
“Extreme Development” as a Means
for Learning Agile

Paolo Marzolo1, Matteo Guazzaloca1, and Paolo Ciancarini1,2(B)

1 University of Bologna, Bologna, Italy
paolo.ciancarini@unibo.it

2 Innopolis University, Innopolis, Russia

Abstract. During the 2020 pandemic a new modality for the capstone
project in Software Engineering was introduced to our third-year stu-
dents in Computer Science. They have been tasked with the development
of a non trivial software product - a Twitter client capable of visual ana-
lytics - using some Agile practices, exploiting a Scrum-like process model,
and using only open source tools. Due to circumstances that were either
planned (in the selection of tools and requirements) or unintended (the
pandemic forbade any physical meeting), the project had some interest-
ing outcomes. The project was not easy to enact, neither for the students
nor for the instructors. The main problems were two: the students were
not ready to practice agile teamwork, and the open source tools they had
to use were demanding and only partly suitable for the goal they were
chosen for. We term this experience - where students applied an agile dis-
cipline and were required to use only open source tools - an “extreme”
agile development project. This paper - written by two students together
with their instructor, summarises some lessons learnt: characteristics and
features of the tools and practices used, the evolution of product artifacts
and some difficulties encountered, along with the solutions we adopted.
An important lesson learnt is that an agile project developed by Com-
puter Science students requires specific training in communicating cor-
rect information at the right moment, and avoiding telling “social lies”
concerning the status of both the product and its development process.

1 Introduction

Agile software development has been introduced more than twenty years ago,
and it is now considered mainstream in the industry.

Countless higher education institutions have adopted agile as a way of intro-
ducing students to teamwork during software development. There are several
approaches to teaching agile practices, most of them including some kind of
teamwork training, like pair or mob programming.

However, Computer Science students notoriously do not like and are scarcely
trained to teamwork [24], so the adoption of agile process models inside under-
graduate courses suffers from a number of impediments. One of the most impor-
tant impediments is that students have to work in groups with scarce or zero
c© Springer Nature Switzerland AG 2021
G. Succi et al. (Eds.): ICFSE 2021, CCIS 1523, pp. 158–175, 2021.
https://doi.org/10.1007/978-3-030-93135-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93135-3_11&domain=pdf
https://doi.org/10.1007/978-3-030-93135-3_11


“Extreme Development” as a Means for Learning Agile 159

training to build “self-organizing teams”. In fact, the topic of team building is
a crucial one for agile developments, and student teams are no exception [20].
Another issue is that the students are not used to self tracking their productivity,
and even less to “team tracking”, namely the act of measuring the effectiveness
of their teamwork.

Yet another impediment derives from the necessity of face to face coopera-
tion between a “customer”, who is often the instructor of the course, and the
developing teams. The agile principles highlight the importance of face to face
communication and cooperation over process and tools. This kind of commu-
nication is intended to increase the trust and collaboration spirit between the
product owner and the developers. However, in an educational setting there is a
specific problem: the students tend to develop the project as an effort necessary
to pass the exam, so it is natural for them to minimize efforts and possibly lie
about the real status of their process.

This situation changed dramatically in the spring of 2020 as the pandemic
compelled most teaching to be offered online. The project has been introduced
to overcome the limitations connected to a traditional exam based on written
exercises. Students were given specific training concerning the process and the
tools to use during the development. The tools were all open source and made
available online on a departmental server, in a form downloadable and deployable
on a cloud using Docker.

Students were introduced to some team build activity with the serious game
Scrumble1, that is a Scrum simulation. Students were also instructed to conduct
their retrospectives with the help of Essence cards [16].

In this paper we will describe a project-based course with 21 teams including
each five or six students as developers, and two people (one instructor and a
teaching assistant) playing the role of product owners. The teams were requested
to use a set of open source tools especially tailored for agile development. This
condition was especially burdensome for the students, transforming the project in
a sort of “extreme development” experience, as it combined an agile discipline,
that was new for the students, with the mandatory use of open source tools,
which were also new for most students.

The main research questions are the following:

RQ1: Can an agile development discipline (e.g. Scrum) and open source soft-
ware tools be effectively combined when training novice developers?
RQ2: How can we evaluate the teamwork and agility of a team of novice
developers who use open source tools?

The first question concerns the ability of students of using only specific devel-
opment tools, exiting from their comfort zone of well known IDEs and limiting
or even forbidding the use of commercial tools. We call “extreme development”
this combination of agile and open source, plus the requirement of self tracking
their productivity. The second question concerns the evaluation of teamwork in
such an agile setting.
1 Available at http://scrumble.pyxis-tech.com.

http://scrumble.pyxis-tech.com


160 P. Marzolo et al.

After this introduction, this paper is organized in the following sections.
Section 2 summarizes some related works, aiming at describing how novice stu-
dents adopt agile development practices and tools. Section 3 introduces the
course structure. Section 4 describes the tools and practices integrated in the
development process. Section 5 analyzes how process artifacts evolved, and
Sect. 6 describes some issues in the evaluation of the students and their team-
work. Finally, Sect. 7 discusses some issues and gives suggestions for future edi-
tions of the course.

2 Related Works

Recent surveys have shown how widespread the adoption of agile software engi-
neering practices has become [8]; although some surveys report only a portion
of manufacturing companies rely strongly on Agile, the majority of them rely
on a combination of agile methodologies [10], and a large percentage of software
developers use Agile in their work [18].

Although Agile is, at its core, a series of principles and guidelines [2], multiple
frameworks provide actionable plans and activities. One of such frameworks is
Scrum [19], that is reported as one of the most used process models for software
development, but it is not limited to this field: its stated objective is to help
“generate value through adaptive solutions for complex problems” [22]. Scrum
is not the only agile framework, and each of its practices has many variants [1].

Scrum has been used with reported success in high schools [15] and in sev-
eral different university settings, both as the main learning goal, in its same-site
and distributed versions, or as a method for teaching [25]. In contrast to what
has been possible until now, last year’s pandemic has made impossible students
working together in the same room or in close proximity. Moreover, in our case,
relevant government regulations changed considerably the rules to enter uni-
versity labs between the first and the last sprints, making quick adaptations
unavoidable. Few publications have investigated the effects of the sudden move
to remote working [6].

Due to its novel nature, past research on university projects during the
COVID-19 pandemic are scarce; at the same time, industry has already proved
that Scrum (and agile workflows in general) can still be effective in remote
contexts [17,23] the same was true during the pandemic [13]. The additional
challenges presented by the changing environment were exacerbated by the doc-
umented difficulty of evaluating agile processes in university [9,21]: past research
propose various metrics [14] to grade students on their application of agile pro-
cess, but mostly fail to capture the ability of students to be agile instead of
following any given formula. In this paper, we will outline the challenges one
group faced, the support given by instructors, the adaptations they implemented
and why their freedom of choice helped them learn the importance of adapting.
In order to better represent their viewpoints, some parts of this article will be
written from the point of view of the students.



“Extreme Development” as a Means for Learning Agile 161

3 Course Structure and Project Description

The course in Software Engineering at the Department of Computer Science
of our University was reconfigured to face the challenges offered by the 2020
pandemic caused by COVID-19. The main novelty has been the introduction of
a project to be executed using a Scrum-like process, to be enacted using several
open source tools supporting remote collaboration.

In the past, the course had covered agile processes and XP/Scrum like best
practices in the last few years, but only from a theoretical viewpoint. The stu-
dents were tested individually by a written exam and an oral presentation. Since
physical interactions were strongly limited, and written exams in presence were
forbidden, the instructors decided to redefine the final exam as a team project,
to be performed online to avoid unnecessary personal contacts.

The product to develop was a Twitter client, enriched with features for data
analytics: the product should be able to capture large sets of geolocalizable
tweets and: a) put them on a map; b) create a word cloud with their contents;
c) create a temporal diagram to show the distribution of collected tweets across
time, and so on. The main uses case were: a) using Twitter in an emergency, like
an earthquake, to collect help messages; b) using tweets to track the movements
and collect the picture of a group of travelers in a city or across a region; c)
using tweets for simple diachronic sentiment analysis.

In the last few years a research project has developed an open source agile
development environment deployable on a private cloud, thus avoiding any exter-
nal dependence for privacy and security reasons. The environment is called Com-
positional Agile System (CAS) [4]. The main idea behind this environment is
to offer a customizable environment, including powerful albeit free services for
collaborating and managing agile development activities.

Thus, having this resource, that will be described in the next Sect. 4, the stu-
dents could exploit a powerful, fully open source environment to start with. The
environment can be deployed either on personal workstations, or on a depart-
mental server, or in a public cloud.

4 Tools and Practices

The CAS environment in the version we used includes the following tools:

– Taiga for project management;
– GitLab for versioning;
– bugzilla for issue tracking;
– Mattermost for team communication;
– SonarQube for software analyses;
– open source productivity dashboard.

All the tools that were given to the students (including the productivity dash-
board, discussed later) are open-source and available in a self-hosted instance.



162 P. Marzolo et al.

This constraint transforms the project in an experience of “extreme develop-
ment”, where all interactions, all artifacts, all data produced by the tools can
be saved locally and later examined, without any dependency from external
services, for instance on commercial clouds.

4.1 Proposed Tools

The instructors introduced us to the basics of Agile Development and Scrum,
but they were confident in both our ability to pick it up as we went and the
importance of practice. Because of the nature of the course, we did not approach
this in the most focused or comprehensive way, but instead considered various
alternatives and recent advances: a clear example of this is the use of Essence
Cards. We will outline this and other tools and practices in this section.

Taiga. Taiga, as its website says, is “an open source project management soft-
ware that supports teams that work Agile across both Scrum and Kanban frame-
works”. Clearly, this software is one of the two main tools we used, together with
GitLab, to manage and organize the teamwork during the software development
process. Taiga’s capabilities are vast; so vast, in fact, that we found some of
them useless for a project of our size, and we ignored them. They range from
the basic Kanban board, to a sprint task board for each sprint, the availability
of a point breakdown of each user story and task, an issue tracking system, a
comment system, different roles with varying responsibilities and a lot more. For
us, Taiga was a most sensible alternative to Jira, that was out of the question
as fully closed-source and mostly enterprise oriented. The use of Taiga will be
documented in the next section.

GitLab. GitLab needs no introduction: as the most popular open-source alter-
native to GitHub, it was suggested by the instructors and we quickly adopted it
as our (only) version control software.

BugZilla. BugZilla was initially proposed as a complementary service to Taiga
for issue tracking, thanks to its integration possibilities and historical relevancy.
We decided not to use it, as our organizational overhead was already too large
to include one more tool we were not likely to use.

Mattermost. Mattermost was the solution of choice by the instructors for day-
to-day communication and light issue tracking (which would then be moved to
either BugZilla or GitLab, integrated with Taiga). Mattermost works well: it is
light, the self-hosted instance is simple to set up, it has a well-working mobile
app and an appealing interface. Unfortunately, all of us had been using Telegram
for the longest time (partly open-source), so even though we completed the setup
we jointly agreed we would favor Telegram.

SonarQube. SonarQube was new to the students: it is a code analysis tool
that runs static analysis on source code and brings vulnerabilities or possible
future problems to the attention of developers. Then, it generates a report on
the current position, and proposes changes to improve the code. The students



“Extreme Development” as a Means for Learning Agile 163

used SonarQube starting from the second sprint, and it helped to find some hard
to spot vulnerabilities.

Productivity Logger. The Instructors were also interested in our productivity
data, for future research purposes. The environment has a logging facility which
can record any keystroke pressed when using an IDE like Eclipse. This logging
function was not fully set up at the start of the project. This resulted in some
misunderstandings on our part and moreover raised privacy concerns that we
later brought up with the Instructors. We had two main problems with the logger:
its scarce availability constrained us to a single IDE we were not comfortable
with and we were not given a self-hosted version to install on our own server.
We will now tackle those issues and describe the steps we took to resolve them.

The plugin availability was a direct consequence of the nature of the software:
this logger is the result of a mentioned research project [4]. The plugins that
were made available were for the following IDEs: Atom, Eclipse, and IntelliJ.
Most of our development team uses VS Code, or alternatively vim for remote
development, so we were not thrilled to be requested to move to and learn a
completely new (and sizable) IDE as IntelliJ WebStorm.

Some teams investigated for alternative ways to track development activity
and the related productivity measures. Since the productivity data were required
in the final report for documenting the process, some teams settled for using
Wakatime, as described in Sect. 4.2.

Essence. Essence is an open standard for the creation, use and improvement
of software engineering practices and methods. In order to classify, explain,
apply and evaluate such practices, the Essence Kernel was created as part of
the SEMAT initiative [12]. The Essence kernel and the Essence Language as
embedded in the cards for Agile allow teams to describe, discuss, evaluate, and
improve both their product and their process. Essence is now an OMG standard
[16]; because of its agnostic viewpoint, independent from any software process
model, it is well suited to the educational setting [3].

Essence allowed our students to avoid to study the classic Scrum documen-
tation: they used the Essence cards for Scrum, instead. Condensing information
to the size of a card is a great way to keep a reader interested and give a bird’s
eye view that aids understanding, without getting distracted by specific details
and missing the complete picture or, on the opposite side, skipping key parts
of the process. The cards themselves proved to be very useful as well, since the
students used them in two “serious games” which helped us approach the Review
and Retrospective activities.

The first game we learned consists of going through the seven “Alphas”
- the key elements and areas of interest common to all software projects, as
identified by the SEMAT Kernel - and for each of them identify which state the
current product resides in. The seven Alphas are Requirements, Software System,
Team, Work, Way of Working, Opportunity and Stakeholders, and their states
are complemented by checklists, informal ways to move in-between states. This
provides the developers with two great advantages: a clear idea of where the
project sits (and which Alphas still need to be worked on), and a clear path



164 P. Marzolo et al.

ahead, due to the checklists. We completed this activity at the end of all sprints,
since we found it extremely useful for the two uses outlined here.

Instead, in the Retrospective, we adopted a second serious game called “Prac-
tice Patience”. A detailed description is available here2, and discussion about it
can be found later in this paper in Sect. 4.4.

4.2 Final Tool Configuration

Throughout the first two sprints, the tool selection varied. What we will now
describe is our final usage, what we used since the end of the second sprint.
We find that this selection allowed us to respect the Instructor’s wishes without
adding so much configuration work to go beyond a full sprint’s number of hours.

We hosted all self-hosted tools on a Google Cloud machine. We picked this
because of both ease of use and how generous the “first use” credit is: thanks to
the initial credit and how long it lasts, we were able to use it for free. All man-
agement and system administration tasks were completed by the development
team.

GitLab. We already discussed GitLab in the previous section. Git Lab was the
corner stone of our tool architecture and contained the complete source code and
branches. Initially, we mainly worked together on one branch, but later we moved
to a feature branch approach, with new features being developed in experimental
branches and merged in master once they were completed and tested. Tests were
man operated.

Taiga. As we mentioned in the last section, Taiga was our management software
of choice. We installed a self-hosted version of it in the same cloud as the other
services, but initially used the web version while the setup was being completed.
Our management of Taiga is discussed in the first Sprint Reports, but we will
outline the main characteristics here. In order to include both User Stories and
Development Needs, we used Taiga cards as “Backlog Items”. Each Item would
then go through a pipeline of stages from New to Archived. The stages were New,
Wait Approval (by the POs), Wait Verify (confirm the request is within technical
constraints of Twitter API and architecture), Ready, In Progress, Ready for Test,
Done, Archived and Rejected. If either approval or verification failed, or if we
deemed them too minor to include them at all, they were Rejected. User Stories
could be moved to Done once they respected the Definition of Done; they were
then Archived after the end of the Sprint. User Stories not explicitly required
by the PO were marked as “optional”. To distinguish between User Stories and
Dev Needs, we used tags.

We used the Wiki to archive Sprint Documents, the Definition of Done and a
Useful Links section. We included the Scrum Master role, but the point attribu-
tion quickly got out of hand, so we only used it partially. Each User Story had
an estimated time attribute. User Stories were divided into tasks, both at the

2 https://essence.ivarjacobson.com/publications/blog/better-scrum-through-essence-
part-2.

https://essence.ivarjacobson.com/publications/blog/better-scrum-through-essence-part-2
https://essence.ivarjacobson.com/publications/blog/better-scrum-through-essence-part-2


“Extreme Development” as a Means for Learning Agile 165

start and during a Sprint. Each task has a field for recording how long it took
to complete it, and the Tasks follow a similar pipeline to User Stories (but don’t
need to be approved or verified). Not all tasks were assigned, because we often
worked in pairs or groups and Taiga does not allow multiple assignees for Tasks.

SonarQube. We used SonarQube since the second sprint. We did not include it
into an automatic pipeline but ran oneoff scans. In each Sprint Report a section
is dedicated to SonarQube metrics and performance. SonarQube was installed
as a selfhosted service in the same Google Cloud account as the previous two.

Telegram. Because of our familiarity with Telegram, as soon as we picked our
group members, we made a Telegram group and started chatting there. This
made switching to a different service complicated. Telegram is partly open-
source. We used basic messaging features, occasional polls, file upload and pinned
messages the most.

WakaTime. WakaTime was our time tracking software of choice. Although all
its plugins are open-source, the server code and front end are not. We under-
stand this was a compromise on the Instructors’ position, but it was driven by
urgency and ease of use. In a more organized setting or a future installment,
we suggest switching it with either Kimai, fully opensource but requiring more
customization for our chosen use, or looking into other alternatives, such as
Super Productivity or GitLab time tracker. We only used Wakatime to track
IDE usage, but a Word plugin and a chrome extension are available.

Etherpad. This is a service we used for short-lived text, shared and collabo-
rative documents. We decided against hosting it on Google Cloud and used an
alternative provider (riseup) instead.

Discord. This is one of the two completely non-open-source tools we used. We
used Discord because of our familiarity with it and the vastness of its features.
We tried replacing it a few times with open-source tools such as Jitsi Meet,
but its reliability made us use it more often than not. Still, we do not deem it
unavoidable: there are many tools which provide similar functionality and, with
some time and effort, we’re sure they could be used instead.

MS Live Share. For the sake of completeness, we mention that we frequently
used the Microsoft extension Live Share while pair-programming. It is not open-
source.

4.3 Discussion

In this section, we will discuss our experience with two pervasive themes of
software engineering: Being Agile compared to Doing Agile, and using Open
Source Software for university projects. Then, we will review our use of Essence
and what we achieved with it.

The implementation of the Agile process in our academic environment differs
substantially from what is commonly done in a standard working environment:
instead of following a specific set of Agile practices and a specific framework



166 P. Marzolo et al.

such as Scrum, we spent a lot of time thinking about what we really found
useful and what we wished to change, both at the beginning and during the
actual development.

This “Being Agile” way of thinking, i.e. continuously questioning our way
of working while trying to improve it, as opposed to sticking to any pre-defined
practice or tool, helped us a lot while having to work through unexpected prob-
lems without increasing product risk or unbalancing the team stability. These
problems were either unexpected and external, such as the COVID-19 pandemic
that forced us to shift to a remote setting, or internal and expected, such as
the additional requirements proposed by the PO on every sprint or the privacy
concerns about the logger that worried the team.

This is not to say that a completely disorganized course would be more ben-
eficial than a structured course: as we mentioned in Sect. 3, this is only the first
iteration of the new structure of the course, which meant a short amount of time
to put it together. Add to this the unfortunate coincidence of the pandemic, and
it is easy to see how hard it would have been to prepare accordingly. Moreover,
the differences between teams made it complicated for the Instructors to grade
such vastly different projects objectively. At the same time, we do wish to make
an argument in favour of putting the students through some tough choices; after
all, this is not a Scrum course, or a programming course: as a software engineer-
ing course, the skills of being able to select, learn, and adapt to new methods,
tools, and best practices are fundamental and well connected to the modern
practice of software development.

At the start of the project, we were instructed to prefer OSS (Open Source
Software) tools to organize our work. As we mentioned in the Sect. 4.2, we opted
against some of the suggested ones and proposed alternatives, such as WakaTime
instead of the CAS Logger, that served similar purposes, although it is not a
completely open-source solution. Additionally, the decision of self hosting the
majority of our tools (except for Wakatime, which does not allow users to self-
host) gave us a lot of freedom since we were not affected by some delays and
issues which afflicted the departmental server, both at the beginning and during
the project.

4.4 Essence and Framework Independence

We here discuss the role Essence had in the development project, both from
process and product perspective. In our team, Essence received overwhelmingly
positive feedback, so here we will outline the three most important advantages
we found.

– Product State. The ability to clearly define the Product and Process allowed
us to clearly communicate our self-evaluation to the Instructors; its checklists
provided immediate actionable feedback, and going through the serious game
did not need an excessive amount of time or specific tools.

– Scrum Cards. We used the Essence cards for Scrum. They were used in
“Practice Patience” game, the Scrum Master printed them for quick reference



“Extreme Development” as a Means for Learning Agile 167

during the first Sprint. We found that Practice Patience revealed our true level
of understanding and ability of applying Scrum, and how much we evolved
compared to the previous instance.

– Relative Novelty. Although we understand this may not be true for all
teams, and definitely should not be considered a strength of Essence per
se, we found that its relative novelty allowed us to think for ourselves and
“figure it out as we went along”, rather than rely on predefined structures
and practices.

Lastly, we mention an additional usage of Essence cards that we initially
considered but later scrapped: using Essence to formalize the process of get-
ting feedback and acting on it by the Product Owners (and possibly even the
Professors); due to the universality the Essence kernel aims at, it is possible
(and suggested) to include additional practices by using Essence to formalize
practices from different development frameworks. We believe this would be an
enlightening guided activity in following iterations, as it truly shows the power
of Essence as an neutral, agnostic standard (as the authors call it) for formal-
izing and streamlining practices from different frameworks. At the same time,
it would be unreasonable to expect student to have reached a sufficiently deep
understanding of the standard to complete it on their own, which is why we need
to be guided by instructors.

5 Artifacts

At the end of each sprint the students wrote a Final Sprint Report documenting
some process data and the product status. Because of the data we collected this
way, we were able to track progress throughout sprints; here, we report three
relevant analyses.

5.1 User Story Evolution

First, we report a cross-section view of the way our Product Backlog evolved.
In this case, we picked a main feature of the product - an epic - and a few of its
notable derived user stories. Figure 1 shows some user stories in form of cards.
In each card, the Sprint in which the US was completed is shown in the top left.
We also included its description, part of the acceptance criteria, the points we
assigned it, how long we estimated it would take to complete it and how long it
actually took.

As we can see, our first story was in line with the minimum viable product;
on the technical side, it required handling of the twitter API and a minimal user
interface. In the second sprint both real-time and bulk versions were developed;
the user story related to the map, completed in sprint 3, was included in the
second sprint as well, but only completed later. The last user story, technically
complex and initially optional, was only tackled in the fourth sprint.



168 P. Marzolo et al.

Fig. 1. User story evolution across sprints. The central card is an epic. In each card
the completion sprint is shown top left in a circle



“Extreme Development” as a Means for Learning Agile 169

5.2 Sprint Backlog Sizes

Reporting the final state of our Backlog brought another restriction to our atten-
tion: for both sprints 2 and 3, a single User Story was delayed to the next Sprint
only to be completed in the first few days of the next Sprint. In fact, a developer
mentioned this in the third Sprint Review:

“I really wish we could have had a few more days to complete our User
Story. Even just one day would have meant not carrying it over to the next
sprint...”

Although slight modifications to the timetable were allowed, because we had
already overestimated our speed for sprint 2 we collectively decided that our
mishandling should be accepted in order to avoid making the same mistake
again, and moved it to the next sprint. That said, we believe both choices make
sense, but giving a clear guideline at the start may clarify the process.

5.3 Review and Retrospective Evolution

As mentioned, our practices shifted considerably during the sprints: although
our experience is of a single team, we believe further investigating the degree
of strictness of rituals as teams mature would lead to interesting results. For
what concerns our evolution, both Sprint Review and Retrospectives shifted
considerably:

1. In our first Sprint Review, we first dedicated some time to recording a video
showing the product, and then identified our current state using the “Alpha
State” activity. We considered this part of the Sprint Review, but we acknowl-
edge its purpose falls within the Retrospective as well. For our Retrospective,
we held our first Practice Patience, and focused on giving actionable feedback
to follow through on our observations.

2. The second Sprint’s final activities were the same as the first, but further
discussion was held based on our irregular progress on the Sprint Burndown
Chart. Figure 2 shows the result of the Patience Practice game with Essence.
We believe this retrospective was important to the team’s feeling of growth
and progress.

3. The third Sprint included a less structured activity, which we just called
“Team Feedback”. Although not all members were equally as vocal, a lot of
useful feedback was collected: we agreed that the session was successful, and
repeated it for both rituals.

4. The fourth Sprint included the Product State and Practice Patience serious
games as well, but they only took on a communicative role to record our state
and inform the PO of where we stood. The Team Feedback section became
the main focus of both rituals.

As was outlined in the progression, our reliance on structured games and
activities decreased steadily, as did our perceived gain from them. About this,
we report our Scrum Master’s thoughts as reported in the Fourth Sprint Report:



170 P. Marzolo et al.

Fig. 2. The result of the retrospective of the second sprint. The top row of cards
includes the seven alpha states of Essence, which represent the auto-evaluation by
the team of the state of the project. The bottom part titled “Scrum card evaluation”
represents the judgement on the sprint using the technique “Mad, Sad, Glad” [7]

“During this review, we all agreed that sharing the team’s feedback was in
fact a better way to voice our opinions than most serious games or guided
activities. In my opinion, though, this was not always the case: although



“Extreme Development” as a Means for Learning Agile 171

the developing team was very open about their doubts and trophies in this
fourth review, this was not the case in some of the earlier ones.”

6 Evaluation

The teams produced the following artifacts: a demo video of the final product
release, its source code in gitlab, a SonarQube report of the final release, the
team diary, the Essence cards arrangement produced during each sprint retro-
spective, some UML diagrams, personal questionnaire about team interactions.
The evaluation of teams and their teamwork was conducted discussing the prod-
uct in a final review and using two different quality models analyzing the main
artifacts produced.

We used a teamwork quality model and an Agile maturity model. The team-
work quality model is inspired from [11], thus we name it the Hoegl-Gemuenden
model. It is based on the assumption that any human behaviour in a team can
be summarized in two major areas: activities and interactions.

The evaluation constructs are the following:

– interaction analysis;
– effectiveness analysis about software quality;
– work efficiency, which only considers schedule efficiency, because there was

no budget;
– satisfaction analysis, which considers team satisfaction about learning, prod-

uct, and process of Hoegl-Gemuenden’s.

Since the data collection involved different evaluation metrics (1 to 5 Lik-
ert scale for students’ opinions from a questionnaire about team interactions,
decimal scale for instructors’ evaluation of process and product, marks of Sonar-
Qube for the product internal quality ratings, and percentages of completing user
stories and tasks), in the data processing they were all converted in percentages.

The Agile maturity model we used is inspired by the Yin model presented
in [26]. It includes five maturity levels and explores seven inner categories of
analyses.

The radar graphs in Fig. 3 show the percentages obtained in each category
of quality and maturity model, respectively.

The evaluations have be discussed in a companion paper [5]. We here sum-
marize the results as follows.

The teams who performed best showed good balance of personal contribution
and strong mutual support. The teams which performed worst were characterized
by low quality of internal communication, scarce perception of effort spent in
the project, unbalance of members’ contribution to the project.

Moreover, these teams exposed often a conflict of opinions about team inter-
actions, clearly indicating different perceptions and attitudes about teamwork.

The results of the evaluation allowed the instructor to rank the teams. How-
ever, we remark that the ranking was not used to give a grade to the students,
who were evaluated in a traditional way after an oral discussion concerning the
final report and a demo of the last release.



172 P. Marzolo et al.

Fig. 3. Radar graphs of worst teams (left) and best teams (right) according to respec-
tively the teamwork (top) and agile (bottom) models. From [5]

7 Conclusion

We presented the experience of one of the 21 agile teams that made up the 2020
Software Engineering Course class in our University. We aimed at reviewing
the development process, in order to produce useful feedback for future work in
similar contexts.

Concerning the Research Questions, we can give the following answers:

Answer To RQ1. We have asked our students to combine in a project of
“Extreme Development” an Agile discipline and some Open Source tools; we
believe that the combination is quite challenging and demanding for 3rd year
Computer Science students of Software Engineering. All teams completed their
projects, with a variety of grades.

Answer To RQ2. We have developed two quality models, one for teamwork
and one for agile maturity, which have been quite effective and useful for assessing
the results.

In this final section we summarize the main issues the students met through-
out the sprints and what could be done in the future editions of the course.

7.1 Tools and Methods

Throughout this article, we mentioned how, in order to reach a suitable tool con-
figuration, it was necessary to dedicate a sizable amount of time to exploratory
testing and preliminary meetings. The experience was “extreme” especially
because there was a strong push on using open source tools made available on



“Extreme Development” as a Means for Learning Agile 173

a departmental server. We believe this helped push our team towards a better
understanding of Agile. At the same time, we wish to reiterate that this had an
effect on our productivity in our first two sprints: this is why we believe that
such an activity, if deemed helpful, should be moved to the weeks preceding
the start of the sprints. As part of the research behind this article, we looked
into established tools selections or recent proposals, but we only found very few
mentions. Some only took into account git hosting, while others expected a large
infrastructure - e.g. Jira - to be supplied by Instructors. This is clearly a topic
for further research.

Moreover, if the instructors wish to grade the teams on the quality of the
process applied, we believe regular meetings should be held. The proposed solu-
tion of producing sprint reports was adequate for the instructors, but we believe
a periodic meeting would prove more useful to both instructors and students.
We understand the time instructors can dedicate to such activities is limited, so
we propose that the meeting is held after Review and Retrospective have been
completed, and aims at briefing the instructor on the contents of the meeting
rather than participating in the rituals themselves. Alternatively, in order to
include the figure of Product Owner, the instructors may only be part of the
meeting for a limited amount of time.

7.2 Overlap of Learning and Applying

As outlined in the previous section, we believe less overlap between the learning
and applying periods - of scrum, in our case - would have been useful to us. The
Scrum Masters are also expected to have a general idea of their future duties;
to these aims, we propose the following road map; although its steps may seem
obvious, we found that many groups fail to complete the steps separately, and
end up having difficulties during the actual coding.

1. Course and project introduction: both the course and the project should
probably be introduced in the first few lessons. The introduction should make
it clear that it is not possible to start early, as work will be tracked throughout
the sprints, but also that listening attentively to agile practices and techniques
will help make both the coding and reviewing events much easier.

2. Team building: we believe forming groups earlier would be beneficial to their
ability of starting well and avoiding wasting time on simple tasks. The group
will then face learning and setup as a “unit”, which will help with forming
interpersonal relationship that will facilitate their project development.

3. Tool setup: this is especially important if the students are expected to install
their own versions of self-hosted software, as it is a time-consuming and diffi-
cult task. If some students need time to learn how to use such software, this
is the correct time to do so.

7.3 Using Scrum for a Student Project

Lastly, we want to mention that in the future it should be made clear that Scrum
is only a reference framework that could be modified and tailored to a specific



174 P. Marzolo et al.

workflow. This is because some of the requirements and practices of Scrum simply
cannot be adapted to our context. As an example, we bring daily scrums: in our
context of online remote education, when we have to attend several other courses
beyond Software Engineering, they simply had no meaning whatsoever. They are
annoying to organize, and do not allow for any further scheduling, as everyone’s
time constraints make it impossible to synchronize. Moreover, Scrum expects a
level of involvement from the Product Owner which is simply unsustainable for
an instructor alone with multiple teams.

Some teams suggested merging some of the rituals together; while we under-
stand how useful it can be, we would advise taking into account developer
exhaustion. This is because during our first two sprints, we completed review
and retrospective meetings back to back; partly due to our ignorance, they both
took longer than we expected, and we ended up frustrated by the amount of time
they took. We also want to mention that the Retrospective - based on Essence
guidance - was most definitely the most important ritual for our growth: this is
supported by the final results by the teams.

As a final note, we recommend making sure to distinguish final activities and
sprint planning, as they quickly collapse into one giant less-than-useful activity
where it is very hard to accomplish all that’s needed without growing annoyed
and losing all enthusiasm.

References

1. Ashraf, S., Aftab, S.: Latest transformations in scrum: a state of the art review.
Int. J. Modern Educ. Comput. Sci. 9(7), 12–22 (2017)

2. Beedle, M., et al.: Manifesto for Agile Software Development (2001). https://
agilemanifesto.org/

3. Ciancarini, P., Missiroli, M.: Teaching the essence of software development. In:
Proceedings of 32nd Conference on Software Engineering Education and Training
CSEE&T, pp. 1–2. IEEE (2020)

4. Ciancarini, P., Missiroli, M., Poggi, F., Russo, D.: An open source environment for
an agile development model. In: Ivanov, V., Kruglov, A., Masyagin, S., Sillitti, A.,
Succi, G. (eds.) OSS 2020. IAICT, vol. 582, pp. 148–162. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-47240-5 15

5. Ciancarini, P., Missiroli, M., Zani, S.: Empirical evaluation of agile teamwork.
In: Paiva, A.C.R., Cavalli, A.R., Ventura Martins, P., Pérez-Castillo, R. (eds.)
QUATIC 2021. CCIS, vol. 1439, pp. 141–155. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-85347-1 11

6. Comella-Dorda, S., Garg, L., Thareja, S., Vasquez-McCall, B.: Revisiting agile
teams after an abrupt shift to remote (2020)

7. Derby, E., Larsen, D., Schwaber, K.: Agile Retrospectives: Making Good Teams
Great. Pragmatic Bookshelf, Raleigh (2006)

8. DigitalAI. State of agile (2021). https://stateofagile.com
9. Hanks, B.: Becoming agile using service learning in the software engineering course.

In: Proceedings of Agile Development Conference, pp. 121–127 (2007)
10. Hoda, R., Salleh, N., Grundy, J.: The rise and evolution of agile software develop-

ment. IEEE Softw. 35(5), 58–63 (2018)

https://agilemanifesto.org/
https://agilemanifesto.org/
https://doi.org/10.1007/978-3-030-47240-5_15
https://doi.org/10.1007/978-3-030-85347-1_11
https://doi.org/10.1007/978-3-030-85347-1_11
https://stateofagile.com


“Extreme Development” as a Means for Learning Agile 175

11. Hoegl, M., Gemuenden, H.G.: Teamwork quality and the success of innovative
projects: a theoretical concept and empirical evidence. Organ. Sci. 12(4), 435–449
(2001)

12. Jacobson, I., et al.: The Essentials of Modern Software Engineering. Association
for Computing Machinery (2019)

13. Marek, K., Wińska, E., D ↪abrowski, W.: The state of agile software development
teams during the Covid-19 pandemic. In: Przyby�lek, A., Miler, J., Poth, A., Riel,
A. (eds.) LASD 2021. LNBIP, vol. 408, pp. 24–39. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-67084-9 2

14. Matthies, C., Kowark, T., Uflacker, M., Plattner, H.: Agile metrics for a univer-
sity software engineering course. In: Proceedings of IEEE Frontiers in Education
Conference (FIE), Erie, PA, USA, pp. 1–5. IEEE, October 2016

15. Missiroli, M., Russo, D., Ciancarini, P.: Learning agile software development in
high school: an investigation. In: Proceedings of 38th International Conference on
Software Engineering Companion, pp. 293–302 (2016)

16. OMG. Essence Specification. https://www.omg.org/spec/Essence/1.2/PDF
17. Paasivaara, M., Durasiewicz, S., Lassenius, C.: Using scrum in distributed agile

development: a multiple case study. In: Proceedings of 4th International Conference
on Global Software Engineering, Limerick, Ireland, pp. 195–204. IEEE (2009)

18. PMI: Pulse of the profession 2017 - success rates rise: transforming the high cost
of low performance, p. 2017. Technical report, PMI (2017)

19. Pries, K.H., Quigley, J.M.: Scrum Project Management. CRC Press, Boca Raton
(2010)

20. Sahin, Y.G.: A team building model for software engineering courses term projects.
Comput. Educ. 56(3), 916–922 (2011)

21. Schneider, J.-G., Vasa, R.: Agile practices in software development - experiences
from student projects. In: Proceedings of Australian Software Engineering Confer-
ence (ASWEC), pp. 10-pp. IEEE (2006)

22. Schwaber, K., Sutherland, J.: The scrum guide: the rules of the game (2020).
https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-US.pdf

23. Sepulveda, C.: Agile development and remote teams: learning to love the phone.
In: Proceedings of Agile Development Conference, Salt Lake City, UT, USA, pp.
140–145. IEEE (2003)

24. Waite, W.M., Jackson, M.H., Diwan, A., Leonardi, P.M.: Student culture vs group
work in computer science. ACM SIGCSE Bull. 36(1), 12–16 (2004)

25. Wedemann, G.: Scrum as a method of teaching software architecture. In: Proceed-
ings of 3rd European Conference of Software Engineering Education, pp. 108–112.
ACM (2018)

26. Yin, A., et al.: Scrum maturity model: validation for IT organizations’ roadmap to
develop software centered on the client role. In: The Sixth International Conference
on Software Engineering Advances, ICSEA 2011 (2011)

https://doi.org/10.1007/978-3-030-67084-9_2
https://doi.org/10.1007/978-3-030-67084-9_2
https://www.omg.org/spec/Essence/1.2/PDF
https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-US.pdf

	``Extreme Development'' as a Means for Learning Agile
	1 Introduction
	2 Related Works
	3 Course Structure and Project Description
	4 Tools and Practices
	4.1 Proposed Tools
	4.2 Final Tool Configuration
	4.3 Discussion
	4.4 Essence and Framework Independence

	5 Artifacts
	5.1 User Story Evolution
	5.2 Sprint Backlog Sizes
	5.3 Review and Retrospective Evolution

	6 Evaluation
	7 Conclusion
	7.1 Tools and Methods
	7.2 Overlap of Learning and Applying
	7.3 Using Scrum for a Student Project

	References




