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Abstract. In this paper, we show that the class of representable resid-
uated semigroups has the finite representation property. That is, every
finite representable residuated semigroup is representable over a finite
base. This result gives a positive solution to Problem 19.17 from the
monograph by Hirsch and Hodkinson [13].

We also show that the class of representable join semilattice-ordered
semigroups is pseudo-universal and it has a recursively enumerable
axiomatisation. For this purpose, we introduce representability games
for join semilattice-ordered semigroups.
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1 Introduction

Relation algebras are a kind of Boolean algebras with operators that provide
algebraisation of binary relations [20]. The class of all relation algebras, denoted
as RA, consists of algebras of the signature {0, 1,+,−, ; , �,1′}, and all those
algebras obey certain axioms. The class of representable relation algebras, RRA,
consists of algebras isomorphic to set relation algebras. RRA is a subclass
of RA, but the converse inclusion does not hold. That is, there exist non-
representable relation algebras [22]. Moreover, the class RRA is not a finitely
axiomatisable variety [24] with neither Sahlqvist [29] nor canonical axiomatisa-
tion [19]. The problem of determining whether a given finite relation algebra is
representable is undecidable, see [12].

For this reason, we are interested in reducts since one may extract more pos-
itive results in the aspects of decidability, representability, and finite axiomatis-
ability. There are several results on reducts of relation algebras that have no finite
axiomatisation. The examples of non-finitely axiomatisable classes are ordered
monoids [10], distributive residuated lattices [1], join semilattice-ordered semi-
groups [2], meet semilattice-ordered semigroups with converses [18], etc. On the

The research is supported by the project MK-1184.2021.1.1.

c© Springer Nature Switzerland AG 2022
S. Artemov and A. Nerode (Eds.): LFCS 2022, LNCS 13137, pp. 266–280, 2022.
https://doi.org/10.1007/978-3-030-93100-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93100-1_17&domain=pdf
http://orcid.org/0000-0002-6180-4323
https://doi.org/10.1007/978-3-030-93100-1_17


Reducts of Relation Algebras 267

other hand, such classes as representable residuated semigroups [1] and ordered
domain algebras [15] are finitely axiomatisable. There are also subsignatures for
which the question of finite axiomatisability remains open, see, e.g., [2].

The other direction we discuss is related to finite representability. A finite
algebra of relations has the finite representation property if it is isomorphic to
some algebra of relations over a finite base. The investigation of this problem
is of interest to study such aspects as decidability of membership of R(τ) for
finite structures. The finite representation property also implies recursivity of
the class of all finite representable τ -structures [9], if the whole class is finitely
axiomatisable. Here, τ is a subsignature of operations and predicates definable
in {0, 1,+,−, ; , �,1}. The examples of the class having the finite representa-
tion property are some classes of algebras [9,15,23], the subsignature of which
contains the domain and range operators. The other kind of algebras of binary
relations having the finite representation property is semigroups with so-called
demonic refinement has been recently studied by Hirsch and Šemrl [16], but the
same authors have recently shown that semigroups with demonic joins fail to
have the finite representation property [8].

There are subsignatures τ such that the class R(τ) of representable reducts
fails to have the finite representation property, for example, {; , ·}, see [16, The-
orem 4.1]. In general, (un)decidability of determining whether a finite relation
algebra has a finite representation is an open question [13, Problem 18.18].

In this paper, we consider reducts of relation algebras the signature of which
consists of composition, residuals, and the binary relation symbol that denotes
partial ordering. That is, we study the class of representable residuated semi-
groups. We show that R(; , \, /,≤) has the finite representation property. As a
result, Problem 19.17 of [13] has a positive solution. The solution is based on
the Dedekind-MacNeille completions and relational representations of quantales.
We embed a finite residuated semigroup into a finite quantale by mapping every
element to its lower cone. After that, we apply the relational representation for
quantales. As a result, the original finite residuated semigroup has a Zaretski-
style representation [30] and this satisfies the finite base requirement.

In the final section, we study the class of representable join semilattice-
ordered semigroups, denoted as R(; ,+). It is already known that this class is not
finitely axiomatisable [2]. We show that R(; ,+) has a recursively enumerable
axiomatisation. For that, we define networks and representability games. This
class is axiomatised with the axioms of join semilattice-ordered semigroups plus
the countable set of universal formulas claiming that ∃ has a winning strategy
on every finite step. The question of finite representability for this class remains
open, see [27, Problem 2].

2 Definitions

2.1 Relation Algebras and Their Reducts

Let us introduce some basic definitions related to relation algebras. See [13,
Section 3] to have more details.
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Definition 1. A relation algebra is an algebra R = 〈R, 0, 1,+,−, ; , �,1〉 such
that 〈R, 0, 1,+,−〉 is a Boolean algebra, 〈R, ; ,1〉 is a monoid, and the following
equations hold, for all a, b, c ∈ R:

1. (a + b); c = (a; c) + (b; c),
2. a�� = a,
3. (a + b)� = a� + b�,
4. (a; b)� = b�; a�,
5. a�; (−(a; b)) ≤ −b.

where a ≤ b is defined usually as a + b = b. RA is the class of all relation
algebras.

Definition 2. A proper relation algebra (or, a set relation algebra) is an algebra
R = 〈R, 0, 1,∪,−, ; , �,1〉 such that R ⊆ P(W ), where X is a base set, W ⊆
X ×X is an equivalence relation, 0 = ∅, 1 = W , ∪ and − are set-theoretic union
and complement respectively, ; is relation composition, � is relation converse,
1′ is the identity relation restricted to W , that is:

1. a; b = {(x, z) ∈ W | ∃y (x, y) ∈ a & (y, z) ∈ b}
2. a� = {(x, y) ∈ W | (y, x) ∈ a}
3. 1′ = {(x, y) ∈ W | x = y}
PRA is the class of all proper relation algebras. RRA is the class of all repre-
sentable relation algebras, that is, the closure of PRA under isomorphic copies.

Let τ be a subset of operations and predicates definable in RA. R(τ) is
the class of subalgebras of τ -subreducts of algebras belonging to RRA. We
also assume that R(τ) is closed under isomorphic copies. A τ -structure is rep-
resentable if it is isomorphic to some algebra of relations of this signature. A
representable finite τ -structure has a finite representation over a finite base if
it is isomoprhic to some finite representable over a finite base. R(τ) has the
finite representation property if every A ∈ R(τ) has a finite representation over
a finite base.

2.2 Residuated Semigroups

A residuated semigroup is a structure A = 〈A, ; ,≤, \, /〉 such that, for all
a, b, c ∈ A:

1. ≤ is reflexive, antisymmetric, and transitive.
2. a; (b; c) = (a; b); c.
3. a ≤ b ⇒ a; c ≤ b; c and a ≤ b ⇒ c; a ≤ c; b.
4. b ≤ a \ c ⇔ a; b ≤ c ⇔ a ≤ c / b.

We can express residuals in every R ∈ RA using Boolean negation, inversion,
and composition as follows:

1. a \ b = −(a�;−b)
2. a / b = −(−a; b�)
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These residuals have the following explicit definition in R ∈ PRA:

1. a \ b = {(x, y) | ∀z (z, x) ∈ a ⇒ (z, y) ∈ b}
2. a / b = {(x, y) | ∀z (y, z) ∈ b ⇒ (x, z) ∈ a}

One can visualise residuals in RRA with the following triangles:
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Thus, in particular, every relation algebra is a residuated lattice.

2.3 Join Semilattice-Ordered Semigroups

A join semilattice-ordered semigroup is an algebra A = 〈A, ; ,+〉 such that 〈A, ; 〉
is a semigroup, 〈A,+〉 is a join-semilattice, and the following identities hold, for
all a, b, c ∈ A:

1. a; (b + c) = a; b + a; c,
2. (a + b); c = a; c + b; c.

A join semilattice-ordered semigroup is also a poset and ordering is defined as
a ≤ b iff a + b = b.

Definition 3. A representation R of a join semilattice-ordered semigroup A is
a one-to-one map R : A → 2D×D (where D is a non-empty base set) such that

1. (a + b)R = aR ∪ bR,
2. (a; b)R = aR; bR.

A join semilattice-ordered semigroup A is representable, if there exists a
representation R : A → 2D×D for some non-empty base set D.

2.4 Order-theoretic Definitions

Let us also remind the reader several order-theoretic notions, see [4, Chapter 1]
for more details. Let 〈P,≤〉 be a partial order. An upper cone generated by x is
the set ↑ x = {a ∈ P | x ≤ a}. Let A ⊆ P , then ↑ A =

⋃

x∈A

↑ x = {a ∈ P | ∃x ∈
P x ≤ a}. The set of all upper cones of a poset 〈P,≤〉 is denoted as Up(P ).
Given a ∈ P , the lower cone generated by a is a subset ↓ a = {x ∈ P | x ≤ a}.
The lower cone generated by a subset is defined similarly.

A closure operator on a poset 〈P,≤〉 is a monotone map j : P → P such that
for all a ∈ P we have a ≤ ja = jja.
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2.5 Pseudo-elementary Classes

The following definitions are due to [13, Section 9]. Let K be a class of structures
of a first-order signature L. K is called a pseudo-elementary class if there are:

1. a two-sorted language Ls with disjoint sorts a and r that contains all symbols
of L as a-sorted symbols,

2. an Ls-theory T , the defining theory.

such that K = {Ma �L | M |= T}. More generally, a pseudo-elementary class is
a reduct of an elementary class, see [5].

A pseudo-elementary class is pseudo-universal if

1. a function symbol in Ls that differs from copies of L ones takes values in
sort r,

2. Every sentence in T is built from atomic formulas and negated-atomic for-
mulas using ∨, ∧, ∀xa, ∀xr, ∃xr.

We are going to use the following fact to axiomatise the class of representable
join semilattice-ordered semigroups, see [13, Corollary 9.15, Theorem 9.28]:

Theorem 1.

1. If K is a pseudo-universal class, then K is elementary and universally axioma-
tisable.

2. Let K = {Ma �L |M |= T} be a pseudo-universal class of L-structures, where
T is an Ls-theory and L, Ls, T are recursively enumerable. Then there exists
the set of L-sentences {ηn}n<ω from T such that A ∈ K iff A |= {ηn}n<ω.
That is, {ηn}n<ω axiomatises K.

3 The Finite Representation Property for Residuated
Semigroups

The problem we are interested in is the following [13, Problem 19.17]:

Does R(; , \, /,≤) have the finite representation property?

The class R(; , \, /,≤) consists of the following structures, here is the explicit
definition:

Definition 4. Let A be a set of binary relations on some base set W such that
R = ∪A is transitive and W is a domain of R. A relational residuated semigroup
is an algebra A = 〈A, ; , \, /,⊆〉 where, for all a, b ∈ A:

1. a; b = {(x, z) | ∃y ∈ W ((x, y) ∈ a & (y, z) ∈ b)},
2. a \ b = {(x, y) | ∀z ∈ W ((z, x) ∈ a ⇒ (z, y) ∈ b)},
3. a / b = {(x, y) | ∀z ∈ W ((y, z) ∈ b ⇒ (x, z) ∈ a)},
4. a ≤ b iff a ⊆ b.
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A residuated semigroup is called representable if it is isomorphic to some
algebra that belongs to R(; , \, /,≤).

Definition 5. Let τ = {; , \, /,≤}, let A be a τ -structure and X a base set. An
interpretation R over a base X maps every a ∈ A to a binary relation aR ⊆
X × X. A representation of A is an interpretation R that interprets operations
and ≤ as above.

Andréka and Mikulás proved the representation theorem for residuated semi-
groups ([1]) in the step-by-step fashion. See this paper to learn more about step-
by-step representations in general [11]. The representation theorem for residu-
ated semigroups obviously implies that the class R(; , \, /,≤) is finitely axioma-
tisable. As it is well known, the logic of such structures is the Lambek calculus
[21], so we also have the relational completeness of the Lambek calculus. With
our result, we also have a version of the finite model property for the Lambek
calculus since one can refute any unprovable sequent in some finite relational
residuated semigroup over a finite base. This is a corollary of our result and the
fact that the Lambek calculus is complete w.r.t finite residuated semigroups, see
[6, Chapter 7, Sect. 7.4] to have an even stronger result.

It is sufficient to show that any finite residuated semigroup has a representa-
tion over a finite base in order to show that R(; , \, /,≤) has the finite representa-
tion property. For that, we will use the representation of residuated semigroups
as subalgebras of quantales and the relational representation of quantales.

A quantale is a complete lattice-ordered semigroup. That is, a binary oper-
ation respects suprema in both arguments. Quantales have been introduced by
Mulvey to provide a noncommutative generalisation of locales, see [25].

Definition 6. A quantale is a structure Q = 〈Q, ; , Σ〉 such that Q = 〈Q,Σ〉 is
a complete lattice, where Σ denotes an infinite join, 〈Q, ; 〉 is a semigroup, and
the following conditions hold for all a ∈ Q and A ⊆ Q:

1. a ; ΣA = Σ{a; q | q ∈ A},
2. ΣA ; a = Σ{q; a | q ∈ A}.
Definition 7. Given a quantale Q = 〈Q, ; , Σ〉, a set of generators is a subset
G ⊆ Q, if

1. For all q ∈ Q one has q ≤ Σ{g ∈ G | g ≤ q},
2. For all g ∈ G and q1, q2 ∈ Q, g ≤ q1; q2 implies g ≤ q1; r for some r ∈ G with

r ≤ q2.

The existence of a set of generators for an arbitrary quantale has been shown
here [3, Lemma 3.12].

Note that any quantale is a residuated semigroup as well. Given a quantale
Q = 〈Q, ; , Σ〉, One may express residuals with supremum and product as follows
for all a, b ∈ Q:

1. a \ b = Σ{c ∈ Q | a; c ≤ b},
2. a / b = Σ{c ∈ Q | b; c ≤ a}.

It is readily checked that residuals are unique.
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A quantic nucleus is a closure operator on a quantale. Such an operator is
a noncommutative generalisation of a nucleus operator from locale theory. The
following definition and the proposition below are due to [26, Definition 3.1.1,
Theorem 3.1.1] respectively.

Definition 8. A quantic nucleus on a quantale 〈A, ; , Σ〉 is a mapping j : A → A
such that j a closure operator satisfying ja; jb ≤ j(a; b).

Proposition 1. Let A = 〈A, ; , Σ〉 be a quantale and j a quantic nucleus, the set
Aj = {a ∈ A | ja = a} forms a quantale, where a;j b = j(a; b) and ΣjA = j(ΣA)
for all a, b ∈ Aj and A ⊆ Aj.

One can embed any residuated semigroup into some quantale with using
Dedekind-MacNeille completion (see, for example, [28]) as follows. According to
Goldblatt [7], residuated semigroups have the following representation based on
quantic nuclei and the Galois connection. We need the construction for the solu-
tion, so we discuss it briefly. See Goldblatt’s paper to have a complete argument
in more detail [7].

Let A = 〈A,≤, ; , \, /〉 be a residuated semigroup. Then 〈P(A), ; ,
⋃〉 is a

quantale with pairwise product of subsets.
Let X ⊆ A. We put lX and uX as the sets of lower and upper bounds of

X in A. We also put mX = luX. Note that the lower cone of an arbitrary x is
m-closed, that is, m(↓ x) = ↓ x.

m : P(A) → P(A) is a closure operator and the set

(P(A))m = {X ∈ P(S) | mX = X}
forms a complete lattice with ΣmX = m(

⋃ X ) and Πm =
⋂ X , see [4,

Theorem 7.3]. The key observation is that m is a quantic nucleus on P(A), that
is, mA;mB ⊆ m(A;B). We refer here to the aforementioned paper by Goldblatt.
Thus, according to Proposition 1, 〈(P(A))m,⊆, ;m 〉 is a quantale itself since m
is a quantic nucleus.

We define a map fm : A → (P(A))m such that fm : a �→ ↓ a. This map is
well-defined since any lower cone generated by a point is m-closed. Moreover, fm

preserves products, residuals, and existing suprema. In particular, fm is a resid-
uated semigroup embedding. As a result, we have the following representation
theorem [7, Corollary 2].

Theorem 2. Every residuated semigroup is isomorphic to the subalgebra of
some quantale.

In turn, quantales are representable with quantales of binary relations. The
notion of a relational quantale has been introduced by Brown and Gurr to rep-
resent quantales as quantales of relations [3].

Definition 9. Let A be a non-empty set. A relational quantale on A is an alge-
bra 〈R,⊆, ; 〉, where

1. R ⊆ P(A × A),
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2. 〈R,⊆〉 is a complete join-semilattice,
3. ; is a relational composition that respects all suprema in both coordinates.

The uniqueness of residuals in any quantale implies the following fact.

Proposition 2. Let A be a relational quantale over a base set X, then for all
a, b ∈ A
1. a \ b = {(x, y) ∈ X2 | ∀z ∈ X((z, x) ∈ a ⇒ (z, y) ∈ b)},
2. a / b = {(x, y) ∈ X2 | ∀z ∈ X((y, z) ∈ b ⇒ (x, z) ∈ b)}.

Now let us discuss the representation theorem for quantales. Let Q be a
quantale, Q its carrier, and 〈G〉 a set of its generators. Given a ∈ Q, define the
binary relation â ⊆ Q × Q as:

â = {(g, p) | g ∈ 〈G〉, p ∈ Q g ≤ a; p}
Denote Q̂ as {â | a ∈ Q}.

The mapping a �→ â satisfies the following conditions:

1. a ≤ b iff â ⊆ b̂,
2. Σ̂A = ΣÂ, â; b̂ = â; b, and 〈Q̂,⊆, Σ〉 is a complete lattice,
3. 〈Q̂,⊆, ; 〉 is a relational quantale,
4. Q is isomorphic to 〈Q̂,⊆, ; 〉 and a �→ â is a quantale isomorphism.

We summarise the construction above with the following theorem proved by
Brown and Gurr, see [3, Theorem 3.11].

Theorem 3. Every quantale Q = 〈Q, ; , Σ〉 is isomorphic to a relational quan-
tale on Q as a base set.

Let A be a residuated semigroup and QA a quantale of Galois closed subsets
of A. Q̂A is the corresponding relational quantale. Let us define an interpretation
R : A → Q̂A such that:

R : a �→ aR = ↓̂ a

According to the lemma below, such an interpretation is a representation.
As we have already said above, the function a �→ ↓ a is order-preserving and it
commutes with products and residuals.

Lemma 1. Let A be a residuated semigroup, then the interpretation R : A →
Q̂A such that R : a �→ aR = ↓̂ a is a representation.

Proof. By Theorem 2, A emdeds to QA, but by Theorem 3, QA is isomorphic to
Q̂A. The fact that R is an injective homomorphism follows from the construction
of the embedding of a residuated semigroup to the quantale of its Galois-stable
subsets, the isomorphism of QA with Q̂A, and Proposition 2.

The lemma above implies the following statement.
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Theorem 4. Every residuated semigroup is isomorphic to the subalgebra of
some relational quantale. Moreover, R(; , \, /,≤) has the finite representation
property.

Proof. Let A be a finite residuated semigroup. The representation of A as a
subalgebra of the relational quantale of Q̂A belongs to R(; , \, /,≤) by Lemma 1.
This representation has the following form:

Â = 〈{↓̂ a}a∈A, ; , \, /,⊆〉
.

Moreover, such a representation with the corresponding relational quantale
has the finite base, if the original algebra is finite. The base set of the quantale
Q̂A is the set of Galois stable subsets of A, which is finite.

4 Join Semilattice-Ordered Semigroups: The Explicit
Axiomatisation

We note that a similar construction does not work for finite representable upper
semilattice-ordered semigroups. From the one hand, the notions of a finite upper
semilattice-ordered semigroup and finite quantale are quite close to each other.
From the other hand, the relational representation of quantales does not have
to represent joins as set-theoretic unions generally. Moreover, there is a count-
able sequence of non-representable upper semilattice-ordered semigroups with
a non-representable ultraproduct, see [2, Theorem 3.1]. Thus, R(; ,+) is not
finitely axiomatisable. Although, as we will see below, this class has a universal
recursively enumerable axiomatisation. For that, we characterise representability
using representability games on networks. The construction is somewhat similar
to the proof of [10, Proposition 5].

Definition 10. Let A be a join-semilattice ordered semigroup. A prenetwork
over A is a tuple (V,E, l), where V is a set of vertices, E is a set of edges such
that 〈V,E〉 is a directed graph, and l is a labelling function l : E → Up(A).

A prenetwork over A = (V,E, l) is a network if the following hold:

1. (Saturation condition) For all u, v ∈ V and for all x, y, z ∈ A, z ∈ l(u, v)
and z ≤ x ; y implies x ∈ l(u,w) and y ∈ l(w, v) for some w ∈ V .

2. (Coherence condition) For all u, v, w ∈ V , one has l(u, v); l(v, w) ⊆
l(u,w).

3. (Join-primeness) For all u, v ∈ V , l(u, v) is join-prime. That is, for all
a, b ∈ A if a + b ∈ l(u, v), then either a ∈ l(u, v) or b ∈ l(u, v).

If N is a prenetwork, then we will denote its sets of nodes as Nodes(N )
occasionally.

Let I be a non-empty index set and let {Ni}i∈I be an indexed set of prenet-
works (where each Ni = (Vi, Ei, li)), then N =

⋃

i∈I

Ni defined as (V,E, l), where
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1. V =
⋃

i∈I

Vi and E =
⋃

i∈I

Ei.

2. l(x, y) =
⋃

i∈I

li(x, y) for all x, y ∈ V .

Definition 11. Let n ≤ ω and A a join semilattice-ordered semigroup. A play
of the game Gn(A) has n rounds and consists of n prenetworks. As usual, we
have two players, ∀ (Abelard, he/his) and ∃ (Hélöıse, she/her).

1. Round 0: ∀ picks a, b ∈ A such that a �≤ b. ∃ responds with a prenetwork
N0 = (V0 = {x0, x1}, E0 = {(x0, x1)}, l0) such that l0(x0, x1) = ↑ a.

2. Round n + 1. Suppose, the prenetwork Nn = (Vn, En, ln) has been played.
∀ has the following three options:
(a) (Composition move): ∀ picks x, y, z ∈ Vn with b ∈ ln(x, y) and

c ∈ ln(y, z). We denote such a move as N(x, y, z, b, c). Then ∃ responds
with Nn+1 = (Vn+1, En+1, ln+1) such that Nn+1 is the same as Nn, but
ln+1(x, z) = ↑ (ln(x, z) ∪ {b ; c}).

(b) (Witness move):
∀ picks an edge (x, y) ∈ En and d, e ∈ A such that c ≤ d; e for c ∈ ln(x, y).
∃ has to find a witness. She has to find a z which is either a fresh node
or an old one. If z is fresh, then she defines the prenetwork T , the edges
of which are x, y, z with labelling:
i. lT (x, z) = ↑ d
ii. lT (z, y) = ↑ e
If z is already an element of A, then her response is similar. For her
response, ∃ plays Nn+1 = Nn ∪ T .

(c) (Join move):
∀ picks an edge (x, y) ∈ En and c + d for c, d ∈ A. ∃ has the following
two alternatives for her response:
i. ∃ chooses c and responds with the prenetwork Nn+1 =

〈Vn+1, En+1, ln+1〉, where ln+1(x, y) = ↑ (ln(x, y) ∪ {c}).
ii. ∃ chooses b. The response is similar but ln+1(x, y) = ↑ (ln(x, y)∪{d}).

∀ wins the play if b /∈ lNi
(x, y) for some i < n. Otherwise, ∃ wins the play.

Let a ∈ A and N a network, define a game G(N ,A, a) such that ∀ picks a in
the initial round and N0 = N . The rules of the game are the same as previously.

Lemma 2. Let A = 〈A, ; ,+〉 be a join semilattice-ordered semigroup,

1. If A is representable then ∃ has a winning strategy in Gω(A).
2. If |A| ≤ ω and ∃ has a winning strategy in Gω(A) then A is representable.

Proof.

1. Let h : A → 2D×D be a representation of some base set D �= ∅. ∃ maintains
a map

′
: Nodes(N ) → D, where N is a network being played, such that

a ∈ lN (x, y) implies (x′, y′) ∈ h(a).
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2. Given a ∈ A, we consider a play of the game where ∀ picks a and b with
a �≤ b in the initial round and plays (N , x, y, z, c, d) in the further rounds for
all x, y, z ∈ Nodes(N ) and c, d ∈ A. Here, c ∈ lN (x, y) and d ∈ lN (y, z).
∀ also plays all rounds (N , x, y, c, d) for all x, y ∈ Nodes(N ) and c, d ∈ A such
that there is e ∈ A such that e ≤ c; d and e ∈ lN (x, y).
∀ picks also c + d and vertices x, y ∈ Nodes(N ) for c, d ∈ A.
Note that A is at most countable, so we can schedule all these moves. We
have the following play of a game where Hélöıse uses a winning strategy:

N0 ⊆ N1 ⊆ N2 . . .

Let us put N ∗(a, b) =
⋃

i<ω

Ni. N ∗(a, b) is clearly a network. Let us put the

following network assuming that N ∗(a1, a2) and N ∗(b1, b2) are disjoint for
a1 �= a2 and b1 �= b2:

N =
⋃

a,b∈A,a�≤b

N ∗(a, b)

Note that N = 〈V,E, l〉 is a well-defined network since it is the disjoint union
of networks.
Define rep : A → E as:

rep(a) = {(x, y) | ∃b ≤ a b ∈ lN (x, y)}
Let us check that rep is a representation. Let us show that rep(a + b) =
rep(a) ∪ rep(b) Suppose (x, y) ∈ rep(a + b). That is, there exists c ≤ a + b
with c ∈ lN (x, y), so does a + b since lN is an upper cone. a + b ∈ lN (x, y),
that is,

a + b ∈
⋃

c1,c2∈A
c1 �≤c2

lN ∗(c1,c2)(x, y)

That is, there is c ∈ A with such that a + b ∈ lN ∗(c1,c2)(x, y), but
lN ∗(c1,c2)(x, y) is join-prime, so we have either a ∈ lN ∗(c1,c2)(x, y) or b ∈
lN ∗(c1,c2)(x, y). Thus, rep(a + b) ⊆ rep(a) ∪ rep(b).
Suppose for the converse, (x, y) ∈ rep(a). We need (x, y) ∈ rep(a + b). In
other words, we have some c ∈ A with c ≤ a and c ∈ lN (x, y). We have
c ≤ a ≤ a + b, so (x, y) ∈ rep(a + b).
Let us show that rep(a; b) = rep(a); rep(b).
Suppose (x, y) ∈ rep(a; b). We need some z with (x, z) ∈ rep(a) and
(z, y) ∈ rep(b). There is c ≤ a; b with c ∈ lN (x, y). That is, there are a1, a0 ∈ A
and Ni such that c ∈ lNi

(x, y) where ∀ plays (a1, a0) for the initial round.
By the condition, ∀ makes the witness moves and ∃ responds with a wit-
ness. Her response is a node z such that lNi+1(x, z) = ↑ (lNi

(x, z) ∪ {a}) and
lNi+1(z, y) = ↑ (lNi

(z, y) ∪ {b}). The inclusion rep(a; b) ⊆ rep(a); rep(b) holds
since all witness moves have been played.
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Suppose (x, y) ∈ rep(a); rep(b). We need (x, y) ∈ rep(a; b). There exists z ∈
Nodes(N ) with (x, z) ∈ rep(a) and (z, y) ∈ rep(b). So, there are c, d such
that c ≤ a with c ∈ lN (x, z) and d ≤ b with d ∈ lN (z, y). We also know that
lN (x, z); lN (z, y) ⊆ lN (x, y) because all composition moves have been played.
So c; d ∈ lN (x, y). That makes (x, y) ∈ rep(a; b) since c; d ≤ a; b.
For injectivity, suppose a ≤ b and (x, y) ∈ rep(a), that is, there is c ≤ a such
that c ∈ lN (x, y), but c ≤ a ≤ b, so (x, y) ∈ rep(b).
Suppose a �≤ b, then there are x, y ∈ Nodes(N (a, b)) such that a ∈ lN (x, y)
and b /∈ lN (x, y). These elements are x0, x1 that ∃ picks as her response in
the zero round. ∃ has a winning strategy, so b /∈ l(x0, x1), but (x, y) ∈ rep(a),
but (x, y) /∈ rep(b).

The following proposition is a version of [13, Proposition 7.24] and the right-
to-left part is proved using König’s lemma [17, Exercise 5.6.5].

Proposition 3. Let A be a join semilattice-ordered semigroup and N a network,
iff ∃ has a winning strategy in Gn(A,N ) for all n < ω iff she has a winning
strategy in Gω(A,N ).

Our purpose is to axiomatise of R(; ,+) with a recursively enumerable set
of universal formulas. See [13, Chapter 9] for the discussion in detail to have a
more general methodology.

Definition 12. Let Var = {v0, v1, . . . } be a set of variables. The set of terms is
generated by the following grammar:

t1, t2 :: = v | (t1 + t2) | (t1; t2)

Definition 13. A term network is a finite network 〈V,E, l〉, where 〈V,E〉 is a
directed graph and l : E → 2Term is a labelling function such that every l(x, y)
is finite for all (x, y) ∈ E.

Let A be a join semilattice-ordered semigroup and ϑ : Var → A a valuation.
The value of complex terms is defined inductively for a, b ∈ T :

1. (a; b)ϑ = aϑ; bϑ

2. (a + b)ϑ = aϑ + bϑ

Let N = 〈V,E, l〉 be a term network, A be a join-semilattice ordered semi-
group and ϑ : Var → A a valuation. Let us define the prenetwork N ϑ with the
same edges and vertices with labelling lϑ(x, y) = ↑ ϑ[lN (x, y)]. We define the fol-
lowing three extensions of N reflecting the composition, witness, and join moves
respectively:

1. Let x, y ∈ Nodes(N ) and let t be a term. Nc is the extension of N , where
Nodes(Nc) = Nodes(N ) and lNc

(x, y) = lN (x, y) ∪ {t} and lNc
(u, v) =

lN (u, v) for all u �= x and v �= y. We denote this network as Nc(N , x, y, t).
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2. Let x, y ∈ Nodes(N ), let z be a node (regardless of whether z is fresh or
not), and t1, t2 any terms. Let us define a network T such that Nodes(T ) =
{x, y, z}. We define labelling as lT (x, y) = {t1} and lT (y, z) = {t2}. So we put
Nw = N ∪ T . We denote this network as Nw(N , x, y, z, t1, t2).

3. Let x, y ∈ Nodes(N ) and let t1, t2 be terms. We define Ti =
〈{x, y}, {(x, y)}, lTi

〉, where lTi
(x, y) = lN (x, y) ∪ {ti} for i = 1, 2. So

Nj1 = N ∪ T1 and Nj2 = N ∪ T2.

Lemma 3. For all n < ω there exists a first-order sentence ρn such that ∃ has
a winning strategy in Gn(A) iff A |= ρn.

Proof. As usual, for each n < ω we construct a formula σn claiming that ∃ has
a winning strategy in the game of lenght n. To be more precise, our purpose is
to have

∃ has a winning strategy in Gn(N ϑ,A, ϑ(v)) if and only if A |= σn(N , v)

where A is a join semilattice-ordered semigroup, ϑ : Var → A is a variable
assignment, and N is a term network.

We define the following sequence of formulas {σn}n<ω inductively:

1. σ0(N , v) =
∧

a∈lN (x,y)

¬(a ≤ v)

σ0(N , v) merely claims that ∃ has a winning strategy in the zero length game.
2. Suppose σn(N , v) are already constructed for some n < ω. Let us define a

formula σn+1 claiming that ∃ always has a proper response for a network N
being played.
σn+1(N , v) is defined as follows:

σn+1(N , v) = σn+1c(N , v) ∧ σn+1w(N , v) ∧ σn+1j(N , v)

where
– σn+1c(N , v) =

∧

x,y,z∈Nodes(N )
t1∈lN (x,y)
t2∈lN (y,z)

σn(Nc(x, z, t1, t2), v)

– σn+1w(N , v) =
∧

x,y∈Nodes(N )
t∈lN (x,y)

∀u1, u2(t ≤ u1;u2 → ∨

w∈Nodes(N )∪{z}

Nc(x, y, w, u1, u2)), where z /∈ Nodes(N ).
– σn+1j(N , v) = ∀a ∀b(v = a + b → ∧

x,y∈Nodes(N )

σn(Nj1(N , x, y, a), v) ∨
σn(Nj2(N , x, y, b), v))

So, ∃ has a winning strategy iff these formulas are true under the valuation
ϑ since the formulas {σn}n<ω encode the presence of a winning strategy for ∃ in
every finite round.

Let v0 be any variable, Nv0 denotes the term network having the form
〈{{x0, x1}, {(x0, x1)}, l}〉, where l(x, y) = {v0}. We define the following sequence
of formulas (ρn)n<ω:

ρn = ∀v0∀v1(¬(v0 ≤ v1) → σ(Nv0 , v0))
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This inductive sequence of formulas provides us the explicit axiomatisation
of the class of representable join semilattice-ordered semigroups.

Theorem 5. A join semilattice-ordered semigroup A is representable iff A |=
{ρn}n<ω. Moreover, R(; ,+) has a recursively enumerable universal axiomatisa-
tion.

Proof. Let us define a two sorted language with sorts a (algebra) and r (represen-
tation). R(; ,+) clearly forms a pseudo-elementary class, see [14, Introduction]
for more details. Moreover, this class is pseudo-universal and it satisfies the
condition of the second item of Theorem 1.

By Proposition 3, Lemma 2, and Lemma 3, a countable join semilattice-
ordered semigroup A is representable iff A |= {ρn}n<ω. Suppose A is uncount-
able. The class is pseudo-elementary, so it is closed under elementary equivalence,
so, by the downward Löwenheim-Skolem theorem [17, Corollary 3.1.5], we can
take A0 � A, a countable elementary substructure of A. Then A0 |= {ρn}n<ω

iff A |= {ρn}n<ω. Therefore, if A0 is representable, so is A.

As we have already discussed, the finite representation property for (; ,+)-
structures remains an open question. If the solution is positive, then the problem
of representability for finite join semilattice-ordered semigroups is decidable since
finite representability and recursive axiomatisability imply decidability.
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