G′′, v) = max{size(S) − 2 + t, b(G, v) + 1} for t ≥ 1.
Further, we know that size(S) ≥ b(G, v) + 3 by the assumption, which implies
the minimum of size(S)−2 + t is size(S)−1 ≥ b(G, v)+1. Therefore, b(G′′, v) =
size(S) − 1.

Case 4: If the originator is an arbitrary vertex u ∈ V (G)\{v}, u needs at least
d(u, v) time units to call v. Then, v needs at least size(S) − 1 time units to call
every vertex in S. Thus, b(G′′, v) ≥ d(u, v) + size(S) − 1 > size(S) − 1.

By summarizing the above 4 cases, the lemma is proved. 	

Lemma 5. If size(S) < b(G, v) + 3, v2, v3, · · · , vi �∈ BCG′′ .

Proof. Without loss of generality, we pick the leaf v2 and show that b(G′′, v2) >
b(G′′, v1). If broadcasting from v1 takes a shorter time than from v2, then v2 is
not in the broadcast center.

If the originator is v2, a broadcast scheme requires at least 2 time units from
v2 to v. And v needs b(G, v) time units to broadcast in G. Thus, b(G′′, v2) ≥
b(G, v) + 2.

If the originator is v1, consider the following broadcast scheme. v1 informs v
in the first time unit. v start the broadcasting in G, which finishes in time unit
b(G, v)+1. Then, v1 informs other leaves one by one and this part of calls finish
in time unit size(S) − 1. This broadcasting takes max{b(G, v) + 1, size(S) − 1}
time units, which is equal to b(G, v) + 1 because size(S) < b(G, v) + 3 from the
assumption. Thus, b(G′′, v1) ≤ b(G, v) + 1 which is smaller than b(G′′, v2). 	

Lemma 6. For any vertex u ∈ V (G)\{v}, if size(S) ≥ b(G, v) + 2, then u �∈
BCG′′ .

Proof. This proof is the same as the one for Lemma 5. By following the same
analysis, we can derive b(G′′, u) ≥ size(S) and b(G′′, v1) = size(S) − 1. Thus, u
cannot be in the broadcast center. 	
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(a) (b)

(c) (d)

Fig. 2. This is an example to show how the reduction BTP ≤p BCS works. Each G′′

consists of the original graph G and a star S. The solid edges are the edges in G. The
dashed edges are the ones on the path S. And the hollow vertices are the ones in the
broadcast center. The number beside each vertex is the broadcast time.

Now, we are ready to claim the correctness of our reduction. If size(S) ≥
b(G, v) + 3, Lemma 4 states V (S) = BCG′′ , which directly imples that
C(G′′, size(S)) = 1. If size(S) = b(G, v) + 2, Lemma 5 and Lemma 6 together
show that BCG′′ contains at most two vertices v and v1. Thus, C(G′′, size(S)) =
0. So, when C(G′′, size(S)) returns negative the first time, the “While” loop in
the algorithm terminates and we know that i = size(S) = b(G, v)+2. Therefore,
the reduction finds the correct solution for the broadcast time, and we claim the
final result.

Theorem 3. BCS is NP -hard.

Figure 2 gives an example of the reduction when G is on 5 vertices and b(G, v) =
3. Initially (Fig. 2a), S contains 8 vertices v, v1, · · · , v7. If C(G′′, size(S)) = 1
(Fig. 2a–2c), one leaf is removed from S in each iteration. When C(G′′, size(S)) =
0 (Fig. 2d), size(L) = b(G, v) + 2 and the algorithm stops.

5 Properties of BC

The above section shows that finding the broadcast center is NP-complete. Then,
one may try to find some good approximation or heuristic algorithms to find
local optimal solutions for the problem. One natural approach is starting from
an arbitrary vertex in the graph, then moving to its neighbor whose broadcast
time is approximately smaller. Eventually, the algorithm stops at a vertex or
a group of vertices whose broadcast time is minimal. The performance of this
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strategy depends on the convexness of the broadcast time over the vertices. If
there is only one connected broadcast center (“connected” means that ∀u, v ∈
BC, there exists a path P from u to u such that ∀w on P , w ∈ BC), then
the algorithm works effectively. However, the following example shows that the
broadcast center for some graphs may be disconnected.

Figure 3 is a graph with two isolated broadcast centers. The broadcast time
for the hollow vertices is 5, for the solid vertices is 6, and for the squares is 7.
The two broadcast centers are split by the vertices in the middle. Figure 3 also
shows that the vertices in the broadcast center are not necessarily the vertices
with the highest degrees.

Fig. 3. An example of multiple broadcast centers

6 Conclusion and Future Works

This paper shows that “whether a given set of vertices is a broadcast center
to the graph?” and “does a graph have a broadcast center of size no smaller
than x?” are both NP-hard problems. These results provide solid theoretical
foundations and motivations for designing algorithms to find broadcast centers
only for special classes of graphs.

In the future, the new results can also potentially assist the studies on the
broadcast graph problem, which is another problem that have been studied for
decades while the complexity remains open.
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Abstract. In edge computing, the edge server can provide highly acces-
sible computing and storage resources for nearby application users.
Caching data on the edge server can retrieve application data to ensure
rapid completion of users’ requests with low latency. However, edge
servers usually have limited resources and sometimes have to transfer
data from other servers or buy data from the data center. In this paper,
we study data caching problem in edge computing in order to minimize
the system cost, including data caching cost, data transmission cost and
data purchase cost. The traditional data center is only the choice to pur-
chase data, the data is always available after purchasing. However, we
consider that data has an expiration date. It only provides a finite num-
ber of data invoking to buyers for free after purchasing data. Based on
this assumption, when the future arrival requests are unknown, we give
an algorithm to minimize the total cost for satisfying users’ requests.
We prove that the asymptotic performance ratio of the algorithm can be
guaranteed with 3.

Keywords: Edge computing · Data caching · Transmission · Online
algorithm · Competitive ratio

1 Introduction

Over the past decade, with the rapid increase of mobile devices in daily life,
internet-based mobile data has grown dramatically. It is increasingly difficult
for traditional cloud computing to support massive, diverse and rapidly grow-
ing mobile services or applications. As an effective way, edge computing is a
distributed computing paradigm with advantages of reducing latency [1,2], con-
gestion and cost. This pattern is achieved by deploying a common edge server at
a base station or access point near the mobile user. Edge servers provide services
such as caching, computing, and communication to service agents. Data caching
on the edge server can reduce the delay of mobile users’ accessing popular data
and reduce the data traffic between mobile users and centralized cloud [3] and [4].

Data caching in edge computing is a common technique that allows a copy
of the data to be stored somewhere in order to quickly retrieve the data for
c© Springer Nature Switzerland AG 2021
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future requests. Data caching is widely used in networks [5], databases [6],
Web servers [7], multi-processors [8] and storage [9] to improve information
retrieval efficiency and reduce data access delay. This is especially important
for delay-sensitive applications, such as interactive games, real-time navigation,
augmented reality, and more. How to cache data, especially popular data, to
optimize system performance in these research areas [9]. In addition, caching
data on edge servers can also reduce the traffic burden on the backbone of the
Internet, as the amount of mobile traffic data transferred between the cloud and
the mobile devices of application users is significantly reduced [10].

Many works studied data caching with a data center in their network struc-
ture [14,15]. However, in these studies, data center only provides an alternative
to download data, which is always valid once purchased. They ignore the valid-
ity period of the data and the number of valid invoking. However, as far as we
know, new data pricing is being considered based on the number of invoking. This
hypothesis is more practical. In addition, the methods in these articles are based
on future requests’ information (distribution known or predicted) [11–13], which is
not always feasible when predicting the type of request in the future is inaccurate.

In this paper, we consider a high-speed, fully connected network with a data
center. 1) Servers are connected to each other; 2) When the required data exists
on the target server, the user’s requests can be satisfied immediately; 3) The time
of data transmission between servers and the invocation time from the data cen-
ter can be ignored, but the cost must be considered; Assuming that user requests
can be met by the same type of data, when the requests of surrounding users
arrive the edge server, the server needs to retrieve the required data to quickly
fulfill the requests. The required data can be provided in three ways: stored on
the server, transferred from other servers, or purchased and invoked from the
data center. Each of the three data provisioning options has a corresponding cost,
and we need to find a strategy to minimize the total cost for the user’s online
request streams. Our main results in this paper are summarized as follows.

– Consider a network with data centers, and the data is not always available for
the server after buying data from the data center. Assume that one purchase
of data can be invoked k times from the data center for free. We are the first
to consider this data price model.

– We present an online algorithm and prove that the performance ratio of the
algorithm is guaranteed by constant 3 under the worst case.

In the remaining part, the paper is organized as follows. Related work of data
caching problem are shown in Sect. 2. In Sect. 3, we analyze the system model and
give an online competitive algorithm. Then, we prove the performance ratio of the
algorithm in Sect. 4. Finally, Sect. 5 concludes our main results and future work.

2 Related Work

Data caching is not a new problem, and there has been extensive research on
its various forms and research objectives [19,20,23,26]. Based on the assump-
tion that single data item can satisfy all the task, although it is not reasonable
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in reality, [26] provided relevant research about data caching with single data.
About the homogeneous data caching model associated with single data in a
high-speed network, that is, the storage cost of servers and the transfer cost
between servers are both identical, [23] presented an optimal caching strategy
in polynomial time minimizing the total cost of requests. Meanwhile, they gave
a dynamic programming technique to minimize the total cost in fully connected
topology about the heterogeneous data caching model with constraint which is
NP-hard [16,22]. In [26], they proposed an offline optimal algorithm based on
DP (dynamic programming) technique in polynomial time to minimize the total
cost. Meanwhile, they also studied the online form of the problem and proved
a 3-approximate algorithm by pre-caching. Following network architecture and
models in [23], Wang et al. consider the data caching problem with multiple
type of data contents [24]. Under their homogeneous model, they discuss differ-
ent situation and improved the time complexity to O(m2n). Concretely, when a
factor of transmission cost divided by storage cost is small, a single copy of every
data item is enough to serve all the task. Moreover, they consider the multicopy
situation. In addition, about the NP-hard heterogeneous model, they present a
DP-based algorithm to solve the heterogeneous model with constrains and give
a approximation algorithm about the general model with the performance ratio
2. In [21], they proposed a greedy heuristic strategy to decide when, where, and
how long to cache about minimizing the total cost of data caching.

There exist rich research works focus on online data caching problem. When
the popularities of the content item isn’t known exactly, [17] gave a constant
competition online algorithm in content centric networking to minimize the total
cost. Based on the identical target function, if they didn’t know any knowledge
about the popularities of contents, [18] presented an online algorithm with the
competitive ratio of O(log n) for the collaborative caching model in multiple clus-
ter collaborative systems. Considering the idea of co-migration, Wang et al. pre-
sented a random competition algorithm which is a parallel dynamic programming
algorithm based on the combination of branch and bound strategy and sampling
technique [25]. Wang et al. studied a fresh homogeneous cache model, i.e. the
transimission cost of the content between servers and caching cost of every edge
node are fixed respectively [26]. In their paper, they presented a O(mn) polyno-
mial time algorithm upon dynamic programming to minimize total cost, where
m and n are the number of nodes and the number of requests respectively. In
addition, they utilize the idea of data caching in advance to minimize the total
cost for the online model, and the given algorithm can achieve 3 competition
ratio. Subsequently, they extended their analysis to semi-homogeneous model,
the transmission cost of the data is identical, but the storage cost of servers
depends on the storage capacity of the server itself. [27] gave an offline algo-
rithm to gain the optimal caching strategy with time complexity O(mn log(mn))
and presented a 2-competitive algorithm by tradeoff the transimission cost and
the caching cost for the online model of this problem. Han et al. studied data
caching problem with mutiple data types [28]. They gave corresponding online
algorithms for three different data caching models.
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3 System Model

In this section, we propose our new data caching model, which is different from
the previous model. To better define the model, some basic parameters and
symbols are shown in Table 1.

In the fully connected network, there is a data center which stores the data
all the way and server set S = {1, 2, · · · ,m} for our system model. Servers can
be connected with each other by wireless network. Meanwhile, servers connect
the data center by links. When users’ requests arrive at the server, the target
server needs to provide data for request. At the beginning, there is no data stored
at servers and servers have to buy data from the data center. The server buys
data from the data center once for cost B, and then it can call this data k times
for free. After that, there are three options for the target server to supply the
data for the request. (1) The server can store the data for the request and the
caching cost per unit time is μj ; Or (2) the server can transfer the data to the
target server for the transmission cost λ (λ < B); Or (3) the server can call the
data from the data center for free. The objective is minimizing the total cost of
online request stream to satisfy all users’ requests.

Table 1. Parameters definition

Parameter Paraphrase/Significance

S = {1, 2, · · · , m} The server set which contains m servers

rij = (j, tij) The i − th request arrives server j at time t = tij

λ The transmission cost of the data among servers

μj The pet unit time cost of storing data on server j

B The cost of buying the data from the data center

Nj A variable

Δtj The retention time of the data on server j when
Nj = k|Nj = 0

ΔtBj The retention time of the data on server j when 0 < Nj < k

Δ Time interval

CA(rij) The cost of request rij of the algorithm A

COPT (rij) The optimal cost for request rij

CA The total implementation cost of arbitrary deterministic
algorithm A

OPT The optimal total cost of the first n requests

c A positive constant

k A positive constant, the number of calling time for free from
the data center
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4 Model Analysis

After purchasing data from the data center, assume that the average invocation
cost is lower than the transmission cost from other servers, but not too small
in practical. i.e. λ

2 ≤ B
k ≤ λ. Upon this assumption, we propose the follow-

ing balance between caching and transmission online algorithm (called BBCTO
Algorithm) for any online request stream.

Without losing generality, we assume μ1 ≤ μ2 ≤ · · · ≤ μm. In a centralized
system, in order to minimize the total system cost, if servers have to buy data
from the data center, server 1 is the most cost-effective. Because the storage price
per unit time of server 1 is the cheapest. Use a variable Nj to record the number
of data invocation after server j buys data from the data center, initialized to
0. Nj = 0 indicates that server j does not purchase data from the data center.
And Nj = k indicates that server j has used up the number of free invocation
for the purchased data. Define Δtj = λ

μj
, ΔtBj = B/k

μj
.

1. Server j that does not purchase data from data center or ran
out of free data calls

– Cache: The retention period of the data is Δtj ;
– Transfer/Copy: When a new request arrives at server j, if there exists data

at the target server, then the request will be satisfied; else if there exist
data copies among other servers, then the request can be satisfied by data
transmission from other servers; else if there is no data among servers and
0 < N1 < k, call data from the data center to server 1, then transfer the data
to the target server.

2. Server 1 that purchases data from data center and has free data
calls times (N1 < k)

– Cache: The retention period of the data is ΔtB1 .
– Transfer/Copy: When a new request arrives at server 1, if there exists data

at the target server, then the request will be satisfied; else if there exist
data copies among other servers, then the request can be satisfied by data
transmission from other servers; else call data from the data center.

3. In general, when is data deleted from the server

– Delete: After the holding time, if there exist data copies among servers or
0 < N1 < k, then delete the data from the current server. Otherwise, transfer
data to server 1 and delete the data from the current server, then go on
holding data on server 1 with the duration B

μ1
. When t = B

μ1
, data on the

server 1 will be deleted. Buy data from the data center until next new request
arrives, set N1 = 1.

Observation 1. After purchasing data from the data center, the free invocation
is caused when there is no data cached on all the servers.
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Proof. After purchasing data from the data center, while data invocation is free,
as long as there is data between servers, it is valuable to avoid call data from
the data center. When the next request doesn’t arrive too soon and there is no
data on the server, calling data from the data center will play a great role.

Observation 2. For the optimal cost, the previous increase in data caching time
does not reduce the number of purchases.

Proof. After buying data from the data center, according to the BBCTO Algo-
rithm, data caching time on the server is ΔtBj or Δtj . If new request arrives
at the server beyond the caching time, the strategy of algorithm is to call data
from the data center, then the cost is B

k . While the strategy of optimal offline
algorithm is calling data from the data center or caching data on the server.
Suppose that in order to reduce the number of purchases, OPT chooses to store
the data to meet the requests rather than invoke the data from the data center,
then the cost is more than B

k , written as B
k +.

When the number of free calls runs out and there is no new request arriving
at other servers, data is cached on server 1. When next new request arrives, the
BBCTO Algorithm will buy data from the data center after the data on server
1 has been stored for t = B

μ1
. While the strategy of optimal offline algorithm is

to call data from the data center, then the cost is B
k . As the number of future

requests increases, so calling data from the data center is the optimal strategy
for the optimal cost.

Therefore, the ratio between BBCTO Algorithm and OPT is

C()
OPT ()

≤
B
μ1

μ1 + B + k(μ1ΔtB1 )

B
.

Theorem 1. After server 1 buys data from the data center, according to the
BBCTO Algorithm, the total cost of k data calls caused by requests does not
exceed 3 times the optimal cost.

Proof. According to Observation 1, the free call is caused because the data is
not cached on the server. There are two cases in an algorithm that can cause a
free call: requests at the other servers which need data and there is no data copy
among servers (case 1), or the request arrives the server after caching data ΔtB1
(case 2) and there is no data copy among servers. For k data calls from the data
center, assume that the number of case 1 and case 2 are respectively l1 and l2.
We prove the ratio by taking k calls after purchasing the data as a whole. Thus,
the total cost of k calls is B

μ1
μ1 + B + l2(μ1ΔtB1 ).

Ck()
OPTk()

≤
B
μ1

μ1 + B + l2(μ1ΔtB1 )

B
< 3.

Theorem 2. The BBCTO online algorithm is a 3-competitive algorithm.

Proof. We prove the ratio in detail from the following three cases.
- server j that does not purchase data from data center or has no

free calling time
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– a. The new request arrives at the server when t ≤ ti−1
j + Δtj , according to

the algorithm, the request will be satisfied directly.

C(ri
j)

OPT (ri
j)

=
μj(t − ti−1

j )

μj(t − ti−1
j )

= 1.

– b. The new request arrives at the server when t > ti−1
j +Δtj and there exists

data copy at other servers, according to the algorithm, the request will be
satisfied by transmission from other servers.

C(ri
j)

OPT (ri
j)

=
μjΔtj + λ

λ
= 2.

– c. The new request arrives at the server when t > ti−1
j + Δtj and there is no

data copy at other servers, but 0 < N1 < k, according to the algorithm, the
request will be satisfied by transmission from server 1 which calls data from
the data center first.

C(ri
j)

OPT (ri
j)

=
μjΔtj + λ

λ
= 2.

– d. The new request arrives at the server when t > ti−1
j + Δtj and there

exists data copy at other servers (there is no free data calls and data has
been transferred to server 1), according to the algorithm, the request will be
satisfied by transimission from server 1.

C(ri
j)

OPT (ri
j)

=
μjΔtj + λ + μ1Δ + λ

μj(Δtj + Δ)
< 3.

- server 1 which buys data from the data center and its holding
time is ΔtBj

– a. The new request arrives at server 1 when t ≤ ti−1
1 + ΔtB1 , according to the

algorithm, the request will be satisfied directly.

C(ri
1)

OPT (ri
1)

=
μ1(t − ti−1

1 )
μ1(t − ti−1

1 )
= 1.

– b. The new request arrives at server 1 when t > ti−1
1 + ΔtB1 and there exists

data copy at other servers, according to the algorithm, the request will be
satisfied by transimission from other servers.

C(ri
1)

OPT (ri
1)

=
μ1ΔtB1 + λ

min{λ, μ1(ΔtB1 + ε), B
k } < 3.

– c. The new request arrives at server 1 when t > ti−1
1 + ΔtB1 and there is no

data copy at other servers, but 0 < N1 < k, according to the algorithm, the
request will be satisfied by calling from the data center. In this case, as shown
Theorem 1, we prove the ratio by taking k calls after purchasing the data as
a whole.
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- new requests have not arrived for a long time and there are no free
calls for every server, then server 1 has to cache data

– a. The new request arrives at server 1 during holding time t < B
μ1

, according
to the algorithm, data will be stored at server 1 untill the time period is
B
μ1

. The optimal cost maybe caches data or calls data from the data center
(for some free calling of previous purchase, OPT chooses to cache more to
reduce a calling). If the request flow stops in this case, the cost of the BBCTO
Algorithm will increases a constant multiple of B, but it does not affect the
asymptotic performance ratio.

– b. The new request arrives the server at B
μ1

, according to the algorithm, the
request will be satisfied by buying data from the data center. As requests
arrive in the future, when the cost of OPT increases B, it must also buy data
from the data center. In this case, as shown Theorem 1, we have proved the
ratio by taking k calls after purchasing the data as a whole.

Suppose that CBO is the total cost of an online requests stream including n
requests gained by the BBCTO algorithm, OPT is the optimal total cost of the
requests stream which can be obtained by an offline algorithm. Then

CBO/OPT = (
∑

1≤j≤n

CA(rj) + cB)/
∑

1≤j≤n

COPT (rj)

< (
∑

1≤j≤n

3COPT (rij) + cB)/
∑

1≤j≤n

COPT (rij)),

lim
n→∞ CBO/OPT = 3.

When B
k < λ

2 , we modify the second part of the online BBCOT Algorithm.
2. Server j that purchases data from data center and has free data

calls times (Nj < k)

– Cache: The retention period of the data is ΔtBj .
– Transfer: When a new request arrives at server Sj , if there exists data at the

target server, then the request will be satisfied; call data from data center,
otherwise.

Theorem 3. The competitive ratio of the modified BBCTO Algorithm is 3.

Proof. The proof is the same as Theorem 2 without the case b in case 2 (server
1 which buys data from the data center and its holding time is ΔtB1 ).

5 Conclusion and Future Work

In this paper, we studied data caching problem with data center in edge com-
puting. In previous studies, data center was used only to purchase data. We
consider that the data purchasing from the data center is not always valid, i.e.,
the number of invoking data after purchasing data is limited. In edge comput-
ing, it is the first time such a pay-per-call data pricing has been considered.
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We design an algorithm to minimize the total cost of completing users’ online
requests when future requests arriving at the server are unknown. And we prove
that the competitive ratio of the proposed algorithm is 3. In our future work, we
will consider a distributed game system, where each server is selfish and wants
to minimize its own costs, it will be more challenging.
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Abstract. Motivated by applications in cloud computing, we study
approximation algorithms for scheduling two-stage jobs on multiple two-
stage flowshops with a deadline, aiming at maximizing the profit. For the
case where the number of flowshops is part of the input, we present a fast
approximation algorithm with a constant ratio. The ratio is improved via
a study of the relationship between the problem and the multiple knap-
sack problem, combined with a recently developed approximation algo-
rithm for the multiple knapsack problem. By integrating techniques in
the study of the classical Knapsack problem and the Makespan prob-
lem on multiple processors, plus additional new techniques, a polynomial-
time approximation algorithm with a further improved ratio is developed
for the case where the number of flowshops is a fixed constant.

Keywords: Scheduling · Two-stage flowshop · Approximation
algorithm

1 Introduction

Recently, there have been increasing interests in the study of scheduling multi-
ple two-stage flowshops [4,5,11–16]. The study was partially motivated by the
research in cloud computing and data centers [17]. In certain applications of
cloud computing, a client request can be regarded as a two-stage job, consisting
of a disk-reading stage and a network-transformation stage, where the network-
transformation will not start until the disk-reading brings the required data from
disks into the main memory. A server in the cloud can be regarded as a two-stage
flowshop that can handle both the disk-reading and network-transformation for
a client request [12]. It has been observed [17] that the costs of the two stages
of a client request can be comparable and are not necessarily closely correlated.
Moreover, they depend on different cloud services, the involved servers in the
cloud, and bandwidth of local I/O (disk or flash) and of network.

Most research on scheduling multiple two-stage flowshops has been focused
on minimizing the scheduling makespan. The problem is NP-hard [12].
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Fully polynomial-time approximation schemes have been developed for the prob-
lem of scheduling on a fixed number of two-stage flowshops [4,11,12]. For
the case where the number of flowshops is part of the input, a sequence of
improved approximation algorithms have been developed [5,14,15]. In particu-
lar, a polynomial-time approximation scheme for the problem has been developed
very recently [5].

The current paper initiates the study of scheduling multiple two-stage flow-
shops with a given deadline. Thus, we are given a deadline D and a set G of
two-stage jobs, where each job is associated with a profit. The objective is to
select a subset G′ of jobs from G such that G′ can be scheduled on m two-stage
flowshops with makespan bounded by D and that G′ maximizes the profit. The
problem is again motivated by applications in cloud computing: in certain appli-
cations, cloud computing can be modeled by running two-stage jobs on multiple
two-stage flowshops. In particular, scheduling multiple two-stage flowshops with
deadlines models the practice of buying cloud services in which the cloud service
provider companies are aimed at maximizing the profit under time constraints.

To authors’ best acknowledge, the problem has not been systematically stud-
ied in the scheduling literature. The problem on a single flowshop was studied
by Dawande et al. [3], where approximation algorithms and heuristic algorithms
were studied and experimental results were presented. Another related research
line is the study of approximation algorithms for the Multiple-Knapsack prob-
lem. Indeed, an item (s, p) of size s and profit p in an instance of Knapsack can
be regarded as a one-stage job of time s and profit p, while a knapsack of capacity
D can be regarded as a one-stage flowshop with deadline D. Therefore, Multiple-
Knapsack can be regarded as scheduling one-stage jobs on multiple one-stage
flowshops with a deadline. The problem has drawn recent interests and has led
to some deep and significant results [1,2,7,10]. In particular, polynomial-time
approximation schemes have been developed for the problem [1,10].

The current paper studies approximation algorithms for scheduling multi-
ple two-stage flowshops with a deadline. Our first result is a fast approxima-
tion algorithm of ratio 4 for the problem in which the number of flowshops is
part of the input. This result significantly extends a result in [3], which pre-
sented an approximation algorithm of the same ratio for the problem on a single
flowshop. Note that extending approximation algorithms from one flowshop to
multiple flowshops is not always routine and straightforward. For example, it
is well-known that the classical Knapsack problem has fully polynomial-time
approximation schemes [6], while Multiple-Knapsack with two knapsacks has
no fully polynomial-time approximation scheme unless P = NP [1].

We then study connections between the Multiple-Knapsack problem and
the problem of scheduling multiple two-stage flowshops with a deadline. This
study plus the approximation algorithms for Multiple-Knapsack developed in
[1] gives a polynomial-time approximation algorithm of ratio 3 + ε, where ε > 0
is any constant, for the problem of scheduling multiple two-stage flowshops with
a deadline, in which the number of flowshops is given as part of the input. This
again extends a result in [3] that presented an approximation algorithm of the
same ratio for scheduling a single two-stage flowshop with a deadline.
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Finally, we study scheduling two-stage flowshops with a deadline in which the
number of flowshops is a fixed constant. By integrating techniques in approxi-
mation algorithms for the classical Knapsack problem and that for the classical
Makespan problem on multiple processors, we classify two-stage jobs in terms
of their work (i.e., the total time required by the two-stage processing), their
profits, and their profit ratios. This classification enables us to focus on the set
of jobs with small work and small profits, in which each job’s inclusion in the
final solution would not significantly impact the makespan and the profit of the
solution. Our study suggests a new approximation algorithm for the problem. By
thorough analysis of the algorithm, we show that the proposed new algorithm
has an approximation ratio bounded by 2 + ε for any constant ε > 0. The new
algorithm significantly improves previous known results. In particular, the best
known approximation algorithm for the problem of scheduling a single two-stage
flowshop with a deadline has a ratio 3 + ε. Our algorithm not only improves the
ratio to 2 + ε, but also is applicable to multiple two-stage flowshops.

2 Preliminaries and Simple Facts

For scheduling on two-stage flowshops, we make the following assumptions:

1. a two-stage job consists of an R-operation, a T -operation, and a profit;
2. a two-stage flowshop has an R-processor and a T -processor that run in parallel

and process the R- and T -operations, respectively, of the assigned jobs;
3. the R- and T -operations of a two-stage job must be executed in the R- and

T -processors, respectively, of the same two-stage flowshop, in such a way that
the T -operation cannot start unless the R-operation is completed; and

4. there are no job precedence constraints, and preemption is not allowed.

We will remove the prefix “two-stage” in our discussion. Thus, a “job” or a
“flowshop” is always interpreted as being two-stage.

A job J is given as a triple J = (r, t; p) of non-negative integers, where r and
t are, respectively, the R-time and T -time of J (i.e., the time units required for
processing the R- and T -operations, respectively, of J), and p is the profit. Thus,
if the job J can be completed by the given deadline D, then the profit gained is
p. The profit of a job set is equal to the sum of the profits of the jobs in the set.

A schedule of a job set G on a set F of flowshops is an assignment of the
jobs in G to the flowshops in F , plus a schedule of the job subset assigned to
each flowshop in F . The makespan of a schedule is the time that is needed to
complete all jobs under the schedule. When the deadline D is given, we say that
a schedule is feasible if the makespan of the schedule is bounded by D.

Now we are ready to define our problem:

Multiple Two-Stage Flowshop Packing (MFL2-Packing):
Given a set G = {Ji = (ri, ti; pi) | 1 ≤ i ≤ n} of jobs, a deadline D, and
the number m of flowshops, find a subset G′ of G and a feasible schedule of
G′ on the m flowshops such that G′ maximizes the profit over all subsets
of jobs in G that have feasible schedules on the m flowshops.
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We will denote the problem by mMFL2-Packing if the number m of flow-
shops in the problem is a fixed constant.

The problem of scheduling on a single two-stage flowshop to minimize the
makespan is the classical Two-Stage Flowshop problem, which can be solved
optimally in time O(n log n) by Johnson’s algorithm that schedules the jobs in
Johnson order [9]. Thus, if an assignment of a set of jobs to the flowshops is given,
we can easily determine if there is a feasible schedule under the assignment, and,
if yes, construct the feasible schedule. Therefore, the main difficulty of scheduling
multiple flowshops is the assignment of the jobs to the flowshops.

There are some simple facts on the MFL2-Packing problem that can be
easily derived based on known results for the classical Knapsack problem and
the Makespan problems on multiple processors, which are listed below.

The Knapsack problem can be easily reduced to the MFL2-Packing prob-
lem on a single flowshop, i.e., the 1MFL2-Packing problem: given an instance
(S,D) of Knapsack, where S = {(si, pi) | 1 ≤ i ≤ n} is a set of items, in which
si and pi are the size and profit, respectively, of the i-th item, and D is the
knapsack capacity, we construct an instance (G,D) for 1MFL2-Packing, where
G = {(si, 0; pi) | 1 ≤ i ≤ n}, i.e., the i-th job has R-time si, T -time 0, and profit
pi, and D is the deadline. It is easy to see that an optimal solution to (G,D)
gives an optimal solution to (S,D). Thus, the NP-hardness of Knapsack gives

Theorem 1. The 1MFL2-Packing problem, thus MFL2-Packing, is NP-
hard.

In the study of the Multiple-Knapsack problem, Chekuri and Khanna [1]
proved that Multiple-Knapsack with two knapsacks has no fully polynomial-
time approximation scheme unless P = NP. Based on the relationship between
Knapsack and the MFL2-Packing problem as described above, we have

Theorem 2. The 2MFL2-Packing problem, thus MFL2-Packing, has no
fully polynomial-time approximation scheme unless P = NP.

On the other hand, we give below a pseudo-polynomial time algorithm for the
mMFL2-Packing problem, when the number m of flowshops is a fixed constant.

The algorithm uses the standard techniques of developing pseudo-polynomial
time algorithms. Let G be a set of n jobs, and let D be the given deadline.
Without loss of generality, assume that the job set G is already sorted into
Johnson order (otherwise we can simply spend additional O(n log n) time to
sort G). For each i, let Gi be the set of the first i jobs in G. We maintain a
(2m + 1)-dimensional array H[0..n, 0..D, 0..D, . . . , 0..D, 0..D] such that the ele-
ment H[i, ρ1, τ1, . . . , ρm, τm] of the array records the assignment of a subset
G′
i of Gi to the m flowshops such that for each h, 1 ≤ h ≤ m, the job set

G′
i,h of the jobs assigned to the h-th flowshop Fh satisfies the conditions: (1)∑
(ri,ti;pi)∈G′

i,h
ri = ρh, and (2) the minimum-makespan schedule for the job set

G′
i,h on Fh has its makespan equal to τh. Moreover, the job set G′

i recorded in
the element H[i, ρ1, τ1, . . . , ρm, τm] has the maximum profit over all assignments
of subsets of Gi to the m flowshops whose corresponding schedule satisfies the
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conditions (1) and (2) on all flowshops Fh. Since the job set G is in Johnson
order, the jobs assigned to each flowshop in the above process also follow John-
son order. Therefore, when a new job is added to the flowshop, the minimum-
makespan schedule of the new job set in the flowshop can be constructed from
the minimum-makespan schedule of the old job set in constant time [12]. Now
using the standard techniques of dynamic programming, we can construct an
optimal solution to the instance (G,D) of mMFL2-Packing. It is not difficult
to see that the above dynamic programming algorithm runs in time O(nD2m).

Theorem 3. The mMFL2-Packing problem is solvable in pseudo-polynomial
time. More specifically, the problem can be solved in time O(nD2m), where n is
the number of jobs in the input and D is the deadline.

We remark that Theorem 3 is a bit surprising. In many cases in the study
of approximation algorithms, fully polynomial-time approximation schemes for
an optimization problem can be derived naturally from pseudo-polynomial time
algorithms for the problem, using the techniques of scaling [6]. On the other hand,
although Theorem 3 offers a pseudo-polynomial time algorithm for the mMFL2-
Packing problem for any fixed constant m ≥ 1, as shown in Theorem 2, the
problem has no fully polynomial-time approximation schemes for any m ≥ 2.

3 A Fast 4-Approximation Algorithm for MFL2-Packing

In this section, we present an approximation algorithm for the MFL2-Packing
problem, in which the number m of flowshops is given as part of the input. Thus,
our instance is of the form (G,D,m), where G is a set of n jobs, D is the deadline,
and m is the number of flowshops. Without loss of generality, we assume that
each job J ′ = (r′, t′, p′) given in the input satisfies r+t ≤ D. A job set sometimes
is given as a job sequence, in which the jobs are given in a specified order. Of
course, a job sequence uniquely defines a job set.

We introduce some notations. For a job J ′ = (r′, t′; p′), we define r(J ′) = r′,
t(J ′) = t′, p(J ′) = p′, w(J ′) = r′ + t′, and σ(J ′) = p(J ′)/w(J ′), where p(J ′),
w(J ′), and σ(J ′) are called the profit, the work, and the σ-value of the job J ′,
respectively. The notations of R-time, T -time, profit, and work can be extended
to a set or a sequence G′ of jobs. Thus, r(G′) =

∑
J∈G′ r(J), t(G′) =

∑
J∈G′ t(J),

p(G′) =
∑

J∈G′ p(J) and w(G′) =
∑

J∈G′ w(J).
Consider the algorithm given in Fig. 1. Note that though the output of the

algorithm is an assignment (G1,G2, . . . ,Gm) of the subset G′ = G1 ∪ · · · ∪ Gm of
the input job set G, the corresponding feasible schedule of G′ on the m flowshops
can be constructed by Johnson’s algorithm in additional time O(n log n).

Inductively for each h, 1 ≤ h ≤ m, we initially assign the jobs in the set H to
the flowshop Fh, assuming that the jobs J1, J2, . . ., Ji−1 have been assigned to
the first h flowshops. Now we continue assigning the jobs Ji, Ji+1, . . ., Jn, in that
order, to the flowshop Fh until we encounter the first job Jk such that the jobs
in H ∪ {Ji, Ji+1, . . . , Jk−1, Jk} cannot be processed by the flowshop Fh without
exceeding the deadline D. Note that k could be i, and that we can use Johnson’s
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Algorithm MFL2Apx(G, D, m)

input: a set G of n jobs, a makespan deadline D, and the number m of flowshops
output: a feasible schedule of a subset G of G on m flowshops.

1. sort the jobs in G in non-increasing order of their σ-values: J1, J2, . . . , Jn;
2. H = {J1}; i = 2;
3. for h = 1 to m do
3.1 let k be the index such that the job set H ∪ {Ji, . . . , Jk−1} can be completed

on the flowshop Fh by the deadline D, but the job set H ∪ {Ji, . . . , Jk−1, Jk}
cannot be completed on Fh by the deadline D;

3.2 if (p(H ∪ {Ji, . . . , Jk−1}) > p(Jk))
3.2.1 then { assign Gh = H ∪ {Ji, . . . , Jk−1} to the flowshop Fh; H = {Jk}; }
3.2.2 else { assign Gh = {Jk} to the flowshop Fh; H = H ∪ {Ji, . . . , Jk−1}; }
3.3 i = k + 1;
4. return (G1, G2, . . . , Gm).

Fig. 1. An approximation algorithm for MFL2-Packing

algorithm to determine if a job set can be processed by the flowshop Fh within the
deadline D. Then we compare the profits of the two job sets H ∪ {Ji, . . . , Jk−1}
and {Jk}, leaving the one with larger profit (i.e., Gh) in the h-th flowshop Fh,
and making the one with smaller profit as the new job set H (which will be
assigned to the flowshop Fh+1 if h < m). The index i is then set to k + 1, which
gives the first job in the sequence that has not been assigned to a flowshop, yet.
At this point, the first h flowshops have been assigned, respectively, with the job
sets G1, G2, . . ., Gh, and the union (

⋃h
k=1 Gk) ∪ H is equal to {J1, J2, . . . , Ji−1},

where Ji−1 = Jk. Then we work on a subset schedule of the jobs in the set
H ∪ {Ji, Ji+1, . . . , Jn} on the rest m − h flowshops.

In the h-th execution of the for-loop in step 3 of the algorithm, the job set
Gh is set to be either H ∪ {Ji, . . . , Jk−1} or {Jk}. By the definition of the index
k and by our assumption on the processing time of a single job, the job set Gh

can always be processed by the flowshop Fh and completed by the deadline D.
Therefore, the output (G1,G2, . . . ,Gm) of the algorithm MFL2Apx is a feasible
schedule of the job subset G′ = G1 ∪ · · · ∪ Gm of the input job set G on the m
flowshops, thus, a valid solution to the instance (G,D,m) of MFL2-Packing.

The algorithm MFL2Apx uses ideas that are similar to that used in approx-
imation algorithms for the classical Knapsack problem [6]. However, since the
MFL2-Packing problem is a significant extension of the Knapsack problem:
the machine model is extended from one-stage to two-stage, and the number
of machines is extended from 1 to any given number m, the problem becomes
much more difficult and solving it requires new techniques. The following the-
orem summarizes our results, whose formal proof will be given in the complete
version of this paper.

Theorem 4. Algorithm MFL2Apx is an O(n2)-time approximation algorithm
for the MFL2-Packing problem, whose approximation ratio is bounded by 4.

Theorem 4 extends a result in [3], where an approximation algorithm of
ratio 4 on one flowshop is given. However, as shown in the proof of Theorem 4,
which will be given in the complete version of this paper, extending the result to
multiple flowshops requires significant additional analysis and new techniques.
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4 MFL2-Packing and Multiple-Knapsack

As shown in the previous sections, there seems a close connection between the
MFL2-Packing problem and the Multiple-Knapsack problem. The latter has
drawn notable attentions recently and has seen some significant progresses [1,2,
7,10]. In this section, we study the relationship between the two problems, which
leads to a new approximation algorithm for the MFL2-Packing problem.

An instance of Multiple-Knapsack is a triple (S, B,m), where S is a set of
items, each item is given as a pair (s, p) of non-negative integers, where s and p
are the size and profit of the item, respectively, B is the knapsack capacity, and
m is the number of knapsacks. Similar to what we did in the study of MFL2-
Packing, we can extend the concepts of size s(I) and profit p(I) of an item I
to that of a set S ′ of items. The objective of (S, B,m) is to select a subset S ′ of
items in S that can be packed into the m knapsacks of capacity B and maximizes
the profit. We will denote by opt(S, B,m) the profit of an optimal solution to the
instance (S, B,m) of Multiple-Knapsack. Without loss of generality, we assume
s(I) ≤ B for all items I ∈ S in an instance (S, B,m) of Multiple-Knapsack.

Lemma 1. Let S be a set of items. Then for the two instances (S, B,m) and
(S, 2B,m) of Multiple-Knapsack, we have opt(S, B,m) ≥ opt(S, 2B,m)/3.

We remark that the bound given in Lemma 1 is tight: consider a set S of n
items of size 2 and profit 1. Let B = 3. Then for any m, an optimal solution
to the instance (S, B,m) of Multiple-Knapsack has profit m, while an optimal
solution to the instance (S, 2B,m) of Multiple-Knapsack has profit 3m.

Theorem 5. If the Multiple-Knapsack problem has a polynomial-time approxi-
mation algorithm of ratio γ, then the MFL2-Packing problem has a polynomial-
time approximation algorithm of ratio 3γ.

Proof. Let AK be an approximation algorithm of ratio γ for Multiple-
Knapsack. We develop an approximation algorithm AF for MFL2-Packing
as follows:

Input: an instance (G, D,m) for MFL2-Packing, where G = (J1, J2, . . . , Jn),
and for each i, Ji = (ri, ti; pi)

1. construct an instance (S, D,m) for Multiple-Knapsack, where
S = (I1, I2, . . . , In), and for each i, Ii = (ri + ti, pi);

2. call the algorithm AK on (S, D,m) to construct a solution to (S, D,m),
which is a subset S ′ of S with a partition S ′ = S ′

1 ∪ · · · ∪ S ′
m;

3. for each 1 ≤ h ≤ m, let G′
h = {Ji | Ii ∈ S ′

h}. Then G′ = G′
1 ∪ · · · ∪ G′

m is
the solution to the instance (G, D,m) of MFL2-Packing, where for each
h, G′

h is the subset of jobs assigned to the h-th flowshop.

We first show that the schedule, i.e., the job subset G′ and its partition,
constructed by the algorithm AF is a feasible schedule of the instance (G,D,m)
of MFL2-Packing. Consider the subset G′

h in G′. By the algorithm, the cor-
responding subset S ′

h of items in the solution S ′ to the instance (S,D,m) of
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Multiple-Knapsack constructed in step 2 can be packed into a knapsack of
capacity D. Since the size of an item in S ′

h is equal to the work of the corre-
sponding job in G′

h, we get w(G′
h) = s(S ′

h) ≤ D. Therefore, it is clear that the job
subset G′

h can be completed in a flowshop with completion time bounded by D.
As a result, the subset G′ of jobs in G and the partition of G′ constructed by the
algorithm AF is a feasible schedule of the instance (G,D,m) of MFL2-Packing.

The algorithm AF obviously runs in polynomial time under the assumption
that the algorithm AK runs in polynomial time.

Now consider the approximation ratio of the algorithm AF . Observe that
for the instance (G,D,m) of MFL2-Packing and the instance (S, 2D,m) of
Multiple-Knapsack, opt(G,D,m) ≤ opt(S, 2D,m). This is because for every
feasible schedule G′ = G′

1∪· · ·∪G′
m of (G,D,m), the corresponding S ′ = S ′

1∪· · ·∪
S ′
m is a valid solution to (S, 2D,m), where for each h, S ′

h = {Ii | Ji ∈ G′
h}. This

combined with Lemma 1 gives opt(G,D,m) ≤ opt(S, 2D,m) ≤ 3 · opt(S,D,m).
By the assumption, in step 3 of the algorithm AF , the called algorithm AK

produces a solution S ′ = S ′
1 ∪ · · · ∪ S ′

m to the instance (S,D,m) of Multiple-
Knapsack satisfying opt(S,D,m)/p(S ′) ≤ γ. By the algorithm, p(S ′) = p(G′),
where G′ is the solution produced by the algorithm AF to the instance (G,D,m),
which thus satisfies: opt(G,D,m)/p(G′) = 3·opt(S,D,m)/p(S ′) ≤ 3γ. Therefore,
the approximation ratio of the algorithm AF for the problem MFL2-Packing
is bounded by 3γ. This completes the proof of the theorem. ��

Chekuri and Khanna [1] developed a polynomial-time approximation scheme
for the Multiple-Knapsack problem, which is an approximation algorithm of
ratio 1 + ε for any ε > 0 and runs in polynomial time when ε is a fixed constant.
This result combined with Theorem 5 gives directly the following corollary:

Corollary 1. There is an approximation algorithm for the MFL2-Packing
problem that has approximation ratio bounded by 3 + ε for any ε > 0 and runs
in polynomial time when ε is a fixed constant.

Corollary 1 extends a result in [3], where a polynomial-time approximation
algorithm of the same ratio was presented for the problem 1MFL2-Packing.

5 A (2 + ε)-Approximation for mMFL2-Packing

In this section, we consider the problem mMFL2-Packing in which the number
m of flowshops is a fixed constant, whose instances are given as (G,D) with G
being a job set and D being the deadline. The profit of an optimal solution to
the instance (G,D) will be denoted by opt(G,D).

In our discussion below, we will need to order jobs using either their profits
or their σ-values. In order to ensure a unique ordering, we will use the job indices
given in the input job set G = {J1, . . . , Jn} to resolve ties. Thus, for two jobs Jx

and Jy in G, by “the profit of Jx is larger than that of Jy”, we really mean that
either p(Jx) > p(Jy), or p(Jx) ≤ p(Jy) and x > y. Similar rule is applied when
we order jobs by their σ-values. Under these rules of ordering, a job set will have
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a unique ordering when it is sorted by either the profits or the σ-values, and the
partition of a job set based on the profit or σ-value of a job is unique.

Let G′ = 〈J ′
1, . . . , J

′
h〉 be a job sequence. By “greedily add the jobs in the

sequence G′ to the m flowshops”, we refer to the following procedure: following
the order of the sequence G′, repeatedly add the next job J in G′ to a flowshop
F in which all assigned jobs plus J have a schedule in F with completion time
bounded by D (note that this can be determined in polynomial time using John-
son’s algorithm). The procedure ends either when all jobs in G′ are added to the
flowshops, or it encounters a job J in the sequence such that adding J to any
of the flowshops will result in a job subset that has no schedule in the flowshop
with completion time bounded by D. Note that the m flowshops are allowed to
be non-empty before the procedure adds the jobs in G′ to the flowshops.

Let k0 be a fixed integer whose value will be determined later. We say that
a job J ′ is a large-job if w(J ′) ≥ 2mD/k0, and a small-job otherwise. Note that
if a job subset G′ has a feasible schedule on the m flowshops, then G′ contains
at most k0 large-jobs. Consider the algorithm given in Fig. 2.

Algorithm mMFL2Apx(G, D, k0)
input: a set G of n jobs, a makespan deadline D, and an integer k0 > 0
output: a feasible schedule of a subset G of the job set G on m flowshops.

1. G0 = ∅;
2. for (each subset G1 of at most k0 large-jobs plus at most k0 small-jobs)
3. if (the subset G1 has a feasible schedule in the m flowshops) then
3.1 let G2 be the sequence of the small-jobs in G \ G1 whose profits are smaller

than that of all small-jobs in G1, sorted decreasingly by their σ-values;
3.2 make a feasible schedule of the job subset G1 to the m flowshops;
3.3 greedily add the small-jobs in G2 to the m flowshops;
3.4 let the resulting schedule be G ; if (p(G ) > p(G0)) then G0 = G ;
4. return(G0).

Fig. 2. An approximation algorithm for mMFL2-Packing

We study the approximation ratio of the algorithm mMFL2Apx(G,D, k0).
Let G∗ = {J∗

1 , J∗
2 , . . . , J∗

v } be an optimal solution for the instance (G,D). Thus,
p(G∗) = opt(G,D), w(G∗) ≤ 2mD. If G∗ contains at most k0 small-jobs, then,
since G∗ can neither contain more than k0 large-jobs, the set G∗ will be examined
in step 2 of the algorithm and assigned to the m flowshops in step 3.2. By step
3.4, the output of the algorithm in this case will be an optimal solution to (G,D).

Thus, we can assume that the set G∗ contains more than k0 small-jobs. Let
G1 = {J∗

1 , . . . , J∗
q } be the set of the large-jobs plus the k0 small-jobs with the

largest profits in G∗. Since G∗ cannot contain more than k0 large-jobs and the
job set G1 certainly has a feasible schedule on the m flowshops, steps 3.1–3.4 will
be applied on the set G1. Let G2 be the sequence of the rest small-jobs in G∗,
sorted decreasingly by σ-values. Then, G∗ = G1 ∪ G2.
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Case 1. p(G1) ≥ p(G∗)/2.
Since G1 is examined in step 2 and has feasible schedules, step 3.2 makes a

feasible schedule for G1 so that the corresponding schedule G′ in step 3.4, thus the
output G0 of the algorithm, has profit at least p(G1) ≥ p(G∗)/2 = opt(G,D)/2.

Case 2. p(G1) < p(G∗)/2, thus p(G2) > p(G∗)/2.
We divide the case into two subcases.

Case 2.1. There is a postfix G2′ of G2 such that p(G2′) ≥ p(G∗)/2, w(G2′) ≤ mD.
Again, if G2′ contains no more than k0 jobs, then G2′ will be examined in

step 2, for which step 3.4 will produce a schedule G′ whose profit is at least
p(G2′) ≥ p(G∗)/2 = opt(G,D)/2.

Thus, we assume that G2′ contains more than k0 jobs. In this case, let G∗
1 be

the set consisting of the k0 jobs in G2′ that have the largest k0 profits in G2′ ,
G∗
2 = G2′\G∗

1 , and suppose G∗
2 is sorted decreasingly by the σ-values. Thus, in

this case, we get two job subsets G∗
1 and G∗

2 that satisfy the following conditions:

Condition-1.
(1.1) G∗

1 ∪ G∗
2 ⊆ G∗, p(G∗

1 ∪ G∗
2 ) ≥ p(G∗)/2, w(G∗

1 ∪ G∗
2 ) ≤ mD;

(1.2) G∗
1 contains at most k0 large-jobs plus k0 small-jobs;

(1.3) G∗
2 contains only small-jobs whose profit < the profit of all small-

jobs in G∗
1 , and the jobs in G∗

2 are sorted decreasingly by σ-values.

Case 2.2. No postfix G2′ of G2 satisfies both p(G2′) ≥ p(G∗)/2 and w(G2′) ≤ mD.
In Case 2.2, since p(G2) > p(G∗)/2, we must have w(G2) > mD. This com-

bined with w(G∗) = w(G1 ∪ G2) ≤ 2mD gives w(G1) < mD.
Without loss of generality, suppose G2 = 〈J∗

q+1, . . . , J
∗
v 〉 is sorted decreasingly

by the σ-values. Let z be the first index in G2 such that w({J∗
z+1, . . . , J

∗
v }) ≤

mD. The index z satisfies q + 1 ≤ z < v because w(G2) > mD and
the jobs in G2 are small-jobs whose work is bounded by 2mD/k0 (assum-
ing k0 ≥ 10). In Case 2.2, we must have p({J∗

z+1, . . . , J
∗
v }) < p(G∗)/2. Then

p({J∗
1 , . . . , J∗

q , J∗
q+1, . . . , J

∗
z }) > p(G∗)/2. In this case, we let G∗

1 = G1 =
{J∗

1 , . . . , J∗
q }, and G∗

2 = 〈J∗
q+1, . . . , J

∗
z−1〉, where G∗

2 is sorted decreasingly by
the σ-values. Thus, in this case, we get two job subsets G∗

1 and G∗
2 that satisfy

the following conditions:

Condition-2.
(2.1) G∗

1 ∪ G∗
2 ⊆ G∗, p(G∗

1 ∪ G∗
2 )+ p(G∗)/k0 > p(G∗)/2, w(G∗

1 ∪ G∗
2 ) ≤ mD;

(2.2) G∗
1 contains at most k0 large-jobs plus k0 small-jobs;

(2.3) G∗
2 contains only small-jobs whose profit < the profit of all small-

jobs in G∗
1 , and the jobs in G∗

2 are sorted decreasingly by σ-values.

The first inequality in (2.1) is because p({J∗
1 , . . . , J∗

q , J∗
q+1, . . . , J

∗
z }) > p(G∗)/2

and J∗
z is a small-job in G2 whose profit is not large than that of any of the

k0 small-jobs in G∗
1 = G1 ⊆ G∗, and the second inequality in (2.1) is by the

definition of the index z.
Note that Condition-1 implies Condition-2. Thus, in both Cases 2.1 and 2.2,

we can always construct the subsets G∗
1 and G∗

2 that satisfy Condition-2.



Multiple Flowshop Scheduling 93

Lemma 2. Under the condition of Case 2, the solution G0 returned by the algo-
rithm mMFL2Apx(G,D, k0) has profit at least opt(G,D)(1/2 − (m + 1)/k0).

Proof. By the above discussion, from the optimal solution G∗, we can always
construct the subsets G∗

1 and G∗
2 that satisfy Condition-2.

By (2.2) of Condition-2, the subset G∗
1 is examined in step 2 as the set G′

1

in the algorithm. Since G∗
1 clearly has feasible schedules on the m flowshops,

the algorithm proceeds to steps 3.1–3.4, and greedily adds the jobs in the job
sequence G′

2 to the flowshops in step 3.3. Note that G′
2 = 〈J ′

1, J
′
2, . . . , J

′
u〉 is the

job sequence consisting of all small-jobs in G\G∗
1 whose profit is smaller than

that of the small-jobs in G∗
1 . By (2.3) of Condition-2 and the uniqueness of our

ordering rules, G∗
2 is a subsequence of G′

2.
Let J ′

y be the first job in the sequence G′
2 that cannot be added by step 3.3 to

any of the m flowshops. Let G′
y−1 = G∗

1 ∪ {J ′
1, . . . , J

′
y−1}. Note that G′

y−1 is the set
G′ obtained in step 3.4 when the job set G′

1 examined in step 2 is G∗
1 . Therefore,

the profit of the subset G0 returned by algorithm mMFL2Apx is at least as large
as p(G′

y−1). Thus, it suffices to show p(G′
y−1) ≥ opt(G,D)(1/2 − (m + 1)/k0).

If G′
y−1 = G∗

1 ∪ G′
2, then since G∗

2 is a subsequence of G′
2, we have

p(G′
y−1) ≥ p(G∗

1 ∪ G∗
2 ) ≥ p(G∗)(1/2 − 1/k0) = opt(G,D)(1/2 − 1/k0),

where we have used (2.1) in Condition-2. Thus, in this case, the lemma is proved.
If G′

y−1 �= G∗
1 ∪ G′

2, then job J ′
y in G′

2 exists and is not in G′
y−1. Let G′

y =
G′
y−1 ∪ {J ′

y} and let G∗
1+2 = G∗

1 ∪ G∗
2 . Let I ′

y = G′
y\(G′

y ∩ G∗
1+2) and I∗

1+2 =
G∗
1+2\(G′

y ∩G∗
1+2). Since G∗

1 is a subset of the intersection G′
y ∩G∗

1+2, for each job
J ′
i in I ′

y and each job J∗
h in I∗

1+2, we always have p(J ′
i)/w(J ′

i) = σ(J ′
i) ≥ σ(J∗

h) =
p(J∗

h)/w(J∗
h). Moreover, for the job J ′

y, we also have p(J ′
y)/w(J ′

y) ≥ p(J∗
h)/w(J∗

h)
for all J∗

h in I∗
1+2. Therefore,

p(I ′
y) + (m − 1)p(J ′

y)
w(I ′

y) + (m − 1)w(J ′
y)

=

∑
J ′
i∈I′

y
p(J ′

i) + (m − 1)p(J ′
y)

∑
J ′
i∈I′

y
w(J ′

i) + (m − 1)w(J ′
y)

≥
∑

J∗
h∈I∗

1+2
p(J∗

h)
∑

J∗
h∈I∗

1+2
w(J∗

h)
=

p(I∗
1+2)

w(I∗
1+2)

. (1)

By the definition of the index y, with the jobs in G′
y−1 assigned to the m

flowshops, adding the job J ′
y to any flowshop F would result in a subset of jobs

in F that has no schedule of completion time bounded by D in the flowshop F .
Therefore, the total work of the jobs in G′

y−1 assigned to the flowshop F plus
w(J ′

y) must be larger than D. As a result, the total work of the jobs in G′
y−1

plus m · w(J ′
y), i.e., the value w(G′

y) + (m − 1)w(J ′
y), is larger than mD. On the

other hand, by (2.1) of Condition-2, we have w(G∗
1+2) ≤ mD. Therefore,

w(I ′
y) + (m − 1)w(J ′

y) = w(G′
y) + (m − 1)w(J ′

y) − w(G′
y ∩ G∗

1+2)
> w(G∗

1+2) − w(G′
y ∩ G∗

1+2) = w(I∗
1+2).
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Combining this with (1), we get p(I ′
y) + (m − 1)p(J ′

y) ≥ p(I∗
1+2). Thus,

p(G′
y−1) = p(G′

y) − p(J ′
y) = p(I ′

y) + p(G′
y ∩ G∗

1+2) − p(J ′
y)

≥ p(I∗
1+2) − (m − 1)p(J ′

y) + p(G′
y ∩ G∗

1+2) − p(J ′
y)

= p(G∗
1+2) − mp(J ′

y). (2)

From (2.1) of Condition-2, we have p(G∗
1+2) = p(G∗

1 ∪ G∗
2 ) > p(G∗)(1/2 −

1/k0). Moreover, since the job J ′
y in G′

2 has its profit not larger than that of any
of the k0 small-jobs in G∗

1 , and G∗
1 is a subset of the optimal solution G∗, we have

p(J ′
y) ≤ p(G∗)/k0. Bringing all these into (2) completes the proof of the lemma:

p(G′
y−1) ≥ p(G∗)(1/2 − 1/k0) − mp(G∗)/k0

= p(G∗)(1/2 − (m + 1)/k0) = opt(G,D)(1/2 − (m + 1)/k0).

��
It is easy to see that the for-loop in step 2 of the algorithm mMFL2Apx

is executed at most O(n2k0) times, and each execution takes polynomial time.
Now if we set k0 = 2(m + 1)(2 + ε)/ε�, then by Lemma 2 and noticing that all
m, ε and k0 are constants, we get our main theorem for this section:

Theorem 6. For any fixed constant ε > 0, there is a polynomial-time algorithm
that on an instance (G,D) of the mMFL2-Packing problem, constructs a feasi-
ble schedule of a subset G0 of G on m flowshops satisfying opt(G,D)/p(G0) ≤ 2+ε.

Theorem 6 significantly extends and improves the results in [3]. It not only
extends the results in [3] from one flowshop to multiple flowshops, but also
improves the approximation ratio from 3 + ε to 2 + ε, where ε > 0 is any
constant.
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Abstract. In this paper, we consider the single machine scheduling
problem with rejection to minimize the weighted makespan. In this prob-
lem, each job is either accepted and processed on the single machine, or
is rejected by paying a rejection cost. The objective is to minimize the
sum of the weighted makespan (the maximum weighted completion time)
of accepted jobs and the total rejection cost of rejected jobs. We first
show that this problem is binary NP-hard and then propose a pseudo-
polynomial dynamic programming algorithm. Furthermore, based on the
relaxed integral programming, we propose a 2-approximation algorithm
for this problem. Finally, based on the dynamic programming algorithm
and the vector trimming technique, we also obtain a fully polynomial-
time approximation scheme (FPTAS) for this problem.

Keywords: Scheduling with rejection · Weighted makespan · Binary
NP-hard · Dynamic programming · FPTAS

1 Introduction

In real life situations, a manufacturer often receive a great deal of orders (jobs)
from the customers. Due to the lack of enough resources such as machines, oper-
ators or warehouses, processing all jobs may occur high inventory or tardiness
costs. Thus, sometimes the manufacturer has to reject some jobs or outsource
some jobs to a third-party manufacturer (an outsourcer). When a job is rejected
or outsourced, a corresponding rejection cost or outsourcing cost is required.
The decision-maker needs to determine which jobs should be accepted (and a
feasible schedule for the accepted jobs), and which jobs should be rejected or
outsourced, such that the total cost (including the production cost and the total
rejection cost) is minimized. Thus, from the practical point of view, rejecting or
outsourcing some jobs can save time and reduce costs. If the outsourcing cost
is treated as the rejection cost, scheduling with rejection and scheduling with
outsourcing are in fact equivalent.
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1.1 Scheduling with Rejection

Bartal et al. [1] first studied the multi-processor scheduling problem with rejec-
tion which includes the on-line version and the off-line version. The objective is to
minimize the makespan of the accepted jobs plus the total rejection penalty of the
rejected jobs. They provided an on-line algorithm with best-possible competitive
ratio

√
5+3
2 ≈ 2.618 for the on-line version and a polynomial-time approximation

scheme (PTAS) for the off-line version, respectively. Since then, scheduling with
rejection has received more and more attention in recent two decades. Hoogeveen
et al. [7] considered the off-line multi-processor scheduling problem with rejec-
tion, where preemption is allowed. They provided some effective approximation
algorithms and some FPTASs for their problems. Zhang et al. [21] studied the
single machine scheduling problem with release date and rejection. They showed
that this problem is NP-hard and then presented an FPTAS for this problem.
For more results on scheduling with rejection, we refer the readers to the surveys
provided by Shatbay et al. [17] and Zhang [22], respectively. More recent papers
dealing scheduling with rejection are [3,6,9–13,15].

1.2 Scheduling to Minimize the Weighted Makespan

To the best of our knowledge, Feng and Yuan [4] first introduced the weighted
makespan WCmax (the maximum weighted completion time) in a single-machine
scheduling problem. Li [8] studied the online single machine scheduling problem
to minimize the weighted makespan WCmax. In this problem, all jobs arrive over
time, and all information about a job is unknown until the job arrives. For this
problem, they showed that the competition ratio of any online algorithm is at
least 2, and they also obtained an online algorithm with the competition ratio 3.
For the case where all jobs have the same processing time, they also presented
an online algorithm with the best-possible competition ratio

√
5+1
2 ≈ 1.618. For

the general online problem in [8], Chai et al. [2] provided two on-line algorithms
with the best-possible competitive ratio 2.

2 Problem Formulation

Single machine scheduling with rejection to minimize the weighted makespan can
be described as follows: There are n jobs J1, J2, · · · , Jn and a single machine.
Each job has a processing time pj , a weight wj and a rejection cost ej . Without
loss of generality, we assume that all pj , wj and ej values are positive integers.
Each job Jj is either accepted and processed on the single machine, or is rejected
by paying the corresponding rejection cost ej . Let A and R be the set of the
accepted jobs and the set of the rejected jobs, respectively. Furthermore, let
π be a feasible schedule for the jobs in A and let Cj be the completion time
of Jj in π, where Jj ∈ A. We define WCmax = max{wjCj : Jj ∈ A} as the
weighted makespan of the accepted jobs. The objective is to minimize the sum
of the weighted makespan of the accepted jobs and the total rejection cost of the
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rejected jobs. Using the general notation for scheduling problems, our problem
can be denoted by 1||WCmax +

∑
Jj∈R ej .

In order to design an effective approximation algorithm, we introduce the
concept of “split”. That is, if a job Jj is split into two parts JA

j and JR
j , then

we have pA
j + pR

j = pj and eA
j

pA
j

= eR
j

pR
j

= ej

pj
. Furthermore, JA

j is accepted and

processed on the machine, and JR is rejected by paying the rejection cost eR
j . The

corresponding problem can be denoted by 1|split|WCmax+
∑

Jj∈R ej . If we treat
pA

j , pR
j and eR

j as the actual processing time tj , the compression amount uj and
the compression cost xjuj of job Jj , i.e., pA

j = tj = pj − uj , pR
j = uj and eR

j =
xjuj = ej

pj
uj , then each scheduling problem with split and rejection is in fact

equivalent to the corresponding scheduling problem with controllable processing
times. Therefore, problem 1|split|WCmax+

∑
Jj∈R ej is equivalent to 1|tj = pj −

uj |WCmax +
∑n

j=1 xjuj , respectively. For the more general problem 1|tj = pj −
uj |fmax +

∑n
j=1 xjuj , van Wassenhove and Baker [19] presented an O(n2)-time

algorithm for finding an optimal schedule (and all Pareto optimal points) when
the function fj satisfies the condition that there exists a permutation π such that
fπ(1)(t) ≤ fπ(2)(t) ≤ · · · ≤ fπ(n)(t) for all t. Clearly, in our problem, fj(t) = wjt
satisfies the above condition. Thus, problem 1|tj = pj −uj |WCmax +

∑n
j=1 xjuj

(and also 1|split|WCmax +
∑

Jj∈R ej) can be solved in O(n2) time. For the more
results on scheduling with the controllable processing times, we refer the readers
to two surveys presented by Nowicki and Zdrzalka [14], Shabtay and Steiner [18].

In this paper, we show that problem 1||WCmax +
∑

Jj∈R ej are binary NP-
hard and propose a pseudo-polynomial dynamic programming algorithm. Fur-
thermore, based on the optimal schedule for problem 1|split|WCmax+

∑
Jj∈R ej ,

we presented an effective 2-approximation algorithm for problem 1||WCmax +∑
Jj∈R ej . Finally, based on the dynamic programming algorithm and the vec-

tor trimming technique, we also obtain a fully polynomial-time approximation
scheme (FPTAS) for this problem.

3 NP-Hardness Proof

In this section, we show that problem 1||WCmax +
∑

Jj∈R ej is binary NP-hard.

Theorem 1. Problem 1||WCmax +
∑

Jj∈R ej is NP-hard.

Proof. We use the NP-complete Partition problem (see Garey and Johnson [5])
for the reduction.

Partition Problem: Given t + 1 positive integers a1, a2, · · · , at, B with∑t
i=1 ai = 2B, is there a partition (S, S) of {1, · · · , t} such that

∑
i∈S ai =∑

i∈S ai = B?

For a given instance of the Partition problem, we construct an instance of
the decision version of 1||WCmax +

∑
Jj∈R ej as follows.
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• n = t + 1 jobs.
• wj = 2, pj = ej = aj for 1 ≤ j ≤ t.
• wj = 2B + 2, pj = 1, ej = 3B + 3 for j = t + 1.
• The threshold value is defined by Y = 3B + 2.
• The decision version asks whether there is a schedule

π such that WCmax +
∑

Jj∈R ej ≤ Y .

Assume that Partition problem has a solution, i.e., there exists a partition
(S, S) such that

∑
j∈S aj =

∑
j∈S aj = B. We construct a schedule in the fol-

lowing way: Schedule the job Jt+1 as the first processed job on the machine, and
then schedule all jobs Jj with j ∈ S consecutively after Jt+1 on the machine. It
can be seen that, for the job Jt+1, we have wt+1Ct+1 = (2B + 2) × 1 = 2B + 2;
for the job Jj with j ∈ S, we have wjCj ≤ (B + 1) × 2 = 2B + 2. Thus, we
have WCmax = 2B + 2. We further reject all jobs Jj with j ∈ S. Thus, we have∑

Jj∈R ej =
∑

j∈S aj = B. It follows that WCmax +
∑

Jj∈R ej = 2B + 2 + B =
3B + 2 = Y .

Next, we assume there exists a schedule π such that WCmax+
∑

Jj∈R ej ≤ Y .
We will prove that Partition problem has a solution (S, S). Let A and R be the
set of accepted jobs and the set of rejected jobs in π, respectively. We have the
following two claims.

Claim 1. Job Jt+1 must be accepted and Jt+1 is the first processed job in π.

Proof. If job Jt+1 is rejected, then we have WCmax +
∑

Jj∈R ej ≥ et+1 =
3B + 3 > Y , a contradiction. Furthermore, if job Jt+1 is not the first processed
job in π, then we have Ct+1(π) ≥ 2. Thus, we have WCmax +

∑
Jj∈R ej ≥

(2B + 2) × 2 = 4B + 4 > Y , a contradiction again. Claim 1 follows.

Claim 2.
∑

Jj∈R aj = B.

Proof. By Claim 1, we have WCmax ≥ wt+1Ct+1(π) = 2B + 2. Furthermore,
we have

∑
Jj∈R aj =

∑
Jj∈R ej ≤ B since WCmax +

∑
Jj∈R ej ≤ Y = 3B + 2.

Next, we assume that
∑

Jj∈R aj < B. Thus, we have

WCmax +
∑

Jj∈R

ej ≥ 2(
∑

Jj∈A\Jt+1

pj + 1) +
∑

Jj∈R

ej

= 2(
∑

Jj∈A\Jt+1

aj + 1) +
∑

Jj∈R

aj

= 2 + 2(
∑

Jj∈A

aj +
∑

Jj∈R

aj) −
∑

Jj∈R

aj

= 2 + 4B −
∑

Jj∈R

aj
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> 4B + 2 − B

= 3B + 2
= Y,

a contradiction. Thus, we have
∑

Jj∈R aj = B.

Set S = {j : 1 ≤ j ≤ t and Jj ∈ R} and S = {j : 1 ≤ j ≤ t and Jj ∈ A}.
Clearly, (S, S) is a solution of Partition problem. Theorem 1 follows.

4 Dynamic Programming Algorithm

When job rejection is not allowed, the corresponding scheduling problem can be
denoted by 1||WCmax. For problem 1||WCmax, Li [8] showed that the LW rule
yields an optimal schedule. The LW rule can be stated as follows:

LW Rule: All jobs are processed on the machine by the LW (Largest Weight
first) rule. That is, whenever the machine is idle, among all unfinished jobs, the
job with the largest weight is scheduled.

Lemma 1. For problem 1||WCmax +
∑

Jj∈R ej, there is an optimal schedule
such that all accepted jobs are processed in the LW rule.

Sort all jobs such that w1 ≥ · · · ≥ wn. Let fj(t, E) be the minimum WCmax

value when (1) the jobs in consideration are J1, · · · , Jj ; (2) the current makespan
of the accepted jobs among J1, · · · , Jj is exactly t; and (3) the total rejected cost
of the rejected jobs among J1, · · · , Jj is exactly E. In any such schedule, there
are two possible cases: either job Jj is rejected or job Jj is accepted.

Case 1: If job Jj is rejected, then the makespan of J1, · · · , Jj−1 is still t, the total
rejection cost of J1, · · · , Jj−1 is E −ej . Thus, we have fj(t, E) = fj−1(t, E −ej).

Case 2: If job Jj is accepted, then the makespan of J1, · · · , Jj−1 is t − pj , the
total rejection cost of J1, · · · , Jj−1 is still E. Note that the minimum WCmax

value of J1, · · · , Jj−1 is fj−1(t − pj , E) and wjCj = wj · t. Thus, we have
fj(t, E) = max{fj−1(t − pj , E), wj · t}.

Combining the above two cases, we have the following dynamic programming
algorithm DP1.
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Dynamic Programming Algorithm DP1

The Boundary Conditions:

f1(t, E) =

⎧
⎨

⎩

0, if t = 0 and E = e1;
w1p1, if t = p1 and E = 0;
+∞, otherwise.

The Recursive Function:

fj(t, E) = min{max{fj−1(t − pj , E), wj · t}, fj−1(t, E − ej)}.

The Optimal Value:

min{fn(t, E) + E : 0 ≤ t ≤
n∑

j=1

pj , 0 ≤ E ≤
n∑

j=1

ej}.

Theorem 2. For problem 1||WCmax+
∑

Jj∈R ej, algorithm DP1 yields an opti-
mal schedule in O(n · ∑n

j=1 pj · ∑n
j=1 ej) time.

Proof. The correctness of algorithm DP1 is guaranteed by the above discussion.
The recursive function has at most O(n · ∑n

j=1 pj · ∑n
j=1 ej) states and each

iteration costs a constant time. Hence, the total running time is bounded by
O(n · ∑n

j=1 pj · ∑n
j=1 ej).

5 Approximation Algorithms

5.1 A 2-Approximation Algorithm

In this subsection, we provide a 2-approximation algorithm for problem
1||WCmax+

∑
Jj∈R ej . Sort all jobs such that w1 ≥ · · · ≥ wn. Let xj = 1 if job Jj

is accepted and xj = 0 if job Jj is rejected. Thus, problem 1||WCmax+
∑

Jj∈R ej

is equivalent to the following Integer Linear Programming (ILP).

min WCmax +
∑n

j=1
(1 − xj)ej

wj

∑j

k=1
xkpk ≤ WCmax for each k = 1, · · · , n.

xj ∈ {0, 1} for each j = 1, · · · , n.

For each rejected job Jj , if
∑j

k=1 xkpk > 0, then there is some i with
i < j such that Ci =

∑i
k=1 xkpk =

∑j
k=1 xkpk and wi ≥ wj . Note that

wi

∑i
k=1 xkpk ≤ WCmax. Thus, wj

∑j
k=1 xkpk ≤ WCmax holds for each rejected



102 L. Lu et al.

job Jj . If we replace xj ∈ {0, 1} by 0 ≤ xj ≤ 1 for each j = 1, · · · , n, we can
obtain a Relaxed Linear Programming (RLP).

min WCmax +
∑n

j=1
(1 − xj)ej

wj

∑j

k=1
xkpk ≤ WCmax for each k = 1, · · · , n.

0 ≤ xj ≤ 1 for each j = 1, · · · , n.

Algorithm A1

Step 1: Solve the RLP. Let (x∗
1, · · · , x∗

n,WC∗
max) be an optimal solution of

RLP. If x∗
j ≥ 1

2 , then we set xj = 1; otherwise, we set xj = 0.

Step 2: Accept all jobs with xj = 1 and reject all jobs with xj = 0. Process
all accepted jobs in the LW rule.

Note that the RLP is equivalent to problem 1|split|WCmax +
∑

Jj∈R ej . Fur-
thermore, both of them are equivalent to problem 1|tj = pj − uj |WCmax +∑n

j=1 xjuj . For the latter problem, van Wassenhove and Baker [19] presented
an O(n2)-time algorithm, which is faster than some well-known algorithms for
the RLP. Thus, we also use van Wassenhove and Baker’s algorithm to obtain
the optimal solution of the RLP.

Let π be the schedule obtained from algorithm A1. Furthermore, we let Z
and Z∗ be the corresponding objective values of π and an optimal schedule π∗,
respectively.

Theorem 3. Z ≤ 2Z∗.

Proof. Note that wjCj = wj

∑j
k=1 xkpk ≤ 2wj

∑j
k=1 x∗

kpk ≤ 2WC∗
max for each

accepted job Jj . That is, WCmax = max{wjCj : 1 ≤ j ≤ n} ≤ 2WC∗
max.

Furthermore, we also have
∑

Jj∈R ej =
∑n

j=1(1 − xj)ej ≤ 2
∑n

j=1(1 − x∗
j )ej .

Thus, we have

Z = WCmax +
∑

Jj∈R

ej ≤ 2WC∗
max + 2

n∑

j=1

(1 − x∗
j )ej = 2Z∗.

This completes the proof of Theorem 3.

5.2 A Fully Polynomial-Time Approximation Scheme

In order to design a fully polynomial-time approximation scheme (FPTAS) for
an NP-hard problem, a common way is to transform a optimal but slow algo-
rithm (a pseudo-polynomial-time dynamic programming algorithm) into a near
optimal but faster algorithm (a fully polynomial-time approximation scheme).
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The main idea of this way is to remove some yielded data during the execu-
tion of the algorithm and clean up the algorithm’s memory. As a result, the
algorithm becomes faster and the outputted solution is nearly optimal. This
approach is called “vector trimming” in the literature (see [16,20]). Before we
propose our FPTAS for problem 1||WCmax +

∑
Jj∈R ej , we first introduce the

following notation.
Assume that the jobs have been sorted in the LW rule such that w1 ≥ · · · ≥

wn. Let Ij = {J1, · · · , Jj} be the set of the first j jobs. Assume that π is a
feasible schedule for the jobs in Ij . Furthermore, let t(π), E(π) and WCmax(π)
be the the makespan of the accepted jobs, the total rejected cost of the rejected
jobs and the corresponding WCmax value in π, respectively. In this situation,
we use a 3-dimensional vector v(π) = [t(π), E(π),WCmax(π)] to encode the
schedule π. Clearly, if there are two feasible schedules π1 and π2 such that
t(π1) = t(π2), E(π1) = E(π2) and WCmax(π1) < WCmax(π2), then π2 and
v(π2) are dominated by π1 and v(π1), respectively. Thus, if there are multiple
schedules for the jobs in Ij with the same makespan t and the same total rejection
cost E, we can only reserve the schedule and the corresponding vector with the
minimum WCmax value. It follows that

min{WCmax(π) : t(π) = t and E(π) = E} = fj(t, E),

where fj(t, E) is the minimum WCmax value which is defined in DP1. Con-
sequently, we also can use the vector v = [t, E, fj(t, E)] to represent a non-
dominated schedule. Let V Sj be the set of all vectors with respect to all non-
dominated schedules for the jobs in Ij . Therefore, we can obtain the following
algorithm DP2.

Algorithm DP2

Initialization: V S1 = {(0, e1, 0), (p1, 0, w1p1)}.

Phase j: For each vector [t, E, fj−1(t, E)] ∈ V Sj−1, we add two vectors
[t, E + ej , fj−1(t, E)] and [t + pj , E,max{fj−1(t, E), wj(t + pj)}] into the set
V Sj . If there are multiple vectors in V Sj with the same makespan t and the
same total rejection cost E, we can only reserve the corresponding vector with
the minimum WCmax value in V Sj .

Outputs:

min{fn(t, E) + E : [t, E, fn(t, E)] ∈ V Sn, 0 ≤ t ≤
n∑

j=1

pj and 0 ≤ E ≤
n∑

j=1

ej}.

It seems that algorithm DP2 is slower than DP1. However, algorithm
DP2 is more suitable to obtain an FPTAS by the vector trimming technol-
ogy. Let Z and Z∗ be the corresponding objective values obtained by the 2-
approximation algorithm A1 and an optimal schedule π∗, respectively. Fur-
thermore, let t∗, E∗,WC∗

max be the corresponding values with respect to π∗.
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That is, t∗ = t(π∗), E∗ = E(π∗) and WC∗
max = WCmax(π∗). From Theorem 5.1,

we have Z∗ ≤ Z ≤ 2Z∗. Without loss of generality, we assume that all weights wj

are positive integers. That is, wj ≥ 1 holds for each j = 1, · · · , n. Otherwise, if
wj = 0 holds for some job Jj , then Jj is always accepted and processed in the end
of any optimal schedule. Thus, we can remove all the jobs with zero weights. As a
result, we have t∗ ≤ WC∗

max ≤ Z∗ ≤ 2Z and E∗ ≤ Z∗ ≤ 2Z. That is, all vectors
with respect to all optimal schedules fall in the cube [0, 2Z]3. Set L = (1 + ε)Z.
Thus, to obtain an FPTAS for our problem, we only need to consider those vec-
tors with t ≤ E + WCmax ≤ (1 + ε)Z∗ ≤ (1 + ε)Z = L. That is, all considered
vectors in our FPTAS fall in the cube [0, L]3. Furthermore, we set Δ = εZ

4n . Con-
sequently, we subdivide the cube [0, L]3 into m = ( L

Δ )3 = O(n3

ε3 ) boxes. In this
situation, if a vector [x, y, z] with (i − 1)Δ ≤ x < iΔ, (j − 1)Δ ≤ y < jΔ and
(k − 1)Δ ≤ z < kΔ, then we say that vector [x, y, z] falls into the (i × j × k)-th
box.

If two vector [x, y, z] and [x′, y′, z′] fall into the same box, then we have
0 ≤ |x−x′| ≤ Δ, 0 ≤ |y−y′| ≤ Δ and 0 ≤ |z−z′| ≤ Δ. Since Δ is very small, all
vectors in the same box are very close to each other. Thus, if there are multiple
vectors in the same box, we only reserve the vector with the minimum t value.
Such a procedure is called “vector trimming” in the literature. Clearly, for any
vector set S ⊆ [0, L]3, we have |S#| = O(n3

ε3 ), where S# is the set obtained by
the trimming procedure from set S. Based on this idea, we present an FPTAS
for problem 1||WCmax +

∑
Jj∈R ej .

Algorithm Aε

Initialization: Let V S#
1 be the trimmed set obtained from V S1, where

V S1 = {(0, e1, 0), (p1, 0, w1p1)}.

Phase j: For each vector [t, E, fj−1(t, E)] ∈ V S#
j−1, we add two vectors

[t, E + ej , fj−1(t, E)] and [t + pj , E,max{fj−1(t, E), wj(t + pj)}] into the set
V S′

j . Furthermore, Let V S#
j be the trimmed set obtained from V S′

j .

Outputs:

min{fn(t, E) + E : [t, E, fn(t, E)] ∈ V S#
n and max{t, E, fn(t, E)} ≤ L}.

To show that algorithm Aε is an FPTAS for problem 1||WCmax +
∑

Jj∈R ej ,
we have the following lemma.

Lemma 2. For each vector [x, y, z] ∈ V Sj, there is a vector [x#, y#, z#] ∈ V S#
j

such that x# ≤ x, y# ≤ y + jΔ and z# ≤ z + jΔ.

Proof. We prove this lemma by induction on j. Clearly, Lemma 2 holds when j =
1. Now, we assume that the lemma holds for j−1 and consider any vector [x, y, z]
with [x, y, z] ∈ V Sj . From algorithm DP2, there is a vector [a, b, c] ∈ V Sj−1

such that [x, y, z] is generated by [a, b, c]. Thus, we have two possibilities: either
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[x, y, z] = [a, b + ej , c] if Jj is rejected or [x, y, z] = [a + pj , b,max{c, wj(a + pj)}]
if Jj is accepted. Note that [a, b, c] ∈ V Sj−1. By the inductive assumption, there
is a vector [a#, b#, c#] ∈ V S#

j−1 such that a# ≤ a, b# ≤ b + (j − 1)Δ and
c# ≤ c + (j − 1)Δ. We distinguish two cases in the following discussion.

Case 1. [x, y, z] = [a, b + ej , c].

Note that [a#, b#, c#] ∈ V S#
j−1. By Phase j of Aε, we have [a#, b#+ej , c

#] ∈
V S′

j . Let [x#, y#, z#] ∈ V S#
j be the selected vector which is in the same box as

[a#, b# + ej , c
#]. Thus, by the trimming rule, we have

x# ≤ a# ≤ a = x,

y# ≤ b# + ej + Δ ≤ b + (j − 1)Δ + ej + Δ = y + jΔ,

and
z# ≤ c# + Δ ≤ c + (j − 1)Δ + Δ = z + jΔ.

Case 2. [x, y, z] = [a + pj , b,max{c, wj(a + pj)}].

Note that [a#, b#, c#] ∈ V S#
j−1. By Phase j of Aε, we have

[a# + pj , b
#,max{c#, wj(a# + pj)}] ∈ V S′

j .

Let [x#, y#, z#] ∈ V S#
j be the selected vector which is in the same box as

[a# + pj , b
#,max{c#, wj(a# + pj)}]. Thus, by the trimming rule, we have

x# ≤ a# + pj ≤ a + pj = x,

y# ≤ b# + Δ ≤ b + (j − 1)Δ + Δ = y + jΔ,

and

z# ≤ max{c#, wj(a# + pj)} + Δ
≤ max{c + (j − 1)Δ,wj(a + pj)} + Δ
≤ max{c + (j − 1)Δ,wj(a + pj) + (j − 1)Δ} + Δ
= max{c, wj(a + pj)} + (j − 1)Δ + Δ
= z + jΔ.

Combine the above discussion in two cases, we can conclude that Lemma 2
holds by induction on j.

Note that [t∗, E∗,WC∗
max] ∈ V Sn. By Lemma 2, there is a vector

[t#, E#,WC#
max] ∈ V S#

n such that t# ≤ t∗, E# ≤ E∗ + nΔ and WC#
max ≤

WC∗
max + nΔ. Let

Zε = min{fn(t, E) + E : [t, E, fn(t, E)] ∈ V S#
n and max{t, E, fn(t, E)} ≤ L}
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be the objective value obtained from algorithm Aε. Thus, we have

Z ≤ WC#
max + E# ≤ WC∗

max + E∗ + 2nΔ ≤ Z∗ + ε
Z

2
≤ (1 + ε)Z∗.

Now, we consider the time complexity of Aε. Note that there are n phases
and in each phase j, we have

|V S#
j | ≤ |V S′

j | ≤ 2|V S#
j−1| = O(

n3

ε3
).

Thus, the time complexity of Aε is
∑n

j=1 |V S#
j | = O(n4

ε3 ). Therefore, we have
the following theorem.

Theorem 4. Algorithm Aε is an FPTAS for problem 1||WCmax+
∑

Jj∈R ej and

its time complexity is O(n4

ε3 ).

6 Discussions on Some Special Cases

For any instance I = {J1, · · · , Jn}, let np, nw and ne be the numbers of distinct
processing times, distinct weights and distinct rejection costs, respectively. In
this section, we consider some special cases with np = k, or nw = k or ne = k,
where k is a fixed constant. The corresponding problems are denoted 1|np =
k|WCmax +

∑
Jj∈R ej , 1|nw = k|WCmax +

∑
Jj∈R ej and 1|ne = k|WCmax +

∑
Jj∈R ej , respectively.

6.1 Problem 1|np = k|WCmax +
∑

Jj ∈R ej

Suppose that a1, a2, · · · , ak are k distinct processing times for instance I =
{J1, · · · , Jn}. Furthermore, we write Si = {Jj : pj = ai} and |Si| = mi. In this
subsection, we will provide a polynomial-time algorithm for this problem.

First, similar to algorithm DP1, we can obtain a new dynamic programming
algorithm DP3 for the general problem 1||WCmax+

∑
Jj∈R ej . Let fj(t,WCmax)

be the minimum total rejection cost when (1) the jobs in consideration are
J1, · · · , Jj ; (2) the makespan of the accepted jobs among J1, · · · , Jj is exactly t;
and (3) the weighted makespan of the accepted jobs among J1, · · · , Jj is exactly
WCmax.

Case 1: If job Jj is rejected, then we have fj(t,WCmax) = fj−1(t,WCmax)+
ej . For convenience, we write VR = fj−1(t,WCmax) + ej if Jj is rejected.
Case 2: If job Jj is accepted, then the makespan of J1, · · · , Jj−1 is t−pj and
the completion time of Jj is t. Thus, we have WCmax ≥ wj · t. If WCmax >
wj · t, then the weighted makespan of the accepted jobs among J1, · · · , Jj−1

is still WCmax. Furthermore, we have fj(t,WCmax) = fj−1(t − pj ,WCmax).
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If WCmax = wj · t, let WC ′
max be the weighted makespan of the accepted

jobs among J1, · · · , Jj−1. Thus, we have WC ′
max ≤ wj · t. Furthermore, we

have fj(t,WCmax) = fj−1(t − pj ,WC ′
max). For convenience, we write V 1

A =
fj−1(t − pj ,WCmax) if Jj is accepted and WCmax > wj · t. Furthermore, we
also write V 2

A = min{fj−1(t− pj ,WC ′
max) : WC ′

max ≤ wj · t} if Jj is accepted
and WCmax = wj · t.

Combining the above two cases, we have the following dynamic programming
algorithm DP3.

Dynamic Programming Algorithm DP3

The Boundary Conditions:

f1(t,WCmax) =

⎧
⎨

⎩

0, if t = p1 and WCmax = w1p1;
e1, if t = 0 and WCmax = 0;
+∞, otherwise.

The Recursive Function:

fj(t,WCmax) =

⎧
⎨

⎩

VR, if t < pj or WCmax < wjt;
min{VR, V 1

A}, if t ≥ pj and WCmax > wjt;
min{VR, V 2

A}, if t ≥ pj and WCmax = wjt.

The Optimal Value:

min{fn(t,WCmax) + WCmax : 0 ≤ t ≤
n∑

j=1

pj , 0 ≤ WCmax ≤ w1 ·
n∑

j=1

pj}.

Theorem 5. For problem 1||WCmax+
∑

Jj∈R ej, algorithm DP3 yields an opti-
mal schedule in O(n · w1 · (

∑n
j=1 pj)2) time.

Proof. The correctness of algorithm DP3 is also guaranteed by the above dis-
cussion. The recursive function has at most O(n · w1 · (∑n

j=1 pj)2) states. When
WCmax < wj · t or WCmax > wj · t, each iteration costs a constant time; when
WCmax = wj · t, the recursive function has at most O(n · ∑n

j=1 pj) states and
each iteration costs an O(w1 · ∑n

j=1 pj) time. Hence, the time complexity of
algorithm DP3 is bounded by O(n · w1 · (

∑n
j=1 pj)2).

Specially, if all jobs have k distinct processing times a1, · · · , ak, then we have
t ∈ {x1a1 + · · · + xkak : 0 ≤ xk ≤ mk} and WCmax ∈ {wj · (x1a1 + · · · + xkak) :
1 ≤ j ≤ n and 0 ≤ xk ≤ mk}. Thus, we have O(Πk

i=1mk) = O(nk) choices for
each t and O(nk+1) choices for each WCmax or WC ′

max. As a result, we have the
following corollary.

Corollary 1. Algorithm DP3 solves 1|np = k|WCmax +
∑

Jj∈R ej in O(n2k+2)
time.
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6.2 Problem 1|nw = k|WCmax +
∑

Jj ∈R ej

Clearly, when k = 1, i.e., wj = w for j = 1, · · · , n, problem 1|nw = 1|WCmax +∑
Jj∈R ej is equivalent to problem 1||w · Cmax +

∑
Jj∈R ej . Thus, it is trivial to

obtain an optimal schedule by accepting the jobs with wpj < ej and rejecting
other jobs. Note that in the NP-hard proof of Theorem 1, there are only k = 2
distinct weights. Thus, when k ≥ 2, problem 1|nw = k|WCmax +

∑
Jj∈R ej

becomes NP-hard.

6.3 Problem 1|ne = k|WCmax +
∑

Jj ∈R ej

Note that in all algorithms DP1, DP2 and DP3, the current makespan t is always
used to compute the wjCj value if Jj is accepted. Thus, it seems to be difficult to
design an algorithm which does not include t as a parameter. Thus, we conjecture
that problem 1|ne = k|WCmax +

∑
Jj∈R ej is also NP-hard even when ne = 1. It

might be a challenging problem to determine its exact computational complexity.

6.4 Problem 1|nw = k1, ne = k2|WCmax +
∑

Jj ∈R ej

Note that problem 1|nw = k|WCmax +
∑

Jj∈R ej is NP-hard when k ≥ 2
and we conjecture that problem 1|ne = k|WCmax +

∑
Jj∈R ej is also NP-

hard. Thus, we consider a more special case with k1 distinct weights and
k2 distinct rejection costs. The corresponding problem is denoted by 1|nw =
k1, ne = k2|WCmax +

∑
Jj∈R ej . In this subsection, we will show that problem

1|nw = k1, ne = k2|WCmax +
∑

Jj∈R ej can be solved in polynomial time.
Let b1, · · · , bk1 and c1, · · · , ck2 be the distinct weights and rejection costs,

respectively. Furthermore, we set Sxy = {Jj : wj = bx and ej = cy} for each
x = 1, · · · , k1 and y = 1, · · · , k2. Resort all jobs in Sxy in the SPT (Shortest
Processing Time-first) rule. Note that the jobs in Sx,y have the same weight and
rejection cost. Thus, if there are lxy jobs are accepted in an optimal schedule
π∗, we can assume that the first lxy jobs in Sxy are accepted. Since 0 ≤ lxy ≤
|Sxy| ≤ n, by enumerating all possibilities about the distinct lxy values and
selecting the best schedule, we can find an optimal schedule in O(nk1·k2) time.
That is, problem 1|nw = k1, ne = k2|WCmax +

∑
Jj∈R ej can solved optimally

in O(nk1·k2) time.

7 Conclusions and Future Research

In this paper we consider the single machine scheduling problem with rejection
to minimize the weighted makespan. The objective is to minimize the sum of the
weighted makespan (the maximum weighted completion time) of accepted jobs
and the total rejection cost of rejected jobs. We first show that this problem is
binary NP-hard and then propose a pseudo-polynomial dynamic programming
algorithm. Furthermore, based on the relaxed integral programming, we propose
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a 2-approximation algorithm for this problem. Finally, based on the dynamic pro-
gramming algorithm and the vector trimming technique, we also obtain a fully
polynomial-time approximation scheme (FPTAS) for this problem. In additions,
we also discuss some special cases and provide two polynomial-time algorithms
for them.

Note that it is still open whether problem 1|ne = k|WCmax +
∑

Jj∈R ej is
NP-hard or not even when ne = 1. Thus, an interesting direction is to consider its
computational complexity of problem 1|ne = k|WCmax+

∑
Jj∈R ej . Moreover, it

is also interesting to consider the online or semi-online versions of this problem.
Finally, we will extend this problem to parallel machine setting in the future.
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Abstract. Wireless Rechargeable Sensor Networks (WRSNs) has emerged with
the advantages of high charging efficiency, which can guarantee the timeliness of
charging and the service quality of network coverage. To guarantee the contin-
uous coverage of the rechargeable sensors, continuous power supply for sensors
becomes more important. In this paper, we focus on the Charging Scheduling
problem with Maximized Energy Efficiency in WRSNs (CS-MEE Problem), in
which a mobile charger is used to charge the low energy sensors in WRSN. The
problem aims to optimize travelling path of the mobile charger for maximiz-
ing the charging energy efficiency of the charging process. We firstly give the
mathematical model and NP-hardness proof of the problem. Then we propose an
heterogeneous-weighted-graph algorithm, called CS-HWG, to solve the problem.
To evaluate the performance of the proposed algorithm, the extensive simulation
experiments are conducted under four influencing factors in terms of the energy
efficiency of the mobile charger to verify the effectiveness of the algorithm.

Keywords: WRSNs · Charging scheduling · Energy efficiency ·
Heterogeneous-weighted-graph

1 Introduction

The most applications of Wireless Sensor Networks (WSNs) have the common require-
ment of continuous monitoring [1], which poses challenges to the battery-powered sen-
sors and brings the energy efficiency problems in virtual backbone construction [2,3]
and broadcast and multicast routing [4]. To solve the energy problems of the WSNs,
most researchers proposed two kinds of strategies, i.e., one is the wake-sleep batch
scheduling of sensors, and another one is collecting energy from external environment
based on energy transformation module of sensors. However, the former strategy may
cause the reduction of data reliability and the latter one has low efficiency of energy
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transformation. To this end, Wireless Rechargeable Sensor Networks (WRSNs) has
emerged with the advantages of high charging efficiency via static charging stations
or mobile charging vehicles, which can guarantee the timeliness of charging and the
service quality of network coverage.

The most important problem of the WRSN with mobile chargers is to design the
charging plans which mainly focuses on the charging pattern, charging order arrange-
ment and charging amount assignment. This paper studies the charging planning prob-
lem of a mobile charger for charging sensors from the perspectives of charging amount
assignment and charging path planning, which is to maximize the charging efficiency
of the charger for guaranteeing the continuously works of the WRSN.

The existing research on the charing planning of mobile chargers focused on two
aspects, demand-driven charging strategies and periodic charging ones. For the demand-
driven charging strategies [5] proposed a path planning algorithm to choose the sensors
in low-power status and satisfy their charging requirement based on a threshold value β
on the remaining energy. The authors in [6] predicted the energy consumption of sensors
and transformed the charging cost as a monotone submodular function, then introduced
a (1− 1

e )/4-ratio algorithm for the problem. The authors in [7] proposed a spatial-and-
temporal optimization algorithm for real-time charging for eliminating the exhausted
sensors and adding the powered new ones. The studies in [8,9] aimed at designing the
algorithm of path planning and charging assignment to maximize the network lifetime
and minimize the charging consumption.

For periodic charging strategies, the authors in [10] designed a constant-ratio
approximation algorithm for charging path planning problem under the powering lim-
itation model. And the authors in [11] applied the region-separation and charging-
discretion into the charing solution and proposed a 1−ξ

4(1−1/e) -ratio algorithm. The authors
in [12] considered the one-to-many charging model and designed a constant-ratio algo-
rithm. Recently, the new charging technology has drawn attentions of researchers like
the (1−ξ )(1− e)/e-ratio algorithm based on the energy transferring depending on the
obstacles in [13], the (3+ξ )-ratio algorithm for multiple-chargers in one-vehicle model
in [14] and the periodic charging algorithm with the optimal movement speed in [15].

However, the existing literature mentioned above did not consider the energy effi-
ciency. In this paper, we consider the demand-driven charging planning for a single
mobile charger in WRSNs, which includes the charging path planning and the charging
energy assignment to maximize the energy efficiency of the charger. The contributions
of this paper are shown as below.

(1) We propose a single-charger charging planning problem for WRSNs, called the
Charging Scheduling problem with Maximized Energy Efficiency in WRSNs (CS-
MEE Problem) based on the energy consumption model. The goal of the problem
is to maximize the charging energy efficiency of the charging process in a period.
The mathematical model and NP-hardness proof of problem are both given.

(2) To solve the CS-MEE problem, we propose an heterogeneous-weighted-graph
algorithm, CS-HWG Algorithm, which is composed of Charging Energy Assign-
ment and Charging Path Planning. And we analyze the time complexity of the
algorithm.
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(3) The extensive simulations are performed to verify the effectiveness of the proposed
algorithm for the CS-MEE problem.

This paper is organized as follows. Section 2 introduces the network model, energy
consumption model and problem formulation. In Sect. 3, we propose a heuristic algo-
rithm to solve the problem and analyze the approximation ratio of the algorithm. Simu-
lations are shown in Sect. 4. Section 5 concludes this paper.

2 System Model and Problem Formulation

2.1 Network Model

We consider a WRSN composed of n stationary rechargeable sensors deployed in a
two-dimensional plane, which are denoted by set S = {s1,s2, ...,sn}. Each sensor si is
deployed at the position (x[si],y[si]) and powered by a rechargeable battery with the
maximum energy capacity E0

i . These sensors perform the area coverage task collab-
oratively and the current battery energy of si is denoted as Ecur

i . We assume that the
coverage strategy is determined or periodically adjusted depending on their initial ener-
gies. There are three kinds of status of sensors depending on the charging requirements
based on two thresholds, Elow and Emin: (1) Working Status. Elow < Ecur

i ≤ E0
i ; (2)

Low-power Status. Emin < Ecur
i ≤ Elow; (3) Charging Status. 0< Ecur

i ≤ Emin.
There is one mobile charger to charge sensor nodes with low remaining energy,

which is denoted as node c. Charger c starts the charging task from its service station
located at c0 = (x[c],y[c]) and ends the task back to its station. And the charger has the
initial energy Emax in the assumption that Emax can satisfy the charging requirement of
all the sensors or the charging amount for sensors cannot be less than θ ·Emax, where
θ is a parameter closed to 1. Since the sensors with lower remaining energy may cause
exhaustion and monitoring failure, the charging task firstly guarantee the impletion of
the sensors in Charging Status. If there is the remaining energy for the charger, the
charging for sensors in Low-power Status will be considered and the charging for
sensors inWorking Status is in a similar way.

2.2 Energy Consumption Model

In the cooperative coverage task, the static sensors are in charge of covering the target
area and the mobile charger is responsible for charging the sensors into Working Status.
The energy consumption of chargers includes two aspects:

(1) Charging Energy Consumption. Due to the determined coverage strategy,
the maximum charging energy for sensor si with the energy capacity E0

i and the
remaining energy Ecur

i in the current coverage mission. Since the coverage schedul-
ing is assumed to be determined in advance, Ecur

i has been known before charg-
ing scheduling. We denote the scheduled charging energy for si as C(si). Further-
more, we consider the inevitable energy loss in the process of charging and the
charging energy consumption is regarded as α time of the required amount, i.e.
Echarging
i = α ·C(si) ·gi, where gi are defined as follows:
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gi =

{
1, if c has been scheduled to charge sensor si,

0, otherwise.
(1)

(2) Moving Energy Consumption. Considering the charging model in close range,
the mobile charger should move to the position of the sensor with low power for
charging. Thus the moving distance is the Euclidean distance and calculated based
on the locations of the charger and sensor, which is denoted as dist(c,si). Here we
denote the energy consumption rate as β , thus the moving energy consumption is
Emoving
i = β ·dist(c,si) ·gi.

Based on the two kinds of energy consumption of chargers, we define the energy
efficiency of the charging process as follows.

Definition 1 (Charging Energy Efficiency). Based on a charging scheduling, the
energy efficiency is the proportion of the energy consumption on charging in the overall

energy cost, which is denoted as EE = ∑si∈S E
charging
i

∑si∈S(E
charging
i +Emoving

i )
.

2.3 Problem Formulation

We study the charging planning problem to realize the goal of maximizing the charg-
ing energy efficiency. The charging scheduling is composed of two parts, the charging
energy assignment denoted as EA = {C(si)|1 ≤ i ≤ n} (where C(si) is the scheduled
charging energy on si) and the charging path pathc denoted as a sequence of locations
passing by c. Based on the above preliminaries, we refer to the problem as the Charging
Scheduling problem with Maximized Energy Efficiency in WRSNs (CS-MEE Prob-
lem), whose detailed definition is shown as follows.

Definition 2 (CS-MEE Problem)
Given a set S = {s1,s2, · · · ,sn} of n rechargeable sensors where each sensor si has the
battery capacity E0

i and the initial energy Ecur
i , one mobile charger c with its starting

service station c0 and the initial energy Emax, Charging Scheduling problem with Maxi-
mized Energy Efficiency in WRSNs (CS-MEE Problem) is to find a charging scheduling
strategy denoted as two-tuples (EA, path), such that

(1) the pathc starts from c0 and ends at c0,
(2) for each sensor si ∈ S, Echarging

i +Ecur
i ≤ E0

i ,
(3) the Charging Priorities(CP) for the sensors are increased according to their status:

CP(Working Status)<CP(Low-power Status)<CP(Charging Status);
(4) θ ·Emax ≤ ∑si∈S(E

charging
i +Emoving

i ) ≤ Emax, or all sensors can be charged by c,
where θ is a parameter closed to 1,

(5) the charging energy efficiency EE = ∑si∈S E
charging
i

∑si∈S(E
charging
i +Emoving

i )
is maximized.
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In the following, we will introduce the mathematical formulation of the CS-MEE
Problem.

Maximize
∑si∈S

(
α ·C(si) ·gi

)
∑si∈S

(
α ·C(si) ·gi+β ·dist(c,si) ·gi

) (2)

s.t.

Ecur
i +α ·C(si) ·gi ≤ E0

i i= 1,2, · · · ,n (3)

θ ·Emax ≤ ∑
si∈S

(
C(si) ·gi+β ·dist(c,si) ·gi

) ≤ Emax (4)

gi ∈ {0,1} i= 1,2, · · · ,n (5)

The function (2) is to maximize the charging energy efficiency. Constraint (3)
express that the charged energy amount of each sensor cannot beyond the sensor’s
battery capacity. Constraint (4) is the charging energy consumption constraint which
ensures that the charging energy amount of the charger will not exceed the initial energy
of the charger. Constraints (5) defines the domain of the variable gi.

In the following theorem, we will give the NP-hardness proof of the problem.

Theorem 1. CS-MEE Problem is NP-hard.

Proof. To prove the NP-hardness of CS-MEE Problem, we consider a special case of it:
all the sensors are in Charging Status (gi = 1 for 1 ≤ i ≤ n) and they have the same cur-
rent energies Ecur

i s. In this case, the charging energy for sensor si,C(si) is the maximum
amount E0

i −Ecur
i , which is unified represented as C.

Thus the objective of the problem is driven to bemaximizing
∑si∈S

(
α·C(si)

)
∑si∈S

(
α·C(si)+β ·dist(c,si)

) .
Based on equivalent conversion, the objective can be rewritten into maximizing

1
1+ β

α·C ∑si∈S dist(c,si)
. Note that α , β and C are predefined or can be calculated. By denot-

ing β
α·C as a constant const the objective becomes from maximizing 1

1+const·∑si∈S dist(c,si)
to minimizing ∑si∈S dist(c,si).

It can be easily found that the problem in this special case is equivalent to the Trav-
elling Salesman Problem (TSP), which has been proved NP-hard [16]. Since a special
case of CS-MEE problem is NP-hard, CS-MEE problem is also NP-hard, which com-
pletes the proof. �

3 Algorithms for CS-MEE Problem

In this section, we propose an heterogeneous-weighted-graph algorithm, CS-HWG
Algorithm, which is composed of two phases, Charging Energy Assignment and
Charging Path Planning. And we will analyze the time complexity of CS-HWG
Algorithm.

We firstly give the preliminaries in Lines 1–7 of Algorithm 1: since the sen-
sors with the higher charging requirements have larger priorities, we give a baseline
value according to the divergence indicator among the sensors’ battery capacities, i.e.,
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DI = �max1≤i, j≤n
E0
i

E0
j
�. We assign the priorities for the three kinds of sensors’ status

respectively: (1) For the ones in Charging Status, its priority pri(si) = DI2; (2) For the
sensors in Low-Power Status, pri(si) = DI; (3) For the sensors in Working Status, the
charging priority is assigned as pri(si)= 1

DI . This priority assignment measure can guar-
antee that the gap between the pairs of the priorities belonged to different requirements
can be widen. Furthermore, it also consider the charging demands and the energy capac-
ity of sensors: for the sensors in Charging Status, the charging requirement is greatest
and the maximum charging energy (E0

i −Ecur
i ) could be satisfied. Thus pri(si) = DI2

which is larger than those in other two statuses.

Phase 1: Charging Energy Assignment

Phase 1.1: Heterogeneous-weighted Graph Construction
Constructing the auxiliary graph is a classic method to model the practical problem, and
the auxiliary graph is either a node-weighted graph or an edge-weighted graph. In CS-
MEE Problem, we construct a particular auxiliary graph with node-weights and edge-
weights, heterogeneous-weighted graph, as shown in Lines 10–19 of Algorithm 1. The
node set is composed of the positions of sensors and a charger,V = S

⋃
C. With the con-

sideration of the sensor deployment density, we give the assumptions for spares graphs
and dense ones. For spares graphs, we introduce a limitation value l0 of the moving dis-
tance between twice of charging, which can avoid excess consumption of the chargers’
energy for some single charging. Thus E = {(si,s j)|∀si,s j ∈ V and dist(si,s j) ≤ l0}.
For dense graphs, l0 can be regarded as infinity.

The weight assignment is with the consideration of charging cost and moving cost:
When considering the charging cost, it is decided by each sensor’s maximum charg-
ing requirement or the charged energy amount. Thus the node weight is denoted as
weight(si) = α ·(E0

i −Ecur
i ) and the node weight setVW = {weight(si)|∀si ∈ S}. When

considering the moving cost, it is determined by the Euclidean distances between the
pairs of nodes in the network, i.e., the edge weight is calculated by weight(si,s j) =
β · dist(si,s j). And the edge weight set EW = {weight(si,s j)|∀(si,s j) ∈ E}. Then we
complete the construction of the heterogeneous-weighted graph, G= (V,E,VW,EW ).

Phase 1.2: Charged Node Filtering
Considering high charging efficiency and limitation of the charger’s initial energy Emax,
we filter the nodes with necessary charging requirements like those in Charging Status.
Since Emax is limited to satisfy the charging requirements for part of sensors, we firstly
reserve the consumption on charging movement Eres

moving, which is calculated in Step 21.
And the calculation is based on the length of the Minimum Hamilton Cycle which can
guarantee to pass across all the sensors in Charging Status. Then the remaining energy
Emax −Eres

moving can be assign for charging sensors.
Based on the new Emax, we assign the charging amount according to the sensors’

charging priorities and filter the sensors with necessary charging requirements. The
assignment is realized in three loops as shown in Lines 24–28: firstly the charging
requirement of the sensors in Charging Status can be satisfied and the assigned charging
amount is C(si) =

pri(si)
DI2

· (E0
i −Ecur

i ). If the charger has the remaining energy, the sen-
sors in Low-Power Status can be charged. The charging for sensors in Working Status
is in the similar way.
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The filtering is based on the assigned charging energy C(si) as shown in Lines 29–
31: if C(si) = 0, si will be out of the consideration later and eliminated from V and E.
The we obtain the filtered node set V ′ and node set E ′.

Phase 1.3: Edge-weighted Graph Transformation
To solve the problem on the constructed heterogeneous-weighted graph, the weights’
distribution on both nodes and edges is not beneficial to global optimization. In other
words, the energy consumption of chargers is composed of charging cost and moving
cost, which cannot exceed the maximum limitation Emax. Thus the two kinds of energy
cost should be measured by uniform standard, and we adopt the edge weight as the
measurement. Here we introduce an equivalent transformation method of blending node
weights into edge weights, as shown in Lines 34–40 of Algorithm 1:

For each node in the filtered set V ′, we revalue the node weight with the consid-
eration of the charging priority and the uniform magnitude of node weights and edge

weights, i.e., weight ′(si) = 1
pri(si)

·β ·avrdist · weight(si)
E0
i

, where avrdist = ∑1≤i, j≤n dist(si,s j)
|E ′|

is the average distance among all the pairs of sensors. Note that avrdist is a normal-
ization factor for modifying the node weight into the similar magnitude with those of
the edge weight. And 1

pri(si)
indicates that the node with higher charging priority has

smaller node weight, which is consistent with that the node pair with low moving cost
has smaller edge weight.

Since the sensor’s charging can be finished by the charger’s only one pass, we
equally divide the node weight into two parts, e.g. 1

2weight
′(si). And then we dis-

tribute the divided node weight to the weight of the node’s associated edges, i.e.,
weight ′(si,s j) = weight(si,s j)+ 1

2weight
′(si)+ 1

2weight
′(s j), which updates the edge

weight set. Then we will perform charging planning based on the transformed edge-
weighted graph G′ = (V ′,E ′,EW ′).

Phase 2: Charging Path Planning
Based on the auxiliary graph G′ = (V ′,E ′,EW ′), we perform the algorithm for TSP
Problem and the charging path pathc of the charger c can be obtained. The detailed
description is shown in Algorithm 1.

Theorem 1. The time complexity of CS-HWG Algorithm is O(n3), where n is the num-
ber of sensors.

Proof. According to the description of Algorithm 1, there are three parts as shown in
Algorithm 1, the preliminaries, Phase 1 and Phase 2. We analyze the time complexities
for these parts as follows: For the preliminaries in Lines 1–7, the charging priority
assignment has the time complexity of O(n). For Phase 1, Phase 1.1 (Heterogeneous-
weighted Graph Construction) and Phase 1.3 (Edge-weighted Graph Transformation)
both perform for all the nodes and edges, whose time consumptions are directly related
to the number of nodes and that of edges. Thus their time complexities are both O(n2).
For the node filtering (Lines 23–32) in Phase 1.2 (Charged Node Filtering), its time
complexity is O(n). Furthermore, TSP Algorithm is applied in Phase 1.2 and Phase 2,
which has a larger time complexity of O(n3) [17].

To sum up, the time complexity of CS-HWG Algorithm is O(n3), which completes
the proof. �
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Algorithm 1. CS-HWG Algorithm for CS-MEE Problem
Input: S= {s1,s2, · · · ,sn}, {E0

i |1 ≤ i ≤ n}, {C(si)|1 ≤ i ≤ n}, a setC = {c} and Emax

Output: EA= {C(si)|1 ≤ i ≤ n} and pathc = {c,si1 ,si2 , ...,sik ,c|1 ≤ i1, i2, ..., ik ≤ n}
1: Set the divergence indicator DI = �max1≤i, j≤n

E0
i

E0
j
�.

2: for ∀si ∈ S do
3: C(si) = 0;
4: Case1: If si in Charging Status, pri(si) = DI2;
5: Case2: If si in Low-Power Status, pri(si) = DI;
6: Case3: If si in Working Status, pri(si) = 1

DI ;
7: end for
8: //Phase 1: Charging Energy Assignment
9: //Phase 1.1: Heterogeneous-weighted Graph Construction
10: Set V , E, VW , EW ← /0
11: V ← S

⋃
C, E = {(si,s j)|∀si,s j ∈V and dist(si,s j) ≤ l0)}

12: for ∀si ∈V do
13: weight(si) = α · (E0

i −Ecur
i )

14: end for
15: VW = {weight(si)|∀si ∈ S}
16: for ∀(si,s j) ∈ E do
17: weight(si,s j) = β ·dist(si,s j)
18: end for
19: EW = {weight(si,s j)|∀(si,s j) ∈ E}
20: //Phase 1.2: Charged Node Filtering
21: Perform TSP Algorithm on G[{si|∀si in Charging Status}] and obtain a Hamilton Cycle

with edge weight Eres
moving

22: Emax = Emax −Eres
moving

23: Set V ′ =V , E ′ = E, EW ′ ← /0
24: while Emax > 0 do
25: For each si in Charging Status,C(si) =

pri(si)
DI2 · (E0

i −Ecur
i ), Emax = Emax −C(si)//Case1

26: For each si in Low-Power Status,C(si) =
pri(si)
DI2 · (E0

i −Ecur
i ), Emax = Emax −C(si)

//Case2
27: For each si in Working Status,C(si) =

pri(si)
DI2 · (E0

i −Ecur
i ), Emax = Emax −C(si) //Case3

28: end while
29: for ∀si ∈V do
30: IfC(si) = 0, V ′ =V ′ \ {si}, E ′ = E ′ \ {(si,s j)|∀s j ∈V}
31: end for
32: EA= {C(si)|∀si ∈V ′}
33: //Phase 1.3: Edge-weighted Graph Transformation
34: for ∀si ∈V ′ do
35: weight ′(si) = β ·avrdist · 1

pri(si)
· weight(si)α·E0

i
, where avrdist = ∑1≤i, j≤n dist(si,s j)

|E ′|
36: end for
37: for ∀(si,s j) ∈ E ′ do
38: weight ′(si,s j) = weight(si,s j)+ 1

2weight
′(si)+ 1

2weight
′(s j)

39: end for
40: EW ′ = {weight ′(si,s j)|∀(si,s j) ∈ E ′}
41: //Phase 2: Charging Path Planning
42: Perform TSP Algorithm on G′ = (V ′,E ′,EW ′) and obtain the charging pathc of c
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4 Simulation Results

The simulation experiments are performed in a two-dimension planar with the size of
M ∗M. On the plane, there are n sensors randomly deployed; for each sensor si, there
is a uniform parameter E0 denoting the maximum battery capacity. And si’s current
battery energy Ecur

i is valued in the range of [0, 45 ·E0] and it battery capacity E0
i is set

in [Ecur
i ,E0]. The two indictors for the sensors’ status, Elow and Emin are assigned 3

5 ·E0

and 3
10 ·E0. The moving distance limitation between any pair sensors l0 is set as 50.
For the optimization goal of MVB-GRC Problem, we evaluate the proposed algo-

rithm in terms of the energy efficiency, which is denoted as Energy Efficiency. The
four parameters, the side length of the region M, the number of sensors n, the initial
energy of the charger Emax, and the maximum energy capacity of sensors E0 are con-
sidered as the potential factors on performance of charing scheduling. And we consider
the following four groups of parameter settings and we repeat the experiment 100 times
and adopt the average values for each setting: (1) M varies from 40 to 160 by the step
of 20 with fixed n, E0 and Emax; (2) n varies from 60 to 160 by the step of 20 with fixed
M, E0 and Emax; (3) Emax varies from 2500 to 5500 by the step of 500 with fixedM, E0

and n; (4) E0 varies from 40 to 100 by the step of 20 with fixed M, n and Emax.

Fig. 1. Energy efficiency by comparing two TSP algorithms

Firstly we apply two TSP Algorithms with approximation ratios of 2 and 1.5 [17]
(denoted as 2-ratio TSP and 1.5-ratio TSP) in Charging Path Planning Phase and
evaluate their performance measure. As shown in Fig. 1, with the changes of the four
parameters, 1.5-ratio TSP outperforms 2-ratio TSP on energy efficiency. The reason
is that the former algorithm can construct a better Hamilton Cycle which is closer to
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the optimal one, i.e., 1.5-ratio TSP constructs a charging path with less length than
that generated from 2-ratio TSP. Then the scheme with less charging path length can
enhance the whole charging efficiency. Moreover with the growth ofM as shown in (a),
the energy efficiency fluctuates in the range [0.65,0.87] and gets stable whenM > 120;
with the increasing of n, Emax or E0 in (b)-(d), two algorithms both enter a smooth sta-
tus with little fluctuations on the energy efficiency. It is because that the region scale
directly influences the maximum length of charging paths, which determines the results
obtained by TSP algorithms.

Fig. 2. Energy efficiency by varing M Fig. 3. Energy efficiency by varing n

Secondly, with the advantages of 1.5-ratio TSP Algorithm, we continue to per-
form the simulations via applying it and evaluate the algorithm’s performance with the
change of four parameters.

As shown in Fig. 2, with the growth ofM, the energy efficiency presents upward ten-
dency and moderate fluctuation when Emax = 1000,2000,3000,4000. Compared with
Emax = 1000, the influence ofM on the energy efficiency becomes smaller with a larger
Emax = 4000, which shows that the region scale has little impact on the algorithm with
a larger initial energy of the charger. It can be explained by that when the initial energy
of the charger is sufficient, the charging requirements of all the sensors can be satisfied
which can keep the energy efficiency on a high level.

As shown in Fig. 3, the energy efficiency obtained by CS-HWG Algorithm remains
upward trend with the increasing of n at the fixed Emax = 1000,2000,3000,4000. Espe-
cially when n > 100, the results among different Emax enter a relative steady state
[0.80,0.95] with little fluctuations. It shows the algorithm can satisfy the charging
requirements of the majority of the sensors. The reason is that with the increasing of
network scale with a fixed region scale, the deployment density becomes higher which
is helpful to reduce the moving energy consumption; at the same time, the increased
initial energy of the charger can meet more charing requirements for the sensors.

As shown in Fig. 4, the energy efficiency fluctuates up and down with the increasing
of Emax, which is especially apparent when Emax ∈ [3500,5500] with a fixed n = 100.
The amplitude of fluctuation becomes unapparent with the growth of n, i.e., the results
when n= 200 remain in [0.87,0.93]. It can be explained by that when the network scale
gets larger, the different between each pair of sensors’ charing requirement becomes
relative smaller, which is benefit for improve the charger’s charging efficiency. Thus
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Fig. 4. Energy efficiency by varing Emax Fig. 5. Energy efficiency by varing E0

with the increased initial energy of the charger, the change of energy efficiency can
enter a smooth status.

As shown in Fig. 5, comparing the results when Emax = 1000,2000,3000,4000, the
changing of E0 has a steady impact on increasing the energy efficiency with different
Emax, i.e. the results remain [0.85,0.95] when E0 > 80. It shows that the maximum bat-
tery capacity of sensors E0 has limited influence on the performance of our algorithm. It
is because that E0 determines the maximum charging requirements for sensors, which
cannot decide the actual charging amount. The algorithm is designed to meet the most
necessary charging requirements first and perform selective fully-charged-mode charg-
ing to sensors in different status, which is for enhancing the whole energy efficiency.

Finally, we can draw the conclusion that the network scale n and the initial energy
of the charger Emax has more influence than the region scaleM and the energy capacity
of the sensors E0 in terms of the energy efficiency of the whole charging process.

5 Conclusion

In this paper, we investigate the maximum energy efficiency charing planning prob-
lem for one mobile charger in WRSNs. We formally define the problem and propose a
heuristic algorithm composed of charing energy assignment and path planning, which
is based on heterogeneous-weighted graph construction and edge-weighted graph trans-
formation. Furthermore, we apply two approximation algorithms in the charging path
phase and perform the simulation experiments to evaluate the algorithm’s performance.
In the future, we have great interest on investigating the maximum energy efficiency
charging planning problem for multiple chargers in WRSNs.
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Abstract. The problem of aircraft routing and scheduling is one of the
essential problems in airline industry. Airlines need to identify multiple
routes that may be profitable and allocate their fleets to these routes. To
describe this problem, we present two equivalent models and analyze the
advantages and disadvantages of them. The first one has less variables
but often yields weak linear relaxation, and the second model is just the
opposite. We propose a branch-and-price algorithm with a new branching
rule to solve the second model. In addition, we describe the process of
column generation algorithm involved in branch-and-price, and design a
labeling algorithm to solve the subproblem in column generation. Finally
we report computational results obtained on data provided by airlines.
These results indicate that our approach significantly reduces the amount
of CPU time compared to the basic method.

Keywords: Airline routing · Fleet scheduling · Branching · Column
generation · Labeling algorithm

1 Introduction

In this paper, we consider a problem faced by airlines. Given the airline’s fleet
plan, which determines the availability of aircraft with different capacities and
ranges characteristics, airlines need to construct daily schedules for heteroge-
neous fleets. An aircraft schedule consists of a sequence of flight legs (the routing
aspect) and a aircraft to carry out the sequence (the scheduling aspect). There-
fore, this problem involves two issues, one is to plan aircraft routes network and
the other is to assign fleets to those routes [1]. In general, the problem of fleet
routing and scheduling is affected by many factors, and various types of con-
straints can be considered when constructing such a schedule. Consequently the
definition of daily aircraft routing and scheduling problem (DARSP) varies across
the literature. Levin [2] was the first to have proposed a model for the DARSP
with variable departure times which could only take from several values. Then,
Abara [3] and Hane [4] presented two multi-commodity network flow models
for fleet scheduling problem with fixed departure time. Desaulniers [5] addressed
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DARSP for a heterogeneous fleet with time windows and used a branch-and-price
algorithm to solve it. In recent years, people have begun to consider schedul-
ing problem in more practical scenarios. Kenan [6] and Cadarso [7] considered
flight scheduling under uncertainty. Cur [8] proposed models for aircraft routing
problem with consideration of remaining time and robustness. Zheng [9] con-
sidered aircraft scheduling with parking problem and combined two heuristic
algorithms for solving. Most of these problems can be considered as extended
versions of basic fleet scheduling problem which will be considered in this paper.
We described how to build this problem into a multi-commodity flow model and
proposed a Branch-and-Price algorithm with new branching rule.

The following paper is arranged as below. Section 2 presents the problem
definition. Meanwhile, two equivalent mathematical models are established. We
describe our algorithm in Sect. 3, and the experimental results are shown in
Sect. 4. Finally, our work is concluded in Sect. 5.

2 Problem Description for DARSP

Given the airline’s fleet plan, which determines the availability of aircraft with
different capacity and range characteristics, the next major step in the airline
planning process is to determine the specific routes to be flown. The DARSP
requires that the fleet be allocated to flight legs to maximize total revenue. Each
leg has a fixed departure time and duration. Two legs can be connected if the
destination of one is same as the departure airport of the other and the interval
time between two legs is greater than a certain range. The total duration of each
aircraft on the route shall not exceed a certain amount. Each aircraft can only
take off from the station every day and fly back to the station at the end.

We will convert this problem into multi-commodity network flow model and
give two different formulations: the arc-flow or conventional formulation and
the path-flow or column-generation formulation. Let V be the node set con-
sisting of all operational flight legs. Define Vo as the node set consisting of all
legs taking off from the station, and Vd as the node set consisting of all legs
landing on the station. For each leg l , it has a departure time al and duration
dl. For every two flight legs i, j, if ai + di + Δ � aj , where Δ is the minimum
flight connection time, we can draw an arc eij from i to j which means those
two flight legs can be flown consecutively by the same aircraft. The station is
represented by two virtual nodes o and d which represent source node and sink
node, respectively. In addition, o is the predecessor node for Vo and d is the
successor node for Vd. All arcs form a set A . Let ˜V = V ∪ {o, d} represents the
set of all nodes. Then we can build a directed graph G( ˜V ,A ) as shown in Fig. 1.

The arc-flow formulation is based on the graph G. We present the following
notation that based on a standard multi-commodity network.



A New B&P Algorithm for DARSP 125

Notations

K : Set of all aircraft.
A : Set of all arcs.
V : Set of all legs represented by nodes.
˜V : V ∪ {o, d}. Set of all nodes.

Vo : Set of all legs whose origin is the station.
Vd : Set of all legs whose destination is the station.

V +(i) : {j ∈ ˜V | (i, j) ∈ A }. Set of successor nodes of node i.
V −(i) : {j ∈ ˜V | (j, i) ∈ A }. Set of predecessor nodes of node i.

o, d : Constant. Indicating source and sink that both represent the station.
ti : Constant. Indicating duration required for leg i, to = td = 0 for

notational conciseness.
wk

i : Constant. Indicating revenue of aircraft k flying leg i, wk
o = wk

d = 0 for
notational conciseness.

bi : Constant. Equal to 1 at source, equal to –1 at sink, equal to zero at
remaining points.

T k : Constant. Indicating the total length of time allowed for the kth
aircraft to fly.

xk
ij : Binary variable. Indicating whether the aircraft k uses the arc (i, j).

Accordingly, we formulate this problem in the arc-flow form as follows:

max
∑

k∈K

∑

(i,j)∈A

wk
j xk

ij (arc-flow)

s.t.
∑

k∈K

∑

j∈V +(i)

xk
ij � 1, ∀i ∈ ˜V , (1)

∑

j∈V +(i)

xk
ij −

∑

j∈V −(i)

xk
ji = bi ∀i ∈ ˜V ,∀k ∈ K, (2)

∑

(i,j)∈A

tjx
k
ij � T k, ∀k ∈ K, (3)

xk
ij ∈ {0, 1}, ∀k ∈ K,∀(i, j) ∈ A . (4)

The objective function is to maximize the profits made up of revenue of
each selected flight leg. The degree constraints (1) require each flight leg at
most be carried out once. Constraints (2) are the flow conservation constraints.
Constraints (3) limit the maximum time that each aircraft can work per day.

The arc-flow model often yields a very weak linear relaxation. In order to fix
this disadvantage, by applying Dantzig-Wolfe decomposition, path-flow formu-
lation can be obtained. The additional notations are as follows:
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Notations

P : Set of o-d paths.
P(k) : {p ∈ P | ∑

(i,j)∈p tj � T k}. Set of paths which is available for aricraft k.
wk

p : Constant. Equaling to
∑

(i,j)∈p wk
ij .

δpi : Binary variable. Indicating whether the path p contains the node i.
yp
i : Binary variable. Indicating whether aircraft k carry out path i.

We can get the path-flow formulation:

max
∑

k∈K

∑

p∈P(k)

wk
pyk

p (path-flow)

s.t.
∑

k∈K

∑

p∈P(k)

δpi y
k
p � 1, ∀i ∈ V , (5)

∑

p∈P(k)

yk
p = 1 ∀k ∈ K, (6)

yk
p ∈ {0, 1}, ∀k ∈ K,∀p ∈ P(k). (7)

The objective function of path-flow is as same as arc-flow’s. The path-flow
model only has two kinds of constraints. Constraints (5) represent each leg can
only be allocated to at most one aircraft. Constraints (6) require that each
aircraft must be assigned to one route. Given aircraft type, the feasibility of a
path is tested in a shortest path algorithm with constrained capacity representing
the duration along path. To be feasible, the duration must be less than allowed
amount for the given type.

In practice, path-flow model often yields better upper bounds than arc-flow
model and has less symmetry than arc-flow model with three-index arc-flow
variables [10]. However, it has a huge number of variables, which is far more
than the arc-flow model’s, which means that it is almost impossible to solve this
model directly. We chose a branch-and-price approach to solve this problem.

3 Branch-and-Price Strategies

Branch-and-price approach, which is often used in Vehicle Routing Problem, is
designed to solve large-scale integer linear programming (ILP). Branch-and-price
is a combination of column generation and branch-and-bound algorithm which
are used to solve the linear relaxation of ILP and to eliminate fraction in the
solutions of linear relaxations, respectively.

3.1 Column Generation

Considering the path-flow model with yk
p ∈ [0, 1], which called the master prob-

lem or MP, the general idea is that not all columns (variables) in the constraint
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d

d

o

o

Fig. 1. The nodes and the arcs of network G. Rectangles and circles represent station
and flight legs, respectively, and the larger circles represent the flight legs connected
to the station.

matrix will be included in the optimal solutions to master problem. In fact, only
a very small subset of all columns will be in optimal solutions with all other
columns equal to zeros. We can start with solving a restrict master problem
consisting of a small subset P̄ of columns in MP. After finding the solution to
RMP, we determine whether there are any columns not included in the RMP
with positive reduced cost. If no columns are found, the current solution will
also be the optimal solution for MP. Otherwise, we need to add these columns
to RMP and repeat the above process.

Finding columns with largest reduced cost is called pricing problem. Let πi

and μk be the dual variables associated with constraints (5) and (6), respectively.
πi is positive and μi is unrestricted. The reduced cost of variable yk

p can be
calculated by following formula:

wp
k = wk

p −
∑

i∈V

δpi πi − μk = −(μk +
∑

i∈p\{o,d}
(πi − wi))

For every arc in A , let the cost of arc (i, j) for aircraft k, which is denoted by
c̄kij , equals to πj − wj if j is not the sink, otherwise equals to μk. So, finding a
variable with the largest reduced cost

arg max
k∈K,p∈P(k)

wp
k
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corresponds to an Elementary Shortest Path Problem with Resource
Constraints or ESPPRC.

arg min
k∈K,p∈P(k)

cpk

Elementary requirement is that each node in graph must be covered as most
once. The resource corresponds to a quantity that varies along a path. In our
background, resource is the total flight duration. Its value must be less than a
prespecified value along path. ESPPRC have been proved to be strongly NP-hard
which means there are no pseudo-polynomial time algorithms. But in our prob-
lem, the network is a directed acyclic graph, which means elementary require-
ment already be satisfied, so the problem degenerates to SPPRC, which have
pseudo-polynomial time algorithms.

Labeling Algorithm. SPPRC is usually solved by dynamic programming,
more precisely, by a labeling algorithm. In such an algorithm, partial paths start
at the source node o and are represented by multi-dimensional resource vectors,
called labels. Starting from |K| initial labels associated with node o, labels are
propagated forwardly using resource extension functions(REFs) through network
G. To avoid enumerating all feasible paths, a dominance rule is applied to discard
unpromising labels.

A label Ek
pi = (Zk

pi, T
k
pi) representing a partial path p for aircraft k from

node o to node i contains two components. Zk
pi represents the cost of p and T k

pi

represents the duration time accumulated along p. Ek
pi is feasible if T k

pi ∈ [0, T k].
Path p (label Ek

pi ) can be extended by appending arc (i, j) ∈ A . Resulting path
is represented by a label Ek

pj = (Zk
pj , T

k
pj) whose components are computed using

the following REFs:
Zk
pj = Zk

pi + c̄ij

T k
pj = T k

pi + tj

Therefore, Ek
pj is feasible if T k

pj � T k. Consider two labels (E1 and E2) repre-
senting two feasible partial paths ending at the same node. Label E1 dominates
label E2 if E1 � E2 component-wise (that is, Z1 � Z2 and T1 � T2). In this
case, E2 can be discarded. When all components are equal, keep one of the two
labels.

At first, for each aircraft, we initialize one label at the source node. Every
next step we select one label with the minimum Z and extend it to all subsequent
nodes. Then we use the dominance rule to remove unpromising labels. Repeat
until all the labels extend to the sink node. We select the label with the minimum
Z at sink, so that we can get the feasible shortest path and the corresponding
aircraft.

The detailed algorithm is shown as below. Let Ui represents the set of unpro-
cessed labels at node i, and Li represents the set of processed labels at node i. Let
i(E) represents the last node of the path associated with E. Let DOM (Uj ,Lj)
represents the dominance algorithm applied to labels in Uj and Lj that returns
a possibly reduced set Uj .
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Algorithm 1 : Labeling algorithm

1: Set Ui = Li = ∅ for all node in ˜V except Uo = {E1
1o, E

2
2o, · · · , E

|K|
|K|o} where

Ek
po = (0, 0) for all p and k.

2: while
⋃

i∈ ˜V

Ui �= ∅ do

3: Choose a label E ∈ ⋃

i∈ ˜V

Ui and remove E from Ui(E).

4: for all arcs (i(E), j) ∈ A do
5: Extend E along (i(E), j) using the REFs to create a new label E′

6: if E′ is feasible then
7: Add E′ to Uj .
8: Uj = DOM (Uj , Lj).

9: Add E to Li(E).

10: Filter Ld to find a shortest o-d path and corresponding aircraft.

11: return The shortest path and corresponding aircraft and its cost

Then we can get the column generation algorithm. It will output a solution
of MP.

Algorithm 2 : Column generation algorithm
1: Initial: Use DFS to find feasible o-d path for each aircraft and build RMP according

to the corresponding variables {y1
1 , y

2
2 , · · · , y

|K|
|K|}.

2: while True do
3: Solve RMP and get the optimal solution y∗and the corresponding dual variable

π and μ.
4: Modify the cost of arc for each aircraft.
5: Use labeling algorithm to get the shortest path p and aircraft k and cost ckp.
6: if Reduced cost RC = −ckp � 0 then
7: return the optimal solution y∗

8: else
9: Add yk

p to RMP.

3.2 A New Branch Strategy

The solution obtained by the column generation may not conform to integer
constraints. If the solution is not integral, we need to use a branching approach
to eliminate the fractional variables. In order to incorporate column generation
with branching strategies, the conventional integer programming branching on
variables may not be feasible because fixing variables can destroy the structure of
the pricing problem. For example, suppose there is a fractional variable yk

p = 0.5,
we need to divide it into two branches, yk

p = 1 and yk
p = 0. The first branch is easy

to enforce because we can just let aircraft k covers path p and remove variables
related to p. However, the latter branch is almost impossible to enforce because
we cannot restrict aircraft k from choosing path p. In fact, it is likely the shortest
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path for k is indeed path p. In this case, the pricing problem solution must be
achieved using a n-th shortest path procedure which is almost impossible for large-
scale problems. Barnhart [11] gave a branching strategy for multi-commodity
flow problem. It is based on the variables in arc-flow formulation and compatible
with the pricing problem solution procedure. Based on Barnhart’s strategy, we
proposed a new branch strategy for DARSP that can achieve faster convergence.

The basic idea for Barnhart’s branching rule is that each aircraft can only
be assigned to one o-d path. If aircraft k′ has been assigned to more than one
path, then we can select two distinct paths p1 and p2 from them. Considering
node o is in both p1 and p2, we can extend along paths from o until the two
paths separate. We call the node at which two paths split as divergence node s
and two arcs in p1 and p2 whose origin node is s as a1 and a2. Let A(s, a1) and
A(s, a2) represent some partition of the set of arcs originating at s such that the
subset A(s, a1) contains a1 and the subset A(s, a2) contains a2. Then we can
creates two branches. The first requires

∑

p∩A(s,a1) �=0

yk′
p = 0,

and the second requires
∑

p∩A(s,a2) �=0

yk′
p = 0.

When faced with problems with high symmetry, this branching rule may
become inefficient. For example, if there are more than one aircraft of same type
as k′ and we only disallow one aircraft k′ from paths p1 and p2, there will be
other aircraft assigned to p1 and p2 after branching and have the same value.
Our remedy is to forbid more than one aircraft from the subset of arcs to weaken
symmetry.

The key of our rule is that the constraints (5) restrict each node (except
source) can only be covered by at most one aircraft, which means that there will
be no two arcs in any integer solution that have the same origin node (except
source). Our new rule is that if divergence node s is not source, we can create
two new branches, one of which forbids all aircraft in K from using arcs in
A(s, a1),

∑

k∈K

∑

p∩A(s,a1) �=0

yk
p = 0,

and the other forbids all aircraft in K from using arcs in A(s, a2),
∑

k∈K

∑

p∩A(s,a2) �=0

yk
p = 0.

Therefore, in the new two branches, we not only eliminate the emergence of
symmetric solutions, but also remove a large number of infeasible solutions which
use two distinct arcs having the same origin s. The branching rule is valid because
all possible integer solutions are preserved after branching.
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The branching rule will be more complicated if divergence node is the source.
Since the source node will be used by all aircraft, we cannot prohibit all aircraft
from using arcs in A(s, a1) or A(s, a2). Aircraft k1 uses arc a1 and aircraft k2
uses arc a2 may be part of the optimal solution, but this situation is not available
in any of the two branches mentioned in the above rule. To fix this problem, let
K(k′) represents the set containing all other aircraft of the same type as k′ (k′ is
not in K(k′) ), we modify the branching rule if the divergence node is the source.
For the first branch, we do not allow aircraft k′ to use any of the arcs in A(s, a1)
AND do not allow aircraft in K(k′) to use arc a2,

∑

p∩A(s,a1) �=0

yk′
p +

∑

k∈K(k′)

∑

p:a2∈p

yk
p = 0,

and the second branch dose not allow aircraft k′ to use any of the arcs in A(s, a2)
AND does not allow aircraft in K(k′) to use arc a1,

∑

p∩A(s,a2) �=0

yk′
p +

∑

k∈K(k′)

∑

p:a1∈p

yk
p = 0.

This is valid because each pair of arcs (i, j) can be branched at most once and
after each branch, we retain at least one feasible solution of each symmetry. This
means that at least one optimal solution remains in the left or right branch.

A major benefit of our branching rule is that it mitigates the effect of symme-
try and reduces domains of problems after branching. The experiments in Sect. 4
show that our algorithm has better performance than basic branching rule.

4 Computational Results

We use 8 sets of data corresponding to several short and medium haul routes in
China. These datasets consist of fleets of heterogeneous aircraft and legs between
some major cities. Their characteristics are given in Table 1.

Table 1. Problem characteristics

Problem Fleets Legs

Types Number of aircraft Airports Number of legs Arcs

1 6 41 8 82 549

2 10 63 6 96 856

3 12 70 16 107 487

4 14 74 16 213 1543

5 11 105 45 247 972

6 16 96 25 211 1197

7 4 23 27 358 2595

8 9 104 60 187 781
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We converted these problems into path-flow models and solved by column
generation. To evaluate our branching rule, we compared the performance of
using our branching rule and the basic branching rule in the same column gener-
ation framework. The LP in column generation was solved by Gurobi 9.1.1. The
results are given in Table 2. The table gives the number of branch-and-bound
nodes searched, the gap between lower bound and upper bound and the CPU
time in seconds on an Intel Xeon platinum 8280. Solution procedure is termi-
nated when either a provably optimal integer solution is found or the run time
exceeds one hour. Solution times of less than one hour indicate that optimal
solutions are obtained. We observe that most of test problems can be solved
in reasonable times using our branching rule. Compared to the basic branching
rule, our branching strategy require less time and calculate fewer branch nodes.
In problem 2, our solution time is significantly lower than the basic branching
rule. In problems 6 and 7, the basic approach could not find the optimal solution
within a limited time, but our algorithm found the optimal solution in half an
hour.

Table 2. Improved vs. basic branching

Problem Improved branching Basic branching

Nodes Time Gap Nodes Time Gap

1 13 123.04 0.00% 19 125.77 0.00%

2 27 92.95 0.00% 2645 1922.84 0.00%

3 9 40.41 0.00% 15 35.99 0.00%

4 229 3600 0.48% 308 3600 0.48%

5 2 798.16 0.00% 5 886.59 0.00%

6 87 1419.56 0.00% 789 3600 0.05%

7 13 545.71 0.00% 202 3600 0.06%

8 17 662.42 0.00% 24 669.91 0.00%

5 Conclusions

In this paper, we focus on the aircraft routing and scheduling problem. We
proposed two equivalent models to describe this problem and analyze the differ-
ences between the two models. Since there were too many variables in the second
model, we used the algorithms of column generation and branch-and-bound to
get the optimal solutions. In the process of column generation, we analyzed the
properties of the subproblems and gave a labeling algorithm to solve it. Finally,
we gave a new branching rule according to the special constraints of the model.
The experimental results on the real routes networks indicate that our proposed
methods can efficiently provide a fleet routing and scheduling scheme.
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Abstract. Replenishing energy to wireless sensor networks is always a
crucial problem as the energy capacity of sensor nodes is very limited.
Scheduling mobile chargers to charge sensor nodes has been widely stud-
ied due to its efficiency and flexibility. However, most existing works focus
on maximizing the charging utility or charging efficiency, which ignores
the task performing function of sensor nodes. In this paper, we study the
mobile charger scheduling problem with the objective to maximize the
task utility achieved by sensor nodes. We consider two different scenarios
where sensor nodes are deployed on a line and a ring, respectively. We
prove the NP-Hardness of our problems and design two approximation
algorithms with guaranteed performance. We prove the approximation
ratio of our algorithms through theoretical analysis, and conduct exten-
sive simulations to validate the performance of our algorithms. Simula-
tion results show that our algorithms always outperform the baselines,
which demonstrates the effectiveness of our algorithms.

Keywords: Mobile charger · Wireless sensor network · Wireless power
transfer

1 Introduction

Wireless Sensor Networks (WSNs) are widely used to monitor the physical world
[8,9], where the sensor nodes in WSNs are usually powered by built-in batter-
ies. As the energy capacity of the built-in battery is limited, how to efficiently
replenish energy to sensor nodes is an important problem to be addressed. The
breakthrough of the wireless power transfer technology brings an efficient and
flexible way to supply energy to sensor nodes [4], where end-users can schedule
mobile chargers to charge sensor nodes periodically.
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Recently, there are lots of researchers study the mobile charger scheduling
problem to achieve continuous operations of wireless sensor networks. Existing
works mainly focus on improving the charging efficiency or charging utility by
scheduling the charging routes of mobile chargers [1,5,10,12]. That is, their goal
is to make the mobile charger spend more energy on charging sensor nodes
rather than on moving, or to make sensor nodes receive as much energy as
possible in a charging scheduling period. However, these works ignore the tasks
performed by sensor nodes. In many practical WSNs applications, sensor nodes
may performing different tasks with different energy requirements [2,13], and
will achieve different task utility according to the type of the performed tasks.
Obviously, focus on maximizing task utility is a more practical and meaningful
problem compared to maximizing charging efficiency or charging utility.

In this paper, therefore, we investigate the task utility maximization problem
by scheduling a mobile charger. Wireless sensor networks are widely used in many
scenarios, such as forests, parks, fields, etc. In our work, we consider two different
network scenarios. In the first scenario, a wireless sensor network is deployed to
monitor a part of a road, where sensor nodes are deployed on the side of the
road, and the mobile charger could move freely on the road to provide energy
to sensor nodes. In the second scenario, a wireless sensor network is deployed on
a ring road in a park, where the mobile charger can travel on the ring road in
any direction (clockwise or anticlockwise). Thus we address our problem in both
line scenario and ring scenario. As the energy capacity of the mobile charger is
also limited, and is used for both moving and charging, how to efficiently select
sensor nodes to charge is the core issue of our problem. The main contributions
of this work are list as follows.

– We consider the task utility maximization problem by scheduling a mobile
charger in both line and ring scenarios, and prove that the problem to be
addressed is NP-Hard in both scenarios.

– We design two approximation algorithms for our problems, and prove the
approximation ratio through theoretical analysis.

– We validate the effectiveness of our algorithms by conducting extensive sim-
ulations.

The remainder of this paper is structured as follows. In Sect. 2, we intro-
duce the related works of this paper. In Sect. 3, we formally define our problems
to be addressed in two scenarios, and prove the NP-hardness of our problems.
In Sect. 4, we design two approximation algorithms for our problems and ana-
lyze the ratio through theorems. In Sect. 5, we conduct extensive simulations to
evaluate our algorithms. And finally, we conclude this paper in Sect. 6.

2 Related Works

Scheduling mobile chargers to charge wireless sensor networks has been widely
studied these years. Lin et al. [6] study the charging delay minimization problem
for WSNs under the directional charging model, in which they determine the
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charging orientation for the mobile charger and charging time at each charging
location, their objective is to minimize the total charging time while fully charge
all the sensor nodes. Xu et al. [11] study how to maximize the sum of sensor node
lifetimes by scheduling a mobile charger, in which they assume that each sensor
node can be partially charged so as to charge more sensor nodes before they
exhaust their energy. Liu et al. [7] consider that mobile chargers could charge
each other, and study how to schedule minimum mobile chargers to charge a
large-scale wireless sensor networks. Jiang et al. [3] jointly consider location
selection of depots and charging routes planning of mobile chargers for large-
scale WSNs, they aim to minimize the number of mobile chargers and improve
the energy efficiency of mobile chargers. Zhang et al. [14] consider the scenario
that there are a set of candidate charging itineraries for mobile chargers, they
aim to select itineraries and determine a corresponding charging association so
as to maximize the charging efficiency, while making sure that all sensor nodes
are fully charged.

3 Model and Problem Formulation

3.1 Models and Assumptions

Consider there are a set of m rechargeable sensor nodes deployed on a line or
a ring, the position of each sensor node is known in advance and fixed. These
rechargeable sensor nodes are denoted by S = {s1, s2, . . . , sm}. We assume that
each sensor node can perform a specific task by consuming a certain amount
of energy. For the sensor node si ∈ S, the energy it needed to perform the
task is denoted by Ei, and the corresponding achieved task utility is denoted
by ωi. We also assume that the energy of each sensor node is supplied by a
Mobile Charger (MC) which is located at the depot r. The depot will periodically
dispatch the MC to replenish energy to sensor nodes. For the line scenario, the
depot r is located at the left end side of the line, and without loss of generality, we
assume that sensor nodes are sequentially deployed from left to right according
to their subscripts, as shown in Fig. 1(a). For the ring scenario, sensor nodes are
sequentially deployed in the anticlockwise direction of the ring based on their
subscripts, and the depot r is located between sensors s1 and sm, as shown in
Fig. 1(b).

In our study, in order to ensure the charging efficiency, we consider that the
MC needs to move to the site of a sensor node before it begins charging the
sensor node. The energy capacity of the MC is denoted by EI, which is limited
and used for both moving and charging sensors. We use η to denote the energy
consumption rate of the MC for moving per unit distance. During each charging
scheduling, the MC moves along the line or the ring to charge sensor nodes, and
then it needs to move back to the depot before its energy is exhausted.
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Fig. 1. Illustration of the two network scenarios.

3.2 Problem Formulation

In this work, we aim to schedule an MC with limited energy to charge sensor
nodes on a line or a ring, so as to maximize the total task utility achieved by
all sensor nodes. As mentioned before, both moving and charging sensors will
consume the energy of MC, so we need to find a charging route and determine
which sensor nodes to be charged, while the energy consumption of the MC is
limited by its energy capacity. We define our problem as follows.

Problem 1. Task utility Maximization problem by scheduling a mobile charger
(TM). Given a set S of rechargeable sensor nodes deployed on a line or a ring
road, the energy requirement Ei of each sensor si ∈ S for performing tasks, the
corresponding achieved task utility ωi of each sensor si, a mobile charger with
energy capacity EI located at the depot r, and the energy consumption rate η
of the MC. The TM problem aims to find a charging route and determine the
set of sensor nodes to be charged, such that the total achieved task utility is
maximized, while the energy consumption of the MC is limited by EI.

Note that we assume the MC can find a route to fully charge any sensor node
without exhausts its energy, otherwise, we can drop the sensor node from our
problem.

Next, we will prove that the TM problems is NP-hard. We first consider a
special case of the problem, in which we assume that η = 0, that is, the MC
moving does not consume any energy. In such a special case, we only need to
consider which sensor nodes to be charged. For clarity, the special case is termed
as the STM problem. If we can prove the NP-Hardness of the STM problem, then
we can conclude that the general TM problem is also NP-hard. In the following,
we introduce some problems to help us prove the NP-Hardness of our problems.

The Decision Version of the STM Problem: Given a set S of rechargeable
sensor nodes, the energy requirement Ei and corresponding task utility ωi of
each sensor si, the energy capacity EI of the MC, a positive number l, does
there exist a subset S ′ ⊆ S such that the total charging energy for nodes in S ′

is not larger than EI (i.e.,
∑

si∈S′ Ei ≤ EI) and the total achieved task utility
of S ′ is at least l (i.e.,

∑
si∈S′ ωi ≥ l)?

The Decision Version of the Knapsack Problem: Given a set of m items
I = {I1, I2, . . . , Im}, the value vi and size si for each item Ii, a knapsack with
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capacity B, a positive value p, does there exist a subset I ′ ⊆ I such that∑
Ii∈I′ si ≤ B and

∑
Ii∈I′ vi ≥ q?

Theorem 1. The TM problem is NP-Hard.

Proof. We prove the theorem by reduction. Given an instance of the decision
version of the knapsack problem, I = {I1, I2, . . . , Im}, the value vi and size si

for each item Ii, a knapsack with capacity B, a positive value p, we construct
an instance of the decision version of the STM problem as follows. Let S = I,
Ei = si and ωi = vi for each sensor si ∈ S, EI = B, and l = p. Then, if the
decision version of the knapsack problem has a “Yes” answer, the decision version
of the STM problem also has a “Yes” answer, and vice versa. As the knapsack
problem is a typical NP-Hard problem, we can conclude that the STM problem
is also NP-Hard. The STM problem is a special case of the TM problem, so we
can easily know that problem TM is NP-Hard.

4 Approximation Algorithms

To distinguish the two scenarios, we term our problem as the TML problem for
the line road scenario, and the TMR problem for the ring road scenario. Next,
we will describe the proposed algorithms for problems TML and TMR, and give
the performance analysis for our algorithms.

4.1 Algorithm for the TML Problem

We name the proposed algorithm for the TML problem as ATML. As the sensor
nodes are deployed on a line, we let the mobile charger moves along the line and
selects some sensor nodes to charge, and then move back to the depot before its
energy is exhausted. The ATML algorithm mainly has two phases. In the first
phase, we iteratively determine the charging route for the mobile charger, and
then select sensor nodes to be charged under each charging route. In the second
phase, we choose the best strategy got in the first phase as our solution. In the
following, we will describe our algorithm in detail.

In the first phase, we consider m possible charging routes for the mobile
charger. For each 1 ≤ i ≤ m, we let the MC moves to the i-th sensor node
(si) and then back to the depot r. For clarity, we let Si = {s1, s2, . . . , si} for
each 1 ≤ i ≤ m. As the MC will pass through sensor nodes in Si, we then
select sensor nodes from Si to charge limited to the energy capacity of the MC.
We use Li to denote the distance from depot r to sensor node si, then in the
i-th iteration, the energy of the MC that can be used for charging sensors is
EIi = EI − 2 ∗ ηLi. We use Ni to denote the selected sensor node set to be
charged in the i-th iteration, and use U(Ni) to denote the total task utility
achieved by sensor nodes in Ni, i.e., U(Ni) =

∑
si∈Ni

ωi. In each iteration, we
find two candidate solutions which are denoted by N1

i and N2
i , respectively.

N1
i contains the sensor node with the largest task utility selected from Si, i.e.,

N1
i = argmax{U(sj)|sj ∈ Si}. The second candidate solution N2

i is initialized
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as ∅. Then we iteratively select sensor node sj from Si with largest ωj

Ej
, if sj can

be added into N2
i without exceeding the energy budget EIi, then move sj from

Si to N2
i , otherwise, delete sj from Si. This process terminates until all sensor

nodes in Si are checked (i.e., Si is empty). If U(N1
i ) ≥ U(N2

i ), we let Ni = N1
i ,

otherwise, Ni = N2
i .

In the second phase, we select the best strategy got by the first phase as
our final solution. Let N denote the final solution of our algorithm, then, N =
argmax{U(Ni)|1 ≤ i ≤ m}.

The pseudo-code of the ATML algorithm is shown in Algorithm 1.

Algorithm 1. Algorithm for the TML problem (ATML)
Input: S, depot r, EI, η, the needed energy Ei and task utility ωi for each si ∈ S .
Output: A charging strategy N for the MC.
1: for 1 ≤ i ≤ m do
2: Compute the distance Li between r and si;
3: EIi = EI − 2 ∗ ηLi, Si = {s1, s2, . . . , si};
4: N1

i ← argmax{U(sj)|sj ∈ Si};
5: N2

i ← ∅, Ni ← ∅;
6: while Si �= ∅ do
7: Select sj ∈ Si that with maximum

ωj

Ej
;

8: if Ej +
∑

sk∈N2
i

Ek ≤ EIi then

9: N2
i ← N2

i ∪ {sj};
10: end if
11: Si ← Si\{sj};
12: end while
13: Ni = argmax{U(Nk

i )|k = 1, 2};
14: end for
15: N ← argmax{U(Ni)|1 ≤ i ≤ m};
16: return the charging strategy N ;

Next, we analyze the performance of the ATML algorithm.

Theorem 2. The ATML algorithm achieves a 2-approximation ratio for the
TML problem.

Proof. We assume that the last sensor node in the optimal solution N∗ is sk.
Then the moving distance of the MC in the optimal solution is 2 ∗ Lk, and the
energy used for charging is at most EIk = EI − 2 ∗ ηLk. In the k-th iteration
of the for-loop, we greedily select sensor nodes from Sk according to the value
of ωi

Ei
of each sensor si ∈ Sk, and add them into N2

k . Without loss of generality,
we suppose that ω1

E1
≥ ω2

E2
≥ · · · ≥ ωk

Ek
. Assume that sq is the first sensor node

that does not satisfy the condition in line 8, then we have the following two
inequalities.

U(N∗) ≤
∑

1≤i≤q

ωi + (EIi −
∑

1≤i≤q

Ei)
ωq+1

Eq+1
. (1)
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0 ≤ EIi −
∑

1≤i≤q

Ei ≤ Eq+1. (2)

Combining inequalities (1) and (2), we have the following inequality.

U(N∗) ≤
∑

1≤i≤q

ωi + ωq+1. (3)

As we have checked all the sensor nodes in Sk, we can easily know that U(N2
k ) ≥∑

1≤i≤q ωi. N1
k contains the sensor node with the largest task utility that is

selected from Sk, then we know that U(N1
k ) ≥ ωq+1. We choose the better one

of N1
k and N2

k as the solution of the k-th iteration, so we have

U(k) ≥ 1
2
(U(N1

k ) + U(N2
k )). (4)

As the solution of our algorithm is the best one selected from m iterations, we
have

U(N) ≥ U(Nk) ≥ 1
2
(U(N1

k ) + U(N2
k )) ≥ 1

2
(

∑

1≤i≤q

ωi + ωq+1) ≥ 1
2
U(N∗). (5)

Thus the theorem holds.

Theorem 3. The time complexity of algorithm ATML is O(m3).

Proof. In the first phase of the ATML algorithm, there are m iterations in the
for-loop. In each iteration, the calculation of N1

i takes O(m) time as we need
to find the sensor node that provides the maximum task utility from Si. There
are O(m) iterations in the while-loop, and in each iteration of the while-loop,
it takes O(m) time to find sj ∈ Si that with maximum ωj

Ej
. Summarily, the

time complexity of the first phase is O(m ∗ (m + m2)) = O(m3). The second
phase of the ATML algorithm takes O(m) time as we only need to find the best
strategy from m solutions. Therefore, the time complexity of algorithm ATML
is O(m3) + O(m) = O(m3).

4.2 Algorithm for the TMR Problem

We name the proposed algorithm for the TMR problem as ATMR. Similar to
the ATML algorithm, the ATMR algorithm also has two phases. In the first
phase, we iteratively determine the charging route for the mobile charger and
then select sensor nodes to be charged. In the second phase, we choose the best
strategy got in the first phase as our final solution. The main difference between
algorithms ATMR and ATML is that the charging route of the MC is different.
In the following, we will give the detailed description of the ATMR algorithm.
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Algorithm 2. Algorithm for the TMR problem (ATMR)
Input: S, depot r,EI, η, the needed energy Ei and task utility ωi for each si ∈ S .
Output: A charging strategy N for the MC.
1: Compute the length L of the ring, and the shortest distance Li between each sensor

si ∈ S and the depot;
2: Find the last sensor node sp that doesn’t exceed the middle point of the ring along

the anticlockwise direction;
3: for 1 ≤ i ≤ m + 1 do
4: if 1 ≤ i ≤ p then
5: Si = {s1, s2, . . . , si};
6: else if p < i ≤ m then
7: Si = {sm, sm−1, . . . , si};
8: else
9: Si = S;

10: end if
11: EIi = EI − 2 ∗ ηLi;
12: N1

i ← argmax{U(sj)|sj ∈ Si};
13: N2

i ← ∅, Ni ← ∅;
14: while Si �= ∅ do
15: Select sj ∈ Si that with maximum

ωj

Ej
;

16: if Ej +
∑

sk∈N2
i

Ek ≤ EIi then

17: N2
i ← N2

i ∪ {sj};
18: end if
19: Si ← Si\{sj};
20: end while
21: Ni = argmax{U(Nk

i )|k = 1, 2};
22: end for
23: N ← argmax{U(Ni)|1 ≤ i ≤ m + 1};
24: return the charging strategy N ;

In the first phase, we need to find possible charging routes for the MC. In
the TMR problem, sensor nodes are deployed on a ring, there are three possible
moving ways for the MC. The first way is to move along the ring in the anti-
clockwise direction, then moves back to the depot on the same path before it
reaches the middle point of the ring. The second way is to move along the ring
in the clockwise direction, and back to the depot on the same path before it
reaches the middle point of the ring. The last way is to move around the ring (in
the anticlockwise or clockwise direction). Next, we will consider m + 1 possible
charging routes for the MC. Assume that sp is the last sensor node that doesn’t
exceed the middle point of the ring along the anticlockwise direction. For each
1 ≤ i ≤ m + 1, if i ≤ p, we define Si = {s1, s2, . . . , si}, and let the MC moves
to the sensor node si in the anticlockwise direction, and then moves back to the
depot on the same path. If p < i ≤ m, we define Si = {sm, sm−1, . . . , si}, and
let the MC moves to the sensor node si in the clockwise direction, and then
moves back to the depot on the same path. If i = m + 1, we define Si = S,
and let the MC moves around the ring in the anticlockwise direction. We use Li
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(1 ≤ i ≤ m) to denote the shortest distance between sensor node si and depot
r, and Lm+1 is equal to the length L of the ring. In each iteration, the charging
route of the MC is determined, and the energy of the MC that can be used for
charging sensors is EIi = EI − 2 ∗ ηLi. We use Ni to denote the selected sensor
nodes to be charged in the i-th iteration. The calculation of Ni is the same as
that of the ATML algorithm, here we omit the detailed descriptions.

In the second phase, we choose the best strategy got by the first phase as
our final solution, that is, N = argmax{U(Ni)|1 ≤ i ≤ m + 1}.

The pseudo-code of the ATNR algorithm is described in Algorithm 2.

Theorem 4. The ATMR algorithm achieves a 2-approximation ratio with time
complexity O(m3) for the TMR problem.

Proof. As described before, we have tried three moving ways of the MC in our
algorithm, it is obvious that the charging route of the optimal solution must
be the same as one case in the m + 1 iterations of our algorithm. Denote the
optimal solution by N∗, and assume that the optimal charging route is the
same as the i-th iteration, according to the analysis in Theorem 2, we have
U(N) ≥ U(Ni) ≥ 1

2U(N∗). Thus ATMR is a 2-ratio algorithm. The process of
the ATMR algorithm is almost the same as the ATML algorithm, besides the
charging routes in iterations are different. Obviously, the time complexity of the
ATMR algorithm is the same as that of the ATML algorithm, i.e., O(m3).

5 Simulations

In this section, we validate the performance of our algorithms by conducting
extensive simulations.

5.1 Simulation Settings

The basic parameters of our simulations are set as follows. We use the same
default parameters for both TML and TMR problems. The number of sensor
nodes is set as 100, the required energy of each sensor node is randomly chosen
in [3, 10] kJ , the task utility of each sensor node is randomly chosen in [10, 60].
Both the length of the line for the TML problem and the length of the ring for
the TMR problem are set as 1000 m. The energy capacity of the MC is set as
400 kJ, and the energy consumption rate η of the MC is set as 200 J/m .

5.2 Results

To evaluate the performance of our algorithms, we design two baseline algorithms
for problems TML and TMR. The baseline algorithm for the TML problem is
named FirstK, in which we let the MC move along the line to charge every sensor
node it passing through, and let the MC return to the depot if it can’t charge the
next sensor node without exhaust its energy. The baseline algorithm for the TMR
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problem is named FirstK-Ring, which is similar to the FirstK algorithm. In FirstK-
Ring algorithm, we first let the MC move along the ring in the anticlockwise
direction to charge every sensor node it passing through, and let the MC return
to the depot if it can’t charge the next sensor node without exhaust its energy.
Then we let the MC move along the ring in the clockwise direction to do the
same thing. We choose the better one of the above strategies as the final solution.
In the following, we will compare our algorithms with the two baselines under
different parameters.
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Fig. 2. Comparison between ATML and the baseline.

1) Impact of the number of sensors (m): As shown in Fig. 2(a) and Fig. 3(a),
with the number of sensor nodes increasing from 50 to 400, both algorithms
ATML and ATMR perform better than their baselines, especially when there
are more sensor nodes in the network. The reason is that when there are
more sensor nodes, our algorithms have more chances to select “better” sensor
nodes that could achieve more task utility.
2) Impact of the length of the line or the ring: Fig. 2(b) and Fig. 3(b) show
the performance comparison of our algorithms and baselines under different
length settings. We can see that when the length of the line or the ring
increases, all of the four algorithms will achieve little task utility, as the MC
will spend more energy on moving. Our algorithms always outperform the
baselines especially when the length of the line or the ring is small.
3) Impact of the energy consumption rate η of the MC: From Fig. 2(c) and
Fig. 3(c) we can see that when the energy consumption rate of the MC for
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Fig. 3. Comparison between ATMR and the baseline.

moving becomes larger, the gap between our algorithms and the two baselines
becomes smaller. The reason is that when η becomes larger, the MC will spend
more energy on moving, and thus spend little energy on charging sensor nodes.
4) Impact of the upper bound of the task utility: In our simulations, the task
utility is randomly chosen in [30, ωmax], where the default value of ωmax is
set to be 60. In Fig. 2(d) and Fig. 3(d), when we increase ωmax from 40 to
100, we can see that all of the four algorithms will achieve more task utility,
as the average task utility of sensor nodes is increased. We can also see that
our algorithms always outperform the baselines under any network settings,
which validate the performance of our algorithms.

6 Conclusions

In this paper, we study the task utility maximization problem under the line
and ring scenarios by scheduling a mobile charger. We prove that the problem
to be addressed is NP-Hard, and design two approximation algorithms for the
problem under the two different scenarios. We analyze the approximation ratio
of our algorithms through theorems, and validate the performance of our designs
by extensive simulations. The results show the effectiveness of our algorithms.
In the future, we will expand our research to the 2-D scenario, and study the
scheduling problem of multiple mobile chargers.
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Abstract. In this paper, we study three semi-online early work max-
imization problems on two hierarchical machines. When the total pro-
cessing time of low or high hierarchy is known, we propose an optimal
algorithm with a competitive ratio of

√
5 − 1. When the total process-

ing times of low and high hierarchy are known, we propose an optimal
algorithm with a competitive ratio of 6

5
.

Keywords: Semi-online · Early work · Hierarchy · Competitive ratio

1 Introduction

The online hierarchical scheduling problem has been widely studied, and many
online and semi-online algorithms for different objectives have been derived. For
the (semi-)online scheduling problem, the jobs arrive one by one. The perfor-
mance of the (semi-)online algorithm is measured by the competitive ratio. For
a maximization problem and any job instance I, the competitive ratio of algo-
rithm A is defined as the minimum ρ that satisfies the COPT (I) ≤ ρCA(I), where
CA(I)(abbreviated as CA) denotes the output value of online algorithm A, and
COPT (I)(abbreviated as COPT ) denotes the offline optimal value. For an (semi-
)online problem, if there is no algorithm with competitive ratio less than ρ, then
ρ is a lower bound of the problem. If there is an algorithm whose competitive
ratio is equal to ρ, this algorithm is called an optimal online algorithm.

Given a feasible solution for the online hierarchical scheduling problem on two
machines, let Li be the load of machine Mi for i = 1, 2. There are three typical
objectives, makespan minimization, machine covering and early work maximiza-
tion. The makespan minimization problem [7] is to find a feasible schedule such
that max{L1, L2} is minimized. The machine covering problem [1] is to find a
feasible schedule such that min{L1, L2} is maximized. The early work maxi-
mization problem [3] is to find a feasible schedule such that

∑2
i=1 min{Li, d} is

maximized, where d is the common due date.
For the makespan minimization problem, Park et al. [7] and Jiang [5] inde-

pendently gave an optimal algorithm with competitive ratio of 5
3 . When the
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total processing time of all jobs is known in advance, Park et al. [7] proposed an
optimal online algorithm with competitive ratio of 3

2 . When the total processing
time of low-hierarchy jobs is known in advance, Chen et al. [2] and Luo and Xu
[6] independently presented an optimal online algorithm with competitive ratio
of 3

2 . When the total processing time of high-hierarchy jobs is known in advance,
Luo and Xu [6] presented an optimal online algorithm with competitive ratio of
20
13 . When both the total processing times of low-hierarchy and high-hierarchy
jobs are known in advance, Chen et al. [2] and Luo and Xu [6] independently
presented an optimal online algorithm with competitive ratio of 4

3 .
For the machine covering problem, Chassid and Epstein [1] proved that the

competitive ratio of any online algorithm is unbounded. When the total pro-
cessing time of all jobs is known in advance, Chassid and Epstein [1] proposed
an optimal online algorithm with competitive ratio of 2. When the total pro-
cessing time of low-hierarchy jobs is known in advance, Xiao et al. [8] presented
an optimal online algorithm with competitive ratio of 2. When both the total
processing times of low-hierarchy and high-hierarchy jobs are known in advance,
Xiao et al. [8] presented an optimal online algorithm with competitive ratio of
3
2 .

For the early work maximization problem on two identical machines, Chen
et al. [4] designed an optimal online algorithm with competitive ratio of

√
5 − 1.

When the total processing time of all jobs is known in advance, Chen et al.
[3] designed an optimal online algorithm with competitive ratio of 6

5 . For the
early work maximization problem on two hierarchical machines, Xiao et al. [9]
designed an optimal online algorithm with competitive ratio of

√
2. When the

total processing time of all jobs is known in advance, Xiao et al. [9] designed an
optimal online algorithm with competitive ratio of 4

3 .
In this paper, we consider the early work maximization problem with a com-

mon due date on two hierarchical machines, and presented some optimal semi-
online algorithms. The remainder of this paper is organized as follows. In Sect. 2,
we describe some preliminaries. In Sect. 3, we design an optimal online algorithm
with competitive ratio of

√
5−1 when the total processing time of low-hierarchy

jobs is known in advance. In Sect. 4, we design an optimal online algorithm with
competitive ratio of

√
5 − 1 when the total processing time of high-hierarchy

jobs is known in advance. In Sect. 5, we design an optimal online algorithm with
competitive ratio of 6

5 when both the total processing times of low-hierarchy
and high-hierarchy jobs are known in advance. We present some conclusions and
possible directions for future research in the last section.

2 Preliminaries

We are given two machines M1 and M2, and a series of jobs arriving online
which are to be scheduled irrevocably at the time of their arrivals. The arrival of
a new job occurs only after the current job is scheduled. Let J = {J1, J2, ..., Jn}
be the set of all jobs arranged in the order of arrival. Denote the j-th job as
Jj = (pj , gj), where the pj is the processing time (also called size) of the job Jj ,
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and gj ∈ {1, 2} is the hierarchy of the job Jj . If gj = k, we call Jj as a job of
hierarchy k, k ∈ {1, 2}. For the hierarchical scheduling problem, M1 can process
all jobs, and M2 can only process jobs of hierarchy 2.

As in [3,4], assume that all jobs have the same due date d > 0, and the job
processing time

pj ≤ d, for j = 1, 2, . . . , n.

The early work of job Jj is denoted by Xj ∈ [0, pj ]. If job Jj is completed
before the due date d, the job is called totally early, and Xj = pj . If the job Jj

starts at the time of Sj < d, but finishes after the due date d, the job is called
partially early, and Xj = d − Sj . If the job Jj starts at the time of Sj ≥ d, the
job is called totally late, and Xj = 0.

A schedule is actually a partition (S1, S2) of the job set J , such that S1∪S2 =
J and S1 ∩ S2 = ∅. Let Li =

∑
Jj∈Si

pj be the load of Mi, i ∈ {1, 2}. The object-
ive is to find a schedule such that total early work

X =
n∑

j=1

Xj =
2∑

i=1

min {Li, d}

is maximized. For convenience, this problem is denoted as the P2|GoS, online,
dj = d|max(X).

For i, k ∈ {1, 2} and j ∈ {1, 2, ..., n}, let Tk be the total size of the jobs with
hierarchy k, and Lj

i be the load of Mi after job Jj is scheduled. Let T be the
total size of the jobs. Clearly, we have

Ln
i = Li and T1 + T2 = T.

Consider the example given in Fig. 1, where the load of M1 is less than
d and the load of M2 is more than d. Hence, the total early work is X =
min {L1, d} + min {L2, d} = L1 + d.

0 L1 d
L1 < d

0 L2d
L2 > d

Fig. 1. The total early work is X = L1 + d

By the definition of X, we have

Lemma 1. The optimal value COPT satisfies that

COPT ≤ min {T1 + T2, 2d}.
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3 The Total Processing Time of Low-Hierarchy Jobs Is
Known

In this section, we consider the case where the total processing time of the low-
hierarchy jobs T1 is known in advance. For convenience, this problem is denoted
as P2|GoS, online, dj = d, T1|max(X). For this problem, we will give a lower
bound of

√
5−1, and design an online algorithm with competitive ratio of

√
5−1.

Theorem 2. Any online algorithm A for P2|GoS, online, dj = d, T1|max(X)
has a competitive ratio at least

√
5 − 1.

Proof. Let d =
√
5+1
2 and T1 = 1. The first two jobs are J1 = (1, 1) and

J2 = (1, 2). J1 can only be assigned to M1. If J2 is assigned to M1, then no more
jobs arrive. Hence, COPT = 2 and CA =

√
5+1
2 , implying that

COPT

CA
=

2
√
5+1
2

=
4√

5 + 1
=

√
5 − 1.

If J2 is assigned to M2, the last job J3 = (
√
5+1
2 , 2) arrives. Regardless of how

job J3 is allocated, COPT =
√

5 + 1 and CA =
√
5+1
2 + 1, implying that

COPT

CA
=

√
5 + 1

√
5+1
2 + 1

=
2(

√
5 + 1)√
5 + 3

=
2(2

√
5 − 2)
4

=
√

5 − 1.

Therefore, in any case, we have COPT

CA ≥ √
5 − 1, implying that the theorem

holds. �

For j = 1, 2, . . . , n, let Lj
1,2 be the total processing time of high-hierarchy jobs

assigned to machine M1, after job Jj is scheduled. The details of our algorithm
are as follows.

Theorem 3. The competitive ratio of Algorithm 1 is at most
√

5 − 1.

Proof. Based on Lemma 1, if min {L1, L2} ≥ d, we have CA = 2d ≥ COPT . If
max {L1, L2} ≤ d, we have CA = T1 + T2 ≥ COPT . It implies that we only need
to consider the case min {L1, L2} < d < max {L1, L2}, which implies that

CA = d + min {L1, L2}.

We distinguish the following two cases.

Case 1. max {L1, L2} = L1 > d.
In this case, we have CA = d + L2. If there is no job of hierarchy 2 assigned

to M1, we have L1 = T1 > d and L2 = T2 < d, implying that Algorithm 1
reaches the optimal. Else, let Jl = (pl, 2) be the last job of hierarchy 2 assigned
to M1. There are three possibilities in Algorithm 1 to allocate Jl to the M1.
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Algorithm 1:
1 Initially, let L0

1,2 = 0.
2 When a new job Jj = (pj , gj) arrives,
3 if gj = 1 then

4 Assign job Jj to M1, and let Lj
1,2 = Lj−1

1,2 .

5 else

6 if T1 ≥ (
√
5−1)d
2

then
7 Assign job Jj to M2.

8 else

9 if Lj−1
1,2 + T1 + pj ≤ (

√
5−1)d
2

then
10 Assign Jj to M1.

11 else

12 if (
√
5−1)d
2

< Lj−1
1,2 + T1 + pj ≤ (

√
5 − 1)d then

13 Assign Jj to M1, and assign the remaining hierarchy 2 jobs to
M2(if there are jobs after Jj).

14 else
15 Assign Jj to M2, and assign the remaining hierarchy 2 jobs to

M1(if there are jobs after Jj).

16 If there is another job, j == j + 1, go to step 2. Otherwise, stop.

If Jl is assigned to M1 at Line 10, from the choice of Algorithm 1, we have
L1 = Ll−1

1,2 + T1 + pl ≤ (
√
5−1)d
2 , which contradictions the fact L1 > d.

If Jl is assigned to M1 at Line 13, from the choice of Algorithm 1, we have
L1 = Ll−1

1,2 + T1 + pl ≤ (
√

5 − 1)d. By Lemma 1, we have

COPT

CA
≤ T1 + T2

d + L2
=

L1 + L2

d + L2
≤ (

√
5 − 1)d + L2

d + L2
≤

√
5 − 1.

If Jl is assigned to M1 at Line 15, let Jt = (pt, 2) be the job assigned to M2

at Line 15. From the choice of Algorithm 1, we have Lt−1
1,2 +T1 +pt > (

√
5−1)d

and T1 < (
√
5−1)d
2 . If Lt−1

1,2 = 0, then Lt−1
1,2 + T1 ≤ (

√
5−1)d
2 . If Lt−1

1,2 > 0, let
Jk = (pk, 2) be the last job assigned to M1 when the Jt arrives, according to the
choice of Algorithm 1, we known the Jk be assigned to M1 at Line 10. Thus, we
have Lt−1

1,2 + T1 = Lk−1
1,2 + T1 + pk ≤ (

√
5−1)d
2 . Therefore, L2 ≥ pt > (

√
5−1)d
2 . By

Lemma 1, we have

COPT

CA
≤ 2d

d + L2
≤ 2d

d + (
√
5−1)d
2

=
√

5 − 1.

Case 2. max {L1, L2} = L2 > d.
In this case, we have CA = d + L1. Let Jl = (pl, 2) be the last job assigned

to M2. There are three possibilities in Algorithm 1 to allocate Jl to the M2.
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If Jl is assigned to M2 at Line 7, from the choice of Algorithm 1, we have
L1 = T1 ≥ (

√
5−1)d
2 . Based on Lemma 1, we have

COPT

CA
≤ 2d

d + L1
≤ 2d

d + (
√
5−1)d
2

=
√

5 − 1.

If Jl is assigned to M2 at Line 13, let Jt = (pt, 2) be the job assigned to M1 at
Line 13. From the choice of Algorithm 1, we have L1 = Lt−1

1,2 +T1+pt > (
√
5−1)d
2 .

Based on Lemma 1, we have

COPT

CA
≤ 2d

d + L1
≤ 2d

d + (
√
5−1)d
2

=
√

5 − 1.

If Jl is assigned to M2 at Line 15, then Algorithm 1 does not run the
Lines 7 and 13. Because only the job Jl is assigned to M2 at Line 15, we have
L2 = pl ≤ d, which contradictions with the assumption L2 > d. �

4 The Total Processing Time of High-Hierarchy Jobs Is
Known

In this section, we consider the case where T2 is known in advance, which is
denoted as P2|GoS, online, dj = d, T2|max(X). For this problem, we will give a
lower bound of

√
5 − 1, and design an online algorithm with competitive ratio

of
√

5 − 1.

Theorem 4. Any online algorithm A for P2|GoS, online, dj = d, T2|max(X)
has a competitive ratio at least

√
5 − 1.

Proof. Let d =
√

5 + 1 and T2 = 4. The first job is J1 = (2, 2). If J1 is assigned
to M1, the last two jobs J2 = (2, 2) and J3 = (

√
5 + 1, 1) arrive. Therefore,

COPT = 2(
√

5 + 1) and CA ≤ √
5 + 3, implying that

COPT

CA
≥ 2(

√
5 + 1)√
5 + 3

=
2(2

√
5 − 2)
4

=
√

5 − 1.

If J1 is assigned to M2, the next job J2 = (2, 2) arrives. If J2 is assigned to
M2, then there is no more jobs arrive. Therefore, COPT = 4 and CA =

√
5 + 1,

implying that

COPT

CA
=

4√
5 + 1

=
√

5 − 1.

If J2 is assigned to M1, the last job J3 = (
√

5 + 1, 1) arrives. Therefore,
COPT = 2(

√
5 + 1) and CA =

√
5 + 3, implying that

COPT

CA
=

2(
√

5 + 1)√
5 + 3

=
2(2

√
5 − 2)
4

=
√

5 − 1.

Hence, in any case, we have COPT

CA ≥ √
5 − 1.

The details of our algorithm are as follows.
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Algorithm 2:
1 Initially, let L0

1,2 = 0.
2 When a new job Jj = (pj , gj) arrives,
3 if gj = 1 then

4 Assign the job Jj to M1, and set Lj
1,2 = Lj−1

1,2 .

5 else

6 if T2 ≤ (
√

5 − 1)d then
7 Assign the Jj to M2.

8 else

9 if T2 − Lj−1
1,2 − pj ≥ (

√
5−1)d
2

then
10 Assign the Jj to M1.

11 else

12 if T2 − Lj−1
1,2 ≤ (

√
5 − 1)d then

13 Assign the Jj to M2, and assign the remaining jobs to M2(if
there are jobs after Jj).

14 else
15 Assign the Jj to M2, and assign the remaining jobs to M1(if

there are jobs after Jj).

16 If there is another job, j == j + 1, go to step 2. Otherwise, stop.

Theorem 5. The competitive ratio of Algorithm 2 is at most
√

5 − 1.

Proof. As before, if min {L1, L2} ≥ d or max {L1, L2} ≤ d, Algorithm 2 reaches
the optimal. We only need to consider the case min {L1, L2} < d < max {L1, L2},
which implies that

CA = d + min {L1, L2}.

We distinguish the following two cases.

Case 1. max {L1, L2} = L1 > d.
In this case, we have CA = d + L2. If there is no job of hierarchy 2 assigned

to M1, we have L1 = T1 > d and L2 = T2 < d, which implies that Algorithm 2
reaches the optimal. Else, let Jl = (pl, 2) be the last job of hierarchy 2 assigned
to M1. There are two possibilities in Algorithm 2 to allocate Jl to the M1.

If Jl is assigned to M1 at Line 10, from the choice of Algorithm 2, we have
L2 = T2 − Ll−1

1,2 − pl ≥ (
√
5−1)d
2 . Based on Lemma 1, we have

COPT

CA
≤ 2d

d + L2
≤ 2d

d + (
√
5−1)d
2

=
√

5 − 1.

If Jl is assigned to M1 at Line 15, let Jt = (pt, 2) is the job assigned to M2

at Line 15, from the choice of Algorithm 2, we have T2 − Lt−1
1,2 − pt < (

√
5−1)d
2
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and T2 − Lt−1
1,2 > (

√
5 − 1)d. It implies L2 ≥ pt > (

√
5−1)d
2 . Based on Lemma 1,

we have

COPT

CA
≤ 2d

d + L2
≤ 2d

d + (
√
5−1)d
2

=
√

5 − 1.

Case 2. max {L1, L2} = L2 > d.
In this case, we have CA = d + L1. Let Jl = (pl, 2) be the last job assigned

to M2, there are three possibilities in Algorithm 2 to allocate Jl to the M2.
If Jl is assigned to M2 at Line 7, from the choice of Algorithm 2, we have

L2 = T2 ≤ (
√

5 − 1)d. Based on Lemma 1, we have

COPT

CA
≤ T1 + T2

d + L1
=

L1 + L2

L1 + d
≤ L1 + (

√
5 − 1)d

L1 + d
≤

√
5 − 1.

If Jl is assigned to M2 at Line 13, let Jt = (pt, 2) be the first job assigned
to M2 at Line 13. From the choice of Algorithm 2, we have L2 = T2 − Lt−1

1,2 ≤
(
√

5 − 1)d. Based on Lemma 1, we have

COPT

CA
≤ T1 + T2

d + L1
≤ L1 + L2

L1 + d
≤ L1 + (

√
5 − 1)d

L1 + d
=

√
5 − 1.

If Jl is assigned to M2 at Line 15, then Algorithm 2 does not run the
Lines 7 and 13. Because only the job Jl is assigned to M2 at Line 15, we have
L2 = pl ≤ d, which contradictions with the assumption L2 > d. �

5 The Total Processing Times of Low-Hierarchy
and High-Hierarchy Jobs Are Known

In this section, we consider the case where T1 and T2 are known in advance,
which is denoted as P2|GoS, online, dj = d, T1&T2|max(X). We will give a
lower bound 6

5 , and design an online algorithm with competitive ratio of 6
5 .

Theorem 6. Any online algorithm A for the P2|GoS, online, dj =
d, T1&T2|max(X) has a competitive ratio at least 6

5 .

Proof. Let d = 3n, T1 = 1 and T2 = 6n. The first three jobs are J1 = (1, 1),
J2 = (n, 2) and J3 = (n, 2). Job J1 can only be assigned to M1. If J2 and J3 are
assigned to the same machine, the last two jobs J4 = (2n, 2) and J5 = (2n, 2)
arrive, which implies that COPT = 6n and CA ≤ 5n + 1. Therefore,

COPT

CA
≥ 6n

5n + 1
=

6
5
(n → ∞).

Otherwise, the last job J4 = (4n, 2) arrives. Therefore, COPT = 5n + 1 and
CA ≤ 4n + 1, then

COPT

CA
≥ 5n + 1

4n + 1
=

5
4
(n → ∞).

Thus, COPT

CA ≥ 6
5 in any case. �
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Algorithm 3:
1 Initially, let L0

1,2 = 0.
2 When a new job Jj = (pj , gj) arrives,
3 if gj = 1 then

4 Assign job Jj to M1, and set Lj
1,2 = Lj−1

1,2 .

5 else

6 if T1 + Lj−1
1,2 + pj ≤ 6d

5
then

7 Assign job Jj to M1.

8 else

9 if T1 + Lj−1
1,2 ≥ max {pj , T2 − (Lj−1

1,2 + pj)} then
10 Assign job Jj to M2, and assign the remaining jobs to M2(if there

are jobs after Jj).

11 else

12 if pj ≥ max {T1 + Lj−1
1,2 , T2 − (Lj−1

1,2 + pj)} then
13 Assign job Jj to M2, and assign the remaining jobs to M1(if

there are jobs after Jj).

14 else
15 Assign job Jj to M1, and assign the remaining jobs to M2(if

there are jobs after Jj).

16 If there is another job, j == j + 1, go to step 2. Otherwise, stop.

The details of our algorithm are as follows.

Theorem 7. The competitive ratio of Algorithm 3 is at most 6
5 .

Proof. As before, if min {L1, L2} ≥ d or max {L1, L2} ≤ d, Algorithm 3 reaches
the optimal. We only need to consider the case min {L1, L2} < d < max {L1, L2},
which implies that

CA = d + min {L1, L2}.

We distinguish the following two cases.

Case 1. max {L1, L2} = L1 > d.
In this case, we have CA = d + L2. If there is no job of hierarchy 2 assigned

to M1, we have L1 = T1 > d and L2 = T2 < d, which implies that Algorithm 3
reaches the optimal. Else, let Jl = (pl, 2) be the last job of hierarchy 2 assigned
to M1, there are three possibilities in Algorithm 3 to allocate Jl to the M1.

If Jl is assigned to M1 at Line 7, from the choice of Algorithm 3, we have
L1 = T1 + Ll−1

1,2 + pl ≤ 6d
5 . Based on Lemma 1, we have

COPT

CA
≤ T1 + T2

d + L2
=

L1 + L2

d + L2
≤

6d
5 + L2

d + L2
≤ 6

5
.
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If Jl is assigned to M1 at Line 13, let Jt = (pt, 2) be the job assigned
to M2 at Line 13. From the choice of Algorithm 3, we have L2 ≥ pt ≥
max {T1 + Lt−1

1,2 , T2 − (Lt−1
1,2 + pt)}, which implies that L2 ≥ T1+T2

3 .
If Jl is assigned to M1 at Line 15, from the choice of Algorithm 3, we have

L2 = T2 − (Ll−1
1,2 + pl) ≥ max {pl, T1 + Ll−1

1,2 }, which implies that L2 ≥ T1+T2
3 .

When T1 + T2 ≤ 2d, based on Lemma 1, we have

COPT

CA
≤ T1 + T2

d + L2
≤ T1 + T2

T1+T2
2 + T1+T2

3

=
6
5
.

When T1 + T2 > 2d, based on Lemma 1, we have

COPT

CA
≤ 2d

d + L2
≤ 2d

d + 2d
3

=
6
5
.

Case 2. max {L1, L2} = L2 > d.
In this case, we have CA = d + L1. Let Jl = (pl, 2) be the last job assigned

to M2. There are three possibilities in Algorithm 3 to allocate Jl to the M2.
If Jl is assigned to M2 at Line 10, let Jt = (pt, 2) is the first job assigned

to M2 at Line 10. From the choice of Algorithm 3, we have L1 = T1 + Lt−1
1,2 ≥

max {pt, T2 − (Lt−1
1,2 + pt)}, this implies L1 ≥ T1+T2

3 .
When T1 + T2 ≤ 2d, based on Lemma 1, we have

COPT

CA
≤ T1 + T2

d + L1
≤ T1 + T2

T1+T2
2 + T1+T2

3

=
6
5
.

When T1 + T2 > 2d, based on Lemma 1, we have

COPT

CA
≤ 2d

d + L1
≤ 2d

d + 2d
3

=
6
5
.

If Jl is assigned to M2 at Line 13, then Algorithm 3 does not run the Lines 10
and 15. Because only the job Jl is assigned to M2 at Line 13, we have L2 = pl ≤ d,
which contradictions with the assumption L2 > d.

If Jl is assigned to M2 at Line 15, let Jt = (pt, 2) be the job assigned to M1

at Line 15, from the choice of Algorithm 3, we have L1 = T1 + Lt−1
1,2 + pt > 6d

5 ,
which contradictions with the assumption L1 < d. �

6 Discussion

In this paper, we considered the early work maximization problem on two hier-
archical machines. We present some optimal online algorithms when the total
processing time of low or (and) high hierarchy is known. It is interesting to design
optimal online algorithms for the early work maximization problem on three or
more hierarchical machines.

Acknowledgement. The work is supported in part by the National Natural Science
Foundation of China [No. 12071417], and Project for Innovation Team (Cultivation) of
Yunnan Province [No. 202005AE160006].
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Abstract. The problem of maximizing submodular functions has
received considerable attention in the last few years. However, most of
the submodular functions are defined on set. But recently some progress
has been made on the integer lattice. In this paper, we study stream-
ing algorithms for the problem of maximizing DR-submodular functions
with d-knapsack constraints on the integer lattice. We first propose a
one pass streaming algorithm that achieves a 1−θ

1+d
-approximation with

O( log(dβ−1)
βε

) memory complexity and O( log(dβ−1)
ε

log ‖b‖∞) update time
per element, where θ = min(α + ε, 0.5 + ε) and α, β are the upper and
lower bounds for the cost of each item in the stream. Then we devise
an improved streaming algorithm to reduce the memory complexity to
O( d

βε
) with unchanged approximation ratio and query complexity. As far

as we know, this is the first streaming algorithm on the integer lattice
under this constraint.

Keywords: Streaming algorithm · d-Knapsack constraints · Integer
lattice · DR-submodular maximization

1 Introduction

Submodular functions play a significant role in combinatorial optimization. Sup-
pose E is the ground set, a function f : 2E → R is called submodular if
f(A) + f(B) ≥ f(A ∪ B) + f(A ∩ B) for any A,B ⊆ E. The main reason
why submodular functions are widely used is that submodularity is equivalent
to diminishing returns property, i.e. for any S ⊆ T ⊆ E and e ∈ E \ T , it holds
f(S ∪ {e}) − f(S) ≥ f(T ∪ {e}) − f(T ). A set function f is called monotone if
f(S) ≤ f(T ) for any S ⊆ T ⊆ E. There are many applications to the problem
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of submodular maximization, such as the submodular welfare problem [7], the
influence maximization problem [3,4] and the sensor placement problem [9].

In the current big data environment, the input data of many applications is
much larger than the storage capacity of individual computer. In this case, we
need to process data by using streaming model, which is described as follows.
When each element in set E = {e1, e2, ..., en} arrives in order, the streaming algo-
rithm must decide whether to keep it before the next element arrives. Obviously,
streaming algorithm is different from other algorithms. Besides the approxima-
tion ratio and query complexity, the criteria to measure the quality of streaming
algorithm include memory complexity and the number of passes to scan all data.

There have been many results in the study of one pass streaming algorithm.
For the problem of maximizing submodular functions with a cardinality con-
straint, Badanidiyuru et al. [1] first obtained a 1/2-approximation streaming
algorithm with memory O(k log k/ε) and update time O(log k/ε) per element.
Later, Buchbinder et al. [2] devised a 1/4-approximation streaming algorithm
with an improved memory O(k). Norouzi-Fard et al. [10] proved that if the
memory is O(n/k), the approximation ratio of the streaming algorithm for this
problem will not be better than 1/2 unless P = NP . Based on [1], Kazemi
et al. [8] described a 1/2-approximation streaming algorithm with an improved
memory O(k/ε). For maximizing submodular functions under a knapsack con-
straint, Wolsey et al. [14] proposed a (1−1/eβ) ≈ 0.35-approximation streaming
algorithm, where β is the unique solution of equation ex = 2 − x. Yu et al. [15]
designed a one pass (1/3 − ε)-approximation streaming algorithm. Huang et al.
[6] obtained a (0.4 − ε)-approximation algorithm.

Submodular set functions are useful for solving problems with variable selec-
tion. But they can not solve problems that an element in the ground set is repeat-
edly selected. To address this situation, many papers have studied submodular
functions on multiset, also known as submodular functions on the integer lattice.
Different from set functions, submodularity defined on the integer lattice is not
equivalent to diminishing return property. Therefore, submodular functions on
the integer lattice can be divided into two types. A function f : ZE

+ → R is
called lattice submodular function if f(x ) + f(y) ≥ f(x ∨ y) + f(x ∧ y), for
any x ,y ∈ ZE , where ∨ and ∧ are coordinate-wise max and min. A function
f : ZE

+ → R is said to be diminishing return submodular (DR-submodular) if
f(x + Xe) − f(x ) ≥ f(y + Xe) − f(y), for any x ,y ∈ ZE with x ≤ y and
e ∈ E, where Xe denotes the unit vector with coordinate e being 1 and other
components are 0.

Maximizing DR-submodular functions on the integer lattice arises from many
applications, such as submodular welfare problem [5,7] and the budget allocation
problem with decreasing influence probabilities [11]. For maximizing a monotone
submodular function over the integer lattice subject to a knapsack constraint,
Soma et al. [11] introduced a pseudo-polynomial-time algorithm whose approx-
imation ratio is 1 − 1/e. Later, Soma et al. [12] maintained the approximation
ratio to 1 − 1/e and proposed polynomial time algorithms with a cardinality
constraint, a polymatroid constraint and a knapsack constraint on the integer
lattice, respectively.



Streaming Algorithms for Maximizing DR-Submodular Functions 161

In this paper, we study the streaming algorithm for maximizing DR-
submodular functions with d-knapsack constraints on the integer lattice. Let
b ∈ ZE

+ be an n-dimension integer vector, and [b] = {x ∈ Zn
+ | 0 ≤ x (ei) ≤

b(ei),∀1 ≤ i ≤ n} be the integer lattice domain. Let f : ZE
+ → R be a monotone

non-negative DR-submodular function defined on the integer lattice. Then the
constraint can be written as cT

j x ≤ Kj ,∀j ∈ [d] and x ≤ b. Where c ∈ ZE
+,

cT
j x =

∑
e∈{x} cj(e), {x} is a multiset in which item e is repeated x (e) times

and Kj is the budget of j-th knapsack.
Many literatures have studied the streaming algorithm of maximizing sub-

modular functions under d-knapsack constraints. Yu et al. [15] introduced a
one pass ( 1

1+2d − ε)-approximation streaming algorithm with memory complex-
ity O( b log b

dε ) and update time O( log b
ε ) per element, where b is the standard-

ized d-knapsack capacity. Later, Wang et al. [13] obtained a one pass 1−ε
1+d -

approximation streaming algorithm.

Our Contribution. In this paper, several streaming algorithms for maximizing
DR-submodular functions on the integer lattice with d-knapsack constraints are
proposed. When item e and its b(e) copies arrive, we utilize binary search to
decide the number of items kept. First, we give a one pass streaming algorithm
with approximate ratio 1−θ

1+d , memory complexity O( log(dβ−1)
βε ) and query com-

plexity O( log(dβ−1)
ε log ‖b‖∞) per element. Later, on the basis of this algorithm,

a new streaming algorithm named Accelerated-Streaming Algorithm is obtained,
which retains the approximation ratio and query complexity, but improves the
memory complexity to O( d

βε ).

2 Preliminaries

In this section we will introduce the notations and definitions to be used later.
Let E = {e1, e2, ..., en} be the ground set, and ei be the i-th item in the stream.
Denote b ∈ ZE

+ be an n-dimensional integer vector, and [b] = {x ∈ Zn
+ |

0 ≤ x (ei) ≤ b(ei),∀1 ≤ i ≤ n} be the integer lattice domain. For an integer
k, [k] denotes the set {1, 2, ..., k}. For an n-dimensional vector x , x (ei) is the
component value corresponding to the element ei. {x} denotes the multiset
corresponding to x , where the element ei repeats x (ei) times. Define supp+(x ) =
{e ∈ E | x (e) > 0}. Xei

is the unit vector, where ei corresponds to component
1 and the other components are 0. 0 is a vector with all zero components. For
vectors x ,y , we define f(x | y) = f(x + y) − f(y). x ∨ y and x ∧ y are
coordinate-wise max and min, respectively.

For j ∈ [d], cj(ei) which can be abbreviated as cij is the cost of element ei

in the j-th knapsack and cT
j x =

∑
e∈{x} cj(e). λ(e) ∈ [d] is the index of element

e. Let α = maxj∈[d],i∈[n] cij and β = minj∈[d],i∈[n] cij be the upper and lower
bounds of all element costs respectively, i.e. β ≤ cij ≤ α for j ∈ [d], i ∈ [n].
Denote Kj be the budget of j-th knapsack. For convenience, let Kj = 1 for
j ∈ [d], and the cost of any item is less than 1.
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In this paper, we study the maximization of DR-submodular functions under
d-knapsack constraints. Using the above notations, we give the specific expression
of the problem as follows.

max f(x )
s. t. cT

j x ≤ Kj ,∀j ∈ [d], (1)
x ≤ b.

3 Threshold-Streaming Algorithm for DR-Submodular
Maximization

In this section, we propose a one pass streaming algorithm for Problem (1). In
order to get a better output, we first design a streaming algorithm on the premise
that the optimal value of the problem is known. Then we use the traditional
method to estimate the optimal value, and propose the final one pass streaming
algorithm named Threshold-Streaming Algorithm.

3.1 A Streaming Algorithm with Known OPT

We assume that the optimal value OPT of Problem (1) is known. Then the
following algorithm is constructed to select vector x by using the optimal value
of Problem (1).

Overview of Algorithm. Suppose that we know a value v which satisfies
λOPT ≤ v ≤ OPT for some 0 < λ ≤ 1. Algorithm 1 works in two parts. First
it records the current best singleton of the stream data. Next, when element ei

and its b(ei) copies arrive, we utilize the binary search with threshold τ = v
1+d

to get a appropriate li which satisfies

f(liXei
|x )

cT
j (liXei

)
≥ v

1 + d
, for any j ∈ [d],

and
f((li + 1)Xei

|x )
cT

j ((li + 1)Xei
)

<
v

1 + d
, for some j ∈ [d].

If it satisfies the d-knapsack constraints, we add liXei
to the current solution x .

Finally, it outputs the best value of the above two parts.

Lemma 1. Given vectors x,y and xi ∈ ZE
+, i = 1, 2, ..., n with y ≤ x ≤ b, then

we have

f(x +
n∑

i=1

xi) − f(x) ≤
n∑

i=1

[f(y + xi) − f(y)]. (2)
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Algorithm 1. Streaming-Know-OPT
Require: function f , cost cj , ground set E and v such that λOPT ≤ v ≤ OPT
1: x ← 0, emax ← ∅, b(emax) ← 0
2: for i = 1, 2, ..., n do
3: if f(b(ei)Xei) > f(b(emax)Xemax) then
4: emax ← ei, b(emax) ← b(ei)
5: end if
6: if cT

j x ≤ 1, j ∈ [d] then
7: li ← Binary Search (f, x, b, ei, cj , d, v

1+d
)

8: if cT
j (x + liXei) ≤ 1, j ∈ [d] then

9: x ← x + liXei

10: end if
11: end if
12: end for
13: return x̂ ← arg max(f(b(emax)Xemax), f(x))

Algorithm 2. Binary Search
Require: function f , x, b, ei, cj , d, τ
1: ls ← 1, lt ← (b(e) − x(e))

2: if
f(ltXei

|x)
cT
j (ltXei

)
≥ τ then

3: return lt
4: end if
5: if

f(Xei
|x)

cj(ei)
< τ then

6: return 0
7: end if
8: while lt > ls + 1 do
9: m = � ls+lt

2
	

10: if
f(mXei

|x)
cT
j (mXei

)
≥ τ then

11: ls = m
12: else
13: lt = m
14: end if
15: end while
16: return ls

Lemma 2. Let x be the vector returned by line 9 of Algorithm 1 in the last
iteration and x∗ be the optimal solution, then there must exist λ(e) ∈ [d] such
that

f(Xe | x) <
cλ(e)(e)v

1 + d
, for e ∈ {x∗} \ {x}.

Lemma 3. Denote x be the vector returned by line 9 of Algorithm 1 in the last
iteration, then we have

f(x) ≥ λ(1 − α)
1 + d

OPT,

where α is the upper bound for the cost of each item in the stream.
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Proof. Let x i be the vector x at the end of iteration i of Algorithm 1 with an
initial solution x 0 = 0. We assume that supp+{x i} = {e1, e2, ..., ei}. Let li be
the output of Algorithm 2 when ei and its copies arrive. Then x i can be denoted
as x i = l1Xe1 + ... + liXei

. According to Algorithm 1, we have

f(liXei
| x i−1)

cT
j (liXei

)
≥ v

1 + d
, for j ∈ [d].

Then for any j ∈ [d], we can obtain

f(x ) = f(l1Xe1 + ... + lnXen
)

= f(xn) − f(xn−1) + f(xn−1) − f(xn−2) + ... + f(x 1) − f(x 0)

=
n∑

t=1

f(ltXet
| x t−1)

≥
n∑

t=1

cT
j (ltXet

) · v

1 + d

= cT
j x

v

1 + d
.

Denote γ = maxj∈[d] c
T
j x be the maximal cost of x in d knapsacks. Thus we

have f(x ) ≥ v
1+dγ.

Next, we split the proof into two cases according to the value of γ.

Case 1. We consider the case γ ≥ (1 − α). Then we have

f(x ) ≥ γv

1 + d
≥ (1 − α)v

1 + d
≥ λ(1 − α)

1 + d
OPT.

Case 2. We consider the case γ < (1−α). Denote x ∗ be the optimal solution of
Problem (1). It is clear that for any e ∈ {x ∗}\{x}, x+Xe is a feasible solution. By
Lemma 2 we can see there must exist λ(e) ∈ [d] satisfying f(Xe | x ) <

cλ(e)(e)v

1+d
for any e ∈ {x ∗} \ {x}. Define E∗

j = {e|e ∈ {x ∗} \ {x} ∧ λ(e) = j} and
x ∗

j =
∑

e∈E∗
j

Xe. We have

f(x + x ∗
j ) − f(x ) ≤

∑

e∈{x∗
j }

f(Xe | x ) ≤
∑

e∈{x∗
j }

cj(e)v
1 + d

=
v

1 + d
cT

j x
∗
j ≤ v

1 + d
,

where the last inequality follows from the fact that Kj = 1 for j ∈ [d].
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Then, by Lemma 1 and the fact that {x ∗}\{x} = ∪d
j=1{x ∗

j}, i.e. (x ∗ −x ) ∨
0 =

∑d
j=1 x

∗
j , we have

f(x + x ∗) − f(x ) ≤
d∑

j=1

(f(x + x ∗
j ) − f(x )) ≤ d · v

1 + d
. (3)

Due to the monotonicity of f , we have f(x + x ∗) ≥ f(x ∗) = OPT . By
rearranging inequality (3) and utilizing the assumption that v ≤ OPT , we have
f(x ) ≥ 1

1+dOPT.
From the above two cases, we have

f(x ) ≥ min{λ(1 − α)
1 + d

,
1

1 + d
}OPT =

λ(1 − α)
1 + d

OPT.

Lemma 4. When α > 0.5, we have f(x̂) ≥ λ
2(1+d)OPT , where x̂ is the final

output returned by Algorithm 1 and α is the upper bound for the cost of each
item in the stream.

Proof. According to the relation between γ and 0.5, we divide the proof into two
cases.

Case 1. When γ ≥ 0.5, it is obvious that γ ≥ (1 − α). The problem is trans-
formed into Case 1 in Lemma 3. Thus we have

f(x ) ≥ γv

1 + d
OPT ≥ λ

2(1 + d)
OPT.

Case 2. When γ < 0.5, the following proof proceeds in two cases depending on
the reason why e ∈ {x ∗} \ {x} is not added to x . One is there exist some j ∈ [d]
such that e does not pass the threshold condition in Algorithm 1, the other is
that it does not satisfy the d-knapsack constraints when it is added to x .

1. When γ < (1 − α), for e ∈ {x ∗} \ {x}, x + Xe satisfies the d-knapsack
constraints. Thus there must exist some j ∈ [d] such that f(Xe|x e) <

cj(e)v
1+d ,

which is similar to the Case 2 in Lemma 3. Then we have

f(x ) ≥ 1
1 + d

OPT.

2. e ∈ {x ∗} \ {x} satisfies the threshold condition in Algorithm 1, but adding
it breaks the d-knapsack constraints. Then for some j ∈ [d] we have

f(leXe | x e) ≥ cT
j (leXe)v
1 + d

, (4)

and
cT

j (x e + leXe) > 1. (5)
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By rearranging inequality (4), we have

f(x e + leXe) ≥ f(x e) + f(leXe | x e)

≥ v

1 + d
(cT

j x e + cT
j (leXe))

≥ v

1 + d
,

where the second inequality holds due to the definition of x e and inequality
(4), the last inequality holds due to the inequality (5).
Then using the monotonicity and DR-submodularity of f , we have

v

1 + d
≤ f(x e + leXe) ≤ f(x e) + f(leXe) ≤ f(x ) + f(b(emax)Xemax

).

Thus we have f(x ) ≥ v
2(1+d) or f(b(emax)Xemax

) ≥ v
2(1+d) .

Consequently, from the above two cases we have f(x̂ ) = max{f(x ), f(b(emax)
Xemax

)} ≥ v
2(1+d) ≥ λ

2(1+d)OPT .

By applying Lemma 3 and Lemma 4, we obtain the following result.

Theorem 1. Denote x̂ be the final solution returned by Algorithm 1, for any
λ ∈ (0, 1] we have

f(x̂) ≥

⎧
⎪⎪⎨

⎪⎪⎩

λ(1 − α)
1 + d

OPT , α ≤ 0.5,

λ

2(1 + d)
OPT , α > 0.5,

(6)

where OPT is the optimal solution of Problem (1) and α is the upper bound for
the cost of each item in the stream.

Theorem 2. Algorithm 1 requires only one pass, at most β−1 space and
O(log ‖b‖∞) update time per element, where β is the lower bound for the cost of
each item in the stream.

3.2 The Threshold-Streaming Algorithm

Algorithm 1 works on the assumption that OPT is known, which is unrealistic.
To solve this problem, we utilize a traditional method to estimate OPT . When
item ei and its copies arriving, we use sequence Vi = {(1 + ε)s | s ∈ Z,m ≤
(1 + ε)s ≤ M(1 + d)} to estimate OPT . For each v ∈ Vi, Algorithm 3 runs in
parallel and finally outputs the best solution.

Lemma 5. There must exist a guess v ∈ V such that (1 − ε)OPT ≤ v ≤ OPT .

Obviously, Lemmas 3 and 4 also work for Algorithm 3. Thus, by Lemmas 3,
4 and 5, we get the following results.
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Algorithm 3. Threshold-Streaming/DR-Submodular
Require: function f , cost cj , ground set E, b and ε ∈ (0, 1)
1: V = {(1 + ε)s|s ∈ Z}
2: for each v ∈ V , set xv ← 0
3: Initialize m, M ← 0 and emax ← ∅, b(emax) ← 0
4: for i = 1, 2, ..., n do
5: if f(b(ei)Xei) > f(b(emax)Xemax) then
6: emax ← ei, b(emax) ← b(ei)
7: end if
8: αi = max∀j∈[d] cij , βi = min∀j∈[d] cij

9: if
f(Xei

)

βi
> M then

10: M ← f(Xei
)

βi
and m ← f(Xei)

11: Vi = {(1 + ε)s|s ∈ Z, m ≤ (1 + ε)s ≤ M(1 + d)}
12: Delete xv if v /∈ Vi

13: end if
14: for all v ∈ Vi do
15: li ← Binary Search (f, xv, b, ei, cj , d, v

1+d
)

16: if cj(x
v + liXei) ≤ 1, j ∈ [d] then

17: xv ← xv + liXei

18: end if
19: end for
20: end for
21: x ← arg maxv∈Vn f(xv)
22: return x̃ ← arg max(f(b(emax)Xemax), f(x))

Theorem 3. Denote x̃ be the final solution returned by Algorithm 3, then we
have f(x̃) ≥ 1−θ

1+dOPT , where θ = min(α + ε, 0.5 + ε) and α is the upper bound
for the cost of each item in the stream.

Theorem 4. Algorithm 3 requires only one pass, at most O( log(dβ−1)
βε ) space and

O( log(dβ−1)
ε log ‖b‖∞) update time per element, where β is the lower bound for

the cost of each item in the stream.

Proof. For each item ei, the number of parameters v in Vi is �log(1+ε) β−1(1 +
d)�. In the final solution, at most β−1 items can be selected, thus the memory
of Algorithm 3 is O( log(dβ−1)

βε ). Further, for each item e, the time complexity
of Algorithm 2 is O(log ‖b‖∞). Thus, the query complexity of Algorithm 3 is
O( log(dβ−1)

ε log ‖b‖∞) update time per element.
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Algorithm 4. Accelerated-Streaming/DR-Submodular
Require: function f , cost cj , ground set E, b and ε ∈ (0, 1)
1: V = {(1 + ε)s|s ∈ Z}
2: for each v ∈ V , set xv ← 0
3: Initialize m, M, ϕ, ω ← 0 and emax ← ∅, b(emax) ← 0
4: for i = 1, 2, ..., n do
5: if f(b(ei)Xei) > f(b(emax)Xemax) then
6: emax ← ei, b(emax) ← b(ei)
7: end if
8: αi = max∀j∈[d] cij , βi = min∀j∈[d] cij

9: if
f(Xei

)

βi
> M then

10: M ← f(Xei
)

βi
, m ← f(Xei) and ϕ ← max{m, ω}

11: Vi = {(1 + ε)s|s ∈ Z, ϕ ≤ (1 + ε)s ≤ M(1 + d)}
12: Delete xv if v /∈ Vi

13: end if
14: for all v ∈ Vi do
15: li ← Binary Search (f, xv, b, ei, cj , d, v

1+d
)

16: if cj(x
v + liXei) ≤ 1, j ∈ [d] then

17: xv ← xv + liXei

18: end if
19: end for
20: ω ← maxv∈Vi{ω, f(xv)}
21: end for
22: x ← arg maxv∈Vn f(xv)
23: return x̃ ← arg max(f(b(emax)Xemax), f(x))

4 Accelerated-Streaming Algorithm for DR-Submodular
Maximization

In this section, we propose a new algorithm by modifying Algorithm 3 to improve
the memory complexity. In each iteration, we reduce the sequence of OPT esti-
mates, namely Vi, so as to reduce the memory. The specific process of streaming
algorithm is as follows.

Theorem 5. For any ε ∈ (0, 1), Algorithm 4 is a one pass 1−θ
1+d -approximation

streaming algorithm with an improved memory O( d
βε ) and O( log(dβ−1)

ε log ‖b‖∞)
update time per element, where θ = min(α + ε, 0.5 + ε) and α, β are the upper
and lower bounds for the cost of each item in the stream, respectively.
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Abstract. In this paper, we study a new stochastic submodular maxi-
mization problem with state-dependent costs and rejections. The input
of our problem is a budget constraint B, and a set of items whose states
(i.e., the marginal contribution and the cost of an item) are drawn from a
known probability distribution. The only way to know the realized state
of an item is to probe that item. We allow rejections, i.e., after probing an
item and knowing its actual state, we must decide immediately and irre-
vocably whether to add that item to our solution or not. Our objective
is to sequentially probe/select a best group of items subject to a budget
constraint on the total cost of the selected items. We present a constant
approximate solution to this problem. We show that our solution can be
extended to an online setting.

Keywords: Stochastic submodular maximization · State-dependent
costs · Knapsack constraints

1 Introduction

In this paper, we study a new stochastic submodular maximization problem. We
introduce the state-dependent item costs and rejections into the classic stochas-
tic submodular maximization problem. The input of our problem is a budget
constraint B, and a set of items whose states are drawn from a known probabil-
ity distribution. The marginal contribution and the cost of an item is dependent
on its actual state. We must probe an item in order to reveal its actual state.
After probing an item and knowing its actual state, one must decide immediately
and irrevocably whether to add that item to our solution or not. Our objective
is to sequentially probe/select a best group of items subject to a budget con-
straint on the total cost of the selected items. We present a constant approximate
solution to this problem. Perhaps surprisingly, our algorithm also applies to an
online setting described as follows: suppose there is a sequence of items arriving
in an adversarial order, on the arrival of an item, we must decide immediately
and irrevocably whether to select it or not after seeing its realization. For this
online decision problem, our algorithm achieves the same approximation ratio
as obtained under the offline setting.
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Related Works. Stochastic submodular maximization has been extensively stud-
ied recently [5,6,8]. However, most of existing works assume that the cost of an
item is deterministic and pre-known. We relax this assumption by introducing
the state-dependent item cost. In particular, we assume that the actual cost of
an item is decided by its realized state. We must probe an item in order to know
its state. When considering linear objective function, our problem reduces to
the stochastic knapsack problem with rejections [9]. [9] gave a constant approxi-
mate algorithm for this problem. Recently, [7] studied the stochastic submodular
maximization problem with performance-dependent costs, however, their model
does not allow rejections. Therefore, our problem does not coincide with their
work. Moreover, it is not immediately clear how to extend their algorithm to
online setting. Our work is also closely related to submodular probing problem
[1], however, they assume each item has only two states, i.e., active or inactive,
we relax this assumption by allowing each item to have multiple states and the
item cost is dependent on its state. Furthermore, their model does not allow
rejections, i.e., one can not reject an active item after it has been probed.

2 Preliminaries and Problem Formulation

Lattice-Submodular Functions. Let [I] = {1, 2, · · · , I} be a set of items and
[S] = {1, 2, · · · , S} be a set of states. Given two vectors u, v ∈ [S][I], u ≤ v
means that u(i) ≤ v(i) for all i ∈ [I]. Define (u ∨ v)(i) = max{u(i), v(i)} and
(u ∧ v)(i) = min{u(i), v(i)}. For each i ∈ [I], define 1i as the vector that has a 1
in the i-th coordinate and 0 in all other coordinates. A function f : [S][I] → R+

is called monotone if f(u) ≤ f(v) holds for any u, v ∈ [S][I] such that u ≤ v, and
f is called lattice submodular if f(u ∨ s1i) − f(u) ≥ f(v ∨ s1i) − f(v) holding
for any u, v ∈ [S][I], s ∈ [S], i ∈ [I].

Items and States. We let vector Φ ∈ [S][I] denote random states of all items.
For each item i ∈ [I], let Φ(i) ∈ [S] denote the random state of item i. Let
φ(i) denote a realization of Φ(i). The state of each item is unknown initially,
one must probe an item before observing its realization. We allow rejections,
i.e., after probing an item and knowing its state, we must decide immediately
and irrevocably whether to pick that item or not. We assume there is a known
prior probability distribution Di over realizations for each item i ∈ [I], i.e., Di =
{Pr[Φ (i) = s] : s ∈ [S]}. The states of all items are decided independently at
random, i.e., φ is drawn randomly from the product distribution D =

∏
i∈[I] Di.

For each (i, s) ∈ [I] × [S], we use ci(s) to denote the cost of an item i when its
state is s.

Assumption 1. We assume that ci(s) ≥ ci(s′) for any i ∈ I and s, s′ ∈ [S]
such that s ≥ s′, i.e., the cost of an item is larger if it is in a “better” state.

The above assumption can also be found in [7]. For each set of item-state
pairs U ⊆ [I] × [S], we define a vector u ∈ [S][I] such that u(i) = 0 if (i, s) /∈ U ,
otherwise u(i) = max{s | (i, s) ∈ U}. Now we are ready to introduce a set
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function h over a new ground set [I]× [S]: consider an arbitrary set of item-state
pairs U ⊆ [I]× [S], define h(U) = f(u). It is easy to verify that if f is monotone
and lattice-submodular, then h is monotone and submodular. Given an I × S
matrix x, we define the multilinear extension H of h as:

H(x) =
∑

U⊆[I]×[S]

h(U)
∏

(i,s)∈U

xis

∏

(i,s)/∈U

(1 − xis)

The value H(x) is the expected value of h(R) where R is a random set obtained
by picking each element (i, s) ∈ [I] × [S] independently with probability xis.

Adaptive Policy and Problem Formulation. We model the adaptive strategy of
probing/picking items through a policy π. Formally, a policy π is a function that
specifies which item to probe/pick next based on the observations made so far.
Consider an arbitrary policy π, assume that conditioned on Φ = φ, π picks a set
of items (and corresponding states) G(π, φ) ⊆ [I]×[S]1. The expected utility of π
is f(π) =

∑
φ Pr[Φ = φ]h(G(π, φ)). We say a policy π is feasible if for any φ such

that Pr[Φ = φ] > 0,
∑

(i,s)∈G(π,φ) ci(s) ≤ B where B a budget constraint. Our
goal is to identify the best feasible policy that maximizes its expected utility:

max
π

f(π) subject to π is feasible.

3 Algorithm Design

We next describe our algorithm and analyze its performance. Our algorithm is
based on the contention resolution scheme [4], which is proposed in the context of
submodular maximization with deterministic item cost. We extend their design
by considering state-dependent item cost and rejections. Our algorithm, called
StoCan, is composed of two phases.

The first phase is done offline, we use the continuous greedy algorithm (Algo-
rithm 1) to compute a fractional solution over a down monotone polytope. The
framework of continuous greedy algorithm is first proposed by [2] in the con-
text of submodular maximization subject to a matroid constraint. In particular,
Algorithm 1 maintains an I × S matrix y(t), starting with y(0) = 0. Let R(t)
contain each (i, s) independently with probability yis(t). For each (i, s) ∈ [I]×[S],
estimate its weight ωis as follows

ωis = E[h(R(t) ∪ {(i, s)})] − E[h(R(t))]

For each pair of i and s, let pi(s) denote Pr[Φ(i) = s] for short. Solve the
following linear programming problem LP and obtain the optimal solution xLP ,
then update the fractional solution at round t as ∀(i, s) ∈ [I] × [S], yis(t + δ) =
yis(t) + xLP

is .

1 For simplicity, we only consider deterministic policy. However, all results can be
easily extended to random policies.
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LP: Maximize
∑

(i,s)∈[I]×[S] ωisxis

subject to:

{
∀(i, s) ∈ [I] × [S] : xis ≤ pi(s)
∑

(i,s)∈[I]×[S] xisci(s) ≤ B

After 1/δ rounds, y(1/δ) is returned as the final solution. In the rest of this
paper, let y denote y(1/δ) for short.

In the second phase, we implement a simple randomized policy based on
y. Our policy randomly picks a policy from πsmall (Algorithm 2) and πlarge

(Algorithm 3) with equal probability to execute. If πsmall is picked, we discard
all large items whose cost is larger than B/2 (Line 5 in Algorithm 2), and add
the rest of items according to the corresponding distribution in (scaled) y (Line
8 in Algorithm 2). If Algorithm πlarge is picked, we discard all small items whose
cost is no larger than B/2 (Line 5 in Algorithm 3), and add the rest of items
according to the corresponding distribution in (scaled) y (Line 8 in Algorithm 3).

Algorithm 1. Continuous Greedy
1: Set δ = 1/(IS)2, t = 0, f(∅) = 0,y(0) = 0.
2: while t < 1 do
3: Let R(t) contain each (i, s) ∈ [I] × [S] independently with probability yis(t).
4: For each (i, s) ∈ [I] × [S], estimate ωis = E[h(R(t) ∪ {(i, s)})] − E[h(R(t))];
5: Solve the following linear programming problem and obtain the optimal solution

xLP

6: LP: Maximize
∑

(i,s)∈[I]×[S] ωisxis

subject to:

{
∀(i, s) ∈ [I] × [S] : xis ≤ pi(s)
∑

(i,s)∈[I]×[S] xisci(s) ≤ B

7: Let yis(t + δ) = yis(t) + xLP
is ;

8: Increment t = t + δ;
9: return y(1/δ);

We next provide the main theorem of this paper.

Theorem 1. Let π∗ denote the optimal policy, the expected utility achieved by
StoCan is at lest 1−1/e

16 f(π∗).

Before presenting the proof of Theorem 1, we first introduce four preparation
lemmas.

Lemma 1. Let y denote the fractional solution returned from Algorithm 1,
H(y) ≥ (1 − 1/e)f(π∗).
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Algorithm 2. πsmall

1: Set G = ∅, i = 1.
2: while i ≤ n do
3: probe item i and observe its state s
4: if ci(s) > B/2 then
5: i = i + 1; {discard all large items}
6: else
7: if the remaining budget is no less than ci(s) then
8: add (i, s) to G with probability yis/4pi(s);
9: i = i + 1;
10: return G;

Algorithm 3. πlarge

1: Set G = ∅, i = 1.
2: while i ≤ n do
3: probe item i and observe its state s
4: if ci(s) ≤ B/2 then
5: i = i + 1; {discard all small items}
6: else
7: if the remaining budget is no less than ci(s) then
8: add (i, s) to G with probability yis/4pi(s);
9: i = i + 1;
10: return G;

Proof. Given π∗, for each item-state pair (i, s) ∈ [I] × [S], let y∗
is denote the

probability that Φ(i) = s and i is picked by π∗. Clearly, ∀(i, s) ∈ [I] × [S] : y∗
is ≤

pi(s). Moreover, consider a fixed realization φ, for each (i, s) ∈ [I]×[S], let 1i,s be
an indicator that φ(i) = s and i is picked by π∗, we have

∑
(i,s)∈[I]×[S] 1i,sci(s) ≤

B, Thus,

E[
∑

(i,s)∈[I]×[S]

1i,sci(s)] =
∑

(i,s)∈[I]×[S]

E[1i,s]ci(s) =
∑

(i,s)∈[I]×[S]

y∗
isci(s) ≤ B

where the expectation is taken over Φ with respect to D. It follows that y∗ is
a feasible solution to LP. Define 1is as the matrix that has a 1 in the (i, s)-th
entry and 0 in all other entries. Let hV ((i, s)) = h(V ∪ {(i, s)}) − h(V ) and
Hy(t)((i, s)) = H(y(t) ∨ 1is) − H(y(t)) denote the marginal utility of (i, s) with
respect to V and y(t), respectively. We next bound the increment of H(y(t))
during one step of Algorithm 1.

f(π∗) ≤ min
V ⊆[I]×[S]

⎛

⎝h(V ) +
∑

(i,s)∈[I]×[S]

y∗
ishV ((i, s))

⎞

⎠ (1)

≤ H(y(t)) +
∑

(i,s)∈[I]×[S]

y∗
isHy(t)((i, s)) (2)
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≤ H(y(t)) +
∑

(i,s)∈[I]×[S]

xLP
is Hy(t)((i, s)) (3)

The first inequality is proved in [2]. The third inequality is due to xLP is an
optimal solution to LP. Then this lemma follows from the standard analysis on
submodular maximization.

Given the fractional solution y returned from Algorithm 1, we next intro-
duce two new fractional solutions y and y. Define yis = yis if ci(s) ≤ B/2,
otherwise, yis = 0. Define y

is
= yis if ci(s) > B/2, otherwise, y

is
= 0. Due to

the submodularity of h, we have the following lemma.

Lemma 2. H(y) + H(y) ≥ H(y)

We next bound the expected utility achieved by πsmall.

Lemma 3. f(πsmall) ≥ H(y)/8

Proof. Consider a modified version of πsmall by removing Line 7, that is, after
probing an item i and observing its state s, if ci(s) ≤ B/2, we select i with
probability yis/4pi(s) regardless of the remaining budget, otherwise, we discard
i. Denote by G′ the returned solution from the modified πsmall. It is easy to
verify that for each (i, s) ∈ [I] × [S] with ci(s) ≤ B/2, the probability that (i, s)
is included in G′ is pi(s)yis/4pi(s) = yis/4. Notice that since each item i can
only have one state, the event that (i, s) is included in G′ is not independent
from the event that (i, s′) is included in G′ where s′ is a different state from s
and ci(s′) ≤ B/2. However, as shown in Lemma 3.7 in [2], this dependency does
not degrade the expected utility, i.e., E[h(G′)] ≥ H(y/4). Due to H is concave
along any nonnegative direction [2], we have H(y/4) ≥ H(y)/4. It follows that

E[h(G′)] ≥ H(y/4) ≥ H(y)/4 (4)

Next we focus on proving that

f(πsmall) = E[h(G)] ≥ E[h(G′)]/2 (5)

This lemma follows from (4) and (5).
Recall that if the remaining budget is no less than ci(s), πsmall adds (i, s)

to G. Because y is a feasible solution to LP, y is also a feasible solution to LP,
it implies that

∑
(i,s)∈[I]×[S] yis

ci(s)/4 ≤ B/4. According to Markov’s inequal-
ity, the probability that the remaining budget is less than B/2 is at most 1/2.
Because we assume ci(s) ≤ B/2, the probability that the remaining budget is
less than ci(s) is at most 1/2. Thus, the probability that (i, s) is included in G
is at least yis/8.

Let G[i] (resp. G′[i]) denote all item-state pairs in G (resp. G′) that involve
items in [i], i.e., G[i] = G ∩ {(j, s) | j ∈ [i], s ∈ [S]} and G′[i] = G′ ∩ {(j, s) | j ∈
[i], s ∈ [S]}. We next prove that for any i ∈ [I],

E[h(G[i]) − h(G[i − 1])] ≥ 1
2
E[h(G′[i]) − h(G′[i − 1])] (6)



176 S. Tang

Notice that (6) implies (5) due to E[h(G)] = h(∅) +
∑n

i=1 E[h(G[i]) − h(G[i −
1])] ≥ f(∅) +

∑n
i=1

1
2E[h(G′[i]) − h(G′[i − 1])] = E[h(G′)]/2.

We first give an lower bound on E[h(G[i]) − h(G[i − 1])]. For each (i, s) ∈
[I] × [S], let 1(i,s)∈G be the indicator that (i, s) is included in G.

E[h(G[i]) − h(G[i − 1])]

=
∑

s∈[S]

E
[
1(i,s)∈G

(
h(G[i − 1] ∪ (i, s)) − h(G[i − 1])

)]

≥
∑

s∈[S]

E
[
1(i,s)∈G

(
h(G′[i − 1] ∪ (i, s)) − h(G′[i − 1])

)]

≥
∑

s∈[S]

E
[
1(i,s)∈G

]
E [h(G′[i − 1] ∪ (i, s)) − h(G′[i − 1])]

≥
∑

s∈[S]

yis

8
E [h(G′[i − 1] ∪ (i, s)) − h(G′[i − 1])]

The first inequality is due the submodularity of f . The second inequality follows
from the same proof (monotonicity part) of Theorem 5 in [7] and Assumption
1. Moreover,

E[h(G′[i]) − h(G′[i − 1])] =
∑

s∈[S]

yis

4
E [h(G′[i − 1] ∪ (i, s)) − h(G′[i − 1])]

Based on the above discussions, we have E[h(G[i])−h(G[i−1])] ≥ 1
2E[h(G′[i])−

h(G′[i − 1])]. This finishes the proof of (6) and hence (5).

Now consider the second option πlarge. In the following lemma, we prove that
the expected utility achieved by πlarge is at least H(y)/8.

Lemma 4. f(πlarge) ≥ H(y)/8.

Proof. Because y is a feasible solution to LP, y is also a feasible solution to LP,
it implies that

∑
(i,s)∈[I]×[S] yisci(s)/4 ≤ B/4. Since we only consider those (i, s)

whose cost is larger than B/2, the probability that G = ∅ is at least 1/2. Consider
any (i, s) ∈ [I] × [S], conditioned on G[i − 1] = ∅, the probability that (i, s) is
included in G is at least yis/4. Thus, the probability that (i, s) is included in G
is at least yis/8. Recall that πlarge only picks large items, G contains at most
one item (and its state) due to budget constraint. Thus, the expected utility of
πlarge is at least f(πlarge) ≥ ∑

(i,s)∈[I]×[S]
yish((i,s))

8 . Due to the submodularity
of h and Lemma 3.7 in [2], we have

∑
(i,s)∈[I]×[S] yish((i, s))/8 ≥ H(y/8). Since

H is concave along any nonnegative direction [2], we have H(y/8) ≥ H(y)/8,
thus f(πlarge) ≥ H(y)/8.

Proof of Theorem 1: Now we are ready to present the proof of Theorem 1.
Based on Lemma 3 and 4, we have f(πsmall) + f(πlarge) ≥ H(y)+H(y)

8 . This,
together with Lemma 2, implies that f(πsmall) + f(πlarge) ≥ H(y)

8 . Because
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H(y) ≥ (1 − 1/e)f(π∗) as proved in Lemma 1, we have f(πsmall) + f(πlarge) ≥
1−1/e

8 f(π∗). Since StoCan randomly picks one policy from πsmall and πlarge to
execute, the expected utility of StoCan is at least 1−1/e

16 f(π∗).

4 Extension to Online Setting: a Variant of Submodular
Prophet Inequalities

One nice feature about StoCan is that the implementation of πsmall and πlarge

does not require any specific order of items. Therefore, StoCan can be imple-
mented in an online setting described as follows: suppose there is a sequence of
items arriving with different states, on the arrival of an item, we observe its state
and decide immediately and irrevocably whether to select it or not subject to a
budget constraint. In this sense, the online version of our problem can be viewed
as a variant of the submodular prophet inequalities [3,10]. Our setting differs
from theirs in two ways: 1) our utility function is modeled as a lattice submodular
function over items and states, and 2) our model incorporates state-dependent
cost. Similar to the offline setting, StoCan first computes y using Algorithm 1
in advance, then randomly picks one policy from πsmall and πlarge to execute.
Notice that the online version of πsmall and πlarge probes the items in order
of their arrival. It is easy to verify that this does not affect the performance
analysis of StoCan, i.e., our analysis does not rely on any specific order of items,
thus StoCan achieves the same approximation ratio as obtained under the offline
setting.

5 Conclusion

In this paper, we study the stochastic submodular probing problem with state-
dependent costs and rejections. We present a constant approximate solution to
this problem. We show that our solution can be implemented in an online fashion.
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Abstract. In this paper, we study the adaptability of minimizing a non-
increasing supermodular function f with cardinality constraint k. We

first propose an algorithm with O
(
log2 n · log f(S0)

ε·OPT

)
adaptive rounds

which can return a solution set S with |S| = |S0|+O
(
k log f(S0)

ε·OPT

)
satis-

fying f(S) ≤ (1+ε)OPT, where S0 is the initial solution set and OPT is the

optimal value. The adaptivity is then improved to O
(
log n · log f(S0)

ε·OPT

)

by the second algorithm. The application of the new algorithms to the
fuzzy C-means problem is also discussed.

Keywords: Supermodular minimization · Bi-criteria analysis ·
Adaptive algorithm · Fuzzy C-means

1 Introduction

Supermodular or submodular optimization problem has a wide range of applica-
tions in machine learning and data mining. In this paper, we consider the problem
of minimizing a non-negative and non-increasing supermodular function under
a cardinality constraint, which has been widely applied to many academic areas,
such as data clustering [2], economics [9,10] and many others.

Supermodular minimization problem can also be seen as a submodular max-
imization problem. Variety of algorithms on submodular maximization problem
have been raised in recent decades. However, it is impossible to obtain similar
approximation results for these algorithms to solve supermodular minimization
problem, even under similar additional conditions such as monotonicity, nor-
malization and non-negativity. When considering maximizing a non-negative,
monotone and normalized submodular function f under a cardinality constraint,
the classical greedy algorithm guarantees an approximate ratio of (1 − 1/e) [3],
and it can be proved that this result is tight for polynomial-time algorithms [4].
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In [2], Liberty and Sviridenko present a generic greedy algorithm for supermodu-
lar minimization. It obtains a (1+ε)-approximation ratio in the bi-criteria sense,
in which the cardinality of solution set exceeds the constraint. When the total
curvature (denoted as c) of the function is considered, Sviridenko, Vondrák and
Ward [6] present an approximation factor of 1+ c

1−ce−1+ 1
1−cO(ε) for minimizing

a non-increasing supermodular function with matroid constraint.
Due to the increasing scales of problems in real applications, adaptive algo-

rithms has been paid more and more attention to in recent decades. For an
algorithm, its adaptive complexity (or adaptivity) denotes the minimum number
of sequential rounds required to achieve constant factor approximation, assum-
ing that in each round polynomial-time queries can be executed in parallel.
Currently, adaptive algorithms for supermodular minimization is rare, whereas
many adaptive algorithms have been proposed for submodular maximization,
which could provide greatly inspiration to us. It has been shown that there
is no algorithm that can be faster than O(log n) adaptivity with a constant
approximate ratio for submodular maximization [5]. For the cardinality con-
straint, Balkanski et al. [1] give an adaptive algorithm whose approximation is
arbitrarily close to the optimal 1 − 1/e guarantee in O(log n) adaptive rounds.
Ene et al. [7] give a near-optimal algorithm that reaches 1 − 1/e − ε approxima-
tion in O(log n/ε2) rounds of adaptivity. For the packing constraint, Chekuri et
al. [8] propose adaptive algorithms which achieves a near-optimal (1 − 1/e − ε)-
approximation in O(log2 m log n/ε4) rounds, where n is the cardinality of the
ground set and m is the number of packing constraints.

1.1 Main Contribution and Structure

In this paper we aim to explore an adaptive algorithm to solve the supermodular
minimization problem with a cardinality constraint. According to the idea in [1],
we add enough many elements in each round such that the algorithm can be
executed within a logarithmic number of rounds. The key difference is that, it
is impossible to obtain a constant approximation solution for the supermodular
minimization problem. To deal with this difficulty, we allow that the constraint
can be violated to some degree. Explicitly, for minimizing the non-increasing
non-negative supermodular function f with cardinality constraint k, let S∗ be its
optimal solution and OPT be its optimal value. We first propose an algorithm that
can return a solution set S with |S| = |S0| + O

(
k log f(S0)

ε·OPT
)

satisfying f(S) ≤
(1+ ε)OPT in O

(
ε−3 log2 n · log f(S0)

ε·OPT
)

adaptive rounds, where S0 is an arbitrary

initial solution set. Then the adaptivity is improved to O
(
ε−2 log n · log f(S0)

ε·OPT
)

by the second algorithm.
We apply the novel algorithms to the fuzzy C-means problem, which is a

well known soft clustering model with wide applications [11,12]. In the fuzzy
C-means problem, the concept of membership degree is introduced to describe
a fuzzy belonging of data point to every cluster. The algorithms could get a
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solution with (4 + ε)-approximation guarantee with O
(
log km−1

ε

)
cardinality

violation, where m is the fuzzifier parameter.
The main structure of the paper is as follows. In Sect. 2, we give a brief

notation introduction and propose a nonparallel threshold extension algorithm
for further analysis.

In Sect. 3, we give a parallel algorithm named Iteration Threshold Extension
(ITE) with violation of the cardinality constraint. In the outer loop of ITE we
uniformly select k/ω elements from a candidate set X which is generated by a
threshold subroutine each time, and continuously update the current solution
S until enough iterations are completed. While for the inner loop of threshold
subroutine, we discard elements that do not meet the threshold condition by
judging the marginal contribution value of the set R on the current solution S.

In Sect. 4, we put forward the concept of “Phase” and obtain the so-called
Phase Threshold Extension (PTE) Algorithm. In PTE we also add and remove
points to make the remaining points Xτ has a upper bound of marginal con-
tribution. Our result is that we can prove PTE gives a solution S such that
f (S) ≤ (1 + ε) OPT for any given ε > 0, and improves the adaptivity to
O

(
ε−2 log n · log f(S0)

ε·OPT
)
.

In Sect. 5, we creatively proposed the relationship of the optimal solution
between the constrained and unconstrained fuzzy C-means and give their related
theorems based on the relationship.

2 Preliminaries

2.1 Notations

Given a ground set N with |N | = n, an integer k, a supermodular function
f : 2N → R+ is defined as follows.

Definition 1. A function f : 2N → R+ is supermodular if and only if for any
A,B ⊆ N , there holds f(A) + f(B) ≤ f(A ∪ B) + f(A ∩ B).

In this paper we also require that the supermodular function f is non-negative
and non-increasing (or non-increasing), which means that f(A) ≥ 0 and f(A) ≥
f(B) for all A ⊆ B ⊂ N . The marginal contribution of a set B ⊆ N to another
set A ⊆ N is denoted as fA(B) = f(A ∪ B) − f(A). Also, we denote marginal
contribution of an element a ∈ N to a set A as fA(a) is defined as f(A ∪ {a}) −
f(A). For simplicity, for a function f and an element x ∈ N, we use f(x) instead
of f({x}). Then the supermodular minimization problem subject to a cardinality
constraint we consider in this paper can be written as

(SupMMin) min
S:|S|≤k

f(S).

In following sections we also denote S∗ and OPT as the optimal solution and the
optimal value, respectively.
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2.2 Threshold Extension Algorithm

For the readability of the paper, we propose a simple non-parallel algorithm as
Algorithm 1 in the following, which can be seen as a threshold version of the
greedy extension algorithm in [2]. In this algorithm we choose β := β(S0, k)
elements, in which β(S0, k) is usually greater than k, and S0 is some initial
solution set (maybe S0 = ∅) in 2N .

Algorithm 1: Threshold-Extension (TE)
Input: OPT, k, S0

Output: Sβ

1 S = S0,
2 for i = 0, 1, . . . , β do
3 Find an element x such that f(Si) − f(Si + x) ≥ 1

k
[f(Si) − OPT];

4 Si+1 ← Si ∪ {x}

It can be shown that Algorithm 1 could achieve a (1 + ε)-approximation
guarantee when properly more elements are selected into the solution set. At a
high level, the supermodularity of function f guarantees that the value f(S) −
OPT shrinks by a factor of (1 − 1/k) at each iteration. The final approximation
guarantee could then be derived iteratively.

Lemma 1. The output of Algorithm1 satisfies f(Sβ) ≤ (1−e−β)OPT+e−βf(S0).

Then we can get the following theorem.

Theorem 1. The output of the Algorithm1 satisfies f(Sβ) ≤ (1 + ε)OPT when

β = �k log
f(S0)
ε · OPT�.

See Appendix A for the proofs of Lemma1 and Theorem 1.

3 Iterative Threshold Extension Algorithm

Now we consider the parallelization of Algorithm1. Inspired by the idea in [1]
which solves the cardinality constrained monotone submodular maximization
problem in adaptive rounds, we propose the following algorithms for the super-
modular minimization problem. In each loop of Algorithm2 we add k/ω elements
chosen uniformly at random in a set X. The set X is generated by Algorithm 3,
at each iteration of which we filter out elements N that cannot provide enough
marginal contribution. When the outer loop ends it can be easily obtained that
the cardinality of the candidate set S is at least |S0| + k

1−ε log f(S0)
ε·OPT , thus the

constraint may be violated. The symbol R ∼ U(X) means that we choose the
set R uniformly at random in set X with |R| ≡ k/ω.
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Algorithm 2: Iterative-Threshold-Extension (ITE)
Input: OPT, k, ω, S0

Output: S
1 for � ω

1−ε
log f(S0)

ε·OPT � iterations do

2 X ←− Threshold(N, Si, ω)
3 Si+1 ←− Si ∪ R, where R ∼ U(X)

Since greedy algorithm guarantees that for any given set S there exists an ele-
ment whose marginal contribution to S is at least a 1/k fraction of the remaining
optimal value OPT − f(S). In each round of the subroutine Threshold, as long
as the expected value of the marginal contribution of a random subset R to
the current solution S is large enough, the algorithm will discard all elements x
whose expected value of the marginal contribution of S ∪ (R\{x}) will be higher
than the fixed threshold value from set X.

Algorithm 3: Threshold(X,S, ω)
Input: Remaining X, current solution S, OPT, ω
Output: X

1 while ER∼U(X)[fS(R)] > (1 − ε)(OPT − f(S))/ω do
2 X ← X\{x : ER∼U(X)[fS∪(R\{x})(x)] > (1 + ε/2)(1 − ε)(OPT − f(S))/k}

What should be noticed is that we cannot accurately estimate the expected
value of OPT and the expected value involved in the algorithms. In fact, the
expected value can be approximated by proper many times of parallelized ran-
dom sampling, and OPT can be guessed to have its error at most ε time in O(log ε)
complexity.

3.1 Theoretical Analysis of ITE

In this subsection we would like to analyze the approximation guarantee and the
adaptivity of Algorithm ITE. Different with TE, in ITE we choose k/ω elements
instead of one. Similar with the key idea in the proof of TE, the approximation
guarantee can also be proved by firstly showing that at each outer loop the
value f(S)−OPT shrinks in a constant factor dependent on k/ω. Inspired by this
idea, we give an upper bound of the expected marginal contribution of S∗ on
S ∪ (∪τ

i=1Ri) with a form relative to the OPT − f(S).

Lemma 2. Let Ri ∼ U(X) be the random set at iteration i of Algorithm3. For
all S ⊆ N and ω, τ > 0, if Threshold has not terminated after τ iterations, then
we have

E
R1,...,Rτ

[
fS∪(∪τ

i=1Ri)(S
∗)

]
≤

(
1 − τ

ω

)
· (OPT − f(S)) ≤ 0.
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From the monotonicity, we can prove that the contribution of the “good”
element set X returned by Threshold to the current solution S is arbitrarily
close to |(OPT − f(S))/ω|.
Lemma 3. For all S ⊆ N and ε > 0, if ω ≥ 20τε−1, the set of elements Xτ

that still survive after τ iterations of Threshold satisfies

fS (Xτ ) ≤ 1
ω

(1 − ε)(OPT − f(S)).

Here we give a general summary of the proof. Refer to Appendix B for details.
We first define a subset P of the optimal solution of OPT. Then we prove that
the elements in P still exist after the τ round iteration of Threshold(X,S, ω).
Moreover, we observe that the upper bound of the marginal contribution of P in
S. Finally, from the monotonicity and P ⊆ Xτ , we can get the set Xτ consisting
of the remaining elements after deleting a part of the “bad” points and satisfying
fS(Xτ ) ≤ 1

ω (1 − ε) · (OPT − f(S)).
To obtain the adaptivity of ITE, we first limit the number of adaptive rounds

of the Threshold subroutine. Lemma4 proves that elements will be discarded in
a certain proportion in each round.

Lemma 4. Let Xi and Xi+1 be the remaining elements at the beginning and
end of the ith iteration of the Algorithm Threshold(N,S, ω) respectively. For
all S ⊆ N and ω, i, ε > 0, if Threshold(X,S, ω) does not terminate in the ith
iteration, then

|Xi|
|Xi+1| > 1 +

ε

2
.

A proof sketch is as follows and for details refer to Appendix B. First, we
estimate the value of f (Ri ∩ Xi+1) of the surviving elements Xi+1 in a random
set Ri ∼ DXi

. we can get E [fS (Ri ∩ Xi+1)] ≤ |Xi+1|· 1
r|Xi| ·(1+ε/2)(1−ε)·(OPT−

f(S)). Next, since elements are discarded, the algorithm shows that the value
of a random set must higher, i.e. E [fS (Ri)] > 1

ω (1 − ε)(OPT − f(S)). Then by
monotonicity, we obtain E [fS (Ri)] ≤ E [fS (Ri ∩ Xi+1)]. Finally, by combining
the above inequalities and simplification, we get |Xi| / |Xi+1| > (1 + ε/2).

Combined with Lemma 3, we can get Lemma 5 that the Threshold subroutine
has O(log n) adaptivity when ω ≥ 40ε−2 log n for all ε > 0.

Lemma 5. For all S ⊆ N, Threshold(N,S, ω) is O(log n)-adaptive with param-
eter ω ≥ 40ε−2 log n for all ε > 0.

Now we can prove the main conclusion for ITE. Considering the total number
of iterations of the algorithm, we fix parameter ω = 40ε−2 log n. ITE runs up to at
most �ω log (f(S0)/(ε · OPT))� rounds. According to Lemma 3 and Lemma 4 that
the inner loop of Threshold has O (log n) adaptive rounds, the whole algorithm
is O

(
log2 n · log f(S0)

ε·OPT
)
-adaptive.
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Theorem 2. For any constant ε > 0, ITE returns a solution Sη with

|Sη| ≤ |S0| +
⌊

k

1 − ε
log

f(S0)
ε · OPT

⌋
+

k

ω
,

satisfying f (Sη) ≤ (1 + ε) OPT. The adaptivity is

O

(
ε−3 log2 n · log

f(S0)
ε · OPT

)
,

where ω = 40ε−2 log n.

See Appendix B for the proofs of Lemma and Theorem in Sect. 3.

4 Phased Threshold Extension Algorithm

In this section, we would like to improve the O
(
log2 n · log f(S0)

ε·OPT
)
-adaptivity

of ITE to O
(
log n · log f(S0)

ε·OPT
)
-adaptivity by proposing the Phased Threshold

Extension Algorithm (PTE), as is shown in Algorithm4. The main idea is that we
perform fewer element removal processes, while still maintaining the approximate
quality as that in the previous section. A concept named “phase” is applied in
PTE, in each of whom the value of the solution S is decreased by at least
|(OPT−f(S))/20|. PTE will also invoke the subroutine Threshold to add a block
of k/ω elements randomly to the current solution S. What is different from ITE
is that the second input of Threshold is set to be N at the beginning of each
phase but modified as S ∪ T otherwise.

Algorithm 4: Phased-Threshold-Extension (PTE)
Input: OPT, k, ω
Output: S

1 S ← ∅
2 for � 20

ε(1−ε)
log f(S0)

ε·OPT � phases do

3 X ← N, T ← ∅
4 while fS(T ) > (ε/20)(OPT − f(S)) and |S ∪ T | < � k

1−ε
log f(S0)

ε·OPT � do

5 X ← Threshold(X, S ∪ T, ω)
6 T ← T ∪ R, where R ∼ U(X)

7 S ← S ∪ T

4.1 Analysis of the PTE

Like ITE, PTE constantly updates the candidate set X by observing the con-
tribution of point x ∈ X. But it should be noted that, unlike ITE, in any phase
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of PTE, when we call Threshold(X,S, ω), we need to look at the expected value
of the marginal contribution of the random set R on S ∪ T rather than S, and
remove some elements whose contribution is high enough on S ∪ T ∪ (R\{x})
rather than S∪(R\{x}). In addition, every time Threshold(X,S, ω) is called, our
set S ∪T is always changing, which should be paid more attention to. A phase is
composed of multiple iterations of PTE, each of which consists of multiple iter-
ations of Threshold(X,S, ω). Then in a phase, the Threshold(X,S, ω) will end
until the gain of the set T on the solution S is not higher than (ε/20)(OPT−f(S))
or the number of S ∪ T reaches our upper bound. The number of our phases is
at most 20ε−1 log (f(S0)/(ε · OPT)), which is a constant with respect to n and k.

We first need to introduce some new notation. We say that An element
survives τ iterations of phase at phase j if it has not been discard at iter-
ation i of Threshold with i ∈ [τ ]. Let Sj denote the solution S at phase
j ∈ [

20ε−1 log (f(S0)/(ε · OPT))], S+
j denote Sj ∪ T during the last iteration

of PTE during phase j, i.e., the last T such that fS(T ) < (ε/20) (OPT − f (Sj)) ,
then Sj ⊆ S+

j ⊆ Sj+1. Let Sj,i denote Sj ∪T at the i-th iteration of thresholding
during phase j, so for all i1 < i2, we have Sj,i1 ⊆ Sj,i2 ⊆ S+

j . Thus, we can get

f
(
S+

j

) − f (Sj) > (ε/20) (OPT − f (Sj))

by the algorithm.
For any given phase, similar to the previous section, we want to analyze the

marginal contribution of S∗ to S+
j ∪ (∪τ

i=1Ri), which can be arbitrarily close to
the desired value |OPT − f(S)|, where the random sets {Ri}τ

i=1 is selected from
corresponding current remaining elements X when there are τ filtering iterations
during the phase. However, different from the analysis process in the previous
section, in each phase, since the elements in set T are constantly updated, atten-
tion should be paid more to the changes in set S ∪ T when judging whether to
discard points and how to remove points.

Lemma 6. For any phase j and ε > 0, for all ω, τ > 0, if phase j has not ended
after τ iterations of Threshold, then we have

E
R1,...,Rτ

[
fS+

j ∪(∪τ
i=1Ri)(S

∗)
]

≤
(
1 − τ

ω
− ε

20

)
· (OPT − f (Sj)) ,

where Ri ∼ U(X) is the random set at filtering iteration during phase j with
i ∈ [τ ].

Next, during a phase, similar to Lemma 3, we bound on the contribution
value of the remaining elements set Xτ to the current solution S+

j , where we
suppose Xτ survives τ iterations of filtering during an phase.

Lemma 7. For any phase j and ε > 0, if ω ≥ 20τε−1, then the elements Xτ

that survive τ iterations of filtering at phase j satisfies

fS+
j

(Xτ ) ≤ (ε/4)(1 − ε) (OPT − f (Sj)) .
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Since the loop condition of fS(T ) and |S ∪ T | will always invoke Threshold,
the number of invocations to Threshold in a phase is the number of invocations
to PTE. By Lemma 4, after multiple rounds there will be at most k/ω elements
left in the set X during every phase. According to Lemma7, we can prove that
every phase will terminate and in each phase, the total number of iterations of
filtering is O(log n) rounds.

Lemma 8. In any phase of PTE and for any 0 < ε < 1/2, if ω ≥ 40ε−2 log n,
then there are at most 2ε−1 log n iterations of filtering during the phase.

Now we can prove the main theorem of PTE. There are two situations when
the algorithm stops. One is that the algorithm ends after �ω log (f(S0)/(ε · OPT))�
rounds of iterative filtering with |S∪T | = �k log (f(S0)/(ε · OPT))�, and the other
is that the algorithm has completed �(20/(ε(1− ε)) log (f(S0)/(ε · OPT))� phases.
When ω = O(log n), by the algorithm we know that the number of rounds
for adding elements to T is at most O(log n). Moreover, there are at most O(1)
phases with O(log n) Threshold iterations per phase. Therefore, the total number
of adaptive rounds is O(log n).

Theorem 3. For any constant ε > 0, PTE returns a solution Sη satisfying

f (Sη) ≤ (1 + ε) OPT,

with complexity as

O

(
ε−2 log n · log

f(S0)
ε · OPT

)
.

See Appendix C for the proofs of Lemma and Theorem in Sect. 4.

5 Applications on Fuzzy C-means

In this section we show that the new adaptive algorithms could be applied to
the well known fuzzy C-means problem, so as to the classical k-means problem.
Given a set of nodes N = {x1, x2, . . . , xn} ⊆ R

n, the fuzzy C-means problem is
to find an k-configuration point set S = {s1, s2, . . . , sk} ⊆ R

n and a matrix of
membership degree µ = (μi,j) ∈ [0, 1]n×k to minimize the potential function

φ(S,µ) =
n∑

i=1

k∑
j=1

μm
ij ||xi − sj ||2,

with the constraint
µ ∈ [0, 1]n×k and µe = e,

where m ≥ 1 is the fuzzifier parameter and e is an all-one vector with dimen-
sion k.

If m = 1, it is easy to see that fuzzy C-means problem is reduced to k-
means problem. A well known result is that when m > 1, for a given S, through
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the Lagrangian multiplier method we can obtain the optimal solution of µ to
minimize φ(S,µ) as

μij =
d

− 2
m−1

ij∑k
l=1 dil

− 2
m−1

, ∀ i = 1, 2, . . . , n; j = 1, 2, . . . , k,

where dij = ‖xi − sj‖. By this fact we can rewrite the potential function as

φ(S) := φ(S,µ) =
n∑

i=1

⎛
⎝

k∑
j=1

d
− 2

m−1
ij

⎞
⎠

1−m

. (1)

Especially when m = 2, we have

φ(S) =
n∑

i=1

⎛
⎝

k∑
j=1

d−2
ij

⎞
⎠

−1

. (2)

Additionally, we can define

φ(∅) = max {φ(su) + φ(sv) − φ({su, sv}) : u �= v} . (3)

Theorem 4. The set function φ(S) defined by (1) and (3) is supermodular.

The fuzzy C-means problem could not be solved by the algorithms proposed
in this paper but its constrained version could be. The constrained fuzzy C-
means problem is nothing different from the fuzzy C-means problem but forcing
the point set S to be contained in N . That is, for a given set N = {x1, x2, . . . , xn},
the constrained fuzzy C-means problem is to find a k-configuration point set
S ⊆ N and a matrix of membership degree µ = (μi,j) ∈ [0, 1]n×k to minimize
the potential function φ(S,µ) with the same constraint on µ. The following
lemma shows that relationship of the two problems.

Lemma 9. The optimal solution of a constrained fuzzy C-means problem is a
4-approximation solution of its unconstrained version.

Lemma 10. For the constrained fuzzy C-means problem, if there exists an algo-
rithm to obtain a feasible solution S0 satisfying φ(S0) ≤ αφ(S∗). Then one can
find a set S of size O(k log α

ε ) satisfying φ(S) ≤ (1+ε)φ (S∗). The computational
time from S0 to S is

O

(
nkd

ε2
log n

(
log

α

ε

)2
)

,

where S∗ is the optimal solution.

See Appendix D for the proofs of lemmas and theorem in Sect. 5.
The following corollary then could improve the computational complexity of

the algorithm proposed in [2], which is O
(
n2kd log 1

ε

)
for the k-means clustering

problem.
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Corollary 1. For the fuzzy C-means problem, there is an algorithm that with a
high probability it can find a set S of size

|S| = O

(
k

(
log

1
ε

+ (m − 1) log k

))
= O

(
k log

km−1

ε

)

such that φ(S) ≤ (4 + ε)φ (S∗) , in time

O

(
nkd

ε2
log n

(
log

km−1

ε

)2
)

.
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Abstract. We consider a set function maximization problem where the
objective function is the sum of a monotone γ-weakly submodular func-
tion f and a supermodular function g. This problem can be seen as the
generalization of maximization of the BP function (when γ = 1) and
γ-weakly submodular function. We give offline and streaming algorithms
for this generalized problem respectively and our algorithms can improve
several previous results.

Keywords: Non-submodular maximization · Uniform matroid ·
Streaming model

1 Introduction

We consider a set function maximization problem where the objective function
is the sum of a monotone γ-weakly submodular function f and a supermodular
function g. Given a ground set V = {1, . . . , n}, the objective is to select a set
S ⊆ V of cardinality no more than a given parameter k to maximize the following
objective function

F (S) = f(S) + g(S),

where f : 2V → R+ is a non-negative monotone γ-submodular function and
g : 2V → R+ is a non-negative monotone supermodular function. A set function
f : 2V → R+ is monotone if f(S) ≤ f(T ),∀S ⊆ T ⊆ V . It is submodular
if f(S) + f(T ) ≥ f(S ∩ T ) + f(S ∪ T ),∀S, T ⊆ V . An equivalent definition
is that

∑
e∈B\A f(e|A) ≥ (f(A ∪ B) − f(A)) for all A ⊆ B where f(e|A) =

f(e∪A)−f(A). It is supermodular if its negative is submodular. It is modular if
it is both submodular and supermodular. A monotone set function f is γ-weakly
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submodular for γ ∈ (0, 1] if
∑

e∈B\A f(e|A) ≥ γ(f(A ∪ B) − f(A)) holds for all
A ⊆ B. Note that f is submodular if and only if it is γ-weakly submodular with
γ = 1.

This problem can be seen as the generalization of several problems which have
been studied widely. When γ = 1, the problem can be called as BP maximization
problem. When g(S) = 0, the problem can be called as γ-weakly submodular
maximization problem.

For this problem, we design offline and streaming algorithms respective whose
approximation ratios depend on the curvatures of the functions involved. For a
given non-negative function f : 2V → R+, its curvature [3] is the smallest scalar
α

f(i|S\{i} ∪ Ω) ≥ (1 − α)f(i|S\{i}),∀ Ω, S ⊆ V, i ∈ S\Ω. (1.1)

When f is a submodular function, α is equal to the submodular curvature
kf [4] which has been defined as follows

kf = 1 − min
v∈V

f(V ) − f(V \{v})
f(v)

. (1.2)

For a given supermodular function g : 2V → R+, its curvature [2] is defined
as follows

kg = 1 − min
v∈V

g(v)
g(V ) − g(V \{v})

. (1.3)

The supermodular curvature is a natural dual to the submodular curvature,
and both are computationally feasible to compute, requiring only linear time in
the oracle model.

For the first offline model, we can require access to the complete dataset
repeatedly. In this case, we construct a new modular function and in every step,
we use a new distorted greedy to choose the maximum marginal value. When
γ = 1, our first algorithm yields guarantee min{1−kfe−1, 1−(kg)2} for maximiz-
ing the sum of a suBmodular and suPermodular (BP) function under a cardinal-
ity constraint, which improves the approximate ratio k−1

f

(
1 − e−kf (1−kg)

)
in [2].

When g(S) = 0, the approximation guarantee is 1 − (1 − γ + γα)e−γ for cardi-
nality constrained maximization of non-submodular nondecreasing set functions,
which improves the approximate ratio α−1 (1 − e−αγ) in [3]. The explanation for
improvement is shown in Sect. 3.

For the second streaming model, unlike the first problem require access to the
complete dataset repeatedly, we assume elements arrive over time at a fast pace.
And, the memory is restricted to limited space which is sublinear with respect
to the input size, we pick elements whose marginal gain is above a suitable
threshold. It is worth mentioning that if g(S) = 0, then the approximation
guarantee in our second algorithm is γ

γ+1 for maximizing a normalized monotone
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non-submodular set function subject to a cardinality constraint, which improves
the approximate ratio 1 − 1

2γ in [9]. The explanation for improvement is shown
in Sect. 4.

The rest of the paper is organized as follows. In Sect. 2, we review relevant
literature. In Sects. 3, 4, we present algorithms and their approximation ratio
analysis for the problems, respectively. Finally, the concluding remarks are in
Sect. 5.

2 Related Work

Submodular curvature and supermodular curvature are two important parame-
ters in this work since they can improve approximation performance. For exam-
ple, [4] designs a 1

kf
(1 − e−kf ) guarantee for cardinality constraints and a 1

p+kf

guarantee for p matroid constraints. Authors in [8] improve the previous results
and give a (1 − kfe−1)-approximation algorithm under the down-closed con-
straint. For supermodular curvature, authors in [2] consider the problem of maxi-
mizing the sum of submodular and supermodular functions. In their paper, they
define supermodular curvature as kg and give algorithms for cardinality con-
straint and matroid constraint, respectively. Recently, authors in [6] propose a
new curvature called generic submodularity ratio.

In the offline case, submodular maximization has been widely studied in the
literature and the readers are referred to relevant literature such as [7]. Now we
move to the submodular optimization on streaming model. Authors in [1] pro-
pose the first efficient method for the submodular maximization problem with
cardinality constraint about massive data summarization on the fly, without any
assumption of the stream order. Authors in [10] study the budgeted influence
maximization problem under credit distribution models which can be formu-
lated as a submodular maximization problem under cardinality constraint, and
give a streaming algorithm of which threshold is different from the algorithm
in [1] while having the same approximate ratio. Besides the above results on
submodular optimization, many non-submodular optimization problems arise
in machine learning. Authors in [5] consider the weakly submodular functions
and propose the first streaming algorithm for weakly submodular case. Authors
in [9] utilize the concept of diminishing-return ratio to design and analyze four
diminishing-return sieve-streaming (DRSS) algorithms.

3 An Offline Algorithm for a Cardinality Constraint

At the beginning of this section, we introduce two equivalent definitions and
properties of submodular function, which are useful for our proof.

Definition 1 (Submodular function: Definition 1). A function f : 2V → R+ is
submodular if for every X,Y ⊆ V,

f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ).
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Definition 2 (Submodular function: Definition 2). A function f : 2V → R+ is
submodular if for every X ⊆ Y ⊆ V, a ∈ V \Y,

f(X ∪ {a}) − f(X) ≥ f(Y ∪ {a}) − f(Y ).

Property 1. For any submodular function f : 2V → R+ and X,Y ⊆ V , we have
∑

u∈X

[f(Y ∪ {u}) − f(Y )] ≥ f(X ∪ Y ) − f(Y ).

In this section, we consider the problem under the offline case. We first con-
sider the problem of maximizing the sum of a γ-weakly submodular, a super-
modular and a modular function. Construct the following functions

�1(S) = (1 − α)
∑

j∈S

f(j),

�2(S) =
∑

j∈S

g(j),

�(S) = �1(S) + �2(S),
f1(S) = f(S) − �1(S),
g1(S) = g(S) − �2(S).

Note that f1(S) is a monotone nonnegative γ-weakly submodular function, g1(S)
is a monotone nonnegative supermodular function, �(S) is a modular function,
and f(S) + g(S) = f1(S) + g1(S) + �(S).

Next, our new results for the sum of a submodular function and a super-
modular function make use of an algorithm for the following problem: given a
ground set V = {1, . . . , n}, the problem is to select a set S ⊆ V of cardinality
no more than a given parameter k to maximize the following objective function

f1(S) + g1(S) + �(S).

3.1 Algorithm

The algorithm works in k rounds, where each round chooses an element ei to
maximize the increment based on the distorted objective. It starts with an empty
set S0 = Ø.

Let

Δi(x,A) =
(
1 − γ

k

)k−(i+1)

f1(x|A) + (1 − kg)g1(x|V \x) + �(x).

Our algorithm is presented below.
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Algorithm 1. Distorted Greedy
1: S0 ← Ø
2: for 0 ≤ i ≤ k − 1 do
3: ei ← arg maxe∈V Δi(x, A)
4: Si+1 ← Si ∪ {ei}
5: end for
6: Return Sk

3.2 Analysis

Our analysis relies on the following distorted objective function Φ. Let k denote
the cardinality constraint. For any i = 0, 1, · · · , k and any set S, we define

Φi(S) =
(
1 − γ

k

)k−i

f1(S) + (1 − kg)
∑

e∈S

g1(e|V \e) + �(S).

Lemma 1. In each iteration of Algorithm1,

Φi+1(Si+1) − Φi(Si) = Δi(ei, Si) +
γ

k

(
1 − γ

k

)k−(i+1)

f1(Si).
Proof.

Φi+1(Si+1) − Φi(Si)

=

(
1 − γ

k

)k−(i+1)

f1(Si+1) + (1 − k
g
)

∑
e∈Si+1

g1(e|V \e) + �(Si+1)

−
(

1 − γ

k

)k−i

f1(Si) − (1 − k
g
)

∑
e∈Si

g1(e|V \e) − �(Si)

=

(
1 − γ

k

)k−(i+1)

(f1(Si+1) − f1(Si)) + (1 − k
g
)g1(ei|V \ei) + �(ei) +

γ

k

(
1 − γ

k

)k−(i+1)

f1(Si)

= Δi(ei, Si) +
γ

k

(
1 − γ

k

)k−(i+1)

f1(Si).

�

Lemma 2. In each iteration of Algorithm1, we have

Δi(ei, Si) ≥ γ

k

(
1 − γ

k

)k−(i+1)

(f1(OPT ) − f1(Si)) +
1 − kg

k
g1(OPT ) +

1

k
�(OPT ).

Proof.

Δi(ei, Si) ≥ 1
k

∑

e∈OPT

Δi(e, Si)

=
1
k

∑

e∈OPT

((
1 − γ

k

)k−(i+1)

f1(e|Si) + (1 − kg)g1(e|V \e) + �(e)
)

≥ 1
k

((
1 − γ

k

)k−(i+1)

γ (f1(OPT ) − f1(Si)) + (1 − kg)g1(OPT ) + �(OPT )
)

=
γ

k

(
1 − γ

k

)k−(i+1)

(f1(OPT ) − f1(Si)) +
1 − kg

k
g1(OPT ) +

1
k

�(OPT ),
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where the second inequality follows from the definition of f and the supermod-
ularity of g. �

Finally, the main result is summarized as follows.

Theorem 1. Algorithm2 returns a set Sk of size k such that

f1(Sk) + g1(Sk) + �(Sk) ≥ (
1 − e−γ

)
f1(OPT ) + (1 − kg) g1(OPT ) + �(OPT ).

Proof. According to the definition of Φ, we have

Φ0(S0) =
(
1 − γ

k

)k−0

f1(S0) + (1 − kg)g1(S0) + �(S0) = 0,

Φk(Sk) =
(
1 − γ

k

)k−k

f1(Sk) + (1 − kg)
∑

e∈Sk

g1(e|V \e) + �(Sk)

≤ f1(Sk) + g1(Sk) + �(Sk).

Applying Lemma 1, we have

Φi+1(Si+1) − Φi(Si) = Δi(ei, Si) +
γ

k

(
1 − γ

k

)k−(i+1)

f1(Si)

≥ γ

k

(
1 − γ

k

)k−(i+1)

f1(OPT ) +
1 − kg

k
g1(OPT ) +

1

k
�(OPT ).

Finally,

f1(Sk) + g1(Sk) + �(Sk)

≥
k−1∑

i=0

(Φi+1(Si+1) − Φi(Si))

≥
k−1∑

i=0

(
γ

k

(
1 − γ

k

)k−(i+1)

f1(OPT ) +
1 − kg

k
g1(OPT ) +

1
k

�(OPT )
)

≥ (
1 − e−γ

)
f1(OPT ) + (1 − kg)g1(OPT ) + �(OPT ).

�

We are now ready to give an approximation ratio of this problem.

Theorem 2. There exists an algorithm returning a set Sk of size k such that

f(Sk) + g(Sk) ≥ min{1 − (1 − γ + γα)e−γ , 1 − (kg)2}(f(OPT ) + g(OPT )).

Proof. According to the submodular and supermodularity curvatures, we have,

�1(S) = (1 − α)
∑

j∈S

f(j) ≥ (1 − α)γf(S),

�2(S) =
∑

j∈S

g(j) ≥ (1 − kg)g(S).
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So,

f(S) + g(S) = f1(S) + g1(S) + �(S)
≥ (1 − e−γ)f1(OPT ) + (1 − kg)g1(OPT ) + �(OPT )
= (1 − e−γ)(f(OPT ) − �1(OPT )) + (1 − kg)(g(OPT ) − �2(OPT ))

+ �1(OPT ) + �2(OPT )
= (1 − e−γ)f(OPT ) + (1 − kg)g(OPT ) + e−γ�1(OPT ) + kg�2(OPT )
≥ (1 − e−γ)f(OPT ) + (1 − kg)g(OPT ) + e−γ(1 − α)γf(OPT )

+ kg(1 − kg)g(OPT )
=

(
1 − (1 − γ + γα)e−γ

)
f(OPT ) +

(
1 − (kg)2

)
g(OPT )

≥ min{1 − (1 − γ + γα)e−γ , 1 − (kg)2}(f(OPT ) + g(OPT )).

�

Theorem 2 gives a lower bound of distorted greedy in terms of the curvature α
and the supermodular curvature kg. We notice that this bound improves known
results.

(1) If γ = 1, then f is a submodular function. We use kf to replace α and the
approximation guarantee is min{1 − kfe−1, 1 − (kg)2}, which improves the
approximate ratio k−1

f

(
1 − e−kf (1−kg)

)
in [2]. It can be shown that

1 − kfe−1 ≥ 1 − kfe−kf = max
0≤kg≤1

1 − kfe−kf (1−kg) ≥ 1 − kfe−kf (1−kg),

1 − (kg)2 ≥ 1 − kg = max
0≤kf ≤1

1 − kfe−kf (1−kg) ≥ 1 − kfe−kf (1−kg).

(2) If g(S) = 0, then the approximation guarantee is 1 − (1 − γ + γα)e−γ ,
which improves the approximate ratio α−1 (1 − e−αγ) in [3]. Let F (α, γ) =
α (1 − (1 − γ + γα)e−γ) − (1 − e−αγ). Notice that F (α, γ) has no extreme
point for 0 < α < 1 and 0 < γ < 1. It follows that F (α, γ) maximizes
or minimizes at four boundary points (0, 0), (0, 1), (1, 0), (1, 1). Thus, it
is computed that F (α, γ) ≥ 0, which implies that 1 − (1 − γ + γα)e−γ ≥
α−1 (1 − e−αγ).

(3) If f(S) = 0, then we get 1−(kg)2, which is a new curvature-based bound for
monotone supermodular maximization subject to a cardinality constraint.

4 A Streaming Algorithm for a Cardinality Constraint

In this section, we consider the problem max|S|≤k f(S) + g(S) in the streaming
model. We consider the scaled objective f(S)+

∑
e∈S g(e). Now, instead of pick-

ing elements whose (scaled) marginal gain is positive, we pick elements whose
(scaled) marginal gain is above a suitable threshold.
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4.1 Algorithm

Let
h(S) = f(S) +

∑

e∈S

g(e).

Our algorithm is presented below.

Algorithm 2. Scaled single-threshold Greedy
1: S ← Ø
2: while stream not empty
3: e ← next stream element
4: if h(e|S) ≥ τ and |S| < k
5: S ← S ∪ e
6: Return S

4.2 Analysis

We are now ready to give an approximation ratio of the streaming algorithm.

Theorem 3. When run with threshold τ = 1
(γ+1)k (γf(OPT )+(1−kg)g(OPT )),

Algorithm2 returns a solution S satisfying f(S) + g(S) ≥ γ
γ+1f(OPT ) +

1−kg

γ+1 g(OPT ).

Proof. Let us now consider the following cases:

Case 1: |S| = k. We have

f(S) + g(S)

≥ f(S) +
∑

e∈S

g(e)

≥ τk

≥ γ

γ + 1
f(OPT ) +

1 − kg

γ + 1
g(OPT ),

where the first inequality follows from the supermodularity of g.
Case 2: |S| < k. For every item e ∈ OPT\S, we have

τ > f(e|S) + g(e).

Therefore we have

τk ≥ τ |OPT |
≥

∑

e∈OPT

f(e|S) +
∑

e∈OPT

g(e)

≥ γf(OPT ∪ S) − γf(S) + (1 − kg)g(OPT )
≥ γf(OPT ) − γf(S) + (1 − kg)g(OPT ),
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where the third inequality follows from the definition of f and the supermod-
ularity of g.

Rearrange the inequality, we have

f(S) + g(S) ≥ f(S)

≥ f(OPT ) +
1 − kg

γ
g(OPT ) − τk

γ

=
γ

γ + 1
f(OPT ) +

1 − kg

γ + 1
g(OPT ).

�

Theorem 3 gives a lower bound of scaled single-threshold greedy in terms
of the supermodular curvature kg. We notice that this bound improves known
results.

(1) If g(S) = 0, then the approximation guarantee is γ
γ+1 , which improves the

approximate ratio 1 − 1
2γ in [9]. It is easy to obtain that γ

γ+1 ≥ 1 − 1
2γ for

γ ∈ [0, 1].
(2) If f(S) = 0, then we get 1−kg

γ+1 , which is a new curvature-based bound for
monotone supermodular maximization subject to a cardinality constraint
under streaming algorithm.

5 Conclusion

In this paper, we consider offline and streaming model for our generalized non-
submodular maximization problems. We design some non-obvious greedy algo-
rithms, which may be of independent interest because of its potential to be
applicable to other problems.
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Abstract. The vanilla influence maximization problem requires some
kind of seeds before the diffusion process so as to maximize the expected
influence spread in a social network. This problem has been extensively
studied due to its applications in viral marketing. However, most studies
require selecting all seeds at once, which wastes part of the budget due
to not utilizing the observation results. This paper considers adaptive
influence maximization and adaptive stochastic influence maximization
problems under a general feedback model, where seeds can be selected
after a fixed number of observation time-steps. Generally, the objective
function lacks the adaptive submodularity property, making it difficult
to construct effective approximate solutions. We introduce a comparative
factor and present a theoretical analysis of the solution using an adaptive
greedy framework to solve them. In addition, a feasible approximation
algorithm based on the reverse sampling technique is used to solve the
adaptive stochastic influence maximization problem.

Keywords: Social network · Adaptive influence maximization ·
Approximation algorithm

1 Introduction

Online social network platforms such as WeChat and Facebook have flourished
in the past decades. More and more people are willing to share and discuss
their ideas on these platforms. Ideas can spread in the networks through word-
of-mouth effects. In order to utilize this effect to promote products, opinions,
and innovations, many companies will provide free or discounted samples to
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influential users in exchange for their help in publicity, making a wide range of
influence in the social network [5,15]. Kempe, Kleinberg, and Tardos [9] first
proposed the influence maximization problem from the perspective of discrete
optimization. The goal is to find a small set of users (i.e., seed nodes), hoping
the expected number of users influenced by the seeds can be maximized. They
proved that the problem is NP-hard under two models, namely the independent
cascade model and the linear threshold model. Due to the submodularity of the
objective function, there is a (1 − 1/e)-approximate solution using the greedy
algorithm [12].

Due to essential applications in marketing [10,11], rumor control [13,23,25]
and other fields, it has become a focus of concern in both academia and industry.
The majority of studies focus on non-adaptive strategies, which require all seed
nodes to be selected at once without observing the node status and diffusion
process. However, during the diffusion process, some seed nodes selected by the
non-adaptive strategy may influence other seed nodes, causing a waste of the
budget. Compared with the non-adaptive strategy, adaptive strategies allow the
selection of seed nodes after observing specific propagation results, making better
use of the budget.

As a variant of the influence maximization problem, the adaptive influence
maximization has attracted attention recently. However, most works are based
on the full feedback model [6]. That is, we select the subsequent seeds when
the current diffusion process completes. In reality, it is impractical to wait for
the end of the diffusion process before the next seed selection. Therefore, we
consider a general feedback model, which allows a fixed observation time-step
and then executes the selection of the next seeds. This feedback model includes
the full feedback model, and it is hard to figure out due to the lack of adaptive
submodularity. To solve it, we define a comparative factor and present an analysis
of the approximation ratio using an adaptive greedy algorithm. Furthermore,
we study the adaptive stochastic influence maximization when considering the
randomness of the policy during algorithm execution. Combined with the reverse
sampling technique [1,19,21,22], we design a feasible algorithm that can return
an approximate solution to the problem.

2 Related Works

Golovin and Krause [6] first discussed adaptive influence maximization. They
proposed two special feedback models, namely the full feedback model and the
myopic feedback model. Before choosing the next seed node, the full feedback
model always waits for the termination of the diffusion process, while the myopic
feedback model waits for a round of propagation.

Full Feedback Model. Golovin and Krause [6] defined adaptive submodularity
and adaptive monotonicity and proved that a simple adaptive greedy algorithm
could guarantee a (1−1/e)-approximate solution if the objective function satisfies
these two properties. Fortunately, the adaptive influence maximization problem
under the full feedback model satisfies these two properties and thus has a (1 −
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1/e)-approximate solution. However, the theoretical analysis of the algorithm
needs to know the exact influence spread of each node. Since the computation
of the influence spread is usually #P-difficult [3,4], it is difficult to guarantee
the approximation ratio in practical implementation. Based on the framework
of the full feedback model, researchers have also studied other related adaptive
optimization problems [2,7,8,17,18,20,24].

Myopic Feedback Model. The objective function of the adaptive influence
maximization problem lacks adaptive submodularity under the myopic feedback
model, which presents challenges to the design of an approximation algorithm.
Facing this difficulty, Salha et al. [16] modified the independent cascade model
to make the objective function possess adaptive submodularity and obtained the
(1−1/e)-approximate solution. Golovin and Krause [6] once guessed that there is
an adaptive algorithm with a constant approximation ratio for the problem under
the myopic feedback model. Peng and Chen [14] gave a deterministic answer to
this conjecture. They proposed the concept of the adaptive gap, which is the ratio
between the optimal solution to the adaptive problem and the optimal solution
to the non-adaptive problem. They proved that the range of the adaptive gap
under the myopic feedback model is from 4 to e/(e − 1). Then, both adaptive
and non-adaptive greedy algorithms can get 0.25(1−1/e)-approximate solution.

In this paper, we study the adaptive influence maximization and adaptive
stochastic influence maximization problems under a general feedback model. In
fact, the general feedback model is equivalent to the full feedback model when the
observation time-step is equal to the longest distance between two nodes in the
social network. And the general feedback model is the myopic feedback model
when the observation time-step is equal to 1. Therefore, the general feedback
model is a generalization of both the full feedback model and the myopic feedback
model.

3 Problem Formulation

In this section, we first introduce some notations and definitions used in this
paper. Then, we present the adaptive influence maximization and adaptive
stochastic influence maximization, respectively.

3.1 Notations

Let G = (V,E) be a social network, in which V is the set of n nodes, E is
the set of m edges, and each directed edge (u, v) ∈ E is associated with an
influence probability p(u, v) ∈ [0, 1]. We consider the influence diffusion under
the independent cascade (IC) model and the definition of the IC model is as
follows.

Definition 1 (IC Model). Given a graph G = (V,E) and a seed set S, the
discrete-time diffusion process under the IC model is as follows. Initially, all
seeds in S are activated. Then, at each subsequent time step, each newly-activated
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node u tries to activate its out-neighbor node v with only one chance and success
probability p(u, v). This process terminates when no nodes can be activated.

In diffusion process, we say that an edge (u, v) is live if node u activates its
neighbor v successfully, and the edge (u, v) is dead otherwise.

Definition 2 (Realization). Define a realization as φ = (L(φ),D(φ)), where
L(φ) ⊆ E contains all live edges, D(φ) ⊆ E contains all dead edges, and L(φ) ∩
D(φ) = ∅. We say that realization φ is full realization if L(φ) ∪ D(φ) = E and
φ is partial realization otherwise.

In [9], it is shown that the following two diffusion processes are equivalent:

– Execute a stochastic diffusion process on graph G = (V,E);
– Randomly generate a full realization φ of G and execute the deterministic

diffusion process on graph G′ = (V,L(φ)).

Then, the influence spread of nodes set S, i.e., the expected number of acti-
vated nodes of S can be written as

I(S) = Eφ[Iφ(S)] =
∑

φ

Pr[φ] · Iφ(S), (1)

where φ is the full realization, Iφ(S) is the number of active nodes influenced by
set S under the realization φ and Pr[φ] =

∏
(u,v)∈L(φ) p(u, v) · ∏

(u,v)∈D(φ)(1 −
p(u, v)).

For ease of reference, φ and ϕ represent the full realization and partial real-
ization in the following, respectively. We define φ ∼ ϕ as ϕ is consistent with φ
if L(ϕ) ⊆ L(φ) and D(ϕ) ⊆ D(φ). In addition, ϕ1 ≺ ϕ2 represents that ϕ1 is a
subrealization of ϕ2 if L(ϕ1) ⊆ L(ϕ2) and D(ϕ1) ⊆ D(ϕ2).

3.2 Problem Definition

Different from the traditional influence maximization, the adaptive influence
maximization has a feedback model.

Definition 3 (General Feedback Model). Let φ and ϕ be the known full
realization and partial realization with φ ∼ ϕ, respectively. Given a nodes set S
and a time-step T , we define by IT

φ (S) the set of nodes which are activated by S
within time T − 1 under the realization φ. Then, a general feedback model is a
function FT

φ,ϕ that maps a set S to a partial realization ψ such that L(ψ) = L(ϕ)∪
{(u, v) ∈ L(φ) : u ∈ IT

φ (S)} and D(ψ) = D(ϕ) ∪ {(u, v) ∈ D(φ) : u ∈ IT
φ (S)}.

Notice that the feedback model is equivalent to the myopic feedback model
when time-step T = 1 and the full feedback model when time-step T is no less
than the longest distance between any two nodes in graph G, respectively. For
convenience, we denote D as the longest distance between any two nodes in
graph G.

In this paper, we assume that the number of seeding processes is k, and B
nodes can be selected at each seeding process.
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Definition 4 (Adaptive Policy). An adaptive policy π is a function that maps
a partial realization ϕ and a budget B to a nodes set, determining which B seeds
to pick next based on ϕ returned by the feedback model.

Definition 5 (Policy Truncation). Given a policy π, we denote πi as the
policy truncation, illustrating πi only executes the first i seeding processes, and
these processes are totally the same as π. Notice that π0 = ∅ for any policy π.

Definition 6 (Policy Concatenation). For any two policies π and π′, we
denote π⊕π′ as the policy concatenation, illustrating π runs first, and then runs
π′ without considering the results observed from π.

Given a time-step T for the feedback model, let ζT (π, φ) be the set of
nodes selected by π under a full realization φ. More specifically, ζT (π, φ) can
be obtained as follows:

– Initially S = ∅, ϕ = (∅, ∅), and IT
φ (S) = ∅;

– For each seeding process, compute S = S ∪ π(ϕ,B), ϕ = FT
φ,ϕ(S) and IT

φ (S);
– The process terminates after k seeding processes and return ζT (π, φ) = S.

Based on the above definitions, we can present our problems formally.

Definition 7 (Adaptive Influence Maximization). Suppose that we exe-
cute k seeding processes and the size of selected seeds is B at each process.
Given a graph G and a time-step T , let fT (π) = Eφ[Iφ(ζT (π, φ))] =

∑
φ Pr[φ] ·

Iφ(ζT (π, φ)) and Π be all possible adaptive policies. The adaptive influence max-
imization problem aims at finding a policy π such that

max
π∈Π

fT (π) (2)

s.t. |ζT (π, φ)| ≤ k · B for all φ (3)

Furthermore, we consider the randomness of policy during algorithm execu-
tion and then study the adaptive stochastic influence maximization.

Definition 8 (Adaptive Stochastic Influence Maximization). Suppose
that we execute k seeding processes and the size of selected seeds is B at each
process. Let π(ω) be a random adaptive policy corresponding to variable ω, where
ω represents the random factors that affect the policy. The adaptive stochastic
influence maximization problem aims at finding a policy π(ω) such that

max
π∈Π

Eω[fT (π(ω))] (4)

s.t. |ζT (π(ω), φ)| ≤ k · B for all φ (5)

4 Algorithm Design

In this section, we aim to design approximation algorithms for our problems. For
ease of reference, let π∗ be the optimal policy, φ∗ = (E, ∅). Given any policy π,
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we denote by π̂i,j = πi ⊕ π∗
j for each i, j ≥ 0. In addition, for any i, j ≥ 0, let

ϕ(πi, φ)(resp. ϕ(π̂i,j , φ)) be the partial realization being observed after adopting
policy πi(resp. π̂i,j) under the realization φ within time-step i · T .

First, we define the comparative factor. For convenience, given a set
S, a policy π and a realization ϕ, let ΔS(π|ϕ) = Eφ[Iφ(ζT (π, φ) ∪ S) −
Iφ(ζT (π, φ))|φ ∼ ϕ]. Similarly, given policies π and π′, we also denote Δπ′(π|ϕ) =
Eφ[Iφ(ζT (π′, φ)) − Iφ(ζT (π, φ))|φ ∼ ϕ].

Definition 9 (Comparative Factor). A parameter βi is the comparative fac-
tor if βi is the minimum value satisfying

max
S⊆V,|S|=B

ΔS(π̂i,j−1|ϕ(π̂i,j−1, φ
′)) ≤ βi · max

S⊆V,|S|=B
ΔS(π̂i,j−1|ϕ(πi, φ

′)), (6)

for each full realization φ′ and i, j ≥ 0.

If T ≥ D, then βi = 1 due to the adaptive submodularity of the objective
function [6]. If T < D, βi ≤ maxv∈V Iφ∗({v}) since maxS⊆V,|S|=B ΔS(π̂i,j−1|ϕ
(π̂i,j−1, φ

′)) ≤ B ·maxv∈V Iφ∗({v}) and maxS⊆V,|S|=B ΔS(π̂i,j−1|ϕ(πi, φ
′)) ≥ B.

Notice that for each realization φ, we suppose that the number of nodes that
can be activated by set ζT (π̂i,j−1, φ) is at least B here.

Lemma 1. Given any adaptive policy π, if it satisfies

αi · max
S⊆V,|S|=B

ΔS(πi|ϕ(πi, φ
′)) ≤ Δπi+1(πi|ϕ(πi, φ

′)) (7)

for any realization φ′ and i ≥ 0, then fT (π∗) − fT (πi) ≤ kβi

αi
· (

fT (πi+1)−
fT (πi)

)
, where αi ∈ [0, 1] and βi is the comparative factor.

Proof. According to the monotonicity of the objective function, we have

fT (π∗) − fT (πi) ≤ fT (π̂i,k) − fT (πi)

=
k∑

j=1

(
fT (π̂i,j) − fT (π̂i,j−1)

)
.

Next, for any j = 1, . . . , k, we have

fT (π̂i,j) − fT (π̂i,j−1) = Eφ[Iφ(ζT (π̂i,j , φ)) − Iφ(ζT (π̂i,j−1, φ))]

= Eφ′
[
Eφ[Iφ(ζT (π̂i,j , φ)) − Iφ(ζT (π̂i,j−1, φ))|φ ∼ ϕ(π̂i,j−1, φ

′)]
]

= Eφ′ [Δπ̂i,j (π̂i,j−1)|ϕ(π̂i,j−1, φ
′)]

≤ Eφ′ [ max
S⊆V,|S|=B

ΔS(π̂i,j−1)|ϕ(π̂i,j−1, φ
′)].

According to the definition of comparative factor, it holds that

max
S⊆V,|S|=B

ΔS(π̂i,j−1|ϕ(π̂i,j−1, φ
′)) ≤ βi · max

S⊆V,|S|=B
ΔS(π̂i,j−1|ϕ(πi, φ

′)).
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Then,

fT (π̂i,j) − fT (π̂i,j−1) ≤ βi · Eφ′ [ max
S⊆V,|S|=B

ΔS(π̂i,j−1|ϕ(πi, φ
′))]

≤ βi · Eφ′ [ max
S⊆V,|S|=B

ΔS(πi|ϕ(πi, φ
′))]

≤ βi

αi
· Eφ′ [Δπi+1(πi|ϕ(πi, φ

′))]

≤ βi

αi
· Eφ′

[
Eφ[Iφ(ζT (πi+1, φ)) − Iφ(ζT (πi, φ))|φ ∼ ϕ(πi, φ

′)]
]

=
βi

αi
· (

fT (πi+1) − fT (πi)
)
.

Based on above results, the lemma follows.

Algorithm 1 adaptively selects k seed sets S0, S1, . . . , Sk−1. Initially, let G0 =
G and X0 = ∅. At each seeding process i, this algorithm needs to identify an
αi-approximate solution Si for problem maxS⊆V,|S|=B I(S ∪ Xi) corresponding
to Gi. After the seed selection, we observe the influence of Si within time-step
T . On the one hand, the algorithm removes all nodes activated before time T
and creates a new graph Gi+1. On the other hand, it generates a set Xi which
contains all nodes activated exactly in time T .

Algorithm 1. Adaptive Greedy
Input: graph G = (V, E), the number of seeding processes k, the size of selected

nodes B in each seeding process
Output: adaptively return seed sets S0, S1, . . . , Sk−1

1: Initialize G0 = G and X0 = ∅
2: for i = 0 to k − 1 do
3: Identify a size-B set Si such that Si is an αi-approximate solution for the

problem maxS⊆V,|S|=B I(S ∪ Xi) corresponding to Gi

4: Observe the influence diffusion of Si within time-step T
5: Remove all nodes activated before time T and generate a new graph Gi+1

6: Identify a set Xi+1 which contains all nodes activated exactly at time T
7: end for
8: return S0, . . . , Sk−1

Theorem 1. The adaptive policy π returned by Algorithm 1 satisfies fT (π) ≥
(1 − e

− ∑k−1
i=0

αi
kβi ) · fT (π∗), where αi ∈ [0, 1] and βi is the comparative factor.

Proof. Let ai = fT (π∗) − fT (πi). For each i ≥ 0, Lemma 1 gives

ai ≤ kβi

αi
· (ai − ai+1), (8)

and
ai+1 ≤ (1 − αi

kβi
) · ai. (9)
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Notice that 1 − x ≤ e−x for all x ∈ R, we have

ak ≤
k−1∏

i=0

(1 − αi

kβi
) · a0 ≤ e

− ∑k−1
i=0

αi
kβi · a0. (10)

Rearranging Eq. 10, fT (π∗)−fT (πk) ≤ e
− ∑k−1

i=0
αi
kβi ·fT (π∗) holds and Theorem 1

follows.

Notice that Algorithm 1 needs to identify an αi-approximate solution for the
problem maxS⊆V,|S|=B I(S ∪ Xi) for each seeding process i. Using the greedy
algorithm, we can obtain a (1 − 1/e)-approximate solution since the objective
function is non-negative monotone non-decreasing and submodular [12]. How-
ever, the computation of the objective function is #P-hard [3] and the approx-
imation ratio is 1 − 1/e − ε using the greedy algorithm based on Monte -Carlo
simulation, where ε ∈ (0, 1). Here, it is difficult to give the exact value of ε.
Based on the reverse influence sampling strategy, we can obtain a (1 − 1/e − ε)-
approximate solution with at least probability 1 − δ, where ε, δ ∈ (0, 1) and
they are the inputs of the algorithm. Due to the exponential number O(2m)
of realizations, the failure probability is at most O(2m · δ). Then, it is hard to
ensure an approximate solution for the adaptive influence maximization using
this method. Next, we utilize this idea to solve the adaptive stochastic influence
maximization problem.

Definition 10 (RR set). Given a graph G = (V,E), we can generate a sub-
graph g = (V,E′), where E′ ⊆ E and each edge (u, v) ∈ E is in g with probability
p(u, v). A random reverse reachable (RR) set is a set of nodes that can reach v
in g with node v ∈ V uniformly at random.

Given a random RR set R, we can conclude that I(S) = n · Pr[R ∩ S �= ∅]
for any sets S ⊆ V . Let R be a collection of RR sets and ΛR(S) be the fraction
of the sets in R covered by S. We can use |R| · ΛR(S) to estimate I(S) when
the size of R is large enough. Given set X, we suppose that S∗ is the optimal
solution for maxS⊆V,|S|=B I(S ∪ X). Given sets S and R, an upper bound of
ΛR(S∗ ∪ X) can be written as follows:

Λu
R(S∗ ∪ X) = min

0≤i≤B

⎛
⎝ΛR(Si ∪ X) +

∑
v∈maxMC(Si,B)

(ΛR(Si ∪ X ∪ {v}) − ΛR(Si ∪ X))

⎞
⎠ ,

(11)
where Si is the first i nodes in S and maxMC(S, l) is the first l nodes with the
largest marginal coverage in R corresponding to S.

Inspired by the OPIM-C method for non-adaptive influence maximization
[19], we use Algorithm 2 to solve maxS⊆V,|S|=B I(S ∪ X), where X is given.
First, we generate two collections of RR sets R1 and R2. At each iteration,
we obtain a solution based on R1 and compute its approximation ratio α. If
the approximation ratio is no less than 1 − 1/e − ε, then the algorithm returns
this solution. Otherwise, we generate new RR sets and insert them into R1 and
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Algorithm 2. Seeding Process
Input: graph G = (V, E), budget B, set X, error threshold ε, failure probability

threshold δ
Output: set S

1: θmax ← 2n
(
(1−1/e)

√
ln 6

δ
+
√

(1−1/e)(ln n
B

+ln 6
δ
)
)2

ε2(B+|X|)
2: θ0 ← θmax·ε2(B+|X|)

n

3: Generate two collections of RR sets R1 and R2, with |R1| = |R2| = θ0
4: imax ← �log2

θmax
θ0

	
5: for i = 1 to imax do
6: S ← a size-B set based on R1 using Algorithm 3

7: Iu(S∗ ∪ X) ←
(√

Λu
R1

(S∗ ∪ X) + ln(1/δ1)
2

+
√

ln(1/δ1)
2

)2

· n
|R1| , where δ1 =

δ/(3imax)

8: Il(S ∪ X) ←
((√

ΛR2(S ∪ X) + 2 ln(1/δ2)
9

−
√

ln(1/δ2)
2

)2

− ln(1/δ2)
18

)

· n
|R2| ,

where δ2 = δ/(3imax)
9: α ← Il(S ∪ X)/Iu(S∗ ∪ X)

10: if α ≥ 1 − 1/e − ε then
11: return S
12: end if
13: Double the sizes of R1 and R2 with new RR sets, respectively
14: end for
15: return S

R2, respectively. Algorithm 2 completes when the number of iterations is equal
to imax. Here, the solution corresponding to R1 is obtained from Algorithm 3.
Algorithm 3 can return a set so that its union with a given set X can cover the
most sets in R1.

Lemma 2. Given a set X, an error threshold ε ∈ (0, 1) and a failure probability
threshold δ ∈ (0, 1), Algorithm 2 returns a (1−1/e−ε)-approximate solution for
maxS⊆V,|S|=B I(S ∪ X) with at least probability 1 − δ.

Proof. When 1 ≤ i ≤ imax − 1, the approximation ratio obtained from I l(S ∪
X)/Iu(S∗ ∪ X) is incorrect with at least probability 1 − 2δ/(3imax) at each
iteration i. When i = imax, according to the results in [21], Algorithm 2 achieves
a (1 − 1/e − ε)-approximate solution with at least probability 1 − δ/3 when
|R1| = θmax. Using the union bound, the lemma follows.

Theorem 2. Combined with Algorithm 2, the adaptive policy π returned by
Algorithm 1 satisfies Eω[fT (π)] ≥ (1 − e

− ∑k−1
i=0

αi
kβi ) · Eω[fT (π∗)], where αi =

1 − 1/e − εi · (1 − δi) − δi, εi, δi ∈ (0, 1) and βi is the comparative factor.
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Algorithm 3. Max-Coverage
Input: a collection of RR sets R, budget B, set X
Output: set S

1: Initialize S = ∅
2: Remove from R all sets covered by X
3: for i = 1 to B do
4: v ← the node that covers the most sets in R
5: S ← S ∪ {v}
6: Remove from R all sets in which v appears
7: end for

Proof. At each seeding process i, Algorithm 2 returns a (1 − 1/e − εi(ω))-
approximate solution for maxS⊆V,|S|=B I(S ∪ Xi), where Xi ⊆ V . According
to Lemma 2, εi(ω) ≤ εi with at least probability 1 − δi. Then, we have

Eω[εi(ω)] ≤ εi · (1 − δi) + δi. (12)

Combined with Theorem 1, this theorem holds.

Theorem 3. When δ ≤ 1/2, Algorithm 1 runs in O((kB ln n + k ln(1/δ))(n +
m)ε−2) + kBdT ) expected time, where d is the average degree of the network.

Proof. At each iteration i, we first identify a size-B set Si using Algorithm 2 and
Algorithm 2 runs in O((k ln n + ln(1/δ)(n + m)ε−2)) expected time if δ ≤ 1/2
[19]. Then, we observe the influence spread of Si within time-step T . Based on
this observation, we generate a new graph Gi+1 and a set Xi+1. These processes
run in O(BdT ) expected time. The number of iterations of the Algorithm 1 is k
and the theorem follows.

5 Conclusions

Different from the classic influence maximization problem, the selection of seed
nodes are not completed at one time for the adaptive influence maximization.
We can select subsequent seed nodes according to the observation of the diffu-
sion results. Therefore, the adaptive strategy can make better use of the budget.
Notice that there is a feedback model for adaptive influence maximization, and
different feedback models will lead to different strategies. In this paper, we con-
sider a general feedback model, including the full feedback model and myopic
feedback model. More specifically, the general feedback model allows a fixed
observation time-step and the next seeds selection after this observation results.
Generally, the objective function lacks adaptive submodularity, and it is hard
to derive an approximate solution. To solve it, we propose a comparative factor
and provide a theoretical analysis of the solution using an adaptive greedy algo-
rithm. In addition, considering the randomness of the policy during algorithm
execution, we discuss the adaptive stochastic influence maximization and design
a feasible approximation algorithm.
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Abstract. In the paper, we design a privacy algorithm for maximizing a
general submodular set function over a down-monotone family of subsets,
which includes some typical and important constraints such as matroid
and knapsack constraints. The technique is inspired by the measured
continuous greedy (MCG) which compensates for the difference between
the residual increase of elements at a given point and the gradient of it by
distorting the original direction with a multiplicative factor. It directly
makes the continuous greedy approach fit to the problem of maximiz-
ing a non-monotone submodular function. We generate the MCG algo-
rithm in the framework of differential privacy. It is accepted as a robust
mathematical guarantee and can provide the protection to sensitive and
personal data. We propose a 1/e-approximation algorithm for the gen-
eral submodular function. Moreover, for monotone submodular objective
functions, our algorithm achieves an approximation ratio that depends
on the density of the polytope defined by the problem at hand, which
is always at least as good as the previously known best approximation
ratio of 1 − 1/e.

Keywords: Approximation algorithm · Submodular maximization ·
Differential privacy · Down-monotone family

1 Introduction

The theory of submodular maximization provides a general and unified frame-
work for various combinatorial optimization problems including Maximum Cov-
erage, Maximum Cut and Facility Location [13]. Furthermore, it also appears in
a wide variety of applications such as viral marketing [19], information gathering
[21], feature selection for classification [20], influence maximization in social net-
works [19], document summarization [23], speeding up satisfiability solvers [32],
computer vision [18], social welfare [34] and data privacy [31]. As a consequence
of its importance in these applications, a wide range of efficient approximation
algorithms have been developed for maximizing submodular functions subject
to different constraints.

In this paper, given a non-negative submodular function f : 2X → R≥0 over a
ground set X , we focus on the basic problem of seeking a subset of 2X maximizing
c© Springer Nature Switzerland AG 2021
W. Wu and H. Du (Eds.): AAIM 2021, LNCS 13153, pp. 212–226, 2021.
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f and satisfying a down-monotone family of subsets I ⊆ 2X in the framework
of differential privacy. A family of subsets I ⊆ 2X is down-monotone if B ∈ I
and A ⊆ B imply A ∈ I. Note that many natural families of subsets I are
down-monotone, e.g., families introduced by matroid and knapsack constraints.

1.1 The Continuous Greedy Approach

For now, the continuous greedy is the most popular approach for solving various
constrained submodular maximization problems. This approach has been used
to obtain improved approximations to various problems [6,8–10,22,24]. Most
notable of these results is an asymptotically tight approximation for maximizing
a monotone submodular function given a single matroid constraint [6,28,33]. The
matroid constraint is one of the important instances for the problem we consider,
since it gives a pithy unifying abstract treatment of dependence in linear algebra
and graph theory. Besides, the theory of matroid has its the most successful appli-
cations in the areas of combinatorial optimization and network theory. For max-
imizing a monotone submodular function over a general matroid constraint, a
renowned 1/2-approximation greedy algorithm is given by Nemhauser et al. [29].
Then, Nemhauser and Wolsey [28] points out that there exists no polynomial-
time algorithm with an approximation guarantee better than (1 − 1/e) even for
the special case of cardinality constraint. In 2011, Calinescu et al. [6] proposed
an optimal randomized (1−1/e)-approximation algorithm based on the continu-
ous greedy plus pipage rounding [2], which can be seen as a milestone that firstly
achieves the bound of approximation guarantee. This continuous approach for-
mulates the objective to a continuous function known as multilinear extension.
A function F : [0, 1]X → R≥0 is the multilinear extension of f if

F (y) = ER∼y[f(R)] =
∑

R⊆S
f(R)

∏

i∈R

yi

∏

j /∈R

(1 − yj),

where the random set R contains element i independently with probability
yi. Commonly, it selects a feasible point x ∈ P greedily by solving x =
arg max{w(y) · x|x ∈ P} where the feasibility polytope is down monotone and
solvable and the weight vector w(y) ∈ R

X is w(y)e = F (y∨1e)−F (y), for every
e ∈ X . Thus, x is chosen according to the residual increase of each element e,
i.e., F (y ∨ 1e) − F (y). Then, the algorithm returns a fractional solution with
1 − 1/e approximation guarantee when f is monotone and submodular and the
polytope P is solvable. As for the rounding techniques, the swap rounding [8] or
pipage rounding can efficiently meet our needs without any loss of approxima-
tion, since the set function is submodular. However, this method is only known
to work for the multilinear extensions of monotone submodular functions.

In contrast, the general problem with a non-monotone objective has proved
to be considerably more challenging. It is well-studied [5,7,12–15,17,24,26], par-
ticularly under a cardinality constraint [15,17,24,26] and matroid constraints
[13] with guarantee 1/e − o(1) [5]. A refined approach for continuous greedy is
the measured continuous greedy given by [14] in 2011. It compensates for the
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difference between the residual increase of elements at point y, and ∇F (y),
by distorting the direction x as to mimic the value of ∇F (y). This is done
by decreasing xe, for every e ∈ X , by a multiplicative factor of 1 − ye. More-
over, Buchbinder and Feldman [4] give the currently best algorithm for general
matroid constraints with 0.385 ratio.

1.2 Differential Privacy and CPP Problem

The need for efficient optimization methods that guarantee the privacy of indi-
viduals is wide-spread across many applications concerning sensitive data about
individuals, e.g., medical data, web search query data, salary data, social net-
works. Differential privacy [11] is a kind of privacy concept that gives a standard
paradigm for confidential data analysis. Informally, differential privacy guar-
antees that the distribution of outcomes of the computation does not change
significantly when one individual changes its input data. We say two datasets
are neighboring if they differ in a single record and we denote this relationship
by D ∼ D′. Formally, we give the definition of differential privacy here, which is
induced by Dwork et al. [11] in 2006.

Definition 1.1. For ε, δ ∈ R≥0, we say that a randomized computation M is
(ε, δ)-differentially private if for any neighboring datasets D ∼ D′, and for any
set of outcomes S ⊆ range(M),

Pr[M(D) ∈ S] ≤ exp(ε) Pr[M(D′) ∈ S] + δ.

When δ = 0, we say M is ε-differentially private.

Gupta et al. [16] considered an important case of the problem we consider
called the Combinatorial Public Projects (CPP problem). The CPP problem
was introduced by Papadimitriou et al. [30] and is as follows. For a dataset D =
(x1, . . . , xn), each individual xi submits a private non-decreasing and submodu-
lar valuation function Gxi

: 2X → [0, 1]. The goal is to select a subset S ⊆ X to
maximize function GD that takes the particular form GD(S) = 1

n

∑n
i=1 Gxi

(S).
Gupta et al. [16] gave an (ε, δ)-differentially private algorithm with (1 −

1
e )OPT − O(k ln(e/δ) ln |X |

ε ) approximation ratio under cardinality constraint.
Mitrovic et al. [27] gave differentially private algorithms for monotone submodu-
lar maximization under different constraints. It proposed an 1− 1/e approxima-
tion private algorithm for cardinality and 1/2 for matroid, and p-extendible
system constraints. Recently, Rafiey and Yoshida [31] presented a (1 − 1

e )-
approximation algorithm based on the continuous greedy approach for mono-
tone submodular maximization subject to matroid constraints in the framework
of differential privacy. Moreover, differential privacy has great applications in
deep learning, called private learning [1], to prevent that the models expose pri-
vate information in the datasets. In 2021, Bu et al. [3] generates the techniques
to many useful optimizers like SGD and Adam.

In our case, a dataset D consists of private submodular functions f1, . . . , fn :
2X → [0, 1]. Recall that two datasets D and D′ are neighboring if all but one
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submodular function in those datasets are equal. The submodular function fD

depends on the dataset D in different ways, for example fD(S) =
∑n

i=1 fi(S)/n
(CPP problem), or much more complicated ways than averaging functions asso-
ciated to each individual. Differentially private algorithms must be calibrated to
the sensitivity of the function of interest with respect to small changes in the
input dataset, defined formally as follows.

Definition 1.2. The sensitivity of a function fD : X → Y , parameterized by a
dataset D, is defined as maxD′:D′∼D maxx∈X |fD(x) − fD′(x)|. A function with
sensitivity Δ is called Δ-sensitive.

Note that in this setting, the sensitivity can be always bounded from above
by 1

n .

1.3 Our Contribution

We clearly present a private version of the powerful technique measured con-
tinuous greedy, which is one of the best approaches for solving the problem of
maximizing the general submodular set function subject to a down-monotone
family of subsets, which includes some typical and important constraints such
as matroid and knapsack constraints. This 1/e-approximation algorithm inherits
from the well-known continuous greedy for monotone submodular maximization.
It compensates for the difference between the residual increase of elements at
a given point and the gradient of it by distorting the original direction with
a multiplicative factor. From the perspective of sensitive data privacy, we gen-
erates the MCG in the framework of differential privacy, which guarantees the
distribution of outcomes of the computation does not change significantly when
one individual changes its input data. Following the exponential mechanism, we
present a brand new analysis process for this algorithm in Sect. 3.1 for all theo-
retical results, although the structure is inherited from [14]. Besides, we give a
privacy analysis (stated as Theorem 3.1) for this algorithm. The whole analysis
finally leads to a (Te−T − o(1)) approximation guarantee with O( Δ

n4 ) privacy
loss, where T is the stopping time and Δ denotes the sensitivity of the set func-
tion. It is obvious that we can nearly get 1/e when we set T = 1. Moreover,
our private algorithm is also suitable for the monotone case with the help of the
density of the polytope with respect to the constraint. The approximation ratio
is at least as good as the previously known best guarantee 1 − 1/e.

1.4 Organization

We first cover preliminary definitions and basic properties in Sect. 2. Then, the
private algorithm and its analysis are proposed in Sect. 3. We give three main
results for different settings respectively. Moreover, the privacy analysis is also
showed in Sect. 3, which measures how safe of our data can be protected by our
algorithm. Finally, we conclude the paper in Sect. 4.
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2 Preliminaries

In the section we provide the necessary notations and terms appeared in the rest
sections. Given a ground set X including n elements, a set function f : 2X → R

is submodular if and only if f(A)+f(B) ≥ f(A∪B)+f(A∩B) for any A,B ⊆ X .
Besides, we say f is monotone if f(A) ≤ f(B) for all A ⊆ B ⊆ X . Also, f is
non-negative and normalized if f(A) ≥ 0 for A ∈ X and f(∅) = 0, respectively.
For briefness, we use the shorthands S + u and S − u for S ∪ {u} and S\{u},
respectively.

Given a non-negative submodular function f : 2X → R+, our goal is to find
a subset belonging to a down-monotone family of I ⊆ 2X in the framework of
differential privacy. A family of subsets I ⊆ 2X is down-monotone if B ∈ I and
A ⊆ B imply A ∈ I. Formally, the problem can be simply formulated as:

max
S∈I

f(S)

where I ⊆ 2X can be viewed as the constraint family. Also, we assume that we
have a value oracle which returns the value of f(S) immediately and answers
whether S ∈ I.

2.1 Multilinear Relaxation

The multilinear extension of a set function f is defined as F : [0, 1]n → R+,
which maps a point x ∈ [0, 1]X to the expected value of a random set R(x) ⊆ X
containing each element e ∈ X with probability xe independently, i.e. F (x) :=
E[f(R(x))] =

∑
S⊆X f(S)

∏
e∈S xe

∏
e/∈S(1 − xe). For vectors x,y ∈ [0, 1]n, we

denote (x∨y)e = max{xe,ye} and (x∧y)e = min{xe,ye} as the coordinate-wise
maximum and minimum of these two vectors, respectively.

The first order and second order properties of multilinear extension are well-
known as follows:

Lemma 2.1 ([6]). Let F : [0, 1]n → R be the multilinear extension of a mono-
tone submodular function f : 2X → R. Then

(1) ∂eF (x) := ∂F (x)
∂xe

= F (x∨1e)−F (x)
1−xe

= F (x)−F (x∧1ē)
xe

= F (x ∨ 1e) − F (x ∧ 1ē);
(2) F is monotone, meaning ∂F

∂xe
≥ 0. Hence, ∇F (x) = ( ∂F

∇x1
, . . . , ∂F

∇xn
) is a

non-negative vector;
(3) F is concave along any direction d ≥ 0.

Also, we present the local nearly linearity of multilinear extension as a tech-
nical lemma for the analysis.

Lemma 2.2 ([13]). Consider two vectors x,x′ ∈ [0, 1]n such that |xe − x′
e| ≤

δ for every e ∈ X , and let F be the multilinear extension of a non-negative
submodular function f . Then,

F (x′) − F (x) ≥ (x′ − x) · ∂F (x) − O(n3δ2) · max
e∈X

f(e).
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Even though the submodular function defined by the multilinear extension is
neither convex nor concave, it is still possible to efficiently compute an approxi-
mate feasible fractional solution for the relaxation, assuming its feasibility poly-
tope P is down-monotone and solvable. A polytope P ⊆ [0, 1]n is donw-monotone
if x ∈ P and 0 ≤ y ≤ x imply y ∈ P. A polytope P is solvable if linear func-
tions can be maximized over it in polynomial time. For the problem we con-
sider, the underlying polytope P can be defined by m inequality constraints,
i.e.,

∑
e∈X ai,exe ≤ bi for all 1 ≤ i ≤ m. Also, we denote the density of P by

d(P) = min1≤i≤m
bi∑

e∈X ai,e
. It is straightforward to assume that all parameter

ai,e and bi are non-negative, and 0 < d(P) ≤ 1. Also, we denote the ρ-covering
of the polytope P as the neighboring polytope inspired by [31].

Definition 2.1. Let K ⊆ R
X be a set. For ρ > 0, a set C ⊆ K of points is called

a ρ-covering of K if for any x ∈ K, there exists y ∈ C such that ‖x − y‖ ≤ ρ.

And we can construct it in O(n1/ε2) time due to [36].

2.2 Lovász Extension

In addition to the multilinear extension, we make use of the Lovász extension.
Given a vector x ∈ [0, 1]n and a scalar λ ∈ [0, 1]n, let Tλ(x) be the set of elements
in X whose coordinate in x is at least λ, i.e., Tλ(x) = {e ∈ X : xe ≥ λ}. The
Lovász extension of a set function f : 2X → R is defined as

f̂(x) =
∫ 1

0

f(Tλ(x))dλ = Eλ∼Unif[0,1][f(Tλ(x))].

Beside its use in relaxations for minimization problems, the Lovász extension
can also be used to lower bound the multilinear extension via the following
lemma.

Lemma 2.3 ([35]). Let F (x) denote the multilinear extension and f̂(x) denote
the Lovász extension of submodular function f : 2X → R. Then F (x) ≥ f̂(x).

2.3 Exponential Mechanism

One particularly general tool that we will use is the exponential mechanism
introduced by McSherry and Talwar [25]. The exponential mechanism is defined
in terms of a quality function qD : R → R, which is parameterized by a dataset
D and maps a candidate result R ∈ R to a real-valued score.

Definition 2.2. Let ε,Δ > 0 and let qD : R → R be a quality score. Then,
the exponential mechanism EM(ε,Δ, qD) outputs R ∈ R with probability pro-
portional to exp( ε

2Δ · qD(R)).

The following result shows the chance of obtaining a good enough output by
the instructions of the exponential mechanism.
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Theorem 2.1 ([25]). Suppose that the quality score qD : R → R is Δ-sensitive.
Then, EM(ε,Δ, qD) is ε-differentially private, and for every β ∈ (0, 1) outputs
R ∈ R with

Pr
[
qD(R) ≥ max

R′∈R
qD(R′) − 2Δ

ε
ln

( |R|
β

)]
≥ 1 − β.

3 The Privacy Algorithm

This section starts from the differential private algorithm, which is a modification
of the measured continuous greedy algorithm [14] and showed in Algorithm 1.
Instead of finding the optimal solution for the linear programming maxx∈P x ·
∇fD(y(t)), we sample a vector I(t) in the feasible polytope with probability
proportional to exp (ε′〈I(t), w(t)〉), where 〈·〉 denotes the inner product of two
vectors. Apparently, we will obtain better solutions with higher probability by
following this rule.

Algorithm 1. Differentially Private Measured Continuous Greedy
Input: Submodular function fD : 2X → [0, 1], dataset D, polytope P, ρ-covering CP

ρ

of P ρ ≥ 0 and ε > 0.
Output: y(t)
1: Initialization: δ ← T (�n5T �)−1, t ← 0, y(0) ← 1∅, ε′ ← ε

2Δ

2: while t < T do
3: for e ∈ X do
4: we(t) ← F (y ∨ 1e) − F (y(t))
5: end for
6: Sample I(t) ∈ CP

ρ with probability proportional to exp (ε′〈I(t), w(t)〉)
7: y(t + δ) ← y(t) + δI(t) · (1 − y(t))
8: t ← t + δ
9: end while

3.1 Analysis

In this subsection, we analyse Algorithm 1 for general non-negative submodular
functions and give the results when f is non-monotone and monotone, respec-
tively. Firstly, we present the result of privacy analysis, which describes the
privacy level of Algorithm 1.

Theorem 3.1. Algorithm 1 preserves O(ε · d2P)-differential privacy.

Then, we show one of the most important results in our analysis, which is
given in the next lemma. It helps us to give the lower bound on the improvement
achieved by the algorithm in each iteration.
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Lemma 3.1. For every time 0 ≤ t ≤ T , I(t) is the sampled vector by Algorithm
1 and I ′(t) is the solution of the linear programming in measured continuous
greedy algorithm. Then,

I(t)w(t)(1 − y(t)) ≥ F (y(t) ∨ 1OPT ) − F (y(t)) − O

(√
ε +

2Δ ln n

ε3

)
.

Together with multilinearity of the multilinear extension (Lemma 2.2), we get
a lower bound on the improvement achieved by the algorithm in each iteration.

Lemma 3.2. For every time 0 ≤ t < T ,

F (y(t + δ)) − F (y(t))

≥ δ ·
[
F (y(t) ∨ 1OPT ) − F (y(t)) − O

(√
ε +

2Δ ln n

ε3

)]
− O(n3δ2) · f(OPT ).

Then, we take advantage of the relationship between the improvement of
each iteration and the residual value to lower bound F (y(t) ∨ 1OPT ) with the
help of Lovász extension (see Lemma 3.5 and Lemma 3.6 in [13]), which leads
to the result below. It is a lower bound on the improvement achieved by the
algorithm in each iteration.

Lemma 3.3. For every time 0 ≤ t < T ,

F (y(t) + δ) − F (y(t))

≥ δ ·
[
(e−t − O(δ))f(OPT ) − F (y(t)) − O

(√
ε +

2Δ ln n

ε3

)]
− O(n3δ2) · f(OPT )

= δ ·
[
e−t · f(OPT ) − F (y) − O

(√
ε +

2Δ ln n

ε3

)]
− O(n3δ2) · f(OPT ).

In order to get the approximate ratio, we still need the help of two auxil-
iary functions. First we define g(t) : g(0) = 0 and g(t + δ) = (1 − δ)g(t) +
δe−tf(OPT ).

Lemma 3.4. For every 0 ≤ t ≤ T ,

g(t) ≤ F (y(t)) + O(n3δ) · tf(OPT ) + δO

(√
ε +

2Δ ln n

ε3

)
.

Second we define h(t) = te−tf(OPT ) and we use the former auxiliary func-
tion to bound it.

Lemma 3.5. For every time 0 ≤ t ≤ T , g(t) ≥ h(t).

Our next corollary can help us easily proof the first theorem for the non-
monotone case.

Corollary 3.1. F (y(t)) ≥ [
Te−T − o(1)

] · f(OPT ) − δO
(√

ε + 2Δ lnn
ε3

)
.

The theorem below shows the approximation guarantee achieved by our algo-
rithm for the multilinear relaxation problem of maximizing non-monotone sub-
modular set function while satisfying a down-monotone family of subsets.
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Theorem 3.2. Suppose fD is Δ-sensitive and P ⊆ [0, 1]n is down-monotone
solvable convex polytope and stopping time T ∈ [0, 1]. Then, Algorithm 1, with
high probability, finds y ∈ [0, 1]n such that y/T ∈ P and

F (y) ≥ [Te−T − o(1)] · f(OPT ) − δ · O

(√
ε +

2Δ ln n

ε3

)
.

For the existence of the output of Algorithm 1, we can easily get y(t) ∈ [0, 1]n

for any t < T and y/T ∈ P by convexity and the down-monotonicity of P. These
two results make sure the fractional solution always satisfies the definition of
multilinear extension and the solution scaled by the execution time stays in
the constraint polytope. And we can get the discrete solution by using pipage
rounding or swap rounding without any loss of approximation.

Moreover, we give the approximation guarantee of Algorithm 1 for monotone
submodular set function with differential privacy. Combine the analysis process
of the non-monotone case and section 3.2 in [13], we can easily get the coming
theorem. Therefore, we only present it here without proof.

Theorem 3.3. Suppose fD is Δ-sensitive and P ⊆ [0, 1]n is down-monotone
solvable convex polytope and stopping time T ≥ 0. Then, Algorithm 1, with high
probability, finds x ∈ [0, 1]n such that

F (x) ≥ [1 − e−T − o(1)] · f(OPT ) − δ · O

(√
ε +

2Δ ln n

ε3

)
.

Additionally, we have

(1) x/T ∈ P.
(2) Let TP = − ln(1 − d(P) + nδ)/d(P). Then, T ≤ TP implies x ∈ P,

where, d(P) := min1≤i≤m
bi∑

e∈X ai,e
defines the density of the polytope P.

At last, we present a further conclusion when the polytope P binary polytope,
which can be viewed as a special case of our constraints.

Theorem 3.4. Let x be the output of the measured continuous greedy, assuming
T = TP . Then,

F (y) ≥
[
1 − (1 − d(P))1/d(P) − O(n−2)

]
· f(OPT ) − δO

(√
ε +

2Δ ln n

ε3

)

=
[
1 − (1 − d(P))1/d(P) − o(1)

]
· f(OPT ) − δO

(√
ε +

2Δ ln n

ε3

)
.

4 Conclusion

We proposed a differentially private algorithm for maximizing a non-negative
submodular function under a down-monotone family of subsets. For general
non-monotone submodular objective functions, our algorithm achieves an 1/e
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approximation ratio. For monotone submodular objective functions, our algo-
rithm achieves an approximation ratio that depends on the density of the poly-
tope defined by the problem at hand, which is always at least as good as the
previously known best approximation ratio of 1 − 1/e. Moreover, we present a
more elegant approximation guarantee for the special case of our constraints,
when the polytope P is binary. Finally, we can easily get the discrete solution
of all these results without any approximation loss by commonly rounding tech-
niques, such as pipage rounding or swap rounding.
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Appendix: Missing Proofs

Theorem 3.1. Algorithm 1 preserves O(ε · d2P)-differential privacy.

Proof. Let D and D′ be two neighboring datasets and fD, fD′ be their associated
functions. For a fixed yt ∈ Cρ, we consider the relative probability of Algorithm
1 (denoted by M) choosing yt at time step t given multilinear extensions of fD

and fD′ . Let Mt(fD|xt) denote the output of M at time step t given dataset
D and point xt. Similarly, Mt(fD′ |xt) denotes the output of M at time step
t given dataset D′ and point xt. Further, write dy = 〈y,∇fD(xt)〉 and d′

y =
〈y,∇fD(xt)〉. We have

Pr[Mt(fD|xt) = yt]
Pr[Mt(fD′ |xt) = yt]

=
exp(ε′ · dyt

)
exp(ε′ · d′

yt
)

·
∑

y∈Cρ
exp(ε′ · d′

y)
∑

y∈Cρ
exp(ε′ · dy)

.

For the first factor, we have

exp(ε′ · dyt)

exp(ε′ · d′
yt)

= exp
(
ε′(dyt − d′

yt
)
)

= exp
(
ε′(〈yt, ∇fD(xt) − ∇fD′(xt)〉)

)
≤ exp

(
ε′‖yt‖1‖∇fD(xt) − ∇fD′(xt)‖∞

)

= exp

(
ε′ ∑

e∈X
yt(e) ·

(
max
e∈X

ER∼xt [fD(R ∪ {e}) − fD(R) − fD′(R ∪ {e}) + fD′(R)]

))

≤ exp(O(ε′ · mdP · 2Δ)) = exp(O(ε · dP)).

Note that the last inequality holds since yt is a member of the polytope P
and by definition we have

∑
e∈X ai,eyt(e) ≤ bi and dP = min1≤i≤m

bi∑
e∈X ai,e

.
Moreover, recall that fD is Δ-sensitive.
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For the second factor, let us write βy = d′
y − dy to be the deficit of the

probabilities of choosing direction y in instances fD′ and fD. Then, we have
∑

y∈Cρ
exp(ε′ · d′

y)
∑

y∈Cρ
exp(ε′ · dy)

=

∑
y∈Cρ

exp(ε′ · βy) exp(ε′ · dy)
∑

y∈Cρ
exp(ε′ · dy)

= Ey[exp(ε′ · βy)] ≤ exp(O(ε′ · mdP · 2Δ))
= exp (O(ε · dP)) .

��
Lemma 3.1. For every time 0 ≤ t ≤ T , I(t) is the sampled vector by Algorithm
1 and I ′(t) is the solution of the linear programming in measured continuous
greedy algorithm. Then,

I(t)w(t)(1 − y(t)) ≥ F (y(t) ∨ 1OPT ) − F (y(t)) − O

(√
ε +

2Δ ln n

ε3

)
.

Proof.

w(t) · 1OPT =
∑

e∈OPT

we(t) =
∑

e∈OPT

[F (y(t) ∨ 1e) − F (y(t))]

= E

[
∑

e∈OPT

f(R(y(t)) + e) − f(R(y(t)))

]

≥ E [f(R(y(t)) ∪ OPT ) − f(R(y(t)))] = F (y(t) ∨ 1OPT ) − F (y(t)),

where the inequality is followed by submodularity.
Since 1OPT ∈ P, we get from Algorithm 1

I(t)′ · w(t) ≥ F (y(t) ∨ 1OPT ) − F (y(t)).

Hence,
∑

e∈X
I ′
e(t) · (1 − ye(t)) · ∂eF (y(t))

=
∑

e∈X
(1 − ye(t)) · I ′

e(t) · [F (y(t) ∨ 1e) − F (y(t) ∧ 1ê)]

=
∑

e∈X
I ′
e(t) · [F (y(t) ∨ 1e) − F (y(t))] = I ′(t) · w(t)

≥ F (y(t) ∨ 1OPT ) − F (y(t)).

Recall we define a neighboring feasible field, i.e., the ρ-covering of P. And
we get the followings by the Theorem 2.2 of exponential mechanism:

I(t)w(t)(1 − y(t)) ≥
∑

e∈X
I ′
e(t) · (1 − ye(t)) · ∂eF (y(t)) − O

(√
ε +

2Δ ln n

ε3

)

≥ F (y(t) ∨ 1OPT ) − F (y(t)) − O

(√
ε +

2Δ ln n

ε3

)
.

��
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Lemma 3.2. For every time 0 ≤ t < T ,

F (y(t + δ)) − F (y(t))

≥ δ ·
[
F (y(t) ∨ 1OPT ) − F (y(t)) − O

(√
ε +

2Δ ln n

ε3

)]
− O(n3δ2) · f(OPT ).

Proof.

F (y(t + δ)) − F (y(t))
≥ (y(t + δ) − y(t)) · ∂F (y(t)) − O(n3δ2) · f(OPT )
= δ · I(t)(1 − y(t))w(t) − O(n3δ2) · f(OPT )

≥ δ ·
[
F (y(t) ∨ 1OPT ) − F (y(t)) − O

(√
ε +

2Δ ln n

ε3

)]
− O(n3δ2) · f(OPT ),

where the first and last inequalities are given by Lemma 2.2 and Lemma 3.1.
And the algorithm makes the equality hold. ��
Lemma 3.3. For every 0 ≤ t ≤ T ,

g(t) ≤ F (y(t)) + O(n3δ) · tf(OPT ) + δO

(√
ε +

2Δ ln n

ε3

)
.

Proof. Assume the big O notation in Lemma 3.3 to be cn3δ2. Prove by induction
on t that g(t) ≤ F (y(t))+cn3δtf(OPT ). For t = 0, g(0) = 0 ≤ F (y(0)). Assume
that the claim holds for some t. Then

g(t + δ) = (1 − δ)g(t) + δf(OPT )

≤ (1 − δ)
[
F (y(t) + cn3δtf(OPT ))

]
+ δe−tf(OPT )

= F (y(t)) + δ[e−tf(OPT ) − F (y(t))] + c(1 − δ)n3δtf(OPT )

≤ F (y(t + δ)) + cn3δ2f(OPT ) + c(1 − δ)n3δtf(OPT ) + δO

(√
ε +

2Δ ln n

ε3

)

≤ F (y(t + δ)) + cn3δ(t + δ)f(OPT ) + δO

(√
ε +

2Δ ln n

ε3

)
,

where the inductive assumption and Lemma 3.3 give the first two inequalities
and the last one is hold by δ ∈ [0, 1]. ��
Lemma 3.4. For every time 0 ≤ t ≤ T , g(t) ≥ h(t).

Proof. The proof is by induction on t. For t = 0, g(0) = 0 = h(0). Assume that
the lemma holds for some t. Then, we can easily get

h(t + δ) = h(t) +
∫ t+δ

t

h′(l)dl = h(t) + f(OPT ) ·
∫ t+δ

t

e−l(1 − l)dl

≤ h(t) + f(OPT ) · δe−t(1 − t) = (1 − δ)h(t) + δe−t · f(OPT )
≤ (1 − δ)g(t) + δe−t · f(OPT ) = g(t + δ).

��
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Corollary 3.1. F (y(t)) ≥ [
Te−T − o(1)

] · f(OPT ) − δO
(√

ε + 2Δ lnn
ε3

)
.

Proof. By Lemma 3.3 and Lemma 3.4,

F (y(T )) ≥ g(T ) − O(n3δ) · T · f(OPT ) − δO

(√
ε +

2Δ ln n

ε3

)

≥ h(T ) − O(n3δ) · f(OPT ) − δO

(√
ε +

2Δ ln n

ε3

)

=
[
Te−T − O(n3δ)

] · f(OPT ) − δO

(√
ε +

2Δ ln n

ε3

)
.

Recall that δ ≤ n−5, hence, O(n3δ) = o(1) and the proof is complete. ��
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Abstract. Topology control protocol aims at efficiently adjusting the
network topology to improve the performance and scalability for net-
works, for example, spanner topology characteristics can decrease com-
munication links and ensure that the distance of any pair of commu-
nication nodes is only within a little increase from that in the original
communication graph. This is especially essential to large-scale wireless
ad hoc networks, which can be the front-end of ubiquitous Internet of
Things (IoT). Since nodes failure is common because of their limited
resource, a large number of previous works focused on fault tolerance
topologies or fault tolerance spanner topologies. But these topologies
are no longer sparse. In this paper, we propose an intuitive solution
to construct sparse and robust spanner topology, which builds a sparse
spanner topology quickly and reverts to the required spanner topology
rapidly without any outside intervention when any node fails. Extensive
simulations confirm the effectiveness and efficiency of our solution.

Keywords: Ad hoc network · Spanner · Robust · Distributed
algorithm

1 Introduction

The front-end of the Internet of Things (IoT) is often formed by large-scale
wireless ad hoc networks used to collect information from a wide area or harsh
environment [1]. Such an infrastructure-free wireless ad hoc network may con-
sist of a few hundreds or even thousands of autonomous nodes with low power
equipped [2]. Topology control (TC) tries to maintain a subgraph structure that
can be used for efficient routing or improving the overall networking performance
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[3]. In traditional ad hoc networks, all the nodes are equal, i.e. they take part in
the routing and forwarding packets equally. If only a small number of links are
been maintained while the network is still connected and the paths that connect
any pair of nodes are linearly bounded compared with the original network, the
result topology will reduce energy consumption and still have efficient routing
[4,5]. Such topology is called a spanner and has t-path property (t is a small
positive real number). Therefore our topology considers not only the basic cri-
teria for TC, which are connectivity and sparseness (i.e., the number of links is
linear with the number of nodes) but also t-path property.

TC should be robust, i.e., the topology should survive a certain level of
node/link failures and maintain topological characteristics [6]. The reason is that
node failure is common due to energy consumption, severe or unattended envi-
ronments, intentional damages, etc. and that it will result in serious problems
such as data lost, link broken and even network fragmented. A (k+1)-connected
topology remains connected if at most k nodes are removed. Hence, fault tol-
erance topology approaches generally adopt (k + 1)-connected technique. So a
mass of previous works focused on (k + 1)-connected topologies, such as [7,8],
and some previous works focused on (k + 1)-connected spanner topologies, such
as [9]. However, these topologies with n nodes are not sparse since a (k + 1)-
connected graph has at least n(k +1)/2 edges. So how to find sparse and robust
spanner topology protocol becomes our research goal.

Our solution is distributed. Since the algorithms have to work without global
information and coordinated central control, distributed algorithms are inher-
ent requirements for wireless ad hoc networks. Moreover, TC aims to efficiently
adjust the network topology in a self-adaptive fashion to improve the perfor-
mance and reliability of networks [10]. These are especially essential to large-
scale wireless ad hoc networks because of the nodes’ limited resources. Actually,
our algorithms are distributed and only use 1-hop neighbor information. Thus,
the topology can be robust and self-adaptive.

The rest of this paper is organized as follows. Section 2 reviews most of the
related work. Section 3 defines some graph notations, the network model, and
problem definitions. A distributed directed t-spanner algorithm is presented in
Sect. 4. Section 5 gives a robust spanner algorithm. Simulation results are pre-
sented in Sect. 6. Section 7 concludes the paper.

2 Related Work

Generally, (k + 1)-connected topology schemes are used to improve TC reliabil-
ity, which is named as k-fault-tolerant topology. Bahramgiri et al. [7] proposed
a variation of the Cone Based Topology Control (CBTC) algorithm to preserve
the k-connectivity. Li and Hou [8] presented a fault-tolerant Local Spanning
Subgraph (FLSSk) algorithm to construct the (k + 1)-connected topology. [11]
constructed (k + 1)-connected topology based on FLSSk in cooperative com-
munication networks. Additionally, there is some literature about fault-tolerant
spanner in wireless ad hoc networks, such as [9,12].
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Li’s [13] k-fault-tolerant spanner topology control protocol in wireless ad hoc
networks is based on the modified Yao structure, called as Y aoc,k+1. In each
cone, node u chooses the k + 1 closest nodes in that cone. If there is any, add
directed links from u to these nodes. This structure can sustain k nodes faults
if the original communication graph is (k +1)-connected. The structure is still a
spanner even with k nodes faults. But the probability that the underlying com-
munication graph is (k+1)-connected is also extremely small when the topology
is required to be sparse. Moreover, the value of k is quite small compared to n,
i.e., the number of fault nodes must be too small. So we propose a robust sparse
spanner topology problem for wireless ad hoc networks and try to solve it using
Y aoc structure, not Y aoc,k+1.

3 Preliminaries

In this section, we give some graph notations, the network model, and problem
definitions used in the paper.

First, we give some graph notations. Let G = (V,E) be a directed graph
with V a set of n nodes and E a set of directed edges where a directed edge
<u, v> ∈ E leads from node u to node v. For two nodes u, v ∈ V , let |uv| be the
Euclidean distance between u and v. The length of a directed edge <u, v> ∈ E
is |uv|. The length of the shortest path from u to v in G which is defined as the
sum of the lengths of its edges is denoted by dG(u, v). If S ⊆ V , let V \ S be
the nodes set deleting all nodes in S from V . And G \ S is the subgraph of G
induced by V \ S, i.e., G \ S is a graph only deleting all nodes in S and all the
edges adjacent to these nodes in S from G. And Kn denotes the complete graph
on V .

We consider a network with n nodes deployed arbitrarily in a 2-dimensional
geographic plane, modeled as a graph G = (V,E). Autonomous and decen-
tralized nodes will need to communicate with one another to build networks
and maintain them. Assume that all nodes are time-synchronized and that the
system time is subdivided into slots. Within each slot, a node v can transmit
and listen. For simplicity, we assume that all nodes have the same transmission
power which get the same transmission range r. Each node knows nothing about
the network except its ID and coordinates. Each node can receive all messages
from its neighbors since we do not consider interference caused by other nodes
simultaneously transmitting in this paper.

Communication Graph. The communication graph C(V,E) of a given net-
work consists of all network nodes and edges <u, v> ∈ E and <v, u> ∈ E such
that |uv| ≤ r. Any edge in the communication graph is called a communication
edge.

t-Spanner and t-Path. Let t > 1 be a real number. A spanning subgraph
H(V,EH) of G(V,E) is said to be a t-spanner of G, if for any two nodes u and
v in V , the length of the shortest path between u and v in H is at most t times
that of the shortest path in G, i.e.,

dH(u, v) ≤ t · dG(u, v)(G). (1)
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The constant t is called the stretch factor of H (w.r.t. G). Any path satisfying
the above condition is called t-path. Note that t-spanner and t-path may be
directed. Obliviously, if G(V,E) is connected, H(V,EH) is connected.

Note that G can be the complete graph Kn or a communication graph
C(V,E) that is a spanning subgraph of Kn.

Yao Graph (Yao). The directed Yao graph over a (directed) graph G with an
integer parameter c, denoted by

−−→
Y aoc(G), is defined as follows. At each node u,

any c equal-separated rays originated at u define c equal cones, and the shortest
directed edge <u, v> in G is added to

−−→
Y aoc(G) in each cone. Ties are broken

arbitrarily. Any two orientation of the cone partition for each node is the same.
Cu,w is the cone of the node u containing w. An undirected Yao graph, in

which the edge directions in
−−→
Y aoc(G) are ignored, is denoted by Y aoc(G).

Now we give the main problem of this paper.

Robust dIrected t-Spanner for Autonomous Nodes (RISA). Given a
graph H(V,EH) which is the directed t-spanner of the communication graph
C(V,E) where all n autonomous nodes is denoted by the set V , an integer
0 ≤ k < n, any k fault nodes set S, we aim to find a directed t-spanner H ′ of
C \ S by adding up to μ communication edges to H \ S, such that the value of
μ is minimized.

In order to distributedly implement the RISA problem, we should implement
the following subproblem first.

Distributed Directed t-Spanner (DDS Problem). Given a set V of n
autonomous nodes deployed randomly in a 2-dimensional geographic plane, a real
number t ≥ 1, the goal is to design a distributed algorithm to find a directed
t-spanner of the corresponding communication graph C(V,E), such that the
number of messages exchanged is minimized.

4 Distributed Directed t-Spanner Algorithm
(DDspanner)

Our first distributed algorithm is a directed t-spanner algorithm called DDspan-
ner for the DDS problem. Its basic idea is that each node locally broadcasts its
own message to its neighbor nodes and then computes the nearest neighbor in
each cone based on the received messages. This algorithm can gain the required
directed t-spanner and solve the DDS problem which will be proved. DDspanner
is described in detail as follows.

Given the real number t, each node u computes the number of cones c accord-
ing to the equation t = 1

1−2 sin(π/c) . Each node has its outcoming neighbors’ list
O[c]. Each node independently sends an INIT message containing its ID and
coordinates. When u receives an INIT message from some node v, u computes
the index i of the cone that v belongs to the node u. Then O[i] = u if in the ith
sector a neighbor node did not be found before or v is the nearest neighbor node.
Finally, each O[c] stores all outcoming neighbors for each node. Thus

−−→
Y aoc(C)

is formed.
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The messages are used in this algorithm, called INIT containing each node’s
ID and coordinate. The pseudo-code for node u is given in Algorithm 1.

Algorithm 1. DDspanner(u)
1: Initializes the stretch factor t;
2: Initializes the number of cones c = � π

arcsin((t−1)/(2t))
�;

3: Initializes the outcoming neighbors list O[i] = −1 for i = 1, 2, · · · , c;
4: Sends an INIT message containing its ID and coordinates;
5: if Receives an INIT message from some node v then
6: Computes the index i of the cone that v belongs to the node u;
7: if O[i] == −1 or the distance |O[i], u| > |vu| then
8: O[i] = v
9: end if

10: end if

Before we prove that the DDspanner algorithm can solve the DDS problem,
we first give the following lemma.

Lemma 1. Let t = 1
1−2 sin(π/c) for c > 6, the node vi ∈ V , and j(≤ n − 1) is an

integer. For ∀u,w ∈ V , there exists a path u = v0, v1, · · · , vi, · · · , vj = w from
u to w in

−−→
Y aoc(C), whose length is at most t times the length of the short path

from u to w in the corresponding communication graph C. The edge <vi, vi+1>

in this t-path of
−−→
Y aoc(C), where 0 ≤ i ≤ j − 1, is the edge in the cone Cvi,w.

Due to the lack of space we omit the proof of Lemma 1.

Theorem 1. Let t(> 1) be a real number. The
−−→
Y aoc(C) obtained after DDspan-

ner is the required t-Spanner, i.e., it can solve the DDS problem. Moreover, the
message complexity of DDspanner is O(n) where n is the number of nodes.

Proof. First, after the DDspanner algorithm, each node’s outcoming neighbors
are stored in each node’s O[c], the

−−→
Y aoc(C) forms. From Lemma 1, the result−−→

Y aoc(C) is the required directed t-spanner. Next, each node sends an INIT
message once and only once, so the total number of messages is n. Thus, the
number of messages exchanged is minimized. �	

5 Robust Topology

In this section, we propose the RobustSpanner algorithm based on the DDspan-
ner algorithm to build robust spanner topology and to solve special instance of
the RISA problem. After the DDspanner algorithm, the RobustSpanner algo-
rithm runs in background and never stop. If no node fails, no update will be
performed. If some node fails, the t-spanner topology will update locally to
keep t-spanner property. So the RobustSpanner algorithm is a self-stabilizing
algorithm.
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Our detailed idea is the following. Our algorithm is divided into three actions.
In Action 1, if the node u is going to fail, u locally broadcasts a FAIL message
to its neighbors. In Action 2, when the node u receives a FAIL message from
its failed neighbor node v and v is in u’s outcoming neighbors list O[c], delete
v, then u which have received a FAIL message locally broadcasts a Rebuild
message containing its ID u and coordinate. In Action 3, when u receives a
Rebuild message from its neighbor node v, u computes the index i of the cone
that v belongs to the node u, and then if v becomes the nearest node in the
cone, v is added to u’s outcoming neighbor list. Finally, the

−−→
Y aoc(C \ S) forms,

where S is the set of the k failed nodes.
The pseudo-code for node u is given in Algorithm 2.

Algorithm 2. RobustSpanner(u)
Action 1:
1: if u is going to fail then
2: u sends a FAIL message;
3: end if

Action 2:
1: if Receives a FAIL message from some node v then
2: if v is in u’s outcoming neighbors list O[c] then
3: Deletes v from O[c];
4: end if
5: Sends a Rebuild message containing its ID u and coordinates;
6: end if

Action 3:
1: if Receives a Rebuild message from v then
2: Computes the index i of the cone that v belongs to the node u;
3: if O[i] is NULL or |uv| is smaller than the distance from u to any node in O[i]

then
4: O[i] = v;
5: end if
6: end if

Before we prove that the RobustSpanner algorithm can solve the SISA prob-
lem, we first give the following lemma.

Lemma 2. If node w is in the cone Cu,v with |uv| < |uw| and c > 6 as Fig. 1,
then |vw| < |uw|.
Proof. For 
uvw shown in Fig. 1, since c > 6, ∠wuv < π/3. Since |uv| < |uw|,
∠uwv < ∠uvw using the law of sines. So ∠uvw > π/3 > ∠wuv. Finally applying
the law of sines again, |vw| < |uw|. �	

We now prove that the effectiveness and efficiency of the RobustSpanner
algorithm in the following theorem.
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u

w

v

Fig. 1. When v is going to fail

Theorem 2. Let t(> 1) be a real number, n be the number of nodes, and
0 ≤ k < n be the number of failed nodes. If k nodes in the set S fail, the t-
spanner topology w.r.t the communication graph C obtained by the DDspanner
algorithm will rebuild locally into the t-spanner topology w.r.t C \ S after the
RobustSpanner algorithm runs 2 timeslots in a self-stabilizing style. The number
of the reconnected edges is up to k(n − k).

Proof. Given t, suppose c is the number of cones that construct the correspond-
ing t-spanner topology obtained by the DDspanner algorithm. Assume that some
node v is failed, node w is in the cone Cu,v, and w is going to add to u’s outcom-
ing neighbors list O[c] as Fig. 1. Since |uv| < |uw| < r, |vw| < |uw| < r using
Lemma 2. Hence, u and w can receive v’s Fail message, and u can receive w’s
Rebuild message. So u can delete v from u’s outcoming neighbors list O[c] and
add w to O[c]. Thus,

−−→
Y aoc(C \ S) forms.

−−→
Y aoc(C \ S) is the required t-spanner

topology w.r.t C \ S applying Lemma 1.
In the first timeslot, the failed nodes send Fail messages, the corresponding

nodes receive the messages and process accordingly. In the second timeslot, if
the node has received a Fail message, it sends a Rebuild message containing its
ID and coordinates and then handles Rebuild messages. Hence, the t-spanner
topology w.r.t the communication graph C obtained by DDspanner will rebuild
into the t-spanner topology w.r.t C \ S after the RobustSpanner algorithm runs
2 timeslots in a self-stabilizing style. Moreover, the construction presented here
only uses 1-hop neighbor information.

Each failed node can delete at most one piece of outcoming neighbor infor-
mation from one normal node and then try to reconnect. Hence, each failed node
causes at most the number of its incoming neighbor nodes, which is up to
n − k, to reconnect links. So k failed nodes can delete at most k(n − k) pieces of
outcoming neighbor information and then try to reconnect. �	

6 Simulation

In this section, we generate n ad hoc nodes randomly and uniformly distributed
in a unit-area square to confirm the accuracy and efficiency of our topology pro-
tocols. First, we use a number of intuitive legends to verify that our solution
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is able to efficiently and self-stabilizedly maintain the given t even if the com-
munication graphs are very sparse. Then, we conduct extensive simulations to
investigate the average performance of our solution.

Firstly, we use a sparse instance with r = 0.15 and n = 100 to show our
protocol can reconstruct t-spanner topology efficiently even with a quite sparse
C in Fig. 2. It displays a set of topologies, including C (a),

−−→
Y ao8 (b),

−−→
Y ao8 with

10 fault nodes (c), reconnected
−−→
Y ao8 with the 10 fault nodes (d) and

−−→
Y ao17 (e),−−→

Y ao17 with 10 fault nodes (f), and reconnected
−−→
Y ao17 with the 10 fault nodes

(g). For the same instance, the indegrees, the outdegrees, the average degrees,
and the stretch factors w.r.t. C are reported in Table 1. From Fig. 2 and Table 1,
compared with

−−→
Y ao8 with the 10 fault nodes, the reconnected one reconnected

15 links, and the stretch factor w.r.t. C changed from infinity to 1.4147, which
satisfied the given t, meanwhile, compared with

−−→
Y ao17 with the 10 fault nodes,

the reconnected one reconnected 7 links which marked in red in Fig. 2 (g), and
the stretch factor w.r.t. C changed from infinity to 1.2361, which also satisfied
the given t.

Table 1. The performance of original and reconnected t-spanner topologies with
−−→
Y aoc.

n r Indegree Outdegree Average
degree

Stretch factor
w.r.t. C

C 100 0.15 12 12 5.7 1
−−→
Y ao8 100 0.15 11 8 4.22 1.3948
−−→
Y ao8 with the 10 fault nodes 100 0.15 10 8 3.54 inf

Reconnected
−−→
Y ao8 with the

10 fault nodes
100 0.15 10 8 3.69 1.4147

−−→
Y ao17 100 0.15 11 10 4.96 1.2361
−−→
Y ao17 with the 10 fault nodes 100 0.15 10 10 4.2 inf

Reconnected
−−→
Y ao17 with the

10 fault nodes
100 0.15 10 10 4.27 1.2361

Next, we conduct extensive simulations to investigate the average perfor-
mance of our solution on various node numbers and different transmission ranges.
For each case, we generate 500 random node sets and set up 200 sets of fault
nodes at random for each. The results are shown in Fig. 3 and 4 for the param-
eter settings given by the caption of each subfigure. Note that we have tested
other parameter settings and obtained very similar results.

Figure 3 depicts that the average number of reconnected edges increases with
the increase of the number of fault nodes. As the number of fault nodes remains
unchanged, the average number of reconnected edges increases when n increases
in Fig. 3(a) and when r increases in Fig. 3(b). However, the number of recon-
nected edges is far below k(n − k), and it is not only related to n and k but also
related to r. We analyze that the average degree is an important factor affecting
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(a) (b) (c)

(d) (e) (f)

(g)

Fig. 2. The comparison of original and reconnected t-spanner topologies with
−−→
Y aoc.

the number of reconnected edges. Both n and r affect the average degree, so they
make an impact on the number of reconnected edges. When n is large enough
or r is large enough, the communication graph C is close to the complete graph,
the number of reconnected edges does not change much as n and r vary, such as
n = 120, 140, and r = 0.4, 0.5.

Figure 4 demonstrates that the stretch factors increase as n decreases in (a)
and as r increases in (b) when the number of fault nodes doesn’t change. So
the average degree is the main factor affecting the stretch factors. Whereas the
stretch factors have only a small increase with the increase of the number of fault
nodes. And all the stretch factors can greatly meet the requirements of given t.
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Fig. 3. Influences of n and r on the number of reconnected edges.
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Fig. 4. Influences of n and r on the real average stretch factor of reconnected topologies.

7 Summary

In this paper, we present a self-stabilizing solution to construct sparse spanner
topology, which has the following characteristics: (1) giving a detailed defini-
tion of the corresponding RISA problem, (2) being distributed and having no
central daemon, (3) applying Yao graph idea, and (4) theory and simulation
guaranteed. In future research, we will consider constructing robust and sparse
spanner topology in 3D, and other approaches for spanner construction except
Yao graphs are also worthy of investigating.
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Abstract. Viral marketing on social networks is an important applica-
tion and hot research problem. Most of the related work on viral market-
ing focuses on the spread of single information, while a product may asso-
ciate with multi-attribute in real life. Information on multiple attributes
of a product propagates in the social networks simultaneously and inde-
pendently. The attribute information that a user receives will determine
whether he would purchase the product or not. We extend the tradi-
tional single information influence maximization problem to the Multi-
attribute based Influence Maximization Problem (MIMP). We present
the Multi-dimensional IC model (MIC model) for the proposed problem.
The objective function for MIMP is proved to be non-submodular, then
we solve the problem with the Sandwich Algorithm, which can get a
max

{
f(SU )

f(SU )
,
f(S∗

L)

f(S∗
o )

}
(1 − 1/e) approximation ratio to the optimal solu-

tion. Experiments are conducted in two real world datasets to verify the
correctness and effectiveness of the proposed algorithm.

Keywords: Social network · Influence maximization · Multi-attribute
information · Approximation algorithm

1 Introduction

Online social networks are an important class of graph data. Data by gener-
ated by users have been growing rapidly through various online social net-
works, such as Facebook, LinkedIn, ResearchGate, and messengers like Skype
and WeChat [1]. The widespread use of these social platforms leads to an increas-
ing interest in mining important and useful but implicit patterns. Efficient tech-
niques for extracting information from graph data are crucial to applications
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across many domains, including public safety, environment management, elec-
tion, and especially viral marketing [2].

Viral marketing promotes products through giving away free products to a
small customer set to spread the product information, which makes good use of
the word-of-mouth effect of the social networks to propagate the influence of a
product. Kempe et al. in [3] formulated the spread process of information in social
networks as the influence maximization (IM) problem which aims at maximizing
the number of people who adopt the product by choosing a small number of
users as a seed set. Then they propose two classic information spread models,
IC (Independent Cascade) model and LT (Linear Threshold) model. In [3], the
influence maximization problem is formulated as a monotone and submodular
objective function, and a greedy algorithm is presented to solve it, the returned
solution can get an 1− 1/e approximation guarantee. The submodular property
is very important in optimization theory. A function f over all subsets of a finite
set V is said to be submodular if for any two subsets A and B, f(A) + f(B) ≥
f(A ∪ B) + f(A ∩ B) satisfies. When the inequality is reversed, function f is
supermodular. Moreover, f is monotone non-decreasing if for A ⊂ B, f(A) ≤
f(B).

There exists various situations about the product and the company in viral
marketing, which lead to different problem formulations. Most of the existing
research focuses on the single diffusion, which has only one piece of product
information spreading on the social network. Usually, a product may have mul-
tiple attributes considered by a customer to make a decision “buy or not” since
different persons have various emphasis points. We summarize the main contri-
butions in this paper as follows:

– We formulate the Multi-attribute based Influence Maximization Problem
(MIMP) under the MIC model in social networks. The objective function
of the proposed MIMP is proved to be non-submodular.

– We consider the MIC model as a multi-dimensional IC model to analyze the
MIMP. A Sandwich Approximation Algorithm for MIMP is proposed, which
can get a max

{
f(SU )

f(SU )
,

f(S∗
L)

f(S∗
o )

}
(1 − 1/e)-approximation solution.

The rest of this paper can be arranged as follows. The related work is reviewed
in Sect. 2. The MIC model is introduced and the Multi-attribute based Influence
Maximization Problem (MIMP) is formulated in Sect. 3. In Sect. 4, we prove the
properties of the objective function for MIMP and present Sandwich Approxima-
tion Algorithm. The experimental results are described in Sect. 5. We conclude
our work at last in Sect. 6.

2 Related Work

Influence maximization is a fundamental problem in the study of social networks,
which attracts a lot of researchers studying on it. It can be described as: given a
social network G with a diffusion model m, and a positive integer b, find at most
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b seeds to maximize the influence spread, i.e., the expected number of influenced
nodes. We summarize the common studies on influence maximization as follows.

Most of the existing research consider single diffusion in the social network.
Different from the classical influence maximization problem, some research focus
on the influence probability maximization of a target user set [4,5]. In [4], they
propose an Acceptance Probability Maximization (APM) problem which chooses
b seeds to maximize the acceptance probability of a target set T , they solve
this problem in the context of social networks with community structures, and
transform this problem into a Maximum Weight Hitting Set problem. Proposed
algorithm can get an 1 − 1/e approximation ratio.

Some related work studies the discount allocation problem [6,7], which is
a transformation of the influence maximization. In [6], they adopt the non-
adaptive and adaptive setting to allocate discount to users, respectively, which
aim at maximizing the expected number of users who purchase the product.
The proposed greedy algorithm with the adaptive setting can obtain a bounded
approximation guarantee, while the non-adaptive setting can get an 1 − 1/e
approximation ratio.

There are few studies extend the influence maximization of single product
to the situation of multiple products [8,9]. S. Bharathi et al. [8] introduce the
competitive influence maximization problem that several companies market their
products on the social network competitively. They solve the problem with game
theory, the returned solution achieves an 1 − 1/e approximation.

Some existing work studies the group influence maximization [10,11]. J. Zhu
et al. [10] consider the group influence problem and model it with a hypergraph
G = (V,E, P ), which aims at maximizing the activated users. They prove that
the objective function is non-submodular and non-supermodular. Then a sand-
wich algorithm is proposed to solve the problem which has a bounded approxi-
mation ratio. A D-SSA algorithm is also presented and obtains an (1− 1/e − ε)
approximation ratio.

There are few studies related to the multi-attribute information diffusion
problem. J. Guo [12] consider the multi-feature based rumor blocking prob-
lem. They devise a multi-feature diffusion model (MF-model), and propose a
novel Multi-Sampling method to estimate the influence spread function f(Sp).
A Revised-IMM algorithm is presented, which can achieve a good approximate
performance guarantee.

3 Network Model and Problem Formulation

3.1 The Network Model

A social network is modeled as a directed graph G = (V,E), where each vertex
v ∈ V represents a user, and each edge (u, v) ∈ E is the relationship between
user u and v. In the social network, the incoming neighbor set and the outgo-
ing neighbor set of a node v is denoted as N−(v) and N+(v), respectively. In
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[3], Kemp et al. present the IC model and LT model to formulate the propaga-
tion process of information in social networks. We extend the IC model for our
problem as follows.

Multi-attribute Independent Cascade (MIC) Model: Given a product with r
attributes, then we list important facts about this model consisting of discrete
steps:

• Each node represents a customer. An active node represents a customer who
has purchased the product; vice versa.

• Each edge (u, v) ∈ E is associated with r probability p1uv, p2uv, · · · , pr
uv,

where pi
uv ∈ [0, 1]. These probabilities represent the expertise of u from the

view point of v. When u just becomes active, v will be influenced by u and
accepts the attribute φ with probability pφ

uv.
• When v receives influence from more than one active inneighbors, v treats

them as independent events.
• Each customer v has a threshold θv and a weight wφ

v for each attribute φ,
where

∑r
φ=1 wφ

v = 1. Customer v decides to purchase the product if and only
if the total weight of accepted attributes reaches at least θv.

• Initially, a set of seeds are selected and activated. At each subsequent step,
every node checks if the activation condition is satisfied. Each newly influ-
enced user v in step t only has a single chance to influence his uninfluenced
outgoing neighbors in step t + 1. After time step t + 1, v could not activate
any of its outgoing neighbors. This process ends if no node becomes active at
current step.

3.2 Problem Formulation

In this section, we formulate our problem based on the MIC model described
above.

Give a social network G = (V,E) and a product with r attributes. r kinds
of attribute information propagate in the social networks on the MIC model
at the same time. The influence maximization problem for the multi-attribute
information aims at choosing k initial users as seeds to maximize the influence
of the product. This problem can be formulated as follows:

Problem 1 (Multi-attribute based Influence Maximization Problem
(MIMP)). Given a graph G = (V,E), r kinds of attribute information of a
product, the MIC model. Our target is to select an optimal node set S such that
the number of expected customers who purchased the given product is maximized,
i.e., S = argmaxS⊆V,|S|≤k f(S).

In [3], they proved that the influence maximization problem is NP-hard.
The multi-attribute based influence maximization problem is a generalization
of the influence maximization problem, therefore, the MIMP is also a NP-hard
problem.
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4 Solution for MIMP

In this section, we solve the MIMP. Let us introduce an important definition
“realization” firstly.

Definition 1 (Realization). Given a graph G = (V,E), a realization g =
(V,E(g)) is an instance of influence sampled from a given model. In the MIC
model, we assume there are r edges between two nodes u and v because of r
attributes. For each edge (u, v) ∈ E, it can be decomposed into the r edges as
(u1, v1), · · · , (ui, vi), · · · , (ur, vr). Based on the graph G and MIC model, we can
create a constructed graph G′ = (V,E′) such that E′ = {∪r

i=1(ui, vi) : (u, v) ∈
E}. For each virtual edge (ui, vi) ∈ E′, there is a probability pi

uv associated
with it. We sample the r edges between any two nodes by removing each edge
(ui, vi) ∈ E with probability pi

uv, the remaining subgraph g is a realization. So
a realization g = (V,E(g)) is a subgraph of G′ = (V,E′), where all the edges
e ∈ E(g) are live edges.

Let g∗ be the set of all realizations generated from G, clearly, there are 2E(G)·r

possible realizations. Based on the definition of realization, we can give the prob-
ability of a realization g which is generated from graph G in MIC model:

pg =
∏

e∈E(g)

pe

∏
e∈E′\E(g)

(1 − pe).

For each node v, if
∑

(ui,vi)∈E(g) wi
v ≥ θv, the node v can be activated by node

u. Thus, given a realization g and a seed set S, the number of nodes that can
be activated by S is deterministic, denoted by σg(S). Let σ(S) be the expected
number of nodes which is activated by seed set S, then, in the MIC model, σ(S)
can be expressed as:

σ(S) =
∑
g∈g∗

pg · σg(S),

where σg(S) is the number of nodes that can be activated by S in the realization
g. Then, we analyze the properties of the objective function for MIMP.

4.1 Properties of Influence Propagation Function f

The influence propagation function f for MIMP is clearly monotone since more
seeds would boost the overall spread of influence.

Next, we explore the submodularity of the objective function f in Lemma 1
as follows.

Lemma 1. The influence propagation function f for the MIMP under the MIC
model is non-submodular.

Proof. We omit the proof as the limitation of pages. �
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4.2 Sandwich Approximation Algorithm

For a non-submodular function, we do not have a traditional approach to solve
it. We can use the sandwich approximation method which is proposed by Lu et
al. [13]. An approximate solution can be obtained for the objective function by
using an upper bound function and a lower bound function to define it. Next, we
look for the upper bound function and lower bound function for the objective
function f , respectively.

4.2.1 Lower Bound Function f of f

Firstly, we consider the MIC model as a multi-dimensional IC model for under-
standing the problem more easily. In the multi-dimensional IC model, each
attribute propagates independently in the social network. When some of r
attributes of the product are accepted by a user v, no matter v is active or
not, it can spread those accepted attributes to influence his outgoing neighbor
u. We define the Multi-dimensional IC model as follows.

Definition 2 (Multi-dimensional IC model). Given a social network G =
(V,E) and a product with r attributes, the multi-dimensional IC model is a r
dimensional graph G∗ = (V ∗, E∗) = G1 ∪G2 ∪· · ·∪Gr, where Gi = (V i, Ei) and
graph Gi is a copy of graph G. The i represents the i-th attribute. In graph Gi, the
corresponding node set and edge set are denoted by V i and Ei, respectively. For
the edge (ui, vi) ∈ Ei, where i = 1, · · · , r, the influence probability on (ui, vi)
is pi

uv, which is the probability that user u tries to activate user v to accept
attribute i.

We find that there are some special constraints on weights and threshold that
each customer chooses, which can make the influence spread submodular. Let us
explain this conclusion as follows.

If a customer decides to purchase the product if and only if all attributes are
accepted by him. Clearly, the influence spread in the model with the constraint
on thresholds and weights is a lower bound for the influence spread in the general
case of the MIC model. In this situation, we treat the MIC model as the Multi-
dimensional IC model. So each of the r kinds of attribute information diffuses in
its own dimension with the IC model and only consults with other dimensions
when try to obtain the ability of influence others. According to a method given
in [3], the IC model can be transformed into an equivalent general threshold
model with monotone submodular threshold function at each node. Next, we
explain the general threshold model. For the one-attribute influence, the general
threshold model is a generalization of the LT model. In the definition of LT
model, each node is assigned a monotone set function fv which is a threshold
function on the set of active inneighbors. fv is used for determining whether v is
activated or not. At each step, every node evaluates the value of fv. If the value
of fv reaches at least the threshold θv, then v is activated; otherwise, v keeps
inactive. Kemp, Kleinburg and Tados [3] conjecture that if for every node, the
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Algorithm 1. Greedy Algorithm
Input: Graph G∗ = (V ∗, E∗), r, and k.
Output: S′.
1: Initialize S′ ← 0;
2: for 1 to k do
3: v =argmaxv∈V (hG∗(S′ ∪ {v}) − hG∗(S′)).
4: S′ = S′ ∪ {v}.
5: end for
6: return S′.

threshold function is monotone and submodular, then the influence spread is a
monotone and submodular function. This conjecture is proved by Mossel and
Roch in [14]. We are able to extend this proof to the multi-dimensional general
threshold model. In the multi-dimensional general threshold model, each node v
is assigned with r threshold function fφ

v for φ = {1, · · · , r}. At beginning, every
node v chooses r thresholds θφ

v randomly and uniformly from [0, 1]. At each
step, every node v checks the value of threshold function fφ

v for all r kinds of
attributes, if for all φ, the value of fφ

v on the set of active inneighbors is at least
θφ

v , then v is activated; otherwise, v keeps inactive. We are able to show that if
at every node, all threshold functions are monotone and submodular, then the
influence spread is a monotone and submodular function.

4.2.2 Upper Bound Function f of f

In this section, we construct a monotone submodular upper bound for the objec-
tive function f .

Consider the Multi-dimensional IC model defined above. Let each node v
select a positive weight wφ

v for each attribute φ and a threshold θv = minφwφ
v .

This selection will make each node to be activated if and only if at least one
attribute is accepted. Clearly, the influence spread in the Multi-dimensional IC
diffusion model with this constraint is an upper bound for the influence spread
in the general case. Moreover, the influence spread in this special case is also a
monotone and submodular function with respect to the seed set. To this end,
we show that the multi-dimensional IC diffusion model with this constraint can
be transformed into an equivalent IC model. In fact, this can be done by, on
each edge (u, v), replacing r probabilities p1uv, · · · , pr

uv by a probability puv =
1 − (1 − p1uv) · · · (1 − pr

uv), where pi
uv is the probability that v accepts at least

one attribute’s influence from u.

4.2.3 Greedy Algorithm for Bound Function

For the monotone and submodular lower bound function f and upper bound
function f , we can use greedy algorithm to solve both of them, and the solutions
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Algorithm 2. Sandwich Approximation Algorithm
Input: Graph G = (V,E), G∗ = (V ∗, E∗), r, and k.
Output: S.
1: Initialize S ← 0, So ← 0, SU ← 0, SL ← 0;
2: Let SL be (1 − 1/e)-approximation by greedy algorithm to f .
3: Let SU be (1 − 1/e)-approximation by greedy algorithm to f .
4: Let So be a solution by greedy to f .
5: S =arg maxSA∈{SU ,SL,So}f(SA).
6: return S.

returned by the greedy algorithm for each of the two functions can obtain an
1 − 1/e approximation ratio. The greedy algorithm shows in Algorithm 1.

In Algorithm 1, we use hG∗(·) to represent the influence propagation function
f or f . S′ represents the selected seeds for the upper bound problem or the lower
bound problem.

4.2.4 Sandwich Approximation Framework

Motivated from the monotone and submodular lower bound and upper bound of
the influence spread, it is intuitive to employ the sandwich method for solving
the MIMP.

Before employing the sandwich approximation framework, we need to get a
solution for the original objective function f . We use greedy algorithm directly
to choose top k users as seed nodes, the solution is denoted as So. Let SL, SU be
the solutions which are obtained by greedy algorithms for lower bound function
f and the upper bound function f , respectively. Finally, The sandwich algo-
rithm returns the final optimal approximation solution S which can maximize
the influence spread among So, SL, SU . The sandwich approximation algorithm
shows as follows.

Although the influence maximization function f for MIMP is non-
submodular, we construct a submodular lower bound function f and a sub-
modular upper bound function f , which satisfies f ≤ f ≤ f . Then we can get
a data-dependent approximation ratio for the solution, which is returned by
the sandwich approximation algorithm in Algorithm 2. The conclusion shows in
Theorem 1 as follows.

Theorem 1. Let S∗
o , S∗

L and S∗
U be the optimal solution for the original objective

function f , the lower bound function f , and the upper bound function f , respec-

tively. Algorithm 2 derives a max{ f(SU )

f(SU )
,

f(S∗
L)

f(S∗
o )

}(1 − 1/e)-approximate solution.



248 Q. Ni et al.

Proof. As S∗
o , S∗

L and S∗
U are the optimal solutions to maximize f , f , f , respec-

tively. We can get that

f(SU ) =
f(SU )
f(SU )

f(SU ) ≥ f(SU )
f(SU )

(1 − 1/e)f(S∗
U )

≥ f(SU )
f(SU )

(1 − 1/e)f(S∗
o )

≥ f(SU )
f(SU )

(1 − 1/e)f(S∗
o ).

For the lower bound, we have

f(SL) ≥ f(SL) ≥ (1 − 1/e)f(S∗
L) =

f(S∗
L)

f(S∗
o )

(1 − 1/e)f(S∗
o ).

Then, let S =arg maxS∗∈{SU ,SL,So}f(SA), we can get

f(S) = max{f(SU ), f(SL), f(So)}
≥ max{f(SU ), f(So)}

= max{f(SU )
f(SU )

,
f(S∗

L)
f(S∗

o )
}(1 − 1/e)f(S∗

o ).

�

5 Experiments

In this section, we compare the efficiency and effectiveness of the proposed sand-
wich approximation algorithm with other algorithms. All the experiments are
done on two different datasets.

5.1 Experimental Setup

Datasets: Dataset 1 is a NetScience dataset [15], which is a co-authorship net-
work on scientists to publish papers in the field of network science. Dataset 2
is a Wikivote dataset [15], which is from a Wikipedia voting set and represents
the relationship of who votes to whom. The statistics of the two datasets are
summarized in Table 1.

Table 1. Statistics of two datasets.

Dataset Nodes Edges Type Average degree

Dataset 1 400 1010 Directed 5.0
Dataset 2 914 2914 Directed 6.2
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Influence Model: In this paper, we use IC model as the basic influence propa-
gation model, the simulation is based on the MIC model. The spread probability
on each edge (ui, vi) is set as pi

uv = 1/|N−(vi)|, which is widely used in previous
work [16]. The activation threshold θv for each node v is randomly generated
from [0, 1]. The number of Monte Carlo simulations which is used to estimate
the maximum marginal gain in one iteration is set as 200.

Baseline Methods: Max Degree. It firstly ranks the nodes based on the out-
degrees and then selects k nodes which have the highest out-degree as seeds.
This is a classical baseline algorithm.

Random. It is also a classical baseline algorithm which randomly selects nodes
as seeds.

Given a product with r attributes, let w = (w1, w2, · · · , wr) be the weight
vector for r attributes. Then, we evaluate the performance of the proposed algo-
rithms from two subcases: (1) r = 2, w = (0.3, 0.7); (2) r = 3, w = (0.2, 0.3, 0.5).
The number of nodes and edges on graph G∗ vary as the number of attributes.
When r = 2, they will be doubled; when r = 3, they will be tripled.

5.2 Experimental Results

The performance of the proposed algorithms will be evaluated in this section.
The results in Fig. 1 (a) and (b) are collected from dataset 1 when the budget k
increases from 0 to 50 for r = 2 and r = 3, respectively. From the two sub-figures
(a) and (b), we can see that the performance of our proposed sandwich method
is between the performance of the upper bound and lower bound no matter r = 2
or r = 3, which verifies the correctness of our sandwich method. We can also
observe that the influence propagation of the sandwich method is better than
that of the max degree algorithm and random algorithm for both r = 2 and r = 3.
Random algorithm has the worst performance among all the algorithms since
it selects seeds randomly. Note that the advantage of the sandwich algorithm
over the max degree algorithm becomes more and more obvious as the budget
k increases. For all the algorithms, the influence propagation increases as the

Fig. 1. Performance comparison achieved by different algorithms with the changing of
budget on dataset 1
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increasing of budget k, which is because that more seeds can spread information
more widely. Comparing the subfigures (a) and (b) of Fig. 1, we can find that the
increase of the number of attribute r increases the difference between upper and
lower bounds. Comparing subfigure (a) and (b) in Fig. 1, we can find that for
the same budget, the influence propagation for r = 3 is different from that for
r = 2, which shows that increasing the number of r will change the user group
who buy the product.

Fig. 2. Performance comparison achieved by different algorithms with the changing of
budget on dataset 2

Figure 2 shows the influence propagations of all the compared algorithms
on dataset 2 when the budget k increases from 0 to 50 for r = 2 and r = 3,
respectively. We can find that the results we conclude from Fig. 1 are also can
be observed from Fig. 2, which further verifies the correctness and effectiveness
of the proposed sandwich method. We compare the results in Fig. 2 with that
in Fig. 1, we can find that when the budget k is fixed, the larger dataset can
produce greater influence propagation no matter r = 2 or r = 3.

6 Conclusion

We study the influence maximization problem based on the multi-attribute of
a product in social networks in this paper. We propose a Multi-dimensional
IC model (MIC model), which is an extension of the IC model. Then we for-
mulate the proposed problem as a Multi-attribute based Influence Maximization
Problem (MIMP), which is proved to be non-submodular. For a non-submodular
objective function, we propose the Sandwich Algorithm which obtains an approx-
imation theoretical guarantee. Experiments show the correctness and efficiency
of the proposed algorithm.
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Abstract. The use of multiple independent spanning trees (ISTs) for
data broadcasting in networks provides a number of advantages, includ-
ing the increase of fault-tolerance and secure message distribution. Thus,
the designs of multiple ISTs on several classes of networks have been
widely investigated. Kao et al. [Journal of Combinatorial Optimization 38
(2019) 972–986] proposed an algorithm to construct independent span-
ning trees in bubble-sort networks. The algorithm is executed in a recur-
sive function and thus is hard to parallelize. In this paper, we focus on
the problem of constructing ISTs in bubble-sort networks Bn and present
a non-recursive algorithm. Our approach can be fully parallelized, i.e.,
every vertex can determine its parent in each spanning tree in constant
time. This solves the open problem from the paper by Kao et al. Further-
more, we show that the total time complexity O(n · n!) of our algorithm
is asymptotically optimal, where n is the dimension of Bn and n! is the
number of vertices of the network.

Keywords: Independent spanning trees · Bubble-sort networks ·
Interconnection networks

1 Introduction

The design of modern interconnected networks faces several critical demands, such
as how to perform fault-tolerant transmission and secure message distribution in
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a reliable communication network. The practical solution to meet the above
requirements is to design a multi-path routing mechanism, which requires the
network to provide disjoint paths between each pair of vertices. Therefore, if
the transmission fails due to a disconnection in the current transmission path,
we can resume the data transmission via another disjoint backup path. This
dramatically increases the performance of fault-tolerant communication [2,14].
In addition, disjoint paths could be used in secure message distribution over a
fault-free network in the following way [2,30]. A message can be divided into
several packets where the source node sends each packet to its destination via
different paths. Thus, each node in the network receives at most one of the
packets except for the destination node that receives all the packets.

Usually, an interconnection network is modeled by a simple undirected graph
G = (V,E), where the vertex set V (G) and the edge set E(G) represent the
set of processors and the set of communication links between the processors,
respectively. A spanning tree T in G is a connected acyclic subgraph of G such
that V (T ) = V (G). Two spanning trees rooted at a specific vertex, say r, are
called independent spanning trees (ISTs for short) if, for any vertex v ∈ V (G) \
{r}, the two paths from v to r in any two trees share no common edge and no
common vertex except for v and r. Accordingly, the provision of multiple ISTs
suffices to meet the requirement of reliable communication in a network.

Research on ISTs has been conducted for nearly three decades. In 1989,
Zehavi and Itai [40] conjectured that there exist k ISTs rooted at an arbitrary
vertex in a k-connected graph. From then on, this conjecture has been confirmed
only for k-connected graphs with k ≤ 4 (see [9,10,14]). Since this conjecture is
still unsolved for general k-connected graphs for k ≥ 5, the follow-up research
mainly focused on the study of constructing ISTs on specific interconnection
networks, e.g., the construction of ISTs on some variations of hypercubes [3,
20,29,30,37], torus networks [28], recursive circulant graphs [34,35], and special
subclasses of Cayley networks [7,8,12,13,15,19,39]. In particular, special topics
related to ISTs include the research on reducing the height of the ISTs [31,33,36]
and parallel construction of ISTs [4–6,32,37,38].

Note that there is a similar problem called the construction of completely
independent spanning trees (CISTs for short) in a network. A set of k unrooted
spanning trees are called CISTs if they are pairwise edge-disjoint and inner-node-
disjoint (i.e., for each pair of vertices u and v in any two spanning trees, there
exist no common edge and vertex in the paths between u and v except for the
two end vertices). In particular, if k = 2, the two CISTs are called a dual-CIST.
Hasunuma [11] showed that the problem of determining whether there exists a
dual-CIST in a graph is NP-complete. He also conjectured that there exist k
CISTs in a 2k-connected graph. Currently, this conjecture has been proved to
fail by counterexamples [21,26]. For recent research results on CISTs and their
applications, the reader is referred to [22–25] and references quoted therein. Here,
we explicitly point out that the construction of multiple ISTs and CIST are two
different problems.

For the construction of ISTs on bubble-sort networks, Kao et al. [15] proposed
an algorithm to construct n − 1 ISTs of Bn and showed that the algorithm has
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optimal amortized efficiency for multiple trees construction. In particular, every
vertex can determine its parent in each spanning tree in constant amortized time.
The algorithm is executed in a recursive function and thus is hard to parallelize.
In this paper, we present a parallel algorithm to construct n− 1 ISTs in bubble-
sort networks Bn. Our approach can be fully parallelized, i.e., every vertex can
determine its parent in each spanning tree in constant time. This solves the open
problem from [15]. Furthermore, we show that the total time complexity O(n·n!)
of our algorithm is asymptotically optimal, where n is the dimension of Bn and
n! is the number of vertices of the network.

The rest of this paper is organized as follows. In Sect. 2, we introduce the
bubble-sort graphs and some notations. In Sect. 3, we introduce the algorithm
for constructing independent spanning trees of Bn. In Sect. 4, we show the cor-
rectness of our algorithm and give the complexity analysis. Finally, conclusions
and future works are given in Sect. 5.

2 Preliminaries

Let Σn be the set of all permutations on {1, 2, . . . , n}. For a permutation p ∈ Σn

and an integer i ∈ {1, 2, . . . , n}, we use the following notations. The symbol
at the ith position of p is denoted by pi, and the position where the symbol i
appears in p is denoted by p−1(i). A symbol i is said to be at the right position
of p if pi = i, and for p �= 12 · · · n the position of the first symbol i from the
right which is not in the right position is denoted by r(p). For i ∈ {1, · · · , n−1},
let p〈i〉 = p1p2 · · · pi−1pi+1pipi+2 · · · pn be the permutation of Σn obtained from
p by swapping two consecutive symbols at positions i and i + 1. The bubble-
sort network, denoted by Bn, is an undirected graph consisting of the vertex set
V (Bn) = Σn and the edge set E(Bn) = {(x,x〈i〉) : x ∈ Σn, 1 � i � n − 1},
where the edge (x,x〈i〉) is called an i-edge of Bn. Thus, Bn is a Cayley graph
generated by the transposition set {(i, i + 1): 1 � i � n − 1}, which is specified
by an n-path Pn = (1, 2, . . . , n) as its transposition graph [1,16]. For example,
Fig. 1 depicts B4. Clearly, for Bn, the transposition graph Pn contains only two
subgraphs isomorphic to an (n− 1)-path: one is (1, 2, . . . , n− 2) and the other is
(2, 3, . . . , n − 1). Thus, for n � 3, there are exactly two ways to decompose Bn

into n disjoint subgraphs that are isomorphic to Bn−1. Let Bi
n denote the graph

obtained from Bn by removing the set of all i-edges. Then, both B1
n and Bn−1

n

consist of n disjoint subgraphs isomorphic to Bn−1.

3 Constructing ISTs on Bn

In this section, we present an algorithm for constructing n−1 ISTs of Bn. Since
Bn is vertex-transitive, without loss of generality, we may choose the identity
1n = 12 · · · n as the common root of all ISTs. Also, since Bn has connectivity
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Fig. 1. The bubble-sort network B4

n − 1, the root in every spanning tree has a unique child. For 1 � t � n − 1, if
the root of a spanning tree takes 1n〈t〉 = 12 · · · (t − 1)(t + 1)t(t + 2) · · · n as its
unique child, then the spanning tree of Bn is denoted by Tn

t . To describe such
a spanning tree, for each vertex v = v1 · · · vn ∈ V (Bn) except the root 1n, we
denote by Parent(v, t, n) the parent of v in Tn

t .

The Case n = 3. Since B3 is isomorphic to a 6-cycle, we have

Parent(v, 1, 3) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

123 if v = 213;
213 if v = 231;
231 if v = 321;
321 if v = 312;
312 if v = 132;

and Parent(v, 2, 3) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

231 if v = 213;
321 if v = 231;
312 if v = 321;
132 if v = 312;
123 if v = 132.

That is, the two paths T 3
1 = (132, 312, 321, 231, 213, 123) and T 3

2 =
(213, 231, 321, 312, 132, 123) are ISTs of B3 that take 13 = 123 as the common
root.

The Case n � 4. In general, for Bn with n � 4, the construction of the ISTs of
Bn can be accomplished by Algorithm 1 to determine the parent of each vertex
(except the root) in every spanning tree.
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The main idea of the algorithm is as follows. In Tn
t for t ∈ {1, 2, . . . , n − 2}

all paths are from the vertex x with xn ∈ {1, 2, . . . , n − 1} \ {t} to the vertex y
with yn = t. Then, all paths are from the vertex y with yn = t to the root r.
In Tn

n−1 all paths are from the vertex v with vn = n to the vertex u with un ∈
{1, 2, . . . , n−1}. Then, all paths are from the vertex u with un ∈ {1, 2, . . . , n−1}
to the root r.

Algorithm 1: The new parallel algorithm
Input : v: the vertex v = v1 · · · vn in Bn

t: the t-th tree Tn
t in IST

n: the dimension of Bn

Output: p: p = Parent(v, t, n) the parent of v in Tn
t

1 if vn = n then
2 if t = 2 and Swap(v, t) = 1n then p = Swap(v, t − 1)
3 else if t = n − 1 then p = Swap(v, vn−1)
4 else p = FindPosition(v)

5 end
6 else
7 if vn = n − 1 and vn−1 = n and Swap(v, n) �= 1n then
8 if t = 1 then p = Swap(v, n)
9 else p = Swap(v, t − 1)

10 end
11 else
12 if vn = t then p = Swap(v, n)
13 else p = Swap(v, t)

14 end

15 end
16 return p

Function FindPosition(v)
Input : v: the vertex v = v1 · · · vn in Bn

Output: p: p = Parent(v, t, n) the parent of v in Tn
t

1 if vn−1 ∈ {t, n − 1} then j = r(v), p = Swap(v, vj)
2 else p = Swap(v, t)
3 return p

Function Swap(v, x)
Input : v: the vertex v = v1 · · · vn in Bn

x: the symbol in the vertex v1 · · · vn
Output: p: p = Parent(v, t, n) the parent of v in Tn

t

1 i = v−1(x), p = v〈i〉
2 return p
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Table 1. The parent of every vertex v ∈ V (B4)\ {14} in T 4
t for t ∈ {1, 2, 3} calculated

by Algorithm 1

v t v4 p v t v4 p

1234 - - - 3124 1 4 3214

2 1324

3 3142

1243 1 3 2143 3142 1 2 3412

2 1423 2 3124

3 1234 3 1342

1324 1 4 3124 3214 1 4 2314

2 1234 2 3124

3 1342 3 3241

1342 1 2 3142 3241 1 1 3214

2 1324 2 3421

3 1432 3 2341

1423 1 3 4123 3412 1 2 3421

2 1432 2 3142

3 1243 3 4312

1432 1 2 4132 3421 1 1 3241

2 1342 2 3412

3 1423 3 4321

2134 1 4 1234 4123 1 3 4213

2 2314 2 4132

3 2143 3 1423

2143 1 4132 2134 4132 1 2 4312

2 2413 2 1432

3 1243 3 4123

2314 1 4 2134 4213 1 3 4231

2 3214 2 4123

3 2341 3 2413

2341 1 1 2314 4231 1 1 2431

2 3241 2 4321

3 2431 3 4213

2413 1 3 2431 4312 1 2 4321

2 4213 2 3412

3 2143 3 4132

2431 1 1 2341 4321 1 1 3421

2 4231 2 4312

3 2413 3 4231
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Note that in a pre-processing stage, each node v = v1v2 · · · vn (v �= 1n) com-
putes its inverse permutation, i.e., v−1(1)v−1(2) · · · v−1(n), and the position of the
first symbol i from the right which is not in the right position, i.e., r(v). This can
be done efficiently in O(n) time for each vertex. Algorithm 1 uses two functions
FindPosition(v) and Swap(v, x). The function FindPosition(v) finds the rightmost
symbol x in v which is not in the right position, and then calls the Swap(v, x) func-
tion. The function Swap(v, x) swaps the symbol x in v in its position i with the
symbol in position i+1. Since we have the pre-processing stage, the two functions
FindPosition(v) and Swap(v, x) can be calculated in constant time.

Table 1 shows the parent of every vertex v ∈ V (B4) \ {14} in T 4
t for t ∈

{1, 2, 3} calculated by Algorithm 1. For example, we consider v = 3214 and t =
3. Since v4 = 4, p = Swap(v, v4−1) = 3241. Also, we consider v = 4321 and t =
1. Since v4 = 1, p = Swap(v, 4) = 3421. The corresponding three ISTs rooted at
vertex 14 for B4 are shown in Fig. 2.

Fig. 2. The three ISTs of B4 calculated by Algorithm 1

4 Correctness and Complexity Analysis

In this section, we first show the correctness of Algorithm 1. Let T be a tree and
u, v ∈ V (T ), we use T (u, v) to denote the unique path joining u and v in T . For
two spanning trees Tn

t and Tn
t′ for t, t′ ∈ {1, 2, . . . , n − 1} with t �= t′, we denote

by Tn
t (v, r) and Tn

t′ (v, r) the two paths from v to the common r.

Theorem 1. For n � 4, Tn
1 , Tn

2 , . . . , Tn
n−1 are n − 1 ISTs of Bn.



A Parallel Algorithm for Constructing ISTs in Bubble-Sort Networks 259

Proof. Suppose that n � 4, let r = 1n(= 12 · · · n), the proof is by showing that
for any vertex v ∈ V (Bn) \ {r}, the two paths from v to r in any two trees of
Tn
1 , Tn

2 , . . . , Tn
n−1 share no common edge and no common vertex except for v and

r, and thereby proving the independence. Consider the following three cases:

Case 1: vn = n.

Each vertex of the two paths Tn
t (v, r) and Tn

t′ (v, r) (apart from Tn
n−1(v, r)) swaps

symbol t (resp., t′) to the position vn−1 for t, t′ ∈ {1, 2, . . . , n − 2}. Then, the
rightmost symbol i which is not in the right position swaps to the right position.
Therefore, Tn

t (v, r) and Tn
t′ (v, r) are vertex-disjoint. Now consider Tn

n−1(v, r),
each vertex of the path swaps the position vn−1 to vn. Then, the vertex v with
vn = n swaps the symbol n − 1 to the position vn. Hence, Tn

t (v, r), Tn
t′ (v, r) and

Tn
n−1(v, r) are vertex-disjoint. See Fig. 3, the paths from the vertex v with vn = n

to r are marked in red, in Tn
n−1(v, r) each vertex of the path has symbol n−1 in

vn. The other trees Tn
t (v, r) have symbol t in position vn for t ∈ {1, 2, . . . , n−2}.

Fig. 3. An illustration of the paths described in the proof of Case 1 of Theorem 1

Fig. 4. An illustration of the paths described in the proof of Case 2 of Theorem 1
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Fig. 5. An illustration of the paths described in the proof of Case 3 of Theorem 1

Case 2: vn = n − 1.

Each vertex of the two paths Tn
t (v, r) and Tn

t′ (v, r) (apart from Tn
n−1(v, r))

swaps symbol t (resp., t′) to the position vn for t, t′ ∈ {1, 2, . . . , n − 2}. On the
other hand each vertex of the path has symbol t (resp., t′) in different position.
Therefore, Tn

t (v, r) and Tn
t′ (v, r) are vertex-disjoint. In Tn

n−1(v, r) each vertex
of the path swaps symbol n to the position vn. By Case 1, the paths Tn

1 (v, r)
and Tn

n−2(v, r) are vertex-disjoint. Hence, Tn
t (v, r), Tn

t′ (v, r) and Tn
n−1(v, r) are

vertex-disjoint. See Fig. 4, the paths from the vertex v with vn = n − 1 to r are
marked in red, in Tn

1 (v, r) each vertex of the path has symbol n − 1, 1 or n in
the position vn, in Tn

n−2(v, r) each vertex of the path has symbol n − 1, n − 2
or n in the position vn, in Tn

n−1(v, r) each vertex of the path swaps symbol n to
the position vn.

Case 3: vn = j for j ∈ {1, 2, . . . , n − 2}.

Each vertex of the two paths Tn
t (v, r) and Tn

t′ (v, r) (apart from Tn
n−1(v, r))

swaps symbol t (resp., t′) to the position vn for t, t′ ∈ {1, 2, . . . , n − 2}. On
the other hand each vertex of the path has symbol t in different position. There-
fore, Tn

t (v, r) and Tn
t′ (v, r) are vertex-disjoint. In Tn

n−1(v, r) each vertex of the
path swaps symbol n − 1 to vn. By Case 2, the paths Tn

1 (v, r) and Tn
n−2(v, r)

are vertex-disjoint. Hence, Tn
t (v, r), Tn

t′ (v, r) and Tn
n−1(v, r) are vertex-disjoint.

See Fig. 5, the paths from the vertex v with vn = 1 to r are marked in red, in
Tn
1 (v, r) each vertex of the path swaps symbol n to vn, in Tn

n−2(v, r) each vertex
of the path swaps symbol n − 2 or n to vn, in Tn

n−1(v, r) each vertex of the path
swaps symbol n − 1 to vn. This completes the proof. �	

The height of a rooted tree T , denoted by h(T ), is the number of edges from
the root to a farthest leaf. We define Hn = max

1�t�n−1
h(Tn

t ) to analyze the height

of our constructed ISTs for Bn.
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Theorem 2. For the bubble-sort graph Bn, Algorithm 1 correctly constructs
n − 1 ISTs of Bn with height at most n(n + 1)/2 − 1. In particular, every vertex
can determine its parent in each spanning tree in constant time.

Proof. From Algorithm 1, the path from the vertex v with vn = 2 to the vertex
u with un = 1 has at most n − 1 edges, and the path from the vertex u with
un = 1 to the vertex x with xn = n has at most n − 1 edges. Moreover, the
path from the vertex w with wn = n to the vertex x with xn = n and xn−1 = t
has at most n − 1 edges, and the path from the vertex x with xn = n and
xn−1 = t to the vertex y with yn = n and yn−1 = n − 1 has at most n − 2
edges, and the path from the vertex y with yn = n and yn−1 = n − 1 to the
vertex z with zn = n, zn−1 = n − 1 and zn−2 = n − 2 has at most n − 3
edges. Since (n − 2) + (n − 3) + · · · + 1 = (n − 1)(n − 2)/2, the path from the
vertex x with xn = n and xn−1 = t to the root r has at most (n − 1)(n − 2)/2
edges. The path from the vertex v with vn = 2 to the root r has at most
(n−1)(n−2)/2+(n−1)+(n−1) = (n2 −3n+2+4n−4)/2 = (n2 +n−2)/2 =
n(n + 1)/2 − 1 edges. Hence, Hn ≤ n(n + 1)/2 − 1. Obviously, each vertex in
Algorithm 1 can determine its parent in each spanning tree in constant time.
This completes the proof. �	
Corollary 1. The total time complexity O(n · n!) of Algorithm 1 is asymptoti-
cally optimal.

Proof. There are n − 1 ISTs, each IST contains n! vertices, hence the lower
bound Ω(n · n!) is obvious. Since each vertex in Algorithm 1 can determine its
parent in each spanning tree in constant time, the total time complexity of the
proposed Algorithm 1 is O(n · n!). Hence, the total time complexity O(n · n!) of
Algorithm 1 is asymptotically optimal. This completes the proof. �	

5 Conclusion

In this paper, we have proposed an algorithm for constructing n−1 ISTs rooted
at an arbitrary vertex of the bubble-sort network Bn. Our approach can be fully
parallelized, i.e., every vertex can determine its parent in each spanning tree in
constant time. Furthermore, we show that the total time complexity O(n ·n!) of
our algorithm is asymptotically optimal, where n is the dimension of Bn and n!
is the number of vertices of the network.

Since Bn is a regular graph with connectivity n−1, the number of constructed
ISTs is the maximum possible. For future work, a problem remaining open from
our work is whether our algorithm can be extended to the (n, k)-bubble-sort
graph [27,41,42] which is a generalization of bubble-sort networks. Moreover,
the butterfly graph [17,18] has good structural symmetries, is regular of degree
4, and the recursive construction properties are similar to bubble-sort networks.
Thus, it is of interest to study the construction of ISTs on butterfly graphs.



262 S.-S. Kao et al.

References

1. Akers, S.B., Krishnamurty, B.: A group theoretic model for symmetric intercon-
nection networks. IEEE Trans. Comput. 38(4), 555–566 (1989)

2. Bao, F., Funyu, Y., Hamada, Y., Igarashi, Y.: Reliable broadcasting and secure dis-
tributing in channel networks. In: Proceedings of 3rd International Symposium on
Parallel Architectures, Algorithms and Networks, ISPAN 1997, Taipei, December,
pp. 472–478 (1997)

3. Chang, J.-M., Wang, J.-D., Yang, J.-S., Pai, K.-J.: A comment on independent
spanning trees in crossed cubes. Inf. Process. Lett. 114(12), 734–739 (2014)

4. Chang, J.-M., Yang, T.-J., Yang, J.-S.: A parallel algorithm for constructing inde-
pendent spanning trees in twisted cubes. Discret. Appl. Math. 219, 74–82 (2017)

5. Chang, Y.-H., Yang, J.-S., Chang, J.-M., Wang, Y.-L.: A fast parallel algorithm
for constructing independent spanning trees on parity cubes. Appl. Math. Comput.
268, 489–495 (2015)

6. Chang, Y.-H., Yang, J.-S., Hsieh, S.-Y., Chang, J.-M., Wang, Y.-L.: Construction
independent spanning trees on locally twisted cubes in parallel. J. Comb. Optim.
33(3), 956–967 (2016). https://doi.org/10.1007/s10878-016-0018-8

7. Cheng, D.-W., Chan, C.-T., Hsieh, S.-Y.: Constructing independent spanning trees
on pancake networks. IEEE Access 8, 3427–3433 (2020)

8. Cheng, D.-W., Yao, K.-H., Hsieh, S.-Y.: Constructing independent spanning trees
on generalized recursive circulant graphs. IEEE Access 9, 74028–74037 (2021)

9. Cheriyan, J., Maheshwari, S.N.: Finding nonseparating induced cycles and inde-
pendent spanning trees in 3-connected graphs. J. Algorithms 9(4), 507–537 (1988)

10. Curran, S., Lee, O., Yu, X.: Finding four independent trees. SIAM J. Comput.
35(5), 1023–1058 (2006)

11. Hasunuma, T.: Completely independent spanning trees in maximal planar graphs.
In: Goos, G., Hartmanis, J., van Leeuwen, J., Kučera, L. (eds.) WG 2002. LNCS,
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Abstract. Energy efficiency is a critical issue that attracts numerous
interest of many researchers in wireless mobile sensor networks. Emerg-
ing IoT applications have brought the MinSum Sink-based Linear Barrier
Coverage (MinSum SLBC) problem which aims to use sink-based mobile
sensors (such as drones) to cover a line barrier (such as borders pos-
sibly for monitoring illegal intrusion). In the scenario, all the sensors
are initially located at k sink stations, while the aim is to find the final
positions of the sensors on the line barrier, such that the line barrier is
completely covered and the total movement of the sensors is minimized.
In this paper, we first study geometry properties of an optimal solution of
MinSum SLBC, and reveal that an optimal solution of MinSum SLBC
actually consist of intersecting segments of tangent sensors. Then, we
devise a segmentation algorithm for computing a near-optimal position
of each segment that is possibly part of the optimum. Lastly, by selecting
segments consisting of tangent sensors via transforming to the shortest
path problem, we eventually derive a factor-(1 + ε) approximation algo-
rithm with a time complexity O(k2(log 2r

ε
+ log k), where ε > 0 is any

given positive real number.

Keywords: Mobile sensor network · Barrier coverage · MinSum
movement · Approximation algorithm · Sink station

1 Introduction

Along with the development of sensor technology, new coverage problems with
sink-based mobile sensors [1–3] have appeared in emerging IoT applications.
In such problems, the mobile sensors are originated at sink stations that are
distributed on the plane. Assume that we are given a barrier of length L located
on the X-axis from point (0, 0) to (L, 0) on the plane, and a set of sink stations
Ψ = {S1, S2, · · · , Sk} in which each sink station can emit an infinite number of
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mobile sensors with identical sensing radii. The goal of the MinSum Sink-based
Linear Barrier Coverage problem (MinSum SLBC) is to move a set of mobile
sensors from the sinks to incorporate a complete coverage over the barrier, such
that the total movement of the sensors for the coverage is minimized. The formal
definition of MinSum SLBC is as follows:

Definition 1. Let Ψ be a set of sink stations distributed on the plane, where
each sink station Si ∈ Ψ is with position (xi, yi) and can emit mobile sensor
with identical sensing radius r for covering the line barrier. Given a line barrier
of length L on the X-axis, the problem aims to find new positions of a set of
emitted sensors on the line containing the barrier, such that each point of the
barrier is within the sensing area of at least one sensor while the total movement
of the sensors is minimized.

In the above definition, the movement of a sensor is measured by the
Euclidean distance between the position of its originated sink station and its
final position on the line accommodating the barrier. Formally, for points p and
q with position coordinates (xp, yp) and (xq, yq), the Euclidean distance between
them is denoted as d(p, q) =

√
(xp − xq)2 + (yp − yq)2. Besides, for briefness we

say p ≺ q if and only if xp < xq. W.l.o.g. we assume xi �= xj holds for every two
sink stations Si and Sj , since otherwise we could only use sensors from the sink
station with smaller perpendicular distance for coverage. Again for briefness, we
assume the sink stations satisfy the ordering: S1 ≺ S2 ≺ · · · ≺ Sk, which means,
x1 < x2 < · · · < xk.

1.1 Related Works

In recent years, several papers in the field of sensor networks considered the
new coverage problems with sink-based mobile sensors, see for example [1,3].
Gao et al. [1] first studied the new coverage problem of sink-based sensors with
identical sensing radii covering targets distributed on the plane, which is defined
as k-sink minimum movement target coverage (kMMTC) problem, where k is
the number of sink stations and all sensors in the problem have identical sensing
radii. The purpose of the research is to minimize the total movement of the
sensors covering the set of targets distributed on the plane. They proved that
kMMTC is NP -hardness and proposed a polynomial-time 1 + ε approximation
scheme with a runtime of nO( 1

ε2 ). Our previous work studied the barrier coverage
problem of sink-based sensors, and proved that the MinSum SLBC problem is
NP -complete, where the radius of the sensor is not necessarily the same. We
also studied the MinMax SLBC problem [3] in which the radius of the sensors
are the same and the aim is to minimize the maximum movement of the sensors,
and proposed an optimal algorithm with linear time.

Besides using sensors originated at sink station, there exist many research
works in literature considering the coverage problem with sensors distributed on
the plane. When the radius of the sensor is identical, for the 2D MinSum problem
where the sensors are distributed on the plane, Cherry et al. [4] presented a
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factor-
√

2 approximation algorithm with the time complexity O(n4) for MinSum
problem of covering a single line barrier. Interestingly, the algorithm by Cherry
et al. also works for covering k parallel barriers with an approximation ratio√

2 and a runtime of O(kn2k+2). Later, Erzin and Lagutkina [5] improved the
runtime to O(n2). More recently, the same authors eventually devised a fully
polynomial time approximation scheme (FPTAS ) for the problem with a runtime
of O(n3

ε2 ) [6]. When the barrier is a circular boundary, and the sensors are initially
distributed in the interior of the boundary, Bhattacharya et al. [7] designed two
approximation algorithms, where the first is with a runtime of O(n2) and a ratio
(1 + π) that was later improved to 3 by Chen et al. [8]; where the second is
a fully polynomial time approximation scheme (FPTAS ) with a ratio (1 + ε)
and a runtime O(1εn4) for a given constant ε > 0, which was later improved to
O( 1

εO(1) n
2+ε′

) by Carmi et al. [9] for ε > 0 being any constant and ε′ = O(ε). The
1D MinSum problem in which the sensors are distributed on the line containing
the barrier was studied much earlier by Czyzowicz et al. [10], who proposed an
exact algorithm with the time complexity O(n2). Later, Andrews and Wang [11]
improved the time complexity to O(n log n).

When the barrier is a circular boundary and the sensors are initially dis-
tributed on the boundary, Tan and Wu [12] proposed an exact algorithm with
O(n4) time by moving n sensors to form a regular n-gon on the circular bound-
ary. When the radii of the sensors are not necessarily the same, Czyzowicz et al.
[10] proved that the MinSum barrier coverage problem is NP-hard even if the
initial positions of sensors are on the targeted line. Benkoczi et al. [13] gave an
FPTAS for the special case where the sensing range of the sensor is not allowed
to overlap. For 2D MinSum problem, where the sensors can perform only per-
pendicular movement against the barrier and given k parallel barriers need to be
covered, Dobrev et al. [14] designed an algorithm with a runtime of O(knk+1).

1.2 Our Contribution and Organization

As the main contribution of this paper, we design a factor-(1 + ε) approxima-
tion algorithm with a time complexity O(k2(log 2r

ε + log k) for MinSum SLBC.
The algorithm is derived through analyzing the geometric properties of an opti-
mal solution of MinSum SLBC, particularly analyzing the overlap of the sensor
coverage area in the optimal solution. The runtime of our algorithm compares
favorably to the existing algorithms in literature. We achieve a significantly lower
time complexity exponentially decreasing the factor of polynomial 1

ε to the log-

arithm of log(1ε ), improving the previous FPTAS with runtime O
(

n3

ε2

)
for the

sensor-based version of MinSum SLBC [6], and the additive FPTAS with runtime
O

(
k2

(
L
ε

)2)
for MinSum SLBC with sensors of non-uniform radii [15].

The remainder of this paper is organized as follows: Sect. 2 describes the for-
mal definition of the problem, as well as some necessary definitions and notations;
Sect. 3 gives important properties on an optimal solution of MinSum SLBC,
based on which Sect. 4 proposes the near-optimal algorithm; Sect. 5 concludes
the paper.
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2 Preliminaries

In this section, we shall give some notations and definitions that will be used
when introducing our algorithm and related proofs.

Definition 2. The point uij on the barrier is a movement parity point for Si

and Sj, if and only if the distance between uij and Si equals that between uij

and Sj, that is, d(Si, uij) = d(uij , Sj).

Proposition 3. For Si, Sj with Si ≺ Sj and uij being the movement parity
point between them, for the point q on the line segment containing the barrier,
q � uij is true iff d(q, Sj) ≥ d(q, Si) is true.

From the above proposition, it can be seen from left to right that the order of
sensors covering the barrier is the same as the order of the sink stations. Because
if there are two sensors on the barrier, the order is opposite to the order of the
sink stations emitting them, we can change the order of the sink stations emitting
the two sensors without changing other sensors to reduce the total movement of
the sensors. Of course, some sink stations that are too far away from the barrier
to be used are not considered. Therefore, before giving our algorithm, we must
first remove those sink stations that cannot be used because the perpendicular
distance from the barrier is too far.

3 Properties on Optimum Solution of MinSum SLBC

In this section, we will give the relevant geometric properties by observing the
structure of an optimal solution of MinSum SLBC, which inspires us to derive the
near-optimal algorithm. We first denote an optimal solution of MinSum SLBC
as OPT , and then give the geometric properties of OPT .

Lemma 4. In OPT , a left-moving sensor does not overlap with a sensor on its
left side; the right-moving sensor not overlap with the sensor on its right side.

Proof. We will prove it by contradiction. Assume an left-moving sensor have
overlap with sensor on its left side. Let the length of the overlap be η. There
are two cases: (i) The left-moving sensor and the sensor on its left side are both
emitted by the same sink station Si; (ii) The left-moving sensor and the sensor
on its left side are emitted by different sink stations Si and Sj .

For case (i), assume that the two sensors are respectively with final positions
(a, 0) and (b, 0), and sink station Si is with position (xi, yi). Obviously xi¿a¿b
holds. The total movement of the two sensors is d = d (Si, (a, 0)) + d (Si, (b, 0)).
It’s easy to find that increasing a can reduce the movement of the left-moving
sensor, and until the overlap η reduce to 0 or the left-moving sensor becomes
perpendicular-moving sensor. The above process will reduce the total movement
d but will not change the coverage. This contradicts the minimality of OPT .
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For case (ii), assume that the two sensors are respectively with final positions
(a, 0) and (b, 0), and the different sink stations Si and Sj are respectively with
positions (xi, yi) and (xj , yj). Obviously b < a < xi holds. The total movement
of the two sensors is d = d (Si, (a, 0)) + d (Sj , (b, 0)). It’s easy to find that
increasing a can reduce the overlap η, and until the overlap η reduce to 0 or the
left-moving sensor becomes perpendicular-moving sensor. The above process will
reduce the total movement d but will not change the coverage. This contradicts
the minimality of OPT . Therefore, the left-moving sensors have no overlap with
sensor on its left side. This completes the proof since the cases of right-moving
sensors are symmetric. �	
Definition 5. For sink station Si with position (xi, yi), the point pi on the
barrier closest to sink station Si is at (xi, 0), we call this point the projection
point of sink station Si, denoted as pi. The area on the barrier covered by the
sensor with the final position (xi, 0) is called the projection area of sink station
Si, denoted as Areai.

According to Lemma 4 and Definition 5, we find that if there is an overlap
between the sensors’ coverage areas in OPT , the overlap will definitely appear
in the area covered by the sensors moving vertically to the barrier.

Lemma 6. If there is an overlap in OPT , the overlap must appear in the pro-
jection areas of the sink stations emitting sensors in OPT .

Proof. In OPT , according to Lemma 4, the left-moving sensor will not overlap
with the sensor on its left side; the right-moving sensor will not overlap with
the sensor on its right side. Therefore, if there is an overlap between the sensors’
coverage areas in OPT , there are three cases in which the overlap appear: (i) The
vertically-moving sensor overlaps with the sensor on its left (or right) side; (ii)
The left-moving sensor overlaps with the sensor on its right side; (iii) The right-
moving sensor overlaps with the sensor on its left side. Obviously, for case (i),
according to the Definition 5, the overlap must appear in projection area. For case
(ii), there are only two possibilities of the right sensor on the left-moving sensor:
vertical-moving and right-moving. Vertical movement is equivalent to case (i),
and the overlap between the left-moving sensor and the right-moving sensor on
its right must be in the projection area. Similar to case (ii), we immediately have
the correctness of case (iii). �	

Through Lemma 4 and Lemma 6, we can know that in OPT , the overlap of
the coverage area of the sensors definitely appear in the projection area of the
sink stations. Then we can find the segment formed by the coverage areas of the
maximal set of tangent sensors existing between the two projection areas, which
is called a tangent segment. Obviously, there is no overlap between the sensors’
coverage areas that form the tangent segment.

Definition 7. For the projection areas Areai and Areaj, the line segment
between them covered by the maximal set of sensors is called a tangent seg-
ment, where the sensing areas of adjacent sensors are tangent, that is, there is
no overlap. We denote this tangent segment as Tij.
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Because the coverage area of the sensor located at the projection point of each
sink station may individually intersect the tangent segments on both sides of it,
we regard the projection area of the sink station as a special tangent segment. In
summary, we know that OPT can be seen as composed of intersection of multiple
tangent segments. Then we need to consider how to find these tangent segments
and the best position of each tangent segment. And each tangent segment is
composed of the coverage area of the maximal set of tangent sensors existing
between the two projection areas, so finding the tangent segment is to find the
corresponding maximal set, and the best position of tangent segment is the best
position of the corresponding maximal set.

Lemma 8. In OPT , for the tangent segment Tij, there are two possible numbers

of sensors in the corresponding maximal set,
⌈

xj−xi

2r

⌉
− 1 and

⌊
xj−xi

2r

⌋
+ 1.

Proof. Apparently, the tangent segment Tij is between the projection areas
Areai and Areaj . So the leftmost and the rightmost points of Tij are in Areai

and Areaj , respectively. That is, the two points are in the range of [pi − r, pi + r]
and [pj − r, pj + r], respectively. Therefore, the number of sensors is at most⌊
(xj+r)−(xi−r)

2r

⌋
=

⌊
xj−xi

2r

⌋
+ 1, and at least

⌈
(xj−r)−(xi+r)

2r

⌉
=

⌈
xj−xi

2r

⌉
− 1. �	

When tangent segment Tij is completely covered by the sensors and the total
movement of sensors is minimized, we say that Tij is in its optimal position.

Theorem 9. In OPT , tangent segment Tij is either in its optimal position or
tangent to its left or right sensor.

Proof. Suppose tangent segment Tij in OPT is not in its optimal position, and
is neither tangent to its left nor right sensor. Then the leftmost sensor and the
rightmost sensor of Tij overlap with the left and right sensors of Tij , respectively.
At this time, according to the meaning of Tij is not in its optimal position, it
can be seen that Tij can move to the left or right to reduce the total movement
of the sensors without affecting the coverage, which means that OPT is not a
optimal solution. Contradicts the hypothesis. This completes the proof. �	

4 The Near-Optimal Algorithm

In this section, we will first give a high-level overview of our near-optimal algo-
rithm for MinSum SLBC, and then describe its details in three phases.

4.1 Overview of the Algorithm

Based on the key observation of Theorem 9, a natural idea is first to enumerate
all the tangent segments together their optimal positions, and then to select
the tangent segments to eventually compose a near-optimal solution. However,
there are two difficulties: (1) how to find all possible tangent segments and the
best position of all tangent segments, provided that the best position involves
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the positions of the sink stations, the radii of the sensors, and the number of
sensors; (2) how to select the segments for optimally cover the barrier with min-
imum total movement. Regarding the difficulties, our algorithm can be divided
into three phases in a high level manner. The first phase is to enumerates all
possible tangent segments with their rightmost positions. Then the second is
to compute the near-optimal position of each possible tangent segment, based
on the observation that the function, which captures the movement change of
a segment when moving leftwards from its rightmost position, is concave. The
third phase is to construct an auxiliary graph in which selection among all the
possible tangent segments is transformed to finding a shortest path therein.

4.2 Enumeration of Possible Tangent Segments

We shall give the algorithm for enumerating all possible tangent segments based
on the observation of Lemma 8. The key idea of the algorithm is to first consider
the leftmost and rightmost point of the barrier as two point projection areas, and
then calculate the tangent segment between any two projection areas from left
to right. First, according to Lemma 8, calculate the number of sensors contained
in the tangent segment between any two projection areas, and then find the
rightmost position of each tangent segment as the initial position and write down
the initial position coordinate. The details of the algorithm are as in Algorithm1.
According to the algorithm, we can find the rightmost positions of all possible
tangent segments, and then we consider moving the tangent segments to the left
to find the best position of each tangent segment.

4.3 Computation of Near-Optimal Positions for Tangent Segments

We shall show how to compute near-optimal positions for the sensors of each
segment. Let Tij be a tangent segment between the projection areas Areai and
Areaj , whose coverage sensors are emitted by the sink stations Si to Sj . Assume
the position of the leftmost sensor in Tij is with a position (x0, 0), and the
number of sensors emitted by sink station St with position (xt, yt) is denoted as
nt. Then the total movement of the sensors of Tij is:

d0 =
j∑

t=i

nt∑

m=1

d (St, (x0 + 2r(m − 1), 0))

Considering to move the segment leftwards for distance ξ, then the total
movement of the sensors of Tij is:

d1 =
j∑

t=i

n
′
t∑

m=1

d (St, (x0 − ξ + 2r(m − 1), 0)) .
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Algorithm 1. Calculation of the possible tangent segments
Input: The set of sink stations Ψ = {S1, S2, · · · , Sk} in which of sink station Si

is with position (xi, yi), the barrier [0, L] and the radius r of sensor;
Output: The set C of all tangent segments.
1: Set C = ∅;
2: For i = 1 to k do
3: Set C = C ∪ {[xi − r, xi + r]}, a = max{xi, 0};
4: If 0 < xi < L then
5: Calculate the tangent segment T0i between (0, 0) and Areai, which

contains
⌈

xi−r
2r

⌉
tangent sensors; /*l0i =

⌈
xi−r
2r

⌉ · 2r − (xi − r)*./

6: Calculate Tik+1 between Areai and (L, 0), which contains
⌈

L−(xi+r)
2r

⌉

tangent sensors; /*lik+1 = xi + r +
⌈

L−(xi+r)
2r

⌉
· 2r − L.*/

7: Set C = C ∪ {T0i, Tik+1};
8: EndIf
9: For j = i + 1 to k do
10: If 0 < xj < L then
11: Set b = xj , C = C ∪ {[xj − r, xj + r]};

12: Calculate Tij between Areai and Areaj , where T
(1)
ij contains

⌈
b−a
2r

⌉ − 1

tangent sensors, and T
(2)
ij contains

⌊
b−a
2r

⌋
+ 1 tangent sensors;

/*l
(1)
ij = a − b +

⌈
b−a
2r

⌉ · 2r, l
(2)
ij = b − a − ⌊

b−a
2r

⌋ · 2r.*/

13: Set C = C ∪ {T
(1)
ij , T

(2)
ij };

14: EndIf
15: EndFor
16: EndFor

17: Return the set C.

Then we could define the function to capture the movement change when moving
the segment Tij leftwards for distances ξ:

Fd(ξ) = d0 − d1

=

j∑

t=i

⎛

⎜
⎝

nt∑

m=1

d (St, (x0 + 2r(m − 1), 0)) −
n

′
t∑

m=1

d (St, (x0 − ξ + 2r(m − 1), 0))

⎞

⎟
⎠

Lemma 10. The function Fd(ξ) is concave.

Proof. We need only to show the second derivative of Fd(ξ) with respect to ξ is
not greater than zero:

F ′′
d (ξ) =

j∑

t=i

n
′
t∑

m=1

−y2
t

3
2
√

[x0 − ξ + 2r(m − 1) − xt]2 + y2
t

≤ 0.
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From Lemma 10, we can conclude that in the process of moving a tangent seg-
ment from the rightmost initial position to the left, there exists a position where
the total movement of the sensors in the tangent segment attains minimum.
Next, we will give the second algorithm to calculate the near-optimal position.

The key idea of the second algorithm is to first calculate the decrement
function Fd corresponding to the input tangent segment, and then determine
whether the tangent segment moves to the left and the distance of the left-
moving according to the first derivative of Fd(ξ) where ξ is the distance of
the tangent segment moved to the left. In this process, the divide and conquer
method is used to determine the maximum value of ξ.

Theorem 11. A placement of a tangent segment between two projection areas,
with at most ε more movement than an optimal placement, can be computed in
O(log 2r

ε ) time.

The proof is omitted due to length limitation.

4.4 Transformation to the Shortest Path Problem

The key idea of the transformation is essentially to construct an auxiliary graph.
For the vertices of the graph, we add a vertex to correspond each tangent seg-
ment, and additionally add a source vertex s and a destination vertex t. For
the edges between the vertices, we add an edge between two vertices if the two
corresponding tangent segments overlap. Lastly, we use the total movement of
a segment as the cost of the edge entering the corresponding vertex. Figure 1
gives an example of executing the whole near-optimal algorithm for MinSum
SLBC, including the process of calculating all tangent segments, finding the
near-optimal positions of tangent segments and constructing the auxiliary graph.

For the correctness of the transformation, we have the following theorem:

Theorem 12. There is an st-path in the auxiliary graph iff there is a complete
coverage for the instance of MinSum SLBC.

Proof. Assume that P is a path in the auxiliary graph. The proof will be
given by induction on the length of P , L(P ). If L(P ) = 1, then we have
P = (v1 → v2). Note that the condition of an edge between the vertex v1 and
v2 is that their corresponding binary combinations (c1,1, c1,2) and (c2,1, c2,2)
should satisfy that c1,1 < c2,1 ≤ c1,2 < c2,2. Then, using tangent sensors to
cover the segment [c1,1, c1,2] and [c2,1, c2,2], respectively. That is, the above
description is a complete coverage for the segment between c1,1 and c2,2. By
hypothesis, using sensors to individually cover the segment [ci,1, ci,2], i ∈ [h],
is a coverage for the segment between c1,1 and ch,2. Then only need to explain
that there is a complete coverage for the segment between c1,1 and ch+1,2 in
the situation of P = (v1 → v2 → . . . → vh → vh+1). According to the aux-
iliary graph construction, ch,1 < ch+1,1 ≤ ch,2 < ch+1,2, that is, ch,2 is in the
segment [ch+1,1, ch+1,2]. So a path from v1 to vh+1 is corresponding to a cov-
erage for the segment between c1,1 and ch+1,2. Then when P is an st-path,
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Fig. 1. Execution of the algorithm: (a) The barrier, sink stations, and the tangent seg-
ments; (b) The auxiliary graph corresponding to the near-optimally placed segments.

P = (s → v1 → v2 → . . . → vh → vh+1 → t). Therefore, the binary combi-
nations of the source node s and vertex v1, and the binary combinations of the
vertex vh+1 and destination node t should satisfy c1,1 ≤ 0 and ch+1,2 ≥ L. Then
an st-path corresponds to a complete coverage for the barrier. Similarly, we have
the proof of the “if” direction. This completes the proof. �	
Next, the size of the auxiliary graph G can be stated below:

Theorem 13. The auxiliary graph G has O(k2) vertices.

Proof. According to the construction method of the auxiliary graph G, all tan-
gent segments and the projection areas of all sink stations corresponds to vertices
in G \ {s, t} and vice versa. According to the calculation method of the tangent
segment in Algorithm 1, there is only one tangent segment between the left-
most or rightmost point of the barrier and any sink station, and the barrier
has two endpoints, then there are 2k tangent segments related to the barrier
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endpoint; There are two tangent segments between any two sink stations, so
there are 2

∑k−1
i=1 i = k(k − 1). Therefore, the number of tangent segments is

2k + k(k − 1) = O(k2). There are m sink stations and each sink station has a
projection area, so there are k projection areas. So the number of vertices in the
auxiliary graph is O(k2 + k) = O(k2). �	
Theorem 14. Our near-optimal algorithm produces an approximate solution to
MinSum SLBC with movement bounded by d(OPT ) + ε.

Proof. In the algorithm that calculate the near-optimal positions for tangent
segments, the accuracy error is at most ε′ for each tangent segment. So the
accumulated accuracy error is at most k2ε′, since there are at most k2 tangent
segments. Then our algorithm produces an approximate solution to MinSum
SLBC with movement bounded by d(OPT ) + ε for ε = k2ε′. �	
Moreover, combining the above theorem with Theorem 11, we have the time
complexity of the whole algorithm:

Corollary 1. Our algorithm runs in O(k2 log 2r
ε +k2 log k) time, and computes

a near-optimal solution with movement bounded by 1+ε times of optimum, where
ε > 0 is any given positive real number.

Note that O(k2 log 2r
ε ) is the time needed to find all the near-optimal positions

for all the segments, while O(k2 log k) is the time needed to find the shortest path
in the auxiliary graph which is acyclic admits algorithms with runtime linearly
depend on the number of its edges.

5 Conclusion

In this paper, we study the MinSum SLBC problem where all sensors are emitted
by the sink stations have identical sensing radii. We first observe the geometric
properties of an optimal solution of MinSum SLBC, and then design a factor-
(1 + ε) approximation algorithm with a time complexity O(k2(log 2r

ε + log k))
based on the geometric properties. The algorithm consists of three phases: The
first is to find all possible segments formed by the tangent sensor, the second to
calculate the near-optimal position of each segment, and the third to select the
segments via transforming to the shortest path problem.
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Abstract. The sweep coverage of UAVs can provide emergency com-
munication support and conduct disaster surveys in emergency disaster
relief. These rescue operations are extremely time sensitive. If the UAVs
cannot arrive on time, the best rescue opportunity may be missed. When
the number and energy of UAVs are limited, it is likely that some Points
of Interest (POI) cannot be covered. Thus it’s crucial to design a collabo-
rative sweep coverage scheme for multiple UAVs to achieve the maximum
effective coverage rate. In this paper, we first propose a novel problem
named MEC-TS. Under the constraints of time sensitivity and the num-
ber of UAVs, the objective of the MES-TS problem is to maximize the
effective coverage rate in sweep coverage. We prove that the MEC-TS
problem is NP-hard. Accordingly, we propose the GCS algorithm for the
MEC-TS problem. Finally, we conduct extensive simulations and the
experimental results demonstrate GCS has improved the performance
by 30% compared with existing algorithms.

Keywords: Sweep coverage · UAVs · Time sensitivity

1 Introduction

In recent years, with the development of unmanned aerial vehicle (UAV) tech-
nology, UAVs have attractive application prospects in many fields, such as smart
logistics, agricultural planting, infrastructure inspection, public safety, and aerial
media. In this paper, we study the time sensitive sweep coverage with multiple
UAVs in the context of emergency and disaster relief.

The concept of sweep coverage originates from Wireless Sensor Networks
(WSNs). In some monitoring tasks, it is not necessary to continuously monitor
the Point Of Interest (POI) with static sensors, but only need to patrol the POI
with mobile sensors periodically. In this way, a small number of mobile sensors
can be used to cover more POIs, and this coverage mode is called sweep coverage
[1,2].

In emergency and disaster relief, UAVs are often required to quickly cover
designated locations within a specified time to provide emergency communica-
tions support, material supply, disaster surveys, and other special tasks. These
c© Springer Nature Switzerland AG 2021
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https://doi.org/10.1007/978-3-030-93176-6_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93176-6_24&domain=pdf
https://doi.org/10.1007/978-3-030-93176-6_24


278 H. Wang

Fig. 1. Time sensitive of POIs

rescue operations are extremely time sensitive. If the UAV cannot arrive on time,
the best rescue opportunity may be missed. And each coverage target has differ-
ent time sensitivity. As shown in Fig. 1, if the time sensitivity of a POI is 60 min,
it wants an UAV to cover it in 60 min. For example, UAV equipped with aerial
base stations flying over the disaster area can bring communication signals to
the disaster area. When communication is interrupted in the disaster area, the
time sensitivity is higher in densely populated areas. It is expected that UAVs
equipped with aerial base stations can cover the area in a shorter time, so that
more people in the disaster area can communicate with the outside world in a
timely manner, reducing the casualty rate. In uninhabited mountainous areas,
time sensitivity is low, giving UAVs a longer time limit to reach the area. There-
fore, how to plan the UAVs’ sweep coverage path to meet the time sensitivity
of different POIs is the focus of this paper. In addition, when the number and
power of UAVs are limited, it is likely that some POIs cannot be covered. At
this time, it is necessary to increase the effective coverage rate of the UAVs as
much as possible, and those POIs that are covered within an acceptable time
can be regarded as effectively covered. How to improve the effective coverage is
another research focus of this paper.

Since the distance of the POI is not related to its time sensitivity, it is difficult
to coordinate well whether UAVs should prioritize access to POI that are close in
distance or POI that are time-critical. If the relationship between the two cannot
be coordinated well, it will seriously affect the effective coverage rate. Therefore,
how to coordinate the relationship between distance and time sensitivity and
make every step of the decision for UAV path planning is a challenge to our
algorithm design. The details of our contributions can be summarized as follows:

1) This paper consider a new and practical problem named Maximum Effective
Coverage Rate in Time Sensitive Sweep Coverage with Multiple UAVs (MEC-
TS). Given a limited number of UAVs and the time sensitivity of each POI,
considering the performance constraints of UAVs, the objective of MEC-TS
problem is to design a collaborative sweep coverage scheme for multiple UAVs
to maximize the effective coverage. We prove that MEC-TS problem is NP-
hard.
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2) A concise and fast algorithm called GCS is proposed to solve the MEC-TS
problem, with time complexity O(mn2).

3) We evaluate the performance of the proposed algorithm, the experimental
results demonstrate the performance of the GCS algorithm is up to 30%
higher than that of existing algorithms.

The rest of the paper is organized as follows. Section 2 describes the related
work. Section 3 formulates the MEC-TS problem. Section 4 presents the GCS
algorithm and the corresponding complexity analysis. Simulation results are dis-
played in Sect. 5. Finally, Sect. 6 concludes this paper.

2 Related Work

2.1 Traditional Sweep Coverage

Research on sweep coverage is mostly concentrated in traditional mobile sensor
networks. Liu et al. [3] studied the problem of sweep coverage with return time
constraint, which requires that the data collected from different POIs should
be delivered to the base station within different preset time windows. They
proposed heuristic algorithms G-MSCR and MinD-Expand to solve this problem.
In addition, Liu also proposed group sweep coverage [5] and t,k sweep coverage
[6] to further extend the sweep coverage problem. In [7], Nie et al. proposed an
approximate better approximation algorithm IERSC for the energy limitation
problem in sweep coverage, and for the first time studied the different energy
consumption under different road sections. Chen et al. considered the sensing
range for the first time to shorten the scanning path [8–10]. The author gives
three algorithms for three situations: single sensing point, general scene and
extended scene respectively to coordinate the sensors to complete the scanning
requirements. Zhang et al. [11] investigated how to use the minimum number
of mobile nodes to cover all POIs under the sensing and transmission delay
constraints. But they simplified the problem and set the sensing delay of POIs
to be the same. In our research, we schedule the sweep coverage path for UAVs
based on the condition that different POIs have different time sensitivity.

2.2 Sweep Coverage of UAVs

At present, there is not much research literature on the sweep coverage of UAVs.
The author of [12] proposed a new coverage path planning method for the energy
limitation of multiple UAVs. They proposed a path-based optimization model
that tracks the energy required for different mission phases, effective for path
planning for both single and multiple UAVs. In [13], Luo et al. conducted fine-
grained trajectory planning for the data collection of multiple UAVs in wireless
sensor networks, and used approximate algorithms to minimize the maximum
flight time of UAVs, but did not consider the UAV’s maximum flight time.
Turning angle and turning time. Sun et al. [14,15] proposed the problem of tar-
get detection in UAV-based wireless sensor network (UWSN), while considering
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static and dynamic targets to plan the path of UAVs, and generate the best of
multiple UAVs. Mobile plan. Parikshit et al. [16] considered polygonal obstacles
and turning Angle constraints in uav path planning, and found feasible paths
for UAV by improving Dijkstra algorithm and viewable reverse search method.
Li et al. [4] proposed the min-time max-coverage problem. They uses objective
function for path planning, and achieves a good result. However, they do not
consider the return time of the UAVs. Therefore, we will make improvement to
this problem to ensure that UAVs can return to the base station before the end
of the endurance time.

3 Problem Formulation

In this section, we first introduce some assumptions and definitions. With these
definitions, the MEC-TS problem is formally modeled.

Fig. 2. Endurance of an UAV Fig. 3. Turning angle of an UAV

Assume that n POIs, denoted by P = {p1, p2, ..., pn} are randomly dis-
tributed in the target area. All of them are static with known position. And
m UAVs U = {u1, u2, ..., um} are responsible for covering these POIs. Each
UAV starts from the base station B0, performs the sweep coverage mission, and
finally returns to the B0.

The endurance of an UAV can be divided into three phases: ascent phase,
cruise phase and descent phase. As shown in Fig. 2, the UAV takes off at time
tstart. Ta represents the time of ascent phase, in which the UAV climbs from the
base to a specified altitude. Tc represents the time of cruise phase, during which
UAV performs the sweep coverage mission. Td stands for the time of descent
phase and the UAV returns to the base in this phase. In this paper, we require
the UAVs to complete the sweep coverage mission before the descent phase, and
the timing of the mission starts at the time of takeoff, so the maximum mission
time is set to Tmax:

Tmax = Ta + Tc (1)

In cruise phase, the UAVs fly in fixed altitude h and fixed speed v to sweep
covering the POIs, so that the three-dimensional path planning problem for
UAVs can be reduced to two dimensions. Thus we simplify that all the POIs are
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in a Euclidean plane, and the distance between any two POIs pi and pj are their
Euclidean distance dij .

The m UAVs perform sweep coverage mission simultaneously. A POI is said
to be covered when an UAV fly to its position. In a sweep coverage mission,
each POI needs to be covered by an UAV only once. As mentioned in [4], it’s
necessary to consider the turning time in the flight of UAV, because it takes a
certain amount of time for the UAV to turn, which may affect the path planning
of the UAV for time-sensitive tasks. Figure 3 shows the turning angle of UAV.

The UAV flies from POI pk to pi, and then from pi to pj . θkij , the turning
angle at pi, can be calculated by the cosine theorem:

θkij = π − arccos
d2ij + d2ki − d2kj

2 · dij · dki
(2)

The time for an UAV flies from POI pi to pj is consist of two parts [4]:

tj =
θkij

ω
+

dij

v
(3)

The first part is turning time, and the second part is distance time. ω and v
represent the angular speed and moving speed of UAV respectively.

If pj is the last POI visited by the UAV, then the UAV will return to base
B0 from pj . The total time to choose the pj to cover and then return to base B0

is defined as tjr.

tjr = tj +
θijB0

ω
+

djB0

v
(4)

Due to different emergency situations in different regions, n POIs have their
own time sensitivity Ts = {ts1, ts2, ..., tsn}, tsi represents POI pi expected to
be covered by an UAV within time tsi. In order to be more realistic, we set
up a tolerance coefficient e, 0 ≤ e ≤ 1. e · tsi represents the time that the
POI pi allows the UAVs to be late, because the time sensitivity is not so strict
sometimes. Although pi expects to be covered within tsi time, it is acceptable
for the UAVs to arrive at (1 + e) · tsi time. When the UAVs take off at time
tstart, the timing starts.

Definition 1 (On time rate, Ro). A POI pi is said to be covered on time
when an UAV visit it within its time sensitivity tsi. The on time rate is defined
as follows:

Ro =
∑m

k=1

∑n
i=1 xik

n
(5)

xik represents whether the ith POI pi can be covered by the kth UAV uk on
time, which only has two values of 0 and 1. If pi can be covered by uk on time,
xik = 1; otherwise, xik = 0. The on time rate Ro is the ratio of the number of
POIs covered on time to the total number of POIs.

Definition 2 (Effective coverage rate, Re). A POI pi is said to be effectively
covered when an UAV visit it within its acceptable time (1 + e) · tsi. Before time
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(1 + e) · tsi, we call POI alive, after time (1 + e) · tsi, POI is dead. The effective
coverage rate is defined as follows:

Re =
∑m

k=1

∑n
i=1 cik

n
(6)

cik represents whether the ith POI pi can be effectively covered by the kth UAV
uk, which only has two values of 0 and 1. If pi can be covered by uk effectively,
cik = 1; otherwise, cik = 0. The effective coverage rate Re is the ratio of the
number of POIs covered effectively to the total number of POIs.

Formally, the problem of achieving the maximum effective coverage rate in
time sensitive sweep coverage with multiple UAVs (MEC-TS) can be defined as
follows:

Definition 3 (MEC-TS). Given a set of POIs P = {p1, p2, ..., pn}, n POIs
have their own time sensitivity Ts = {ts1, ts2, ..., tsn}. With m UAVs U =
{u1, u2, ..., um}, the goal of MEC-TS is to maximize the effective coverage rate
Re in time sensitive sweep coverage while ensuring that m UAVs end their sweep
coverage mission in maximum mission Time Tmax and return to Base B0.

The specific mathematical description of the problem is as follows:

max Re (7)
subject to

Tk(i) ≤ (1 + e) · tsi, (8)
∀k ∈ {1, 2, ...,m},∀i ∈ {1, 2, ..., n}, 0 ≤ e ≤ 1

Tk = Ta +
∑n

i=1 xikti ≤ Tmax (9)
∀k ∈ {1, 2, ...,m}

∑m
k=1 xik ≤ 1,∀i ∈ {1, 2, ..., n} (10)

where Tk(i) represents the cumulative mission time of the kth UAV when arrives
at POI pi and Tk represents the total time it takes for the kth UAV to complete
its mission and return to the base. The optimization goal is to maximize the
effective coverage Re of the entire sweep coverage mission. The first constraint
in (8) represents satisfying the time sensitivity of each POI, that is, covering
POIs within their acceptable time. The second constraint in (9) means that the
mission time of each UAV does not exceed the maximum mission time Tmax.
The third constraint in (10) means that each POI can be covered at most once
in a sweep coverage mission to prevent POI from being repeatedly covered.

Furthermore, the MEC-TS problem can be proved to be NP-hard. The details
of the proof are as follows:
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Theorem 1. The MEC-TS problem is NP-hard.

Proof. The MEC-TS’s decision problem is that, in a sweep coverage mission,
whether there exist such sweep paths for m UAVs that the effective coverage
rate can achieve Re and return to Base. If we consider a special case, i.e., tsi �
Tmax,∀i ∈ {1, 2, ..., n}, which means the time sensitivity of POIs on our problem
can be ignored. Further, if we set m = 1 and Re = 1, then the decision problem
becomes if one UAV can access all POIs while ensuring that its travel distance
is no more than vTmax. Apparently, the MEC-TS’s decision problem under the
special case is equivalent to the TSP decision problem. Since TSP problem is
NP-hard, the MEC-TS problem is also NP-hard.

4 GCS Algorithm

In this section, we present the basic idea and details of the Greedy cost selection
algorithm(GCS). Meanwhile, the complexity analysis of the GCS algorithm is
also included.

The basic idea of GCS is to generate the sweep paths for each of the UAVs
successively in a sweep coverage mission, and the starting point and ending point
of each sweep path are the base station B0. During path planning, we designed
a cost function to calculate the cost of accessing each POI. This cost function
takes into account the time required to access the POI, the time sensitivity of the
POI, and the sweep coverage progress of the current UAV. We adopt a greedy
strategy and choose the POI with the least cost to cover every time, getting the
optimum sweep path for the current UAV.

4.1 Details of GCS

Algorithm 1. GCS

Input: The POIs set P = {p1, p2, ..., pn} , the time sensitivity set Ts =
{ts1, ts2, ..., tsn}, the UAVs set U = {u1, u2, ..., um}, the base station B0,
the maximum mission time Tmax, the moving speed of UAVs v and angular
speed ω.

Output: The sweep paths O = {O1, O2, . . . , Om}, the on time rate Ro, the
effective coverage rate Re.

1: Check Ts and make it reasonable.
2: for k = 1 → m do
3: Set Ok = ∅
4: Set the Tk= Ta

5: Set xik,
6: while P �= ∅ and B0 /∈ Ok do
7: for pi ∈ P do
8: calculate ti and tir.
9: condition1 = Tk + ti ≤ (1 + e) · tsi

10: condition2 = Tmax − Tk − tir ≥ 0
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11: if condition1 and condition2 then
12: ϕ = Tk/Tmax

13: costi = ti + (tsi − Tk)ϕ

14: else
15: costi = +∞
16: end if
17: end for
18: select the pj ∈ P who has the smallest cost.
19: if pj exists then
20: add pj into Ok.
21: remove pj from P .
22: Tk = Tk + tj
23: cjk = 1
24: if Tk < tsj then
25: xjk = 1
26: end if
27: else
28: add B0 to Ok.
29: end if
30: end while
31: end for
32: Calculate the effective coverage rate Re and on time rate Ro.
33: return O, Re, Ro

The details of GCS are presented in Algorithm1. Firstly, check whether the
Ts is reasonable before starting. If tsi is smaller than the direct distance time
diB0/v, it is inaccessible, and tsi needs to be reset. The GCS plans the sweep
paths O = {O1, O2, . . . , Om} for m UAVs one by one. The initial sweep path Ok

for the kth UAV is an empty set. The variable Tk is a timer, which records the
time spent by the UAV uk after tstart. The initial value of Tk is Ta, which is
the time of ascent phase. For each pi in P , we firstly calculate the ti and tir by
Eq. (3) and (4). Then judge whether pi is accessible by two conditions. The first
condition is, when the drone flies to pi, pi is still alive. That is, when arriving
at pi, the time is within its acceptable range (1 + e) · tsi. The second condition
is, the remaining mission time is enough for the uk to fly to pi and then return
to the base B0. Only when these two conditions are met at the same time, we
say that pi is accessible. Then we design a cost function to evaluate the cost of
visiting pi.

ϕ = Tk/Tmax

costi = ti + (tsi − Tk)ϕ,∀i ∈ {1, 2, ..., n} (11)

The coefficient ϕ reflects the sweep coverage progress of the current UAV. (tsi −
Tk) represents the remaining access time of pi. The closer to the end of the sweep
coverage mission, the more priority should be given to access the POI with the
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short remaining access time. In the cost function, the POI that is closest to the
current location and has the shortest remaining access time will have the least
cost and will be accessed first. If pi is inaccessible, we set the costi to infinity.
After calculating the cost for all POIs in P , select the POI pj who has the
smallest cost to cover. And then perform line 20 to 26, add pj into Ok, remove
pj from P , update the timer Tk, and judge the effective coverage status and on
time coverage status of pj . If pj does not exist, that is, the cost of all the POIs in
current P are infinity, then it means that there is no suitable POI to continue to
cover. In this case, the UAV uk should return to the base B0. When uk returns
to base or POI set P becomes empty, the path planning of uk is completed. After
planning the sweep paths for m UAVs, calculate the effective coverage rate Re

and on time rate Ro according to Eq. (6) and (5). The algorithm ends.

4.2 Complexity Analysis

In GCS, the time complexity for calculating the cost of all POIs in P from line
7 to line 17 is O(n), since there are at most n POIs in P . Similarly, adding
POI to the sweep path of UAV uk from line 6 to 30 requires time complexity
O(n), because a sweep path can add n POIs at most. Finally, planning sweep
paths for m UAVs, the number of iterations from line 3 to line 30 is m, thus the
complexity of the GCS algorithm is O(mn2).

5 Performance Evaluation

In this section, simulations are conducted to demonstrate the advantage of the
proposed algorithm on solving the MEC-TS problem. In the simulation, several
algorithms from previous literature, G-MSCR and WTSC, are also implemented
for performance comparison [3,4]. G-MSCR solves the problem that POIs should
be covered and the UAVs should return to the base station within a preset time
window, which is similar to the MEC-TS. WTSC also considers the maximum
coverage problem with weighted POIs in sweep coverage, we replace the weight
of POIs with time sensitivity in simulation experiment.

5.1 Simulation Configuration

In the simulation, the target area is a square with the width of 50 km. The base
station B0 is at the bottom left corner of the square, which is more in line with
emergency rescue situations. A number of POIs are randomly distributed in the
area and the time sensitivity tsi is a randomly generated value within a certain
range. The maximum mission time is 180 min and the time of ascent phase for
UAV is 10 min. The moving speed v of each UAV is set to 25 m/s while the
angular speed ω is 0.1 rad/s with the minimum turning radius 100 m. In order
to study the influence of different variables on the experiment, i.e., the number
of UAVs m, the number of POIs n, the range of time sensitivity Ts, we carry
out the experiment under three scenarios:



286 H. Wang

1) n = 100, range of Ts = (50 min, 140 min), m varies from 0 to 10.
2) m = 5, range of Ts = (50 min, 140 min), n varies from 1 to 400.
3) m = 5, n = 100, the range of Ts are (30 min, 120 min), (50 min, 140 min),

(70 min, 160 min) respectively.

These simulations are repeated for 50 times and the average value is taken
as the result.

5.2 Simulation Results

Fig. 4. n = 100, range of Ts= (50 min,
140 min)

Fig. 5. m = 5, range of Ts= (50min,
140 min)

Scenario 1: Figure 4 illustrates the effective coverage rate Re and on time rate
Ro varying with the number of UAVs m. The solid line represents the effective
coverage rate Re, and the dotted line represents the on time rate Ro. The sim-
ulation results show that, regardless of the number of UAVs, the Re and Ro of
GCS are higher than those of WTSC and G-MSCR. When the number of UAV
is small, the performance of GCS is similar to that of WTSC, and the perfor-
mance of GCS is slightly higher than that of WTSC. But with the increase of
the number of UAVs, the performance advantages of GCS are becoming more
and more obvious, almost 30% higher than the other two algorithms. When the
number of UAVs exceeds 5, the effective coverage of GCS can reach 100%. The
performance of GCS is relatively good. Note that the effective coverage rate is
almost 20% higher than the on time rate, this is because we set the tolerance
coefficient e to 0.2 in the experiment. It can be seen that even if the tolerance
coefficient e is not set, the on time rate of GCS is maintained at a high level.

Scenario 2: Figure 5 illustrates the effective coverage rate Re and on time
rate Ro varying with the number of POIs n. Similarily, regardless of the number
of POIs, the Re and Ro of GCS are much higher than those of WTSC and G-
MSCR, about 30% higher than G-MSCR and 20% higher than WTSC. Note
that as the number of POIs increases, the Re and Ro of the three algorithms is
declining. This is because the number and energy of UAVs are fixed, thus the
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(a) range of Ts=(30min,120min) (b) range of Ts=(50min,140min)

(c) range of Ts=(70min,160min)

Fig. 6. m = 5, n = 100, the range of Ts are in three different ranges.

number of POIs that can be covered is limited. The simulation results show that
the proposed algorithm GCS has the best performance among these algorithms.

Scenario 3: Figure 6 illustrates the relationship between effective coverage
rate Re and the range of time sensitivity Ts. Range of Ts = (30 min, 120 min)
means that some POIs require UAVs to cover it within 30 min, which is relatively
difficult. The shorter the time, the more difficult. However, in the three subfig-
ures of Fig. 6, the effective coverage of GCS is still better than the other two
algorithms. It shows that GCS is effective in different time sensitivity ranges.
And under the more severe conditions, the advantages of GCS are more obvious.

To sum up, the simulation results indicate that the proposed algorithm GCS
achieves better performance than the comparison algorithm in terms of effective
coverage rate under all these scenarios.

6 Conclusions and Future Work

In this paper, we study the MEC-TS problem, the objective of which is to find
such sweep paths that UAVs can achieve the maximum effective coverage rate.
We prove the NP-hardness of the MEC-TS problem and devise an algorithm
called GCS which delivers an effective solution in the MEC-TS problem. In the
experiment, we compare the proposed algorithm with algorithms from previous
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literature, namely WTSC, and G-MSCR. The experimental results indicate that,
compared with WTSC and G-MSCR, GCS can better meet the time sensitivity
of POIs and achieve high effective coverage rate.
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Abstract. There exist problems in study of social network community detection,
such as some algorithms detection result having high time complexity with com-
paratively satisfactory, existing fast algorithms in low quality because of stochastic
iteration partition results for large scale network, and lacking ofmodel andmecha-
nism of individual and link attributes expressing and utilizing. To solve these prob-
lems, this paper proposes a recursive merged community detection model based
on node cluster, which can express the tightness of relationship between individ-
uals according to the closed preconditions. Based on this, an effective community
detection algorithm is designed and implemented. The proposed recursivemerging
model has high generality and is applicable to both weighted and non-weighted
networks. A series of experiments show that the proposed algorithm based on node
cluster recursive model and following linked list is effective for community detec-
tion in social networks with relatively less time cost. The algorithm can also be
applied to the need to fuse integrate individuals and links attributes of community
detection algorithm with a comparatively fast speed and high quality partition.

Keywords: Social network · Recursion · Community detection · Linked list ·
Modularity

1 Introduction

Online social network has been booming as a new type of complex network in recent
years. The issue of community detection in online social networks has drawn much
attention. Community detection is an important means of researching the topology of
social networks, discovering user aggregation patterns and promoting information dis-
semination. In essence, community detection in online social networks is the process
of subdividing subgraph by network nodes according to the close connection of inter-
nal topological structure. Therefore, in the field of computer science, with the aid of
mathematical tools such as graph theory, the collection discovery problem of the nodes
connected tightly in the graph is described as a graph segmentation problem, and a rep-
resentative algorithm based on greedy optimization strategy [1] and spectral bisector [2]
emerges. The GN split algorithm proposed by Givanhe and Newman [3] is also the most
used algorithm. In this algorithm, the concept of modularity is proposed as an important
index to measure the discovery of online community for better detecting community.
Since then, many scholars have taken modularity as an objective function and proposed
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a community detection algorithm based on optimization theory. Some researchers pro-
posed a community detection algorithm based on multi-objective optimization, by using
genetic algorithms combined with multi-objective functions to characterize the commu-
nity structure, the social communities was achieved [4–6]. Gergely Palla et al. used the
concept of factions and groups to discuss the issue of community detection, focusing
on the nodes of overlapping community and community boundaries in the network [7–
11]. Infomap Algorithm [12–14] discovered communities by transforming the network
topology into a coded construct with the aid of information-based data coding. There is
also a community structure discovery algorithm based on probabilistic models [15, 16],
which divides the community structure by analyzing the maximum likelihood probabil-
ity. The time complexity of the above algorithm is relatively high, more emphasis on
the accuracy of community structure, more suitable for social groups in smaller social
groups detection. In the large-scale social network, because of the variety of node infor-
mation, many scholars hope to develop a community detection algorithm with higher
accuracy and lower time complexity. Therefore, from different perspectives, some new
community detection algorithms are proposed.

In order to improve the efficiency of community detection, a typical dynamic com-
munity detection algorithm based on label propagation is proposed. The algorithm can
discover the social structure of social networks with the given topology in a linear time
and has low time complexity and is suitable for large-scale online social networks. In
order to characterize the social structure of social networks from multiple perspectives,
a cellular automata community detection algorithm is proposed, which combines the
principle of cellular automata with the heuristic algorithm to optimize the community
structure.

This paper will study the comparison of dynamic computing algorithm and static
computing algorithm, and then proposes a recursivemergingmodel based on node cluster
and corresponding algorithms with high computing efficiency. Experiments show that
the model and algorithm starting from node cluster are suitable for medium- and large-
scale data set with good results, and it also has good applicability to all kinds of social
networks with different degrees of completeness of information.

2 Background

2.1 Community Structure

Social networks have the phenomenon of non-uniform relations. Some individuals are
densely connected with each other and some are sparsely connected with each other,
forming social structure in social networks. Social networks can be regarded as a set of
nodes with high cohesion characteristics in the network topology. Network nodes are the
real people in the virtual network mapping, while the connected edges of the network
represent the exchange and communication between network users. The community
structure can be defined as several subsets of a complex network node set. The nodes
in each subsection are relatively densely connected to each other, while the connecting
edges between different subsets of nodes are relatively sparse. As shown in Fig. 1 below.
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Fig. 1. Structure of SNS

For network nodes, many scholars have proposed a virtual community detection
algorithm based on the similarity of nodes, such as the similarity-based aggregation
algorithm [17–19], in which the EAGLE algorithm uses a clustering framework to find
all the largest factions, and merge the largest sub-community; Also the vector similarity
formula based on the cosine formula [20], each network node as a node with the com-
munity structure, through the local maximum edge concept to find the connection in the
local area closer nodes to be merged, the combined community and then as a virtual
node to participate in the subsequent merger process. The complexity of the algorithm
is relatively high, and not very stable.

2.2 Label Propagation Algorithm

The label propagation algorithm (LPA) is a graph-based semi-supervised learning algo-
rithm. Usha Nandini Raghavan et al. applied the label propagation algorithm to the
network detection community [21]. The main steps of the algorithm are: setting differ-
ent labels to the nodes in the network, the labels are iteratively propagated on the network
according to the specific propagation rules, and the labels of all nodes are updated every
time they are propagated. The criterion is to set the same label with themaximumnumber
of neighbor nodes, when each node label propagation are stable, nodes with the same
label will be divided into the same community.

Specific steps are as follows:

(1) First, all nodes are assigned a unique label.
(2) All nodes are scanned in a random order. The label of each node is replaced by the

label with the largest number of labels assigned by the neighbors. If the maximum
number of neighbors has multiple labels at the same time, one label can be selected.
The choice at this time is random.

(3) When the label of each node is consistent with the label assigned by the maximum
number of neighbors, proceed to step (4). If not, return to (2).

(4) Use nodes with the same tag in the network as a community.
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The algorithm finds communities based on the topology of the network, has the time
complexity close to linear, the complexity of assigning labels to nodes is O(n), and the
time complexity of one iteration is O(m). Experiments show that [21] as many as 95% of
the nodes can be correctly divided in as few as five iterations. This algorithm, which only
needs to define the community structure according to intuitionistic heuristic rules, has
the advantages of simple algorithm, low time complexity and fast convergence. The core
idea is similar to that of the formation of social groups in online social networks. The
algorithm is to find the community naturally based on network topology, without having
to know in advance the number and size of social groups, is suitable for large-scale social
network division of the community structure.

However, since this algorithm is an uncertain algorithm, the asynchronous tag update
algorithm is used multiple times on the same online social network; the algorithm needs
to adopt a new random order for each iteration, therefore, if the algorithm is run multiple
times on the same data set, the nodes are updated in a different order, which may result
in the eventual generation of more than one different community structure. This is an
important reason for the unstable labeling algorithm.

2.3 Cellular Automata’s Community Detection Algorithm

In order to show the various structural characteristics and attribute characteristics of
social organizations in online social networks, many experts and scholars describe the
characteristics of social organizations frommultiple perspectives, and optimize the prob-
lem through heuristic algorithms such as cellular automata theory and genetic algorithm
to realize virtual community structure of the division.

Yuxin Zhao proposed a CLA-net algorithm [22] based on cellular automata learning
machine. With irregular cellular automaton machines, each network node is regarded
as an automatic learning machine, and each auto learning machine characterizes the
community structure from two aspects: the overall network structure of the network and
the local community structure of the node, so as to realize the excavation of the structure
of the virtual community. The irregular cellular automatic learning machine refers to
the biological self-reproduction phenomenon and designs a local dynamic model which
is discreet in time and space dimensions. The evolution of the model does not follow
rigorous mathematical equations or functions. Instead, by defining a series of rules
of cellular state changes, some seemingly simple rules are evolved through repeated
computations to develop extremely complex dynamicmodels. The online social network
is mapped to an irregular cellular learning machine. Through the customized evolution
rules, the status of each node is dynamically adjusted so that the social structure in the
entire network is gradually rationalized.

In each iteration t, the learning and updating process of the automatic learning
machine Li can be described as:
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(1) Choose a behavior αi(t) randomly according to the behavioral probability vector
Pi.

(2) Interaction with the local environment (other neighboring nodes) and the global
environment (the entire network) to obtain the feedback signalβ i(t). If the satisfying
node i belongs to the same community with most of its neighbor nodes, and the
module degree Q (t) ≥ Qb obtained in this iteration is obtained, then the obtained
feedback signal β i(t) = 0; otherwise, β i(t) = 1.

(3) Assumingαi(t)=αiq,αiq updatesWiq(t) andZiq(t) according to the feedback signal
β i(t) for the elements in the behavior set αi.{

Wiq(t) = Wiq(t − 1) + (1 − βi(t))

Ziq(t) = Ziq(t − 1) + 1
(1)

(4) Update the optimal behavior of the current automatic learningmachineLi according
to the following formula, and the behavior with the largest value of Dij(t) is the
current optimal behavior of the automatic learning machine Li:

Dij(t) = Wy(t)

Zy(t)
(2)

(5) Assuming that the current optimal behavior of the automatic learning machine Li
is αim, the behavior probability vector Pi of the current automaton Li is updated
according to the following formula, where α is the reward coefficient and Pj is the
jth component of the vector Pi:

Pi(t + 1) =
{
Pi(t) + α(1 − Pi(t)) j = m
(1 − α)Pi(t) j �= m

(3)

The specific process of the algorithm is as follows:

(1) Randomly initialize the automatic learning machine in each node in the network.
(2) All automatic learning machines in the network choose their own behavior accord-

ing to their own behavioral probability vectors, and obtain the corresponding
community structure after decoding.

(3) All automatic learning machines in the network interact with the local environment
and the global environment to learn and update.

(4) Repeat step (2) until the community structure obtained no longer changes.

The objective function of the algorithm is the modularity function and ki(ci(t)) ≥
ki(c′), where ci(t) denotes the community number of the node after the t times iteration,
ki(C) = ∑

j∈C Aij, A is the network adjacency matrix.
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3 Recursive Merged Community Detection Algorithm Based
on Node Cluster

There is an organizational characteristic in social networks, such as Renren’s social net-
work composed of employees of the same company can form a virtual social network
according to different departments. Each department’s virtual community can be divided
into different sub-groups according to different projects community structure. From a
physical point of view, these community structures represent a complex system or a
collection of elements that have the same or similar functions in a complex network.
These elements interact or cooperate with each other to form a relatively independent
organizational structure in the entire system or jointly accomplish relatively independent
system functions. These are of great significance to the understanding of the character-
istics of the entire network topology as well as the mining of the module functions of
the various organizational networks.

This paper focuses on mathematical modeling of nodes, node sets and connection
relationships in complex networks, and proposes recursive merged community detection
algorithm (RMC), it includes three basic entities: one is a node, which is the most
primitive node in a complex network; the other is a node cluster, similar node cluster
formed by the merger of entities; third is the community. These three are progressive
relationship, the node merged to form a node cluster, and then the community formed by
the node cluster, the community is the final node cluster when the node clusters cannot
be merged with each other (Fig. 2).

Fig. 2. Community structure based on node cluster

Since a node can be regarded as a node cluster formed by a single node, the relation-
ship between nodes or nodes and node clusters is not considered separately, and only
the relationship between the node clusters can be considered.

3.1 Node Cluster Attributes and Parameters

The main attributes of a node cluster include: the state of a node cluster, the set of
neighbor nodes of a node cluster, and the set of nodes of a node cluster. The state of a
node cluster mainly refers to how the node cluster interacts with other node clusters. It
contains four states: a. the default state, b. the closed state, c. the following state, and
d. the expanded state. When a single-node cluster is initialized, it is the default state,
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and the state of the node cluster is restored to its default state after the expansion of
one node cluster occurs. The closed state indicates that the interior of a node cluster is
relatively closely connected, does not follow other node clusters, or merges with other
node clusters. In this case, the node cluster is already the final community. When the
current node is the default state, if the most similar other node cluster C is found, and the
most similar node cluster of the node cluster C is not the current node cluster, the current
node cluster is in a following state and no other node clusters are combined, When a
cluster merges, it is merged with C’s following list, or after C follows other cluster, C is
merged with C when it is merged. When the node cluster is the default state, and it is
the most similar node cluster with the node cluster C, then the state is converted to an
expansion state, it will merge C.

The index parameters of node cluster include: similarity, average connection density
within clusters, and average connection density among clusters.

Similarity is used to describe the degree of similarity between the cluster of nodes,
and its measurement is to examine the proportion of the same neighbor nodes of two
cluster nodes in all neighbor nodes of two node clusters. Formula as shown in Eq. 4:

S = (
Ni ∩ Nj

)
/
(
Ni ∪ Nj

)
(4)

Among them, Ni is the neighbor node set of node cluster i.
The average connection density in a cluster is actually the average of the proportion

of all nodes in a cluster in the cluster in the proportion of all connections. The formula
is shown in Eq. 5:

ρ =
∑N

i=1

Ci1

Ci2
/N (5)

Where “Ci1” is the number of connections in the node cluster of node i, “Ci2” is the
total number of connections of node i, and N is the total number of nodes in the node
set of the node cluster.

The average connection density between clusters refers to the average of the average
connection density of clusters in each node cluster. As shown in Eq. 6:

q =
(∑M

i=1
ρi

)
/M (6)

Where ρi is the average intra-cluster connection density of the number i node cluster,
and M is the total number of current node clusters.

3.2 Community Classification Quality Indicators

Modularity, first proposed by Mark Newman, is a commonly used method to measure
the strength of the structure of the network community by comparing the difference in
connectivity calculated between the existing network and the reference network under the
same community classification to evaluate the advantages and disadvantages of online
community.
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The definition of module degree is as follows:

Q = 1

2m
∗

∑
ij

[
Aij − ki∗kj

2m

]
δ
(
Ci,Cj

)
(7)

Aij indicates whether the i node and the j node are adjacent, and if adjacent, Aji =
1, otherwise Aij = 0. In the corresponding network, the probability that one edge (i, j)

exists is
ki∗kj
2m , m is the total number of connections, ki represents the degree of node i,

δ(Ci, Cj) is a two-valued function whose value is 1 when i node and j node belong to
the same community, otherwise the value is 0.

The formula means the difference between the proportion of edges within the same
community in the network and the expected proportion of the proportion of the inner
edges of the reference network under the same community structure. If the module value
is higher, then the effect of dividing the social network in a complex network is better.

3.3 Process Description

Proc1:

Step1: Initialize each node as a separate node cluster, and set its status to the default
state.
Step2: Calculate the similarity between each node cluster, and record the most similar
cluster of each node cluster.
Step3: Perform Proc2 on each node cluster.
Step4: If the status of each node cluster is closed, end; otherwise, execute step2.

Proc2:

Step1: If the cluster status of the node is closed, then the end.
Step2: End if the cluster status of the node is following.
Step3: If the node cluster and the node cluster C are most similar to each other, then the
cluster of nodes is merged with C, and then the following list of the cluster of nodes
and the cluster of nodes C is searched, and all the cluster of nodes on the linked list are
merged together, Judge the closure conditions, if the conditions are true, the update is
closed, otherwise update to the default state.
Step4: If the cluster with the most similar node is C, but the cluster with the most similar
to C is not the cluster, then the cluster becomes a following state and adds it to C’s
following chain.

The algorithm is shown in Table 1 below.
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Table 1. RMC algorithm

4 Experimental Results and Analysis

4.1 Experimental Data

In order to test the performance of the community detection algorithm, many scholars
in the field of sociology abstract a lot of network topographies with typical community
structure. Such networks are the analysis of actual social networks, so their commu-
nity structure often has definite practical significance. The development of social net-
works has provided large-scale network data for the research of the community detection
algorithm. The scholars have collected and sorted the data information of many social
networks as the test data of the community classification. In this paper, three data sets
commonly used in the field of complex network analysis are selected: American Football
Network [23], Karate Club [24] and Dolphins [25] Network as experimental data.

The node attributes of the dataset are shown in Table 2 below.

Table 2. Node properties of different network

Dataset Nodes Edges Maxd Mind Aved

Football 115 616 12 7 10

Karate club 34 78 17 1 4

Dolphins 62 159 12 1 5
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4.2 Experimental Results

We chose label propagation algorithm, cellular machine learning algorithm and com-
paredwith the node cluster algorithm. The computation processes of the three algorithms
in the American Football Club, Karate Club Network, and Dolphin Internet Society are
shown in Fig. 3, Fig. 4, and Fig. 5. The horizontal axis is the number of iterations and the
vertical axis is the number of nodes. Different colors represent different algorithms. The
evaluation criteria of the community detection results adopted are modularity indicators.
The higher the module degree, the better the effect of community classification.

Fig. 3. Illustration of football based on different algorithm

Fig. 4. Illustration of club based on different algorithm
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Fig. 5. Illustration of dolphins based on different algorithm

As can be seen from Fig. 3, Fig. 4 and Fig. 5, the node clustering algorithm iter-
ative speed slightly better than the label propagation algorithm, convergence speed is
also faster than the label algorithm. Cellular automata-based algorithm is essentially a
multi-objective optimization algorithm, relatively complex, the convergence speed and
iteration speed is slower. Three algorithms experimental results are shown in Table 3.

Table 3. Results of the Experiment based on Different Algorithm

Dataset LPA CLA-net RMC

Q CLUSTER Q CLUSTER Q CLUSTER

Football 0.547 5 0.605 13 0.988 11

Karate club 0.525 2 0.545 4 0.594 4

Dolphins 0.537 3 0.540 5 0.810 7

It can be seen from Table 3 that the modularity of node clustering algorithm is higher
than that of tag propagation algorithm and cellular machine learning algorithm.

4.3 Experimental Analysis

The algorithm takes the set of node clusters formed by a single node as a starting set,
calculates the similarity between two nodes, builds the similarity following linked list,
recursively merges the existing node clusters step by step, and uses the preset closed
condition as the node clusterwhether to continue the conditions for themerger, ultimately
rapidly makes division of society. During the initial experiment, due to the randomness
in the iterative process of label algorithm, there are many kinds of community structures
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that meet the stop condition when the tags are updated asynchronously for multiple runs
of the same data set. However, these community structures are relatively similar. In the
process of node clustering algorithm, there are not many kinds of community structures
that satisfy the ending condition, so there is no disadvantage of instability of the label
algorithm. Comparing the experimental process in Fig. 3, Fig. 4 and Fig. 5, the node
cluster algorithm is stable and fast. The modularity evaluation index is used to analyze
the experimental results, and its modularity is much better than the label propagation
algorithm. In general, the node clustering algorithm yields the best results on all three
datasets.

Modulus degree can quantitatively measure the quality of the network community
segmentation, the closer its value is 1, the stronger the intensity of the network com-
munity structure, that is, the better the quality of segmentation. Therefore, the optimal
partitioning of the network can be obtained by maximizing the modularity. However,
since the number of nodes in a network that may be divided by the network is huge,
the number of possible partitions is a number with n as an index. Therefore, finding an
optimal partition in partitioning is an NP-hard problem. This is the future direction of
research.

5 Conclusion and Outlook

In this paper, a new recursive merged community detection algorithm based on node
clusters is proposed and compared with the current typical label propagation algorithm
and cellular machine learning algorithm. The label propagation algorithm predicts the
label information of unlabeled nodes by marking the labeled information of the nodes,
and depicts the structural features of the community from multiple sides based on the
cellular machine algorithm. Both of them obtain the social grouping result by optimizing
the module coefficients.

However, the recursive merged community detection algorithm based on node clus-
ters gradually merges the existing node clusters by judging whether the cluster of nodes
meets the preset merge conditions and achieving rapid division of communities.

In contrast to the experimental results on the common Zachary network, Dolphin
network and American Football Club network, the node clustering algorithm obtains
a more stable and rapid community classification than the label propagation algorithm
and the cellular machine learning algorithm, and obtains on all three data sets the high-
est module value. It can be seen that the application of node clustering algorithm for
community classification is more effective than the other two algorithms.
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Abstract. Travel providers such as airlines are becoming more and more
interested in understanding how passengers choose among alternative
products, especially the purchasing preferences of passengers. Getting
information of air passenger choice behavior helps them better display
and adapt their offer. Discrete choice models are appealing for airline
revenue management (RM). In this paper, we apply latent class multi-
nomial logit model (LC-MNL) to passenger choice behavior. The analysis
based on actual sales transaction data reveals the purchase preferences
of different passenger types. According to the distribution of the market,
we divide passengers into three groups: low-price oriented, high-price ori-
ented and no specific price preference. The low-price oriented passengers
only choose products from the set consisting of the lowest price cabin
classes of all flights while the high-price oriented passengers only choose
products from the set consisting of the highest price cabin classes of all
flights. Considered the passenger types in the transaction sales data are
unknown, the latent class passenger choice model can better represent
their heterogeneous purchasing preference. A developed EM algorithm is
applied to solve the LC-MNL. In the developed EM algorithm, an indica-
tor function containing the type of passengers and first choice information
in period t is devised, the iterative process of the EM algorithm is more
effective consequently. The proposed model and algorithm are evaluated
on actual aviation sales transaction data in China. Experimental results
show that the passenger choice behavior analysis based on the specific
purchasing preferences performs well on actual aviation sales transaction
data.

Keywords: Passenger choice behavior · Specific purchasing
preference · LC-MNL · Developed EM algorithm

1 Introduction

Travel providers such as airlines and on-line travel agents are becoming more
and more interested in understanding how passenger choose among alternative
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products. Understanding passenger behavior and their purchasing preference is
important in the travel industry. It can be used, for example, to meet the demand
and market shares better in the context of dynamic markets.

We mainly focus on the choice behavior of air passengers based on specific
purchasing preferences. Firstly, the choice set changes over time in the analysis of
air passengers’ choice behavior, that is, the flight opening cabin will change over
time. When making a choice, passengers either choose a product from the choice
set to buy or not. As the choice set is not fixed, the analysis of passenger choice
behavior must take no-purchase data (unrecorded) into account. Secondly, for
each sales transaction data, the corresponding passenger type information cannot
be obtained. Without loss of generality, there will be different types of passengers
in the market, and different types of passengers have different preferences for
products, so it is necessary to analyze the types of passengers. Finally, in some
aviation markets, there will be passengers with specific purchasing preferences.
Some passengers will only choose high-priced tickets for certain reasons, while
others are completely price-sensitive and will only choose low-priced tickets. Our
study proposes the latent class multinomial logit model (LC-MNL). In summary,
our contributions are as follows.

• First, we establish an LC-MNL model based on specific purchasing preferences
to analyze the choice behavior of air passengers. Dividing the passengers into
three groups: low-price oriented, high-price oriented and no specific price
preference, and describe their respective expressions of the choice probability
of choosing each product from choice set. Simultaneously, considering the data
of no-purchase, it can be divided into two situations: arrival with no-purchase
or no-arrival, and finally establish a passenger choice model: LC-MNL.

• A developed EM algorithm is tailored to solve the LC-MNL model. The devel-
oped EM algorithm devises an indicator function containing the type of pas-
sengers and first choice information in period t, and makes the iteration of
the EM algorithm more efficient.

• Finally, we evaluate the efficiency of the proposed model and algorithm on
the actual aviation transaction sales data set including flights departing from
Chendu and arriving in Beijing. The experimental results show that our model
and algorithm perform well on the actual aviation sales transaction data set.

The following paper is arranged as below. We view the related work in Sect. 2.
Section 3 describes the process of setting a model through LC-MNL. The devel-
oped EM estimation algorithm is described in Sect. 4. In Sect. 5, we analyzed
the experimental results on the actual data set. Finally, our work is concluded
in Sect. 6.

2 Related Work

The passenger choice behavior attracts much attention due to its important role
in revenue management (RM). Especially, discrete choice model has played an
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important role in RM in recent years due to its ability to account for passenger
preferences.

The passenger discrete choice model (DCM) is widely used in industrial appli-
cations due to its simplicity and general good performance [1–4]. The DCM is an
important area of research in diverse fields such as economics [9], marketing [10],
and artificial intelligence [11]. The DCM framework was originally proposed by
Nobel Prize winner Daniel McFadden [5], and has been the basis for all the
subsequent research in the field. In the seminal work, McFadden introduces the
Multinomial Logit model (MNL), which is widely used in industrial applications.
In particular, the MNL is the most popular approach for air travel itinerary
choice prediction [6–8,20].

The latent class multinomial logit model (LC-MNL) was presented by
Kamakura and Russell [12], also was described in Wedel and Kamakura [13].
They assumed that “latent classes” of multinomial logits represent segments of
consumers who are relatively homogeneous in their preferences and response
to marketing mix variables. Lee H et al. [14] proposes a latent class multino-
mial logit model to discover heterogeneous consumer groups. The expectation-
maximization (EM) method is developed to estimate the parameters of the choice
model. Pancras J et al. [15] contrasts the generalized multinomial logit model
and the widely used latent class logit model which approaches for studying the
heterogeneity in consumer purchases.

Some literature uses machine learning methods to study choice model. Mot-
tini A et al. [16] presents a new choice model based on Pointer Networks. Given
an input sequence, this type of deep neural architecture combines Recurrent Neu-
ral Networks with the Attention Mechanism learns the conditional probability
of an output. Osogami T et al. [17] describes a model based on Restricted Boltz-
mann Machines. Hruschka H et al. [18] proposes to modify the MNL model by
reformulating the utility equation with a feed-forward multilayer neural network.

3 Model Description

We assume that there are different types of passengers in the market. When
passengers make ticket booking choices, different types of passengers will have
different preferences. In this paper, we study passenger groups with heteroge-
neous preferences. Passengers can be divided into three groups: low-price ori-
ented, high-price oriented and no specific price preference.

We study sales transaction data in T periods. Time periods are indexed by
t = 1, · · · , T . Specifically, define F as a set of products which consists of all cabin
classes under all flights departing on the same day (in other words, a cabin class
of a flight that departing on a certain day is a product), and the set of available
products on period t is denoted by Ct, satisfying Ct ⊆ F . We defined F1 as
the set of products of passenger which is low-price oriented, while F2 is high-
price oriented. F1 ⊆ F consists of the lowest price cabin class of all flights in F ,
F2 ⊆ F consists of the highest price cabin class of all flights in F . We assume
a discrete time and homogeneous Bernoulli arrival process for consumer arrival.
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This means that in any period a passenger arrives with probability 0 � λ � 1
(λ is called the arrival rate).

A passenger arriving in period t chooses either a product from available set Ct

or no-purchase. We denote the no-purchase option by ‘0’, which is normalized
to have utility of zero. It is assumed that passengers are segmented into M
distinct types based on their preference for the product. In this study, M can
be arbitrarily given a value not less than 3. Passenger types are indexed by
σ = {1, · · · ,M}, which m = 1 represents the passenger type is low-price oriented,
m = 2 represents the passenger type is high-price oriented, m = (3, · · · ,M)
represents different passenger types of no specific price preference. The share
of the population in type m is wm. In this paper, We employ the latent class
multinomial logit model (LC-MNL) [19].

The passenger choice model can be established on the basis that passengers
are utility maximizers. Let Umf be the utility of passengers with type m to
alternative f ∈ F . Without loss of generality, we can decompose utility into two
parts, umf represents the expected utility to alternative f and εmf represents
random variable which are independent and follow a Gumbel distribution.

Umf = umf + εmf (1)

The utility of no-purchase is:

Um0 = um0 + εm0 (2)

Without loss of generality, um0 = 0. The preference value of passengers with type
m for alternative f is denoted as vmf = eumf . Hence, vm0 = 1. The expression
of vmf is a standard result in the discrete choice theory [19]. The vector of
preference weight is indexed by vm = (vmf ,∀f ∈ F ).

3.1 No Specific Price Preference

In period t, for passengers with no specific price preference, he will purchase
from the entire choice set. Hence, the probability of passengers with type m(m =
3, · · · ,M) who choose product f ∈ Ct ∪ 0 is:

Pf (Ct,vm) =
vmf∑

l∈Ct∪{0} vml
(3)

3.2 Low-Price Oriented

To consider the purchasing preference of certain passengers in the market and
the strong substitutability of domestic air travel comprehensively, we assume
that passengers who are low-price oriented (m = 1) only choose either a product
from (Ct∩F1) or no-purchase. In period t, low-price oriented passengers will only
purchase products at the intersection of the current choice set Ct and low-price
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set F1, and the rest will not purchase. Hence, the probability of passengers with
type m(m = 1) who purchase product f ∈ Ct ∪ {0} is:

Pf (Ct,v1) =

{
v1f∑

l∈Ct∪{0} v1l
, f ∈ ((Ct ∩ F1) ∪ {0})

0, others
(4)

3.3 High-Price Oriented

Same as above, we assume that passengers who are high-price oriented (m = 2)
only choose either a product from (Ct∩F2) or no-purchase. In period t, high-price
oriented passengers will only purchase products at the intersection of the current
choice set Ct and high-price set F2, and the rest will not purchase. Hence, the
probability of passengers with type m(m = 2) who purchase product f ∈ Ct∪{0}
is:

Pf (Ct,v2) =

{
v2f∑

l∈Ct∪{0} v2l
, f ∈ ((Ct ∩ F2) ∪ {0})

0, others
(5)

We denote the vector of preference value as v = (v1, · · · ,vm) and the vector of
population shares as w = (w1, · · · , wm). In period t, the probability of purchas-
ing product f ∈ Ct ∪ {0} as follows.

Pf (Ct;M,w,v) =
M∑

m=0

wm · Pf (Ct;vm) (6)

Define ft as the sales transaction data in period t. If passengers purchase f in
period t, ft = f ; if there is no arrival or no purchase, ft = 0. In this paper, we
assume that there is at least one time period t, ft = f , ∀f ∈ F ∪ {0}.

4 Estimation-Based Algorithm Design

In this paper, we can’t obtain the specific types of passengers. Simultaneously,
it is difficult to distinguish the period of no arrival and the period of an arrival
but no purchase.

4.1 The Complete Data Log-Likelihood Function

To supplement incomplete data, we define at as passengers’ arrival and no arrival
in period P̄ . If at = 1, t ∈ P̄A; if at = 0, t ∈ P̄Ā.

We devise an indicator function I(·) [14] containing the type of passengers
and the first choice information in period t. First choice is the most preferred
choice in the set of all products (regardless of alternative options when it is
out of stock). σt = m represents that the passenger type in period t is m and
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ρt = f represents that first choice of the passenger in period t is product f . The
complete data log-likelihood function is as follows.

LC(M,w,v.λ)

=
M∑

m=0

∑

t∈P

∑

f∈F∪{0}
I(σt = m, ρt = f) · (logλ + logwm + logPf (F ;vm))

+
M∑

m=0

∑

t∈P̄

∑

f∈F∪{0}
I(at = 1, σt = m, ρt = f) · (logλ + logwm + logPf (F ;vm))

+
∑

t∈P̄

I(at = 0) · log(1 − λ)

(7)

4.2 Developed EM Algorithm

In this paper, expectation maximization (EM) algorithm operates on the com-
plete data log-likelihood function (7), which is constructed assuming that all the
arrivals, purchases and no purchases can be observed. The developed EM algo-
rithm introduces an operator indicating the passenger type and the first choice
in the framework of the traditional EM algorithm, making the iteration of the
algorithm more effective. Note that the value of M is given in EM algorithm.

In the calculation process, the preference values of high-price oriented and
low-price oriented passengers are processed as follows.

For low-price oriented passengers (m = 1), we assume that passengers with
this type only choose the lowest-priced product for the flight (i.e. f ∈ F1), for
f /∈ F1, v1f cannot be calculated directly. We use the passengers’ price sensitivity
to each flight to calculate v1f (f /∈ F1). The calculation equation is as follows. In
this equation, f1 represents the lowest price product belonging to the same flight
as product f ; a1f1 is the sensitivity coefficient of low-price oriented passengers
for the flight discount. b1 is a hyperparameter.

v1f = a1f1(−log(discount(j)) + b1) (8)

Similarly, for high-price oriented passengers (m = 2), we assume that passengers
with this type only choose the highest-priced product for the flight (i.e. f ∈ F2),
for f /∈ F2, v2f cannot be calculated directly. We use the passengers’ price
sensitivity to each flight to calculate v2f (f /∈ F2). The calculation equation is
as follows. In this equation, f2 represents the highest price product belonging
to the same flight as product f ; a2f2 is the sensitivity coefficient of high-price
oriented passengers for the flight discount. b2 is a hyperparameter.

v2f = a2f2(log(discount(j) + 1) + b2) (9)

According to the Eqs. (8, 9), the preference of low-price oriented passengers will
decrease as the discount increases (see Fig. 1(a)), while the preference of high-
price oriented passengers will increase as the discount increases (see Fig. 1(b)).
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(a) low-price oriented (b) high-price oriented

Fig. 1. The value of v with varying discount

As in the research of passenger choice preference, we pay more attention to
the relative value of passengers’ preference for each product rather than the
absolute value, so this setting is reasonable. In this study, we design the following
algorithm based on the EM algorithm framework.

Algorithm 1. Developed EM algorithm
1: procedure EM(M, w, v, λ )
2: Step 0. Set the termination condition of EM algorithms ε and MAXI and

hyperparameter b1, b2.
3: Step 1. (E-Step) Set iter=1. Update Emft and ât according to equa-

tion(15,17,11)(see appendix)
4: Calculate Nmf =

∑
t∈P

⋃
P Xmft and A =

∑
t∈P at.

5: Step 2. (M-Step) wnew, vnew, λnew = M STEP (M, N, A).
6: Step 3. (EM Stop Criterion)
7: Max diff = max{max|wnew − w|, max|vnew − v|, λnew − λ}.
8: if Max diff ≤ ε or iter ≥ MAXI then
9: Set LC = LC(M, w, v, λ) according to equation(7).

10: Terminate the program.
11: else
12: Set w = wnew, v = vnew, λ = λnew. return Step1.(E-Step) and iter = iter+1

13: return (w, v, λ.LC)

1: procedure M STEP(M, N, A)

2: wm =
∑

f∈F
⋃{0} Nmf

∑M
n=1

∑
f∈F

⋃{0} Nnf
,

3: vmf =
Nmf

Nm0
4: v1f = −a0f0(log(discount(j)) + b1), for f ∈ {F\F1}
5: v2f = a1f1(log(discount(j) + 1) + b2), for f ∈ {F\F2}
6: λ = |P |+A

T

7: return (w, v, λ)
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Algorithm 2. Initialize
1: procedure Initialize(M, α)
2: Initialize M .
3: for t = 1, ..., T do
4: Initialize Xmft = 0 for m = 1, ..., M and f ∈ F ∪ {0}
5: if ft ∈ F1 and ft ∈ F2 then
6: Randomly generate passenger type n from (1, · · · , M);
7: else if ft ∈ F1 then
8: Randomly generate passenger type n from (1, 3, · · · , M);
9: else if ft ∈ F2 then

10: Randomly generate passenger type n from (2, 3, · · · , M);
11: else
12: Randomly generate passenger type n from (3, · · · , M).

13: if ft = 0 then u ∼ unif(0, 1). Xn0t = 1 if u < α
14: else Xnjt = 1 if j = jt

15: Set Nmf =
∑

t∈P∪P Xmft, A = |P |, w, v, λ =M STEP(M, N, A)
16: return (w, v, λ)

Algorithm 3. Main Program
1: procedure MAIN
2: Step 0. Set α ∈ [0, 1].
3: Step 1.(Initial parameter setting) (w, v, λ)=INITIALIZE(M, α).
4: Step 2.(Developed EM Algorithm) w, v, λ,LC =EM(M, w, v, λ).

5 Real World Case Study

5.1 Dataset

In this section, some actual sales transaction data sets of air passenger are used
to illustrate the applicability of the proposed model and algorithm. The dataset
collected sales transaction data which the origin is Chengdu Shuangliu Interna-
tional Airport and the destination is Beijing Capital International Airport, and
it contains information in terms of trip origin, trip destination, flight cabin class,
data collection time, departure date, departure time and sales of each flight cabin
class.

5.2 Data Processing

In this paper, we can obtain sales transaction data five days before the flight’s
departure for each flight. Without loss of generality, we assume that for a certain
passenger, the departure date of the chosen product is fixed. Sales transaction
data of flights departing on September 17,2020, September 18,2020 and October
15,2020 are used for analysis respectively.

Data Processing on sales transaction is as follows.
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• Divide the time period according to data collection time, according to actual
data, product sales transactions are mainly concentrated from 8 a.m. to 11
p.m. (see Fig. 2), so we use the data which is collected from 8 a.m. to 11 p.m.
for analysis.

• Expand the no-purchase data of the remaining time periods based on the
largest sales (we cannot obtain data about no-purchase, so expand no-
purchase option by this processing).

• Determine the choice set corresponding to each piece of sales transaction data,
namely, the opening cabin of each flight at the current time.

• For low-price oriented and high-price oriented passengers, their total choice
set is the set of the lowest-priced product and the set of the highest-priced
product of each flight respectively.

Fig. 2. Total number of booked products by collection time

5.3 Model Implementation and Experimental Results

We conduct experiments on three data sets after the above processing respec-
tively. Using the above algorithm to solve the sales transaction data, we can
obtain the preference value of each type of passengers for each product (i.e.
vmf ). As we only have sales transaction data and choice set, in order to illus-
trate the performance of the model, we have to evaluate the model by using
top-N accuracy.
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Table 1. Top-N accuracy for the data on Sept.17.2020

Proposed model (different M) Top-1 acc. Top-5 acc. Top-10 acc. Top-15 acc.

M = 3 10.05% 30.65% 54.77% 67.84%

M = 4 8.04% 31.16% 60.30% 74.87%

M = 5 7.54% 27.64% 48.74% 66.83%

Traditional aviation industry 2.17% 10.87% 21.74% 32.61%

Table 2. Top-N accuracy for the data on Sept.18.2020

Proposed model (different M) Top-1 acc. Top-5 acc. Top-10 acc. Top-15 acc.

M = 3 6.27% 19.99% 35.56% 47.42%

M = 4 5.79% 18.95% 34.94% 48.31%

M = 5 5.65% 21.64% 35.77% 47.28%

Traditional aviation industry 0.93% 4.67% 9.35% 14.02%

Table 3. Top-N accuracy for the data on Oct.15.2020

Proposed model (different M) Top-1 acc. Top-5 acc. Top-10 acc. Top-15 acc.

M = 3 6.69% 26.36% 43.47% 62.10%

M = 4 5.65% 24.28% 43.23% 58.36%

M = 5 5.73% 22.45% 38.30% 56.21%

Traditional aviation industry 0.84% 4.20% 8.40% 12.61%

In view of the situation that only sales transaction data and choice set infor-
mation can be obtained, the traditional aviation industry generally uses ran-
dom estimation based on artificial experience in the analysis of passenger choice
behavior, that is, for each passenger, a product is randomly chosen in the choice
set with some artificial experience as the final choice result.

We calculate top-N accuracy for three, four and five passenger types respec-
tively, and compare them with the results of traditional aviation industry
method.

The data set of flights departing on September 17,2020 contains a total of
46 products, the top-N accuracy of the different amounts of passenger types in
our study and the top-N accuracy of the traditional aviation industry method
are shown in Table 1. In our research, the highest top-1 accuracy is 10.05%
(M = 3), the lowest top-1 accuracy is 7.54% (M = 5), while the top-1 accuracy
of the traditional aviation industry method is only 2.17%. The data set of flights
departing on September 18, 2020 contains a total of 107 products, the top-N
accuracy of the different number of passenger types in our study and the top-N
accuracy of the traditional aviation industry method are shown in Table 2. In
our research, the highest top-5 accuracy is 21.64% (M = 5), the lowest top-
1 accuracy is 18.95% (M = 4). The data set of flights departing on October
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15, 2020 contains a total of 119 products, the top-N accuracy of the different
number of passenger types in our study and the top-N accuracy of the traditional
aviation industry method are shown in Table 3. In our research, the highest top-
15 accuracy is 62.10% (M = 3), the lowest top-1 accuracy is 56.21% (M = 5),
while the top-15 accuracy of the traditional aviation industry method is only
12.61%.

According to the comparison of the above results, the top-N accuracy of our
study far exceeds the random estimation in the traditional aviation industry,
indicating that our study performs well in actual data sets and practical appli-
cations. Furthermore, we can also find that as the number of products in the
data set increases, the advantages of our study are more significant.

6 Conclusions

In this paper, we focus on the booking choice behavior of air passengers with
different purchasing preferences. Considering the different types of passengers
in the market and the different purchasing preferences of each type, we con-
sider passenger classifications with heterogeneous preferences and the market
shares of different types, and establish a latent class multinomial logit model
(LC-MNL). Then, in order to fit the air passengers’ booking choice habits in
the current market better, we define the choice behavior of air passengers with
specific purchasing preferences, and divide the customers into three groups: low-
price oriented, high-price oriented, and no specific price preference for analysis.
Our method only utilizes the available sales transaction data and the corre-
sponding choice set. Finally, we propose a developed EM algorithm to solve the
LC-MNL. The algorithm devises an indicator function containing the type of
passengers and first choice information in period t to make the EM iteration
more effective. Simultaneously, formulas are introduced to determine the low-
price oriented and high-price oriented passengers’ preference for products in the
calculation process. Experimental results show that our model and algorithm
perform well on the actual aviation sales transaction data sets in China, and
they can accurately describe the booking choice behavior of air passengers.

References

1. Papola, A.: Some developments on the cross-nested logit model. Transp. Res. Part
B 38(9), 833–851 (2004)

2. Wen, C.H., Wang, W.C., Fu, C.: Latent class nested logit model for analyzing high-
speed rail access mode choice. Transp. Res. Part E Logist. Transp. Rev. 48(2),
545–554 (2012)

3. Li, B.: The multinomial logit model revisited: a semi-parametric approach in dis-
crete choice analysis. Transp. Res. Part B 45(3), 461–473 (2011)

4. Vulcano, G., Van Ryzin, G., Chaar, W.: Om practice-choice-based revenue man-
agement: an empirical study of estimation and optimization. Manuf. Serv. Oper.
Manag. 12(3), 371–392 (2010)



314 X. Li et al.

5. Mcfadden, D.L.: Condition logit analysis of qualitative choice behavior. Front.
Econometrics 105–142 (1974)

6. Busquets, J.G., Evans, A.D., Alonso, E.: Application of data mining to forecast
air traffic: a 3-stage model using discrete choice modeling. In: AIAA Aviation
Technology, Integration, and Operations Conference (2015)

7. Coldren, G.M., Koppelman, F.S., Kasturirangan, K., Mukherjee, A.: Modeling
aggregate air-travel itinerary shares: logit model development at a major US airline.
J. Air Transp. Manag. 9(6), 361–369 (2003)

8. Warburg, V., Bhat, C., Adler, T.: Modeling demographic and unobserved het-
erogeneity in air passengers’ sensitivity to service attributes in itinerary choice.
Transp. Res. Rec. J. Transp. Res. Board 676, 7–16 (2006)

9. Azadeh, S.S., Hosseinalifam, M., Savard, G.: The impact of customer behavior
models on revenue management systems. CMS 12(1), 99–109 (2014). https://doi.
org/10.1007/s10287-014-0204-z

10. Chandukala, S.R., Kim, J., Otter, T., Rossi, P.E.: Choice models in marketing:
economic assumptions, challenges and trends. Found. Trends Mark. 2(2), 97–184
(2013)

11. Zhen, Y., Rai, P., Zha, H., Carin, L.: Cross-modal similarity learning via pairs,
preferences, and active supervision. In: Twenty-Ninth AAAI Conference on Artifi-
cial Intelligence (2015)

12. Kamakura, W.A., Russell, G.J.: A probabilistic choice model for market segmen-
tation and elasticity structure. J. Mark. Res. 26(4), 379–390 (1989)

13. Wedel, M., Kamakura, W.: Market Segmentation: Conceptual and Methodological
Foundations, 2nd edn. Kluwer Academic Publishers, Boston (2000)

14. Lee, H., Eun, Y.: Discovering heterogeneous consumer groups from sales transac-
tion data. Eur. J. Oper. Res. 280(1), 338–350 (2020)

15. Pancras, J., Dey, D.K.: A comparison of generalized multinomial logit and latent
class approaches to studying consumer heterogeneity with some extensions of the
generalized multinomial logit model. Appl. Stoch. Model. Bus. Ind. 27(6), 567–578
(2011)

16. Mottini, A., Acuna-Agost, R.: Deep choice model using pointer networks for air-
line itinerary prediction. In: Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 1575–1583 (2017)

17. Osogami, T., Otsuka, M.: Restricted Boltzmann machines modeling human choice.
In: Advances in Neural Information Processing Systems, vol. 27, pp. 73–81 (2014)

18. Hruschka, H., Fettes, W., Probst, M.: Analyzing purchase data by a neural net
extension of the multinomial logit model. In: Dorffner, G., Bischof, H., Hornik, K.
(eds.) ICANN 2001. LNCS, vol. 2130, pp. 790–795. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44668-0 110

19. Train, K.E.: Discrete Choice Methods with Simulation. Cambridge University
Press, Cambridge (2009)

20. Rusmevichientong, P., Shen, Z.J.M., Shmoys, D.B.: Dynamic assortment optimiza-
tion with a multinomial logit choice model and capacity constraint. Oper. Res.
58(6), 1666–1680 (2010)

https://doi.org/10.1007/s10287-014-0204-z
https://doi.org/10.1007/s10287-014-0204-z
https://doi.org/10.1007/3-540-44668-0_110


Blockchain, Logic, Complexity and
Reliability



A Multi-window Bitcoin Price Prediction
Framework on Blockchain Transaction

Graph

Xiao Li1(B) and Linda Du2

1 The University of Texas at Dallas, Richardson, TX 75080, USA
xiao.li@utdallas.edu

2 The University of Texas at Austin, Austin, TX 78712, USA
yingfan.du@mccombs.utexas.edu

Abstract. Bitcoin, as one of the most popular cryptocurrency, has
been attracting increasing attention from investors. Consequently, bit-
coin price prediction is a rising academic topic. Existing bitcoin pre-
diction works are mostly based on trivial feature engineering, that is,
manually designed features or factors from multiple areas. Feature engi-
neering not only requires tremendous human effort, but the effectiveness
of the intuitively designed features can not be guaranteed. In this paper,
we aim to mine the abundant patterns encoded in Bitcoin transactions,
and propose k-order transaction graphs to reveal patterns under different
scopes. We propose features based on a transaction graph to automat-
ically encode the patterns. The Multi-Window Prediction Framework
is proposed to train the model and make price predictions, which can
take advantage of patterns from different historical periods. We further
demonstrate that our proposed prediction method outperforms the state-
of-art methods in the literature.

Keywords: Bitcoin · Blockchain · Transaction · Machine learning

1 Introduction

Bitcoin blockchain [24]1, the first application of blockchain, has been attracting
increasing attention from various areas. Bitcoin is the cryptocurrency traded in
the Bitcoin blockchain, which is a reward to the miners for successfully appending
a block. Bitcoin can be traded with regular currency in financial markets like
many other financial products, e.g. stocks, gold and crude oil [28]. Different from
other products, bitcoin has highly volatile prices [1,5]. This provides investors
with a great opportunity to earn a fortune from the striking difference in prices.
Thus, bitcoin is becoming a popular financial asset, and attracts huge amounts
of investment [30].
1 In this paper, the terms “Bitcoin blockchain” or “Bitcoin” refer to the whole Bitcoin

blockchain system and “bitcoin” refers to the cryptocurrency.
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Bitcoin price forecasting models are eagerly desired to provide the sugges-
tions on whether the bitcoin price will rise or fall [10,29] to help investors decide
whether and when they should buy or sell bitcoins. However, bitcoin price fore-
casting models usually require well-designed features to reveal the reason of bit-
coin price change, which is a challenging task. The basic features of blockchain
are the indexes reflecting the transaction information of Bitcoin blockchain, such
as average degree of addresses, number of new addresses and total coin amount
transferred in transactions [2]. Maesa et al. try to analyze the latent features of
Bitcoin blockchain from the perspective of users transferring graph [20]. Mallqui
et al. [21] include international economic indicators that were used to reflect the
features of the global financial market, such as S&P500 future, NASDAQ future,
and DAX index, which are features from a financial perspective. CerdaR et al. [8]
and Yao et al. [29] introduce public opinion features into bitcoin price prediction
through mining the sentiment from social media like Twitter and news articles.

Existing work has created features covering many aspects, including
blockchain network, financial market information, and even public opinions.
However it is still unclear what features or factors are useful, and how these
features impact the price of bitcoin. Manually discovering or creating the fea-
tures not only relies on heuristics but also consumes huge labour resource. In
this paper, we try to develop a bitcoin prediction model that can directly learn
features from the Bitcoin blockchain transactions without directly incorporat-
ing tedious information outside the blockchain, e.g. financial market informa-
tion, and public sentiment. Instead, if the external factors beyond the Bitcoin
blockchain, such as public sentiment or news, contribute to the bitcoin price
change, they will eventually be reflected by the changes in the transactions and
structure of the Bitcoin blockchain. In other words, if the external factors influ-
ence the action of users, the different actions taken by users will be reflected by
the changes in the transactions in the Bitcoin blockchain. In this paper, we argue
that the structure of Bitcoin blockchain encodes abundant transaction pattern
information that can interpret the factors behind the bitcoin price change.

To capture these transaction patterns, we propose a blockchain transaction
graph.

The blockchain transaction graph encodes the patterns of transactions which
reflects market trend and status. As mentioned in [4], if the input addresses of a
transaction is more than the output addresses, then the transaction is gathering
bitcoins, indicating some users are buying bitcoins. On the other hand, if the
input addresses of a transaction is less than the output addresses, then the
transaction is splitting the bitcoins, indicating some users are selling bitcoins.
Therefore by discovering these transaction patterns with a Bitcoin transaction
graph and proposed prediction framework, we can leverage valuable information
that can hardly be managed by manual feature engineering.

The main contributions of the paper can be summarized as follows:

– We propose a k-order Transaction Subgraph based on a transaction
graph, to represent the transaction feature of blockchain.

– We proposed a transaction graph based feature to encode the implicit patterns
behind the transactions, which is further fed to a novel machine learning



A Multi-window Bitcoin Price Prediction Framework 319

based Multi-Window Prediction Framework that can effectively learn
the features of different historical periods.

– We evaluate the proposed method empirically using historical bitcoin prices
and the results demonstrate superiority over recent state-of-the art methods.

The remainder of this paper is organized as follows: In Sect. 2, we review
related recent literature. Section 3 proposes a transaction graph and describes
how the subgraph feature is extracted. Next, in Sect. 4, we propose the Multi-
Window Prediction Framework. In Sect. 5 we evaluate the proposed feature and
the prediction framework. Finally, in Sect. 6, we conclude.

2 Related Work

The key issue of bitcoin price prediction is to discover and analyze determi-
nants of bitcoin price. Various determinants have been studied including Google
Trends [16,22], Wikipedia [16], Bitcoin tweets [6,22], social media or public opin-
ions [7,8,29], and so on. Some papers consider both traditional features in the
market as well as economical features of a digital currency [3,11]. Pieters and
Vivanco [26] study the 11 bitcoin markets and present that standard financial
regulations can have a non-negligible impact on the market for Bitcoin. Both
Georgoula et al. [13] and Kristoufek [17] study the difference between long-
term and short-term impact of the determinants on bitcoin price. Kristoufek [17]
stresses that both time and frequency are crucial factors for bitcoin price dynam-
ics since the price of bitcoin evolves overtime.

The structural information of the Bitcoin blockchain has also been used to
mine determinants of the price of bitcoin. Akcora et al. [4] propose a Bitcoin
graph model, upon which chainlets is proposed to represent graph structures in
the Bitcoin.

In their further work [2], they propose occurrence matrix and amount matrix
to encode the topological features of chainlets. In this paper, we also adopt the
concept of occurrence matrix to encode the topological features. However, we
design a different graph representation model to reveal the topological features
of the Bitcoin blockchain.

There are also several theoretical [18,19,27] and empirical studies [5,15,23]
that have looked at Bitcoin transactions focusing on the volume-return causality
in the Bitcoin market. These studies focus on trading volumes or number of
unique Bitcoin transactions and employ regression techniques. In this paper, we
take our analyses further and extract patterns from the Bitcoin transactions
using graph models.

Various machine learning methods can be adopted to learn the patterns from
the features and forecast the price of bitcoin [10,31]. Felizardo et al. [9,12] com-
pare several popular machine learning methods adopted in the bitcoin price
prediction task. Methods include using a Hidden Markov Models to tackle
the volatility of cryptocurrencies and predicting future movements with Long
Short Term Memory networks (LSTM) [14] and using hybrid methods between
AutoRegressive Integrated Moving Average (ARIMA) and machine learning [25].
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Fig. 1. A simple transaction graph

3 Transaction Graph and Subgraph Occurrence Pattern

In order to mine the blockchain transaction features, we define transaction
graph to extract the blockchain transaction information.

Definition 1. (Transaction Graph): A transaction graph is a directed graph
G = (A, T,E), where A is the set of addresses in the blockchain, T is the set
of transactions in the blockchain, and E is the set of direct links from ai to tk,
indicating ai is one of the inputs of tk, or from tk to aj, indicating aj is one of
the outputs of tk, where ai, aj ∈ A and tk ∈ T .

Figure 1 presents an example of a transaction graph, which contains 8
addresses and 4 transactions.

3.1 k-Order Transaction Subgraph

To specify characteristics of each transaction in the transaction graph, we define
the k-order transaction subgraph of each transaction. The k-order transaction
subgraph of a transaction ti is a graph Gk

ti that contains only ti and the trans-
actions that spend the output of ti in the next k − 1 steps, along with the corre-
sponding addresses that connect to these transactions. The formal definition is
given as Definition 2.

Definition 2. (K-order transaction subgraph): The K-order transaction sub-
graph of a transaction ti is a graph Gk

ti = (Ak, T k, Ek), where T k = {tj | ∃ an ∈
Ak−1, (an, tj) ∈ E and ∃(tl, an) ∈ Ek−1 for tl ∈ T k−1}, Ak = {an|an ∈ Ak−1

or (tj , an) ∈ E where tj ∈ T k}. Specially, if k = 1, G1
ti = (A1, T 1, E1), where

A1 = {an|(an, ti) ∈ E or (ti, an) ∈ E}, T 1 = {ti} and E1 = {(an, ti) or (ti, an)
|an ∈ A1}.

If k = 1, then the k-order transaction subgraph of ti contains only ti along
with its input addresses and output addresses. When k increases, the k order
transaction subgraph will trace further along the bitcoin flow output by transac-
tion ti. Figure 2(a) and 2(b) shows the 1-order and 2-order transaction subgraph
of transaction t1 in Fig. 1, respectively.

The k-order transaction subgraphs have different patterns. Here we consider
different patterns as different numbers of inputs and outputs addresses of the
k-order transaction subgraphs.
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Fig. 2. The 1 order nd 2-order transaction subgraph of t1 in Fig. 1

The input addresses of a k-order transaction subgraph Gk
ti are the addresses

that input to the first transaction in Gk
ti . The output addresses of Gk

ti are the
addresses that accepts the outputs of the last transactions in Gk

ti . The input and
output addresses are formally defined in Definition 3.

Definition 3. (Input and Output addresses of K-order transaction subgraph):
The input and output addresses of K-order transaction subgraph Gk

ti is IGk
ti

and

OGk
ti
, respectively. IGk

ti
= {an|∃(an, tj) ∈ Ek, tj ∈ T k and ∀tk ∈ T k, (tk, an) /∈

Ek}. OGk
ti

= {an|∃(tk, an) ∈ Ek, tk ∈ T k and ∀tj ∈ T k, (an, tj) /∈ Ek}.

In Fig. 2(a), the addresses a1 and a2 are the input addresses of G1
t1 , and

the address a5 is the output address of G1
t1 . For higher order transaction sub-

graphs, the input and output addresses may be more complicated. For example,
in Fig. 2(b), the input addresses of G2

t1 are {a1, a2} = IG2
t1

, and the output
addresses are {a8} = OG2

t1
.

Based on the concept of IGk
ti

and OGk
ti

, we now further define the pattern of
a transaction subgraph. The pattern of a k-order transaction graph of transaction
ti is denoted as Gk

(m,n) = {Gk
ti ||IGk

ti
| = m, |OGk

ti
| = n}, where m and n are the

number of input addresses and output addresses of Gk
ti respectively.

For a given transaction graph generated from a blockchain transaction record
during a specific period T , we can obtain a k order transaction subgraph Gk

ti
of each transaction ti ∈ T . The obtained transaction subgraphs may belong to
different patterns. For the example in Fig. 2, G2

t1 belongs to the pattern G2
(2,1),

while G2
t2 belongs to the pattern G2

(1,1).
We believe these patterns contain valuable information revealing the charac-

teristics of each corresponding blockchain transaction in a period. In addition,
the patterns obtained under different order k can reveal different levels of latent
information. The benefit of denoting the pattern based on the number of input
addresses and out addresses is that the patterns can be easily encoded into
matrices, and therefore can be adopted as the features of the current transac-
tion graph.

By summarizing the patterns of all k-order transaction graph Gk
ti of every

transaction ti in a transaction graph G, two key characteristics can be obtained
1) what kinds of patterns occur in the transaction graph, and 2) how many times
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these patterns occur. We extend the concept of occurrence matrix in literature [2]
to a k order pattern occurrence matrix, denoted as OCk, where the entry of OCk

is OCk
(m,n) = |Gk

(m,n)|. The entry of pattern occurrence matrix OCk
(m,n) denotes

the number of k-order transaction graphs that belong to the pattern Gk
(m,n).

Finally we concatenate OCk for k = 1, 2, 3, .., s as the feature v of the transac-
tion graph G we obtain from the blockchain transaction record. Now the Bitcoin
Price Prediction problem can be specified in detail: use the feature vector v that
is calculated from the transaction graph based on Bitcoin historical data in time
period [t−i, t], to predict bitcoin price at some future time t+h, Pt+h. Formally,
we define the price prediction task as Definition 4.

Definition 4. (Bitcoin Price Prediction): Given time t′ = t+Δt, where Δt ≥ 0,
and Bitcoin historical data in time period [t− s, t], where s ∈ N+. Let Pt denote
the price of bitcoin at time t. the bitcoin price prediction problem is to predict
the price at time t′, e.g. Pt′ .

4 Multi-window Prediction Framework

Transactions in the blockchain are time sequential, meaning the blockchain may
shows different patterns at different periods of time. How much the future price
is influenced by historical patterns and how far back we should look to discover
these patterns are empirical questions. To answer these questions more system-
atically, we propose the Multi-Window Prediction Framework. This framework
uses the features from different lengths of historical data to construct different
submodels and incorporates the results from every submodel to form a final
result. By taking advantage of all the submodels, this framework can boost the
accuracy of our predictions.

Figure 3 illustrates the Multi−Window Prediction Framework. M1 to Ms

are s submodels that are trained separately on different windows of time with
length s. For example, M1 is the model trained by the features extracted from
the past 1 day, and M2 is the model trained by the features extracted from the
past 2 days. When making price forecasts for a specific day t′ = t+Δt (Δt ≥ 0),

Fig. 3. Overview of the Multi-window Prediction Framework
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Fig. 4. Illustration of settings for submodel 2 (M2) to predict Pt+1

each submodel will first output its individual prediction. The integrator will then
combine the results into one final result.

The accuracy of the final result depends on the performance of each sub-
model. Next, we describe how each model is trained and makes future price pre-
dictions. In this paper, we predict the daily end price of bitcoin. The end price
of day t′ is denoted as Pt′ . After extracting features from a historical period,
say [t − s, t], it is natural to directly predict Pt′ . However, it is more reasonable
to predict the price difference between Pt′ and Pt−s, denoted as ΔP[t−s,t′], and
then derive the predicted Pt as P̂t = Pt−s + ˆΔP[t−s,t′]. The reason is twofold: 1)
we know the historical price Pt−s, and it should be considered to improve the
prediction; 2) whatever features extracted from [t−s, t] represents the character-
istics only during [t−s, t] in the bitcoin market, and these are the characteristics
that bring changes to the price. Thus, it is more reasonable to use the features to
interpret the price change rather than the exact price. Therefore, in this paper,
we construct data sample pairs as (x, y), where x is the feature vector extracted
from a historical period [t−s, t], and y = ΔP[t−s,t′] = Pt′ −Pt−s. Each submodel
will be retrained if it aims to predict a different future time. We denote the dis-
tance from the future time to be predicted as h = t′ − (t−s). Figure 4 illustrates
an example of the parameters setting for submodels making predictions.

The integrator will combine the results from each submodel with different
weights, which can be a simple linear function as follows:

P̂t′ = r1 ∗ P̂t′
1

+ r2 ∗ P̂t′
2

+ ... + rs ∗ P̂t′
s

(1)

where r1 + r2 + ... + rs = 1.
In this paper, we elaborately design the weights. Let Wi = [r1, r2, r3, ..., ri].

Specially, if the historical window size is 1, which indicates that we only employ
one model to make the prediction, W1 = [r1] = [1.0]. As the historical window
size increases, i > 1, Wi is defined as Eq. 2:

Wi+1[k] = Wi[k] (k = 1, ..., i − 1)
Wi+1[i] = Wi[i] ∗ α

Wi+1[i + 1] = Wi[i] ∗ (1 − α)
(2)
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where α controls the speed of decay of weights corresponding to results from
submodels with data further back in history. Equation 2 maintains the property
that

∑
rj∈Wi

rj = 1 for i > 0.

5 Experimental Results

In this section, we present the evaluation of our proposed transaction graph
based blockchain feature and Multi-Window Prediction Framework.

5.1 Data Preparation

To conduct the bitcoin price prediction task, we collect Bitcoin blockchain his-
torical data and bitcoin price historical data. The Bitcoin blockchain data is
downloaded from Google Bigquery public dataset crypto Bitcoin2 whose data is
exported using Bitcoin etl tool3. The bitcoin price data is collected from Coin-
desk4.

We select two historical periods for the experiments.

– Interval 1: From August 19th, 2013 to July 19th, 2016. The timestamps are
divided daily. This period contains 1065 days, the first 80% days are used to
train the model and the latter 20% is reserved for testing.

– Interval 2: From April 1st, 2013 to April 1st, 2017. The timestamps are
divided daily. This period contains 1461 days, the first 70% days are used to
train the model and the latter 30% is reserved for testing.

Interval 1 and Interval 2 are identical to the datasets used in the litera-
ture [21], which will be used as a benchmark in the next sections. In this paper,
we predict bitcoin daily closing price during the above periods.

For the evaluation metric, we adopt Mean Absolute Percentage Error
(MAPE) to show the error between predicted prices and real prices. The MAPE
is defined as MAPE = 1

N

∑N
i=1

|p̂i−pi|
pi

, where p̂i is the predicted bitcoin price,
while pi is the real realized price.

5.2 Performance of Difference Submodels

Table 1 shows each submodel, M1 to M4, where each submodel adopts the same
training strategy and machine learning prediction model. They only differ by
the length of the historical window of time used when extracting the features.
s is the length of the window of time, where s = 1 means the model extracts
features from the past 1 day. h is the future time that the model aims to pre-
dict, where h = 1 means the model predicts the price the next day. Due space

2 Dataset ID is bigquery-public-data: crypto Bitcoin at https://cloud.google.com/
bigquery.

3 https://github.com/blockchain-etl/Bitcoin-etl.
4 https://www.coindesk.com/.

https://cloud.google.com/bigquery
https://cloud.google.com/bigquery
https://github.com/blockchain-etl/Bitcoin-etl
https://www.coindesk.com/
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Table 1. MAPE of Submodels (SVM Prediction) for Predicting Future Price

Submodels Interval 1 Interval 2 Year 2017

h = 1 h = 2 h = 3 h = 4 h = 5 h = 1 h = 2 h = 3 h = 4 h = 5 h = 1 h = 2 h = 3 h = 4 h = 5

M1 (s= 1) 1.75% 2.59% 3.15% 3.77% 4.31% 1.74% 2.57% 3.21% 3.78% 4.29% 4.73% 7.09% 8.36% 10.30% 12.20%

M2 (s= 2) – 2.61% 3.16% 3.76% 4.29% – 2.58% 3.20% 3.78% 4.29% – 7.01% 8.36% 10.05% 11.90%

M3 (s= 3) – – 3.17% 3.76% 4.29% – – 3.20% 3.76% 4.27% – – 8.24% 9.91% 11.70%

M4 (s= 4) – – – 3.75% 4.29% – – – 3.78% 4.28% – – – 9.85% 11.60%

constraints, we only show the results where each submodel adopts the Support
Vector Machine (SVM) algorithm, which is the best in our record. We find that
including more historical information in our models does not necessarily result
in better performance in terms of MAPE. For example, M2 at h = 2 obtains
a worse prediction than M1 at Interval 1 and Interval 2, despite the fact that
M2 considers one further day back than M1. One can identify additional similar
cases in Table 1. Therefore, we expect to achieve a higher MAPE by taking into
consideration all the different submodels.

5.3 Performance of Combined Model

Figure 5 shows the effects of combining the submodels to produce the final pre-
diction. M1 means only submodel M1 is adopted, M1 ∼ M2 means the results
from both submodels M1 and M2 were both used, M1 ∼ M3 means the results
from submodels M1, M2 and M3 were used, and so on. When α > 0.7 in Interval
1, and α > 0.75 in Interval 2, we can see the combined models outperform the
single model (only M1). When α = 0.85 the Multi-Window Prediction Frame-
work can produce the most accurate prediction with the lowest MAPE value.

Table 2 shows the specific MAPE values when α = 0.85 and h = 1. We can
observe that M1 ∼ M4 produces the best results. Therefore we can conclude that
4-day historical information seems to be sufficient for predicting bitcoin price
with our proposed Multi-Window Prediction Framework. The results reflect the
high volatility of bitcoin price where the current price does not relate much to

Fig. 5. MAPE of Multi-Window Prediction Framework when combining different sub-
models and alpha in Interval 1 and Interval 2 (h = 1), all using SVM
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Table 2. MAPE of Multi-Window Prediction Framework when combining different
submodels (SVM, α = 0.85, h = 1)

Submodels incorporated Interval 1 Interval 2

M1 1.75% 1.74%

M1+M2 1.70% 1.73%

M1+M2+M3 1.70% 1.72%

M1+M2+M3+M4 1.69% 1.72%

M1+M2+M3+M4+M5 1.70% 1.72%

Mallquietal. − SV M [21] 1.91% 1.81%

historical prices too far back and, instead, is more highly influenced by very
recent characteristics in the Bitcoin blockchain.

5.4 Comparison with Benchmark

Mallqui et al. [21] study a similar bitcoin price prediction task. Mallqui et al.
utilize several machine learning methods to forecast bitcoin price based on the
proposed features including historical price, volume of trades and financial indi-
cators. Since the SVM model performs the best in [21], we adopt the SVM
prediction model for comparison, denoted as Mallquietal. − SV M . The result
of Mallquietal. − SV M on both Interval 1 and Interval 2 are shown in Table 2.
Our proposed combined model M1 ∼ M4 outperforms Mallquietal. − SV M .

6 Conclusion

In this paper, we propose a transaction graph based machine learning method to
forecast the price of bitcoin. The k-order transaction graphs of the transactions
are proposed to reveal the transaction patterns in the Bitcoin blockchain. The
occurrence matrix is then defined to encode the information patterns and we
further represent them as features of the Bitcoin blockchain. We also propose
the Multi-Window prediction framework to learn the transaction patterns from
multiple blockchain historical periods. Results of comparative experiments show
that the method we propose outperforms recent state-of-art methods, further
demonstrating the effectiveness of our method.
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Abstract. In this paper, we provide a novel dynamic decision method
of blockchain selfish mining by applying the sensitivity-based optimiza-
tion theory. Our aim is to find the optimal dynamic blockchain-pegged
policy of the dishonest mining pool. To study the selfish mining attacks,
two mining pools are designed by means of different competitive criteri-
ons, where the honest mining pool follows a two-block leading competi-
tive criterion, while the dishonest mining pool follows a modification of
the two-block leading competitive criterion through using a blockchain-
pegged policy. To find the optimal blockchain-pegged policy, we set up
a policy-based continuous-time Markov process and analyze some key
factors. Based on this, we discuss monotonicity and optimality of the
long-run average profit with respect to the blockchain-pegged policy and
prove the structure of the optimal blockchain-pegged policy. We hope
the methodology and results derived in this paper can shed light on the
dynamic decision research on the selfish mining attacks of blockchain.

Keywords: Blockchain · Selfish mining · Blockchain-pegged policy ·
Sensitivity-based optimization · Markov decision process

1 Introduction

Blockchain is used to securely record a public shared ledger of Bitcoin payment
transactions among Internet users in an open P2P network. Though the security
of blockchain is always regarded as the top priority, it is still threatened by some
selfish mining attacks. In the PoW blockchain, the probability that an individual
miner can successfully mine a block becomes lower and lower, as the number of
joined miners increases. This greatly increases the mining risk of each individual
miner. In this situation, some miners willingly form a mining pool. Blockchain
selfish mining leads to colluding miners in dishonest mining pools, one of which
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can obtain a revenue larger than their fair share. The existence of the selfish
mining not only means unfair to solve PoW puzzles but also is a severe flaw in
integrity of blockchain.

The existence of such selfish mining attacks was first proposed by Eyal and
Sirer [4], they set up a Markov chain to express the dynamic of the selfish mining
attacks efficiently. After then, some researchers extended and generalized such
a similar method to discuss other attack strategies of blockchain. The newest
work is Li et al. [13], which provided a new theoretical framework of pyramid
Markov processes to solve some open and fundamental problems of blockchain
selfish mining under a rigorously mathematical setting. Göbel et al. [7], Javier
and Fralix [9] used two-dimensional Markov chain to study the selfish mining.
Furthermore, some key research includes stubborn mining by Nayak et al. [16];
Ethereum by Niu and Feng [17]; multiple mining pools by Jain [8]; multi-stage
blockchain by Chang et al. [3]; no block reward by Carlsten et al. [2]; power
adjusting by Gao et al. [5].

In the study of blockchain selfish mining, it is a key to develop effective opti-
mal methods and dynamic control techniques. However, little work has been
done on applying Markov decision processes (MDPs) to set up optimal dynamic
control policies for blockchain selfish mining. In general, such a study is more
interesting, difficult and challenging. Based on Eyal and Sirer [4], Sapirshtein et
al. [19] extended the underlying model for selfish mining attacks, and provided
an algorithm to find ε-optimal policies for attackers within the model through
MDPs. Furthermore, Wüst [20] provided a quantitative framework based on
MDPs to analyse the security of different PoW blockchain instances with vari-
ous parameters against selfish mining. Gervais et al. [6] extended the MDPs of
Sapirshtein et al. [19] to determine optimal adversarial strategies for selfish min-
ing. Recently, Zur et al. [24] presented a novel technique called ARR (Average
Reward Ratio) MDPs to tighten the bound on the threshold for selfish mining
in Ethereum.

The purpose of this paper is to apply the MDPs to set up an optimal param-
eterized policy (i.e., blockchain-pegged policy) for blockchain selfish mining. To
do this, we first apply the sensitivity-based optimization theory in the study of
blockchain selfish mining, which is an effective tool proposed for performance
optimization of Markov systems by Cao [1]. Li [11] and Li and Cao [10] fur-
ther extended and generalized such a method to a more general framework of
perturbed Markov processes. A key idea in the sensitivity-based optimization
theory is the performance difference equation that can quantify the performance
difference of a Markov system under any two different policies. The performance
difference equation gives a straightforward perspective to study the relation of
the system performance between two different policies, which provides more sen-
sitivity information. Thus, the sensitivity-based optimization theory has been
applied to performance optimization in many practical areas. For example, the
energy-efficient data centers by Xia et al. [21] and Ma et al. [14,15]; the inventory
rationing by Li et al. [12]; the multi-hop wireless networks by Xia and Shihada
[22]; the finance by Xia [23].
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The main contributions of this paper are twofold. The first one is to apply the
sensitivity-based optimization theory to study the blockchain selfish mining for
the first time, in which we design a modification of the two-block leading compet-
itive criterion for the dishonest mining pool. Different from previous works in the
literature for applying an ordinary MDP to against the selfish mining attacks, we
propose and develop an easier and more convenient dynamic decision method
for the dishonest mining pool: the sensitivity-based optimization theory. Cru-
cially, this sensitivity-based optimization theory may open a new avenue to the
optimal blockchain-pegged policy of more general blockchain systems. The sec-
ond contribution of this paper is to characterize the optimal blockchain-pegged
policy of the dishonest mining pool. We analyze the monotonicity and optimal-
ity of the long-run average profit with respect to the blockchain-pegged policies
under some restrained rewards. We obtain the structure of optimal blockchain-
pegged policy is related to the blockchain reward. Therefore, the results of this
paper give new insights on understanding not only competitive criterion design
of blockchain selfish mining, but also applying the sensitivity-based optimiza-
tion theory to dynamic decision for the dishonest mining pool. We hope that the
methodology and results given in this paper can shed light on the study of more
general blockchain systems.

The remainder of this paper is organized as follows. In Sect. 2, we describe a
problem of blockchain selfish mining with two different mining pools. In Sect. 3,
we establish a policy-based continuous-time Markov process and introduce some
key factors. In Sect. 4, we discuss the monotonicity and optimality of the long-run
average profit with respect to the blockchain-pegged policy by the sensitivity-
based optimization theory. Finally, we give some concluding remarks in Sect. 5.

2 Problem Description

In this section, we give a problem description of blockchain selfish mining with
two different mining pools. Also, we provide system structure, operational mode
and mathematical notations.

Mining Pools: There are two different mining pools: honest and dishonest
mining pools.

(a) The honest mining pool follows the Bitcoin protocol. If he mines a block, he
will broadcast to whole community immediately. To avoid the 51% attacks,
we assume the honest mining pool are majority in the blockchain system.

(b) The dishonest mining pool has the selfish mining attacks. When the dishon-
est mining pool mines a block, he can earn more unfair revenue. Such revenue
will attract some rational honest miners to jump into the dishonest mining
pool. We denote the efficiency-increased ratio of the dishonest mining pool
and the net jumping’s mining rate by τ and γ, respectively.

Selfish Mining Processes: We assume that the blocks mined by the honest
and dishonest mining pools have formed two block branches forked at a tree



332 J.-Y. Ma and Q.-L. Li

root, and the growths of the two block branches are two Poisson processes with
block-generating rates α1 and α2, respectively. In the honest mining pool, the
block-generating rate α1 is equal to the net mining rate, but the situation in
the dishonest mining pool is a bit different. The block-generating rate for the
dishonest mining pool is α2 = α̃2 (1 + τ), where α̃2 is regarded as the net mining
rate when all the dishonest miners become honest. Following the protocol can not
earn more rewards, the honest miners like to jump to the dishonest mining pool
with the net jumping rate γ, the real mining rates of the honest and dishonest
mining pools are given by λ1 = α1 − γ and λ2 = (α̃2 + γ) (1 + τ), respectively.

Note that mining costs of both mining pools contains two parts: (a) Power
consumption cost. Let cP be the power consumption price per unit of net mining
rate and per unit of time. It is easy to see that the power consumption costs per
unit of time with respect to the honest and dishonest mining pools are given by
cP (α1 − γ) and cP (α̃2 + γ), respectively. (b) Administrative cost. Let cA be the
administrative price per unit of real mining rate and per unit of time. Then the
administrative costs per unit of time with respect to the honest and dishonest
mining pools are given by cA (α1 − γ) and cA (α̃2 + γ) (1 + τ), respectively.

Competitive Criterions: In the blockchain selfish mining, the honest and
dishonest mining pools compete fiercely in finding the nonces to generate the
blocks, and they publish the blocks to make two block branches forked at a
common tree root. For the two block branches, the longer block branch in the
forked structure is called a main chain, which or the part of which will be pegged
on the blockchain. Under the selfish mining attacks, such two mining pools follow
the different competitive criterions.

(a) A two-block leading competitive criterion for the honest mining pool. The
honest chain of blocks is taken as the main chain pegged on the blockchain,
as soon as the honest chain of blocks is two blocks ahead of the dishonest
chain of blocks.

(b) A modification of the two-block leading competitive criterion for the dishon-
est mining pool. Once the dishonest chain of blocks is the two blocks ahead
of the honest chain of blocks, the dishonest chain of blocks can be taken as
the main chain. To get more reward, the dishonest mining pool may prefer
to keep its mined blocks secret, and continue to mine more blocks rather
than broadcast all the mined information.

Since the dishonest miners are minority, their mining power is limited, the
dishonest mining pool will not be extend infinitely. We assume that once the dis-
honest main chain contains m blocks, its part n blocks (n ≤ m) must be pegged
on the blockchain immediately. In addition, the limitation of the dishonest main
chain leads to that the honest main chain containing at most n − 2 blocks due
to the two-block leading competitive criterion.

Blockchain-Pegged Processes: If the main chain is formed, then the mining
processes are terminated immediately. The honest main chain or the part of the
dishonest main chain is pegged on the blockchain, and the blockchain-pegged
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times are i.i.d. and exponential with mean 1/μ. The mining pool of the main
chain can obtain an appropriate amount of reward (or compensation) from two
different parts: A block reward rB by the blockchain system and an average
total transaction fee rF in the block. At the same time, all the blocks of the
other non-main chain become orphan and immediately return to the transaction
pool without any new fee. Note that no new blocks are generated during the
blockchain-pegged process of the main chain.

We assume that all the random variables defined above are independent of
each other. Figure 1 provides an intuitive understanding for the two cases.

Fig. 1. A blockchain selfish mining with two different mining pools.

3 Optimization Model Formulation

In this section, we establish an optimization problem to find an optimal
blockchain-pegged policy for the dishonest mining pool. To do this, we set up a
policy-based continuous-time Markov process and introduce some key factors.
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3.1 The States and Policies

To study the blockchain-pegged policy of the blockchain selfish mining with two
different mining pools, we first define both ‘states’ and ‘policies’ to express such
a stochastic dynamic.

Let N1(t) and N2(t) be the numbers of blocks mined by the honest and
dishonest mining pools at time t, respectively. Then (N1(t), N2(t)) is regarded
as the state of a Markov system at time t. Obviously, all the cases of State
(N1(t), N2(t)) form a state space as follows:

Ω =
m+2
⋃

k=0

Ωk,

where

Ω0 = {(0, 0) , (0, 1) , . . . , (0,m)} ,

Ω1 = {(1, 0) , (1, 1) , . . . , (1,m)} ,

Ωk = {(k, k − 2) , (k, k − 1) , . . . , (k,m)} , k = 2, 3, . . . ,m + 2.

Actually, the blockchain-pegged policy of the dishonest mining pool can be
represented by blockchain-pegged probability p. The dishonest mining pool pegs
the main chain on the blockchain according to the probability p at the state
(n1, n2) for (n1, n2) ∈ Ω. From the problem description in Sect. 2, it is easy to
see that

p =

⎧

⎨

⎩

a ∈ [0, 1] , n1 = 0, 1, . . . ,m − 3, n2 = n1 + 2, n1 + 3, . . . , m − 1,
1, n1 = 0, 1, . . . ,m − 2, n2 = m,
0, otherwise.

(1)

It is obviously that the Markov process is controlled by the blockchain-pegged
policy (the probability p). Let all the possible probabilities p given in (1) compose
a policy space as follows:

P = {p : p ∈ [0, 1] , for (n1, n2) ∈ Ω} .

It is readily seen that State (0, 0) is a key state, which plays a key role in
setting up the Markov process of two block branches forked at the tree root. In
fact, State (0, 0) describes the tree root as the starting point of the fork attacks,
e.g., see Fig. 2. If the Markov process enters State (0, 0), then the fork attack
ends immediately, and the main chain is pegged on the blockchain.

Now, from Fig. 2, we provide an interpretation for the blockchain-pegged
probability p as follows:

(1) In Part A-1, i.e., n1 = 0, 1, . . . ,m− 3 and n2 = n1 +2, n1 +3, . . . , m− 1, the
dishonest mining pool follows the modification of the two-block leading com-
petitive criterion and forms the dishonest main chain, then the probability
p ∈ [0, 1].
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Fig. 2. The state transition relation of the Markov process.

(2) In Part A-2, i.e., n1 = 0, 1, . . . , m − 2 and n2 = m, for the limitation of
dishonest mining power, the dishonest main chain must be pegged on the
blockchain, or there is a risk of getting no reward. It is easy to see that the
probability p is taken as 1.

(3) In the rest of Fig. 2, it is the competitive process of honest and dishonest
mining pools. Therefore, p = 0 for the dishonest main chain hasn’t formed.
In addition, the states in Part B mean that the honest main chain is formed.
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Due to the modification of the two-block leading competitive criterion, the
limitation m of the dishonest mining pool must be more than 2, so that there
exist the blockchain-pegged policy for the dishonest mining pool. If m ≥ 5, the
infinitesimal generator has a general expression (note that the special cases of
m = 3 and m = 4 are omitted here). In what follows, we assume m ≥ 5 for
convenience of calculation, but the analysis method is similar.

Let X(p) (t) = (N1(t), N2(t))
(p) be the system state at time t under any

given policy p ∈ P. Then
{

X(p) (t) : t ≥ 0
}

is a policy-based continuous-time
Markov process on the state space Ω whose state transition relation is depicted
in Fig. 2. Obviously, such a Markov process is a special form of the pyramid
Markov process given in Li et al. [13]. Based on this, the infinitesimal generator
of the Markov process

{

X(p) (t) : t ≥ 0
}

is given by

Q(p) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

Q0,0 B0

Q1,0 Q1,1 B1

Q2,0 Q2,2 B2

...
. . . . . .

Qm+1,0 Qm+1,m+1 Bm+1

Qm+2,0 Qm+2,m+2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (2)

Here, we omit the details of the submatrices in the infinitesimal generator Q(p).

3.2 The Stationary Probability Vector

Based on some special properties of the infinitesimal generator, we provide the
stationary probability vector for the policy-based continuous-time Markov pro-
cess

{

X(p) (t) : t ≥ 0
}

.
For n1 = 0, 1, . . . ,m − 3, n2 = n1 + 2, n1 + 3, . . . , m − 1 and 0 ≤ p < 1,

it is clear from the finite states that the policy-based continuous-time Markov
process Q(p) must be irreducible, aperiodic and positive recurrent.

We write the stationary probability vector of the Markov process
{

X(p) (t) : t≥0
}

as follows:

π(p) =
(

π
(p)
0 ,π

(p)
1 , . . . ,π

(p)
m+2

)

, (3)

where

π
(p)
0 =

(

π(p) (0, 0) , π(p) (0, 1) , . . . , π(p) (0,m)
)

,

π
(p)
1 =

(

π(p) (1, 0) , π(p) (1, 1) , . . . , π(p) (1,m)
)

,

π
(p)
k =

(

π(p) (k, k − 2) , π(p) (k, k − 1) , . . . , π(p) (k,m)
)

, 2 ≤ k ≤ m + 2.

Let

D0 = 1,

Dk = Bk−1 (−Qk,k)−1
, k = 1, 2, . . . ,m + 2. (4)
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Then the following theorem provides an explicit expression for the stationary
probability vector π(p) by means of the system of linear equations: π(p)Q(p) = 0
and π(p)e = 1.

Theorem 1. The stationary probability vector π(p) of the Markov process Q(p)

is given by

π
(p)
k = π

(p)
0

k
∏

l=1

Dl, (5)

where π
(p)
0 is determined by the system of linear equations

π
(p)
0

(

m+2
∑

k=0

k
∏

l=0

DlQk,0

)

= 0,

π
(p)
0

(

m+2
∑

k=0

k
∏

l=0

Dle

)

= 1.

3.3 The Reward Function

A reward function of the dishonest mining pool with respect to both states and
policies is defined as a profit rate (i.e., the total revenues minus the total costs
per unit of time).

Let R = rB + rF and C = (α̃ + γ) [cP + cA (1 + τ)]. Then R and C denote
the blockchain-pegged reward and the mining cost for the dishonest mining pool,
respectively. According to Fig. 2, the reward function at State (N1 (t) , N2 (t))(p)

under the blockchain-pegged policy p is defined as follows:

f (p) (n1, n2) =

⎧

⎨

⎩

n2Rμp − C, if 0 ≤ n1 ≤ m − 3 and n1 + 2 ≤ n2 ≤ m − 1,
mRμ − C, if 0 ≤ n1 ≤ m − 2 and n2 = m,
−C, otherwise.

We futher define a column vector f (p) composed of the elements f (p) (n1, n2) as

f (p) =
(

(

f
(p)
0

)T

,
(

f
(p)
1

)T

, . . . ,
(

f
(p)
m+2

)T
)T

, (6)

where

f
(p)
0 =

(

f (p) (0, 0) , f (p) (0, 1) , . . . , f (p) (0,m)
)T

,

f
(p)
1 =

(

f (p) (1, 0) , f (p) (1, 1) , . . . , f (p) (1,m)
)T

,

f
(p)
k =

(

f (p) (k, k − 2) , f (p) (k, k − 1) , . . . , f (p) (k,m)
)T

, k = 2, 3, . . . ,m + 2.
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In the remainder of this section, the long-run average profit of the dishonest
mining pool under a blockchain-pegged policy p is defined as

ηp = lim
T→+∞

E

{

1
T

∫ T

0

f (p)
(

(N1 (t) , N2 (t))(p)
)

dt

}

= π(p)f (p), (7)

where π(p) and f (p) are given by (5) and (6), respectively.

3.4 The Performance Potential

The sensitivity-based optimization theory has a fundamental quantity called
performance potential by Cao [1], which is defined as

g(p) (n1, n2) = E

{∫ +∞

0

[

f (p)
(

X(p) (t)
)

− ηp
]

dt

∣

∣

∣

∣

X(p) (0) = (n1, n2)
}

, (8)

where ηp is defined in (7). For any blockchain-pegged policy p ∈ P, g(p) (n1, n2)
quantifies the contribution of the initial State (n1, n2) to the long-run average
profit of the dishonest mining pool. Here, g(p) (n1, n2) is also called the relative
value function or the bias in the traditional MDP theory, see, e.g., Puterman
[18]. We further define a column vector g(p) as

g(p) =
(

(

g
(p)
0

)T

,
(

g
(p)
1

)T

, . . . ,
(

g
(p)
m+2

)T
)T

, (9)

where

g
(p)
0 =

(

g(p) (0, 0) , g(p) (0, 1) , . . . , g(p) (0,m)
)T

,

g
(p)
1 =

(

g(p) (1, 0) , g(p) (1, 1) , . . . , g(p) (1,m)
)T

,

g
(p)
k =

(

g(p) (k, k − 2) , g(p) (k, k − 1) , . . . , g(p) (k,m)
)T

, k = 2, 3, . . . ,m + 2.

A similar computation to that in Ma et al. [14,15] is omitted here, we can
provide an expression for the vector g(p), i.e.,

g(p) = Ra + b, (10)

where a and b can be given by Q(p), π(p) and f (p). It is seen that all the entries
g(p) (n1, n2) in g(p) are the linear functions of R. Therefore, our objective is
to find the optimal blockchain-pegged policy p∗ such that the long-run average
profit of the dishonest mining pool ηp is maximize, that is,

p∗ = arg max
p∈P

{ηp} . (11)

However, it is very challenging to analyze some interesting structure proper-
ties of the optimal blockchain-pegged policy p∗. In the remainder of this paper,
we will apply the sensitivity-based optimization theory to study such an optimal
problem.
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4 Monotonicity and Optimality

In this section, we use the sensitivity-based optimization theory to discuss mono-
tonicity and optimality of the long-run average profit of the dishonest mining
pool with respect to the blockchain-pegged policy. Based on this, we obtain the
optimal blockchain-pegged policy of the dishonest mining pool.

In an MDP, system policies will affect the element values of infinitesimal gen-
erator and reward function. That is, if the policy p changes, then the infinites-
imal generator Q(p) and the reward function f (p) will have their corresponding
changes. To express such a change mathematically, we take two different policies
p, p′ ∈ P, both of which correspond to their infinitesimal generators Q(p) and
Q(p′), and to their reward functions f (p) and f(p′).

The following lemma provides the performance difference equation for the
difference ηp′ − ηp of the long-run average performances for any two blockchain-
pegged policies p, p′ ∈ P. Here, we only restate it without proof, while readers
may refer to Cao [1] and Ma et al. [14] for more details.

Lemma 1. For any two blockchain-pegged policies p, p′ ∈ P, we have

ηp′ − ηp = π(p′)
[(

Q(p′) − Q(p)
)

g(p)+
(

f(p′) − f (p)
)]

. (12)

Therefore, to find the optimal blockchain-pegged policy p∗, we consider
such two blockchain-pegged policies p, p′ ∈ P. Suppose the blockchain-pegged
policy is changed from p to p′, which corresponding the states (n1, n2) for
n1 = 0, 1, . . . ,m − 3 and n2 = n1 + 2, n1 + 3, . . . ,m − 1, i.e., Part A-1 of Fig. 2.

Using Lemma 1, we examine the sensitivity of blockchain-pegged policy on
the long-run average profit of the dishonest mining pool. Substituting (2) and
(6) into (12), we have

ηp′ − ηp

= π(p′)
[(

Q(p′) − Q(p)
)

g(p)+
(
f (p′) − f (p)

)]

=
(
p′−p

) m−3∑
n1=0

m−1∑
n2=n1+2

π(p
′) (n1, n2)

[
μ−(μ−λ2) g(p) (n1, n2)−λ2g(p) (n1, n2+1)+n2Rμ

]
.

(13)

With the difference (13), we can easily obtain the following equation

�ηp

�p
=

m−3∑
n1=0

m−1∑
n2=n1+2

π(p
′) (n1, n2)

[
μ−(μ − λ2) g(p) (n1, n2)−λ2g(p) (n1, n2+1)+n2Rμ

]
,

(14)
where �ηp = ηp′ − ηp and �p = p′ − p. As p′ → p,

dηp

dp

∣

∣

∣

∣

�p→0

= lim
�p→0

ηp′ − ηp

�p
,
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we derive the following derivative equation

dηp

dp
=

m−3∑
n1=0

m−1∑
n2=n1+2

π(p) (n1, n2)
[
μ−(μ − λ2) g(p) (n1, n2)−λ2g(p) (n1, n2+1)+n2Rμ

]
.

(15)
According to (10), g(p) (n1, n2) and g(p) (n1, n2 + 1) are both linear functions

w.r.t. R. Thus, we denote g(p) (n1, n2) and g(p) (n1, n2 + 1) as an1,n2R + bn1,n2

and an1,n2+1R + bn1,n2+1, respectively. Substituting into (15), we have

dηp

dp
= aR + b, (16)

where

a =
m−3
∑

n1=0

m−1
∑

n2=n1+2

π(p) (n1, n2) [(λ2 − μ) an1,n2 − λ2an1,n2+1 + n2μ] ,

b =
m−3
∑

n1=0

m−1
∑

n2=n1+2

π(p) (n1, n2) [(λ2 − μ) bn1,n2 + λ2an1,n2+1bn1,n2+1 + μ] .

It is clear that dηp

dp is also a linear function w.r.t. R, and depends only on the
current policy.

Remark 1. It is seen from (16) that we only need to know the sign of dηp

dp ,
instead of its precise value. The estimation accuracy of a sign is usually bet-
ter than that of a value. Therefore, this feature can help us find the optimal
blockchain-pegged policy effectively. Moreover, we see that we do not have to
know some prior system information. Thus, the complete system information
is not required in our approach and this is an advantage during the practical
application.

Remark 2. The key idea of the sensitivity-based optimization theory is to uti-
lize the performance sensitivity information, such as the performance difference,
to conduct the optimization of stochastic systems. Therefore, even if the compe-
tition criteria become more complicated, it does not affect the applicability of our
method.

The following theorems discuss monotonicity and optimality of the long-run
average profit ηp of the dishonest mining pool with respect to the blockchain-
pegged policy p.

Theorem 2. If R > −b/a, then the long run average profit ηp is strictly mono-
tone increasing with respect to each decision element p ∈ [0, 1], and the optimal
blockchain-pegged policy p∗ = 1.

This theorem follows directly (16). It is seen that the optimal blockchain-
pegged policy p∗ = 1 just corresponding to any State (n1, n1 + 2) in Part A-1 of
Fig. 2, and the state transition has changed. In this case, the dishonest chain of



Sensitivity-Based Optimization for Blockchain Selfish Mining 341

blocks is the only two blocks ahead of the honest chain of blocks, the dishonest
mining pool should peg on the blockchain, also follows the two-block leading
competitive criterion.

Therefore, when the blockchain-pegged reward is higher with R > −b/a, it
is seen that the dishonest miners become honest, all miners will follow the PoW
protocol and broadcast to the whole community. In this case, the selfish mining
attacks should be invalid.

Theorem 3. If 0 ≤ R < −b/a, then the long run average profit ηp is strictly
monotone decreasing with respect to each decision element p ∈ [0, 1], and the
optimal blockchain-pegged policy p∗ = 0.

Simlar to Theorem 2, this theorem also follows directly (16). It is seen that the
optimal blockchain-pegged policy p∗ = 0 corresponding to any State (n1, n2) in
Part A-1 of Fig. 2.

In the blockchain selfish mining, if the dishonest mining pool makes decision
not to peg on the blockchain, i.e., p∗ = 0, the main chain is detained to continue
mining more blocks so that it is not broadcasted in the blockchain network, until
the number of blocks reaches m for the limited mining bound. In this case, the
dishonest mining pool prefer to obtain more mining profit through winning on
mining more blocks, rather than peg on the blockchain prematurely.

Therefore, when the blockchain-pegged reward is lower with 0 ≤ R < −b/a,
it is seen that the dishonest mining pool follows the n-block (2 ≤ n ≤ m) leading
competitive criterion under the selfish mining attacks.

Theorem 4. If R = −b/a, then the change of blockchain-pegged policy p no
longer improve the long-run average profit ηp.

With Theorem 4, the dishonest miners don’t care about when the main chain
is pegged on the blockchain, thus the blockchain-pegged policy can be chosen
randomly in set [0, 1].

5 Concluding Remarks

In this paper, we propose a novel dynamic decision method by applying the
sensitivity-based optimization theory to study the optimal blockchain-pegged
policy of blockchain selfish mining with two different mining pools.

We describe a more general blockchain selfish mining with a modification of
the two-block leading competitive criterion, which is related to the blockchain-
pegged policies. To find the optimal blockchain-pegged policy of the dishonest
mining pool, we analyze the monotonicity and optimality of the long-run aver-
age profit with respect to the blockchain-pegged policy under some restrained
blockchain-pegged rewards. We prove the structure of optimal blockchain-pegged
policy with respect to the blockchain-pegged rewards. Different from those pre-
vious works in the literature on applying the traditional MDP theory to the
blockchain selfish mining, the sensitivity-based optimization theory used in this
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paper is easier and more convenient in the optimal policy study of blockchain
selfish mining.

Along such a research line of applying the sensitivity-based optimization
theory, there are a number of interesting directions for potential future research,
for example:

• Extending to the blockchain selfish mining with multiple mining pools, for
example, a different competitive criterion, no space limitation of the dishonest
pool and so on;

• analyzing non-Poisson inputs such as Markovian arrival processes (MAPs)
and/or non-exponential service times, e.g., the PH distributions;

• discussing the long-run average performance is influenced by some concave or
convex reward (or cost) functions; and

• studying individual or social optimization for the blockchain selfish mining
from a perspective of combining game theory with the sensitivity-based opti-
mization.
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Abstract. This paper presents the design and implementation of two
data types, List and Dictionary, in the programming language XD-M.
XD-M is an interpreted language with dynamic data types and its syntax
is similar to Python. It is developed from the Modeling Simulation and
Verification Language called MSVL. In the main part of the paper, we
will discuss data structures, syntax and algorithms of List and Dictionary
in XD-M, as well as their abstract syntax trees. Finally, an example is
given to illustrate how to use List and Dictionary in XD-M programming.

Keywords: Programming language · List · Dictionary · Data
structure · Abstract syntax tree

1 Introduction

Modeling Simulation and Verification Language (MSVL) [1–3] is a temporal logic
programming language [1] derived from Projection Temporal Logic (PTL) [4,
5]. MSVL can perform modeling, simulation and verification of software and
hardware systems so as to improve the correctness and reliability of systems.
XD-M was developed by simplifying the MSVL syntax [6–8] so as to omit type
declaration. The syntax of XD-M is similar to Python [9,10], and both support
dynamic data types.

Although the Python [9,10] language is attractive because of many advan-
tages, such as simplicity, portability, vast libraries, open source, and scalability,
there are still some inconveniences. For instance, there are few Python tools sup-
porting formal verification. Accordingly, we are motivated to develop a Python-
like programming language and meanwhile make it have the potential of program
verification. XD-M programs can be verified through formal specification [11]
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and verification methods based on MSVL [12–19]. This characteristic of the lan-
guage is of great help to improve the correctness and reliability of software and
hardware systems.

XD-M is an interpreted language that employs dynamic data types. The data
types permitted in XD-M currently are integer, floating point, character, string,
array and structure. The language interpreter can be used to simulate, model
and verify XD-M programs.

In order to make the XD-M language more powerful and convenient use, it
is necessary to enhance the interpreter to support two data types, namely, List
and Dictionary in Python. Therefore, the following part of this paper will focus
on the detailed implementation of List and Dictionary in XD-M.

This paper is organized as follows. In the next section, the design and imple-
mentation of List and Dictionary are presented, including the data structure,
syntax and syntactic interpretation of List and Dictionary. In Sect. 3, an exam-
ple is given to show how to use List and Dictionary in XD-M programs. In
Sect. 4, conclusions are drawn.

2 Design and Implementation of List and Dictionary

First of all, we will introduce the execution flow of the XD-M interpreter. As
shown in Fig. 1, lexical analysis, syntactic analysis, and semantic analysis are
performed on the source program to get the output. The purpose of lexical
analysis and syntactic analysis is to generate an abstract syntax tree, which is
implemented with the help of Flex [20] and Bison [21].

Fig. 1. Execution flow of the interpreter

Figure 2 shows the data structure of symbol, symbol table and abstract syn-
tax tree. The entire data structure is not shown here, only some key member
variables are selected.

The “CSyntaxNode” class represents a node in the abstract syntax tree,
and“NodeType” is an enumerated type, which represents the type of the current
node. An abstract syntax tree node contains a variable named “nodeType” of
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Fig. 2. Data structure of symbol, symbol table and abstract syntax tree

type “NodeType” and three pointers to child nodes. When the interpreter parses
the abstract syntax tree, it will perform different actions according to the value
of “nodeType”.

The “Symbol” class contains a String variable “mSymbolName”, which rep-
resents the name of the “Symbol”, and a pointer variable “mData”, which is used
to point to data. In addition, there is a “SymbolType” variable “mSymbolType”,
which is an enumerated variable and similar to the “nodeType” in the “CSyntaxN-
ode” class. It is used to indicate the type of the current “Symbol”. We can under-
stand that there is a one-to-one correspondence between a variable in XD-M pro-
gram and a “Symbol”. For example, if there is a floating-point variable named “f”
in a XD-M program, this variable will correspond to a “Symbol” whose “mSym-
bolName” is “f”, and “mSymbolType” is “SYMBOLFLOAT” (a constant).

The “SymbolTable” class contains an “mSymbolMap” variable and an “id”
variable. “mSymbolMap” is a mapping from a String to a “Symbol” pointer.
The “id” variable is used to distinguish different symbol tables. For example,
the “id” of the global symbol table is 0, and the “id” of the local symbol table
is 1 or other values.

Generally speaking, the semantic analysis part of the XD-M language inter-
preter is to parse the variables in the source program into symbols, and parse
the operations on variables into operations on symbols.

2.1 Design and Implementation of List

Data Structure of List: List is defined as an ordered sequence of several elements,
and the elements in List can be of any data type. For example, a List type
variable can store a person’s personal information, including name, age, height,
weight, etc. List needs to support access, addition, deletion and modification of
list elements. And the time complexity of element access is required to be O(1).

As shown in Fig. 3, a class named “MList” is defined to implement the func-
tion of List. In “MList” class, a variable named “list” is used to store data, which
is an array of “Symbol” pointers. There are also two unsigned integers, one for
capacity of List and the other for length of List. The initial value of “capacity”
is set to 16, in which case “list” is an array of length 16 and each element is null
pointer.
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Fig. 3. Data structure of List

The public function “insert (Symbol*, index)” is to add a “Symbol” pointer
to the “index” position in the list, and the elements after “index” will be moved
back. As the number of list elements increase, “length” will also increase. When
“length” increases to the same as “capacity”, the expansion operation will be
triggered, that is, the private function “expand ()” will be called.

Function “expand ()” will reapply for a memory space, and the space size
is twice “capacity” multiplied by the number of pointer bytes. Copy the value
in the original “list” to a new memory space, then the original memory will be
released and “list” will point to the new memory space, and finally the value
of “capacity” is doubled. In general, the average time complexity of the insert
operation is O(n).

Function “erase (index)” is used to delete the “Symbol” at the “index” posi-
tion in the list and move the following elements forward. Its time complexity is
also O(n).

The “get (index)” function is simple. For a valid “index”, it directly returns
the “Symbol” pointer at the “index” position in the list. Therefore, the time
complexity of element access is O(1). If the “index” is invalid, an error warning
will be output.

Syntax and Syntactic Interpretation of List: Because XD-M language uses
dynamic data types, there is no statement for data type declarations. If we
want to use List, we directly use the assignment statement to assign a List to a
variable.

For example:

a =< 1, 1.762, ′c′, “hello”, [1, 3, 6], < 2, 7 >>

In this statement, a pair of angle brackets is used to represent a List initialization,
and the elements in the brackets are separated by commas. The initialized list
is assigned to a variable named “a”, and then the data type of “a” is List.



348 Y. Wang et al.

Fig. 4. Abstract syntax tree of List initialization statement

Figure 4 shows the abstract syntax tree constructed by the above statement.
Each box represents a node of the abstract syntax tree. We use the value of the
element to fill in the box instead of the abstract syntax tree of each element
in the list. The purpose of this is to let us pay more attention to the parsing
process of List initialization statement.

The type of the root node is “ASS EQU”, which means that the interpreter
will parse an assignment statement. Root node has two child nodes. The first
child node represents the variable in the front of the equal sign, that is “a”.
The second child node represents the List initialization expression behinds the
equal sign. Its node type is “LIST EXP”, and the interpreter will first parse
“LIST EXP” node and its subtree.

When the interpreter parses the “LIST EXP” node, it will instantiate an
“MList” object, and then parse the child nodes of “LIST EXP” node. The first
child node represents an element in the list. The interpreter will interpret first
child node to get a “Symbol” object, whose “mSymbolType” is “SYMBOLINT”,
and its “mData” is a pointer to an integer “1”. This “Symbol” object will be
added to the previously instantiated “MList” object. Then the interpreter will
parse the second child node, whose node type is “LIST ELE”, indicating that
there are still elements in the list that need to be parsed. Similarly, whenever
the interpreter parsing an element, it adds a “Symbol” object to “MList” object.
When the second child node of the last “LIST ELE” node is null pointer, it
means that all elements have been parsed. Next, the interpreter will back to the
“LIST EXP” node and instantiate a “Symbol” object, whose “mSymbolType”
will set to “SYMBOLLIST”, and its “mData” will point to “MList” object, and
its “mSymbolName” will set to “a”. Finally, this “Symbol” object will be added
to the symbol table.

In addition to initializing a List variable, we also need some built-in functions
related to List variables. The code snippet in Fig. 5 describes the syntax for
operating list variables in the XD-M language, where “a” is a List variable,
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Fig. 5. Built-in functions for List

“anytype data” is a variable or constant of any data type, and “index” is an
integer variable or constant.

2.2 Design and Implementation of Dictionary

Data Structure of Dictionary: Dictionary is defined as a collection of key-value
pairs. The key is unique, which means that one key can only correspond to
one value. For example, a Dictionary type variable can store an address book,
where the key of each key-value pair is a person’s name and the value is the
corresponding address. Considering that the dictionary may require frequent
access operations, hash table is chosen to store the data in Dictionary.

As shown in Fig. 6, a class named “MDict” is defined to implement the func-
tion of Dictionary. There are three private variables in “MDict” class. “mDic-
tHashTable” represents the hash table, “capacity” represents the capacity of the
hash table, and “size” represents the number of key-value pairs in the dictionary.
The hash table is an array of “MDictSlot” type.

It can also be seen from the figure that “MDictSlot” contains two pointers to
“Symbol”, namely “key” and “value”, and “hashRes” represents a hash value,
which is stored in an array of “uint8 t” type. “hashRes” corresponds to the
symbol “key” and is obtained from the private function “hash(Symbol*)” in
“MDict” class. The input of this hash function is the address of a “Symbol”,
and its output is a 256-bit hash value (stored in an array of “uint8 t”). The
SHA256 algorithm is used inside the hash function, mainly to take advantage of
the low-collision of the algorithm. Of course, other hash function or combinations
of hash functions are also possible. In this hash function, only symbols of integer,
floating-point numbers, characters, and strings can be accepted. It is to ensure
the immutability and uniqueness of the keys in the dictionary. But there is no
restriction on the values, which can be a constant or variable of any data type.

Function “insert (Symbol*, Symbol*)” is used to complete the insertion oper-
ation of key-value pair. The input is two symbols, which represent key and value
in turn. When the function is executed, it will first determine whether the “size”
reaches three-quarters of the “capacity”, and if the “size” reaches three-quarters
of the “capacity”, function “expand ()” will be called. By the way, the initial
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Fig. 6. Data structure of Dictionary

value of “capacity” will be set to 16. Then the hash function is called on the
key to get a 256-bit hash value, and the first log2 capacity bits of the hash value
are used as an index. The value of the index is between 0 and capacity − 1.
And then the key, value and hash value will be stored at the “index” position of
the hash table. If there is already a key-value pairs at the “index” position, it
will compare the stored hash value (“hashRes”) is equal to the hash value just
calculated. If they are equal, the value will be updated directly, otherwise a hash
conflict will occur. The method to solve the hash conflict is the open addressing
method, which will find an empty slot and insert the key-value pair into the hash
table.

Function “expand ()” is mentioned in the insert operation, which is used
to expand the hash table. When “expand ()” is executed, a new hash table is
applied for, and its size is twice the old one. Traverse the old hash table, reinsert
each key-value pair into the new hash table, and finally update the capacity
value.

Function “get (Symbol*)” is used to find a value corresponding to a given key.
The process of querying the hash table is similar to that in the insert operation.

Function “haskey (Symbol*)” is to determine whether a “Symbol” is a key
in the dictionary.

Function “erase (Symbol*)” is used to delete a key-value pair which is located
by input parameter.

Syntax and Syntactic Interpretation of Dictionary: Similar to List, if we want to
use Dictionary, we directly use the assignment statement to assign a Dictionary
to a variable.
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For example:
a = {1 : “hello”, “array” : [1, 3, 5]}

In this statement, a pair of curly braces are used to indicate the initialization of
a dictionary, and a key-value pair is represented in the form of “key : value”. The
key and value are separated by a colon, and each key-value pairs are separated
by a comma. Finally, this dictionary is assigned to the variable “a”, and “a”
becomes a dictionary type variable.

Fig. 7. Abstract syntax tree of Dictionary initialization statement

Figure 7 shows the abstract syntax tree of Dictionary initialization statement.
The node type of the root node is “ASS EQU”, which means that an assignment
statement will be parsed.

When the interpreter parses the first “DICT EXP” node, it will instantiate
an “MDict” object. The second and subsequent “DICT EXP” nodes all mean
that there are “DICT ELE” nodes that need to be parsed. Each “DICT ELE”
node has two child nodes, and the interpreter parses them to get two “Symbol”
objects, the first represents a key and the second represents a value. And then the
interpreter will call the “insert” function in “MDict” object with two “Symbol”
object as parameters. After the interpreter has parsed all “DICT ELE” nodes,
it will back to the first “DICT EXP” node and instantiate a “Symbol” object,
whose “mSymbolType” set to “SYMBOLDICT”, and its “mData” will point to
“mDict” object, and its “mSymbolName” will set to “a”. Finally, this “Symbol”
object will be added to the symbol table.

In addition to initializing a Dictionary variable, we also need some built-in
functions related to Dictionary variables. The code snippet in Fig. 8 describes
the syntax for operating Dictionary variables in the XD-M language, where “a”
is a Dictionary variable, “key” is a variable or constant, whose type is limited
to integer, floating point, character and string. “value” is a variable or constant
of any data type. For an invalid statement, the interpreter will output an error
message and skip this statement.
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Fig. 8. Built-in functions for Dictionary

3 Example

In this section, an example is given to illustrate how to use List and Dictionary
data types in XD-M programming. A problem given in the example is described
as follows: There are twelve balls with the same size, but one of them called bad
ball has a different weight from other balls. You are required to find out the bad
ball and confirm it is lighter or heavier than others by means of weighing them
only three times with one scale without tick mark.

As shown in Fig. 9, an XD-M language program is developed to solve the
problem of finding the bad ball.

In the fourth line of the program, “balls” is a Dictionary type variable, which
contains twelve key-value pairs, and each key-value pair represents a ball and its
weight. In lines 2 to 3 in the program, the user is required to randomly choose
two different integers and use them to instantiate the values of 12 key-value pairs
in the dictionary. The first integer is randomly assigned to the value of a key-
value pair and the second integer is assigned to values of the rested 11 key-value
pairs one by one.

The next step is to find the bad ball by comparing just three times. In lines
11 to 13, “A”, “B” and “C” are three List type variables. The balls are divided
into three groups and stored in “A”, “B”, “C”. The four balls in group A are
numbered 1, 2, 3, 4, similarly, the four balls in group B are numbered 5, 6, 7,
8, and the four balls in group C are numbered 9, 10, 11, 12. The comparison
processes of the program are explained below. To show the running process more
intuitively, Fig. 10 lists all possible situations.

In the first comparison, the total weights of groups A and B are compared.

(1) If the weights of group A and group B are equal, the bad ball is among the
four balls in group C and the bad ball can be easily found out by comparing
twice.

(2) As shown in lines 46 to 63 in the program, if the weight of group A is greater
than the weight of group B, there must be a ball in group A whose weight is
greater than the normal weight or the weight of a ball in group B is less than
the normal weight. Keep this case in mind, the program continues doing the
following:
The second comparison can be processed as follows. Place the balls numbered
3, 4, 5, 6, 7 on the left hand side of the scale and the balls numbered 8, 9,
10, 11, 12 on the right hand side.
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Fig. 9. Example program
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Fig. 10. Execution flow of the example program

1) If the left hand side of the scale is heavier than the right hand side, there
must be a heavier ball in No. 3 and No. 4 or the lighter one is ball No. 8.
Thirdly, No. 3 and No. 4 balls are compared. If they are equal, the No. 8
ball is a lighter one. Otherwise, the bad ball No. 3 or No. 4 is the heavier
one.

2) If the left hand side of the scale is equal to the right hand side, there must
be a heavier ball in No. 1 and No. 2.
Then thirdly No. 1 and No. 2 balls are compared, and the bad ball No. 1
or No. 2 is the heavier one.

3) If the left hand side of the scale is lighter than the right hand side, there
must be a lighter ball in No. 5, No. 6, and No. 7.
Then thirdly, No. 5 and No. 6 balls are compared. If they are equal, the
No. 7 ball is the lighter ball. Otherwise, the bad ball No. 5 or No. 6 is the
lighter one.

(3) On the other hand, in lines 64 to 81 of the program, if the weight of group
A is lighter than the weight of group B, the explanation of the program
running process to find out the bad ball is similar to the previous case (2).

4 Conclusion

This paper introduces the implementation of two data types, List and Dictionary
in XD-M language, including data structures, algorithms, and the interpretation
process of abstract syntax trees. In the future, more operations and functions
on List and Dictionary need to be added and implemented so as to make XD-M
more powerful and friendly.
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Abstract. Edge intelligence (EI), the interdisciplinary field of edge computing
and artificial intelligence (AI), aims at achieving time-critical AI services. Exist-
ing work mainly focuses on task offloading and model optimization to realize low
latency as well as low power consumption. However, to guarantee low latency in
lossy mobile network, user datagram protocol (UDP) is preferred to the transmis-
sion control protocol (TCP). Although image files can tolerate a small portion of
corruption, latent packet loss and out-of-order can damage the overall service reli-
ability. To improve it, we found that progressive encoding in joint photographic
expert group (JPEG) standard tends to keep low-frequency coefficients in the
first place compared to the commonly used baseline encoding. This paper stud-
ies whether JPEG Progressive achieves more reliable EI than JPEG Baseline in
unreliable network environment. In our experiments, including scenarios of sin-
gle packet loss, multiple packet loss and random packet loss, JPEG Progressive
achieves significantly higher inference performance, with huge benefit in latency
due to UDP.

Keywords: Edge intelligence · Edge computing · Artificial intelligence · JPEG ·
Reliability

1 Introduction

The confluence of artificial intelligence (AI) and edge computing gives birth to edge
intelligence (EI) [1]. So far, it is not simply the combination of edge computing and
artificial intelligence but a collaboration of edge and cloud [2]. The main objectives of
edge computing are to reduce both the latency and the bandwidth [3]. Introducing edge
computing to AI enables AI applications in time-critical scenarios.

In mobile edge intelligence, where end devices are wirelessly connected, problem
caused by unstable channels arises, especially packet loss and out-of-order. To guarantee
reliable transmission, the typical solution is to use transmission control protocol (TCP)
at transport layer [6]. However, due to its default additive increase and multiplicative
decrease (AIMD) strategy [5], the throughput under lossy networkwill be greatly limited
[4]. Also, the retransmission is not essential for loss-tolerable data like images and video
streams. The above two characteristics make TCP not preferable, in contradiction to
latency decrease, which is the major goal of edge computing. In this scenario, user
datagram protocol (UDP) becomes a more suitable choice. Work has been done to
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improve the service reliability of edge intelligence based on UDP in the scenario of
image classification [7].

Although pictures can abide corruptions, image quality will be inevitably impaired
[11]. Figure 1 exhibits a picture of spatial distortion, channel misplacing and early
termination, three types of possible perturbations. Spatial distortion is caused by other
pixels taking the places of prior pixels. Potential channel misplacing arises with spatial
distortion, so that the remainder of the picture shows a biased color. Besides, in early
termination, missed pixels at the bottom are filled with gray color.

Fig. 1. A corrupted picture with: 1) spatial distortion 2) channel misplacing and 3) early
termination.

In AI applications, image distortion results in inference degradation, especially in
object detection. Some objects are split into multiple, bringing confusion to the model.
Also, the coordination shift caused by packet loss may result in taking the wrong
response. Therefore, it is necessary to minimize the impact of transmission loss.

Improving EI reliability in unreliable network can be a tradeoff between transmission
latency and inference performance if only network protocol is replaced. Since most
pictures are organized in jpg or jpeg format [22], we wonder whether a sophisticated
encoding can realize amore reliable EI. JPG and JPEG pictures are encoded according to
Joint Photographic Expert Group (JPEG) standard. Among 4 types of encodings defined
in JPEG [8], JPEG Sequential is most prevalently used, especially one realization called
JPEG Baseline. In this encoding method, the whole image is rendered in one scan. JPEG
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Progressive, instead, renders the picture by multiple scans so that users have a rough
preview before the picture is fully downloaded. Its principle is to put low-frequency
coefficients closer to the beginning of the file. We assume this characteristic makes
pictures more resistant to corruptions.

In this paper, we research whether the ‘rough preview’ of JPEG Progressive will help
improve the service reliability of Image-based Edge Intelligence. Section 2 introduces
the relatedwork regarding JPEGProgressive and reliable edge intelligence.Work in both
EI and JPEG encoding areas are impressive, but we are the first to attempt to improve
the reliability of EI with the help of JPEG Progressive. Section 3 designs the experiment
and Sect. 4 discusses the results. Our experiment takes object detection as an example
and shows the JPEG Progressive improves the EI reliability in lossy environment.

2 Related Work

2.1 JPEG Progressive

The JPEG still picture compression standard [8] defined four encoding modes of still
pictures. This paper focuses on the JPEG Sequential, JPEG Progressive for their preva-
lent application. Specifically, we discuss baseline encoding and spectrum selection, two
typical realization of eachmode. In the rest of this paper, baseline and spectrum selection
can be considered equivalent to the JPEG Sequential and JPEG Progressive respectively
for simplicity. The difference between them is that in entropy encoding phase, progres-
sive encoding tends to keep the global low-frequency coefficients in the first place. In
contrast, the baseline encoding only puts the low-frequency coefficients first inside each
8 * 8 block.

M. Mody et al. [9] proposed a decoder design for JPEG Baseline decoders to decode
JPEG Progressive pictures and it largely reduces the memory requirements. Andrew
Louie et al. [12] put forward an JPEG Progressive encoder design for real-time systems
to minimize latency. Yan et al. [10] provided an image compression method for storage
based on JPEG Progressive.Wiseman [11] showed that JPEG Progressive helps alleviate
JPEG inaccuracy appearance. Their work paved the way of our work.

2.2 Reliable Edge Intelligence

Deng et al. [1] provided an insight into the interdisciplinary field edge intelligence by
dividing EI into two categories ‘AI for edge’ and ‘AI on edge’, the former emphasizes on
edge computingwhile the latter focusesmore onAI. To formally define edge intelligence,
Zhou et al. [2] proposed six levels of edge intelligence, from cloud-edge co-inference
(level 1) to all on-device (level 6).

To satisfy the time-critical requirements of EI, ‘AI for edge’ approaches focus on par-
titioning computationally intensive components from the resource-constrained devices.
Kang et al. [13], Hu et al. [14] and Dong et al. [20] optimized the latency, power con-
sumption as well as network throughput by partitioning AI models. Furthermore, Dong
et al. [15] formulated the above solution into a n-fold integer programing problem by
combinatorial optimization. Alternatively, [16] and [17] considered reducing latency by
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image compression, therefore reduces both transmission cost and inference cost. On the
other hand, ‘AI on edge’ approaches [18, 19] adopt early-exit inference to reduce the
inference latency.

Above work considered the network transmission to be lossless and mainly focused
on optimizing latency, throughput and energy consumption. However, in the practice
of mobile edge computing, noisy network causes a great increase in the transmission
latency. Liu and Zhang [7] found the UDP-based offloading can improve the normalized
service reliability by up to 70% for time-critical services under lossy network. Lee et al.
[21] discussed the approaches to design robust AI platforms against input perturbations.
Work to improve EI reliability under such scenario remains insufficient.

3 Experiment Setup

To support our assumption that the progressive encoding helps improve the EI reliability
in lossy network environments, the experiment is designed so that pictures in JPEG
Baseline and JPEG Progressive suffer same extents of corruption in each scenario. The
EI reliability can be quantized by the model considering both inference performance and
latency.

3.1 Experiment Environment

Hardware Platform and Network Environment. As Fig. 2 suggests, we consider a
simple edge intelligence scenario where one user equipment (UE) and one edge server
(ES) are deployed. In our experiments, the UE of the system is Raspberry Pi 4B with
2 GB RAM, a general embedded system for image collection. The ES is a web server
simulated by a laptop with i7 11800HCPU and RTX3060GPU. For a better comparison,
UE and ES are connected under the same Wi-Fi LAN with RTT 3 ms. The latency and
packet loss are realized by TC commands at the UE or dropping packets at the ES.

Fig. 2. Experiment model

Data Organization. Likemost web applications, our data are JSON serialized. Pictures
are base64 encoded and each packet takes 1 KB of the base64 content. To truncate each
file efficiently in lossy network, late arrived packets will be discarded by the ES. In order
to do so, 3 other fields, filename, sequence number and total sequence, are provided in
each packet.
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AI Models and Datasets. To investigate whether and how much JPEG Progressive
encoding can improve the service reliability in a lossy network, the pretrained YOLOv5s
is used as an example of objection detection applications. It is a lightweight model with
7266973 parameters in state-of-the-art YOLOv5 series. And the model is evaluated on
COCO128 of different corruption by the metric mAP (0.5:0.95), also refered asmAPval .

3.2 System Model

The EI reliability can be generalized with respect to average inference reliability
and average time reliability, where C1,C2andp1, p2 are weights to adjust in different
scenarios:

REI = C1Rinference
p1 × C2Rtime

p2

The inference reliability can be measured by a specific metric. Specifically, we use
mAP (0.5:0.95) for Rinference in this paper. The unreliability in time, on the other hand,
is mainly caused by timeout so that a picture is missed or fails to be computed in time
by ES. Similar to [7], our time reliability is defined as:

Rtime = 1 − Ftimeout

Ftimeout in the above equation refers to the average timeout probability. For image-
based EI applications, the system latency can be written as the sum of the transmission
latency and the computation latency:

Ttotal = Ttransmission + Tcomputation

For each sample picture i, the timeout state is either 1 or 0, in the below equation
where ε is the Heaviside function and δ refers to the threshold:

Fi
timeout = ε(T i

total − δ)

With enough number of samples, the average timeout probability can be derived as:

Ftimeout = lim
I→∞[1

I

∑I

i=1
ε
(
T i
total − δ

)
]

Overall, the EI reliability can be expressed as:

REI = C1C2 · mAPval
p1(1 − lim

I→∞[1
I

∑I

i=1
ε
(
T i
transmission + T i

computation − δ
)
])
p2
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Fig. 3. The mAP (0.5:0.95) of YOLO v5 with corrupted input pictures under single packet loss
at difference positions of a file.

4 Results and Discussion

4.1 Specified Single Packet Loss

This experiment is to find out the relationship between the position of single packet loss
and the inference reliability. Since the first packet contains a not disposable file header
and each file size of YOLO128 varies from 20KB to over 200 KB, specifying lost packet
number has different influence on images. Therefore, one packet is dropped at different
positions of every picture, ranging from the position at 5% to 95%.

As Fig. 3 shows, image distortion in baseline encoded pictures is destructive. For
a single packet loss of 1 KB taking place in first 35% of the file, the mAPval drops
dramatically down to below 0.05. The mAPval of a single packet loss at 85% reaches
0.327, very close to 0.348, the mAPval of YOLOv3-tiny. For baseline encoded pictures,
single packet loss later than 85% has minor effect on inference reliability.

In contrary, JPEG Progressive behaves more robust to single packet loss, with nearly
all mAPval values over 0.3. The performance is much more ideal than the baseline
encoding.However, themAPval experiences a drop for a packet loss around30%.Figure 4
demonstrates an example of the above scenario. Most contours in the picture, possibly
encoded around that position of the picture, suffer a shift, that explains the reason of
underperformance at mid-frequency.
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4.2 Specified Multiple Packets Loss

Based on 4.1, the packet loss can be simply divided into 3 regions, front 1/3, middle 1/3
and back 1/3. In front 1/3, the packet loss has major impact on the performance of the
model. In middle 1/3, the performance picks up. And in back 1/3, the packet loss causes
little degradation.

Fig. 4. A corrupted JPEG Progressive picture with single packet loss

The aim of this part is to investigate whether image corruption in JPEG Progressive
still outperforms JPEG Baseline in inference when more packets are lost. We divide the
loss position into 3 regions: front 1/3, middle 1/3 and back 1/3, with both consecutive
and random packet loss specified by randommodule in numpy package. For comparison,
the number of lost packets is set to be 2, 4, 6 and 8, corresponding to 2 KB, 4 KB, 6 KB
and 8 KB loss respectively.

Table 1 indicates that in both scenarios of consecutive and random packet loss, JPEG
Progressive outperforms the JPEGBaseline. Especially in the front 1/3,With consecutive
loss of 6 KB, themAPval remains above 0.3, while this matric of JPEG Baseline already
drops below 0.05.
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The result follows a similar pattern when the packet loss happens closer to the end of
the file, with a less severe impact. Inmiddle 1/3, themAPval of baseline encoding reaches
slightly above 0.1 for consecutive loss. If the lost packets are discrete, the performance
is still poor. In most cases in middle 1/3, JPEG Progressive remains mAPval above 0.3
except for 4 KB random losses. Packet loss in the back 1/3 has little influence on the
inference performance.

Table 1. The mAP (0.5:0.95) values of YOLO v5 under different cases of multiple packet loss

Loss type Encoding Loss size Front 1/3 Middle 1/3 Back 1/3

Lossless Baseline 0 KB 0.434 0.434 0.434

Consecutive 2 KB 0.0413 0.107 0.296

4 KB 0.0377 0.103 0.315

6 KB 0.0443 0.126 0.315

8 KB 0.0261 0.12 0.311

Progressive 2 KB 0.314 0.376 0.436

4 KB 0.328 0.369 0.437

6 KB 0.305 0.382 0.443

8 KB 0.263 0.374 0.443

Random Baseline 2 KB 0.0235 0.0717 0.274

4 KB 0.0156 0.0652 0.244

6 KB 0.0166 0.0593 0.233

8 KB 0.019 0.049 0.22

Progressive 2 KB 0.208 0.332 0.441

4 KB 0.119 0.317 0.441

6 KB 0.0562 0.267 0.432

8 KB 0.0421 0.266 0.438

Another key observation is that for same size of packet loss, random packet loss
causes more damage to the inference performance. Both encodings satisfy this obser-
vation, which coincides with [7]. One explanation is that consecutive packet loss is just
one packet loss of larger size while random packet loss cannot be merged.

The experiment explores the scenarios where multiple packets are lost, with respect
to the loss position andwhether the losses are consecutive. JPEGProgressive still outper-
forms the Baseline encoding, especially early packet loss, resulting in severe distortion
in Baseline, the progressive encoding keeps the most low-frequency components in the
right position.
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4.3 Random Loss Simulation

Section 4.2 compares JPEG Baseline and JPEG Progressive in extreme scenarios when
more than 1 packet of 1KB are lost. However, the random numbers generated in Sect. 4.3
are pseudo-random numbers. To simulate more practical scenarios, tc (for traffic control)
commands in Linux are applied. The lossy network is simulated by setting packet loss
rate to 0.5%, 1% and 2% respectively and repeatedly sending the pictures from UE to
ES, and the results are shown in Fig. 5.

Compared to the originalmAPval 0.434 under reliable data transmission, themAPval
of JPEG Baseline drop dramatically to 0.12 when the packet loss is 0.5%, equivalent to
one packet loss for images of size 200 KB. For higher loss rates, most JPEG Baseline
pictures become not recognizable and it is meaningless to take them for object detection.

And in total random scenarios, the JPEG Progressive still behaves more robust
to packet loss. Under loss rate 0.5%, the mean mAPval remains above 0.3, which is
highly usable. And even in the extreme scenario with 2% loss rate, the resulting mAPval
outperforms the JPEG Baseline under loss rate 0.5%.

0
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0.25
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0.50% 1% 2%
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Fig. 5. The mAP (0.5:0.95) of YOLOv5 with corrupted input pictures under different loss rate

4.4 Time Reliability Analysis

In practice, the Rtime in Sect. 3.2 is calculated according to the number of result pictures
after inference within the time threshold. The time threshold δ in our experiment is
100 ms.

Table 2 compares the computation latency of baseline encoding with the progressive
encoding. The difference in computation latency is trivial except the additional latency in
re-encoding at UE. The overall average computation latency is less than 20ms. However,
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if the inference is implemented on the UE, the inference latency can easily exceed the
threshold.

Table 2. The difference in computation latency (ms)

Encoding method Re-encoding latency Preprocessing time Inference time NMS time

Baseline / 2.0 6.3 8.3

Progressive 3.7 2.1 6.1 7.5

Then we consider the transmission latency, which is linear to file size and inversely
linear to network throughput. The original baseline encoded COCO128 dataset takes
21.3MBwhile the progressive version (100%quality) takes 3.5MBmore. The difference
in size is not significant, making the comparison in throughput between TCP and UDP
decisive.

TCP guarantees reliable data transmission so that Rinference is only determined by
the inference model, at the cost of low Rtime. UDP has higher Rtime but lower Rinference.
We compare the network throughput in scenarios described in Sect. 4.3, with round trip
time (RTT) 3 ms and bandwidth 100 Mbps.
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Fig. 6. TCP throughput in lossy network

Figure 6 suggests that TCP throughput drops dramatically in a lossy network. For
example, the file size of progressive encoded first picture in COCO128 is 235 KB. With
1% loss rate, it takes 19 ms under UDP while TCP requires more than 400 ms, which
is not acceptable for time-critical tasks. As a result, few pictures finish the task in time
under TCP. Under UDP, the system outputs 119 result pictures on average, and the
primary reason for picture loss is encoding corruption.
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5 Future Work

This paper implements the preliminary research to improve the EI reliability by JPEG
Progressive encoding in lossy network.

To generalize our results, further experiments on EfficientDet and even in image
classification should be implemented. Besides, finding the inner connection between
DCT and characteristics of the neural network is the key to answer the fundamental
reason of the improvement in inference reliability. Also, in Sect. 4.1, the high frequency
coefficients in progressive encoding have little contribution to the inference reliability,
which can be a clue to design an optimized DCT-based image encoding for EI.

6 Conclusion

This paper considers the scenario of edge intelligence in noisy network environment.
Since pictures can tolerate small distortions, to further reduce the transmission latency,
UDP is preferred to TCP. However, the unreliable network transmission is likely to cause
packet loss. The resulting image distortion causes damage to EI reliability, especially
in object detection applications. To improve EI performance in lossy environment, we
consider JPEG Progressive encoding is a possible solution.

In our experiments, progressive encoding achieves higher inference reliability
(mAPval) in all three scenarios of fixed single packet loss, pseudo-random multiple
packet loss and random packet loss in a real network. Especially when the packet loss is
close to the beginning of the file, the Progressive encoding achieves 5–10 times higher
mAPval than the Baseline encoding. The later latency analysis proves the necessity of
UDP transmission, with nearly all pictures meeting the latency threshold 100 ms. And
the time expense to re-encode in progressive is slight.

Overall, the JPEG Progressive improves the EI reliability in object detection signif-
icantly in lossy network. And it is promising to improve EI reliability in industries. Last
but not least, this paper indicates new research direction in image-based EI.
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Abstract. As an important part of machine learning, deep learning has
been intensively used in various fields relevant to data science. Despite of
its popularity in practice, it is still of challenging to compute the optimal
parameters of a deep neural network, which has been shown to be NP-
hard. We devote the present paper to an analysis of deep neural networks
with nonatomic congestion games, and expect that this can inspire the
computation of optimal parameters of deep neural networks. We consider
a deep neural network with linear activation functions of the form x + b
for some biases b that need not be zero. We show under mild conditions
that learning the weights and the biases is equivalent to computing the
social optimum flow of a nonatomic congestion game. When the deep
neural network is for classification, then the learning is even equivalent to
computing the equilibrium flow. These results generalize a recent seminar
work by [18], who have shown similar results for deep neural networks of
linear activation functions with zero biases.

Keywords: Deep neural networks · Game theory · Wardrop
equilibria · Local minima

1 Introduction

In 1980, the first International Symposium on Machine Learning was held in
Carnegie Mellon (CMU) in the United States, which has made machine learning
be known all over the world. Since then, machine learning has been widely used,
see, e.g., [1,5,13]. With the development of machine learning, its application sce-
narios have become more complex, and people have consciously associated game
theory with machine learning. In fact, the idea of game theory has always existed
in many machine learning exploration processes such as the classic support vector
machine (SVM) or reinforcement learning.

One can regard the classic SVM as finding a (pure) Nash equilibrium (NE)
for a two-person zero-sum game, since both of the two classes (players) want to
minimize their cost (classification errors), and an optimal classifier would then
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be a hyperplane that perfectly balances the cost of the two classes. This has
been realized by [12] for Network Intrusion Detection (NID), and obtained an
SVM classifier with better learning ability and generalized performance. More-
over, reinforcement learning can be seen as a game between the player and the
environment. [10] has designed a zero-sum random game reinforcement learning
algorithm. Then [11] have shown the convergence of that algorithm. [8] have
proposed a reinforcement learning method under the framework of general-sum
random games, in which some highly restrictive assumptions on the form of stage
games are made to ensure the convergence.

While hybridizing machine learning with games has attracted much atten-
tion, only few researchers have considered the combination of deep learning and
games. Deep learning is a machine learning method with a deep architecture.
It was formally proposed by [7] in 2006. Recently, it has attracted much main-
streamed attention since it overcomes the shortcomings of manual design features
rooted in traditional algorithms. So far, deep learning has successfully applied
to computer vision, pattern recognition, speech recognition, natural language
processing and recommendation systems, and others.

Despite of its popularity in application, deep learning itself is NP-hard. [14]
have proved in 1987 that finding the global minimum of a general nonconvex
function is NP-complete. With deep learning, one might expect that the func-
tion induced by the deep model has a certain structure to make the resulting
nonconvex optimization easier to handle. Unfortunately, [3] have shown that
training a simple 3-layer neural network is already NP-hard. Hence, commonly
used solution methods for deep learning are still these convex optimization tech-
niques such as various gradient descent approaches. [4] have used the property
of strict saddle point to prove that stochastic gradient descent at an arbitrary
starting point converges to a local minimum in polynomial iterations. This is the
first work to a global convergence guarantee for stochastic gradient descent of
nonconvex functions with exponentially many local minima and saddle points.
As a continuation, [9] have proved that the gradient descent method with dis-
turbance deformation converges to the second-order stationary point, and the
required number of iterations depends on the logarithm of the dimension. For
the case where all saddle points are nondegenerate, then all second-order sta-
tionary points would be local minima, and thus the results of [9] show that the
perturbed gradient descent method can escape saddle points almost for free.

We consider in this paper an alternative way for deep learning, which aims at
a possible paradigm for learning deep neural networks with nonatomic congestion
games, see [16]. As indicated by [6], training a deep neural network requires
optimizing a non-convex and non-concave objective function. Even in the case
of a linear activation function, it may lead to any local minimum far away from
the global minimum. Therefore, it’s very useful to theoretically analyze deep
neural networks with linear activation functions and we restrict our study only
to such networks.

A seminar work towards this direction has been done recently by [18]. They
have studied a linear deep neural network with activation functions of the form
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f(x) = x. They showed that the corresponding deep neural network can be
reformulated to be a nonatomic congestion game, and establish the equivalence
relationship between the optimal weights of the deep neural networks and the
Wardrop equilibria [19] of that nonatomic congestion game. Beyond this work,
studies towards deep learning with other games have also attracted certain atten-
tion, see, e.g., [2,17] and others. [17] have shown an approach to formulate a
deep neural network for supervised learning with differentiable convex gates
as a simultaneous move two-person zero-sum game, which allowed a bijection
between Karush-Kuhn-Tucker (KKT) points and Nash equilibria. [2] has pro-
posed to optimize the deep network using game methods, and studied deep
neural networks with nondifferentiable activation functions. In particular, [2]
has explained from the perspective of game theory why the convex optimization
design method in modern convolutional networks with nonconvex loss functions
guarantees convergence.

We continue the work of [18] to consider general linear activation functions,
that is, f(x) = x+b for certain biases b that might not be zero. We show that the
results of [18] carry over to this general case. While the results are similar, the
proofs are highly nontrivial due to the influence of the extra biases. In particular,
the nonatomic congestion game constructed by [18] does not apply in this general
case. Compared with the work of [18], we consider nonatomic congestion games
with more players, with each layer adding an O/D pair. Hence, we have proposed
a new constructive method for the nonatomic congestion game, and then prove
the results under this new environment.

The paper is organized as follows: Sect. 2 introduces the involved notions;
Sect. 3 shows the construction and reports our main results; Sect. 4 shows a
short summary of the whole paper. To improve the readability, we provide the
proofs in an Appendix.

2 Model and Preliminaries

As we consider both deep neural networks and nonatomic congestion games, we
devote this section to reviewing the relevant concepts.

2.1 Deep Neural Networks

We represent a deep (feed-forwarding) neural network (DNN) symbolically by a
tuple N = (V,E,L, I,O, F,W ) with components defined as follows.

N1) V is the neuron set of N . We assume, w.l.o.g., that V is finite and nonempty,
i.e., N is not an empty DNN.

N2) E is the link set of N . We assume, w.l.o.g., that neurons on the same layer of
N are disconnected, and that two consecutive layers of N are fully connected.
In other words, N is a fully connected DNN.

N3) L ≥ 2 is the layer number of N , i.e., N has L − 2 hidden layers. For each
l = 1, . . . , L, we denote by nl the number of neurons on the l-th layer.
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N4) I is the neuron set of the first layer of N , i.e., the input layer of N . According
to N3), the input layer has n1 neurons.

N5) O is the neuron set of the last layer of N , i.e., the output layer of N .
According to N3), the output layer has nL neurons.

N6) F = (fv)v∈V \I is the activation function vector of N , i.e., fv : R → R is the
activation function of neuron v ∈ V \ I. Note that the neurons of input layer
are responsible for receiving information from outsides, and so need not have
activation functions.

N7) Every link e ∈ E has a weight we. We denote by W = (we)e∈E the weight
vector of N . As N is feed-forwarding, every link e ∈ E connects two neu-
rons belonging respectively to consecutive layers. We thus write the weight we

explicitly as w
(l)
ij when the link e connects the i-th neuron v

(l)
i of the l-th layer

and the j-th neuron v
(l−1)
j of the (l − 1)-th layer. Then W is written equiva-

lently as (w(l))l=2,...,L, where w(l) := (w(l)
ij )1≤i≤nl, 1≤j≤nl−1 is the matrix of

weights connecting the layer l − 1 and the layer l for each l = 2, . . . , L.

As two consecutive layers are fully connected, a neuron v
(l)
i of layer l receives

information from all neurons v
(l−1)
j of layer l − 1 with weights w

(l)
ij for each

l = 2, . . . , L. Suppose that g
v
(l−1)
j

is the output of the neuron v
(l−1)
j of layer l − 1

for each j = 1, . . . , nl−1 and each l = 2, . . . , L. Then we have the feed-forwarding
recursion (2.1),

g
v
(l)
i

= f
v
(l)
i

⎛
⎝

nl−1∑
j=1

g
v
(l−1)
j

· w
(l)
ij

⎞
⎠ , i = 1, . . . , nl, l = 2, . . . , L, (2.1)

where f
v
(l)
i

(·) is the activation function of neuron v
(l)
i .

We focus on linear activation functions with biases, i.e., fv(x) = x + bv for
some bias bv ≥ 0 and each neuron v ∈ V \ I. We denote by b = (bv)v∈V \I the
bias vector. With respect to these linear activation functions, the recursion (2.1)
can be written explicitly as

g
v
(l)
i

=
nl−1∑
j=1

g
v
(l−1)
j

· w
(l)
ij + b

v
(l)
i

, i = 1, . . . , nl, l = 2, . . . , L. (2.2)

Then the weights w
(l)
ij together with the biases b

v
(l)
i

control the outputs of N
when the inputs of N are given. A typical supervised learning task is then to
compute weights w

(l)
ij and biases b

v
(l)
i

for N such that the resulting outputs of
N match the labels of given training samples as good as possible.

Consider now an arbitrary training set H = {(X1, Y 1), (X2, Y 2), . . . ,
(XN , Y N )}, where Xn = (xn

v
(1)
j

)j=1,...,n1 ∈ R
n1 is an n1-dimensional feature

vector and Y n = (yn

v
(L)
i

)i=1,...,nL
∈ R

nL is an nL-dimensional label for each

n = 1, 2, . . . , N . When the n-th feature vector Xn is fed to N , the input
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layer of N sends directly Xn to the second layer, i.e., the j-th neuron v
(1)
j

of the first layer outputs g
v
(1)
j

(Xn) := xn

v
(1)
j

for each j = 1, . . . , n1. This follows

since the neurons of input layer are only responsible for receiving information
from outsides. With the recursion (2.2), this received information Xn will be
iteratively perceived and eventually transformed to an nL-dimensional output
O(Xn) =

(
g

v
(L)
i

(Xn)
)
i=1,...,nL

. Here, we use symbols g
v
(L)
i

(Xn) to indicate the
dependence of the outputs of N on the input feature vector Xn.

We hope that these output labels O(Xn) are close enough to the true labels
Y n of feature vectors Xn. Their “distance” is usually measured by a specified
loss function � : RnL ×R

nL → R+ := [0,∞). Then the “quality” of weights w
(l)
ij

and biases b
v
(l)
i

could be quantified by the resulting average loss loss(W, b) =
1
N

∑N
n=1 �(O(Xn), Y n), where the notation loss(W, b) indicates the dependence

of the average loss on the weights w
(l)
ij and the biases b

v
(l)
i

, w.r.t. the given

training set H. In our study, we will assume that the weights w
(l)
ij satisfy the

conditions

w
(l)
ij ≥ 0, ∀i = 1, . . . , nl, ∀j = 1, . . . , nl−1, ∀l = 2, . . . , L,
nl∑

i=1

w
(l)
ij = 1, ∀j = 1, . . . , nl−1, ∀l = 2, . . . , L,

(2.3)

and that the biases b
v
(l)
i

fulfill the conditions

b
v
(l)
i

≥ 0 and
nl∑

j=1

b
v
(l)
j

= 1, ∀i = 1, . . . , nl, ∀l = 2, . . . , L. (2.4)

Then an optimal pair (W ∗, b∗) of weights and biases for N , w.r.t. a given training
set H will fulfill conditions (2.3)–(2.4) and minimize the above average loss.

2.2 Nonatomic Congestion Games

A nonatomic congestion game (NCG) is written as a tuple Γ = (G,K, c,D,P, r),
see also [15], whose components are defined as follows.

G1) G = (V,A) is a directed graph (routing network) with a finite non-empty
arc set A and a finite non-empty vertex set V.

G2) K = {(o1, t1), . . . , (oK , tK)} ⊆ V×V is a finite set of travel origin-destination
(O/D) pairs defined on the routing network G, where K = |K| > 0 is the
constant denoting the number of O/D pairs of Γ. In the sequel, we shall
identify an O/D pair (ok, tk) with its index k for simplifying notation.

G3) c = (ca)a∈A is a vector of functions with each ca(·) denoting a flow-
dependent non-negative, continuous and non-decreasing cost (i.e., traversal
latency) of an arc a ∈ A.



374 C. Ren et al.

G4) D = (dk)k∈K is a real-valued vector with each dk > 0 denoting the amount
of traffic of O/D pair (ok, tk) for each k ∈ K.

G5) Feasible strategies of an O/D pair k ∈ K are simple paths leading from ok

to tk. We denote the set of all feasible strategies of O/D pair k by Pk for
each k ∈ K. Then P :=

⋃
k∈K Pk is the set of all strategies of Γ.

G6) Associated with a strategy p ∈ Pk and an arc a ∈ p is a nonnegative rate
rp,a of consumption. We put rp,a = 0 when a �∈ p. Then r := (rp,a)p∈P,a∈A
is the consumption matrix of Γ.

Players in Γ are assumed to be infinitesimal, and each of them controls only
a negligible fraction of demands. They need to route their traffic simultaneously
and independently, which results in a traffic flow z = (zp)p∈P such that zp ≥ 0
is the flow value of path p ∈ P and

∑
p∈Pk

zp = dk for all k ∈ K. This flow z =
(zp)p∈P in turn induces an arc flow (za)a∈A, where za :=

∑
k∈K

∑
p∈Pk:a∈p rp,a ·

zp is the resulting flow value of arc a ∈ A. Then an arc a ∈ A has a cost of
ca(za), w.r.t. z = (zp)p∈P . We assume that the cost is linearly aggregated along
a path, and so a path p ∈ P has a cost of cp(z) :=

∑
a∈A:a∈p rp,a · ca(za),

w.r.t. flow z. The social cost SC(z), w.r.t. flow z is then computed by SC(z) =∑
k∈K

∑
p∈Pk

cp(z) · zp =
∑

a∈A ca(za) · za. Furthermore, a social optimum (SO)
of Γ is a flow which minimizes this social cost of Γ .

While Γ has SO flows, they are usually hard to be attained in practice, since
players are selfish and only want to follow their own cheapest paths. This selfish
behavior leads to an equilibrium state of Γ. Formally, a traffic flow z of Γ is
called a Wardrop equilibrium (WE) of Γ if cp(z) ≤ cp′(z) for each O/D pair
k ∈ K and any two paths p, p′ ∈ Pk with zp > 0, see [19]. Since players in Γ
are infinitesimal and the cost functions ca are nondecreasing, nonnegative and
continuous, a WE of Γ corresponds to a pure Nash equilibrium and all WE have
the same social cost, see, e.g., [16] and [19].

Note that WE flows may deviate significantly from SO flows, see [16]. The
worst-case ratio of the social cost of a WE flow over that of an SO flow is known
as the Price of Anarchy (PoA), which quantifies the inefficiency of WE flows,
see [16]. Formally, we define the PoA of Γ as

ρ(Γ ) := max
z̃, z∗

SC(z̃)
SC(z∗)

=
SC(z̃)
SC(z∗)

, (2.5)

where z̃ is an arbitrary WE flow of Γ and z∗ is an arbitrary SO flow of Γ. We
used in (2.5) the fact that all WE flows of Γ have the same social cost under our
assumption.

3 Main Results

Before we show our main results, we first make some assumptions on the DNN
N and its training set H as follows.
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A1) We assume that every feature vector Xn in H has only nonnegative features,
i.e., xn

v
(1)
j

≥ 0 for each n = 1, . . . , N and each j = 1, . . . , n1. Note that this is

not restrictive, as we can make all features of H nonnegative by subtracting
the minimum feature value min {xn

v
(1)
j

: n = 1, . . . , N, j = 1, . . . , n1}.

A2) The activation functions fv(·) of N are linear with biases satisfying condi-
tions (2.4).

A3) The weights w
(l)
ij of N satisfy conditions (2.3).

A4) All hidden layers are wider than the output layer, i.e., nl ≥ nL for all l ≥ 2.
A5) The loss function � : RnL × R

nL → R+ of N is linearly separable, or lin-
early decomposable, that means, �(O(Xn), Y n) =

∑nL

i=1 �1(gv
(L)
i

(Xn), yn

v
(L)
i

)

for each n = 1, . . . , N, where �1 : R × R → R+ is a “similarity” measure on
R. Then we have

loss(W, b) =
1
N

N∑
n=1

�(O(Xn), Y n) =
1
N

N∑
n=1

nL∑
i=1

�1(gv
(L)
i

(Xn), yn

v
(L)
i

). (3.1)

3.1 From DNNs to NCGs

Consider now an arbitrary training set H satisfying A1) and a DNN N =
(V,E,L, I,O, F,W ) satisfying A2)–A5). We now construct an NCG Γ (N ,H) =
(G,K, c,D,P, r) in accordance with the training set H and the DNN N . We first
build the routing network G of Γ (N ,H) as follows.

1) Each neuron of N becomes a vertex of G, and each link e ∈ E of N becomes
an arc of G.

2) For each l ≥ 2, we add an auxiliary vertex v(l) and nl auxiliary arcs (v(l), v
(l)
j )

leading from v(l) to the neurons v
(l)
j on layer l. We denote the set of these

L− 1 auxiliary vertices v(l) by V(L), and the set of the
∑L

l=2 nl auxiliary arcs
(v(l), v

(l)
j ) by A(L).

3) We then add to the resulting G a common destination vertex (i.e., sink
point) J .

4) For each i = 1, . . . , nL, we insert N −1 auxiliary vertices v
(L+1)
i , . . . , v

(L+N−1)
i

between the i-th neuron v
(L)
i of the output layer and the sink point J,

and connect them consecutively by N arcs a
(1)
i = (v(L)

i , v
(L+1)
i ), a

(2)
i =

(v(L+1)
i , v

(L+2)
i ), . . . , a

(N)
i = (v(L+N−1)

i , J). We put V(N) := {v
(L+n)
i : i =

1, . . . , nL, n = 1, . . . , N −1} and A(N) := {a
(n)
i : i = 1, . . . , nL, n = 1, . . . , N}.

5) Finally, the vertex set of G is V := V ∪ V(L) ∪ {J} ∪ V(N), and the arc set of
G is A := E ∪ A(L) ∪ A(N).

With this routing network G = (V,A), we define n1 + L − 1 O/D pairs and
their traffic demands as follows.

6) To avoid ambiguity, we denote by V(1) the set of vertices in V that are neurons
on the input layer of N , i.e., V(1) = I. We then put Ṽ = V(1) ∪V(L). For each
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vertex v ∈ Ṽ, we build an O/D pair (v, J) with unit traffic demand. Then
we obtain a set K = {(v, J) : v ∈ Ṽ} of n1 + L − 1 O/D pairs and a vector
D = (dv)v∈Ṽ of demands, where dv ≡ 1 is the traffic demand of O/D pair
(v, J) for each v ∈ Ṽ.

As the routing network G and the O/D pair set K have already been determined,
the strategy set P = ∪v∈ṼPv then follows accordingly. Here, we note that the
strategy set Pv of each O/D pair (v, J) is not empty, since consecutive layers of
N are fully connected.

7) We define the rate of consumption as follows. For each origin v ∈ Ṽ, each
path p ∈ Pv, and each arc a ∈ p, we put rp,a as 1 if a ∈ E ∪ A(L), as
xn

v if v = v
(1)
j ∈ V(1) = I for j = 1, . . . , n1, and a = a

(n)
i ∈ A(N) for i =

1, . . . , nL and n = 1, . . . , N, and as 1 if v ∈ V(L) and a = a
(n)
i ∈ A(N). Here,

we recall that xn

v
(1)
j

≥ 0 is the j-th feature of the n-th observation Xn of H,

which is a constant, w.r.t. the given training set H.
8) Finally, we define the arcs cost functions as below,

ca(η) :=

{
0, if a ∈ E ∪ A(L), or η = 0,

�1(η, yn

v
(L)
i

)/η, if η > 0 and a = a
(n)
i ∈ A(N),

∀η ≥ 0 ∀a ∈ A.

Here, we recall that yn

v
(L)
i

≥ 0 is the i-th entry of n-th label Y n of H, which

is a constant, w.r.t. the given training set H.

With all above, we have finished the construction of Γ (N ,H). We illustrate it
with Example 1 below.

Example 1. Consider now a deep neural network as shown in Fig. 1(a). Suppose
that we are given a training set H = {(X1, Y 1), (X2, Y 2), (X3, Y 3)}. We first
extend the network by introducing two new vertices for the biases, which then
results in Fig. 1(b). We further extend the network by adding the common desti-
nation J , and the auxiliary vertices and arcs connecting the output layer and J ,
see Fig. 1(c), which then forms the desired network of the nonatomic congestion
game.

3.2 Learning N With Γ (N , H)

We aim now to show that learning N for H is equivalent to compute SO flows
of Γ (N ,H). This generalizes the recent work of [18], who showed similar results
for DNNs with linear activation functions and zero biases.

Theorem 1 below shows that there is certain correspondence between flows
of Γ (N ,H) and pairs (W, b) of weights and biases of N . In particular, it shows
that the average loss loss(W, b) of N , w.r.t. a pair (W, b) of weights and biases
coincides exactly with 1

N · SC(z) for a flow z of Γ (N ,H), and vice versa. This
means that an optimal pair (W ∗, b∗) of weights and biases of N for H corresponds
to an SO flow z∗ of Γ (N ,H).
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Fig. 1. An example of how a deep neural network (DNN) can be transformed into a
nonatomic congestion game (NCG) network.

Theorem 1. Consider an arbitrary training set H satisfying A1), and a DNN
N satisying A2)–A5). Let Γ (N ,H) be the NCG defined as above. Then, for each
pair (W, b) of weights and biases of N , there is a flow z of Γ (N ,H) such that
loss(W, b) = 1

N SC(z). Moreover, for each flow z of Γ (N ,H), there is a pair
(W, b) of weights and biases of N such that loss(W, b) = 1

N SC(z).

In the proof of Theorem 1, we have shown effective methods for the transforma-
tions between flows of Γ (N ,H) and the pairs (W, b) of weights and biases of N .
Hence, we may obtain an optimal pair (W ∗, b∗) of N for H by computing an SO
flow z∗ of Γ (N ,H).

Theorem 2 below shows that each locally optimal pair (W, b) of weights and
biases of N corresponds to a WE flow z̃ of Γ (N ,H), and vice versa, when
�1(η, yn

v
(L)
i

) is additionally of the form An

v
(L)
i

· ηβ for some constants An

v
(L)
i

≥ 0

depending on yn

v
(L)
i

and β ≥ 1 for each i ∈ {1, . . . , nL} and n ∈ {1, . . . , N}.

Theorem 2. Consider an arbitrary training set H satisfying A1), and a DNN
N satisying A2)–A5). Suppose that �1(η, yn

v
(L)
i

) = An

v
(L)
i

· ηβ for some constants

An

v
(L)
i

≥ 0 dependent of yn

v
(L)
i

and β ≥ 1 for each i = 1, . . . , nL and each n =

1, . . . , N . Then, each locally optimal pair (W, b) of weights and biases of N for
H corresponds to a WE flow z̃ of Γ (N ,H), and vice versa.

Theorem 2 follows from Theorem 1 and the convexity of the resulting function
loss(W, b). [20] have shown that nonatomic congestion games with monomial
cost functions of the same degree are well designed and thus have the PoA of 1.
This applies to Γ (N ,H) when the deep neural network N has loss functions of
the particular form as in Theorem 2. In other words, WE flows and SO flows of
Γ (N ,H) coincide when N has loss functions of the specific form.

While �1(η, yn

v
(L)
i

) of Theorem 2 is seemingly restrictive, it applies when the

labels Y n of H are binary, i.e., yn

v
(L)
i

∈ {0, 1} for all n = 1, . . . , N and all i =
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1, . . . , nL. A typical example is that H is the training set of a classification
task, in which there are totally nL mutually different objects, and each Xn =
(xn

v
(1)
j

)j=1,...,n1 is an observation of the feature vector of one of these nL objects.

The labels Y n = (yn

v
(L)
i

)i=1,...,nL
are then binary with an entry yn

v
(L)
i

= 1 if and

only if the n-th observation Xn is the feature vector of the i-th object. For this
case, we can define �1(·) by penalizing incorrect labels output by N , i.e.,

�1(η, yn

v
(L)
i

) = An

v
(L)
i

·ηβ with An

v
(L)
i

:= 1−yn

v
(L)
i

, ∀i = 1, . . . , nL, ∀n = 1, . . . , N,

where β ≥ 1 reflects the degree, to which we penalize the incorrect labels. Then
Theorem 2 states that we can also find an optimal pair (W ∗, b∗) of weights and
biases of N by computing the WE flows of Γ (N ,H) when N is a DNN for
classification.

4 Conclusion

In this article, we have considered more general deep linear neural networks N
with activation function of form fv(x) = x + bv. Similar with that of [18], we
are able to show that there is a nonatomic congestion game Γ (N ,H) such that
learning the weights and biases of N for H is equivalent to computing the SO
flows of Γ (N ,H). In particular, we show that the learning task is even equivalent
to computing the WE flows of Γ (N ,H) when N is a deep neural network for
classification. While the theory has been there, we may still need a computation
to verify the results, which we leave as a future work. Moreover, this paper
considers loss functions that are linearly decomposable, which then resulted in
nonatomic congestion games with separable arc cost. One may then wonder if
the results still hold when the loss functions are not decomposable. For this
more general case, we can also construct a nonatomic congestion game for the
deep neural network. However, the game will then have nonseparable cost, which
would be very difficult to analyze. We thus leave this also as a future work.
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Abstract. Measures of circuit complexity are usually analyzed to ensure
the computation of Boolean functions with economy and efficiency. One
of these measures is the energy complexity, which is related to the num-
ber of gates that output true in a circuit for an assignment. The idea
behind energy complexity comes from the counting of ‘firing’ neurons in a
natural neural network. The initial model is based on threshold circuits,
but recent works also have analyzed the energy complexity of traditional
Boolean circuits. In this work, we discuss the time complexity needed to
compute the best case energy complexity among satisfying assignments
of a monotone Boolean circuit, and we call such a problem as MinEC+

M .
In the MinEC+

M problem, we are given a monotone Boolean circuit C,
a positive integer k and asked to determine whether there is a satisfying
assignment X for C such that EC(C,X) ≤ k, where EC(C,X) is the
number of gates that output true in C according to the assignment X.
We prove that MinEC+

M is NP-complete even when the input monotone
circuit is planar. Besides, we show that the problem is W[1]-hard but in
XP when parameterized by the size of the solution. In contrast, we show
that MinEC+

M on bounded genus circuits is FPT.

Keywords: Energy complexity · Monotone circuit · Genus · FPT

1 Introduction

Circuit Complexity is a research field that aims to study bounds for measures
(such as size and depth) of circuits that compute Boolean functions. The size of
a circuit is its number of logic gates, and depth is the largest path from any input
to the output gate. A circuit complexity analysis can provide precise lower/upper
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bounds on circuits classes that represent classic decision problems besides the
possibility to design efficient Boolean circuits according to specific properties
(see [9,13,21]). In addition, some important bounds are described to deal with
different definitions of size [1]. From a combinatorial point of view, several opti-
mization problems address the minimization of measures in some circuits classes,
such as the notorious Weighted Circuit Satisfiability problem, where the
weight measures the amount of true values assigned to the input variables.
Despite this ‘zoo of measures’, optimizing properties like size and depth does
not always guarantee an ‘efficient’ design of a specific circuit class. Depending
on the purpose, a circuit with small size (either considering gates or wires) or
depth can be inappropriate; such a situation was identified in [19].

When faced with threshold circuits used as an artificial neural network, it
is possible to observe a contrast with neurons of the human brain. The authors
in [19] (based in neuroscience literature) argue that the activation of neurons in a
human brain happens sparsely. It was shown in [12] that the metabolic cost of a
single spike in cortical computation is very high in a way that approximately 1%
of the neurons can be activated simultaneously. This phenomenon happens due to
the asymmetric energy cost between neurons activated and non-activated in nat-
ural cases. From the other side, digital circuits, when satisfied (outputting true),
on average activate 50% of the gates. Under different perspectives, ‘energy’ (or
‘power’) of a circuit is a measure that has a lot of attention in the literature.
Due to multiple models (from biology, electronics, or purely theoretical), several
works address different ways of analyzing the energy of a circuit. In [11], the
energy consumption of a circuit considers the switching energy consumed by
wires (edges) and gates of VLSI circuits. In [3] and [4], it is analyzed the voltage-
to-energy consumed by the gates, taking into consideration the failure-to-energy.
Other different models are explored in [16] and [5], such works try to explore
concepts of energy too intrinsic to the design of practical circuits on electronics.

In this paper, we deal with a circuit complexity measure called energy com-
plexity (EC). The idea behind this measure is to evaluate the number of gates in
a circuit that returns true for an assignment. A similar concept called ‘power of
circuit’ was studied by [20]. The term energy complexity was introduced in [19]
as an alternative to the dilemma artificial vs natural described above. In [19],
the authors prove that the minimization of circuit energy complexity obtains a
different structure from the minimization of previously considered circuit com-
plexity measures and potentially closer to the structure of neural networks in
the human brain. The authors proved initial lower bounds for energy complexity
and other circuit complexity measure called entropy.

With a different perspective, this work dedicates attention to optimization
and decision problems related to energy complexity. More precisely, we consider
the problem of determining the satisfying assignment with minimum energy
consumption in monotone circuits, i.e., the best case energy complexity of a
satisfying assignment in the class of monotone circuits – MinEC+

M . The mini-
mization of energy complexity potentially can help the design of circuits with
sparse activation, hence, more similar to biological models. Our focus is on time
(parameterized) complexity of the henceforth defined MinEC+

M .



382 J. C. N. Silva et al.

In [2], a measure called certification-width was described, which is the size of
a minimum subset of edges that are enough to certificate a satisfying assignment.
Such edges form a structure called succinct certificate that can be seen as a min-
imal map of edges to be followed in order to activate the output gate. Similar
structures can also be found in [17,18]. Note that there are similarities between
certification-width and energy complexity. Both measures indicate saturation
levels of circuits, but while certification-width focuses on edges, energy complex-
ity is about the activation of gates. However, energy complexity presents two
additional challenges: (i) EC ignores the ‘firing’ of input gates; (ii) EC counts
activated gates even if its signal does not reach the output gate (due to unsatis-
fied gates ). These two issues forbid rushed conclusions about EC based on what
we know about certification-width. Nevertheless, the study in [2] also motivates
the study of the complexity of computing the best case energy complexity of
satisfying assignments in monotone circuits.

Note that in energy complexity problems in addition to working with the
gates needed to satisfy the circuit, it is still necessary to handle gates that
assignments may collaterally activate. Such behavior makes working with energy
complexity problems more challenging than typical satisfying problems where
the focus is only on the minimal set of inputs, gates, or wires/edges sufficient to
satisfy the circuit.

Preliminaries

Given a Boolean circuit C and an assignment X, the Energy Complexity of
X into C, EC(C,X), is defined as the number of gates that output true in
C according to the assignment X. The (Worst-Case) Energy Complexity of C
(denoted by EC(C)) is the maximum EC(C,X) among all possible assignments
X (See [7]). Analogously, the Best-Case Energy Complexity of C (denoted by
MinEC(C)) is the minimum EC(C,X) among all possible assignments X.

While computing the worst-case energy complexity of satisfying assignments
in monotone circuits is trivial (activate all inputs), the problem of computing
the best-case energy complexity among all satisfying assignments in monotone
circuits seems a challenge. Therefore, in this work, we address this particular
case where the circuit is monotone, focusing on the following decision problem:

Best-Case Energy Complexity of Satisfying Assignments in
Monotone Circuits – MinEC+

M

Instance: A monotone Boolean circuit C and a positive integer k.
Question: Is there a satisfying assignment X for C such that EC(C,X) ≤ k?

Besides, we denote by k-MinEC+
M the parameterized version of MinEC+

M

where k is taking as the parameter.

2 Computational Complexity Analysis

In this section, we present our (parameterized) complexity results regarding
MinEC+

M . Using a reduction from Planar Vertex Cover, similar to that
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employed in [2], we are able to show that MinEC+
M is NP-complete even when

restrict to planar circuits.

Theorem 1. MinEC+
M is NP-complete even when restricted to planar circuits.

Next, we investigate the parameterized complexity of MinEC+
M .

Theorem 2. k-MinEC+
M is in XP.

Proof. Let C = (V,E) be a circuit with V = I ∪G∪{vout}, where I is the set of
inputs of C, G is the set of gates and vout is the output gate. If C has a satisfying
assignment X such that EC(C,X) ≤ k then we can find X as follows:

1. Suppose that X is the satisfying assignment with EC(C,X) ≤ k having
minimum weight (i.e., minimum number of inputs assigned as true);

2. First, we “guess” the set T of gates that should be activated by X, that is,
in nO(k) time, we enumerate each subset T of gates such that |T | ≤ k and
check each one in a new branch;

3. For each T we can check in polynomial time whether it is consistent, that is:
– vout ∈ T ;
– For each OR-gate v in T either it has an in-neighbor in T or it has an

in-neighbor in I, and for each AND-gate v in T its in-neighborhood is
contained in T ∪ I;

– Conversely, each OR-gate w /∈ T has no in-neighbor in T , and for each
AND-gate w /∈ T has at least one in-neighbor that is not in T ;

– Also, no input is mutually in-neighbor of an AND-gate in T and an OR-gate
not in T ;

– Note that, if T is the set of gates activated by X then it holds that: any
input i that is in-neighbor of an AND-gate in T should be set as true in
X; any input i that is in-neighbor of an OR-gate not in T should be set
as false in X. Let X ′ be such a partial assignment;

– Therefore, each OR-gate v in T having no in-neighbor in T has at least
one in-neighbor in I that is not set as false by X ′, and each AND-gate
w /∈ T having no in-neighbor in G \ T has at least one in-neighbor in I
that is not set as true in X ′.

4. Since X has minimum weight, from a given consistent set T , in order to extend
X ′ into a satisfying assignment X with EC(C,X) ≤ k (if any), it is enough
to “guess” the minimal set of inputs that should be set as true to activate the
OR-gates in T having no in-neighbor in T . As |T | ≤ k, such subset of inputs
is also bounded by k, thus, in nO(k) time, we can enumerate (if any) each
assignment X ′′ extending X ′ by setting at most k additional inputs as true
in such a way that each OR-gates in T has at least one in-neighbor activated.
At this point, from the guessed set T we obtain the assignment X if there is
some X ′′ for which each AND-gate w /∈ T having no in-neighbor in G \ T has
at least one in-neighbor in I that is set as false.

Note that for any satisfying assignment X of C the set of activated gates
must satisfy the properties described in step 3. Since steps 2 and 4 check in
nO(k) time all possibilities, it holds that MinEC+

M is XP-time solvable. ��
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Now, we show the W[1]-hardness of k-MinEC+
M using a reduction from Mul-

ticolored Clique.

Multicolored Clique
Instance: A graph Q with a vertex-coloring � : V (G) → {1, 2, . . . , c}.
Parameter: A positive integer c.
Question: Does Q have a c-clique containing all c colors?

Theorem 3. k-MinEC+
M is W[1]-hard.

Proof. Let (Q, c) be an instance of Multicolored Clique and let
V1, V2, . . . , Vc be the color classes of Q. Without loss of generality, we consider
that each vertex in Vi has at least one neighbor in Vj(i �= j). We construct an
instance (C, k) of MinEC+

M (k) as follows:

1. create an output gate vout in C and set f(vout) = AND;
2. for each color ci of Q, create a gate wi with f(wi) = OR and add an edge from

wi to vout;
3. for each color class Vi of Q, create copies V 1

i , V 2
i , V 3

i and V 4
i in C;

4. add edges from each vertex in V 4
i to wi;

5. let v1, v2, v3 and v4 be the copies of a vertex v ∈ V (Q); add edges
(v1, v2), (v2, v3) and (v3, v4) to G; set V 1

i as the input set; and assign
f(v2) = f(v3) = OR and f(v4) = AND;

6. for each vertex v4 ∈ V 4
i (1 ≤ i ≤ c), create c − 1 new OR-in-neighbors aj

v4(1 ≤
j ≤ c and i �= j), and for each u2 ∈ V 2

j such that vu ∈ E(Q) create an
AND-vertex bjvu and the following edges: (bjvu, aj

v4), (u2, bjvu) and (v2, bjvu);
7. finally, set k = 2c2 + 2c + 1.

If Q contains a multicolored clique K such that |K| = c, then it is possible
to find a satisfying assignment of C that consumes k energy by mapping the set
S of gates/vertices that must be activated (outputs true) as follows: (a) vout
and all of its in-neighbors must belong to S; (b) for each OR-gate wi ∈ S, we
want include in S exactly the in-neighbor v4 ∈ V 4

i such that v ∈ K, therefore,
we set f(v1)=true if and only if v ∈ K (At this point, by construction, for each
v /∈ K holds that every vertex between v1 and v4 will be inactivated); (c) for
each v4 ∈ S, all of its in-neighbors must be in S, and for each aj

v4 in S, its unique
in-neighbor in S must be the AND-gate bjvu such that f(v1) = f(u1)=true (recall
that K has exactly one vertex per color). (d) finally, a vertex v2 ∈ V2 belongs
to S if and only if its in-neighbor v1 outputs true. Through a simple count one
can conclude that |S| = 2c2 + 2c + 1. Thus, the defined assignment satisfies C
by consuming k energy as required.

Conversely, if C has a satisfying assignment X with energy complexity at
most k = 2c2 + 2c + 1 then it is possible to obtain a multicolored clique K of Q
as follows: a vertex v of Q belongs to K if and only if v2 outputs true. Since, by
construction, any satisfying assignment of C activates at least 2c2 +2c+1 gates
in V (C) \ (V2 ∪ V1), the assignment X activates at most c gates in V2. Besides,
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the construction also implies that at least one input per color must activated
in order to satisfy C. So, X activates exactly c gates in V2 (one per color).
Therefore, K has exactly one vertex per color. Now, to show that K induces
a clique is enough to observe the if v2 and u2 are activated in X into C and
vu /∈ E(G), then for the color j of u holds that bjvr is inactivated by X into C
for any neighbor r of v with color j. Thus, v4 and wi are also inactivated, where
i is the color of v, which contradicts the fact that X satisfies C. Therefore, K
induces a clique. ��

2.1 On Monotone Circuits with Bounded Genus

A graph G has genus at most g if it can be drawn on a surface of genus g (a
sphere with g handles) without edge intersections. We consider the genus of a
circuit as the genus of its underlying undirected graph.

In this section, we show that k-MinEC+
M on bounded genus circuits can be

reduced to k-MinEC+
M on bounded treewidth circuits.

Definition 1. A tree decomposition of a undirected graph G is a pair T =
(T, {Xt}t∈V (T )), such that T is a tree where each node t is assigned to a set of
vertices Xt ⊆ V (G), called bags, according to the following conditions:

–
⋃

t∈V (T ) Xt = V (G);
– For each uv ∈ E(G) there is a node t such that {u, v} ⊆ Xt;
– For each v ∈ V (G), the set Tv = {t ∈ V (T ) : v ∈ Xt} spans a subtree of T .

The width of a tree decomposition T is the size of its largest bag minus one.
The treewidth of G is the minimum width among all tree decompositions of G.

Definition 2. A graph H is a minor of a graph G if H can be constructed from
G by deleting vertices or edges, and contracting edges.

Theorem 4 (Excluded Grid Theorem [14]). Let t be a non-negative integer.
Then every planar graph G of treewidth at least 9t/2 contains a grid t × t as a
minor.

From the Excluded Grid Theorem, it is easy to see that there is a connection
between the diameter of a planar graph and its treewidth. In [15], Robertson and
Seymour presented a bound for the treewidth of a planar graph with respect to
its radius, which also implies a bound regarding the diameter.

Definition 3. For every face F of a planar embedding M , we define d(F ) to be
the minimum value of r such that there is a sequence F0, F1, . . . , Fr of faces of
M , where F0 is the external face, F = Fr, and for 1 ≤ j ≤ r there is a vertex
v incident with both Fj−1 and Fj. The radius ρ(M) of M is the minimum value
r such that d(F ) ≤ r for all faces F of M . The radius of a planar graph is the
minimum of the radius of its planar embeddings.

Theorem 5 (Radius Theorem [15]). If G is planar and has radius at most r
then its treewidth is at most 3r + 1.
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Using Theorem 5 we are able to either solve MinEC+
M on planar circuits or

outputs an equivalent instance C ′ with treewidth bounded by a function of k.

Lemma 1. Let (C, k) be an instance of MinEC+
M . There is an algorithm that

in polynomial time either solves (C, k) or outputs an equivalent instance (C ′, k)
of MinEC+

M where each vertex is at distance at most 2k + 1 from vout in the
underlying undirected graph of C ′.

Proof. From an instance (C, k) of MinEC+
M , we apply the following reduction

rules to obtain C ′:

1. Delete every input vertex which is at a distance greater than k to vout;
2. Delete every vertex which is at a distance greater than k + 1 from its nearest

input vertex;
3. Delete any AND-vertex which lost one of its in-neighbors;
4. Delete any OR-vertex in which its in-degree became equal to 0;
5. Repeat steps 1 to 4 as long as possible;
6. If C ′ = ∅ then we conclude that (C, k) is a no-instance of MinEC+

M .

We now discuss the safety of the previous reduction rules: if an input vertex
v is at a distance greater than k from vout, since C is monotone, then v is not
useful to satisfy vout in any assignment X with EC(C,X) ≤ k, thus we can
assume that v outputs false and given the monotonicity of C we can safely
remove v (Rule 1). Similarly, gates that are at a distance greater than k from
its nearest input vertex must output false in an assignment X; otherwise, X
consumes energy greater than k. Note that vertices at a distance exactly k + 1
from its nearest input vertex can be useful to show that a given assignment
consumes energy greater than k. However, gates at a distance of at least k + 2
from its nearest input vertex can be removed once its neighbors are sufficient
to certify the negative answer (Rule 2). Besides, if for any assignment X with
EC(C,X) ≤ k holds that some (resp. every) in-neighbor of an AND( resp. OR)-
vertex v must output false, then v must output false as well. Thus, Rule 3
and Rule 4 are safe. From the safety of rules 1–4, it follows that Rule 5 and Rule
6 are safe. Finally, if C ′ �= ∅ then C ′ has only vertices at a distance at most
2k + 1 from vout in the underlying undirected graph of C ′. ��

Note that the underlying undirected graph of the circuits obtained from
Lemma 1 have diameter bounded by 4k + 2. Therefore, contrasting with the
W[1]-hardness for the general case, Corollary 1 holds.

Corollary 1. MinEC+
M is fixed-parameter tractable when restricted to mono-

tone circuits having bounded maximum in-degree.

Also, notice that a gate with large in-degree can always be replaced by a
binary tree using only binary gates, but for or-gates it makes a relevant difference
in the energy complexity. Therefore, replacing large in-degree gates is not a useful
strategy for dealing with k-MinEC+

M . On the other hand, Lemma1 also implies
that if C ′ is planar then it also has bounded radius , thus, by Theorem5, it
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follows that the underlying undirected graph of C ′ has treewidth bounded by a
function of k. We extend the previous reasoning for bounded genus circuits.

Given a vertex-set S ⊆ V (G) of a simple graph G such that the subgraph of
G induced by S, denoted G[S], is connected, contracting S means contracting
the edges between the vertices in S to obtain a single vertex at the end. We
say that a graph H is an s-contraction of a graph G if H can be obtained after
applying to G a (possibly empty) sequence of edge contractions.

The following is a construction presented in [8] and [10]. Consider an (r × r)-
grid. A corner vertex of the grid is a vertex of the grid of degree 2. By Γr we
denote the graph obtained from the (r × r)-grid as follows : construct first the
Γ ′
r by triangulating all internal faces of the (r × r)-grid such that all internal

vertices of the grid are of degree 6, and all non-corner external vertices of the
grid are of degree 4 (Γ ′

r is unique up to isomorphism). Two of the corners of the
initial grid have degree 2 in Γ ′

r; let x be one of them. Γr obtained from Γ ′
r by

adding all the edges having x as an endpoint and a vertex of the external face
of the grid that is not already a neighbor of x as the other endpoint. Observe
again that Γ ′

r is unique up to isomorphism. The following is a lemma from [10]
implied from Lemma 6 in [8].

Lemma 2 (Lemma 4.5 in [10]). Let G be a graph of genus g, and let r be any
positive integer. If G excludes Γr as an s-contraction, then the treewidth of G is
at most (2r + 4) · (g + 1)3/2.

Lemma 3. Let C ′ be the circuit obtained from Lemma1. It holds that C ′ has
treewidth at most (8k + 14) · (g + 1)3/2, where g is the genus of C ′.

Proof. First, notice that for each vertex u of a Γ4k+5 there is another vertex v
such that the distance between u and v is at least 2k + 2. Now, suppose that C ′

has Γ4k+5 as an s-contraction, and let u be a vertex of a Γ4k+5 such that u is
either vout or a vertex obtained by contracting S containing vout. Since there is
a vertex v such that the distance between u and v is at least 2k+2, it holds that
C ′ has a vertex at distance greater than 2k+1 from vout, which is a contradiction
(see Lemma 1). Thus, by Lemma 2 we have that the treewidth of C ′ is at most
(8k + 14) · (g + 1)3/2. ��

3 Dynamic Programming on Bounded Treewidth Circuits

From Lemma 3, in order to solve k-MinEC+
M in FPT-time on bounded genus

instances, it is enough to present an FPT algorithm parameterized by the
treewidth of the input. To design a dynamic programming on tree decomposi-
tions, without loss of generality, we may consider that we are given a tree decom-
position that is a rooted extended nice tree decomposition (see [6] for details).

Theorem 6. MinEC+
M can be solved in time 2O(tw) ·n, where tw is the treewidth

of the underlying undirected graph of the input.
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Proof. Let C = (I,G, vout) be a monotone circuit where I is the set of inputs of
C, G is the set of gates with out-degree greater than 0 and vout is a single output
vertex. Let T = (T, {Xt}t∈V (T )) be a rooted extended nice tree decomposition
of C. Consider also Tt as the subtree of T rooted by node t (bag Xt) and Ct

be the graph/circuit having Tt = (Tt, {Xi}i∈V (Tt)) as tree decomposition. For
convenience, we add the vertex vout to every bag of T ; thus, the width of T is
increased by at most one.

Now, note that an assignment X satisfies a monotone circuit C if and only
if it induces an activation set SX such that:

1. vout ∈ SX ;
2. for each v ∈ SX holds that:

– if f(v) = AND then every in-neighbor of v is in SX ;
– if f(v) = OR then at least one among the in-neighbors of v is in SX ;

3. for each v /∈ SX holds that:
– if f(v) = AND then at least one among the in-neighbor of v is not in SX ;
– if f(v) = OR then every in-neighbor of v is not in SX ;

Properties 1 and 2 describe the necessary and sufficient conditions for a set
SX of activated gates to certify a satisfying assignment. Property 3 ensures that
SX is maximal regarding the property of having been activated by X.

Therefore, the problem of finding a satisfying assignment X which minimizes
EC(C,X) can be seen as the problem of finding a satisfying assignment X
which minimizes |SX \ I|. Thus, we define c[t, S,BOR,BAND] as the cardinality of
a minimum set of gates St (if any) of Ct such that:

– vout ∈ S and S = Xt ∩ St; (we say that Xt \ S = S)
– for each v ∈ V (Ct) \ Xt properties 2 and 3 holds with respect to St;
– for each v ∈ S such that f(v) = AND, all in-neighbors of v in Ct are in St;
– The set BOR is the subset of OR-gates in S already having in-neighbors in St;
– for each v ∈ S such that f(v) = OR, all in-neighbors of v in Ct are not in St;
– The set BAND is the subset of AND-gates in S already having in-neighbors that

are not in St;

Furthermore, the optimal solution of the main problem can be found either at
c[r, {vout}, {vout}, {}], if f(vout) = OR, or at c[r, {vout}, {}, {}], if f(vout) = AND,
where r is the root of the tree decomposition T . Recall that, for any node t we
assume that vout ∈ S.

In order to solve MinEC+
M , the counting of gates that output true (in the

solution) are made in introduce vertex nodes. Note that in the introduce node of
an OR-vertex v, it can not be simultaneously in S and BOR because when a vertex
is introduced then it is isolated in Ct (we are considering an extended nice tree
decomposition, i.e. the edges are introduced in introduce edge nodes).

Leaf Node. Let t be a leaf node, then Xt = {vout}. Since vout must be in S, then
BAND = ∅. Thus, we have three subproblems in Eq. (1).

c[t, {vout},BOR,BAND] =

⎧
⎨

⎩

1, if f(vout) = AND
1, if f(vout) = OR and vout /∈ BOR

∞, if f(vout) = OR and vout ∈ BOR

(1)



Energy Complexity of Satisfying Assignments in Monotone Circuits 389

Introduce Vertex Node. Let t be an introduce vertex node with exactly one child
t′ such that Xt = Xt′ ∪ {v}. In the graph Ct, v is an isolated vertex; consequently,
as in the leaf nodes, there is infeasibility whenever v belongs to BOR or BAND.
Besides, we have the possibility of v be an input vertex (f(v) /∈ {AND, OR})
or v /∈ S, such situations only rescue previous subproblems without increment
the current subsolution. On the other hand, we increment the subsolution by 1
whenever v ∈ S. All possibilities are covered in Eqs. (2), (3) and (4).

– If f(v) /∈ {AND, OR} then

c[t, S,BOR,BAND] = c[t′, S \ {v},BOR,BAND] (2)

– If f(v) = OR then

c[t, S,BOR,BAND] =

⎧
⎨

⎩

c[t′, S,BOR,BAND], if v /∈ S
c[t′, S \ {v},BOR,BAND] + 1, if v ∈ S and v /∈ BOR

∞, if v ∈ S and v ∈ BOR

(3)

– If f(v) = AND then

c[t, S,BOR,BAND] =

⎧
⎨

⎩

c[t′, S \ {v},BOR,BAND] + 1, if v ∈ S
c[t′, S,BOR,BAND], if v /∈ S and v /∈ BAND

∞, if v /∈ S and v ∈ BAND

(4)

Introduce Edge Node. Let t be an introduce edge node and t′ its child such that
Xt = Xt′ , which introduces the directed edge uv such that {u, v} ⊆ Xt. Now, by
including an edge, we can evaluate each subproblem concerning the sets BOR and
BAND; so, for each OR-gate v ∈ S, at least one in-neighbor also must be in S; so,
either uv attend this demand or another already introduced edge satisfied that.
We apply the same reasoning for AND-gates: considering an AND-gate v ∈ S, then
at least one in-edge of v need comes to another vertex in S; if uv do not attend
this requirement, the current subproblem is assigned to a previous subproblem
where v ∈ BAND. All these conditions are handled in Eqs. (5) and (6). Recall that
we are introducing the directed edge uv.

– If f(v) = OR then c[t, S,BOR,BAND] is equal to
⎧
⎨

⎩

c[t′, S,BOR,BAND], if u /∈ S
∞, if u ∈ S and v /∈ S ∩ BOR

min {c[t′, S,BOR,BAND], c[t′, S,BOR \ {v},BAND]} , if u ∈ S and v ∈ S ∩ BOR

(5)
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– If f(v) = AND then c[t, S,BOR,BAND] is equal to
⎧
⎪⎪⎨

⎪⎪⎩

c[t′, S,BOR,BAND], if u ∈ S
∞, if u /∈ S and v ∈ S
∞, if {u, v} ⊆ S and v /∈ BAND

min {c[t′, S,BOR,BAND], c[t′, S,BOR,BAND \ {v}]} , if {u, v} ⊆ S and v ∈ BAND

(6)

Forget Node. Let t be a forget node and t′ be its child such that Xt = Xt′\v. In
this case, we verify the best among either selecting or not v in current subprob-
lem. If v is an input vertex, then this verification is trivial (it is enough to rescue
the minimum subsolution varying only the membership of v in S). For OR-gates
and AND-gates, the same verification are made but considering the feasibility of v
through its membership in BOR and BAND. Equations (7), (8) and (9) summarize
these three scenarios.

– If f(v) �= {AND, OR} then

c[t, S,BOR,BAND] = min
{
c[t′, S,BOR,BAND], c[t′, S ∪ {v},BOR,BAND]

}
(7)

– If f(v) = OR then

c[t, S,BOR,BAND] = min
{
c[t′, S,BOR,BAND], c[t′, S ∪ {v},BOR ∪ {v},BAND]

}
(8)

– If f(v) = AND then

c[t, S,BOR,BAND] = min
{
c[t′, S,BOR,BAND ∪ {v}], c[t′, S ∪ {v},BOR,BAND]

}
(9)

Join Node. Let t be a join node with two children t1 and t2. For tabulation of
the join nodes, we need to combine two partial solutions – one originating from
Ct1 and another from Ct2 – in such a way that the merging is a feasible solution.
Recall that G is acyclic so we don’t need to care about cycles. Also, if a gate
is activated in Ct it must be activated in both children, so we must subtract
duplicity. However, since each edge of Ct is in either Ct1 or Ct2 , the feasibility of
merging children’s solutions is guaranteed assuming that whether v ∈ BOR/BAND

then it is also in the respective set of one of the children, as described in Eq. 10.

c[t, S,BOR,BAND] = min
BOR

1 ,BAND
1 ,BOR

2 ,BAND
2

{
c[t1, S,BOR

1 ,BAND
1 ] + c[t2, S,BOR

2 ,BAND
2 ]

}
− |S \ I|

(10)
where BOR = BOR

1 ∪ BOR
2 and BAND = BAND

1 ∪ BAND
2 .

Every bag of T has at most tw + 2 vertices (including vout) and vout is fixed
in the solution, thus each bag has at most 2tw+1 possible subsets S, there are at
most 2tw+2 possible sets BOR, and there are at most 2tw+1 sets BAND. Therefore,
the entire matrix has size 2O(tw) ·n. As each entry of the table can be computed
in 2O(tw) time, it holds that the algorithm performs in time 2O(tw) · n. ��

Corollary 2. MinEC+
M can be solved in time 2O(k·(g+1)3/2) · nO(1), where g is

the genus of the input.
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Abstract. Let G = (V,E,w) be a weighted graph. The independence
number of a weighted graph G is the maximum w(S) taken over all
independent sets S of G. By a well-known method, we can show that
the independence number of G is at least

∑
v∈V

w(v)
1+d(v)

, where d(v) is
the degree of v. In this paper, we consider the independence numbers of
weighted graphs with forbidden cycles. For a graph G, the odd girth of
G is the smallest length of an odd cycle in G. We show that if G is a
weighted graph with odd girth 2m+1 for m ≥ 3, then the independence

number of G is at least c
(∑

v w(v)d(v)1/(m−2)
)(m−2)/(m−1)

, where c is

a constant.

Keywords: Independence number · Random algorithm · Weighted
graph · Odd girth

1 Introduction

Let G = (V,E) be a graph with order N and degree sequence {d(v) : v ∈ V },
and average degree d. Let α(G) be the independence number of G. A well-known
lower bound for α(G) is Turán theorem that α(G) ≥ N/(1 + d). This result was
strengthened by Caro [4] and Wei [13] as

α(G) ≥
∑

v∈V

1
1 + d(v)

. (1)

Alon and Spencer [3] showed an elegant probabilistic proof for this result.
A graph G = (V,E) is called weighted if each vertex v ∈ V is assigned a

weight w(v) ∈ [0,∞). We shall write the weighted graph G as (V,E,w). For a
subset S of V , set w(S) =

∑
v∈S w(v). The weighted independence number of

G, denoted by αw(G), is the maximum w(S) taken over all independent sets S
of G. Note that αw(G) can always achieve its value at a maximal independent
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set, but the set is not necessarily maximum. It is easy to extend the proof of (1)
of Alon and Spencer to show that

αw(G) ≥
∑

v∈V

w(v)
1 + d(v)

. (2)

When G is locally sparse, the Turán’s bound can be improved greatly. The
most studied such graphs are triangle-free graphs. (G is H−free if G contains
no H as a subgraph.) A result of Ajtai, Komlós and Szemerédi [1] states that

α(G) ≥ cN
log d

d
(3)

for any triangle-free graph G, where c > 0 is a constant. The improvements have
been obtained by Griggs [6] and Shearer [10,11]. Li, Rousseau and Zang [7–9]
generalized the result for graphs with sparse neighborhoods. Alon [2] gave that
for graphs whose chromatic number of neighborhood of each vertex is bounded.

We shall have a more general criteria for local sparseness of a graph G. For a
graph G, the odd girth of G is the smallest length of an odd cycle in G. Shearer
[12] showed that if the odd girth of G is 2m + 1, then

α(G) ≥ 1
2(m−2)/(m−1)

(
∑

v∈V

d(v)1/(m−2)

)(m−2)/(m−1)

. (4)

In particular, if G is d−regular, than α(G) ≥ cN1−1/(m−1)d1/(m−1), where c is
a constant. When d � N1/m(log N)(m−1)/m, this lower bound is much better
than that in (3).

The propose of this paper is to generalize (4) for weighted graphs in a manner
similar to that from (1) to (2). Let M be the family of all maximum independent
sets of G, and let w = max{w(I)/|I| : I ∈ M}. Note that |I| = α(G) for any
I ∈ M. It is trivial to see

αw(G) = max
I∈M

w(I) = wα(G).

Theorem 1. Let G = (V,E,w) be a weighted graph. If the odd girth of G is
2m + 1, where m ≥ 3, then

αw(G) ≥ c

(
∑

v∈V

w(v) d(v)1/(m−2)

)(m−2)/(m−1)

,

where c = w1/(m−1)

2(m−2)/(m−1) is a constant.

Remark: The above result is sharp for Kn,n when both sums of weights of
vertices in two classes are equal. We are not expecting that the coefficient c is
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independent of w. In fact, for any t > 0, we have αw(G) = 1
t αtw(G). If c is

independent of w, then the quantity

c

t

⎛
⎝∑

v∈V

tw(v) d(v)1/(m−2)

⎞
⎠

(m−2)/(m−1)

=
c

t1/(m−1)

⎛
⎝∑

v∈V

w(v) d(v)1/(m−2)

⎞
⎠

(m−2)/(m−1)

,

which can be arbitrarily large as t tends to zero. However, it is reasonable to try
to replace w in the coefficient by some quantity that is independent of M. The
minimum value of w(v) is a trivial one.

2 Proof of Main Result

Given a graph G = (V,E,w), let Ni(v) be the set of all the vertices of distance
i from vertex v in G, and di(v) = |Ni(v)|. Thus N0(v) = {v}. To show that
G = (V,E,w) contains an independent set I with w(I) as desired, we may apply
the following algorithm: Initially set I = ∅. Let v be a vertex to be chosen, set
I = I ∪ {v} and G = G \ {v ∪ N1(v)}. Repeat the process until G contains no
vertex. The criteria for choosing v is random.

Lemma 1. Let G = (V,E,w) be a triangle-free weighted graph. Then

αw(G) ≥
∑

v∈V

d1(v)
1 + d1(v) + d2(v)

w(v).

Proof. Let us randomly label the vertices of G with a permutation of integers
1, 2, . . . , N , where N is the order of G. Let X be the set of all the vertices v such
that the smallest label on {v} ∪ N1(v) ∪ N2(v) is on a vertex in N1(v). Then
the probability that v belongs to X is d1(v)

1+d1(v)+d2(v)
, and thus the expectation of

w(X) is
∑

v∈V
d1(v)

1+d1(v)+d2(v)
w(v). It follows that there is some fixed permutation

of integers 1, 2, . . . , N such that

w(X) ≥
∑

v∈V

d1(v)
1 + d1(v) + d2(v)

w(v).

To this end, we shall show that X is an independent set. Suppose to the
contrary that there is an edge uv in G with u, v ∈ X. Let u1 be the vertex
with the smallest label on {u} ∪ N1(u) ∪ N2(u), and v1 the vertex with the
smallest label on {v}∪N1(v)∪N2(v). Clearly u1 �= v1 as G is triangle-free. Since
v1 ∈ N2(u), by the definition of X we see that the label of u1 is less than that
of v1. Similarly, as u1 ∈ N2(v), we know that the label of v1 is less than that of
u1, which is a contradiction. So we have

αw(G) ≥ w(X) ≥
∑

v∈V

d1(v)
1 + d1(v) + d2(v)

w(v),

completing the proof. 	
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Lemma 2. Let G = (V,E,w) be a weighted graph with odd girth 2m + 1, where
m ≥ 2. Then for any 2 ≤ � ≤ m,

αw(G) ≥ 1
2

∑

v∈V

1 + d1(v) + · · · + d�−1(v)
1 + d1(v) + · · · + d�(v)

w(v).

Proof. The proof is similar to that of Lemma 1, so we only give a sketch.
Randomly label the vertices of G. Define X as the set of all vertices v such that
the smallest label on ∪�

j=0Nj(v) is on a vertex in ∪�−1
j=0Nj(v). By consider the

expectation of w(X), we assert that there is an X such that

w(X) ≥
∑

v∈V

1 + d1(v) + · · · + d�−1(v)
1 + d1(v) + · · · + d�(v)

w(v).

The next step is to show that X is bipartite. If uv is an edge in G with u, v ∈ X,
let u1 be the vertex with the smallest label on ∪�

j=0Nj(u), and v1 the vertex with
the smallest label on ∪�

j=0Nj(v). Similarly, we can conclude that u1 = v1. Thus
X can be partitioned into X1,X2, · · · ,Xp, such that there is no edge between
Xi and Xj for i �= j, and all the vertices in Xi share the same vertex vi with
the smallest label. Furthermore, the distance between each vertex in Xi and vi

is at most � − 1. Partition Xi into X ′
i and X ′′

i by distance of any vertex v ∈ Xi

to vi odd and even, respectively. As G contains no C2�−1, both ∪iX
′
i and ∪iX

′′
i

are independent sets, and hence X is bipartite. 	

Lemma 3. Let G = (V,E,w) be a weighted graph with odd girth 2m + 1, where
m ≥ 3. Then

αw(G) ≥ 1
2(m−3)/(m−2)

∑

v∈V

w(v)
(

d1(v)
1 + d1(v) + · · · + dm−1(v)

)1/(m−2)

.

Proof. Applying Lemma 1 and Lemma 2 repeatedly, we have

αw(G) ≥
∑

v∈V

w(v)
m − 2

(
d1(v)

1 + d1(v) + d2(v)
+

1 + d1(v) + d2(v)
2(1 + d1(v) + d2(v) + d3(v))

+ · · · +
1 + d1(v) + · · · + dm−2(v)

2(1 + d1(v) + · · · + dm−1(v))

)

≥ 1
2(m−3)/(m−2)

∑

v∈V

w(v)
(

d1(v)
1 + d1(v) + · · · + dm−1(v)

)1/(m−2)

,

where the last inequality is based on the fact that the arithmetic mean is at least
the geometric mean. 	

Proof of Theorem 1. For any vertex v in G and any i ≤ m−1, as G contains no
C2i+1, we have Ni(v) is an independent set. So both ∪even iNi(v) and ∪odd iNi(v)
are independent sets hence ∪m−1

i=0 Ni(v) is bipartite. So we obtain

2α(G) ≥ 1 + d1(v) + · · · + dm−1(v).
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The fact that αw(G) = wα(G) implies

2
w

αw(G) ≥ 1 + d1(v) + · · · + dm−1(v).

Plugging this into the inequality in Lemma 3, we have

αw(G)(m−1)/(m−2) ≥ w1/(m−2)

2

∑

v∈V

w(v)d(v)1/(m−2),

and the desired bound follows immediately. 	
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Abstract. A 2 distance k-coloring of a graph G is a function f : V (G) →
{1, 2, . . . , k} such that |f(u)−f(v)| ≥ 1 if 1 ≤ d(u, v) ≤ 2, where d(u, v) is
the distance between the two vertices u and v. The 2-distance chromatic
number of G, written χ2(G), is the minimum k such that G has such a
coloring. In this paper, we show that χ2(G) ≤ 5Δ − 7 holds for planar
graphs G with maximum degree Δ ≥ 5, which improves a result due to
Zhu and Bu (J. Comb. Optim. 36:55–64, 2018).

Keywords: Planar graph · 2-distance coloring · Maximum degree ·
Girth · Wegner’s Conjecture

1 Introduction

A 2 distance k-coloring of a graph G is a function f : V (G) → {1, 2, . . . , k} such
that |f(u) − f(v)| ≥ 1 if 1 ≤ d(u, v) ≤ 2, where d(u, v) is the distance between
the two vertices u and v. The 2-distance chromatic number of G, written χ2(G),
is the minimum k such that G has such a coloring.

The research of this problem can be traced back to 1977. In [10], Wegner first
proposed the 2-distance coloring of graphs and showed that χ2(G) ≤ 8 holds for
planar graphs G with maximum degree 3. He further conjectured that the upper
bound 8 can be reduced to 7, which has been confirmed by Thomasse [9]. In
[6], Montassier and Raspaud showed that the upper bound 7 is tight. For planar
graphs with maximum degree Δ ≥ 4, Wenger posed the following conjecture.

Conjecture 1.1. Let G be a planar graph with maximum degree Δ. If 4 ≤ Δ ≤
7, then χ2(G) ≤ Δ + 5. If Δ ≥ 8, then χ2(G) ≤ � 3Δ

2 � + 1.

Conjecture 1.1 is still open. However, several upper bounds in terms of max-
imum degree Δ have been proven as follows.

1. χ2(G) ≤ 2Δ + 25 [4].
2. χ2(G) ≤ 2Δ + 16 if Δ ≥ 8 [8].
3. χ2(G) ≤ � 9

5Δ� + 1 if Δ ≥ 47 [2].
4. χ2(G) ≤ � 9

5Δ� + 2 if Δ ≥ 749 [1].
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5. χ2(G) ≤ � 5Δ
3 � + 78 and χ2(G) ≤ � 5

3Δ� + 25 if Δ ≥ 241 [5].
6. χ2(G) ≤ 20 if Δ ≤ 5 and χ2(G) ≤ 5Δ − 7 if Δ ≥ 6 [11].

In this paper, we improved the upper bound on χ2(G) for planar graph G
with maximum degree at most 5 to 18 by induction on the number of vertices
and edges.

Theorem 1.1. If G is a planar graphs with maximum degree Δ ≤ 5, then
χ2(G) ≤ 18.

2 Notations

All graphs considered here are simple and finite. For a planar graph G, we
denote its vertex set, edge set, face set, maximum degree and minimum degree
by V (G), E(G), F (G), Δ(G) and δ(G) respectively. For x ∈ V (G) ∪ F (G), let
dG(x) denote the degree of x in G. We drop G in dG(v) when G is clear from
the context. A vertex of degree k (resp. at least k, at most k) is called a k-
vertex (resp. k+-vertex, k−-vertex). A face of degree k (resp. at least k, at most
k) is called a k-face (resp. k+-face, k−-face). In a 2-connected graph, each 5−-
face is a cycle. Let F (v) be the set of colors cannot be used for vertex v. Let
t(v) be the number of 3-faces incident with vertex v. Let n3(f) be the number
of 3-vertices incident with face f . A [v1v2 · · · vk]-face is a k-face with vertices
v1, v2, · · · vk on its boundary. A (x1, x2, · · · , xk)-face is a k-face with vertices of
degree x1, x2, · · · , xk.

For an edge uv, let G/uv be the graph obtained from G by contracting the
edge uv. After the operation G/uv, the following properties of the vertex degree
was formulated.

Proposition 2.1. Let H = G/uv and v′ be the new vertex in H obtained by
contacting the edge uv. Then we have

(1) dH(w) ≤ dG(w) for each vertex w ∈ V (H) \ {v′} and dH(v′) = dG(u) +
dG(v) − 2 − tG(uv), where tG(uv) is the number of 3-faces incident with the
edge uv.

(2) For any vertices w,w′ ∈ V (H)\{v′}, dH(w,w′) ≤ dG(w,w′) and dH(w, v′) ≤
dG(w, u).

3 Planar Graphs with Maximum Degree at Most 5

We prove Theorem 1.1 by contradiction. Let G be a minimal counterexam-
ple with the smallest number of vertices and edges. Then G is connected and
χ2(G) > 18. By the minimality of G, for any planar graph H with Δ(H) ≤ 5
and |V (H)| + |E(H)| < |V (G)| + |E(G)|, we have that χ2(H) ≤ 18. We first
establish structural properties of G. Let C = {1, 2, · · · , 18}.

Lemma 3.1. G is 2-connected.
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Proof. If G is disconnected, then each component has a 2-distance 18-coloring,
contradiction. Assume that G is connected and v is a cut vertex of G. Let
H1,H2, · · · Ht(t ≥ 2) be the components of G − v and let Gi = G[V (Hi ∪ {v})].
By the minimality, χ2(Gi) ≤ 18. Permutate the color of v in each Gi such that
v is colored by the same color, denote the current coloring by ϕ. If no two
vertices of N(v) are colored by the same color, ϕ is a 2-distance 18-coloring
of G, a contradiction. Without loss of generality, let v1 ∈ G1, v2 ∈ G2 and
ϕ(v1) = ϕ(v2). There is at least one color α �∈ C − Nϕ(v) ∪ {ϕ(v)}(here Nϕ(v)
is a color set of vertices in N(v) under the coloring ϕ). Permutate two colors,
ϕ(v2) and α, in G2. If there are other cases we can do the same procedure to get
a 2-distance 18-coloring of G, a contradiction. �
Lemma 3.2. δ(G) ≥ 3.

Proof. Assume that v is a 2-vertex of G and N(v) = {u,w}, then we contact the
edge uv to a new vertex v′. Obviously, the obtained graph G/uv is also a planar
graph with Δ(G) ≤ 5, by the minimality, χ2(G/uv) ≤ 18. Let ϕ be a 2-distance
18-coloring of G′. Color the vertex u by ϕ(v′). The remaining vertices keep their
colors. Since |F (v)| ≤ 2 × 5 = 10, we can color v by a color α ∈ C − {ϕ(x)|x ∈
V (G), dG(v, x) ≤ 2}. Thus, ϕ can be extended to a 2-distance 18-coloring of G,
a contradiction. �
Lemma 3.3. Every 3-vertex is adjacent to three 5-vertices.

Proof. Assume that 3-vertex v has a 4−-neighbor u. Contact the edge uv to a new
vertex v′. By the minimality, χ2(G/uv) ≤ 18. Let ϕ be a 2-distance 18-coloring
of G/uv. Color the vertex u by ϕ(v′). The remaining vertices keep their colors.
Since |F (v)| ≤ 2 × 5 + 4 = 14, ϕ can be extended to a 2-distance 18-coloring of
G, a contradiction. �
Lemma 3.4. Every 3-face in G is either a (4, 5, 5)-face or a (5, 5, 5)-face.

Proof. Assume that 3-face [uvw] is incident with a 3-vertex v and v1 is another
neighbor of v. Let G′ = G − v + uv1. By the minimality, χ2(G′) ≤ 18. Let ϕ
be a 2-distance 18-coloring of G′. Note that the colors on vertices v1, u and w are
distinct and |F (v)| ≤ 5 + 4 + 4 = 13, ϕ can be extended to a 2-distance 18-
coloring of G. Assume that 3-face [uvw] is incident with two 4-vertices u and v.
By the minimality, χ2(G − uv) ≤ 18. Erase the colors on vertices u and v. Since
|F (u) ≤ 16, |F (v)| ≤ 16, we can recolor vertices u and v, a contradiction. �
Lemma 3.5. Every 3-vertex is incident with at least two 5+-faces.

Proof. By Lemma 3.3, 3-vertex v is incident with 4+-faces. Assume that 3-vertex
v is incident with two 4-faces [vv1uv2] and [vv2wv3]. Let G′ = G − v + v1v3. By
the minimality, χ2(G′) ≤ 18. Let ϕ be a 2-distance 18-coloring of G′. Note that
the colors on vertices vi are distinct for i = 1, 2, 3 and |F (v)| ≤ 4 + 5 + 4 = 13,
ϕ can be extended to a 2-distance 18-coloring of G, a contradiction. �
Lemma 3.6. Every 4-vertex is incident to at most one 3-face.
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Proof. Let v1, v2, v3 and v4 be four neighbors of 4-vertex v in clockwise. Let v1v2 ∈
E(G). If v2v3 ∈ E(G), then let G′ = G−v+v2v4. By the minimality, χ2(G′) ≤ 18.
Let ϕ be a 2-distance 18-coloring of G′. Note that the colors on vertices vi are
distinct for i = 1, 2, 3, 4 and |F (v)| ≤ 16, ϕ can be extended to a 2-distance 18-
coloring of G, a contradiction. If v3v4 ∈ E(G), then let G′ = G − v + v2v3 + v1v4.
By the minimality, χ2(G′) ≤ 18. Let ϕ be a 2-distance 18-coloring of G′. Note
that the colors on vertices vi are distinct for i = 1, 2, 3, 4 and |F (v)| ≤ 16, ϕ can
be extended to a 2-distance 18-coloring of G, a contradiction. �
Lemma 3.7. Let v be a 5-vertex. Then

(1) t(v) ≤ 3.
(2) If t(v) = 3, then v is incident to at most one (4, 5, 5)-face.
(3) If v is incident to one (4, 5, 5)-face and two (5, 5, 5)-faces, then v is incident

to two 5-faces.

Proof. (1) Assume that v is incident with four 3-faces [v1vv2], [v2vv3], [v3vv4]
and [v4vv5]. Let G′ = G − v + v1v5. By the minimality, χ2(G′) ≤ 18. Note that
the colors on vertices vi for i = 1, 2, 3, 4, 5 are distinct and |F (v)| ≤ 4 + 3 × 3 +
4 = 17, we can color v, a contradiction.

(2) Let v1, v2, v3, v4 and v5 be five neighbors of v in clockwise. Let v1v2 ∈
E(G) and d(v1) = 4, then by Lemma 3.6, v1v5 /∈ E(G). By the minimality,
χ2(G − vv1) ≤ 18. Erase the colors on vertices v and v1. If v2v3, v3v4 ∈ E(G)
or v2v3, v4v5 ∈ E(G), then |F (v)| ≤ 2 + 3 + 3 + 4 + 5 = 17, |F (v1)| ≤ 5 + 5 +
3 + 3 = 16. Thus, we can recolor v and v1, contradiction. Now we can assume
that v3v4, v4v5 ∈ E(G). If d(vi) < 5 for some i = 3, 4, 5, then |F (v1)| ≤ 17,
|F (v)| ≤ 16, we can recolor v1 and v, contradiction.

(3) Let v1, v2, v4, v4 and v5 be five neighbors of v in clockwise. By the analysis
above, we can assume that v1v2, v3v4, v4v5 ∈ E(G). By the minimality, χ2(G −
vv1) ≤ 18. Erase the colors on vertices v and v1. If v is incident to a [vv2uv3]-
face or a [vv5wv1]-face, then |F (v1)| ≤ 17, |F (v)| ≤ 16, we can recolor v1 and v,
contradiction. �
Lemma 3.8. Every 5-face has at most one 3-vertex.

Proof. Let f = [v1v2v3v4v5] be a 5-face. By Lemma 3.2, n3(f) ≤ 2. Assume that
d(v1) = d(v3) = 3. Contact vertices v1 and v3 to a new vertex v. Denote the the
obtained graph by G′. Note that dG′(v) = 5, by the minimality, χ2(G′) ≤ 18.
Let ϕ be a 2-distance 18-coloring of G′. Note that the colors on vertices v2, v4

and v5 are distinct, we color vertex v3 by ϕ(v). Since |F (v1)| ≤ 3 × 5 = 15, ϕ
can be extended to a 2-distance 18-coloring of G, a contradiction. �

Proof of Theorem 1.1.
Since G is connected, we define a weight function w by w(x) = d(x) − 4 for
x ∈ V (G)∪F (G). By Euler’s formula |V (G)|− |E(G)|+ |F (G)| = 2 and formula∑

v∈V (G)

d(v) = 2|E| =
∑

f∈F (G)

d(f), we can derive
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∑

x∈V (G)∪F (G)

w(x) = −8.

We then design appropriate discharging rules and redistribute weights accord-
ingly. Once the discharging is finished, a new weight function w′ is produced.
During the process, the total sum of weights is kept fixed. It follows that

∑

x∈V (G)∪F (G)

w′(x) =
∑

x∈V (G)∪F (G)

w(x) = −8.

However, we will show that after the discharging is complete, the new weight
function w′(x) ≥ 0 for all x ∈ V (G) ∪ F (G). This leads to the following obvious
contradiction

0 ≤
∑

x∈V (G)∪F (G)

w′(x) =
∑

x∈V (G)∪F (G)

w(x) = −8 < 0.

Discharging Rules:

R1. Every 5-vertex gives 1
2 to each incident (4, 5, 5)-face and 1

3 to each inci-
dent (5, 5, 5)-face.

R2. Every 5+-face gives 1
2 to each incident 3-vertex and 1

12 to each incident
5-vertex.

Checking w′(v) ≥ 0, v ∈ V (G).
By Lemma 3.2, δ(G) ≥ 3.
Case d(v) = 3.
By Lemma 3.5 and R2, v receives at least 1

2 ×2 = 1 from its incident 5+-faces.
Thus w′(v) ≥ 3 − 4 + 1 = 0.

Case d(v) = 4.
Since v does not give out or receive any charge of v and thus w′(v) = w(v) = 0.
Case d(v) = 5.
By Lemma 3.7(1), t(v) ≤ 3. Assume that t(v) = 3, then by Lemma 3.7(2), v

is incident to at most one (4, 5, 5)-face. If v is incident to one (4, 5, 5)-face, then
by Lemma 3.7(3) and R1, R2, w′(v) = 5−4− 1

2 − 1
3 ×2+ 1

12 ×2 = 0. Otherwise,
w′(v) ≥ 5 − 4 − 1

3 × 3 = 0 by R1. If t(v) ≤ 2, then by R1, w′(v) ≥ 5 − 4 −
1
2 × 2 = 0.

Checking w′(f) ≥ 0, f ∈ F (G).
Case d(f) = 3.
By Lemma 3.4, f is a (4, 5, 5)-face or a (5, 5, 5)-face. If f is a (4, 5, 5)-face,

then w′(f) = 3 − 4 + 1
2 × 2 = 0. If f is a (5, 5, 5)-face, then w′(f) = 3 − 4 +

1
3 × 3 = 0.

Case d(f) = 4.
Since no 4-face gives out or receives any charge, w′(f) = w(f) = 0.
Case d(f) = 5.
By Lemma 3.8, n3(f) ≤ 1. By R2, w′(f) ≥ 5 − 4 − 1

2 − 1
12 × 4 > 0.

Case d(f) ≥ 6.
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By Lemma 3.3, n3(f) ≤ �d(f)
2 �. By R2, w′(f) ≥ d(f) − 1

2�d(f)
2 � − 1

12 (d(f) −
�d(f)

2 �) > 0.
By the analysis above, we proved that w′(x) ≥ 0 for all x ∈ V ∪ F and thus

we complete the proof of Theorem 1.1.
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Abstract. We propose an O(
√
n) query time and O(n1.5) size oracle

which, given a pair of vertices u and v in a planar graph G of n vertices,
answers the number of shortest paths from u to v. Our oracle can answer
a query whether there is a unique shortest path from u to v in O(log n)
time. Bezáková and Searns [ISAAC 2018] give an O(

√
n) query time

and O(n1.5) size oracle for counting shortest paths in planar graphs.
Applying this oracle directly, it takes O(

√
n) time to answer whether

there is a unique shortest path from u to v. A key component in our oracle
is to apply Voronoi diagrams on planar graphs to speed up the query
time. Computational studies show that our oracle is faster to answer
queries than the oracle of Bezáková and Searns for large graphs. Applying
Voronoi diagrams on planar graphs, significant theoretical improvements
have been made for distance oracles. Our studies confirm that Voronoi
diagrams are efficient data structures for distance oracles in practice.

Keywords: Distance oracles · Voronoi diagrams on planar graphs ·
Computational study

1 Introduction

Computing shortest distances/paths is a most fundamental problem in graph algo-
rithms and has numerous applications. To answer a query for the shortest distance
d(u, v) from a vertex u to a vertex v in a graph G, one approach is to use a single
source shortest path (SSSP) algorithm to compute d(u, v). Another approach is to
precompute and store d(u, v) from u to v for all pairs of u and v in a 2-dimensional
array, and get d(u, v) from the array. The former approach takes t(n) time and
O(m) memory space to answer a query for a graph of n vertices and m edges, where
t(n) is the running time of the SSSP algorithm, while the latter one takes O(1) time
and O(n2) space. The t(n) query time of an SSSP algorithm is considered ineffi-
cient and O(n2) space is too large for applications expecting a real time answer in
large graphs. To reduce the t(n) query time and O(n2) memory space, one more
approach is to precompute and store some distance information in a data structure
called oracle, and get d(u, v) from the oracle. There is a tradeoff between the query
time and memory space (oracle size). Distance oracles with better query time and
size have been extensively studied, a survey on this topic can be found in [13].
c© Springer Nature Switzerland AG 2021
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Planar graphs are simple and elegant models for many real networks and
distance oracles for planar graphs have received much attention. Distance oracles
can be classified as approximate oracles and exact oracles. For a query on d(u, v),
an approximate oracle gives an answer at least d(u, v) and at most αd(u, v),
where α > 1 is called a stretch factor. Near-constant query time and near-
linear size approximate oracles on planar graphs have been obtained at a cost of
(1 + ε) stretch for constant ε > 0 (see [13,16]). An exact oracle returns d(u, v)
as the answer. Polylogarithmic query time and near-linear size exact oracles on
planar graphs are known (see [4,11]). There are two major techniques used in
exact oracles on a planar graph G: one is an r-division of G that recursively
decomposes G into subgraphs by vertex-separators of small size [7,10] and the
other is Voronoi diagrams on planar graphs introduced by Cabello [3].

Given vertices u and v in G, counting the number ns(u, v) of shortest paths
from u to v in G is an important problem with many applications such as for
counting minimum (s, t)-cut in planar graphs and route guidance systems [1,
5,14]. Bezáková and Searns give an O(

√
n) query time and O(n1.5) size oracle

(BS oracle) for counting ns(u, v) in a planar graph G of n vertices and positive
edge lengths [2]. The BS oracle is based on a recursive decomposition of G by
balanced separators: Divide the vertices of G into three disjoint subsets (A,B,C)
such that |C| = O(

√
|V (G)|), A and B have similar size and there do not exist

vertices u ∈ A and v ∈ B connected by an edge (u, v) or (v, u). C is called a
separator for G. Each of A and B is viewed as a subgraph of G and divided
recursively. For u and v in a subgraph R, let dR(u, v) be the shortest distance
and nsR(u, v) be the number of shortest paths from u to v in R (initially R = G,
dR(u, v) = d(u, v) and nsR(u, v) = ns(u, v)). Let C be the separator for R in a
recursive decomposition of G. A vertex s in C is called a feasible site for vertices
u and v if d(u, v) = dR(u, s)+ dR(s, v). An outline of the BS oracle is as follows:

– Compute a recursive decomposition of G. For each subgraph R in the decom-
position, compute and store dR(u, s), dR(s, v), nsR(u, s) and nsR(s, v) for
every pair of u and v in R and every s in the separator C for R. For
a feasible site s, nsR(u, s) × nsR(s, v) gives the number of shortest paths
from u to v containing s in R. These nsR(u, s) and nsR(s, v) are com-
puted in such a way that each shortest path from u to v is counted once
in nsR(u, s) × nsR(s, v) for exactly one feasible site s. Then ns(u, v) =∑

s feasible site nsR(u, s) × nsR(s, v).
– To answer a query on ns(u, v): Start from R = G, if u and v are in R then

check vertices in C for R by enumeration to find all feasible sites in C, and
recurse on the child of R containing u and v until u and v are in different
subgraphs. Return ns(u, v) =

∑
s feasible site nsR(u, s) × nsR(s, v).

The total number of vertices in C for every R containing u and v is O(
√

n). So,
the BS oracle has O(

√
n) query time1 and O(n1.5) size. The preprocessing time

of the oracle is O(n1.5).

1 It is assumed that every arithmetic operation takes O(1) time. This paper also follows
this assumption.
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The BS oracle can be modified by replacing a recursive decomposition with an
r-division of G below: Divide the edges of G into two subsets (subgraphs, called
pieces) of similar size by a vertex-separator of size O(

√
n); and then divide each

piece recursively. For a piece R of G, let |R| be the size of R and ∂(R) be the set
of boundary vertices of R (each vertex is incident to an edge of R and an edge
not in R). Then |∂(R)| = O(

√
|R|). For vertices u and v in a piece R divided

into pieces P and Q with u in Q and v in P , any path from u to v in G must
contain a boundary vertex s in ∂(P ). For u in Q and v in P , a vertex s in ∂(P ) is
a feasible site if d(u, v) = d(u, s)+d(s, v). One can precompute and store d(u, s),
d(s, v), ns(u, s) and ns(s, v) for each s ∈ ∂(P ). Then ns(u, v) can be computed
from

∑
s feasible site ns(u, s) × ns(s, v).

If G has a unique shortest path from u to v for every pair of u and v, then
there is a unique feasible site s in ∂(P ) for u in Q and v in P . The unique feasible
site can be found in O(log n) time by Voronoi diagrams on planar graphs [6,8].
Applying Voronoi diagrams to find the unique feasible site in O(log n) time,
Gawrychowski et al. give an O(log n) query time and O(n1.5) size oracle to
answer queries on d(u, v) [8]. It takes O(n2) time to compute the data structure
for Voronoi diagrams and the preprocessing time for the oracle of [8] is O(n2).

In this paper, we propose a new oracle for counting shortest paths based on
an idea of applying Voronoi diagrams to find multiple feasible sites, an extension
of the application of Voronoi diagrams in [8]. Similar to the works in [2,8], our
oracle uses an r-division of G, precomputes and stores the shortest distances and
numbers of shortest paths in the r-division. Let P and Q be the two pieces from
a piece R in an r-division of G. A new ingredient in our oracle is to apply Voronoi
diagrams to find all feasible sites for u ∈ Q and v ∈ P instead of enumerating
vertices of ∂(P ) as that in [2]. We develop an algorithm (Algorithm 1) which
applies Voronoi diagrams to find all feasible sites. The running time of Algorithm
1 is O(

√
n) (the number of feasible sites can be O(

√
n) in a worst case) which

dominates the query time of our oracle. It is expected that the worst cases rarely
happen in practice. Computational studies show that Algorithm 1 runs faster
than checking ∂(P ) by enumeration as that in [2] to find all feasible sites for
large |∂(P )| in grid graphs. The results also confirm that the data structure for
Voronoi diagrams in [8] is indeed efficient for exact distance oracles for large
planar graphs in practice.

Our oracle can answer a query whether there is a unique shortest path from
a vertex u to a vertex v in G in O(log n) time. The unique shortest path problem
has many practical applications, for example, in route guidance system for path
choices [5,14]. Finding all feasible sites in ∂(P ) by enumeration as that in [2], it
takes O(

√
n) time to answer a query on the unique shortest path problem while

our oracle answers the query in O(log n) time.
Our main contributions are summarized as follows:

– An oracle which, given any planar graph G with n vertices and positive edge
lengths, and any two vertices u and v in G, gives the number ns(u, v) of
shortest paths from u to v in O(

√
n) time. The oracle answers whether there
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is a unique shortest path from u to v or not in O(log n) time. The oracle has
O(n1.5) size and O(n2) preprocessing time.

– Perform computational studies which show that our oracle is faster than
the previous one in [2] and confirm that Voronoi diagrams are efficient data
structures for distance oracles in practice.

The rest of the paper is organized as follows. In the next section, we give
the preliminaries of the paper. We describe our oracle in Sect. 3 and report the
computational results in Sect. 4. The final section concludes the paper.

2 Preliminaries

We describe our oracle for directed planar graphs. The oracle can be applied
to undirected planar graphs as well. Let G(V,E) be a directed planar graph
with vertex set V and edge set E. Each edge (u, v) from vertex u to vertex v is
assigned a length l(u, v) > 0. A path in G is a sequence of vertices v1, .., vk with
(vi, vi+1) an edge of E for 1 ≤ i ≤ k − 1. Path v1, .., vk is called a path from v1
to vk, denoted as v1 → vk for convenience. A path is simple if each vertex of G
appears in it at most once. The length of path v1 → vk is

∑
1≤i≤k−1 l(vi, vi+1).

A path u → v in G is shortest if its length is the minimum among all paths
u → v. Since l(u, v) > 0 for every (u, v) in E, a shortest path u → v is a simple
path. The shortest distance d(u, v) from u to v is the length of a shortest path
u → v, d(u, u) is defined 0.

Bezáková and Searns [2] give an algorithm for counting the shortest paths
from a source vertex u to all other vertices in G: first compute a shortest path
tree rooted at u by a single source shortest path (SSSP) algorithm; an edge
(v1, v2) in G is tight if d(u, v2) − d(u, v1) = l(v1, v2); then add all tight edges
to the shortest path tree to get a directed acyclic graph (DAG) and count the
shortest paths from u to other vertices by a topological sort on the DAG. The
running time of the algorithm is dominated by the time of the SSSP algorithm.

We assume that G has a planar embedding on a plane: each vertex u of G
is mapped to a point and each edge (u, v) is mapped to a simple curve (does
not cross itself) connecting u and v in the plane and the curves are pairwise
non-crossing. Two edges (u, v) and (v, u) are viewed as a bidirectional edge
and embedded as one curve. The embedding of G is called a plane graph (also
denoted by G). Faces of a plane graph G are the maximal regions of the plane
after removing the curves of G. A face f is enclosed by a set Ef of edges. We
say f and edges of Ef are incident to each other, and f and the end vertices of
edges in Ef are incident to each other. We assume G is strongly connected and
triangulated (each face of G is incident to three edges). If G has a face f incident
to more than three edges, we can triangulate f by adding new bidirectional edges
with infinite length in the interior of f connecting some vertices incident to f .
An embedding and a triangulation of G can be computed in O(n) time.

Given a plane graph G, the planar dual of G is a plane graph G∗(V ∗, E∗):
for each face f in G, there is a vertex f∗ in V ∗ that is a point in the interior
of f ; for any two faces f and g separated by an edge e of G, there is an edge
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e∗ = (f∗, g∗) in E∗ that is a simple curve which connects f∗ and g∗ in the plane,
intersects e exactly once and does not intersect any edge of G other than e. A
Jordan curve separator for a plane graph G is a closed curve in the plane that
does not intersect itself and intersects G only at vertices. The size of a Jordan
curve is the number of vertices of G it intersects.

An r-division T of a plane graph G of n vertices can be computed as follows [8,
10,15]: divide G into two pieces by a Jordan curve separator, then divide each
piece recursively until each piece has at most r vertices and O(

√
r) boundary

vertices. A face f in a piece R of an r-division T is called a hole if f is not an
original face of G. For each piece R of T , recall that ∂(R) is the set of boundary
vertices of R. Each vertex of ∂(R) is incident to some hole. T can be viewed
as a rooted binary tree with G the root. For each node R of T , the depth of
R is the number of edges in the path from G to R in T . Applying the result
of Miller [12], an r-division T of G can be computed in O(n) time with the
properties [8,10,15]: each internal node (piece) R of T is divided into two pieces
P and Q by a Jordan curve of size O(

√
|R|), each piece of T has O(1) holes,

the number of vertices of each piece of depth d is O(n/cd/3), and the number
of vertices of ∂(R) for R of depth d is O(

√
n/cd/3) for some constant c > 1. An

r-division of a plane G naturally gives an r-division of the planar graph G.
We adopt the notions related to Voronoi diagrams from [8]. Assume that for

every two vertices u and v in G, there is a unique shortest path u → v. Given
a piece P of G in T and a hole h of P , let S be the set of vertices incident to
h. Assume that every face of P except h is triangulated. Each vertex s in S is
called a site and assigned a weight w(s) > 0. For a site s in S and a vertex v
in P , the weighted distance from s to v is defined as wd(s, v) = w(s) + d(s, v).
The additive weighted Voronoi diagram VD(S,w) is a partition of V (P ) into
pairwise disjoint sets, one set Vor(s) for each s ∈ S, called Voronoi cell of s,
s ∈ Vor(s) and a vertex v ∈ V (P ) \ S is in Vor(s) if wd(s, v) < wd(s′, v) for
any s′ ∈ S with s′ �= s. We simply call VD(S,w) a Voronoi diagram and denote
it by VD when the context is clear. Let P ∗ be the planar dual of P and VD
a Voronoi diagram on P . A dual representation VD∗ for VD is a ternary tree
with the following properties: VD∗ has |S| leaf vertices; each internal vertex f∗

of VD∗ is a vertex of P ∗ corresponding to a face f of P such that the three
vertices of P incident to f are in three distinct Voronoi cells (we say these three
Voronoi cells are incident to f∗); each leaf vertex is a point in the interior of
h; and each Voronoi cell is incident to at least one internal vertex of VD∗. Let
T ∗ be a subtree of VD∗. Removing an internal vertex f∗ and replacing it with
copies, one for each edge incident to f∗, decomposes T ∗ into three subtrees. A
vertex f∗ of T ∗ is a centriod of T ∗ if each of the three subtrees created by f∗ has
at most (|V (T ∗)| + 1)/2 edges. There is a centroid in T ∗ if it has more than one
edge. A centroid decomposition of VD∗ is as follows: Start from T ∗ = VD∗; find
a centroid f∗ of T ∗ to get three subtrees and decompose each subtree recursively
until each subtree has a single edge.

For a centroid f∗ of T ∗, let T ∗
0 , T ∗

1 , T ∗
2 be the three subtrees created by f∗,

y0, y1, y2 be the three vertices of P incident to f∗, and s(0), s(1), s(2) be the three
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sites of S such that yi is in Vor(s(i)) for i = 0, 1, 2, all are in the clockwise order
as shown in Fig. 1 (a). Let pi be the shortest path s(i) → yi for i = 0, 1, 2. Let J
be the Jordan curve separating P from hole h, and Ji be the segment of J from
s(i + 2) to s(i) in clockwise direction for i = 0, 1, 2 (additions in this paragraph
are modulo 3). Let Zi be the region enclosed by path pi, edge (yi, yi+2), path
pi+2 and segment Ji (see Fig. 1 (a)). It is given in [8] a data structure which,
given v in P and f∗ of T ∗, decides in O(1) time one of the following: v is on path
pi for some i ∈ {0, 1, 2}, or v is in the interior of Zi for some i ∈ {0, 1, 2}. In the
former case v is in Vor(s(i)), and in the latter case, the Voronoi cell containing
v can be found recursively on T ∗

i . At the bottom of the recursion, T ∗ has one
edge e∗ which is incident to two Voronoi cells Vor(s) and Vor(s′). By comparing
wd(s, v) and wd(s′, v), the Voronoi cell containing v can be found in O(1) time.
Since the depth of the recursion by centroids of T ∗ is O(log |S|) and |S| ≤ n, the
Voronoi cell containing v can be found in O(log n) time.

Fig. 1. (a) Decompose T ∗ into three subtrees by centroid f∗. (b) Clockwise order of
sites, right-most and left-most edges.

A vertex u is in the hole h if the embedding of u is a point in the interior of
h. For each piece R divided into P and Q, each hole h of P and each u in the
hole h, the oracle of [8] assigns w(s) = d(u, s) for every s ∈ S and constructs a
Voronoi diagram VD. Given u and v in G, the oracle finds the Voronoi cell Vor(s)
containing v in O(log n) time, and thus d(u, v) = wd(s, v) = d(u, s)+d(s, v) can
be obtained in O(log n) time. Readers may refer to [8] for more details.

3 Our Oracle

Preprocessing. Let G be a planar graph of n vertices with positive edge lengths.
We first compute an r-division T of G described in Sect. 2. For each internal node
R of T , let P and Q be the two children of R separated by a Jordan curve. Let
h be the region in which Q is embedded (h is a hole of P ). Let S be the set
of vertices incident to h. We compute and store the shortest distances and the
number of shortest paths from u to s and from s to v (resp. from v to s and
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from s to u) for every u in Q, every s in S and every v in P . We only describe
how to compute the distances and number of paths from u to s and from s to v.
The computation for those from v to s and from s to u is symmetric with the
roles of P and Q exchanged. The shortest distances d(u, s) and d(s, v) can be
computed by shortest path algorithms in [9] with s in S as sources (d(u, s) are
computed with the orientation of edges of G reversed).

More technical details are involved in computing the number ns(u, s) of
shortest paths from u to s and ns(s, v) from s to v. For u ∈ Q and v ∈ P ,
let F = {s ∈ S|d(u, v) = d(u, s) + d(s, v)} be the set of feasible sites. For
an s ∈ F , ns(u, s) × ns(s, v) gives the number of shortest paths from u to v
containing s. A shortest path u → v may contain multiple feasible sites and∑

s∈F ns(u, s) × ns(s, v) may over count the number of shortest paths from u
to v. We use an approach similar to that in [2] to compute ns(u, s) and ns(s, v)
such that each shortest path u → v is counted once for exactly one s ∈ F . Let←−
G be the graph obtained by reversing the direction of every edge of G. For each
site s ∈ S, we compute a shortest path tree in G rooted at s and add the tight
edges to form a DAG DG(s), and a shortest path tree in

←−
G rooted at s and add

the tight edges to form a DAG D←−
G

(s). We compute ns(s, v) for every v in P
on DG(s) and ns(u, s) for every u in Q on D←−

G
(s). Next we remove every edge

(x, y) with y ∈ S from DG(s) to get graph D′
G(s), then compute the number of

shortest paths ns′(s, v) from s to v for every v in D′
G(s).

Lemma 1. For u ∈ Q and v ∈ P , if neither u nor v is in S then
∑

s∈F ns(u, s)×
ns′(s, v) gives ns(u, v).

Proof. We prove the statement that a shortest path p from u to v is counted
once in

∑
s∈F ns(u, s)×ns′(s, v) for exactly one feasible site to get the lemma. If

a shortest path p : u → v contains a single feasible site s, then the subpath path
s → v of p is in D′

G(s) and is counted in ns(u, s) × ns′(s, v), and the statement
is true. Assume that p has multiple feasible sites s(1), .., s(j) (1 < j) of S with
s(j) closest to v. Then the subpath s(j) → v of p is in D′

G(s(j)) but for i < j,
the subpath s(i) → v of p is not in D′

G(s(i)) because s(i) → v contains an edge
(x, s(j)) and every edge (x, s(j)) is removed. Therefore, p is counted once in
ns(u, s(j)) × ns′(s(j), v) only, and the statement holds. �	

Following Lemma 1, in what follows, we say s ∈ S is a feasible site for u ∈ Q
and v ∈ P if d(u, v) = d(u, s) + d(s, v) and ns′(s, v) > 0.

We view the hole h of P as the outer face of P . We assign each site of S an
index and denote the sites of S as s0, s1, .., sk in their clockwise order on h with
an arbitrary site as s0 (see Fig. 1 (b)). For any vertex u in h and any vertex v
in P , a path u → v must have a site s of S. For u in h, we remove all edges of
Q, add edge (u, si) with length d(u, si) for every si ∈ S, and remove every edge
(x, si) in P for every x and every si ∈ S to get a graph P̃ . We find a shortest
path tree rooted as u in P̃ and add the tight edges to form a DAG DP̃ (u). We
assume a planar embedding of DP̃ (u). We identify edge (u, s0) as the right-most
edge from u. For a vertex v and an edge (x, v), the right-most edge from v w.r.t.
edge (x, v) is the first edge (v, w) in the counter-clockwise order from (x, v) as
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they incident to v in their embedding (see Fig. 1 (b), (s3, w0) is the right-most
edge from s3 w.r.t. (u, s3)). The right-most search is a depth-first search with
the restriction that, for each vertex v visited, edges (v, w) from v are explored
in the counter-clockwise order from the right-most edge (w.r.t. edge (x, v) by
which v is first visited for v �= u). For each vertex v in P , we find the unique
right-most shortest path from u to v by the right-most search on DP̃ (u). For
s ∈ S and v ∈ P , we assign w(s) = d(u, s) and wd(s, v) = w(s) + d̃(s, v), where
d̃(s, v) is the shortest distance from s to v in P̃ . Based on the unique right-most
shortest paths, we construct an oracle of [8], called ORACLER, which returns
the right-most feasible site (the feasible site of smallest index) and d(u, v) for
u in Q and v in P in O(log n) time. Notice that the oracle of [8] requires that
wd(si, v) has a distinct value for each si. To get this property, we break the
tie by defining wd(si, v) is smaller than wd(sj , v) if i < j when wd(si, v) and
wd(sj , v) have the same value for different si and sj .

We also construct an oracle ORACLEL of [8] based on the left-most shortest
paths. We identify edge (u, sk) as the left-most edge from u. For a vertex v and
an edge (x, v), the left-most edge from v w.r.t. edge (x, v) is the first edge (v, w)
in the clockwise order from (x, v) as they incident to v in their embedding (see
Fig. 1 (b), (s3, w2) is the left-most edge from s3 w.r.t. (u, s3)). The left-most
search is a depth-first search with the restriction that, for each vertex v visited,
edges (v, w) from v are explored in the clockwise order from the left-most edge
(w.r.t. edge (x, v) by which v is first visited for v �= u). For each vertex v in P ,
we find the unique left-most shortest path from u to v by the left-most search
on the DAG. Based on the unique left-most shortest paths, ORACLEL returns
the left-most feasible site (the feasible site of largest index) and d(u, v) for u in
Q and v in P in O(log n) time.

Answering Query. Given u and v, to get ns(u, v), we find the piece R of
smallest depth in T such that R is divided into P and Q with u in Q and v
in P . Then u is either in the hole h of P or in the set S of vertices incident to
h. When u or v is in S, ns(u, v) has been stored and get ns(u, v) is trivial. The
difficult part is to find ns(u, v) without enumeration on S when neither u nor
v is in S. In this case, u is in h, and we say v is in P for simplicity. We give
an algorithm to find all feasible sites for this case. Given u in h, let VD be the
Voronoi diagram in ORACLER and VD∗ be the dual representation of VD. For
a subtree T ∗ of VD∗ and a centroid f∗ of T ∗, let T ∗

0 , T ∗
1 , T ∗

2 be the three subtrees
created by f∗, y0, y1, y2 be the three vertices of P incident to f∗, s(0), s(1), s(2)
be the three sites of S such that yi is in Vor(s(i)) as shown in Fig. 1 (a). Let
pi be the right-most shortest path from s(i) to yi for i = 0, 1, 2. Notice that pi
is in the Voronoi cell Vor(s(i)) of VD. For a site s of S, we denote the index of
s by ind(s). Given u in h and v in P , let s∗ be the right-most feasible site (v
is in Vor(s∗)) and s∗∗ be the left-most feasible site. Then for any feasible site
s, ind(s∗) ≤ ind(s) ≤ ind(s∗∗). We use ORACLER to find s∗ and ORACLEL

to find s∗∗. Let rng(s∗, s∗∗) = {s| ind(s∗) < ind(s) < ind(s∗∗)} be the range
for searching feasible sites. Let dep(T ∗) be the depth of the recursion on T ∗ by
centroids f∗. If | rng(s∗, s∗∗)| ≤ adep(T ∗) for some constant a > 0 then we check
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Algorithm 1 Find Feasible-sites
Call ORACLER to find s∗ and ORACLEL to find s∗∗;
if |rng(s∗, s∗∗)| ≤ adep(T ∗) then /* a > 0 is a constant. */

check each vertex s with ind(s∗) < ind(s) < ind(s∗∗) to find feasible sites and return;
T ∗ = VD∗; Recurse-on(T ∗);

Subroutine Recurse-on(T ∗) /* addition operations in the subroutine are modulo 3. */
if rng(s∗, s∗∗) ∩ rng(T ∗) = ∅ then return;
if T ∗ has one edge e∗ then find feasible sites from the two sites incident to e∗ and return;
Decompose T ∗ into T ∗

0 , T
∗
1 , T

∗
2 by centroid f∗;

Find the location of v; /* v is either in the interior of Zi or on pi for some i ∈ {0, 1, 2}. */
Case 1: v is in the interior of Zi and s∗ �= s(i+ 2).

Case 1.1: wd(s∗, v) < wd(s(i), v). Recurse-on(T ∗
i );

Case 1.2: wd(s∗, v) = wd(s(i), v) < wd(s(i+ 1), v).
Recurse-on(T ∗

i ); Recurse-on(T ∗
i+1);

Case 1.3: wd(s∗, v) = wd(s(i), v) = wd(s(i+ 1), v).
Recurse-on(T ∗

i ); Recurse-on(T ∗
i+1); Recurse-on(T ∗

i+2);
Case 2: v is in the interior of Zi and s∗ = s(i+ 2).

Case 2.1 wd(s∗, v) < wd(s(i), v). Recurse-on(T ∗
i ); Recurse-on(T ∗

i+2);
Case 2.2: wd(s∗, v) = wd(s(i), v).

Recurse-on(T ∗
i ); Recurse-on(T ∗

i+1); Recurse-on(T ∗
i+2);

Case 3: v is on pi.
Case 3.1: wd(s∗, v) < wd(s(i+ 1), v). Recurse-on(T ∗

i ); Recurse-on(T ∗
i+1);

Case 3.2: wd(s∗, v) = wd(s(i+ 1), v).
Recurse-on(T ∗

i ); Recurse-on(T ∗
i+1); Recurse-on(T ∗

i+2);

Fig. 2. Algorithm for computing all feasible sites for u in the hole h and v in P .

every site s in rng(s∗, s∗∗), otherwise, we recurse on T ∗ to find all feasible sites.
We use rng(s∗, s∗∗) to narrow down the recursion range. More specifically, let
rng(T ∗) be the set of sites incident to T ∗. Initially, rng(T ∗) = S. For a subtree
T ∗
i , the sites incident to T ∗

i are located from s(i + 2) to s(i) (additions in this
paragraph are modulo 3) in the clockwise direction. If ind(s(i + 2)) < ind(s(i))
then rng(T ∗

i ) = {s| ind(s(i+2)) ≤ ind(s) ≤ ind(s(i))}. If ind(s(i+2)) > ind(s(i))
then rng(T ∗

i ) = {s|0 ≤ ind(s) ≤ ind(s(i)) or ind(s(i + 2)) ≤ ind(s) ≤ k}. If
rng(s∗, s∗∗) ∩ rng(T ∗

i ) = ∅ then T ∗
i will not be recursed. The pseudo code of the

algorithm is given in Fig. 2.

Analysis for the Oracle

Lemma 2. Algorithm 1 finds all feasible sites for u and v in O(|S|) time.

A proof for the lemma is omitted due to space limit. Our oracle for counting
shortest paths consisting of ORACLER, ORACLEL and the precomputed num-
bers of shortest paths. Given u and v in G, the oracle finds the piece R on which
we find ns(u, v). If u or v is in S then ns(u, v) can be obtained from the stored
information. Otherwise, the oracle uses Algorithm 1 to find all feasible sites and
return

∑
s∈F ns(u, s) × ns′(s, v) for ns(u, v). Now we have our first result.

Theorem 1. There is an oracle which, given any planar graph G with n vertices
and positive edge lengths, and any two vertices u and v in G, gives the number



An Efficient Oracle for Counting Shortest Paths in Planar Graphs 415

ns(u, v) of shortest paths from u to v in O(
√

n) time. The oracle has O(n1.5)
size and O(n2) preprocessing time.

Proof. It takes O(log n) time to find the piece R of T on which we find ns(u, v).
If u or v is in S, then the oracle returns the correct value for ns(u, v) in O(1)
time. Otherwise, by Lemmas 1 and 2, the oracle also returns the correct value for
ns(u, v). By Lemma 2, it takes O(|S|) time to get ns(u, v). Since |S| = O(

√
n),

our oracle takes O(
√

n) time to find ns(u, v). As shown in [8], each of ORACLER

and ORACLEL has O(n1.5) size and can be computed in O(n2) time using the
shortest path algorithms in [9] for computing the shortest path trees. When the
shortest path trees are given, the number of shortest paths can be computed in
O(n2) time. So, our oracle has O(n1.5) size and O(n2) preprocessing time. �	

For vertices u and v in G let s∗ be the right-most feasible site and s∗∗ be
left-most feasible site. If s∗ = s∗∗ and ns(u, s∗) × ns(s∗, v) = 1 then there is a
unique shortest path u → v, otherwise there are multiple shortest paths u → v.
By ORACLER and ORACLEL, s∗ and s∗∗ can be found in O(log n) time and
we obtain our next result.

Theorem 2. There is an oracle which, given any planar graph G with n vertices
and positive edge lengths, and any two vertices u and v in G, answers whether
there is a unique shortest path from u to v or not in O(log n) time. The oracle
has O(n1.5) size and O(n2) preprocessing time.

4 Computational Results

We compare the practical performance of the enumeration method which finds
ns(u, v) by enumerating vertices in S and Algorithm 1. The comparison is focused
on the time to find ns(u, v) for u ∈ Q and v ∈ P when P , Q and S are given.
For this purpose, we use a grid graph as P . An x × y grid is a graph H(V,E)
with vertex set V = {v(i, j)|1 ≤ i ≤ x, 1 ≤ j ≤ y} and there is an edge
(v(i, j), v(i′, j′)) from v(i, j) to v(i′, j′) if i = i′ and |j − j′| = 1 or |i− i′| = 1 and
j = j′. We have two settings for P , S and Q. In Setting (I), P is the subgraph of
H induced by the vertices in the rows from 1 to �x/2; S is the set of vertices in
the (�x/2)th row (|S| = y) and Q is the subgraph of H induced by V (H)\V (P );
and we randomly select 10 vertices of Q as u. In Setting (II), P is H; S is the set
of vertices incident to the outer face (hole h) of P (|S| = 2(x+y)−4 ≈ 2(x+y))
and Q is in the interior of h; we use a point in h as u in Q and connect u to every
site s ∈ S by an edge (u, s) with a length specified later; we assign the edges
(u, s) 10 sets of independently selected lengths to simulate 10 different u’s in Q.
In bothing settings, each edge of H is assigned a random length from [1, 10].
For every u, we run the algorithms to find ns(u, v) for every v in V (P ) \ S. The
average query time for a single pair (u, v) is the total query time for all (u, v)
pairs divided by the number of pairs. We implemented the algorithms in C++
and run the implementations on a laptop with 2.0 GHz quad-core Intel Core i5
CPU, 16GB memory. We test the algorithms on x × x grids in Setting (I)
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Fig. 3. (a) Average time to find ns(u, v) in x × x grids with |S| = 100, .., 500. (b)
Average time to find ns(u, v) in x × 2x grids with |S| = 300, 600, .., 2400. Time unit is
microsecond µs.

with x = 100, .., 500. The average query times of enumeration, Algorithm 1 and
finding s∗ and s∗∗ are given in Fig. 3 (a). We test the algorithms on x×2x grids P
in Setting (II) with x = 50, 100, .., 400 (|S| ≈ 300, 600, .., 2400). For each x × 2x
grid and every u, we assign each edge (u, s) a length randomly selected from
[0.4x, 8x]. The average query times for enumeration, Algorithm1 and finding s∗

and s∗∗ for the grids in Setting (II) are given in Fig. 3 (b).
The results show that Algorithm 1 is faster than enumeration when |S| > 300.

The time for finding s∗ and s∗∗ gives the query time to answer a query for the
unique shortest path problem. The results show that applying Voronoi diagrams
can reduce the query time significantly for counting shortest paths and answering
whether there is a unique shortest path from u to v from enumeration. To find
the shortest distance from u to v, one only needs to find s∗ (or s∗∗) which takes
about half of the time to find both s∗ and s∗∗. This confirms that the data
structure in [8] for the Voronoi diagrams on planar graphs is efficient in query
time for distance oracles.

5 Conclusion

We proposed a new oracle for counting shortest paths in planar graphs, which
uses Voronoi diagrams to speed up the query time. In worst cases, our oracle
has the same O(

√
n) query time as that of the best known oracle [2] for G of

n vertices. Computational results show that the worst cases rarely happen and
the query time of our oracle is faster than the oracle in [2] for large grids. Our
future works include proving an upper bound on the average query time of the
oracle that is close to its practical performance. It is interesting to apply the
oracles for counting shortest paths to real systems.
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Abstract. Let γr(G) and γtr(G) denote the restrained domination num-
ber and total restrained domination number of G, respectively. The min-
imum total restrained domination problem is to find a total restrained
dominating set of minimum cardinality. In this paper, we correct a minor
error in Pandey et al. [5] and design a linear-time algorithm for finding
the restrained domination number of cographs. Furthermore, we propose
a linear-time algorithm to solve the minimum total restrained domina-
tion problem in cographs.
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domination number · Cographs

1 Introduction

The concept of domination in graphs, with its many variations, is now well
studied in graph theory. The literature on the subject has been surveyed and
detailed in [8] and [9]. Let G be a simple and undirected graph. The vertex
set and the edge set of G are denoted by V (G) and E(G), respectively. Let
n(G) = |V (G)|. The degree, neighborhood and closed neighborhood of a vertex
v in the graph G are denoted by dG(v), NG(v) and NG[v] = NG(v) ∪ {v},
respectively. If the graph G is clear from context, we simply write d(v), N(v) and
N [v], respectively. The minimum degree and maximum degree of the graph G are
denoted by δ(G) and Δ(G), respectively. Let S ⊆ V (G), NG(S) =

⋃
v∈S NG(v)

and NG[S] = NG(S) ∪ S. The graph induced by S ⊆ V is denoted by G[S]. The
diameter of G, denoted by diam(G), is the maximum distance among pairs of
vertices in G.

A set S ⊆ V in a graph G is called a dominating set if every vertex in
V (G) − S is adjacent to at least one vertex in S. The domination number
γ(G) equals the minimum cardinality of a dominating set in G. Moreover, a
dominating set of G of cardinality γ(G) is called a γ-set of G.
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A dominating set S of a graph G is called a restrained dominating set if
every vertex in V − S is adjacent to a vertex in V − S. The restrained domina-
tion number of G, denoted by γr(G), is the minimum cardinality of a restrained
dominating set of G. A restrained dominating set of G of cardinality γr(G) is
called a γr-set of G. Telle and Proskurowski in [7] introduced restrained domi-
nation as a vertex partitioning problem. One possible application of the concept
of restrained domination is that of prisoners and guards. Here, each vertex not
in the restrained domination set corresponds to a position of a prisoner, and
every vertex in the restrained dominating set correspond to a position of guard.
Note that each prisoner’s position is observed by a guard’s (to effect security)
while each prisoner’s position is seen by at least one other prisoner’s position (to
protect the rights of prisoners). To be cost effective, it is desirable to place as
few guards as possible (in the sense above).

A set S ⊆ V is a total restrained dominating set of G if every vertex is
adjacent to a vertex in S and every vertex in V − S is adjacent to a vertex
in V − S. The total restrained domination number of G, denoted by γtr(G),
is the minimum cardinality of a total restrained dominating set of G. A total
restrained dominating set of G of cardinality γtr(G) is called a γtr-set of G. The
concept of total restrained domination in graphs was introduced in [6] and has
been studied in [3]. For example, let P7 = v1v2 · · · v7 be the path with vertices
set {vi|i = 1, 2, · · · , 7}. Then {v1, v4, v7} is a restrained dominating set of P7

and γr(P7) = 3. {v1, v2, v5, v6, v7} is a total restrained dominating set of P7 and
γtr(P7) = 5.

For a graph G, any vertex of degree one is called a leaf and the neighbour of
a leaf is called a support vertex of G.

Let G1 and G2 be two graphs such that V (G1)∩V (G2) = ∅. Then the union
G = G1 ∪G2 has V (G) = V (G1)∪V (G2) and E(G) = E(G1)∪E(G2). The join
G = G1 +G2 has V (G) = V (G1)∪V (G2) and E(G) = E(G1)∪E(G2)∪{uv|u ∈
V (G1), v ∈ V (G2)}.

A cograph, or complement-reducible graph, or P4-free graph, is a graph that
can be generated from the single-vertex graph K1 by complementation and dis-
joint union. That is, the family of cographs is the smallest class of graphs that
includes K1 and is closed under complementation and disjoint union.

Any cograph may be constructed using the following recursive construction :

1. any single vertex graph is a cograph;
2. if G is a cograph, so is its complement graph G;
3. if G and H are cographs, so is their disjoint union G ∪ H.

The cographs may be defined as the graphs that can be constructed using these
operations, starting from the single-vertex graphs. Alternatively, instead of using
the complement operation, one can use the join operation, which consists of
forming the disjoint union G ∪ H and then adding an edge between every pair
of a vertex from G and a vertex from H.

We often associate with a cograph G a rooted binary tree TG called a cotree.
In TG, its leaves are in one to one correspondence with the vertices of G. For
an internal vertex ti of TG, let Vi be the set of vertices in G that correspond to
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leaves in the subtree of TG rooted at ti, and we denote by Gi the subgraph of G
induced by Vi.

Every internal vertex of TG is labeled either 0 or 1, corresponding to the
disjoint union and join operations, respectively in the following way. Let ti be
an internal vertex of TG with children tj and tk. If ti is labeled by 0, then
Gi = Gj ∪ Gk. If ti is labeled by 1, then Gi = Gj + Gk. An internal vertex of
TG is called 0-vertex if it is labeled by 0, and 1-vertex if it is labeled by 1.

a b

c

d

ef

g

h

1

a b c d e f g h

0 0 1 0

1 0

Fig. 1. A cograph G and its cotree TG.

The restrained domination problem [2] is known to be NP-complete even
for chordal graphs. A linear time algorithm to compute a minimum restrained
dominating set of a tree has been proposed in [2]. In [4], Panda et al. posed
a linear time algorithm to compute a minimum restrained dominating set of
a proper interval graph. Pandey et al. [5] presented a polynomial time reduc-
tion that proves the NP-completeness of the restrained domination problem for
undirected path graphs, chordal bipartite graphs, circle graphs.

The total restrained domination problem [6] is known to be NP-complete
even for bipartite graphs and chordal graphs. Araki et al. in [1] proposed a
linear-time algorithm for finding the secure domination number of cographs.

In this paper, we correct a minor error in [5] and design a linear-time algo-
rithm for finding the restrained domination number of cographs. Furthermore,
we propose a linear-time algorithm to solve the minimum total restrained dom-
ination problem in cographs.

2 Restrained and Total Restrained Domination Number
in Cographs

For any cograph H, let w(H) denote the connected component number of
H. Suppose that H1,H2, · · · ,Hw(H) be the connected components of H. Let
l(H) = |{Hi|Hi

∼= K1, i = 1, 2, · · · , w(H)}| and t(H) = max{|V (Hi)| : i =
1, 2, · · · , w(H)}.

We first consider the values of γ, γr and γtr for the union of cographs G and
H. The following result is obvious.
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Lemma 1. Let G and H be cographs.

(1) γ(G ∪ H) = γ(G) + γ(H).
(2) γr(G ∪ H) = γr(G) + γr(H).
(3) γtr(G ∪ H) = γtr(G) + γtr(H).

Next we consider γ, γr and γtr for the join of cographs G and H. Pandey et al.
[5] gave the following result.

Lemma 2 ([5]). Let G and H be cographs.

γr(G + H) =

⎧
⎪⎪⎨

⎪⎪⎩

2, if n(G) = 1 and n(H) = 1
min{γ(G), γ(H), 2}, if n(G) ≥ 2 and n(H) ≥ 2
min{1 + l(G), γ(G)}, if n(G) ≥ 2 and n(H) = 1
min{1 + l(H), γ(H)}, if n(G) = 1 and n(H) ≥ 2.

There is a minor error in the result. For example, let G = K1 and H be the
complement of Kt, then γr(G + H) = t + 1. However, min{1 + l(H), γ(H)} = t.
So γr(G + H) 	= min{1 + l(H), γ(H)}. We give the following results.

Theorem 1. Let H be a cograph. Then

(1) γ(K1 + H) = 1.
(2) γr(K1 + H) = l(H) + 1.

Proof. (1) is easily obtained. So consider (2).Assume thatV (K1) = {u}. If l(H) =
0, then {u} is a restrained dominating set of K1 + H. Hence, γr(K1 + H) = 1.

Suppose that l(H) ≥ 1. Without loss of generality, we can assume that Hi is
isomorphic to K1 for i = 1, 2, · · · , l(H). It is obvious that (

⋃l(H)
i=1 V (Hi)) ∪ {u}

is a restrained dominating set of K1 + H. Hence, γr(K1 + H) ≤ l(H) + 1.
Let D be a γr-set of K1 + H. It is obvious that (

⋃l(H)
i=1 V (Hi)) ⊆ D and D ∩

((
⋃w(H)

i=l(H)+1 V (Hi)) ∪ {u}) 	= ∅. So, l(H) + 1 ≤ |D| = γr(K1 + H). Therefore,
γr(K1 + H) = l(H) + 1.

Theorem 2. Let G and H be cographs with n(G) ≥ 2 and n(H) ≥ 2. Then

γ(G + H) = γr(G + H) =
{

1, if γ(G) = 1 or γ(H) = 1
2, if gamma(G) ≥ 2 and gamma(H) ≥ 2

Proof. Suppose that γ(G) = 1. Assume that {u} is a dominating set of G. It is
obvious that {u} is both a dominating set and a restrained dominating set of
G + H. Hence, γ(G + H) ≤ 1 and γr(G + H) ≤ 1. Since γ(G + H) ≥ 1 and
γr(G + H) ≥ 1, it follows that γ(G + H) = 1 and γr(G + H) = 1.

Suppose that γ(G) ≥ 2 and γ(H) ≥ 2. Let u ∈ V (G) and v ∈ V (H). It is
obvious that {u, v} is both a dominating set and a restrained dominating set of
G + H. Hence, γ(G + H) ≤ 2 and γr(G + H) ≤ 2. Suppose that γ(G + H) = 1.
Assume that {u} ⊆ V (G) is a dominating set of G+H. Then {u} is a dominating
set of G. So γ(G) ≤ 1, which is a contradiction with γ(G) ≥ 2. Hence γ(G+H) ≥
2. By a similar proof, it follows that γr(G + H) ≥ 2.
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Theorem 3. Let H be a cograph. Then

γtr(K1 + H) =

⎧
⎨

⎩

3, if l(H) = 0 and t(H) = 2
2, if l(H) = 0 and t(H) ≥ 3
l(H) + 1, if l(H) ≥ 1.

Proof. Say V (K1) = {u}. We discuss it from the following cases.
Case 1 l(H) = 0. Suppose that t(H) ≥ 3. Without loss of generality, we

can assume that |V (H1)| = t(H). Let H ′
1 be a spanning tree of H1 and v be a

leaf of H ′
1. Then {u, v} is a total restrained dominating set of K1 + H. Hence,

γtr(K1+H) ≤ 2. Since γtr(K1+H) ≥ 2, it follows that γtr(K1+H) = 2. Hence,
we can assume that t(H) = 2.

If w(H) = 1, then K1 + H is isomorphic to K3. It is obvious that γtr(K1 +
H) = 3. We can assume that w(H) ≥ 2. Then V (H1) ∪ {u} is a total restrained
dominating set of K1 + H. Hence, γtr(K1 + H) ≤ |V (H1) ∪ {u}| = 3.

Let D be a γtr-set of K1+H, where H is a cograph with l(H) = 0, w(H) ≥ 2
and t(H) = 2. Then u ∈ D. Otherwise, suppose that u /∈ D. Then D = V (H)
and |D| ≥ 4. Then V (H1) ∪ {u} is a total restrained dominating set of K1 + H
with cardinality less than |D|, which is a contradiction. Hence, u ∈ D.

Since D is a total restrained dominating set of K1 + H, there exists Hi such
that D∩V (Hi) 	= ∅. Without loss of generality, we can assume that D ∩ V (H1) 	=
∅. Since |V (H1)| = 2, V (H1) ⊆ D. Hence, 3 ≤ |D| = γtr(K1 + H). Hence,
γtr(K1 + H) = 3.

Case 2 l(H) ≥ 1. Without loss of generality, we can assume that Hi is
isomorphic to K1 for i = 1, 2, · · · , l(H). It is obvious that (

⋃l(H)
i=1 V (Hi)) ∪ {u}

is a total restrained dominating set of K1 + H. Hence, γtr(K1 + H) ≤ l(H) + 1.
Let D be a γtr-set of K1 + H. It is obvious that (

⋃l(H)
i=1 V (Hi) ∪ {u}) ⊆ D. So,

l(H) + 1 ≤ |D| = γtr(K1 + H). Therefore, γtr(K1 + H) = l(H) + 1.

Theorem 4. Let G and H be cographs with n(G) ≥ 2 and n(H) ≥ 2. Then
γtr(G + H) = 2.

Proof. Let u ∈ V (G) and v ∈ V (H). It is obvious that {u, v} is a total restrained
dominating set of G + H. Hence, γtr(G + H) ≤ 2. Since γtr(G + H) ≥ 2, it
follows that γtr(G + H) = 2.

3 Algorithms

Our algorithms for finding the restrained domination number and total
restrained domination number of a cograph G consists of two phases. In the
first phase, construct a cotree TG corresponding to G. In the second phase, com-
pute the restrained and total restrained domination number of Gi for internal
vertices of TG by simple bottom-up calculations on the cotrees.

Let G be a cograph. Suppose that ti is a vertex of TG and Gi is the induced
subgraph of G that is corresponding to ti. Algorithm 1 and Algorithm 2 compute
the restrained domination number and total restrained domination number of a
cograph, respectively. If G has isolated vertex, define γtr(G) = ∞.
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Algorithm 1: RS(ti): Computes the restrained domination number of a
cograph G.

Input: a vertex ti of the cotree TG.
Output: the 4-tuple (γr(Gi), γ(Gi), l(Gi), n(Gi)), where Gi is the subgraph

corresponding to ti.
if ti is a leaf then return (1, 1, 1, 1);
tl ← the left child of ti; tr ← the right child of ti;
(sl, gl, ll, nl) ← RS(tl);
(sr, gr, lr, nr) ← RS(tr);
if ti is 0-vertex then

return (sl + sr, gl + gr, ll + lr, nl + nr);
else

if nl = 1 then γr ← lr + 1;
else if nr = 1 then γr ← ll + 1;
else

if gl = 1 or gr = 1 then γr ← 1;
else γr ← 2;

γ ← min{gl, gr, 2};
return(γr, γ, 0, nl + nr).

Algorithm 2: TR(ti): Computes the total restrained domination number of
a cograph G

Input: a vertex ti of the cotree TG.
Output: the 4-tuple (γtr(Gi), t(Gi), l(Gi), n(Gi)), where Gi is the subgraph

corresponding to ti.
if ti is a leaf then return (∞, 1, 1, 1);
tl ← the left child of ti; tr ← the right child of ti;
(sl, tl, ll, nl) ← TR(tl);
(sr, tr, lr, nr) ← TR(tr);
if ti is 0-vertex then

return (sl + sr,max{tl, tr}, ll + lr, nl + nr);
else

if nl = 1 then
if lr = 0 and tr = 2 then γtr ← 3;
else if lr = 0 and tr ≥ 3 then γtr ← 2;

else γtr ← lr + 1;
else if nr = 1 then
if ll = 0 and tl = 2 then γtr ← 3;
else if ll = 0 and tl ≥ 3 then γtr ← 2;

else γtr ← ll + 1;
else γtr ← 2;
return(γtr, nl + nr, 0, nl + nr).
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We can see easily that Algorithm 1 computes the restrained domination num-
ber of Gi from Lemma 1, Theorem 1 and Theorem 2. Algorithm 2 computes
the total restrained domination number of Gi from Lemma 1, Theorem 3 and
Theorem 4.

Theorem 5. Given a cograph G of n vertices and m edges, the restrained and
total restrained domination number of G can be found in O(n+m) time, respec-
tively.

Proof. First a cotree TG from G in time O(n + m). Then we can find the
restrained and total restrained domination number by calling RS(troot) and
TR(troot), respectively, where troot is the root vertex of TG.

Since the cotree TG has n leaves, it has 2n − 1 vertices. Hence the computa-
tion time for RS(troot) and TR(troot) is O(n), respectively. Therefore, the total
computation time is O(n + m).

1
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Fig. 2. An example of the execution of Algorithm 1.
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Fig. 3. An example of the execution of Algorithm 2.

Figure 2 is an example of the execution of Algorithm 1 for the cograph
in Fig. 1, the 4-tuples near each node of the cotree means the values for
(γr(Gi), γ(Gi), l(Gi), n(Gi)). Figure 3 is an example of the execution of Algo-
rithm 2 for the cograph in Fig. 1, the 4-tuples near each node of the cotree means
the values for (γtr(Gi), t(Gi), l(Gi), n(Gi)). Hence, γr(G) = 2 and γtr(G) = 2.
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Abstract. As a critical structure, a k-core is a maximal connected sub-
graph with the minimum degree δ ≥ k of a simple unweighted graph,
where integer k ≥ 0. Define the core number of a vertex w as the maxi-
mum k such that w is contained in a k-core. There are two main problems:
the core decomposition problem which is calculating the core numbers of
all vertices in static graphs, and the core maintenance problem which is
updating the core numbers in dynamic graphs. Although, core numbers
can be updated by the core decomposition algorithms, only a small part
of vertices’ core numbers have changed after the change of a graph. Thus,
it is necessary to update core numbers locally to reduce the cost. In this
paper, we study the core maintenance problem on edge-weighted graphs
by using the k-order that is a vertex sequence ordered by the order that
the core decomposition algorithm removes vertices. We design the core
maintenance algorithms for inserting one edge at a time and the method
of updating the k-order, which reduce the searching range and the time
cost evidently. For the removing case, we use the existing subcore algo-
rithms to do the core maintenance and modify it with the method of
updating k-order we design.

Keywords: Core maintenance · Edge-weighted graphs · k-core

1 Introduction

The graph is a simple and practical model. The application fields of graphs
become increasingly widely, and include bioinformatics, social networks, commu-
nications technology and so on. With the development of large scale networks,
graphs structure analysis has attracted much attention. People concentrate on
the cohesive subgraph of a graph, which can explore the properties of graphs and
solve some problems in its corresponding applications. The cohesive subgraphs
include cliques, k-cores, k-trusses, to just name a few, and the most concerned
subgraph structure is the k-core.
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A k-core Ck is a maximal connected subgraph with the minimum degree
δCk

≥ k of a simple undirected unweighted graph G = (V,E), where k is a
nonnegative integer, and is proposed in 1983 by Seidman [15]. As an critical
subgraph structure, k-core has been used in community detection [2,12], bioin-
formatics [1,5], the analysis for structural properties of graphs [17] and so on.

The theoretical research of the k-core mainly includes the core decomposition
problem and the core maintenance problem. Define the core number of a vertex
w ∈ V as the maximum k such that w ∈ Ck on G. The core decomposition prob-
lem is that calculate the core numbers of all vertices in G. In 2003, Batagelj et al.
proposed an O(|E|) time core decomposition algorithm for an unweighted graph
[3], which is the pioneering work of the k-core. Later, researchers considered dif-
ferent situations and did extensive works: the distribute k-core decomposition
algorithms [7,11], core decomposition on uncertain graphs [4,13], the external-
memory algorithm [6], to just name a few.

The core maintenance problem is that update the core numbers of vertices on
dynamic graphs which are graphs changing over time. Although, using the core
decomposition algorithms can update the core numbers for dynamic graphs,
it costs too much for the reason that only a part of vertices’ core numbers
change after the change of a graph. Therefore, finding algorithms to update the
core numbers locally becomes the focus of researchers. In [14], Sarıyüce et al.
presented three core maintenance algorithms with O(|E|) time. In [9], Li et al.
designed similar core maintenance algorithms with [14], independently. Based on
the above results, Jin et al. [8] proposed parallel core maintenance algorithms
for inserting or removing multiple edges at a time; Zhang et al. [16] proposed a
fast order-based core maintenance algorithm for inserting an edge; Liu et al. [10]
solved the core maintenance problem for edge-weighted graphs. There are still
many achievements, and we only list a few briefly.

In this paper, we address the core maintenance problem on edge-weighted
graphs by the k-order which is firstly introduced in [16]. Let G = (V,E, c) be
an edge-weighed graph, and c : E → {1, 2, · · · , b} is the edge weight function,
where b is a positive integer. Next, we define the degree of vertex u, denoted by
dG(u), is the sum of weights of all incident edges of u in G. A (weighted) k-core
Ck is a maximal connected subgraph with the minimum degree δCk

≥ k of a
simple undirected weighted graph G, where k is a nonnegative integer. And the
definition of core number, denoted by core(w) for w ∈ V , is the maximum k such
that w ∈ Ck on G. Then we define the (weighted) k-order which is the vertex
sequence formed in the order in which the core decomposition algorithm accesses
the vertices in [10] for weighted graphs. Consider inserting an edge e = (u, v)
with core(u) ≤ core(v) to G, and O = O0O1O2 · · · Ok−1OkOk+1 · · · Okmax

is
the k-order of G. The core maintenance algorithms search from u to the end
of Ocore(u)+ce−1 layer by layer, and use the indicative degree we define to judge
whether a vertex has a higher core number. Suppose that we are processing
on the layer OK . If a vertex’s indicative degree is greater than K, then we
put it into V ′ which consists of vertices whose core numbers may increase. If a
vertex’s indicative degree is less than or equal to K, then the new core number
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of this vertex is K and we put it to the end of O′
K which is the segment with

new core number K of the k-order O′ of G + e. In this way, updating the core
numbers and the k-order will complete for inserting case until all layers that
need to be processed is processed. It should be noted that the size of V ′ is
reduced significantly, which improves the time complexity compared to [10]. As
for the removing case, we use the subcore algorithms in [10] to solve this case,
and modify it by adding the capacity of updating the k-order for the next core
number maintenance. We summary our contributions as follows:

– We first introduce the weighted k-order of edge-weighted graphs, and find
the properties of vertices whose core numbers may increase on k-order after
inserting an edge.

– Using the k-order, we first propose the core maintenance algorithms for the
dynamic edge-weighted graphs after inserting an edge, and presented the
method of updating the k-order which is nested into the core maintenance
algorithms. Our algorithms reduce the size of the search space V ′ compared
with traversal algorithms in [10], so that the time cost is reduced when update
the core numbers of vertices locally.

– For the removing case, we use the subcore algorithms in [10] to update core
numbers and modify it with the method of updating the k-order we design.

The rest of this paper is organized as follows. Section 2 gives the fundamental
definitions and results about weighted k-core and weighted k-order. Section 3
presents the core maintenance results that are already existing or first found
by us on weighted graphs. Then, the core maintenance algorithms using the k-
order as a tool are presented in Sect. 4, with the analyses of them. Lastly, Sect.
5 concludes the content and results about this paper.

2 Preliminaries

In this section, we present the fundamental definitions about (weighted) k-core
and the properties of them. Next, the core decomposition algorithm for edge-
weighted graphs designed in [10], which is the fundamental result for the core
maintenance problem on edge-weighted graphs, is shown.

Let G = (V,E, c) be a simple undirected edge-weighed graph, which is defined
on the underlying graph G = (V,E), meanwhile, c : E → {1, 2, · · · , b} is the
edge weight function, where b is a positive integer. For any vertex u in G, the
neighborhood of u is defined as {v|(u, v) ∈ E}, denoted by NG(u). Next, we
define the degree of vertex u, denoted by dG(u), is the sum of weights of all
incident edges of u in G, i.e., dG(u) =

∑
(u,v)∈E c(u,v), where ce is the weight of

edge e. Let n = |V |, m = |E| and δG =min{dG(u)|u ∈ G}.

Definition 1 ((weighted) k-core). Let H be a subgraph of weighted graph G =
(V,E, c). If H satisfies the following three conditions, then H is a (weighted) k-
core of G, denoted by Ck, where k is a nonnegative integer: (a) δH ≥ k; (b) H
is a connected subgraph; (c) H is a maximal subgraph which satisfies the above
two conditions.
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Property 1. For a vertex u ∈ Ck, then Ck is a unique k-core that contains u,
denoted by Cu

k . For any k-core Ck, where k is an integer and k ≥ 1, there is an
unique Ck−1 that contains Ck.

Definition 2 ((weighted) core number/coreness). In a weighted graph G =
(V,E, c), the (weighted) max-k-core of vertex u, denoted by Cu, is a k-core that
contains u and has the maximum value of k. Then the value of k is defined as
the (weighted) core number/coreness of u, denoted by core(u).

In 2003, Batagelj et al. [3] proposed a core decomposition algorithm with time
complexity O(m) for unweighted graphs. Based on it, Liu et al. [10] designed
a core decomposition algorithm with time complexity O(m) for edge-weighted
graphs. We modify it to make it output the core numbers and the vertex sequence
O ordered by the processing order of the algorithm.

Definition 3 ((weighted) k-order). A (weighted) k-order of a weighted graph
G = (V,E, c), denoted by O, is a vertex sequence which contains all vertices in
G and produced from the core decomposition algorithm in [10]. For any pair of
vertices u and v in G, if u is removed before v, then we use u � v to denote that
u is in front of v in O.

It is obviously that the k-order is not unique, since the non-decreasing order
is not unique. But all k-orders of a certain graph have the following property.

Property 2. In a weighted graph G = (V,E, c), u and v is any pair of vertices, O
is a k-order of G. (a) If core(u) < core(v), then u � v. (b) If core(u) = core(v)
and u is removed before v, then u � v. (c) All the vertices with the same core
number k are on a continuous segment of O, denoted by Ok. Meanwhile, all those
segments are ordered in a non-decreasing order by the core numbers of vertices
in them.

Definition 4 ((weighted) remaining degree). Let O be a k-order of a
weighted graph G = (V,E, c). For any vertex u ∈ V , the (weighted) remaining
degree of u about O, denoted by d+G(u), is defined as d+G(u) =

∑
(u,v)∈E, u�v c(u,v).

According to Property 2, vertex sequence O can be written as
O0O1O2 · · · Ok−1OkOk+1 · · · Okmax

where kmax is the maximum core number
of the weighted graph. Then, we get Lemma 1.

Lemma 1. In a weighted graph G = (V,E, c), let ol be a vertex sequence con-
sisting of all vertices with core numbers equal to l. Then the vertex sequence
o0o1o2 · · · ol−1olol+1 · · · okmax

is a k-order if and only if, for any l, d+G(u) ≤ l for
any u ∈ ol.

Example 1. As shown in Fig. 1, the whole graph is a 2-core. The max-k-core of
vertex u is a 6-core, thus core(u) = 6. Input this graph to the decomposition
algorithm. Then we can get that a vertex sequence is O = (w, y, x, s, v, z, q, t, u)
and the core numbers are 2, 2, 2, 5, 6, 6, 6, 6, 6 respectively. The sequence O is a
k-order of the graph, and kmax = 6, O2 = (w, y, x), O5 = (s), O6 = (v, z, q, t, u).
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Fig. 1. An example of k-cores in a weighted graph.

Problem Statements: For unweighted graphs, the state-of-the-art core main-
tenance algorithm is designed in [16] in the case of inserting one edge at a time,
which is operated on the k-order. In this paper, we use the k-order as a tool
to solve the core maintenance problem on dynamic edge-weighted graphs in the
case of inserting or removing one edge at a time. Meanwhile, we need to update
the k-order after the change of the graph for the next core number updating.

3 Theoretical Findings

In this section, we present some theoretical results to support the design of the
core maintenance problem on dynamic weighted problem. We only study the
cases of inserting or removing one edge at a time. Then, there are three main
challenges we are facing to update core numbers locally. The first is determining
the changing value of the core number of a vertex after the change of a weighted
graph. The second is finding the set of vertices whose core numbers change on
the k-order, denoted by V ∗, after the change. Lastly, we need to update the k-
order of the new graph for the next round of core maintenance. Based on those
three problems, we give the approaches to them and design core maintenance
algorithms.

3.1 Previous Works

For any vertex u in G, we use core′(u) and C ′u to denote the new core number
and the new max-k-core of u on G′ which is changed from G, respectively.

Liu et al. has proved theorems. One of them tells us that the absolute chang-
ing value of the core number of a vertex range from 0 to ce after the insertion
or deletion. Another two are used to search the set of vertices whose core num-
bers may change, named V ′ (V ′ ⊇ V ∗), after inserting or removing an edge
respectively. In this paper, we use those theorems to find the vertices whose core
numbers will change on the k-order, which will reduce the size of V ′ significantly
contrast to [10].



The Core Maintenance Problem on Edge-Weighted Graphs 431

3.2 Inserting Case

Consider inserting an edge e = (u, v) with core(u) ≤ core(v) to a weighted graph
G = (V,E, c). We find the features of vertices whose core numbers will increase
on a k-order after inserting e, by which the inserting core maintenance algorithm
operates. They are described in the following theorem.

Theorem 1. In a weighted graph G = (V,E, c), u, v ∈ V , e = (u, v) with
core(u) ≤ core(v) is not in E. O = O0O1O2 · · · Ok−1OkOk+1 · · · Okmax

is the
k-order of G. Insert an edge e = (u, v) to G, then for any vertices w ∈ OL,
(a) if L < core(u), then core′(w) = core(w); (b) if L > core(u) + ce − 1, then
core′(w) = core(w); (c) if L = core(u) and w � u, then core′(w) = core(w);
(d) if there is a path P = (u, u1, u2 · · · w) on G + e, u � u1 � u2 � · · · � w on
O and any vertex w′ ∈ P satisfies that core(u) ≤ core(w′) ≤ core(u) + ce − 1,
then core(w) may increase.

Consider a scenario that core(w) may increase after insertion and w � w′. If
core(w′) locate in [core(u), core(u)+ce −1], then w may be one vertex that help
w′ to have a high core number. Therefore, the definition (weighted) candidate
degree is introduced to indicate this situation.

Definition 5 ((weighted) candidate degree). Let O be a k-order of a
weighted graph G = (V,E, c). Insert an edge e = (u, v) to G. For any vertex
w ∈ V , the (weighted) candidate degree of w, denoted by d∗

G(w), is defined as
d∗
G(w) =

∑
(w,w′)∈E, w′�w, core′(w′) may be greater than core(w) c(w,w′).

3.3 Removing Case

Consider removing an edge e = (u, v) with core(u) ≤ core(v) from a weighted
graph G = (V,E, c).

Definition 6 ((weighted) maximum current degree) [10]. In a weighted
graph G = (V,E, c), for any vertex w ∈ V , define the (weighted)
maximum current degree of w, denoted by WMD(w), as WMD(w) =∑

(w,w′)∈E
core(w′)≥core(w)

c(w,w′).

Property 3. In a weighted graph G = (V,E, c), WMD(w) ≥ core(w) for any
vertex w ∈ V .

The maximum current degree of a vertex w is the part of degree of w that help
w to have the core number core(w). Conversely, if

∑
(w,w′)∈E, core(w′)≥K c(w,w′) <

K, then core(w) < K. It is modified and used as the indicator to judge the core
number of a vertex after removing an edge.

Liu et al. [10] designed the (weighted) subcore core maintenance algorithms
by the above results and principles in removing case. The subcore of a vertex u
is a vertex set consisting of the vertices whose core numbers may change after
removing e. In fact, the subcore of u is V ′ after removing e. In this paper,
we quote these algorithms to solve the removing case and design new k-order
updating method which is combined into the subcore algorithms.
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4 Core Maintenance Algorithms

In this section, we propose the core maintenance algorithms for edge-weighted
graphs, with the methods for updating the k-order after the change.

In the previous sections, the theoretical findings show what kind of vertices’
core numbers may change and what the changing values may be. Then, there
are new judge indicators we propose to judge whether a vertex w ∈ V ′ is in V ∗

and determine its new core number. The algorithms we design are as follows.

4.1 Inserting Case

Algorithms Analysis and Process: Insert an edge e = (u, v) with core(u) ≤
core(v) to weighted graph G = (V,E, c), O = O0O1O2 · · · Ok−1OkOk+1 · · · Okmax

is the k-order of G.
Different from the core maintenance problem on unweighted graphs [16], not

only the core number of the vertex w ∈ Ocore(u) and u � w may change, but the
vertex with the core number locating in [core(u) + 1, core(u) + ce − 1] also may
have the change of the core number. Meanwhile, the changing values of the core
numbers are range from 0 to ce. Thus, the approach to judging whether the core
number will change after inserting e to G directly in [16] is not work.

To solve the above question, a layer by layer judgment method operated on
a k-order is proposed. In this method, we need to judge and calculate the new
core number directly, rather than judge whose core number increases. We use
the indicative degree id(w) = d+G(w)+d∗

G(w), which is dynamic, as the indicator
to judge the new core number of w, for any w ∈ V ′.

Then, Algorithm 1 and 2 are designed to solve the core maintenance problem
on weighted graphs for the edge insertion. Due to operated on the k-order, the
size of V ′ (the vertices that have been added to V ′) is reduced and the time
complexity is also improved compared to the traversal algorithm in [10].

To begin with, for a vertex w, the remaining degree d+G(w) is prepared. Next,
we start from the left of the search range on the k-order, i.e., vertex u, and
process vertex by vertex to the right until the end of Oce−1 is processed. In
fact, we operate on Ocore(u), Ocore(u)+1 · · · Ocore(u)+ce−1 in turn. Update core
numbers and O′

K on each layer OK in them, which is a round.
In each round, we use indicator id(w) to judge whether a vertex w has a

higher core number, when we get to w. Then, there are three cases divided by
id(w) and d∗

G(w). Without loss of generality, assume the round we are processing
is on the layer OK . The process corresponds to the Algorithm 2.

The first case: id(w) > K. In this case, w is a vertex whose core number may
be greater than K. Thus, w is added to V ′. Meanwhile, for any w’s neighbor w′

satisfying w′ ∈ Oc = Ocore(u)Ocore(u)+1 · · · Ocore(u)+ce−1 and w � w′, d∗
G(w′) =

d∗
G(w′) + ce. Because w may have the ability to help w′ to have a higher core

number. It should be noted that if w is already stored in V ′ on the processed
layers, it does not need to do the above operation again.

The second case: id(w) ≤ K and d∗
G(w) = 0. If w satisfies id(w) ≤ K and

d∗
G(w) = 0, then w does not have high enough degree to increase its core number,
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core(w) = K. Especially, if V ′ �= ∅ and the initial vertex u of OK has id(u) ≤ K,
then the core numbers of vertices in V ′ are K. Algorithm 1 is terminated.

The third case: id(w) ≤ K and d∗
G(w) > 0. Similar to the second case, w

does not have high enough degree to increase its core number. Furthermore, for
any w’s neighbor w′ satisfying w′ ∈ V ′ and w′ � w, d+G(w′) = d+G(w′) − ce. If w
is already stored in V ′ on the processed layers, for any w’s neighbor w′ satisfying
w′ ∈ Oc and w � w′, d∗

G(w′) = d∗
G(w′) − ce. However, the decrease of d+G(w′)

and d∗
G(w′) may lead to id(w′) ≤ K for a vertex w ∈ V ′. Define a vertex set R

which contains the vertices x satisfying x ∈ V ′, id(x) ≤ K and x is processed
in this layer. For any x ∈ R, the new core number core(x) = K. Assume that
w′ satisfying the conditions of vertices in R, then put w′ to R. Now, we should
remove all the vertices in R from V ′ and decrease the d+G() or d∗

G() for some
neighbors of x ∈ R. Specifically, there are three situations (take removing x ∈ R
from V ′ as an example).

(1) For each x′ ∈ V ′ ∩ NG′(x) and x′ � x, d+G(x′) = d+G(w) − c(x′,x). If id(x′) ≤
K, add x′ to R.

(2) If x ∈ V ′, then for each x′ ∈ NG′(x) ∩ V ′ and x � x′ � w, d∗
G(x′) =

d∗
G(x′) − c(x,x′). If id(x′) ≤ K, add x′ to R.

(3) If x ∈ V ′, for each x′ ∈ NG′(x) ∩ Oc and w � x′, d∗
G(x′) = d∗

G(x′) − c(x,x′).

When processing Ocore(u)+ce−1 is finished and V ′ �= ∅, the new core numbers of
vertices in V ′ are core(u) + ce.

K-Order and the Remaining Degree Update: The k-order and the remain-
ing degrees are updated with the process of judging the core numbers of vertices.
Without loss of generality, assume the round we are processing is on the layer
OK . The update for the segment O′

K of the k-order O′ of G′ completes in this
round. Details are as follows.

Initially, we set O′
K as an empty sequence except O′

core(u) which is the seg-
ment of Ocore(u) before u. When the core number of a vertex w ∈ OK is deter-
mined as K, the vertex w should be appended to the end of O′

K . Meanwhile,
the remaining degree d+G′(w) = d+G(w) + d∗

G(w) which is less than or equal to
K. If V ′ �= ∅ when this layer is finished, then we should append the vertices
in V ′ to the beginning of OK+1 in the order of OK to make the next round of
judgment. When processing Ocore(u)+ce−1 is finished and V ′ �= ∅, the combinant
of V ′ and Ocore(u)+ce is O′

core(u)+ce
. The remaining degrees of vertices that are

not processed or assigned remaining degrees keep unchanged or are those output
from the algorithms. Until now, the construction of k-order O′ and remaining
degree update are completed.

Theorem 2. The sequence O′ produced from Algorithm 1 is a k-order of G′ =
G + e.

4.2 Removing Case

Algorithms Introduction: Remove an edge e = (u, v) with core(u) ≤ core(v)
from weighted graph G = (V,E, c), O = O0O1O2 · · · Ok−1OkOk+1 · · · Okmax

is
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Algorithm 1. Inserting Case: Core Maintenance on a Weighted Graph by a
k-order
Require: A weighted graph G = (V, E, c); core numbers and d+

G(v) for each v ∈ V ; a
k-order O of G; the inserted edge e = (u, v) with weight ce

Ensure: New core number for each v ∈ V ′ and new k-order O′ of G′ = (V, E + e, c)
1: r = argmin{u,v} = {core(u), core(v)}; d+

G(r) = d+
G(r) + ce

2: if d+
G(r) ≤ core(r) then

3: core numbers and O do not change
4: end if
5: Ocore(r) ← r and the segment of Ocore(r) after r
6: Oc = Ocore(r)Ocore(r)+1 · · · Ocore(r)+ce−1

7: d∗
G(w) = 0, for any w ∈ Oc

8: V ′ = ∅
9: for K = core(r) to core(r) + ce − 1 do

10: n′ = |OK |, denote OK as (v1v2 · · · vn′)
11: if K = core(r) then
12: O′

K ← the segment of Ocore(r) before r
13: else
14: O′

K ← empty sequence
15: end if
16: i = 1
17: Search and Judge on OK

18: if V ′ = ∅ then
19: break % No subsequent vertex on Oc will increase the core number
20: else
21: put the vertices in V ′ to the beginning of OK+1 in the order of O
22: end if
23: end for
24: for each w ∈ V ′ do
25: core(w) = core(r) + ce; d+

G′(w) = d+
G(w)

26: end for
27: O′ = O1O2 · · · Ocore(r)−1O

′
core(r)O

′
core(r)+1 · · · O′

core(r)+ce−1O
′
core(r)+ce

· · · Ok′
max

% the OK that is not operated will remain unchanged
28: return core(w), O′

the k-order of G. In this part, we quote the (weighted) subcore algorithms [10] and
modify them to update the k-order at the same time after removing e from G.

A dynamic indicator named current degree (cd) is proposed to calcu-
late the new core numbers of vertices in V ′ (i.e., the subcore). And only the
vertices in V ′ need to be assigned the cd values. For each vertex w ∈ V ′,
the current degree of w, denoted by cd(w), is calculated initially as follows,
cd(w) =

∑
(w,w′)∈E\{e}, core(w′)≥core(u)−ce+1 c(w,w′).

To begin with, the subcore Su and cd values should be prepared by BFS
traversal. All vertices in Su are ordered in a non-decreasing order by their cd
values. H is the vertex-induce subgraph for Su on G − e which we need to
search to update core numbers. Next, the new core numbers of vertices in Su is
calculated and judged layer by layer from core(u) − ce to core(u). However, it



The Core Maintenance Problem on Edge-Weighted Graphs 435

Algorithm 2. Search and Judge on OK

1: R ← empty queue
2: while i ≤ n′ do
3: if d+

G(vi) + d∗
G(vi) > K then

4: if vi is not in V ′ then
5: V ′ = V ′ ∪ {vi};
6: for each w ∈ NG′(w) ∩ Oc and vi 	 w do
7: d∗

G(w) = d∗
G(w) + c(vi,w)

8: end for
9: end if

10: i = i + 1
11: else if d∗

G(vi) = 0 then
12: if vi = r then
13: for each w ∈ V ′ do
14: core(w) = K
15: end for
16: V ′ = ∅; O′

k = OK ; break
17: else
18: append vi to O′

K ; i = i + 1
19: end if
20: else
21: R.enqueue(vi)
22: while R 
= ∅ do
23: x ← R.dequque; core(x) = K
24: append x to O′

K ; V ′ = V ′ − {x}; d+
G′(x) = d+

G(x) + d∗
G(x); d∗

G′(x) = 0
25: for each w ∈ V ′ ∩ NG′(x) and w 	 x do
26: d+

G(w) = d+
G(w) − c(w,x)

27: if d+
G(w) + d∗

G(w) ≤ K then
28: R.enqueue(w)
29: end if
30: end for
31: if x ∈ V ′ then
32: for each w ∈ NG′(x) ∩ V ′ and x 	 w 	 vi do
33: d∗

G(w) = d∗
G(w) − c(x,w)

34: if d+
G(w) + d∗

G(w) ≤ K then
35: R.enqueue(w)
36: end if
37: end for
38: for each w ∈ NG′(x) ∩ Oc and vi 	 w do
39: d∗

G(w) = d∗
G(w) − c(x,w)

40: end for
41: end if
42: end while
43: end if
44: end while
45: return V ′, O′

K , vertices’ core(), d+
G′() in O′

K , d+
G() and d∗

G()
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may happen that no vertex has new core number K that locates in [core(u) −
ce, core(u)]. Then, the algorithms skips these layers.

In each round, i.e., a layer, processing each vertex w of Su in order, the
algorithm judge the core number of w. If core(w) is determined, then remove
w from H, and cd(w′) = cd(w′) − c(w,w′) for any vertex w′ ∈ NG′(w) ∩ V (H).
Reorder the rest vertices in H. Do the above operation until the cd value of the
first vertex in order in H is greater than the core numbers of vertices in this
layer. When H is a null graph, the algorithm is terminated.

K-Order and the Remaining Degree Update: At the beginning, all ver-
tices in Su are removed from the k-order O. In the round with core number
K, append the vertex w that have just been assigned core number with K to
the end of O′

K . In this way, a k-order of G′ can be obtained after processing
all vertices in H. Meanwhile, their cd values are assigned to the their remaining
degrees when they are removed from H. The remaining degrees of other vertices
are remain unchanged.

Theorem 3. The sequence O′ produced from the algorithm for removing case is
a k-order of G′ = G − e.

5 Conclusion

In this paper, we propose the (weighted) k-order and design the core maintenance
algorithms for edge-weighted graphs in inserting case by the k-order. Our algo-
rithms update the core numbers of vertices on dynamic graphs locally, and reduce
the size of V ′ which contains all vertices whose core numbers may change com-
pared with traversal algorithms in [10]. These algorithms reduce the search scope
and reduce the update time. For the removing case, we quote the (weighted) sub-
core algorithms [10]. Meanwhile, we also present the k-order updating methods
for both insertion and deletion cases.

References

1. Bader, G.D., Hogue, C.W.V.: An automated method for finding molecular com-
plexes in large protein interaction networks. BMC Bioinform. 4(1), 1–27 (2003)

2. Barbieri, N., Bonchi, F., Galimberti, E., Gullo, F.: Efficient and effective commu-
nity search. Data Min. Knowl. Disc. 29(5), 1406–1433 (2015). https://doi.org/10.
1007/s10618-015-0422-1

3. Batagelj, V., Zaversnik, M.: An O(m) algorithm for cores decomposition of net-
works. In: The Computing Research Repository (CoRR). arXiv: cs.DS/0310049
(2003)

4. Bonchi, F., Gullo, F., Kaltenbrunner, A., Volkovich, Y.: Core decomposition of
uncertain graphs. In: Proceedings of the 20th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pp. 1316–1325. ACM, New York
(2014)

https://doi.org/10.1007/s10618-015-0422-1
https://doi.org/10.1007/s10618-015-0422-1
http://arxiv.org/abs/cs.DS/0310049


The Core Maintenance Problem on Edge-Weighted Graphs 437

5. Cheng, Y., Lu, C., Wang, N.: Local k-core clustering for gene networks. In:
2013 IEEE International Conference on Bioinformatics and Biomedicine, pp. 9–
15. IEEE, Shanghai (2013)
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Abstract. The problem book drawing with a bounded number of
crossings per edge asks, given a graph G = (V, E) and two integers
k, b, whether there is a k-page book drawing of G such that the max-
imum number of crossings per edge is at most b. In this paper, we
study this problem from a parameterized complexity viewpoint. Specif-
ically, we investigate the problem parameterized by both the maxi-
mum number b of crossings per edge and the vertex cover number τ
of G, and show that this parameterized problem admits a kernel of size
(3b+1) ·2O(τ) and admits a fixed-parameter tractable algorithm running

in time O((3b+1)·2(3b+2)·2O(τ)
+τ ·|V |). Together with our previous result

for fixed-order book drawing with a bounded number of crossings
per edge (COCOA 2020), our result provides a more complete answer to
a question posed by Bhore et al. (J. Graph Alg. Appl. 2020).

1 Introduction

Book drawing is a main and popular paradigm for drawing graphs. Combinato-
rially, a k-page book drawing 〈≺, σ〉 of a graph G = (V,E) consists of a linear
ordering ≺ of its vertices along a spine and an assignment σ of each edge to one
of k pages, which are half-planes bounded by the spine [18]. The spine and the
k pages construct a book. In particular, a k-page book drawing that is cross-
ing free is called a k-page book embedding; if the ordering of vertices in V (G)
along the spine is specified, then a k-page book drawing (or embedding) is called
fixed-order. These definitions are illustrated in Fig. 1. Book drawings have been
extensively studied due to their wide range of applications including network
visualization, combinatorial geometry, VLSI design, RNA folding, knot theory
and others (see, e.g., [5,11,15]).

This research was supported in part by the National Natural Science Foundation of
China under Grant No. 61572190 and Hunan Provincial Science and Technology Pro-
gram under Grant No. 2018TP1018.

c© Springer Nature Switzerland AG 2021
W. Wu and H. Du (Eds.): AAIM 2021, LNCS 13153, pp. 438–449, 2021.
https://doi.org/10.1007/978-3-030-93176-6_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93176-6_38&domain=pdf
http://orcid.org/0000-0003-2686-5240
http://orcid.org/0000-0001-9363-6996
http://orcid.org/0000-0002-6965-7989
https://doi.org/10.1007/978-3-030-93176-6_38


Fixed-Parameter Tractability for Book Drawing 439

6

7

5

3

4

1

(a)

page3

(b)

page1

page2

1 2 3 4 5 6 72

(c)

1 2 5 4 3 6 7

page1

page2

Fig. 1. (a) This graph G, with vertices {1, 2, 3, 4, 5, 6, 7}, has (b) a 2-page book drawing
with at most 1 crossing per edge and (c) a 3-page fixed-order book drawing with at
most 1 crossing per edge when vertices are specified in increasing order.

Algorithms on drawing graphs have attracted considerable attention and
much interest as they provide geometric representations of abstract graphs. For
problems whose algorithms show exponential growth, parameterized complexity
theory seeks algorithms and analysis that confine the exponential dependence to
some parameter of the input graph that can be hoped to be small in practice.
This promising approach to deal with difficult graph drawing problems has led
to several fixed-parameter tractable algorithms (see, e.g., [2–4,7,12,13,17,21]).
A popular parameter has been the vertex cover number [2,7,17]. Recent studies
on book drawing parameterized by vertex cover number have arisen from the
book embedding problem and related works [6,19].

The book embedding problem decides whether a given graph G admits
a k-page book embedding. From the viewpoint of computational complexity,
the 2-page book embedding problem, determining whether a graph can be
embedded to two pages, is known to be NP-complete [10]. In view of the hardness
of this problem, even for a small fixed number k, Bhore et al. [6] introduced the
vertex cover number of the given graph as parameter and presented a fixed-
parameter tractable algorithm. Furthermore, Bhore et al. [6] posed some open
problems, e.g., investigating the parameterized complexity for (fixed-order)
book drawing in the setting where a bounded number of crossings per edge is
given as part of the input. These open problems were thought to be interesting
because some page in a k-page book drawing with a bounded number of crossings
per edge may contain an unbounded number of crossings. Recently, we have
shown that fixed-order book drawing with a bounded number of crossings
per edge is fixed-parameter tractable with respect to both the maximum number
of crossings per edge and the vertex cover number of the input graph [20].

In this paper, we focus on the problem book drawing with a bounded num-
ber of crossings per edge. This problem asks, given a graph G = (V,E) and two
integers k, b, whether there is a k-page book drawing 〈≺, σ〉 of G such that the
maximum number of crossings per edge is at most b. We denote by bd(G, b) the
book drawing thickness of G (i.e., the minimum k such that (G, k, b) is a yes-
instance of this problem). Since 2-page book embedding is NP-complete [10],
there can be no fixed-parameter tractable algorithm for this problem parame-
terized only by the crossing number unless P = NP. Therefore, we study this
problem parameterized by both the maximum number of crossings per edge and



440 Y. Liu et al.

the vertex cover number τ of G, which is formally described as follows and just
matches the parameterized problem we studied in [20].

k-page Book Drawing with Bounded Crossings per edge (BDBC)
Input: an undirected graph G = (V, E), two integers k, b ;
Parameters: b, the vertex cover number τ ;
Question: does there exist a k-page book drawing 〈≺, σ〉 of G such that the
number of crossings per edge is at most b ?

Let (G, k, b, τ) be an instance of the BDBC problem. Observing that (G,
k, b, τ) can be translated into |V (G)|! instances of the problem fixed-order
book drawing with a bounded number of crossings per edge, we first explore
a kernel for the BDBC problem by the following approach. A minimum vertex
cover C of G is firstly computed and the vertices in V (G)\C are partitioned into
2τ − 1 types. In each set of vertices of the same type, we focus on the subset
of vertices that have at least two incident edges assigned to the same page and
the subset of vertices that have at most one edge on each page and have at least
one edge which produces crossing on some page. To estimate the size of these
subsets in any yes-instance, we introduce two kinds of 1-page graphs, by which
two upper bound functions of both τ and b can be derived respectively. Based on
this approach, we obtain a kernel of size (3b+1) · 2O(τ). Then, by employing the
algorithm for fixed-order book drawing with a bounded number of crossings
per edge [20], we obtain a fixed-parameter tractable algorithm running in time
O((3b + 1) · 2(3b+2)·2O(τ)

+ τ · |V |).
As far as we know, our result is the first fixed-parameter tractable algorithm

for the BDBC problem. Together with our previous result for fixed-order
book drawing with a bounded number of crossings per edge [20], our result
provides a more complete answer to a question posed by Bhore et al. [6]. Our
result also puts the considered problem among a frontier research area of graph
drawing where few edge crossings are allowed per edge (see, e.g., [1,8,14,16]).

2 Preliminaries

We consider only undirected simple graphs. For a graph G = (V,E), let n = |V |,
V (G) be the vertex set of G and E(G) be the edge set of G. For two vertices u
and v, we use uv to denote the edge between u and v. Given two integers a, b in
N, we use [a, b] to denote the set {a, a + 1, . . . , b}. Given two sets A and B, we
also use A\B to denote the set of all elements that belong to A but not to B.
Given a vertex v in graph G, we denote by dG(v) the degree of v in G and by
NG(v) the set of all neighbors of v in G. Furthermore, given a set S in V (G),
we denote by NG(S) the set {v | v ∈ NG(u) and u ∈ S}.

Given a graph G = (V,E), we use 〈≺, σ, b〉 to denote a k-page book drawing
of G with at most b crossings per edge, where ≺ is a linear order of V and
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σ : E → [1, k] is a function that maps each edge of E to one of k pages denoted
by [1, k]. Assume that uv is an edge assigned to page p with p ∈ [1, k]. The edge
uv is said to produce b crossings on page p if uv intersects b other edges that are
assigned to page p.

A vertex cover C of a graph G = (V,E) is a subset C ⊆ V such that each edge
in E has at least one endpoint in C. A vertex v ∈ V is a cover vertex if v ∈ C.
The vertex cover number of G, denoted by τ , is the size of a minimum vertex
cover of G. Given a graph G, a vertex cover C with size τ can be computed
in time O(2τ + τ · |V |) [9]. In the rest of this paper, we will use C to denote a
minimum vertex cover of size τ .

Let W ⊆ C. A vertex in V (G)\C is of type W if its set of neighbors is equal
to W [6]. By this definition, the vertices in V (G)\C are partitioned into at most
2τ − 1 distinct types. We use VW to denote the set of vertices of type W .

3 A Class of 1-Page Graphs

Let (G, k, b, τ) be a yes-instance of the BDBC problem and let 〈≺, σ, b〉 be a
book drawing of G. Assume that C is a minimum vertex cover of G and that
W ⊆ C with |W | ≥ 2. In this section, we introduce a class of 1-page graphs, by
which the number of vertices in VW can be estimated page by page.

Let D ⊆ [1, |W |] and b be a positive integer. A graph H drawn on one
page is called a (U,W, b,D)-crossing graph if the following properties hold: 1©
all vertices in V (H) are placed on a horizontal line (also called a spine) and all
edges in E(H) are drawn as semicircles on this page; 2© U ∪W is a vertex cover
of H and each edge in E(H) produces at most b crossings; and 3© dH(v) ∈ D
for any v ∈ V (H)\(U ∪ W ) (see Fig. 2 for examples).

To estimate the number of vertices in VW , we distinguish two cases based
on whether |W | > k or not. Correspondingly, we employ two specific kinds of
(U,W, b,D)-crossing graphs as tools.

Case (1): |W | > k. Then, each vertex in VW must have at least 2 inci-
dent edges assigned to the same page. Assume that v (for v ∈ VW ) has d (for
d ∈ [2, |W |]) incident edges that are assigned to page p. Then the vertex v
has degree d within page p. To estimate the number of vertices with the same
edge assignments as v, we only need to consider one kind of (U,W, b,D)-crossing
graphs which meet the special condition that U ∪ W = W (i.e., U = ∅). Hence,
we employ a kind of (∅,W, b, [2, |W |])-crossing graphs. Suppose that H1 is an
arbitrary (∅,W, b, [2, |W |])-crossing graph. Then, an upper bound for the size of
V (H1)\W can be used to bound the number of vertices in VW that have at least
two edges assigned to a particular page.

Case (2): |W | ≤ k. Let u be an arbitrary vertex in VW . If u has at least two
incident edges assigned to the same page, then we can deal with it by the same
approach used in case (1). Herein, we mainly consider the situation that each
page in 〈≺, σ, b〉 contains at most one edge of u. In this situation, the vertex u can
be viewed as a vertex of degree 1 within each page that contains one edge of u.
Assume that one edge uc is assigned to page p and produces at least one crossing.
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Considering some edge crossed by uc may not be covered only by the vertices
in W , we introduce another kind of (U,W, b,D)-crossing graphs as follows. A
(U,W, b,D)-crossing graph H is called a (U,W, b, [1, |U |])-strict crossing graph if
H additionally meets the properties: 1© every vertex in NH(W )\W has degree
1; and 2© every edge in EW produces at least one but at most b crossings, where
EW = {vw | vw ∈ E(H), v ∈ NH(W )\W , and w ∈ W}. Suppose that H2 is an
arbitrary (U,W, b, [1, |U |])-crossing graph. Then, an upper bound for the size of
NH2(W )\W can be used to bound the number of vertices in VW that have at
most one edge on each page and have at least one edge which produces crossing
on a particular page.

Figure 2 depicts a (∅,W, b, [2, |W |])-crossing graph and a (U,W, b, [1, |U |])-
strict crossing graph respectively.

Fig. 2. A (∅, W, b, [2, |W |])-crossing graph with W = {c1, c2, c3} and b = 1 (left) and
a (U, W, b, [1, |U |])-strict crossing graph with U = {c3, c4}, W = {c1, c2}, and b = 2
(right). The edges with blue color in the right figure are covered by the vertices in U .
(Color figure online)

In the subsequent sections, we will give a detailed description of how to bound
the number of vertices in two kinds of (U,W, b,D)-crossing graphs respectively.

4 An Upper Bound for the Number of Vertices in Any
(∅,W, b, [2, |W |])-Crossing Graph

Let G be a (∅,W, b, [2, |W |])-crossing graph. Observe that G can be decomposed
into

(|W |
2

)
(∅, {wi, wj}, b, {2})-crossing graphs, where wi ∈ W and wj ∈ W . Thus,

we first analyze the maximum number of vertices in any (∅, {wi, wj}, b, {2})-
crossing graph.

Let W ′ = {wi, wj} be a subset of W . Assume that HW ′ is a (∅,W ′, b, {2})-
crossing graph. To facilitate estimating the number of vertices in HW ′ , we con-
sider its variant description, that is, the round (∅,W ′, b, {2})-crossing graph RW ′ .
In RW ′ , the vertices are placed in a circular spine and the edges are drawn on
the outer side of the circular spine. Moreover, the number of crossings per edge
in RW ′ is the same as that of the corresponding edge in HW ′ (see Fig. 3 for an
illustration). In the following, we will not distinguish between HW ′ and RW ′ .
For the spine in RW ′ , the portion on the left (resp. right) of the vertical axis
connecting w1 with w2 is called the left (resp. right) semi-circular spine.
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Fig. 3. A (∅, W ′, 3, {2})-crossing graph, where W ′ = {wi, wj} (left) and the corre-
sponding round (∅, W ′, 3, {2})-crossing graph (right).

Given an arbitrary (∅,W ′, b, {2})-crossing graph, we can derive an upper
bound on the number of vertices of degree 2 in it.

Lemma 1. Let W ′ = {wi, wj} and let b be an arbitrary non-negative inte-
ger. Assume that HW ′ is an arbitrary (∅,W ′, b, {2})-crossing graph. Then
|V (HW ′)\W ′| ≤ 2(b + 1).

Proof. Suppose by contradiction that there are at least 2(b + 1) + 1 vertices of
degree 2 in V (HW ′)\W ′. By the pigeonhole principle, at least b + 2 vertices of
degree 2 lie on one of the two semi-circular spines. Without loss of generality,
assume that z1, z2, . . . zb+2 are such vertices and lie on the left semi-circular spine
consecutively (see Fig. 3 (right) for an illustration). Then the edge z1wj will cross
each edge wizr for r = 2, 3, . . . , b + 2, leading to b + 1 crossings. But this is not
possible in a (∅,W ′, b, {2})-crossing graph. �

Based on Lemma 1, we can derive a bound on the number of vertices of
degree 2 for an arbitrary (∅,W, b, {2})-crossing graph.

Lemma 2. Assume that HW is an arbitrary (∅,W, b, {2})-crossing graph. Then
|V (HW )\W | ≤ (b + 1) · (|W |2 − |W |).
Proof. Assume that |W | ≥ 2. Let Wij = {wi, wj} be a subset of W and let Dij be
the set of vertices of degree 2 that connect with wi and wj simultaneously. We use
HWij

to denote the subgraph of HW induced by the vertices in Dij ∪ Wij . Since
there are in total

(|W |
2

)
combinations of two vertices from W , the graph HW can

be decomposed into
(|W |

2

)
subgraphs such that each vertex of degree 2 and its

two incident edges are partitioned into one of the subgraphs. Correspondingly,
the vertices in V (HW )\W can be classified into

(|W |
2

)
subsets. By the assumption

that HW is a (∅,W, b, {2})-crossing graph, there is at most b crossings per edge
in HW . Since HWij

is a subgraph of HW , there is at most b crossings per edge in
HWij

. Thus, HWij
is a (∅,Wij , b, {2})-crossing graph. From Lemma 1, there are

at most 2(b+1) vertices in Dij . Thus, it holds that |V (HW )\W | ≤ (|W |
2

) ·2(b+1)
= (b + 1) · (|W |2 − |W |). �
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By Lemma 2, we further consider the (∅,W, b, [2, |W |])-crossing graphs. Let
H ′

W be an arbitrary (∅,W, b, [2, |W |])-crossing graph and let v ∈ V (H ′
W )\W

with dH′
W

(v) = t (for t ∈ [2, |W |]). Observe that the vertex v can be seen as
a compound vertex composed of

(
t
2

)
vertices of degree 2. Thus, the number of

vertices in H ′
W is no more than that of the corresponding (∅,W, b, {2})-crossing

graph. We can immediately obtain the following conclusion.

Theorem 1. Assume that H ′
W is an arbitrary (∅,W, b, [2, |W |])-crossing graph.

Then |V (H ′
W )\W | ≤ (b + 1) · (|W |2 − |W |).

5 An Upper Bound for the Number of Vertices in Any
(U,W, b, [1, |U |])-Strict Crossing Graph

Let G be a (U,W, b, [1, |U |])-strict crossing graph. We estimate the number of
vertices in NG(W )\W by decomposing G into some (∅, {wi, wj}, b, {1})-strict
crossing graphs and some ({ui}, {wh}, b, {1})-strict crossing graphs, where ui ∈
U and {wi, wj , wh} ⊆ W .

Let W ′ = {wi, wj} be a subset of W and let AW ′ be a (∅,W ′, b, {1})-strict
crossing graph. To ease of estimating the number of vertices in NAW ′ (W ′)\W ′,
we also consider its corresponding round (∅,W ′, b, {1})-strict crossing graph RW ′

(see Fig. 4 for an illustration). Note that the number of crossings per edge in RW ′

is the same as that of the corresponding edge in AW ′ . In the following, we will
also not distinguish between AW ′ and RW ′ .

wi

wj

z1
z2
z3
z4 v1

u2

u3

u1

wi wju1u2 v1u3 z1 z2 z3 z4

Fig. 4. A (∅, W ′, 2, {1})-strict crossing graph, where W ′ = {wi, wj} (left) and the
corresponding round (∅, W ′, 2, {1})-strict crossing graph (right).

For a given integer b, there may be many (∅,W ′, b, {1})-strict crossing graphs
that are not isomorphic. However, the following statement holds.

Lemma 3. Let W ′ = {wi, wj} and let b be an arbitrary positive integer.
Assume that AW ′ is an arbitrary (∅,W ′, b, {1})-strict crossing graph. Then
|V (AW ′)\W ′| ≤ 4b.

Proof. Suppose by contradiction that there are at least 4b + 1 vertices of degree
1 in V (AW ′)\W ′. By the pigeonhole principle, at least 2b + 1 vertices separate
wi from wj on one of the two semi-circular spines. Without loss of generality,
assume that z1, z2, . . . , z2b+1 are such vertices and lie on the left semi-circular
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spine consecutively (refer to Fig. 4 (right) for an illustration). Since each of the
2b+1 vertices is adjacent to either wi or wj , we further assume that wi has b+1
neighbors among these vertices, denoted by z∗

1 , z∗
2 , . . . , z∗

b+1 respectively. Since
each edge in E(AW ′) is involved in at least one crossing, there must exist one
vertex zq such that zq precedes z∗

1 when walking counterclockwise on the left
semi-circular spine, and that wiz

∗
1 crosses zqwj . Thus, zqwj will cross each edge

wiz
∗
t for t = 1, 2, . . . , b + 1, producing b + 1 crossings. But this is not possible in

a (∅,W ′, b, {1})-strict crossing graph. �
Similarly, we can obtain the following statement for any ({u}, {w}, b, {1})-

strict crossing graph.

Lemma 4. Let Y = {w, u} and let b be an arbitrary positive integer. Assume that
BY is an arbitrary ({u}, {w}, b, {1})-strict crossing graph. Then |NBY

(w)| ≤ 2b.

Based on Lemma 3 and 4, we prove the following conclusion.

Theorem 2. Assume that G is an arbitrary (U,W, b, [1, |U |])-strict crossing
graph. Then |NG(W )\W | ≤ 2b · |W | · (|W | + |U | − 1).

Proof. Let w ∈ W, v ∈ U ∪ W and R = {w, v}. Let Ew (resp. Ev) be the set of
edges incident to w (resp. v). Let S = {ex | ex ∈ Ew and ex crosses at least one
edge in Ev} ∪ {ey | ey ∈ Ev and ey crosses at least one edge in Ew}. If S �= ∅,
we can obtain one subgraph DR of G induced by the edges in S. Moreover, if
v ∈ W , then DR is a (∅, {w, v}, b, {1})-strict crossing graph. Otherwise, DR is a
({v}, {w}, b, {1})-strict crossing graph.

By the approach above, we can construct at most
(|W |

2

)
(∅, {w, v}, b, {1})-

strict crossing graphs and at most |W | · |U | ({v}, {w}, b, {1})-strict crossing
graphs from G such that each vertex in NG(W )\W occurs in at least one
constructed subgraph. By Lemma 3, for an arbitrary (∅, {w, v}, b, {1})-strict
crossing graph, say H1, it holds that |V (H1)\{w, v}| ≤ 4b, and by Lemma 4,
for an arbitrary ({v}, {w}, b, {1})-strict crossing graph, say H2, it holds that
|NH2(w)| ≤ 2b. Therefore, it follows that |NG(W )\W | ≤ 4b · (|W |

2

)
+2b · |W | · |U |

= 2b · |W | · (|W | + |U | − 1). �

6 A Parameterized Algorithm Based on Kernelization

In this section, we present a parameterized algorithm based on kernelization for
the BDBC problem. Given an instance (G, k, b, τ), we first locate a minimum
vertex cover C of G. Then for each subset W of C, we count the number of
vertices in VW and deal with VW by some reduction rules (this strategy has
been used in [6]). By Theorem 1 and 2, our specific reduction rules for the BDBC
problem are described as follows. If |W | > k and |VW | > k · (b+1) · (|W |2 −|W |),
then (G, k, b, τ) must be a no-instance. If |W | ≤ k and |VW | > k · (b+1) · (|W |2 −
|W |) + k · 2b · |W | · (|C| − 1) + 1, then delete all but k · (b + 1) · (|W |2 − |W |) + k ·
2b · |W | · (|C| − 1) + 1 vertices. The reduced instance is denoted by (G∗, k, b, τ).
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Theorem 3. (G, k, b, τ) is a yes-instance of the BDBC problem if and only if
(G∗, k, b, τ) is a yes-instance of the BDBC problem. Moreover, the size of G∗

can be bounded by (3b + 1) · 2O(τ).

Proof. (⇒) Assume that (G, k, b, τ) is a yes-instance. Then, (G∗, k, b, τ) must be
a yes-instance because deleting some vertex from a book drawing with at most
b crossings per edge keeps the property of being a book drawing with at most b
crossings per edge.

(⇐) Assume that (G∗, k, b, τ) is a yes-instance. Let 〈≺, σ, b〉 be a k-page book
drawing of G∗ with at most b crossings per edge. We distinguish two cases based
on whether |W | > k or not.

(1) Suppose that |W | > k. Then, for each vertex in VW , it has at least two edges
assigned to the same page. Let p be an arbitrary page in 〈≺, σ, b〉 and let
V p

W be the subset of vertices in VW that have at least two edges assigned
to p. We first estimate the size of V p

W . Observe that the subgraph induced
by the edges that are incident to the vertices in V p

W and that are assigned
to page p is exactly a (∅,W, b, [2, |W |])-crossing graph. By Theorem 1, it
holds that |V p

W | ≤ (b + 1) · (|W |2 − |W |). Furthermore, by the fact that each
vertex in VW belongs to at least one subset V p

W (for p ∈ [1, k]), it follows
that |VW | ≤ k · |V p

W | ≤ k · (b + 1) · (|W |2 − |W |).
(2) Suppose that |W | ≤ k. Let v ∈ VW and let Ev be the set of edges that

are incident to v. There are three types of assignments for the edges in
Ev. Case 1©: at least two edges in Ev are assigned to the same page. Case
2©: each edge in Ev is assigned to a distinct page and there exists at least
one edge that produces at least one but at most b crossings on a particular
page. Case 3©: each edge in Ev is assigned to a distinct page but no edge
is involved in any crossing. Accordingly, the set VW can be partitioned into
three subsets, respectively denoted by B1, B2 and B3, such that for each
vertex in Bi, the assignment of its edges can be described by case i© for i
= 1, 2, 3. By the same analysis as that in (1), the number of vertices in B1

is at most k · (b + 1) · (|W |2 − |W |). Next, we mainly estimate the size of
B2. Let Bp

2 be the subset of vertices in B2 that have one edge assigned to
page p and producing at most b crossings on page p. Let E1 be the set of
edges that are incident to the vertices in Bp

2 and are assigned to page p and
let E2 be the set of edges that are assigned to page p and crossed by one
edge in E1. Observe that the subgraph induced by the edges in E1 ∪ E2 is
exactly a (C\W,W, b, [1, |C\W |])-strict crossing graph. By Theorem 2, the
number of vertices in B2 is at most k · 2b · |W | · (|C| − 1). Thus, if there
are at least k · (b + 1) · (|W |2 − |W |) + k · 2b · |W | · (|C| − 1) + 1 vertices in
VW , then there must exist at least one vertex that belongs to B3. Let u be
such a vertex. Then, no edge that incident to u is involved in any crossing in
the k-page book drawing 〈≺, σ, b〉. Therefore, the vertex u can be taken as a
“reference” vertex, by which 〈≺, σ, b〉 can be safely extended. More precisely,
let s be a vertex in VW reduced by our rule. Now, we can extend 〈≺, σ, b〉
by inserting s right next to u and assigning each edge sw (for w ∈ W ) to
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the same page as uw such that sw runs arbitrarily close to uw. Obviously,
the extended assignment is exactly a k-page book drawing with at most b
crossings per edge for the subgraph induced by V (G∗)∪{s}. After inserting
all reduced vertices one by one, we obtain a k-page book drawing with at
most b crossings per edge for graph G.

Finally, the size of G∗ can be estimated as follows. We can assume that k ≤ τ
because G∗ admits a k-page book embedding [6] in case k > τ , which can be
seen as a k-page book drawing with 0 crossing per edge. Since there are at most
2τ − 1 nonempty subsets of C and |W | ≤ τ , the size of G∗ can be bounded by
2τ × (k · (b+1) · (|W |2 −|W |)+k ·2b · |W | · (|C|−1)+1)+ τ ≤ (3b+1) ·2τ · τ3 + τ
= (3b + 1) · 2O(τ). �

Then, we decide whether G∗ admits a k-page book drawing with at most b
crossings per edge by trying all possible linear orders of V (G∗) and by employing
the algorithm for solving fixed-order book drawing with a bounded number
of crossings per edge in [20]. We denote by fo-bd(G,≺) the minimum number of
pages in a fixed-order book drawing with at most b crossings per edge.

Lemma 5 ([20]). There is an algorithm which takes as input a graph G = (V,E)
with a fixed vertex order ≺, and two integers b, k, decides whether fo-bd(G,≺) ≤ k

with running time (b + 2)O(τ3) · |V | where b denotes the maximum number of
crossings per edge and τ denotes the vertex cover number of G. If (G, k, b, τ) is
a yes-instance, this algorithm can also return a k-page book drawing of G with
respect to ≺.

Based on Theorem 3 and Lemma 5, we can obtain the following conclusion.

Theorem 4. The BDBC problem admits an algorithm that, given a graph G =
(V,E) and integers k, b, decides whether bd(G, b) ≤ k with running time O((3b+
1) · 2(3b+2)·2O(τ)

+ τ · |V |) where τ denotes the vertex cover number of G. If
(G, k, b, τ) is a yes-instance, this algorithm can also return a k-page book drawing
of G with at most b crossings per edge.

Proof. Based on Theorem 3, we obtain an equivalent instance with size (3b+1) ·
2O(τ). The next step is to solve the equivalent instance by guessing all possible
linear orders and for each order call the algorithm in Lemma 5.

The running time can be analyzed as follows. The time for computing a
vertex cover of size τ can be bounded by O(2τ + τ · |V |) [9]. Given a vertex
cover C of size τ , we can enumerate all subsets in C in time 2τ . Partitioning
all vertices in V \C into 2τ types can be done in time τ · |V | and deleting all
redundant vertices by our reduction rule can also be done in time τ · |V |. Thus,
the running time of the kernelization procedure is bounded by O(2τ +τ · |V |). By
Theorem 3, the size of G∗ is (3b + 1) · 2O(τ). Since any two vertices of the same
type can be interchanged in ≺ [6], the number of fixed linear orders on V (G∗)
can be bounded by (2τ )(3b+1)·2O(τ)

= 2(3b+1)·2O(τ)
. By Lemma 5, the procedure

solving fixed-order book drawing can be done in time (b + 2)O(τ3) · |V |.
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Therefore, whether G∗ admits a k-page book drawing with at most b crossings
per edge can be determined in time O(2(3b+1)·2O(τ) ·(b+2)O(τ3) ·(3b+1)·2O(τ)) =
O((3b + 1) · 2(3b+2)·2O(τ)

). If (G∗, k, b, τ) is a yes-instance, then we can obtain a
k-page book drawing of G by extending the k-page book drawing of G∗ in time
O(τ · |V |). �

A book drawing with the minimum number of pages and with at most b
crossings per edge can be obtained by trying all possible choices for k ∈ [1, τ ].
Herein, by applying a binary search for the number k of pages (this technique
has been used in [6,7]), we obtain the following claim.

Corollary 1. Let G = (V,E) be a graph with n vertices and vertex cover number
τ . A book drawing of G with at most b crossings per edge and with minimum
number of pages can be computed in O((3b+1) ·2(3b+2)·2O(τ)

+ τ log τ · |V |) time.

7 Conclusion

In this work, we have shown the fixed-parameter tractability result for the prob-
lem book drawing parameterized by both the maximum number of crossings
per edge and the vertex cover number of the input graph. Together with our
previous result for fixed-order book drawing with a bounded number of
crossings per edge [20], our result provides a more complete answer to a ques-
tion posed by Bhore et al. in [6].

Some problems are interesting and deserve further research. (1). In evaluat-
ing the number of vertices of the same type, we adopt the subgraph decompo-
sition strategy and consider the edge-crossings that are only contained in some
subgraphs, which makes the upper functions seem to have a lot of room for
improvement. (2). Does the problem we considered in this paper admit a kernel
of polynomial size?
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comments and suggestions.

References

1. Angelini, P., Bekos, M.A., Kaufmann, M., Montecchianib, F.: On 3D visibility
representations of graphs with few crossings per edge. Theor. Comput. Sci. 784,
11–20 (2019)

2. Bannister, M.J., Cabello, S., Eppstein, D.: Parameterized complexity of 1-planarity.
J. Graph Algorithms Appl. 22(1), 23–49 (2018)

3. Bannister, M.J., Eppstein, D.: Crossing minimization for 1-page and 2-page draw-
ing of graphs with bounded treewidth. J. Graph Algorithms Appl. 22(4), 577–606
(2018)

4. Bannister, M.J., Eppstein, D., Simons, J.A.: Fixed parameter tractability of cross-
ing minimization of almost-trees. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS,
vol. 8242, pp. 340–351. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-
03841-4 30

https://doi.org/10.1007/978-3-319-03841-4_30
https://doi.org/10.1007/978-3-319-03841-4_30


Fixed-Parameter Tractability for Book Drawing 449

5. Baur, M., Brandes, U.: Crossing reduction in circular layouts. In: Hromkovič, J.,
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