
Sergei Artemov
Anil Nerode (Eds.)

LN
CS

 1
31

37

Logical Foundations
of Computer Science
International Symposium, LFCS 2022
Deerfield Beach, FL, USA, January 10–13, 2022
Proceedings

Lecture Notes in Computer Science 13137

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693
https://orcid.org/0000-0003-0848-0873

More information about this subseries at https://link.springer.com/bookseries/7407

https://springerlink.bibliotecabuap.elogim.com/bookseries/7407

Sergei Artemov · Anil Nerode (Eds.)

Logical Foundations
of Computer Science
International Symposium, LFCS 2022
Deerfield Beach, FL, USA, January 10–13, 2022
Proceedings

Editors
Sergei Artemov
CUNY Graduate Center
New York, NY, USA

Anil Nerode
Cornell University
Ithaca, NY, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-93099-8 ISBN 978-3-030-93100-1 (eBook)
https://doi.org/10.1007/978-3-030-93100-1

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-5605-6172
https://doi.org/10.1007/978-3-030-93100-1

Preface

The Symposium on Logical Foundations of Computer Science (LFCS) series provides a
forum for the fast-growing body of work in the logical foundations of computer science,
e.g., those areas of fundamental theoretical logic related to computer science. The
LFCS series began with “Logic at Botik” held in Pereslavl-Zalessky, 1989, which was
co-organized by Albert R. Meyer (MIT) and Michael Taitslin (Tver). After that,
organization passed to Anil Nerode.

Currently, LFCS is governed by a Steering Committee consisting of Anil Nerode
(General Chair), Samuel Buss, StephenCook, Dirk vanDalen, YuriMatiyasevich, Andre
Scedrov, and Dana Scott.

LFCS 2022 took place at the Wyndham Deerfield Beach Resort, Deerfield Beach,
Florida, USA, during January 10–13, 2022. This volume contains the extended abstracts
of talks selected by the Program Committee for presentation at LFCS 2022.

The scope of the symposium is broad and includes constructivemathematics and type
theory; homotopy type theory; logic, automata, and automatic structures; computability
and randomness; logical foundations of programming; logical aspects of computational
complexity; parameterized complexity; logic programming and constraints; automated
deduction and interactive theorem proving; logical methods in protocol and program
verification; logical methods in program specification and extraction; domain theory
logics; logical foundations of database theory; equational logic and term rewriting;
lambda and combinatory calculi; categorical logic and topological semantics; linear
logic; epistemic and temporal logics; intelligent andmultiple-agent system logics; logics
of proof and justification; non-monotonic reasoning; logic in game theory and social
software; logic of hybrid systems; distributed system logics; mathematical fuzzy logic;
system design logics; and other logics in computer science.

We thank the authors and reviewers for their contributions. We acknowledge the
support of the U.S. National Science Foundation, The Association for Symbolic Logic,
Cornell University, the Graduate Center of the City University of New York, and Florida
Atlantic University.

November 2021 Anil Nerode
Sergei Artemov

Organization

Steering Committee

Samuel Buss University of California, San Diego, USA
Stephen Cook University of Toronto, Canada
Yuri Matiyasevich Steklov Mathematical Institute, St. Petersburg, Russia
Anil Nerode (General Chair) Cornell University, USA
Andre Scedrov University of Pennsylvania, USA
Dana Scott Carnegie Mellon University, USA
Dirk van Dalen Utrecht University, The Netherlands

Program Committee

Antonis Achilleos Reykjavik University, Iceland
Evangelia Antonakos City University of New York, USA
Sergei Artemov (Chair) City University of New York Graduate Center, USA
Steve Awodey Carnegie Mellon University, USA
Matthias Baaz Technical University of Vienna, Austria
Lev Beklemishev Steklov Mathematical Institute, Moscow, Russia
Andreas Blass University of Michigan, USA
Samuel Buss University of California, San Diego, USA
Thierry Coquand University of Gothenburg, Sweden
Melvin Fitting City University of New York, USA
Sergey Goncharov Sobolev Institute of Mathematics, Russia
Rosalie Iemhoff Utrecht University, The Netherlands
Hajime Ishihara Japan Advanced Institute of Science and Technology,

Japan
Bakhadyr Khoussainov University of Auckland, New Zealand
Roman Kuznets Technical University of Vienna, Austria
Stepan Kuznetsov Steklov Mathematical Institute, Moscow, Russia
Robert Lubarsky Florida Atlantic University, USA
Lawrence Moss Indiana University Bloomington, USA
Pavel Naumov University of Southampton, UK
Anil Nerode Cornell University, USA
Elena Nogina City University of New York, USA
Hiroakira Ono Japan Advanced Institute of Science and Technology,

Japan
Valeria de Paiva Topos Institute, USA
Alessandra Palmigiano Vrije Universiteit Amsterdam, The Netherlands
Ramaswamy Ramanujam Institute of Mathematical Sciences, India
Ruy de Queiroz Federal University of Pernambuco, Brazil

viii Organization

Michael Rathjen University of Leeds, UK
Sebastiaan Terwijn Radboud University Nijmegen, The Netherlands
Ren-June Wang National Chung Cheng University, Taiwan
Noson Yanofsky City University of New York, USA
Junhua Yu Tsinghua University, China

Additional Reviewers

Ellie Anastasiadi
Andrea De Domenico
Malvin Gattinger
Noah Kaufmann
Stanislav Kikot
Johannes Marti
Anantha Padmanabha
Mattia Panettiere

Mati Pentus
Michele Pra Baldi
Katsuhiko Sano
Sunil Simon
Stanislav Speranski
Thomas Studer
S. P. Suresh
Apostolos Tzimoulis

Contents

A Non-hyperarithmetical Gödel Logic . 1
Juan Pablo Aguilera, Jan Bydzovsky, and David Fernández-Duque

Andrews Skolemization May Shorten Resolution Proofs Non-elementarily 9
Matthias Baaz and Anela Lolic

The Isomorphism Problem for FST Injection Structures . 25
Douglas Cenzer and Richard Krogman

Justification Logic and Type Theory as Formalizations of Intuitionistic
Propositional Logic . 37

Neil J. DeBoer

Hyperarithmetical Worm Battles . 52
David Fernández-Duque, Konstnatinos Papafilippou, and Joost J. Joosten

Parametric Church’s Thesis: Synthetic Computability Without Choice 70
Yannick Forster

Constructive and Mechanised Meta-Theory of Intuitionistic Epistemic
Logic . 90

Christian Hagemeier and Dominik Kirst

A Parametrized Family of Tversky Metrics Connecting the Jaccard
Distance to an Analogue of the Normalized Information Distance 112

Bjørn Kjos-Hanssen, Saroj Niraula, and Soowhan Yoon

A Parameterized View on the Complexity of Dependence Logic 125
Juha Kontinen, Arne Meier, and Yasir Mahmood

A Logic of Interactive Proofs . 143
David Lehnherr, Zoran Ognjanović, and Thomas Studer

Recursive Rules with Aggregation: A Simple Unified Semantics 156
Yanhong A. Liu and Scott D. Stoller

Computational Properties of Partial Non-deterministic Matrices and Their
Logics . 180

Sérgio Marcelino, Carlos Caleiro, and Pedro Filipe

x Contents

Soundness and Completeness Results for LEA and Probability Semantics 198
Eoin Moore

On Inverse Operators in Dynamic Epistemic Logic . 217
Shota Motoura and Shin-ya Katsumata

Betwixt Turing and Kleene . 236
Dag Normann and Sam Sanders

Computability Models over Categories and Presheaves . 253
Iosif Petrakis

Reducts of Relation Algebras: The Aspects of Axiomatisability and Finite
Representability . 266

Daniel Rogozin

Between Turing and Kleene . 281
Sam Sanders

Propositional Dynamic Logic with Quantification over Regular
Computation Sequences . 301

Igor Sedlár

Finite Generation and Presentation Problems for Lambda Calculus
and Combinatory Logic . 316

Rick Statman

Exact and Parameterized Algorithms for Read-Once Refutations in Horn
Constraint Systems . 327

K. Subramani and Piotr Wojciechowski

Dialectica Logical Principles . 346
Davide Trotta, Matteo Spadetto, and Valeria de Paiva

Small Model Property Reflects in Games and Automata . 364
Maciej Zielenkiewicz

Author Index . 377

A Non-hyperarithmetical Gödel Logic

Juan Pablo Aguilera1,2, Jan Bydzovsky1(B), and David Fernández-Duque2

1 Vienna University of Technology, Vienna, Austria
2 Ghent University, Ghent, Belgium

Abstract. Let G↓ be the Gödel logic whose set of truth values is V↓ =
{0} ∪ {1/n : n ∈ N \ {0}}. Baaz-Leitsch-Zach have shown that G↓ is not
recursively axiomatizable and Hájek showed that it is not arithmetical.
We find the optimal strengthening of their theorems and prove that the
set of validities of G↓ is Π1

1 complete and the set of satisfiable formulas
in G↓ is Σ1

1 complete.

Keywords: Gödel logic · Fuzzy logic · Hyperarithmetical set

1 Introduction

A family of finite-valued logics was introduced by Gödel in [6] to show there are
propositional logics weaker than classical but stronger than intuitionistic propo-
sitional logic. A natural extension of those logics to many-valued logic followed
in the paper of Dummett [5] who also showed that they can be axiomatised
by adding the axiom (p → q) ∨ (q → p) into intuitionistic logic. Today we call
those logics Gödel logics. In particular, Gödel logics are intermediate logics where
propositions take truth values in [0, 1]. Different Gödel logics arise by choosing
a subset V ⊆ [0, 1] as truth values. In the case of propositional Gödel logic, any
infinite subset of [0, 1] will yield the same set of valid formulas, but this is not
the case for first order Gödel logic. In this case we require that V be a closed
set, as suprema and infima are used to evaluate the quantifiers.

In particular, we are interested in G↓, the Gödel logic whose set of truth
values is

V↓ = {0} ∪
{
1/n : n ∈ N \ {0}

}
.

G↓ is the same as the logic defined by linearly ordered Kripke structures on
constant domains [1] - a fundamental concept in the definition of Temporal logic
of programs [9], an origin of the study of program verification.

Baaz-Leitsch-Zach [1] have shown that G↓ is not recursively axiomatizable
and Hájek [8] showed that the sets of validities and satisfiable formulas are

J.P. Aguilera—Supported by FWF grant I4513N and FWO grant 3E017319.
J. Bydzovsky—Supported by FWF grant P31955 and I4427.
J.P. Aguilera and D. Fernández-Duque—Supported by FWO-FWF Lead Agency Grant
G030620N.

c© Springer Nature Switzerland AG 2022
S. Artemov and A. Nerode (Eds.): LFCS 2022, LNCS 13137, pp. 1–8, 2022.
https://doi.org/10.1007/978-3-030-93100-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93100-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-93100-1_1

2 J. P. Aguilera et al.

not arithmetical. We will show that they are Σ1
1 -complete and Π1

1 -complete,
respectively. As satisfiability is Σ1

1 and validity is Π1
1 , this yields the optimal

strengthening of their theorems. We remark that each of the results for Σ1
1 and

Π1
1 is not immediate from the other, because satisfiability and validity are not

dual in Gödel logic as they are in classical logic.

2 Preliminaries

First order Gödel logic uses the syntax of intuitionistic predicate logic, where
the set of formulas is defined according to the following clauses:

⊥ | P (�x) | φ ∧ ψ | φ ∨ ψ | φ → ψ | ∃xφ | ∀xφ.

Here, P is a predicate symbol of arity n in some predetermined alphabet, �x is a
tuple of n variables, φ, ψ are formulas and x is a variable.

Definition 1. Fix a closed set V ⊆ [0, 1] with 0 ∈ V ; such a set is a set of truth
values. A V -valued model is a pair M = (D, ‖ · ‖), where D is a set of elements
and ‖ · ‖ assigns to each n-ary predicate symbol P a function ‖P (·)‖ : Dn → V .
We then extend ‖ · ‖ to complex formulas according to the following clauses:

– ‖⊥(�a)‖ = 0
– ‖φ ∧ ψ(�a)‖ = min{‖φ(�a)‖, ‖ψ(�a)‖}
– ‖φ ∨ ψ(�a)‖ = max{‖φ(�a)‖, ‖ψ(�a)‖}
– ‖φ → ψ(�a)‖ =

{
1 if ‖φ(�a)‖ ≤ ‖ψ(�a)‖
‖ψ(�a)‖ otherwise

– ‖∃xφ(x,�a)‖ = supb∈D ‖φ(b,�a)‖
– ‖∀xφ(x,�a)‖ = infb∈D ‖φ(b,�a)‖.

On occasion we may write ‖ · ‖M instead of ‖ · ‖ when we want to specify the
model we are referring to. We write M = (D,P1, . . . , Pn) instead of M = (D, ‖·‖)
to indicate that the alphabet of M is P1, . . . , Pn. Given a closed set V ⊆ [0, 1]
containing 0 and 1, we say that a sentence φ is V -satisfiable if there is a model M
such that ‖φ‖M = 1 (in which case we write M |= φ), and weakly V -satisfiable
if there is a model M such that ‖φ‖M > 0. The formula φ is V -valid if for
every model M, ‖φ‖M = 1. A model M is crisp if V = {0, 1}; clearly, crisp
models are equivalent to classical models. In the remainder of the text we fix
V = V↓ = {0} ∪ {

1/n : n ∈ N \ {0}}
, and satisfiability, etc. refer to this set of

truth values. We will explicitly write e.g. classical satisfiability when referring to
V = {0, 1}.

A formula is V↓-satisfiable iff it is weakly V↓-satisfiable. In fact, a more general
claim holds. Recall that a linear order is Noetherian if it contains no infinite
strictly increasing sequences; note that V↓ is Noetherian.

Lemma 1. Let V be a Noetherian set of truth values. Given a sentence ϕ and
any set of truth values V , if there exists a model M such that ‖ϕ‖M > 0, then
there exists a model M′ such that for all formulas ψ and tuples �a,

‖ψ(�a)‖M′ =

{
‖ψ(�a)‖M if ‖ψ(�a)‖M < ‖ϕ‖M
1 otherwise.

(1)

A Non-hyperarithmetical Godel Logic 3

Proof. Let M = (D, ‖·‖) and define M′ = (D, ‖·‖′) so that ‖·‖ is defined accord-
ing to (1) for atomic formulas. Then proceed by induction on formula complexity.
The assumption that V is Noetherian is used for the case of an existential quan-
tifier, so we focus on this one. We have that ‖∃xψ(x,�a)‖′ = supb∈D ‖ψ(b,�a)‖′.
By the induction hypothesis, ‖ψ(b,�a)‖′ satisfies (1) for all b ∈ D. Since V
is Noetherian, there is b∗ ∈ D such that ‖ψ(b∗,�a)‖′ = supb∈D ‖ψ(b,�a)‖′. If
‖ψ(b∗,�a)‖ < ‖ϕ‖ then it is readily checked that for all b ∈ D, ‖ψ(b,�a)‖′ =
‖ψ(b,�a)‖ < ‖ϕ‖, so ‖∃xψ(x,�a)‖ = ‖ψ(b∗,�a)‖ = ‖ψ(b∗,�a)‖′ = ‖∃xψ(x,�a)‖′. Oth-
erwise, ‖ψ(b∗,�a)‖ ≥ ‖ϕ‖, so that ‖∃xψ(x,�a)‖ ≥ ‖ϕ‖ and we must check that
‖∃xψ(x,�a)‖′ = 1. But from ‖ψ(b∗,�a)‖ ≥ ‖ϕ‖ we obtain ‖ψ(b∗,�a)‖′ = 1 and thus
‖∃xψ(x,�a)‖′ = 1, as needed.

We will make use of the abbreviation

φ ≺ ψ := (ψ → φ) → ψ.

It can be checked by the semantics that φ ≺ ψ evaluates to 1 if and only if either
φ has a smaller value than ψ, or they both have value 1.

While first order logic in principle contains predicate symbols of all arities,
in this paper it will suffice to work with a unary symbol N and binary symbols
=,∈. The convention regarding equality is that it is interpreted as any fuzzy
equivalence relation when V �= {0, 1}, but is true equality when V = {0, 1}.
The symbol ∈ is meant to interpret Kripke-Platek set theory (KP), a weakening
of ZFC which, in the version we consider, has the advantage of being finitely
axiomatizable. In general, let LP1...Pn

be the language of first order Gödel logic
whose predicate symbols are restricted to P1, . . . , Pn. To define KP, first say
that a Δ0 formula is a L∈ formula such that all quantifiers are of the form
∃x(x ∈ y ∧ φ) or ∀x(x ∈ y → φ) (often abbreviated as e.g. ∃x ∈ yφ and
∀x(x ∈ y → φ), respectively). A Σ1 formula is one of the form ∃xφ, where φ is
Δ0, and a Π1 formula is one of the form ∀xφ with the same restriction.

We will use the version of KP with infinity axiomatized by all axioms of ZFC
except for powerset, but with foundation restricted to Π1 classes, separation
restricted to Δ0 formulas and replacement restricted to Δ0-collection. We will
also assume that KP contains equality axioms asserting that = is an equivalence
relation, as well as the axioms

x = y → x ∈ z ↔ y ∈ z

x = y → z ∈ x ↔ z ∈ y.

The precise definitions are not needed to follow the text, but we will use some
properties of this version of KP, including that it is finitely axiomatizable.

The axiom of infinity asserts that the set of natural numbers exist as a set,
and there is a formula of L∈ (which we denote by x ∈ N) defining the set
of natural numbers as von Neumann ordinals, which have the property that
n < m iff n ∈ m. We will usually write < instead of ∈ when working with
natural numbers within KP. This definition allows us to quantify over the set of
natural numbers and define quantifiers ∀x ∈ N, ∃X ⊆ N, etc. as abbreviations.

4 J. P. Aguilera et al.

We will also use the fact that addition (along with other standard arithmetical
operations) is readily interpretable in KP. An arithmetical formula is one where
all quantifiers are of the form ∀x ∈ N or ∃x ∈ N, a Π1

1 -formula is one of the
form ∀X ⊆ Nφ where φ is arithmetical, and a Σ1

1 -formula is one of the form
∃X ⊆ Nφ, also with φ arithmetical. A model M is an ω-model if the natural
numbers in M are isomorphic to the standard natural numbers.

As for the symbol N , its intended meaning is that ‖N(x)‖ > 0 iff x ∈ N,
with larger natural numbers receiving smaller truth values. This will be made
precise later in the text.

Some familiarity with the class of ordinals, as well as the constructible hier-
archy {Lα | α is an ordinal} is assumed. An ordinal α is admissible if Lα is a
(classical) model of KP; because every recursive ordinal is provably well-ordered
in KP, the smallest admissible ordinal is the Church-Kleene ordinal ωck

1 . Note
that ωck

1 is countable.
We will use the following two results involving admissible sets.

Theorem 1 (Ville [3]). Let M be any ω-model of KP. Then, the well-founded
part of M (with respect to ∈) is admissible, and hence extends Lωck

1
.

Theorem 2 (Barwise-Gandy-Moschovakis [4]). Given a Σ1
1 formula φ, one

can effectively and uniformly find a Π1 L∈-formula ψ(x) such that for every
natural number n

N |= φ(n) ↔ Lωck
1

|= ψ(n).

3 Standard Models via Vagueness

Our proof of hardness follows by a variation of Hájek’s proof. The high-level idea
of Hájek’s proof is to use the set of truth values to define an interpretation of
the standard natural numbers. In our argument, we use the set of truth values
to define an interpretation of the standard natural numbers in models of KP and
then apply the theorem of Ville and of Barwise-Gandy-Moschovakis to them.

Recall that we are using a finitely axiomatizable presentation of KP, that N

is definable in KP and that we write < instead of ∈ for natural numbers. Recall
also that we are working with a monadic predicate N whose intended meaning
is that ‖N(x)‖ > 0 iff x ∈ N, and that we defined φ ≺ ψ := (ψ → φ) → ψ. With
this in mind, let Ψ be the sentence asserting the conjunction of the following
statements:

(i) = and ∈ are crisp, i.e., they satisfy excluded middle;
(ii) KP holds of the predicate ∈;
(iii) ∀x, y (x = y → (N(x) ↔ N(y)));
(iv) ∀x, y ∈ N (x < y → (N(y) ≺ N(x)));
(v) ∀x¬¬N(x) → x ∈ N;
(vi) ¬∃x ∈ N¬N(x);
(vii) ¬∀x ∈ NN(x).

A Non-hyperarithmetical Godel Logic 5

Let M = (D,=,∈, N) be any model of Ψ . By (i), ∈ is crisp, so for each x ∈ D, the
formula x ∈ N has value 0 or 1. Formula (vi) asserts that whenever x is a natural
number, N(x) has a positive truth value. Conversely, formula (v) asserts that
whenever N(x) has positive truth value, then x is a natural number. Formula
(vii) asserts that the infimum of the truth values of N(x) is 0 as x ranges over
the natural numbers. The intuition may be grasped easily through the following
concrete construction.

Lemma 2. Any model of Ψ satisfies the equality schema

x = y → ϕ(x) ↔ ϕ(y)

for all formulas ϕ in the vocabulary {=,∈, N}.
Proof. For atomic formulas involving the relations ∈ and = the result follows
directly from the axioms of KP. For N , it follows from (iii). The general case
follows by a straightforward induction.

Lemma 3. Any ω-model of KP can be extended to a model of Ψ .

Proof. Let M = (D,=,∈) be an ω-model of KP. For n ∈ N, define ‖N(n)‖ =
1/n+1. For x �∈ N, define ‖N(x)‖ = 0. The model M = (D,=,∈, N) thus defined
satisfies (i) and (ii) since the interpretation of =,∈ did not change, and (iii)–(vii)
are readily checked to hold using the definition of N .

The key property of Ψ is that only ω-models of KP can be extended to models
of Ψ .

Lemma 4. If M = (D,=,∈, N) is such that M |= Ψ and = is identity in D,
then (D,=,∈) is an ω-model of KP.

Proof. Fix a model M = (D, ‖·‖) over the signature {=,∈, N}. Noting that =,∈
(and hence <) are crisp by (i), we may reason classically about these relations.
First note that by (vi), for every a ∈ N we have that N(a) > 0.

Claim. If a < b are such that ‖N(a)‖ < 1, then ‖N(b)‖ < ‖N(a)‖.

Proof of the Claim: By (iv) we have that ‖N(b) ≺ N(a)‖ = 1. By the
truth conditions of ≺ we have that either ‖N(b)‖ = ‖N(a)‖ = 1 or else
‖N(b)‖ < ‖N(a)‖. As we do not have that ‖N(a)‖ = 1 by assumption, we
conclude that ‖N(b)‖ < ‖N(a)‖ as needed. This establishes the Claim.

By (vii), there is an a0 ∈ D with ‖N(a0)‖ < 1. We claim that if a ∈ D is
such that a0 < a ∧ a ∈ N, then a is standard, in the sense that {b ∈ D : b < a}
is finite. This will conclude the proof, since M |= ∀x ∈ N(x ≤ a0 ∨ a0 < x), so
then every natural number is standard.

So fix a > a0. By the Claim, ‖N(a)‖ < ‖N(a0)‖. Now, let c < d ∈ N. By
the Claim once again, ‖N(a + d)‖ < ‖N(a + c)‖. It follows that the sequence

6 J. P. Aguilera et al.

(‖N(a + n)‖)n∈N is strictly decreasing, hence its infimum is zero (as this is the
case for any strictly decreasing sequence in V↓). Now, if a were non-standard, we
would have that ‖N(a + a)‖ < ‖N(a + n)‖ for all n ∈ N, hence ‖N(a + a)‖ = 0,
which contradicts (vi). We conclude that a is indeed standard, and hence M is
an ω-model of KP.

4 Satisfiability in G↓

Lemma 4 suffices to establish our hardness results. We begin with satisfiability;
recall that by this we mean V↓-satisfiability. In view of Lemma 1, satisfiability
can be replaced by weak satisfiability in the theorem below.

Theorem 3. The set of all (weakly) V↓-satisfiable formulas is Σ1
1 -complete.

Proof. First, a formula φ is V↓-satisfiable if and only if it has a model. By down-
wards Löwenheim-Skolem (see e.g., Baaz et al. [2]), this is equivalent to it having
a countable model. Hence, φ is satisfiable if and only if there is a subset of N
coding a model of φ. This is clearly Σ1

1 .
Now, fix a Σ1

1 formula φ(x). We find a many-one reduction of {n : N |= φ(n)}
to the set of satisfiable formulas of G↓. By Lemma 2, one can effectively and
uniformly find a Π1 L∈-formula ψ(x) such that for every natural number n

N |= φ(n) ↔ Lωck
1

|= ψ(n).

We will show that for every standard natural number n, N |= φ(n) if and only
if Ψ ∧ψ(n) is G↓-satisfiable. First, suppose that N |= φ(n). Then, Lωck

1
|= ψ(n).

By Lemma 3, Lωck
1

can be extended to a model M of Ψ , and since ψ(n) does not
contain the symbol N , we have that M |= ψ(n) as well.

Conversely, let M = (D,∈, N) be a model of Ψ∧ψ(n). By Lemma 3, (D,=,∈)
is an ω-model. By Theorem 1, the well-founded part of M extends Lωck

1
. Since

M is a model of Ψ ∧ ψ(n), we have that M |= ψ(n). Since ψ is Π1, we have
Lωck

1
|= ψ(n), as desired. This completes the proof.

5 Validity in G↓

Finally, we show that validity is Π1
1 -complete.

Theorem 4. The set of all V↓-valid formulas is Π1
1 -complete.

Proof. Note that a formula is valid in G↓ if and only if it holds in every model
and this is equivalent to holding in every countable model, which is clearly
Π1

1 . Thus the only problem will be to show the hardness. For this we use the
complementary statement of Theorem 2, that is for any Π1

1 -formula φ(x) there
is a Σ1-formula ψ(x) in the language of set theory such that for every natural
number n

N |= φ(n) ↔ Lωck
1

|= ψ(n).

A Non-hyperarithmetical Godel Logic 7

We claim that N |= φ(n) iff Ψ → ψ(n) is V↓-valid. For the easy direction
assume Ψ → ψ(n) is V↓-valid. In that case extend Lωck

1
to a model of Ψ using

Lemma 3 and call the resulting V↓-model M. By the assumption ‖ψ(n)‖M = 1,
but since ψ(n) does not contain the symbol N , it follows that Lωck

1
|= ψ(n),

which gives N |= φ(n).
For the other direction, assume that N |= φ(n); we claim that Ψ → ψ(n) is

V↓-valid. If it were not, by Lemma 1 there would be a model M = (D, ‖ · ‖) with
‖Ψ‖ = 1 and ‖ψ(n)‖ < ‖Ψ‖. We construct the model M/E = (D/E, ‖ · ‖E) by
factorising D modulo the relation E = {(a, b) : ‖a = b‖ = 1}. In more details, let
the universe of the new model be the set of all equivalence classes of E. We denote
by [a] the E-equivalence class of a and for any a, b we set ‖[a] ∈ [b]‖E := ‖a ∈ b‖.
To interpret N we fix for every [a] a unique value from {‖N(b)‖ : b ∈ [a]} and
let ‖N([a])‖E be that value. Note that these values do not depend on the choice
of representatives in view of (iii) and Lemma 2.

Claim. M/E |= Ψ

Proof of the Claim: By (i) E is a congruence for the interpretation of ∈, so the
definition of the model is correct and the model is a model of KP. For the other
clauses, we use the fact that the value of N([a]) does not depend on the choice
of representatives, as well as the fact that M is a model of Ψ . This proves the
Claim.

Since M/E |= Ψ , the natural numbers in M/E are standard by Lemma 4.
Then by Theorem 1, the well-founded part of M/E is admissible and hence
contains Lωck

1
. Moreover if N |= φ(n) then Lωck

1
|= ψ(n) and so M/E |= ψ(n)

as ψ(n) is Σ1. Since ψ(n) does not contain the symbol N we get M |= ψ(n),
which was to be shown. This completes the proof of the Theorem.

6 Concluding Remarks

We have provided precise complexity bounds for G↓, previously only known
to be non-arithmetical. It is possible that similar results hold for other fuzzy
logics. Hájek [7] showed that Π∀SAT is non-arithmetical and Montagna [10]
that Π∀TAUT, BL∀TAUT, and BL∀SAT are non-arithmetical. We leave the
question of whether these logics are Π1

1/Σ1
1 complete open.

References

1. Baaz, M., Leitsch, A., Zach, R.: Incompleteness of a first-order Gödel logic and
some temporal logics of programs. In: Proceedings of CSL 1995, vol. 68 (1996)

2. Baaz, M., Preining, N., Zach, R.: Completeness of a hypersequent calculus for some
first-order Godel logics with delta. In: ISMVL, p. 9. IEEE Computer Society (2006)

3. Barwise, J.: Admissible Sets and Structures. Perspectives in Mathematical Logic.
Springer, Heidelberg (1975)

8 J. P. Aguilera et al.

4. Barwise, K.J., Gandy, R., Moschovakis, Y.N.: The next admissible set. J. Symb.
Log. 36, 108–120 (1971)

5. Dummett, M.: A propositional calculus with denumerable matrix. J. Symb. Log.
24, 97–106 (1959)

6. Gödel, K.: Zum intuitionistischen aussagenkalkül. Anzeiger der Akademie der Wis-
senschaften in Wien 69, 65–66 (1932)

7. Hájek, P.: Fuzzy logic and the arithmetical hierarchy, III. Studia Log. 68, 129–142
(2001). https://doi.org/10.1023/A:1011906423560

8. Hájek, P.: A non-arithmetical Gödel logic. Log. J. IGPL 13, 435–441 (2005)
9. Kröger, F.: Temporal Logic of Programs. Monographs in Theoretical Computer

Science (EATCS Series), vol. 8. Springer, Berlin (1987). https://doi.org/10.1007/
978-3-642-71549-5

10. Montagna, F.: Three complexity problems in quantified fuzzy logic. Studia Log.
68, 143–152 (2001). https://doi.org/10.1023/A:1011958407631

https://doi.org/10.1023/A:1011906423560
https://doi.org/10.1007/978-3-642-71549-5
https://doi.org/10.1007/978-3-642-71549-5
https://doi.org/10.1023/A:1011958407631

Andrews Skolemization May Shorten
Resolution Proofs Non-elementarily

Matthias Baaz1 and Anela Lolic2(B)

1 Institute of Discrete Mathematics and Geometry, TU Wien, Wien, Austria
baaz@logic.at

2 Institute of Logic and Computation, TU Wien, Wien, Austria
anela@logic.at

Abstract. In this paper we construct a sequence of formulas F1, F2, . . .
with resolution proofs π1, π2, . . . of these formulas after Andrews Skolem-
ization, such that there is no elementary bound in the complexity of
π1, π2, . . . of resolution proofs π′

1, π
′
2, . . . after structural Skolemization.

The proofs are based on the elementary relation of resolution deriva-
tions with Andrews Skolemization to cut-free LK+-derivations and of
resolution derivations with structural Skolemization to cut-free LK-
derivations. Therefore, this paper develops an application of the concept
of only globally sound calculi to automated theorem proving.

Keywords: Skolemization · Sequent calculus · Resolution

1 Introduction

The most prominent method of classical automated theorem proving in first-
order logic is resolution. The resolution method is based on the negation of
the target formula, elimination of strong quantifiers by the introduction of new
function symbols (the Skolem functions), the deletion of weak quantifiers1 and
the transformation of the remaining formula in a conjunction of a disjunction of
literals, the clause form.

The most prominent method of Skolemization is the so-called structural
Skolemization, where the positive existential (negative universal) quantifiers are
replaced by Skolem functions depending on all weak quantifiers in whose scope
the replaced existential (universal) quantifier occurs2.

In this paper structural Skolemization is compared to Andrews Skolemization
[2,3], where the positive existential quantifier is replaced by a Skolem function

1 In the negated formula, strong quantifiers are positive existential and negative uni-
versal quantifiers, and weak quantifiers are negative existential and positive universal
quantifiers. (Otherwise, strong quantifiers are positive universal and negative existen-
tial quantifiers, and weak quantifiers are negative universal and positive existential
quantifiers.).

2 Prenexification before Skolemization is not recommendable [5].

c© Springer Nature Switzerland AG 2022
S. Artemov and A. Nerode (Eds.): LFCS 2022, LNCS 13137, pp. 9–24, 2022.
https://doi.org/10.1007/978-3-030-93100-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93100-1_2&domain=pdf
http://orcid.org/0000-0002-7815-2501
http://orcid.org/0000-0002-4753-7302
https://doi.org/10.1007/978-3-030-93100-1_2

10 M. Baaz and A. Lolic

depending only on those weak quantifiers of the scope which bind in the sub-
sequent formula. This sometimes reduces the dependencies of Skolem functions.
(Note that Andrews Skolemization is a concept developed by the needs of auto-
mated theorem proving.)

Under assumption of any elementary clause form transformation it is shown
that Andrews Skolemization might lead to a non-elementary speed-up compared
to structural Skolemization.

2 The Sequent Calculi LK, LK+ and LK++

In this paper we will consider the sequent calculus LK based on sequents con-
sisting of multisets (the exact formulation LK does not matter for this work).

This work is also based on the sequent calculi LK+ and LK++ introduced
in [1]. They are obtained from LK by weakening the eigenvariable conditions.
The resulting calculi are therefore globally but possibly not locally sound. This
means that all derived statements are true but that not every sub-derivation is
meaningful.

Definition 1 (side variable relation <ϕ,LK, cf. [1]). Let ϕ be an LK-
derivation. We say b is a side variable of a in ϕ (written a <ϕ,LK b) if ϕ
contains a strong quantifier inference of the form

Γ � Δ,A(a, b, c) ∀r
Γ � Δ,∀xA(x, b, c)

or of the form

A(a, b, c), Γ � Δ ∃l∃xA(x, b, c), Γ � Δ

We may omit the subscript ϕ,LK in <ϕ,LK if it is clear from the context.

In addition to strong and weak quantifier inferences we define LK+-suitable
quantifier inferences.

Definition 2 (LK+-suitable quantifier inferences, cf. [1]). We say a quan-
tifier inference is suitable for a proof ϕ if either it is a weak quantifier inference,
or the following three conditions are satisfied:

– (substitutability) the eigenvariable does not appear in the conclusion of ϕ.
– (side variable condition) the relation <ϕ,LK is acyclic.
– (weak regularity) the eigenvariable of an inference is not the eigenvariable of

another strong quantifier inference in ϕ.

Definition 3 (LK+, cf. [1]). LK+ is obtained from LK by replacing the usual
eigenvariable conditions by LK+-suitable ones.

Similarly to LK+, we define the calculus LK++ by further weakening the eigen-
variable conditions

Andrews Skolemization May Shorten Resolution Proofs Non-elementarily 11

Definition 4 (LK++-suitable quantifier inferences, cf. [1]). We say a
quantifier inference is suitable for a proof ϕ if either it is a weak quantifier
inference, or it satisfies

– substitutability,
– the side variable condition, and
– (very weak regularity) the eigenvariable of an inference with main formula A

is different to the eigenvariable of an inference with main formula A′ whenever
A �= A′.

Definition 5 (LK++, cf. [1]). LK++ is obtained from LK by replacing the
usual eigenvariable conditions by LK++-suitable ones.

Theorem 1.

1. If a sequent is LK+-derivable, then it is already LK-derivable.
2. If a sequent is LK++-derivable, then it is already LK-derivable.

Proof (Proof Sketch). Consider an LK++-proof ϕ (an LK+ proof is also an
LK++-proof). Replace every universal quantifier inference unsound w.r.t. LK
by an →l inference:

Γ � Δ,A(a) ∀xA(x) � ∀xA(x)
Γ,A(a) → ∀xA(x) � Δ,∀xA(x)

Similarly, replace every existential quantifier inference unsound w.r.t. LK by an
→l inference:

∃xA(x) � ∃xA(x) A(a), Γ � Δ

Γ,∃xA(x),∃xA(x) → A(a) � Δ

By doing this, we obtain a proof of the desired sequent, together with formulas
of the form

A(a) → ∀xA(x) or ∃xA(x) → A(a)

on the left-hand side. Note that the resulting derivation does not contain any
inference based on eigenvariable conditions. We can eliminate each of the addi-
tional formulas on the left-hand side by adding an existential quantifier inference
and cutting with sequents of the form

� ∃y(A(y) → ∀xA(x)) or of the form � ∃y(∃xA(x) → A(y)),

both of which are easily derivable. For more details see [1].

Example 1. Consider the following locally unsound but globally sound LK+-
derivation ϕ:

A(a) � A(a) ∀r
A(a) � ∀yA(y) →r� A(a) → ∀yA(y) ∃r� ∃x(A(x) → ∀yA(y))

12 M. Baaz and A. Lolic

As a is the only eigenvariable the side variable relation <ϕ,LK is empty.

For an LK++-derivation, which is not an LK+-derivation compare Example 2.
In the following the complexity is always understood as the number of sym-

bols. Recall that a function on the natural numbers is elementary if it can be
defined by a quantifier-free formula from +, ., and the function x → 2x.

The focus in [1] has been on the strongly reduced complexity of cut-free
LK+- and LK++-proofs (Theorem 2.6 and Corollary 2.7). From Theorem 2.6 it
immediately follows that:

Theorem 2. There is no elementary function bounding the complexity of the
shortest cut-free LK-proof of a formula in terms of its shortest cut-free LK+-
proof.

The proof is based on the worst case sequences of Orevkov [7] or Statman [8] as
formalized in [5].

Note that for cut-free proofs in LK, LK+ and LK++ the complexity is
elementarily bounded in the length of the proof, both defined as height and as
numbers of inference nodes. (This does not hold in general for proofs with cuts.)

Theorem 3. There is a transformation of a cut-free LK++-proof ϕ of the end-
sequent Π � Γ into a cut-free LK+-proof of Π � Γ with an elementary bound
in the complexity of ϕ.

Proof. Let ϕ be a cut-free LK++-derivation with end-sequent Π � Γ and eigen-
variables a1, . . . , an of strong quantifier inferences. We replace the old inferences
stepwise by inferences with the stronger regularity conditions of LK+. These
new variables are of the form

xf(ai1 ,...,aik
),

where ai1 , . . . , aik are the old variables still present at the time of the transfor-
mation. Consider all inferences ∀r of the form

Πj � Γj , A(a)
Πj � Γj ,∀xA(x)

where this inference is an innermost inference not yet changed. Extract a proof
ϕ′(a) of

Π � Γ,A(a)

by deleting all inferences working on A(a) and resulting formulas. Locate all
places in the proof where ∀xA(x) is inferred from A(a). Let i be such a position.
We replace the sub-proof leading to the premise

Π � Γ,A(a)

of this inference by ϕ′(xfi(ai1 ,...,aik
)) of

Π(xfi(ai1 ,...,aik
)) � Γ (xfi(ai1 ,...,aik

)), A(xfi(ai1 ,...,aik
)).

Andrews Skolemization May Shorten Resolution Proofs Non-elementarily 13

Then we replace a in the indices of new variables everywhere by fi. By weakening
we obtain

Π,Π(xfi(ai1 ,...,aik
)) � Γ (xfi(ai1 ,...,aik

)), Γ,A(xfi(ai1 ,...,aik
))

and continue with the proof. (∃ left inferences are dual.)
Note that by replacing a in the indices inferences already transformed to

regular inferences remain regular. The side variable condition is extended corre-
spondingly. Note that the final proof of the original end-sequent after contraction
which obviously fulfils the strong regularity condition of LK+ also fulfils the non-
occurrence of strong inference variables in the end-sequent and the side-variable
conditions are acyclic, as xf < xg only if g is a proper subterm of f .

Finally, we replace all occurrences of a (which are no eigenvariables of any
inference anymore) by a fixed constant c.

The transformation is exponential in the number of variables w.r.t. the height
if weakenings and contractions are not counted. It is therefore elementary in the
complexity.

Example 2. Consider the following LK++-proof ϕ:

A(a, a, b) � A(a, a, b)
A(a, a, b) � ∀zA(a, a, z)

A(a, a, b) � ∃y∀zA(a, y, z)
A(a, a, b) � ∀x∃y∀zA(x, y, z)

C,A(a, a, b) � ∀x∃y∀zA(x, y, z)

A(a, a, b) � A(a, a, b)
A(a, a, b) � ∀zA(a, a, z)

A(a, a, b) � ∃y∀zA(a, y, z)
A(a, a, b) � ∀x∃y∀zA(x, y, z)

D,A(a, a, b) � ∀x∃y∀zA(x, y, z)
C ∨ D,A(a, a, b) � ∀x∃y∀zA(x, y, z)

C ∨ D,∀yA(a, a, y) � ∀x∃y∀zA(x, y, z)
C ∨ D,∀x∀yA(x, x, y) � ∀x∃y∀zA(x, y, z)

with b <ϕ,LK a.
In the following we will use the abbreviations Π for C ∨ D,∀x∀yA(x, x, y)

and Γ for ∀x∃y∀zA(x, y, z) (our end-sequent is Π � Γ).
ϕ(b) is:

A(a, a, b) � A(a, a, b)
C,A(a, a, b) � A(a, a, b)

A(a, a, b) � A(a, a, b)
D,A(a, a, b) � A(a, a, b)

C ∨ D,A(a, a, b) � A(a, a, b)
C ∨ D,∀yA(a, a, y) � A(a, a, b)

C ∨ D,∀x∀yA(x, x, y) � A(a, a, b)
Π � Γ,A(a, a, b)

14 M. Baaz and A. Lolic

The new proof is obtain from ϕ(xf(a)) and ϕ(xg(a)):

(ϕ(xf(a)))

Π � Γ,A(a, a, xf(a))

Π � Γ,∀zA(a, a, z)
A(a, a, b),Π � Γ,∀zA(a, a, z)

(ϕ(xg(a)))

Π � Γ,A(a, a, xg(a))

Π � Γ,∀zA(a, a, z)
A(a, a, b),Π � Γ,∀zA(a, a, z)

Π,Π � Γ, Γ

Π � Γ

where xf(a) < a and xg(a) < a.
ϕ′(a, xf(a), xg(a)) is:

(ϕ(xf(a)))

Π � Γ,A(a, a, xf(a))

Π � Γ,∀zA(a, a, z)
A(a, a, b),Π � Γ,∀zA(a, a, z)

A(a, a, b),Π � Γ,∃y∀zA(a, y, z)
C,A(a, a, b),Π � Γ,∃y∀zA(a, y, z)

(ϕ(xg(a)))

Π � Γ,A(a, a, xg(a))

Π � Γ,∀zA(a, a, z)
A(a, a, b),Π � Γ,∀zA(a, a, z)

A(a, a, b),Π � Γ,∃y∀zA(a, y, z)
D,A(a, a, b),Π � Γ,∃y∀zA(a, y, z)

C ∨ D,A(a, a, b),Π � Γ,∃y∀zA(a, y, z)
C ∨ D,∀yA(a, a, y),Π � Γ,∃y∀zA(a, y, z)

C ∨ D,∀x∀yA(x, x, y),Π � Γ,∃y∀zA(a, y, z)

Finally,

(ϕ′(xd, xf(d), xg(d)))

Π � Γ, ∃y∃zA(xd, y, z)

Π � Γ, ∀x∃y∃zA(x, y, z)

A(a, a, b), Π � Γ, ∀x∃y∃zA(x, y, z)

C, A(a, a, b), Π � Γ, ∀x∃y∃zA(x, y, z)

(ϕ′(xe, xf(e), xg(e)))

Π � Γ, ∃y∃zA(xe, y, z)

Π � Γ, ∀x∃y∃zA(x, y, z)

A(a, a, b), Π � Γ, ∀x∃y∃zA(x, y, z)

D, A(a, a, b), Π � Γ, ∀x∃y∃zA(x, y, z)

C ∨ D, A(a, a, b), Π � Γ, ∀x∃y∃zA(x, y, z)

C ∨ D, ∀yA(a, a, y), Π � Γ, ∀x∃y∃zA(x, y, z)

C ∨ D, ∀x∀yA(x, x, y), Π � Γ, ∀x∃y∃zA(x, y, z)

Π � Γ

where xf(e) < xe, xg(e) < xe, xf(d) < xd, xg(d) < xd.

3 Skolemization and Deskolemization

In this paper we are concentrating on the effects of Skolemization. Therefore,
we will admit any form of clause transformation as long as this transformation
is elementary.

We connect the Skolemization of formulas with the Skolemization of proofs. In
proofs the Skolemization replaces strong quantifiers. This corresponds to the fact
that as preprocessing of the resolution algorithm positive existential and negative

Andrews Skolemization May Shorten Resolution Proofs Non-elementarily 15

universal quantifiers are replaced, because by assumption of its refutability the
formula occurs on the left side of the sequent.

In this work we will focus on a different method of Skolemization. In Andrews’
method [2,3] the introduced Skolem functions do not depend on the weak quan-
tifiers (Q1x1) . . . (Qnxn) dominating the strong quantifier (Qx), but on the sub-
set of {x, . . . , xn} appearing (free) in the subformula dominated by (Qx). This
method leads to smaller Skolem terms in general.

Definition 6 (structural Skolem form). Let A be a closed first-order for-
mula. If A does not contain strong quantifiers, we define its structural Skolem-
ization as sk(A) = A.

Suppose now that A contains strong quantifiers and (Qy) is the first strong
quantifier occurring in A. If (Qy) is not in the scope of weak quantifiers, then
its structural Skolemization is

sk(A) = sk(A−(Qy){y ← c}),

where A−(Qy) is the formula A after omission of (Qy) and c is a constant
symbols not occurring in A. If (Qy) is in the scope of the weak quantifiers
(Q1x1) . . . (Qnxn), then its structural Skolemization is

sk(A) = sk(A−(Qy){y ← f(x1, . . . , xn)}),

where f is a function symbol (Skolem function) not occurring in A.
If F =

∧
Γ → ∨

Δ and sk(F) =
∧

Π → ∨
Λ we define the structural

Skolemization of the sequent Γ � Δ as

sk(Γ → Δ) = Π � Λ.

Definition 7 (Andrews Skolem form). Let A be a closed first-order formula.
If A does not contain strong quantifiers, we define its Andrews Skolemization as
skA(A) = A.

Suppose now that A contains strong quantifiers, (Qy)B is a subformula of A
and (Qy) is the first strong quantifier occurring in A (in a tree-like ordering).
If (Qy)B has no free variables which are weakly quantified, then its Andrews
Skolemization is

skA(A) = skA(A−(Qy){y ← c}),

where A−(Qy) is the formula A after omission of (Qy) and c is a constant sym-
bol not occurring in A. If (Qy)B has n variables x1, . . . , xn which are weakly
quantified from outside, then its Andrews Skolemization is

skA(A) = skA(A−(Qy){y ← f(x1, . . . , xn)}),

where f is a function symbol not occurring in A.
If F =

∧
Γ → ∨

Δ and skA(F) =
∧

Π → ∨
Λ we define the Andrews

Skolemization of the sequent Γ � Δ as

skA(Γ → Δ) = Π � Λ.

16 M. Baaz and A. Lolic

Example 3. Consider the sequent

S : ∀x∀y(∃zP (x, z) ∨ Q(y, x)) � .

Then its structural Skolemization is

∀x∀y(P (x, f(x, y)) ∨ Q(y, x)) �
and its Andrews Skolemization is

∀x∀y(P (x, g(x)) ∨ Q(y, x)) � .

Theorem 4.

1. An LK-proof can be Skolemized by substitution w.r.t. the structural Skolem-
ization conserving the length and without introducing additional cuts.

2. An LK+-proof can be Skolemized by substitution w.r.t. the Andrews Skolem-
ization conserving the length and without introducing additional cuts.

Proof.

1. Let ϕ be an LK-proof of an end-sequent S. Assume that S contains a positive
occurrence of ∀xA(x). Then there are three possibilities for the introduction
of ∀xA(x) in ϕ:
case 1:

Γ � Δ,A(α) ∀r
Γ � Δ,∀xA(x)

case 2:

Γ � Δ,B ∨r
Γ � Δ,B ∨ C

where ∀xA(x) occurs in C.
case 3:

Γ � Δ wr
Γ � Δ,B

where ∀xA(x) occurs in B.
Case 1 is the interesting one, the other two cases are obvious. We will give a
proof of case 2 here.
Let ρ[B ∨ C] be the path connecting Γ � Δ,B ∨ C with the end-sequent S.
Let A(t) be the Skolemization of ∀xA(x) in S. Then we define C ′ to be C
where the occurrence of ∀xA(x) is substituted with A(t) and replace ρ[B ∨C]
by ρ[B ∨ C ′]. Note that this transformation is not local but global.
Now let us consider case 1. Let ϕ(α) denote the sub-proof ending in Γ �
Δ,A(α). Let ρ[∀xA(x)] be the path connecting Γ � Δ,∀xA(x) with the end-
sequent S. Locate all introductions of weak quantifiers Qiyi in ρ[∀xA(x)]

Andrews Skolemization May Shorten Resolution Proofs Non-elementarily 17

which dominate the occurrence of ∀xA(x). All of them eliminate a term ti,
let t1, . . . , tn be all of these terms. Introduce a new function symbol f with
arity n and replace the sub-proof ϕ(α) by ϕ(f(t1, . . . , tn)), which is a proof of
Γ � Δ,A(f(t1, . . . , tn)). α is an eigenvariable and Γ � Δ is left unchanged by
this substitution. No eigenvariable conditions are violated in ϕ(f(t1, . . . , tn)).
Then we skip the ∀r inference rule and replace the path ρ[∀xA(x)] by
ρ[A(f(t1, . . . , tn))]. Note that the terms t1, . . . , tn in ρ[A(f(t1, . . . , tn))] are
eliminated successively, therefore the occurrences of A(. . .) are of the form
A(f(y1, . . . , yk, tk+1, . . . tn)).
Finally, the occurrence of ∀xA(x) in the end-sequent is A(f(y1, . . . , yn)),
which is the Skolemized form of ∀xA(x) in S.
Note that we have to be careful with contractions. If there are two prede-
cessors C[∀xA(x)] on the same side of a sequent such that a contraction is
applied on this formula we have to introduce the same Skolem symbols in
both of them.
The case of a formula ∃xA(x) occurring negatively in S is completely analo-
gous.
The described transformation skips quantifier inference rules and performs
term substitutions. Neither of these increases the proof complexity.

2. Analogous to 1., except that in the proof of case 1 we locate all introductions
of weak quantifiers Qiyi in ρ[∀xA(x)] such that Qiyi dominates the occurrence
of ∀xA(x) and yi appears in ∀xA(x). a has to be replaced in the whole
proof. Note that the side variable condition <ϕ excludes that the Skolem
term f(. . . a . . .) has to be substituted into a. As a is substituted everywhere
by a term containing only free variables which are larger in the ordering <ϕ

than a the side-variable condition does not loop by transitivity.

Remark 1. As LK+ is sound we obtain an additional soundness argument for
Andrews Skolemization. The usual soundness argument in automated theorem
proving is as follows:

Move all negations in the negated formula to be refuted to the atoms. Then
search for an innermost existential subformula ∃yA(x, y) in whose scope only
universal quantifiers occur, where x are the variables bound from outside. We
obtain

∀x(∃yA(x, y) → A(x, f(x))

by structural Skolemization from

∀x(∃yA(x, y) → ∃yA(x, y)).

Therefore,
∀x(∃yA(x, y)) ↔ A(x, f(x))

and we may replace ∃yA(x, y) by A(x, f(x)) in the context. We proceed to the
next subformula dominated by ∃.

Remark 2. Herbrand disjunctions are generally shortened, cf the formula

∃y(∃xA(x) → A(y)).

18 M. Baaz and A. Lolic

The structural Skolemization of this formula is ∃y(A(f(y)) → A(y)), with short-
est Herbrand disjunction

A(f(f(a)) → A(f(a)) ∨ A(f(a)) → A(a).

The Andrews Skolemization of the above formula is ∃y(A(c) → A(y)), with
shortest Herbrand disjunction

A(c) → A(c).

Example 4. Consider the following LK-proof (and consequently LK+-proof):

P (a) � P (a)
P (a) ∧ Q(a) � P (a)

∀x(P (x) ∧ Q(x)) � P (a)

P (a) � P (a)
P (a) ∧ Q(a) � Q(a)

∀x(P (x) ∧ Q(x)) � Q(a)
∀x(P (x) ∧ Q(x)) � ∀xQ(x)

∀x(P (x) ∧ Q(x)) � P (a) ∧ ∀xQ(x)
∀x(P (x) ∧ Q(x)) � ∃y(P (y) ∧ ∀xQ(x))

The structural Skolemization of the proof is:

P (a) � P (a)
P (a) ∧ Q(a) � P (a)

∀x(P (x) ∧ Q(x)) � P (a)

Q(f(a)) � Q(f(a))
P (f(a)) ∧ Q(f(a)) � Q(f(a))
∀x(P (x) ∧ Q(x)) � Q(f(a))

∀x(P (x) ∧ Q(x)) � P (a) ∧ Q(f(a))
∀x(P (x) ∧ Q(x)) � ∃y(P (y) ∧ Q(f(y)))

The Andrews Skolemization of the proof is:

P (c) � P (c)
P (c) ∧ Q(c) � P (c)

∀x(P (x) ∧ Q(x)) � P (c)

Q(c) � Q(c)
P (c) ∧ Q(c) � Q(c)

∀x(P (x) ∧ Q(x)) � Q(c)
∀x(P (x) ∧ Q(x)) � P (c) ∧ Q(c)

∀x(P (x) ∧ Q(x)) � ∃y(P (y) ∧ Q(c))

Example 5. Consider the following LK+-proof, which is not an LK-proof:

P (h(b), a) � P (h(b), a)
P (h(b), a) � ∀yP (h(b), y)
P (h(b), a) � ∃x∀yP (x, y)

∀yP (h(b), y) � ∃x∀yP (x, y)
∃x∀yP (h(x), y) � ∃x∀yP (x, y)

with a < b. Its Andrews Skolemization is

Andrews Skolemization May Shorten Resolution Proofs Non-elementarily 19

P (h(c), f(h(c))) � P (h(c), f(h(c)))
P (h(c), f(h(c))) � ∃xP (x, f(x))

∀yP (h(c), y) � ∃xP (x, f(x))

Corollary 1.

1. There is an elementary transformation of a cut-free LK-proof in its structural
Skolemized version w.r.t the complexity.

2. There is an elementary transformation of a cut-free LK+-proof in its Andrews
Skolemized version w.r.t. the complexity.

Note that the Skolemized versions are LK-proofs.

Theorem 5.

1. There is an elementary transformation of a structural Skolemized cut-free
LK-proof into a cut-free LK-proof with the original end-sequent depending
on the complexity of the proof and the complexity of the original end-sequent.

2. There is an elementary transformation of an Andrews Skolemized cut-free
LK-proof into a cut-free LK++-proof with the original end-sequent depending
on the complexity of the proof and the complexity of the original end-sequent.

Proof.

1. See Theorem 2 in [4].
2. Assign to every Skolem term a free variable associated with the Skolem term.

Introduce the strong quantifiers in any order which respects the structure of
the formulas in the end-sequent, i.e. where the formula up to this quantifier is
completed. The regularity conditions of LK++ are fulfilled as always the same
formula is generated from the same variable. The side variable conditions are
fulfilled if we set b > a if a is associated with s(t) and b is associated with t.
All these variables do not occur in the end-sequent.

Corollary 2. There is no elementary transformation of a cut-free LK+-proof
in its structural Skolemized version.

Proof. By 2. in the proof of Theorem5 and Corollary 1.

Of course there is an elementary transformation of a cut-free LK+-proof in its
structured Skolemized version by adding cuts.

Example 6. Consider the following LK+-derivation ϕ:

A(g(a)) � A(g(a)) A(g(a)) � A(g(a))
A(g(a)) ∨ A(g(a)) � A(g(a)), A(g(a))
∀x(A(x) ∨ A(x)) � A(g(a)),∀xA(g(x))

∀x(A(x) ∨ A(x)) � A(g(a)) ∨ ∀xA(g(x))
∀x(A(x) ∨ A(x)) � ∃y(A(y) ∨ ∀xA(g(x)))

20 M. Baaz and A. Lolic

ϕ has no structural Skolemization, as it would be necessary to substitute f(g(a))
for a. In contrast, ϕ can be Skolemized using Andrews Skolemization. The cor-
responding end-sequent is

∀x(A(x) ∨ A(x)) � ∃y(A(y) ∨ A(g(c)))

and the Andrews Skolemized proof is obtained by substituting the Skolem con-
stant c for g(a):

A(g(c)) � A(g(c)) A(g(c)) � A(g(c))
A(g(c)) ∨ A(g(c)) � A(g(c)), A(g(c))
∀x(A(x) ∨ A(x)) � A(g(c)), A(g(c))

∀x(A(x) ∨ A(x)) � A(g(c)) ∨ A(g(c))
∀x(A(x) ∨ A(x)) � ∃y(A(y) ∨ A(g(c)))

Example 7. Consider the following derivation:

P (c, f(c)) � P (c, f(c))
P (c, f(c)) � ∃xP (x, f(x))

P (c, f(c)) � P (c, f(c))
P (c, f(c)) � ∃xP (x, f(x))

P (c, f(c)) ∨ P (c, f(c)) � ∃xP (x, f(x))
Q(f(c)) ∧ (P (c, f(c)) ∨ P (c, f(c))) � ∃xP (x, f(x))

∀x(Q(x) ∧ (P (c, x) ∨ P (c, x)) � ∃xP (x, f(x))

It’s expansion is:

P (c, f(c)) � P (c, f(c)) P (c, f(c)) � P (c, f(c))
P (c, f(c)) ∨ P (c, f(c)) � P (c, f(c))

Q(f(c)) ∧ (P (c, f(c)) ∨ P (c, f(c))) � P (c, f(c))

The intended end-sequent is

∃y∀x(Q(x) ∧ (P (y, x) ∨ P (y, x)) � ∃x∀yP (x, y).

We replace the Skolem term c by a and the Skolem term f(c) by b:

P (a, b) � P (a, b) P (a, b) � P (a, b)
P (a, b) ∨ P (a, b) � P (a, b)

Q(b) ∧ (P (a, b)) ∨ P (a, b)) � P (a, b)

The quantifiers can be introduced in any order which respects the structure of
the formulas in the end-sequent. (We assign indices to the quantifiers to express
in which order and where they are introduced.)

Andrews Skolemization May Shorten Resolution Proofs Non-elementarily 21

P (a, b) � P (a, b)
P (a, b) � ∀1xP (a, x)

P (a, b) � ∃3y∀xP (y, x)

P (a, b) � P (a, b)
P (a, b) � ∀2xP (a, x)

P (a, b) � ∃4y∀xP (y, x)
P (a, b) ∨ P (a, b) � ∃y∀xP (y, x)

Q(b) ∧ (P (a, b)) ∨ P (a, b)) � ∃y∀xP (y, x)
∀5x(Q(x) ∧ (P (a, x)) ∨ P (a, x))) � ∃y∀xP (y, x)

∃6y∀x(Q(x) ∧ (P (y, x)) ∨ P (y, x))) � ∃y∀xP (y, x)

with b < a (the side variable condition is guaranteed by the inclusion relation of
the Skolem terms).

Weak regularity and the condition that eigenvariables do not occur in the
end-sequent are clearly fulfilled.

Note that this is an LK++ and not an LK+-derivation, by ∀1,∀2.

Note that the immediate Deskolemization of cut-free LK-proofs into cut-free
LK++-proofs is also a Deskolemization for the usual structural Skolemization.
However, the transformation of LK++-proofs into LK-proofs is not elementarily
bounded and therefore, the Deskolemization for structural Skolemization as in
[4] is preferable, which is clearly elementary.

4 Cut-Free LK-Proofs with Weak Quantifiers
and Resolution

As we are interested in this paper mainly in the impact of different forms of
Skolemization we allow any elementary form of clause form constructions. (For
the purpose of this paper it is not necessary to specify the exact formal of
resolution proofs, as they simulate each other within elementary bounds in the
complexity of the proofs.)

Definition 8. Let A be a formula which contains only weak quantifiers when
written left of the sequent and consequently only strong quantifiers when written
on the right side of the sequent. An admissible clause form construction consists
of sequents A � C and C � A elementary in the complexity of A, where

1. C (the clause form) is a conjunction of a universally quantified disjunctions
of literals (negated or unnegated atomic formulas),

2. A � C and C � A are cut-free elementary derivable in the complexity A.

Remark 3. Note that both, structural clause forms and standard clause forms,
fall under this definition, together with clause forms which allow for atom eval-
uation ect. [6].

Theorem 6.

1. Let ϕ be a cut-free LK-proof of the sequent

A1, . . . , An � B1, . . . , Bm

22 M. Baaz and A. Lolic

with weak quantifiers only. Then there is a resolution refutation of an admis-
sible clause form of

A1 ∧ . . . ∧ An ∧ ¬B1 ∧ . . . ∧ ¬Bm

elementary in the complexity of ϕ.
2. Let ϕ′ be a resolution refutation of an admissible clause form of

A1 ∧ . . . ∧ An ∧ ¬B1 ∧ . . . ∧ ¬Bm.

Then there is a cut-free LK-proof of

A1, . . . , An � B1, . . . , Bm

with weak quantifiers only elementary in the complexity of ϕ′.

Proof.

1. We consider the LK-proof consisting of the proof of

A1 ∧ . . . ∧ An ∧ ¬B1 ∧ . . . ∧ ¬Bm �
where we cut with C � A1 ∧ . . . ∧ An ∧ ¬B1 ∧ . . . ∧ ¬Bm for the admissible
clause form C. Both proofs are elementary in the complexity of the proof of

A1, . . . , An � B1, . . . , Bm,

as the admissible clause form leads to a cut-free derivation of

C � A1 ∧ . . . ∧ An ∧ ¬B1 ∧ . . . ∧ ¬Bm

elementary in the proof of

A1, . . . , An � B1, . . . , Bm.

(The complexity of A1 ∧ . . . ∧ An ∧ ¬B1 ∧ . . . ∧ ¬Bm is majorized by the
complexity of the proof of A1, . . . , An � B1, . . . , Bm.) As

A1 ∧ . . . ∧ An ∧ ¬B1 ∧ . . . ∧ ¬Bm �
contains only weak quantifiers it has an elementary expansion of the form
E �. We mimic this expansion with the strong quantifiers on the left side of
the cut by duplicating them up to the limit of the expansion. This is clearly
an elementary transformation.
We project the strong quantifiers on the left side with the uniquely cor-
responding terms of the expansion on the right side. We eliminate this
propositional cut at most double exponential expense and obtain a proof
of C � elementarily bounded in the complexity of the original proof of
A1, . . . , An � B1, . . . , Bm.
Again, we construct the elementary expansion of C ′, now the ground clauses.
There is therefore an elementary bound in the number of different atoms in
the grounded clause form which leads to an elementary resolution refutation
by considering the Herbrand tree.

Andrews Skolemization May Shorten Resolution Proofs Non-elementarily 23

2. Assume a resolution refutation of the clauses in C originating from

C → A1 ∧ . . . ∧ An ∧ ¬B1 ∧ . . . ∧ ¬Bm

and
A1 ∧ . . . ∧ An ∧ ¬B1 ∧ . . . ∧ ¬Bm → C

being elementary derivable. We obtain therefore elementary cut-free proofs
of

A1 ∧ . . . ∧ An ∧ ¬B1 ∧ . . . ∧ ¬Bm → Ci

for the singular clauses Ci after deletion of universal quantifiers. We write
unnegated atoms on the right side and negated atoms unnegated on the left
side of the sequent. After instantiating the ground substitutions we obtain
elementary derivations of

A1 ∧ . . . ∧ An ∧ ¬B1 ∧ . . . ∧ ¬Bm �

with atomic cuts. These atomic cuts can be eliminated at exponential expense.

5 Andrews Skolemizations Allows for Non-elementarily
Shorter Resolution Refutations

Independently of the concrete clause form transformation after the Skolemization
we obtain the following result, which emphasizes the difference of structural and
Andrews Skolemization.

Theorem 7. There is a sequence of refutable formulas F1, F2, . . . with corre-
sponding resolution refutations π1, π2, . . . with clause forms based on Andrews
Skolemization such that no elementary bound in the complexity of π1, π2, . . .
exists for the shortest sequence of corresponding resolution refutations based on
structural Skolemization.

Proof. Consider the sequence of LK and LK+-proofs of Theorem 2. There is
no elementary bound of the complexity of the smallest cut-free LK-proofs in
terms of the corresponding cut-free LK+-proofs. The resolution refutation gener-
ated from Andrews Skolemization corresponds elementarily to the complexity of
LK+-proofs by Theorem4, 6, 3. The resolution refutation generated from struc-
tural Skolemization corresponds elementarily to the complexity of LK-proofs by
Corollary 1 and [4].

Remark 4. The arguments of this paper are based on a comparison of usual
Skolemization with LK and Andrews Skolemization with LK+. It is work in
progress to provide a direct construction which will be more involved but will
provide sharper complexity bounds.

24 M. Baaz and A. Lolic

6 Conclusion

The worst case sequences constructed in this paper are highly artificial. It might
be asked if they have an impact in the real world. It is however a known fact that
worst case examples with extreme complexities correspond to practical examples
which are not that bad, but bad enough.

References

1. Aguilera, J.P., Baaz, M.: Unsound inferences make proofs shorter. J. Symb. Log.
84(1), 102–122 (2019)

2. Andrews, P.B.: Resolution in type theory. J. Symb. Log. 36(3), 414–432 (1971)
3. Andrews, P.B.: Theorem proving via general matings. J. ACM 28(2), 193–214 (1981)
4. Baaz, M., Hetzl, S., Weller, D.: On the complexity of proof deskolemization. J.

Symb. Log. 77(2), 669–686 (2012)
5. Baaz, M., Leitsch, A.: On skolemization and proof complexity. Fundam. Informati-

cae 20(4), 353–379 (1994)
6. Eder, E.: Relative Complexities of First Order Calculi. Springer, Heidelberg (2013).

https://doi.org/10.1007/978-3-322-84222-0
7. Orevkov, V.P.: Lower bounds for increasing complexity of derivations after cut elim-

ination. J. Sov. Math. 20(4), 2337–2350 (1982)
8. Statman, R.: Lower bounds on Herbrand’s theorem. In: Proceedings of the American

Mathematical Society, pp. 104–107 (1979)

https://doi.org/10.1007/978-3-322-84222-0

The Isomorphism Problem for FST
Injection Structures

Douglas Cenzer(B) and Richard Krogman

University of Florida, Gainesville, FL 32611, USA
cenzer@ufl.edu

https://people.clas.ufl.edu/cenzer

Abstract. An injection structure A = (A, f) is a set A together with a
one-place one-to-one function f . A is a Finite State Transducer (abbrevi-
ated FST) injection structure if A is a regular set, that is, the set of words
accepted by some finite automaton, and f is realized by a deterministic
finite-state transducer. Automatic relational structures have been well-
studied along with the isomorphism problem for automatic structures.
For an FST injection structure (A, f), the graph of f is not necessar-
ily automatic. We continue the study of the complexity of FST injec-
tion structures by showing that the isomorphism problem for unary FST
injection structures is decidable in quadratic time in the size (number of
states) of the FST.

Keywords: Computability theory · Injection structures · Automatic
structures · Finite state automata · Finite state transducers

1 Introduction and Preliminaries

The isomorphism problem for a class of structures is to determine from their
presentations, whether two given structures are isomorphic. This is a fundamen-
tal problem in computable structure theory. It has been shown that for many
classes of computable structures, the isomorphism problem is Σ1

1 complete. This
includes linear orders, trees, undirected graphs, Boolean algebras and Abelian
p-groups as shown in the work of Calvert, Goncharov and Knight [4,8]. On the
other hand, there are many classes of computable structures where the isomor-
phism problem has lower complexity. For example, it was shown by Calvert and
Knight [4] that the isomorphism problems for vector spaces over a fixed infinite
computable field and also for algebraically closed fields of a fixed characteris-
tic, are Π0

3 complete, and that the isomorphism problem for torsion-free abelian
groups of rank 1 is Σ0

3 complete. The isomorphism problem for computable equiv-
alence structures was shown by Calvert, Cenzer, Harizanov and Morozov [3] to
be Π0

4 complete. The isomorphism problem for computable injection structures
was shown by Cenzer, Harizanov and Remmel [6] to also be Π0

4 complete.

c© Springer Nature Switzerland AG 2022
S. Artemov and A. Nerode (Eds.): LFCS 2022, LNCS 13137, pp. 25–36, 2022.
https://doi.org/10.1007/978-3-030-93100-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93100-1_3&domain=pdf
http://orcid.org/0000-0002-6029-9900
https://doi.org/10.1007/978-3-030-93100-1_3

26 D. Cenzer and R. Krogman

In some cases, the isomorphism problem for a class of automatic structures is
just as complicated as for computable structures. It was shown by Khoussainov,
Nies, Rubin and Stephan [12] that for many classes of automatic structures, the
isomorphism problem is Σ1

1 complete. This includes undirected graphs, succes-
sor trees, partial orders and lattices. However, there are many cases where the
isomorphism problem for automatic structures has lower complexity. For exam-
ple, the isomorphism problem for automatic Boolean algebras was shown to be
decidable by Khoussainov, Nies, Rubin and Stephan [12]. The isomorphism prob-
lem for automatic ordinals was shown to be decidable by Khoussainov, Rubin
and Stephan [14]. Liu and Minnes [16] showed that the isomorphism problem
for unary automatic equivalence structures is decidable in linear time. The iso-
morphism problem for (binary) automatic equivalence structures was shown to
be Π0

1 complete by Kuske, Liu, and Lohrey [15]. They also showed that the
isomorphism problem for automatic trees of height n ≥ 2 is Π0

2n−3 complete.
The isomorphism problem for automatic injection structures is the focus of

the present paper. It was shown by Blumensath and Gradel [1] and also by
Khoussainov and Rubin [12] that the isomorphism problem for automatic injec-
tion structures is Π0

1 complete. Here we will examine unary injection structures
given by a Finite State Transducer, as introduced in the recent paper [2] by
Buss, Cenzer, Minnes and Remmel. We show that the isomorphism problem for
FST unary injection structures is decidable in quadratic time in the sizes of the
two presentations.

An injection is a one-place one-to-one function and an injection structure
A = (A, f) consists of a set A and an injection f : A → A. Given a ∈ A, the
orbit Of (a) of a under f is

Of (a) = {b ∈ A : (∃n ∈ N)(fn(a) = b ∨ fn(b) = a)}.

We define the character χ(A) of an injection structure A = (A, f) by

χ(A) = {(n, k) : A has at least n orbits of size k}

This is the natural definition since the character will be a c.e. set and furthermore
any c.e. character may be realized by a computable injection structure. The set
{(n, k) : A has exactly n orbits of size k} will be the difference of two c.e. sets.
An orbit of finite size k ∈ N will be a k-cycle of the form

Of (a) = {f i(a) : 0 ≤ i ≤ k − 1},

where fk(a) = a. Infinite orbits can have two forms. One is of type ζ, which are
of the form

Of (a) = {fn(a) : n ∈ Z}
in which every element is in the range of f and f−n(a) for n > 0 refers to the
unique element b ∈ A with fn(b) = a. The other is of type ω, which have the
form

Of (a) = {fn(a) : n ∈ N}

The Isomorphism Problem for FST Injection Structures 27

for some a /∈ ran(f) which serves as the initial element. It is easy to see that
the character of an injection structure plus the information about the number
of ζ-orbits and ω-orbits completely characterizes its isomorphism type.

The algorithmic properties of injection structures were studied by Cenzer,
Harizanov and Remmel [5,6]. They characterized computably categorical injec-
tion structures, and showed that they are all relatively computably categorical.
Among other things, they proved that a computable injection structure A is
computably categorical if and only if it has finitely many infinite orbits. They
also showed that the character of any computable injection structure is a c.e. set
and that any c.e. character may be realized by a computable injection structure.
They found the complexity of a number of so-called index sets for computable
injection structures, showing for example that the family of structures with at
most m orbits of type ω is Π0

3 complete and that the family of structures with
finitely many orbits of type ω is Σ0

4 complete. This culminated in the result that
the isomorphism problem for computable injection structures is Π0

4 complete. In
the present paper, we will give an algorithm which computes the type of a given
unary injection structure from its presentation in quadratic time, which implies
that each of the above problems is decidable in quadratic time.

A is a Finite State Transducer (abbreviated FST) injection structure if A
is a regular set, that is, the set of words accepted by some finite automaton,
and f is realized by a finite-state transducer. It was shown in [2] that the model
checking problem for FST injection structures is undecidable, contrasting with
the fact that the model checking problem for automatic relational structures is
decidable. They also explored which isomorphism types of injection structures
can be realized by FST injections, in particular characterizing the types that can
be realized by FST injection structures over a unary alphabet. They showed that
any FST injection structure is isomorphic to an FST injection structure over a
binary alphabet, and gave a number of results about the possible isomorphism
types of FST injection structures over an arbitrary alphabet.

The authors continued this study in [7]. It was shown that the universal
countable injection structure, which has infinitely many orbits of each possible
finite and infinite type, has an FST presentation. There are in fact two such FST
presentations such that the injection structures so defined are not computably
isomorphic.

An injection structure A is said to be graph relational or graph automatic if
the graph Gf is accepted by a two-tape DFA. It was shown in [7] that the notions
of FST injection structures and graph automatic are distinct, that is, there is an
FST computable injection structure which has no graph automatic presentation,
and there is a graph automatic injection structure which has no FST computable
presentation. An injection structure (A, f) is said to have bounded growth if there
is a constant c such that, for all w ∈ A, |w| − c ≤ |f(w)| ≤ |w| + c. It was shown
in [7] that an FST injection structure is graph relational if and only if it has
bounded growth.

28 D. Cenzer and R. Krogman

A structure A = (A, f) is said to be unary if the universe A is a subset of
{1}∗ = {1n : n ∈ N}. Note that in a unary alphabet, we may identify the string
1n with the number n, and accordingly identify the isomorphic prefix relation �
with the usual ordering on N, ≤. The possible types of FST injection structures
over a unary alphabet were characterized in [2] as one of three possible types:

1. A structure consisting of infinitely many cycles of length 1;
2. For each finite m ≥ 0 and each n ≥ 1, a structure with m orbits of length 1

and n orbits of type ω;
3. For each finite m, a structure with m orbits of length 1 and infinitely many

orbits of type ω;

This was improved in [7] for graph relational unary FST structures, where
only the first two types are possible. In either case, the character of an FST
injection structure has trivial complexity. For binary structures, it was shown in
[7] that the character of a graph relational FST injection structure is decidable in
exponential time. In particular, {(a, k) : |Of (a)| = k} is computable in exponen-
tial time and, for graph automatic FST structures, it is computable in quadratic
time. This leads to some results about the complexity of isomorphisms between
FST structures. It was shown that isomorphic unary FST injection structures
are exponential time isomorphic, and furthermore, for graph relational struc-
tures, they are quadratic time isomorphic. It is shown that not all isomorphic
pairs of FST injection structures are computably isomorphic. Better results are
given for structures with full universe {0, 1}∗. Such structures are shown to have
no orbits of type ζ. Any two such graph relational FST structures which are
isomorphic are shown to be double exponential time isomorphic.

Here are some needed definitions and terminology. Let N = {0, 1, 2, . . .}
denote the natural numbers and Z = {0,±1,±2, . . .} denote the integers. Let ω
denote the order type of N under the usual ordering and ζ denote the order type
of Z under the usual ordering. Let ε denote the empty word and for any word
w = w1 . . . wn, let |w| = n denote the length of w. For any finite nonempty set
Σ, let Σ∗ denote the set of all words over the alphabet Σ, let Σ+ = Σ∗ \ {ε}.
For any n ∈ N, let Σn = {w ∈ Σ∗ : |w| = n} and let Σ≤n = {w ∈ Σ∗ : |w| ≤ n}.
For a string w = a0a1 . . . ak 	= ε, we will let w− = a1a2 . . . ak.

A deterministic finite automaton (DFA) is specified by the tuple M =
(Q, ι,Σ, δ, F) where Q is the finite set of states, ι is the initial state, Σ is the input
alphabet, δ : Q×Σ → Q is the (possibly partial) transition function, and F ⊆ Q
is the set of final, or accepting states. The transition function may be extended
to δ : Q×Σ∗ → Σ∗ by recursion on the length of a word. For q ∈ Q, δ(q, ε) = q,
and for w ∈ Σ∗ and a letter a ∈ Σ, δ(q, wa) = δ(δ(q, w), a). Then δ(ι, w) rep-
resents the final state M reaches when scanning through w while transitioning
states according to δ, starting at ι. A DFA M accepts a string w if δ(ι, w) ∈ F .
The set L(M) ⊆ Σ∗ of strings accepted by M is the language recognized by M .
A language L ⊆ Σ∗ is said to be regular or automatic if it is accepted by some

The Isomorphism Problem for FST Injection Structures 29

DFA. To recognize a relation R ⊆ Σ∗ ×Σ∗, we use a two-tape synchronous DFA,
where the transition function δ : Q × Σ ∪ {�} × Σ ∪ {�} → Q and � denotes
a blank square. The blank square is needed in the case that one input is longer
than the other. Then M halts after reaching the end of the longer word. Auto-
matic relations and structures have been studied by Khoussainov, Liu, Minnes,
Nies, Rubin, Stephan and others [9–13,16].

A finite-state transducer (FST) is specified by the tuple

M = (Q, ι,Σ, Γ, δ, τ),

where Q is the finite set of states, ι is the initial state, Σ is the input alphabet,
Γ is the output alphabet, δ : Q × Σ → Q is the (possibly partial) transition
function, and τ : Q × Σ → Γ ∗ is the (possibly partial) output function. Here δ
extends as with an automata, and τ is extended to τ : Q × Σ∗ → Γ ∗ as follows:
for q ∈ Q, τ(q, ε) = ε, and τ(q, wa) = τ(q, w)τ(δ(q, w), a) for word w ∈ Σ∗ and
letter a ∈ Σ. A FST M defines a (possibly partial) function, fM : Σ∗ → Γ ∗

with fM (w) = τ(ι, w). We say that the FST M realizes, computes, or generates
a function f on a set U ⊆ Σ∗ if fM �U = f .

A state cycle of the FST M is a pair (q, y) ∈ Q × Σ∗ such that |y| > 0 and
δ(q, y) = q. A word w ∈ Σ∗ is said to contain a state cycle if w = xyz with
(δ(ι, x), y) a state cycle.

It is possible to combine the underlying automaton that accepts the domain,
and the transducer that computes the function as shown in [2]. Hence, we
suppose from here on, without loss of generality, that (A, f) is computed by
T = (Q, ι, δ, τ, F) where (Q, ι, δ, F) accepts A, and (Q, ι, δ, τ) computes f .

2 The Isomorphism Problem for FST Injection Structures

We now discuss the complexity of the isomorphism problem for unary FST
injection structures. We will show that this problem of determining whether two
given unary FST structures are isomorphic is decidable in quadratic time in the
sizes of the presentations of the two structures.

Consider T = (Q, ι, δ, τ, F), a unary automatic FST with all states reachable.
Suppose that |Q| = s and let q : ω → Q be qi := δ(ι, i). Then there must exist
t < s such that qs = qt. Distinguish now l = s − t. It may be verified that for
h ∈ [t, t + l − 1], and for any m ∈ ω, qh+ml = qh so q has period l for any a ≥ t.
Note that since, for a unary FST, there is only one possible input symbol and
hence only one possible string of length l, the cycle from qs to qt must repeat
every l steps once it occurs.

Consider now H = {h ∈ [t, t + l − 1] : qh ∈ F}, at times enumerated as
{hi : i ∈ η}. For each h ∈ H, take the arithmetic progression of period l,
Gh = {h + ml : m ∈ ω}. Let L = {a ∈ A : a ≥ t} and observe that

L = {a ∈ A : a ≥ t} =
⋃

h∈H

Gh

30 D. Cenzer and R. Krogman

Then if we take K = {a ∈ A : a < t}, we have

A = K ∪ (
⋃

h∈H

Gh).

This decomposition of the domain has the following consequences for the
action of f on the loop L. If h ∈ H, then

f(h + l) = τ(ι, h + l) = τ(ι, h) + τ(qh, l) = f(h) + τ(qh, l).

Since τ(qh, l) =
∑

i∈l τ(qh+i, 1), and q is l-periodic, we observe, that for any
h, k ∈ H, τ(qh, l) = τ(qk, l). That is, after looping around by l, the transducer
T will produce the same total output no matter what state it started from.
If we call this loop total output constant w, then it follows that for all h ∈
H, f(h + l) = f(h) + w. From qh+l = qh it may be seen by induction that
f(h + ml) = f(h) + mw. Hence, f(h + ml) = f(h) + mw, so that the action of
f on the arithmetic progressions of the loop is simply a linear relation with new
slope w.

This grants the following lemma.

Lemma 1. Let (A, f) be a unary FST injection structure with infinite domain
computed by an FST T with s states. Then (A, f) consists precisely of infinitely
many 1-cycles (i.e. f is the identity on A) if and only if f(a) = a for all a ∈ A
with a ≤ t + (2l − 1).

Proof. The forward implication is obvious, so suppose that a ≤ t+(2l−1) implies
f(a) = a. Then f is the identity on T , so we need check that f is the identity
on L. Note that both h and h + l are less than t + (2l − 1) and so f(h) = h and
h + w = f(h + l) = h + l. Thus we see that l = w so now f(h + ml) = h + ml
for all m ∈ ω. Hence, f(a) = a for any a ∈ ⋃

h∈H Gh = L.

Corollary 1. Let (A, f) and constants s and t be as above. If (A, f) has exactly
n many 1-orbits for n ∈ N, then n < t + (2l − 1)

Proof. If (A, f) has finitely many 1-orbits, then there exists a ∈ A with |a| ≤
2s − (t + 1) and f(a) 	= a.

In order to determine conditions for checking the number of ω-orbits, it is
useful to consider the successor function σ : A → A, with σ(a) = min({b ∈ A :
b > a}). Observe that hi+1 = σ(hi) for i+1 ≤ η − 1 and σ(hη−1) = h0 + l. Thus
through iteration we see hi = σi(h0) and

ση(h0) = σ(ση−1(h0)) = σ(hη−1) = h0 + l.

The successor satisfies the following properties.

The Isomorphism Problem for FST Injection Structures 31

Lemma 2. For a ∈ L, m, j ∈ ω, and i ∈ η,

1. σj(a + ml) = σj(a) + ml.
2. σ(mη)(a) = a + ml.
3. σ(mη+i)(h0) = hi + ml.

Proof. If a + l < b = σ(a + l) < σ(a) + l, then say b = c + l. Then qc = qc+l ∈ F ,
and we have c ∈ A with a < c < σ(a), which is absurd. Hence, σ(a+l) = σ(a)+l.
Proceed by induction on m and j to acquire (1).

Take a = hi + ml ∈ L. Now ση(hi + ml) = ση(hi) + ml by (1). As ση(hi) =
ση(σi(h0)) = σi(ση(h0)) = hi + l, we get ση(a) = hi + l + ml = a + l. Once
again, continue with induction to prove (2).

Part (3) is an obvious application of (1) and (2).

Definition 1. Say that T has no loop gaps, if for all h ∈ H, f(σ(h)) = σ(f(h)).
That is, f maps consecutive elements of H to consecutive elements of the range.

That T has no loop gaps would guarantee that there will be no “gaps” in the
range after a certain point, to avoid the possibility of having more least elements
of a distinct ω-orbit. This is indeed the case, but note that a similar intuition
could be held with the loop output constant w. If w = l, then the output cannot
spread out and create more gaps. It turns out that this is equivalent.

Theorem 1. For a transducer T decomposed as above, the following are equiv-
alent:

1. T has no loop gaps.
2. w = l.
3. A − f [A] is finite, and hence (A, f) has finitely many ω-orbits. In particular,

the initial elements of these ω-orbits are ≤ f(h0).

Proof. We first establish the equivalence of 1 and 2, and then show that (1) is
equivalent to (3).

(1) ⇒ (2). Suppose that T has no loop gaps. For i ∈ η, let ki = f(hi). By
hypothesis, σ(f(hi)) = f(σ(hi)). Hence, σ(ki) = f(hi+1) = ki+1 for i + 1 ≤ η. It
follows via induction that ki = σi(k0), so that kη−1 = ση−1(k0). Applying the
hypothesis to η − 1 we see

ση(k0) = σ(ση−1(k0)) = σ(f(hη−1)) = f(σ(hη−1)) = f(h0 + l) = k0 + w.

But now k0 + l = ση(k0) = k0 + w, so l = w.
(2) ⇒ (1) Consider first an arbitrary sequence {ai : i ∈ η} of distinct elements

of L with ai < ai+1 such that aη−1 − a0 < l. If we take pi := qai
, then from

the facts that aη−1 − a0 < l, |H| = η, and q has period l, we see that the pi

are distinct and comprise the entirety of the accepting loop states. If for some

32 D. Cenzer and R. Krogman

i + 1 ≤ η − 1, we have b = σ(ai) < ai+1, then qb /∈ {pi : i ∈ η}, which is absurd.
Hence, it must be that for such a sequence, σ(ai) = ai+1, and it can be similarly
observed that σ(aη−1) = a0 + l.

Now suppose that w = l. Then hη−1 < h0+ l implies that kη−1 < f(h0+ l) =
k0 + l. If follows that {ki}i∈η satisfies the above properties, and so σ(ki) = ki+1

and σ(kη−1) = k0 + l, which is equivalent to σ(f(hi)) = f(σ(hi)) for i ∈ η.
(3) ⇒ (1). We prove the contrapositive. Suppose that i ∈ η is such that

f(hi) < b = σ(f(hi)) < f(σ(hi)), so b ∈ A − f [A]. For any m ∈ ω,

f(hi + ml2) = f(hi) + τ(qhi
,ml2) = f(hi) + mlw.

Likewise,

f(σ(hi + ml2)) = f(σ(hi) + ml2) = f(σ(hi)) + mlw,

which implies
f(hi + ml2) < b + mlw < f(σ(hi + ml2)).

It follows that {b + mlw : m ∈ ω} ⊆ A − f [A] so A − f [A] is infinite.
(1) ⇒ (3). Suppose that T has no loop gaps, in which case we saw that w = l.

Then from σ(f(hi)) = f(σ(hi)) for i ∈ η, and induction, we have ki = σi(k0),
and hence for m ∈ ω, ki + ml = σ(mη+i)(k0). As w = l,

f(σ(mη+i)(h0)) = f(hi + ml) = ki + ml = σ(mη+i)(k0) = σ(mη+i)(f(h0)).

For any j ∈ ω, we can divide by η to get j = mη + i with i ∈ η, and so we
have shown that σi(f(h0)) = f(σi(h0)) ∈ f [A]. As a > f(h0) if and only if
a = σj(f(h0)) for some j, we have shown that

{a ∈ A : a ≥ f(h0)} = {σj(f(h0)) : j ∈ ω} ⊆ f [A]

so A − f [A] ⊆ {a ∈ A : a < f(h0)} is finite.

Note that by the given types satisfiable by unary FST injection structures,
we may encode the information about the type of a structure as a tuple (n,m)
where n is the number of 1-orbits, and m is the number of ω-orbits. Then two
structures are isomorphic if and only if their tuples are equal.

Theorem 2. The isomorphism problem for unary FST injection structures is
decidable in quadratic time in the sizes of the finite transducers.

Proof. Recall that any FST injection structure has one of three forms:

1. A structure consisting of infinitely many cycles of length 1;
2. For each finite m ≥ 0 and each n ≥ 1, a structure with m orbits of length 1

and n orbits of type ω;

The Isomorphism Problem for FST Injection Structures 33

3. For each finite m, a structure with m orbits of length 1 and infinitely many
orbits of type ω;

Thus it suffices to show that we can compute the type of a given FST injection
structure from its presentation in quadratic time. Then to see whether two given
FST injection structures are isomorphic we just compute the types and check
that they have the same type.

Let the finite transducer T be given which computes an automatic injection
structure (A, f). The presentation of T as a table lists the states and the values
τ(q) and δ(q) for each state q when reading the input 1, and also indicates which
states are accepting. Thus we can find the value of s and then compute the
sequence

q0 = ι, q1 = τ(q0), . . . , qs = τ(qs−1)

At the same time we are computing the sequence

f(0) = 0, f(1) = δ(q0), f(2) = f(1) + δ(q1), . . . , f(s) = f(s − 1) + δ(qs−1).

Thus for each i < s, we can determine whether i is accepted by T and find the
values f(i). (Here we identify the string 1i with the number i.) These computa-
tions require scanning the table s times and therefore can be done in quadratic
time, since s < |T |. While doing this computation, we observe the value of t < s
such that qs = qt, so that the length � of the loop is s − t and the output w
added during the loop is f(s) − f(t).

To check whether (A, f) has finitely many or infinitely many infinite orbits,
we simply observe whether w = �. If w 	= �, then (A, f) has infinitely many
infinite orbits by Theorem 1. If w = �, then, again by Theorem 1, the number of
infinite orbits is given by n = |A \ {f(a) : a ∈ A, a ≤ h0}|.

To determine the number of finite orbits, we continue the computation using
T to find f(s), f(s+1), . . . , f(s+�−1) and check whether f(a) = a for all a ∈ A
with a < s+ �. If so, then (A, f) consists exactly of infinitely many orbits of size
1, by Lemma 1. If not, then the number of finite orbits is m = |{a ∈ A : a <
s + � & f(a) = a}|. It is clear that this additional computation can be done in
quadratic time in the size of T .

The computation given in the proof above is formalized by the Algorithm1
below.

34 D. Cenzer and R. Krogman

Algorithm 1
Initiate p = (0, 0), an empty array of tuples R, and m = 0;

if H = ∅ then

let r = 0;

for 0 ≤ i < t do

if qi ∈ F then

add 1 to r;

end

end

Output: p = (r, 0)

end

if H �= ∅ then

set h = min(H);

set m = 0;

for 0 ≤ i ≤ s do

add τ(qi, 1) to m;

if i = t − 1 then

let a = m;

end

if i = h − 1 then

let g = m;

end

if i = s − 1 then

let b = m;

end

end

if b − a > 0 then

set p2 = ∞;

end

set n = 0;

for i < g do

if n = i then

increment p1 by 1;

end

if n �= i & p2 �= ∞ then

append (i, n) to the end of R;

end

add τ(qi, 1) to n;

end

if R = ∅ then

Output: p = (∞, 0);

end

if p2 �= ∞ then

for (ai, bi) ∈ R do

set c = 0;

for i < j do

if ai = bj then

increment c by 1;

end

end

if c = 0 then

increment p2 by 1;

end

end

Output: (p1, p2)

end

end

The Isomorphism Problem for FST Injection Structures 35

Theorem 3. Algorithm1 computes the characteristic tuple of a structure.

Proof. If H = ∅, then L = ∅ so we are working with a finite function on finite
domain, and f is the identity. Hence, we must simply count the number of
elements. If nonempty, the algorithm computes f(h0), and determines whether
or not τ(qt, l) = w, so it can determine whether there are infinitely many ω
orbits. It then counts the amount of 1-cycles before f(h0) and puts elements not
mapped to themselves, along with their output, into the register R. If the register
is empty, it must have been the case that f is the identity so there are infinitely
many 1 cycles. If not, then we must count, using the register, the number of
elements not mapped to. The above results show that this is sufficient.

3 Conclusions and Further Research

We have shown that the isomorphism problem for unary FST injection structures
is decidable in quadratic time. Ongoing research continues on the isomorphism
problem for unary graph automatic injection structures. We are also investigat-
ing special cases of binary FST injection structures, where the domain has a
restricted form, such as the full binary set {0, 1}∗ Other structures with func-
tions are of interest, including trees given by a predecessor function, Boolean
algebras, and various groups. Another topic of investigation is structures pre-
sented by other types of finite state machines, such as Wheeler automata, or
pushdown automata.

An important question remains whether every FST injection structure (A, f)
has a decidable theory.

References

1. Blumensath, A., Gradel, E.: Finite presentations of infinite structures: automata
and interpretations. Theor. Comput. Syst. 6, 641–674 (2004)

2. Buss, S., Cenzer, D., Minnes, M., Remmel, J.B.: Injection structures specified by
finite state transducers. In: Day, A., Fellows, M., Greenberg, N., Khoussainov, B.,
Melnikov, A., Rosamond, F. (eds.) Computability and Complexity. LNCS, vol.
10010, pp. 394–417. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
50062-1 24

3. Calvert, W., Cenzer, D., Harizanov, V., Morozov, A.: Effective categoricity of
equivalence structures. Ann. Pure Appl. Logic 141, 61–78 (2006)

4. Calvert, W., Knight, J.F.: Classification from a computable viewpoint. Ann. Pure
Appl. Logic 141, 191–218 (2006)

5. Cenzer, D., Harizanov, V., Remmel, J.B.: σ0
1 and π0

1 structures. Ann. Pure Appl.
Logic 162, 490–503 (2011)

6. Cenzer, D., Harizanov, V., Remmel, J.B.: Computability theoretic properties of
injection structures. Algebra Logic 53, 39–69 (2014)

7. Krogman, R., Cenzer, D.: Complexity and categoricity of injection structures
induced by finite state transducers. In: De Mol, L., Weiermann, A., Manea, F.,
Fernández-Duque, D. (eds.) CiE 2021. LNCS, vol. 12813, pp. 106–119. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-80049-9 10

https://doi.org/10.1007/978-3-319-50062-1_24
https://doi.org/10.1007/978-3-319-50062-1_24
https://doi.org/10.1007/978-3-030-80049-9_10

36 D. Cenzer and R. Krogman

8. Goncharov, S.S., Knight, J.F.: Computable structure and anti-structure theorems.
Algebra Log. 6, 351–373 (2002)

9. Khoussainov, B., Liu, J., Minnes, M.: Unary automatic graphs: an algorithmic
perspective. Math. Struct. Comput. Sci. 19(1), 133–152 (2009)

10. Khoussainov, B., Minnes, M.: Model-theoretic complexity of automatic structures.
Ann. Pure Appl. Logic 161(3), 416–426 (2009)

11. Khoussainov, B., Nerode, A.: Automatic presentations of structures. In: Leivant,
D. (ed.) LCC 1994. LNCS, vol. 960, pp. 367–392. Springer, Heidelberg (1995).
https://doi.org/10.1007/3-540-60178-3 93

12. Khoussainov, B., Nies, A., Rubin, S., Stephan, F.: Automatic structures: richness
and limitations. Log. Meth. Comput. Sci. 2(2), 18 (2007). Special issue: Conference
“Logic in Computer Science 2004”

13. Khoussainov, B., Rubin, S., Stephan, F.: On automatic partial orders. In: Proceed-
ings of the LICS 2003, pp. 168–177 (2003)

14. Khoussainov, B., Rubin, S., Stephan, F.: Automatic linear orders and trees. ACM
Trans. Comput. Log. 6, 675–700 (2005)

15. Kuske, D., Liu, J., Lohrey, M.: The isomorphism problem on classes of auto-
matic structures with transitive relations. Trans. Amer. Math. Soc. 365, 5103–5151
(2013)

16. Liu, J., Minnes, M.: Deciding the isomorphism problem in classes of unary auto-
matic structures. Theoret. Comput. Sci. 412(18), 1705–1717 (2011)

https://doi.org/10.1007/3-540-60178-3_93

Justification Logic and Type Theory
as Formalizations of Intuitionistic

Propositional Logic

Neil J. DeBoer(B)

The Ohio State University, Columbus, OH 43210, USA
deboer.15@osu.edu

Abstract. We explore two ways of formalizing Kreisel’s addendum to
the Brouwer-Heyting-Kolmogorov interpretation. To do this we compare
Artemov’s justification logic with simply typed λ calculus, by introducing
a map from justification terms into λ terms, which can be viewed as
a method of extracting the computational content of the justification
terms. Then we examine the interpretation of Kreisel’s addendum in
justification logic along with the image of the resulting justification terms
under our map.

Keywords: Justification logic · Type theory · Intuitionistic logic ·
λ calculus · BHK interpretation

1 Introduction

In [2] Artemov introduces justification logic, in particular the Logic of Proofs.
In this paper he claims that the logic of proofs can be viewed as a formalization
of the BHK interpretation of intuitionistic logic. In this paper we will examine
this claim in detail. In particular we compare a fragment of the intutionistic
propositional Logic of Proofs with the simply typed λ-calculus. To do this we
will first present a general framework for examining formalizations of the BHK
interpretation. Then we will introduce the implicational fragment of the Logic
of Proofs, and provide a Kripke style semantics based on Fitting’s semantics for
classical justification logic. Then we examine how justification logic and the sim-
ply typed λ calculus are related as interpretation of the BHK interpretation for
impicational propositional statements. These are results from my PhD thesis [7].

1.1 The BHK Interpretation and Its Formalizations

We are concerned with formalizations of the BHK interpretation, specifically for
the implicational condition which is as follows:

C→: A proof of the proposition “P implies Q” is a construction that will take
any proof of P and produce a proof of Q.

c© Springer Nature Switzerland AG 2022
S. Artemov and A. Nerode (Eds.): LFCS 2022, LNCS 13137, pp. 37–51, 2022.
https://doi.org/10.1007/978-3-030-93100-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93100-1_4&domain=pdf
http://orcid.org/0000-0003-2318-5645
https://doi.org/10.1007/978-3-030-93100-1_4

38 N. J. DeBoer

This condition has been subject to criticism. One such criticism goes as
follows: Suppose that we are given a construction, let us call it c, that is a
purported proof of a proposition of the form “P implies Q” and we wish to check
whether this is the case. We will have to look at every proof of P and check to see
whether c applied to those proofs is always a proof of Q; the problem with this
being that unless we have some knowledge about the collection of all proofs of
P it is not immediately apparent that this is possible. This means that we won’t
always be able to determine whether a given proof of a proposition is valid, and
could result in non-recursive systems that satisfy condition C→.

This criticism lead to a reformulation of the conditions for implication,
attributed to Kreisel, which can be seen in [13], and we will formulate as follows:

C ′
→: A proof of the proposition “P implies Q” is a construction that will take any
proof of P and produce a proof of Q, and a verification that the construction
satisfies these conditions.

We will refer to the propositional BHK interpretation with conditions C→
replaced with C ′

→ as the Brouwer-Heyting-Kolmogorov-Kreisel interpretation or
BHKK interpretation.

We will explore the terminology of conditions C→ and C ′
→ in more detail.

The first word that occurs that we wish to discuss is “proof” and the conditions
of the BHK interpretation can be seen as a description of what needs to be
done in order to construct a “proof” of a “proposition”. That is, we are giving
a definition of a “proof”.

The next word from the BHKK interpretation that we wish to discuss is
“proposition” which has a long history dating back to Zeno of Citium and the
Stoic philosophers. According to the Stanford Encyclopedia of Philosophy, [16],
propositions are “the sharable objects of the attitudes and the primary bearers
of truth and falsity” and in [12] Heyting characterizes mathematical propositions
as “the expectation to find a certain condition fulfilled”. These seem like two
different definitions, but recall that according to Brouwer “there are no non-
experienced truths” [6], so under the lens of intuitionism these definitions can
be viewed as complementary. The precise nature of propositions with regards to
the BHKK Interpretation has not been agreed upon, and later in this section
we will explore different attitudes that people have taken with regards to the
nature of propositions.

The next word we wish to discuss is “construction”. This word has a dubious
usage in mathematics; it is typically used as a synonym for the value of a function
or procedure. We will be exploring different formalizations of “constructions” in
the context of the BHKK interpretation.

In discussions of systems meant to formalize BHKK interpretation there are
two important questions that help characterize our attempts at formalization.
Q1. Is the statement “the construction c proves the proposition P” a proposi-

tion?
Q2. From the perspective of the BHKK interpretation, is there a fundamental

difference between verifications in C ′
→ and proofs? (That is, should they be

treated as the same kind of object?)

Justification Logic and Type Theory 39

We will explore these questions, while briefly mentioning some of the formal
systems that represent various answers to these question, keeping in mind that
we wish to further our understanding of the additional condition in C ′

→.
We will begin with Q1. For the sake of brevity let c : P be an abbreviation

of the statement “the construction c is a proof of the proposition P”. In consider-
ing possible answers to this question, we could imagine the case where only some
statements of the form c : P are propositions. We are, however, unaware of any
systems that have this property, so we will only consider the cases in which either
all statements of the form c : P are propositions or no statements of that form are
propositions.

If we answer Q1 in the affirmative, then statements of the forms “d : c : P”
and “if c : P then Q” are propositions as well. In terms of formal systems
exploring the BHK interpretation that assume a ‘Yes’ answer to Q1, there is the
Kreisel-Goodman formulation [11] which is related to a system given by Beeson
in chapter XVII of [5]. More recently, in [2], Artemov created a formal system
called Justification Logic, which has this property. This system will be the focus
of our investigations. Justification Logic will be discussed in more detail in the
following section.

If we answer question Q1 in the negative, then we have started on the road to
modern “propositions-as-types” type theory. To use the terminology of Martin-
Löf, c : P is a judgment (a statement about a proposition) and not a proposition
(see the introduction of [15] for more on the distinction between propositions
and judgments). This means that a statement of the form d : c : P is no longer
a proposition. There is an abundance of formal type theories that have this
perspective on propositions, see [17] for some examples.

Now let us explore how the systems we have mentioned answer Q2. Both
Artemov’s and Beeson’s systems treat proofs and verifications as the same kind
of object (i.e. ‘No’ to Q2). Type theories, however, do not treat proofs and
verifications as the same kind of object (i.e. ‘Yes’ to Q2). To illustrate this let
us consider an example taken from simply typed λ-Calculus, which is defined in
a later section:

x : P, y : Q � x : P

x : P � λy.x : Q → P

� λxy.x : P → Q → P

Here the proposition we wish to prove is P → Q → P , and our ‘proof’ of
this proposition is the λ-term λxy.x, whereas our ‘verification’ is the above
derivation. We can organize this, along with these systems positions on Q1, into
the following table:

Q1
Q2 Yes No

Yes R1 Justification Logic
No Type Theory R4

I am unaware of any systems in R1 or R4, and in this paper we will not go
into the reasons that people seem uninterested in systems with these properties.

40 N. J. DeBoer

2 Justification Logic

In this paper we will be concerned with Condition C ′
→ of the BHKK Interpreta-

tion, so our focus will be on implication. Since we are concerned with implication
we will only use the implicational fragment of intuitionistic logic. We will abbre-
viate the implicational fragment of intuitionistic logic as IPL→ and we will write
Γ �i ϕ to indicate that the sequent Γ � ϕ of implicational formulas is derivable
in the implicational fragment of intuitionistic logic.

Next we will introduce the implicational fragment of intuitionistic justifi-
cation logic. In formalizing proofs for justification logic we have two notions
of ‘atomic’ proofs, being proofs of axioms and arbitrary proofs of propositions
we are assuming. We call the proofs of axioms justification constants and the
proofs of assumptions justification variables. We then form the set of justification
terms by including a binary operator representing the application of one proof to
another proof •, another binary operation representing the combination of two
proofs +, and a unary operator representing checking a proof !. These definitions
are taken from [2]. See [3] for a more recent exploration of justification logic.

Definition 1. Let c0, c1, . . . be a set of symbols, which will be called the justi-
fication constants, abbreviated Cj. Let x0, x1, . . . be a list of symbols, which
will be called the justification variables, abbreviated V ar. The collection of
justification terms are defined as follows:

JT ::= Cj |V ar|JT • JT |JT + JT |!JT

Definition 2. We define the set of free variables of a justification term r, writ-
ten FV (r), recursively on the structure of r as follows:

– If r is the variable x then FV (r) = x.
– If r is the constant c then FV (r) = ∅.
– If r = u + t or r = u • t then FV (r) = FV (u) ∪ FV (t).
– If r =!t then FV (r) = FV (t).

Definition 3. Let p0, p1, . . . be a list of symbols, which will be called proposi-
tional variables, written as PV ar. The collection of propositional justification
formulas are defined as follows:

PJ ::= PV ar|PJ → PJ |JT : PJ

Next we present the rules for the implicational fragment of intuitionistic justi-
fication logic. A presentation of the full propositional justification logic is given
in [1].

Definition 4 (Axioms of ILP→).

Justification Axiom P1 ϕ → ψ → ϕ
Justification Axiom P2 (ϕ → θ → ψ) → (ϕ → θ) → ϕ → ψ
Justification Axiom J1 t : ϕ → ϕ
Justification Axiom J2 t : ϕ →!t : t : ϕ

Justification Logic and Type Theory 41

Justification Axiom J3 t : (ϕ → ψ) → r : ϕ → t • r : ψ
Justification Axiom J4 t : ϕ → r + t : ϕ
Justification Axiom J5 t : ϕ → t + r : ϕ

Definition 5. A constant specification is a set of pairs of the form (c, ϕ)
where c is a justification constant and ϕ is an instance of an Axiom from
Definition 4. A constant specification, CS, is said to be axiomatically appro-
priate if for each axiom ϕ that is an instance of a scheme from Definition 4
there is a constant c so that (c, ϕ) ∈ CS.

Definition 6. Given a constant specification CS we define a system of rules,
called intuitionistic implicational logic of proofs with respect to CS, by the
following rule schema:

Identity: Γ � ϕ (ϕ ∈ Γ).
Axiom: Γ � ϕ where ϕ is an instance of an axiom scheme given in Definition 4.
Necessitation: Γ � c : ϕ ((c, ϕ) ∈ CS).

Modus Ponens:
Γ � ϕ → ψ Γ � ϕ

Γ � ψ

We use the notation Γ �CS
iLP ϕ to indicate that the sequent Γ � ϕ is provable in

the intuitionistic implicational logic of proofs with respect to CS.

We will abbreviate intuitionistic implicational logic of proofs with respect to the
constant specification CS as ILPCS

→ .
The following two results were shown for full intitionistic justification logic

in [1], and will be useful in our later analysis.

Theorem 1 (Deduction). Γ �CS
iLP ψ → ϕ iff Γ, ψ �CS

iLP ϕ.

Lemma 1. If Γ, ψ �CS
iLP ϕ then Γ, x : ψ �CS

iLP ϕ.

Notice that ILPCS
→ extends IPL→, as we have the following result:

Lemma 2. If Γ �i ϕ then for any constant specification CS we have Γ �CS
iLP ϕ.

Next we present a map from implicational justification formulas to impli-
cational formulas, that can be used to show the conservativity of intuitionistic
logic over justification logic.

Definition 7. Let � be the map from justification formulas into propositional
formulas defined recursively by the following clauses:

– �(pi) = pi

– �(ϕ → ψ) = �(ϕ) → �(ψ)
– �(r : ϕ) = �(ϕ)

We can extend this to a set of justification formulas Γ as follows: �(Γ) =
{�(γ)|γ ∈ Γ}.

42 N. J. DeBoer

Lemma 3. For any constant specification CS, if Γ �CS
iLP ϕ then �(Γ) �i �(ϕ).

Corollary 1 (Conservativity of IPL→ over ILPCS
→). Let CS be a constant

specification. If Γ is a set of propositional formula and ϕ is a propositional
formula so that Γ �CS

iLP ϕ then Γ �i ϕ.

Definition 8. A justification formula ϕ is a realization of a propositional for-
mula ψ if �(ϕ) is ψ.

Looking at the definition of �, realizations may seem like the simplest way to
interpret an intuitionistic formula into our justification logic. However, after
considering some of the history surrounding justification logic, it is possible
to come to the conclusion that this map has a certain amount of robustness.
Artemov was concerned with interpretations of intuitionistic logic that mapped
through the modal logic S4 into some formalized notion of provability. In [2] we
are shown the following diagram:

Int S4 ...?... REAL PROOFS

Where Int means propositional intuitionistic logic, and the arrows represent
maps that preserve provability. The map from Int to S4 is Gödel’s translation
from intuitionistic logic to S4. The ...?... is revealed to be Artemov’s Logic of
Proofs, written here as LP, and REAL PROOFS is taken to be proofs in Peano
Arithmetic. In the same paper Artemov also constructs the other two arrows
giving us this diagram:

Int S4 LP REAL PROOFS

The map from S4 to LP actually takes proofs in S4 and gives provable formulas
in LP, whereas the other maps take provable formulas in one system to provable
statements in another system.

Artemov also states that the interpretation from intuitionistic logic to LP,
given the composition of the first two maps, “provides an exact specification
of Int by means of classical notion of proof consistent with BHK semantics”.
However the image of Int under Gödel’s map can be shown to be contained in
the intuitionistic fragment of S4, which we will denote iS4. Furthermore, we can
show that the image of iS4 under Artemov’s map (from S4 to LP) is contained
in the intuitionistic fragment of LP (which we will denote iLP). This leads to
the following diagram

Int iS4 iLP LP REAL PROOFS

�

where the map from iLP to LP is inclusion, and if we compose these maps
together with �, which we have depicted above, we get the identity map. Instead
of the specific map from Int to iLP in the above diagram, we can concern
ourselves with any map # from Int to iLP, so that �◦# is the identity. In other
words we are concerned with realizations that are provable in iLP.

Justification Logic and Type Theory 43

2.1 Substitution

The final topic we wish to cover in this section is substitution for justification
terms, as it will be useful in later discussions. These definitions were studied for
classical justification logic in [14].

Definition 9 (Substitution for Justification terms). If r and t are justifi-
cation terms, and x is a variable then we define the justification term r[x := t]
by recursion on the structure of r, as follows:

– If r is a variable then r[x := t] =

{
t if r = x

r otherwise
– If r = u + v then r[x := t] = u[x := t] + v[x := t].
– If r = u • v then r[x := t] = u[x := t] • v[x := t].
– If r =!u then r[x := t] =!u[x := t]

Definition 10 (Substitution for Justification formulas). If ϕ is a justifi-
cation formula, t is a justification term, and x is a variable then we define the
justification formula ϕ[x := t], by recursion on the structure of ϕ as follows:

– If ϕ is a propositional variable then ϕ[x := t] = ϕ.
– If ϕ = θ → ψ then ϕ[x := t] = θ[x := t] → ψ[x := t].
– If ϕ = r : ψ then ϕ[x := t] = r[x := t] : ψ[x := t].

We can also extend substitution to sets of justification formulas as follows. Let
Γ be a set of justification formulas, then Γ [x := t] = {γ[x := t]|γ ∈ Γ}.
Lemma 4. If CS is a constant specification, x is a variable, and t is a justifi-
cation term then the set CS[x := t] = {(c, ϕ[x := t])|(c, ϕ) ∈ CS} is a constant
specification. Moreover, if Γ �CS

iLP ψ then Γ [x := t] �CS[x:=t]
iLP ψ[x := t].

Proof. This follows from a straightforward induction. ��

3 Comparing Formalizations

The other way we will formalize proofs from the BHKK Interpretation is with λ
calculus. In λ calculus we have variables that can represent an arbitrary proof,
and we have an application operation, but we also have an abstraction operation
that allows us to build function. These two operations are given computational
meaning via β reduction.

The particular formal system we will be using is the Curry style simply typed
λ calculus details of which can be found in [17]. We will not present the system
here, and we will write Δ �λ→ M : ϕ to indicate that for context Δ, λ term M ,
and implicational formula ϕ the sequent Γ � M : ϕ is provable in the simply
typed λ calculus.

Now we can turn to the question of how the two systems we’ve introduced
relate to the BHKK Interpretation. In order for the BHKK interpretation to

44 N. J. DeBoer

interpreter intuitionistic logic it should satisfy the following condition: If �i ϕ
then there should be a BHKK ‘proof’ of ϕ.

For the Simply Typed λ Calculus our BHKK ‘proof’ is a λ term, so the above
condition is satisfied by the following classic result:

Theorem 2 (Curry Howard Isomorphism). Γ �i ϕ iff there exists a λ term
M so that Δ �λ→ M : ϕ, where Γ is the set of formulas in the context Δ.

However at the moment we haven’t show that intuitionistic justification logic has
this property. In [2] Artemov showed the follow result for classical justification
logic, and a similar method can be used for ILPCS

→ for certain CS.

Lemma 5. If CS is an axiomatically appropriate constant specification, and
x1 : ψ1 . . . xn : ψn, θ1 . . . θm �CS

iLP ϕ then there is a +-free justification term
t so that x1 : ψ1, . . . , xn : ψn, y1 : θ1, . . . , ym : θm �CS

iLP t : ϕ and FV (t) ⊆
{x1, . . . , xn, y1, . . . , yn}.
By using Lemma 5 and Lemma 2 we get:

Corollary 2. If CS is axiomatically appropriate and �i ϕ then there is a +-free
justification term r so that �CS

iLP r : ϕ.

One potential objection to Theorem2 and Corollary 2 meaning that the Simply
Typed λ Calculus and ILPCS

→ formalizing the BHKK interpretation is that our
results do not yet guarantee that the BHKK ‘proofs’ have no free variables. The
following well known result for the Simply Typed λ Calculus shows that this
isn’t an issue:

Lemma 6. If Δ �λ→ M : ϕ then FV (M) ⊆ dom(Δ), where dom(Δ) is the set
of λ variable declared in Δ.

And we can show the following result using induction over the sequent formu-
lation of iLPCS or by a trick involving Kripke style semantics for justification
logic developed by Fitting in [8]:

Lemma 7. If r is +-free and �CS
iLP r : ϕ then FV (r) = ∅.

Due to the expressiveness of justification logic we can attempt to formalize
Condition C ′

→ of the BHKK interpretation in justification logic. In trying to
translate this condition for the proposition P → Q in justification logic we get
t : (x : P → r : Q), where x is an arbitrary proof of P , r is the construction
applied to x, and t is the verification that r actually does what it is supposed
to do. However this does not quite match up with the statement of C ′

→ since it
says “...any proof of P ...” which seems to indicate that we should quantify over
all proofs of P . Unfortunately we have no way of quantifying over justification
variables1 in the system of justification logic we presented. We can, however,
argue that our results surrounding substitution for justification variables allow
us to bypass this objection.

1 See [9] for a version of justification logic that allows this.

Justification Logic and Type Theory 45

For the sake of simplicity let us take P and Q to be the formulas ϕ and ψ
(respectively) both of which contain no justification terms. Furthermore let us
assume that we have some constant specification CS and that we have shown
�CS

iLP t : (x : ϕ → r : ψ). Let u be any justification term then by Lemma4 we have
�CS[x:=u]

iLP t[x := u] : (u : ϕ → r[x := u] : ψ). On the face of it this looks bad, since
t is supposed to check that for any proof u of ϕ it is the case that r[x := u] is a
proof of ψ, so it should not depend on u. However, by Lemma 7 if we assume that
t is +-free, then FV (t) = ∅ so it is straightforward to show that t[x := u] = t.
Hence, for any justification term u we have �CS[x:=u]

iLP t : (u : ϕ → r[x := u] : ψ).
Provided that CS[x := u] ⊆ CS we will have �CS

iLP t : (u : ϕ → r[x := u] : ψ).
This means that as long as our CS has the property that for all justification
terms u we have CS[x := u] ⊆ CS then we have �CS

iLP t : (u : ϕ → r[x := u] : ψ).
This suggests the following definition:

Definition 11. A BHKK representation of a propositional or justification
formula ϕ → ψ is a justification formula of the form t : (x : ϕ → r : ψ) where r
and t are +-free, FV (t) = ∅, and FV (r) ⊆ {x}.

3.1 Comparing Proofs

Next we wish to create a framework for comparing the ways that justification
terms formalize proofs with how λ-terms formalize proofs. First, we will consider
a map from justification terms to λ-terms.

The naive idea is that our map, let us call it f , should respect the notion
of provability. We have to decide how to formulate respecting provability for
justification terms and λ-terms. Notice that for any constant specification CS, if
we have �CS

iLP r : ϕ then by Lemma 3 we have �i �(r : ϕ), and since �(r : ϕ) = �(ϕ)
by applying Theorem2 there is a λ-term M so that �λ→ M : �(ϕ). Therefore our
condition on f should be that if r : ϕ is provable in justification logic then the
λ term f(r) should inhabit �(ϕ). Let CS be an arbitrary constant specification.
This condition can be stated formally as:

Condition 1. If �CS
iLP r : ϕ then �λ→ f(r) : �(ϕ).

There is an issue with Condition 1 in that it could be the case that r has the
form u + t where both �CS

iLP u : ψ and �CS
iLP t : θ. In such a case we have both

that �λ→ f(u + t) : �(ψ) and that �λ→ f(u + t) : �(θ). If we assume that CS
is axiomatically appropriate and take ψ to be the formula p → p and take θ to
be the formula p → q → p, where p and q are propositional variables, then by
Lemma 5 we get the above u and t. We have both �λ→ f(u + t) : p → p and
�λ→ f(u+t) : p → q → p, but by examining the possible normal forms of λ terms
that inhabit p → p we get that f(u + t) must reduce to λx.x (see Chap. 3 of [17]
for more information about finding normal inhabitants of types). By Condition 1
we have �λ→ λx.x : p → q → p. However we cannot have �λ→ λx.x : p → q → p,
since if we did then by examination of the rules for �λ→ our proof tree would
have to have the following form:

46 N. J. DeBoer

x : p �λ→ x : q → p

�λ→ λx.x : p → q → p

But x : p �λ→ x : q → p is not a valid instance of the identity rule, so �λ→ λx.x :
p → q → p.

There are a couple of ways to remedy this. One is to let f be a function from
justification terms to sets of λ terms and rephrase Condition 1 as:

Condition 2. If �CS
iLP r : ϕ then there exists a M ∈ f(r) so that �λ→ M : �(ϕ).

One issue with this condition is that it is satisfied by the function f such that
for each justification term r the set f(r) is the set of all λ terms. This function
satisfies Condition 2, but cannot be said to give us any information about the
computational content of r. We could fix this by forcing f(r) to be finite for each
r, but this will eventually make stating theorems unnecessarily cumbersome.
Instead we will only consider translations from +-free justification terms to λ
terms. Thus Condition 1 becomes:

Condition 3. If �CS
iLP r : ϕ and r is +-free then �λ→ f(r) : �(ϕ).

Functions that satisfy Condition 3 can still fail to exist for some constant spec-
ifications. For instance take CS = {(c, p → p → p), (c, c : p → p)} where c is a
justification constant and p is a propositional variable. If f satisfies Condition 3
we would have �λ→ f(c) : p → p → p and �λ→ f(c) : p → p, which causes the
same problem we had with Condition 1. Instead of attempting to refine this con-
dition by adding a hypothesis regarding CS, we will consider this as a condition
on both our constant specification and our map f .

We may wish for something stronger than Condition 3. For instance:

Condition 4. If x1 : ψ1, . . . , xn : ψn �CS
iLP r : ϕ and r is +-free then x1 :

�(ψ1), . . . , xn : �(ψn) �λ→ f(r) : �(ϕ).

This condition is not tenable. To explore this let r be any justification term, let
ϕ be any justification formula. It is straightforward to show x : r : ϕ �CS

iLP r : ϕ,
so Condition 4 implies x : �(ϕ) �λ→ f(r) : �(ϕ). This will cause problems for
any inhabited constant specification, since if (c, α) ∈ CS then Condition 4 also
implies �λ→ f(c) : �(α). By Lemma 6 FV (f(c)) = ∅, but we also have that
x : �(ϕ) �λ→ f(c) : �(ϕ), and since x /∈ FV (f(c)) we have �λ→ f(c) : �(ϕ). This
shows that every formula is inhabited, which in turn means that the implicational
fragment of intuitionistic logic is inconsistent. This forces us to either have CS
be empty or put some restrictions on x1 : ψ1, . . . , xn : ψn, and since Lemma 5
requires an inhabited constant specification the best option will be to restrict
x1 : ψ1, . . . , xn : ψn.

Definition 12. A map f from +-free propositional justification terms into λ-
terms is said to be justification preserving with respect to a constant specifi-
cation CS if it satisfies the following three properties:

1. If (c, ϕ) ∈ CS then �λ→ f(c) : �(ϕ).

Justification Logic and Type Theory 47

2. For any context Γ , if Γ �λ→ f(t) : θ → ϕ and Γ �λ→ f(r) : θ then Γ �λ→
f(t • r) : ϕ.

3. For any context Γ , if Γ �λ→ f(r) : ϕ then Γ �λ→ f(!r) : ϕ.

Lemma 8. If f is justification preserving with respect to CS, r is a +-free
justification term, and �CS

iLP r : ϕ then �λ→ f(r) : �(ϕ).

Proof. This can be shown by induction on the lengths of proofs in the sequent
calculus formulation of ILPCS

→ or by a trick involving Fitting’s Kripke style
semantics. ��
Definition 13. Let s, k, and i be specific justification constants (which are
intended to emulate the S, K, and I from the SK combinators). We define
the set IT as the collection of pairs below.

– (k, ϕ) where ϕ is an instance of Justification Axiom P1.
– (s, ϕ) where ϕ is an instance of Justification Axiom P2.
– (i, ϕ) where ϕ is an instance of Justification Axioms J1, J2, J3, J4, or J5.

Lemma 9. The constant specification IT is axiomatically appropriate.

Lemma 10. For all justification terms u we have IT [x := u] ⊆ IT .

Definition 14. The map u
→ (u)λ is defined recursively from +-free justifica-
tion terms into λ-terms as follows:

1. Let (i)λ = λx.x and (k)λ = λxy.x and (s)λ = λxyz.xz(yz)
2. For any variable x let (x)λ = x.
3. For any justification term r let (!r)λ = (r)λ.
4. For any justification terms r and t let (r • t)λ = (r)λ · (t)λ.

Lemma 11. The map r
→ (r)λ is justification preserving with respect to IT .

Proof. This follows from a straightforward induction. ��
We want to explore the relationship between justification preserving maps and
BHKK representations. In particular, we will restrict our discussion to IT and
()λ. Consider a propositional formula of the form ϕ → ψ, by applying Lemma5
and Theorem 1 we can get the following result:

Theorem 3. Let ϕ → ψ be a propositional formula. ϕ → ψ has a iLPIT prov-
able BHKK representation iff �i ϕ → ψ.

So for our IPL→ provable ϕ → ψ we have r and t so that �IT
iLP t : (x : ϕ → r : ψ).

This leads us to question how ()λ would interpret the terms t and r. As it turns
out, not only can we show that (t)λ and (r)λ inhabit the same type, but they
are β equivalent. Due to Lemma 8 and Lemma 11 we know what type (t)λ would
inhabit, but we do not have information about (r)λ.

Proposition 1. If �i ϕ → ψ and x is a justification variable then there exist
+-free justification terms r and t so that:

48 N. J. DeBoer

1. �IT
iLP t : (x : ϕ → r : ψ)

2. �λ→ λx(r)λ : ϕ → ψ and �λ→ (t)λ : ϕ → ψ
3. (t)λ =β λx(r)λ

In fact we can prove something stronger than this. To see that the following
Lemma is stronger than Proposition 1 recall that by Lemma 2 if �i ϕ → ψ then
�IT

iLP ϕ → ψ.

Lemma 12. For all justification formulas α and γ, if �IT
iLP α → γ then there

exist +-free justification terms r and t so that:

1. �IT
iLP t : (x : α → r • x : γ)

2. �λ→ λx(r • x)λ : �(α → γ) and �λ→ (t)λ : �(α → γ)
3. (t)λ =β λx(r • x)λ

Proof. To begin with we will construct r and t. Since we have �IT
iLP α → γ

and IT is axiomatically appropriate, by Lemma 5 there is a +-free r so that
�IT

iLP r : (α → γ). Let t be i•!r.
Next we have to show �IT

iLP t : (x : α → r • x : γ). By using Justification
Axiom J2 we can show that �IT

iLP !r : r : (α → γ). By the Necessitation Rule and
the definition of IT we have �IT

iLP i : (r : (α → γ) → x : α → r • x : γ), so by
Justification Axiom J3 we have �IT

iLP i•!r : (x : α → r • x : γ).
�λ→ λx(r • x)λ : �(α → γ) can be shown using Lemma 8 and Lemma 11 and

some basic reasoning about the Simply Typed λ Calculus.
Next we have to show �λ→ (t)λ : �(α → γ), but this follows from �CS

iLP t : (x :
α → r : γ) and Lemma 8 and Lemma 11 (recall that �(x : α → r : γ) = �(α → γ)).

Finally, we have to show that (t)λ =β λx(r •x)λ. First we reduce (t)λ, notice
that (i•!r)λ =β (r)λ. Next recall that a fundamental result about the Simply
Typed λ Calculus implies (r)λ has a β normal form M . Since �λ→ M : �(α → γ)
we have FV (M) = ∅, so M must2 have the form λyN . Therefore λx(r • x)λ =
λx.(r)λx =β λx.(λyN)x =β λx.N [y := x] = λyN =β (r)λ. ��
This applies to BHKK representations of propositional formulas, but we can
extend this to BHKK representations if justification formulas. First notice the
following:

Theorem 4. Let ϕ → ψ be a justification formula, then ϕ → ψ has a iLPIT

provable BHKK representation iff �IT
iLP x : ϕ → ψ.

Proof. The reverse direction follows from Theorem 1 and Lemma 5. ��
This indicates that we should replace the �IT

iLP α → γ hypothesis from Lemma 12
with �IT

iLP x : α → γ.

Theorem 5. For all justification formulas α and γ, and for all proof variables
x so that �IT

iLP x : α → γ there exist +-free proof terms r and t so that:

1. �IT
iLP t : (x : α → r : γ)

2 This requires a somewhat involved argument about normal forms.

Justification Logic and Type Theory 49

2. �λ→ λx(r)λ : �(α → γ) and �λ→ (t)λ : �(α → γ)
3. (t)λ =β λx(r)λ

Proof. This can be proved by induction on the length of the proof of �IT
iLP x :

α → γ. ��
Consider the assumption �IT

iLP x : α → γ from 5 and compare it to the assump-
tion �IT

iLP α → γ from 12. The first thing to notice is that �CS
iLP x : α → γ is

a weaker condition on α and γ than �CS
iLP α → γ, this can be shown by using

Theorem 1 and Lemma 1. The second thing to notice is that �CS
iLP x : α → γ is

a strictly weaker condition on some α and γ, since if we take γ = x : α then
�CS

iLP x : α → x : α but for all α we have �
CS
iLP α → x : α.

Notice that if α and γ are propositional formulas then the conditions are
equivalent, since if �IT

iLP x : α → γ then by Lemma 3 we have �i �(x : α → γ).
Since α and γ are propositional we have �(x : α → γ) = α → γ. So �i α → γ,
and by Lemma 2 we have �iLP α → γ.

The next thing we can examine is whether the conclusions of Theorem5 are
redundant. Consider the following conjecture.

Conjecture 1. For all justification formulas α and γ, for all proof variables x,
and for all +-free proof terms r and t so that �IT

iLP t : (x : α → r : γ)3 we have:
�λ→ λx(r)λ : �(α → γ) and �λ→ (t)λ : �(α → γ).

This conjecture is false. Consider α = y : p for some propositional variable p
and justification variable y, γ = p, r = y, and t = i. Then x : y : p → y : p is
an instance of Justification Axiom J1, so we have �IT

iLP i : (x : y : p → y : p).
However λx(r)λ = λx.y, which according to Lemma 6 there is no type ϕ so that
�λ→ λx.y : ϕ, so the first condition fails badly.

We can still ask if we require the first 2 conclusions of Theorem 5 will we get
the 3rd.

Conjecture 2. For all justification formulas α and γ, for all proof variables x,
and for all +-free proof terms r and t so that �IT

iLP t : (x : α → r : γ) and
�λ→ λx(r)λ : �(α → γ) and �λ→ (t)λ : �(α → γ) we have: (t)λ =β λx(r)λ.

This conjecture also fails. Consider α = i : (p → p) for some propositional
variable p, γ = p → p, and t = r = i. Then x : i : (p → p) → i : (p → p) is
an instance of Justification Axiom J1, so we have �IT

iLP i : (x : i : (p → p) →
i : (p → p)). However λx(r)λ = λxy.y and (t)λ = λx.x. Notice that �(α → γ) =
(p → p) → (p → p). Next, notice that we have �λ→ λx.x : (p → p) → (p → p)
and �λ→ λxy.y : (p → p) → (p → p), so both of our hypotheses are satisfied.
Finally notice that λx.x and λxy.y are in β-normal form, so λx.x �=β λxy.y.

It is worth pointing out that all of the results in this section will still hold
if we expand our language to include the connectives ∧, ∨ and the symbol ⊥,
but it would involve expanding the λ terms and the type theory, as well as the
justification constants.
3 Notice that this is stronger than assuming �IT

iLP x : α → γ, so we do not need to
include both assumptions.

50 N. J. DeBoer

4 Conclusion

When interpreting condition C→ of the BHK interpretation, we must decide on
what a construction is. Artemov’s justification logic used his justification terms,
for which the output of a term r meant to represent a construction applied to
a term a meant to represent an input is simply r • a. Since justification terms
have no associated reduction relation they are unable to serve as a model of
computation.

We have constructed a way of interpreting justification terms into λ terms
in a way that if we have a BHK ‘proof’ of an intuitionistic formula formal-
ized in justification logic then we have a BHK ‘proof’ formalized in the Simply
Typed λ Calculus. However when viewed through Kreisel’s extra condition we
get that some of these ‘proofs’ and ‘verifications’ formalized in justification logic
get translated into the same λ term (with respect to β reduction). This obscures
the nature of ‘verifications’ in these formalizations of the BHKK interpretation,
as it is not clear whether a proper ‘verification’ should correspond to the same
program as the ‘proof’, and leaves open the question as to what new information
is provided by the ‘verifications’ since they do not normally provide any more
computational information. Here are a few ways to interpret our result:

1. C ′
→ is not part of the original formulation of the BHK interpretation for a

good reason. It has not even been solidly established that C ′
→ is immune to

the criticisms that were levied against the original BHK interpretation, let
alone that they do not admit any new criticisms. So we are not justified in
adopting C ′

→ over C→.
2. The map from justification terms to λ-terms is erasing too much information,

if you want a distinction between ‘verifications’ and ‘constructions’ you will
need a more robust type system or a better map from justification terms to
λ terms.

3. If we want C ′
→ to be distinct from C→ the ‘verifications’ cannot just be some

rehash of the ‘constructions’, so ILPCS
→ fails to fully capture conditions C ′

→.
4. The BHK interpretation started as an informal description of intuitionistic

logic, and was never meant to be formalized. While certain formal systems
may take certain principles from this interpretation, we are not required to
take them seriously as ‘formalizations of the BHK interpretation’.
“Any premature attempt at a [formalization of the BHK/functional interpre-
tation] could only weaken the idea: it is much more than that.”-Girard in
[10].

5. How do you check a calculation? You perform said calculation, so our result
is not surprising.

Future Work

We would like to extend these result to first order justification logic (see [4]) and
a type theory corresponding to first order intuitionistic logic (see Chapter 8 of
[17]). Some progress has been made in [7] in particular an analog of Lemma4
was shown, but the first order universal analog of Theorem5 hasn’t been proved.

Justification Logic and Type Theory 51

It would also be interesting to explore possible systems that inhabit R1 and
R4 mentioned in the introduction. This would give a more complete picture of
the possible ways of formalizing the BHKK interpretation.

Acknowledgements. I would like to thank Tim Carlson, Neil Tennant, and Chris
Miller for their advice. I would also like to thank the anonymous peer reviewers for
their useful suggestions.

References

1. Artemov, S.: Proof polynomials: a unified semantics for modality and lambda-
terms. Technical report, CFIS 98-06, Cornell University (1998)

2. Artemov, S.: Explicit provability and constructive semantics. Bull. Symbolic Logic
7(1), 1–36 (2001). https://doi.org/10.2307/2687821

3. Artemov, S., Fitting, M.: Justification Logic: Reasoning with Reasons. Cambridge
Tracts in Mathematics. Cambridge University Press (2019). https://doi.org/10.
1017/9781108348034

4. Artemov, S., Yavorskaya (Sidon), T.: TR-2011005: First-Order Logic of Proofs.
Technical report, CUNY Academic Works (2011)

5. Beeson, M.J.: Foundations of Constructive Mathematics: Metamathematical stud-
ies, vol. 6. Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer, Berlin
(1985). https://doi.org/10.1007/978-3-642-68952-9

6. Brouwer, L.E.J.: Consciousness, philosophy, and mathematics. In: Proceedings of
the 10th International Congress of Philosophy, Amsterdam, 11–18 August 1948,
pp. 1235–1249. North-Holland Publishing Company (1949)

7. DeBoer, N.: Justification logic, type theory and the BHK interpretation. Ph.D.
thesis, Ohio State University (2020). http://rave.ohiolink.edu/etdc/view?acc
num=osu1598007830055549

8. Fitting, M.: The logic of proofs, semantically. Ann. Pure Appl. Logic 132(1), 1–25
(2005). https://doi.org/10.1016/j.apal.2004.04.009

9. Fitting, M.: A quantified logic of evidence. Electron. Notes Theoret. Comput. Sci.
143, 59–71 (2006). https://doi.org/10.1016/j.entcs.2005.04.038

10. Girard, J.Y.: The Blind Spot: Lectures on Logic. European Mathematical Society
(2011)

11. Goodman, N.D.: A theory of constructions equivalent to arithmetic. In: Intuition-
ism and Proof Theory (Proc. Conf., Buffalo, N.Y., 1968), pp. 101–120. North-
Holland, Amsterdam (1970). https://doi.org/10.1016/S0049-237X(08)70745-6

12. Heyting, A.: Die intuitionistische Grundlegung der Mathematik. Erkenntnis 2(1),
106–115 (1931). https://doi.org/10.1007/BF02028143

13. Kreisel, G.: Mathematical Logic. In: Lectures on Modern Mathematics, vol. III,
pp. 95–195. Wiley, New York (1965)

14. Kuznets, R., Studer, T.: Logics of Proofs and Justifications. College Publications
(2019)

15. Martin-Löf, P.: Intuitionistic Type Theory. Volume 1 of Lecture notes, Studies in
Proof Theory. Bibliopolis, Naples (1984). Sambin, G. (ed.)

16. McGrath, M., Frank, D.: Propositions. In: Zalta, E.N. (ed.) The Stanford Ency-
clopedia of Philosophy, spring 2018 edn. Metaphysics Research Lab, Stanford Uni-
versity (2018)

17. Sørensen, M., Urzyczyn, P.: Lectures on the Curry-Howard Isomorphism. Studies
in Logic and the Foundations of Mathematics. Elsevier Science (2006)

https://doi.org/10.2307/2687821
https://doi.org/10.1017/9781108348034
https://doi.org/10.1017/9781108348034
https://doi.org/10.1007/978-3-642-68952-9
http://rave.ohiolink.edu/etdc/view?acc_num=osu1598007830055549
http://rave.ohiolink.edu/etdc/view?acc_num=osu1598007830055549
https://doi.org/10.1016/j.apal.2004.04.009
https://doi.org/10.1016/j.entcs.2005.04.038
https://doi.org/10.1016/S0049-237X(08)70745-6
https://doi.org/10.1007/BF02028143

Hyperarithmetical Worm Battles

David Fernández-Duque1 , Konstnatinos Papafilippou1(B) ,
and Joost J. Joosten2

1 Department of Mathematics WE16, Ghent University, Ghent, Belgium
{David.FernandezDuque,Konstantinos.Papafilippou}@UGent.be

2 Department of Philosophy, University of Barcelona, Catalonia, Spain
jjoosten@ub.edu

Abstract. Japaridze’s provability logic GLP has one modality [n] for
each natural number and has been used by Beklemishev for a proof the-
oretic analysis of Peano arithmetic (PA) and related theories. Among
other benefits, this analysis yields the so-called Every Worm Dies
(EWD) principle, a natural combinatorial statement independent of PA.
Recently, Beklemishev and Pakhomov have studied notions of provability
corresponding to transfinite modalities in GLP. We show that indeed the
natural transfinite extension of GLP is sound for this interpretation, and
yields independent combinatorial principles for the second order theory
ACA of arithmetical comprehension with full induction. We also pro-
vide restricted versions of EWD related to the fragments IΣn of Peano
arithmetic.

Keywords: Provability logics · Independence results · Ordinal analysis

1 Introduction

It is an empirically observed phenomenon that ‘natural’ theories are linearly
ordered by strength, suggesting that this strength could be quantified in some
fashion. Much as real numbers are used to measure e.g. the distance between two
points on the plane, proof theorists use ordinal numbers to measure the power of
formal theories [18]. The precise relationship between these ordinals and their
respective theories may be defined in various ways, each with advantages and
disadvantages. One relatively recent and particularly compelling way to assign
ordinals to a theory T lies in studying hierarchies of iterated consistency or reflec-
tion principles for a weaker base theory B that are provable in T . The work of
Beklemishev [2] has shown how provability logic, particularly Japaridze’s poly-
modal variant GLP [13], provides an elegant framework for analyzing theories
in this fashion. GLP is a propositional logic which has one modality [n] for each
natural number. The expression [n]ϕ is read ϕ is n-provable, where n-provability
is defined by allowing any true Πn sentence as an axiom. Dually, 〈n〉ϕ denotes

Partially supported by the FWO-FWF Lead Agency Grant G030620N.
c© Springer Nature Switzerland AG 2022
S. Artemov and A. Nerode (Eds.): LFCS 2022, LNCS 13137, pp. 52–69, 2022.
https://doi.org/10.1007/978-3-030-93100-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93100-1_5&domain=pdf
http://orcid.org/0000-0001-8604-4183
http://orcid.org/0000-0002-2831-0575
http://orcid.org/0000-0001-9590-5045
https://doi.org/10.1007/978-3-030-93100-1_5

Hyperarithmetical Worm Battles 53

the n-consistency of ϕ, which is equivalent to the schema stating that all Σn

consequences of ϕ are true, also known as Σn-reflection.
This approach to ordinal analysis is based on special elements of the logic

–the so-called worms. Formally, worms are formulas of the form 〈n1〉 . . . 〈nm〉�,
representing iterated reflection principles. However, worms can be interpreted in
many ways: formulas of a logic, words over an infinite alphabet, special fragments
of arithmetic [1,16], Turing progressions [14,19], worlds in a special model for the
closed fragment of GLP, and also ordinals [10]. These interpretations of worms
allowed Beklemishev [2] to give an ordinal analysis of Peano arithmetic (PA) and
related systems, yielding as side-products a classification of provably total recur-
sive functions, consistency proofs, and a combinatorial principle independent of
PA, colloquially called Every Worm Dies.

Recently, Beklemishev and Pakhomov [5] extended the method of ordinal
analysis via provability logics to predicative systems of second order arithmetic.
It is important to investigate if said analysis also comes with the expected regular
side-products for theories beyond the strength of PA. This paper is a first explo-
ration in this direction, expanding on their analysis to provide combinatorial
principles independent of standard extensions of PA.

Beklemishev and Pakhomov’s analysis involves notions of provability natu-
rally corresponding to modalities [λ] for λ ≥ ω in the natural transfinite exten-
sion of GLP. This extension is denoted GLPΛ [4], where Λ is the supremum of all
modalities allowed. The model theory of the logics GLPΛ has been extensively
studied [8,9], as have various proof-theoretic interpretations [6,11,15]. Our first
result is that GLPΛ is also sound for the notions of provability employed in [5].

The soundness of GLPΛ allows us to develop combinatorial principles in the
style of Beklemishev [2], an effort that was initiated in Papafilippou’s master
thesis [17]. We consider variants of the Every Worm Dies principle, denoted
EWDΛ for suitable Λ. Our main results are that over elementary arithmetic
(EA), EWDω2

is equivalent to the 1-consistency of ACA, and that the principles
EWDn+1 lie between the 1-consistency of IΣn and that of IΣn+1.

2 Preliminaries

For first order arithmetic, we shall work with theories with identity in the lan-
guage LPA := {0; s,+, ·, exp} with exp being the unary function for x �→ 2x.
We define Δ0 = Σ0 = Π0-formulas as those whose quantifiers occur in the form
∀x<t ϕ or ∃x<t ϕ. Then inductively Σn+1/Πn+1-formulas are those of the form
∃xϕ/∀xϕ, where ϕ is a Πn/Σn-formula, respectively. We may extend the above
classes with a new predicate P by treating it as an atomic formula: the resulting
classes are denoted Πn(P), Σn(P), etc. More generally, for an extension L � LPA

of the language of PA with new predicate symbols, we write ΠL
n , ΣL

n , etc. to
denote the corresponding classes of formulas with any new predicate symbols of
L treated as atoms.

Elementary Arithmetic (EA) or Kalmar Arithmetic contains the basic axioms
describing the non-logical symbols together with the induction axiom Iϕ for every

54 D. Fernández-Duque et al.

Δ0-formula ϕ, which as usual denotes Iϕ := ϕ(0) ∧ ∀x
(
ϕ(x) → ϕ(S(x))

) →
∀x ϕ(x). For a given complexity class Γ , we denote by IΓ the theory extended
EA with induction for all Γ -formulas. By EA+ we denote the extension of EA by
the axiom expressing the totality of the super-exponentiation function 2x

y , which
is defined inductively as: 2x

0 := x; 2x
n+1 := 22

x
n . Finally PA can be seen as the

union of all IΣn for every n. A theory S of a language L ⊇ LPA is elementary
axiomatizable if there is a Δ0-formula AxS(x) that is true iff x is the code
of an axiom of S. By Craig’s trick, all c.e. theories have an equivalent that is
elementary axiomatizable.

The language of second order arithmetic is the extension of the language of
first order arithmetic LPA by the addition of second order variables and parame-
ters and the predicate symbol ∈. The expression t∈X is an atomic formula where
t is a term and X a second order variable. We add no symbol for the second
order identity and instead we express it in the language via extensionality.

Definition 1 (ACA). The theory ACA is a theory in the language of second
order arithmetic that extends PA by the induction schema for all second order
formulas and the comprehension schema: ∃Y ∀x (x∈Y ↔ ϕ(x)), for every arith-
metical formula with possibly both first and second order parameters (exclud-
ing Y).

Definition 2. For Λ an ordinal, the logic GLPΛ is the propositional modal logic
with a modality [α] for each α < Λ. Each [α] modality satisfies the GL identities
given by all tautologies, distribution axioms [α](ϕ → ψ) → ([α]ϕ → [α]ψ), Löb’s
axiom scheme [α]([α]ϕ → ϕ) → [α]ϕ and the rules modus ponens and necessi-
tation ϕ/[α]ϕ. The interaction between modalities is governed by two schemes,
monotonicity [β]ϕ → [α]ϕ and, negative introspection 〈β〉ϕ → [α]〈β〉ϕ where in
both schemes it is required that β < α < Λ. As usual 〈α〉ϕ is a shorthand for
¬[α]¬ϕ.

The closed fragment of GLPΛ suffices for ordinal analyses and worms are its
backbone.

Definition 3. The class of worms of GLPΛ is denoted WΛ and defined by
�∈WΛ, and A∈WΛ ∧ α<Λ ⇒ 〈α〉A∈WΛ. By WΛ

α we denote the set of worms
where all occurring modalities are at least α. We define an order <α for each
α<Λ by setting A<αB if GLPΛ�B→〈α〉A.

It will be convenient to introduce notation to compose and decompose worms.
Let us write α instead of 〈α〉 when this does not lead to confusion. For worms
A and B we define the concatenation AB via �B := B and (αA)B := α(AB).
We define the α-head hα of A inductively: hα(�) := �; hα(βA) := � if β<α, and
hα(βA) := βhα(A) otherwise. Likewise, we define the α-remainder rα of A as
rα(�) := � and, rα(βA) := βA if β<α and rα(βA) := rα(A) otherwise. We define
the head h and remainder r of αA as h(αA) := hα(αA) and r(αA) := rα(αA).
Further, h(�) := r(�) := �.

Hyperarithmetical Worm Battles 55

Lemma 1. The following formulas are derivable in GLPΛ:

(i) If α ≤ β and A ∈ WΛ, then GLPΛ � βαA → αA;
(ii) If α < β, then GLPΛ � βϕ ∧ αψ ↔ β(ϕ ∧ αψ);
(iii) If A ∈ WΛ

α+1, then GLPΛ � AC ∧ αB ↔ A(C ∧ αB);
(iv) If A ∈ WΛ

α+1, then GLPΛ � A ∧ αB ↔ AαB.

The proof of which follows successively from the axioms of GLPΛ, details for
which can be found in [3] and [4]. With this lemma in our tool-belt, we can prove
the following proposition which will be of use to us later as we present worm
battles.

Proposition 1. Let n ∈ N, α < Λ be ordinals, A ∈ Wα, and B ∈ Wα+1 be such
that |B| ≤ n.1 Then, GLPΛ � 〈α〉n+1� → AB.

Proof. We will prove this fact through two external inductions, first we will show
that for every n and B satisfying the above conditions, GLPΛ � 〈α〉n� → B. If
n = 0, then it is clear. Assume now that it holds for n = k. Let B ∈ Wα+1 with
|B| ≤ k and let β ≤ α, then in GLPΛ, 〈α〉k+1� � 〈α〉|B|+1� � 〈α〉〈α〉|B|� �
〈α〉B � 〈β〉B, where the first step uses at most k applications of the 4 axiom.

Now we will perform an external induction on |A|. If A= β for some β < α,
then we fall in the case of the previous induction. If A= 〈β〉C, where β < α and
GLPΛ � 〈α〉n+1� → CB, then in GLPΛ, 〈α〉n+1� � (CB ∧ 〈α〉�) � 〈α〉CB,
using Lemma 1.

From [2] we know that 〈Wω
n/≡, <n〉∼= 〈ε0,≺〉 so that worms (modulo provable

equivalence) can be used to denote ordinals. One can find analogs of fundamental
sequences for ordinals by defining Qα

0 (ϕ) := 〈α〉ϕ; Qα
k+1(ϕ) := 〈α〉(ϕ ∧ Qα

k (ϕ)
)
.

By an easy induction on k one sees that Qα
k+1(A) <β 〈α+1〉A for any β ≤ α

yielding a so-called step-down function.
This step-down function can be rewritten to get a more combinatorial flavour

reminiscent of the Hydra battle. To this end we define the chop-operator c on
worms that do not start with a limit ordinal by c(�) := �; c(〈0〉A) := A and,
c(〈α+1〉A) := 〈α〉A. Now we define a stepping down function based on a combi-
nation of chopping a worm, the worm growing back and using a given and fixed
fundamental sequence of the limit ordinals occurring in GLPΛ for countable Λ.

Definition 4 (Step-down function). For any number k let A[[k]] := c(A)
for A= � or A= 0B, A[[k]] :=

(
c(h(A))

)k+1
r(A) for A = 〈α + 1〉B and

A[[k]] := 〈λ[k]〉B for A = 〈λ〉B where λ is a limit ordinal and λ[k] is the k-th
element of the fundamental sequence of λ.

The definition above relates to the functions Qα
k and serves as a way to

produce fundamental sequences of worms inside 〈WΛ/ ≡, <0〉. With an easy
induction on k, one can prove the following:

Lemma 2. If A,B ∈ WΛ and A = 〈α+1〉B then for every k ∈ N we have that,

GLPΛ � Qα
k (B) ↔ (αhα+1(B))k+1rα+1(B).

1 The length of a worm |B| is defined inductively as: |�| = 0 and |αB| = 1 + |B|.

56 D. Fernández-Duque et al.

Then, assuming that there is a Δ1 coding of the ordinals present according
to EA, the following is provable over EA:

Corollary 1. For any k ∈ N and A ∈ WΛ with A �= �, we have A[[k]] <0 A.

Proof. Since for every natural number k: GLPΛ � 〈α+1〉B → Qα
k (B), for A =

〈α+1〉B, in GLPΛ, A � (αhα+1(B))k+2rα+1(B) � αA[[k]] � 0A[[k]]. The limit
stage follows by the monotonicity axiom of GLPΛ.

Given a worm A ∈ WΛ, we now define a decreasing sequence (strictly as
long as we have not reached �) by A0 := A and Ak+1 := Ak[[k + 1]]. We now
define the principle EWDΛ standing for Every Worm Dies as an arithmetisation
of ∀A ∈ WΛ∃kAk = �. Note that here the worms are coded as sequences of
ordinals which we achieve by assuming we have Δ1 codings of the ordinals < Λ
and of the relation α < β in EA.

The modalities of GLPω can be linked to arithmetic by interpreting
〈n〉ϕ for a given c.e. theory S ⊇ EA as the finitely axiomatisable scheme
Σn-RFN(S+ϕ∗) := {�S+ϕ∗σ → σ | σ ∈ Σn} ≡ Πn+1-RFN(S+ϕ∗). The
�S denotes the standard arithmetisation of formalised provability for the theory
S and ϕ∗ denotes an interpretation of ϕ in arithmetic, mapping propositional
variables to sentences, commuting with the connectives and, translating the 〈n〉
as above. This interpretation is used to classify the aforementioned first order
theories of arithmetic.

Theorem 1 (Leivant, Beklemishev [1,16]). Provably in EA+, for n≥1:

IΣn ≡ Σn+1-RFN(EA).

Further known results involving partial reflection are given by assessing the
totality of certain functions. For a Σ1-definable function f , by f↓ we denote the
arithmetical sentence ∀x∃yf(x) = y stating that f is defined everywhere and
likewise, by f(x)↓ we denote ∃yf(x) = y.

Lemma 3 ([3]). Let f be a Σ1-definable function that is non-decreasing and
f(x) ≥ 2x. Then,

EA � λx.f (x)(x)↓ ↔ 〈1〉EA f↓.

If we substitute f with exp, we get:

Corollary 2. Provably in EA, we have EA+ ≡ EA + Π2-RFN(EA).

3 Arithmetical Soundness of GLPΛ

In our interest of expanding the worm principle, we have to first expand the
interpretation of GLP in arithmetic for modalities [α] where α ≥ ω.

Let L be a language of arithmetic with or without a unary predicate T and
let S be a c.e. theory extending EA in a language extending L. We will prove
arithmetical soundness of GLPΛ for a particular interpretation for which most

Hyperarithmetical Worm Battles 57

of the work has already been done in [5] by proving arithmetical soundness for
the weaker system of RCΛ. As such, we will call onto many results from that
paper, starting with some properties of partial reflection in potentially extended
languages of arithmetic.

Lemma 4. For all sentences ϕ,ψ ∈ L and for every n ≥ 0, the following hold
provably in EA:

– If S � ϕ → ψ then ΠL
n+1-RFN(S + ϕ) � ΠL

n+1-RFN(S + ψ);
– ΠL

n+1-RFN(S + ϕ) � ϕ if ϕ ∈ ΠL
n+1;

– ΠL
n+1-RFN(S + ϕ) � ♦Sϕ.

It is a known result that ΠL
n+1-RFN(S) is finitely axiomatizable over EA for

L = LPA which is achieved by using truth-definitions for ΠLPA
n+1 -formulas. For

L � LPA, we have the following properties for truth definitions (Theorems 12 &
13, [5]):

Theorem 2. Let L be finite. There is a ΠL
1 -formula Tr such that for all ΔL

0 -
formulas ϕ(�x),

– EA � ∀ �x
(
Tr(ϕ(�x)) → ϕ(�x)

)
;

– EAL � ∀ �x
(
Tr(ϕ(�x)) ↔ ϕ(�x)

)
.

Let Γ be either ΠL
n or ΣL

n for n > 0, then there exists a Γ -formula TrΓ such
that for each Γ -formula ϕ(�x),

EAL � ∀ �x
(
TrΓ (ϕ(�x)) ↔ ϕ(�x)

)
.

For languages extending the language of arithmetic, we require a way to
finitely axiomatize ΔL

0 -induction, which is given for finite L (Lemma 4.2 in [7]).
Over EA we have the following theorem.

Theorem 3 (Theorem3, [5]). For finite L the schema ΠL
n+1-RFN(S) is

finitely axiomatizable

iδL ∧ ∀ϕ ∈ ΠL
n+1

(
�Sϕ → TrΠL

n+1
(ϕ)

)
,

where iδL is a ΠL
1 -axiomatization of IΔL

0 and TrΠL
m

is the truth definition for
ΠL

m-formulas.

From here on, we will be using ΠL
n+1-RFN(S) and the formula axiomatiz-

ing it interchangeably where applicable. By iδL we will always denote the ΠL
1 -

axiomatization of IΔL
0 .

Notation 1. Let L be finite, then given a formula ϕ ∈ L, we write [n]LSϕ as
shorthand for ∃ θ∈ΣL

n+1

(
TrΣL

n+1
(θ) ∧ �S(θ → ϕ)

)
.

The lemma below corresponds to the distributivity axiom L1. and we will be
using it to prove an arithmetical soundness of GLPΛ.

58 D. Fernández-Duque et al.

Lemma 5. If L is finite, then EAL � [n]LS(ϕ → ψ) → ([n]LSϕ → [n]LSψ).

Proof. Working within EAL, assume that ∃ θ1 ∈ ΣL
n+1

(
TrΣL

n+1
(θ1) ∧ �S(θ1 →

(ϕ → ψ))
)

and ∃ θ2∈ΣL
n+1

(
TrΣL

n+1
(θ2) ∧ �S(θ2 → ϕ)

)
. Since EAL �

TrΣL
n+1

(ϕ) ↔ ϕ for every ΣL
n+1-formula ϕ, it is then given that EAL �

TrΣL
n+1

(θ1∧θ2) ↔ TrΣL
n+1

(θ1)∧TrΣL
n+1

(θ2). Thus we get TrΣL
n+1

(θ1∧θ2)∧ �S

(
(θ1∧

θ2) → ψ
)
.

We will be focusing on languages extending that of arithmetic via the addition
of so-called truth predicates. These are unary predicates with the purpose of
expressing the truth of formulas −a task achieved by expanding our base theories
of arithmetic with the theory of the Uniform Tarski Biconditionals.

Definition 5. Let UTBL be the L∪T theory –where T is a unary truth predicate
not in L– axiomatized by the schema ∀�x

(
ϕ(�x) ↔ T(⌜ϕ(�̇x)⌝)

)
, for every L-formula

ϕ.

This process of extending the base language via the addition of truth predi-
cates can be iterated over ordinals. For that we assume that given an ordinal Λ
there are Δ1-formulas in the base language of arithmetic; x <Λ Λ and x ≤Λ y,
roughly expressing that “x is the code of an ordinal in Λ” and “x, y code ordinals
α, β with α < β” respectively. More formally, we want the following to hold:

– For every ordinal α < Λ, it holds that N � ⌜α⌝ <Λ Λ;
– for all ordinals α, β < Λ, it holds that α ≤ β iff N � ⌜α⌝ ≤Λ ⌜β⌝;
– EA � “ ≤Λ is a partial order”.

Notice that we make no demands on ≤Λ being a well order or even linear. Since
both x <Λ Λ and x ≤Λ y are Σ1-formulas, we can use Σ1-completeness to have
for every representable theory S ⊇ EA that N � x <Λ Λ implies �S ẋ <Λ Λ, and
similarly N � x <Λ y implies �S ẋ <Λ ẏ. For the remainder of this paper we will
write α < β instead of ⌜α⌝ <Λ ⌜β⌝ and α < Λ instead of ⌜α⌝ <Λ Λ.

With all that in mind, we can return to extending the base language with
iterated truth predicates.

Definition 6. Given an at most finite extension of the language of arithmetic
L, let Lα := L ∪ {Tβ : β < α}. We then define UTBα as the Lα+1 theory
UTBLα

[T ← Tα]. Additionally, we define:

UTB<α :=
⋃

β<α

UTBβ , UTB≤α := UTB<α ∪ UTBα.

Given an ordinal α, we write

UTB�α� :=

{
UTBβ , if α = ω(1 + β) + n;
∅, if α = n.

Observe that the β above is unique for given α.

Hyperarithmetical Worm Battles 59

Typically, the language Lα is going to be infinite. So in order to make use
of Theorem 3, we will use a translation of formulas to a finite fragment of the
language as is done in [5]. Given an L-formula ϕ and some ordinal α, let ϕ•

denote the result of the simultaneous substitution of Tα(Tβ(ṫ)) for Tβ(t) in ϕ
for every β < α (not substituting inside the terms t). Then we write UTB•

≤α to
denote the Lα+1-theory axiomatized by {ϕ• : ϕ ∈ UTB≤α}.

Lemma 6. For all ϕ ∈ Lα+1,

– EA + UTBα � ϕ ↔ ϕ•;
– EA + UTB≤α � ϕ iff EA + UTB•

≤α � ϕ•

It is formalizable in EA that for any c.e. L-theory S ⊇ EA, the theory
S + UTB is a conservative extension over S for L-formulas [12]. In particular,
given α < β and S ⊇ EA + UTB<α a c.e. Lα-theory, then S + UTB<β is a
conservative extension over S for Lα-formulas [5].

From here on, we will assume that L ⊇ LPA is at most a finite extension
of the language of arithmetic. For a given elementary well-ordering (Λ,<), we
expand it into an ordering of (ω(1 + Λ), <) by encoding ωα + n as pairs 〈α, n〉
with the expected ordering on them.

Definition 7 (Hyperarithmetical hierarchy). For ordinals up to ω(1 + Λ),
we define the hyperarithmetical hierarchy as (Σα is defined similarly):

– Πn := ΠL
n , for every n < ω;

– Πω(1+α)+n := ΠLα
n+1(Tα);

– For λ a limit ordinal, we denote Π<λ :=
⋃

α<λ Πα.

For any theory S and for every α, λ < ω(1+Λ), where λ is a limit ordinal, we
define Rα(S) := Π1+α-RFN(S) and R<λ(S) := Π<λ-RFN(S). Using Lemma 6
and Theorem 3, we obtain:

Proposition 2 (Proposition 5.4 [5]).

(i) If S ⊇ EA + UTBα, then over EA + UTBα,

Rω(1+α)+n(S) ≡ ΠL
n+1(Tα)-RFN(S);

(ii) If S ⊇ EA+UTBα and β = ω(1+α)+n, then Rβ(S) is finitely axiomatizable
over EA + UTBα;

(iii) If S ⊇ EA + UTB<α, then over EA + UTB<α,

R<ω(1+α)(S) ≡ Lα-RFN(S) ≡ {Rβ(S) : β < ω(1 + α)}.

Now we can define the interpretation of [α]ϕ that we will be using for the
soundness proof.

60 D. Fernández-Duque et al.

Definition 8. We will write [α]Sϕ as a shorthand for the finite axiomatization
of ¬Rα(S + ¬ϕ) given by Statement (ii) of Proposition 2. which for α = ω(1 +
β) + n, is the Σα-formula:

iδL(Tβ) → ∃ θ ∈ Σ
L(Tβ)
n+1

(
Tr

Σ
L(Tβ)
n+1

(θ) ∧ �S(θ → ϕ)
)
,

where iδL(Tβ) is a finite Π
L(Tβ)
1 -axiomatization of IΔ

L(Tβ)
0 .

Similarly, by 〈α〉ϕ we will denote the finite axiomatization of Rα(S + ϕ).

An arithmetical realization is a function (·)∗
S from the language of GLPΛ to

LΛ, mapping propositional variables to formulas of LΛ and preserving the logical
operations: (ϕ∧ψ)∗

S := ϕ∗
S ∧ψ∗

S , (¬ϕ)∗
S := ¬ϕ∗

S , and ([α]ϕ)∗
S := [α]Sϕ∗

S . GLPΛ

is sound for this interpretation.

Theorem 4. For every S ⊇ EA+UTB<Λ and every formula ϕ in the language
of GLPΛ,

GLPΛ � ϕ ⇒ EA + UTB<Λ � (ϕ)∗
S , for every realization (·)∗

S of the variables of ϕ.

The proof of soundness from here on is routine, starting with the corresponding
provable completeness.

Lemma 7 (Provable Σα-completeness).

EA + UTB�α� � ϕ → [α]Sϕ, if ϕ ∈ Σα.

Proof. From Statement (ii) of Proposition 2, [α]Sϕ is finitely axiomatizable in
EA+UTB�α�. We will prove the contrapositive by reasoning within EA+UTB�α�.
Assume the finite axiomatization of Rα(S +¬ϕ), which implies �S+¬ϕ¬ϕ → ¬ϕ
because ¬ϕ ∈ Πα. Since �S+¬ϕ¬ϕ holds, ¬ϕ follows.

Now we have all the tools to prove Löb’s derivability conditions:

Lemma 8. Let α < β and EA + UTB�α� + UTB�β� ⊆ S, then

(i) If S � ϕ then EA + UTB≤Λ � [α]Sϕ;
(ii) EA + UTB≤Λ � [α]S(ϕ → ψ) → ([α]Sϕ → [α]Sψ);
(iii) EA + UTB≤Λ � [α]Sϕ → [α]S [α]Sϕ;
(iv) EA + UTB≤Λ � [α]Sϕ → [β]Sϕ;
(v) EA + UTB≤Λ � 〈α〉Sϕ → [β]S

(〈α〉Sϕ
)
.

Proof. By statement (ii) of Proposition 2 the [α]Sϕ and [β]Sϕ formulas are well
defined as the finite axiomatizations of ¬Rα(S + ¬ϕ) and ¬Rβ(S + ¬ϕ) respec-
tively.

(i) The assumption implies EA � �Sϕ and so statement (i) follows.
(ii) Immediate from the statement (i) of Proposition 2 and Lemma 5.
(iii) Follows from Lemma7 as [α]Sϕ is a Σα formula.

Hyperarithmetical Worm Battles 61

(iv) Assume that α = ωγ + n and β = ωδ + m with γ < δ and reasoning in
EA + UTB�α� + UTB�β� we remark that if a formula ϕ is Σα then it is
equivalent to Tδ(ϕ) which is a Σωδ-formula.

(v) Since 〈α〉Sϕ is a Πα-formula then, reasoning as above, it is also a Σβ-
formula over
EA + UTBγ + UTBδ.

Lemma 9 ([11]). Let GL� be the extension of GL by a new modal operator �
and the axioms �ϕ → �ϕ, �ϕ → ��ϕ, and �(ϕ → ψ) → (�ϕ → �ψ). Then
for all ϕ, �(�ϕ → ϕ) → �ϕ.

Since Löb’s theorem holds for [0] as usual from the fixed point theorem, we
conclude that it holds for all modalities, concluding our proof of Theorem 4.

Lemma 10. Let EA+UTB�α� ⊆ S. Then, EA+UTB≤Λ � [α]S([α]Sϕ → ϕ) →
[α]Sϕ.

4 Worm Battles Outside PA

Let ≡α and ≡<λ denote equivalence for Π1+α and Π<λ-sentences respectively.
In [5] two conservation results are proven to hold provably in EA+: Theorems 5
and 6. We fix a particular Λ.

4.1 The Reduction Property

The first conservation result centers around the case for reflection on limit ordi-
nals.

Theorem 5. Let λ = ω(1 + α) and S⊇EA + UTBα. Over EA + UTB<Λ,
Rλ(S) ≡<λ R<λ(S).

The second conservation result centers around successors. It can be viewed
as an extension of the so-called reduction property (cf. [3]) to cover all successor
ordinals and not just the finite ones.

Theorem 6. Let V be a Π1+α+1-axiomatized extension of EA + UTB<Λ and
let provably S ⊇ V . Then, over V , Rα+1(S) ≡α {Rα(S), Rα(S + Rα(S)), . . .}.

As in the case of GLPω we can recast these conservation results in terms
of our interpreted modalities (using the same notation for the modality and its
arithmetical denotation).

Corollary 3 (Reduction Property). If β ≤ α, λ < Λ with λ being a limit
ordinal, then

EA+ + UTB<Λ � 〈β〉〈α+1〉ϕ ↔ ∀ k 〈β〉Qα
k (ϕ);

EA + UTB<Λ � 〈β〉〈λ〉ϕ ↔ ∀ k 〈β〉〈λ[k]〉ϕ.

62 D. Fernández-Duque et al.

Proof. By Theorem6 for V = EA + UTBΛ and S = V + ϕ, we have

{〈α + 1〉ϕ} ≡β {Qα
k (ϕ) : k < ω}

holds over EA+UTBΛ and is an equivalence formalizable in EA+ +UTB<Λ. So
over EA+ + UTB<Λ, a Π1+β sentence is provable from 〈α + 1〉ϕ if and only if it
is so from Qα

k (ϕ), for some k which proves the first Reduction Property.
For the second, by Theorem 5 for S = EA+UTB�λ� +ϕ, over EA+UTB<Λ,

{〈λ〉ϕ} ≡<λ {〈γ〉ϕ : γ < λ}, and the equivalence is also provable over EA +
UTB<Λ. So over EA + UTB<Λ, a Π1+β-sentence ψ is provable from 〈λ〉ϕ if and
only if it is so from 〈γ〉ϕ for some γ < λ. Let k be such that γ < λ[k], then ψ is
also provable from 〈λ[k]〉ϕ.

In the first order language L(T), consider the following theory

PA(T) := EA+UTBL(T) + R<ω2(EA+UTBL(T)),

equivalent (provably so in EA+) to the corresponding PA(T) in [5] and to CT in
[12]. We have the following well known result from [12]:

Theorem 7. PA(T) and ACA are proof theoretically equivalent.

As such, we are going to use PA(T) as a substitute for ACA in our theorem
on the equivalence between it and the corresponding worm principle.

Theorem 8. EWDω2 is equivalent to 1-Con(PA(T)) in EA.

At the same time, we will prove a relationship between the worm principle and
IΣn. It is currently unknown whether the implication is in fact an equivalence.

Theorem 9. Over EA the following hold:

1-Con(IΣn) � EWDn;

EWDn+1 � 1-Con(IΣn).

We will prove the theorems simultaneously since the proofs for both are
similar. To this end, we will make an abuse of notation using the fact that
provably over EA, EA + UTB is a conservative extension of EA for L-formulas.
For the remainder of this paper we write [α]ϕ to mean [α]EA+UTBϕ. Note that
if ϕ ∈ L, then [α]ϕ is equivalent to [α]EAϕ due to conservativity. We will make
the same convention for the 〈α〉ϕ and the proof theoretic worms.

4.2 From 1-consistency to the Worm Principle

The proof for both directions will follow the structure of the corresponding proof
in [3].

Hyperarithmetical Worm Battles 63

Proposition 3.

1. EA + 1-Con(PA(T)) � EWDω2;
2. EA + 1-Con(IΣn) � EWDn.

There is a distinction in the first step of this proof, due to the fact that IΣn

is an extension of EA with reflection for a successor ordinal, in comparison to
PA or PA(T), which correspond to reflection for a limit.

Lemma 11. For any A∈Wω2, PA(T) � A.

Proof. For every A ∈ Wω2, there is some m > 0 such that A ∈ Wω+m and so by
Proposition 1,

GLP � 〈ω + m〉� → A.

Therefore, by arithmetical soundness of GLP, it holds that EA + UTB �
〈ω+m〉� → A and since PA(T) � 〈ω+m〉�, the lemma follows and its proof
is formalizable in EA (or EA+ if we are to use the corresponding PA(T) in [5]).

Similarly for the IΣn, we have the corresponding theorem giving us the proof
theoretic worms we can make use of in its case.

Lemma 12. For any A∈Wn+1, IΣn � A.

Proof. By Proposition 1 we have that for every A ∈ Wn+1, GLP � 〈n+1〉� → A.
Therefore, by arithmetical soundness of GLP, it holds EA � 〈n + 1〉� → A and
since IΣn � 〈n + 1〉�, the lemma follows and its proof is formalizable in EA+.

Now we introduce a notation we will use for the remainder of the proof of
this direction. Given a worm A, we define A+ inductively by �+ := � and if
A = 〈α〉B then A+ = 〈α + 1〉(B+).

Lemma 13. EA � ∀A∈Wω2 ∀ k
(
Ak �=� → �(A+

k → 〈1〉 A+
k+1)

)
.

Proof. It is sufficient to prove in EA

∀A�=� ∀ k EA + UTB � A+ → 〈1〉 A[[k]]+.

For this, we will move over to GLPω2 where we have that the following proof
is bounded by a function elementary in A and k and hence it is formalizable in
EA that GLPω2 � A → ♦A[[k]], and as theorems of GLPω2 are stable under the
(·)+ operator, GLPω2 � A+ → 〈1〉 A[[k]]+, which by the arithmetical soundness
of GLPω2, proves that for every A ∈ Wω2 with A �= � and for every k,

EA + UTB � A+ → 〈1〉 A[[k]]+.

From here, we are of course unable to use Σ1-induction to prove

EA � ∀ k
(
Ak �=� → �(A+

k → 〈1〉 A+
k+1)

)
,

which is how we would –in principle– expect to complete the proof. Instead we
use the fact that for a given k, the proof of A+

k → 〈1〉 A+
k+1 is bounded by an

64 D. Fernández-Duque et al.

elementary function of A and k. The proof itself can be formalized within EA
and therefore the formula �(A+

k → 〈1〉 A+
k+1)

)
can be written as a Δ0-formula

by placing the existential quantifier inside this bound. So we complete the proof
with a Δ0-induction.

Lemma 14. EA � ∀A∈Wω2
(〈1〉 A+

0 → ∃m Am = �)
.

Proof. We prove the contrapositive. The first part of our reasoning will prepare
for an application of Löb’s theorem. Reasoning within EA,

[1]∀m [1]¬A+
m � [1]∀m [1]¬A+

m+1 � ∀m [1][1]¬A+
m+1.

Therefore, using Lemma 13 in the form EA � ∀ k
(
Ak �=� → [1]([1]¬A+

k+1 →
¬A+

k)
)
,

∀m Am �=� ∧ [1]∀m [1]¬A+
m � ∀m Am �=� ∧ ∀m [1][1]¬A+

m+1 � ∀m [1]¬A+
m.

Thus EA � ∀m Am �=� → ([1]∀m [1]¬A+
m → ∀m [1]¬A+

m). Then,
after necessitation on the [1]-modality and distribution we have EA �
[1]∀m Am �=� → [1]([1]∀m [1]¬A+

m → ∀m [1]¬A+
m), hence by Löb’s theorem

EA � [1]∀m Am �=� → [1]∀m[1]¬A+
m.

Now observe that ∀m Am �=� is Π1, so certainly Σ2 and hence by Σ2-
completeness

EA � ∀m Am �=� → [1]∀m Am �=�.

But then in EA,

∀m Am �=� � ∀m Am �=� ∧ [1]∀m[1]¬A+
m � ∀m [1]¬A+

m � [1]¬A+
0 .

By contraposition EA � 〈1〉A+
0 → ∃m Am = �, as desired.

Note that the use of A+ in the above lemma does not allow us to apply it to
EWDn+1 in place of EWDω2. Moreover, it cannot be avoided using the current
proof. Now we prove Proposition 3: from Lemmata 11 and 14 we obtain that for
each A∈Wω2, PA(T) � 〈1〉 A+ and over EA

〈1〉 PA(T) � ∀A∈Wω2 〈1〉 A+ � ∀A∈Wω2 ∃m Am = � � EWDω2.

Similarly for the case of IΣn, from Lemmata 12 and 14 we obtain that formal-
isably in EA, for each A ∈ Wn, IΣn � 〈1〉 A+ and EA � 〈1〉 A+ → ∃m Am = �.
Hence, as before we obtain ∀A∈Wn ∃m Am =�, which is EWDn.

4.3 From the Worm Principle to 1-consistency

Now we prove the second direction of Theorem 8, proving independence of
EWDω2.

Hyperarithmetical Worm Battles 65

Proposition 4.

1. EA + EWDω2 � 1-Con(PA(T));
2. EA + EWDn+1 � 1-Con(IΣn).

We use a Hardy functions’ analogue hA(m) defined as the smallest k such that
A[[k

m]] = �, where A[[k
m]] := A[[m]] . . . [[m+k]]. Each function hA is computable and

hence there is a natural Σ1 presentation of hA(m) = k in EA. We will use the
following relation to prove monotonicity for the hA function.

Definition 9. For A,B ∈ Wω2, we define the partial ordering B � A iff B = �
or A = DαC and B = βC for some β ≤ α.
For every natural number m, we define B �m A iff B � A and additionally, if
B = nC with n < ω and, A = DαC with α ≥ ω, then n ≤ m.

Of course, by the definition, we immediately have that if B �m A and m ≤ n
then B �n A. Additionally, if A = CB for some C then B �m A for every m ≥ 0.
Over EA, and for worms in Wω2, we have the following:

Lemma 15. If hA(m) is defined and B �m A, then ∃ k A[[k
m]] = B.

Proof. The Definition of the step-down function A[[·]] is such that an ordinal αi of
A = α|A|−1 . . . α0 can only change if all elements to the left of it are deleted. So by
the assumption of A[[s

m]] = � there is some k0 such that A[[k0
m]] = α|B|−1 . . . α0.

We consider the case where α|B|−1 ≥ ω and the corresponding ordinal β|B|−1

in B = β|B|−1 . . . β0 is <ω; the other cases are similar. Then by assumption of
B �m A, the ordinal β|B|−1 is also some n≤m.

Let α|B|−1 = ω + l, then we can prove with Δ0-induction on l bounded
by s that there is some k1 such that A[[k1

m]] = 〈ω〉C where B = 〈n〉C and
A = D〈ω + l〉C. Then A[[k1+1

m]] = 〈m + k1 + 1〉C. With a second Δ0-induction
bounded by s, we can find as before some k < s such that A[[k

m]] = B.
A more detailed proof can be found in the proofs of lemmata 9.4.3 and 6.3.3

in [17].

The above can be easily expanded into the following:

Corollary 4. If hA(n) is defined and B �n A, then ∀m≤n ∃ k A[[k
n]] = B[[m]].

Proof. By Lemma 15, there is k1 such that A[[k1
n]] = B. Then, as k1+1 > n ≥ m,

there is some C such that A[[k1+1
n]] = CB[[m]] and since hA(n) halts, we can use

Lemma 15 once more to show that there is some k2 such that A[[k1+k2
n]] = B[[m]].

Using this result, we have the following monotonicity statement:

Lemma 16. If hA(y) is defined, B �y A and x ≤ y, then hB(x) is defined and
hB(x) ≤ hA(y).

Proof. By applying Corollary 4 several times, we obtain s0, s1, . . . such that
A[[s0

y]] = B[[x]], where y + s0 ≥ x, A[[s0+s1
y]] = B[[x]][[x + 1]], where y + s0 + s1 ≥

x + 1, etc. Hence all elements of the sequence starting with B occur in the
sequence for A and since hA(y) is defined, so is hB(x).

66 D. Fernández-Duque et al.

Next we look into some results that bound the functions hA from below and
compare them with some fast growing functions.

Lemma 17. For every A,B ∈ Wω2, if hB0A(n) is defined, then

hB0A(n)= hA(n + hB(n) + 2) + hB(n) + 1 > hA(hB(n)).

Proof. Since 0A �0 B0A, by Lemma15 we have that hB(n) is defined. As B0A
first rewrites itself to 0A in hB(n) steps and then begins to rewrite A into � at
step n + hB(n) + 2, we have that hA(n + hB(n) + 2) is then defined. Finally, by
Lemma 16, hA(hB(n)) ≤ hA(n + hB(n) + 2) and it is also defined.

Seeing how easy it is to achieve a lower bound based on the composition of
functions, we can proceed by trying to get in-series iterations of this. Since the
hA functions are in general strictly monotonous, we will be getting faster and
faster growing functions by following this method.

Corollary 5. If A ∈ Wω2
1 and h1A(n) is defined, then h1A(n) > h

(n)
A (n).

Proof. Since (1A)[[n]] = (0A)n+1, we can perform induction on the number of
in-series concatenations of 0A by applying Lemma17.

As an application of this, we can see how quickly we reach superexponential
growth.

Corollary 6. If h1111(n) is defined then, h1111(n) > 2n
n and h111(n) > 2n.

Proof. We will make use of Corollary 5 multiple times. Clearly we first have that
h1111(n) > h

(n)
111(n), then h111(n) > h

(n)
11 (n) and h11(n) > h

(n)
1 (n). We can easily

prove by induction in EA that h1(n) = n + 1. So by applying the compositions,
h11(n) > 2n and so h111(n) > 2n and finally h1111 > 2n

n.

At this point we find ourselves equipped to tackle the main lemma on which
the proof of this direction rests. Due to the complexity added by the limit ordinal
ω, there is a technical addition in this proof when compared to the corresponding
proof for PA in [3].

Lemma 18. EA � ∀A∈Wω2
1 (hA1111↓ → 〈1〉 A).

Proof. By Löb’s Theorem, this is equivalent to proving

EA � �
(∀A∈Wω2

1 (hA1111↓ → 〈1〉 A)
) → ∀A∈Wω2

1 (hA1111↓ → 〈1〉 A). (1)

We reason in EA. Let us take the antecedent of (1) as an additional assump-
tion, which by the monotonicity axiom of GLPω interpreted in EA, implies
[1]

(∀A∈Wω2
1 (hA1111↓ → 〈1〉 A)

)
. This in turn implies:

∀A∈Wω2
1 [1](hA1111↓ → 〈1〉 A). (2)

Hyperarithmetical Worm Battles 67

We make a case distinction on whether A1111 starts with a 1 or with an
ordinal strictly larger than 1.

If A1111 = 1B then by Corollary 5, we have h1B↓ → λx.h
(x)
B (x)↓. The func-

tion hB is increasing, has an elementary graph and grows at least exponentially
as per Corollary 6, h111 > 2x. So for A= � we have that h1111↓ implies the total-
ity of 2x

n and hence EA+, which by Corollary 2, implies 〈1〉�.2 If A is nonempty,
we reason as follows:

λx.h
(x)
B ↓ � 〈1〉 hB↓, by Lemma 3

� 〈1〉 〈1〉 B, by Assumption (2)
� 〈1〉 A.

If A1111= C starts with α > 1, we have hC↓ � λx.hC[[x]](x + 1)↓ � ∀n hC[[n]]↓.
The last implication is derived by application of Lemma 16 as for arbitrary n, if
x ≤ n then hC[[n]](x) ≤ hC[[n]](n + 1) and if n ≤ x then hC[[n]](x) ≤ hC[[x]](x + 1).
In both cases, the larger value is defined.

We can perform this line of argument a second time, something we will use
for the case that α = ω, obtaining

∀n hC[[n]]↓ � ∀n λx.hC[[n]][[x]](x + 1)↓ � ∀n hC[[n]][[n+1]]↓.

Now notice that no matter what the α is, we will always have that either
1(C[[n]]) �1 C[[n + 1]] or 1(C[[n]]) �1 C[[n + 1]][[n + 2]]. To prove this, let D be
such that C = αD1111.

If α = ω, then 1(C[[n]]) = 1nD1111 and C[[n+1]] = 〈n +
1〉D1111 therefore C[[n+1]][[n+2]] = (nhn+1(D1111))n+3rn+1(D1111) =
(nhn+1(D1111))n+2nD1111. So if n = 0 then since D ∈ Wω2

1 , we have that
r1(D1111) = � and therefore,

C[[n+ 1]][[n+ 2]] = (0D1111)0+20D1111 = 0D11110D11110D1111 = 0D11110D1111C[[n]].

If n > 0 then clearly nhn+1(D1111) has as its rightmost element something ≥ 1
and so 1(C[[n]]) �1 C[[n + 1]][[n + 2]].

If α �= ω then, 1(C[[n]]) = 1(〈α − 1〉hα(D1111))n+1rα(D1111) and

C[[n+1]] = (〈α − 1〉hα(D1111))n+2rα(D1111).

So 1(C[[n]]) �1 C[[n + 1]]. Therefore we have:

∀n hC↓ � ∀n h1(C[[n]])↓ (by the above)

� ∀n λx.h
(x)
C[[n]](x)↓

� ∀n 〈1〉 hC[[n]]↓ (by Lemma 3).

2 Since over EA, it is provable that EA + UTB is conservative over EA, by their
definition, 〈1〉EA� and 〈1〉EA+UTB� are equivalent.

68 D. Fernández-Duque et al.

Again observe that since A starts with something bigger than 1, we have C[[n]] =
A[[n]]1111, hence we can apply our assumption. Hence the argument continues,

� ∀n 〈1〉 (〈1〉 A[[n]]) by Assumption (2)
� 〈1〉 A (by the reduction property).

The last step is achieved because hC↓ implies h1111↓ which, as per our first step
in this proof, implies EA+, hence allowing the use of the reduction property.

Now to prove Proposition 4 assume that EWDω2 holds. In EA + UTB we
have that

∀A∈Wω2 ∃m Am =� � ∀A∈Wω2
1 hA↓ � ∀n 〈1〉 〈ω + n〉� � 1-Con(PA(T)).

The first implication holds since for every worm A and every number x, there is
a worm A′ = 0xA where A′[[x−1

0]] = A hence ∃m A′
m = � iff hA(x) is defined.

As for the case of EWDn+1, assume that EWDn+1 holds. We have in EA
that

∀A∈Wn+1 ∃m Am = � � ∀A∈Wn+1
1 hA↓

� ∀ k 〈1〉 (〈n + 1〉�[[k]]
)
, by Lemma 18

� 〈1〉 〈n + 1〉� (by the reduction property)
� 1-Con(IΣn).

For the use of the reduction property, notice that here 〈1〉 〈n + 1〉� → 〈1〉�
which in turn implies EA+.

5 Concluding Remarks

We have shown that GLPΛ is sound for the transfinite notions of provability
studied by Beklemishev and Pakhomov [5], and with this we have shown that
a natural extension of the Every Worm Dies principle is independent of ACA.
Likewise, we have shown that restricted versions of this principle are related to
the theories IΣn, although in this case we do not obtain a precise equivalence.
Whether EWDn+1 is indeed equivalent to one of 1-Con(IΣn) or 1-Con(IΣn+1)
remains open.

Stronger theories of second order arithmetic should also be proof-theoretically
equivalent to reflection up to a suitable ordinal Λ. These equivalences may then
be used to provide new variants of EWD independent of stronger theories of
second order arithmetic, including theories related to transfinite induction or
iterated comprehension. We expect that this work will be an important step in
this direction.

Hyperarithmetical Worm Battles 69

References

1. Beklemishev, L.D.: Induction rules, reflection principles, and provably recursive
functions. Ann. Pure Appl. Log. 85, 193–242 (1997)

2. Beklemishev, L.D.: Provability algebras and proof-theoretic ordinals, I. Ann. Pure
Appl. Log. 128, 103–124 (2004)

3. Beklemishev, L.D.: Reflection principles and provability algebras in formal arith-
metic. Uspekhi Matematicheskikh Nauk 60(2), 3–78 (2005). (in Russian). English
translation. In: Russian Mathematical Surveys 60(2), 197–268 (2005)

4. Beklemishev, L.D., Fernández-Duque, D., Joosten, J.J.: On provability logics with
linearly ordered modalities. Stud. Logica. 102, 541–566 (2014)

5. Beklemishev, L.D., Pakhomov, F.N.: Reflection algebras and conservation results
for theories of iterated truth. arXiv arXiv:1908.10302 [math.LO] (2019)

6. Cordón Franco, A., Fernández-Duque, D., Joosten, J.J., Lara Martín, F.: Predica-
tivity through transfinite reflection. J. Symb. Log. 82(3), 787–808 (2017)

7. Enayat, A., Pakhomov, F.: Truth, disjunction, and induction. Arch. Math. Logic
58(5–6), 753–766 (2019)

8. Fernández-Duque, D.: The polytopologies of transfinite provability logic. Arch.
Math. Logic 53(3–4), 385–431 (2014)

9. Fernández-Duque, D., Joosten, J.J.: Models of transfinite provability logics. J.
Symb. Log. 78(2), 543–561 (2013)

10. Fernández-Duque, D., Joosten, J.J.: Well-orders in the transfinite Japaridze alge-
bra. Logic J. IGPL 22(6), 933–963 (2014)

11. Fernández-Duque, D., Joosten, J.J.: The omega-rule interpretation of transfinite
provability logic. Ann. Pure Appl. Logic 169(4), 333–371 (2018)

12. Halbach, V.: Axiomatic Theories of Truth. University of Oxford (2014)
13. Japaridze, G.: The polymodal provability logic. In: Intensional Logics and Logical

Structure of Theories: Material from the 4th Soviet-Finnish Symposium on Logic.
Metsniereba, Telaviv (1988). (in Russian)

14. Joosten, J.J.: Turing-Taylor expansions of arithmetic theories. Stud. Logica. 104,
1225–1243 (2016)

15. Joosten, J.J.: Münchhausen provability. J. Symb. Log., 1–30 (2021). https://doi.
org/10.1017/jsl.2021.44

16. Leivant, D.: The optimality of induction as an axiomatization of arithmetic. J.
Symb. Log. 48, 182–184 (1983)

17. Papafillipou, K.: Independent combinatoric worm principles for first order arith-
metic and beyond. Master’s thesis, Master of Pure and Applied Logic, University
of Barcelona (2020). http://diposit.ub.edu/dspace/handle/2445/170755

18. Rathjen, M.: The art of ordinal analysis. In: Proceedings of the International
Congress of Mathematicians, vol. 2, pp. 45–69. European Mathematical Society
(2006)

19. Turing, A.: Systems of logics based on ordinals. Proc. Lond. Math. Soc. 45, 161–228
(1939)

http://arxiv.org/abs/1908.10302
https://doi.org/10.1017/jsl.2021.44
https://doi.org/10.1017/jsl.2021.44
http://diposit.ub.edu/dspace/handle/2445/170755

Parametric Church’s Thesis:
Synthetic Computability Without Choice

Yannick Forster(B)

Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
forster@cs.uni-saarland.de

Abstract. In synthetic computability, pioneered by Richman, Bridges,
and Bauer, one develops computability theory without an explicit model
of computation. This is enabled by assuming an axiom equivalent to
postulating a function φ to be universal for the space N→N (CTφ, a
consequence of the constructivist axiom CT), Markov’s principle, and at
least the axiom of countable choice. Assuming CT and countable choice
invalidates the law of excluded middle, thereby also invalidating classical
intuitions prevalent in textbooks on computability. On the other hand,
results like Rice’s theorem are not provable without a form of choice.

In contrast to existing work, we base our investigations in construc-
tive type theory with a separate, impredicative universe of propositions
where countable choice does not hold and thus a priori CTφ and the law
of excluded middle seem to be consistent. We introduce various para-
metric strengthenings of CTφ, which are equivalent to assuming CTφ

and an Sm
n operator for φ like in the Sm

n theorem. The strengthened
axioms allow developing synthetic computability theory without choice,
as demonstrated by elegant synthetic proofs of Rice’s theorem. More-
over, they seem to be not in conflict with classical intuitions since they
are consequences of the traditional analytic form of CT.

Besides explaining the novel axioms and proofs of Rice’s theorem we
contribute machine-checked proofs of all results in the Coq proof assistant.

The constructivist axiom CT (“Church’s thesis”) [24,41] states that every
function N→N is computable in a fixed model of computation. In his 1992 book
Odifreddi states that the consistency of CT has been established “for all current
intuitionistic systems (not involving the concept of choice sequence)” [29, §1.8
pg. 122]. For constructive type theory the consistency question is not solved
entirely, but recent breakthroughs include a consistency proof for univalent type
theory [40] and Martin-Löf type theory [43].

Assuming CT enables developing computability theory in constructive logic
in full formality without explicit encodings of programs in models of computa-
tion. However, philosophicallyCT is unpleasing since its definition still requires the
definition of a model. In his seminal paper “Church’s thesis without tears” [34],
Richman introduces a purely synthetic form of CT not mentioning any model of
computation, which is powerful enough to develop computability theory synthet-
ically. The axiom is equivalent to assuming a function φ and an axiom CTφ which
c© Springer Nature Switzerland AG 2022
S. Artemov and A. Nerode (Eds.): LFCS 2022, LNCS 13137, pp. 70–89, 2022.
https://doi.org/10.1007/978-3-030-93100-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93100-1_6&domain=pdf
http://orcid.org/0000-0002-8676-9819
https://doi.org/10.1007/978-3-030-93100-1_6

Parametric Church’s Thesis: Synthetic Computability Without Choice 71

postulates that φ is a step-indexed interpreter universal for the function space
N→N, i.e. that every f :N→N has a code c:N such that φc agrees with f [15].
Richman routinely assumes both Markov’s principle MP and the axiom of count-
able choice ACN (or even stronger forms like dependent choice), as is the case in
later work by Richman and Bridges [8] and Bauer [4]. As a consequence, the law
of excluded middle LEM becomes disprovable, since LEM and ACN together entail
that every predicate is decidable, which is clearly in contradiction to results of syn-
thetic computability deducible from CTφ. Text book presentations of computabil-
ity however make crucial use of classical logic, rendering synthetic computability
a constructivist niche.

However, Richman and Bridges state that ACN can “usually be avoided” [8,
pg. 54] by postulating a composition function w.r.t. φ, which as consequence
allows proving an Sm

n principle w.r.t. φ which we abbreviate as SMNφ. In this
paper, we show that their observation indeed holds true.

We work in the calculus of inductive constructions (CIC), the type theory
underlying the Coq proof assistant,1 which is a foundation for constructive math-
ematics where the axiom of countable choice is independent, i.e. can be consis-
tently assumed but is not provable.

Contribution. We introduce several axioms equivalent to assuming φ such that
CTφ ∧ SMNφ. Since working with Sm

n operators in applications explicitly is
tedious, we define all axioms via a respective notion of parametric universal-
ity. As a consequence, the statements of the axioms become more uniform and
compact. At the same time, the axioms become easier to use in applications.
The resulting theory enables carrying out synthetic computability theory with-
out any form of choice axiom, rendering the theory agnostic towards axioms like
the law of excluded middle and thereby compatible with classical intuitions.

All axioms have in common that they allow defining a enumerable but
undecidable predicate K, where both enumerability and decidability are defined
purely in terms of functions rather than computable functions. Since all axioms
are a consequence of the constructivist axiom CT, they are consistent in CIC but
not in contradiction to the law of excluded middle. Thus, our axioms allow devel-
oping synthetic computability, agnostic towards classical logic. As case studies
we give two synthetic proofs of Rice’s theorem [33]: One based on the axiom
EPF, following the proof approach by Scott [36] relying on Rogers’ fixed-point
theorem [35], and one based on the axiom EA, establishing a many-one reduction
from an undecidable problem.

Outline. We motivate and introduce CTφ and SMNφ in Sect. 2. SCT is introduced
in Sect. 3, its variants EPF, SCTB, and EPFB in Sect. 4. We introduce EA in Sect. 5
prove two synthetic versions of Rice’s theorems in Sect. 6.

1 The results in the pdf version of this paper are hyperlinked with the html version
of the Coq source code, which can be found at https://github.com/yforster/coq-
synthetic-computability/.

https://github.com/yforster/coq-synthetic-computability/
https://github.com/yforster/coq-synthetic-computability/

72 Y. Forster

1 Preliminaries

We work in the Calculus of Inductive Constructions (CIC), the type theory under-
lying the Coq proof assistant.

1.1 Common Definitions in CIC

We rely on the inductive types of natural numbers n:N :: = 0 | Sn, booleans
B :: = true | false, lists l:LX :: = [] | x :: l where x:X, options OX :: =
None | Somex where x:X, pairs X × Y :: = (x, y) where x:X and y:Y , sums
X + Y :: = inl x | inr y where x:X and y:Y , and, for p:X→T or p:X→P,
Σx.px :: = (a, b) where a : X and b : px. π1 and π2 denote the projections
π1(a, b) := a and π2(a, b) := b.

One can easily construct a pairing function 〈_, _〉:N→N→N and for all
f :N→N→X an inverse construction λ〈n,m〉. fnm of type N → X such that
(λ〈n,m〉. fnm)〈n,m〉 = fnm.

For discrete X (e.g. N, ON, LB, . . .), ≡
X

denotes equality, ≡
P

denotes logical
equivalence, ≡

A→B
denotes an extensional lift of ≡

B
, ≡

A→P
denotes extensional

equivalence, and ≡ran denotes range equivalence. More formally, two functions
f, g:X → OY are range equivalent if f ≡ran g := ∀y. (∃x. fx = Some y) ↔
(∃x. gx = Some y).

1.2 Partial Functions

We work with a type part A where A : T for partial values and a definedness rela-
tion � : part A → A → P and write A ⇀ B for A → part B. We assume monadic
structure for part (ret and >>=), an undefined value (undef), a minimisation
operation (μ), and a step-indexed evaluator (seval), see [15, fig. 2].

An equivalence relation on partial values can be defined as x ≡part A
y :=

∀a. x � a ↔ y � a. Lifted to partial functions, we have f ≡
A⇀B

g := ∀ab. fa � b ↔
ga � b.

One possible definition of partA is via stationary sequences. We call f :N→OA
a stationary sequence (or just stationary) if ∀na. fn = Some a → ∀m ≥ n. fm =
Some a. For instance, the always undefined function λn. None is stationary.

One can then define part A := Σf :N→OA. f is stationary with

f � a := ∃n. π1fn = Some a.

Note that one can turn any function f :N→OA into a stationary sequence
via a transformer mkstat with the following property.

Fact 1. mkstatf � a ↔ ∃n. fn = Somea ∧ ∀m < n. fn = None

1.3 The Universe of Propositions P, Elimination, and Choice
Principles

CIC has a separate, impredicative universe of propositions P and a hierarchy of
type universes Ti (where the natural number index i is left out from now on).

https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Shared.partial.html#mkstat_spec

Parametric Church’s Thesis: Synthetic Computability Without Choice 73

The universe P is separated in the sense that the definition of functions of type
∀x : P. A(x) for P :P and A:P → T by case analysis on x are restricted.

In CIC, both dependent pairs (Σ) and existential quantification ∃ can be
defined using inductive types. We verbalise ∃x with “there exists x” and in
contrast Σx as “one can construct x”. Dependent pairs can be eliminated into
arbitrary contexts, i.e. there is an elimination function of type

∀p: (Σx.Ax)→T. (∀x:X.∀y:Ax. p(x, y)) → ∀s. ps.

In contrast, existential quantification can only be eliminated for p: (∃x.Ax)→P.
This is because CIC forbids so-called large eliminations [30] on the inductively

defined ∃ predicate. To avoid dealing with Coq’s match-construct for eliminations
in detail, we instead talk about large elimination principles. A large elimination
principle for ∃, which would have the following type, is not definable in CIC:

∀p: (∃x.Ax)→T. (∀x:X.∀y:Ax. p(x, y)) → ∀s. ps.

In particular, this means that one cannot define a function of the following
type in general

∀p:Y →P. (∃y. py) → Σy:Y . py.

However, such an elimination of ∃ into Σ is admissible in CIC. This means
that any concretely given, fully constructive proof of ∃y. py without assump-
tions can always be given as a proof of Σy. py. Note that admissibility of a
statement is strictly weaker than provability, and in general does not even entail
its consistency.

Crucially, CIC allows defining large elimination principles for the falsity
proposition ⊥ and for equality. Additionally, for some restricted types Y and
restricted predicates p, one can define a large elimination principle for existen-
tial quantification. In particular, this holds for Y = N and p(n:N) := fn = true
for a function f :N→B.

Fact 2. One can define functions of type

1. ∀A:T. ⊥ → A
2. ∀X:T.∀A:X → T.∀x1x2:X. x1 = x2 → Ax1 → Ax2.
3. ∀f :N→B. (∃n. fn = true) → Σn. fn = true

We will not need any other large elimination principle in this paper. A restric-
tion of large elimination in general is necessary for consistency of Coq [11]. As a
by-product, the computational universe T is separated from the logical universe
P, allowing classical logic in P to be assumed while the computational intuitions
for T remain intact.

The intricate interplay between Σ and ∃ is in direct correspondence to the
status of the axiom of choice in CIC. The axiom of choice was first stated for set
theory by Cantor. In the formulation by Cantor, it is equivalent to the statement
that every total, binary relation contains the graph of a function, i.e.:

∀R ⊆ X × Y. (∀x.∃y.(x, y) ∈ R) → ∃f :X→Y .∀x. (x, fx) ∈ R

https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Shared.partial.html#computational_explosion

74 Y. Forster

Here X→Y is the set-theoretic function space. As usual, such a classical
principle can also be stated in type theory. However, the concrete formalisation
crucially depends on how the notion of a (set-theoretic) function is translated:
While in set theory the term function is just short for functional relation, in
CIC functions and (total) functional relations are different objects, we thus dis-
cuss both possible translations of the axiom of choice here.

The more common version, used e.g. by Bishop [7], is to use type-theoretic
functions for set-theoretic functions, i.e. state the type-theoretic axiom of (func-
tional) choice as

∀R:X→Y →P. (∀x.∃y. Rxy) → ∃f :X→Y .∀x. Rx(fx)
Since in type theory proofs are first class object, one can equivalently state a
principle postulating the inhabitedness of the following type:

∀p:Y →P. (∃y. py) → Σy:Y . py

Note how this is exactly the non-provable correspondence of ∃ and Σ discussed
above. This formulation makes clears why in Martin-Löf type theory as imple-
mentation of Bishop’s constructive mathematics, where one defines ∃ := Σ, the
axiom of choice is accepted since it can be proved. In the context of Church’s
simple type theory, this axiom is also known as axiom of indefinite description [1].

1.4 Notions of Synthetic Computability

We call a predicate p:X → P . . .
– decidable if Dp := ∃f :X → B.∀x:X. px ↔ fx = true.
– enumerable if Ep := ∃f :N → OX. ∀x:X. px ↔ ∃n:N. fn = Somex.
– semi-decidable if Sp := ∃f :X→N→B. px ↔ ∃n. fxn = true.

A type X is discrete if λ(x1, x2):X ×X. x1 = x2 is decidable and enumerable
if λx : X. � is enumerable. We repeat the following facts from [15]:

Fact 3. The following hold:
1. Decidable predicates are semi-decidable and co-semi-decidable.
2. Semi-decidable predicates on enumerable types are enumerable.
3. Enumerable predicates on discrete types are semi-decidable.
4. The complement of semi-decidable predicates is co-semi-decidable.

Fact 4. Decidable predicates are closed under complements. Decidable, enumer-
able, and semi-decidable predicates are closed under conjunction and disjunction.

One can also characterise the notions via partial functions:
Fact 5. 1. Ep ↔ ∃f :N ⇀ X.∀x. px ↔ ∃n. fn � x
2. Sp ↔ ∃Y (f :X ⇀ Y).∀x. px ↔ ∃y. fx � y

Lastly, we introduce many-one reducibility. A predicate p:X → P is many-
one reducible to a predicate q:Y → P if

p �m q := ∃f :X→Y . ∀x. px ↔ q(fx).

Fact 6. 1. If p�mq and q is decidable, then p is decidable.
2. Let X be enumerable, Y discrete, and p:X→P, q:Y →P. If p�mq and q is

enumerable then p is enumerable.

https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Synthetic.SemiDecidabilityFacts.html#decidable_semi_decidable
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Synthetic.SemiDecidabilityFacts.html#decidable_semi_decidable
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Synthetic.EnumerabilityFacts.html#semi_decidable_enumerable
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Synthetic.EnumerabilityFacts.html#enumerable_semi_decidable
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Synthetic.SemiDecidabilityFacts.html#sdec_co_sdec_comp
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Synthetic.DecidabilityFacts.html#dec_compl
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Synthetic.EnumerabilityFacts.html#enumerable_part_iff
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Synthetic.SemiDecidabilityFacts.html#semi_decidable_part_iff
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Synthetic.EnumerabilityFacts.html#decidable_red
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Synthetic.EnumerabilityFacts.html#enumerable_red

Parametric Church’s Thesis: Synthetic Computability Without Choice 75

2 Church’s Thesis

Textbooks on computability start by defining a model of computation, Rogers
[35] uses μ-recursive functions. As center of the theory, Rogers defines a step-
indexed interpreter φ of all μ-recursive functions. An application φn

c x denotes
executing the μ-recursive function with code c on input x for n steps.

Once some evidence is gathered, Rogers (as well as other authors) introduce
the Church-Turing thesis, stating that all intuitively calculable functions are
μ-recursively computable. Using the Church-Turing thesis, φ has the following
(informal) universal property:

∀f :N → N. intuitively computable f → ∃c:N.∀x:N.∃n. φn
c x = Some (fx)

Note that the property is really only pseudo-formal: The notion of intu-
itive calculability is not made precise, which is exactly what allows φ to stay
abstract for most of the development. Every invocation of the universality could
be replaced by an individual construction of a (μ-recursive) program, but rely-
ing solely on the notion of intuitive calculability allows Rogers to build a theory
based on a function φ which could equivalently be implemented in any other
model of computation. Since not every function f :N→N in the classical set
theory Rogers works in2 is intuitively computable, every invocation of the uni-
versality of φ has to be checked individually to ensure that it is indeed for an
intuitively calculable function.

We however do not work in classical set theory, but in CIC, a constructive
system. As in all constructive systems, every definable function is intuitively cal-
culable. It is thus natural to assume that the universal function φ is universal for
all functions f :N→N. For historical reasons, this axiom is called CT (“Church’s
thesis”) [24,41].

We define CTφ parametric in a step-indexed interpreter φ:N→N→N→ON. As
before, we write an evaluation of code c on input x for n steps as φn

c x instead of
φ c xn. For step-indexed interpreters, the sequence λn.φn

c x is always stationary:

∀cxn1v. φn1
c x = Some v → ∀n2. n2 ≥ n1 → φn2

c x = Some v

Now CTφ states that φ:N→N→N→ON is universal for all functions f :N→N:

CTφ := ∀f :N→N.∃c:N.∀x:N.∃n:N. φn
c x = Some (fx)

One can also see φ as an enumeration of stationary functions from N to N,
which enumerates every total function f .

CTφ is not provable in CIC, independent of the definition of φ. However,
when φ is a step-indexed interpreter for a model of computation, CTφ is the

2 “We use the rules and conventions of classical two-valued logic (as is the common
practice in other parts of mathematics), and we say that an object exists if its
existence can be demonstrated within standard set theory. We include the axiom of
choice as a principle of our set theory.” [35, pg. 10, footnote †].

76 Y. Forster

well-known constructivist axiom CT, see [15] for a treatment of its status in CIC.
We give an overview over arguments why CT is consistent in CIC in Appendix A.

In contrast to textbook proofs, proofs of theorems based on CTφ do not have
to be individually checked for valid applications of the Church-Turing thesis.

As stated above, CTφ applies to unary total functions, but is immediately
extensible to n-ary functions f :Nn→N using pairing. Partial application for such
n-ary functions is realised via the Sm

n theorem. We only state the case m = n = 1,
which implies the general case:

SMNφ := Σσ:N→N→N.∀cxyv. (∃n. φn
σcxy = Some v) ↔ (∃n. φn

c 〈x, y〉 = Some v)

Note that we formulate SMN with a Σ rather than an ∃. For the results we
consider in this paper, the different is largely cosmetic. The formulation with Σ
allows the construction of functions accessing σ directly, rather than only being
able to prove the existence of functions based on σ.

The key property of CTφ is that it allows the definition of an enumerable but
undecidable problem:

Lemma 7. Let φ be stationary. Then CTφ → Σp:N→P. Sp∧¬Sp∧¬Dp∧¬Dp.

Proof. One can define pc := ∃nm. φm
c 〈c, n〉 = Some 0 and clearly we have Sp. If

f :N→N→B is a semi-decider for p, let c be its code w.r.t. φ. Then pc ↔ ¬pc,
contradiction. Thus p is also not decidable.

3 Synthetic Church’s Thesis

By keeping φ abstract and assuming CTφ, one never has to deal with encodings
in a model of computation. However, formal proofs involving the SMNφ axiom
are tedious. We identify the axiom synthetic Church’s thesis SCT as a more
convenient variant of CTφ ∧ SMNφ, which postulates a step-indexed interpreter
φ parametrically universal for N → N:

SCT := Σφ:N→N→N→ON.

(∀c x n1 n2 v. φn1
c x = Some v → n2 ≥ n1 → φn2

c x = Some v) ∧
∀f :N→N→N. ∃γ:N → N. ∀ix.∃n. φn

γix = Some (fix)

By parametrically universal we mean that for any family of functions fi:N→N

parameterised by i:N, we obtain a coding function γ s.t. γi is the code of fi, i.e.
φγi agrees with fi.

The consistency of SCT follows from the consistency of CT formulated for a
Turing-complete model of computation. For this purpose, we choose the weak
call-by-value λ-calculus L, which we discuss in detail in Sect. 7. Conversely, one
can recover non-parametric universality of φ from parametric universality:

Theorem 8. Let φL be a step-indexed interpreter for L. For any φ such that
λn.φn

c x is stationary we have the following:

https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Axioms.bestaxioms.html#CT_halting
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Axioms.bestaxioms.html#CT_SMN_to_SCT

Parametric Church’s Thesis: Synthetic Computability Without Choice 77

1. CTφL
→ Σφ. CTφ ∧ SMNφ

2. CTφ → SMNφ → SCT
3. SCT → Σφ. CTφ

Proof. (1) follows by proving SMNφL
, which we do in Sect. 7, see Corollary 33.

For (2), let φ and σ be given. We prove that φ satisfies the condition in
SCT. Let f :N→N→N be given. We obtain a code c for λ〈x, y〉. fxy. Now define
γx := σcx.

(3) is trivial by turning the unary function f :N→N into the (constant) family
of functions f ′

xy := fy. Now a coding function γ for f ′ allows to choose γ0 as
code for f .

In Theorem 12 we prove that SCT also implies Σφ. CTφ ∧ SMNφ. Note that
the consistency of CTφL

implies the consistency of Σφ. CTφ ∧ SMNφ and SCT.

4 Variations of Synthetic Church’s Thesis

We have defined SCT to postulate a step-indexed interpreter φ:N→(N→N→ON),
parametrically universal for N → N. In this section, we develop equivalent vari-
ations of SCT. There are three obvious points where SCT can be modified.

1. The return type of φ can be stationary functions of type N → (N → ON) or
N → (N → OB), or partial functions of type N ⇀ N or N ⇀ B,

2. φ can be postulated to be parametrically universal for N→N, N→B, N ⇀ N,
N ⇀ B, or stationary functions N → (N → ON) or N → (N → OB).

3. Coding functions γ can be existentially quantified (∃), computably obtained
(Σ), or classically existentially quantified ¬¬∃.

For SCT, the return type of φ is stationary functions N → (N → ON), φ is
parametrically universal for N → N, and γ is existentially quantified.

For (1), it is important to see that letting φ return total functions is no
option, since such an enumeration is inconsistent,3 even up to extensionality:

Fact 9.(Cantor) There is no e:N→(N→A) such that ∀f :N→A. ∃c.ec ≡N→A f
for A = N or A = B.

For (3), the variant with Σ is consistent, but negates functional extension-
ality [43]. Variants with ¬¬∃ are often called Weak CT [27], we refrain from
discussing such variants in this paper.

In this section, we discuss how all other variations of SCT are equivalent, and
single out three of them:

1. EPF, the enumerability of partial functions axiom, postulating θ:N → (N⇀N)
parametrically universal for N ⇀ N,

2. SCTB, postulating φ:N → (N → (N → OB)) universal for N → B, and
3 Note that conversely an injection of (N → N) → N can likely be consistently

assumed [5].

https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Axioms.bestaxioms.html#CT_SMN_to_SCT
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Axioms.bestaxioms.html#SCT_to_CT

78 Y. Forster

3. EPFB, postulating θ:N → (N ⇀ B) universal for N ⇀ B.

The enumerability of partial functions axiom EPF is defined as:

EPF := ∃θ:N→(N ⇀ N).∀f :N→N ⇀ N.∃γ:N→N.∀i. θγi ≡
N⇀N

fi

Instead of seeing θ as enumeration, we can also see θ as surjection from N

to N ⇀ N up to ≡
N�N

. Proving that SCT↔EPF amounts to showing that any
implementation of partial functions is equivalent to the implementation based
on stationary sequences, and that any stationary function can be encoded in a
total function N→N via pairing.

Theorem 10. SCT ↔ EPF

Proof. The direction from left to right is by observing that there is a function
mktotal: (N→N ⇀ N)→N→N→N such that fix � v ↔ ∃n. mktotal f i 〈x, n〉 = S v
using seval. We then define

θcx :=(μ(λn. if φn
c x is Some (S v) then ret true else ret false))

>>= λn. if φn
c x is Some (S v) then ret v else undef

The direction from right to left constructs φn
c x := seval (θcy)n. Let f :N→N→N.

Define the partial function f ′
ix := ret (fix). Now a coding function γ for f ′ by

EPF is a coding function for f to establish SCT.

Instead of stating EPF as enumeration of partial functions, we can equiva-
lently state it w.r.t. parameterised functional relations:

Fact 11. EPF is equivalent to the following:

∃θ:N→(N ⇀ N). ∀R:N→(N�N). (∃f.∀i. fi computes Ri) → ∃γ.∀i. θγi computes Ri

Theorem 12. EPF → Σφ. CTφ ∧ SMNφ ∧ ∀c x. λn.φn
c x is stationary

Proof. Let θ be given as in EPF and define φn
c x := seval (θcy)n, which allows

proving CTφ as in Theorem 10. Let furthermore f〈c,x〉y := θc〈x, y〉 and γ be a
coding function for f by EPF. Define Scx := γ〈c, x〉. We have

θScxy ≡ θγ〈c,x〉y ≡ θc〈x, y〉

We introduce SCTB, postulating a step-indexed interpreter parametrically
universal for N→B:

SCTB := Σφ:N→N→N→OB.

(∀cxn1n2v. φn1
c x = Some v → n2 ≥ n1 → φn2

c x = Some v) ∧
∀f :N→N→B. ∃γ.∀ix.∃n. φn

γix = Some (fix)

SCTB is equivalent to SCT. One direction is immediate since B is a retract
of N (i.e. can be injectively embedded). The other direction follows by mapping
the infinite sequence f0, f1, f2, . . . to the sequence

falsef0 true falsef1 true falsef2 true . . .

https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Axioms.bestaxioms.html#SCT_to_EPF
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Axioms.bestaxioms.html#EPF_iff
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Axioms.bestaxioms.html#EPF_to_CT_SMN

Parametric Church’s Thesis: Synthetic Computability Without Choice 79

Theorem 13. SCTB ↔ SCT

We define the parametric enumerability of partial boolean functions axiom

EPFB := Σθ:N→(N ⇀ B).∀f :N→N ⇀ B.∃γ:N → N.∀i. θγi ≡
N⇀B

fi

Recall that θγi ≡
N⇀B

fi if and only if ∀xv. θγix � v ↔ fix � v. Proving EPFB

equivalent to SCT is easiest done by proving the following:

Theorem 14. EPFB ↔ SCTB

Proof. Exactly as in Theorem 10.

Using EPFB it is easy to establish an enumerable, undecidable problem:

Fact 15. EPFB → Σp:N→P. Ep ∧ ¬Ep ∧ ¬Dp

Proof. Let θ be given as in EPF. Define Kc := ∃v.θcc � v. K is semi-decided by
λcn.if seval(θcc)n is Some v then true else false and thus enumerable by Fact 3.

We prove that K is not semi-decidable, yielding both ¬EK and ¬DK by
Fact 3. Let K be semi-decidable, i.e. by Fact 5 (2) there is f :N ⇀ Y such that
¬Kx ↔ ∃y. fx � y. Define f ′:N ⇀ B as f ′x := fx >>= λ . ret true. Now f ′ has a
code c such that ∀x. ecx � f ′x by universality of θ.

We have a contradiction via

¬Kc ↔ (∃y. fc � y) ↔ (∃y. f ′x � y)(∃y.ecc � y) ↔ Kc.

5 The Enumerability Axiom

Using EPF or SCT as basis for synthetic computability requires the manipula-
tion of partial functions or stationary functions, which is tedious. Alternatively,
synthetic computability can be presented even more elegantly by an equivalent
axiom concerned with enumerable predicates rather than partial functions. A
non-parametric enumerability axiom is used by Bauer [4] together with count-
able choice to develop synthetic computability results.

We introduce the parametric enumerability axiom postulating an enumera-
tor ϕ:N → (N → ON) which is parametrically universal for all parametrically
enumerable predicates p:N→N→P:

EA :=Σϕ:N→(N→ON).∀(p:N→N→P).

(∃(f :N → N → ON).∀i. fi enumerates pi) → ∃γ:N → N.∀i. ϕγi enumerates pi

That is, EA states that whenever p is parametrically enumerable, then λi. ϕγi

parametrically enumerates p for some γ.
Note the two different roles of natural numbers in the axiom: If we would

consider predicates over a general type X we would have ϕ:N→(N→OX).
Equivalently, we could have required that p is enumerable:

https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Axioms.bestaxioms.html#SCT_bool_to_SCT
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Axioms.bestaxioms.html#EPF_bool_to_SCT_bool
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Axioms.bestaxioms.html#EPF_halting

80 Y. Forster

Fact 16. EA is equivalent to

Σϕ. ∀p:N→N→P. E(λ(x, y). p(x, y)) → ∃γ:N→N.∀i. ϕγi enumerates pi.

Again equivalently, EA can be stated to only mention enumerators instead of
predicates, which is the formulation of EA used in [15].

Fact 17. EA ↔ Σϕ:N→(N→ON).∀f :N→N→ON.∃γ.∀x. ϕγx ≡ran fx

In this formulation, ϕ is a surjection w.r.t. range equivalence f ≡ran g, where
ϕc ≡ran f ↔ ∀x.(∃n.ϕcn = Somex) ↔ (∃n.fn = Somex).

Given ϕ, we define Wcx := ∃n. ϕcn = Somex and the problem K as the
diagonal of W, i.e. Kc := Wcc. We call W a universal table. One can show that
W and K are m-equivalent, and both are m-complete. For now we only use K
to note the following result:

Lemma 18. EA → Σp:N → P. Ep ∧ ¬Ep ∧ ¬Dp ∧ ¬Dp

Proof. We pick p as Kc := Wcc. K is enumerated by

λ〈c,m〉. if ϕcm is Somex then if x =B c then Some c else None else None.

If K would be enumerable, there would be a code c s.t. ∀x. Wcx ↔ Kx. In
particular Wcc ↔ Kc ↔ ¬Wcc. Contradiction. Then ¬Dp ∧ ¬Dp is trivial.

Similarly to how SCT can be reformulated by letting φ be universal for unary
functions and introducing an explicit S1

1 -operator, EA can also be stated in this
fashion, with an S1

1 -operator w.r.t. W.

Lemma 19. EA is equivalent to

Σϕ.(∀p.Ep → ∃c.ϕc enumerates p) ∧ Σσ:N→N→N.∀cxy.W(σcx)y ↔ Wc〈x, y〉.
Proof. The direction from right to left is straightforward using Lemma 16.

For the direction from left to right, let ϕ be given.
For the first part of the conclusion let p be given and enumerable. Then

λxy. py is parametrically enumerable, so let γ be given from EA. Then ϕγ0

enumerates p. For the second part, let p〈c, x〉y := ∃n.ϕcn = Some 〈x, y〉. Since
p is enumerable, by Lemma 16 and EA there is γ such that ϕγ〈c,x〉 enumerates
p〈c, x〉. Now Scx := γ〈c, x〉 is the wanted function.

SCT and EA are equivalent. For the forwards direction, we show that enu-
merators N → ON can be equivalently given as functions N → N.

Theorem 20. SCT → EA

Proof. Let a universal function φ be given. Define:

ϕc〈n,m〉 := if φn
c m is Some (Sx) then Somex else None

Let f :N→N→ON be a parametric enumerator for p. We define f ′:N→N→N as
f ′xn := if fxn is Some y then S y else 0. By SCT, we obtain a function γ for
f ′, and we have ∀xy. pxy ↔ ∃k. ϕγxk = Some y as wanted.

https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Axioms.bestaxioms.html#EA_iff_enumerable
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Axioms.bestaxioms.html#EA_ran_iff
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Axioms.bestaxioms.html#EA_halting
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Axioms.bestaxioms.html#EA_to_EA_star
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Axioms.bestaxioms.html#SCT_to_EA

Parametric Church’s Thesis: Synthetic Computability Without Choice 81

For the converse direction, we use that the graph of functions is enumerable.

Theorem 21. EA → SCT

Proof. Let ϕ as in EA be given. Recall mkstat: (N→OX)→N→OX turning arbi-
trary F :N→ON into stationary sequences. We define

ϕn
c x := mkstat(λn. if ϕcn is Some 〈x′, y〉

then if x′ =B x then Some y else None else None)n

Let f :N→N→N and let ϕγx enumerate λx〈n,m〉. fxn = m via EA. Now γ serves
as coding function for f by Fact 1.

6 Rice’s Theorem

One of the central results of every introduction to computability theory is Rice’s
theorem [33], stating that non-trivial semantic predicates on programs are unde-
cidable. Two proof strategies can be found in the literature: By using a fixed-
point theorem or by establishing a many-one reduction from K. We here give
synthetic variants of both proofs.

We base the first proof on the axiom EPF, since the notion of a fixed-point is
more natural there. We base the second proof on the axiom EA. Here the choice
is less canonical, but using EA enables a comparison of EA and EPF as axioms
for synthetic computability.

We start by assuming EPF and proving a fixed-point theorem due to
Rogers [35].

Theorem 22. Let θ be given as in EPF and γ:N → N, then there exists c such
that θγc ≡ θc.

Proof. Let γ:N→N. Let fxz := θxx >>= λy.θyz and γ′ via EPF be such that
θγ′x ≡ fx (1). Let c via EPF be such that ∀x. θcx � γ(γ′x) (2).

Now fc ≡ θγ′c by (1).
Also fcz ≡ (θcc >>= λy.θyz) ≡ θγ(γ′x)z by the definition of f and (2).
Now γ′c is a fixed-point for λi.θγi: θγ(γ′c) ≡ fc ≡ θγ′c.

Rice’s theorem can then be stated and proved as follows:

Theorem 23. Let θ be given as in EPF and p:N→P. If p treats elements as
codes w.r.t. θ and is non-trivial, then p is undecidable. Formally:

(∀cc′. θc ≡ θc′ → pc ↔ pc′) → ∀c1c2. pc1 → ¬pc2 → ¬Dp

Proof. Let f decide p and let pc1 and ¬pc2. Define h:N→N ⇀ N as hx :=
if fx then θc2 else θc1 and let γ via EPF be such that θγxy ≡ hxy. Let c be
a fixed-point for γ via Theorem 22, i.e. θγc ≡ γ.

Then either fc = true and thus pc, but θc ≡ θc2 and thus pc2. A contradiction.
Or fc = false and thus ¬pc, but θc ≡ θc1 and thus ¬pc1. A contradiction.

https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Axioms.bestaxioms.html#EA_to_SCT
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Synthetic.Rice.html#FP
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Synthetic.Rice.html#Rice_Theorem'

82 Y. Forster

Rice’s theorem is often also stated for predicates p: (N⇀N) → N. This formu-
lation has the advantage that the requirement on p does not have to mention θ.

Corollary 24. EPF implies that if p: (N ⇀ N) → N is extensional and non-
trivial, then p is undecidable. Formally:

EPF → (∀ff ′:N ⇀ N.f ≡
N⇀N

f ′ → pf ↔ pf ′) → ∀f1f2. pf1 → ¬pf2 → ¬Dp

Proof. Let p be decidable. We define the index predicate of p as Ip := λc:N. p(θc),
and have Ip �m p. Thus since p is decidable, Ip is decidable. Since Ip treats
elements as codes and is non-trivial using EPF, we have that Ip is undecidable
by Theorem 23. Contradiction.

A second proof strategy for Rice’s theorem is by establishing a many-one
reduction from a problem proved undecidable via diagonalisation. We could
use K defined using EPF in Fact 15, but here use EA to compare the two
axioms. Thus, we use the problem K as used in Fact 18. We follow Forster
and Smolka [16], who mechanise a fully constructive proof of Rice’s theorem
based on the call-by-value λ-calculus by isolating a reduction lemma (“Rice’s
Lemma”).

Lemma 25. Let ϕ be as in EA and p:N → P. If p treats elements as codes w.r.t.
ϕ, p is non-trivial and the code for the empty predicates satisfies p, then K�mp.

Formally let Wcx := ∃n. ϕcn = Somex. We then have:

(∀cc′. (∀x. Wcx ↔ Wc′x) → pc ↔ pc′) → ∀c∅c0. (∀x.¬Wc∅x) → pc∅ → ¬pc0 → K�mp

Proof. The predicate q := λxy. Kx ∧ Wc0y is enumerable, meaning we obtain γ
from EA such that ∀xy. Wγxy ↔ Kx ∧ Wc0y.

Let ¬Kx. We have Wγxy ↔ ⊥ ↔ Wc∅y. Since pc∅ and p is semantic also
p(γx). Conversely, let p(γx) and Kx. We have Wγxy ↔ Wc0y. Since p is semantic,
also pc0. Contradiction.

Theorem 26. Let ϕ be given as in EA and p:N → P. If p treats inputs as
codes w.r.t. ϕ and p is non-trivial, then p is not bi-enumerable. Formally let
Wcx := ∃n. ϕcn = Somex be the universal table for ϕ. We then have:

(∀cc′.(∀x. Wcx ↔ Wc′x) → pc ↔ pc′) → ∀c1c2. pc1 → ¬pc2 → ¬(Ep ∧ Ep)

Proof. Since λx:N.⊥ is enumerable, by EA there is c∅ such that ∀x.¬Wc∅x. Now
let pc1, ¬pc2, and let p be bi-enumerable.

If pc∅, we have K �m p, a contradiction since K would be enumerable by
Fact 6. If ¬pc∅ we have K �m p, again a contradiction.

Corollary 27. Let ϕ be given as in EA and p:N → P. If p treats inputs as codes
w.r.t. ϕ and p is non-trivial, then p is undecidable.

We can state this second version of Rice’s theorem for p: (N → P) → P.

https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Synthetic.Rice.html#Rice_HO'
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Synthetic.Rice.html#Rice
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Synthetic.Rice.html#Rice_Theorem
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Synthetic.Rice.html#Rice_TheoremCorr

Parametric Church’s Thesis: Synthetic Computability Without Choice 83

Corollary 28. EA implies that if p is extensional and non-trivial w.r.t. enu-
merable predicates, then p is undecidable. Formally under the assumption of EA
we have

(∀qq′:N → P.(∀x. qx ↔ q′x) → pq ↔ pq′) → ∀q1q2. Eq1 → Eq1 → pq1 → ¬pq2 → ¬Dp

Proof. Let p be decidable. We define the index predicate of p as Ip :=
λc:N. p(Wc), and have Ip �m p. Thus since p is decidable, Ip is decidable. Since
Ip treats elements as codes and is non-trivial using EA, we have that Ip is unde-
cidable by Theorem 27. Contradiction.

We have formulated both theorems to explicitly assume θ and ϕ and their
respective specification, to contrast the axioms EPF and EA. One can however
obtain Theorem 23 from Theorem 27 – and vice versa – constructing θ from
ϕ and constructing a predicate q treating elements as indices w.r.t. θ from a
predicate p treating elements as indices w.r.t. ϕ – and vice versa.

Proofs based on EPF require the manipulation of partial functions, which
is formally tedious. We will thus use EA as basis for synthetic computability:
In contrast to SCT, it does not force us to encode every computation as total
function N → N, and in contrast to EPF it does not force us to work with partial
functions either.

Instead, we can simply consider enumerable predicates and their enumera-
tors, which are total functions.

7 CT in the Weak Call-by-Value λ-Calculus

In this section we treat CTL, the formulation of CTφ where φ is a universal
function for the weak call-by-value λ-calculus L [16,32]. We largely omit tech-
nical details in this section and refer the interested reader to the accompanying
Coq code. We only need a stationary function eval: tmL→N→O(tmL) such that
∃n.leval s n = Some t for a λ-term s if and only if t is the normal form of s
w.r.t. weak call-by-value evaluation, and a function εN:N→tmL encoding nat-
ural numbers as terms, e.g. using Scott encoding [36], and an inverse function
unenc.

We define φ such that for an application φn
c x we translate the code c to a term

t and then evaluate the application t (εNx) for n steps using the step-indexed
interpreter eval. To interpret c as term, we need the following:

Fact 29. There are functions R:N→O(tmL) and I: tmL→N such that we have
closed s ↔ R(Is) = Some s.

We can then define:

φn
c x := if Rc is Some t then

if eval (t (εNn)) n is Some v then unenc v else None else None

https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Synthetic.Rice.html#Rice_HO

84 Y. Forster

Fact 30. If f :N→N is computed by t then ∀x.∃n. φn
Itx = Some (fx).

We writeCTL instead ofCTφ. To define an Sm
n operator σ we need the following:

Fact 31. There are tembed and tunembed computing λ〈n,m〉.(n,m) and
λnm.〈n,m〉.

We define σcx := if Rc is Some t then I(λy. t(tembed(εNx)y)) else c. Note
that here the function I is applied to an L-term.

Theorem 32. ∀cxyv. (∃n. φn
σcxy = Somev) ↔ (∃n. φn

c 〈x, y〉 = Somev)

Proof. We only prove the direction from right to left, the other direction is
similar. Let φn

c 〈x, y〉 = Some v. Then Rc = Some t and t εN(〈x, y〉) � v for some
closed term t. Let s := (λy. tembed(εNx)y) (εNy). We have t εN(〈x, y〉) ≡ s and
thus s�v. Thus there is m s.t. eval m s = Some v and we have φm

σcx = Some v.

Corollary 33. CTL → Σφ. CTφ ∧ SMNφ

8 Related Work

Bauer [4] develops synthetic computability based on an axiom stating that the
set of enumerable sets of natural numbers is enumerable. Translating to our
type theoretic setting this yields the following axiom stating that there is an
enumerator W of all enumerable predicates, up to extensionality.

EA′ := ∃W:N→(N→P).∀p:N→P. Ep ↔ ∃c. Wc ≡
N→P

p

Additionally to EA′, Bauer also assumes countable choice and Markov’s prin-
ciple. In general however, the assumption of countable choice makes the theory
anti-classical, i.e. assuming LEM is inconsistent. The interplay of axioms like EA′,
MP, LEM, and countable choice is discussed in [15]. Countable choice allows
extracting the enumerator for every enumerable predicate in the range of W
computationally, corresponding to a non-parametric version of our axiom EA.
Countable choice also can be used to prove a synthetic Sm

n theorem w.r.t. W.
Our parametric formulation of EA implies EA′, and conversely EA′ implies

EA under the presence of countable choice.
Richman [34] introduces the axiom CPF (“Countability of Partial Func-

tions”). It states that the set of partial functions is (extensionally) countable,
i.e. there is a surjection N → (N ⇀ N) w.r.t. equivalence on partial functions.
Intensionally, Richman models the partial function space N ⇀ N as stationary
functions. Thus, written out fully his axiom is a non-parametric version of EPF,
just instantiated to the stationary functions model of partial functions.

Theory based on CPF is developed in the book by Bridges and Richman [8],
where CPF is taken as basis for the constructivist system RUSS. In RUSS, the
axiom of countable choice is also assumed. Bridges and Richman discuss that
“in RUSS countable choice can usually be avoided” [8, p. 54] by postulating a
composition operator for θ or, equivalently, an SMN operator.

https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Synthetic.Rice.html#SMN

Parametric Church’s Thesis: Synthetic Computability Without Choice 85

Our two proofs of Rice’s theorem are in strong support of this conjecture.
Recall that the first proof is based on a parametrically universal partial function
θ, while the second proof is based on a parametrically universal enumerator ϕ.
The two proofs also use different proof strategies.

The second strategy establishes a reduction from K. This strategy is used
in the textbooks by Cutland [12], Odifreddi [29], Soare [39], and Cooper [10],
whereas Rogers [35] and Sipser [37] pose Rice’s theorem as an exercise.

The first strategy, based on Rogers’ fixed-point theorem or equivalently based
on Kleene’s recursion theorem is less frequently found. It is however mentioned
in the Wikipedia article on Rice’s theorem [42]. The technique appears first in
the lecture notes by Scott [36], who shows a variant of Rice’s theorem for the
λ-calculus. Scott’s proof can also be found in [2,38].

We are aware of five machine-checked proofs of Rice’s theorem: Norrish [28]
proves Rice’s theorem for the λ-calculus, formulated for predicates p: (N →
ON) → P, using the proof strategy via reduction. Forster and Smolka [16] prove
Rice’s theorem for the weak call-by-value λ-calculus, formulated for predicates
on terms of the considered calculus which have the same extensional behaviour,
using the proof strategy via reduction. Forster [14] proves Scott’s variant of
Rice’s theorem for the weak call-by-value λ-calculus, formulated for predicates
on terms of the considered calculus which do not distinguish β-equivalent terms,
using a fixed-point theorem. Carneiro [9] proves Rice’s theorem for μ-recursive
functions, formulated for predicates p: (N ⇀ N) → P, using a fixed-point theo-
rem. Ramos et al. [13] prove Rice’s theorem for the functional language PVS0,
formulated for predicates on PVS0, using an assumed fixed-point theorem.

Bauer [4] also presents a synthetic variant of Rice’s theorem. His formulation
reads “If A is a set such that all functions of type A → A have a fixed-point,
every function A → B is constant” and uses the enumerability axiom as discussed
above, but does not rely on countable choice to the best of our knowledge. Note
that our variants of Rice’s theorem presented in this paper are trivialities in clas-
sical set theory, the foundation of textbook computability, since both EPF and
EA are false in classical set theory where all problems have a characteristing
decision function. In contrast, Bauer’s theorem is a triviality in classical set
theory in two ways: First, the enumerability axiom is contradictory in classical
set theory, and second the statement of the theorem is a trivial even without
axioms since if all functions A → A have a fixed-point, A is a sub-singleton:
two distinct elements a1, a2 would allow constructing a fixed-point free func-
tion λx.if x = a1 then a2 else a1. In short, we sacrifice identifying the minimal
essence of theorems to better preserve classical intuitions.

Acknowledgements. I would like to thank Gert Smolka, Dominik Kirst, and
Dominique Larchey-Wendling for constructive feedback and productive discussions,
as well as Andrej Bauer and Dominik Wehr for helpful advice on consistency proofs of
CT in the literature.

86 Y. Forster

A Consistency and Admissibility of CT in CIC

In 1943, Kleene conjectured that whenever ∀x.∃y. Rxy is constructively provable,
there in fact exists a μ-recursive function f such that ∀x. Rx(fx) [22]. This
corresponds to a strong form of the admissibility of CT. In 1945, Kleene [23]
proved his conjecture for Heyting arithmetic, using number realizability. An
independent proof of this is due to Beth [6].

In this section, we use CT to denote the historical formulation of CT, e.g.
using μ-recursive functions, which is however equivalent to CTL.

Troelstra and van Dalen [41, §4.5.1 p. 204] state an even stronger result,
using Gödel’s Dialectia interpretation [17], namely that in Heyting arithmetic
CT, MP and a restricted form of the independence of premise rule IP (with P
logically decidable) are consistent as schemes.

Odifreddi states that “for all current intuitionistic systems (not involving the
concept of choice sequence) the consistency with CT has actually been estab-
lished” [29, §1.8 pg. 122]. We do not discuss other systems for constructive or
intuitionistic mathematics in detail.

For CIC, the result is not explicitly stated in the literature. An admissibility
proof of CT seems to be immediate as a consequence of Letouzey’s semantics
extraction theorem for Coq [25]. Regarding a consistency proof one cannot mirror
the situation in Heyting arithmetic, since a Dialectia interpretation for Coq is
not available [31].

However, several approaches seem to yield the result:
First, CT is consistent in intuitionistic set theory (e.g. IZF) [18], and IZF can

be used to model CIC [3].
Secondly, realizability models based on the first Kleene algebra prove CT con-

sistent. Luo constructs an ω-set model for the Extended Calculus of Construc-
tions (ECC, a type theory with type universes and impredicative P, but no induc-
tive types), where “[t]he morphisms between ω-sets are’computable’ in the sense
that they are realised by partial recursive functions” [26, §6.1 pg. 118].

Thirdly, it is well known how to build topos models of the calculus of con-
structions [20]. The effective topos, due to Hyland [19], validates CT.

Fourthly, Swan and Uemura [40] give a sheaf model construction proving that
CT is consistent in Martin Löf type theory, together with propositional trunca-
tion, Markov’s principle, and univalence. It seems like the syntactic universe of
propositions P does not hinder adapting their model construction to CIC.

Fivthly, Yamada [43] gives a game-semantic proof that a ∀f.Σc form of CT is
consistent in intensional Martin Löf type theory, settling an open question of at
least 15 years [21]. Note that this form is significantly stronger, since it allows
defining a strictly intensional higher-order coding function of type (N → N) → N,
which is inconsistent under the assumption of functional extensionality [15]. It
is not obvious how to extend Yamada’s proof to our ∀f.∃c formulation of CT in
CIC with the impredicative universe P.

Parametric Church’s Thesis: Synthetic Computability Without Choice 87

References

1. Andrews, P.B.: An Introduction to Mathematical Logic and Type Theory: To Truth
Through Proof. APLS, vol. 27. Springer, Dordrecht (2002). https://doi.org/10.
1007/978-94-015-9934-4

2. Barendregt, H., Dekkers, W., Statman, R.: Lambda Calculus with Types. Cam-
bridge University Press, Cambridge (2013)

3. Barras, B.: Sets in Coq, Coq in sets. J. Formaliz. Reason. 3(1), 29–48 (2010)
4. Bauer, A.: First steps in synthetic computability theory. Electron. Notes Theoret.

Comput. Sci. 155, 5–31 (2006)
5. Bauer, A.: An injection from the Baire space to natural numbers. Math. Struct.

Comput. Sci. 25(7), 1484–1489 (2015)
6. Beth, E.W.: Semantical considerations on intuitionistic mathematics. J. Symb.

Log. 13(3), 173–173 (1948)
7. Bishop, E., Bridges, D.: Constructive Analysis, vol. 279. Springer, Heidelberg

(2012)
8. Bridges, D., Richman, F.: Varieties of Constructive Mathematics, vol. 97. Cam-

bridge University Press, Cambridge (1987)
9. Carneiro, M.: Formalizing computability theory via partial recursive functions.

In: Harrison, J., O’Leary, J., Tolmach, A. (eds.) 10th International Conference
on Interactive Theorem Proving (ITP 2019), Dagstuhl, Germany, Leibniz Inter-
national Proceedings in Informatics (LIPIcs), vol. 141, pp. 12:1–12:17. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik (2019)

10. Cooper, S.B.: Computability Theory. CRC Press, Boca Raton (2003)
11. Coquand, T.: Metamathematical investigations of a calculus of constructions. Tech-

nical report RR-1088, INRIA (1989)
12. Cutland, N.: Computability. Cambridge University Press, Cambridge (1980)
13. Ferreira Ramos, T.M., Almeida, A.A., Ayala-Rincón, M.: Formalization of rice’s

theorem over a functional language model. Technical report (2020)
14. Forster, Y.: A formal and constructive theory of computation. Bachelor’s thesis,

Saarland University (2014)
15. Forster, Y.: Church’s thesis and related axioms in Coq’s type theory. In: Baier,

C., Goubault-Larrecq, J. (eds.) 29th EACSL Annual Conference on Computer
Science Logic (CSL 2021), Dagstuhl, Germany, Leibniz International Proceedings
in Informatics (LIPIcs), vol. 183, pp. 21:1–21:19. Schloss Dagstuhl-Leibniz-Zentrum
für Informatik (2021)

16. Forster, Y., Smolka, G.: Weak call-by-value lambda calculus as a model of com-
putation in Coq. In: Ayala-Rincón, M., Muñoz, C.A. (eds.) ITP 2017. LNCS, vol.
10499, pp. 189–206. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
66107-0 13

17. Gödel, V.K.: Über eine bisher noch nicht benützte Erweiterung des finiten Stand-
punktes. Dialectica 12(3–4), 280–287 (1958)

18. Hahanyan, V.: The consistency of some intuitionistic and constructive principles
with a set theory. Stud. Logica. 40(3), 237–248 (1981)

19. Hyland, J.M.E.: The effective topos. In: The L. E. J. Brouwer Centenary Sympo-
sium, Proceedings of the Conference held in Noordwijkerhout, pp. 165–216. Elsevier
(1982)

https://doi.org/10.1007/978-94-015-9934-4
https://doi.org/10.1007/978-94-015-9934-4
https://doi.org/10.1007/978-3-319-66107-0_13
https://doi.org/10.1007/978-3-319-66107-0_13

88 Y. Forster

20. Hyland, J.M.E., Pitts, A.M.: The theory of constructions: categorical semantics and
topos-theoretic models. In: Gray, J.W., Scedrov, A. (eds.) Categories in Computer
Science and Logic. Contemporary Mathematics, vol. 92, pp. 137–199. Amer. Math.
Soc, Providence (1989)

21. Ishihara, H., Maietti, M.E., Maschio, S., Streicher, T.: Consistency of the inten-
sional level of the minimalist foundation with church’s thesis and axiom of choice.
Arch. Math. Log. 57(7–8), 873–888 (2018)

22. Kleene, S.C.: Recursive predicates and quantifiers. Trans. Am. Math. Soc. 53(1),
41–73 (1943)

23. Kleene, S.C.: On the interpretation of intuitionistic number theory. J. Symb. Log.
10(4), 109–124 (1945)

24. Kreisel, G.: Mathematical logic. Lect. Mod. Math. 3, 95–195 (1965)
25. Letouzey, P.: Programmation fonctionnelle certifiée: l’extraction de programmes

dans l’assistant Coq. Ph.D. thesis (2004)
26. Luo, Z.: Computation and Reasoning: A Type Theory for Computer Science.

Oxford University Press Inc., Oxford (1994)
27. McCarty, D.C.: Incompleteness in intuitionistic metamathematics. Notre Dame J.

Formal Log. 32(3), 323–358 (1991)
28. Norrish, M.: Mechanised computability theory. In: van Eekelen, M., Geuvers, H.,

Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 297–311. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22863-6 22

29. Odifreddi, P.: Classical Recursion Theory: The Theory of Functions and Sets of
Natural Numbers. Elsevier, Amsterdam (1992)

30. Paulin-Mohring, C.: Inductive definitions in the system Coq rules and properties.
In: Bezem, M., Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664, pp. 328–345.
Springer, Heidelberg (1993). https://doi.org/10.1007/BFb0037116

31. Pédrot, P.-M.: A Materialist Dialectica. Theses, Paris Diderot (2015)
32. Plotkin, G.D.: Call-by-name, call-by-value and the λ-calculus. Theoret. Comput.

Sci. 1(2), 125–159 (1975)
33. Rice, H.G.: Classes of recursively enumerable sets and their decision problems.

Trans. Am. Math. Soc. 74(2), 358–366 (1953)
34. Richman, F.: Church’s thesis without tears. J. Symb. Log. 48(3), 797–803 (1983)
35. Rogers, H.: Theory of Recursive Functions and Effective Computability (1987)
36. Scott, D.: A system of functional abstraction (1968). Lectures delivered at Uni-

versity of California, Berkeley, Cal., 1962/63. Photocopy of a preliminary version,
issued by Stanford University, September 1963, furnished by author in 1968

37. Sipser, M.: Introduction to the Theory of Computation, vol. 2. Thomson Course
Technology Boston (2006)

38. Smullyan, R.M.: Diagonalization and Self-reference. Oxford Science Publications,
Clarendon Press, Oxford (1994)

39. Soare, R.I.: Recursively Enumerable Sets and Degrees: A Study of Computable
Functions and Computably Generated Sets. Springer, Heidelberg (1999)

40. Swan, A., Uemura, T.: On Church’s thesis in cubical assemblies. arXiv preprint
arXiv:1905.03014 (2019)

41. Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics. Studies in Logic
and the Foundations of Mathematics, vol. I, 26 (1988)

https://doi.org/10.1007/978-3-642-22863-6_22
https://doi.org/10.1007/BFb0037116
http://arxiv.org/abs/1905.03014

Parametric Church’s Thesis: Synthetic Computability Without Choice 89

42. Wikipedia contributors. Rice’s theorem – Wikipedia, the free encyclopedia (2021).
https://en.wikipedia.org/w/index.php?title=Rice’s theorem&oldid=1017713534.
Accessed 31 May 2021

43. Yamada, N.: Game semantics of Martin-Löf type theory, part iii: its consistency
with church’s thesis (2020)

https://en.wikipedia.org/w/index.php?title=Rice's_theorem&oldid=1017713534

Constructive and Mechanised Meta-Theory
of Intuitionistic Epistemic Logic

Christian Hagemeier and Dominik Kirst(B)

Saarland Informatics Campus, Saarland University, Saarbrücken, Germany
christian@hagemeier.ch, kirst@cs.uni-saarland.de

Abstract. Artemov and Protopopescu proposed intuitionistic epistemic
logic (IEL) to capture an intuitionistic conception of knowledge. By
establishing completeness, they provided the base for a meta-theoretic
investigation of IEL, which was continued by Krupski with a proof of
cut-elimination, and Su and Sano establishing semantic cut-elimination
and the finite model property. However, to the best of our knowledge, no
analysis of these results in a constructive meta-logic has been conducted.

We aim to close this gap and investigate IEL in the constructive type
theory of the Coq proof assistant. Concretely, we present a constructive
and mechanised completeness proof for IEL, employing a syntactic decid-
ability proof based on cut-elimination to constructivise the ideas from
the literature. Following Su and Sano, we then also give constructive ver-
sions of semantic cut-elimination and the finite model property. Given
our constructive and mechanised setting, all these results now bear exe-
cutable algorithms. We expect that our methods used for mechanising
cut-elimination and decidability also extend to other modal logics (and
have verified this observation for the classical modal logic K).

Keywords: Epistemic logic · Completeness · Constructivisation

1 Introduction

Intuitionistic epistemic logic (IEL), introduced by Artemov and Pro-
topopescu [1], is a relatively recent formalism modelling an intuitionistic con-
ception of knowledge. While classical epistemic logics [14,23] typically include
the reflection principle K A ⊃ A, read as “known propositions must be true”,
IEL is based on the co-reflection principle A ⊃ K A, read as “from the existence
of proofs we can gain knowledge by verification”. This striking disagreement is
explained by the divergent notions of truth: while a proposition is determined
classically true by its binary truth value, it is considered intuitionistically true if
an (intuitionistic) proof in the prevailing Brouwer-Heyting-Kolmogorov (BHK)
interpretation has been constructed. While the sole addition of co-reflection to
intuitionistic propositional logic results in the logic of intuitionistic belief (IEL−),
Artemov and Protopopescu propose the further addition of intuitionistic reflec-
tion K A ⊃ ¬¬A for IEL. This principle reestablishes, up to a double negation,
c© Springer Nature Switzerland AG 2022
S. Artemov and A. Nerode (Eds.): LFCS 2022, LNCS 13137, pp. 90–111, 2022.
https://doi.org/10.1007/978-3-030-93100-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93100-1_7&domain=pdf
http://orcid.org/0000-0002-0849-1073
http://orcid.org/0000-0003-4126-6975
https://doi.org/10.1007/978-3-030-93100-1_7

Constructive and Mechanised Meta-Theory of Intuitionistic Epistemic Logic 91

the factivity of truth classically expressed by reflection, and therefore places
intuitionistic knowledge as a modality between intuitionistic and classical truth.

Complementing the philosophical arguments for (and against) IEL, the orig-
inal paper [1] already contains several technical results such as soundness and
completeness with respect to a suitable Kripke semantics, as well as derived
observations concerning the disjunction property and admissibility of reflection.
This formal investigation has been carried on for instance by Su and Sano [27]
with proofs of the finite model property and semantic cut-elimination, and by
Krupski [18] with proofs of syntactic cut-elimination and decidability. However,
especially the arguments for completeness relying on the Lindenbaum construc-
tion manifestly employ classical logic, leaving the current state of the meta-
theory of IEL unsatisfactory: while the formalism itself successfully embraces
intuitionistic principles to tackle classical knowability paradoxes, no visible
attempts are made to describe its semantics in constructive terms.

With this paper, we hope to contribute to a more uniform picture by devel-
oping all mentioned results in a purely constructive setting. Concretely, we illus-
trate that by preparing an argument for the finite model property along the lines
of Su and Sano by a syntactic decidability proof inspired by Smolka, Brown, and
Dang [6,26], completeness of IEL with respect to finite contexts can be obtained
without appeal to classical logic. Moreover, in the fashion of constructive reverse
mathematics [15,16], we show that completeness with respect to possibly infinite
contexts as entailed by the development in [1] is equivalent to the law of excluded
middle (LEM), while even the restriction of completeness to enumerable contexts
is still strong enough to imply Markov’s principle (MP), both observations fol-
lowing similar arguments as applicable to first-order logic [11].

As a framework, we employ the constructive type theory CIC [4,20] imple-
mented in the Coq proof assistant [30]. We deem this choice valuable for three
reasons: First, CIC embodies a rather modest system free of debatable choice
principles diluting the analysis [24]. Secondly, CIC is based on the same princi-
ples justifying IEL by internalising the BHK interpretation in a proof-relevant
way and in fact modelling K by a truncation operation from computational types
to the impredicative universe P of propositions, obeying co-reflection and intu-
itionistic reflection. Thirdly, we use its implementation in Coq as a tool to verify
all proofs, track the usage of assumptions, and exhibit the algorithmic content of
the constructive meta-theory for instance in the form of executable algorithms
for completeness, cut-elimination, and decidability. The resulting Coq develop-
ment is systematically hyperlinked with the PDF version of this paper.1

Contributions. To the best of our knowledge, we are the first to explicitly develop
the meta-theory of IEL in a fully constructive setting. Moreover, all our results
are mechanised using the Coq proof assistant and accompanied by similar proof-
theoretic results for the classical modal logic K.

1 See Appendix 2, also browsable at https://www.ps.uni-saarland.de/extras/iel.

https://www.ps.uni-saarland.de/extras/iel

92 C. Hagemeier and D. Kirst

Outline. In Sect. 2, we begin with some preliminary definitions concerning the
constructive type theory we are working in. In Sect. 3, we introduce formulas and
the natural deduction system of IEL and outline their encoding in constructive
type theory. In Sect. 4, we introduce a sequent calculus suitable for mechanising
cut-elimination which we use in Sect. 5 to prove decidability for IEL. Section 6
establishes constructive completeness and the finite model property. In Sect. 7,
we report results about infinite theories and strong completeness. We close with
a review of the literature and future work in Sect. 8.

2 Preliminaries

We work in the constructive type theory CIC [4,20] of the Coq proof assis-
tant [30], with a predicative hierarchy of type universes Ti above a single impred-
icative universe P. We will always omit the level and write T for any Ti. On the
type level, we have the unit type 1 with the single element ∗, the void type 0,
function spaces X → Y , products X × Y , sums X + Y , dependent products
∀xX . F X, and dependent sums ΣxX . F x. On a propositional level, these types
are denoted using by the usual logical notation (�,⊥,→,∧,∨,∃,∀). Elimination
from P into T is restricted to hide the computational content of proofs.

Basic inductive types we use are natural numbers N ::= 0 | n+1 (n ∈ N) and
booleans B := tt | ff. Furthermore given a type X, we define lists L(X) := ∅ |
x :: L for x : X and L : L(X), and the option type O(X) := ∅ | �x�. To ease
notation we will oftentimes denote appending an element x to a list L by L, x.

Definition 1. Let X be a type and p : X → P be a predicate. We call

– p enumerable, if there is f : N → O(X) with ∀xX . p x ↔ ∃nN. f n = �x�,
– p decidable, if there is some f : X → B with p x ↔ ∀xX . f(x) = tt.

These notions generalise easily to predicates of higher arity. A type X is enu-
merable if the predicate p : X → P defined by p x := � is enumerable. X is
discrete if the predicate λxy. x = y is decidable.

One technique we will often use throughout this paper is reasoning classically
locally whenever we prove a negative statement, captured by the following fact:

Lemma 2. The statements ¬¬(P ∨ ¬P) and ((P ∨ ¬P) → ¬Q) → ¬Q hold for
arbitrary propositions P,Q : P.

Non-classical-axioms. Especially important for our development is the law of
excluded middle, LEM := ∀P : P. P ∨ ¬P and Markov’s principle

MP := ∀f : N → B.¬¬(∃n.f n = tt) → ∃n. f n = tt.

It is well-known, that MP is weaker than LEM and has a computational justifi-
cation based on linear search, which LEM completely lacks [5].

Constructive and Mechanised Meta-Theory of Intuitionistic Epistemic Logic 93

3 Basic Intuitionistic Epistemic Logic

This section introduces formulas of IEL, the natural deduction system, and its
models closing with a statement of the classical completeness proof. We present
nothing new, instead recapping material from Artemov and Protopopescu [1]
adapted to the setting of constructive type theory.

Definition 3. The syntax of IEL is given by the following inductive datatype:

A,B : F ::= A ∨ B | A ∧ B | A ⊃ B | K A | pi | ⊥ (i ∈ N)

Lemma 4. The type F is discrete and enumerable.

Proof. Both are established using standard techniques e.g. [10, Fact 3.19].

Since F is inhabited, we can even establish a stronger claim than enumer-
ability, namely that a function f : N → F exists s.t. ∀AF .∃nN. fn = A. In
our formal setting, we model finite theories as lists of formulas. Throughout this
paper, we refer to these as finite sets and use usual set-theoretic notation. Induc-
tion on a finite set, then, is just induction on the list representing the finite set.
Infinite contexts, here called theories, are represented as predicates T : F → P,
with the intended reading that A ∈ T iff T A holds.

The natural deduction calculus for IEL is encoded as an inductive predicate
�: L(F) → F → P. Natural deduction for IEL− was introduced by Rogozin [25],
however our system is slightly different to ease the mechanisation. The idea is
to extend a natural deduction calculus for intuitionistic propositional logic by
rules for co-reflection (KR) and distribution (KD) to express IEL−, and by a
rule for intuitionistic reflection (KF) to express IEL. These rules are shown in
Fig. 1; the full system can be found in Appendix 1. The main difference between
our system and that of Rogozin is the distribution rule, as Rogozin’s formulation
equivalently allows for multiple applications of our KD-rule in one step.

In this paper, we will always state and prove results for IEL, the proofs for
IEL− can be obtained from the proofs for IEL by omitting certain parts. In
fact, the mechanisation contains formal proofs for both systems, avoiding code
duplication with tagged deduction systems (see Appendix 2).

We naturally extend derivability to theories T : F → P by writing T � A if
there is a finite set Γ ⊆ T with Γ � A.

Γ A

Γ KA
(KR)

Γ K (A ⊃ B)
Γ KA ⊃ KB

(KD)
Γ KA

Γ ¬¬A
(KF)

Fig. 1. Selected natural deduction rules for IEL

Models for IEL extend standard Kripke semantics by a verification relation.
We refer to the reader to Wolter and Zakharyashchev [33], whose paper contains
general results in the model theory of intuitionistic modal logics.

https://www.ps.uni-saarland.de/extras/iel/website/iel.forms.html#decode_surj
https://www.ps.uni-saarland.de/extras/iel/website/iel.forms.html#form_eq_dec
https://www.ps.uni-saarland.de/extras/iel/website/iel.forms.html#decode_surj

94 C. Hagemeier and D. Kirst

Definition 5.(Kripke Models) A Kripke Model for IEL, IEL− is a quadruple
(W,V,≤,≤K) consisting of a type of worlds W, and a valuation V : W → N → P,
which must have the following properties:

1. ≤ is a preorder on W,
2. If w ≤ v and V (w, i) then V (v, i) for any w, v, i,
3. ≤ ◦ ≤K ⊆ ≤K, i.e. if w ≤ u and u ≤K v then w ≤K v for any w, u, v ∈ W,
4. ≤K ⊆ ≤, i.e. if w ≤K v then w ≤ u for any u, v ∈ W.

Property 2 in above definition is known as persistence. For IEL, additionally the
models need to have a serial ≤K-relation, i.e. for all w there should be some v
with w ≤K v.

Definition 6. (Forcing Relation) Let M be a Kripke model. We define the
forcing relation by recursion on the formula:

w � pi :⇔ V(w, i)
w � A0 ∧ A1 :⇔ w � A0 ∧ w � A1

w � A0 ∨ A1 :⇔ w � A0 ∨ w � A1

w � A0 ⊃ A1 :⇔ ∀w′.w ≤ w′ → w′ � A0 → w′ � A1

w � K A0 :⇔ ∀w′. w ≤K w′ → w′ � A0

We can easily establish that the forcing relation is monotone.

Lemma 7. (Monotonicity) Let M be an arbitrary model and A be any for-
mula. If w ≤ v and M, w � A then M, v � A.

Proof. Induction on A utilising the persistence of V.

We use the standard notation Γ � A to denote that any model forcing Γ
forces A, too.2 Note that this notation is monotone in the following sense: If
Γ ⊆ Γ ′ and Γ � A then Γ ′ � A.

Soundness for Kripke models can be established by a simple induction.

Lemma 8. (Soundness) If T � A then T � A.

Proof. Assume T � A, thus there is a finite set Γ ⊆ T s.t. Γ � A. Then by
induction on Γ � A we show Γ � A, relying on Lemma 7. Thus also T � A.

With soundness, we can establish consistency of IEL.

Lemma 9. (Consistency) IEL is consistent.

Proof. For deriving a contradiction, assume � ⊥. Thus by soundness (Lemma 8)
⊥ is entailed in any model at every world. But we can easily construct a model
where M,w � ⊥, contradicting the assumption.

2 Formally, define Γ � A := ∀Mw. (∀B ∈ Γ. M, w � B) → M, w � A.

https://www.ps.uni-saarland.de/extras/iel/website/iel.models.html#eval_monotone
https://www.ps.uni-saarland.de/extras/iel/website/iel.modelsClassicalCompleteness.html#ndSound
https://www.ps.uni-saarland.de/extras/iel/website/iel.modelsClassicalCompleteness.html#ndConsistent

Constructive and Mechanised Meta-Theory of Intuitionistic Epistemic Logic 95

Finally, we formulate a strong version of the classical completeness theorem,
by composition of the Lindenbaum and Truth Lemma both established in [1].
Notably, the authors of [1] prove both lemmas using LEM to allow case distinc-
tions whether a formula is contained in or provable from an infinite context.

Theorem 10. (Classical Completeness) Let T : F → P be an arbitrary
predicate on formulas. Assuming LEM, if T � A then T � A.

4 Cut-Free Sequent Calculus

Sequent calculus representations for IEL have been proposed by Krupski [18],
Su and Sano [28], and more recently Fiorino [9].

A main challenge for us is to find an encoding suitable for proving termina-
tion of the proof search and structural properties in a proof assistant. We employ
a sequent calculus similar to the GKI-calculus by Kleene [17] and extending it to
cover IEL by using additional rules, similar to those used by Krupski [18]. Sim-
ilar techniques have been used by Smolka, Brown, and Dang [6,26] to establish
decidability of classical and intuitionistic propositional logic in Coq.

Let us highlight why this encoding is well-suited for mechanisation: In most
textbooks [31] the GKI-calculus does not use membership but instead just keeps
the principal formula in the premiss.

Γ,A ∧ B,A,B ⇒ C

Γ,A ∧ B ⇒ C

A ∧ B ∈ Γ Γ,A,B ⇒ C

Γ ⇒ C

The left-hand side is the usual presentation, while the version on the right is the
one we use. This change into using membership helps with automation.

The rules of the calculus are displayed in Fig. 2, where for a finite set Γ we
denote the downward K-projection by ΓK := {A | K A ∈ Γ}.

The cumulative character of the rules makes it possible to encode this calculus
easily in a proof assistant, utilising list membership. This calculus is encoded as
a predicate ⇒: L(F) → F → P, we also define a height-bounded variant and
use Γ

h⇒ A to denote that a derivation of Γ ⇒ A of height less or equal to h
exists. Our height encoding is inspired by Michaelis and Nipkow [19]. We assume
that the heights of all derivations in the premisses are equal and we include an
additional rule to increase the height of any derivation (see Appendix 2).

From a high-level view, our cut-admissibility proof follows the same structure
employed by many textbooks (e.g. [31]), using a double induction on the sum of
heights in the derivation and the formula size. However the lower level structure
is different since we cannot perform case distinctions on principality and instead
can only use case analyses on the last rule applied in a derivation. Following the
traditional presentation, we first show depth-preserving weakening.

Lemma 11. (Weakening) If Γ ⊆ Δ and Γ
n⇒ A then Δ

n⇒ A.

Proof. The proof is by induction on the derivation Γ
n⇒ A with Δ quantified.

https://www.ps.uni-saarland.de/extras/iel/website/iel.modelsClassicalCompleteness.html#StrongCompleteness
https://www.ps.uni-saarland.de/extras/iel/website/iel.decidability.html#genhW

96 C. Hagemeier and D. Kirst

pi ∈ Γ

Γ ⇒ pi

(V)
⊥ ∈ Γ

Γ ⇒ S
(F)

F ⊃ G ∈ Γ Γ ⇒ F

Γ ⇒ G
(IL)

Γ, F ⇒ G

Γ ⇒ F ⊃ G
(IR)

F ∧ G ∈ Γ Γ, F, G ⇒ H

Γ ⇒ H
(AL)

Γ ⇒ F Γ ⇒ G

Γ ⇒ F ∧ G
(AR)

F ∨ G ∈ Γ Γ, F ⇒ H Γ, G ⇒ H

Γ ⇒ H
(OL)

Γ ⇒ Fi

Γ ⇒ F1 ∨ F2

(ORi)

Γ ∪ ΓK ⇒ F

Γ ⇒ KF
(KI)

Γ ⇒ K⊥
Γ ⇒ A

(KF)

Fig. 2. Sequent system for IEL (GKIEL)

Note that this result is stronger than what is usually referred as weakening
e.g. Γ ⇒ A → Γ,B ⇒ A, since our version does allow to remove duplicate
occurrences of formulas. Thus we do not prove what is usually referred to as the
contraction rule.

Lemma 12. (Inversion) The rules for conjunction, disjunction and implica-
tion are height-preserving invertible in the following sense:

– If B ∈ Γ and Γ,A ⊃ B
n⇒ C then Γ

n⇒ C.
– If A ∈ Γ and Γ,A ∨ B

n⇒ C then Γ
n⇒ C.

– If B ∈ Γ and Γ,A ∨ B
n⇒ C then Γ

n⇒ C.
– If A ∧ B,Γ ⇒ C and Γ,A,B

n⇒ C then Γ
n⇒ C.

Proof. The proofs are by induction on the height with the formulas quantified.
Most cases are solved by applying the rule used to obtain the derivation and
using the inductive hypothesis afterwards. Only when the rule we are showing
invertible is used on the same formulas (e.g. same A and B), it suffices to use
the inductive hypothesis directly.

Theorem 13. (Cut-Admissibility) If Γ ⇒ A and A,Γ ⇒ B then Γ ⇒ B.

Proof. The proof uses a strong induction on pairs of numbers (r, s), representing
the cut-rank (sum of the depths of the derivation) and the size of the cut-
formula s. Thus we have one inductive hypothesis allowing us to delete cuts on
smaller formulas (e.g. formulas with smaller size; this includes subformulas) with
arbitrary depths and a second hypothesis, allowing us to eliminate cuts with a
smaller rank on the same formula.

We first do a case analysis on Γ ⇒ A, in some cases, we also need to do
a second case analysis on A,Γ ⇒ B. Some illustrative cases can be found in
Appendix 3.

https://www.ps.uni-saarland.de/extras/iel/website/iel.decidability.html#inversionAnd
https://www.ps.uni-saarland.de/extras/iel/website/iel.decidability.html#genDPCut

Constructive and Mechanised Meta-Theory of Intuitionistic Epistemic Logic 97

With cut-elimination, we can prove the agreement between natural deduction
and the sequent calculus directly.

Theorem 14. (Agreement) For any Γ and A, we have Γ � A iff Γ ⇒ A.

Proof. Both directions are proven by induction on the derivation. The direc-
tion from natural deduction to the sequent calculus prominently uses the cut-
admissibility result (Theorem 13), the converse direction is straightforward and
does not need this result.

Lemma 15. (Disjunction Property) If ⇒ A ∨ B then ⇒ A or ⇒ B.

Proof. By induction on the derivation ⇒ A ∨ B.

Combining both Theorem 14 and Lemma 15 yields a proof of the disjunction
property for natural deduction.

Corollary 16. (ND Disjunction Property) If � A ∨ B then � A or � B.

5 Decidability via Proof Search

We establish decidability of the natural deduction system for IEL by proving
decidability for the cut-free sequent calculus and combining this with our equiv-
alence proof (Theorem 14). The algorithm is an instance of Kleene-style fixed-
point iteration. Crucial to this endeavor is the subformula property, which states
that for a sequent Γ ⇒ A there is a finite universe of sequents such that any
backwards application of the rules stays within the universe.

Definition 17. (Subformula) The finite set Subs(A), containing all subfor-
mulas of a formula A, is defined by recursion on A:

Subs(A1 ◦ A2) := Subs(A1) ∪ Subs(A2) ∪ {A1 ◦ A2}
Subs(K A1) := Subs(A1) ∪ {K A1}

Subs(pi) := {pi}

In the above definition, the circle ◦ is a placeholder for any binary connective. For
a set of formulas Γ we define its subformula universe Subs(Γ) :=

⋃
F∈Γ Subs(F).

We call Γ subformula-closed if Subs(Γ) ⊆ Γ .

Formally, we represent the sequents used during the proof search, also called
goals, by members of the type G := L(F)×F , so pairs (Γ,A) of a context Γ and
a formula A. IEL enjoys the subformula property, since all derivations of Γ ⇒ A
only use formulas from S := Subs(Γ,A,K ⊥) and thus we can identify a universe
U := {(Γ,A) | Γ ⊆ S ∧ A ∈ S} and restrict our proof search to U-goals.

Having identified this set, we compute the set of derivable goals by a fixed-
point iteration starting from the empty set. We can envision this process as
iteratively expanding a candidate set of derivable goals until the set no longer
changes. We always add a goal when it is possible to derive it using the previous

https://www.ps.uni-saarland.de/extras/iel/website/iel.decidability.html#ndgen_iff
https://www.ps.uni-saarland.de/extras/iel/website/iel.decidability.html#disjunction_SC
https://www.ps.uni-saarland.de/extras/iel/website/iel.decidability.html#disjunction_ND

98 C. Hagemeier and D. Kirst

goals, for example, assume that Γ ⇒ A and Γ ⇒ B are both derivable, then in
the next step of the iteration, it would be possible to add Γ ⇒ A∧B. To formalise
this extension process we define a decidable step relation step : L(G) → G → P.
This relation holds if, using the derivations in the list, the goal can be derived
in a single step.

The algorithm now works by, in every iteration, checking if there is a goal in
U which is in step relation with the set of currently known derivable sequents. If
there is such a goal, it is added and the step is repeated, otherwise the algorithm
terminates. Such a procedure will reach a fixed-point after at most |U| iterations.
We denote the resulting list of goals by Λ.

Two crucial properties of Λ we need later are the closure property and induc-
tion principle.

Lemma 18. The following hold for the list Λ obtained as fixed-point of step:

– Λ-Closure: stepΛ ⊆ Λ
– Λ-Induction: Let stepA ∩ U ⊆ p for all A ⊆ p and an arbitrary predicate p.

Then Λ ⊆ p.

Proof. See Lemma 12.4.2 in [26].

Lemma 19. If (Γ,A) ∈ Λ then Γ ⇒ A.

Proof. By Λ-induction. Thus fix any set U ′ s.t. (Γ,A) ∈ U ′ → Γ ⇒ A and
assume that the step relation holds for U ′ and Γ ′ ⇒ A′. We need to show
Γ ′ ⇒ A′. We can analyse which rule caused the step relation to be fulfilled and
the assumptions about U ′ to create the derivation.

Lemma 20. If Γ,A ∈ U and Γ ⇒ A then (Γ,A) ∈ Λ.

Proof. The proof is by induction on Γ ⇒ A. We use Λ-closure in every step and
thus only need to prove that step Λ (Γ,A) holds.

Case AR: Assume Γ ⇒ A1 and Γ ⇒ A2, thus (Γ,A1) ∈ Λ and (Γ,A2) ∈ Λ
by the inductive hypothesis. Thus the step relation holds between Λ and
(Γ,A1 ∧ A2). Since Λ is closed under the step relation, we are done.

Case AL: Assume there is B ∧ C ∈ Γ and B,C, Γ ⇒ A. Thus by the inductive
hypothesis ((B,C, Γ), A) ∈ Λ. Thus the step relation holds between Λ and
((B ∧ C,Γ), A), since we can derive the goal in one step using AL.

Theorem 21. The sequent calculus Γ ⇒ A is decidable.

Proof. Decide (Γ,A) ∈ Λ and, depending on the outcome, apply Lemma 20 or
Lemma 19 to obtain either Γ ⇒ A or Γ �⇒ A.

Corollary 22. The natural deduction system Γ � A is decidable.

Proof. A consequence of Theorem 21 and Theorem 14.

https://www.ps.uni-saarland.de/extras/iel/website/iel.decidability.html#lambda_gen
https://www.ps.uni-saarland.de/extras/iel/website/iel.decidability.html#gen_lambda
https://www.ps.uni-saarland.de/extras/iel/website/iel.decidability.html#gen_dec
https://www.ps.uni-saarland.de/extras/iel/website/iel.decidability.html#ielg_dec

Constructive and Mechanised Meta-Theory of Intuitionistic Epistemic Logic 99

6 Constructive Completeness

In this section, we detail the constructive proof of both the finite model property
and completeness. Both properties are proven by constructing a finite canonical
model, whose worlds consist of finite, prime, and consistent sets of formulas that
are deductively closed with respect to a subformula-universe.

We begin by carrying out the Lindenbaum construction constructively. The
key insight here is that due to decidability, we can actually represent the exten-
sion process as a computable function operating on finite contexts.

6.1 Lindenbaum Extension

We start by defining a function that extends a (finite) set of formulas Γ by a
formula B, if non-derivability of A⊥ is preserved.

Γ ⊕A⊥ B :=

{
Γ,B if Γ,B � A⊥
Γ otherwise

Note that due to the decidability, we can actually compute this function for
any finite set of formulas Γ . For a finite set U we use Γ ⊕A⊥ U as notation for
applying the extension procedure iteratively to every element from U .

Definition 23. (Context Properties) Let U be a finite set of formulas. A
set of formulas Γ is a U-theory iff for any formula A ∈ U derivability implies
membership, i.e. Γ � A → A ∈ Γ .

Γ is U-prime if for any A ∨ B ∈ Γ we have A ∈ Γ ∨ B ∈ Γ for any A,B ∈ U .

We can now establish properties of the extension.

Lemma 24. If Γ � A⊥ then Γ ⊕A⊥ U � A⊥ for any U .

Proof. The proof is by induction on U . The case U = ∅ is trivial. In the case where
U = U ′∪{u}, we can decide Γ ⊕A⊥ U ′, u � A⊥. If Γ ⊕A⊥ U ′, u � A⊥, we know that
Γ ⊕A⊥ U ′ is extensionally equivalent to Γ ⊕A⊥ U and thus can use the inductive
hypothesis; in the other case we have Γ ⊕A⊥ U ′

� A⊥ as a hypothesis.

Lemma 25. If Γ � A⊥, B ∈ U and Γ ⊕A⊥ U � B then Γ ⊕A⊥ U � B ⊃ A⊥.

Lemma 26. The extension is a U-theory.

Next, we can establish that the extension is U-prime.

Lemma 27. (Primeness) For any Γ,U : If Γ � A⊥ then Γ ⊕A⊥ U is U-prime.

Proof. Let A ∨ B ∈ Γ ⊕A⊥ U , furthermore assume A ∈ U ∨ B ∈ U . Since we
can compute the extension, we can decide wether A or B are contained in the
extension. The cases where either are contained are easy. In the other case, we
have both A /∈ Γ ⊕A⊥ U and B /∈ Γ ⊕A⊥ U , thus by Lemma 25 we have both
Γ ⊕A⊥ U � A ⊃ A⊥ and Γ ⊕A⊥ U � B ⊃ A⊥. Since A ∨ B ∈ Γ ⊕A⊥ U we can
derive A⊥ contradicting Lemma 24.

https://www.ps.uni-saarland.de/extras/iel/website/iel.constructiveCompleteness.html#extend_does_not_derive
https://www.ps.uni-saarland.de/extras/iel/website/iel.constructiveCompleteness.html#extend_does_not_derive_imp
https://www.ps.uni-saarland.de/extras/iel/website/iel.constructiveCompleteness.html#extend_locally_dclosed
https://www.ps.uni-saarland.de/extras/iel/website/iel.constructiveCompleteness.html#extend_locally_prime

100 C. Hagemeier and D. Kirst

So essentially, constructive primeness follows from decidable membership.

Lemma 28. (Lindenbaum) Let Γ be a list of formulas s.t. Γ � A and U
arbitrary. We can compute a U-prime U-theory extending Γ not deriving A.

Proof. Can be achieved by combining Lemmas 25, 24 and 27.

6.2 Canonical Models

In this section, we construct a canonical model with respect to a finite formula
universe U . This universe will be instantiated to a concrete subformula universe
in the proof of Theorem 32. The construction is inspired by both [1] and [27].

Definition 29. (Canonical Model) We define MC = (WC ,VC ,≤,≤K) by

– WC := {Γ ⊆ U | Γ is a U-prime, consistent U-theory}
– VC(Γ, i) := pi ∈ Γ
– Γ ≤ Δ := Γ ⊆ Δ
– Γ ≤K Δ := Γ ∪ ΓK ⊆ Δ

We can easily establish that the defined model is actually a model for IEL, by
showing that the ≤K-relation is serial (e.g. every world w has a ≤K-successor):

Lemma 30. Every world has a ≤K-successor.

Proof. The proof works by Lindenbaum-extending Γ ∪ ΓK to not derive ⊥. This
yields a world in the model, which is a ≤K-successor to Γ .

Now we can show the following version of the Truth Lemma constructively.

Lemma 31. (Truth Lemma) For any Γ ∈ WC and A ∈ U we have

A ∈ Γ ⇐⇒ MC , Γ � A.

Proof. The proof is by induction on A. We only consider selected cases here.

A = A1∨A2: Assume MC , Γ � A thus by definition, we have either MC , Γ � A1

or MC , Γ � A2, thus by the inductive hypothesis; we either have A1 ∈ Γ or
A2 ∈ Γ . Using that Γ is a U-theory and A1 ∨ A2 ∈ U we can arrive at the
conclusion.
For the other direction, we assume A1 ∨A2 ∈ Γ . Since Γ is U-prime, we have
either A1 ∈ Γ or A2 ∈ Γ . In both cases, we can establish Γ � A using the
inductive hypothesis and the definition of entailment.

A = K A1: Assume K A ∈ Γ . Let Δ be an arbitrary ≤K-successor to Γ . We need
to establish Δ � A, by the inductive hypothesis it suffices to establish A ∈ Δ,
which is simple using the definition of ≤K.
Assume MC , Γ � K A. Again using stability of membership, furthermore
assume K A /∈ Γ . Now we can Lindenbaum-extend Γ, ΓK to a world in the
model that does not derive A. But this world is a ≤K-successor, contradicting
MC , Γ � K A.

https://www.ps.uni-saarland.de/extras/iel/website/iel.constructiveCompleteness.html#Lindenbaum
https://www.ps.uni-saarland.de/extras/iel/website/iel.constructiveCompleteness.html#are_iel_models
https://www.ps.uni-saarland.de/extras/iel/website/iel.constructiveCompleteness.html#truth_lemma

Constructive and Mechanised Meta-Theory of Intuitionistic Epistemic Logic 101

This allows us to prove completeness constructively, which can be interpreted as
an algorithm reifying a proof term of the formal type-theoretic meta-logic into
a derivation in natural deduction.

Theorem 32. (Constructive Completeness) If Γ � A then Γ � A.

Proof. Since � is stable under double negation (consequence of decidability,
Corollary 22), we can assume both Γ � A and Γ � A and need to derive a
contradiction. Using the Lindenbaum lemma (Lemma 28) Γ can be extended to
a world Γ ′with A /∈ Γ ′ of the canonical model for the subformula universe of
(Γ,A) and therefore by Lemma 31, MC , Γ ′

� A. But this contradicts Γ ′ � A,
which is easily obtained from Γ � A using monotonicity.

With the constructive completeness proof it is now possible to constructively
derive admissibility results from [1], e.g. the admissibility of reflection (we don’t
repeat the proof from [1] here but refer to the Coq development).

6.3 Finite Model Property

Intuitively, the finite model property is a trivial consequence of the fact that the
canonical model is finite, which is simple to observe since the worlds are subsets
of a finite set and thus only finitely many of them exist. This has also been
established by Su and Sano [27]. For IEL− the finite model property has already
been established by Wolter and Zakharyaschev [32]. We first define entailment
restricted to finite models:3

Γ �fin A := ∀M. fin(M) → M � Γ → M � A.

A logic now has the finite model property, if any formula entailed in all finite
models is a theorem.4

Definition 33. A logic L has the finite model property if Γ �fin A → Γ � A.

To complete this definition, a suitable notion of finite model needs to be made.
A straightforward choice would be to define that a model is finite if the type of
worlds is finite. But since the world-type of the canonical model does not just
contain the formulas, but also proofs about them (e.g. a proof that the finite
set of formulas is consistent), an additional axiom, namely proof irrelevance,
is needed. To avoid, the additional axiom, we introduce the property of being
essentially finite.

Definition 34. A model M = (W,V,≤,≤K) with world type W is essentially
finite, if there is a list of worlds L s.t.

∀w∃v ∈ L.w ≤ v ∧ v ≤ w.

Theorem 35. The canonical model is essentially finite.
3 The notation M � Γ is a short-hand for ∀A ∈ Γ. M � A.
4 Or, classically equivalent, if any formula valid in some model also has a finite model.

https://www.ps.uni-saarland.de/extras/iel/website/iel.constructiveCompleteness.html#completeness
https://www.ps.uni-saarland.de/extras/iel/website/iel.constructiveCompleteness.html#reflectionAdmissible
https://www.ps.uni-saarland.de/extras/iel/website/iel.constructiveCompleteness.html#canonicalFinite

102 C. Hagemeier and D. Kirst

Proof. We can compute a list containing all finite, prime, consistent, U-theories,
which is possible since all aforementioned properties are decidable. From these
we obtain a list of worlds which satisfies the essential finiteness property.

Corollary 36. IEL has the finite model property.

Proof. Analogous to Theorem 32, utilising Theorem 35.

There are different versions of the finite model property in the literature. One
commonly used version is that any non-theorem must have a finite countermodel:

FMP := ∀A. � A → ∃M.M � A ∧ fin(M)

We can actually establish this result, too, as the canonical model can be employed
as the countermodel.

6.4 Semantic Cut-Elimination

Su and Sanno [27] use a slightly different construction to prove completeness of
the cut-free sequent calculus. We can adapt their argument to be constructive
by using the decidability of the cut-free sequent calculus.

Theorem 37. (Completeness for GKIEL) If Γ � A then Γ ⇒ A.

Proof. We construct a canonical model with finite saturated theories as worlds
as in [27] and then we proceed as in Theorem 32.

Theorem 38. (Semantic Cut-Elimination) If Γ � A then Γ ⇒ A.

Proof. By composing Lemma 8 and Theorem 37.

Corollary 39. If Γ ⇒ A and A,Γ ⇒ B then Γ ⇒ B.

Proof. Since the two premises can be replayed in the natural deduction system,
they trivially entail Γ � B and thus Γ ⇒ B by Theorem 38.

Since completeness is constructive, this procedure bears an executable algo-
rithm. Note that the presented semantic cut-elimination proof does not rely on
the syntactic cut-elimination proof given in Sect. 4; thus in principle, we could
as well obtain all main results without it. However, we view both proofs of
cut-elimination as valuable, especially since the syntactic one does not rely on
completeness and is overall shorter.

7 Completeness for Infinite Theories

In this section, we analyse the connections between strong completeness, i.e.
completeness for infinite theories as stated in Theorem 10 based on [1], and
non-constructive axioms. This is similar to the analysis by Forster et al. [11] for
first-order logic and relies on the stability of semantic inconsistencies:

https://www.ps.uni-saarland.de/extras/iel/website/iel.constructiveCompleteness.html#ielHasFmp
https://www.ps.uni-saarland.de/extras/iel/website/iel.semanticCutElimination.html#completeness
https://www.ps.uni-saarland.de/extras/iel/website/iel.semanticCutElimination.html#semaCut
https://www.ps.uni-saarland.de/extras/iel/website/iel.semanticCutElimination.html#semaCut'

Constructive and Mechanised Meta-Theory of Intuitionistic Epistemic Logic 103

Lemma 40. If ¬¬ (T � ⊥) then T � ⊥.

Proof. Assume ¬¬ (T � ⊥) and let w be a world in an arbitrary model M, that
forces T . We need to show M, w � ⊥ which is by definition ⊥. Using Lemma
2 we can reason classically and thus strip the double negation off ¬¬ (T � ⊥).
Now we can obtain the proof of M, w � ⊥ from T � ⊥ since M forces T .

7.1 Arbitrary Theories

Our first result is the equivalence between strong completeness for arbitrary
theories and the law of excluded middle, adding the converse of Theorem 10.

Lemma 41. Assuming strong completeness, derivation of falsity is stable, i.e.
¬¬ (T � ⊥) implies T � ⊥ for arbitrary T .

Proof. Assume ¬¬ (T � ⊥). By soundness we have ¬¬(T � ⊥), by Lemma 40
we thus have T � ⊥. Using strong completeness concludes the proof.

Theorem 42. Strong completeness implies LEM.

Proof. Assume strong completeness and let P be arbitrary. We have to show
P ∨ ¬P . Consider the theory T := {A|P ∨ ¬P}. Let us first show T � ⊥. For
this, we can use stability of deriving falsity (Lemma 40) and are left with proving
¬¬(T � ⊥). Since our goal is negated, we can assume P ∨¬P by Lemma 2. Now
we can show T � ⊥ using the assumption rule.

Having established that T � ⊥, by definition a list Γ ⊆ T exists s.t. Γ � ⊥.
We either have Γ = ∅ or Γ = A,Γ ′. In the first case we thus have a derivation
� ⊥, we can derive a contradiction using consistency (Lemma 9)). In the second
case we know that A ∈ T is proven, but this yields a proof of P ∨ ¬P .

7.2 Enumerable Theories

Even if we restrict strong completeness to enumerable theories, we can still derive
MP. Here we will need the fact that the type of formulas is enumerable (Lemma
4), we will denote the n-th formula in this enumeration by An. We can first
adapt Lemma 41 to strong enumerable completeness.

Lemma 43. Assuming strong enumerable completeness, derivation of falsity is
stable for any enumerable theory T , i.e. ¬¬ (T � ⊥) implies T � ⊥.

Proof. The proof is analogous to the proof of Lemma 41.

Theorem 44. Strong enumerable completeness implies MP.

Proof. To show MP, let f : N → B be a boolean function s.t. ¬¬∃n. f n = tt.
We construct the enumerable theory {An ∧ ¬An|f n = tt}. It is easy to verify
that this theory is enumerable. In constructive type theory, we can encode this
theory as λ(F : F).∃n fn = tt ∧ F = (An ∧ ¬An).

https://www.ps.uni-saarland.de/extras/iel/website/iel.modelsClassicalCompleteness.html#entailmentBotDN
https://www.ps.uni-saarland.de/extras/iel/website/iel.modelsClassicalCompleteness.html#st2lem
https://www.ps.uni-saarland.de/extras/iel/website/iel.modelsClassicalCompleteness.html#fstab2LEM
https://www.ps.uni-saarland.de/extras/iel/website/iel.modelsClassicalCompleteness.html#ste2fs
https://www.ps.uni-saarland.de/extras/iel/website/iel.modelsClassicalCompleteness.html#fenum2MP

104 C. Hagemeier and D. Kirst

Assume that T � ⊥, we will establish this fact shortly. Now we have that
a finite subset Γ ⊆ T derives ⊥. As before, this subset cannot be empty since
otherwise consistency would be violated. But then we can derive that there is
an n s.t. f n = tt.

To conclude the proof, we need to establish T � ⊥. Since T is enumerable,
we can use Lemma 43 and use ¬T � ⊥ as an additional hypothesis and need
to derive a contradiction. Therefore we can strip the double-negation and know
that there is a j s.t. f j = tt, thus Fj ∧ ¬Fj ∈ T . We can now show T � ⊥ using
the implication elimination rule with Fj and ¬Fj .

Thus, having observed Theorems 42 and 44, we can conclude that the app-
roach to completeness of IEL pursued e.g. by Artemov and Protopopescu [1]
inherently relies on a classical meta-theory. Also, let us remark that for these
observations we only used a modest propositional fragment of IEL, therefore
they generalise to strong completeness of many other logical formalisms.

8 Conclusion

8.1 Related Work

Of course the main reference for IEL is the paper introducing the logic by Arte-
mov and Protopoescu [1]. Protopopescu [21] furthermore proves soundness and
completeness of embeddings from IEL to S4. His dissertation [22] consists of two
more papers on IEL, one investigating the connection between IEL and modal
logics of verifications and one about fallible knowledge.

Proof theory of IEL has been studied by Krupski [18], Su and Sano [27,28],
and more recently Fiorino [9]. Su and Sano propose a cut-free sequent calculus
for IEL (and an extension of IEL with quantifiers). Their calculus for IEL uses
sets of formulas with at most 1 element in the succedent of some rules, which
will probably makes it less convenient to mechanise in a proof assistant. Fiorino
proposes a sequent calculus for IEL with linear depth.

Tarau [29] develops a theorem prover for IEL using Prolog and presents
embeddings from IEL into IPC (intuitionistic propositional calculus), however
soundness or completeness proofs about the embeddings are not given. We tried
to investigate those, however in our setting, we were unable to come up with a
completeness proof.

There is a lot of existing work on mechanising decidability and cut-
elimination in Coq and other proof assistants. For instance, Bentzen [2] mecha-
nises a completeness proof for S5 in the Lean proof assistant, which uses classical
logic. Doczkal and Smolka present axiom-free Coq mechanisations of complete-
ness with respect to Kripke semantics and decidability of the forcing relation for
K*, an extension of the classical modal logic K [7], as well as for various tem-
poral logics (e.g. CTL) [8]. There are many mechanisations of cut-elimination
proofs, many use G3K-style calculi and embed these using permutations in a
proof assistant. Michaelis and Nipkow [19] establish (among other results, such
as completeness) cut-elimination of IPC using Isabelle/HOL formalising the rules

Constructive and Mechanised Meta-Theory of Intuitionistic Epistemic Logic 105

using multisets. A somewhat similar approach (using permutations to express
multisets) is also used by Chaudhuri and Lima [3]. Goré et al. [12] mechanise
cut-elimination for the provability logic GL in multiset representation using Coq
and discuss how their work benefits from using a proof assistant.

8.2 Future Work

There are several possible lines of future work. For one, it would be worthwhile to
investigate whether, as the converse to Theorem 44, MP implies completeness for
enumerable theories, or whether a stronger assumption is required. As indication
for the latter, it seems not clear how MP would help with for instance establishing
the Lindenbaum lemma constructively for infinite enumerable theories.

Secondly, it is certainly interesting to see if this general method for proving
the finite model property and completeness in a constructive setting will also
generalise to other modal logics. Here, we currently only have partial results:
We verified that the cut-elimination and decidability proofs extend to the modal
logic K (using an encoding based on a sequent calculus by Hakli and Negri [13]).

Lastly, our current decidability and cut-elimination proofs are not very effi-
cient. Mechanising more efficient decidability procedures might be an interesting
challenge (for example basing on Krupski’s [18] decidability proof or Fiorino’s [9]
refutation calculus).

Acknowledgments. The authors would like to thank thank Yannick Forster, Marc
Hermes, Jannik Kudla, Dominik Wehr and the anonymous reviewers for their helpful
comments and suggestions on drafts of this paper.

Appendix 1 Natural Deduction System for IEL

A ∈ Γ

Γ � A
A

Γ � ⊥
Γ � A

E

Γ,A � B

Γ � A ⊃ B
II

Γ � A Γ � A ⊃ B

Γ � B
IE

Γ � A

Γ � A ∨ B
DIL

Γ � B

Γ � A ∨ B
DIR

Γ,A � C Γ,B � C Γ � A ∨ B

Γ � C
DE

Γ � A Γ � B

Γ � A ∧ B
CI

Γ � A ∧ B

Γ � A
CEL

Γ � A ∧ B

Γ � B
CER

Γ � A

Γ � K A
KR

Γ � K (A ⊃ B)
Γ � K A ⊃ K B

KD
Γ � K A

Γ � ¬¬A
KF

106 C. Hagemeier and D. Kirst

Appendix 2 Coq Mechanisation

Component Spec Proof

preliminaries 121 93
natural deduction + lindenbaum 183 418

models 43 23
completeness 75 325

semantic cut-elimination 49 214
cut-elimination + decidability IEL 193 399

classical completeness / infinite theories 90 261
cut-elimination + decidability K 116 362

737 2194

Fig. 3. Overview of the mechanisation components

Our mechanisation compiles using Coq 8.13.2. It takes roughly 4 min to com-
pile on a 2.6 GHz machine. An overview of the development with line counts can
be found in Fig. 3.

We use a parametrised deduction system to represent natural deduction (and
the sequent calculus) for both IEL and IEL−. That is, formally our deduction
system has type �: F → L(F) → F → P, where F is a two-element type class,
which is responsible for flagging whether IEL− or IEL shall be used. This allows
us to prove most results simultaneously for IEL and IEL− as the lemmas are
parametrised in the flag of the deduction system.

2.1 The Classical Modal Logic K

For the classical modal logic K, we prove cut-elimination and decidability by
using a similar strategy as we used for IEL. Hakli and Negri [13] propose a G3C-
style calculus for K; as in the case of IEL, we instead adopt a mechanisation-
friendly variant of a G3I-calculus and introduce a single modal rule. A similar
system for classical propositional logic was presented by Dang [6]. For the full
system, we refer the reader to the Coq mechanisation. Here, we only present the
modal rule and compare it with the one used by Hakli and Negri. Hakli and
Negri use the following rule:5

Γ ⇒ A
�Γ,Θ ⇒ Δ,�A

In a similar spirit, as our modal rule, for IEL, we adopt the following rule for
our system:
5 In the following rules, we use a box instead of K as the modal operator, as this is
standard for the classical modal logic K.

https://www.ps.uni-saarland.de/extras/iel/website/iel.decidabilityK.html#cutElimination
https://www.ps.uni-saarland.de/extras/iel/website/iel.decidabilityK.html#gk3c_dec
https://www.ps.uni-saarland.de/extras/iel/website/iel.decidabilityK.html#gk3c

Constructive and Mechanised Meta-Theory of Intuitionistic Epistemic Logic 107

�A ∈ Δ Γ� ⇒ A

Γ ⇒ Δ

This is easier to formalise as we use membership prominently and no longer split-
up a context. The proofs for decidability and cut-elimination are similar as for
IEL, we use the same induction on pairs of cut-rank and size of the cut-formula
for the proof of cut-elimination. However the proofs are slightly more compact
(due to more symmetric rules in the system).

2.2 Height-Encoding

To better illustrate the height-encoding, we consider how the right rule for con-
junction is encoded.

Γ
h⇒ A Γ

h⇒ B

Γ
h+1⇒ A ∧ B

Γ
h⇒ A

Γ
h+1⇒ A

On the left side, we see how the conjunction rule is encoded, while on the right
side, the step rule is given, which allows us to boost the height of any derivation.

One alternative would be to use a height-encoding using maximum on both
sides, e.g.:

Γ
h1⇒ A Γ

h2⇒ B

Γ
max(h1,h2)+1⇒ A ∧ B

The encoding we used leads to easier proofs and inductions (since less arithmeti-
cal reasoning about maximum or minimum is needed).

Appendix 3 Cut-Elimination: Selected Cases

We shall showcase some cases of our cut-elimination proof.

Theorem 45. (Cut is admissible) The cut rule is admissible.

[δ1]

Γ
h1⇒ B

[δ2]

Γ,B
h2⇒ A

Cut
Γ ⇒ A

Proof. The proof is by induction on pairs (s, r) of formula-size s and cut-rank r.
Here formula size is the size of the cut-formula B, and the cut-rank is the sum
of the heights i.e. r := h1 + h2.

The induction principle gives us two inductive hypotheses, one which allows
us to eliminate cuts of arbitrary height but with a cut formula of smaller size
(s-cut) and another one, allowing us to eliminate cuts on formulas of the same
size but with a smaller cut-rank (r-cut).

We now analyse which rule was used to derive δ1. In two cases, namely the K
introduction and right implication introduction rule we will need an additional
case analysis (i.e. inversion) on δ2.

108 C. Hagemeier and D. Kirst

AL-Rule: Assume δ1 was derived using the left-rule for conjunction. Our deriva-
tion has the following form.

C1 ∧ C2 ∈ Γ Γ,C1, C2
h1−1⇒ F

Γ
h1⇒ B Γ,B

h2⇒ A
r-cut

Γ ⇒ A

We can permute the application of the left rule for conjunction downwards
and use weakening on the derivation C1, C2, Γ

m⇒ Δ:

C1 ∧ C2 ∈ Γ

Γ,C1, C2
n−1⇒ B B,Γ

m⇒ A

Γ,C1, C2 ⇒ A

Γ ⇒ A

Note that the new cut is a cut on the same formula but of a smaller rank,
thus we can eliminate it by the inductive hypothesis.

IR-Rule: Assume last rule used in the derivation of δ1 was the right introduction
rule for implication. Thus we know, that B = B1 ⊃ B2. We need to do a
second case analysis on the derivation δ2.
1. If δ2 is an axiom, either pi = B or pi ∈ Γ and we know that A = pi.

The first case contradicts our assumption that B = B1 ⊃ B2 and in the
second case we can directly use the variable rule.

2. Similarly, if the second premiss is derived using the falsity rule, either
F = ⊥ or ⊥ ∈ Γ .

3. An interesting case arises when the right premiss is proved using the left
introduction rule for implication.

B0, Γ
h1−1⇒ B1

Γ
h1⇒ B0 ⊃ B1

C0 ⊃ C1 ∈ Γ, B Γ, B
h2−1⇒ C0 Γ, C1, B ⇒ A

Γ, B0 ⊃ B1
h2⇒ A

Γ ⇒ A

We have two cases: either B = C0 ⊃ C1 or C0 ⊃ C1 ∈ Γ .
(a) In the first case, we can build the following derivation:

Γ
h1⇒ B B, Γ

h2−1⇒ B0
r-cut

Γ ⇒ B0 Γ, B0 ⇒ B1

Γ ⇒ B1

B1 ∈ B1, Γ Γ, B1, B ⇒ A
IL-inv

Γ, B1 ⇒ A

Γ ⇒ A

(b) In the second case, we can apply the left rule for implication first and
do two cuts afterwards.

C0 ⊃ C1 ∈ Γ

Γ
h1⇒ B Γ, B

h2−1⇒ C0
r-cut

Γ ⇒ C0

Γ
h1⇒ B

weak.

Γ, C1
h1⇒ B Γ, B, C1

h2−1⇒ C0
r-cut

Γ, C1 ⇒ A
IL

Γ ⇒ A

Constructive and Mechanised Meta-Theory of Intuitionistic Epistemic Logic 109

KI-Rule: Assume the premiss was derived using the K-introduction rule. We
need to make a second case distinction on the derivation of the right deduc-
tion. Most cases are similar to those obtained in the right rule for implication
subcases, and we will not go into too much detail here.

Γ ∪ ΓK ⇒ B0

Γ ⇒ K B0 Γ,K B0 ⇒ A

Γ ⇒ A

1. The right premise is an axiom. Either pi = K B0 which is impossible (since
the constructors of an inductive datatype are disjoint) or A ∈ Γ in which
case we can directly construct the derivation.

2. The most interesting case occurs when the KI-rule is used on both sides.
We have the following derivation:

Γ ∪ ΓK
h1−1⇒ B0

Γ
h1⇒ K B0

Γ ∪ ΓK,K B0, B0
h2−1⇒ A0

Γ,K B0
h2⇒ K A0

Γ ⇒ K A0

We can build the following derivation:

Γ ∪ ΓK ⇒ B0

Γ
h1⇒ KB0

weak.
Γ ∪ ΓK

h1⇒ KB0 Γ ∪ ΓK,KB0, B0
h2−1⇒ A0

r-cut
Γ ∪ ΓK, B0 ⇒ A0

s-cut
Γ ∪ ΓK ⇒ A0

KI
Γ ⇒ KA0

References

1. Artemov, S., Protopopescu, T.: Intuitionistic epistemic logic. Revi. Symbol. Logic
9(2), 266–298 (2016). https://doi.org/10.1017/S1755020315000374

2. Bentzen, B.: A Henkin-style completeness proof for the modal logic s5. In: Baroni,
P., Benzmüller, C., Wáng, Y.N. (eds.) Logic and Argumentation, pp. 459–467.
Springer International Publishing, Cham (2021). https://doi.org/10.1007/978-3-
030-89391-0 25

3. Chaudhuri, K., Lima, L., Reis, G.: Formalized Meta-Theory of Sequent Calculi
for Substructural Logics. Electronic Notes in Theoretical Computer Science 332,
57–73 (2017). https://doi.org/10.1016/j.entcs.2017.04.005

4. Coquand, T., Huet, G.: The calculus of constructions. Inf. Comput.
76(2), 95–120 (1988). https://doi.org/10.1016/0890-5401(88)90005-3. https://
www.sciencedirect.com/science/article/pii/0890540188900053

5. Coquand, T., Mannaa, B.: The independence of Markov’s principle in type theory.
arXiv preprint arXiv:1602.04530 (2016)

6. Dang, H.: Systems for Propositional Logics. Technical report, Saarland University
(2015). https://www.ps.uni-saarland.de/∼dang/ri-lab/propsystems/systems.pdf

7. Doczkal, C., Smolka, G.: Constructive completeness for modal logic with transitive
closure. In: Hawblitzel, C., Miller, D. (eds.) Certified Programs and Proofs, pp.
224–239. Springer, Berlin, Heidelberg (2012)

https://doi.org/10.1017/S1755020315000374
https://doi.org/10.1007/978-3-030-89391-0_25
https://doi.org/10.1007/978-3-030-89391-0_25
https://doi.org/10.1016/j.entcs.2017.04.005
https://doi.org/10.1016/0890-5401(88)90005-3
https://www.sciencedirect.com/science/article/pii/0890540188900053
https://www.sciencedirect.com/science/article/pii/0890540188900053
http://arxiv.org/abs/1602.04530
https://www.ps.uni-saarland.de/~dang/ri-lab/propsystems/systems.pdf

110 C. Hagemeier and D. Kirst

8. Doczkal, C., Smolka, G.: Completeness and decidability results for CTL in con-
structive type theory. J. Autom. Reason. 56(3), 343–365 (2016). https://doi.org/
10.1007/s10817-016-9361-9

9. Fiorino, G.: Linear depth deduction with subformula property for intuitionistic
epistemic logic (2021)

10. Forster, Y., Kirst, D., Smolka, G.: On synthetic undecidability in Coq, with an
application to the Entscheidungs problem. In: CPP 2019 - Proceedings of the 8th
ACM SIGPLAN International Conference on Certified Programs and Proofs, Co-
located with POPL 2019 (2019). https://doi.org/10.1145/3293880.3294091

11. Forster, Y., Kirst, D., Wehr, D.: Completeness theorems for first-order logic anal-
ysed in constructive type theory. J. Logic Comput. (2021). https://doi.org/10.
1093/logcom/exaa073

12. Goré, R., Ramanayake, R., Shillito, I.: Cut-elimination for provability logic by ter-
minating proof-search: formalised and deconstructed using Coq. In: Das, A., Negri,
S. (eds.) TABLEAUX 2021. LNCS (LNAI), vol. 12842, pp. 299–313. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-86059-2 18

13. Hakli, R., Negri, S.: Does the deduction theorem fail for modal logic? Synthese
(2012). https://doi.org/10.1007/s11229-011-9905-9

14. Hintikka, J.: Knowledge and belief: An introduction to the logic of the two notions.
Studia Logica 16 (1962)

15. Ishihara, H.: Constructive reverse mathematics: compactness properties. From Sets
and Types to Topology and Analysis. Oxford Logic Guides 48, 245–267 (2005).
https://doi.org/10.1093/acprof:oso/9780198566519.001.0001

16. Ishihara, H.: Reverse mathematics in bishop’s constructive mathematics.
Philosophia Scientiæ. Travaux d’histoire et de philosophie des sciences (CS 6),
43–59 (2006). https://doi.org/10.4000/philosophiascientiae.406

17. Kleene, S.C.: Introduction to Metamathematics, vol. 19. North Holland (1952)
18. Krupski, V.N.: Cut elimination and complexity bounds for intuitionistic epistemic

logic. J. Logic Comput. 30(1), 281–294 (2020). https://doi.org/10.1093/logcom/
exaa012

19. Michaelis, J., Nipkow, T.: Formalized proof systems for propositional logic. In:
Abel, A., Forsberg, F.N., Kaposi, A. (eds.) 23rd International Conference on Types
for Proofs and Programs (TYPES 2017). Leibniz International Proceedings in
Informatics (LIPIcs), vol. 104, pp. 5:1–5:16. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, Dagstuhl, Germany (2018). https://doi.org/10.4230/LIPIcs.TYPES.
2017.5. http://drops.dagstuhl.de/opus/volltexte/2018/10053

20. Paulin-Mohring, C.: Inductive definitions in the system Coq rules and properties.
In: Bezem, M., Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664, pp. 328–345.
Springer, Heidelberg (1993). https://doi.org/10.1007/BFb0037116

21. Protopopescu, T.: An arithmetical interpretation of verification and intuitionis-
tic knowledge. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 9537, 317–
330 (2016). https://doi.org/10.1007/978-3-319-27683-0 22

22. Protopopescu, T.: Three Essays in Intuitionistic Epistemology. Ph.D. thesis,
CUNY (2016). https://academicworks.cuny.edu/gc etds/1391

23. Rescher, N.: Epistemic Logic: A Survey of the Logic of Knowledge. University of
Pittsburgh Press, Pittsburgh (2005)

24. Richman, F.: Constructive Mathematics without Choice, pp. 199–205. Springer,
Netherlands, Dordrecht (2001). https://doi.org/10.1007/978-94-015-9757-9 17

https://doi.org/10.1007/s10817-016-9361-9
https://doi.org/10.1007/s10817-016-9361-9
https://doi.org/10.1145/3293880.3294091
https://doi.org/10.1093/logcom/exaa073
https://doi.org/10.1093/logcom/exaa073
https://doi.org/10.1007/978-3-030-86059-2_18
https://doi.org/10.1007/s11229-011-9905-9
https://doi.org/10.1093/acprof:oso/9780198566519.001.0001
https://doi.org/10.4000/philosophiascientiae.406
https://doi.org/10.1093/logcom/exaa012
https://doi.org/10.1093/logcom/exaa012
https://doi.org/10.4230/LIPIcs.TYPES.2017.5
https://doi.org/10.4230/LIPIcs.TYPES.2017.5
http://drops.dagstuhl.de/opus/volltexte/2018/10053
https://doi.org/10.1007/BFb0037116
https://doi.org/10.1007/978-3-319-27683-0_22
https://academicworks.cuny.edu/gc_etds/1391
https://doi.org/10.1007/978-94-015-9757-9_17

Constructive and Mechanised Meta-Theory of Intuitionistic Epistemic Logic 111

25. Rogozin, D.: Categorical and algebraic aspects of the intuitionistic modal
logic IEL– and its predicate extensions. J. Logic Comput. 31(1), 347–
374 (2021). https://doi.org/10.1093/logcom/exaa082. https://academic.oup.com/
logcom/article/31/1/347/6049830

26. Smolka, G., Brown, C.E.: Introduction to Computational Logic (2012). http://
www.ps.uni-saarland.de/courses/cl-ss12/script/icl.pdf

27. Su, Y., Sano, K.: Cut-free and analytic sequent calculus of intuitionistic epistemic
logic. In: Sedlár, I., Blicha, M. (eds.) The Logica Yearbook 2019, pp. 179–193.
College Publications (2019)

28. Su, Y., Sano, K.: First-order intuitionistic epistemic logic. In: Blackburn, P., Lorini,
E., Guo, M. (eds.) LORI 2019. LNCS, vol. 11813, pp. 326–339. Springer, Heidelberg
(2019). https://doi.org/10.1007/978-3-662-60292-8 24

29. Tarau, P.: Modality Definition Synthesis for Epistemic Intuitionistic Logic via a
Theorem Prover (2019)

30. The Coq Development Team: The Coq proof assistant, January 2021. https://doi.
org/10.5281/zenodo.4501022

31. Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory (2000). https://doi.org/
10.1017/cbo9781139168717

32. Wolter, F., Zakharyaschev, M.: Intuitionistic modal logics as fragments of classical
bimodal logics. Logic at Work (1999)

33. Wolter, F., Zakharyaschev, M.: Intuitionistic Modal Logic, pp. 227–238. Springer,
Netherlands, Dordrecht (1999). https://doi.org/10.1007/978-94-017-2109-7 17

https://doi.org/10.1093/logcom/exaa082
https://academic.oup.com/logcom/article/31/1/347/6049830
https://academic.oup.com/logcom/article/31/1/347/6049830
http://www.ps.uni-saarland.de/courses/cl-ss12/script/icl.pdf
http://www.ps.uni-saarland.de/courses/cl-ss12/script/icl.pdf
https://doi.org/10.1007/978-3-662-60292-8_24
https://doi.org/10.5281/zenodo.4501022
https://doi.org/10.5281/zenodo.4501022
https://doi.org/10.1017/cbo9781139168717
https://doi.org/10.1017/cbo9781139168717
https://doi.org/10.1007/978-94-017-2109-7_17

A Parametrized Family of Tversky
Metrics Connecting the Jaccard Distance

to an Analogue of the Normalized
Information Distance

Bjørn Kjos-Hanssen(B) , Saroj Niraula, and Soowhan Yoon

University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA
{bjoernkh,sniraula,syoon2}@hawaii.edu

https://math.hawaii.edu/wordpress/bjoern/

http://math.hawaii.edu/∼sniraula/

Abstract. Jiménez, Becerra, and Gelbukh (2013) defined a family of
“symmetric Tversky ratio models” Sα,β , 0 ≤ α ≤ 1, β > 0. Each func-
tion Dα,β = 1 − Sα,β is a semimetric on the powerset of a given finite
set.

We show that Dα,β is a metric if and only if 0 ≤ α ≤ 1
2

and
β ≥ 1/(1 − α). This result is formally verified in the Lean proof assis-
tant.

The extreme points of this parametrized space of metrics are J1 =
D1/2,2, the Jaccard distance, and J∞ = D0,1, an analogue of the nor-
malized information distance of M. Li, Chen, X. Li, Ma, and Vitányi
(2004).

Keywords: Jaccard distance · Normalized information distance ·
Metric space · Proof assistant

1 Introduction

Distance measures (metrics), are used in a wide variety of scientific contexts.
In bioinformatics, M. Li, Badger, Chen, Kwong, and Kearney [12] introduced
an information-based sequence distance. In an information-theoretical setting,
M. Li, Chen, X. Li, Ma and Vitányi [13] rejected the distance of [12] in favor
of a normalized information distance (NID). The Encyclopedia of Distances [3]
describes the NID on page 205 out of 583, as

max{K(x | y∗),K(y | x∗)}
max{K(x),K(y)}

This work was partially supported by grants from the Simons Foundation (#704836
to Bjørn Kjos-Hanssen) and Decision Research Corporation (University of Hawai‘i
Foundation Account #129-4770-4).

c© Springer Nature Switzerland AG 2022
S. Artemov and A. Nerode (Eds.): LFCS 2022, LNCS 13137, pp. 112–124, 2022.
https://doi.org/10.1007/978-3-030-93100-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93100-1_8&domain=pdf
http://orcid.org/0000-0002-6199-1755
https://doi.org/10.1007/978-3-030-93100-1_8

A Parametrized Family of Tversky Metrics 113

where K(x | y∗) is the Kolmogorov complexity of x given a shortest program y∗

to compute y. It is equivalent to be given y itself in hard-coded form:

max{K(x | y),K(y | x)}
max{K(x),K(y)}

Another formulation (see [13, p. 8]) is

K(x, y) − min{K(x),K(y)}
max{K(x),K(y)} .

The fact that the NID is in a sense a normalized metric is proved in [13].
Then in 2017, while studying malware detection, Raff and Nicholas [14] suggested
Lempel–Ziv Jaccard distance (LZJD) as a practical alternative to NID. As we
shall see, this is a metric. In a way this constitutes a full circle: the distance
in [12] is itself essentially a Jaccard distance, and the LZJD is related to it as
Lempel–Ziv complexity is to Kolmogorov complexity. In the present paper we
aim to shed light on this back-and-forth by showing that the NID and Jaccard
distances constitute the endpoints of a parametrized family of metrics.

For comparison, the Jaccard distance between two sets X and Y , and our
analogue of the NID, are as follows:

J1(X,Y) =
|X \ Y | + |Y \ X|

|X ∪ Y | = 1 − |X ∩ Y |
|X ∪ Y | (1)

J∞(X,Y) =
max{|X \ Y |, |Y \ X|}

max{|X|, |Y |} (2)

Our main result Theorem 11 shows which interpolations between these two are
metrics.

Incidentally, the names of J1 and J∞ come from the observation that they
are special cases of Jp given by

Jp(A,B) =
(

2 · |B \ A|p + |A \ B|p
|A|p + |B|p + |B \ A|p + |A \ B|p

)1/p

=

{
J1(A,B) p = 1
J∞ p → ∞

We conjecture that Jp is a metric for each p, but shall not attempt to prove it
here.

The way we arrived at Eq. 2 as an analogue of NID is via Lempel–Ziv com-
plexity. While there are several variants [11,18,19], the LZ 1978 complexity [19]
of a sequence is the cardinality of a certain set, the dictionary.

Definition 1. Let LZSet(A) be the Lempel–Ziv dictionary for a sequence A. We
define LZ–Jaccard distance LZJD by

LZJD(A,B) = 1 − |LZSet(A) ∩ LZSet(B)|
|LZSet(A) ∪ LZSet(B)| .

114 B. Kjos-Hanssen et al.

It is shown in [12, Theorem 1] that the triangle inequality holds for a function
which they call an information-based sequence distance. Later papers give it
the notation ds in [13, Definition V.1], and call their normalized information
distance d. Raff and Nicholas [14] introduced the LZJD and did not discuss the
appearance of ds in [13, Definition V.1], even though they do cite [13] (but not
[12]).

Kraskov et al. [9,10] use D and D′ for continuous analogues of ds and d
in [13] (which they cite). The Encyclopedia calls it the normalized information
metric,

H(X | Y) + H(X | Y)
H(X,Y)

= 1 − I(X;Y)
H(X,Y)

or Rajski distance [15].
This ds was called d by [12]—see Table 1. Conversely, [13, near Definition

V.1] mentions mutual information.

Table 1. Overview of notation used in the literature. (It seems that authors use simple
names for their favored notions.)

Reference Jaccard notation NID notation

[12] d

[13] ds d

[9] D D′

[14] LZJD NCD

Remark 2. Ridgway [4] observed that the entropy-based distance D is essen-
tially a Jaccard distance. No explanation was given, but we attempt one as fol-
lows. Suppose X1,X2,X3,X4 are iid Bernoulli (p = 1/2) random variables, Y
is the random vector (X1,X2,X3) and Z is (X2,X3,X4). Then Y and Z have
two bits of mutual information I(Y,Z) = 2. They have an entropy H(Y) =
H(Z) = 3 of three bits. Thus the relationship H(Y,Z) = H(Y)+H(Z)−I(Y,Z)
becomes a Venn diagram relationship |{X1,X2,X3,X4}| = |{X1,X2,X3}| +
|{X2,X3,X4}| − |{X2,X3}|. The relationship to Jaccard distance may not have
been well known, as it is not mentioned in [1,2,9,12].

A more general setting is that of STRM (Symmetric Tversky Ratio Models),
Theorem 10. These are variants of the Tversky index (Theorem 4) proposed in
[7].

Definition 3. A semimetric on X is a function d : X ×X → R that satisfies the
first three axioms of a metric space, but not necessarily the triangle inequality:
d(x, y) ≥ 0, d(x, y) = 0 if and only if x = y, and d(x, y) = d(y, x) for all
x, y ∈ X .

A Parametrized Family of Tversky Metrics 115

Definition 4 ([17]). For sets X and Y the Tversky index with parameters
α, β ≥ 0 is a number between 0 and 1 given by

S(X,Y) =
|X ∩ Y |

|X ∩ Y | + α|X \ Y | + β|Y \ X| .

We also define the corresponding Tversky dissimilarity dT
α,β by

dT
α,β(X,Y) =

{
1 − S(X,Y) if X ∪ Y �= ∅;
0 if X = Y = ∅.

To motivate Theorem 3, we include the following lemma without proof.

Lemma 5. Suppose d is a metric on a collection of nonempty sets X , with
d(X,Y) ≤ 2 for all X,Y ∈ X . Let X̂ = X ∪ {∅} and define d̂ : X̂ × X̂ → R by
stipulating that for X,Y ∈ X ,

d̂(X,Y) = d(X,Y); d(X, ∅) = 1 = d(∅,X); d(∅, ∅) = 0.

Then d̂ is a metric on X̂ .

Theorem 6 (Gragera and Suppakitpaisarn [5,6]). The optimal constant ρ
such that dT

α,β(X,Y) ≤ ρ(dT
α,β(X,Y) + dT

α,β(Y,Z)) for all X,Y,Z is

1
2

(
1 +

√
1

αβ

)
.

Corollary 7. dT
α,β is a metric only if α = β ≥ 1.

Proof. Clearly, α = β is necessary to ensure dT
α,β(X,Y) = dT

α,β(Y,X). Moreover
ρ ≤ 1 is necessary, so Theorem 6 gives αβ ≥ 1.

Definition 8. The Szymkiewicz–Simpson coefficient is defined by

overlap(X,Y) =
|X ∩ Y |

min(|X|, |Y |)
We may note that overlap(X,Y) = 1 whenever X ⊆ Y or Y ⊆ X, so that
1 − overlap is not a metric.

Definition 9. The Sørensen–Dice coefficient is defined by

2|X ∩ Y |
|X| + |Y | .

Definition 10 ([7, Section 2]). Let X be a collection of finite sets. We define
S : X × X → R as follows. For sets X,Y ∈ X we define m(X,Y) = min{|X \
Y |, |Y \ X|} and M(X,Y) = max{|X \ Y |, |Y \ X|}. The symmetric TRM is
defined by

S(X,Y) =
|X ∩ Y | + bias

|X ∩ Y | + bias + β (αm + (1 − α)M)

116 B. Kjos-Hanssen et al.

The unbiased symmetric TRM is the case where bias = 0, which is the case we
shall assume we are in for the rest of this paper. The Tversky semimetric Dα,β

is defined by Dα,β(X,Y) = 1 − S(X,Y), or more precisely

Dα,β =

{
β αm+(1−α)M

|X∩Y |+β(αm+(1−α)M) , if X ∪ Y �= ∅;

0 if X = Y = ∅.

Fig. 1. A Tversky semimetric Dα,β is a metric if and only if (α, β) belongs to the green
region. The parameter values corresponding to the Jaccard distance J1, the analogue
of normalized information distance analogue J∞, the Sørensen–Dice semimetric, and
the Szymkiewicz–Simpson semimetric are indicated. (Color figure online)

Note that for α = 1/2, β = 1, the STRM is equivalent to the Sørensen–Dice
coefficient. Similarly, for α = 1/2, β = 2, it is equivalent to Jaccard’s coefficient.

Our main result is (see Fig. 1):

Theorem 11. Let 0 ≤ α ≤ 1 and β > 0. Then Dα,β is a metric if and only if
0 ≤ α ≤ 1/2 and β ≥ 1/(1 − α).

Theorem 11 gives the converse to the Gragera and Suppakitpaisarn inspired
Theorem 7:

Corollary 12. The Tversky dissimilarity dT
α,β is a metric iff α = β ≥ 1.

Proof. Suppose the Tversky dissimilarity dT
α,β is a semimetric. Let X,Y be sets

with |X ∩ Y | = |X \ Y | = 1 and |Y \ X| = 0. Then

1 − 1
1 + β

= dT
α,β(Y,X) = dT

α,β(X,Y) = 1 − 1
1 + α

,

A Parametrized Family of Tversky Metrics 117

hence α = β. Let γ = α = β.
Now, dT

γ,γ = Dα0,β0 where α0 = 1/2 and β0 = 2γ. Indeed, let m = min{|X \
Y |, |Y \ X|} and M = max{|X \ Y |, |Y \ X|}. Since

Dα0,β0 = β0
α0m + (1 − α0)M

|X ∩ Y | + β0 [α0m + (1 − α0)M]
,

D 1
2 ,2γ = 2γ

1
2
m + (1 − 1

2
)M

|X ∩ Y | + 2γ
[
1
2
m + (1 − 1

2
)M

]

= γ
|X \ Y | + |Y \ X|

|X ∩ Y | + γ [|X \ Y | + |Y \ X|] = 1 − |X ∩ Y |
|X ∩ Y | + γ|X \ Y | + γ|Y \ X| = dT

γ,γ .

By Theorem 11, dT
γ,γ is a metric if and only if β0 ≥ 1/(1−α0). This is equivalent

to 2γ ≥ 2, i.e., γ ≥ 1.

The truth or falsity of Theorem 12 does not arise in Gragera and Suppakit-
paisarn’s work, as they require α, β ≤ 1 in their definition of Tversky index. We
note that Tversky [17] only required α, β ≥ 0.

2 Results

Lemma 13. Let u, v, w, ε > 0. Then

1
u

≤ 1
v

+
1
w

=⇒ 1
u + ε

≤ 1
v + ε

+
1

w + ε
.

Proof. It is of course equivalent to show

vw ≤ uw + uv =⇒ (v + ε)(w + ε) ≤ (u + ε)(w + ε) + (u + ε)(v + ε),

which reduces to
(v + w)ε ≤ (u + w)ε + (u + v)ε + ε2,

which is clearly the case.

Lemma 14. Suppose a(x, y) = axy and b(x, y) = bxy are functions. Suppose the
function d given by d(x, y) = axy/bxy is a metric, and ε > 0 is a real number.
Let d̂(x, y) = axy

bxy+εaxy
. Then d̂ is also a metric.

Proof. The only nontrivial task is to verify the triangle inequality. Define further
functions u, v, w by

u = bxy/axy, v = bxz/axz, w = bzy/azy.

Since d is a metric we have
axy

bxy
≤ axz

bxz
+

azy

bzy

118 B. Kjos-Hanssen et al.

and hence 1
u ≤ 1

v + 1
w . We proceed by forward reasoning: we need the truth of

the following equivalent conditions:

axy

bxy + εaxy
≤ axz

bxz + εaxz
+

azy

bzy + εazy
,

1
u + ε

≤ 1
v + ε

+
1

w + ε
.

By Theorem 13, we are done.

Theorem 15. For each α, the set of β for which Dα,β is a metric is upward
closed.

Proof. Suppose Dα,β0 is a metric and ε = β − β0 ≥ 0. Let aXY := αm(X,Y) +
(1 − α)M(X,Y). Since

Dα,β(X,Y) = β
aXY

|X ∩ Y | + βaXY

= β
aXY

|X ∩ Y | + β0aXY + εaXY
,

and since the upfront factor of β may be removed without loss of generality, the
question reduces to Theorem 14.

Some convenient notation to be used below includes α = 1 − α; γ := βα ≤ 1
with β = 1/α; x∩y = |X ∩ Y |, x = |X| etc.;

– xy = |X \ Y |, xzy = |X \ (Z ∪ Y)| = |(X \ Z) \ Y |,
– x000 = |X ∩Y ∩Z|, x001 = |X ∩Y ∩Z|, x010 = |X ∩Y ∩Z|, x011 = |X ∩Y ∩Z|,

x100 = |X ∩Y ∩Z|, x101 = |X ∩Y ∩Z|, x110 = |X ∩Y ∩Z|, x111 = |X ∩Y ∩Z|.
Theorem 16. δ := αm + αM satisfies the triangle inequality if and only if
α ≤ 1/2.

Proof. We first show the only if direction. Let X = {0}, Y = {1}, Z = {0, 1}.
Then

αm(X,Y) + αM(X,Y) = 1,
αm(X,Z) + αM(X,Z) = αm(Y,Z) + αM(Y,Z) = 0 + α.

The triangle inequality then is equivalent to 1 ≤ 2α, i.e., α ≤ 1/2.
Now let us show the if direction. The triangle inequality says

α min{xy, yx} + α max{yx, xy} ≤ α min{xz, zx} + α max{zx, xz}
+ α min{zy, yz} + α max{yz, zy}

By symmetry between x and y, we may assume that y ≤ x. Hence either y ≤
z ≤ x, y ≤ x ≤ z, or z ≤ y ≤ x. Thus our proof splits into three Cases, I, II, and
III.

A Parametrized Family of Tversky Metrics 119

Case I: y ≤ z ≤ x: we must show that αyx +αxy ≤ αzx +αxz +αyz +αzy. Since
yx ≤ yz + zx and xy ≤ xz + zy, this holds for all α.
Case II: y ≤ x ≤ z: We want to show that αyx + αxy ≤ αxz + αzx + αyz + αzy.
In terms of γ = α/α this says

0 ≤ (yz + xz − yx)γ + zx + zy − xy = Cγ + D.

The identity xy + yz + zx = xz + zy + yx holds generally since both sides counts
the elements that belong to exactly one of X,Y,Z once each, and counts the
elements that belong to exactly two of X,Y,Z once each. Since x ≤ z, it follows
that

C = yz + xz − yx ≤ zx + zy − xy = D.

Subcase II.1: C ≥ 0. Then Cγ + D ≥ 2C ≥ 0, as desired.
Subcase II.2: C < 0. In order to show Cγ + D ≥ 0 for all 0 ≤ γ ≤ 1 it suffices
that C + D ≥ 0, since then Cγ + D = D − |C|γ ≥ D − |C| ≥ 0.

We have C + D = (xz + zy − xy) + (yz + zx − yx) ≥ 0.
Case III: z ≤ y ≤ x: We now need

αyx + αxy ≤ αzx + αxz + αzy + αyz,

0 ≤ γ(zx + zy − yx) + (xz + yz − xy) = Cγ + D.

The statement C ≤ D says zy + (zx + xy) ≤ yz + (yx + xz), which holds by the
reasoning from Case II using now z ≤ y. And now

C + D = (zx + yz − yx) + (xz + zy − xy) ≥ 0.

Theorem 17. The function Dα,β is a metric only if β ≥ 1/(1 − α).

Proof. Consider the same example as in Theorem 16. Ignoring the upfront factor
of β, we have

D =
δ

|X ∩ Y | + βδ
.

In our example,

D(X,Y) =
1

0 + β · 1
=

1
β

,

D(X,Z) = D(Y,Z) =
α

1 + β · α
=

α

1 + βα
.

The triangle inequality is then equivalent to:

1
β

≤ 2
α

1 + βα
⇐⇒ β ≥ 1 + βα

2α
⇐⇒ β ≥ 1/(1 − α).

Theorem 18. The function Dα,β is a metric on all finite power sets only if
α ≤ 1/2.

120 B. Kjos-Hanssen et al.

Proof. Suppose α > 1/2. Let Zn = {−(n−1),−(n−2), . . . , 0}, a set of cardinality
n disjoint from {1, 2}, and let Yn = Zn ∪ {1}, Xn = Zn ∪ {2}. The triangle
inequality says

β
1

n + β · 1
= D(Xn, Yn) ≤ D(Xn, Zn) + D(Zn, Yn) = 2β

α

n + βα

n + βα ≤ 2α(n + β)
n(1 − 2α) ≤ βα

Since α > 1/2, we have 2α < 1. Let n > βα
1−2α . Then the triangle inequality

does not hold, so Dα,β is not a metric on the power set of {−(n − 1),−(n −
2), . . . , 0, 1, 2}.

Proof (Proof of Theorem 11). We saw in Theorem 16 that δ is a metric for 0 ≤
γ ≤ 1. (Recall that β = 1/(1 − α), so that γ = α/α.) In general if d is a metric
and a is a function, we may hope that d/(a + d) is a metric. We shall use the
observation, mentioned by [16], that in order to show

dxy

axy + dxy
≤ dxz

axz + dxz
+

dyz

ayz + dyz
,

it suffices to show the following pair of inequalities:

dxy

axy + dxy
≤ dxz + dyz

axy + dxz + dyz
(3)

dxz + dyz

axy + dxz + dyz
≤ dxz

axz + dxz
+

dyz

ayz + dyz
(4)

Here (3) follows from d being a metric, i.e., dxy ≤ dxz + dyz, since c ≥ 0 < a ≤
b =⇒ a

a+c ≤ b
b+c .

Next, (4) would follow from axy+dyz ≥ axz and axy+dxz ≥ ayz. By symmetry
between x and y and since axy = ayx in our case, it suffices to prove the first of
these, axy + dyz ≥ axz. This is equivalent to

x∩y + γ min{zy, yz) + max{zy, yz} ≥ x∩z,

which holds for all 0 ≤ γ ≤ 1 if and only if x∩y + max{zy, yz} ≥ x∩z. There are
now two cases.
Case z ≥ y: We have

x∩y + zy ≥ x∩z

since any element of X ∩ Z is either in Y or not.
Case y ≥ z:

x∩y + yz ≥ x∩z

x110 + x111 + x110 + x010 ≥ x101 + x111

x110 + x110 + x010 ≥ x101

This is true since zy ≥ x∩zy.

A Parametrized Family of Tversky Metrics 121

3 Application to Phylogeny

The mutations of spike glycoproteins of coronaviruses are of great concern with
the new SARS-CoV-2 virus causing the disease CoViD-19. We calculate several
distance measures between peptide sequences for such proteins. The distance

Z2,α(x0, x1) = α min(|A1|, |A2|) + α max(|A1|, |A2|)

where Ai is the set of subwords of length 2 in xi but not in x1−i, counts how
many subwords of length 2 appear in one sequence and not the other.

We used the Ward linkage criterion for producing Newick trees using the
hclust package for the Go programming language. The calculated phylogenetic
trees were based on the metric Z2,α.

We found one tree isomorphism class each for 0 ≤ α ≤ 0.21, 0.22 ≤ α ≤ 0.36,
and 0.37 ≤ α ≤ 0.5, respectively (Fig. 2, Fig. 3). In Fig. 3 we are also including
the tree produced using the Levenshtein edit distance in place of Z2,α. We see
that the various intervals for α can correspond to “better” or “worse” agreement
with other distance measures. Thus, we propose that rather than focusing on
α = 0 and α = 1/2 exclusively, future work may consider the whole interval
[0, 1/2].

Fig. 2. α = 0.21 and 0.36.

122 B. Kjos-Hanssen et al.

Fig. 3. α = 0.5 and edit distance.

4 Conclusion

Many researchers have considered metrics based on sums or maxima, but we
have shown that these need not be considered in “isolation” in the sense that
they form the endpoints of a family of metrics.

More general set-theoretic metrics can be envisioned. The Steinhaus trans-
form of δ with β = 1/α is:

δ′(X,Y) =
2δ(X,Y)

δ(X, ∅) + δ(Y, ∅) + δ(X,Y)

= 2
γ min{xy, yx) + max{xy, yx}

(x + y) + γ min{yx, xy} + max{yx, xy}

A question for future research is whether this Steinhaus transform is more or
less useful than what Jiménez et al. [7] considered. We can consider a general
setting for potential metrics that contains both the Steinhaus transform of δ
and the STRM metrics. In terms of m(X,Y) = min{xy, yx} and M(X,Y) =
max{xy, yx}, we can consider Δγ,s := γm+M

x∩y+s(x∪y)+(γm+M) . When s = 0 this is
our STRM metric. When s = 1 it is the Steinhaus transform, ignoring constant
upfront factors.

A Parametrized Family of Tversky Metrics 123

Correctness of Results. We have formally proved Theorem11 in the Lean theo-
rem prover, with a more streamlined proof than that presented here. The Github
repository can be found at [8].

References

1. Cilibrasi, R., Vitanyi, P.M.B.: Clustering by compression. IEEE Trans. Inf. Theor.
51(4), 1523–1545 (2005)

2. Cilibrasi, R.L., Vitanyi, P.M.B.: The Google similarity distance. IEEE Trans.
Knowl. Data Eng. 19(3), 370–383 (2007). https://doi.org/10.1109/TKDE.2007.
48

3. Deza, M.M., Deza, E.: Encyclopedia of Distances, 4th edn. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-52844-0

4. Ged Ridgway: Mutual information – Wikipedia, the Free Encyclopedia, Revi-
sion as of 14:55, 22 January 2010 (2010). https://en.wikipedia.org/w/index.php?
title=Mutual information&oldid=339351762. Accessed 14 May 2020

5. Gragera, A., Suppakitpaisarn, V.: Semimetric properties of Sørensen-dice
and Tversky indexes. In: Kaykobad, M., Petreschi, R. (eds.) WALCOM 2016.
LNCS, vol. 9627, pp. 339–350. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-30139-6 27

6. Gragera, A., Suppakitpaisarn, V.: Relaxed triangle inequality ratio of the Sørensen-
Dice and Tversky indexes. Theoret. Comput. Sci. 718, 37–45 (2018). https://doi.
org/10.1016/j.tcs.2017.01.004

7. Jiménez, S., Becerra, C.J., Gelbukh, A.F.: SOFTCARDINALITY-CORE: improv-
ing text overlap with distributional measures for semantic textual similarity. In:
Diab, M.T., Baldwin, T., Baroni, M. (eds.) Proceedings of the 2nd Joint Con-
ference on Lexical and Computational Semantics, *SEM 2013, Atlanta, Georgia,
USA, 13–14 June 2013, pp. 194–201. Association for Computational Linguistics
(2013). https://www.aclweb.org/anthology/S13-1028/

8. Kjos-Hanssen, B.: Lean project: a 1-parameter family of metrics connecting Jac-
card distance to normalized information distance (2021). https://github.com/
bjoernkjoshanssen/jaccard

9. Kraskov, A., Stögbauer, H., Andrzejak, R.G., Grassberger, P.: Hierarchical clus-
tering using mutual information. Europhys. Lett. (EPL) 70(2), 278–284 (2005).
https://doi.org/10.1209/epl/i2004-10483-y

10. Kraskov, A., Stögbauer, H., Andrzejak, R.G., Grassberger, P.: Hierarchical clus-
tering based on mutual information. arXiv arXiv:q-bio.QM/0311039 (2003)

11. Lempel, A., Ziv, J.: On the complexity of finite sequences. IEEE Trans. Inf. Theor.
(IT) 22(1), 75–81 (1976). https://doi.org/10.1109/tit.1976.1055501

12. Li, M., Badger, J.H., Chen, X., Kwong, S., Kearney, P.E., Zhang, H.: An
information-based sequence distance and its application to whole mitochondrial
genome phylogeny. Bioinformatics 17(2), 149–54 (2001)

13. Li, M., Chen, X., Li, X., Ma, B., Vitányi, P.M.B.: The similarity metric. IEEE
Trans. Inf. Theor. 50(12), 3250–3264 (2004). https://doi.org/10.1109/TIT.2004.
838101

14. Raff, E., Nicholas, C.K.: An alternative to NCD for large sequences, Lempel-Ziv
Jaccard distance. In: Proceedings of the 23rd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining (2017)

https://doi.org/10.1109/TKDE.2007.48
https://doi.org/10.1109/TKDE.2007.48
https://doi.org/10.1007/978-3-662-52844-0
https://en.wikipedia.org/w/index.php?title=Mutual_information&oldid=339351762
https://en.wikipedia.org/w/index.php?title=Mutual_information&oldid=339351762
https://doi.org/10.1007/978-3-319-30139-6_27
https://doi.org/10.1007/978-3-319-30139-6_27
https://doi.org/10.1016/j.tcs.2017.01.004
https://doi.org/10.1016/j.tcs.2017.01.004
https://www.aclweb.org/anthology/S13-1028/
https://github.com/bjoernkjoshanssen/jaccard
https://github.com/bjoernkjoshanssen/jaccard
https://doi.org/10.1209/epl/i2004-10483-y
http://arxiv.org/abs/q-bio.QM/0311039
https://doi.org/10.1109/tit.1976.1055501
https://doi.org/10.1109/TIT.2004.838101
https://doi.org/10.1109/TIT.2004.838101

124 B. Kjos-Hanssen et al.

15. Rajski, C.: Entropy and metric spaces. In: Information Theory (Symposium, Lon-
don, 1960), pp. 41–45. Butterworths, Washington, D.C. (1961)

16. Sra, S.: Is the Jaccard distance a distance? MathOverflow. https://mathoverflow.
net/q/210750 (version: 2015-07-03)

17. Tversky, A.: Features of similarity. Psychol. Rev. 84(4), 327–352 (1977). https://
doi.org/10.1037/0033-295X.84.4.327

18. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Trans. Inf. Theor. (IT) 23(3), 337–343 (1977). https://doi.org/10.1109/tit.1977.
1055714

19. Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding.
IEEE Trans. Inf. Theor. 24(5), 530–536 (1978). https://doi.org/10.1109/TIT.1978.
1055934

https://mathoverflow.net/q/210750
https://mathoverflow.net/q/210750
https://doi.org/10.1037/0033-295X.84.4.327
https://doi.org/10.1037/0033-295X.84.4.327
https://doi.org/10.1109/tit.1977.1055714
https://doi.org/10.1109/tit.1977.1055714
https://doi.org/10.1109/TIT.1978.1055934
https://doi.org/10.1109/TIT.1978.1055934

A Parameterized View on the Complexity
of Dependence Logic

Juha Kontinen1, Arne Meier2, and Yasir Mahmood2(B)

1 Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
juha.kontinen@helsinki.fi

2 Institut für Theoretische Informatik, Leibniz Universität Hannover,
Hannover, Germany

{meier,mahmood}@thi.uni-hannover.de

Abstract. In this paper, we investigate the parameterized complexity
of model checking for Dependence Logic which is a well studied logic
in the area of Team Semantics. We start with a list of nine immedi-
ate parameterizations for this problem, namely: the number of disjunc-
tions (i.e., splits)/(free) variables/universal quantifiers, formula-size, the
tree-width of the Gaifman graph of the input structure, the size of the
universe/team, and the arity of dependence atoms. We present a compre-
hensive picture of the parameterized complexity of model checking and
obtain a division of the problem into tractable and various intractable
degrees. Furthermore, we also consider the complexity of the most impor-
tant variants (data and expression complexity) of the model checking
problem by fixing parts of the input.

Keywords: Team semantics · Dependence logic · Parameterized
complexity · Model checking

1 Introduction

In this article, we explore the parameterized complexity of model checking for
dependence logic (D). We give a concise classification of this problem and its
standard variants (expression and data complexity) with respect to several syn-
tactic and structural parameters. Our results lay down a solid foundation for a
systematic study of the parameterized complexity of team-based logics.

The introduction of Dependence Logic [27] in 2007 marks also the birth of
the general semantic framework of team semantics that has enabled a systematic
study of various notions of dependence and independence during the past decade.
Team semantics differs from Tarski’s semantics by interpreting formulas by sets
of assignments instead of a single assignment as in first-order logic. Syntactically,
dependence logic is an extension of first-order logic by new dependence atoms

First author funded by grants 308712 and 338259 of the Academy of Finland. Second
and third authors funded by German Research Foundation (DFG), project ME 4279/
1-2.

c© Springer Nature Switzerland AG 2022
S. Artemov and A. Nerode (Eds.): LFCS 2022, LNCS 13137, pp. 125–142, 2022.
https://doi.org/10.1007/978-3-030-93100-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93100-1_9&domain=pdf
https://doi.org/10.1007/978-3-030-93100-1_9

126 J. Kontinen et al.

dep(x;y) expressing that the values of variables x functionally determine values
of the variables y (in the team under consideration). Soon after the introduc-
tion of dependence logic many other interesting team-based logics and atoms
were introduced such as inclusion, exclusion, and independence atoms that are
intimately connected to the corresponding inclusion, exclusion, and multival-
ued dependencies studied in database theory [9,13]. Furthermore, the area has
expanded, e.g., to propositional, modal and probabilistic variants (see a selection
of works from the literature [14,15,19] and the references therein).

For the applications, it is important to understand the complexity theoretic
aspects of dependence logic and its variants. In fact, during the past few years,
these aspects have been addressed in several studies. For example, on the level of
sentences dependence logic and independence logic are equivalent to existential
second-order logic while inclusion logic corresponds to positive greatest fixed
point logic and thereby captures P over finite (ordered) structures [11]. Fur-
thermore, there are (non-parameterized) studies that restrict the syntax and try
to pin the intractability of a problem to a particular (set of) connective(s). For
instance, Durand and Kontinen [5] characterize the data complexity of fragments
of dependence logic with bounded arity of dependence atoms/number of univer-
sal quantifiers, and Grädel [12] characterizes the combined and the expression
complexity of the model checking problem of dependence logic. These studies
will be of great help in developing our parameterized approach.

A formalism to enhance the understanding of the inherent intractability of
computational problems is brought by the framework of parameterized com-
plexity [4]. Initiated by the founding fathers Downey and Fellows, in this area
within computational complexity theory one strives for more structure within
the darkness of intractability. Essentially, one tries to identify so-called param-
eters of a considered problem Π to find algorithms solving Π with runtimes of
the form f(k) · |x|O(1) for inputs x, corresponding parameter values k, and a
computable function f . These kind of runtimes are called FPT-runtimes (from
fixed-parameter tractable; short FPT) and tame the combinatoric explosion of
the solution space to a function f in the parameter. As a very basic example
in this vein, we can consider the propositional satisfiability problem SAT. An
immediate parameter that pulls the problem into the class FPT is the number
of variables, as one can solve SAT in time 2k · |ϕ| if k is the number of variables
of a given propositional formula ϕ. Yet, this parameter is not very satisfactory
as it neither is seen fixed nor slowly growing in its practical instances. How-
ever, there are several interesting other parameters under which SAT becomes
fixed-parameter tractable, e.g., the so-called treewidth of the underlying graph
representations of the considered formula [26]. This term was coined by Robert-
son and Seymour in 1984 [25] and established a profound position (currently
DBLP lists 812 papers with treewidth in its title) also in the area of parameter-
ized complexity in the last years [3,4].

Coming back to fpt-runtimes, a runtime of a very different quality (yet
still polynomial for fixed parameters) than FPT is summarized by the com-
plexity class XP: |x|f(k) for inputs x, corresponding parameter values k, and

A Parameterized View on the Complexity of Dependence Logic 127

paraNEXP

paraPSPACE XNP

W[P]
paraNP XP

FPT DTM: f(k) · poly(|x|) time

NTM: f(k) · poly(|x|) time

DTM: poly(|x|)f(k) time

DTM: f(k) · poly(|x|) space
NTM: poly(|x|)f(k) time

NTM: f(k) · 2poly(|x|) time

Fig. 1. Landscape showing relations of relevant parameterized complexity classes with
machine definitions.

Table 1. An example flight departure screen at an airport

Flight Destination Gate Date Time

FIN-70 HEL – FI C1 04.10.2021 09:55

SAS-475 OSL – NO C3 04.10.2021 12:25

SAS-476 HAJ – DE C2 04.10.2021 12:25

FIN-80 HEL – FI C1 04.10.2021 19:55

KLM-615 ATL – USA A5 05.10.2021 11:55

QR-70 DOH – QR B6 05.10.2021 12:25

THY-159 IST – TR A1 05.10.2021 15:55

FIN-80 HEL – FI C1 05.10.2021 19:55

a computable function f . Furthermore, analogously as XP but on nondeter-
ministic machines, the class XNP will be of interest in this paper. Further
up in the hierarchy, classes of the form paraC for a classical complexity class
C ∈ {NP,PSPACE,NEXP} play a role in this paper. Such classes intuitively
capture all problems that are in the complexity class C after fpt-time prepro-
cessing. In Fig. 1 an overview of these classes and their relations are depicted
(for further details see, e.g., the work of Elberfeld et al. [7]).

Recently, the propositional variant of dependence logic (PDL) has been inves-
tigated regarding its parameterized complexity [20,23]. Moreover, propositional
independence and inclusion logic have also been studied from the perspective
of parameterized complexity [21]. In this paper, we further pursue the parame-
terized journey through the world of team logics and will visit the problems of
first-order dependence logic D. As this paper is the first one that investigates
D from the parameterized point of view, we need to gather the existing litera-
ture and revisit many results particularly from this perspective. As a result, this
paper can be seen as a systematic study with some of the result following in
a straightforward manner from the known non-parameterized results and some
shedding light also on the non-parameterized view of model checking.

We give an example below to illustrate how the concept of dependence arises
as a natural phenomenon in the physical world.

128 J. Kontinen et al.

Example 1. The database in Table 1 presents a screen at an airport for showing
details about departing flights. Alternatively, it can be seen as a team T over
attributes in the top row as variables. Clearly

T |= dep(Flight, Date, Time; Destination, Gate),

as well as
T |= dep(Gate, Date, Time; Destination, Flight).

Whereas, T �|= dep(Destination, Gate; Time) as witnessed by the pair (FIN-70,
HEL – FI, C1 , 04.10.2021, 09 : 55) and (FIN-80, HEL – FI, C1 , 04.10.2021,
19 : 55).

Contribution. Our classification is two-dimensional:

1. We consider the model checking problem of D under various parameteriza-
tions: number of split-junctions in a formula #splits, the length of the formula
|Φ|, number of free variables #free-variables, the treewidth of the structure
tw(A), the size of the structure |A|, the size of the team |T |, the number of
universal quantifiers in the formula #∀, the arity of the dependence atoms
dep-arity, as well as the total number of variables #variables.

2. We distinguish between expression complexity ec (the input structure is
fixed), data complexity dc (the formula is fixed), and combined complexity
cc.

The results are summarized in Table 2. For instance, parameters #∀, dep-arity,
and #variables impact in lowering the complexity for ec (and not for cc or dc),
while the parameter |A| impacts for dc but not for cc or ec.

Related Work. The parameterized complexity analyses in the propositional set-
ting [20,21,23] have considered the combined complexity of model checking and
satisfiability as problems of interest. On the cc-level, the picture there is some-
what different, e.g., team size as a parameter for propositional dependence logic
enabled a FPT algorithm while in our setting it has no effect on the complexity
(paraNEXP). Grädel [12] studied the expression and the combined complexity
for D in the classical setting, whereas the data complexity was considered by
Kontinen [16].

Organization of the Paper. In Sect. 2, we introduce the foundational concepts of
dependence logic as well as parameterized complexity. In Sect. 3 our results are
presented while Sect. 4 concludes the article.

2 Preliminaries

We require standard notions from classical complexity theory [24]. We encounter
the classical complexity classes P,NP,PSPACE,NEXP and their respective
completeness notions, employing polynomial time many-one reductions (≤P

m).

A Parameterized View on the Complexity of Dependence Logic 129

Parameterized Complexity Theory. A parameterized problem (PP) P ⊆ Σ∗ × N

is a subset of the crossproduct of an alphabet and the natural numbers. For an
instance (x, k) ∈ Σ∗ × N, k is called the (value of the) parameter. A param-
eterization is a polynomial-time computable function that maps a value from
x ∈ Σ∗ to its corresponding k ∈ N. The problem P is said to be fixed-parameter
tractable (or in the class FPT) if there exists a deterministic algorithm A and
a computable function f such that for all (x, k) ∈ Σ∗ × N, algorithm A cor-
rectly decides the membership of (x, k) ∈ P and runs in time f(k) · |x|O(1). The
problem P belongs to the class XP if A runs in time |x|f(k) on a deterministic
machine, whereas XNP is the non-deterministic counterpart of XP. Abusing a
little bit of notation, we write C-machine for the type of machines that decide
languages in the class C, and we will say a function f is “C-computable” if it
can be computed by a machine on which the resource bounds of the class C are
imposed.

Also, we work with classes that can be defined via a precomputation on the
parameter.

Definition 2. Let C be any complexity class. Then paraC is the class of all
PPs P ⊆ Σ∗ × N such that there exists a computable function π : N → Δ∗ and
a language L ∈ C with L ⊆ Σ∗ × Δ∗ such that for all (x, k) ∈ Σ∗ × N we have
that (x, k) ∈ P ⇔ (x, π(k)) ∈ L.

Notice that paraP = FPT. The complexity class C ∈ {NP,PSPACE,NEXP}
is used in the paraC context by us.

A problem P is in the complexity class W[P], if it can be decided by a NTM
running in time f(k) · |x|O(1) steps, with at most g(k)-many non-deterministic
steps, where f, g are computable functions. Moreover, W[P] is contained in
the intersection of paraNP and XP (for details see the textbook of Flum and
Grohe [8]).

Let c ∈ N and P ⊆ Σ∗ × N be a PP, then the c-slice of P , written as Pc

is defined as Pc := { (x, k) ∈ Σ∗ × N | k = c }. Notice that Pc is a classical
problem then. Observe that, regarding our studied complexity classes, showing
membership of a PP P in the complexity class paraC, it suffices to show that
for each slice Pc ∈ C is true.

Definition 3. Let P ⊆ Σ∗ × N, Q ⊆ Γ ∗ be two PPs. One says that P is fpt-
reducible to Q, P ≤FPT Q, if there exists an FPT-computable function f : Σ∗ ×
N → Γ ∗ × N such that

– for all (x, k) ∈ Σ∗ × N we have that (x, k) ∈ P ⇔ f(x, k) ∈ Q,
– there exists a computable function g : N → N such that for all (x, k) ∈ Σ∗ ×N

and f(x, k) = (x′, k′) we have that k′ ≤ g(k).

Finally, in order to show that a problem P is paraC-hard (for some complexity
class C) it is enough to prove that for some c ∈ N, the slice Pc is C-hard in the
classical setting.

130 J. Kontinen et al.

Dependence Logic. We assume basic familiarity with predicate logic [6]. We
consider first-order vocabularies τ that are sets of function symbols and relation
symbols with an equality symbol =. Let VAR be a countably infinite set of
first-order variables. Terms over τ are defined in the usual way, and the set of
well-formed formulas of first order logic (FO) is defined by the following BNF:

ψ ::= t1 = t2 | R(t1, . . . , tk) | ¬R(t1, . . . , tk) | ψ ∧ ψ | ψ ∨ ψ | ∃xψ | ∀xψ,

where ti are terms 1 ≤ i ≤ k, R is a k-ary relation symbol from σ, k ∈ N,
and x ∈ VAR. If ψ is a formula, then we use VAR(ψ) for its set of variables,
and Fr(ψ) for its set of free variables. We evaluate FO-formulas in τ -structures,
which are pairs of the form A = (A, τA), where A is the domain of A (when
clear from the context, we write A instead of dom(A)), and τA interprets the
function and relational symbols in the usual way (e.g., tA〈s〉 = s(x) if t = x ∈
VAR). If t = (t1, . . . , tn) is a tuple of terms for n ∈ N, then we write tA〈s〉 for
(tA1 〈s〉, . . . , tAn 〈s〉).

Dependence logic (D) extends FO by dependence atoms of the form dep(t;u)
where t and u are tuples of terms. The semantics is defined through the concept
of a team. Let A be a structure and X ⊆ VAR, then an assignment s is a
mapping s : X → A.

Definition 4. Let X ⊆ VAR. A team T in A with domain X is a set of assign-
ments s : X → A.

For a team T with domain X ⊇ Y define its restriction to Y as T � Y := { s �
Y | s ∈ T }. If s : X → A is an assignment and x ∈ VAR is a variable, then
sxa : X ∪ {x} → A is the assignment that maps x to a and y ∈ X \ {x} to s(y).
Let T be a team in A with domain X. Then we define f : T → P(A) \ {∅} as
the supplementing function of T . This is used to extend or modify T to the
supplementing team T x

f := { sxa | s ∈ T, a ∈ f(s) }. For the case f(s) = A is the
constant function we simply write T x

A for T x
f . The semantics of D-formulas is

defined as follows.

Definition 5. Let τ be a vocabulary, A be a τ -structure and T be a team over
A with domain X ⊆ VAR. Then,

(A, T) |= t1 = t2 iff ∀s ∈ T : tA1 〈s〉 = tA2 〈s〉
(A, T) |= R(t1, . . . , tn) iff ∀s ∈ T : (tA1 〈s〉, . . . , tAn 〈s〉) ∈ RA

(A, T) |= ¬R(t1, . . . , tn) iff ∀s ∈ T : (tA1 〈s〉, . . . , tAn 〈s〉) �∈ RA

(A, T) |= dep(t;u) iff ∀s1, s2 ∈ T : tA〈s1〉 = tA〈s2〉 ⇒ uA〈s1〉 = uA〈s2〉
(A, T) |= φ0 ∧ φ1 iff (A, T) |= φ0 and (A, T) |= φ1

(A, T) |= φ0 ∨ φ1 iff ∃T0∃T1 : T0 ∪ T1 = T and (A, Ti) |= φi for i = 0, 1
(A, T) |= ∃xφ iff (A, T x

f) |= φ for some f : T → P(A) \ {∅}
(A, T) |= ∀xφ iff (A, T x

A) |= φ

A Parameterized View on the Complexity of Dependence Logic 131

Flight Gate Time

FIN-70 C1 09:55
SAS-475 C3 12:25
SAS-476 C2 12:25
FIN-80 C1 19:55

F7
C1

09

F8 19

S6 C2
12

S5 C3

F7,F8,C1

F7,C1,9 F8,C1,19

S5,S6,12

S6,12,C2 S5,12,C3

Fig. 2. An FO-structure A = (A, SA, RA) (Left) with the Gaifman graph GA (Middle)
and a possible treedecomposition of GA (Right) of Example 8. For brevity, universe
elements are written in short forms.

Notice that we only consider formulas in negation normal form (NNF) as any
formula of dependence logic can be transformed into logically equivalent NNF-
form. Further note that (A, T) |= φ for all φ when T = ∅ (this is also called the
empty team property). Furthermore, D-formulas are local, that is, for a team T
in A over domain X and a D-formula φ, we have that (A, T) |= φ if and only if
(A, T � Fr(φ)) |= φ. Finally, every D-formula φ, if (A, T) |= φ then (A, P) |= φ
for every P ⊆ T . This property is known as the downwards closure.

Definition 6. (Gaifman graph). Given a vocabulary τ and a τ -structure A,
the Gaifman graph GA = (A,E) of A is defined as

E :=
{ {u, v} ∣

∣ if there is an Rn ∈ τ and a ∈ An with RA(a) and u, v ∈ a
}
.

That is, there is a relation R ∈ τ of arity n such that u and v appear together
in RA.

Intuitively, the Gaifman graph of a structure A is an undirected graph with
the universe of A as vertices and connects two vertices when they share a tuple
in a relation (see also Fig. 2).

Definition 7. (Treewidth). The tree decomposition of a given graph G =
(V,E) is a tree T = (B,ET), where the vertex set B ⊆ P(V) is the collection of
bags and ET is the edge relation such that the following is true.

–
⋃

b∈B = V ,
– for every {u, v} ∈ E there is a bag b ∈ B with u, v ∈ b, and
– for all v ∈ V the restriction of T to v (the subset with all bags containing v)

is connected.

The width of a given tree decomposition T = (B,ET) is the size of the largest
bag minus one: maxb∈B |b|−1. The treewidth of a given graph G is the minimum
over all widths of tree decompositions of G.

Observe that if G is a tree then the treewidth of G is one. Intuitively, one can
say that treewidth accordingly is a measure of tree-likeness of a given graph.

132 J. Kontinen et al.

Example 8. Consider the database form our previous example. Recall that the
universe A consists of entries in each row. Let τ = {S2,R3} include a binary
relation S such that S(x, y) is true iff flights x and y are owed by the same
company. Furthermore, consider a ternary relation R such that R(x, y, z) is true
iff the gate x is reserved by the flight y at time z. For simplicity, we only consider
first four rows with the corresponding three columns from Table 3, see Fig. 2
for an explanation. Since the largest bag size in our decomposition is 3, the
treewidth of this decomposition is 2. Furthermore, the presence of cycles of
length 3 suggests that there is no better decomposition. As a consequence the
given structure has treewidth 2.

The decision problem to determine whether the treewidth of a given graph
G = (V,E) is at most k, is NP-complete [1]. See Bodlaender’s Guide [2] for
an overview of algorithms that compute tree decompositions. When considering
the parameter treewidth, one usually assumes it as a given value and does not
need to compute it. We consider only the model checking problem (MC) and
two variants in this paper. First, let us define the most general version.

Problem: cc (combined complexity of model checking)

Input: a structure A, team T and a D-formula Φ.
Question: (A, T) |= Φ?

We further consider the following two variants of the model checking prob-
lem.

Problem: dc (data complexity of model checking, Φ is fixed)

Input: a structure A, team T .
Question: (A, T) |= Φ?

Problem: ec (expression complexity of model checking, A, T are fixed)

Input: a D-formula Φ.
Question: (A, T) |= Φ?

List of Parameterizations. Now let us turn to the parameters that are under
investigation in this paper. We study the model checking problem of D under
nine various parameters that naturally occur in an MC-instance. Let 〈A, T, Φ〉
be an instance of MC, where Φ is a D-formula, A is a structure and T is a
team over A. The parameter #splits denotes the number of occurrences of the
split operator (∨), #∀ is the number of universal quantifiers in Φ. Moreover,
#variables (resp., #free-variables) denotes the total number of (free) variables
in Φ. The parameter |Φ| is the size of the input formula Φ, and similarly the
two other size parameters are |A| and |T |. The treewidth of the structure A
(see Definition 7) is defined as the treewidth of GA and denoted by tw(A). Note
that for formulas using the dependence atom dep(x;y), one can translate to a
formula using only dependence atoms where |y| = 1 (via conjunctions). That is

A Parameterized View on the Complexity of Dependence Logic 133

why the arity of a dependence atom dep(x;y) is defined as |x| and dep-arity is
the maximum arity of any dependence atom in Φ.

Let k be any parameterization and P ∈ {dc, ec, cc}, then by k-P we denote
the problem P when parameterized by k. If more than one parameterization
is considered, then we use ‘+’ as a separator and write these parameters in
brackets, e.g., (|Φ|+#free-variables)-dc as the problem dc with parameterization
|Φ| + #free-variables. Finally, notice that since the formula Φ is fixed for dc this
implies that |Φ|-dc is nothing but dc. That is, bounding the parameter does not
make sense for dc as the problem dc remains NP-complete.

3 Complexity Results

Table 2. Complexity classification overview. A suffix -h represents the hardness result,
whereas other results are completeness. The numbers in the exponent point to the
corresponding result (Lx means Lemma x, Px means Proposition x, Rx means Remark
x). Figure 3 on page 16 is a graphical presentation of this table with a different angle.

Parameter cc dc ec

#splits paraPSPACE-hL17 paraNPL12 paraPSPACE-hL17

|Φ| paraNPL18 paraNPR13 FPT19

#free-variables paraNEXPL16 paraNPL12 paraNEXPL16

tw(A) paraNEXPL16 paraNPP 11 paraNEXPL16

|A| paraNEXPL16 FPTL14 paraNEXPL16

|T | paraNEXPL16 paraNPL15 paraNEXPL16

#∀ paraNP-hL22 paraNPL12 paraNPL20

dep-arity paraPSPACE-hL25 paraNPL12 paraPSPACEL23

#variables paraNPL27 paraNPL12 FPTL28

We begin by proving relationships between various parameterizations.

Lemma 9. The following relations among parameters hold.

1. |Φ| ≥ k for any k ∈ {#splits,#∀, dep-arity,#free-variables,#variables },
2. |A| ≥ tw(A). Moreover, for dc, |A|O(1) ≥ |T |,
3. For ec, #free-variables is constant.

Proof. 1. Clearly, the size of the formula limits all parts of it including the
parameters mentioned in the list.

2. Notice that for data complexity, the formula Φ and consequently the number
of free variables in Φ is fixed. Moreover, due to locality of D it holds that
T ⊆ Ar, where r is the number of free variables in Φ. That is, the team T can
be considered only over the free variables of Φ. This implies that teamsize is
polynomially bounded by the universe size, as |T | ≤ |A|r. Finally, the result
for tw(A) follows due to Definition 7. This is due to the reason that in the
worst case all universe elements belong to one bag in the decomposition and
tw(A) = |A| − 1.

134 J. Kontinen et al.

Table 3. An example team for (p1 ∨ ¬p2 ∨ ¬p3)

x = ‘variable’ y = ‘parity’ u = ‘clause’ v = ‘position’

p1 1 1 0

p2 0 1 1

p3 0 1 2

3. Notice that the team T is fixed in ec. Together with the locality of D-formulas
(see Definition 5), this implies that the domain of T (which is same as the set
of free variables in the formula Φ) is also fixed and as a result, of constant
size.

��
Remark 10. If the number of free variables (#free-variables) in a formula Φ is
bounded then the total number of variables (#variables) in Φ is not necessarily
bounded, on the other hand, bounding #variables also bounds #free-variables.

3.1 Data Complexity (dc)

Classically, the data complexity of model checking for a fixed D-formula Φ is
NP-complete [27].

Proposition 11. For a fixed formula, the problem whether an input structure A
and a team T satisfies the formula is NP-complete. That is, the data complexity
of dependence logic is NP-complete.

In this section we prove that none of the considered parameter lowers this
complexity, except |A|. The proof relies on the fact that the complexity of model
checking for already a very simple formula (see below) is NP-complete.

Lemma 12. Let k ∈ {#splits,#free-variables,#variables,#∀, dep-arity, tw(A)}.
Then the problem k-dc is paraNP-complete.

Proof. The upper bound follows from Proposition 11. Kontinen [16, Theorem 4.9]
proves that the data complexity for a fixed D-formula of the form dep(x; y) ∨
dep(u; v) ∨ dep(u; v) is already NP-complete. For clarity, we briefly sketch the
reduction presented by Kontinen [16]. Let

φ :=
∧

i≤m

(�i,1 ∨ �i,2 ∨ �i,3)

be an instance of 3-SAT. Consider the structure A over the empty vocabulary,
that is, τ = ∅. Let A = Var(φ) ∪ {0, 1, . . . ,m}. The team T is constructed over
variables {x, y, u, v} that take values from A. As an example, the clause (p1 ∨
¬p2 ∨ ¬p3) gives rise to assignments in Table 3. Notice that, a truth assignment
θ for φ is constructed using the division of T according to each split. That

A Parameterized View on the Complexity of Dependence Logic 135

is, T |= dep(x; y) ∨ dep(u; v) ∨ dep(u; v) if and only if ∃P0, P1, P2 such that
∪iPi = T for i ≤ 2 and each Pi satisfies ith dependence atom. Let P0 be such
that P0 |= dep(x; y), then we let θ(pj) = 1 ⇐⇒ ∃s ∈ P, s.t. s(x) = pj and
s(y) = 1. That is, one literal in each clause must be chosen in such a way
that satisfies this clause, whereas, the remaining two literals per each clause are
allowed to take values that does not satisfy it. As a consequence, each clause is
satisfied by the variables chosen in this way, which proves correctness.

This implies that the 2-slice (for #splits-dc), 4-slice (for #free-variables-dc as
well as #variables-dc), 0-slice (for #∀-dc), and 1-slice (for dep-arity-dc) are NP-
complete. Consequently, the paraNP-hardness for these cases follow. Finally,
the case for tw(A) also follows due to the reason that the vocabulary of the
reduced structure is empty. As a consequence, our Definition 7 yields a tree
decomposition of width 1 trivially as no elements of the universe are related.

This completes the proof to our lemma. ��
Remark 13. Recall that |Φ| as a parameter for dc does not make sense as the
input consists of 〈A, T 〉. That is, the formula Φ is already fixed which is stronger
than fixing the size of Φ.

We now prove the only tractable case for the data complexity.

Lemma 14. |A|-dc ∈ FPT.

Proof. Notice first that restricting the universe size |A| polynomially bounds
the teamsize |T |, due to Lemma 9. This implies that the size of whole input is
(polynomially) bounded by the parameter |A|. The result follows because any PP
P is FPT when the input size is bounded by the parameter [8, Proposition 1.7].

��
Lemma 15. |T |-dc is paraNP-complete.

Proof. For a fixed sentence Φ ∈ D (that is, with no free variables) and for
all models A and team T we have that (A, T) |= Φ ⇐⇒ (A, {∅}) |= Φ.
As a result, the problem ≤FPT-reduces to the model checking problem with
|T | = 1. Consequently, 1-slice of |T |-dc is NP-complete because model checking
for a fixed D-sentence is also NP-complete [27, Corollary 6.3]. This results in
paraNP-hardness.

For the membership, note that given a structure A and a team T then for a
fixed formula Φ the question whether (A, T) |= Φ is in NP. Consequently, giving
paraNP-membership. ��
A comparison with the propositional dependence logic (PDL) at this point might
be interesting. If the formula size is a parameter then the model checking for
PDL can be solved in FPT-time [20]. However, this is not the case for D even
if the formula is fixed in advance.

136 J. Kontinen et al.

3.2 Expression and Combined Complexity (ec, cc)

Now we turn towards the expression and combined complexity of model checking
for D. Here again, in most cases the problem is still intractable for the combined
complexity. However, expression complexity when parameterized by the formula
size (|Φ|) and the total number of variables (#variables) yields membership in
FPT. Similar to the previous section, we first present results that directly trans-
late from the known reductions for proving the NEXP-completeness for D.

Lemma 16. Let k ∈ { |A|, tw(A), |T |,#free-variables }. Then both k-cc and k-ec
are paraNEXP-complete.

Proof. In the classical setting, NEXP-completeness of the expression and the
combined complexity for D was shown by Grädel [12, Theorem 5.1]. This immedi-
ately gives membership in paraNEXP. Interestingly, the universe in the reduc-
tion consists of {0, 1} with empty vocabulary and the formula obtained is a
D-sentence. This implies that 2-slice (for |A|), 1-slice (for tw(A)), 1-slice (for
|T |), and 0-slice (for the number of free variables) are NEXP-complete. As
a consequence, paraNEXP-hardness for the mentioned cases follows and this
completes the proof. ��
For the number of splits as a parameterization, we only know that this is also
highly intractable, with the precise complexity open for now.

Lemma 17. #splits-ec and #splits-cc are both paraPSPACE-hard.

Proof. Consider the equivalence of {∃,∀,∧}-FO-MC to quantified constraint
satisfaction problem (QCSP) [22, p. 418]. That is, the fragment of FO with only
operations in {∃,∀,∧} allowed. Then QCSP asks, whether the conjunction of
quantified constraints (FO-relations) is true in a fixed FO-structure A. This
implies that already in the absence of a split operator (even when there are
no dependence atoms), the model checking problem is PSPACE-hard. Conse-
quently, the mentioned results follow. ��

The formula size as a parameter presents varying behaviour depending upon
if we consider the expression or the combined complexity.

Lemma 18. |Φ|-cc is paraNP-complete.

Proof. Notice that, due to Lemma 9, the size k of a formula Φ also bounds the
maximum number of free variables in any subformula of Φ. This gives the mem-
bership in conjunction with [12, Theorem 5.1]. That is, the combined complexity
of D is NP-complete if maximum number of free variables in any subformuala of
Φ is fixed. The lower bound follows because of the construction by Kontinen [16]
(see also Lemma 12) since for a fixed formula (of fixed size), the problem is
already NP-complete. ��

A Parameterized View on the Complexity of Dependence Logic 137

Lemma 19. |Φ|-ec is in FPT.

Proof. Recall that in expression complexity, the team T and the structure A
are fixed. Whereas, the size of the input formula Φ is a parameter. The result
follows trivially because any PP P is FPT when the input size is bounded by
the parameter. ��
The expression complexity regarding the number of universal quantifiers as a
parameter drops down to paraNP-completeness, which is still intractable but
much lower than paraNEXP-completeness. However, regarding the combined
complexity we can only prove the membership in XNP, with paraNP-lower
bound.

Lemma 20. #∀-ec is paraNP-complete.

Proof. We first prove the lower bound through a reduction form the satisfi-
ability problem for propositional dependence logic (PDL). That is, given a
PDL-formula φ, whether there is a team T such that T |= φ? Let φ be a
PDL-formula over propositional variables p1, . . . , pn. For i ≤ n, let xi denote
a variable corresponding to the proposition pi. Let A = {0, 1} be the structure
over empty vocabulary. Clearly φ is satisfiable iff ∃p1 . . . ∃pnφ is satisfiable iff
(A, {∅}) |= ∃x1 . . . ∃xnφ′, where φ′ is a D-formula obtained from φ by simply
replacing each proposition pi by the variable xi. Notice that the reduced for-
mula does not have any universal quantifier, that is #∀(φ′) = 0. This gives
paraNP-hardness since the satisfiability for PDL is NP-complete [18].

For membership, notice that a D-sentence Φ with k universal quantifiers can
be reduced in P-time to an ESO-sentence Ψ of the form ∃f1 . . . ∃fr∀x1 . . . ∀xkψ
by Durand and Kontinen [5, Cor. 3.9], where ψ is a quantifier free FO-formula,
r ∈ N, and each function symbol fi is at most k-ary for 1 ≤ i ≤ r. Finally, we
have that

(A, {∅}) |= Φ ⇐⇒ A |=
∨

f1

. . .
∨

fr

∀x1 . . . ∀xkψ
′.

Where the latter question can be solved by guessing an interpretation for each
function symbol fi and i ≤ r. This requires r · |A|k guessing steps, and can be
achieved in paraNP-time for a fixed structure A (as we consider expression
complexity). Consequently, the membership in paraNP follows. Notice that the
arity of function symbols in the paraNP-membership above is bounded by k if Φ
is a D-sentence. However, if Φ is a D-formulas with m free variables then the arity
of function symbols as well as the number of universal quantifiers in the reduc-
tion, both are bounded by k + m where k = #∀(Φ) and m = #free-variables(Φ).
Nevertheless, recall that for ec, the team is also fixed. Moreover, due to Lemma 9
the collection of free variables in Φ has constant size. This implies that the reduc-
tion above provides an ESO-sentence with k +m universal quantifiers as well as
function symbols of arity k + m at most. Finally, guessing the interpretation for
functions still takes paraNP-steps (because m is constant) and consequently,
we get paraNP-membership for open formulas as well. ��

138 J. Kontinen et al.

The following corollary immediately follows from the proof above.

Corollary 21. (#∀ + #free-variables)-ec is paraNP-complete.

Lemma 22. #∀-cc is paraNP-hard. Moreover, for sentences of D, #∀-cc is
in XNP.

Proof. The paraNP-lower bound follows due to the fact that the expression
complexity of D is already paraNP-complete when parameterized by #∀ (see
Lemma 20).

For sentences, similar to the proof in Lemma 20, a D-sentence Φ can be
translated to an equivalent ESO-sentence Ψ in polynomial time. However, if
the structure is not fixed as for expression complexity, then the computation
of interpretations for functions can no longer be done in paraNP-time, but
requires non-deterministic |A|k-time for each guessed function, where k = #∀.
Consequently, we reach only membership in XNP for sentences. ��
For open formulas, we do not know if #∀-cc is also in XNP. Our proof technique
does not immediately settle this case as the team is not fixed for cc.

Similar to the case of universal quantifiers, the arity as a parameter also
reduces the complexity but not as much as the universal quantifiers. Moreover,
the precise combined complexity when parameterized by the arity is also open.

Lemma 23. dep-arity-ec is paraPSPACE-complete.

Proof. Notice that a D-sentence Φ with k-ary dependence atoms can be reduced
in P-time to an ESO-sentence Ψ of the form ∃f1 . . . ∃frψ [5, Thm. 3.3], where
ψ is an FO-formula and each function symbol fi is at most k-ary for 1 ≤ i ≤ r.

Finally,
A |= Φ ⇐⇒ A |=

∨

f1

. . .
∨

fr

ψ′.

That is, one needs to guess the interpretation for each function symbol fi,
which can be done in paraNP-time. Finally, evaluating an FO-formula ψ′ for
a fixed structure A can be done in PSPACE-time. This yields membership in
paraPSPACE. Moreover, if Φ is an open D-formula then the result follows due
to a similar discussion as in the prof of Lemma 20.

For hardness, notice that the expression complexity of FO is PSPACE-
complete. This implies that already in the absence of any dependence atoms, the
complexity remains PSPACE-hard, as a consequence, the 0-slice of dep-arity-ec
is PSPACE-hard. This proves the desired result. ��

The combination (dep-arity+ #free-variables) also does not lower the expres-
sion complexity as discussed before in the case of #∀.

Corollary 24. (dep-arity + #free-variables)-ec is paraPSPACE-complete.

Lemma 25. dep-arity-cc is paraPSPACE-hard.

A Parameterized View on the Complexity of Dependence Logic 139

Proof. Consider the fragment of D with only dependence atoms of the form
dep(;x), the so-called constancy logic. The combined complexity of constancy
logic is PSPACE-complete [12, Theorem 5.3]. This implies that the 0-slice of
dep-arity-cc is PSPACE-hard, proving the result. ��

The combined complexity of model checking for constancy logic is PSPACE-
complete [12, Thm. 5.3]. Aiming for an paraPSPACE-upper bound via squeez-
ing the fixed arity of dependence atoms (in some way) into constancy atoms is
unlikely to happen as D captures ESO whereas constancy logic for sentences
(and also open formulas) collapses to FO [10].

Notice that a similar reduction as in the proof of Lemma 20 holds from PL, in
which both parameters (#∀ and dep-arity) are bounded. This implies that there
is no hope for tractability even when both parameters are considered together.
That is, the complexity of expression complexity remains paraNP-complete
when parameterized by the combination of parameters (#∀, dep-arity).

Corollary 26. (#∀ + dep-arity)-ec is also paraNP-complete.

Finally, for the parameter total number of variables, the expression complexity
drops to FPT whereas, the combined complexity drops to paraNP-complete.
The case of expression complexity is particularly interesting. This is due to
the reason that it was posed as an open question in [28, Page 88] whether the
expression complexity of the fixed variable fragment of dependence logic (Dk)
is NP-complete similar to the case of the combined complexity therein. We
answer this negatively by stating FPT-membership for #variables-ec, which as
a corollary proves that the expression complexity of Dk is in P for each k ≥ 1.

Lemma 27. #variables-cc is paraNP-complete.

Proof. Notice that if the total number of variables in Φ is fixed, then the num-
ber of free variables in any subformula ψ of Φ is also fixed. This implies the
membership in paraNP due to [12, Theorem 5.1]. On the other hand, by [28,
Theorem 3.9.6] we know that the combined complexity of Dk is NP-complete.
This implies that for each k, the k-slice of the problem is NP-hard. This gives
the desired lower bound. ��
Lemma 28. #variables-ec is FPT.

Proof. Given a formula Φ of dependence logic with k variables, we can construct
an equivalent formula Ψ of ESOk+1 in polynomial time [28, Theorem 3.3.17].
Moreover, since the structure A is fixed, there exists a reduction of Ψ to an FO-
formula ψ with k+1 variables (big disjunction on the universe elements for each
second order existential quantifier). Finally, the model checking for FO-formulas
with k variables is solvable in time O(|ψ| · |A|k) [17, Prop. 6.6]. This implies the
membership in FPT. ��
Corollary 29. The expression complexity of Dk is in P for every k ≥ 1.

Proof. Since both, the number of variables and the universe size is fixed. The
runtime of the form O(|ψ| · |A|k) in Lemma 28 implies membership in P. ��

140 J. Kontinen et al.

Fig. 3. Complexity classification overview for model checking problem of dependence
logic, that takes grouping of parameters (quantitative, size, structural) and complexity
classes into account.

4 Conclusion

In this paper, we started the parameterized complexity classification of model
checking for dependence logic D with respect to nine different parameters (see
Table 2 for an overview of the results). In Fig. 3 we depict a different kind of
presentation of our results that also takes the grouping of parameters into quan-
titative, size related, and structural into account. The data complexity of D
shows a dichotomy (FPT vs./paraNP-complete), where surprisingly there is
only one case (|A|) where one can reach FPT. This is even more surprising in
the light of the fact that the expression (ec and the combined (cc) complexities
under the same parameter are still highly intractable. Furthermore, there are
parameters when cc and ec vary in the complexity (#variables). The combined
complexity of D stays intractable under any of the investigated parameteriza-
tions. It might be interesting to study combination of parameters and see their
joint effect on the complexity (yet, Corollaries 21, 24, 26 tackle already some
cases).

We want to close this presentation with some further questions and topics
that emerged of undertaking this study and should be tackled in the future:

– What other parameters could be meaningful (e.g., number of conjunctions,
number of existential quantifiers, treewidth of the formula)?

– What is the exact complexity of #∀-cc, #splits-ec/-cc, dep-arity-cc?
– The parameterized complexity analysis for other team-based logics, such as

independence logic and inclusion logic.

References

1. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings
in a k-tree. SIAM J. Algebraic Discrete Meth. (1987). https://doi.org/10.1137/
0608024

https://doi.org/10.1137/0608024
https://doi.org/10.1137/0608024

A Parameterized View on the Complexity of Dependence Logic 141

2. Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybern., 11(1–2), 1–21
(1993). https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/3417

3. Bodlaender, H.L.: Discovering treewidth. In: SOFSEM, vol. 3381 of Lecture Notes
in Computer Science, pp. 1–16. Springer (2005). https://doi.org/10.1007/978-3-
540-30577-4 1

4. Fundamentals of Parameterized Complexity. TCS. Springer, London (2013).
https://doi.org/10.1007/978-1-4471-5559-1

5. Durand, A., Kontinen, J.: Hierarchies in dependence logic. ACM Trans. Comput.
Logic (TOCL) 13(4), 31 (2012). https://doi.org/10.1145/2362355.2362359

6. Ebbinghaus, H.D., Flum, J.: Finite model theory. In: Perspectives in Mathemati-
cal Logic. Springer (1995). 978-3-540-60149-4, https://doi.org/10.1007/978-3-662-
03182-7

7. Elberfeld, M., Stockhusen, C., Tantau, T.: On the space and circuit complexity of
parameterized problems: classes and completeness. Algorithmica 71(3), 661–701
(2014). https://doi.org/10.1007/s00453-014-9944-y

8. Parameterized Complexity Theory. TTCSAES. Springer, Heidelberg (2006).
https://doi.org/10.1007/3-540-29953-X

9. Galliani, P.: Inclusion and exclusion dependencies in team semantics: on some logics
of imperfect information. Ann. Pure Appl. Logic 163(1), 68–84 (2012). https://
doi.org/10.1016/j.apal.2011.08.005

10. Galliani, P.: On strongly first-order dependencies. In: Dependence Logic, pp. 53–71.
Springer (2016). https://doi.org/10.1007/978-3-319-31803-5 4

11. Galliani, P., Hella, L.: Inclusion logic and fixed point logic. In: Rocca, S.R.D. (ed.)
Computer science logic 2013 (CSL 2013), vol. 23 of Leibniz International Pro-
ceedings in Informatics (LIPIcs), pp. 281–295, Dagstuhl, Germany, 2013. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik. https://doi.org/10.4230/LIPIcs.CSL.
2013.281

12. Grädel, E.: Model-checking games for logics of imperfect information. Theor. Com-
put. Sci. 493, 2–14 (2013). https://doi.org/10.1016/j.tcs.2012.10.033

13. Grädel, E., Väänänen, J.: Dependence and independence. Studia Logica 101(2),
399–410 (2013). https://doi.org/10.1007/s11225-013-9479-2

14. Hannula, M., Kontinen, J., Bussche, J.V., Virtema, J.: Descriptive complexity
of real computation and probabilistic independence logic. In: LICS, pp. 550–563.
ACM (2020). https://doi.org/10.1145/3373718.3394773

15. Hannula, M., Kontinen, J., Virtema, J., Vollmer, H.: Complexity of propositional
logics in team semantic. ACM Trans. Comput. Log. 19(1), 2:1–2:14 (2018). https://
doi.org/10.1145/3157054

16. Kontinen, J.: Coherence and computational complexity of quantifier-free depen-
dence logic formulas. Studia Logica 101(2), 267–291 (2013). https://doi.org/10.
1007/s11225-013-9481-8

17. Libkin, L.: Elements of finite model theory. In: Texts in Theoretical Computer
Science. An EATCS Series. Springer (2004). https://doi.org/10.1007/978-3-662-
07003-1

18. Lohmann, P., Vollmer, H.: Complexity results for modal dependence logic. Stud.
Logica 101(2), 343–366 (2013). https://doi.org/10.1007/s11225-013-9483-6

19. Lück, M.: Canonical models and the complexity of modal team logic. Log. Methods
Comput. Sci. 15(2) (2019). https://doi.org/10.23638/LMCS-15(2:2)2019

https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/3417
https://doi.org/10.1007/978-3-540-30577-4_1
https://doi.org/10.1007/978-3-540-30577-4_1
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1145/2362355.2362359
https://doi.org/10.1007/978-3-662-03182-7
https://doi.org/10.1007/978-3-662-03182-7
https://doi.org/10.1007/s00453-014-9944-y
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1016/j.apal.2011.08.005
https://doi.org/10.1016/j.apal.2011.08.005
https://doi.org/10.1007/978-3-319-31803-5_4
https://doi.org/10.4230/LIPIcs.CSL.2013.281
https://doi.org/10.4230/LIPIcs.CSL.2013.281
https://doi.org/10.1016/j.tcs.2012.10.033
https://doi.org/10.1007/s11225-013-9479-2
https://doi.org/10.1145/3373718.3394773
https://doi.org/10.1145/3157054
https://doi.org/10.1145/3157054
https://doi.org/10.1007/s11225-013-9481-8
https://doi.org/10.1007/s11225-013-9481-8
https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.1007/s11225-013-9483-6
https://doi.org/10.23638/LMCS-15(2:2)2019

142 J. Kontinen et al.

20. Mahmood, Y., Meier, A.: Parameterised complexity of model checking and sat-
isfiability in propositional dependence logic. In: Foundations of Information and
Knowledge Systems - 11th International Symposium, FoIKS 2020, 17–21 February
2020, Dortmund, Germany, Proceedings, pp. 157–174 (2020). https://doi.org/10.
1007/978-3-030-39951-1 10

21. Mahmood, Y., Virtema, J.: Parameterised complexity of propositional logic in team
semantics. CoRR. arXiv: 2105.14887

22. Martin, B.: First-order model checking problems parameterized by the model. In:
CiE, volume 5028 of Lecture Notes in Computer Science, pp. 417–427. Springer
(2008). https://doi.org/10.1007/978-3-540-69407-6 45

23. Meier, A., Reinbold, C.: Enumeration complexity of poor man’s propositional
dependence logic. In: FoIKS, volume 10833 of Lecture Notes in Computer Science,
pp. 303–321. Springer (2018). https://doi.org/10.1007/978-3-319-90050-6 17

24. Papadimitriou, C.H.: Computational Complexity (1994). 978-0-201-53082-7 25
25. Robertson, N., Seymour, P.D.: Graph minors. III. planar tree-width. J. Comb.

Theory Ser. B 36(1), 49–64 (1984). https://doi.org/10.1016/0095-8956(84)90013-
3

26. Samer, M., Szeider, S.: Fixed-parameter tractability. In: Handbook of Satisfiability,
volume 185 of Frontiers in Artificial Intelligence and Applications, pp. 425–454. IOS
Press (2009). https://doi.org/10.3233/978-1-58603-929-5-425

27. Väänänen, J.A.: Dependence Logic - A New Approach to Independence Friendly
Logic, volume 70 of London Mathematical Society student texts. Cambridge Uni-
versity Press (2007). 978-0-521-70015-3

28. Virtema, J.: Approaches to Finite Variable Dependence: Expressiveness and Com-
putational Complexity. PhD thesis, School of Information Sciences of the Univer-
sity of Tampere (2014). 978-951-44-9472-7

https://doi.org/10.1007/978-3-030-39951-1_10
https://doi.org/10.1007/978-3-030-39951-1_10
http://arxiv.org/abs/2105.14887
https://doi.org/10.1007/978-3-540-69407-6_45
https://doi.org/10.1007/978-3-319-90050-6_17
https://doi.org/10.1016/0095-8956(84)90013-3
https://doi.org/10.1016/0095-8956(84)90013-3
https://doi.org/10.3233/978-1-58603-929-5-425

A Logic of Interactive Proofs

David Lehnherr1 , Zoran Ognjanović2 , and Thomas Studer1(B)

1 Institute of Computer Science, University of Bern, Bern, Switzerland
{david.lehnherr,thomas.studer}@inf.unibe.ch

2 Mathematical Institute of Serbian Academy of Sciences and Arts, Belgrade, Serbia
zorano@mi.sanu.ac.rs

Abstract. We introduce the probabilistic two-agent justification logic
IPJ, a logic in which we can reason about agents that perform interactive
proofs. In order to study the growth rate of the probabilities in IPJ,
we present a new method of parametrizing IPJ over certain negligible
functions. Further, our approach leads to a new notion of zero-knowledge
proofs.

Keywords: Interactive proof system · Zero-knowledge proof ·
Epistemic logic · Justification logic · Probabilistic logic

1 Introduction

An interactive proof system [6,8] is a protocol between two agents, the prover and
the verifier. The aim of the protocol is that the prover can prove its knowledge of
a secret to the verifier. To achieve this, the prover must answer a challenge pro-
vided by the verifier. Usually, the protocols are such that the verifier only knows
with high probability that the prover knows the secret, that is the probability is
a negligible function in the length of the challenge. The aim of the present paper
is to introduce an epistemic logic IPJI to model interactive proof systems.

Our logic of interactive proofs and justifications IPJI will be a combination
of modal logic, justification logic, and probabilistic logic. The logic includes two
agents, P (the prover) and V (the verifier). The modal part of IPJI consists of two
S4 modalities �P and �V . As usual, �a means agent a knows that. Justification
logic adds explicit reasons for the agents’ knowledge [4,14]. We have formulas
of the form t:aα, which stand for agent a knows α for reason t. The reason
represented by the term t, can be a formal proof as in the first justification logic,
the Logic of Proofs [2,13], the execution of an interactive proof protocol, the
result of an agent’s reasoning, or any other justification of knowledge like, e.g.,
direct observation. For IPJI, we will use a two-agent version of the logic of proofs
together with the justification yields belief principle t:aα → �aα. The third
ingredient of IPJI are probability operators of the form P≥r and P≈r meaning
with probability greater than or equal to r and with probability approximately r,

Supported by the Swiss National Science Foundation grant 200020 184625 and by the
Science Fund of the Republic of Serbia project AI4TrustBC.

c© Springer Nature Switzerland AG 2022
S. Artemov and A. Nerode (Eds.): LFCS 2022, LNCS 13137, pp. 143–155, 2022.
https://doi.org/10.1007/978-3-030-93100-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93100-1_10&domain=pdf
http://orcid.org/0000-0002-4956-4064
http://orcid.org/0000-0003-2508-6480
http://orcid.org/0000-0002-0949-3302
https://doi.org/10.1007/978-3-030-93100-1_10

144 D. Lehnherr et al.

respectively. For the probabilistic part, we use the approach of [15,16], which has
been adapted to justification logic in [10,11]. In order to deal with approximate
probabilities, we need probability measures that can take non-standard values.
Logics of this kind have been investigated in [17,18].

Goldwasser et al. [8] introduced interactive proof systems as follows. Let L
be a language and P and V a pair of interacting (probabilistic) Turing machines,
where P has unrestricted computational power and V is polynomial time. 〈P, V 〉
is an interactive proof system for L if the following conditions hold:

1. Completeness: For all k ∈ N, there exists m ∈ N such that for all inputs x ∈ L
with |x| > m, the probability of 〈P, V 〉 accepting x is at least 1 − |x|−k.

2. Soundness: For all k ∈ N, there exists m ∈ N such that for all inputs x �∈ L
with |x| > m and any interactive Turing machine P ′, the probability of 〈P ′, V 〉
accepting x is at most |x|−k.

Less formally, the agent P tries to prove its knowledge about a proposition α
to the agent V . They may do that by following a challenge-response scheme.
That is, V sends a challenge to P who then tries to answer it using his knowledge
about α. On success, V ’s confidence in P knowing α is increased. Moreover, the
harder the challenge, the stronger is V ’s belief. However, P may be dishonest
and hence V may be convinced (with a low probability) that a wrong statement
is true.

In order to model this in IPJI, we introduce terms of the form fn
t that rep-

resents V ’s view of the run of the protocol where P has evidence t and n is a
measure for the complexity of the run (this may refer to the complexity of the
challenge in a challenge response scheme). The outcome of a run will be formal-
ized as P≥r(fn

t :V �P α) meaning that with probability greater than or equal to r,
the run of the protocol with complexity n provides a justification for V that P
knows α. Note that we are abstracting away the concrete protocol. Moreover,
the subscript t in fn

t does not imply that V has access to t; it only states that
P ’s role in the protocol depends on t. We say that a formula α is interactively
provable if the following two conditions hold:

1. Completeness: Assume t:P α. For all k ∈ N, there exists a degree of complexity
m ∈ N such that, for n > m the probability of fn

t justifying �P α from V ’s
view is at least 1 − n−k.

2. Soundness: Assume ¬t:P α. For all k ∈ N, there exists a degree of complexity
m ∈ N such that, for n > m the probability of fn

t justifying �P α from V ’s
view is at most n−k.

Since IPJI is a propositional logic, we need a way to express the soundness and
completeness condition without quantifiers. For integers m, k, we start with sets
of formulas Im,k and define the set of interactively provable formulas

I :=
⋂

k

⋃

m

Im,k.

If a formula α belongs to Im,k, then the following two conditions must hold for
n > m:

A Logic of Interactive Proofs 145

1. t:P α → P≥1− 1
nk

(fn
t :V �P α)

2. ¬(t:P α) → P≤ 1
nk

(fn
t :V �P α).

Therefore, if α ∈ I and t:P α then, for every k, there exists an m such that
α ∈ Im,k and thus P≥1− 1

nk
(fn

t :V �P α). Observe that this closely resembles the
previously stated completeness property of interactive proof systems. The sound-
ness property is obtained analogously.

Furthermore, we allow the probability operators to take non-standard values
and consider protocols with transfinite complexity ω to capture the notion of a
limit. Hence we can express statements of the form

if t:P α, then the probability of fω
t :V �P α is almost 1.

Using the operator P≈r, we add two more conditions for interactively provable
formulas:

3. t:P α → P≈1(fω
t :V �P α) if α ∈ I;

4. ¬(t:P α) → P≈0(fω
t :V �P α) if α ∈ I.

We also include a principle saying that the justifications fn
t are monotone in

the complexity n:

5. fm
t :aα → fn

t :aα if m < n.

Justification logics with interacting agents are not new. Yavorskaya [20] intro-
duced the evidence verification operator !VP that can be used by V to verify P ’s
evidence, i.e. her system includes the axiom t:P α → !VP t:V t:P α. This resem-
bles the definition of the complexity class NP as interactive proof system, see,
e.g., [1]. There, the verifier is a deterministic Turing machine. The prover gen-
erates a proof certificate t for α (where the complexity of t is polynomial in α),
i.e. we have t:P α. Now P sends this certificate t to V and V checks it (which
can be done in polynomial time). A successful check results in !VP t being a jus-
tification for V that P knows the proof certificate t for α, i.e. !VP t:V t:P α.

2 Syntax

Let N be the set of natural numbers and N
+ := N \ {0}. We define

Comp := N ∪ {ω}
where ω > n for each n ∈ N.

We start with a countable set of justification variables and justification con-
stants. Further we have a symbol fn for each n ∈ Comp. The set of terms Tm is
given by the following grammar

t :: = c | x | t · t | t + t | ! t | fnt

where c is a justification constant and x is a justification variable. In the follow-
ing, we usually write fn

t for fnt.

146 D. Lehnherr et al.

Our language is based on two agents, the prover P and the verifier V . We
write a for an arbitrary agent, i.e. either P or V . Further, we use a countable
set of atomic propositions Prop. The set of epistemic formulas eFml is given by
the following grammar:

α :: = p | ¬α | α ∧ α | �aα | t:aα

where p is an atomic proposition, t is a term and a is an agent.
For our formal approach, we consider probabilities that range over the unit

interval of a non-archimedean recursive field that contains all rational numbers.
We proceed as in [18] by choosing the unit interval of the Hardy field Q[ε]. The
set Q[ε] consists of all rational functions of a fixed non-zero infinitesimal ε ∈ R

∗,
where R

∗ is a non-standard extension of R (see [19]) for further details). Its
positive elements have the form:

εk

∑n
i=0 aiε

i

∑m
i=0 biεi

,

where ai, bi ∈ Q for all i ≥ 0 and a0 ·b0 �= 0. We use S to denote the unit interval
of Q[ε].

The set of formulas Fml is given by the following grammar:

A :: = α | P≥sα | P≈rα | ¬A | A ∧ A

where α is an epistemic formula, s ∈ S, and r ∈ Q ∩ [0, 1].
Since any epistemic formula is a formula, we sometimes use latin letters to

denote epistemic formulas, e.g. in t:A → P≈1B, the letters A and B stand for
epistemic formulas.

The remaining propositional connectives are defined as usual. Further we use
the following syntactical abbreviations:

P<sα denotes ¬P≥sα P≤sα denotes P≥1−s¬α

P>sα denotes ¬P≤sα P=sα denotes P≤sα ∧ P≥sα

Our Logic of Interactive Proofs IPJI depends on a parameter I. We will intro-
duce that parameter later when it will be relevant. We start with presenting the
axioms of IPJI, which are divided into three groups: epistemic axioms, proba-
bilistic axioms, interaction axioms.

Epistemic Axioms
For both modal operators �P and �V we have the axioms for the modal logic
S4.

(p) all propositional tautologies
(k) �a(A → B) → (�aA → �aB)
(t) �aA → A
(4) �aA → �a�aA

A Logic of Interactive Proofs 147

For both agents, we have the axioms for the Logic of Proofs [2] and the
connection axiom (jyb). This yields the system S4LP from [5].

(j) s:a(A → B) → (t:aA →a s · t:aB)
(j+) (s:aA ∨ t:aA) → (s + t):aA
(jt) t:aA → A
(j4) t:aA → ! t:at:aA
(jyb) t:aA → �aA

Probabilistic Axioms
The probabilistic axioms correspond to the axiomatization of approximate con-
ditional probabilities used in [17,18] adapted to the unconditional case.

(p1) P≥0A
(p2) P≤sA → P<tA, where s < t
(p3) P<sA → P≤sA
(p4) P≥1(A ↔ B) → (P=sA → P=sB)
(p5) P≤sA ↔ P≥1−s¬A
(p6) (P=sA ∧ P=tB ∧ P≥1¬(A ∧ B)) → P=min(1,s+t)(A ∨ B)
(pa1) P≈rA → P≥r1A, for every rational r1 ∈ [0, r)
(pa2) P≈rA → P≤r1A, for every rational r1 ∈ (r, 1]

Interaction Axioms
So far, we have axioms for an epistemic justification logic with approximate
probabilities. Let us now add axioms for terms of the form fn

t that model inter-
active proof protocols. These axioms depend on the parameter I in IPJI, which
we introduce next.

An interaction specification I is a function I : N × N → P(eFml), i.e. to each
m, k ∈ N we assign a set of epistemic formulas I(m, k). In the following, we write
Im,k for I(m, k). Further, we overload the notation and use I also to denote the
set

I :=
⋂

k

⋃

m

Im,k.

The interaction axioms are:

(m) fm
t :aα → fn

t :aα for all m,n ∈ Comp such that m < n
(c) t:P α → P≥1− 1

nk
(fn

t :V �P α) if n > m and α ∈ Im,k

(s) ¬(t:P α) → P≤ 1
nk

(fn
t :V �P α) if n > m and α ∈ Im,k

(cω) t:P α → P≈1(fω
t :V �P α) if α ∈ I

(sω) ¬(t:P α) → P≈0(fω
t :V �P α) if α ∈ I

148 D. Lehnherr et al.

Inference Rules
The rules of IPJI are the following. We have modus ponens:

A A → B

B

IPJI also includes the modal necessitation rule as well as the axiom necessitation
rule from justification logic:

A

�A

A is an axiom of IPJI
c1:a1c2:a2 · · · cn:an

A

for arbitrary constants ci and agents ai. Of course, it would be possible to param-
eterize IPJI additionally by a constant specification as it is often done in justifi-
cation logic. This would not affect our treatment of interactive proofs.

We have the following rules for the probabilistic part:

1. From A infer P≥1A
2. From B → P �=sA for all s ∈ S infer B → ⊥
3. From B → P≥r− 1

n
A and B → P≤r+ 1

n
A for all integer n ≥ 1

1−r , infer

B → P≈rA

3 Semantics

For this section, we assume that we are given an arbitrary interaction specifi-
cation I. Many notions in this chapter will depend on that parameter. For any
set X we use P(X) to denote the power set of X. We will use a Fitting-style
semantics [7] for justification logic, but modular models [3,12] would work as
well.

Definition 1 (Evidence relation). An evidence relation is a mapping

E : Tm → P(eFml)

from terms to sets of epistemic formulas such that for all s, t ∈ Tm, α ∈ eFml,
constants ci, and agents ai:

1. E(s) ∪ E(t) ⊆ E(s + t);
2. E(s) · E(t) ⊆ E(s · t);
3. t:E(t) ⊆ E(!t);
4. c2:a2 · · · cn:an

A ∈ E(c1) if α is an axiom;
5. α ∈ E(fn

t), if α ∈ E(fm
t) for n > m.

Definition 2 (Epistemic model). An epistemic model for IPJI is a tuple M =
〈W,R, E , V 〉 where:

1. W is a non-empty set of objects called worlds.

A Logic of Interactive Proofs 149

2. R maps each agent a to a reflexive and transitive accessibility relation Ra on
W .

3. E maps each world w and each agent a to an evidence relation Ea
w.

4. V is a valuation mapping each world to a set of atomic propositions.

Definition 3 (Truth within a world). Let M = 〈W,R, E , V 〉 be an epistemic
model for IPJI and let w be a world in W . For an epistemic formula α ∈ eFml,
we define M,w � α inductively by:

1. M,w � β iff β ∈ V (w) for β ∈ Prop
2. M,w � ¬β iff M,w �� β
3. M,w � β ∧ γ iff M,w � β and M,w � γ
4. M,w � �aβ iff M,u � β for all u ∈ W with Rawu
5. M,w � t:aβ iff β ∈ Ea

w(t) and M,u � β for all u ∈ Wwith Rawu.

Definition 4 (Algebra). Let U be a non-empty set and let H be a non-empty
subset of P(U). H will be called an algebra over U if the following hold:

– U ∈ H
– X,Y ∈ H → X ∪ Y ∈ H
– X ∈ H → U \ X ∈ H

Definition 5 (Finitely additive measure). Let H be an algebra over U and
μ : H → S, where S is the unit interval of the hardy field Q[ε]. We call μ a
finitely additive measure if the following hold:

1. μ(U) = 1
2. X ∩ Y = ∅ =⇒ μ(X ∪ Y) = μ(X) + μ(Y) for all X,Y ∈ H.

Definition 6 (Probability space). A probability space is a triple 〈U,H, μ〉
where:

1. U is a non-empty set
2. H is an algebra over U
3. μ : H → S is a finitely additive measure.

Definition 7 (Quasimodel). A quasimodel for IPJI is a tuple

M = 〈W,R, E , V, U,H, μ,w0〉
such that

1. 〈W,R, E , V 〉 is an epistemic model for IPJI
2. U ⊆ W
3. 〈U,H, μ〉 is a probability space
4. w0 ∈ U .

Let M = 〈W,R, E , V, U,H, μ,w0〉 be a quasimodel, w ∈ W , and α ∈ eFml.
Since M contains an epistemic model, we write M,w � α for 〈W,R, E , V 〉, w � α.

150 D. Lehnherr et al.

Definition 8 (Events). Let M = 〈W,R, E , V, U,H, μ,w0〉 be a quasimodel. For
an epistemic formula α ∈ eFml, we define the event that α occurs as

[α]M := {u ∈ U | M,u � α}

We use [α]CM for the complement event U \ [α]M .

When the quasimodel M is clear from the context, we often drop the subscript M
in [α]M .

Definition 9 (Independent events). Let M be a quasimodel. We say that
two events S, T ∈ H are independent in M if

μ(S ∩ T) = μ(S) · μ(T).

Definition 10 (Probability almost r). Let 〈U,H, μ〉 be a probability space.
For r ∈ Q∩ [0, 1], we say that X ∈ H has probability almost r (μ(X) ≈ r) if for
all n ∈ N

+ μ(X) ∈ [
r − 1

n , r + 1
n

]
.

Definition 11 (Truth in a quasimodel). Let

M = 〈W,R, E , V, U,H, μ,w0〉

be quasimodel for IPJI. We define M |= A inductively by:

1. M |= A iff M,w0 � A for A ∈ eFml; otherwise
2. M |= ¬B iff M �|= B
3. M |= B ∧ C iff M |= B and M |= C
4. M |= P≥sα iff μ([α]) ≥ s
5. M |= P≈rα iff μ([α]) ≈ r.

Definition 12 Measurable model). A quasimodel

M = 〈W,R, E , V, U,H, μ,w0〉

is called measurable if [α] ∈ H for all α ∈ eFml.

Definition 13 (Model). A model for IPJI is a measurable quasimodel M for
IPJI that satisfies:

1. M |= t :P α → P≥1− 1
nk

(fn
t :V �P α) if n > m and α ∈ Im,k;

2. M |= ¬(t :P α) → P≤ 1
nk

(fn
t :V �P α) if n > m and α ∈ Im,k.

We say that a formula A is IPJI-valid if M |= A for all models M for IPJI.

A Logic of Interactive Proofs 151

4 Properties and Results

We can read the operator P≈1 as it is almost certain that. As a first result, we
observe that this operator provably behaves like a normal modality.

Lemma 1. Let α, β be epistemic formulas.

1. IPJI proves P≈1(α → β) → (P≈1α → P≈1β).
2. The rule

α

P≈1α
is derivable in IPJI.

Corollary 1. For α ∈ I, IPJI proves t:P α → P≈1(c · fω
t :V α) for any constant c.

The deductive system IPJI is sound with respect to IPJI-models.

Theorem 1 (Soundness). Let I be an arbitrary interaction specification. For
any formula F we have that

� F implies F is IPJI-valid.

Proof As usual by induction on the length of the derivation. The interesting
case is when F is an instance of (cω). But first note that axioms (m) and (c) are
IPJI-valid because of Definition 1 and Definition 13, respectively.

Now let F be an instance of (cω). Then F is of the form

t:P α → P≈1(fω
t :V �P α)

for some α ∈ I. Let M = 〈W,R, E , V, U,H, μ,w0〉 be an arbitrary model for IPJI
and assume M |= t:P α. We need to show

μ([fω
t :V �P α]) ∈

[
1 − 1

n
, 1

]
for all n ∈ N

+. (1)

We fix an arbitrary n ∈ N
+. Because of α ∈ I, we know that there exists an m

such that α ∈ Im,1. By soundness of axiom (c) we find that for each n′ > m

μ([fn′
t :V �P α]) ≥ 1 − 1

n′ .

Let n′′ ∈ N be such that n′′ > m and n′′ ≥ n. We find

μ([fn′′
t :V �P α]) ≥ 1 − 1

n′′ ≥ 1 − 1
n

. (2)

By soundness of axiom (m) we get that for each w ∈ W

M,w � fn′′
t :V �P α implies M,w � fω

t :V �P α.

Therefore, and by finite additivity of μ, we obtain

μ([fω
t :V �P α]) ≥ μ([fn′′

t :V �P α]). (3)

Taking (2) and (3) together yields (1). ��

152 D. Lehnherr et al.

In practice, one often considers interactive proofs systems that are round-
based, see [1].

Definition 14 (Round-based interactive proof system). An interactive
protocol 〈P, V 〉 is called round-based if the following two conditions hold:

1. Completeness: Let x ∈ L. There exists a polynomial p(x) such that the prob-
ability that 〈P, V 〉 halts in an accepting state after p(x) many messages is at
least 2

3 .
2. Soundness: Let x /∈ L and let p(x) be any polynomial. For any interactive

Turing machine P ′, the probability that 〈P ′, V 〉 halts in an accepting state
after p(x) many messages is at most 1

3 .

This definition achieves negligible (resp. overwhelming) probabilities by repeat-
ing the protocol several times and deciding based on a majority vote. Although
this definition is simple to model in IPJI, it is not suitable for a limit analy-
sis because our measure is not σ-additive. Note that to properly formalize σ-
additivity one needs countable conjunctions and disjunctions [9], which we do
not want to include here. However, for finitely many rounds, we can describe how
the probability increases throughout the rounds (given that they are pairwise
independent).

Lemma 2. Let M be an IPJI-model for an arbitrary interaction specification I.
Consider justification terms s1, . . . , sn and an epistemic formula α such that

1. M |= si:V α for each si;
2. [si:V α] and [sj :V α] are independent events for all i �= j.

We find that M |= ∧
i=1,...,n P≥1−r(si:V α) → P≥1−rnα.

Proof. Whenever si:V α is true at a world w, α is true at w by soundness of
axiom (jt). Hence, by monotonicity of μ we find

μ([α]) ≥ μ

(
n⋃

i=1

[si:V α]

)
= 1 − μ

(
n⋂

i=1

[si:V α]C
)

indep.

≥ 1 −
n∏

i=1

r = 1 − rn

��
An interactive proof protocol for a language L has the zero-knowledge prop-

erty if, from a successful execution, the verifier only learns that x belongs to L
but nothing else. Formally, a protocol is perfectly zero-knowledge if there exists a
probabilistic Turing machine T that generates proof transcripts1 that are indis-
tinguishable from original ones. If the verifier can obtain additional information
with negligible probability, then the protocol is said to be statistically zero-
knowledge.

1 In the setting of interactive Turing machines, a proof transcript is everything that
V sees on the public tapes during the protocol.

A Logic of Interactive Proofs 153

However, we cannot directly implement this definition because it would
require to model the Turing machine T as an agent and we would need to
reason about something like indistinguishable terms. Simplified, a protocol is
zero-knowledge if the verifier cannot compute the prover’s secret. In our set-
ting the prover’s secret is represented by the term t. Hence, fn

t :V t:P α means
that the prover’s secret has been revealed to the verifier. In fact, fn

t :V t:P α being
unlikely is a direct consequence of the protocol being statistically zero-knowledge
because the probability of the verifier knowing the prover’s secret is bound by its
ability to distinguish between proof transcripts. This gives rise to the following
definition of zero-knowledge in IPJI.

Definition 15 (Evidentially zero-knowledge). A protocol is evidentially
zero-knowledge if for all inputs x belonging to L, the probability of the verifier
knowing the prover’s evidence for x belonging to L is negligible.

To address evidentially zero-knowledge protocols, we add the following two
axioms to IPJI:

1. t:P α → P≤ 1
nk

(fn
t :V t:P α) if n > m and α ∈ Im,k;

2. t:P α → P≈0(fω
t :V t:P A) if α ∈ I.

Models for IPJI are adjusted by requiring the condition:

M |= t:P α → P≤ 1
nk

(fn
t :V t:P α) if n > m and α ∈ Im,k.

It is easy to show that this extension is sound with respect to its models. The
proof of soundness for the second axiom is similar to the soundness proof of (cω).

5 Conclusion

We presented the probabilistic two-agent justification logic IPJI, in which we can
reason about agents that perform interactive proofs. The foundation of this work
is based on probabilistic justification logic combined with interacting evidence
systems. We further proposed a new technique that asserts a countable axioma-
tization and makes it possible to reason about the growth rate of a probability
measure. Intuitively, the set I =

⋂
k

⋃
m Im,k can be thought of as the set of all

formulas that are known to be interactively provable. For a formula α ∈ Im,k

and a term t with t:P α,
P≥1− 1

nk
(fn

t :V �P α)

holds for all n > m. Hence, if α ∈ I, then the following first order sentence is
true

∀k∃m∀(n > m)μ([fn
t :V �P α]) ≥ 1 − 1

nk
,

which is the definition of an overwhelming function.
Our approach of modelling limits with the help of specification sets is quite

versatile as the following example shows.

154 D. Lehnherr et al.

Example 1. Consider a sequence of the form:

P=L+0.5(f1
t :V α) P=L+0.25(f2

t :V α) P=L+0.125(f3
t :V α) · · ·

The sentence we want to model is:

(∀ε > 0)(∃m ≥ 0)(∀n > m)(P≤L+ε(fn
t :V α) ∧ P≥L−ε(fn

t :V α))

Again, for ε, L ∈ Q and m ∈ N, we define sets ConvL
ε,m and let

ConvL :=
⋂

ε∈Q

⋃

m∈N

ConvL
ε,m.

With the following formulas, we can express that a sequence of probabilities
converges:

1. P≤L+ε(fn
t :V α) ∧ P≥L−ε(fn

t :V α) if n > m and α ∈ ConvL
ε,m;

2. P≈L(fω
t :V α) if α ∈ ConvL.

Additionally, we showed that a round-based definition of interactive proofs can
be addressed in our model, but only for finitely many rounds since our measure
is not σ-additive. Further, we also investigated zero-knowledge proofs. As it
turns out, IPJI cannot model the original definition because we cannot compare
justification terms in IPJI. However, we introduced the notion of evidentially zero
knowledge, which fits nicely in our framework.

Moreover, we established soundness of IPJI. Our axiomatization is a combi-
nation of systems that are known to be complete and we conjecture that IPJI is
complete, too.

References

1. Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge
University Press (2009)

2. Artemov, S.: Explicit provability and constructive semantics. Bull. Symb. Log.
7(1), 1–36 (2001)

3. Artemov, S.: The ontology of justifications in the logical setting. Stud. Logica.
100(1–2), 17–30 (2012). https://doi.org/10.1007/s11225-012-9387-x

4. Artemov, S., Fitting, M.: Justification Logic: Reasoning with Reasons. Cambridge
University Press (2019)

5. Artemov, S., Nogina, E.: Introducing justification into epistemic logic. J. Log.
Comput. 15(6), 1059–1073 (2005). https://doi.org/10.1093/logcom/exi053

6. Babai, L.: Trading group theory for randomness. In: Proceedings of the 17th
Annual ACM Symposium on Theory of Computing, STOC 1985, pp. 421–
429. Association for Computing Machinery (1985). https://doi.org/10.1145/22145.
22192

7. Fitting, M.: The logic of proofs, semantically. Ann. Pure Appl. Logic 132(1), 1–25
(2005). https://doi.org/10.1016/j.apal.2004.04.009

https://doi.org/10.1007/s11225-012-9387-x
https://doi.org/10.1093/logcom/exi053
https://doi.org/10.1145/22145.22192
https://doi.org/10.1145/22145.22192
https://doi.org/10.1016/j.apal.2004.04.009

A Logic of Interactive Proofs 155

8. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems. In: Proceedings of the 17th Annual ACM Symposium on Theory
of Computing, STOC 1985, pp. 291–304. Association for Computing Machinery
(1985). https://doi.org/10.1145/22145.22178

9. Ikodinović, N., Ognjanović, Z., Perović, A., Rašković, M.: Completeness theorems
for σ-additive probabilistic semantics. Ann. Pure Appl. Log. 171(4), 102755 (2020)

10. Kokkinis, I., Maksimović, P., Ognjanović, Z., Studer, T.: First steps towards prob-
abilistic justification logic. Log. J. IGPL 23(4), 662–687 (2015)

11. Kokkinis, I., Ognjanović, Z., Studer, T.: Probabilistic justification logic. J. Log.
Comput. 30(1), 257–280 (2020)

12. Kuznets, R., Studer, T.: Justifications, ontology, and conservativity. In: Bolander,
T., Braüner, T., Ghilardi, S., Moss, L. (eds.) Advances in Modal Logic, vol. 9, pp.
437–458. College Publications (2012)

13. Kuznets, R., Studer, T.: Weak arithmetical interpretations for the logic of proofs.
Log. J. IGPL 24(3), 424–440 (2016). https://doi.org/10.1093/jigpal/jzw002

14. Kuznets, R., Studer, T.: Logics of Proofs and Justifications. College Publications
(2019)

15. Ognjanović, Z., Rašković, M.: Some first order probability logics. Theoret. Comput.
Sci. 247, 191–212 (2000)

16. Ognjanović, Z., Rašković, M., Marković, Z.: Probability Logics: Probability-Based
Formalization of Uncertain Reasoning. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-47012-2

17. Ognjanović, Z., Savić, N., Studer, T.: Justification logic with approximate condi-
tional probabilities. In: Baltag, A., Seligman, J., Yamada, T. (eds.) LORI 2017.
LNCS, vol. 10455, pp. 681–686. Springer, Heidelberg (2017). https://doi.org/10.
1007/978-3-662-55665-8 52

18. Rašković, M., Marković, Z., Ognjanović, Z.: A logic with approximate conditional
probabilities that can model default reasoning. Int. J. Approx. Reason. 49(1), 52–
66 (2008). https://doi.org/10.1016/j.ijar.2007.08.006

19. Robinson, A.: Non-standard Analysis. Princeton University Press (1996)
20. Yavorskaya (Sidon), T.: Interacting explicit evidence systems. Theor. Comput.

Syst. 43(2), 272–293 (2008). https://doi.org/10.1007/s00224-007-9057-y

https://doi.org/10.1145/22145.22178
https://doi.org/10.1093/jigpal/jzw002
https://doi.org/10.1007/978-3-319-47012-2
https://doi.org/10.1007/978-3-319-47012-2
https://doi.org/10.1007/978-3-662-55665-8_52
https://doi.org/10.1007/978-3-662-55665-8_52
https://doi.org/10.1016/j.ijar.2007.08.006
https://doi.org/10.1007/s00224-007-9057-y

Recursive Rules with Aggregation:
A Simple Unified Semantics

Yanhong A. Liu(B) and Scott D. Stoller

Computer Science Department, Stony Brook University, Stony Brook, NY, USA
{liu,stoller}@cs.stonybrook.edu

Abstract. Complex reasoning problems are most clearly and easily
specified using logical rules, but require recursive rules with aggrega-
tion such as counts and sums for practical applications. Unfortunately,
the meaning of such rules has been a significant challenge, leading to
many disagreeing semantics.

This paper describes a unified semantics for recursive rules with aggre-
gation, extending the unified founded semantics and constraint seman-
tics for recursive rules with negation. The key idea is to support sim-
ple expression of the different assumptions underlying different seman-
tics, and orthogonally interpret aggregation operations using their sim-
ple usual meaning. We present formal definition of the semantics, prove
important properties of the semantics, and compare with prior seman-
tics. In particular, we present an efficient inference over aggregation that
gives precise answers to all examples we have studied from the literature.
We also applied our semantics to a wide range of challenging examples,
and performed experiments on the most challenging ones, all confirming
our analyzed results.

1 Introduction

Many computation problems, including complex reasoning problems in particu-
lar, such as program analysis, networking, and decision support, are most clearly
and easily specified using logical rules [39]. However, such reasoning problems
in practical applications, especially for large applications and when faced with
uncertain situations, require the use of recursive rules with aggregation such as
counts and sums. Unfortunately, the meaning of such rules has been challenging
and remains a subject with significant complication and disagreement.

As a simple example, consider a single rule for Tom to attend the logic
seminar: “Tom will attend the logic seminar if the number of people who will
attend it is at least 20.” What does the rule mean? If 20 or more other people
will attend, then surely Tom will attend. If only 10 others will attend, then Tom
will not attend. What if only 19 other people will attend? Will Tom attend,
or not? Although simple, this example already shows that, when aggregation is

This work was supported in part by NSF under grants CCF-1954837, CCF-1414078,
and IIS-1447549 and by ONR under grants N00014-20-1-2751 and N00014-21-1-2719.

c© Springer Nature Switzerland AG 2022
S. Artemov and A. Nerode (Eds.): LFCS 2022, LNCS 13137, pp. 156–179, 2022.
https://doi.org/10.1007/978-3-030-93100-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93100-1_11&domain=pdf
https://doi.org/10.1007/978-3-030-93100-1_11

Recursive Rules with Aggregation: A Simple Unified Semantics 157

used in recursive rules—here count is used in a rule that defines “will attend”
using “will attend”—the semantics can be tricky.

Some might say that this statement about Tom is ambiguous or ill-specified.
However, it is a statement allowed by logic rule languages with predicates, sets,
and counts. For example, let predicate will attend(p) denote that p will attend
the logic seminar; then the statement can be written as will attend(Tom) if

count {p: will attend(p)} ≥ 20. So the statement must be given a meaning.
Indeed, “ambiguous” is a possible meaning, indicating there are two or more
answers, and “ill-specified” is another possible meaning, indicating there is no
answer. So which one should it be? Are there other possible meanings?

In deductive databases, to avoid challenging cases of aggregation as well
as negation, processing of recursive rules with aggregation is largely limited to
monotonic programs, i.e., adding a new fact used in a hypothesis cannot make
a conclusion change from true to false. However, note that the rule about Tom
attending the logic seminar is actually monotonic: adding attend(p) for a new
p can not make the conclusion change from true to false. So, even restricted
deductive databases must give a meaning to this rule. What should it be?

In fact, the many different semantics of recursive rules with aggregation are
more complex and trickier than even semantics of recursive rules with negation.
The latter was already challenging for over 120 years, going back at least to Rus-
sell’s paradox, for which self-reference with negation is believed to form vicious
circles [35]. Many different semantics, which disagree with each other, have been
studied for recursive rules with negation, as summarized in Sect. 6. Two of them,
well-founded semantics (WFS) [64,66] and stable model semantics (SMS) [26],
became dominant since about 30 years ago.

Semantics of recursive rules with aggregation has been studied continuously
since about 30 years ago, and more intensively in more recent years, as discussed
in Sect. 6, especially as they are needed in graph analysis and machine learning
applications. However, the many different semantics proposed, e.g., [30,63], are
even more intricate than WFS and SMS for recursive rules with negation, and
include even different extensions for WFS, e.g., [36,59,63], and for SMS, e.g., [30,
36,47]. Some authors also changed their own minds about the desired semantics,
e.g., [25,30]. Such intricate and disagreeing semantics would be too challenging
to use correctly.

This paper describes a simple unified semantics for recursive rules with aggre-
gation as well as negation and quantification. The semantics is built on and extends
the founded semantics and constraint semantics of logical rules with negation and
quantification developed recently by Liu and Stoller [41,42]. The key idea is to cap-
ture, and to express in a simple way, the different assumptions underlying different
semantics, and orthogonally interpret aggregation operations using their simple
usual meaning. We present formal definition of the semantics and prove important
properties of the semantics. In particular, we present an efficient derivability rela-
tion for comparisons containing aggregations; it canbe computed in linear time and
gives precise answers on all examples we have studied from the literature.

We also compared with main prior semantics for rules with aggregation, and
showed how our semantics is direct and follows precisely from usual meanings of
aggregations. We further applied our semantics to a wide range of challenging

158 Y. A. Liu and S. D. Stoller

examples, and showed that our semantics is simple and matches the desired
semantics in all cases. Additionally, we performed experiments on two most
challenging examples, confirming the correctness of our computed results, while
also discovering worse performance and some wrong results from well-known
systems. Additional results from these comparisons, examples, and experiments
are described in [44].

2 Problem and Solution Overview

The semantics of recursion with negation and aggregation is challenging for
several reasons. First, recursion involves self-referencing and cyclic reasoning,
for which it is already non-trivial to properly start and finish. Then, negation
in recursion incurs self-denying and conflict in cyclic reasoning, which can lead
to contradiction. Finally, aggregation generalizes negation to give rise to even
greater challenges in recursion, because a negation essentially corresponds to
only the simple case of a count being zero.

The first reason alone already called for a least fixed point semantics, which
is beyond first-order logic. The second reason led to major different semantics
that are sophisticated and disagreeing when trying to solve conflicts differently.
The third reason exacerbated the sophistication and variety to tackle the even
greater challenges.

A Smallest Example. Consider the following recursive rule with aggregation.
It says that p is true for value a if the number of x’s for which p is true equals 1:

p(a) ← count {x: p(x)} = 1

This rule is recursive because inferring a conclusion about p requires using p in a
hypothesis. It uses an aggregation of count over a set. While each of recursion and
aggregation by itself has a simple meaning, allowing recursion with aggregation
is tricky, because recursion is used to define a predicate, which is equivalent to
a set, but aggregation using a set requires the set to be already defined.

We use this example in addition to our Tom example in Sect. 1, for two rea-
sons. First, this and similar small examples are used for comparisons in previous
papers, e.g., [19,27,29]. Second, this example differs from the Tom example in
that the comparison with count in this example is non-monotonic, i.e., adding
more x’s for which p(x) is true can change the value of the comparison, and thus
the conclusion, from true to false; using only one example is insufficient to show
the main different cases.

– Two models: Kemp-Stuckey 1991, Gelfond 2002. According to Kemp
and Stuckey [36] and Gelfond [25], the above rule has two models: one empty
model, i.e., a model in which nothing is true and thus p(a) is false, and one
containing only p(a) being true.

– One model: Faber et al. 2011, Gelfond-Zhang 2014–2019. According
to Faber, Pfeifer, and Leone [19] and Gelfond and Zhang [27, Examples 2 and
7], [29, Examples 4 and 6], and [30, Example 9], the rule above has only one
model: the empty model.

Recursive Rules with Aggregation: A Simple Unified Semantics 159

As one of the several main efforts investigating aggregation, Gelfond and
Zhang [25,27–30,73] have studied the challenges and solutions extensively, pre-
senting dozens of definitions and propositions and discussing dozens of exam-
ples [30]. Their examples where count is used in inequalities, greater than, etc.,
with additional variables, with more hypotheses in a rule, or with more rules
and facts, are even more complicated.

Extending Founded Semantics and Constraint Semantics for Aggre-
gation. Aggregation, such as count, is a simple concept that even kids under-
stand. So it is stunning to see so many sophisticated treatments for figuring out
its meaning when it is used in rules, and to see the many disagreeing semantics
resulting from those.

We develop a simple and unified semantics for rules with aggregation as well
as negation and quantification by building on founded semantics and constraint
semantics [41,42] for rules with negation and quantification. The key insight is
that disagreeing complex semantics for rules with aggregation are because of
different underlying assumptions, and these assumptions can be captured using
the same simple binary declarations about predicates as in founded semantics
and constraint semantics but generalized to include the meaning of aggregation.

Certain. First, if there is no potential non-monotonicity, including no aggre-
gation in recursion, then the predicate in the conclusion can be declared
“certain”.

Being certain means that assertions of the predicate are given true or inferred
true by simply following rules whose hypotheses are given or inferred true, and
the remaining assertions of the predicate are false. This is both the founded
semantics and constraint semantics.

For the Tom example, there is no potential non-monotonicity; with this decla-
ration, when given that only 19 others will attend, the hypothesis of the rule
is not true, so the conclusion cannot be inferred. Thus Tom will not attend.

Uncertain. Regardless of monotonicity, a predicate can be declared “uncer-
tain”.

It means that assertions of the predicate can be given or inferred true or
false using what is given, and any remaining assertions of the predicate are
undefined. This is the founded semantics.

If there are undefined assertions from founded semantics, all combinations
of true and false values are checked against the rules and declarations as
constraints, yielding a set of possible satisfying combinations. This is the
constraint semantics.

Complete, or not complete. An uncertain predicate can be further declared
“complete” or not.

Being complete means that all rules that can conclude assertions of the pred-
icate are given. Thus a new rule, called completion rule, can be created to
infer negative assertions of the predicate when none of the given rules apply.

160 Y. A. Liu and S. D. Stoller

Being not complete means that negative assertions cannot be inferred using
completion rules, and thus all assertions of the predicate that were not inferred
to be true are undefined.

For the Tom example, the completion rule implies: Tom will not attend the
logic seminar if the number of people who will attend it is less than 20.

When given that only 19 others will attend, due to the uncertainty of whether
Tom will attend, neither the given rule nor the completion rule will fire. So
whether one uses the declaration of complete or not, there is no way to infer
that Tom will attend, or Tom will not attend. So, founded semantics says it
is undefined.

Then constraint semantics tries both for it to be true, and for it to be false;
both satisfy the rule, so there are two models: one where Tom will attend,
and one where Tom will not attend.

Closed, or not closed. Finally, an uncertain complete predicate can be fur-
ther declared “closed” or not.

Being closed means that an assertion of the predicate is made false if inferring
it to be true requires itself to be true.

Being not closed means that such assertions are left undefined.

For the Tom example, with this declaration, if there are only 19 others attend-
ing, then Tom will not attend in both founded semantics and constraint
semantics. This is because inferring that Tom will attend requires Tom him-
self to attend to make the count to be 20, so it should be made false, meaning
that Tom will not attend.

Note that this is the same result as using “certain”. Because the rule for
deciding whether Tom will attend has no potential non-monotonicity, using
“certain” is much simpler and has the same meaning as using “closed”, as
stated in general in Sect. 4.5.

For the smallest example about p near the beginning of this section, the
equality comparison is not monotonic. Thus p must be declared uncertain. This
example also shows different semantics when using the declarations of not com-
plete and complete, unlike the Tom example.

– Not complete. Suppose p is declared not complete. Founded semantics does
not infer p(a) to be true using the given rule because count {x: p(x)} = 1

cannot be determined to be true, and nothing infers p(a) to be false. Thus p(a)
is undefined. So is p(b) for any constant b other than a because nothing infers
p(b) to be true or false. Constraint semantics gives a set of models, each for a
different combination of true and false values of p(c) for different constants c

such that the combination satisfies the given rule. This corresponds to what
is often called open-world assumption and used in commonsense reasoning.

Recursive Rules with Aggregation: A Simple Unified Semantics 161

– Complete. Suppose p is declared complete but not closed. A completion
rule is first added. The precise completion rule is:

¬ p(x) ← x �= a ∨ count {x: p(x)} �= 1

Founded semantics does not infer p(a) to be true or false using the given
rule or completion rule, because count {x: p(x)} �= 1 also cannot be deter-
mined to be true. Thus p(a) is undefined. Founded semantics infers p(b) for
any constant b other than a to be false using the completion rule. Constraint
semantics gives two models: one with p(a) being true, and p(b) being false
for any constant b other than a; and one with p(c) being false for every con-
stant c. This is the same as the two-model semantics per Kemp-Stuckey 1991
and Gelfond 2002.

– Closed. Supposed p is declared complete and closed. Both founded semantics
and constraint semantics give only the second model above, i.e., p(c) is false
for every constant c. They have p(a) being false because inferring p(a) to
be true requires p(a) itself to be true. This is the same as the one-model
semantics per Faber et al. 2011 and Gelfond-Zhang 2014–2019.

We see that simple binary declarations of the underlying assumptions, with
simple inference following rules and taking rules as constraints, give the different
desired semantics.

Relationship with Prior Semantics. Table 1 summarizes relationships
between our unifying semantics and major prior semantics. With different pred-
icate declarations capturing different underlying assumptions, founded seman-
tics and constraint semantics for rules with aggregation extend different prior
semantics for rules with negation uniformly, as shown in Table 1 left and middle
columns. These extend the matching relationships proved for rules with nega-
tion in [41,42]. All these relationships are when all predicates in a program have
the same declarations, but our founded semantics and constraint semantics also
allow different predicates to have different declarations.

Among many different prior semantics for rules with aggregations, there are
even different extensions for the same prior semantics for rules with negation, as
shown in the right column in Table 1. Unfortunately, most of them are defined for
limited cases, or add some case-specific definitions. In particular, simple formal
explanations for the disagreements, including among all different extensions for
each of WFS and SMS, are completely missing. We are only aware of comparisons
by examples or very restricted cases, even for disagreeing semantics by the same
authors. However, for all such examples and cases we examined, we found that
the desired results for them correspond to our semantics under some appropriate
declarations for some predicates. These results are described in [44].

162 Y. A. Liu and S. D. Stoller

Table 1. Founded semantics and constraint semantics for rules with aggregation with
different declarations (for all predicates in a program), extending prior semantics for
rules with negation, and prior extensions.

Declarations Semantics Extending Reference Prior extensions

Certain Founded, Stratified Van Gelder 1986 e.g., [49,53]

Constraint (Perfect) [62]

Uncertain, Founded (None found) (None found)

not complete Constraint First-Order Logic e.g., [33]

Uncertain, Founded Fitting Fitting 1985 [22] Pelov et al. 2007 [50]

complete, (Kripke-Kleene)

not closed Constraint Supported Apt et al. 1988 [7] Pelov et al. 2007 [50]

Uncertain, Founded WFS Van Gelder et al. 1988 Kemp-Stuckey 1991 [36]

complete, [65,66] Van Gelder 1992 [63]

closed Pelov et al. 2007 [50]

Constraint SMS Gelfond-Lifschitz 1988 Kemp-Stuckey 1991 [36]

[26] Pelov et al. 2007 [50]

Faber et al. 2011 [19]

Gelfond-Zhang

2014–2019 [30]

3 Language

We consider Datalog rules extended with unrestricted negation, disjunction,
quantification, aggregation, and comparison containing aggregation.

Domain. The domain of a program is the set of values that variables can be
instantiated with. These values are called constants. The domain includes the
values that appear in the program and a set Num of numbers. Num is a bounded
range of numbers determined by a numeric representation bound NRB and a
numeric representation precision NRP , i.e., Num contains all numbers in the
range [−NRB ,NRB] with at most NRP decimal places. Numbers with more
than NRP decimal places that appear in the program or arise during evaluation
can be rounded to NRP decimal places, or a higher-precision representation can
be used.

This rounding or increasing precision is not shown explicitly in the semantics,
because the rule language in this paper does not include numeric operations
that increase the number of decimal places. We use an NRP that is at least the
maximum number of decimal places in numbers that appear in the program,
so all numeric computations are exact. Our semantics detects and can report
cases where an inference is blocked because it involves a value outside the range
[−NRB ,NRB]; for details, see the description of range-blocked inference in [44].

Datalog Rules with Unrestricted Negation. We first present a simple core
form of rules and then describe additional constructs that can appear in rules.
The core form of a rule is the following, where any Pi may be preceded with ¬:

Q(X1, ...,Xa) ← P1(X11, ...,X1a1) ∧ ... ∧ Ph(Xh1, ...,Xhah
)

Recursive Rules with Aggregation: A Simple Unified Semantics 163

Q and Pi’s are predicates, and each argument Xk and Xij is a constant or a
variable. In arguments of predicates in examples, we use numbers and quoted
strings for constants and letters for variables.

If h = 0, there are no Pi’s or Xij ’s, and each Xk must be a constant, in which
case Q(X1, ...,Xa) is called a fact. For the rest of the paper, “rule” refers only to
the case where h ≥ 1, in which case the left side of ← is called the conclusion, the
right side is called the body, and each conjunct in the body is called a hypothesis.
Note that we do not require variables in the conclusion to be in the hypotheses;
it is not needed because rules are used with variables replaced by constants, and
the domain of variables is finite.

Disjunction. In a rule body, hypotheses may be combined using disjunction as
well as conjunction. Conjunction and disjunction may be nested arbitrarily.

Quantification. A hypothesis in a rule body can be an existential or universal
quantification of the form

∃ X1, ...,Xa | B existential quantification
∀ X1, ...,Xa | B universal quantification

where each Xi is a variable that appears in B, and B has the same form as
a rule body. Note that this recursive definition allows nested quantifications.
Each quantified variable Xi ranges over the domain of the program. The quan-
tifications return true iff for some or all, respectively, combinations of values of
X1, ...,Xa, the body B is true.

Aggregation and Comparison. A set expression has the form {X1, ...,Xa :
B}, where each Xi is a variable in B, and the body B has the same form as
a rule body. The arity of this set expression is a. Each set expression body
is first rewritten to have the same form as the body of a core-form rule, by
introducing auxiliary predicates, e.g., max {Y: ∃ X | p(X,Y)} > 0 is rewritten to
max {Y: q(Y)} > 0 together with q(Y) ← ∃ X | p(X,Y). Each auxiliary predicate
has default declarations, except that it is declared closed if some predicate in
the body of the rule defining the auxiliary predicate is declared closed.

An aggregation has the form agg S, where agg is an aggregation operator
(count, max, min, or sum), and S is a set expression. The aggregation returns
the result of applying the respective agg operation (cardinality, maximum, min-
imum, or sum) to the set value of S. max and min use the order on numbers,
extended lexicographically to an order on tuples. sum is on numbers, and on
tuples whose first components are numbers; in the latter case, the first compo-
nents are summed. Note that count and sum applied to the empty set equal 0,
while max and min applied to the empty set give an error.

A hypothesis of a rule may be a comparison of the form

agg S � k or agg S � agg ′ S′

where agg S and agg ′ S′ are aggregations, the comparison operator � is an equal-
ity (=) or inequality (�=, <≤, >,≥), and k is a variable or numeric constant or,
if the aggregation operator is max or min, a tuple of variables or numeric con-
stants. Comparisons of the second form are first rewritten as two comparisons

164 Y. A. Liu and S. D. Stoller

of the first form by introducing a fresh variable. For example, agg S �= agg ′ S′

is rewritten as agg S �= V ∧ agg ′ S′ = V , and agg S < agg ′ S′ is rewritten as
agg S < V ∧ agg ′ S′ ≥ V , where V is a fresh variable. The latter rewrite uses
two inequalities, instead of an inequality and an equality, to increase the cases
where occurrences of predicate atoms are positive (defined below).

Note that negation applied to comparisons can be eliminated by reversing
the comparison operators; for example, the negation of a comparison using ≤ is
a comparison using >.

The key idea here is that the value of a comparison (containing an aggrega-
tion) is undefined if there is not enough information about the predicates used to
determine the value, or if applying the comparison (containing an aggregation)
gives an error, such as a type error. Our principled approach can easily support
additional aggregation and comparison functions, e.g., on other data types such
as strings.

Programs, Atoms, and Literals. A program π is a set of rules and facts, plus
declarations for predicates, described after dependencies are introduced next.

An atom of π is either a predicate symbol in π applied to constants in the
domain of π and variables, or a comparison formed using predicate symbols in
π, constants in the domain of π, and variables. These are called predicate atoms
for P and comparison atoms, respectively.

A literal of π is either an atom of π or the negation of a predicate atom of π.
These are called positive literals and negative literals, respectively. A literal con-
taining a predicate atom or comparison atom is called a predicate literal or compar-
ison literal, respectively. Note that negation of a comparison atom is not needed
because the negation will be eliminated by reversing the comparison operator.

Dependency Graph. The dependency graph of a program characterizes depen-
dencies between predicates induced by the rules, distinguishing positive from
non-positive dependencies.

An occurrence A of a predicate atom in a hypothesis H is a positive occurrence
if (1) H is A, which is a positive literal, (2) H is a quantification, and A is a
positive literal in its body, (3) H is a comparison atom of the form count S ≥
k, count S > k, max S ≥ k, max S > k, min S ≤ k, or min S < k, and A is in
a positive literal in the set expression S, or (4) H is a comparison atom of the
form count S ≤ k, count S < k, max S ≤ k, max S < k, min S ≥ k, or min S > k,
and A is in a negative literal in the set expression S. Otherwise, the occurrence
is a non-positive occurrence.

This definition conservatively ensures that hypotheses are monotonic with
respect to positive occurrences of predicate atoms, i.e., making a positive occur-
rence of a predicate atom in a hypothesis true cannot make the hypothesis change
from true. This definition can be extended so that any occurrence A of a predi-
cate atom in a hypothesis H is a positive occurrence if H can be determined to
be monotonic with respective to A. For example, if predicate p holds for only
non-negative numbers, then p(x) is a positive occurrence in sum {x: p(x)} > k.

The dependency graph DG(π) of program π is a directed graph with a node
for each predicate of π, and an edge from Q to P labeled positive (respectively,
non-positive) if a rule whose conclusion contains Q has a hypothesis that contains

Recursive Rules with Aggregation: A Simple Unified Semantics 165

a positive (respectively, non-positive) occurrence of an atom for P . If there is a
path from Q to P in DG(π), then Q depends on P in π. If the node for P is in a
cycle containing a non-positive edge in DG(π), then P has circular non-positive
dependency in π.

Declarations. A predicate declared certain means that each assertion of the
predicate has a unique true (True) or false (False) value. A predicate declared
uncertain means that each assertion of the predicate has a unique true, false, or
undefined (Undef) value. A predicate declared complete means that all rules with
that predicate in the conclusion are given in the program. A predicate declared
closed means that an assertion of the predicate is set to false, called self-false, if
inferring it to be true using the given rules and facts requires assuming itself to
be true.

A predicate must be declared uncertain if it has circular non-positive depen-
dency, or depends on an uncertain predicate; otherwise, it may be declared cer-
tain or uncertain and is by default certain. A predicate may be declared complete
or not only if it is uncertain, and it is by default complete. A predicate may be
declared closed or not only if it is uncertain and complete, and it is by default
not closed.

We do not give a syntax for predicate declarations, because it is straight-
forward, and most examples use default declarations. However, the language
in [43,45] supports such declarations.

Notations. In presenting the semantics, in particular the completion rules, we
allow negation in the conclusion of rules, and we allow hypotheses to be equal-
ities (=) and negated equalities (�=) between two variables or a variable and a
constant.

4 Formal Semantics

This section extends the definitions of founded semantics and constraint seman-
tics in [41,42] to handle aggregation and comparison. We introduce a new rela-
tion, namely, derivability of comparisons, and extend most of the foundational
definitions, including the definitions of atom, literal, and positive occurrence
in Sect. 3, and of complement, ground instance, truth value of a literal in an
interpretation, completion rule, naming negation, unfounded set, and constraint
model in this section. By carefully extending these foundational definitions, we
are able to avoid explicit changes to the definitions of other terms and functions
built on them, including the definition of completion and the definition of the
least fixed point at the heart of the semantics, embodied mainly in the function
LFPbySCC .

4.1 Interpretations and Derivability

Complements and Consistency. The predicate literals A and ¬A are comple-
ments of each other. The following pairs of comparison literals are complements

166 Y. A. Liu and S. D. Stoller

of each other: agg S = k and agg S �= k; agg S ≤ k and agg S > k; agg S ≥ k
and agg S < k.

A set of predicate literals is consistent if it does not contain a literal and its
complement.

Ground Instance. An occurrence of a variable X in a quantification Q is bound
in Q if X is a variable to the left of the vertical bar in Q. An occurrence of a
variable X in a set expression S is bound if X is a variable to the left of the
colon in S. An occurrence of a variable in a rule R is free if it is not bound in a
quantification or set expression in R.

A ground atom or ground literal is an atom or literal, respectively, not con-
taining variables. A ground instance of a rule R in a program π is any rule
obtained from R by expanding universal quantifications into conjunctions over
all constants, instantiating existential quantifications with any constants, and
instantiating the remaining free occurrences of variables with any constants (of
course, all free occurrences of the same variable are replaced with the same con-
stant). A ground instance of a comparison atom A is a comparison atom obtained
from A by instantiating the free occurrences of variables in A with any constants.
A ground instance of a set expression {X1, ...,Xa : B} is a pair ((X1, ...,Xa), B)
obtained by instantiating all variables in X1, ...,Xa and B with any constants.

Interpretations. An interpretation of a program π is a consistent set of ground
predicate literals of π. Interpretations are generally 3-valued: a ground predicate
literal is true (i.e., has truth value True) in interpretation I if it is in I, is false
(i.e., has truth value False) in I if its complement is in I, and is undefined
(i.e., has truth value Undef) in I if neither it nor its complement is in I. An
interpretation of π is 2-valued if it contains, for each ground predicate atom A
of π, either A or its complement. Interpretations are ordered by set inclusion ⊆.

Let G(S) denote the set of ground instances of set expression S. For a set
expression S, interpretation I, and truth value t, let

G(S, I, t) = {x | (x,B) ∈ G(S) ∧ B has truth value t in I}
That is, G(S, I, t) is the set of combinations of constants for which the body of
set expression S has truth value t in I.

Derivability of Comparisons. Informally, a ground comparison atom agg S�k
is derivable in interpretation I of π, denoted π, I � agg S � k, if the comparison
must be true in I, regardless of whether atoms with truth value Undef are true
or false.

Precisely, founded semantics uses the linear-time derivability relation �L

defined in Fig. 1 based on the aggregation operator and the comparison oper-
ator. It can be computed straightforwardly in linear time in |G(S, I,True)| +
|G(S, I,Undef)|.

Derivability for each comparison in Fig. 1 has also a condition that the com-
parison does not give an error. It gives an error if the aggregation gives an error,
or if there is a type error, i.e., either the aggregation is count or sum, or is max

or min with arity of S being 1, and k is not a number, or the aggregation is max

Recursive Rules with Aggregation: A Simple Unified Semantics 167

Fig. 1. Linear-time derivability relation for comparisons. first(i) returns the first com-
ponent of i if i is a tuple, and returns i otherwise. Biconditionals (⇔) for derivability
of other comparisons are obtained from those given as follows. (1) Biconditionals for
deriving comparisons using min are obtained from those for max by replacing max with
min, interchanging ≤ and ≥, and interchanging < and >. (2) For aggregation opera-
tor agg being count or sum, the right side of the biconditional for deriving agg S �= k
is the disjunction of the right sides of the biconditionals for deriving agg S > k and
agg S < k. (3) For each aggregation operator agg, biconditionals for deriving agg S ≥ k
and agg S ≤ k are obtained from the given biconditionals for agg S > k and agg S < k,
respectively, by replacing > k with ≥ k and replacing < k with ≤ k.

or min with arity a of S greater than 1, and k is not an a-tuple of numbers. The
aggregation gives an error if it is max or min and G(S, I,True) ∪ G(S, I,Undef)
is empty, or if there is a type error, i.e., either it is max or min and G(S, I,True)
or G(S, I,Undef) contains either a non-number or a tuple containing a non-
number, or it is sum and S has arity 1 and G(S, I,True) or G(S, I,Undef) con-
tains a non-number, or it is sum and S has arity greater than 1 and G(S, I,True)
or G(S, I,Undef) contains a tuple whose first component is not a number. Com-
parisons that give errors can easily be detected and reported by checking these
conditions.

This definition of derivability is relatively strict about errors, for example, it
always makes a comparison give an error if the aggregation in it gives an error.
One can be less strict about errors, for example, a comparison containing max or
min applied to the empty set and using negated equality could be allowed to hold
even if the aggregation in it gives an error, taking the view that an error is not
equal to a value or a tuple of values in the domain. This generally yields more
literals that are true or false, rather than undefined. Choices for error handling
could also be specified using declarations.

An alternative to linear-time derivability is exact derivability, denoted �E.
Informally, π, I �E agg S � k holds iff (1) agg S � k holds in all 2-valued inter-
pretations I ′ that extend I and satisfy the part of π that S depends on, and (2)
there is at least one such interpretation I ′. Exact derivability is based on enu-
meration of interpretations and hence is less appropriate for founded semantics,

168 Y. A. Liu and S. D. Stoller

which is designed to leave such enumeration for constraint semantics. Although
exact derivability can be more precise in principle, linear-time derivability gives
the same result as exact derivability for all examples we found in the literature.

Interpretations provide truth values for comparison literals similarly as for
predicate literals. Let DC (π, I) be the set of comparisons derivable for program π
and interpretation I. A comparison literal A for π is true in I if it is in DC (π, I),
is false in I if its complement is in DC (π, I), and is undefined in I otherwise.

Models. An interpretation I of a program π is a model of π if it (1) contains
all facts in π, and (2) satisfies all rules of π, interpreted as formulas in 3-valued
logic [22] (i.e., for each ground instance of each rule, if the body is true in I,
then so is the conclusion).

One-Step Derivability The one-step derivability function Tπ for program π
performs one step of inference using rules of π. Formally, A ∈ Tπ(I) iff (1) A is
a fact of π, or (2) there is a ground instance R of a rule of π with conclusion A
such that the body of R is true in interpretation I.

4.2 Founded Semantics Without Closed Declarations

We first define a version of founded semantics, denoted Founded0, that ignores
declarations that predicates are closed. We then extend the definition to handle
those declarations. Intuitively, the founded model of a program π ignoring closed-
predicate declarations, denoted Founded0(π), is the least set of literals that are
given as facts or can be inferred by repeatedly applying the rules. Formally, we
define

Founded0(π) = UnNameNeg(LFPbySCC (NameNeg(Cmpl(π)))),

where functions Cmpl , NameNeg , LFPbySCC , and UnNameNeg are defined as
follows.

Completion. The completion function Cmpl(π) returns the completed program
of π. Formally, Cmpl(π) = AddInv(Combine(π)), where Combine and AddInv
are defined as follows.

The function Combine(π) returns the program obtained from π by replacing
the facts and rules defining each uncertain complete predicate Q with a single
combined rule for Q, defined as follows. First, transform the facts and rules
defining Q so they all have the same conclusion Q(V1, ..., Va), by replacing each
fact or rule Q(X1, ...,Xa) ← B with

Q(V1, ..., Va) ← (∃ Y1, ..., Yk | V1 = X1 ∧ ... ∧ Va = Xa ∧ B)

where V1, ..., Va are fresh variables (i.e., not occurring in any given rule defin-
ing Q), and Y1, ..., Yk are all variables occurring free in the original rule
Q(X1, ...,Xa) ← B. Then, combine the resulting rules for Q into a single
rule defining Q whose body is the disjunction of the bodies of those rules. This
combined rule for Q is logically equivalent to the original facts and rules for Q.

Recursive Rules with Aggregation: A Simple Unified Semantics 169

The function AddInv(π) returns the program obtained from π by adding, for
each uncertain complete predicate Q, a completion rule that derives negative
literals for Q. The completion rule for Q is obtained from the inverse of the
combined rule defining Q (recall that the inverse of A ← B is ¬A ← ¬B),
by (1) putting the body of the rule in negation normal form, i.e., using laws of
predicate logic to move negation inwards and eliminate double negations, and
(2) eliminate negation applied to comparison atoms by reversing the comparison
operators. As a result, in completion rules, negation is applied only to predicate
atoms.

Similar completion rules but without aggregation are used in Clark’s com-
pletion [14] and Fitting semantics [22].

Least Fixed Point. The least fixed point is preceded and followed by func-
tions that introduce and remove, respectively, new predicates representing the
negations of the original predicates.

The function NameNeg(π) returns the program obtained from π by replac-
ing, except where P (X1, ...,Xa) is a positive occurrence, ¬P (X1, ...,Xa) with
n.P (X1, ...,Xa) and P (X1, ...,Xa) not in ¬P (X1, ...,Xa) with ¬ n.P (X1, ...,Xa).
The new predicate n.P represents the negation of predicate P . Since
P (X1, ...,Xa) and ¬P (X1, ...,Xa) are complements of each other, we now also
define P (X1, ...,Xa) and n.P (X1, ...,Xa) to be complements of each other.

Note that n.P (X1, ...,Xa) is introduced to make the one-step derivabil-
ity function explicitly monotonic, while maintaining consistency. We replace
¬P (X1, ...,Xa) for any conclusion and any negative occurrence of P (X1, ...,Xa)
(where negative occurrence is defined symmetrically as positive occurrence) to
allow negative conclusions to be derived and used as facts. We replace any nega-
tive occurrence of P (X1, ...,Xa) not in ¬P (X1, ...,Xa) with ¬ n.P (X1, ...,Xa)
also to use these facts. Other occurrences, if any due to positive (and neg-
ative) occurrence being conservative, can be either replaced or left, with the
result still being a model, because all derivation and use of n.P (X1, ...,Xa) and
P (X1, ...,Xa) follow the one-step derivability. We have not seen any example
that needs this, but one might obtain a more precise model, i.e., more atoms
that are true or false, by trying all combinations of replacing and leaving. It is an
open question whether some combination leads to a unique most precise model.

The function LFPbySCC (π) uses a least fixed point to infer facts for each
strongly connected component (SCC) in the dependency graph of π, as follows.
Let C1, ..., Cn be a list of the SCCs in dependency order, so earlier SCCs do not
depend on later ones; it is easy to show that any linearization of the dependency
order leads to the same result for LFPbySCC . The projection of a program π
onto an SCC C, denoted Proj (π,C), contains all facts of π whose predicates are
in C and all rules of π whose conclusions contain predicates in C.

Define LFPbySCC (π) = In, where I0 = ∅ and Ii = AddNeg(LFP
(TProj (π,Ci)∪Ii−1), Ci) for i ∈ 1..n. LFP is the least fixed point operator.
AddNeg(I, C) returns the interpretation obtained from interpretation I by adding
completion facts for the certain predicates in C to I; specifically, for each certain
predicate P in C, for each combination of values v1, ..., va of arguments of P , if

170 Y. A. Liu and S. D. Stoller

I does not contain P (v1, ..., va), then add n.P (v1, ..., va). The least fixed point is
well-defined, because the one-step derivability function TProj (π,Ci)∪Ii−1 is mono-
tonic with respect to ⊆, i.e., for all interpretations J and J ′, TProj (π,Ci)∪Ii−1(J) ⊆
TProj (π,Ci)∪Ii−1(J

′) whenever J ⊆ J ′; the proof is straightforward [44].
The function UnNameNeg(I) returns the interpretation obtained from inter-

pretation I by replacing each atom n.P (X1, ...,Xa) with ¬P (X1, ...,Xa).

4.3 Founded Semantics with Closed Declarations

Informally, when an uncertain complete predicate is declared closed, an atom A
of the predicate is false in an interpretation I for a program π, called self-false
in I, if every ground instance of a rule that concludes A has a hypothesis that
is false in I or, recursively, is self-false in I. To simplify the formalization, we
first transform ground instances of rules to eliminate disjunction, by putting the
body of each ground instance R of a rule into disjunctive normal form (DNF)
and then replacing R with multiple rules, one per disjunct of the DNF.

A set U of ground predicate atoms for closed predicates is an unfounded set
of π with respect to an interpretation I of π iff U is disjoint from I and, for each
atom A in U , for each ground instance R of a rule of π with conclusion A,

(1) some hypothesis of R is false in I,
(2) some positive predicate hypothesis of R is in U , or
(3) some comparison hypothesis H of R is false when all atoms in U are false,

i.e., π, I ∪ ¬ · U �L ¬H,

where, for a set S of positive literals, ¬ · S = {¬P (c1, ..., ca) |P (c1, ..., ca) ∈ S},
called the element-wise negation of S, and where ¬H is implicitly simplified to
eliminate negation applied to H by changing the comparison operator in H.

Note that this definition differs from the standard definition of unfounded
set [66] in that we restricted the unfounded set to atoms for closed predicates,
added clause (3), and added the disjointness condition. Because a comparison
hypothesis depends non-conjunctively on the truth values of multiple literals for
predicates used in the aggregation, and these literals may be spread across I and
U , clause (3) checks whether H is false when all atoms in U are set to false in I.
The explicit disjointness condition is not needed in WFS or founded semantics
without aggregation, because one can prove in those settings that unfounded sets
are disjoint from interpretations that arise in the semantics (e.g., see [66, Lemma
3.4]). The disjointness condition is needed here to ensure that the interpretation
I ∪ ¬ · U in clause (3) is consistent and hence the meaning of the clause is
well-defined.

The definition of unfounded set U ensures that extending I to make all atoms
in U false is consistent with π, in the sense that no atom in U can be inferred to
be true in the extended interpretation. We define SelfFalseπ(I), the set of self-
false atoms of π with respect to interpretation I, to be the greatest unfounded
set of π with respect to I. Note that this set is empty when no predicate is
declared closed.

Recursive Rules with Aggregation: A Simple Unified Semantics 171

The founded semantics is defined by repeatedly computing the semantics
given by Founded0 (founded semantics without closed declarations) and then
setting self-false atoms to false, until a least fixed point is reached. Formally, the
founded semantics is Founded(π) = LFP(Fπ), where Fπ(I) = Founded0(π ∪ I)∪
¬ · SelfFalseπ(Founded0(π ∪ I)).

4.4 Constraint Semantics

Constraint semantics is a set of 2-valued models based on founded semantics.
A constraint model M of a program π is a 2-valued interpretation of π such
that (1) Founded(π) ⊆ M , (2) M is a model of Cmpl(π), and (3) if there are
closed predicates, there is no non-empty subset S of M \ Founded(π) such that
S contains only positive literals for closed predicates and S = SelfFalseπ(M \S).
Intuitively, condition (3) says that M should not contain a set S of positive
literals for closed predicates that are not required to be true by the founded
semantics and can be set to false.

We also require that an interpretation that leads to an error in a comparison
is not a constraint model. Precisely, we require that for interpretation M to be a
constraint model, no ground instance of a rule of π contains a comparison that
gives an error in M . Errors are defined the same as in Sect. 4.1, but note that
G(S, I,Undef) is empty here. This definition of constraint models could be made
less strict about errors.

Note that condition (3) differs from the corresponding condition in con-
straint semantics without aggregation [41,42], which is ¬ · SelfFalse(M) ⊆ M .
The change is needed because of the new disjointness condition for unfounded
sets. With the new disjointness condition, for any 2-valued interpretation M ,
SelfFalse(M) must be empty, and hence ¬·SelfFalse(M) ⊆ M is vacuously true.

We define Constraint(π) to be the set of constraint models of π. Constraint
models can be computed by iterating over interpretations M that are supersets
of Founded(π), satisfying condition (1), and then checking whether the other
conditions in the definition of constraint model are satisfied.

4.5 Properties of the Semantics

We briefly state several important properties of the semantics; detailed state-
ments and proofs are in [44]. (1) Consistency: The founded model and constraint
models of a program π are consistent. (2) Correctness: The founded model of
a program π is a model of π and Cmpl(π). The constraint models of π are 2-
valued models of π and Cmpl(π). (3) Same SCC, same certainty: All predicates
in an SCC have the same certainty. (4) Higher-order programming: Founded
semantics and constraint semantics are preserved by a transformation that facil-
itates higher-order programming by replacing a set S of compatible predicates
with a single predicate holds whose first argument is the name of one of those
predicates. (5) Equivalent declarations: Changing predicate declarations from
uncertain, complete, and closed to certain when allowed, or vice versa, preserves
founded and constraint semantics.

172 Y. A. Liu and S. D. Stoller

5 Examples: Company Control and Double Win

We discuss the well-known challenging company control problem [13,19,30,54]
and an even more challenging game problem that generalizes the well-known
win-not-win game [41,42].

5.1 Company Control—A Well-Known Challenge

This is Examples 1.1 and 2.13 in [19] and is also used in Example 12 in [30]. The
problem was also discussed repeatedly before [36,49,50,54,63] and earlier [13].
It considers a set of facts of the form company(c), denoting that c is a company,
and a set of facts of the form ownsStk(c1,c2,p), denoting the percentage p of
shares of company c2 that are owned by company c1. It defines that company
c1 controls company c2, denoted controls(c1,c2), if the sum of the percentages
of shares of c2 that are owned either directly by c1 or by companies controlled
by c1 is more than 50.

controlsStk(c1,c1,c2,p) ← ownsStk(c1,c2,p)

controlsStk(c1,c2,c3,p) ← company(c1)

∧ controls(c1,c2) ∧ ownsStk(c2,c3,p)

controls(c1,c3) ← company(c1) ∧ company(c3)

∧ sum {p,c2: controlsStk(c1,c2,c3,p)} > 50

It introduces controlsStk(c1,c2,c3,p), denoting that company c1 controls p

percent of shares of company c3 through company c2. It has become a most well-
known challenging example for recursion with aggregation, because it involves
aggregation in mutual recursion.

Founded semantics and constraint semantics are straightforward to compute.
First, company and ownsStk as given are certain. Then, controlsStk and controls

are certain by default, despite that controlsStk and controls are mutually recur-
sive while involving aggregation, because controlsStk(c1,c2,c3,p) holds for only
non-negative p, making the dependency through the comparison positive. There-
fore, the semantics is simply a least fixed point using the given rules, giving the
same result for founded semantics and constraint semantics. This is the desired
result, same as in [19].

5.2 Double-Win Game—For Any Kind of Moves

Consider the following game, which we call the double-win game. Given a set
of moves, the game uses the following single rule, called double-win rule, for
winning:

dwin(x) ← count {y: move(x,y) ∧ ¬ dwin(y)} ≥ 2

It says that x is a winning position if the set of positions, y, such that there is
a move from x to y and y is not a winning position, has at least two elements.

Recursive Rules with Aggregation: A Simple Unified Semantics 173

That is, x is a winning position if there are at least two positions to move to
from x that are not winning positions.

We created the double-win game by generalizing the well-known win-not-win
game [41,42], which has a single rule, stating that x is a winning position if there
is a move from x to some position y and y is not a winning position:

win(x) ← move(x,y) ∧ ¬ win(y)

One could also rewrite the double-win rule using two explicit positions y1 and
y2 and adding y1!=y2, but this approach does not scale when the count can be
compared with any number, not just 2, and is not necessarily known in advance.

By default, move is certain, and dwin is uncertain but complete. First, add
the completion rule:

¬ dwin(x) ← count {y: move(x,y) ∧ ¬ dwin(y)} < 2

Then, rename ¬dwin to n.dwin, in both the given rule and the completion rule,
except the positive occurrence of dwin in the body of the completion rule, yield-
ing:

dwin(x) ← count {y: move(x,y) ∧ n.dwin(y)} ≥ 2

n.dwin(x) ← count {y: move(x,y) ∧ ¬ dwin(y)} < 2

Now compute the least fixed point. Start with the base case, in the second rule,
for positions x that have moves to fewer than 2 positions; this infers n.dwin(x)

facts for those positions x. Then, the first rule infers dwin(x) facts for any position
x that can move to 2 or more positions for which n.dwin is true.

This process iterates to infer more n.dwin and more dwin facts, until a fixed
point is reached, where dwin gives winning positions, n.dwin gives losing posi-
tions, and the remaining positions are draw positions, corresponding to positions
for which dwin is true, false, and undefined, respectively.

5.3 Experiments

We also performed experiments with our new semantics. We implemented
straightforward and incremental least fixed-point computations for example
problems in DistAlgo [46], an extension of Python. We also compared with
results computed by three systems that support negation and aggregation in
recursion: XSB [60], the most well-known such system that computes WFS, and
clingo [4] and DLV [2,20], the most well-known such systems that compute SMS.

For the company control problem, our incremental program in DistAlgo
(v.1.1.0b15 on Python 3.7) was the fastest; followed by clingo (v.5.4.0),
about 7 times slower; followed by XSB (v.3.8.0), our straightforward program
in DistAlgo, and DLV (https://www.dbai.tuwien.ac.at/proj/dlv/dlvRecAggr/

https://www.dbai.tuwien.ac.at/proj/dlv/dlvRecAggr/

174 Y. A. Liu and S. D. Stoller

(accessed 2020-09-21))1, each asymptotically and drastically slower than the pre-
ceding one. Most recent investigation found that changing the order of hypothe-
ses in rules in XSB can improve the running times for this problem asymptoti-
cally.

For the double win problem, clingo and DLV cannot compute the desired
3-valued semantics, and XSB was found to compute incorrect results on some
of our benchmarks. Most recent investigation found that SWI-Prolog [69] added
support for computing WFS, but was found to compute incorrect results for this
problem on some smallest inputs. Both SWI-Prolog and XSB have since found
and fixed bugs that caused these incorrect results.

6 Related Work and Conclusion

The study of recursive rules with negation goes back at least to Russell’s paradox,
discovered over 120 years ago [35]. Many logic languages and disagreeing seman-
tics have since been proposed, with significant complications and challenges
described in various survey and overview articles, e.g., [8,23,52,61], and in works
on relating and unifying different semantics, e.g., [10,17,18,34,37,42,51,55].

Recursive rules with aggregation have been a subject of study soon after rules
with negation were used in programming. They received an even larger variety
of disagreeing semantics in 20 years, e.g., [15,19–21,25,36,38,47,48,50,54,57–
59,63], and even more intensive studies in the last few years, e.g., [1,3–6,11,12,
16,27–31,56,67,68,71–73], especially as they are needed in graph analysis and
machine learning applications.

Major related works are as shown in Table 1, right column. They give dis-
agreeing semantics with each other, without simple formal explanations for the
disagreement, as explained there. More detailed comparisons with work by Kemp
and Stuckey [36], Van Gelder [63], Pelov, Denecker, and Bruynooghe [50], Faber,
Pfeifer, and Leone [19], Gelfond and Zhang [30], and Hella et al. [32,33] appear in
[44]. Among all, Pelov et al.’s work [50], recently reworked for ASP [67], is notable
for proposing a framework that can be instantiated to extend several prior seman-
tics to handle aggregation. They develop several separate extended semantics.
In contrast, our approach uses simple predicate declarations to capture different
assumptions made by different semantics in a unifying single semantics.

Many other different semantics have been studied, all focused on restricted
classes or issues. The survey by Ramakrishnan and Ullman [52] discusses some
different semantics, optimization methods, and uses of recursive rules with aggre-
gation in earlier projects. Ross and Sagiv [54] studies monotonic aggregation but
not general aggregation. Beeri et al. [9] presents the valid model semantics for
logic programs with negation, set expressions, and grouping, but not aggrega-
tion. Sudarshan et al. [59] extends the valid model semantics for aggregation,
gives semantics for more programs than Van Gelder [63], and subsumes a class
1 That version of DLV supports recursive aggregates, while the current release of DLV

“does not yet contain a full implementation of recursive aggregates” according to
http://www.dlvsystem.com/dlv/ (last accessed 2021-11-04).

http://www.dlvsystem.com/dlv/

Recursive Rules with Aggregation: A Simple Unified Semantics 175

of programs in Ganguly et al. [24], but it is only a 3-valued semantics. Hella
et al. [32,33] study expressiveness of aggregation operators but without recur-
sion. Liu et al. [38] give a semantics for logic programs with abstract constraints,
which can represent aggregates, and show that, for positive programs, it agrees
with one of Pelov et al.’s semantics [50]. A number of other works have followed
Gelfond and Zhang’s line of study for ASP [11,12,30].

Zaniolo et al. [16,24,31,70–72] study recursive rules with aggregation for
database applications, especially including for big data analysis and machine
learning applications in recent years. They study optimizations that exploit
monotonicity as well as additional properties of the aggregation operators in
computing the least fixed point, yielding superior performance and scalability
necessary for these large applications. They discuss insight from their application
experience as well as prior research for centering on fixed-point computation [72],
which essentially corresponds to the assumption that predicates are certain.

Our founded semantics and constraint semantics for recursive rules with
aggregation unify different previous semantics by allowing different underlying
assumptions to be easily specified explicitly, and furthermore separately for each
predicate if desired. Our semantics are also fully declarative, giving both a single
3-valued model from simply a least fixed-point computation and a set of 2-valued
models from simply constraint solving.

The key enabling ideas of simple binary choices for expressing assumptions
and simple lease fixed-point computation and constraint solving are taken from
Liu and Stoller [41,42], where they present a simple unified semantics for recur-
sive rules with negation and quantification.

Our semantics can be extended for rules with negation in the conclusion, in
the same way as in [41]. It can also easily be extended for hypotheses that are
equalities or negated equalities between variables and constants, because such
hypotheses are already used in presenting the semantics.

There are many directions for future research, including additional lan-
guage features, efficient implementation methods, and precise complexity guar-
antees [40] when possible.

Acknowledgement. We would like to thank David S. Warren and Jan Wielemaker
for their excellent help with using XSB and SWI-Prolog.

References

1. Alviano, M.: Evaluating answer set programming with non-convex recursive aggre-
gates. Fundamenta Informaticae 149(1–2), 1–34 (2016)

2. Alviano, M., et al.: The ASP system DLV2. In: Balduccini, M., Janhunen, T. (eds.)
LPNMR 2017. LNCS (LNAI), vol. 10377, pp. 215–221. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-61660-5 19

3. Alviano, M., Dodaro, C., Maratea, M.: Shared aggregate sets in answer set pro-
gramming. Theory Pract. Logic Program. 18(3–4), 301–318 (2018)

4. Alviano, M., Faber, W., Gebser, M.: Rewriting recursive aggregates in answer set
programming: back to monotonicity. Theory Pract. Logic Program. 15(4–5), 559–
573 (2015)

https://doi.org/10.1007/978-3-319-61660-5_19

176 Y. A. Liu and S. D. Stoller

5. Alviano, M., Faber, W., Gebser, M.: From non-convex aggregates to monotone
aggregates in ASP. In: Proceedings of the International Joint Conference on Arti-
ficial Intelligence, pp. 4100–4104 (2016)

6. Alviano, M., Leone, N.: Complexity and compilation of GZ-aggregates in answer
set programming. Theory Pract. Logic Program. 15(4–5), 574–587 (2015)

7. Apt, K.R., Blair, H.A., Walker, A.: Towards a theory of declarative knowledge. In:
Foundations of Deductive Databases and Logic Programming, pp. 89–148. Morgan
Kaufmann (1988)

8. Apt, K.R., Bol, R.N.: Logic programming and negation: a survey. J. Logic Program.
19, 9–71 (1994)

9. Beeri, C., Ramakrishnan, R., Srivastava, D., Sudarshan, S.: The valid model seman-
tics for logic programs. In: Proceedings of the 11th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, pp. 91–104 (1992)

10. Bruynooghe, M., Denecker, M., Truszczynski, M.: First order logic with inductive
definitions for model-based problem solving. AI Mag. 37(3), 69–80 (2016)

11. Cabalar, P., Fandinno, J., Del Cerro, L.F., Pearce, D.: Functional ASP with inten-
sional sets: application to Gelfond-Zhang aggregates. Theory Pract. Logic Program.
18(3–4), 390–405 (2018)

12. Cabalar, P., Fandinno, J., Schaub, T., Schellhorn, S.: Gelfond-zhang aggregates as
propositional formulas. Artif. Intell. 274, 26–43 (2019)

13. Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases. Springer,
Heidelberg (1990). https://doi.org/10.1007/978-3-642-83952-8

14. Clark, K.L.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and
Databases, pp. 293–322. Plenum Press, New York (1978)

15. Consens, M.P., Mendelzon, A.O.: Low-complexity aggregation in GraphLog and
Datalog. Theor. Comput. Sci. 116(1), 95–116 (1993)

16. Das, A., Li, Y., Wang, J., Li, M., Zaniolo, C.: Bigdata applications from graph ana-
lytics to machine learning by aggregates in recursion. In: Proceedings of the 35th
International Conference on Logic Programming (Technical Communications), pp.
273–279 (2019)

17. Denecker, M., Ternovska, E.: A logic of nonmonotone inductive definitions. ACM
Trans. Comput. Logic 9(2), 14 (2008)

18. Dung, P.M.: On the relations between stable and well-founded semantics of logic
programs. Theor. Comput. Sci. 105(1), 7–25 (1992)

19. Faber, W., Pfeifer, G., Leone, N.: Semantics and complexity of recursive aggregates
in answer set programming. Artif. Intell 175(1), 278–298 (2011)

20. Faber, W., Pfeifer, G., Leone, N., Dell’Armi, T., Ielpa, G.: Design and implemen-
tation of aggregate functions in the DLV system. Theory Pract. Logic Program.
8(5–6), 545–580 (2008)

21. Ferraris, P.: Logic programs with propositional connectives and aggregates. ACM
Trans. Comput. Logic 12(4), 1–40 (2011)

22. Fitting, M.: A Kripke-Kleene semantics for logic programs. J. Logic Program. 2(4),
295–312 (1985)

23. Fitting, M.: Fixpoint semantics for logic programming: a survey. Theor. Comput.
Sci. 278(1), 25–51 (2002)

24. Ganguly, S., Greco, S., Zaniolo, C.: Minimum and maximum predicates in logic
programming. In: Proceedings of the 10th ACM SIGACT-SIGMOD-SIGART Sym-
posium on Principles of Database Systems, pp. 154–163 (1991)

https://doi.org/10.1007/978-3-642-83952-8

Recursive Rules with Aggregation: A Simple Unified Semantics 177

25. Gelfond, M.: Representing knowledge in A-prolog. In: Kakas, A.C., Sadri, F. (eds.)
Computational Logic: Logic Programming and Beyond. LNCS (LNAI), vol. 2408,
pp. 413–451. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45632-
5 16

26. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Proceedings of the 5th International Conference and Symposium on Logic Pro-
gramming, pp. 1070–1080. MIT Press (1988)

27. Gelfond, M., Zhang, Y.: Vicious circle principle and logic programs with aggregates.
Theory Pract. Logic Program. 14(4–5), 587–601 (2014)

28. Gelfond, M., Zhang, Y.: Vicious circle principle and formation of sets in ASP based
languages. In: Balduccini, M., Janhunen, T. (eds.) LPNMR 2017. LNCS (LNAI),
vol. 10377, pp. 146–159. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-61660-5 14

29. Gelfond, M., Zhang, Y.: Vicious circle principle and logic programs with aggregates.
Computing Research Repository (2018). cs.AI arXiv:1808.07050

30. Gelfond, M., Zhang, Y.: Vicious circle principle, aggregates, and formation of sets
in ASP based languages. Artif. Intell. 275, 28–77 (2019)

31. Gu, J., et al.: RaSQL: Greater power and performance for big data analytics with
recursive-aggregate-SQL on Spark. In: Proceedings of the 2019 International Con-
ference on Management of Data, pp. 467–484 (2019)

32. Hella, L., Libkin, L., Nurmonen, J., Wong, L.: Logics with aggregate operators. In:
Proceedings of the 14th Annual IEEE Symposium on Logic in Computer Science,
p. 35. IEEE Computer Society (1999)

33. Hella, L., Libkin, L., Nurmonen, J., Wong, L.: Logics with aggregate operators. J.
ACM 48(4), 880–907 (2001)

34. Hou, P., De Cat, B., Denecker, M.: FO(FD): extending classical logic with rule-
based fixpoint definitions. Theory Pract. Logic Program. 10(4–6), 581–596 (2010)

35. Irvine, A.D., Deutsch, H.: Russell’s paradox. Stanford Encyclopedia of Philoso-
phy (2020). https://plato.stanford.edu/entries/russell-paradox/, First published
Fri Dec 8, 1995; substantive revision Mon Oct 12, 2020, Accessed 3 Jan 2021

36. Kemp, D.B., Stuckey, P.J.: Semantics of logic programs with aggregates. In: Pro-
ceedings of the International Symposium on Logic Programming, pp. 387–401
(1991)

37. Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program by SAT
solvers. Artif. Intell. 157(1–2), 115–137 (2004)

38. Liu, L., Pontelli, E., Son, T.C., Truszczynski, M.: Logic programs with abstract
constraint atoms: The role of computations. Artif. Intell. 174(3), 295–315 (2010)

39. Liu, Y.A.: Logic programming applications: what are the abstractions and imple-
mentations? In: Kifer, M., Liu, Y.A. (eds.) Declarative Logic Programming: The-
ory, Systems, and Applications, chap. 10, pp. 519–557. ACM and Morgan & Clay-
pool (2018)

40. Liu, Y.A., Stoller, S.D.: From datalog rules to efficient programs with time and
space guarantees. ACM Trans. Program. Lang. Syst. 31(6), 1–38 (2009)

41. Liu, Y.A., Stoller, S.D.: Founded semantics and constraint semantics of logic rules.
In: Artemov, S., Nerode, A. (eds.) LFCS 2018. LNCS, vol. 10703, pp. 221–241.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72056-2 14

42. Liu, Y.A., Stoller, S.D.: Founded semantics and constraint semantics of logic rules.
J. Logic Comput. 30(8), 1609–1638 (2020). http://arxiv.org/abs/1606.06269

43. Liu, Y.A., Stoller, S.D.: Knowledge of uncertain worlds: programming with logical
constraints. In: Artemov, S., Nerode, A. (eds.) LFCS 2020. LNCS, vol. 11972, pp.
111–127. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-36755-8 8

https://doi.org/10.1007/3-540-45632-5_16
https://doi.org/10.1007/3-540-45632-5_16
https://doi.org/10.1007/978-3-319-61660-5_14
https://doi.org/10.1007/978-3-319-61660-5_14
http://arxiv.org/abs/1808.07050
https://plato.stanford.edu/entries/russell-paradox/
https://doi.org/10.1007/978-3-319-72056-2_14
http://arxiv.org/abs/1606.06269
https://doi.org/10.1007/978-3-030-36755-8_8

178 Y. A. Liu and S. D. Stoller

44. Liu, Y.A., Stoller, S.D.: Recursive rules with aggregation: a simple unified seman-
tics. Computing Research Repository (2020). cs.DB arXiv:2007.13053

45. Liu, Y.A., Stoller, S.D.: Knowledge of uncertain worlds: programming with logical
constraints. J. Logic Comput. 31(1), 193–212 (2021). https://arxiv.org/abs/1910.
10346

46. Liu, Y.A., Stoller, S.D., Lin, B.: From clarity to efficiency for distributed algo-
rithms. ACM Trans. Program. Lang. Syst. 39(3), 12:1–12:41 (2017)

47. Marek, V.W., Remmel, J.B.: Set constraints in logic programming. In: Lifschitz, V.,
Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp. 167–179. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-24609-1 16

48. Marek, V.W., Truszczynski, M.: Logic programs with abstract constraint atoms.
In: Proceedings of the 19th National Conference on Artificial Intelligence, 16th
Conference on Innovative Applications of Artificial Intelligence, pp. 86–91. AAAI
Press/The MIT Press (2004)

49. Mumick, I.S., Pirahesh, H., Ramakrishnan, R.: The magic of duplicates and
aggregates. In: Proceedings of the 16th International Conference on Very Large
Databases, pp. 264–277. Morgan Kaufmann (1990)

50. Pelov, N., Denecker, M., Bruynooghe, M.: Well-founded and stable semantics
of logic programs with aggregates. Theory Pract. Logic Program. 7(3), 301–353
(2007)

51. Przymusinski, T.C.: Well-founded and stationary models of logic programs. Ann.
Math. Artif. Intell 12(3), 141–187 (1994)

52. Ramakrishnan, R., Ullman, J.D.: A survey of deductive database systems. J. Logic
Program. 23(2), 125–149 (1995)

53. Ross, K.A., Sagiv, Y.: Monotonic aggregation in deductive databases. In: Proceed-
ings of the 11th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, pp. 114–126 (1992)

54. Ross, K.A., Sagiv, Y.: Monotonic aggregation in deductive databases. J. Comput.
Syst. Sci. 54(1), 79–97 (1997)

55. Schlipf, J.S.: The expressive powers of the logic programming semantics. J. Com-
put. Syst. Sci. 51(1), 64–86 (1995)

56. Shkapsky, A., Yang, M., Zaniolo, C.: Optimizing recursive queries with monotonic
aggregates in DeALS. In: Proceedings of the 2015 IEEE 31st International Con-
ference on Data Engineering, pp. 867–878 (2015)

57. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model
semantics. Artif. Intell 138(1–2), 181–234 (2002)

58. Son, T.C., Pontelli, E., Tu, P.H.: Answer sets for logic programs with arbitrary
abstract constraint atoms. J. Artif. Intell. Res. 29, 353–389 (2007)

59. Sudarshan, S., Srivastava, D., Ramakrishnan, R., Beeri, C.: Extending the well-
founded and valid semantics for aggregation. In: Proceedings of the 1993 Interna-
tional Symposium on Logic programming, pp. 590–608 (1993)

60. Swift, T., et al.: The XSB System Version 3.8, x (2017). http://xsb.sourceforge.
net

61. Truszczynski, M.: An introduction to the stable and well-founded semantics of logic
programs. In: Kifer, M., Liu, Y.A. (eds.) Declarative Logic Programming: Theory,
Systems, and Applications, pp. 121–177. ACM and Morgan & Claypool (2018)

62. Van Gelder, A.: Negation as failure using tight derivations for general logic pro-
grams. In: Proceedings of the 3rd IEEE-CS Symposium on Logic Programming,
pp. 127–138 (1986)

http://arxiv.org/abs/2007.13053
https://arxiv.org/abs/1910.10346
https://arxiv.org/abs/1910.10346
https://doi.org/10.1007/978-3-540-24609-1_16
http://xsb.sourceforge.net
http://xsb.sourceforge.net

Recursive Rules with Aggregation: A Simple Unified Semantics 179

63. Van Gelder, A.: The well-founded semantics of aggregation. In: Proceedings of
the 11th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, San Diego, California, 2–4 June 1992, pp. 127–138 (1992)

64. Van Gelder, A.: The alternating fixpoint of logic programs with negation. J. Com-
put. Syst. Sci. 47(1), 185–221 (1993)

65. Van Gelder, A., Ross, K., Schlipf, J.S.: Unfounded sets and well-founded semantics
for general logic programs. In: Proceedings of the 7th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, pp. 221–230 (1988)

66. Van Gelder, A., Ross, K., Schlipf, J.S.: The well-founded semantics for general
logic programs. J. ACM 38(3), 620–650 (1991)

67. Vanbesien, L., Bruynooghe, M., Denecker, M.: Analyzing semantics of aggregate
answer set programming using approximation fixpoint theory. Computing Research
Repository (2021). cs.AI arXiv:2104.14789

68. Wang, Q., et al.: Automating incremental and asynchronous evaluation for recur-
sive aggregate data processing. In: Proceedings of the 2020 ACM SIGMOD Inter-
national Conference on Management of Data, pp. 2439–2454 (2020)

69. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-Prolog. Theory Pract.
Logic Program. 12(1–2), 67–96 (2012)

70. Zaniolo, C., Arni, N., Ong, K.: Negation and aggregates in recursive rules: the
LDL++ approach. In: Ceri, S., Tanaka, K., Tsur, S. (eds.) DOOD 1993. LNCS,
vol. 760, pp. 204–221. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
57530-8 13

71. Zaniolo, C., Das, A., Gu, J., Li, Y., Li, M., Wang, J.: Monotonic properties of
completed aggregates in recursive queries. Computing Research Repository (2019).
cs.DB arXiv:1910.08888

72. Zaniolo, C., Yang, M., Das, A., Shkapsky, A., Condie, T., Interlandi, M.: Fixpoint
semantics and optimization of recursive datalog programs with aggregates. Theory
Pract. Logic Program. 17(5–6), 1048–1065 (2017)

73. Zhang, Y., Rayatidamavandi, M.: A characterization of the semantics of logic pro-
grams with aggregates. In: Proceedings of the International Joint Conference on
Artificial Intelligence, pp. 1338–1344 (2016)

http://arxiv.org/abs/2104.14789
https://doi.org/10.1007/3-540-57530-8_13
https://doi.org/10.1007/3-540-57530-8_13
http://arxiv.org/abs/1910.08888

Computational Properties of Partial
Non-deterministic Matrices

and Their Logics

Sérgio Marcelino , Carlos Caleiro , and Pedro Filipe(B)

SQIG - Instituto de Telecomunicações, Departamento de Matemática, Instituto
Superior Técnico, Universidade de Lisboa, Lisbon, Portugal

{smarcel,ccal}@math.tecnico.ulisboa.pt, pedro.g.filipe@tecnico.ulisboa.pt

Abstract. Incorporating non-determinism and partiality in the tra-
ditional notion of logical matrix semantics has proven to be decisive
in a myriad of recent compositionality results in logic. However, sev-
eral important properties which are known to be computable for finite
matrices have not been studied in this wider context of partial non-
deterministic matrices (PNmatrices).

This paper is dedicated to understanding how this generalization of
the considered semantical structures affects the computational proper-
ties of basic problems regarding their induced logics, in particular their
sets of theorems.

We will show that the landscape is quite rich, as some problems keep
their computational status, for others the complexity increases, and for
a few decidability is lost. Namely, we show that checking if the logics
defined by two finite PNmatrices have the same theorems is undecid-
able. This latter result is obtained by reduction from the undecidable
problem of checking universality of term-DAG-automata.

1 Introduction

Logical matrices are arguably the most widespread semantic structures for
propositional logics [14,27]. After �Lukasiewicz, a logical matrix consists in an
underlying algebra, functionally interpreting logical connectives over a set of
truth-values, together with a designated set of truth-values. The logical models
are obtained by considering the homomorphisms from the free-algebra in the
matrix similarity type into the algebra (valuations), and formulas that hold in
the model are the ones that take designated values.

However, in recent years, it has become clear that there are advantages in
departing from semantics based on logical matrices, by adopting a partial non-
deterministic generalization of the standard notion. PNmatrices were introduced
in [6], as a generalization of non-deterministic matrices (Nmatrices) that on

Research funded by FCT/MCTES through national funds and when applicable co-
funded by EU under the project UIDB/50008/2020. The third author acknowledges
the grant PD/BD/135513/2018 by FCT, under the LisMath Ph.D. programme.

c© Springer Nature Switzerland AG 2022
S. Artemov and A. Nerode (Eds.): LFCS 2022, LNCS 13137, pp. 180–197, 2022.
https://doi.org/10.1007/978-3-030-93100-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93100-1_12&domain=pdf
http://orcid.org/0000-0002-6941-7555
http://orcid.org/0000-0001-5587-6585
http://orcid.org/0000-0002-7164-8264
https://doi.org/10.1007/978-3-030-93100-1_12

Computational Properties of Partial Non-deterministic Matrices 181

their turn were proposed in the beginning of this century by Avron and his
collaborators [3,4]. In PNmatrices, the connectives are interpreted by (partial)
multi-functions instead of functions. The central idea is that a connective can
non-deterministically pick from a set of possible values instead of its value being
completely determined by the input values. When for a certain input the inter-
pretation function outputs the empty set it means that the input values are
not compatible. Logical semantics based on PNmatrices are very malleable. The
added expressiveness allows for finite characterizations of logics that do not
admit finite semantics based on logical matrices [23,24] and provide valuable
insight about proof theoretical properties of said logics [2]. It also allows for
general recipes for various practical problems in logic, including procedures to
constructively updating semantics when imposing new axioms [9,12], including
language extensions; or effectively combining the semantics of two logics cap-
turing the effect of joining their axiomatizations [8,21]. Recently, PNmatrices
also provided new interpretations of quantum states as valuations [15]. Further-
more, finite PNmatrices still retain many useful properties of finite matrices.
Namely, one can still smoothly produce analytic calculi for the induced logic,
over which a series of reasoning activities in a purely symbolic fashion can be per-
formed, including proof-search and countermodel generation [6,7,22]. However,
naturally, certain properties of PNmatrices become more difficult to analyse. For
instance, in [5], Zohar and Avron suggest investigating more deeply under which
conditions two given Nmatrices define the same logic.

This paper is a first step towards understanding this question. We will con-
sider simple standard problems regarding the evaluation of formulas, and the
notion of theoremhood in the logics defined by different kinds of semantic struc-
tures. It is well known that checking whether a given formula is satisfiable, or
valid, in a given finite logical matrix is decidable. Further (see [16,17]), the prob-
lems of checking the existence of theorems in the logic defined by a finite logical
matrix, and of checking whether two finite matrices define logics with the same
set of theorems, are also decidable. However, the computational status of such
problems with respect to Nmatrices or PNmatrices has never been studied. Our
aim is to analyse these richer problems, and assess how their computational
hardness is affected by partiality, non-determinism, and the interaction between
the two.

We will show that while some of these problems retain their computational
properties in the wider context, namely determining the satisfiability or valid-
ity of a given formula, others become harder. Partiality, in particular, makes
the problem of analysing possible valuations of a given formula non-local (with
respect to the syntax of the formula). This fact by itself can be overcome,
with limited computational cost, in the absence of non-determinism. However,
in PNmatrices, there is an intrinsic added complexity to be accounted for in
analysing theoremhood. Further, finite logical matrices are based on algebras,
which allows us to compute a bound on the depth of the formulas that may
be necessary to express all possible functions of the truth-values with a given
arity [19]. In the presence of non-determinism, however, we will see that the

182 S. Marcelino et al.

analogous notion of clone of multi-functions does not behave well, and general
upper-bounds cannot be obtained. Consequently, we will show that checking if
the logics defined by two finite PNmatrices have the same theorems, or even just
checking if some of the logics has any theorem, are both undecidable problems,
by exploring a useful connection with term-DAG-automata [1,11].

The paper is organized as follows. In Sect. 2 we recall PNmatrices, their
intrincacies, and associated logics, and introduce the computational properties
we will analyse in the paper, along with some simple examples. As a warming
up for the next sections, we show that the problems of satisfiability and validity
are not essentially harder for PNmatrices. Section 3 addresses the problem of
checking whether or not every formula is a theorem in the logic defined by
a finite PNmatrix. We show that the problem is easily decidable, in constant
time, in the absence of partiality. Further, we show that when having partiality
without non-determinism the problem can still be decided in polynomial time,
whereas the simultaneity of partiality and non-determinism turns the problem
NP-complete. Then, in Sect. 4 we study the problem of checking the existence
of theorems in the logic defined by a finite PNmatrix. We show that in the
absence of non-determinism the problem can be decided in exponential time, and
even in polynomial time in the presence of 0-ary connectives. However, allowing
non-determinism makes the problem undecidable. To prove this result, we briefly
recall term-DAG-automata, and show how an undecidable problem concerning
term-DAG-automata can be reduced to the existence of theorems in a related
PNmatrix. Section 5 is dedicated to our most interesting result, concerning the
problem of determining whether two given PNmatrices determine logics with
the same set of theorems. Namely, we show that the problem is decidable in
double-exponential time in the absence of non-determinism, but again becomes
undecidable in the presence of non-determinism. This undecidability result is
a consequence of a simple reduction from the undecidability of the theorem
existence problem of the previous section. We conclude, in Sect. 6, with a brief
analysis of the results obtained and an outline of future research. We also attach
an appendix containing the more technical details of some proofs.

2 Warming Up

We start by introducing partial non-deterministic matrices (PNmatrices), and
their induced logics. We also define the (standard) computational problems we
will study, and illustrate them with a few examples.

A signature Σ is a family of connectives indexed by their arity, Σ = {Σ(k) :
k ∈ N}. The set of formulas over Σ based on a set of propositional variables
P is denoted by LΣ(P). The set of subformulas (resp. variables) of a formula
ϕ ∈ LΣ(P) is denoted by sub(ϕ) (resp. var(ϕ)) and the size of a formula size(ϕ)
is the cardinality of the set sub(ϕ) (that is, the size of the DAG representation
of ϕ - we will get back to this in the end of this section). We say that formulas
in LΣ(∅) are closed. A substitution is a mapping σ : P → LΣ(P), uniquely
extendable into an endomorphism ·σ : LΣ(P) → LΣ(P).

A logic over Σ is a Tarskian relation �⊆ ℘(LΣ(P)) × LΣ(P) satisfying

Computational Properties of Partial Non-deterministic Matrices 183

• Γ � ϕ if ϕ ∈ Γ (reflexivity),
• Γ ∪ Γ ′ � ϕ if Γ � ϕ (monotonicity),
• Γ � ϕ if Δ � ϕ and Γ � δ for every δ ∈ Δ (transitivity)
• Γ σ � ϕσ for every σ : P → LΣ(P), if Γ � ϕ (substitution invariance)

We say that ϕ ∈ LΣ(P) is a theorem of � whenever ∅ � ϕ, and denote the
set of theorems of � by thm(�).

A Σ-PNmatrix, is a tuple M = 〈A, ·M,D〉 where A is the set of truth-values,
D ⊆ A is the set of designated truth-values, and for each c© ∈ Σ(k), the function
c©M : Ak → ℘(A) interprets the connective c©. We use sig(M) to denote the
underlying signature of a PNmatrix M. A PNmatrix M is finite if it contains only
a finite number of truth-values and ΣM is finite. We denote by PNMatr the class
of all PNmatrices. There are 3 proper subclasses of PNMatr, that are particularly
interesting: the class Matr of logical matrices is recovered when, for every c© ∈
Σ(k) and x1, . . . , xk ∈ A, c©M(x1, . . . , xk) is a singleton; the class PMatr of
Pmatrices, when for every c© ∈ Σ(k) and x1, . . . , xk ∈ A, c©M(x1, . . . , xk) has at
most one element; and the class NMatr of Nmatrices, when for every c© ∈ Σ(k)

and x1, . . . , xk ∈ A, c©M(x1, . . . , xk) �= ∅. Clearly, Matr ⊆ PMatr ∩ NMatr and
PMatr ∪ NMatr ⊆ PNMatr. The size of a PNmatrix is the size of the tables
describing the interpretation of each connective which, for a fixed signature, is
polynomial in the number of its truth-values.

Given X ⊆ A, MX = 〈X, ·MX
,D ∩ X〉 is the sub-PNmatrix of M obtained

by restricting it to values in X, that is, c©MX
(x1, . . . , xk) = c©M(x1, . . . , xk)∩X

for c© ∈ Σ(k) and x1, . . . , xk ∈ X. We say that X �= ∅ is a (non-empty) total
component of M, or simply total, whenever MX is an Nmatrix. We denote by
TotM the set of total components of M. We say X is a maximal total component
when X ∈ TotM and Y /∈ TotM for all Y � X. We say that a non-empty set of
truth-values X is compatible in M if X ⊆ Y for some Y ∈ TotM.

A partial valuation of M = 〈A, ·M,D〉 is a function v : Γ → A, where
Γ is a set closed for subformulas, such that, for every c©(ϕ1, . . . , ϕn) ∈ Γ ,
v(c©(ϕ1, . . . , ϕn)) ∈ c©M(v(ϕ1), . . . , v(ϕn)). If Γ = LΣ(P), then v is said to
be a total valuation, or simply a valuation. We use Val(M) to denote the set of
all valuations over M. Partial valuations over Nmatrices are always extensible to
valuations. However, when a PNmatrix is genuinely partial we additionally have
to check if the image of the partial valuation is compatible.

Given a PNmatrix M = 〈A, ·M,D〉, every formula ϕ ∈ Lsig(M)(P), where
var(ϕ) = {p1, . . . , pk}, defines a multi-function ϕM : Ak → ℘(A) such that
ϕM(x1, . . . , xk) = {v(ϕ) : v ∈ Val(M), v(pi) = xi, 1 ≤ i ≤ k}.

The logic induced by a PNmatrix M is defined as Γ �M ϕ whenever, for
every valuation over M, if v(Γ) ⊆ D then v(ϕ) ∈ D. This generalizes the usual
semantics on matrices.

The main results of this paper are on the computational and complexity sta-
tus of the following problems regarding the logics defined by finite PNmatrices.
For C ⊆ PNMatr we consider the following problems:

• SAT(C) – given finite M ∈ C and ϕ ∈ Lsig(M)(P), check if v(ϕ) is designated
for some v ∈ Val(M),

184 S. Marcelino et al.

• VAL(C) – given finite M ∈ C and ϕ ∈ Lsig(M)(P), check if v(ϕ) is designated
for every v ∈ Val(M),

• ∀Thm(C) – given finite M ∈ C, check if thm(�M) = LΣ(P),
• ∃Thm(C) – given finite M ∈ C, check if thm(�M) �= ∅,
• EqThm(C) – given two finite M1, M2 ∈ C s.t. sig(M1) = sig(M2), check if
thm(�M1) = thm(�M2)

The problems SAT and VAL are the usual validity and satisfiability problems,
now stated over (logics of) PNmatrices. The validity problem can of course be
stated as checking if ϕ ∈ thm(�M). It is well known that the SAT and VAL prob-
lems are NP-complete and coNP-complete, respectively, already for logics
induced by finite matrices. In the next example we recall the 3SAT problem for
classical logic, a restricted version of SAT that is already NP-complete.

Example 1. Let B = {{0, 1}, ·B, {1}} be the Boolean matrix over a signature
containing unary ¬ and binary ∨ and ∧, defined by the tables

∧B 0 1
0 0 0
1 0 1

∨B 0 1
0 0 1
1 1 1

¬B

0 1
1 0

An instance of 3SAT is a formula of the form ϕ = C1 ∧ · · · ∧ Cn, where each
clause Ci is the disjunction of exactly three literals Li,1 ∨ Li,2 ∨ Li,3 with each
literal Li,j ∈ P ∪ {¬p : p ∈ P}. The problem of determining the satisfability of
instances of 3SAT over B is already NP-complete [13,18]. Further ahead, we
will make standard use of this fact in NP-hardness proofs. �

On the other hand, it is known [6,7] that the complexity of these problems
does not increase when ranging over the wider class of finite PNmatrices.

Proposition 2. The problem SAT (resp., VAL) over finite PNmatrices is in
NP (resp., coNP).

Proof. Given a finite Σ-PNmatrix M = 〈A, ·M,D〉 and ϕ ∈ LΣ(P) we guess
X ⊆ A, together with a mapping f : sub(ϕ) → X. We check in linear time
on the size of M if MX is total and, if so, we check if f is a partial valuation,
which can be done in linear time on the size of ϕ, and also if f(ϕ) ∈ D. Hence,
SAT(PNMatr) ∈ NP.

Of course, ϕ is a theorem of �M if and only if ϕ is not satisfiable in M′ =
〈A, ·M, A \ D〉, and thus VAL(PNMatr) ∈ coNP. �

It will be useful to refer to the duals of the remaining problems, denoted by
∀Thm, ∃Thm and EqThm, respectively. We are interested in understanding how
instantiating C as Matr, PMatr, NMatr and PNMatr affects the hardness of the
problems. This will be the subject of Sects. 3, 4, and 5. Before, let us look at
some examples of (P)(N)matrices and their induced logics and theorems.

Computational Properties of Partial Non-deterministic Matrices 185

Example 3. Let M be a PNmatrix. If M contains a single truth-value then either
M is a matrix, or else Val(M) = ∅ and thm(�M) = Lsig(M)(P). Every formula is
a theorem, also, in case every truth-value in M is designated. On the other hand,
if Val(M) �= ∅ and every truth-value of M is non-designated we necessarily have
that thm(�M) = ∅. Let us look beyond these extreme cases.

For simplicity, let us consider a signature with a single binary connective →,
and the following five (Boolean) →-Nmatrices 2x = 〈{0, 1}, ·x, {1}〉, defined for
x ∈ {cl,mp, free, empty, false} as follows.

→cl 0 1
0 1 1
1 0 1

→mp 0 1
0 0, 1 0, 1
1 0 0, 1

→in 0 1
0 0, 1 0, 1
1 0, 1 1

→free 0 1
0 0, 1 0, 1
1 0, 1 0, 1

→empty 0 1
0 1 1
1 0 ∅

→false 0 1
0 0, 1 ∅
1 0, 1 0, 1

Clearly, 2cl ∈ Matr, 2mp,2in,2free ∈ Nmatr, 2empty ∈ Pmatr, and 2false ∈
PNmatr. All these PNmatrices define different sets of valuations. For each v :
LΣ(P) → {0, 1}, v ∈ Val(2cl) precisely when v(ϕ → ψ) = 0 iff v(ϕ) = 1 and
v(ψ) = 0. Clearly, Val(2cl) ⊆ Val(2x) for x ∈ {mp, in, free}. Val(2mp) is of course
larger, as v ∈ Val(2mp) if v(ϕ → ψ) = 0 whenever v(ϕ) = 1 and v(ψ) = 0.
Similarly, v ∈ Val(2in) if v(ϕ → ψ) = 1 whenever v(ϕ) = v(ψ) = 1. Note that
non-determinism allows for new choices to be made every time a connective is
applied to the values attributed to the subformulas. However, every occurence
of a formula must be given the same value. Given v ∈ Val(2in) we can have
v(p → p) = 0 or v(p → p) = 1, but when determining the value of v((p →
p) → (p → p)), if v(p → p) = 1 there are no choices to be made and we
must have v((p → p) → (p → p)) = 1, if v(p → p) = 0 then we still might
have v((p → p) → (p → p)) take any value. Therefore, Val(2free) collects all
possible functions from the language to {0, 1}, as the structure of 2free imposes
no restrictions. On the other hand, partiality destroys the locality of valuations.
When looking for models we must guarantee that the partial valuations use only
compatible values. Assume that v ∈ Val(2empty), then v cannot take the value
1 as →empty (1, 1) = ∅, but then it cannot take the value 0 either, since →empty

(0, 0) = {1}. Hence, Tot2empty = ∅ and Val(2empty) = ∅. If v ∈ Val(2false) then
clearly v cannot mix 0 and 1 as →false (0, 1) = ∅. Thus, Tot2false

= {{0}, {1}} and
Val(2false) = {v0, v1} where vx is the constant valuation with value x. So 2false
either satisfies every formula or falsifies every formula. It is well known [27] that
removing a valuation that designates every value does not change the resulting
logic and, therefore, 2false has the same logic as the PNmatrix with no designated
elements. Letting �2x = �x:

• �cl is the logic of classical implication,
• �mp is the logic axiomatized by the single rule p , p→q

q (modus ponens),
• �in is axiomatized by the rule p , q

p→q ,
• �free is the smallest logic in →, axiomatized by the empty set of rules,

186 S. Marcelino et al.

• �empty is the largest (inconsistent) logic in →, axiomatized by the rule p ,
• �false is the almost inconsistent logic, axiomatized by p

q .

Hence, we have that thm(�mp) = thm(�in) = thm(�free) = thm(�false) = ∅
and thm(�empty) = LΣ(P). The fact that completely different logics can have
the same set of theorems was the initial reason for the definition of logic as a
consequence relation. Also, the logic of classical implication contains theorems
and non-theorems, thus ∅ �= thm(�cl) �= LΣ(P).

It is also relevant to note that, for every matrix M, if ϕM = ψM then the two
formulas are not only logically equivalent (ϕ ��M ψ) but also interchangeable
in every context. With non-determinism the situation is dramatically different.
Note that for M ∈ {2mp,2free} and ϕ = (p → p) and ψ = (p → p) → p we
have that ϕM = ψM (outputting the set {0, 1} for both inputs) but ϕ ��M ψ and
ψ ��M ϕ. �

In the above example, Boolean partial non-deterministic matrices were
enough to illustrate both the effects of partiality and non-determinism, and
the problems we shall investigate. A more in-depth analysis of logics defined
by Boolean partial non-deterministic matrices can be found in [20]. We should
emphasize, though, that the full power of partiality and non-determinism is bet-
ter appreciated when considering PNmatrices with more than two truth-values,
for which we refer the reader to the literature, notwithstanding the few examples
we shall present later in the paper.

3 Checking Theorem Universality

Given a PNmatrix M, checking ∀Thm or, dually, if �M has a non-theorem is
trivial in the absence of partiality since, when M is a (N)matrix, �M has a
non-theorem if and only if M has non-designated elements, so that p is a non-
theorem. Checking if the set of non-designated elements is non-empty can be
done in at most linear time. In the presence of partiality, however, the problem
is a little harder since, additionally, one needs to check if there is a total com-
ponent containing a non-designated element. Before tackling the main results
of this section we will show some computational intricacies of detecting total
components in PNmatrices.

3.1 Computing Total Components

First, let us see how Pmatrices can host an exponential number (on the number
of truth-values) of total components.

Example 4. Consider a signature containing a single binary connective g. Fixed
a set I, consider a {g}-Pmatrix I with domain AI = {0i : i ∈ I} ∪ {1i : i ∈ I}
and let

gI(x, y) =

{
∅ if {x, y} = {0i, 1i} for some i ∈ I,

x otherwise.

Computational Properties of Partial Non-deterministic Matrices 187

Easily, X ⊆ AI is not compatible in I as long as 0i, 1i ∈ X for some i ∈ I.
Consequently, we have that Tot

I
= {X ⊆ AI : {0i, 1i} �⊆ X for each i ∈ I}.

This means that if I has n ∈ N elements then I has 3n total components, and 2n

maximal total components.
Note that all the matrices IX corresponding to maximal total components X

are isomorphic. However, by enriching the signature of I with more connectives,
we could defined a new matrix I′ in such a way that the submatrices I′

X would
all induce different logics, whose intersection would still be induced by I′.

Note also that if we changed the definition of gI(x, y) = x to gI(x, y) = AI

when the operation is non-empty, making I a PNmatrix, we would end up with
the same set of total components. �

Hence, Pmatrices can host an exponential number of matrices and, similarly,
PNmatrices can host an exponential number of Nmatrices. However, a crucial
difference appears in the computational cost of checking if a set of truth-values
is compatible when adding partiality and non-determinism, as the following two
results show.

Proposition 5. Let M = 〈A, ·M,D〉 be a finite Pmatrix. Given X ⊆ A, the
problem of deciding if X is compatible in M is in P.

Proof. This problem amounts to checking if the empty entries in the truth-tables
of M can be avoided when starting with the truth-values in X. If MX is total then
clearly X itself is a total component. If there is an empty entry in MX and that
entry is already empty in M then X is not contained in any total component. If,
instead, the empty entry in MX corresponds to a non-empty entry in M, then
let Y collect those values. Clearly, X ∩ Y = ∅. Now make Z = X ∪ Y . Then
X is contained in a total component if and only if Z is. Hence, we can repeat
the strategy above for Z. We are bound to get a definite answer after at most
|A \ X| steps. �

The previous procedure only works in a deterministic setting, as we face no
choices when building the set Z since the entries of M have at most one value. In
the presence of non-determinism, it might be the case that an empty table entry
can be filled with more than one value. In this case, every possible value needs
to be checked, because it may be that only one of the available values leads to
a total component.

Example 6. Consider the PNmatrix M = 〈A, ·M,D〉 over a signature with a sin-
gle connective g, with D ⊆ A = {a, b, c} and

gM a b c
a b, c c A
b A A ∅
c c A A

In order to determine whether X = {a} is compatible, as gM(a, a) = {b, c} we
need to consider two cases Z = {a, b} and Z = {a, c}. However, only the choice

188 S. Marcelino et al.

{a, c} allows us to conclude that X is compatible, since {a, c} ∈ TotM. Choosing
{a, b} does not lead to a total component, since gM(a, b) = {c} and gM(b, c) = ∅.

�
We still know that the compatibility problem is in NP since, given a PNma-

trix M = 〈A, ·M,D〉 and X ⊆ A, we can guess Y such that X ⊆ Y and check
if Y ∈ TotM. Moreover, for PNmatrices checking if X is compatible is already
NP-complete. In fact, this holds already for X = ∅ as the next theorem shows.

Theorem 7. The problem of deciding if a given finite PNmatrix has a total
component is NP-complete.

Proof. Knowing that the problem is in NP we just have to show it is NP-hard.
For that purpose, we will reduce 3SAT to it. Let ϕ = C1 ∧ · · · ∧ Cn be an
instance of 3SAT (recall Example 1). Let var(ϕ) = {x1, . . . , xk} for some k ∈ N.
For each literal Li,j , let xi,j be such that var(Li,j) = {xi,j}. Let Σ be a signature
containing one unary function symbol cycle, one binary function symbol cons and
a ternary function symbol Ci, for every 1 ≤ i ≤ n. Consider the Σ-PNmatrix
M = 〈A, ·M,D〉 where A = {xr : 1 ≤ r ≤ k} ∪ {¬xr : 1 ≤ r ≤ k}, D ⊆ A (the
choice of D is irrelevant), and

consM(y1, y2) =

{
∅ if y1 = xr and y2 = ¬xr for some 1 ≤ r ≤ k,

A otherwise,

cycleM(y) =

{
{xr+1,¬xr+1} if y = xr or y = ¬xr for some 1 ≤ r < k,

{x1,¬x1} if y = xk or y = ¬xk,

(Ci)M(y1, y2, y3) =

{
∅ if yj ∈ {xi,j ,¬xi,j} and yj �= Li,j for all j ∈ {1, 2, 3},

A otherwise,

for every 1 ≤ i ≤ n.
We will now show that Tot(M) �= ∅ if and only if ϕ is satisfiable. Notice that,

if X ∈ Tot(M), then it must satisfy the following properties: (1) the definitions
of consM and cycleM guarantee that, for every 1 ≤ r ≤ k, exactly one among xr

and ¬xr must be in X (2) for every 1 ≤ i ≤ n, the definition of (Ci)M guarantees
that Li,j ∈ X for some j ∈ {1, 2, 3}.

For the left to right direction, let X ∈ Tot(M), by property (1), we can define

vX(xr) =

{
1 if xr ∈ X,

0 if ¬xr ∈ X,

and, by property (2), we have that vX(ϕ) = 1.
For the other direction, suppose v is a variable assignment such that v(ϕ) = 1.

Consider the set

Xv = {xi : v(xi) = 1} ∪ {¬xi : v(xi) = 0}.

Computational Properties of Partial Non-deterministic Matrices 189

It is obvious that Xv satisfies the property (1), so consM and cycleM are total when
restricted to Xv. Furthermore, since v(ϕ) = 1, we have that for every 1 ≤ i ≤ n,
there is j ∈ {1, 2, 3} such that v(Li,j) = 1 and, consequently, Li,j ∈ Xv. This
ensures that (Ci)M is total as well, so Xv ∈ Tot(M). �

3.2 Determining the Existence of Non-theorems

As discussed in the begining of this section, theorem universality, or dually the
existence of a formula that is not a theorem, can be decided in constant time
for logical (N)matrices. On the other hand, a P(N)matrix has a non-theorem if
and only if there is a total component containing a non-designated element. As
the next theorem shows, partiality alone still allows for an efficient procedure to
decide ∀Thm.

Theorem 8. The problem ∀Thm for finite Pmatrices is in P.

Proof. In order to decide ∀Thm(PMatr) we need to check, for a given Pmatrix
M = 〈A, ·M,D〉, if there is some X ∈ TotM such that X � D. We can apply the
polynomial procedure presented in Proposition 5 to every singleton containing a
non-designated value. This procedure runs in polynomial time in the size of M,
so ∀Thm(PMatr) ∈ P. �

Assuming P �= NP, we conclude that the scenario changes radically when
we allow for partiality together with non-determinism.

Theorem 9. The problem ∀Thm for finite PNmatrices is coNP-complete.

Proof. We show that ∀Thm(PNMatr) ∈ NP-complete. This is equivalent to
the problem of checking, for a given PNmatrix M = 〈A, ·M,D〉, if there is X ∈
TotM with X � D. The problem is clearly in NP, since we can guess X ⊆ A
with X � D, and check in polynomial time on the size of M if X ∈ TotM.
NP-hardness of ∀Thm(PNMatr) follows from Theorem 7 and the fact that M

has a total component if and only if M′ = 〈A, ·M, ∅〉 has a total component
containing a non-designated value (since every element of M′ is non-designated).

�

4 Checking Theorem Existence

We now address the problem ∃Thm. Note that for any PNmatrix, by substitution
invariance, there are theorems if and only if there are theorems in (at most) a
single variable. Furthermore, if the signature has 0-ary connectives, then there
are theorems if and only if there are closed theorems.

Theorem 10. The problem ∃Thm for finite (P)matrices is in EXPTIME, and
its restriction to (P)matrices over signatures containing at least one 0-ary con-
nective is in P.

190 S. Marcelino et al.

Proof. Let M = 〈A, ·M,D〉 be a Σ-Pmatrix with m = |Σ| and n = |A|. Of course,
if Σ(k) = ∅ for every k, then M ∈ ∃Thm if and only if A = D, which can be
checked in linear time. Henceforth we will assume Σ(j) �= ∅ for some j. Let k be
the largest such that Σ(k) �= ∅.

Suppose Σ(0) �= ∅. If c©M = ∅ for some c© ∈ Σ(0), then Val(M) = ∅ and
Thm(M) = LΣ(P) �= ∅. Otherwise, �M has theorems if and only if it has
closed theorems, i.e., if there is a designated element accessible from the set
X0 gathering the truth-values obtained by interpreting the 0-ary connectives.
This can be checked in polynomial time on n. Start by constructing the set
X0 =

⋃
c©∈Σ(0) c©M (where each element is associated with some atomic formula

c©) and check if it is compatible. If not then Thm(M) �= ∅. Otherwise, proceed
to the next step. In step i + 1 define

Xi+1 =
⋃

{ c©M(x1, . . . , xk) : x1, . . . , xk ∈ Xi, c© ∈ Σk} ∪ Xi.

Each new element of Xi+1 comes from some x1, . . . , xk ∈ Xi and c© ∈ Σk and we
associated it with the formula c©(ϕ1, . . . , ϕk) whenever each ϕj was associated
with xj . If at any point a designated element is generated, the associated formula
is a theorem. If the fixed point is reached without this happening then Thm(M) =
∅. Since Xi ⊆ A, for every i, we must have Xr+1 = Xr for some r ≤ |A \ X0|.
Furthermore, in each step, the procedure evaluates, at most, m × nk potentially
new functions, which is polynomial in the size of M. We conclude that ∃Thm
over Pmatrices with Σ(0) �= ∅ is in P.

Now suppose Σ(0) = ∅. In order to deal with partiality, we extend the app-
roach in [16], dealing with the total deterministic case. We only need to consider
formulas with at most one variable, and for every ϕ ∈ LΣ({p}), we have that
ϕ ∈ Thm(M) if and only if ϕM(a) ∈ D for every a such that {a} is compatible.
Let Y = {a ∈ A : {a} is compatible}, the problem is, therefore, equivalent to
checking if there is an expressible 1-ary function f such that f(Y) ⊆ D in which
case the function is said to be designated. In a deterministic setting, the functions
expressed by complex formulas are the composition of the interpretation function
of the head connective with the functions expressed by the immediate subformu-
las. Therefore, the set of all 1-ary functions expressible in the underlying algebra
can be algorithmically generated as it is usually done when calculating clones
over finite algebras [19].

Start by constructing the set Y , which Proposition 5 guarantees that can be
done in polynomial time. In the first step we make X0 = {pM}, whose only
element is the identity function, associated with the formula p. In step i + 1, we
make

Xi+1 = { c©M(f1, . . . , fk) : f1, . . . , fk ∈ Xi, c© ∈ Σ(k)} ∪ Xi.

We associate each new function f ∈ Xi+1 with some formula: we pick some
c© ∈ Σ(k) and f1, . . . , fk ∈ Xi such that f = c©M(f1, . . . , fk) and associate f
with the formula c©(ϕ1, . . . , ϕk) whenever f� was associated with the formula
ϕ�, for 1 ≤
 ≤ k. If at any point a function f is generated such that f(Y) ⊆ D,
then the associated formula is a theorem. If the fixed point is reached without

Computational Properties of Partial Non-deterministic Matrices 191

this happening, then Thm(M) = ∅. Since there are at most nn 1-ary functions
over a set with n-elements, we conclude that a fixed point must be found in, at
most, nn steps. In each step, the procedure evaluates, at most,

m × (nn)k = m × nnk = m × 2log(n)nk

potentially new functions. We conclude that this procedure runs in exponential
time and so ∃Thm(PMatr) ∈ EXPTIME. �

In the following example we give a hint at why a similar strategy may not
work in the presence of non-determinism. A crucial difference from the deter-
ministic case is that the (multi)-functions represented by formulas are sensitive
to the syntax, as a repeated subformula cannot have a different value even if
there are multiple choices. On a matrix M the function c©(ϕ1, . . . , ϕk)M is the
function obtained by composing the function c©M(p1, . . . , pk) with the functions
(ϕ1)M, . . . , (ϕk)M. On an Nmatrix c©(ϕ1, . . . , ϕk)M is not a function but a multi-
function. Crucially, the multi-function c©(ϕ1, . . . , ϕk)M does not depend only on
the multi-functions c©M and (ϕ1)M, . . . , (ϕk)M.

Hence, contrary to what happens in the deterministic case, when generating
the expressible multi-functions in an Nmatrix M (to find if there are theorems,
or for any other purpose), we cannot just keep the information about the multi-
functions themselves but also about the formulas that produce them. Otherwise
we might generate a non-expressible function (as every occurrence of a sub-
formula must have the same value) or miss some multi-functions that are still
expressible.

Example 11. Consider M = 〈{a, b, c}, ·M,D〉 over a signature Σ with a single
binary connective g with

gM a b c
a c a b, c
b b c a, c
c b, c a, c c

For ϕ ∈ LΣ({p}), let us identify the unary multi-function expressed
by ϕ with the 3-tuple gathering the output set for each input, ϕM =
〈ϕM(a), ϕM(b), ϕM(c)〉. The formula p is associated to the identity multi-function
pM = 〈{a}, {b}, {c}〉 and the formula g(p, p) is associated to the constant multi-
function g(p, p)M = 〈{c}, {c}, {c}〉 corresponding to the diagonal of gM. The for-
mulas ϕ = g(g(p, p), p) and ψ = g(p, g(p, p)) induce the same multi-function
〈{b, c}, {a, c}, {c}〉. However, g(ϕ,ϕ)M = g(ψ,ψ)M = g(p, p)M but g(ϕ,ψ)M =
g(ψ,ϕ)M corresponds to the multi-function 〈{a, c}, {b, c}, {c}〉, thus showing the
above mentioned sensitivity to the syntax.

Note that gM(ϕM, ψM) = 〈{a, b, c}, {b, c}, {c}〉 �= g(ϕ,ψ)M. That is, the multi-
function expressed by g(ϕ,ψ) is different from the composition gM(ϕM, ψM) of
the involved multi-functions (as relations). �

As we shall see, the phenomenon illustrated in the previous example has
a deep effect on the decidability of problem ∃Thm (and consequently also on
problem EqThm).

192 S. Marcelino et al.

4.1 A Bridge with (Term-DAG) Automata

To establish our undecidability results, we will take advantage of the undecid-
ability results for term-DAG-automata in [1]. Recall that a DAG is a directed
acyclic graph. A term-DAG is a DAG whose nodes correspond to the subformulas
of some formula and whose arrows are numbered according to their arity point-
ing to the immediate subformulas in their corresponding position, as illustrated
below. When discussing term-DAG-automata we will identify a formula with its
term-DAG representation, and the nodes of the DAG with the corresponding
subformulas. As an example, consider two term-DAGs

∨ r

∨ p ¬ q
2

1

2

1

1

∨

∨ ¬ p1

1

2

2

1

These represent, respectively, the clauses p ∨ (¬q ∨ r) and p ∨ (¬p ∨ p) (see
Example 1).

A Σ-(finite) term-DAG automaton is a tuple A = 〈Σ,Q,F, δ〉 where Q is a
finite non-empty set of states, F ⊆ Q is the set of final (or accepting) states,
and δ is a set of transition rules of the form 〈f(q1, . . . , qn), q〉, where f ∈ Σ is
a function symbol of arity n and q1, . . . , qn, q ∈ Q. A run of a A on a term-
DAG ϕ is a mapping r : sub(ϕ) → Q such that, for every subformula node u,
if the connective labelling u and heading the subformulas is f of arity n, then
〈f(r(u1), . . . , r(un)), r(u)〉 ∈ δ, where u1, . . . , un are the successor vertices of u,
corresponding to its immediate subformulas, given in order. If r(ϕ) ∈ F then
the run is said to be accepting. A term-DAG automaton A is said to accept a
term-DAG ϕ if there is an accepting run of A on ϕ. We denote by L(A) the
language of the automaton A, i.e., the set of all term-DAGs accepted by A.

The universality problem for finite term-DAG is the problem of determining,
for a given finite Σ-term-DAG automaton A, if L(A) = LΣ(∅). This problem
was shown to be undecidable [1, Theorem 4] and it will help us establishing our
undecidability results.

Given a Σ-term-DAG A = 〈Σ,Q,F, δ〉, consider the Σ-Nmatrix MA =
〈Q ∪ {∗}, ·MA , Q \ F 〉 where, for every f ∈ Σ of arity n and q1, . . . , qn ∈ Q,
fMA(q1, . . . , qn) = {∗} if there is no rule in δ with f(q1, . . . , qn) as its left side,
and fMA(q1, . . . , qn) = {q ∈ Q : 〈f(q1, . . . , qn), q〉 ∈ δ} otherwise.

Proposition 12. Let A be a Σ-term-DAG, then L(A) is the set of closed non-
theorems of MA.

Proof. As ·MA codes the transitions of δ, given a closed formula ϕ and a partial
valuation v : sub(ϕ) → Q over M, v(ϕ) is non-designated, i.e., v(ϕ) ∈ F precisely
if v is an accepting run of ϕ in A. �

Theorem 13. The problem ∃Thm for finite PNmatrices is recursively enumer-
able but undecidable.

Computational Properties of Partial Non-deterministic Matrices 193

Proof. The fact that ∃Thm(PNMatr) is recursively enumerable follows easily
from the fact that we can enumerate all formulas with at most one variable and
check whether each of them is a theorem of �M. If there is a theorem, we will
eventually find it.

As for the undecidability proof, we reduce the universality problem for term-
DAG automata to ∃Thm(PNMatr). For a given Σ-term-DAG automata A, we
pick the associated Σ-Nmatrix MA as per Proposition 12. Let MA = 〈A, ·A,D〉
and a /∈ A. Consider Ma

A = 〈A ∪ {a}, ·a,D〉 with

c©a(x1, . . . , xk) =

{
c©M(x1, . . . , xk) if a /∈ {x1, . . . , xk}
{a} otherwise.

Clearly, the theorems of Ma
A are the closed theorems of MA, as formulas with

variables can be falsified by sending the variables to a (see [10]). Hence, by
Proposition 12, we conclude that L(A) = LΣ(∅) if and only if Thm(Ma

A) = ∅.
The undecidability of ∃Thm(PNMatr) follows directly from NMatr ⊆ PNmat.

�

This theorem implies that the situation portrayed in Example 11 is not really
avoidable and, in general, in the presence of non-determinism, there is not a
bound on the size of the formulas that guarantees that we have covered all
expressible multi-functions.

5 Deciding Equality of Theoremhood

We will see that just like in the case of checking the existence of theorems, when
comparing the theorems induced by PNmatrices, the non-determinism spoils
decidability.

Theorem 14. The problem EqThm for finite (P)matrices is in 2-EXPTIME.

Proof. Let M1 and M2 be finite Pmatrices over a signature Σ. Just like in
Theorem 10, when Σ(k) = ∅ for all k, we have that either Thm(Mi) = P when
every truth-value of Mi is designated, or Thm(Mi) = ∅ otherwise. In which
case we can check if Thm(M1) = Thm(M2) in linear time. We now assume that
Σ(k) �= ∅ for some k.

Let n be the maximum cardinality of the sets of truth-values of M1 and M2,
m = |Σ| and k be the largest such that Σ(k) �= ∅. The proof follows by extending
the idea presented in [17] to deal with partiality.

In the absence of non-determinism, a valuation over Mi is completely deter-
mined by the values attributed to the variables, and as there are at most n
possible values, we obtain that ϕ ∈ thm(Mi) if and only if ϕσ ∈ thm(Mi)
for every σ : P → {p1, . . . , pn}. Hence, thm(M1) = thm(M2) if and only if
thm(M1) ∩ LΣ({p1, . . . , pn}) = thm(M2) ∩ LΣ({p1, . . . , pn}).

Suppose M1 and M2 have, respectively, m1 and m2 maximal total compo-
nents. For each 1 ≤ i ≤ m1 and 1 ≤ j ≤ m2 we denote by M1,i and M2,j each

194 S. Marcelino et al.

of the corresponding submatrices. Every formula ϕ ∈ LΣ({p1, . . . , pn}) induces
functions ϕi,j : Mn

i,j → Mi,j , for every choice of i and j. Of course, ϕ is a theorem
of Mi if and only if ϕi,j is a designated function for every 1 ≤ j ≤ mi.

Adapting the idea used in Theorem10, we recursively generate the set of
tuples t = 〈f1,1, . . . , f1,m1 , f2,1, . . . , f2,m2〉, where each of the fi,j correspond
to the n-ary functions expressible in the various maximal total components of
Mi. For each variable p� ∈ {p1, . . . , pn} and each Mi,j we consider the function
(p�)Mi,j

(x1, . . . , xk) = πi,j,�(x1, . . . , xn) where the πi,j,�(x1, . . . , xn) = x� are the
various
-projections in n arguments for each of the maximal total components
of M1 and M2. Given a k-vector h = 〈t1, . . . , tk〉 of (m1 + m2)-tuples

t� = 〈f1,1,�, . . . , f1,m1,�, f2,1,�, . . . , f2,m2,�〉,
define the function over Mi,j by f

c©,h
i,j = c©Mi,j

(fi,j,1, . . . , fi,j,k).
In the first step we consider the set

X0 = {〈π1,1,�, . . . , π1,m1,�, π2,1,�, . . . , π2,m2,�〉 : 1 ≤
 ≤ n},

where each tuple 〈π1,1,�, . . . , π1,m1,�, π2,1,�, . . . , π2,m2,�〉 is associated with a vari-
able p� ∈ {p1, . . . , pn}.

In step i + 1 we make

Xi+1 = Xi ∪ {〈f c©,h
1,1 , . . . , f

c©,h
1,m1

, f
c©,h
2,1 , . . . , f

c©,h
2,m2

〉 : c© ∈ Σk,h ∈ Xk
i }.

Each new tuple in Xi+1, generated from a connective c© and a vector h =
〈t1, . . . , tk〉, is associated with the formula c©(ϕ1, . . . , ϕk) whenever ϕ� was asso-
ciated with the tuple t�.

An expressible function fi,j is said to be designated if it outputs a desig-
nated element for every possible input. We conclude that thm(M1) �= thm(M2),
if at any point we generate a tuple t = 〈f1,1, . . . , f1,m1 , f2,1, . . . , f2,m2〉 such that
all f1,1, . . . , f1,m1 are designated and some among f2,1, . . . , f2,m2 is not, or all
f2,1, . . . , f2,m2 are designated and some among f1,1, . . . , f1,m1 is not. Further-
more, the formula associated with that tuple testifies the difference between
thm(M1) and thm(M2). Otherwise, we continue to the next step until a fixed
point is reached, in which case we conclude that thm(M1) = thm(M2).

Since there are, at most, nnn

of n-ary expressible functions over a set with
n elements, we have that |Xi| ≤ (nnn

)m1+m2 ≤ (nnn

)2
n+1

, and the fixed point
Xr+1 = Xr must be reached for

r ≤ (nnn

)2
n+1

= n2n+1×nn ≤ n2n
2+n+1 ≤ 2n×2n

2+n+1 ≤ 22
n×2n

2+n+1
= 22

n2+2n+1
.

Furthermore, in each step i, it takes m×|Xi|k×(m1+m2) ≤ m×22
n2+2n+1 ×2n+1

operations to construct the set Xi+1, so the procedure runs in double-exponential
time and EqThm(PMatr) ∈ 2-EXPTIME. �

In the presence of non-determinism and the consequent lack of a bound in
the depth of formulas that may express new multi-functions, we have again a
negative result for testing the equality of the sets of theorems in the logics defined
by (P)Nmatrices.

Computational Properties of Partial Non-deterministic Matrices 195

Theorem 15. The problem EqThm for finite PNmatrices is undecidable and
co-recursively enumerable.

Proof. It is clear that EqThm(PNMatr) is recursively enumerable. Given M1 and
M2 and an enumeration of their formulas, for each we check if it is a theorem
of �M1 and not �M2 , and vice-versa. If so, the procedure terminates and the
matrices have a different set of theorems. If their sets of theorems are distinct
we are bound to find the difference at some point.

However, there is no bound allowing us to conclude in general that the sets of
theorems of �M1 and �M2 are the same, and the problem EqThm(PNMatr) is in
fact undecidable. To see that let us reduce the problem ∃Thm(PNMatr) (already
proven to be undecidable in Theorem13) to EqThm(PNMatr).

For a given signature Σ, consider the Nmatrix Mfree = 〈{0, 1}, ·free, {1}〉 with
c©free(x1, . . . , xk) = {0, 1} for every c© ∈ Σk and x1, . . . , xk ∈ {0, 1}. Then, given
a Σ-PNmatrix M, we have thm(�M) = ∅ if and only if thm(�M) = thm(�Mfree

). �

6 Conclusions and Further Work

In this paper we have shown that the computational properties of PNmatrices
are, in many cases, harder than those of logical matrices. Even worse, properties
like the existence of a theorem, or equality of the sets of theorems, become
undecidable. Our results are summarized in the table below. Recall that Σ0

1

and Π0
1 correspond, in the arithmetical hierarchy, precisely to the classes of

undecidable problems which are nevertheless recursively enumerable and co-
recursively enumerable, respectively.

C SAT(C) VAL(C) ∀Thm(C) ∃Thm(C) EqThm(C)
Matr NP coNP P EXPTIME 2-EXPTIME
PMatr NP coNP P EXPTIME 2-EXPTIME
NMatr NP coNP P Σ0

1 Π0
1

PNMatr NP coNP coNP Σ0
1 Π0

1

Notwithstanding, these facts do not hinder the considerable usefulness of using
partiality and non-determinism in semantical approaches to logic, as explained
in the introduction, and the search for necessary and/or sufficient conditions for
such properties to hold, namely by means of rexpansion homomorphisms and
generalized algebraic techniques.

The results in this paper are not definitive, though, as they do not settle
the initial motivating problem posed by Zohar and Avron, of checking whether
two Nmatrices define the same logic. In future work we aim at applying similar
ideas and techniques to address that problem, both in the Set × Fmla setting of
Tarskian logics as considered in this paper, and in the more general Set × Set
setting of multiple-conclusion logics [25,26]. We also want to study the compu-
tational import of other crucial properties, namely monadicity [7,22], which is
instrumental for the automated treatment of the underlying logics using analytic
calculi.

196 S. Marcelino et al.

Concerning the techniques used in this paper, it is certainly important to
further explore the relationship between PNmatrices and term-DAG-automata,
and understand it at the light of the introduction of infectious values [10] as used
in the proof of Theorem 13. Further, note that the computational characteriza-
tions shown in the table are all tight, though completeness is not mentioned, for
simplicity, with the possible exception of the EXPTIME and 2-EXPTIME
entries. We expect that also here, a careful reduction from the bounded halting
problem for counter machines may help settle the EXPTIME-completeness
of ∃Thm(PMatr).

References

1. Anantharaman, S., Narendran, P., Rusinowitch, M.: Closure properties and deci-
sion problems of dag automata. Inf. Process. Lett. 94(5), 231–240 (2005). https://
doi.org/10.1016/j.ipl.2005.02.004

2. Avron, A.: Non-deterministic semantics for families of paraconsistent logics. In:
Handbook of Paraconsistency, Studies in Logic, vol. 9. College Publications (2007)

3. Avron, A., Lev, I.: Non-deterministic multiple-valued structures. J. Log. Comput.
15(3), 241–261 (2005). https://doi.org/10.1093/logcom/exi001

4. Avron, A., Zamansky, A.: Non-deterministic semantics for logical systems. In: Gab-
bay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic. Handbook of Philo-
sophical Logic, vol. 16. Springer, Dordrecht (2011). https://doi.org/10.1007/978-
94-007-0479-4 4

5. Avron, A., Zohar, Y.: Rexpansions of non-deterministic matrices and their
applications. Rev. Symb. Log. 12(1), 173–200 (2019). https://doi.org/10.1017/
S1755020318000321

6. Baaz, M., Lahav, O., Zamansky, A.: Finite-valued semantics for canonical labelled
calculi. J. Autom. Reason. 51(4), 401–430 (2013). https://doi.org/10.1007/s10817-
013-9273-x

7. Caleiro, C., Marcelino, S.: Analytic calculi for monadic PNmatrices. In: Iemhoff,
R., Moortgat, M., de Queiroz, R. (eds.) WoLLIC 2019. LNCS, vol. 11541, pp.
84–98. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-59533-6 6

8. Caleiro, C., Marcelino, S.: Modular semantics for combined many-valued logics
(2021, submitted)

9. Caleiro, C., Marcelino, S.: On axioms and rexpansions. In: Arieli, O., Zamansky,
A. (eds.) Arnon Avron on Semantics and Proof Theory of Non-Classical Logics.
OCL, vol. 21, pp. 39–69. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-71258-7 3

10. Caleiro, C., Marcelino, S., Filipe, P.: Infectious semantics and analytic calculi
for even more inclusion logics. In: 2020 IEEE 50th International Symposium on
Multiple-Valued Logic, pp. 224–229 (2020). https://doi.org/10.1109/ISMVL49045.
2020.000-1

11. Charatonik, W.: Automata on DAG representations of finite trees. Technical
report, MPI-I-1999-2-001, Max-Planck-Institut für Informatik, Saarbrücken, Ger-
many (1999)

12. Ciabattoni, A., Lahav, O., Spendier, L., Zamansky, A.: Taming paraconsistent (and
other) logics: an algorithmic approach. ACM Trans. Comput. Log. 16(1), 5:1–5:16
(2014). https://doi.org/10.1145/2661636

https://doi.org/10.1016/j.ipl.2005.02.004
https://doi.org/10.1016/j.ipl.2005.02.004
https://doi.org/10.1093/logcom/exi001
https://doi.org/10.1007/978-94-007-0479-4_4
https://doi.org/10.1007/978-94-007-0479-4_4
https://doi.org/10.1017/S1755020318000321
https://doi.org/10.1017/S1755020318000321
https://doi.org/10.1007/s10817-013-9273-x
https://doi.org/10.1007/s10817-013-9273-x
https://doi.org/10.1007/978-3-662-59533-6_6
https://doi.org/10.1007/978-3-030-71258-7_3
https://doi.org/10.1007/978-3-030-71258-7_3
https://doi.org/10.1109/ISMVL49045.2020.000-1
https://doi.org/10.1109/ISMVL49045.2020.000-1
https://doi.org/10.1145/2661636

Computational Properties of Partial Non-deterministic Matrices 197

13. Cook, S.: The complexity of theorem-proving procedures. In: Proceedings of the
3rd Annual ACM Symposium on Theory of Computing, STOC 1971, pp. 151–158.
Association for Computing Machinery (1971). https://doi.org/10.1145/800157.
805047

14. Font, J.: Abstract Algebraic Logic. Mathematical Logic and Foundations, vol. 60.
College Publications (2016)

15. Jorge, J.P., Holik, F.: Non-deterministic semantics for quantum states. Entropy
22(2), 156 (2020). https://doi.org/10.3390/e22020156

16. Kalicki, J.: A test for the existence of tautologies according to many-valued truth-
tables. J. Symb. Log. 15(3), 182–184 (1950). https://doi.org/10.2307/2266783

17. Kalicki, J.: A test for the equality of truth-tables. J. Symb. Log. 17(3), 161–163
(1952). https://doi.org/10.2307/2267687

18. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations.
The IBM Research Symposia Series. Springer, Boston, MA (1972). https://doi.
org/10.1007/978-1-4684-2001-2 9

19. Lau, D.: Function Algebras on Finite Sets. A Basic Course on Many-Valued Logic
and Clone Theory. Springer Monographs in Mathematics. Springer, Heidelberg
(2006). https://doi.org/10.1007/3-540-36023-9

20. Marcelino, S.: An unexpected Boolean connective. Logica Universalis (2021).
https://doi.org/10.1007/s11787-021-00280-7

21. Marcelino, S., Caleiro, C.: Disjoint fibring of non-deterministic matrices. In:
Kennedy, J., de Queiroz, R.J.G.B. (eds.) WoLLIC 2017. LNCS, vol. 10388, pp.
242–255. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-55386-
2 17

22. Marcelino, S., Caleiro, C.: Axiomatizing non-deterministic many-valued general-
ized consequence relations. Synthese 198(22), 5373–5390 (2019). https://doi.org/
10.1007/s11229-019-02142-8

23. Marcos, J.: What is a non-truth-functional Logic? Stud. Logica. 92(2), 215–240
(2009). https://doi.org/10.1007/s11225-009-9196-z

24. Omori, H., Skurt, D.: Untruth, falsity and non-deterministic semantics. In: 2021
IEEE 51th International Symposium on Multiple-Valued Logic, pp. 74–80 (2021).
https://doi.org/10.1109/ISMVL51352.2021.00022

25. Scott, D.: Completeness and axiomatizability in many-valued logic. In: Henkin, L.,
Addison, J., Chang, C., Craig, W., Scott, D., Vaught, R. (eds.) Proceedings of the
Tarski Symposium. Proceedings of Symposia in Pure Mathematics, vol. XXV, pp.
411–435. American Mathematical Society (1974). https://doi.org/10.1007/978-3-
0346-0145-0 24

26. Shoesmith, D., Smiley, T.: Multiple-Conclusion Logic. Cambridge University Press
(1978). https://doi.org/10.1017/CBO9780511565687

27. Wójcicki, R.: Theory of Logical Calculi. Basic Theory of Consequence Operations.
Synthese Library, vol. 199. Kluwer (1998). https://doi.org/10.1007/978-94-015-
6942-2

https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/10.3390/e22020156
https://doi.org/10.2307/2266783
https://doi.org/10.2307/2267687
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/3-540-36023-9
https://doi.org/10.1007/s11787-021-00280-7
https://doi.org/10.1007/978-3-662-55386-2_17
https://doi.org/10.1007/978-3-662-55386-2_17
https://doi.org/10.1007/s11229-019-02142-8
https://doi.org/10.1007/s11229-019-02142-8
https://doi.org/10.1007/s11225-009-9196-z
https://doi.org/10.1109/ISMVL51352.2021.00022
https://doi.org/10.1007/978-3-0346-0145-0_24
https://doi.org/10.1007/978-3-0346-0145-0_24
https://doi.org/10.1017/CBO9780511565687
https://doi.org/10.1007/978-94-015-6942-2
https://doi.org/10.1007/978-94-015-6942-2

Soundness and Completeness Results
for LEA and Probability Semantics

Eoin Moore(B)

City University of New York Graduate Center, New York, NY 10016, USA
emoore@gradcenter.cuny.edu

Abstract. In [2], a logical system called the logic of evidence aggregation
(LEA) was introduced, along with an intended semantics for it called
probability semantics. The goal was to describe probabilistic evidence
aggregation in the setting of formal logic. However, as noted in that
paper, LEA is not complete with respect to probability semantics. This
leaves open the tasks to find sound and complete semantics for LEA and
a proper axiomatization for probability semantics. In this paper we do
both. We define a class of basic models called deductive basic models. We
show LEA is sound and complete with respect to the class of deductive
basic models. We also define an axiomatic system LEA+ extending LEA
and show it is sound and complete with respect to probability semantics.

Keywords: Justification logic · Probability logic

1 Introduction

1.1 Overview of the Logic of Evidence Aggregation

Suppose there is a database of sentences Γ , from which follows the sentence
A. Suppose, in addition, that the sentences in Γ are said not to hold certainly,
but only with some individual probabilities. That is, we are now considering
sentences as events in a probabilistic sense. How can we best estimate the prob-
ability for A to occur, given the probability estimates for Γ?

This is a central question in probability logic. See [1,4,6,7] for alternative
approaches to this problem and the related problem of evidence aggregation. In
[2], an elegant solution was proposed, where the power of the justification logic
format was applied to the probabilistic setting. Let us recall the main ideas of
that paper, for it is the axiom system and semantics introduced there which we
are interested in developing here.

For each event Ci ∈ Γ , let there be some event ui with known probability
P (ui), such that Ci will occur if ui occurs. In a justification logic format, we
write

ui:Ci.

A will follow if a specific configuration of ui’s occurs, written as

u1:C1, . . . un:Cn � t(u1, . . . , un):A.

c© Springer Nature Switzerland AG 2022
S. Artemov and A. Nerode (Eds.): LFCS 2022, LNCS 13137, pp. 198–216, 2022.
https://doi.org/10.1007/978-3-030-93100-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93100-1_13&domain=pdf
http://orcid.org/0000-0001-9517-4289
https://doi.org/10.1007/978-3-030-93100-1_13

LEA Soundness and Completeness Results 199

The maximal event t, (maximal in the sense of most assured to occur, minimal
in the sense of requiring the weakest assumptions,) will be a symbolic represen-
tation of the probability we should assign to A given Γ . This justification term
is called the aggregated evidence for A given Γ , written AEΓ (A).

For example, suppose Γ = {B,B → A,A,X}, with X irrelevant to A. We
would like to calculate the best estimate for A to occur, given Γ . Symbolically,
we compute the maximal t such that

r:B, s: (B → A), u:A, v:X � t:A.

A will occur if both r and s occur, or if u occurs. It may occur if additionally
v also occurs, but that adds an additional assumption, weakening the evidence.
Therefore, the strongest evidence for A given Γ is (r ∩ s) ∪ u, where ∩ repre-
sents that both events occur, and ∪ represents that either event occurs. That is
AEΓ (A) = (r ∩ s) ∪ u, and

r:B, s: (B → A), u:A, v:X � (r ∩ s) ∪ u:A.

The formal system which allows us to make such deductions is called the
logic of evidence aggregation, or LEA. To bring the problem back to the origi-
nal question of probabilities, we employ a semantics for LEA called probability
semantics. Each probabilistic interpretation ◦ maps justification terms to events
in a probability space, which itself comes equipped with a probability function
P . To give the “best estimate” for A to occur given Γ , for a particular interpre-
tation ◦, we may take the probability of the event corresponding to the strongest
possible evidence for A given Γ . That is,

P ((AEΓ (A))◦).

Although LEA is sufficient for the task of formalizing the process of evidence
aggregation, and probabilistic semantics is sufficient for interpreting evidence
probabilistically, the formal system and its semantics are not sound and complete
with respect to each other, as shown in [2]. The contribution of this paper is
to give a sound and complete semantics for LEA, and a sound and complete
axiomatization for probability semantics.

Additional attempts to combine justification logic with probability may be
found in [8,10]. LEA was discussed in [9]. That paper introduced a novel type of
justification logic semantics called subset models. LEA was shown to be sound,
but not shown to be complete, for a particular class of subset models.

1.2 LEA Definition

We first define the language and then the proof system for LEA.

Definition 1 (Justification Term). Justification terms or simply terms are
defined according to the following grammar:

t := ei | 1 | 0 | t ∪ t | t ∩ t .

200 E. Moore

1 and 0 are justification constants intended to represent empty and total jus-
tification specifications, respectively. Justification variables are ei ∈ {e1, . . . , en}.
We may abbreviate s ∩ t as st.

The set of all terms is denoted Term and is isomorphic to the bounded free
distributive lattice on n-generators. Top and bottom elements are 1,0, respec-
tively. Generators are e1, . . . , en. Meet and join are ∩,∪, respectively. The order
on lattice terms is ≤. Since each n corresponds to a unique set of terms, to each
n there is a unique LEA language, and therefore a unique logic. In practice, how-
ever, the n will not be consequential. Therefore, we will not distinguish between
the different logics corresponding between different n in our notation.

Definition 2 (LEA Formula). LEA formulas are defined inductively in the
usual way for justification logics, according to the following grammar:

A := p | ¬A | A ∨ A | A ∧ A | A → A | t:A

where p ranges over a countably infinite set of propositional variables, and t is
a justification term. A ↔ B is shorthand notation for (A → B) ∧ (B → A). The
set of all formulas is denoted as Form. (We will use “Form” for other logics
besides LEA. In all contexts, Form will be understood as the set of all formulas
in the logic under current consideration.)

A special feature of our logical system is that LEA comes equipped with an
order ≤ on terms, which is not part of the language, yet we reference in the
axioms.

Definition 3 (LEA Proof System). Any uniform substitution of LEA formulas
into the following formulas is an axiom of LEA. Modus Ponens is the only rule
of inference for LEA.

1. The axioms and rules of classical logic in the language of LEA
2. s: (A → B) → (t:A → st:B)
3. (s:A ∧ t:A) → s ∪ t:A
4. s:A → t:A for any evidence terms s and t such that t ≤ s
5. 1:C where C is any axiom
6. 0:A where A is any formula.

1.3 Alternative Formulation of LEA

In [2], the following axiom scheme is used for LEA:

s:A → t:A if t ≤ s.

LEA is already interesting simply for introducing an order on justification
terms. In forthcoming work, we study in more detail the proof theory and seman-
tics of justification logics with an order imposed on their justification terms.
However, in the case of LEA, due to the underlying lattice structure of the
terms, we can do without this axiom. We choose here to use an equivalent axiom

LEA Soundness and Completeness Results 201

scheme, because defining basic models in the presence of an existing order invites
subtleties that we do not need to address here.

Moreover, the presentation that we now give will provide more transparency
on the behavior of LEA and its related systems we will study in this paper. This
equivalent axiom system we will call LEA′. It has the same language as LEA.

Definition 4 (LEA′ Proof System). Any uniform substitution of LEA formu-
las into the following formulas is an axiom of LEA′. Modus Ponens is the only
rule of inference for LEA′.

1. The axioms classical logic in the language of LEA
2. t: (A → B) → (t:A → t:B), (terms are closed under Modus Ponens)
3. (a) s ∪ t:A → (s:A ∧ t:A)

(b) (s:A ∧ t:A) → s ∪ t:A
4. (s:A ∨ t:A) → st:A
5. 1:C where C is any axiom
6. 0:A where A is any formula
7. s:A ↔ t:A if s = t in the lattice ordering.

Lemma 1. LEA′ is equivalent to LEA. That is, for all sets of formulas Γ ∪{A} ⊂
Form,

Γ �LEA A iff Γ �LEA′ A.

Proof. Since the only rule of inference in both systems is Modus Ponens, and
since they share the same language, it is enough to show that an axiom from one
system is provable in the other. Through liberal use of LEA Axiom 4, one can
show that LEA contains LEA′. The reverse direction is not much more difficult.
To give an example of how this is done, we will give a proof in LEA′ of LEA
Axiom 2, and a proof in LEA of LEA′ Axiom 3(a).

Working in LEA′, let us derive s: (A → B) → (t:A → st:B). From LEA′

Axiom 4, LEA′ proves s: (A → B) → st: (A → B). From Axiom 4 again, LEA′

proves t:A → st:A. Then LEA′ proves (s: (A → B)∧t:A) → (st: (A → B)∧st:A).
Then, using Axiom 2, we get s: (A → B) → (t:A → st:B).

Working in LEA, let us derive s ∪ t:A → (s:A ∧ t:A). In the lattice order
we have s ≤ s ∪ t, so s ∪ t:A → s:A is an instance of LEA Axiom 4. Similarly,
t ≤ s ∪ t, so again s ∪ t:A → t:A is an instance of Axiom 4. Together they give
s ∪ t:A → (s:A ∧ t:A).

Since the two systems are equivalent, we will no longer distinguish between
them, and will refer to the latter LEA′ as LEA. However, we may still reference
the order ≤ when convenient to do so.

1.4 Probability Semantics Definition

Definition 5 (Probability Semantics).
A probabilistic interpretation ◦ consists of:

202 E. Moore

– a probability space (Ω,F , P), where Ω is a set of outcomes, F is a sigma-
algebra of measurable events, and P is a probability measure on F

– a mapping ◦ which takes terms to elements of F and formulas to subsets of
Ω. (◦ is overloaded to mean both the interpretation its mapping.)

– ◦ satisfies the conditions below for formulas A,B and terms s, t,1, and 0:

Terms Formulas
0◦ = ∅ (A ∧ B)◦ = A◦ ∩ B◦

1◦ = Ω (A ∨ B)◦ = A◦ ∪ B◦

(st)◦ = s◦ ∩ t◦ (¬A)◦ = A◦

(s ∪ t)◦ = s◦ ∪ t◦ (A → B)◦ = A◦ ∪ B◦

(t:A)◦ = t◦ ∪ A◦.

In order to define an entailment relation, we extend ◦ to sets of formulas, as

Γ ◦ =
⋂

C∈Γ

C◦.

In particular, notice ∅◦ = Ω.

Definition 6 (Entailment in Probability Semantics). An entailment rela-
tion � is defined as

Γ � A iff Γ ◦ ⊂ A◦, for all probabilistic interpretations ◦ .

LEA is sound with respect to probability semantics, but it is not complete,
as shown in [2]. This can be seen by noting that 1:A → A is valid in probability
semantics, but is not provable in LEA.

In Sect. 2 we give sound and complete semantics for LEA. In Sect. 3 we give
a sound and complete axiomatization of probability semantics. In Sect. 4 we
discuss issues of decidability and possible avenues for future research.

2 Sound and Complete Semantics for LEA

2.1 Basic Models

We will define a class of models which are sound and complete with respect to
LEA. The models will be a class of basic models. We recall here the definition of
basic models. For a more detailed exposition, see for example, [3].

Definition 7 (Basic Model). A basic model ∗ is a mapping of justification
terms and formulas, which takes formulas to truth values 1 or 0 – representing
true or false, respectively – takes justification terms to sets of formulas, and
satisfies the following conditions:

– ⊥∗ = 0
– (A ∧ B)∗ = 1 iff A∗ = 1 and B∗ = 1
– (A ∨ B)∗ = 1 iff A∗ = 1 or B∗ = 1

LEA Soundness and Completeness Results 203

– (¬A)∗ = 1 iff A∗ = 0
– (A → B)∗ = 1 iff A∗ = 0 or B∗ = 1
– (t:A)∗ = 1 iff A ∈ t∗.

Definition 8 (Entailment in a Basic Model). For an entailment relation
|=, we write Γ |=∗ A iff A∗ = 1 or there exists C ∈ Γ such that C∗ = 0. We write
Γ |= A iff, for all basic models ∗ (of the basic model class under consideration)
Γ |=∗ A. We may write ∗ |= A or |=∗ A both to mean ∅ |=∗ A.

Definition 9 (Γ �CL A). For Γ ∪ {A} ⊂ Form, we write Γ �CL A iff A can
be derived from assumptions in Γ using the axioms of classical logic, treating
justification formulas t:A as distinct propositional variables.

Definition 10 (Class of Basic Models). For Γ ⊂ Form, BM(Γ) is the class
of all basic models which satisfy all formulas in Γ . That is, ∗ ∈ BM(Γ) iff ∗ |= C
for all C ∈ Γ . If J is an axiomatic system with axioms Ax(J), then abusing
notation we write BM(J) to denote BM(Ax(J)).

Theorem 1 (Generic Completeness). Each set of formulas Γ is sound and
complete with respect to its class of basic models. That is Γ �CL A iff A is true
in all basic models of Γ .

Proof. See, for example, [3].

Corollary 1. Let a justification logic J contain Modus Ponens as its only rule
of inference, and contain as axioms the axioms of classical logic in the language
of J . Then Γ �J A iff A is true in all basic models of Γ .

This allows us to apply the generic completeness theorem to any justification
logic containing classical logic with Modus Ponens as its only rule of inference.
In particular, all the justification logics studied in this paper fall into this class.

2.2 Deductive Basic Models

Now we define the class of basic models for which LEA is sound and complete.

Definition 11 (Deductive Basic Model). A deductive basic model is a basic
model ∗ which satisfies the following conditions:

– t∗ is a deductively closed set of LEA formulas, for all terms t
– (st)∗ ⊃ s∗ ∪ t∗

– (s ∪ t)∗ = s∗ ∩ t∗

– 1∗ ⊃ Taut
– 0∗ = Form

where Taut is the set of all LEA tautologies.

Lemma 2. If ∗ ∈ BM(LEA) and s = t in the lattice order, then s∗ = t∗.

204 E. Moore

Proof. ∗ |= s:A ↔ t:A is an axiom when s = t in the lattice order. Using
this fact along with the definition of satisfaction in a basic model, we have the
following chain of inferences.

A ∈ s∗ ⇐⇒ ∗ |= s:A ⇐⇒ ∗ |= t:A ⇐⇒ A ∈ t∗.

Lemma 3. If ∗ ∈ BM(LEA) then ∗ is a deductive basic model.

Proof. Check the axioms.

Lemma 4. If ∗ is a deductive basic model, then ∗ ∈ BM(LEA).

Proof. We check the axioms one-by-one.

1. Since ∗ is a basic model, it satisfies the axioms of classical logic and is closed
under Modus Ponens.

2. Since t∗ is deductively closed, then ∗ |= t: (A → B) → (t:A → t:B).
3. Since (s ∪ t)∗ = s∗ ∩ t∗ then ∗ |= (s:A ∧ t:A) ↔ s ∪ t:A.
4. Since (st)∗ ⊃ (s∗ ∪ t∗), then ∗ |= (s:A ∧ t:A) → st:A.
5. Since Taut ⊂ 1∗, then ∗ |= 1:C for any axiom C.
6. Since 0∗ = Form, then ∗ |= 0:A for any formula A.
7. By Lemma 2, ∗ |= s:A ↔ t:A if s = t in the lattice ordering.

Corollary 2. BM(LEA) equals the class of all deductive basic models.

Corollary 3. LEA is sound and complete with respect to the class of all deduc-
tive basic models.

3 Sound and Complete Axiomatization of Probability
Semantics

We will now work towards an axiom system which is sound and complete with
respect to probability semantics. It turns out that an extension of LEA, which
we will call LEA+, is sound and complete with respect to probability semantics.
Before investigating LEA+, however, we turn our attention to a reduct of the
language of LEA, with an axiomatic system we will call LEA−. As a language,
LEA− is very simple – it contains no operations on justification terms, only jus-
tification variables. Studying LEA− will shed light on the probability semantics
and simplify our completeness proof for LEA+.

3.1 LEA− Definition and Models

Definition 12 (LEA− Formula). The terms of the LEA− language consist of a
countably infinite number of atomic evidence terms e1, e2, . . . , en, There are
no constants or term operations. Formulas are built up using this set of terms
as usual.

LEA Soundness and Completeness Results 205

Definition 13 (LEA− Proof System). Any uniform substitution of LEA− for-
mulas into the following formulas is an axiom of LEA−. Modus Ponens is the
only rule of inference.

1. The axioms of classical logic in the language of LEA−
2. A → t:A
3. t: (A → B) → (t:A → t:B).

Let us write �− to denote �LEA− .
Axiom 2 is cofactivity. It says that if A is true, then any evidence justifies it.

Axiom 3 tells us that justification terms are closed under Modus Ponens.

Lemma 5. LEA− is consistent.

Proof. Here is a model of LEA−. Consider the basic model ∗, where t∗ = Form
for all terms t. All formulas t:A will evaluate to 1 (true), and so will LEA−
Axioms 2 and 3. Since it is a basic model, ∗ satisfies the axioms of classical logic
in the language of LEA−, as well as Modus Ponens.

Definition 14 (Two-model). A basic model ∗ is a two-model iff

t∗ ∈ {True∗, Form}

for all terms t, where True∗ = {A | ∗ |= A}.
Theorem 2 (Soundness and Completeness). BM(LEA−) is the class of all
two-models.

Proof. From Lemma 5 we know BM(LEA−) is nonempty.
For one direction of inclusion, let ∗ be a basic model of LEA−. Due to Axiom

3, we have that t∗ must be a deductively closed set. Due to Axiom 2, we have
that True∗ ⊂ t∗. From this it follows that t∗ ∈ {True∗, Form}, for if B �∈ True∗

then the deductive closure of (True∗ ∪ B) is in fact Form.
For the other direction, let ∗ be a two-model. Since ∗ is a basic model, it

satisfies the axioms of classical logic. Axiom 2 holds since True∗ ⊂ t∗. For Axiom
3, suppose {A → B,A} ⊂ t∗. Since both True∗ and Form are deductively closed
sets, B ∈ t∗. It follows that Axiom 3 holds in ∗.

We now work towards showing a soundness and completeness result for LEA−
with respect to probability semantics. First, we show that to each two-model ∗,
we can associate a probability model ◦ that validates the same formulas.

Definition 15 (Probability Model ◦ Corresponding to Two-model ∗).
Let ∗ be a two-model. Define a probability model ◦ corresponding to ∗ as follows.
The underlying probability space for ◦ is (Ω,F , P), where Ω = 1 = {∅}; F =
{∅,1}; P (∅) = 0 and P (1) = 1. Define p◦ = 1 if p∗ = 1, and p◦ = ∅ if
p∗ = 0. For atomic evidence terms, define e◦

i = ∅ if e∗
i = Form, and e◦

i = 1 if
e∗ = True∗.

206 E. Moore

Proposition 1. For all LEA− formulas A, A◦ = 1 iff A∗ = 1; A◦ = ∅ iff
A∗ = 0.

Proof. Argue by induction on the complexity of A.

– The claim is true for propositional atoms by definition of ◦.
– For the Boolean connectives, the proof is standard. We give the proof for

negation. Suppose (¬A)◦ = 1. This is true iff A◦ = ∅, iff (by the induction
hypothesis) A∗ = 0, iff (¬A)∗ = 1.

– For the justification case, (ei:A)◦ = e◦
i ∪ A◦ = 1 iff e◦

i = ∅ or A◦ = 1. This
holds iff e∗

i = Form (by definition of ◦) or A∗ = 1 (by induction hypothesis.)
This holds iff e∗

i = Form or A ∈ True∗ (since if A∗ = 1 then A is true in
the model ∗). This holds iff A ∈ e∗

i (for if A is false in the model and A ∈ e∗
i ,

then e∗
i = Form.) This holds iff (ei:A)∗ = 1.

Theorem 3 (Soundness and Completeness). For any set of LEA− formulas
Γ ∪ {A},

Γ �− A iff Γ � A.

Proof. For soundness, the axioms of LEA− are clearly true in any probability
model. We can see this, for example, by noticing that in any probability model,
t:A would have the same interpretation as t → A, if only the latter were actually
a well formed LEA− formula. Then the axiom A → t:A corresponds to the
classical tautology A → (t → A) and similarly for Axiom 3.

For completeness, suppose Γ ��− A. Since LEA− is sound and complete with
respect to two-models, there exists is a two-model ∗ such that C∗ = 1 for all
C ∈ Γ , and A∗ = 0. Then there exists a corresponding probability model ◦, with
underlying probability space Ω = 1 = {∅}, such that C◦ = 1 for all C ∈ Γ , and
A◦ = ∅. Then ∩C∈Γ C◦ = 1 �⊂ A◦ = ∅, so Γ � � A.

Corollary 4. Classical logic is sound and complete with respect to probability
semantics.

Proof. Examining the axioms of any standard formulation of classical logic shows
it to be sound. The completeness proof exactly mirrors that for LEA−. For each
Boolean assignment ∗ with truth values 1 and 0, there exists a probability model
◦, with its underlying probability space the same as in Definition 15, such that
for all formulas A, A∗ = 1 iff A◦ = 1 and A∗ = 0 iff A◦ = ∅. The rest of the
proof follows the steps in Theorem 3.

3.2 More LEA− Results

Proposition 2 (Substitution). �− (A → B) → (t:A → t:B)

Proof. (A → B) → t: (A → B) is an instance of Axiom 2. Applying Axiom 3
proves the result.

Proposition 3. �− ¬t:A → t: (¬A)

LEA Soundness and Completeness Results 207

Proof. ¬t:A → ¬A is the contrapositive of Axiom 2. ¬A → t: (¬A) is an instance
of Axiom 2. Combined they give ¬t:A → t: (¬A).

Proposition 4. �− t: (A ∨ B) ↔ (t:A ∨ t:B)

Proof. Argue inside LEA−. Suppose t: (A ∨ B) holds. Then, by Proposition 3.5,
so does t: (¬A → B). If t:¬A holds, then t:B holds, by Axiom 3. If, on the
other hand, ¬t:¬A holds, then from Proposition 3.6, we have t:A. In either
case, t:A ∨ t:B holds.

For the other direction, suppose t:A holds. Since A → A ∨ B is a tautology,
by Axiom 2, t: (A → A ∨ B). Applying Axiom 3, we get t: (A ∨ B). We similarly
get t: (A ∨ B) if t:B holds.

Proposition 5. �− t: (A ∧ B) ↔ (t:A ∧ t:B)

Proof. Argue inside LEA−. Suppose t: (A ∧ B) holds. A ∧ B → A is a tautology,
so by Axiom 2, t: (A ∧ B → A). Applying Axiom 3, we derive t:A. We may
similarly derive t:B. Therefore, we get t:A ∧ t:B.

For the other direction, t: (A → (B → A ∧ B)) holds from Axiom 2. Suppose
t:A and t:B hold. Using Axiom 3 twice, we first apply t:A to t: (A → (B →
(A∧B)), and then t:B to that operation’s result. Doing so, we derive t: (A∧B).

Definition 16 (Justification Literal). A class of formulas called justification
literals are defined inductively. p and ¬p are justification literals, for any propo-
sitional variable p. If A is a justification literal, so is ei:A and ¬ei:A, for a
justification variable ei.

Definition 17 (Disjunctive Justified Normal Form). For a sentence A,
we say A is in disjunctive justified normal form (djnf) iff A is in the form of a
disjunction of clauses, where a clause is a conjunction of justification literals.

Theorem 4. Any LEA− sentence A is provably equivalent in LEA− to a sen-
tence An which is in disjunctive justified normal form.

We omit the proof here, but notice it essentially follows by breaking justifi-
cation formulas t:A into “simpler” formulas, using Propositions 4 and 5.

Notice, this says something about the meaning of LEA− formulas. The infor-
mational content of justification formulas t:X is located entirely in justification
literals. Let us consider propositional variables as atomic concepts. Evidence for
or against these concepts are also atomic concepts. These would be interpreted
as ei: p or ei:¬p. Inductively, we may have evidence for evidence, or evidence
against evidence, ej : ei: p, ej :¬ei: p, etc., which are also considered atomic con-
cepts. By that, we mean that all other sentences can be build up from them, using
conjunction, disjunction, and negation. Everything boils down in an inductive
chain to evidence for or evidence against propositional variables.

208 E. Moore

3.3 LEA+ Definition and Basic Results

Let us now expand the language and axiomatic system of LEA−. Our new sys-
tem, LEA+, will have the same language as LEA. That means it includes the
justification constants 1 and 0, and includes justification term operations ∩ and
∪.

Definition 18 (LEA+ Proof System). Any uniform substitution of LEA+ for-
mulas into the following formulas is an axiom of LEA+. Modus Ponens is the
only rule of inference for LEA+.

1. The axioms classical logic in the language of LEA
2. A → t:A
3. t: (A → B) → (t:A → t:B)
4. (a) st:A → (s:A ∨ t:A)

(b) (s:A ∨ t:A) → st:A
5. (a) s ∪ t:A → (s:A ∧ t:A)

(b) (s:A ∧ t:A) → s ∪ t:A
6. 1:A → A
7. 0:A.

Let us write �+ to denote �LEA+ .

Lemma 6. �+ s:A ↔ t:A if s = t in the lattice ordering.

Proof. Define an equivalence relation on terms as

s ∼ t iff �+ s:A ↔ t:A for all formulas A.

Let [s] = {t | s ∼ t}. We wish to define [s] ∪ [t] = [s ∪ t] and [s] ∩ [t] =
[s ∩ t]. These operators on ∼-equivalence classes will be defined if, for all terms
s1, t1, s2, t2,

if [s1] = [s2] and [t1] = [t2], then [s1 ∪ t1] = [s2 ∪ t2] and [s1 ∩ t1] = [s2 ∩ t2].

This is indeed the situation. We prove it below for ∪, but omit the ∩ case,
which is similar. Let A be an arbitrary LEA+ formula.

�+ s1 ∪ t1:A ↔ (s1:A ∧ t1:A) Axioms 5(a), 5(b)
�+ s1:A ↔ s2:A since [s1] = [s2]
�+ t1:A ↔ t2:A since [t1] = [t2]
�+ s1 ∪ t1:A ↔ (s2:A ∧ t2:A) substitution
�+ s1 ∪ t1:A ↔ s2 ∪ t2:A Axioms 5(a), 5(b)

so [s1 ∪ t1] = [s2 ∪ t2]. Again, we state, but do not prove, that [s1 ∩ t1] = [s2 ∩ t2].
Therefore, the ∼-equivalence class operations ∩,∪ are well defined.

As might be expected, < Term/∼,∪,∩ > is a lattice, and the natural quo-
tient map i : Term −→ Term/∼ given by i(s) = [s] is a lattice homomorphism.
For details, see [5].

LEA Soundness and Completeness Results 209

To finish the proof, if s = t, then since i is a lattice homomorphism, in
particular a well defined function, [s] = i(s) = i(t) = [t].

Therefore �+ s:A ↔ t:A for all A, by definition of the equivalence class.

Proposition 6 (Substitution). �+ (A → B) → (t:A → t:B)

Proposition 7. �+ ¬t:A → t: (¬A)

Proposition 8. �+ t: (A ∨ B) ↔ (t:A ∨ t:B)

Proposition 9. �+ t: (A ∧ B) ↔ (t:A ∧ t:B)

Proof. The proofs of the above propositions are the same as in the LEA− cases.

Next we will show that for each LEA+ formula A, there exists a LEA− formula
A− such that �+ A ↔ A−.

Definition 19 (LEA− Translation). For a LEA formula A, we define the
LEA− translation of A, written A−. Here is the inductive definition.

– p− = p for propositional variable p
– (¬A)− = ¬(A−)
– (A ∨ B)− = A− ∨ B−

– (A ∧ B)− = A− ∧ B−

– (A → B)− = A− → B−

– (ei:A)− = ei: (A−)
– (st:A)− = (s:A)− ∨ (t:A)−

– (s ∪ t:A)− = (s:A)− ∧ (t:A)−

– (1:A)− = A−

– (0:A)− = �
Proposition 10. For each LEA+ formula A, A− is a well defined LEA− for-
mula.

Proof. Argue on the complexity of A.

Lemma 7. For each LEA+ formula A, �+ A ↔ A−.

Proof. Argue by induction on the complexity of A. The base case when A
is a propositional variable holds trivially. The cases for Boolean connectives
are standard. If A = t:B, then perform subinduction on the complexity of
t. In particular, from Proposition 6 and the induction hypothesis, we have
�+ ei:B ↔ ei: (B−). The cases for more complex terms and term constants
– st, s ∪ t,1,0 – follow directly from the application of the induction hypothesis
to the corresponding axioms.

Corollary 5. Each LEA+ formula is provably equivalent in LEA+ to a formula
in disjunctive justified normal form.

Proof. Each LEA+ formula A is provably equivalent to its LEA− translation A−,
which in turn is provably equivalent to a djnf formula (A−)n.

210 E. Moore

3.4 Basic Models of LEA+

The basic models of LEA+ are essentially two-models, with additional clauses to
define the term operations and constants ∩,∪,1,0. We call them trivial-lattice
models.

Definition 20 (Trivial-lattice Model). A trivial-lattice model is a basic
model satisfying the following conditions:

– t∗ ∈ {Form, True∗} for all terms t
– (t ∩ s)∗ = t∗ ∪ s∗

– (t ∪ s)∗ = t∗ ∩ s∗

– 1∗ = True∗

– 0∗ = Form.

It is clear from the definitions that a trivial-lattice model is a deductive
model. It is also clear that to any two-model, there is an associated trivial-
lattice model resulting from defining the interpretation of justification terms in
accordance with the definitions given above. These models will agree on the
truth value of LEA− formulas.

Note, we now have similar semantics for two distinct systems LEA− and
LEA+. When it is clear from the context which one we are working in, we may
simply write |= or � to designate, respectively, basic model semantics or prob-
ability semantics. When we need to be precise regarding which language we are
interpreting, we may write |=−, �− when interpreting LEA− formulas, and |=+,
�+ when interpreting LEA+ formulas.

Theorem 5. LEA+ is sound and complete with respect to trivial-lattice models.

Proof. Simple inspection of the axioms and semantics shows that LEA+ is sound
with respect to trivial-lattice models.

To show completeness, suppose Γ ��+ A. By Lemma 7, �+ A ↔ A−. Since
A− is a LEA− formula, and since LEA+ is an extension of LEA−, we have Γ ��−
A−. By the completeness theorem for LEA−, we have Γ �|=− A−. Then we have a
two-model ∗ which validates all the formulas in Γ and which falsifies A−. From
∗ we can produce a trivial-lattice model ∗̃ which agrees with ∗ on all LEA−
formulas. Thus we have ∗̃ |=+ C for all C ∈ Γ and ∗̃ �|=+ A−, i.e. Γ �|=+ A−.
Since |=+ A → A−, then Γ �|=+ A.

Lemma 8. LEA+ is a conservative extension of LEA−.

Proof. It is clear that LEA+ is an extension of LEA−. Suppose �+ A for some
LEA− formula A. By the completeness theorem for LEA+, A holds in every
trivial-lattice model. If A yet fails in some two-model, it fails in its associated
trivial-lattice mode, which is a contradiction. Therefore A holds in every two-
model. By the completeness theorem for LEA− we obtain �− A.

LEA Soundness and Completeness Results 211

Note, since LEA+ is a conservative extension of LEA−, and since each LEA+

formula is equivalent to a LEA− formula in disjunctive justified normal form
which is produced by “decomposing” formulas in a uniform way, we may draw
the same conclusion for LEA+ as we did for LEA−. That is, the informational
content of formulas t:X are entirely contained in justification literals. Moreover,
LEA+ essentially has the same expressive power as LEA−. The terms operators
and constants ∩,∪,1,0 are merely convenient shorthand to rewrite djnf formulas.

Lemma 9. LEA+ is consistent.

Proof. LEA+ is a conservative extension of LEA−, and LEA− is consistent. Con-
servative extensions of consistent theories are consistent.

3.5 Probability Semantics for LEA+

Theorem 6 (Soundness). LEA+ is sound with respect to probability seman-
tics. That is, Γ �+ A implies Γ �+ A.

Proof. All the axioms of LEA+ are true in any probability model. Probability
models respect Modus Ponens, which is the only rule of inference for LEA+.

Theorem 7 (Completeness).LEA+ is complete with respect to probability
semantics. That is, Γ �+ A implies Γ �+ A.

Proof. Let Γ− = {C− | C ∈ Γ}.
Suppose Γ ��+ A. Then Γ ��+ A− by Lemma 7. Then also Γ− ��+ A−, since

�+ C → C− for all C ∈ Γ . Then Γ− ��− A− since LEA+ is an extension of
LEA−. Then Γ− � �− A− by the completeness theorem for LEA−. Then Γ− � �+

A− since �+ and �− agree on LEA− formulas. Then Γ � �+ A− since every
probabilistic model of Γ is a model of Γ−. Then Γ � �+ A, since �+ A → A−.

4 Further Discussion

4.1 Decidability Results

In Corollary 4 we showed that classical logic is sound and complete with respect
to probability semantics. We may extend classical logic with n unique atomic
formulae e1, . . . , en to a system we call CLn, and the same proof will show CLn

to also be sound and complete with respect to probability semantics. We then
give a Boolean translation b from LEA+ formulas to CLn formulas, such that A
is provable in LEA+ iff Ab is provable in LEA+. It follows that, to decide if A is
valid in LEA+, it is enough to decide if Ab is valid in CLn. The decision problem
for LEA+ reduces to the decision problem for classical logic.

Definition 21 (CLn). Classical logic with n justification variables, or CLn, is
an extension of the language of classical propositional logic. The axioms are the
same as for classical logic. The language contains a countable set of propositional

212 E. Moore

variables {pi | i < ω}, and Boolean connectives ∧,∨,¬,→. In addition CLn

contains n unique justification variables E1, . . . , En which are considered atomic
formulae, and constants �,⊥ which are also atomic formulae. We will assume
that �,⊥ were not in the language of our formulation of classical logic.

Let �c denote the probability semantics applied to CLn formulas, |=c the
usual Boolean semantics applied to CLn formulas, and �c denote provable in
CLn.

Lemma 10. CLn is sound and complete with respect to probability semantics.

Proof. The proof is the same as in Corollary 4.

Next we give the translation from LEA+ formulas to CLn formulas.

Definition 22 (Boolean Translation).
Given a LEA+ formula A, we define the Boolean translation of A, written

Ab, inductively as follows:

– eb
i = Ei

– 1b = �
– 0b = ⊥
– (st)b = sb ∧ tb

– (s ∪ t)b = sb ∨ tb

– (p)b = p for propositional variable p
– (A ∧ B)b = Ab ∧ Bb and similar for other Boolean connectives
– (s:A)b = (s)b → (A)b.

Proposition 11. For all LEA+ formulas A, �+ A iff �c Ab.

Proof. From Lemma 10, we have that �c Ab iff �c Ab. Since LEA+ is sound and
with respect to probability semantics, it is therefore enough to show �c Ab iff
�+ A. This is the case, since for all A, and all probabilistic interpretations ◦,
A◦ = (Ab)◦. This latter claim we may show by induction on the complexity of
A.

Theorem 8. LEA+ is decidable.

Proof. The decision algorithm for LEA− consists of translating A to Ab, then
using a Boolean decision algorithm on Ab. The translation from A to Ab is
linear in length; Ab results from A by replacing each instance of ei with Ei, 1
with �, 0 with ⊥, ∩ with ∧, ∪ with ∨, and : with →.

Corollary 6. LEA− is decidable.

Theorem 9. The satisfiability problems for LEA+ and LEA− are in NP.

LEA Soundness and Completeness Results 213

Proof. To cover both cases, it is enough to show that the satisfiability problem
for LEA+ is in NP. First, we show that A is satisfiable in LEA+ iff Ab is satisfiable
in CLn.

Following the proof as in Corollary 4, given a trivial-lattice model ∗, define
a corresponding Boolean evaluation for CLn ∗̃, such that if e∗

i = Form then
E∗̃

i = 0; if e∗
i = True∗ then E∗̃

i = 1; and p∗
i = p∗̃

i . It will follow that ∗ |=+ A

iff ∗̃ |=c Ab. In fact, we see that the mapping ∗ �→ ∗̃ provides a one-to-one
correspondence between trivial-lattice models for LEA+ and Boolean evaluations
for CLn. Therefore, it stands that A is satisfiable in LEA+ iff Ab is satisfiable in
CLn.

Therefore, an algorithm to verify if A is satisfiable in LEA+ is as follows.
First, translate A to Ab. This is done in deterministically in polynomial time.
Then run a nondeterministic polynomial time algorithm to determine if Ab is
satisfiable in CLn.

4.2 Justification Logic as Propositional Logic

The relationship between LEA+ and CLn explains why LEA+ is the axiomatiza-
tion of probability semantics. Probability semantics is fundamentally a classical
semantics. To interpret the LEA+ language in this classical format, we treat “:”
like classical implication →. In this way, using the Boolean translation, all LEA+

formulas can be interpreted classically. However, not all classical formulas have
an LEA+ counterpart.

Due to the soundness and completeness of probability semantics with respect
to CLn and with respect to LEA+ we can use the Boolean translation to embed
LEA+ into CLn in the following sense. If A is a LEA+ formula, then

�+ A iff �c Ab.

In words, the theorems of LEA+ are exactly those sentences whose Boolean
translation are theorems in classical logic, (more precisely, in CLn).

CLn itself can be thought of as simply classical logic, where we distinguish
a finite set of propositional variables E1, . . . , En for our attention, and add the
constants �,⊥. In this way, we can identify LEA+ with a fragment of CLn, which
we will call LEAb

+.
LEAb

+ = {Ab | A ∈ L(LEA+)}
How can we characterize LEAb

+? Essentially, it is the fragment of CLn where
the image of justification terms appear only in the antecedent of an implication.
They may appear alone, or with other justification terms in a combination of
disjunctions and conjunctions. This can be defined rigorously if one desires.

From this characterization we see how LEAb
+ – and therefore LEA+ – straddles

the line between justification logic and classical propositional logic.
Terms are propositional in character, simply because they map to classical

propositional formulas. Formulas t:A are propositional, because they map to an
implication.

214 E. Moore

Yet, LEA+ is still different than classical logic. LEA+ retains its justifica-
tional character because there is a restriction on where terms can be mapped
to. Terms always map (in prescribed ways) to the antecedent of an implication.
They have no life of their own, but are only used to justify other propositions.
This latter fact is true for all justification logics. A term t is never considered
by itself, but only in relation to other formulas in the format t:A. We can say
nothing about the fact of t, but only about how it relates as evidence for some
proposition. Typical propositional logics do not have this kind of distinction
between propositions, whereby some propositions are used only to justify oth-
ers. This distinction should be considered a useful feature of LEA+ as compared
to classical propositional logic.

One may ask if all justification logics behave like LEA+. That is, do we
need special justification terms and operations, or can we do without them,
interpreting terms as propositions and : as implication? The answer in general
is no.

The typical situation for justification logics is that justification variables and
constants are allowed to justify arbitrary collections of formulas. Yet, if : were
interpreted as implication, and terms as propositions, then it would follow that
if t:A and t:B hold then t: (A ∧ B) holds. Similarly, if t:A and A → B hold,
then t:B holds. In general, this is not the case for justification logics. That it is
so for the logics studied in this paper points to the peculiarity of these systems.

Another related feature that justification logics typically have, which the
ones in this paper do not have, is hyperintensionality at the level of justifica-
tion. Conceptually speaking, this means that t may be evidence for A, and A
may be logically equivalent to B, yet t is not evidence for B. Formally, t:A
and A ↔ B may hold, yet t:B may not hold. In any justification logic with
hyperintensional justifications, : will therefore not behave like →. Conversely,
any justification logic where terms are interpreted as deductively closed sets will
not be hyperintensional. That is the situation here. Mathematically, the basic
model interpretation of a term will be closed under Modus Ponens whenever
application is idempotent.

The increased flexibility of standard justification logics is an asset, not a
weakness. We are more free to create complicated relationships between jus-
tifications and propositions, including the phenomenon of hyperintensionality.
When justifications are treated as propositions and : as implication, a great
simplification and flattening naturally occurs. The LEA+/− framework may be
regarded as a clean mathematical answer to the question of justification logic
with propositional evidence and material implication as :.

4.3 Future Research

There are a few different directions that appear for further research.
First, we would like to continue research into the computational complexities

of the systems discussed in this paper. Discovering if LEA is decidable or not is
a natural goal.

LEA Soundness and Completeness Results 215

Towards the goal of determining if the LEA is decidable, it could be fruitful
to develop the proof theory of these three systems, in particular Gentzen-style
sequent systems. Also, we should examine the issue of cut and cut-elimination
in each system. Observe the resemblance between cut and the axiom t:A → s:A
if s ≤ t.

Γ � B B � A
Γ � A

s ≤ t t:A
s:A

The deduction on the right is valid in any deductive model, which thereby
includes LEA and LEA+. Ideologically t:A was intended to mean that A follows
from t. This justifies reading as t:A as t � A. Moreover, we have sb �c tb whenever
s ≤ t in our lattice structure. This justifies reading s ≤ t as s � t.

The elimination of references to ≤ in our formulation of LEA seems to bear
resemblance to the elimination of the cut rule in a sequent system. In further
generalizations of LEA-like logics, we may ask for criteria to determine when
so-called ≤-elimination may take place, just as one looks for cut-elimination
theorems in sequent calculi. The parallels between ≤, :, and cut should be elu-
cidated and examined formally in future work.

This leads us towards generalizing the types of evidence lattices we work
with, for, in the cases where the lattices are finite and distributive, ≤-elimination
seems feasible, perhaps inevitable. We might generalize to the cases of infinite
lattices and lattices without distributivity, for example, and study the behavior
of these systems. This could be fruitful for building connections with other areas
of logic and formal reasoning, such as argumentation theory, [11]. Moreover,
the interplay between the axioms and the lattice structure for terms should be
further investigated.

As a further area for research, we can look into alternative interpretations of
:. In probability semantics, : is treated like →cl, where →cl is classical (mate-
rial) implication. One might argue to change this on philosophical grounds. For
example, this reading requires the strange validity A → (t:A), which we read as
“either A does not happen, or event t will secure event A.” If we read t:A as
t is evidence for A, then, since t is arbitrary, we have that if A happens then
anything is evidence for A. This triviality is reflected in the degenerate nature
of two-models and trivial-lattice models. Conceptually, this shows the principal
limitations of reading evidence as propositions and t:A as a classical implication
t →cl A.

To get around this, we might consider alternative interpretations of t:A. For
example, one may believe that the processes of evidence collection and aggre-
gation should be understood in an intuitionistic sense, or perhaps in the sense
of relevant logic. Yet, one may believe that the physical world operates under
classical laws. Then one may have a semantics similar to probability semantics,
with (A → B)◦ = (A →cl B)◦, while (t:A)◦ = (t →int A)◦ or (t:A)◦ = (t →rel

A)◦, where →int, →rel, are intuitionistic implication and relevant implication,
respectively.

216 E. Moore

Acknowledgements. The author wishes to thank Sergei Artemov, participants of
the Computational Logic seminar at the CUNY Graduate Center, and anonymous
reviewers for helpful and fruitful comments, suggestions, and ideas.

References

1. Adams, E.W.: A Primer of Probability Logic. CSLI Publications, Stanfort (1998)
2. Artemov, S.: On aggregating probabilistic evidence. 30(1), 61–76. https://doi.org/

10.1007/978-3-319-27683-0 3
3. Artemov, S., Fitting, M.: Justification Logic Reasoning with Reasons. Cambridge

University Press, Cambridge (2019)
4. Clemen, R., Winkler, R.: Aggregating probability distributions. In: Edwards, W.,

Miles, R., von Winterfeldt, D. (eds.) Advances in Decision Analysis: From Foun-
dations to Applications, pp. 154–176. Cambridge University Press (2007)

5. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2 edn. Cambridge
University Press, Cambridge (2002)

6. Hailperin, T.: Sentential Probability Logic. Lehigh University Press, London (1996)
7. Halpern, J.: Reasoning About Uncertainty. MIT Press, Cambridge (2003)
8. Kokkinis, I., Ognjanović, Z., Studer, T.: Probabilistic justification logic. In: Arte-

mov, S., Nerode, A. (eds.) LFCS 2016. LNCS, vol. 9537, pp. 174–186. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-27683-0 13

9. Lehmann, E., Studer, T.: Subset models for justification logic. In: Logic, Language,
Information and Computation (WoLLIC) (2019), pp. 433–449 (2019)

10. Lurie, J.: Probabilistic justification logic. In: Philosophies 3.1 (2018). https://doi.
org/10.3390/philosophies3010002

11. Van Eemeren, F.H., Grootendorst, R. , Kruiger, T.: Handbook of Argumentation
Theory. De Gruyter Mouton (2019)

https://doi.org/10.1007/978-3-319-27683-0_3
https://doi.org/10.1007/978-3-319-27683-0_3
https://doi.org/10.1007/978-3-319-27683-0_13
https://doi.org/10.3390/philosophies3010002
https://doi.org/10.3390/philosophies3010002

On Inverse Operators in Dynamic
Epistemic Logic

Shota Motoura1(B) and Shin-ya Katsumata2

1 NEC Corporation, Kawasaki 211-8666, Japan
motoura@nec.com

2 National Institute of Informatics, Tokyo 101-8430, Japan
s-katsumata@nii.ac.jp

Abstract. We extend Dynamic Epistemic Logic with inverse operators
〈〈α−1〉〉 of an action α along the line of tense logics. The meaning of the
formula 〈〈α−1〉〉ϕ is ‘ϕ is the case before an action α’. This augmenta-
tion of expressivity enables us to capture important aspects of commu-
nication actions. We also propose its semantics using model transition
systems provided in our previous work, which are a suitable framework
for interpreting inverse operators. In this framework, we give several
soundness/completeness correspondences, which lead to modular proofs
of completeness of public announcement logic and epistemic action logic
of Baltag-Moss-Solecki extended with inverse operators with respect to
suitable classes of MTSs.

Keywords: Dynamic epistemic logic · Inverse operators · General
framework · Category theory · Tense logic

1 Introduction

Dynamic Epistemic Logic (DEL) is a branch of modal logic for reasoning about
knowledge changes or belief revisions caused by communication [10,16]. Up until
today, many DELs for various kinds of actions of communications have been
proposed and studied: Public Announcement Logic (PAL) [17], Epistemic Action
Logic (EA) [3], Preference Upgrade [7], etc. Their methodologies of formulation
are basically common. From an external point of view, an epistemic situation
of involved agents is expressed as a pointed Kripke model, and a formula 〈〈α〉〉ϕ
(‘after an action α, ϕ is the case’) is true when ϕ holds after transforming the
model according to action α. This is called a model transformation. To illustrate
this methodology, let us see a quick example.

This work was mainly done while the authors were at Research Institute for Mathe-
matical Sciences, Kyoto University, Kyoto, Japan.

c© Springer Nature Switzerland AG 2022
S. Artemov and A. Nerode (Eds.): LFCS 2022, LNCS 13137, pp. 217–235, 2022.
https://doi.org/10.1007/978-3-030-93100-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93100-1_14&domain=pdf
http://orcid.org/0000-0003-1608-474X
http://orcid.org/0000-0001-7529-5489
https://doi.org/10.1007/978-3-030-93100-1_14

218 S. Motoura and S. Katsumata

Example 1. Let us quote a sentence from [5]:

Sending an email message to someone with a list of people under the cc
button is like making a public announcement in the total group, assuming
the computers work perfectly... .

Following this idea, let us think of sending an email message with content p
and with cc list Ag = {a, b} as public announcement !p to Ag. This knowledge
situation may be expressed as in the left Kripke model (‘before’) below.

�������	
������p

a,b

��
a,b

 ��������¬p

a,b

����

before

⇒
�������	
������p

a,b

��

after

Here, the arrows express uncertainty: for example, the a-labelled arrow from the
p-world to the ¬p-world indicates that agent a cannot distinguish, on the basis
of his knowledge, the ¬p-world from the p-world. The double circle indicates the
actual state. Conversely, since agent a cannot distinguish the p-world from the
¬p-world in the actual world, we may say that agent a does not know p, which
we write as ¬[a]p. Similarly, we may also say that b does not know p: ¬[b]p. Let
us next consider sending the email, which makes a public announcement. This
is expressed by the elimination of the contradicting possible worlds, namely the
¬p-world, resulting in the model on the right. Then, both of agents a and b
turn to know p. Thus, we can say that it is true at the actual world before
the announcement that, after a truthful public announcement p, both a and b
know p is true. This is expressed as [[!p]][x]p for x ∈ {a, b} in syntax. Moreover,
[[!p]][x][y]p is also true for any x, y ∈ {a, b}.

Backward Operators. As the above example of an email indicates, intended appli-
cations of DEL include not only philosophical but also practical ones, such as
artificial intelligence and distant communication. Therefore, it is reasonable to
extend DELs with more and more practical facilities. In particular, since commu-
nication is closely associated with the concept of time, a natural improvement is
to give enough expressivity about time by, for example, adding backward oper-
ators like ‘ϕ was the case yesterday’. Actually, several studies already exist on
backward operators in specific DELs. For example, the yesterday operator Y ϕ
is introduced in [18–21]. Notably, the paper [20] also proposes to use an inverse
operator 〈(p!)−1〉� in PAL to express that an announcement of p took place
before. Their semantics employs a sequence of Kripke models satisfying certain
constraints, which is called a history. Even the completeness and decidability
of EA augmented by inverse operators are discussed in [21]. However, there has
not been any common framework that can encompass backward operators in
variations of DELs.

Contributions of this Paper. To express various backward operators in a com-
mon framework, we introduce its syntax and semantics. Then, we give several
soundness/completeness correspondences on inverse operators in the proposed
framework. More precisely, our contributions are the following.

On Inverse Operators in Dynamic Epistemic Logic 219

1. We introduce inverse operators 〈〈α−1〉〉ϕ (‘ϕ is the case before an event α’) in
a generic way independent of specific DELs and along the line of tense logics.
Inverse operators enable us to express a happened event itself 〈〈α−1〉〉� as
well as what is the case before the event 〈〈α−1〉〉ϕ and can be used to capture
many important aspects of actions that ordinary languages cannot.

2. We also propose their semantics by using a modified update universe [6]. The
original update universe is a big collection of Kripke models linked with each
other by update relations. In our previous work [15], we have introduced a
variant, called model transition systems (MTSs), where the main difference
is that transition relations are labelled by arbitrary actions α rather than by
extensions [[ϕ]] of formulae. This provides us with a suitable framework to
interpret inverse operators.

3. We give several soundness/completeness correspondences in the proposed
framework, which leads to modular proofs of the completeness of PAL and
EA with inverse operators.

Let us elaborate the contribution 1 in the following example.

Example 2 (Continued from Example 1). The fact that the email has been sent
can be expressed by 〈〈!ϕ−1〉〉�, under the assumption that the past is totally
determined (cf. [20]). Since logic PAL intends to capture truthful announcement,
ϕ should be true before the announcement took place. This is accounted for by
the validity of 〈〈!ϕ−1〉〉� → 〈〈!ϕ−1〉〉ϕ in the PAL-specialised MTSs. Moreover,
once the message has been sent, both a and b should know that it has been sent,
as explained by the validity of 〈〈!ϕ−1〉〉� → [x]〈〈!ϕ−1〉〉� for x ∈ {a, b}, which
in turn implies 〈〈!ϕ−1〉〉� → [x][y]〈〈!ϕ−1〉〉� for any x, y ∈ {a, b}. Thus, sending
an email with cc implies that it is common knowledge that it has been sent. In
this sense, a public announcement is always ‘successful’. Inverse operators can
be used to capture such important aspects of actions. �

Organisation. In Sect. 2, we recall the general framework for DELs—languages,
MTSs and logics—introduced in our previous study [15]. Several notions, includ-
ing the languages, are slightly modified. In Sect. 3, we add inverse operators to
the languages and give several soundness/completeness correspondences. This
leads to modular proofs of the completeness of PAL and EA with inverse oper-
ators. We also show that the extensions of PAL and EA are conservative and
properly increase the expressivity. In Sect. 4 we give a categorical account of
MTSs through categorical constructions, which sheds new light on the duality
between MTSs and algebraic MTSs discussed in [15].

2 A General Framework for DEL

In this section, we recall the general framework for DEL proposed in [15].

220 S. Motoura and S. Katsumata

2.1 Syntax

We recall the general framework for DEL in [15]. Let us begin with a generic
language:

Definition 1. Let P be a set of atomic propositions, E a set of epistemic expres-
sions and A a set of action expressions. We define a DEL language L(E ,A) by
the following rule:

ϕ ::= � | p | ¬ϕ | ϕ ∨ ψ | 〈e〉ϕ | Eϕ | 〈〈α〉〉ϕ
where p ranges over P, e over E and α over A. �
Here, E is the global operator, which is included in the language for a technical
reason. 〈e〉 and 〈〈α〉〉 are called an epistemic operator and an action operator,
respectively. Boolean connectives ∧, → and ↔ are defined as usual, and dual
operators [e]ϕ, [[α]]ϕ and Aϕ are defined to be ¬〈e〉¬ϕ, ¬〈〈α〉〉¬ϕ and ¬E¬ϕ,
respectively.

The languages of Public Announcement Logic (PAL) [17] and Epistemic
Action (EA) [3] can be seen as instances of L(E ,A):

Example 3. Let Ag be a given set of agents.

PAL. The language of PAL can be expressed as LPAL = L(Ag,APAL), where
APAL = {!ϕ | ϕ ∈ LPAL}. As APAL depends on LPAL, these two sets are
actually defined by simultaneous induction; however, the resulting language
fits the pattern of L(E ,A). The same remark applies to the language of EA
below. The intended meaning of [n]ϕ is that agent n knows ϕ, while [[!ϕ]]ψ
means that ψ holds after a truthful public announcement of ϕ.

EA. The language of EA is LEA = L(Ag,AEA) where AEA is the set of action
models [3]. An action model (U, s) consists of a (non-empty) finite Kripke
frame U = (S, (→n)n∈Ag,Pre) with a precondition function Pre : S → LEA

and s is an element of S. When we write x ∈ U , we mean x ∈ S. A formula
[[(U, s)]]ϕ is read as ‘ϕ holds after an epistemic action (U, s)’ and [n]ϕ is as
in PAL. �
For the language L(E ,A), we consider the multimodal logic Kg with the global

operator (without the substitution rule) as the base logic; Kg is defined to be
the multimodal logic K together with the following axiom schemata (cf. [8]):

ϕ → Eϕ, ϕ → AEϕ, EEϕ → Eϕ, 〈e〉ϕ → Eϕ.

A specific system of DEL is obtained by adding axioms to Kg, which are often
called reduction axioms.

Example 4. Some of them can be expressed in any L(E ,A). Other reduction
axioms depend on specific choice of E and A; see Example 5 below.

RP : 〈〈α〉〉p ↔ 〈〈α〉〉� ∧ p RN : 〈〈α〉〉¬ϕ ↔ 〈〈α〉〉� ∧ ¬〈〈α〉〉ϕ
RE : 〈〈α〉〉〈e〉ϕ ↔ 〈〈α〉〉� ∧ 〈e〉〈〈α〉〉ϕ RG : 〈〈α〉〉Eϕ ↔ 〈〈α〉〉� ∧ E〈〈α〉〉ϕ

On Inverse Operators in Dynamic Epistemic Logic 221

Observe that these axioms allow us to reduce the scope of a dynamic operator
〈〈α〉〉 to a simpler formula. Notice also that the rule RP refers to an atomic
proposition p. Hence, logics involving RP are not closed under substitution.

Example 5. The proof systems PAL and EA are obtained as follows:

1. PAL is defined to be Kg ⊕ RPRNRERGRT, where RT is 〈〈!ϕ〉〉� ↔ ϕ.
2. EA is defined to be Kg ⊕ RPRNEEAGEAPre, where

– EEA : 〈〈(U, s)〉〉〈n〉ϕ ↔ 〈〈(U, s)〉〉� ∧ ∨{〈n〉〈〈(U, t)〉〉ϕ | s →n t},
– GEA : 〈〈(U, s)〉〉Eϕ ↔ 〈〈(U, s)〉〉� ∧ ∨{E〈〈(U, t)〉〉ϕ | t ∈ U},
– Pre : 〈〈(U, s)〉〉� ↔ Pre(s). �

2.2 Semantics

Models: Model Transition Systems. In [6], van Benthem introduced a semantic
framework for DELs, called an update universe. It consists of a family of Kripke
models linked by update relations. In our previous work [15], the first author
introduced a modification of update universe called model transition systems
(MTS for short), which better fits our parameterised DEL L(E ,A). In Sect. 4 we
will derive the category of MTSs through a combination of categorical construc-
tions. Let us first recall the definition of MTS.

Definition 2 (Model Transition Systems1 [15]). A model transition system
(MTS) for L(E ,A) is a triple M = (I, (Mi)i∈I , T) such that:

1. I is a set whose elements are called indices;
2. Mi for each i ∈ I is a (possibly empty) Kripke model Mi = (Wi, (Re

i)e∈E , Vi);
and

3. T is a pair ((tα)α∈A, (Tα
i)α∈A,i∈I) such that

(a) tα : I → I is a function and
(b) Tα

i ⊆ Wi×Wα
i is a binary relation, where Wα

i is the carrier set of Mtα(i).

The relations Tα
i are called action relations.

We also use the notation Mα
i to denote Mtα(i). Notations Mα

i , Wα
i , Tα

i and
tα are naturally extended for a sequence of actions γ = α1 · · · αn ∈ A∗: Mγ

i ,
W γ

i , T γ
i and tγ . A frame transition system (FTS) is defined analogously by

replacing Kripke models with Kripke frames. The underlying FTS of an MTS
M = (I, (Mi)i∈I , T) is obtained by replacing each Mi with its underlying frame.
It is denoted by U(M).

An MTS expresses model transformations as follows. A Kripke model Mi is
transformed into Mα

i by an action α, where the target Mα
i is determined by the

function tα : I → I. Kripke models Mi and Mα
i are linked by the binary relation

Tα
i , and wTα

i v expresses that state w in Mi is sent to state v in Mα
i . As a result,

the MTS expresses the transformation of a pointed Kripke model (Mi, w) into
(Mα

i , v) that satisfies wTα
i v.

A bounded morphism between MTSs is also defined:
1 This notion is called a functional MTS in [16] since any tα in an MTS (I, (Mi)i∈I , T)

with T = ((tα)α∈A, (T α
i)α∈A,i∈I) is a function. Inverse operators in the more general

settings where each tα is a relation is a part of our future work.

222 S. Motoura and S. Katsumata

Definition 3 (Bounded Morphisms between MTSs [15]). For MTSs M =
(I, (Mi)i∈I , T) with T = ((tα)α∈A, (Tα

i)α∈A,i∈I) and M′ = (I ′, (M ′
i′)i′∈I′ , T ′)

T ′ = ((t′α)α∈A, (T ′α
i′)α∈A,i′∈I′), a bounded morphism (h, (Hi)i∈I) : M → M′ is

a pair of:

1. a function h : I → I ′ such that h ◦ tα = t′α ◦ h for all α in A and
2. an I-indexed family of bounded morphisms Hi : Mi → M ′

h(i) that additionally
satisfies the following conditions for any α in A (here Hα

i denotes Htα(i)):
(a) wTα

i v implies Hi(w)T ′α
h(i)H

α
i (v), and

(b) Hi(w)T ′α
h(i)v

′ implies wTα
i v and Hα

i (v) = v′ for some v ∈ Mα
i .

We remark that Hα
i : Mα

i → M ′α
h(i) since Mtα(i) = Mα

i and M ′
h(tα(i)) =

M ′
t′α(h(i)) = M ′α

h(i) by condition 1.

Conditions (a) and (b) in the definition correspond to the homomorphic con-
dition and the back condition in the definition of ordinary bounded morphism.
Condition 1 is their precondition.

Interpretation. Formulae in the language L(E ,A) are interpreted in an MTS as
follows:

Definition 4 (Interpretation [15]). Suppose that M = (I, (Mi)i∈I , T) is an
MTS and that Mi = (Wi, (Re

i)e∈E , Vi) is its i-th Kripke model. We inductively
define the notion of a formula ϕ being satisfied at index i ∈ I and state w ∈ Wi

in M (notation: M, i, w |= ϕ) as follows:

M, i, w |= � always
M, i, w |= p ⇐⇒ w ∈ Vi(p)
M, i, w |= ¬ϕ ⇐⇒ M, i, w �|= ϕ
M, i, w |= ϕ ∨ ψ ⇐⇒ M, i, w |= ϕ or M, i, w |= ψ
M, i, w |= 〈e〉ϕ ⇐⇒ M, i, v |= ϕ for some v ∈ Wi with wRe

i v
M, i, w |= Eϕ ⇐⇒ M, i, v |= ϕ for some v ∈ Wi

M, i, w |= 〈〈α〉〉ϕ ⇐⇒ M, tα(i), v |= ϕ for some v ∈ Wα
i with wTα

i v

We also denote {w ∈ Wi | M, i, w |= ϕ} by [[ϕ]]M,i. We say that M validates ϕ if
M, i, w |= ϕ for all i in I and w ∈ Wi. A formula ϕ is valid in an FTS F if any
MTS M with U(M) = F validates the formula ϕ.

A bounded morphism, defined above, preserves the truth values:

Proposition 1. Let M = (I, (Mi)i∈I , T) and M′ = (I ′, (M ′
i′)i′∈I′ , T ′) be MTSs

and (h, (Hi)i∈I) : M → M′ be a bounded morphism such that each Hi is sur-
jective. Then, for any world w in Mi, w and Hi(w) satisfy exactly the same
formulae in L(E ,A).

Note that surjectivity is needed for the global operator.

On Inverse Operators in Dynamic Epistemic Logic 223

Examples of MTSs. By using an MTS and the interpretation above, we can
express several types of model transformations up to isomorphism.

Example 6.

1. PAL. Informally speaking, the model transformation caused by an announce-
ment !ϕ changes a Kripke model Mi into its submodel Mi|ϕ whose carrier set
is [[ϕ]]M,i. Formally, a PAL-transition system (I, (Mi)i∈I , T) is an MTS such
that for any i in I, the relation {(w, v) | wT !ϕ

i v} gives rise to an isomorphism
between Mi|ϕ and M !ϕ

i (the left diagram below).
2. EA. An action (U, s) with U = (S, (→n)n∈Ag,Pre) causes the model trans-

formation that changes a Kripke model Mi = (Wi, (Rn
i)n∈Ag, Vi) into the

Kripke model Mi ⊗ U = (W ′, (R′
n)n∈Ag, V

′) given by

W ′ = {(w, s) ∈ Wi × S | w ∈ [[Pre(s)]]M,i},

(w, s)R′
n(v, t) ⇔ wRnv and s→nt, (w, s) ∈ V ′(p) ⇔ w ∈ V (p).

We therefore define an EA-transition system to be an MTS (I, (Mi)i∈I , T)
such that (for any index i in I and action model U):

– t(U,s)(i) = t(U,t)(i) for any s and t in U ,
–

⋃
s∈U{((w, s), v) | wT

(U,s)
i v} gives rise to an isomorphism between Mi⊗U

and M
(U,s)
i (the right diagram below).

Mi � w�
!ϕ

�� �
� �

� �
� �

T
!ϕ
i

����
��

��
��

�

Mi|ϕ � w v ∈ M !ϕ
i

 ∼��

Mi � w�
(U,s)

�� ��
�� ��

�� ��
�� ��

�
T

(U,s)
i

����
���

���
��

Mi ⊗ U � (w, s) v ∈ M
(U,s)
i

 ∼��
PAL EA

�
The proof systems PAL and EA are sound and strongly complete with respect to
the class of PAL-transition systems and that of EA-transition systems, respec-
tively, as established in [15] (adding the global operator is easy).

3 Inverse Operators

In the previous section, we have recalled the general framework, a generic lan-
guage and MTSs, for DEL proposed in [15]. We next employ MTSs to extend
DELs with inverse operators. We then discuss completeness, conservativity and
properness of extended DELs.

224 S. Motoura and S. Katsumata

3.1 Introduction of Inverse Operators

We define a DEL language with inverse operators L+(E ,A) to be L(E ,A) aug-
mented with the inverse operator 〈〈α−1〉〉ϕ of α. Specifically, L+(E ,A) is defined
by the following BNF:

ϕ ::=� | p | ¬ϕ | ϕ ∨ ψ | 〈e〉ϕ | Eϕ | 〈〈α〉〉ϕ | 〈〈α−1〉〉ϕ
where p ranges over P, e over E and α over A. 〈〈α−1〉〉ϕ is called the inverse
operator of α. A dual operator [[α−1]]ϕ is defined to be ¬〈〈α−1〉〉¬ϕ. An inverse
operator is interpreted by an MTS M = (I, (Mi)i∈I , T) as follows: M, i, w |=
〈〈α−1〉〉ϕ iff M, j, v |= ϕ for some j ∈ I and v ∈ Wj with tα(j) = i and vTα

j w.
The above generic definition specialises to the inverse operators for PAL and
EA:

Example 7.

PAL. We denote the language L+(E ,APAL) by L+
PAL. The intended meaning of

[[!ϕ−1]]ψ is that ψ always holds before a public announcement of ϕ.
EA The language L+

EA is defined to be L+(E ,AEA). A formula [[(U, s)−1]]ϕ means
that ϕ always holds before an epistemic action (U, s). �
Obviously, the inverse operators are related to the past operators in tense

logics. Hence, it is natural to extend Kg with the following converse axioms (cf.
[8]):

ϕ → [[α]]〈〈α−1〉〉ϕ, ϕ → [[α−1]]〈〈α〉〉ϕ.

We denote this logic by K+.2

The proof systems PAL+ and EA+ are obtained by replacing the base logic
Kg with K+:

PAL+ = K+ ⊕ RPRNRERGRT EA+ = K+ ⊕ RPRNEEAGEAPre.

Then, PAL+ and EA+ are indeed sound with respect to the class of PAL-
transition systems and that of EA-transition systems, respectively. The next
subsection discusses their completeness.

Remark 1. Inverse operators 〈(p!)−1〉� in [20] assert that either p or an equiva-
lent expression was just announced. Therefore, 〈(p!)−1〉� and 〈(¬¬p!)−1〉� assert
the same. On the other hand, our inverse operators 〈〈!p−1〉〉� and 〈〈!¬¬p−1〉〉�
does not necessarily assert the same. This is because T !p

i and T !¬¬p
i in an MTS

(I, (Mi)i∈I , T) do not necessarily coincide. �
2 The axioms can be rephrased by adjunction (residuation) inference rules ϕ → [[α]]ψ

⇔ 〈〈α−1〉〉ϕ → ψ. Hence, adding inverse operators is a natural thing to do from an
algebraic point of view. Also quite naturally, a display calculus has been proposed
for EA with adjoint operators [11]. In loc. cit., an example of a Kripke model is given
to show that the residuation rules with any interpretation of the adjoint operators
to [[α]] do not hold in some model. On the other hand, our residuation rules above
hold since ours are based on global satisfaction: i.e. ϕ → [[α]]ψ holds for any model
iff 〈〈α−1〉〉ϕ → ψ holds for any model.

On Inverse Operators in Dynamic Epistemic Logic 225

3.2 Completeness

We now address completeness issues3. Our ultimate targets are completeness
theorems for PAL and EA with inverse operators. Towards this goal, we incre-
mentally add reduction axioms starting from K+, and see whether completeness
(partly established in [15]) can be maintained by adding of inverse operators.
It will turn out that assumption of backward determinism is essential in many
cases. We introduce the following additional axioms:

– G : E〈〈α〉〉ϕ → [[α]]Eϕ,
– R−1

N : 〈〈α−1〉〉¬ϕ ↔ 〈〈α−1〉〉� ∧ ¬〈〈α−1〉〉ϕ,
– Bd : {〈〈α−1〉〉� → ¬〈〈β−1〉〉� | α, β ∈ A and α �= β}.

Let us begin with the base case, to which we give a short proof:

Proposition 2. K+ ⊕G is sound and strongly complete with respect to the class
of MTSs.

Proof. Let M = (W, (Re)e∈E , (Rα)α∈A, RE, V) be the canonical Kripke model
for K+ ⊕ G seen as an ordinary multimodal logic and M− the Kripke model
(W, (Re)e∈E , V). The relation RE for the global operator E is an equivalence
relation that includes Re for all e ∈ E due to the four axioms added to K to
obtain Kg. We define an MTS M = (I ∪ {∗}, (Mi)i∈I∪{∗}, T): I is the set of
equivalence classes i for RE; Mi is the submodel of M− whose carrier set Wi is
the equivalence class i and M∗ is the empty structure; tα is defined by tα(i) = j
if the restricted relation Rα ∩ (Wi×Wj) �= ∅ and otherwise tα(i) = ∗; Tα

i is the
relation Rα∩(Wi×Wtα(i)). Function tα is well-defined due to the axiom G, which
ensures that the equivalence relation RE is preserved by action α. Corresponding
two states (M, w) and (M, i, w) with w ∈ i satisfy exactly the same formulae in
L+(E ,A). ��
The proof above is easy: we just transform the canonical Kripke model into
an MTS. We call this MTS the canonical MTS for K+ ⊕ G. Observe how the
global operator, as well as axiom G, helps us cut the canonical Kripke model
into relevant pieces which constitute the canonical MTS. This construction quite
useful and, indeed is essential when proving Proposition 6, infra. All propositions
in this subsection are proved by a similar construction of canonical MTSs.4

Determinism. We next consider actions in MTSs which are deterministic in
forward or backward directions.

Definition 5. Let M = (I, (Mi)i∈I , T) be an MTS.

1. M is called forward deterministic if for any action α, i in I and w in Mi,
wTα

i v and wTα
i v′ imply v = v′.

3 Similar results not involving inverse operators are shown in [6,15,16,23,24].
4 A previous work [16] studies this construction in more general settings without the

assumption of the functionality of MTSs in the ordinary language without inverse
operators.

226 S. Motoura and S. Katsumata

2. M is called backward deterministic if for any action α, any i in I and w in
Mi, vTα

j w and v′Tα
j′w imply j = j′ and v = v′ for all j and j′ in I.

These two types of determinism can be axiomatised by RN and R−1
N :

Proposition 3. Soundness and strong completeness hold for each of the follow-
ing pairs:

1. K+ ⊕ GRN and the class of forward deterministic MTSs;
2. K+ ⊕ GR−1

N and the class of backward deterministic MTSs.

This is due to the fact that RN and R−1
N are equivalent to 〈〈α〉〉ϕ → [[α]]ϕ

and 〈〈α−1〉〉ϕ → [[α−1]]ϕ with the substitution of ¬ϕ for ϕ, and they natu-
rally capture determinism. Note that K+ ⊕ GRN is equivalent to K+ ⊕ RL

GRN

where RL
G is the left direction of RG. In addition to the forward and the back-

ward determinism, we introduce the notion of strict backward determinism: an
MTS M = (I, (Mi)i∈I , T) is strictly backward deterministic if for any i in I and
w in Mi, vTα

j w and v′Tα′
j′ w imply α = α′, j = j′ and v = v′. Intuitively, strict

backward determinism means that each state is a result of a unique action from
a unique previous state. This property also has an axiomatisation:

Proposition 4. K+ ⊕ GR−1
N Bd is sound and strongly complete with respect to

the class of strictly backward deterministic MTSs.

The notion of strict backward determinism helps when it comes to the complete-
ness of EA+.

Preservation of Facts. An action of communication itself does not change the
facts: for example, communication does not change the weather. This nature is
expressed as follows:

Definition 6 (Epistemic MTSs [15]). An MTS M = (I, (Mi)i∈I , T) is epis-
temic if for any action α in A, index i in I, v and w with vTα

i w satisfy exactly
the same atomic propositions.

As already established in [15] for the ordinary language without inverse opera-
tors, this notion corresponds to axiom schema RP under the condition RN:

Proposition 5. K+ ⊕GRNRP is sound and strongly complete with respect to the
class of forward deterministic and epistemic MTSs.

Eliminativity. We now consider a class of actions whose only effect is to eliminate
some of possible worlds.

Definition 7 (Eliminative MTSs [15]). An MTS M = (I, (Mi)i∈I , T) is
called eliminative if for any index i in I and action α in A, Mα

i is a sub-
model of Mi and the inverse relation (Tα

i)−1 is an embedding of Mα
i into Mi.

An eliminative FTS is defined analogously.

This kind of update appears in [4] and [17]. Eliminativity is axiomatised by
RNRERG under the assumption of backward determinism:

On Inverse Operators in Dynamic Epistemic Logic 227

Proposition 6. Soundness and strong completeness hold for the following pairs:

1. K+ ⊕ R−1
N RNRERG and the class of backward deterministic and eliminative

FTSs;
2. K+ ⊕ R−1

N RNRERGRP and the class of backward deterministic eliminative
MTSs.

Proof. As before, it is proved by constructing a canonical MTS (or a canonical
FTS) M. Each action relation Tα

i in M indeed satisfies the desired properties:

– RN ensures functionality: wTα
i v and wTα

i v′ imply v = v′;
– R−1

N ensures injectivity: wTα
i v and w′Tα

i v imply w = w′;
– RE ensures surjectivity: for any w in Mα

i , there exists v in Mi such that vTα
i w;

– RERN ensures the forward homomorphic condition: wTα
i v, w′Tα

i v′ and wRe
i w

′

imply vRe
tα(i)v

′;
– RERNR−1

N ensures the backward homomorphic condition: wTα
i v, w′Tα

i v′ and
vRe

tα(i)v
′ imply wRe

i w
′ (Note that backward determinism is crucial here. RERN

only guarantees that there is w′′ such that wRe
i w

′′ and w′′Tα
i v′.);

– RPRN ensures the preservation of valuation: wTα
i v implies that w ∈ Vi(p) and

v ∈ Vtα(i)(p) are equivalent.

We thus conclude that M is eliminative. ��

PAL and EA. The results so far extend to PAL (resp. EA) with inverse operators
under the assumption of backward (resp. strict backward) determinism.

Proposition 7. For each of the following pairs, soundness and strong complete-
ness hold:

1. PAL+ ⊕R−1
N and the class of backward deterministic PAL-transition systems.

2. EA+ ⊕ R−1
N Bd and the class of strictly backward deterministic EA-transition

systems.

For the latter result, the canonical MTS has to be slightly modified so that it
meets the first condition of the definition of EA-transition system (Example 6).
It is open whether completeness holds without the determinism assumptions.

Remark 2. We proved the completeness in a modular and plain manner. In many
DELs, we often use the following fact to prove their completeness: any formula in
L(E ,A) has a provably equivalent formula not containing any dynamic operators.
This technique may be called reduction, which is why the axioms in Example 4
are called reduction axioms. However, we could not use this technique for the
reason discussed in the next subsection.

3.3 Irreducibility

It is well known [10,17] that any formula in LPAL or LEA can be reduced to an
equivalent formula not containing any dynamic operators; however, this is no
longer the case for L+

PAL and L+
EA. In this subsection we prove this fact.

228 S. Motoura and S. Katsumata

We first introduce an unravelling construction. Intuitively, the unravelling
of an MTS (I, (Mi)i∈I , T) around i ∈ I is a tree-like MTS with root Mi, which
consists of (copies of) its offspring. This part is sufficient for interpreting formulae
in the original language L(E ,A).

Definition 8 (Unravellings of MTSs (cf. [16])). Let M = (I, (Mi)i∈I , T) be
an MTS. The unravelled MTS (A∗, (M ′

γ)γ∈A∗ , T ′) of M around i in I is given
as follows:

1. the index set is the Kleene closure A∗ of A;
2. M ′

γ is Mγ
i for each γ in A∗;

3. T ′ is ((t′α)α∈A, (T ′α
γ)α∈A,γ∈A∗) such that

(a) t′α(γ) = γα for any γ in A∗ and
(b) T ′α

γ ⊆ W ′
γ × W ′

γ
α is Tα

tγ(i) ⊆ W γ
i × W γα

i .

M ′
ε(Mi)

T ′α
ε (T α

i)

����
��
��
�� T ′β

ε (T
β
i

)

			
		

		
		

	

M ′α
ε (Mα

i) · · · M ′β
ε (M

β
i)

If we think of tα : I → I and t′α : A∗ → A∗ as binary relations, (A∗, (t′α)α∈A) is
nothing but the unravelled Kripke frame of (I, (tα)α∈A) around i (cf. [8]). The
unravelled MTS is obtained by naturally enriching (A∗, (t′α)α∈A) on the basis
of (I, (Mi)i∈I , T).

Remark 3. A model used in [20] is called a history. A history is, intuitively,
a sequence (M0, · · · ,Mn) of Kripke models by which model transformations
M0

α1�→ · · · αn�→ Mn in PAL or EA are recorded. An unravelled PAL- or EA-
transition system starting from M0 records all chains of transformations from
M0 as the index α1 · · · αn. In this sense, the notion of MTS is an extension of
that of history. �
Proposition 8. Let (I, (Mi)i∈I , T) and (A∗, (M ′

γ)γ∈A∗ , T ′) be an MTS and
its unravelled one around i in I. Then, (h, (Hγ)γ∈A∗) : (A∗, (M ′

γ)γ∈A∗ , T ′) →
(I, (Mi)i∈I , T) is a bounded morphism, where, for each γ ∈ A∗, h(γ) is defined
to be tγ(i) and Hγ to be the identity mapping from M ′

γ to Mγ
i .

The irreducibility is proved as follows:

Proposition 9.

1. Any formula of the form 〈〈!ϕ−1〉〉� in L+
PAL does not have any PAL+ ⊕ R−1

N -
equivalent formula in LPAL unless it is equivalent to ⊥.

2. Any formula 〈〈(U, s)−1〉〉� in L+
EA does not have any EA+ ⊕ R−1

N Bd-equivalent
formula in LEA unless it is equivalent to ⊥.

Proof. We here prove (1) only. Let us suppose, for the sake of contradiction, that
there is an equivalent formula ψ in LPAL. As 〈〈!ϕ−1〉〉� is PAL+ ⊕ R−1

N -consistent
by assumption, there is a backward deterministic PAL-transition system M =
(I, (Mi)i∈I , T) such that M, i, w |= 〈〈!ϕ−1〉〉� for some i in I and w ∈ Mi. Namely,
w is a result of action !ϕ from a previous state. Note that we also have M, i, w |=
ψ. We next take the unravelled MTS M′ of M around the index i. Since M′ is a
backward deterministic PAL-transition system the equivalence should still hold
at any state in M′. However, M′, ε, w |= ψ holds due to Propositions 1 and 8
while M′, ε, w |= 〈〈!ϕ−1〉〉� does not since w it is no more a result of any action.
This is a contradiction. ��

On Inverse Operators in Dynamic Epistemic Logic 229

3.4 Conservativity

We conclude this section by showing that adding inverse operators and some
axioms in Sects. 3.1 and 3.2 conservatively extends base logics.

We call an axiom schema A in L(E ,A) canonical if for any logic Λ ⊇ Kg ⊕ A,
its canonical frame FΛ = (W, (Re)e∈E , (Rα)α∈A, RE) validates A.5,6 Using the
notion of canonicity, we have the following:

Proposition 10. K+ ⊕A is conservative over Kg ⊕A for any canonical schema
A in L(E ,A).

Proof. The canonical Kripke frame for Kg ⊕A validates A thus all instances of A
in L+(E ,A). In particular, the canonical Kripke model validates A in L+(E ,A).

��
Axioms RG and RE in conjunction with RN and many static axioms in the lan-
guage L(E , ∅) are canonical. For instance, Proposition 10 applies to K+⊕RNRGRE

and Kg ⊕ RNRGRE.
Now that we have a basic conservativity result, let us next consider the cases

of PAL+⊕R−1
N and EA+⊕R−1

N Bd. Notice that RP is not closed under substitution
and that R−1

N and Bd contain inverse operators. To prove conservativity we use
the following fact:

Fact 1. Suppose that a theory Λ in L(E ,A) is (weakly) complete with respect to
a class of MTSs and that an extension Λ′ in L+(E ,A) of Λ is sound with respect
to the same class. Then, Λ′ is conservative over Λ.

Now a crucial observation is the following:

Lemma 1. Let M = (I, (Mi)i∈I , T) be an MTS. If the action relation Tα
i for

each index i ∈ I and action α ∈ A is injective, then the unravelled MTS N of M
around any index in I is strictly backward deterministic.

By using this lemma, we obtain the following completeness results (in the case
of EA, a minor modification is required to satisfy the condition on tα).

Lemma 2. For each of the following pairs, soundness and strong completeness
hold:

1. PAL and the class of backward deterministic PAL-transition systems;
2. EA and the class of strictly backward deterministic EA-transition systems.

Proof. We prove (1) only. For any consistent set Γ , there is a PAL-transition
system M = (I, (Mi)i∈I , T) satisfying Γ at some i ∈ I and w ∈ Wi by the
completeness of PAL w.r.t. the class of all PAL-transition systems (Proposition
7 in [15]). Notice that each Tα

i is injective. Hence, by unravelling M around i,
we obtain the theorem. ��
5 We here consider addition of all the instances of the schema unlike RP.
6 A similar notion of canonicity is introduced in [16] to study the conservativity of

DELs extended by the global operators.

230 S. Motoura and S. Katsumata

By Lemma 2, Fact 1 and Proposition 7, we obtain the conservativity results:

Proposition 11. PAL+⊕R−1
N and EA+⊕R−1

N Bd are conservative over PAL and
EA, respectively.

To other cases, we may apply the following fact:7

Fact 2. Suppose that M = (I, (Mi)i∈I , T) with Mi = (Wi, (Ri
e)e∈E , Vi) for i ∈ I

is an MTS whose action relations Tα
i are functional and surjective. For any

i′ ∈ I, define an MTS M′ = (A∗, (M ′
γ)γ∈A∗ , T ′) with M ′

γ = (W ′
γ , (R′

γ
e)e∈E , V ′

γ)
for γ ∈ A∗ as blow:

W ′
γ = {w ∈ Wi′ | wRγ

i′v for some v} (denote such state v by γ(w)),

R′
γ

e = {(w,w′) | γ(w)Re
rγ(i′)γ(w′)}, V ′

γ(p) = {w | γ(w) ∈ Vrγ(i′)(p)},

t′α(γ) = γα, T ′
γ

α = {(w,w) | w ∈ W ′
γ and w ∈ W ′

γα}.

Then, each action relation T ′
i
α of M′ is injective and we have that

M, tγ(i), γ(w) |= ϕ iff M′, γ, w |= ϕ

for any γ ∈ A∗, w ∈ W ′
γ and ϕ ∈ L(E ,A).

Note that functionality and surjectivity correspond to RN and the right direction
of RG. Therefore, using this fact, we can see that R−1

N and R−1
N Bd conservatively

extend other logics (e.g. from Kg ⊕RNRGRERP to K+ ⊕RNRGRERPR−1
N and K+ ⊕

RNRGRERPR−1
N Bd) by modifying canonical MTSs and using Lemma 1 carefully

to ensure that modified MTSs are in desired classes.

4 Categorical Construction of Model Transition Systems

In Sect. 2.2 we have introduced model transition systems and bounded mor-
phisms between them, which naturally form a category MTS. One might wonder
how the definition of MTS arises; a part of the definition refers to the category
KMb of Kripke models and bounded morphisms, while other parts consist of an
intricate indexing system with binary relations between them. To understand
this category better, we introduce MTS construction that generalizes the cate-
gory MTS and its algebraic counterpart studied in [15]. We first introduce three
sub-constructions.

Indexed Coalgebras. For a set A and an endofunctor F : C → C, we define
the category Coalg(A, F) of A-indexed family of F -coalgebras by the following
data. An object is a pair of X ∈ C and a family (xα : X → FX)α∈A of F -
coalgebras on X. A morphism from (X, (xα)α∈A) to (Y, (yα)α∈A) is a morphism
h : X → Y such that it is a coalgebra morphism from (X,xα) to (Y, yα) for
all α ∈ A. It comes with the evident forgetful functor, which we name KA,F :
Coalg(A, F) → C.
7 This construction is a simpler version of that used in the proof of Proposition 8 in

[15].

On Inverse Operators in Dynamic Epistemic Logic 231

Family Construction. For a category C, we define the category Fam(C) by
the following data [12]. An object is pair of a set I and an I-indexed family
(Xi)i∈I of C-objects. A morphism from (I, (Xi)i∈I) to (J, (Yj)j∈J) is a pair
of a function f : I → J and an I-indexed family (fi : Xi → Yf(i))i∈I of C-
morphisms. The composition of (f, x) : (I, (Xi)i∈I) → (J, (Yj)j∈J) and (g, y) :
(J, (Yj)j∈J) → (K, (Zk)k∈K) is given by (g ◦ f, (yf(i) ◦ xi)i∈I). We then extend
the Fam construction to functors and natural transformations as follows. This
makes Fam a 2-endofunctor on CAT.

Fam(F)(I, (Xi)i∈I) = (I, (FXi)i∈I), Fam(F)(f, (xi)i∈I) = (f, (Fxi)i∈I)
Fam(α)(I,(Xi)i∈I) = (idI , (αXi

)i∈I).

Pullback. For two functors C
F→ D

G← E, we define the pullback category
PB(F,G) by the following data. An object is a pair (C,E) of objects C ∈ C and
E ∈ E such that FC = GE. A morphism from (C,E) to (C ′, E′) is a pair of mor-
phisms f : C → C ′ and h : E → E′ such that Ff = Gh. Composition is defined
componentwisely. The category PB(F,G) has evident projection functors into
C and E.

We now introduce MTS construction. It takes a set A and functors C
U−→

D
F−→ D as parameters. We first apply Fam construction to U and F to

obtain functors Fam(U) and Fam(F) respectively. We then take the pullback
of Fam(U) along the forgetful functor KA,Fam(F):

PB(KA,Fam(F),Fam(U))

�
Fam(C)

Fam(U)

Coalg(A,Fam(F))

KA,Fam(F) Fam(D)

The vertex category, which we name MTS(A,C
U−→ D

F−→ D) (or MTS(A, U, F)
for short), is the result of MTS construction. Its concrete description is given as
follows.

– An object consists of a set I, I-indexed family of C-objects (Mi)i∈I , A-indexed
family of functions (tα : I → I)α∈A and I×A-indexed family of D-morphisms
(Tα

i : UMi → FUMtα(i))(i,α)∈I×A.
– A morphism from (I, (Mi), (tα), (Tα

i)) to (J, (Nj), (sα), (Sα
j)) is a pair of a

function h : I → J and an I-indexed family of C-morphisms (Hi : Mi →
Nh(i))i∈I making the following diagrams commute for any α ∈ A, i ∈ I.

I
h

tα

J

sα

UMi
UHi

UT α
i

UNh(i)

USα
h(i)

I
h

 J FUMtα(i) FUHtα(i)

 FUNsα(h(i))

232 S. Motoura and S. Katsumata

The category MTS can be constructed by the MTS construction. We con-
sider the category KMb of Kripke models, including the empty structure, and
bounded morphisms between them. It has the forgetful functor UKMb

: KMb →
Set extracting the underlying set. Also let P : Set → Set be the covariant
powerset functor.

Theorem 3. The category MTS(A,KMb

UKMb−−−−→ Set P−→ Set) is isomorphic
to MTS.

One may replace UKMb
with the forgetful functor from the category KFb of

Kripke frames and bounded morphisms between them. Then MTS(A, UKFb
, P)

is isomorphic to the category FTS of frame transition systems.
We next use MTS construction to recover the algebraic counterpart of MTSs

called algebraic model transition systems [15] . Let pAM be the category of alge-
braic models whose underlying BAOs are perfect (i.e. complete atomic boolean
algebras with operators preserving all joins [22, Definition 5.1]). Morphisms of
pAM are complete homomorphisms between them. Note that pAMop and
KMb are equivalent [22, Theorem 5.8]. Next, let CABA be the category of
complete atomic boolean algebras and complete homomorphisms between them.
We also let UpAM : pAM → CABA be the evident forgetful functor, and
H : CABAop → CABAop be the functor obtained by transferring the covari-
ant powerset functor P on Set to CABAop by the equivalence Set ≡ CABAop.

One easily finds that MTS(A, Uop
pAM,H) is a subcategory of the category

of algebraic model transition system (AMTS) in [15]. We also have the duality
result in the spirit of [15, Proposition 18]:

Theorem 4. The category MTS(A,pAMop
Uop

pAM−−−−→ CABAop H−→ CABAop)
is equivalent to MTS.

5 Related Work

As already referred to in footnote 2, Greco et al. [11] propose the adjoint oper-
ators to [[α]] in EA. They also propose using the final coalgebra to interpret
the language of EA extended by the adjoint operators. This interpretation is
justified by the invariance of EA-formulae under bisimulation, which holds due
to the fact that reduction axioms are true for all connectives in EA. In contrast,
our semantics does not require a ‘full’ set of reduction axioms and thus it may
encompass more varieties of DEL extended with inverse operators.

Other studies on inverse operators include [1,2]. Aucher and Herzig [1] pro-
pose inverse operators for EA by using a ‘large’ Kripke model wherein the effect
of an action α is expressed by its corresponding accessibility relation Rα on the
set of possible worlds. In this sense, their inverse operators are introduced on the
basis of study on how to express the effect of actions without model transforma-
tion, while ours are on that of study on how to express model transformations
without model transformations. On the other hand, Balbiani et al. [2] propose
inverse operators for mono-agent PAL. Its semantics uses an ‘initial’ set and a

On Inverse Operators in Dynamic Epistemic Logic 233

set of its subsets. It is sufficient for interpretation since the logic is mono-agent
PAL. The main difference from ours is that our semantics does not require the
‘initial’ set.

Regarding the categorical reformulation of MTSs, in [9,13], Ĉırstea and
Sadrzadeh give a coalgebraic model of modal logic for actions and agents. They
take TX = Pκ(X)E ×(1+X)A ×℘(P), where κ is a regular cardinal, as the coal-
gebra functor (over Set). A T -coalgebra determines an extended Kripke model
proposed in [23] and [24] for EA and PAL, respectively. Such an extended Kripke
model further determines an MTS whose index set is singleton.

The main feature of the semantics of DEL in an MTS (Definition 4), which
was originally given in [15], is the use of indexed Kripke models and the inter-
pretation of actions as index updates. The categorical reformulation of MTS in
Sect. 4 focuses on capturing this indexing mechanism by Fam construction. Cat-
egorical semantics of DEL in [9,13,14] does not have such indexing systems. On
the other hand, the first author extends index update functions (tα component
of MTS) to relations in [16]. This extension is beyond the categorical framework
in Sect. 4, and its categorical understanding is left as a future work.

6 Conclusion and Future Work

Conclusion. In this paper, we have introduced inverse operators 〈〈α−1〉〉 of an
action α in Dynamic Epistemic Logic (DEL) in a way independent of specific
DELs and along the line of tense logics. We have also provided its semantics
using model transition systems (MTSs), which expresses model transformations
in one model. In this syntax and semantics, we have proved several soundness and
completeness results of well-known axioms and, as results, have given modular
proofs of completeness of public announcement logic and epistemic action logic
extended with inverse operators with respect to suitable classes of MTSs under
the assumptions of ‘backward determinism’. In addition, we have also analysed
categorical structures behind the MTSs.

Future Work. There are some problems left. Firstly, our completeness results
rest on the assumption of backward determinism, whose necessity is unclear.
Secondly, decidability of PAL+ and EA+ should be addressed. Thirdly, for the
generalised notion of MTS proposed in [16], whose model transitions tα are not
necessarily functional, we shall study its categorical reformulation and whether
analogous results regarding inverse operators given in this paper hold. Lastly, the
MTS construction in Sect. 4 is independent from the inverse operators studied
in Sect. 3, and their integration is desirable.

Acknowledgements. We would like to thank Kazushige Terui and Manuela Anto-
niu for discussion and many helpful comments. The second author is supported by
ERATO HASUO Metamathematics for Systems Design Project (No. JPMJER1603),
JST. Thanks are also due to all anonymous referees who gave valuable comments on
earlier versions of this article.

234 S. Motoura and S. Katsumata

References

1. Aucher, G., Herzig, A.: Exploring the power of converse events. In: Girard, P.,
Roy, O., Marion, M. (eds.) Dynamic Formal Epistemology, pp. 51–74. Springer,
Dordrecht (2011). https://doi.org/10.1007/978-94-007-0074-1 4

2. Balbiani, P., van Ditmarsch, H., Herzig, A.: Before announcement (regular paper).
In: Advances in Modal Logic (AiML 2016), Budapest, Hungary, 30 August 2016–02
Sept 2016, pp. 58–77. College Publications (2016). http://www.collegepublications.
co.uk/, http://oatao.univ-toulouse.fr/19192/

3. Baltag, A., Moss, L.S., Solecki, S.: The logic of public announcements, common
knowledge, and private suspicions. In: Proceedings of the 7th Conference on Theo-
retical Aspects of Rationality and Knowledge, TARK ’98, p. 43–56. Morgan Kauf-
mann Publishers Inc., San Francisco (1998)

4. van Benthem, J.: Dynamic logic for belief revision. J. Appl. Non-Classic. Logics
17(2), 129–155 (2007). https://doi.org/10.3166/jancl.17.129-155

5. van Benthem, J.: Logical Dynamics of Information and Interaction. Cambridge
University Press, Cambridge (2011). https://doi.org/10.1017/CBO9780511974533

6. van Benthem, J.: Two logical faces of belief revision. In: Trypuz, R. (ed.) Krister
Segerberg on Logic of Actions. OCL, vol. 1, pp. 281–300. Springer, Dordrecht
(2014). https://doi.org/10.1007/978-94-007-7046-1 13

7. van Benthem, J., Liu, F.: Dynamic logic of preference upgrade. J. Appl. Non-
Classic. Logics 17(2), 157–182 (2007). https://doi.org/10.3166/jancl.17.157-182

8. Blackburn, P., Rijke, M.d., Venema, Y.: Modal Logic. Cambridge Tracts in Theo-
retical Computer Science. Cambridge University Press, Cambridge (2001). https://
doi.org/10.1017/CBO9781107050884

9. Ĉırstea, C., Sadrzadeh, M.: Coalgebraic epistemic update without change of model.
In: Mossakowski, T., Montanari, U., Haveraaen, M. (eds.) CALCO 2007. LNCS,
vol. 4624, pp. 158–172. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-73859-6 11

10. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic, 1st edn.
Springer, Dordrecht (2008). https://doi.org/10.1007/978-1-4020-5839-4

11. Greco, G., Kurz, A., Palmigiano, A.: Dynamic epistemic logic displayed. In: Grossi,
D., Roy, O., Huang, H. (eds.) LORI 2013. LNCS, vol. 8196, pp. 135–148. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40948-6 11

12. Jacobs, B.: Categorical Logic and Type Theory. No. 141 in Studies in Logic and
the Foundations of Mathematics. North Holland, Amsterdam (1999)

13. Kishida, K.: Categories for dynamic epistemic logic. In: Proceedings of the 16th
Conference on Theoretical Aspects of Rationality and Knowledge, TARK 2017,
pp. 353–372. Open Publishing Association (2017). https://doi.org/10.4204/eptcs.
251.26

14. Kurz, A., Palmigiano, A.: Epistemic updates on algebras. Logical Methods Com-
put. Sci. 9(4) (2013). https://doi.org/10.2168/LMCS-9(4:17)2013

15. Motoura, S.: A general framework for modal correspondence in dynamic epistemic
logic. In: van der Hoek, W., Holliday, W.H., Wang, W. (eds.) LORI 2015. LNCS,
vol. 9394, pp. 282–294. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48561-3 23

16. Motoura, S.: A general framework for dynamic epistemic logic: towards canonical
correspondences. J. Appl. Non-Classic. Logics 27(1–2), 50–89 (2017). https://doi.
org/10.1080/11663081.2017.1370663

https://doi.org/10.1007/978-94-007-0074-1_4
http://www.collegepublications.co.uk/
http://www.collegepublications.co.uk/
http://oatao.univ-toulouse.fr/19192/
https://doi.org/10.3166/jancl.17.129-155
https://doi.org/10.1017/CBO9780511974533
https://doi.org/10.1007/978-94-007-7046-1_13
https://doi.org/10.3166/jancl.17.157-182
https://doi.org/10.1017/CBO9781107050884
https://doi.org/10.1017/CBO9781107050884
https://doi.org/10.1007/978-3-540-73859-6_11
https://doi.org/10.1007/978-3-540-73859-6_11
https://doi.org/10.1007/978-1-4020-5839-4
https://doi.org/10.1007/978-3-642-40948-6_11
https://doi.org/10.4204/eptcs.251.26
https://doi.org/10.4204/eptcs.251.26
https://doi.org/10.2168/LMCS-9(4:17)2013
https://doi.org/10.1007/978-3-662-48561-3_23
https://doi.org/10.1007/978-3-662-48561-3_23
https://doi.org/10.1080/11663081.2017.1370663
https://doi.org/10.1080/11663081.2017.1370663

On Inverse Operators in Dynamic Epistemic Logic 235

17. Plaza, J.: Logics of public communications. Synthese 158(2), 165–179 (2007).
https://doi.org/10.1007/s11229-007-9168-7

18. Renne, B., Sack, J., Yap, A.: Dynamic epistemic temporal logic. In: He, X., Horty,
J., Pacuit, E. (eds.) LORI 2009. LNCS (LNAI), vol. 5834, pp. 263–277. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-04893-7 21

19. Renne, B., Sack, J., Yap, A.: Logics of temporal-epistemic actions. Synthese 193(3),
813–849 (2016). https://doi.org/10.1007/s11229-015-0773-6

20. Sack, J.: Temporal languages for epistemic programs. J. Logic Lang. Inf. 17(2),
183–216 (2008). https://doi.org/10.1007/s10849-007-9054-1

21. Sack, J.: Logic for update products and steps into the past. Ann. Pure Appl. Logic
161(12), 1431–1461 (2010). https://doi.org/10.1016/j.apal.2010.04.011, https://
www.sciencedirect.com/science/article/pii/S0168007210000527

22. Venema, Y.: 6 algebras and coalgebras. In: Blackburn, P., Van Benthem, J., Wolter,
F. (eds.) Handbook of Modal Logic, Studies in Logic and Practical Reasoning, vol.
3, pp. 331–426. Elsevier (2007). https://doi.org/10.1016/S1570-2464(07)80009-7,
https://www.sciencedirect.com/science/article/pii/

23. Wang, Y., Aucher, G.: An alternative axiomatization of del and its applications.
In: Proceedings of the Twenty-Third International Joint Conference on Artificial
Intelligence, IJCAI ’13, pp. 1139–1146. AAAI Press (2013)

24. Wang, Y., Cao, Q.: On axiomatizations of public announcement logic. Synthese
190(1), 103–134 (2013). https://doi.org/10.1007/s11229-012-0233-5

https://doi.org/10.1007/s11229-007-9168-7
https://doi.org/10.1007/978-3-642-04893-7_21
https://doi.org/10.1007/s11229-015-0773-6
https://doi.org/10.1007/s10849-007-9054-1
https://doi.org/10.1016/j.apal.2010.04.011
https://www.sciencedirect.com/science/article/pii/S0168007210000527
https://www.sciencedirect.com/science/article/pii/S0168007210000527
https://doi.org/10.1016/S1570-2464(07)80009-7
https://www.sciencedirect.com/science/article/pii/
https://doi.org/10.1007/s11229-012-0233-5

Betwixt Turing and Kleene

Dag Normann1 and Sam Sanders2(B)

1 Department of Mathematics, The University of Oslo,
P.O. Box 1053, Blindern, 0316 Oslo, Norway

dnormann@math.uio.no
2 Department of Philosophy II, RUB Bochum, Universitätsstrasse 150,

44780 Bochum, Germany
sam.sanders@rub.de

Abstract. Turing’s famous ‘machine’ model constitutes the first intu-
itively convincing framework for computing with real numbers. Kleene’s
computation schemes S1–S9 extend Turing’s approach and provide a
framework for computing with objects of any finite type. Various research
programs have been proposed in which higher-order objects, like func-
tions on the real numbers, are represented/coded as real numbers, so as
to make them amenable to the Turing framework. It is then a natural
question whether there is any significant difference between the Kleene
approach or the Turing-approach-via-codes. Continuous functions being
well-studied in this context, we study functions of bounded variation,
which have at most countably many points of discontinuity. A central
result is the Jordan decomposition theorem that a function of bounded
variation on [0, 1] equals the difference of two monotone functions. We
show that for this theorem and related results, the difference between the
Kleene approach and the Turing-approach-via-codes is huge, in that full
second-order arithmetic readily comes to the fore in Kleene’s approach,
in the guise of Kleene’s quantifier ∃3.

Keywords: Representations · Computability theory · Kleene S1–S9 ·
Bounded variation

1 Introduction: Jordan, Turing, and Kleene

In a nutshell, we study the computational properties of the Jordan decomposi-
tion theorem as in Theorem 1 and other results on functions of bounded variation,
establishing the huge differences between the Turing and Kleene approaches to
computability theory. For the rest of this section, we introduce the above itali-
cised notions and sketch the contents of this paper in more detail. All technical
notions are introduced in Sect. 2 while our main results are in Sect. 3.

First of all, Turing’s famous ‘machine’ model, introduced in [45], consti-
tutes the first intuitively convincing framework for computing with real numbers.
Kleene’s computation schemes S1–S9, introduced in [18] extend Turing’s frame-
work and provide a framework for computing with objects of any finite type. Now,
c© Springer Nature Switzerland AG 2022
S. Artemov and A. Nerode (Eds.): LFCS 2022, LNCS 13137, pp. 236–252, 2022.
https://doi.org/10.1007/978-3-030-93100-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93100-1_15&domain=pdf
https://doi.org/10.1007/978-3-030-93100-1_15

Betwixt Turing and Kleene 237

various1 research programs have been proposed in which higher-order objects are
represented/coded as real numbers or similar second-order representations, so as
to make them amenable to the Turing framework. It is then a natural ques-
tion whether there is any significant difference2 between the Kleene approach
and the Turing-approach-via-codes. Continuous functions being well-studied (see
footnote 2) in this context, we investigate functions of bounded variation, which
have at most countably many points of discontinuity.

Secondly, the notion of bounded variation was first introduced by Jordan
around 1881 [17] yielding a generalisation of Dirichlet’s convergence theorems
for Fourier series. Indeed, Dirichlet’s convergence results are restricted to func-
tions that are continuous except at a finite number of points, while functions of
bounded variation can have (at most) countable many points of discontinuity, as
also shown by Jordan, namely in [17, p. 230]. The fundamental theorem about
functions of bounded variation is as follows and can be found in [17, p. 229].

Theorem 1 (Jordan decomposition theorem). A function f : [0, 1] → R of
bounded variation can be written as the difference of two non-decreasing functions
g, h : [0, 1] → R.

The computational properties of Theorem 1 have been studied extensively via
second-order representations, namely in e.g. [23,28,29,48]. The same holds for
constructive analysis by [5,7,14,39], involving different (but related) constructive
enrichments. Now, finite iterations of the Turing jump suffice to compute g, h
from Theorem 1 in terms of represented functions f of bounded variation by [23,
Cor. 10].

Thirdly, in light of the previous, it is a natural question what the compu-
tational properties of Theorem 1 are in Kleene’s framework. In particular, the
following question is central to this paper.

How hard is it to compute (S1-S9) from f : [0, 1] → R of bounded variation,
two monotone functions g, h such that f = g − h on [0, 1]?

A functional that can perform this computational task will be called a Jordan
realiser (see Definition 6). A related and natural computational task is as follows.

How hard is it to compute (S1-S9) from f : [0, 1] → R of bounded variation, the
supremum supx∈[0,1]f(x)?

1 Examples of such frameworks include: reverse mathematics [43,44], constructive
analysis ([2, I.13], [3]), predicative analysis [12], and computable analysis [47]. Note
that Bishop’s constructive analysis is not based on Turing computability directly,
but one of its ‘intended models’ is however (constructive) recursive mathematics, as
discussed in [8]. One aim of Feferman’s predicative analysis is to capture constructive
reasoning in the sense of Bishop.

2 The fan functional constitutes an early natural example of this difference: it has a
computable code but is not S1–S9 computable (but S1–S9 computable in Kleene’s
∃2 from Sect. 2.2). The fan functional computes a modulus of uniform continuity for
continuous functions on Cantor space; details may be found in [26].

238 D. Normann and S. Sanders

A functional that can perform this computational task will be called a sup-
realiser (see Definition 6). This task restricted to continuous functions is well-
studied, and rather weak by [21, Footnote 6]. In light of the above, the following
computational task is also natural:

How hard is it to compute S1−S9 from f : [0, 1] → R of bounded variation, a
sequence (xn)n∈N listing the points of discontinuity of f?

By way of a robustness result, we show that the above three tasks are the same
modulo Kleene’s ∃2 from Sect. 2.2. Moreover, we show that Jordan realisers
are hard to compute: no type two functional, in particular the functionals S2k
which decide Π1

k -formulas (see Sect. 2.2), can compute a Jordan realiser. We
also show that Jordan realisers are powerful : when combined with other natural
functionals, one can go all the way up to Kleene’s quantifier ∃3 which yields
full second-order arithmetic (see again Sect. 2.2 for the definition of ∃3). We
also study special cases of Jordan realisers, which connects to the computational
tasks associated to the uncountability of R.

Finally, our main results are obtained in Sect. 3 while some preliminary
notions, including some essential parts of Kleene’s higher-order computability
theory, can be found in Sect. 2.

2 Preliminaries

2.1 Kleene’s Higher-Order Computability Theory

We first make our notion of ‘computability’ precise as follows.

(I) We adopt ZFC, i.e. Zermelo-Fraenkel set theory with the Axiom of Choice,
as the official metatheory for all results, unless explicitly stated otherwise.

(II) We adopt Kleene’s notion of higher-order computation as given by his nine
clauses S1–S9 (see [26, Ch. 5] or [18]) as our official notion of ‘computable’.

We refer to [26] for a thorough overview of higher-order computability theory.
We do mention the distinction between ‘normal’ and ‘non-normal’ functionals
based on the following definition from [26, §5.4].

Definition 2. For n ≥ 2, a functional of type n is called normal if it computes
Kleene’s ∃n following S1–S9, and non-normal otherwise.

We only make use of ∃n for n = 2, 3, as defined in Sect. 2.2.
It is a historical fact that higher-order computability theory based on S1–

S9 has focused primarily on normal functionals (see [26, §5.4] for this opinion).
We have previously studied the computational properties of new non-normal
functionals, namely those that compute the objects claimed to exist by:

– the Heine-Borel and Vitali covering theorems [30,32,33],
– the Baire category theorem [35],
– local-global principles like Pincherle’s theorem [36],

Betwixt Turing and Kleene 239

– the uncountability of R and the Bolzano-Weierstrass theorem for countable
sets in Cantor space [34,38],

– weak fragments of the Axiom of (countable) Choice [37].

In this paper, we continue this study for the Jordan decomposition theorem
and other basic properties of functions of bounded variation. Next, we introduce
some required higher-order notions in Sect. 2.2.

2.2 Some Higher-Order Notions

Some Higher-Order Functionals. We introduce a number of comprehension
functionals from the literature. We are dealing with conventional comprehension,
i.e. only parameters over N and N

N are allowed in formula classes like Π1
k and

related notions.
First of all, the functional3 ϕ as in (∃2) is clearly discontinuous at f = 11 . . . ;

in fact, (∃2) is equivalent to the existence of F : R → R such that F (x) = 1 if
x > 0, and 0 otherwise by [21, §3].

(∃ϕ2 ≤2 1)(∀f1)
[
(∃n0)(f(n) = 0) ↔ ϕ(f) = 0

]
. (∃2)

Intuitively speaking, the functional ϕ from (∃2) can decide the truth of any
Σ0

1 -formula in its (Kleene) normal form. Related to (∃2), the functional μ2 in
(μ2) is also called Feferman’s μ [1], defined as follows:

(∃μ2)(∀f1)

⎡

⎣
(∃n0)(f(n) = 0) → [f(μ(f)) = 0 ∧ (∀i < μ(f))(f(i) 	= 0)]

∧
(∀n0)(f(n) 	= 0) → (μ(f) = 0)

⎤

⎦ . (1)

We have (∃2) ↔ (μ2) over a weak system by [20, Prop. 3.4 and Cor. 3.5]) while
μ2 is readily computed from ϕ2 in (∃2). The third-order functional from (∃2) is
called ‘Kleene’s quantifier ∃2’; we use the same convention for other functionals.

Secondly, S2 as in (S2) is called (see footnote 3) the Suslin functional [1,21]:

(∃S2 ≤2 1)(∀f1)
[
(∃g1)(∀n0)(f(gn) = 0) ↔ S(f) = 0

]
. (S2)

Intuitively, the Suslin functional S2 can decide the truth of any Σ1
1 -formula in

its normal form. We similarly define the functional S2k which decides the truth
or falsity of Σ1

k-formulas (again in normal form). We note that the operators
νn from [10, p. 129] are essentially S2n strengthened to return a witness to the
Σ1

n-formula at hand. As suggested by its name, νk is the restriction of Hilbert-
Bernays’ ν from [15, p. 495] to Σ1

k-formulas. We sometimes use the special cases
S20 and S21 to denote the functionals ∃2 and S2.

Thirdly, second-order arithmetic is readily derived from (see footnote 3) the
following:

(∃E3 ≤3 1)(∀Y 2)
[
(∃f1)(Y (f) = 0) ↔ E(Y) = 0

]
. (∃3)

3 The notation ‘ϕ2 ≤2 1’ means that ϕ(f) ≤ 1 for all f ∈ N
N and guarantees unique-

ness. The same holds for S2, S2
k, and ∃3 below.

240 D. Normann and S. Sanders

The functional from (∃3) is also called ‘Kleene’s quantifier ∃3’. Hilbert-Bernays’
ν from [15, p. 495] trivially computes ∃3.

Finally, the functionals S2k are defined using the usual formula class Π1
k , i.e.

only allowing first- and second-order parameters. We have dubbed this the con-
ventional approach and the associated functionals are captured by the umbrella
term conventional comprehension. Comprehension involving third-order param-
eters has previously (only) been studied in [12,19], to the best of our knowledge.

Some Higher-Order Definitions. We introduce some required definitions.
First of all, a fruitful and faithful approach is the representation of sets

by characteristic functions (see e.g. [24,32,35,37,40–42]), well-known from e.g.
measure and probability theory. We shall use this approach, always assuming
∃2 to make sure open sets represented by countable unions of basic opens are
indeed sets in our sense.

Secondly, we now turn to countable sets. Of course, the notion of ‘countable
set’ can be formalised in various ways, as follows.

Definition 3 [Enumerable set]. A set A ⊂ R is enumerable if there is a sequence
(xn)n∈N such that (∀x ∈ R)(x ∈ A ↔ (∃n ∈ N)(x = xn)).

Definition 3 reflects the notion of ‘countable set’ from reverse mathematics [43,
V.4.2]. Our definition of ‘countable set’ is as follows.

Definition 4 [Countable set]. A set A ⊂ R is countable if there is Y : R → N

with
(∀x, y ∈ A)(Y (x) =0 Y (y) → x = y). (2)

The functional Y as in (2) is called injective on A or an injection on A. If
Y : R → N is also surjective, i.e. (∀n ∈ N)(∃x ∈ A)(Y (x) = n), we call A
strongly countable. In this case, Y is called bijective on A or a bijection on A.

The first part of Definition 4 is from Kunen’s set theory textbook [25, p. 63] and
the second part is taken from Hrbacek-Jech’s set theory textbook [16] (where the
term ‘countable’ is used instead of ‘strongly countable’). According to Veldman
[46, p. 292], Brouwer studies set theory based on injections in [9]. Hereinafter,
‘strongly countable’ and ‘countable’ shall exclusively refer to Definition 4.

3 Main Results

In this section, we shall obtain our main results as follows. Recall that a Jor-
dan realiser outputs the monotone functions claimed to exist by the Jordan
decomposition theorem as in Theorem 1.

– We introduce Jordan realisers and other functionals witnessing basic prop-
erties of functions of bounded variation; we show that three of these are
computationally equivalent (Sect. 3.1).

– We show that Jordan realisers are hard to compute based on results from [34]
(Sect. 3.2).

Betwixt Turing and Kleene 241

– We show that Kleene’s ∃3 can be computed from ∃2, a Jordan realiser, and
a well-ordering of [0, 1] (Sect. 3.3).

– We show that Jordan realisers remain hard to compute even if we severely
restrict the output (Sect. 3.4).

3.1 Jordan Realisers and Equivalent Formulations

We introduce functionals witnessing basic properties of functions of bounded
variation, including the Jordan decomposition theorem (Theorem1). We show
that three of these are computationally equivalent given ∃2.

As noted above, we always assume ∃2 but specify the use when essential.
This means that we can use the concept of Kleene-computability over R or [0, 1]
without focusing on how these spaces are represented.

First of all, as to definitions, the total variation of a function f : [a, b] → R

is (nowadays) defined as follows:

V b
a (f) := supa≤x0<···<xn≤b

∑n
i=0 |f(xi) − f(xi+1)|. (3)

If this quantity exists and is finite, one says that f has bounded variation on
[a, b]. Now, the notion of bounded variation is defined in [28] without mentioning
the supremum in (3); this approach can also be found in [5,7,23]. Hence, we shall
hereafter distinguish between the following two notions. As it happens, Jordan
seems to use item (a) of Definition 5 in [17, pp. 228–229], providing further
motivation for the functionals introduced in Definition 6.

Definition 5 [Variations on variation]

a. The function f : [a, b] → R has bounded variation on [a, b] if there is k0 ∈ N

such that k0 ≥ ∑n
i=0 |f(xi) − f(xi+1)| for any partition a ≤ x0 < x1 < · · · <

xn−1 < xn ≤ b.
b. The function f : [a, b] → R has a variation on [a, b] if the supremum in (3)

exists and is finite.

We can now introduce the following notion of ‘realiser’ for the Jordan decompo-
sition theorem and related functionals.

Definition 6

– A Jordan realiser is a partial functional J of type 3 taking as input f :
[0, 1] → R of bounded variation (item (a) in Definition 5), and providing a
pair (g, h) of non-decreasing g, h : [0, 1] → R with f = g − h on [0, 1].

– A weak Jordan realiser is a partial functional Jw of type 3 taking as inputs a
function f : [0, 1] → R and its bounded variation V 1

0 (f) (item (b) in Defini-
tion 5), and providing a pair (g, h) of increasing functions g and h such that
f = g − h on [0, 1].

– A sup-realiser is a partial functional S of type 3 taking as input a function
f : [0, 1] → R which has bounded variation (item (a) in Definition 5), and
providing the supremum supx∈[0,1]f(x).

242 D. Normann and S. Sanders

– A continuity-realiser is a partial functional L of type 3 taking as input a
function f : [0, 1] → R which has bounded variation (item (a) in Definition 5),
and providing a sequence (xn)n∈N which lists all points of discontinuity of f
on [0, 1].

Next, we need the following lemma. The use of ∃2 is perhaps superfluous in light
of the constructive proof in [6], but the latter seems to make essential use of the
Axiom of (countable) Choice.

Lemma 7. There is a functional D, computable in ∃2, such that if f : [0, 1] → R

is increasing (decreasing), then D(f) enumerates all points of discontinuity of f
on [0, 1].

Proof. Let {qi}i∈N be an enumeration of Q ∩ [0, 1], let f : [0, 1] → R be mono-
tone, and define ai := f(qi). Let A be the set of pairs of rationals p < r such
that there is no i with p < ai < r. For (p, r) ∈ A, define

xp,r := sup{qi : ai ≤ p} = inf{qj : r ≤ aj}. (4)

It is easy to see that the reals in (4) are equal; indeed, the existence of a rational qi

between them, together with assuming that (p, r) ∈ A, leads to a contradiction.
Then all discontinuities of f will be among the elements xp,r for (p, r) ∈ A.

Clearly, i → ai, A and (p, r) → xp,r for (p, r) ∈ A are computable in f and ∃2.
This ends the proof. ��
Finally, we show that three ‘non-weak’ realisers from Definition 6 are in fact one
and the same, in part based on Lemma 7.

Theorem 8. Assuming ∃2, Jordan realisers, sup-realisers, and continuity realis-
ers are computationally equivalent.

Proof. We first show that a continuity realiser computes a sup-realiser. To this
end, let f be of bounded variation on [0, 1] and let L(f) = (xn)n∈N be a list of its
points of discontinuity. From L(f) we can find a list (yj)j∈N containing both the
points of discontinuity and all rational numbers in [0, 1]. Then we can compute

S(f) = sup{f(x) : x ∈ [0, 1]} = sup{f(yj) : j ∈ N}, (5)

since sup{f(yj) : j ∈ N} is computable from L(f), f , and ∃2.
Secondly, that a Jordan realiser computes a continuity realiser, assuming ∃2,

is immediate from Lemma 7.

Thirdly, we show that a sup-realiser S computes a Jordan realiser. To this
end, let a and b be such that 0 ≤ a < b ≤ 1 and define

S+
a,b(f) := sup

x∈[a,b]

f(x) and S−
a,b(f) := inf

x∈[a,b]
f(x). (6)

These functionals are clearly computable in S, for f : [0, 1] → R a function of
bounded variation. Now let Var(P, f) be the sum

∑n−1
i=0 |f(xi+1) − f(xi)| for a

partition P = {0 ≤ x0 < · · · < xn ≤ 1} of [0, 1], while Var+(P, f) is the sum of
all positive differences f(xi+1) − f(xi).

Betwixt Turing and Kleene 243

Claim 9. To compute a Jordan realiser, it suffices to compute the following
number Δ(f) := supP Var+(P, f), where P varies over all partitions of [0, 1].

To prove Claim 9, we compute increasing functions f+ and f− such that f =
f+ − f−. Without loss of generality, we may assume that f(0) = 0, and by
symmetry it suffices to compute f+. We can define f+(0) = 0 and f+(x) = Δ(fx)
for x > 0, where fx(y) = f(y

x). This ends the proof of Claim 9.
We now employ the functionals S+

a,b and S−
a,b from (6) as follows.

Definition 10. Let f be of bounded variation on [0, 1] and let n ∈ N. An n, f-
trail is a sequence k0, . . . , k2m−1 such that 0 ≤ k0 < . . . < k2m−1 < n and such
that when 0 ≤ j < m we have

S−
k2j
n ,

k2j+1
n

(f) < S+
k2j+1

n ,
k2j+1+1

n

(f).

Define the positive n-move M̄(n, f) as the maximal value of the sum

∑m−1
j=0

(
S+

k2j+1
n ,

k2j+1+1
n

(f) − S−
k2j
n ,

k2j+1
n

(f)
)
,

where the finite sequence k0, . . . , k2m−1 varies over all n, f -trails.

Claim 11. For each n ∈ N, we have that M̄(n, f) ≤ Δ(f).

To prove Claim 11, it suffices to show that M̄(n, f) ≤ Δ(f) + ε for each ε > 0.
Let k0, . . . , k2m−1 be an n, f -trail giving the value of M̄(n, f). For each j <

m, select xj ∈ [k2j+1
n ,

k2j+1+1
n

]
such that f(xk) > S+

k2j+1
n ,

k2j+1+1
n

(f) − ε
2m and

yj ∈ [k2j
n ,

k2j+1
n

]
such that f(yk) < S−

k2j
n ,

k2j+1
n

(f) + ε
2m . For any partition P

containing all points xj and yj we have that Var+(P, f) > M̄(n, f) − ε. As a
result, we obtain

M̄(n, f) < Var+(P, f) + ε ≤ Δ(f) + ε,

which ends the proof of Claim 11.

Claim 12. Let f be of bounded variation on [0, 1] and let P be a partition of
[0, 1]. Then there is n ∈ N such that Var+(P, f) ≤ M̄(n, f).

To prove Claim 12, fix P = {0 ≤ s0 < · · · < sm′ ≤ 1}. Without loss of generality,
we may assume that f(s0) < f(s1) > f(s2) < · · · < f(sm′), i.e. the values f(si)
alternate between going up and going down, so m′ is an odd number 2m−1. Let
n be such that each [k

n , k+1
n], for k < n, contains at most one si and each si is

contained in exactly one [ki

n , ki+1
n]. Then k0, . . . , k2m−1 is an n, f -trail witnessing

that Var+(P, f) ≤ M̄(n, f). This ends the proof of Claim 12.
Finally, by the above three claims, we have Δ(f) = supn∈N M̄(n, f). Since

we can compute the latter from S and ∃2, the former is likewise computable.
As we can compute a Jordan realiser from Δ, the proof of Theorem8 is
complete. ��

244 D. Normann and S. Sanders

In conclusion, as expected in light of (5), rather effective and pointwise
approximation results exist for functions of bounded variation at points of con-
tinuity (see e.g. [11, p. 261]). For points of discontinuity, it seems one only
approximates the average of the left and right limits, i.e. not the function value
itself.

3.2 Jordan Realisers and Countable Sets

We show that Jordan realisers are hard to compute by connecting them to com-
putability theoretic results pertaining to countable sets from [34]. Recall the
definitions from Sect. 2.2 pertaining to the latter notion.

Now, the most fundamental property of countable sets is that they can be
enumerated, i.e. listed as a sequence, as explicitly noted by e.g. Borel in [4] in
his early discussions of the Heine-Borel theorem. Next, we show that Jordan
realisers can indeed enumerate countable sets as in Definition 4.

Theorem 13. Together with ∃2, a Jordan realiser J can perform the following
computational procedures.

– Given a set A ⊂ [0, 1] and Y : [0, 1] → N injective on A, produce a sequence
(xn)n∈N listing exactly the elements of A.

– Given F : [0, 1] → [0, 1], A ⊂ [0, 1], and Y : [0, 1] → N injective on A, produce
supx∈A F (x).

Proof. We only need to establish the first item, as the second item readily follows
from the first one using ∃2. Let A ⊂ [0, 1] be countable, i.e. there is Y : [0, 1] → N

which is injective on A. Use ∃2 to define the function f : R → R defined as
follows:

f(x) :=

{
1

2Y (x)+1 x ∈ A

0 otherwise
. (7)

Following item (a) in Definition 5, the function f has bounded variation on [0, 1]
as any sum

∑n
i=0 |f(xi) − f(xi+1)| is at most

∑n
i=0

1
2i+1 for xi in [0, 1] and

i ≤ n + 1. Now let J (f) = (g, h) be such that f = g − h on [0, 1] and recall D
from Lemma 7. Use ∃2 to define the sequence (xn)n∈N as all the reals in D(g)
and D(h). Now consider the following formula for any x ∈ [0, 1]:

[
(∃n ∈ N)(x = xn) ∧ g(x) 	= h(x)

] ↔ x ∈ A. (8)

The forward direction in (8) is immediate as g(x) 	= h(x) for x ∈ [0, 1] implies
f(x) > 0, and hence x ∈ A by definition. For the reverse direction, fix x ∈ A and
note that 0 < f(x) = g(x) − h(x) by the definition of f in (7), i.e. g(x) 	= h(x)
holds. Moreover, in case (∀n ∈ N)(x 	= xn), then g and h are continuous at x,
by the definition of (xn)n∈N. Hence, f is continuous at x, which is only possible
if f(x) = 0, but the latter implies x 	∈ A, by (7), a contradiction. In this way,
we obtain (8) and we may enumerate A by removing from (xn)n∈N all elements
not in A, which can be done using ∃2. ��

Betwixt Turing and Kleene 245

Secondly, weak Jordan realisers can enumerate strongly countable sets
(Definition 4).

Corollary 14. Together with ∃2, a weak Jordan realiser Jw can perform the
following computational procedures.

– Given a set A ⊂ [0, 1] and Y : [0, 1] → N bijective on A, produce a sequence
(xn)n∈N listing exactly the elements of A.

– Given F : [0, 1] → [0, 1], A ⊂ [0, 1], and Y : [0, 1] → N bijective on A,
produce supx∈A F (x).

Proof. Following item (b) in Definition 5, the function f in (7) has total variation
exactly 1 in case Y is additionally a bijection. ��
A weak Jordan realiser cannot compute a Jordan realiser; this remains true if
we combine the former with an arbitrary type 2 functional. Since the proof of
this claim is rather lengthy, we have omitted the former from this paper.

Thirdly, the functional ΩBW introduced and studied in [34, §4], performs the
computational procedure from the second item in Theorem13, leading to the
following corollary.

Corollary 15. Together with the Suslin functional S2, a Jordan realiser J com-
putes S22, i.e. a realiser for Π1

2 -CA0.

Proof. By [34, Theorem 4.6.(b)], ΩBW +S2 computes S22, while a Jordan realiser
J computes ΩBW by Theorem 13. ��
Finally, under the additional set-theoretic hypothesis V=L, the combination
ΩBW + S2 even computes ∃3 by [34, Theorem 4.6.(c)]. An obvious question is
whether a similar result can be obtained within ZFC, which is the topic of the
following section.

3.3 Computing Kleene’s ∃3 from Jordan Realisers

We show that Kleene’s quantifier ∃3 is computable in the combination of:

– Kleene’s quantifier ∃2,
– any Jordan realiser J (or: ΩBW from Sect. 3.2),
– a well-ordering ≺ of [0, 1].

We note that the third item exists by the Axiom of Choice. Assuming ≺ and �
are the irreflexive and reflexive versions of the same well-ordering of [0, 1], they
are computable in each other and ∃2.

Theorem 16. Let J be a Jordan realiser. Then ∃3 is Kleene-computable in J ,
≺, and ∃2.

246 D. Normann and S. Sanders

Proof. We actually prove a slightly stronger result. Let Ω be a partial functional
of type 3 such that Ω(X) terminates whenever X ⊂ R has at most one element,
and Ω(X) ∈ X whenever X contains exactly one element. One readily4 shows
that Ω is computationally equivalent to ΩBW, given ∃2. We now show that ∃3 is
computable in Ω, ≺, and ∃2.

We let x, y vary over [0, 1] and we fix h : [0, 1] → {0, 1}. We aim to compute
∃3(h) by deciding the truth of the formula (∃x ∈ [0, 1])(h(x) = 1). To this end,
consider the functionals E≺x and E�x defined as:

E≺x(h) = 1 ↔ (∃y ≺ x)(h(y) = 1) and E�x(h) = 1 ↔ (∃y � x)(h(y) = 1).

We shall show that these are computable in Ω, ≺, and ∃2, uniformly in x.
Note that E�x is trivially computable in E≺x, uniformly in x, so we settle for
computing E≺x(h). The argument will be by the recursion theorem, so we give
the algorithm for computing E≺x(h) using x, h, Ω and E≺y for y ≺ x. Now let
x and h be fixed and define hx as:

hx(y) :=

⎧
⎪⎨

⎪⎩

0 if x � y

h(y) if y ≺ x ∧ (∀z ≺ y)(h(z) = 0)
0 otherwise

,

where we use E≺y to decide whether the second case holds. Then hx is constant
zero if (∀y ≺ x)(h(y) = 0), and if not, hx takes the value 1 in exactly the least
point y ≺ x where h(y) = 1. Hence, we have

(∃y ≺ x)(h(y) = 1) ↔ [Ω(hx) ≺ x ∧ h(Ω(hx)) = 1].

We now apply the recursion theorem to find an index e ∈ N such that for all
x ∈ [0, 1] and h : [0, 1] → {0, 1} (and well-orderings �), we have

{e}(Ω, h, x,�) � E�x(h).

Then we use transfinite induction over � to prove that e ∈ N defines a total
functional doing what it is supposed to do. For readers not familiar with this
use of the recursion theorem, what we do is defining {e0}(d,Ω, h, x,�) as in the
construction, but replacing all uses of E�y(h′) by {d}(Ω, h′, y,�); we then use
the fact that there is an index e such that {e}(. . .) � {e0}(e, . . .), where ‘. . . ’
are the other parameters.

Having established the computability of each E≺x from x, we can use the
same trick to compute ∃3(h) as follows: construct from h a function h′ that
takes the value 1 in at most one place, namely the ≺-least x where h(x) = 1, in
case such exists. ��

4 To obtain an enumeration of A ⊂ [0, 1] given Y : [0, 1] → R injective on A, define
En := {x ∈ A : Y (x) = n} and define xn := Ω(En) in case the latter is in En, and
0 otherwise.

Betwixt Turing and Kleene 247

Finally, we note that Kleene’s computation scheme S9 is essentially a ‘hard-
coded’ version of the recursion theorem for S1–S9, while S1–S8 merely define
(higher-order) primitive recursion. In this way, the recursion theorem is central to
S1–S9, although we have previously witnessed S1–S9 computations via primitive
recursive terms.

3.4 Jordan Realisers and the Uncountability of R

We show that a number of interesting functionals, including ‘heavily restricted’
Jordan realisers, are (still) quite hard to compute, based on the computational
properties of the uncountability of R pioneered in [34].

First of all, in more detail, Theorem 8 implies that a Jordan realiser can enu-
merate all points of discontinuity of a function of bounded variation. It is then
a natural question whether Jordan realisers remain hard to compute if we only
require the output to be e.g. one point of continuity. By way of an answer, The-
orem 19 lists a number of interesting functionals -including the aforementioned
‘one-point’ Jordan realisers- that compute functionals witnessing the uncount-
ability of R. Functionals related to the uncountability of R are special in the
following sense, as was first studied in [34, §4].

By the previous, Jordan realisers have surprising properties and are a nice
addition to the pantheon of interesting non-normal functionals stemming from
ordinary mathematics (see [30–38] or Sect. 2.1 for other examples). It is then a
natural question what the weakest such functional is; a candidate is provided by
the uncountability of R, which can be formulated in various guises as follows.

– Cantor’s theorem: there is no surjection from N to R.
– NIN: there is no injection from [0, 1] to N.
– NBI: there is no bijection from [0, 1] to N.

Cantor’s theorem is provable in constructive and computable mathematics [3,43],
while there is even an efficient algorithm to compute from a sequence of reals,
a real not in that sequence [13]. As explored in [34], NIN and NBI are hard to
prove in terms of conventional comprehension. We will not study NBI in this
paper while Cantor’s theorem and NIN give rise to the following specifications.

Definition 17 [Realisers for the uncountability of R].

– A Cantor functional/realiser takes as input A ⊂ [0, 1] and Y : [0, 1] → N such
that Y is injective on A, and outputs x 	∈ A.

– A weak Cantor realiser takes as input A ⊂ [0, 1] and Y : [0, 1] → N such
that Y is bijective on A, and outputs x 	∈ A.

– A NIN-realiser takes as input Y : [0, 1] → N and outputs x, y ∈ [0, 1] with
x 	= y ∧ Y (x) = Y (y).

As explored in [34], NIN-realisers are among the weakest non-normal functionals
originating from ordinary mathematics we have studied. Moreover, one readily5

5 Let N be a NIN-realiser and let A ⊂ [0, 1] and Y : [0, 1] → N be such that Y is
injective on A. Define Z : [0, 1] → N as follows: Z(x) := Y (x) + 1 in case x ∈ A, and
0 otherwise. Clearly, N(Z)(1) �∈ A or N(Z)(2) �∈ A as required.

248 D. Normann and S. Sanders

proves that a NIN-realiser computes a Cantor realiser, while the latter are still
hard to compute as follows.

Theorem 18. No type 2 functional computes a weak Cantor realiser.

Proof. Fix some functional F 2 and assume wlog that F computes ∃2. Assume
there is a Cantor realiser C computable in F . Now let A be the set of reals
computable in F and define Y : [0, 1] → N as follows using Gandy selection
(see [26,37] for an introduction): for the first part, define Y (x) as an index for
computing x from F in case x ∈ A; we put Y (x) := 0 in case x 	∈ A. By
assumption, C(A, Y) terminates as Y is injective on A. Since the restriction of
Y to A is partially computable in F , all oracle calls of the form ‘x ∈ A’ will
be answered with yes, since x then is computable in F . Hence, all oracle calls
for the value Y (x) can be answered computably in F . In this way, C(A, Y) is
computable in F , which also follows from [34, Lemma 2.15]. Hence, C(A, Y) ∈ A
by definition, a contradiction. The proof remains valid if we extend A to some
B ⊂ [0, 1] and extend Y to Z : [0, 1] → N bijective on B. ��
Secondly, it is readily proved (classically) that there is no continuous injection
from [0, 1] to Q, based on the intermediate value theorem. Now consider the
following, which expresses a very special case of the uncountability of R.

– NINBV: there is no injection from [0, 1] to Q that has bounded variation as in
item (a) in Definition 5.

One readily establishes the equivalence NIN ↔ NINBV over a weak system, follow-
ing the proof of Theorem19. By the latter and Theorem 18, while NIN-realisers
are defined for all Y : [0, 1] → N, the restriction to functions of bounded varia-
tion, which only have countably many points of discontinuity, is (still) hard to
compute and intermediate between Cantor and NIN-realisers.

Thirdly, we have the following theorem where the functional L defined as

L(f)(s) :=
∫ +∞
0

e−stf(t) dt

is the Laplace transform of f : R → R. Since we restrict to functions of bounded
variation, we interpret L(f) as the limit of Riemann integrals, if the latter exists.
It is well-known that if L(f) and L(g) exists and are equal everywhere, f and
g are equal almost everywhere, inspiring the final -considerably weaker- item
in Theorem 19. In the below items, ‘bounded variation’ refers to item (a) of
Definition 5.

Theorem 19. Assuming ∃2, a Cantor realiser can be computed from a func-
tional performing any of the following tasks.

– For f : [0, 1] → Q which has bounded variation, find x, y ∈ [0, 1] such that
x 	= y and f(x) = f(y).

– For f : [0, 1] → R which has bounded variation, find a point of continuity in
[0, 1].

Betwixt Turing and Kleene 249

– If f : [0, 1] → [0, 1] is Riemann integrable (or has bounded variation) with∫ 1

0
f(x) dx = 0, find y ∈ [0, 1] with f(y) = 0.

– If f, g : R → R satisfy the following:
• f, g have bounded variation on [0, a] for any a ∈ R

+,
• L(f) and L(g) exists and are equal on [0,+∞),

find x ∈ (0,∞) with f(x) = g(x).

Any NIN-realiser computes a functional as in the first item. Assuming ∃2, a
weak Cantor realiser can be computed from a functional performing any of the
above tasks restricted as in item (b) of Definition 5.

Proof. The penultimate sentence is immediate as Q and N are bijective. Now
fix some countable set A ⊂ [0, 1] and Y : [0, 1] → N injective on A. Consider
f : [0, 1] → R as in (7) and recall it has bounded variation. For the second item,
if x0 ∈ [0, 1] is a point of continuity of f , we must have f(x0) = 0 by continuity.
Then x0 	∈ A by definition, as required. For the first item, in case x 	= y and
f(x) = f(y), we must have x 	∈ A or y 	∈ A, in light of (7).

For the third item, consider f : [0, 1] → R as in (7); that
∫ 1

0
f(x) dx exists and

equals 0, follows from the usual ε-δ-definition of Riemann integrability. Indeed,
fix ε0 > 0 and find k0 ∈ N such that 1

2k0
< ε0. Let P be a partition x0 :=

0, x1, . . . , xn, xn+1 := 1 of [0, 1] with ti ∈ [xi, xi+1] for i ≤ n and with mesh
‖P‖ := maxi≤n(xi+1 − xi) at most 1

2k0
. Then the Riemann sum S(f, P) :=∑

i≤n f(ti)(xi+1 − xi) satisfies

S(f, P) ≤ 1
2k0

∑
i≤n f(ti) ≤ 1

2k0

∑
i≤n

1
2i+1 ≤ 1

2k0
,

as Y is injective on A and f is zero outside of A. Hence,
∫ 1

0
f(x) dx = 0 and any

y ∈ [0, 1] with f(y) = 0 yields y 	∈ A by (7).
For the final item, the tangent and arctangent functions provide bijections

between (0, 1) and R. Hence, we may work with A ⊂ R and Y : R → N injective
on A. We again consider f as in (7), now as an R → R-function. This function
f has bounded variation on any interval [0, a] for a > 0, in the same way as in
the proof of Theorem 13. Since e−z ≤ 1 for z ≥ 0, the previous paragraph yields∫ N

0
e−stf(t) dt = 0 for any N ∈ N, s ≥ 0, and hence L(f)(s) = 0 for all s ≥ 0.

For g : R → R the zero everywhere function, we trivially have L(g)(s) = 0 for
any s ≥ 0. Clearly, any x ∈ [0,+∞) such that f(x) = g(x) = 0 also satisfies
x 	∈ A, yielding a Cantor functional. The final sentence now follows in light of
(the proof of) Corollary 14. ��
We note that theorem also goes through if we formulate the second item using
the much weaker notions of quasi6 or cliquish (see footnote 6) continuity in at
least one point in [0, 1]. These notions are found in e.g. [22,27].

6 A function f : X → R is quasi-continuous (resp. cliquish) at x ∈ X if for any ε > 0
and any open neighbourhood U of x, there is a non-empty open ball G ⊂ U with
(∀y ∈ G)(|f(x) − f(y)| < ε) (resp. (∀y, z ∈ G)(|f(z) − f(y)| < ε)).

250 D. Normann and S. Sanders

Acknowledgements. We thank Anil Nerode for his most helpful advise. Our research
was kindly supported by the Deutsche Forschungsgemeinschaft via the DFG grant
SA3418/1-1 for Sam Sanders. We thank the anonymous referees for their suggestions
that have greatly improved this paper.

References

1. Avigad, J., Feferman, S.: Gödel’s functional (“Dialectica”) interpretation. In:
Handbook of Proof Theory, pp. 337–405 (1998)

2. Beeson, M.J. Foundations of Constructive Mathematics: Metamathematical Stud-
ies. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 6. Springer, Heidelberg
(1985). https://doi.org/10.1007/978-3-642-68952-9

3. Bishop, E.: Foundations of Constructive Analysis. McGraw-Hill (1967)
4. Borel, E.: Leçons sur la théorie des fonctions. Gauthier-Villars, Paris (1898)
5. Bridges, D.: A constructive look at functions of bounded variation. Bull. Lond.

Math. Soc. 32(3), 316–324 (2000)
6. Bridges, D.S.: Constructive continuity of increasing functions. In: Kosheleva, O.,

Shary, S.P., Xiang, G., Zapatrin, R. (eds.) Beyond Traditional Probabilistic Data
Processing Techniques: Interval, Fuzzy etc. Methods and Their Applications. SCI,
vol. 835, pp. 9–19. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
31041-7 2

7. Bridges, D., Mahalanobis, A.: Bounded variation implies regulated: a constructive
proof. J. Symb. Log. 66(4), 1695–1700 (2001)

8. Bridges, D., Richman, F.: Varieties of Constructive Mathematics. London Math-
ematical Society Lecture Note Series, vol. 97. Cambridge University Press, Cam-
bridge (1987)

9. Brouwer, L.E.J.: Begründung der mengenlehre unabhängig vom logischen satz vom
ausgeschlossenen dritten. erster teil: Allgemeine mengenlehre. Koninklijke Neder-
landsche Akademie van Wetenschappen, Verhandelingen, 1ste sectie, vol. 12, no.
5, p. 43 (1918)

10. Buchholz, W., Feferman, S., Pohlers, W., Sieg, W.: Iterated Inductive Definitions
and Subsystems of Analysis: Recent Proof-Theoretical Studies. LNM, vol. 897.
Springer, Heidelberg (1981). https://doi.org/10.1007/BFb0091894

11. Hua, C.F.: On the rate of convergence of Bernstein polynomials of functions of
bounded variation. J. Approx. Theor. 39(3), 259–274 (1983)

12. Feferman, S.: How a Little Bit goes a Long Way: Predicative Foundations of Analy-
sis (2013). Unpublished notes from 1977–1981 with updated introduction. https://
math.stanford.edu/∼feferman/papers/pfa(1).pdf

13. Gray, R.: Georg cantor and transcendental numbers. Amer. Math. Mon. 101(9),
819–832 (1994)

14. Heyting, A.: Recent progress in intuitionistic analysis. In: Intuitionism and Proof
Theory, Proceedings of the Summer Conference, Buffalo, N.Y., pp. 95–100 (1970)

15. Hilbert, D., Bernays, P.: Grundlagen der Mathematik. II. Zweite Auflage. Die
Grundlehren der mathematischen Wissenschaften, vol. 50. Springer, Heidelberg
(1970). https://doi.org/10.1007/978-3-642-86896-2

16. Hrbacek, K., Jech, T.: Introduction to Set Theory, 3rd edn. Monographs and Text-
books in Pure and Applied Mathematics, vol. 220. Marcel Dekker Inc., New York
(1999)

17. Jordan, C.: Sur la série de fourier. Comptes rendus de l’Académie des Sciences,
Paris, Gauthier-Villars, vol. 92, pp. 228–230 (1881)

https://doi.org/10.1007/978-3-642-68952-9
https://doi.org/10.1007/978-3-030-31041-7_2
https://doi.org/10.1007/978-3-030-31041-7_2
https://doi.org/10.1007/BFb0091894
https://math.stanford.edu/~feferman/papers/pfa(1).pdf
https://math.stanford.edu/~feferman/papers/pfa(1).pdf
https://doi.org/10.1007/978-3-642-86896-2

Betwixt Turing and Kleene 251

18. Kleene, S.C.: Recursive functionals and quantifiers of finite types. i. Trans. Amer.
Math. Soc. 91, 1–52 (1959)

19. Kohlenbach, U.: Foundational and mathematical uses of higher types. In: Lecture
Notes in Logic, vol. 15, pp. 92–116. ASL (2002)

20. Kohlenbach, U.: On uniform weak König’s lemma. Ann. Pure Appl. Log. 114(1–
3), 103–116 (2002). Commemorative Symposium Dedicated to Anne S. Troelstra
(Noordwijkerhout, 1999)

21. Kohlenbach, U.: Higher order reverse mathematics. In: Reverse Mathematics 2001,
pp. 281–295. ASL (2005)

22. Kowalewski, M., Maliszewski, A.: Separating sets by cliquish functions. Topology
Appl. 191, 10–15 (2015)

23. Kreuzer, A.P.: Bounded variation and the strength of Helly’s selection theorem.
Log. Meth. Comput. Sci. 10(4:16), 1–23 (2014)

24. Kreuzer, A.P.: Measure theory and higher order arithmetic. Proc. Amer. Math.
Soc. 143(12), 5411–5425 (2015)

25. Kunen, K.: Set Theory. Studies in Logic, vol. 34. College Publications, London
(2011)

26. Longley, J., Normann, D.: Higher-Order Computability. Theory and Applications
of Computability. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
47992-6

27. Neubrunn, T.: Quasi-continuity. Real Anal. Exch. 14(2), 259–306 (1988/89)
28. Nies, A., Triplett, M.A., Yokoyama, K.: The reverse mathematics of theorems of

Jordan and Lebesgue. J. Symb. Log., 1–18 (2021)
29. Greenberg, N., Miller, J.S., Nies, A.: Highness properties close to PA completeness.

Isr. J. Math. 244, 419–465 (2021). https://doi.org/10.1007/s11856-021-2200-7
30. Normann, D., Sanders, S.: Nonstandard analysis, computability theory, and their

connections. J. Symb. Log. 84(4), 1422–1465 (2019)
31. Normann, D., Sanders, S.: On the mathematical and foundational significance of

the uncountable. J. Math. Log. 19(01), 1950001 (2019). https://doi.org/10.1142/
S0219061319500016

32. Normann, D., Sanders, S.: Representations in measure theory. arXiv
arXiv:1902.02756 (2019)

33. Normann, D., Sanders, S.: The strength of compactness in computability theory
and nonstandard analysis. Ann. Pure Appl. Log. 170(11), 102710 (2019)

34. Normann, D., Sanders, S.: On the uncountability of R, p. 37. arXiv
arXiv:2007.07560 (2020)

35. Normann, D., Sanders, S.: Open sets in reverse mathematics and computability
theory. J. Log. Comput. 30(8), 40 (2020)

36. Normann, D., Sanders, S.: Pincherle’s theorem in reverse mathematics and com-
putability theory. Ann. Pure Appl. Log. 171(5), 102788 (2020)

37. Normann, D., Sanders, S.: The axiom of choice in computability theory and reverse
mathematics. J. Log. Comput. 31(1), 297–325 (2021)

38. Normann, D., Sanders, S.: On robust theorems due to Bolzano, Weierstrass, and
Cantor in reverse mathematics, p. 30. arXiv arXiv:2102.04787 (2021)

39. Richman, F.: Omniscience principles and functions of bounded variation. Math.
Log. Q. 48, 111–116 (2002)

40. Sanders, S.: Nets and reverse mathematics. In: Manea, F., Martin, B., Paulusma,
D., Primiero, G. (eds.) CiE 2019. LNCS, vol. 11558, pp. 253–264. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-22996-2 22

https://doi.org/10.1007/978-3-662-47992-6
https://doi.org/10.1007/978-3-662-47992-6
https://doi.org/10.1007/s11856-021-2200-7
https://doi.org/10.1142/S0219061319500016
https://doi.org/10.1142/S0219061319500016
http://arxiv.org/abs/1902.02756
http://arxiv.org/abs/2007.07560
http://arxiv.org/abs/2102.04787
https://doi.org/10.1007/978-3-030-22996-2_22

252 D. Normann and S. Sanders

41. Sanders, S.: Reverse mathematics and computability theory of domain theory.
In: Iemhoff, R., Moortgat, M., de Queiroz, R. (eds.) WoLLIC 2019. LNCS, vol.
11541, pp. 550–568. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-
662-59533-6 33

42. Sanders, S.: Nets and reverse mathematics: a pilot study. Computability 10(1),
31–62 (2021)

43. Simpson, S.G.: Subsystems of Second Order Arithmetic. Perspectives in Logic, 2nd
edn. Cambridge University Press (2009)

44. Stillwell, J.: Reverse Mathematics, Proofs from the Inside Out. Princeton Univer-
sity Press (2018)

45. Turing, A.: On computable numbers, with an application to the Entscheidungs-
problem. Proc. Lond. Math. Soc. 42, 230–265 (1936)

46. Veldman, W.: Understanding and using Brouwer’s continuity principle. In: Schus-
ter, P., Berger, U., Osswald, H. (eds.) Reuniting the Antipodes – Constructive and
Nonstandard Views of the Continuum. Synthese Library (Studies in Epistemology,
Logic, Methodology, and Philosophy of Science), vol. 306, pp 285–302. Springer,
Dordrecht (2001). https://doi.org/10.1007/978-94-015-9757-9 24

47. Weihrauch, K.: Computable Analysis. TTCSAES, Springer, Heidelberg (2000).
https://doi.org/10.1007/978-3-642-56999-9

48. Zheng, X., Rettinger, R.: Effective Jordan decomposition. Theor. Comput. Syst.
38(2), 189–209 (2005)

https://doi.org/10.1007/978-3-662-59533-6_33
https://doi.org/10.1007/978-3-662-59533-6_33
https://doi.org/10.1007/978-94-015-9757-9_24
https://doi.org/10.1007/978-3-642-56999-9

Computability Models over Categories
and Presheaves

Iosif Petrakis(B)

University of Munich, Munich, Germany
petrakis@math.lmu.de

Abstract. Generalising slightly the notions of a strict computability
model and of a simulation between them, which were elaborated by Lon-
gley and Normann in [9], we define canonical computability models over
certain categories and appropriate presheaves on them. We study the
canonical total computability model over a category C and a covariant
presheaf on C, and the canonical partial computability model over a cat-
egory C with pullbacks and a pullback preserving, covariant presheaf
on C. These computability models are shown to be special cases of a
computability model over a category C with a so-called base of com-
putability and a pullback preserving, covariant presheaf on C. In this
way Rosolini’s theory of dominions is connected with the theory of com-
putability models. All our notions and results are dualised by considering
certain (contravariant) presheaves on appropriate categories.

1 Introduction

In [9] Longley and Normann not only give a comprehensive introduction to
Higher-Order Computability (HOC) presenting the various approaches to HOC,
but they also fit them into a coherent and unifying framework, making their com-
parison possible. Their main tool is a general notion of computability model1 and
of an appropriate concept of simulation of one computability model in another.
Turing machines, programming languages, λ-calculus etc., are shown to be com-
putability models, not necessarily in a unique way.

As it is remarked in [2], p. 3, computability theory has “still not received the
level of categorical attention it deserves”. It seems though, that the “categorical
spirit” of the notions of a computability model and a simulation between them is
behind the remarkable success of the framework of Longley and Normann. E.g.,
their, completely categorical in nature, notion of equivalence of computability
models (see Definition 2) is deeper than the one suggested by the standard pre-
sentations of computability theory, according to which different notions of com-
putability are equivalent if they generate the same class of partial computable

1 This notion is rooted in previous work of Longley in [6–8], and is influenced by the
work of Cockett and Hofstra in [3] and [4] (see [9], p. 52).

c© Springer Nature Switzerland AG 2022
S. Artemov and A. Nerode (Eds.): LFCS 2022, LNCS 13137, pp. 253–265, 2022.
https://doi.org/10.1007/978-3-030-93100-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93100-1_16&domain=pdf
http://orcid.org/0000-0002-4121-7455
https://doi.org/10.1007/978-3-030-93100-1_16

254 I. Petrakis

functions from N to N (see [9], Section 1.1.5). Longley and Normann associ-
ated in a canonical way to a computability model2 C its category of assemblies
Asm(C), “the world of all datatypes that can be represented in” C. They also
showed that the computability models C and D are equivalent if and only if the
categories of assemblies Asm(C) and Asm(D) are equivalent. The category of
computability models and the corresponding functor C �→ Asm(C) are studied
extensively in [8].

In this paper we associate in a canonical way a computability model to a cate-
gory C, given an appropriate presheaf on C. For that we slightly generalise the def-
inition of a computability model given in [9], allowing the classes of type names T
and of partial functions C[σ, τ] in a computability model to be proper classes. The
computability models considered in [9] are called small in Definition 1, and work-
ing solely with them we can only define the computability model of a small cat-
egory. The notion of a simulation between computability models is also slightly
generalised, as the function between the corresponding classes of type names is,
generally, a class-function. Although Longley and Normann usually work with
lax computability models, to our needs the so-called strict computability models
suit best3.

In Sect. 2 we include all basic notions and facts necessary to the rest of this
paper. In Sect. 3 we study the canonical, total computability model over a cate-
gory C and a covariant presheaf on C. In Sect. 4 we study the canonical (partial)
computability model over a category C with pullbacks and a covariant presheaf
on C that preserves pullbacks. In Sect. 5 we define the notion of a base of com-
putability for a category C, and the canonical (partial) computability model over
a category C with a base of computability and a pullback preserving, covariant
presheaf on C. The first two constructions are shown to be special cases of the
last one. All these models can be dualised. E.g., the dual of the last model is the
notion of a computability model over a category C with a cobase of computabil-
ity and a (contravariant) preshaef on C that sends pushouts to pullbacks. For all
categorical notions and facts mentioned here without explanation or proof we
refer to [1] and [14]. Due to lack of space we omit here some proofs.

2 Computability Models

Definition 1. Let T be a class, the elements of which are called type names. A
computability model C over T is a pair

C =
((

C(τ)
)
τ∈T

,
(
C[σ, τ]

)
(σ,τ)∈T×T

)
,

where |C| =
(
C(τ)

)
τ∈T

is a family of sets C(τ) over T , called the datatypes of
C, and

(
C[σ, τ]

)
(σ,τ)∈T×T

is a family of classes C[σ, τ] of partial functions of
type C(σ) ⇀ C(τ) over T × T , such that the following conditions hold:
2 In [9] this category is defined for lax computability models, but, as it is remarked

in [9], p. 91, the definition makes sense for an arbitrary computability model.
3 For a discussion on “strict vs. lax” see [8], Section 2.1.

Computability Models over Categories and Presheaves 255

(CM1) For every τ ∈ T idC (τ) : C(τ) → C(τ) is in C[τ, τ].
(CM2) For every ρ, σ, τ ∈ T , if f ∈ C[ρ, σ] and g ∈ C[σ, τ], the composite partial
function g ◦ f is in C[ρ, τ].
If the classes C[σ, τ] are sets, for every σ, τ ∈ T , we call C locally small. If T
is also a set, we call C small. If every element of C[σ, τ] is a total function, for
every σ, τ ∈ T , then C is called total. We say that C contains the constants, if
every constant function C(σ) → C(τ) is in C[σ, τ], for every σ, τ ∈ T .

E.g., Kleene’s first model K1 is a computability model over T = {0}, C(0) =
N, and

C[0, 0] = {f : N → N | f is Turing computable}.

For the rest of this paper T,U,W are classes, and C,D,E are computability
models over T,U,W , respectively.

Definition 2. A simulation γ : C � D of C in D is a pair

γ =
(
γ,

(
�γ

τ

)
τ∈T

)
,

where γ : T → U is a class function, and �γ
τ ⊆ D(γ(τ))×C(τ), for every τ ∈ T ,

such that the following conditions hold:

(Siml1) ∀τ∈T ∀x∈C (τ)∃x′∈D (γ(τ))

(
x′ �γ

τ x
)
,

(Siml2) ∀σ,τ∈T ∀f∈C [σ,τ]∃f ′∈D [γ(σ),γ(τ)]

(
f ′ �γ

(σ,τ) f
)
,

where the relation “f is tracked by f ′ through γ” is defined by

f ′ �γ
(σ,τ) f :⇔ ∀x∈C (σ)

(
x ∈ dom(f) ⇒

∀x′∈D (γ(σ))

(
x′ �γ

σ x & x′ ∈ dom(f ′) ⇒ f ′(x′) �γ
τ f(x)

))
.

The identity simulation ιC : C � C is the pair
(
idT , (�ιC

τ)τ∈T

)
, where x′ �ιC

τ ⇔
x′ = x, for every x′, x ∈ C(τ). If δ : D � E, the composite simulation δ ◦
γ : C � E is the pair

(
δ◦γ, (�δ◦γ

τ)τ∈T

)
, where the relation �δ◦γ

τ ⊆ E
(
δ(γ(τ))

)×
C(τ) is defined by

z �δ◦γ
τ x ⇔ ∃y∈D (γ(τ))

(
z �δ

γ(τ) y & y �γ
τ x

)
.

Let CompMod be the category of computability models with simulations. If
γ, δ : C � D, then γ is transformable to δ, in symbols γ � δ, if for every
τ ∈ T there is f ∈ D[γ(τ), δ(τ)] such that

∀x∈C (τ)∀x′∈D (γ(τ))

(
x′ �γ

τ x & x′ ∈ dom(f) ⇒ f(x′) �δ
τ x

)
.

Let γ ∼ δ, if γ � δ and δ � γ. The computational models C and D are
equivalent, if there are simulations γ : C � D and δ : D � C such that δ ◦γ ∼
ιC and γ ◦ δ ∼ ιD .

256 I. Petrakis

If f ′ �γ
(ρ,σ) f and g′ �γ

(σ,τ) g, then g′ ◦ f ′ �γ
(ρ,τ) g ◦ f , and if γ � γ′ and δ � δ′,

then δ ◦ γ � δ′ ◦ γ′, where γ,γ′ : C � D and δ, δ′ : D � E. Next we include
the definition of a computability model with weak products, given in [9], p. 53.
It is a characteristic example of a categorical notion translated appropriately in
the framework of partiality within computability models.

Definition 3. A computability model C has weak products, if for every σ, τ ∈ T ,
there is some ρ ∈ T and computable projections prσ ∈ C[ρ, σ] and prτ ∈ C[ρ, τ]
such that for every v ∈ T , and for every f ∈ C[v, σ] and g ∈ C[v, τ], there is (a
not necessarily unique) partial function 〈〈f, g〉〉 ∈ C[v, ρ]

C(v)

C(ρ)C(σ) C(τ),

〈〈f,g〉〉f g

prσ prτ

such that for every x ∈ C(v) the following conditions hold:

(WP1) x ∈ dom
(〈〈f, g〉〉) ⇔ x ∈ dom(f) & x ∈ dom(g).

(WP2) If x ∈ dom
(〈〈f, g〉〉), then prσ

((〈〈f, g〉〉)(x)
)

= f(x) and
prτ

((〈〈f, g〉〉)(x)
)

= g(x). A computability model C has standard products, if
C(ρ) = C(σ) × C(τ) and prσ, prτ are the standard (total) projection functions.

In (WP2)
(〈〈f, g〉〉)(x) is in the domain of prσ and of prτ

4.

Definition 4. The category of assemblies Asm(C) over C has objects triplets
(X, τX ,�X), where X is a set, τX ∈ T , and �X⊆ C(τX) × X such that

∀x∈X∃x′∈C (τX)

(
x′ �X x

)
.

An arrow f : (X, τX ,�X) → (Y, τY ,�Y) is a function f : X → Y , such that
there is f̄ ∈ C[τX , τY] that “tracks” f , in symbols f̄ �Y

X f . The tracking relation
f̄ �Y

X f is defined by the following condition:

∀x∈X∀y∈C (τX)

(
y �X x & y ∈ dom(f̄) ⇒ f̄(y) �Y f(x)

)
.

1(X,τX ,�X) = idX , which is tracked by idC (τX). If g : (Y, τY ,�Y) → (Z, τZ ,�Z)
is tracked by ḡ ∈ C[τY , τZ], then g ◦ f : (X, τX ,�X) → (Z, τZ ,�Z) is tracked by
ḡ ◦ f̄ . As usual, the forgetful functor

FrgC : Asm(C) → Set

is defined by FrgC
0 (X, τX ,�X) = X and FrgC

1 (f) = f .
4 If we write (WP2) as the implication: if x ∈ dom

(〈〈f, g〉〉), then [prσ ◦ (〈〈f, g〉〉)](x) =
f(x) and [prτ ◦ (〈〈f, g〉〉)](x) = g(x), we need to use the definition of composition
of partial functions. As it is noted in [9], p. 53, a computability model with weak
products is equivalent to one with standard products.

Computability Models over Categories and Presheaves 257

Clearly, FrgC is injective on arrows. In [9], p. 92, it is shown that if C has weak
products, then Asm(C) has products. In this case Asm(C) also has pullbacks.

Proposition 1. (i) If C has standard products, then Asm(C) has (products
and) pullbacks. Moreover, FrgC preserves pullbacks.

(ii) If C has weak products, if every datatype C(τ) is inhabited, and if C con-
tains the constants, then Asm(C) has pullbacks.

For the rest of this paper C,D are categories, Cat is the category of categories,
Set is the category of sets, [C, Set] is the category of functors from C to Set,
and Cat/Set is the slice category of Cat over Set. Let C0, C1 be the classes
of objects and arrows in C, respectively. If a, b ∈ C0, let C1(a, b) be the class of
arrows f in C1 with dom(f) = a and cod(f) = b.

A central functor defined in [9] is F : CompMod → Cat/Set, where F0(C) =
FrgC : Asm(C) → Set.

3 Total Computability Models over Categories

Definition 5. Let S : C → Set be a (covariant) functor. The total computability
model CMtot(C;S) over C and S is the pair

CMtot(C;S) =
((

S0(a)
)
a∈C0

,
(
Stot[a, b]

)
(a,b)∈C0×C0

)
,

Stot[a, b] = {S1(f) | f ∈ C1(a, b)}.

If T : Cop → Set is contravariant, the total computability model CMtot(C;T)
over C and T is defined dually i.e.,

T tot[a, b] = {T1(f) | f ∈ C1(b, a)}.

Let (N,≤) be seen as a thin category, and S : N → Set. If n ≤ m,
Stot[n,m] = {S1(f)}, where f : n → m is the unique arrow in Hom(n,m).
Clearly, CMtot(C;S) satisfies conditions (CM1) and (CM2). With replacement,
if C is locally small, then CMtot(C;S) is locally small, and if C is small, then
CMtot(C;S) is small. Clearly, if C has (fixed) products, the total computabil-
ity model CMtot(C;S) has weak products. Next we describe an “external” and
an “internal” functor in the full subcategory TotCompMod of total computabil-
ity models. The corresponding proofs are omitted, as these are similar to the
included proofs of Propositions 7 and 8.

Proposition 2. There is a functor

CMtot : Cat/Set → TotCompMod,

defined by
CMtot

0 (C, S) = CMtot(C;S),

CMtot
1

(
F : (C, S) → (D, T)

)
: CMtot(C;S) � CMtot(D;T),

CMtot
1 (F) = γF =

(
F0, (�γ F

a)a∈C0

)
,

�γ F
a ⊆ T0(F0(a)) × S0(a), y �γ F

a x ⇔ y = x.

258 I. Petrakis

If F tot is the restriction of F (mentioned in the end of Sect. 2), to the subcategory
TotCompMod, we get the pair of adjoint functors

Cat/Set TotCompMod

CMtot

F tot

namely CMtot � F tot, as there is a natural isomorphism

Hom
(
CMtot(C;S),D

) ∼= Hom
(
S,FrgD : Asm(D) → Set

)
.

Proposition 3. The functor totCMC : [C, Set] → TotCompMod, with
totCMC

0 (S) = CMtot(C;S),

totCMC
1

(
η : S ⇒ T

)
: CMtot(C;S) � CMtot(C;T),

totCMC
1 (η) = γη =

(
idC0 , (�

γ η
a)a∈C0

)
,

�γ η
a ⊆ T0(a) × S0(a), y �γ η

a x ⇔ y = ηa(x),

is faithful.

By Definition 4 the category Asm
(
CMtot(C;S)

)
of assemblies of the total

model CMtot(C;S) has objects (X, aX ,�X), where X is a set, aX ∈ C0, and
�X⊆ S0(aX) × X such that ∀x∈X∃x′∈S0(aX)

(
x′ �X x

)
. An arrow (X, aX ,�X)

→ (Y, aY ,�Y) is a function f : X → Y , such that there is f̄ ∈ S[aX , aY] i.e.,
g : aX → aY ∈ C1 and f = S1(g) : S0(aX) → S0(aY) tracks f , where in this case
f̄ �Y

X f if and only if ∀x∈X∀y∈S0(aX)

(
y �X x ⇒ [S1(g)](y) �Y f(x)

)
.

Proposition 4. Let F tot : C → Asm
(
CMtot(C;S)

)
be defined by

F tot
0 (a) =

(
S0(a), a,�S0(a)

)
, y �S0(a) x ⇔ y = x; y, x ∈ S0(a),

F tot
1 (f : a → b) = S1(f).

(i) F tot is a full functor, injective on objects.
(ii) If S is injective on arrows, then F tot is an embedding.

Proof. (i) S1(f) tracks itself and is an arrow in Asm
(
CMtot(C;S)

)
. F tot is a

functor, injective on objects. Let g :
(
S0(a), a �S0(a)

) → (
S0(b), b �S0(b)

)
in

Asm
(
CMtot(C;S)

)
i.e., g : S0(a) → S0(b) such that there is g = S1(h), for some

h : a → b in C1, with S1(h) �S0(b)
S0(a)

g. Consequently, ∀x∈S0(a)∀y∈S0(a)

(
y = x ⇒

[S1(h)](y) = g(x)
)
, hence ∀x∈S0(a)

(
[S1(h)](x) = g(x)

)
i.e., F+

1 (h) = S1(h) = g
and F tot is full.
(ii) If S is injective on arrows, F tot is injective on arrows, hence faithful, and
since it is full and injective on objects, it is an embedding.

Computability Models over Categories and Presheaves 259

Let C be a small, and FrgC the forgetful functor on Asm(C).
If X = (X, τX ,�X) and Y = (Y, τY ,�Y), the computability model
CMtot(Asm(C); FrgC) over Asm(C) and FrgC is the pair

(
(
X

)
X∈Asm(C)0

,
(
FrgC [X,Y]

)
X,Y ∈Asm(C)0

)

FrgC [X,Y] =
{
f : X → Y | ∃f : C(τx)⇀C(τY)(f �Y

X f)
}
.

I.e., from a small, and, in general, partial model C, we get the locally small and
total computability model CMtot

(Asm(C); FrgC
)
.

Proposition 5. (i) If C is small, there is a simulation

δtot : CMtot
(Asm(C); FrgC

)
� C,

where δtot =
(
δtot,

(
�δtot

X

)
X∈Asm(C)0

)
, with δtot : Asm(C)0 → T , defined

by δtot(X) = τX , and �δtot

X
⊆ C(τX) × X by �δtot

X
= �X .

(ii) If C is total and small, there is a simulation

γtot : C � CMtot
(Asm(C); FrgC

)
,

where γtot =
(
γtot,

(
�γ tot

τ

)
τ∈T

)
, with γtot : T → Asm(C)0, defined by

γtot(τ) = (C(τ), τ,�C(τ)) and �C(τ)⊆ C(τ) × C(τ) is the equality on C(τ),
and �γ tot

τ ⊆ C(τ) × C(τ) is also the equality on C(τ).

(iii) If C is total and small, δtot◦γtot = ιC and γtot◦δtot ∼ ιCMtot(Asm(C);FrgC).

(iv) If Atot = Asm
(
CMtot(C;S)

)
, the total models CMtot(C;S) and

CMtot
(Atot,FrgAtot)

are equivalent.

4 Partial Models over Categories with Pullbacks

Definition 6. Let C1(a ↪→)[C1(↪→ a)] be the subclass of monos in C1 with
domain [codomain] a. If C has pullbacks, a partial arrow5 is a pair (i, f) : a ⇀ b,
where i ∈ C1(↪→ a) and f ∈ C1(dom(i), b)

s a

b

S0(s) S0(a)

S0(b).

i

f

S1(i)

S1(f)(i, f) S1(i, f)

5 As we don’t define categories of partial arrows, we avoid the equivalence relation
between them. A partial function between sets is a partial arrow in Set, also in
accordance with the notion of partial function in Bishop set theory (see [10,11]).

260 I. Petrakis

If (j, g) : b ⇀ c, where j : t ↪→ b and g : t → c, their composition is the partial
arrow (i ◦ i′, g ◦ f ′) : a ⇀ c, where i′ : s×b t ↪→ s and f ′ : s×b t → t is determined
by the corresponding pullback diagram

s a

b

t ×b s

t

c

i

f

g

f ′

j

i′

(i, f)

(j, g)

(i ◦ i′, g ◦ f ′)

If S : C → Set preserves pullbacks, hence monos, and if (i, f) : a ⇀ b, let
S1(i, f) = (S1(i), S1(f)) : S0(a) ⇀ S0(b). Let also

dom(S1(i, f)) =
{
[S1(i)](x) | x ∈ S0(s)

}
,

[S1(i, f)](y) = [S1(f)](x); y = [S1(i)](x) ∈ dom(S1(i, f)).

Definition 7. If C has pullbacks, and S : C → Set preserves pullbacks, the com-
putability model CMprt(C;S) over C and S is the pair

CMprt(C;S) =
((

S0(a)
)
a∈C0

,
(
Sprt[a, b]

)
(a,b)∈C0×C0

)
,

Sprt[a, b] = {S1(i, f) | i ∈ C1(↪→ a) & f ∈ C1(dom(i), b)}.

If D has pushouts and T : Cop → Set sends pushouts to pullbacks, the com-
putability model CMprt(D;T) over D and T is defined dually i.e., T prt[a, b] =
{T1(i, f) | i ∈ C1(a ↪→) & f ∈ C1(b, cod(i))}.

Let again the thin category (N,≤), which has pullbacks (the minimum ∧).
If S : N → Set preserves pullbacks, it is easy to see that Sprt[n,m] has (n ∧ m)-
number of elements. The fact that CMprt(C;S) is a computability model depends
on the preservation of pullbacks by S. If C is small, CMprt(C;S) is small, but if
C is locally small, CMprt(C;S) need not be locally small. The proof of the next
proposition is found in [12].

Proposition 6. If C is a category with (fixed) products and pullbacks, and if
S : C → Set preserves pullbacks, the computability model CMprt(C;S) has weak
products.

One can also show that if C has a terminal object 1 and if S is also full
and preserves 1, then CMprt(C;S) contains the constants. Next we describe the
corresponding “external” and “internal” functors.

Proposition 7. Let Cat
pull

be the category of categories with pullbacks and
pullback preserving functors, and let Cat

pull
/Set its slice category over Set. If

Computability Models over Categories and Presheaves 261

Catpull↪→ /Set is the subcategory of Catpull/Set with arrows the monos preserving6

arrows in Catpull/Set, then

CMprt : Catpull↪→ /Set → CompMod

is a functor, where CMprt
0 (C, S) = CMprt(C;S), and

CMprt
1 (F) : CMprt(C;S) � CMprt(D;T)

is defined as the simulation CMtot
1 (F) = γF in Proposition 2.

Proof. We show that γF =
(
F0, (�γ F

a)a∈C0

)
, where

�γ F
a ⊆ T0(F0(a)) × S0(a), y �γ F

a x ⇔ y = x,

is a simulation CMprt(C;S) � CMprt(D;T). First we show (Siml1). If a ∈ C0

and x ∈ S0(a), then S0(a) = T0(F0(a)) and x �γ F
a x. To show (Siml2), let

a, b ∈ C0 and (S1(i), S1(f)) : S0(a) ⇀ S0(b) ∈ S[a, b], for some s ∈ C0. We find
an element of T [F0(a), F0(b)] that tracks (S1(i), S1(f)). Let

(T1 ◦ F1)(i, f) =
(
T1(F1(i)), T1(F1(f))

)
: T0(F0(a)) ⇀ T0(F0(b)),

as F preserves monos. If x ∈ dom(S1(i, f)) i.e., there is a (unique) x′ ∈ S0(s)
with x = [S1(i)](x′), then if y ∈ T0(F0(a) = S0(a) such that y �γ F

a x, then
y = x. We show that x ∈ dom

(
(T1 ◦F1)(i, f)

)
, which by Definition 6 means that

x = [T1(F1(i))](x′′), for some x′ ∈ T0(F0(s)) = S0(s). Clearly, x′′ = x′ works.
By Definition 6 the equality obtained unfolding the relation

[(T1 ◦ F1(i, f)](x) �γ F

b [S1(i, f)](x)

follows immediately. Clearly,

CMprt
1 (1(C,S)) = ιCMprt(C;S),

and if F : C → D, G : D → E , then γG◦F = γG ◦ γF .

Proposition 8. If C has pullbacks and [C, Set]pull is the category of pullback
preserving, covariant presheaves on C, then the functor

prtCMC : [C, Set]pull → CompMod

is faithful, where prtCMC
0 (S) = CMprt(C;S), and the simulation

prtCMC
1 (η) : CMprt(C;S) � CMprt(C;T)

is defined as totCMC
1 (η) = γη in Proposition 3.

6 If F : C → D such that T ◦ F = S, where S : C → Set and T : D → Set, we cannot
show, in general, that F preserves monos. It does, if, e.g., T is injective on arrows.

262 I. Petrakis

Proof. Let γη =
(
idC0 , (�

γ η
a)a∈C0

)
with �γ η

a ⊆ T0(a)×S0(a) is defined by y �γ η
a

x ⇔ y = ηa(x). To show (Siml1), if a ∈ C0 and x ∈ S0(a), then T0(a) � y =
ηa(x) �γ η

a x. To show (Siml2), if a, b ∈ C0 and (S1(i), S1(f)) : S0(a) ⇀ S0(b) ∈
S[a, b], for some s ∈ C0, we find an element of T [a, b] that tracks (S1(i), S1(f)).
Let T1(i, f) =

(
T1(i), T1(f)

)
: T0(a) ⇀ T0(b). We show that

(
T1(i), T1(f)

)
�γ η

(a,b)

(
S1(i), S1(f)

)
.

Let x ∈ S0(a) such that x ∈ dom(S1(i, f)) i.e., there is a (unique) x′ ∈ S0(s) with
x = [S1(i)](x′). Let y ∈ T0(a) such that y �γ η

a x ⇔ y = ηa(x). First we show
that y ∈ dom(T1(i, f)) i.e., y = [T1(i)](y′), for some y′ ∈ T0(s). If y′ = ηs(x′),
then by the commutativity of the following left diagram we have that

S0(s) S0(a)

T0(s) T0(a)

S0(s)

T0(s)

S0(b)

T0(b)

ηa

S1(i)

ηs

T1(i)

ηb

S1(f)

ηs

T1(f)

[T1(i)](y′) = [T1(i)](ηs(x′)) = ηa

(
[S1(i)](x′)

)
= ηa(x) = y.

To show [T1(i, f)](y) �γ η

b [S1(i, f)](x) i.e., [T1(f)](y′) �γ η

b [S1(f)](x′), we use
the commutativity of the above right diagram:

ηb

(
[S1(f)](x′)

)
= [T1(f)]

(
ηs(x′)

)
= [T1(f)](y′).

It is straightforward to show that prtCM1(1S : S ⇒ S) = ιCMprt(C;S), and if
τ : S ⇒ T , η : T ⇒ U , then γη◦τ = γη ◦ γτ . To show that prtCMC is faithful, let
η, θ : S ⇒ T such that γη = γθ i.e., �γ η

a =�γ θ
a , for every a ∈ C0. If a ∈ C0, let

y ∈ T0(a) and x ∈ S0(a). Then y �γ η
a x ⇔ y �γ θ

a x i.e., y = ηa(x) ⇔ y = θa(x),
hence ηa = θa, and since a ∈ C0 is arbitrary, we conclude that η = θ.

The category of assemblies Asm
(
CMprt(C;S)

)
has objects the triplets

(X, aX ,�X), and an arrow (X, aX ,�X) → (Y, aY ,�Y) is a function f : X → Y ,
such that there is f̄ ∈ S[aX , aY] i.e., there is s ∈ C0 and i : s ↪→ aX , f : s →
aY such that f̄ =

(
S1(i), S1(f)

)
and f̄ �Y

X f . One defines F prt : C →
Asm

(
CMprt(C;S)

)
, as in Proposition 4, where F prt

1 (f : a → b) = S1(f) is
tracked by the partial function S1(f) =

(
S1(1a), S1(f)

)
. This functor F prt

though, is not, in general, full. If Aprt = Asm
(
CMprt(C;S)

)
one can study the

total model CMtot
(Aprt; FrgAprt)

and the partial model CMprt
(Aprt; FrgAprt)

,
and relate the latter to CMprt(C;S).

Computability Models over Categories and Presheaves 263

5 Categories with a Base of Computability

We introduce the notion of a base of computability, which resembles Rosolini’s
notion of dominion (see [13], Section 2.1), and its dual.

Definition 8. A base of computability is a family B = (B(a))a∈C0 , where B(a)
is a subclass of the class C1(↪→ a) of monos having codomain the object a, for
every a ∈ C0, such that the following conditions are satisfied:

(Base1) For every a ∈ C0, we have that 1a ∈ B(a).
(Base2) For every i : s ↪→ a ∈ B(a), for every b ∈ C0, for every f : s → b and
for every j : t ↪→ b ∈ B(b) a pullback s ×b t exists and i ◦ i′ : s ×b t ↪→ a ∈ B(a)

s ×b t t

s b.a

j

f ′

i′

fi

A cobase of computability for C is a family C = (C(a))a∈C0 , where C(a) is a
subclass of the class C1(a ↪→) of monos with domain a such that (Base1) and
the dual of (Base2) are satisfied.

Proposition 9. (i) If I(a) = {1a : a ↪→ a}, for every a ∈ C0, then I =
(I(a))a∈C0 is a base and a cobase of computability for C.
(ii) If Iso(a) = {i ∈ C1(↪→ a) | i is an iso}, for every a ∈ C0, then Iso =
(Iso(a))a∈C0 is a base of computability for C.
(iii) If C has pullbacks, and B(a) = C1(↪→ a), for every a ∈ C0, then B↪→ =
(B(a))a∈C0 is a base of computability for C.
(iv) If C has pushouts, and C(a) = C1(a ↪→), for every a ∈ C0, then C←↩ =
(C(a))a∈C0 is a cobase of computability for C.

Proof. (i) If a, b ∈ C0, and f : a → b, then I(b) − {1b : b ↪→ b} and the following
is a pullback square with 1a ◦ 1a = 1a ∈ I(a)

a b

a b.a

1b

f

1a

f1a

(ii) In this case a = s ×b t. Cases (iii) and (iv) are trivial.

Definition 9. If B = (B(a))a∈C0 is a base of computability for C and S : C →
Set preserves pullbacks, the computability model CMB(C;S) over C and S with
respect to B is the pair

CMB(C;S) =
((

S0(a)
)
a∈C0

,
(
S[a, b]

)
(a,b)∈C0×C0

)
,

264 I. Petrakis

S[a, b] = {S1(i, f) | i ∈ B(a) & f ∈ C1(dom(i), b)}.

If C = (C(a))a∈C0 is a cobase of computability for C and T : Cop → Set sends
pushouts to pullbacks, the computability model CMB(C;T) over D and T is
defined dually i.e.,

T [a, b] = {T1(i, f) | i ∈ C(a) & f ∈ C1(b, cod(i))}.

If B(a) is a set, for every a ∈ C0, and C is locally small, then CMB(C;S)
is locally small. By Proposition 9, if B = I, we have that CMI(C;S) =
CMtot(C;S). Actually, every covariant presheaf preserves the pullbacks related
to the base I. If B = B↪→, then CMB↪→

(C;S) = CMprt(C;S). Consequently,
the results shown in the previous two sections can be seen as special cases of the
corresponding results for categories with a base (or a cobase) of computability.

6 Concluding Comments and Future Work

The results presented here are the first steps in the study of computability mod-
els over categories and presheaves. While the notions of a computability model
and simulation defined in [9] permitted the transition from computability models
to categories, their slight generalisation presented here facilitated the transition
from categories (and presheaves on them) to computability models, allowing new
connections between the two subjects. Next we include some topics that we plan
to investigate in a future extension of our work.

1. The further study of the notion of a category with a (co)base of computabil-
ity and the possible influence of Rosolini’s theory of dominions in the theory of
computability models over such a category.
2. The study the computability models over a locally small category with pull-
backs and the pullback preserving, covariant representable functors Hom(a,−).
3. The formulation of conditions on a model C such that its category of assem-
blies Asm(C) has a base of computability B, and the study of the relation
between C and CMB

(Asm(C); FrgC
)
.

4. The effect of various constructions in categories to their canonical computabil-
ity models.
5. The generalisation of the notions of a computability model and of a simulation
between them so that the datatypes C(τ) are not necessarily in Set, but in a
category S with pullbacks, products, terminal object and factorisation of arrows
to compositions of monos with epis. These properties of S allow the formulation
of all set-based notions of Sect. 1 within S itself. For example, �γ

τ is a relation
between the objects D(γ(τ)) and C(τ) of S i.e., an object of S and a pair of
jointly monic arrows in S from �γ

τ to D(γ(τ)) and C(τ). The general theory of
relations in categories (see [5]) can be used to formulate in abstract categorical
terms all related notions and to study S-computability models over a category
C and an S-valued functor on C.

Computability Models over Categories and Presheaves 265

6. The study of relations between the theory of computability models over cate-
gories and presheaves on them with interesting computability models within the
theory of Higher-Order Computability, as this is developed in [9].

Acknowledgment. Our research was supported by LMUexcellent, funded by the Fed-
eral Ministry of Education and Research (BMBF) and the Free State of Bavaria under
the Excellence Strategy of the Federal Government and the Länder.

References

1. Carboni, A., Pedicchio, M.C., Rosolini, G. (eds.): Category Theory. LNM, vol.
1488. Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0084207

2. Cockett, R.: Categories and Computability, Lecture Notes (2014)
3. Cockett, R., Hofstra, P.: Introduction to turing categories. Ann. Pure Appl. Log.

156(2–3), 183–209 (2008). https://doi.org/10.1016/j.apal.2008.04.005
4. Cockett, R., Hofstra, P.: Categorical simulations. J. Pure Appl. Algebra 214(10),

1835–1853 (2010). https://doi.org/10.1016/j.jpaa.2009.12.028
5. Klein, A.: Relations in categories. Illinois J. Math. 14(4), 536–550 (1970)
6. Longley, J.: Realizability Toposes and language semantics. Ph.D. thesis ECS-LFCS-

95-332 University of Edinbourgh (1995)
7. Longley, J.: On the ubiquity of certain total type structures. Math. Struct. Comput.

Sci. 17(5), 841–953 (2007). https://doi.org/10.1016/j.entcs.2004.08004
8. Longley, J.: Computability structures, simulations and realizability. Math. Struct.

Comput. Sci. 24(2), E240201 (2014). https://doi.org/10.1017/S0960129513000182
9. Longley, J., Normann, D.: Higher-Order Computability. THEOAPPLCOM.

Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47992-6
10. I. Petrakis: Dependent sums and dependent products in Bishop’s set theory. In:

Dybjer, P., et al. (eds.) TYPES 2018. LIPIcs, vol. 130 (2019). https://doi.org/10.
4230/LIPIcs.TYPES.2018.3. Article no. 3

11. Petrakis, I.: Families of sets in bishop set theory. Habilitation thesis, Ludwig-
Maximilians-Universität (2020)

12. Petrakis, I.: Computability models over categories. arXiv:2105.06933v1 (2021)
13. Rosolini, G.: Continuity and effectiveness in topoi. Ph.D. thesis, University of

Oxford (1986)
14. Riehl, E.: Category Theory in Context. Dover Publications Inc., Mineola (2016)

https://doi.org/10.1007/BFb0084207
https://doi.org/10.1016/j.apal.2008.04.005
https://doi.org/10.1016/j.jpaa.2009.12.028
https://doi.org/10.1016/j.entcs.2004.08004
https://doi.org/10.1017/S0960129513000182
https://doi.org/10.1007/978-3-662-47992-6
https://doi.org/10.4230/LIPIcs.TYPES.2018.3
https://doi.org/10.4230/LIPIcs.TYPES.2018.3
http://arxiv.org/abs/2105.06933v1

Reducts of Relation Algebras:
The Aspects of Axiomatisability

and Finite Representability

Daniel Rogozin(B)

Institute for Information Transmission Problems, Russian Academy of Sciences,
Moscow, Russia

daniel.rogozin@serokell.io

Abstract. In this paper, we show that the class of representable resid-
uated semigroups has the finite representation property. That is, every
finite representable residuated semigroup is representable over a finite
base. This result gives a positive solution to Problem 19.17 from the
monograph by Hirsch and Hodkinson [13].

We also show that the class of representable join semilattice-ordered
semigroups is pseudo-universal and it has a recursively enumerable
axiomatisation. For this purpose, we introduce representability games
for join semilattice-ordered semigroups.

Keywords: Algebraic logic · Relation algebras · Finite representation
property · Residuated semigroups · Join semilattice-ordered semigroups

1 Introduction

Relation algebras are a kind of Boolean algebras with operators that provide
algebraisation of binary relations [20]. The class of all relation algebras, denoted
as RA, consists of algebras of the signature {0, 1,+,−, ; , �,1′}, and all those
algebras obey certain axioms. The class of representable relation algebras, RRA,
consists of algebras isomorphic to set relation algebras. RRA is a subclass
of RA, but the converse inclusion does not hold. That is, there exist non-
representable relation algebras [22]. Moreover, the class RRA is not a finitely
axiomatisable variety [24] with neither Sahlqvist [29] nor canonical axiomatisa-
tion [19]. The problem of determining whether a given finite relation algebra is
representable is undecidable, see [12].

For this reason, we are interested in reducts since one may extract more pos-
itive results in the aspects of decidability, representability, and finite axiomatis-
ability. There are several results on reducts of relation algebras that have no finite
axiomatisation. The examples of non-finitely axiomatisable classes are ordered
monoids [10], distributive residuated lattices [1], join semilattice-ordered semi-
groups [2], meet semilattice-ordered semigroups with converses [18], etc. On the

The research is supported by the project MK-1184.2021.1.1.

c© Springer Nature Switzerland AG 2022
S. Artemov and A. Nerode (Eds.): LFCS 2022, LNCS 13137, pp. 266–280, 2022.
https://doi.org/10.1007/978-3-030-93100-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93100-1_17&domain=pdf
http://orcid.org/0000-0002-6180-4323
https://doi.org/10.1007/978-3-030-93100-1_17

Reducts of Relation Algebras 267

other hand, such classes as representable residuated semigroups [1] and ordered
domain algebras [15] are finitely axiomatisable. There are also subsignatures for
which the question of finite axiomatisability remains open, see, e.g., [2].

The other direction we discuss is related to finite representability. A finite
algebra of relations has the finite representation property if it is isomorphic to
some algebra of relations over a finite base. The investigation of this problem
is of interest to study such aspects as decidability of membership of R(τ) for
finite structures. The finite representation property also implies recursivity of
the class of all finite representable τ -structures [9], if the whole class is finitely
axiomatisable. Here, τ is a subsignature of operations and predicates definable
in {0, 1,+,−, ; , �,1}. The examples of the class having the finite representa-
tion property are some classes of algebras [9,15,23], the subsignature of which
contains the domain and range operators. The other kind of algebras of binary
relations having the finite representation property is semigroups with so-called
demonic refinement has been recently studied by Hirsch and Šemrl [16], but the
same authors have recently shown that semigroups with demonic joins fail to
have the finite representation property [8].

There are subsignatures τ such that the class R(τ) of representable reducts
fails to have the finite representation property, for example, {; , ·}, see [16, The-
orem 4.1]. In general, (un)decidability of determining whether a finite relation
algebra has a finite representation is an open question [13, Problem 18.18].

In this paper, we consider reducts of relation algebras the signature of which
consists of composition, residuals, and the binary relation symbol that denotes
partial ordering. That is, we study the class of representable residuated semi-
groups. We show that R(; , \, /,≤) has the finite representation property. As a
result, Problem 19.17 of [13] has a positive solution. The solution is based on
the Dedekind-MacNeille completions and relational representations of quantales.
We embed a finite residuated semigroup into a finite quantale by mapping every
element to its lower cone. After that, we apply the relational representation for
quantales. As a result, the original finite residuated semigroup has a Zaretski-
style representation [30] and this satisfies the finite base requirement.

In the final section, we study the class of representable join semilattice-
ordered semigroups, denoted as R(; ,+). It is already known that this class is not
finitely axiomatisable [2]. We show that R(; ,+) has a recursively enumerable
axiomatisation. For that, we define networks and representability games. This
class is axiomatised with the axioms of join semilattice-ordered semigroups plus
the countable set of universal formulas claiming that ∃ has a winning strategy
on every finite step. The question of finite representability for this class remains
open, see [27, Problem 2].

2 Definitions

2.1 Relation Algebras and Their Reducts

Let us introduce some basic definitions related to relation algebras. See [13,
Section 3] to have more details.

268 D. Rogozin

Definition 1. A relation algebra is an algebra R = 〈R, 0, 1,+,−, ; , �,1〉 such
that 〈R, 0, 1,+,−〉 is a Boolean algebra, 〈R, ; ,1〉 is a monoid, and the following
equations hold, for all a, b, c ∈ R:

1. (a + b); c = (a; c) + (b; c),
2. a�� = a,
3. (a + b)� = a� + b�,
4. (a; b)� = b�; a�,
5. a�; (−(a; b)) ≤ −b.

where a ≤ b is defined usually as a + b = b. RA is the class of all relation
algebras.

Definition 2. A proper relation algebra (or, a set relation algebra) is an algebra
R = 〈R, 0, 1,∪,−, ; , �,1〉 such that R ⊆ P(W), where X is a base set, W ⊆
X ×X is an equivalence relation, 0 = ∅, 1 = W , ∪ and − are set-theoretic union
and complement respectively, ; is relation composition, � is relation converse,
1′ is the identity relation restricted to W , that is:

1. a; b = {(x, z) ∈ W | ∃y (x, y) ∈ a & (y, z) ∈ b}
2. a� = {(x, y) ∈ W | (y, x) ∈ a}
3. 1′ = {(x, y) ∈ W | x = y}
PRA is the class of all proper relation algebras. RRA is the class of all repre-
sentable relation algebras, that is, the closure of PRA under isomorphic copies.

Let τ be a subset of operations and predicates definable in RA. R(τ) is
the class of subalgebras of τ -subreducts of algebras belonging to RRA. We
also assume that R(τ) is closed under isomorphic copies. A τ -structure is rep-
resentable if it is isomorphic to some algebra of relations of this signature. A
representable finite τ -structure has a finite representation over a finite base if
it is isomoprhic to some finite representable over a finite base. R(τ) has the
finite representation property if every A ∈ R(τ) has a finite representation over
a finite base.

2.2 Residuated Semigroups

A residuated semigroup is a structure A = 〈A, ; ,≤, \, /〉 such that, for all
a, b, c ∈ A:

1. ≤ is reflexive, antisymmetric, and transitive.
2. a; (b; c) = (a; b); c.
3. a ≤ b ⇒ a; c ≤ b; c and a ≤ b ⇒ c; a ≤ c; b.
4. b ≤ a \ c ⇔ a; b ≤ c ⇔ a ≤ c / b.

We can express residuals in every R ∈ RA using Boolean negation, inversion,
and composition as follows:

1. a \ b = −(a�;−b)
2. a / b = −(−a; b�)

Reducts of Relation Algebras 269

These residuals have the following explicit definition in R ∈ PRA:

1. a \ b = {(x, y) | ∀z (z, x) ∈ a ⇒ (z, y) ∈ b}
2. a / b = {(x, y) | ∀z (y, z) ∈ b ⇒ (x, z) ∈ a}

One can visualise residuals in RRA with the following triangles:
∃y

b

���
�
�
�
�
�
� ∀z

a

 �
�
�
�
�
�
�

b

���
�

�
�

�
�

� ∀z

⇒ ⇐

x

a

���
�
�
�
�
�
�

a;c
�� z x

a\b
�� y x

a

���
�

�
�

�
�

�

a/b
�� y

b

���
�
�
�
�
�
�

Thus, in particular, every relation algebra is a residuated lattice.

2.3 Join Semilattice-Ordered Semigroups

A join semilattice-ordered semigroup is an algebra A = 〈A, ; ,+〉 such that 〈A, ; 〉
is a semigroup, 〈A,+〉 is a join-semilattice, and the following identities hold, for
all a, b, c ∈ A:

1. a; (b + c) = a; b + a; c,
2. (a + b); c = a; c + b; c.

A join semilattice-ordered semigroup is also a poset and ordering is defined as
a ≤ b iff a + b = b.

Definition 3. A representation R of a join semilattice-ordered semigroup A is
a one-to-one map R : A → 2D×D (where D is a non-empty base set) such that

1. (a + b)R = aR ∪ bR,
2. (a; b)R = aR; bR.

A join semilattice-ordered semigroup A is representable, if there exists a
representation R : A → 2D×D for some non-empty base set D.

2.4 Order-theoretic Definitions

Let us also remind the reader several order-theoretic notions, see [4, Chapter 1]
for more details. Let 〈P,≤〉 be a partial order. An upper cone generated by x is
the set ↑ x = {a ∈ P | x ≤ a}. Let A ⊆ P , then ↑ A =

⋃

x∈A

↑ x = {a ∈ P | ∃x ∈
P x ≤ a}. The set of all upper cones of a poset 〈P,≤〉 is denoted as Up(P).
Given a ∈ P , the lower cone generated by a is a subset ↓ a = {x ∈ P | x ≤ a}.
The lower cone generated by a subset is defined similarly.

A closure operator on a poset 〈P,≤〉 is a monotone map j : P → P such that
for all a ∈ P we have a ≤ ja = jja.

270 D. Rogozin

2.5 Pseudo-elementary Classes

The following definitions are due to [13, Section 9]. Let K be a class of structures
of a first-order signature L. K is called a pseudo-elementary class if there are:

1. a two-sorted language Ls with disjoint sorts a and r that contains all symbols
of L as a-sorted symbols,

2. an Ls-theory T , the defining theory.

such that K = {Ma �L | M |= T}. More generally, a pseudo-elementary class is
a reduct of an elementary class, see [5].

A pseudo-elementary class is pseudo-universal if

1. a function symbol in Ls that differs from copies of L ones takes values in
sort r,

2. Every sentence in T is built from atomic formulas and negated-atomic for-
mulas using ∨, ∧, ∀xa, ∀xr, ∃xr.

We are going to use the following fact to axiomatise the class of representable
join semilattice-ordered semigroups, see [13, Corollary 9.15, Theorem 9.28]:

Theorem 1.

1. If K is a pseudo-universal class, then K is elementary and universally axioma-
tisable.

2. Let K = {Ma �L |M |= T} be a pseudo-universal class of L-structures, where
T is an Ls-theory and L, Ls, T are recursively enumerable. Then there exists
the set of L-sentences {ηn}n<ω from T such that A ∈ K iff A |= {ηn}n<ω.
That is, {ηn}n<ω axiomatises K.

3 The Finite Representation Property for Residuated
Semigroups

The problem we are interested in is the following [13, Problem 19.17]:

Does R(; , \, /,≤) have the finite representation property?

The class R(; , \, /,≤) consists of the following structures, here is the explicit
definition:

Definition 4. Let A be a set of binary relations on some base set W such that
R = ∪A is transitive and W is a domain of R. A relational residuated semigroup
is an algebra A = 〈A, ; , \, /,⊆〉 where, for all a, b ∈ A:

1. a; b = {(x, z) | ∃y ∈ W ((x, y) ∈ a & (y, z) ∈ b)},
2. a \ b = {(x, y) | ∀z ∈ W ((z, x) ∈ a ⇒ (z, y) ∈ b)},
3. a / b = {(x, y) | ∀z ∈ W ((y, z) ∈ b ⇒ (x, z) ∈ a)},
4. a ≤ b iff a ⊆ b.

Reducts of Relation Algebras 271

A residuated semigroup is called representable if it is isomorphic to some
algebra that belongs to R(; , \, /,≤).

Definition 5. Let τ = {; , \, /,≤}, let A be a τ -structure and X a base set. An
interpretation R over a base X maps every a ∈ A to a binary relation aR ⊆
X × X. A representation of A is an interpretation R that interprets operations
and ≤ as above.

Andréka and Mikulás proved the representation theorem for residuated semi-
groups ([1]) in the step-by-step fashion. See this paper to learn more about step-
by-step representations in general [11]. The representation theorem for residu-
ated semigroups obviously implies that the class R(; , \, /,≤) is finitely axioma-
tisable. As it is well known, the logic of such structures is the Lambek calculus
[21], so we also have the relational completeness of the Lambek calculus. With
our result, we also have a version of the finite model property for the Lambek
calculus since one can refute any unprovable sequent in some finite relational
residuated semigroup over a finite base. This is a corollary of our result and the
fact that the Lambek calculus is complete w.r.t finite residuated semigroups, see
[6, Chapter 7, Sect. 7.4] to have an even stronger result.

It is sufficient to show that any finite residuated semigroup has a representa-
tion over a finite base in order to show that R(; , \, /,≤) has the finite representa-
tion property. For that, we will use the representation of residuated semigroups
as subalgebras of quantales and the relational representation of quantales.

A quantale is a complete lattice-ordered semigroup. That is, a binary oper-
ation respects suprema in both arguments. Quantales have been introduced by
Mulvey to provide a noncommutative generalisation of locales, see [25].

Definition 6. A quantale is a structure Q = 〈Q, ; , Σ〉 such that Q = 〈Q,Σ〉 is
a complete lattice, where Σ denotes an infinite join, 〈Q, ; 〉 is a semigroup, and
the following conditions hold for all a ∈ Q and A ⊆ Q:

1. a ; ΣA = Σ{a; q | q ∈ A},
2. ΣA ; a = Σ{q; a | q ∈ A}.
Definition 7. Given a quantale Q = 〈Q, ; , Σ〉, a set of generators is a subset
G ⊆ Q, if

1. For all q ∈ Q one has q ≤ Σ{g ∈ G | g ≤ q},
2. For all g ∈ G and q1, q2 ∈ Q, g ≤ q1; q2 implies g ≤ q1; r for some r ∈ G with

r ≤ q2.

The existence of a set of generators for an arbitrary quantale has been shown
here [3, Lemma 3.12].

Note that any quantale is a residuated semigroup as well. Given a quantale
Q = 〈Q, ; , Σ〉, One may express residuals with supremum and product as follows
for all a, b ∈ Q:

1. a \ b = Σ{c ∈ Q | a; c ≤ b},
2. a / b = Σ{c ∈ Q | b; c ≤ a}.

It is readily checked that residuals are unique.

272 D. Rogozin

A quantic nucleus is a closure operator on a quantale. Such an operator is
a noncommutative generalisation of a nucleus operator from locale theory. The
following definition and the proposition below are due to [26, Definition 3.1.1,
Theorem 3.1.1] respectively.

Definition 8. A quantic nucleus on a quantale 〈A, ; , Σ〉 is a mapping j : A → A
such that j a closure operator satisfying ja; jb ≤ j(a; b).

Proposition 1. Let A = 〈A, ; , Σ〉 be a quantale and j a quantic nucleus, the set
Aj = {a ∈ A | ja = a} forms a quantale, where a;j b = j(a; b) and ΣjA = j(ΣA)
for all a, b ∈ Aj and A ⊆ Aj.

One can embed any residuated semigroup into some quantale with using
Dedekind-MacNeille completion (see, for example, [28]) as follows. According to
Goldblatt [7], residuated semigroups have the following representation based on
quantic nuclei and the Galois connection. We need the construction for the solu-
tion, so we discuss it briefly. See Goldblatt’s paper to have a complete argument
in more detail [7].

Let A = 〈A,≤, ; , \, /〉 be a residuated semigroup. Then 〈P(A), ; ,
⋃〉 is a

quantale with pairwise product of subsets.
Let X ⊆ A. We put lX and uX as the sets of lower and upper bounds of

X in A. We also put mX = luX. Note that the lower cone of an arbitrary x is
m-closed, that is, m(↓ x) = ↓ x.

m : P(A) → P(A) is a closure operator and the set

(P(A))m = {X ∈ P(S) | mX = X}
forms a complete lattice with ΣmX = m(

⋃ X) and Πm =
⋂ X , see [4,

Theorem 7.3]. The key observation is that m is a quantic nucleus on P(A), that
is, mA;mB ⊆ m(A;B). We refer here to the aforementioned paper by Goldblatt.
Thus, according to Proposition 1, 〈(P(A))m,⊆, ;m 〉 is a quantale itself since m
is a quantic nucleus.

We define a map fm : A → (P(A))m such that fm : a �→ ↓ a. This map is
well-defined since any lower cone generated by a point is m-closed. Moreover, fm

preserves products, residuals, and existing suprema. In particular, fm is a resid-
uated semigroup embedding. As a result, we have the following representation
theorem [7, Corollary 2].

Theorem 2. Every residuated semigroup is isomorphic to the subalgebra of
some quantale.

In turn, quantales are representable with quantales of binary relations. The
notion of a relational quantale has been introduced by Brown and Gurr to rep-
resent quantales as quantales of relations [3].

Definition 9. Let A be a non-empty set. A relational quantale on A is an alge-
bra 〈R,⊆, ; 〉, where

1. R ⊆ P(A × A),

Reducts of Relation Algebras 273

2. 〈R,⊆〉 is a complete join-semilattice,
3. ; is a relational composition that respects all suprema in both coordinates.

The uniqueness of residuals in any quantale implies the following fact.

Proposition 2. Let A be a relational quantale over a base set X, then for all
a, b ∈ A
1. a \ b = {(x, y) ∈ X2 | ∀z ∈ X((z, x) ∈ a ⇒ (z, y) ∈ b)},
2. a / b = {(x, y) ∈ X2 | ∀z ∈ X((y, z) ∈ b ⇒ (x, z) ∈ b)}.

Now let us discuss the representation theorem for quantales. Let Q be a
quantale, Q its carrier, and 〈G〉 a set of its generators. Given a ∈ Q, define the
binary relation â ⊆ Q × Q as:

â = {(g, p) | g ∈ 〈G〉, p ∈ Q g ≤ a; p}
Denote Q̂ as {â | a ∈ Q}.

The mapping a �→ â satisfies the following conditions:

1. a ≤ b iff â ⊆ b̂,
2. Σ̂A = ΣÂ, â; b̂ = â; b, and 〈Q̂,⊆, Σ〉 is a complete lattice,
3. 〈Q̂,⊆, ; 〉 is a relational quantale,
4. Q is isomorphic to 〈Q̂,⊆, ; 〉 and a �→ â is a quantale isomorphism.

We summarise the construction above with the following theorem proved by
Brown and Gurr, see [3, Theorem 3.11].

Theorem 3. Every quantale Q = 〈Q, ; , Σ〉 is isomorphic to a relational quan-
tale on Q as a base set.

Let A be a residuated semigroup and QA a quantale of Galois closed subsets
of A. Q̂A is the corresponding relational quantale. Let us define an interpretation
R : A → Q̂A such that:

R : a �→ aR = ↓̂ a

According to the lemma below, such an interpretation is a representation.
As we have already said above, the function a �→ ↓ a is order-preserving and it
commutes with products and residuals.

Lemma 1. Let A be a residuated semigroup, then the interpretation R : A →
Q̂A such that R : a �→ aR = ↓̂ a is a representation.

Proof. By Theorem 2, A emdeds to QA, but by Theorem 3, QA is isomorphic to
Q̂A. The fact that R is an injective homomorphism follows from the construction
of the embedding of a residuated semigroup to the quantale of its Galois-stable
subsets, the isomorphism of QA with Q̂A, and Proposition 2.

The lemma above implies the following statement.

274 D. Rogozin

Theorem 4. Every residuated semigroup is isomorphic to the subalgebra of
some relational quantale. Moreover, R(; , \, /,≤) has the finite representation
property.

Proof. Let A be a finite residuated semigroup. The representation of A as a
subalgebra of the relational quantale of Q̂A belongs to R(; , \, /,≤) by Lemma 1.
This representation has the following form:

Â = 〈{↓̂ a}a∈A, ; , \, /,⊆〉
.

Moreover, such a representation with the corresponding relational quantale
has the finite base, if the original algebra is finite. The base set of the quantale
Q̂A is the set of Galois stable subsets of A, which is finite.

4 Join Semilattice-Ordered Semigroups: The Explicit
Axiomatisation

We note that a similar construction does not work for finite representable upper
semilattice-ordered semigroups. From the one hand, the notions of a finite upper
semilattice-ordered semigroup and finite quantale are quite close to each other.
From the other hand, the relational representation of quantales does not have
to represent joins as set-theoretic unions generally. Moreover, there is a count-
able sequence of non-representable upper semilattice-ordered semigroups with
a non-representable ultraproduct, see [2, Theorem 3.1]. Thus, R(; ,+) is not
finitely axiomatisable. Although, as we will see below, this class has a universal
recursively enumerable axiomatisation. For that, we characterise representability
using representability games on networks. The construction is somewhat similar
to the proof of [10, Proposition 5].

Definition 10. Let A be a join-semilattice ordered semigroup. A prenetwork
over A is a tuple (V,E, l), where V is a set of vertices, E is a set of edges such
that 〈V,E〉 is a directed graph, and l is a labelling function l : E → Up(A).

A prenetwork over A = (V,E, l) is a network if the following hold:

1. (Saturation condition) For all u, v ∈ V and for all x, y, z ∈ A, z ∈ l(u, v)
and z ≤ x ; y implies x ∈ l(u,w) and y ∈ l(w, v) for some w ∈ V .

2. (Coherence condition) For all u, v, w ∈ V , one has l(u, v); l(v, w) ⊆
l(u,w).

3. (Join-primeness) For all u, v ∈ V , l(u, v) is join-prime. That is, for all
a, b ∈ A if a + b ∈ l(u, v), then either a ∈ l(u, v) or b ∈ l(u, v).

If N is a prenetwork, then we will denote its sets of nodes as Nodes(N)
occasionally.

Let I be a non-empty index set and let {Ni}i∈I be an indexed set of prenet-
works (where each Ni = (Vi, Ei, li)), then N =

⋃

i∈I

Ni defined as (V,E, l), where

Reducts of Relation Algebras 275

1. V =
⋃

i∈I

Vi and E =
⋃

i∈I

Ei.

2. l(x, y) =
⋃

i∈I

li(x, y) for all x, y ∈ V .

Definition 11. Let n ≤ ω and A a join semilattice-ordered semigroup. A play
of the game Gn(A) has n rounds and consists of n prenetworks. As usual, we
have two players, ∀ (Abelard, he/his) and ∃ (Hélöıse, she/her).

1. Round 0: ∀ picks a, b ∈ A such that a �≤ b. ∃ responds with a prenetwork
N0 = (V0 = {x0, x1}, E0 = {(x0, x1)}, l0) such that l0(x0, x1) = ↑ a.

2. Round n + 1. Suppose, the prenetwork Nn = (Vn, En, ln) has been played.
∀ has the following three options:
(a) (Composition move): ∀ picks x, y, z ∈ Vn with b ∈ ln(x, y) and

c ∈ ln(y, z). We denote such a move as N(x, y, z, b, c). Then ∃ responds
with Nn+1 = (Vn+1, En+1, ln+1) such that Nn+1 is the same as Nn, but
ln+1(x, z) = ↑ (ln(x, z) ∪ {b ; c}).

(b) (Witness move):
∀ picks an edge (x, y) ∈ En and d, e ∈ A such that c ≤ d; e for c ∈ ln(x, y).
∃ has to find a witness. She has to find a z which is either a fresh node
or an old one. If z is fresh, then she defines the prenetwork T , the edges
of which are x, y, z with labelling:
i. lT (x, z) = ↑ d
ii. lT (z, y) = ↑ e
If z is already an element of A, then her response is similar. For her
response, ∃ plays Nn+1 = Nn ∪ T .

(c) (Join move):
∀ picks an edge (x, y) ∈ En and c + d for c, d ∈ A. ∃ has the following
two alternatives for her response:
i. ∃ chooses c and responds with the prenetwork Nn+1 =

〈Vn+1, En+1, ln+1〉, where ln+1(x, y) = ↑ (ln(x, y) ∪ {c}).
ii. ∃ chooses b. The response is similar but ln+1(x, y) = ↑ (ln(x, y)∪{d}).

∀ wins the play if b /∈ lNi
(x, y) for some i < n. Otherwise, ∃ wins the play.

Let a ∈ A and N a network, define a game G(N ,A, a) such that ∀ picks a in
the initial round and N0 = N . The rules of the game are the same as previously.

Lemma 2. Let A = 〈A, ; ,+〉 be a join semilattice-ordered semigroup,

1. If A is representable then ∃ has a winning strategy in Gω(A).
2. If |A| ≤ ω and ∃ has a winning strategy in Gω(A) then A is representable.

Proof.

1. Let h : A → 2D×D be a representation of some base set D �= ∅. ∃ maintains
a map

′
: Nodes(N) → D, where N is a network being played, such that

a ∈ lN (x, y) implies (x′, y′) ∈ h(a).

276 D. Rogozin

2. Given a ∈ A, we consider a play of the game where ∀ picks a and b with
a �≤ b in the initial round and plays (N , x, y, z, c, d) in the further rounds for
all x, y, z ∈ Nodes(N) and c, d ∈ A. Here, c ∈ lN (x, y) and d ∈ lN (y, z).
∀ also plays all rounds (N , x, y, c, d) for all x, y ∈ Nodes(N) and c, d ∈ A such
that there is e ∈ A such that e ≤ c; d and e ∈ lN (x, y).
∀ picks also c + d and vertices x, y ∈ Nodes(N) for c, d ∈ A.
Note that A is at most countable, so we can schedule all these moves. We
have the following play of a game where Hélöıse uses a winning strategy:

N0 ⊆ N1 ⊆ N2 . . .

Let us put N ∗(a, b) =
⋃

i<ω

Ni. N ∗(a, b) is clearly a network. Let us put the

following network assuming that N ∗(a1, a2) and N ∗(b1, b2) are disjoint for
a1 �= a2 and b1 �= b2:

N =
⋃

a,b∈A,a�≤b

N ∗(a, b)

Note that N = 〈V,E, l〉 is a well-defined network since it is the disjoint union
of networks.
Define rep : A → E as:

rep(a) = {(x, y) | ∃b ≤ a b ∈ lN (x, y)}
Let us check that rep is a representation. Let us show that rep(a + b) =
rep(a) ∪ rep(b) Suppose (x, y) ∈ rep(a + b). That is, there exists c ≤ a + b
with c ∈ lN (x, y), so does a + b since lN is an upper cone. a + b ∈ lN (x, y),
that is,

a + b ∈
⋃

c1,c2∈A
c1 �≤c2

lN ∗(c1,c2)(x, y)

That is, there is c ∈ A with such that a + b ∈ lN ∗(c1,c2)(x, y), but
lN ∗(c1,c2)(x, y) is join-prime, so we have either a ∈ lN ∗(c1,c2)(x, y) or b ∈
lN ∗(c1,c2)(x, y). Thus, rep(a + b) ⊆ rep(a) ∪ rep(b).
Suppose for the converse, (x, y) ∈ rep(a). We need (x, y) ∈ rep(a + b). In
other words, we have some c ∈ A with c ≤ a and c ∈ lN (x, y). We have
c ≤ a ≤ a + b, so (x, y) ∈ rep(a + b).
Let us show that rep(a; b) = rep(a); rep(b).
Suppose (x, y) ∈ rep(a; b). We need some z with (x, z) ∈ rep(a) and
(z, y) ∈ rep(b). There is c ≤ a; b with c ∈ lN (x, y). That is, there are a1, a0 ∈ A
and Ni such that c ∈ lNi

(x, y) where ∀ plays (a1, a0) for the initial round.
By the condition, ∀ makes the witness moves and ∃ responds with a wit-
ness. Her response is a node z such that lNi+1(x, z) = ↑ (lNi

(x, z) ∪ {a}) and
lNi+1(z, y) = ↑ (lNi

(z, y) ∪ {b}). The inclusion rep(a; b) ⊆ rep(a); rep(b) holds
since all witness moves have been played.

Reducts of Relation Algebras 277

Suppose (x, y) ∈ rep(a); rep(b). We need (x, y) ∈ rep(a; b). There exists z ∈
Nodes(N) with (x, z) ∈ rep(a) and (z, y) ∈ rep(b). So, there are c, d such
that c ≤ a with c ∈ lN (x, z) and d ≤ b with d ∈ lN (z, y). We also know that
lN (x, z); lN (z, y) ⊆ lN (x, y) because all composition moves have been played.
So c; d ∈ lN (x, y). That makes (x, y) ∈ rep(a; b) since c; d ≤ a; b.
For injectivity, suppose a ≤ b and (x, y) ∈ rep(a), that is, there is c ≤ a such
that c ∈ lN (x, y), but c ≤ a ≤ b, so (x, y) ∈ rep(b).
Suppose a �≤ b, then there are x, y ∈ Nodes(N (a, b)) such that a ∈ lN (x, y)
and b /∈ lN (x, y). These elements are x0, x1 that ∃ picks as her response in
the zero round. ∃ has a winning strategy, so b /∈ l(x0, x1), but (x, y) ∈ rep(a),
but (x, y) /∈ rep(b).

The following proposition is a version of [13, Proposition 7.24] and the right-
to-left part is proved using König’s lemma [17, Exercise 5.6.5].

Proposition 3. Let A be a join semilattice-ordered semigroup and N a network,
iff ∃ has a winning strategy in Gn(A,N) for all n < ω iff she has a winning
strategy in Gω(A,N).

Our purpose is to axiomatise of R(; ,+) with a recursively enumerable set
of universal formulas. See [13, Chapter 9] for the discussion in detail to have a
more general methodology.

Definition 12. Let Var = {v0, v1, . . . } be a set of variables. The set of terms is
generated by the following grammar:

t1, t2 :: = v | (t1 + t2) | (t1; t2)

Definition 13. A term network is a finite network 〈V,E, l〉, where 〈V,E〉 is a
directed graph and l : E → 2Term is a labelling function such that every l(x, y)
is finite for all (x, y) ∈ E.

Let A be a join semilattice-ordered semigroup and ϑ : Var → A a valuation.
The value of complex terms is defined inductively for a, b ∈ T :

1. (a; b)ϑ = aϑ; bϑ

2. (a + b)ϑ = aϑ + bϑ

Let N = 〈V,E, l〉 be a term network, A be a join-semilattice ordered semi-
group and ϑ : Var → A a valuation. Let us define the prenetwork N ϑ with the
same edges and vertices with labelling lϑ(x, y) = ↑ ϑ[lN (x, y)]. We define the fol-
lowing three extensions of N reflecting the composition, witness, and join moves
respectively:

1. Let x, y ∈ Nodes(N) and let t be a term. Nc is the extension of N , where
Nodes(Nc) = Nodes(N) and lNc

(x, y) = lN (x, y) ∪ {t} and lNc
(u, v) =

lN (u, v) for all u �= x and v �= y. We denote this network as Nc(N , x, y, t).

278 D. Rogozin

2. Let x, y ∈ Nodes(N), let z be a node (regardless of whether z is fresh or
not), and t1, t2 any terms. Let us define a network T such that Nodes(T) =
{x, y, z}. We define labelling as lT (x, y) = {t1} and lT (y, z) = {t2}. So we put
Nw = N ∪ T . We denote this network as Nw(N , x, y, z, t1, t2).

3. Let x, y ∈ Nodes(N) and let t1, t2 be terms. We define Ti =
〈{x, y}, {(x, y)}, lTi

〉, where lTi
(x, y) = lN (x, y) ∪ {ti} for i = 1, 2. So

Nj1 = N ∪ T1 and Nj2 = N ∪ T2.

Lemma 3. For all n < ω there exists a first-order sentence ρn such that ∃ has
a winning strategy in Gn(A) iff A |= ρn.

Proof. As usual, for each n < ω we construct a formula σn claiming that ∃ has
a winning strategy in the game of lenght n. To be more precise, our purpose is
to have

∃ has a winning strategy in Gn(N ϑ,A, ϑ(v)) if and only if A |= σn(N , v)

where A is a join semilattice-ordered semigroup, ϑ : Var → A is a variable
assignment, and N is a term network.

We define the following sequence of formulas {σn}n<ω inductively:

1. σ0(N , v) =
∧

a∈lN (x,y)

¬(a ≤ v)

σ0(N , v) merely claims that ∃ has a winning strategy in the zero length game.
2. Suppose σn(N , v) are already constructed for some n < ω. Let us define a

formula σn+1 claiming that ∃ always has a proper response for a network N
being played.
σn+1(N , v) is defined as follows:

σn+1(N , v) = σn+1c(N , v) ∧ σn+1w(N , v) ∧ σn+1j(N , v)

where
– σn+1c(N , v) =

∧

x,y,z∈Nodes(N)
t1∈lN (x,y)
t2∈lN (y,z)

σn(Nc(x, z, t1, t2), v)

– σn+1w(N , v) =
∧

x,y∈Nodes(N)
t∈lN (x,y)

∀u1, u2(t ≤ u1;u2 → ∨

w∈Nodes(N)∪{z}

Nc(x, y, w, u1, u2)), where z /∈ Nodes(N).
– σn+1j(N , v) = ∀a ∀b(v = a + b → ∧

x,y∈Nodes(N)

σn(Nj1(N , x, y, a), v) ∨
σn(Nj2(N , x, y, b), v))

So, ∃ has a winning strategy iff these formulas are true under the valuation
ϑ since the formulas {σn}n<ω encode the presence of a winning strategy for ∃ in
every finite round.

Let v0 be any variable, Nv0 denotes the term network having the form
〈{{x0, x1}, {(x0, x1)}, l}〉, where l(x, y) = {v0}. We define the following sequence
of formulas (ρn)n<ω:

ρn = ∀v0∀v1(¬(v0 ≤ v1) → σ(Nv0 , v0))

Reducts of Relation Algebras 279

This inductive sequence of formulas provides us the explicit axiomatisation
of the class of representable join semilattice-ordered semigroups.

Theorem 5. A join semilattice-ordered semigroup A is representable iff A |=
{ρn}n<ω. Moreover, R(; ,+) has a recursively enumerable universal axiomatisa-
tion.

Proof. Let us define a two sorted language with sorts a (algebra) and r (represen-
tation). R(; ,+) clearly forms a pseudo-elementary class, see [14, Introduction]
for more details. Moreover, this class is pseudo-universal and it satisfies the
condition of the second item of Theorem 1.

By Proposition 3, Lemma 2, and Lemma 3, a countable join semilattice-
ordered semigroup A is representable iff A |= {ρn}n<ω. Suppose A is uncount-
able. The class is pseudo-elementary, so it is closed under elementary equivalence,
so, by the downward Löwenheim-Skolem theorem [17, Corollary 3.1.5], we can
take A0 � A, a countable elementary substructure of A. Then A0 |= {ρn}n<ω

iff A |= {ρn}n<ω. Therefore, if A0 is representable, so is A.

As we have already discussed, the finite representation property for (; ,+)-
structures remains an open question. If the solution is positive, then the problem
of representability for finite join semilattice-ordered semigroups is decidable since
finite representability and recursive axiomatisability imply decidability.

Acknowledgements. The author would like to thank Robin Hirsch, Ian Hodkinson,
Stepan Kuznetsov, Jaš Šemrl, Valentin Shehtman, and his supervisor Ilya Shapirovsky
for valuable comments. The author is also grateful to the reviewers whose comments
improved the original version of the paper.

References

1. Andréka, H., Mikulás, S.: Lambek calculus and its relational semantics: complete-
ness and incompleteness. J. Logic Lang. Inform. 3(1), 1–37 (1994)

2. Andréka, H., Mikulás, S.: Axiomatizability of positive algebras of binary relations.
Algebra Univers. 66(1–2), 7 (2011)

3. Brown, C., Gurr, D.: A representation theorem for quantales. J. Pure Appl. Algebra
85(1), 27–42 (1993)

4. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge Uni-
versity Press, Cambridge (2002)

5. Eklof, P.C.: Ultraproducts for algebraists. In: Studies in Logic and the Foundations
of Mathematics, vol. 90, pp. 105–137. Elsevier (1977)

6. Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: an Algebraic
Glimpse at Substructural Logics. Elsevier, Amsterdam (2007)

7. Goldblatt, R.: A Kripke-Joyal semantics for noncommutative logic in quantales.
Adv. Modal Logic 6, 209–225 (2006)

8. Hirsch, R., Semrl, J.: Demonic lattices and semilattices in relational semigroups
with ordinary composition. In: 2021 36th Annual ACM/IEEE Symposium on Logic
in Computer Science (LICS), pp. 1–10. IEEE Computer Society, Los Alamitos,
CA, USA (July 2021). https://doi.org/10.1109/LICS52264.2021.9470509, https://
doi.ieeecomputersociety.org/10.1109/LICS52264.2021.9470509

https://doi.org/10.1109/LICS52264.2021.9470509
https://doi.ieeecomputersociety.org/10.1109/LICS52264.2021.9470509
https://doi.ieeecomputersociety.org/10.1109/LICS52264.2021.9470509

280 D. Rogozin

9. Hirsch, R.: The finite representation property for reducts of relation algebra.
Manuscript, September (2004)

10. Hirsch, R.: The class of representable ordered monoids has a recursively enumer-
able, universal axiomatisation but it is not finitely axiomatisable. Logic J. IGPL
13(2), 159–171 (2005)

11. Hirsch, R., Hodkinson, I.: Step by step-building representations in algebraic logic.
J. Symbolic Logic 62, 225–279 (1997)

12. Hirsch, R., Hodkinson, I.: Representability is not decidable for finite relation alge-
bras. Trans. Am. Math. Soc. 353(4), 1403–1425 (2001)

13. Hirsch, R., Hodkinson, I.: Relation Algebras by Games. Elsevier, Amsterdam
(2002)

14. Hirsch, R., Mikulás, S.: Representable semilattice-ordered monoids. Algebra
Univers. 57(3), 333–370 (2007)

15. Hirsch, R., Mikulás, S.: Ordered domain algebras. J. Appl. Logic 11(3), 266–271
(2013)

16. Hirsch, R., Šemrl, J.: Finite representability of semigroups with demonic refine-
ment. Algebra Univers. 82(2), 1–14 (2021). https://doi.org/10.1007/s00012-021-
00718-5

17. Hodges, W.: Model Theory. Cambridge University Press, Cambridge (1993)
18. Hodkinson, I., Mikulás, S.: Axiomatizability of reducts of algebras of relations.

Algebra Univers. 43(2–3), 127–156 (2000)
19. Hodkinson, I., Venema, Y.: Canonical varieties with no canonical axiomatisation.

Trans. Am. Math. Soc. 357(11), 4579–4605 (2005)
20. Jönsson, B., Tarski, A.: Boolean algebras with operators, i, ii. Am. J. Math. 73,

891–939 (1951)
21. Lambek, J.: The mathematics of sentence structure. Am. Math. Mon. 65(3), 154–

170 (1958)
22. Lyndon, R.C.: The representation of relational algebras. Ann. Math. 51, 707–729

(1950)
23. McLean, B., Mikulás, S.: The finite representation property for composition, inter-

section, domain and range. Int. J. Algebra Comput. 26(06), 1199–1215 (2016)
24. Monk, D.: On representable relation algebras. Mich. Math. J. 11(3), 207–210 (1964)
25. Mulvey, C.J.: & suppl. Rend. Circ. Mat. Palermo II 12, 99–104 (1986)
26. Rosenthal, K.I.: Quantales and their applications, vol. 234, Longman Scientific and

Technical (1990)
27. Šemrl, J.: Domain range semigroups and finite representations. In: Fahrenberg,

U., Gehrke, M., Santocanale, L., Winter, M. (eds.) RAMiCS 2021. LNCS, vol.
13027, pp. 483–498. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
88701-8 29

28. Theunissen, M., Venema, Y.: MacNeille completions of lattice expansions. Algebra
Univers. 57(2), 143–193 (2007)

29. Venema, Y.: Atom structures and Sahlqvist equations. Algebra Univers. 38(2),
185–199 (1997)

30. Zaretskii, K.: The representation of ordered semigroups by binary relations.
Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika 6, 48–50 (1959)

https://doi.org/10.1007/s00012-021-00718-5
https://doi.org/10.1007/s00012-021-00718-5
https://doi.org/10.1007/978-3-030-88701-8_29
https://doi.org/10.1007/978-3-030-88701-8_29

Between Turing and Kleene

Sam Sanders(B)

Department of Philosophy II, RUB Bochum,
Universitätsstrasse 150, 44780 Bochum, Germany

sam.sanders@rub.de

Abstract. Turing’s famous ‘machine’ model constitutes the first intu-
itively convincing framework for computing with real numbers. Kleene’s
computation schemes S1–S9 extend Turing’s approach to computing with
objects of any finite type. Both frameworks have their pros and cons and
it is a natural question if there is an approach that marries the best
of both the Turing and Kleene worlds. In answer to this question, we
propose a considerable extension of the scope of Turing’s approach. Cen-
tral is a fragment of the Axiom of Choice involving continuous choice
functions, going back to Kreisel-Troelstra and intuitionistic analysis. Put
another way, we formulate a relation ‘is computationally stronger than’
involving third-order objects that overcomes (many of) the pitfalls of
the Turing and Kleene frameworks.

Keywords: Computability theory · Kleene S1–S9 · Turing machines

1 Between Turing and Kleene Computability

1.1 Short Summary

In a nutshell, we propose a sizable extension of the scope of Turing’s ‘machine’
model of computation [50], motivated by a fragment of the Axiom of Choice
involving continuous choice functions, going back to Kreisel-Troelstra and intu-
itionistic analysis [21]. In particular, we formulate a relation ‘is computationally
stronger than’ involving third-order objects but still based on Turing com-
putability by and large.

The interested reader will find the aforementioned extension discussed in
more detail in Sect. 1.2, along with a critical discussion of the scope of our exten-
sion. The critical reader will learn about the pressing need for the aforementioned
extension in Sect. 1.3. In particular, the latter section seeks to alleviate worries
that existing frameworks are somehow sufficient for our (foundational) needs.
The (problems involving the) representation of third-order objects via second-
order ones is a particularly important ‘case in point’.

Next, some elegant results in our proposed extension are listed in Sect. 2
pertaining to the following topics:

– convergence theorems for nets in the unit interval (Sect. 2.1.2),
c© Springer Nature Switzerland AG 2022
S. Artemov and A. Nerode (Eds.): LFCS 2022, LNCS 13137, pp. 281–300, 2022.
https://doi.org/10.1007/978-3-030-93100-1_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93100-1_18&domain=pdf
https://doi.org/10.1007/978-3-030-93100-1_18

282 S. Sanders

– covering theorems for the unit interval R (Sect. 2.1.3),
– the uncountability of the real numbers R (Sect. 2.2),
– discontinuous functions on the real numbers R (Sect. 2.3).

We note that all our results are part of classical mathematics, while we have
found constructive mathematics highly inspiring on our journey towards this
paper. We will assume familiarity with Turing-style computability theory [44]
and higher-order primitive recursion like in Gödel’s system T [23, p. 74]; knowl-
edge of Kleene’s higher-order computability theory, in particular the computa-
tion schemes S1–S9 (see [17,23]), is useful but not essential.

Finally, we will discuss a number of theorems of real analysis and the following
remark discusses how the representations of real numbers can be done in a
straightforward and non-intrusive way.

Remark 1 (Representation of real numbers). Kohlenbach’s ‘hat function’
from [19, p. 289] guarantees that every element of N

N defines a real number
via the well-known representation of reals as fast-converging Cauchy sequences.
Despite the definition of the latter being Π0

1 , a quantifier ‘(∀x ∈ R)’ amounts to
a quantifier over N

N.
Moreover, Kohlenbach’s ‘tilde’ function from [20, Def. 4.24] guarantees that

‘(∀x ∈ [0, 1])’ also just amounts to a quantifier over N
N, despite 0 ≤R x ≤R 1

being Π0
1 (in addition). These functions ensure a smooth treatment of R, [0, 1],

and 2N and functions between such spaces. We will always assume that real
numbers and R → R-functions are given in this way, i.e. as in the aforementioned
references [19,20], so as to ensure a smooth treatment.

1.2 Extending the Scope of Turing Computability

In this section, we discuss the extension of Turing computability mentioned in
Sect. 1.1. In particular, we introduce this new concept in Sect. 1.2.1 and discuss
its scope in Sect. 1.2.2. The reader will have a basic understanding of Turing com-
putability theory [44] and higher-order primitive recursion like Gödel’s system
T [23, p. 74].

1.2.1 A New Notion of Reduction
In this section, we formulate (4), which is a relation formalising ‘is computa-
tionally stronger than’ involving third-order objects but still based on Turing
computability. We first need some preliminaries, starting with (1).

First of all, many theorems in e.g. analysis can be given the form

(∀Y : NN → N)(∃x ∈ N
N)A(Y, x), (1)

where N
N is the Baire space and N is the set of natural numbers. Indeed, as

discussed in Remark 1, some basic primitive recursive operations relegate the
coding of real numbers (via elements of N

N) to the background. Moreover, a
list of theorems that can be brought in the form (1) can be found in Example 2
below, while we discuss the scope of theorems that can be brought in this form
at the end of this section and in Sect. 1.2.2.

Between Turing and Kleene 283

Secondly, to improve readability, one often uses type theoretic notation in
(1), i.e. n0 for type 0 objects n ∈ N, x1 for type 1 objects x ∈ N

N, and Y 2

for type 2 objects Y : NN → N. We will only occasionally need type 3 objects,
which map type 2 objects to natural numbers. We generally use Greek capitals
Θ3, Λ3, . . . for such objects.

Thirdly, to compare the logical strength of theorems of the form (1), one
establishes results of the following form over weak systems:

(∀Y 2)(∃x1)A(Y, x) → (∀Z2)(∃y1)B(Z, x), (2)

as part of Kohlenbach’s higher-order Reverse Mathematics (see [19] for an intro-
duction). The computational properties of (1) and (2) following S1–S9 can then
be studied as follows: let Θ3 and Λ3 be realisers for the antecedent and conse-
quent of (2) i.e. (∀Y 2)A(Y,Θ(Y)) and (∀Z2)B(Z,Λ(Z)).

A central computability theoretic question concerning (2) is whether a
realiser Θ3 for the antecedent of (2) computes, in the sense of S1–S9, a realiser
Λ3 for the consequent of (2), i.e. whether there is a Kleene algorithm with index
e ∈ N satisfying the following:

(∀Θ3)
[
(∀Y 2)A(Y,Θ(Y)) → (∀Z2)B(Z, {e}(Θ,Z))

]
. (3)

Next, we list some theorems that have been studied via the above paradigm
based on (3) and S1–S9.

Example 2 (Some representative theorems)

– The Lindelöf, Heine-Borel, and Vitali covering theorems involving uncount-
able coverings [28,31,34].

– The Lebesgue number lemma [33,34].
– The Baire category theorem [33].
– Convergence theorems for nets [38,39,41].
– Local-global principles like Pincherle’s theorem [34].
– The uncountability of R and the Bolzano-Weierstrass theorem for countable

sets in Cantor space [32,37].
– Weak fragments of the Axiom of (countable) Choice [35].
– Basic properties of functions of bounded variation, like the Jordan decompo-

sition theorem [36].

Many more theorems are equivalent -in the sense of higher-order RM as in [19]
- to the theorems in the above list, as can be found in the associated references.

Fourth, for all the reasons discussed in Sect. 1.3, we formulate a version of (3)
based on Turing computability as follows:

(∀Z2, x1)
[
A(t(Z), x) → [{e}s(Z,x) ↓ ∧ B(Z, {e}s(Z,x))]

]
, (4)

where s2→1, t2→2 are terms of Gödel’s T and ‘{e}X ’ is the e-th Turing machine
with oracle X ⊂ N. We note that (4) readily1 implies (3); we discuss the gener-
ality of (4) at the end of this section.
1 For e ∈ N and s2→1, t2→2 as in (4), define e0 ∈ N as the Kleene algorithm such that

{e0}(Θ, Z) := {e}s(Z,Θ(t(Z))), which is total by assumption.

284 S. Sanders

In line with the nomenclature of computability theory, we call the antecedent
and consequent of (2) ‘problems’ and say that

solving the problem (∀Z2)(∃y1)B(Z, x) N-reduces to solving the problem
(∀Y 2)(∃x1)A(Y, x)

in case (4) holds for the parameters mentioned. We view the N -reduction relation
as ‘neutral’ between the Turing and Kleene framework and the reader readily
verifies that N -reduction is transitive. In case the term s(Z, x) can be replaced
by a term u(x), i.e. the latter has no access to Z, we refer to (4) as strong
N -reduction.

Finally, the critical reader may wonder about the generality of (4). The latter
is quite general, for the following two reasons.

– It is an empirical observation based on [28–37] that positive results in S1–S9
computability theory can be witnessed by terms of Gödel’s T of low complex-
ity. In this light, there is no real loss of generality if we use terms of Gödel’s
T as in (4).

– A theorem of (third-order) ordinary mathematics generally has the form (1),
unless the former implies the existence of a discontinuous function on R.
In the latter case, an ‘indirect’ treatment is still possible via the so-called
Grilliot’s trick, which we sketch in Sect. 2.3.1.

Like the reader, we feel that the second item deserves a more detailed explana-
tion, which is in Sect. 1.2.2. Regarding the first item, intellectual honesty compels
us to admit that many of our S1–S9 results are witnessed by terms of Gödel’s
T additionally involving Feferman’s search operator (already found in Hilbert-
Bernays [15]) defined for any f1 as:

μ(f) :=

{
the least n0 such that f(n) = 0 (∃m0)(f(m) = 0)

0 otherwise
. (5)

While not strictly necessary always, it is convenient to have access to μ2 as we
then do not have to worry how spaces like [0, 1] or 2N are represented. Based on
this observation, we introduce the following:

solving the problem (∀Z2)(∃y1)B(Z, x) μN-reduces to solving the problem
(∀Y 2)(∃x1)A(Y, x)

in case (4) holds for the parameters mentioned except that t(Z) is replaced by
t(Z, μ2). Then ‘strong’ μN -reduction is defined similarly.

Finally, one could study (4) for other extensions of Gödel’s T , e.g. involving
‘minimization’ (see [23, §5.1.5]), but (4) seems more salient.

1.2.2 Continuous and Discontinuous Functionals
We discuss the motivation behind our notion of N -reduction and establish its
scope. To this end, we have to make the following classical case distinction.

Between Turing and Kleene 285

– If a given third-order theorem is consistent with Brouwer’s continuity theo-
rem that all functions on R are continuous [7], then we can directly analyse
it via N -reduction.

– If a given third-order theorem implies the existence of a discontinuous function
on R, we can indirectly analyse it via N -reduction based on Grilliot’s trick,
where the latter is sketched in Sect. 2.3.1.

To make sense of the above, we first sketch the ‘standard’ higher-order gener-
alisation of (second-order) comprehension, exemplified by Kleene’s ∃2 as in (6).
We then discuss another (less famous) formulation of comprehension, called the
neighbourhood function principle as in Definition 4, a fragment of the Axiom of
Choice involving continuous choice functions, going back to intuitionistic anal-
ysis [21,47].

First of all, the commonplace one cannot fit a round peg in a square hole has
an obvious counterpart in computability theory: a type 2 functional cannot be
the oracle of a Turing machine. Nonetheless, a continuous type 2 functional can
be represented by a type 1 Kleene associate as in Definition 3, where we employ
the same2 notations as in [18]. Associates do ‘fit’ as oracles of Turing machines.

Definition 3 (Kleene associate from [18])

– A function α1 is a neighbourhood function if
• (∀β1)(∃n0)(α(βn) > 0) and
• (∀σ0∗

, τ0∗
)(α(σ) > 0 → α(σ ∗ τ) = α(σ)).

– A function α1 is a Kleene associate for Y 2 if
• (∀β1)(∃n0)(α(βn) > 0) and
• (∀β1, n0)(n is least s.t. α(βn) > 0 → α(βn) = Y (β) + 1).

As in [18, §4], we additionally assume that an associate is a neighbourhood func-
tion, as the former can readily be converted to the latter.

Hence, we should specify that a discontinuous type two functional cannot be
the oracle of a Turing machine. Now, the archetypal example of a discontinuous
function is Kleene’s quantifier ∃2 defined as:

(∀f1)
[

(∃n0)(f(n) = 0) ↔ ∃2(f) = 0
]
. (6)

Clearly, (6) is the higher-order version of arithmetical comprehension (see e.g.
[43, III]) stating that {n ∈ N : A(n)} exists for arithmetical formulas A, which
includes the underlined formula in (6). We point out Grilliot’s trick, a method
for (effectively) obtaining ∃2 from discontinuous functionals on e.g. R or 2N, as
also discussed in Sect. 2.3.1. To our own surprise, this kind of effective result is
essentially the prototype of (4), as discussed in Sect. 2.3.2.

Now, as noted above, Kleene’s ∃2 can decide the truth of arithmetical for-
mulas. In general, for a formula class Γ, one can study higher-order functionals

2 In particular, σ0∗
is a finite sequence in N with length |σ| and we assume the well-

known coding of such finite sequences by natural numbers. Moreover, fn is the finite
sequence (f(0), . . . , f(n − 1)) for any f1 and n0, and any f0∗

in case |f | ≤ n.

286 S. Sanders

that decide the truth of formulas γ ∈ Γ. Examples are Kleene’s quantifiers ∃n

[23, Def. 5.4.3] and the Feferman-Sieg functionals νn from [8, p. 129], which we
shall however not need.

Secondly, we consider the neighbourhood function principle NFP from [48],
studied in [21,47] under a different name.

Definition 4 [NFP]. For any formula A(n0), we have

(∀f1)(∃n0)A(fn) → (∃γ ∈ K0)(∀f1)A(fγ(f)), (7)

where ‘γ ∈ K0’ means that γ1 is a (total) Kleene associate.

Clearly, (7) is a fragment of the Axiom of Choice involving continuous choice
functions. Not as obvious is that NFP is a ‘more constructive’ formulation of the
comprehension axiom (see Remark 5 below). We also note that NFP involving
third-order parameters has the form (1), namely for a formula A(n0, Y 2) with
all parameters shown, (7) yields

(∀Y 2)(∃γ1)
[
(∀f1)(∃n0)A(fn, Y) → [γ ∈ K0 ∧ (∀f1)A(fγ(f))]

]
. (8)

Now, NFP proves the Lindelöf lemma [48], inspiring Theorem 12.
Finally, we can combine the above as follows: the case distinction from the

beginning of this section distinguishes between whether a given theorem T in
the language of third-order arithmetic implies the existence of a discontinuous
function (on R or 2N), or not. It is then an empirical observation based on [28–
37] that for this theorem T, either the theorem T implies the existence of ∃2

via the aforementioned Grilliot’s trick, or T is provable from a fragment of NFP
where A may include third-order parameters.

In the former case, the theorem T can be analysed ‘indirectly’ using N -
reduction, namely via Grilliot’s trick, as discussed in Sect. 2.3. In case the theo-
rem T is provable from a fragment NFP (with third-order parameters), we can
generally bring T in the form (1) and hence analyse it directly via N -reduction.
In light of (8), fragments of NFP can always be analysed via N -reduction.

In conclusion, second-order comprehension has been generalised to higher
types in two (more-or-less-known ways) ways, namely as follows.

– Formulate ‘characteristic functionals’ like ∃2 from (6) that decide the truth
of certain formulas.

– Formulate NFP as in Definition 4 for formulas involving higher-order param-
eters and variables.

If a given theorem implies the existence of ∃2, we can analyse it ‘indirectly’ via
N -reduction, namely via Grilliot’s trick. If a given theorem is provable from NFP
involving third-order fragments, we can (readily) analyse it via N -reduction. In
other words, if a third-order theorem is consistent with Brouwer’s continuity
theorem that all functions on R are continuous [7], then we can analyse it directly
via N -reduction.

Finally, we show that NFP classically follows from comprehension and vice
versa, assuming a fragment of the induction axiom.

Between Turing and Kleene 287

Remark 5 (NFP and comprehension). To obtain NFP from comprehension
modulo coding of finite sequences, let X be such that σ ∈ X ↔ A(σ0∗

) for
any finite sequence σ0∗

in N. Then define γ(σ) := |σ| + 1 in case σ ∈ X, and 0
otherwise. Assuming the antecedent of (7), this yields a (total) Kleene associate.
By definition, γ also satisfies the consequent of (7).

To obtain comprehension from NFP, suppose towards a contradiction that
comprehension is false, i.e. there is some formula A(n) such that

(∀X ⊂ N)(∃n ∈ N)
[
[n ∈ X ∧ ¬A(n)] ∨ [A(n) ∧ n ∈ X]

]
. (9)

Now apply NFP to (9) (coding X ⊂ N as elements of 2N) to obtain γ ∈ K0. The
latter has an upper bound k0 ∈ N on 2N, i.e. n ∈ N in (9) is bounded by k0.
However, the induction axiom readily proves ‘finite comprehension’ as follows:

(∀k ∈ N)(∃X ⊂ N)(∀n ≤ k)
[
n ∈ X ↔ A(n)

]
. (10)

Hence, for k = k0 + 1, (10) yields a contradiction.

1.3 The Need for an Extension of Turing Computation

We argue why the extension of Turing computation sketched in Sect. 1.2 is nec-
essary and even most welcome, as follows.

– Higher-order objects are ‘coded’ as reals so as to accommodate their study via
Turing machines. It has recently been established that this ‘coding practise’
yields very different results compared to Kleene’s approach, even for basic
objects like functions of bounded variation (Sect. 1.3.1)

– The conceptual complexity of Kleene’s extension of Turing computability is
considerable, while the extension to ‘infinite time’ Turing machines is too
general for our purposes (Sect. 1.3.2).

Put another way, N -reduction is an attempt at formulating a relation ‘is com-
putationally stronger than’ for third-order statements that overcomes the above
pitfalls, namely the conceptual complexity of Kleene’s S1–S9 and the problems
associated with second-order representations.

1.3.1 Computing with Second-Order Representations
We show that there are huge differences between ‘computing with higher-order
objects’ and ‘computing with representations of higher-order objects’, even for
basic objects like functions of bounded variation on [0, 1].

Now, various3 research programs have been proposed in which higher-order
objects are represented/coded as real numbers or similar representations, so as
3 Examples of such frameworks are: reverse mathematics [43,46], constructive anal-

ysis [2, I.13], [4], predicative analysis [12], and computable analysis [52]. Bishop’s
constructive analysis is not based on Turing computability directly, but one of its
‘intended models’ is (constructive) recursive mathematics, as discussed in [6]. One
aim of Feferman’s predicative analysis is to capture Bishop’s approach.

288 S. Sanders

to make them amenable to the Turing framework. It is then a natural question
whether there is any significant difference4 between the Kleene S1–S9 approach
or the Turing-approach-via-codes.

Continuous functions being well-studied (see Footnote 4) in this context, Dag
Normann and the author have investigated functions of bounded variation, which
have at most countably many points of discontinuity [36]. A central result is
the Jordan decomposition theorem which implies that f : [0, 1] → R of bounded
variation on [0, 1] satisfies f = g − h on [0, 1] for monotone g, h : [0, 1] → R. We
have the following results.

– In case f : [0, 1] → R of bounded variation is given via a second-order repre-
sentation, then the monotone g, h : [0, 1] → R such that f = g − h, can be
computed from finite iterations of the Turing jump with f as a parameter by
[22, Cor. 10].

– A Jordan realiser J takes as input f : [0, 1] → R of bounded variation and
outputs J (f) = (g, h), i.e. monotone g, h : [0, 1] → R with f = g −h on [0, 1].
No Jordan realiser is computable (S1–S9) in any type 2 functional by [37,
Theorem 3.9].

Regarding the second item, a Jordan realiser is therefore not computable from
(finite iterations of) ∃2, the higher-order counterpart of the Turing jump. The
same holds for S2k, which is a type two functional that can decide Π1

k -formulas
(involving first- and second-order parameters). The usual proof of the Jordan
decomposition theorem implies that Kleene’s ∃3 computes a Jordan realiser. But
∃3 implies full second-order arithmetic, and the same holds for the combination
of all S2k.

In conclusion, there is a huge difference in the computational hardness of the
Jordan decomposition theorem depending on whether we use representations or
not. However, this theorem deals with functions of bounded variation, a class
‘very close’ to the class of continuous functions. Hence, (Turing) computing with
representations, interesting as it may be, is completely different from (Kleene)
computing with actual higher-order objects. In this light, there is a clear need
for a notion like N -reduction that allows us to compute with actual higher-order
objects while staying close to Turing computability.

1.3.2 On Higher-Order Computation
We argue that the conceptual complexity of Kleene’s S1–S9 is considerable, while
the extension to ‘infinite time’ Turing machines is too general for our purposes
(Sect. 1.3.2).

First of all, as noted above, Turing’s famous ‘machine’ model constitutes the
first intuitively convincing framework for computing with real numbers [50] while
Kleene’s S1–S9 extend Turing’s approach to computing with objects of any finite
type [17,23].
4 The fan functional constitutes an early natural example of this difference: it has a

computable code but is not S1–S9 computable (but S1–S9 computable in Kleene’s
∃2 from Sect. 1.2.2). The fan functional computes a modulus of uniform continuity
for continuous functions on Cantor space; details may be found in [23].

Between Turing and Kleene 289

We have studied or made extensive use of Kleene’s S1–S9 computability
theory in [28–37]. In our opinion, while vastly more general in scope, Kleene’s
S1–S9 has the following conceptual drawbacks.

– Turing computability boasts the elementary ‘Kleene T -predicate’ (see e.g. [44,
p. 15]) where T (e, x, y) intuitively expresses that y codes the computation
steps of the e-th Turing machine program with input x. There is no such
construct for S1–S9.

– Kleene’s recursion theorem is one of the most elegant and important results
in Turing computability [44, p. 36] and is derived from first principles. By
contrast, Kleene’s schemes S1–S8 formalise higher-order primitive recursion
(only), while S9 essentially hard-codes the recursion theorem for S1–S9.

– Natural space and time constraints can be formulated for Turing machines,
yielding a canonical complexity theory [42]; to the best of knowledge, no such
canonical theory exists for higher-order computation in general or S1–S9 in
particular.

– Even basic questions concerning S1–S9 computability theory can be chal-
lenging. We have formulated a most basic example in Sect. 2.2 concerning
the uncountability of R, arguably one of the most basic properties of the
real numbers, which nonetheless yields very hard problems regarding S1–S9
computability.

In conclusion, the previous items suggest that the much greater scope of S1–S9
comes at the cost of conceptual clarity and causes technical difficulties. It is then
a natural question whether we can find a ‘sweet spot’ between the conceptual
clarity of Turing computability on one hand, and the generality of S1–S9, leading
us to N -reduction.

Secondly, an infinite time Turing machine (ITTM) [14] is a generalisation
of Turing computability involving infinite time or space. Welsh provides an
overview in [53] and Dag Normann studies non-montone inductive definitions
and the connection to ITTMs in [27].

In particular, Normann shows that ITTMs can outright compute many of the
functionals introduced in [28,29,34], including realisers for the covering lemmas
due to Vitali, Heine-Borel, and Lindelöf. However, all these functionals are not
S1–S9 computable in any type two functional, i.e. the former are ‘hard to com-
pute’ (see [28,29,34]). As a result, ITTMs yield ‘too strong’ a baseline framework
for our purposes.

2 Some Results

We establish some results based on our freshly minted notion of N -reduction
from Sect. 1.2, namely concerning the following topics.

– Convergence theorems for nets (Sects. 2.1.2 and 2.1.3).
– Covering theorems (Sects. 2.1.3).
– The uncountability of R (Sect. 2.2).
– Discontinuous functions on R and Grilliot’s trick (Sect. 2.3).

290 S. Sanders

The below just constitutes an illustrative first collection of examples: we do not
claim our results to be particularly deep or ground-breaking. We do point out
that the above items yield functionals that are, like the Jordan realisers from
Sect. 1.3.1, hard to compute in that no type 2 functional can (S1–S9) compute
them, while ∃3 can.

Finally, the curious reader of course wonders what the counterpart of the
Turing jump is for N -reduction. We believe this to be the ‘J ’ operation discussed
in Sect. 2.1.2.

2.1 Nets and Computability Theory

We study basic properties of nets via N -reduction. Nets are a generalisation of
sequences, and the latter hark back to the early days of computability theory
[45]. Filters provide an alternative to nets, but will not be discussed here for
reasons discussed in Remark 9.

2.1.1 Nets, a Very Short Introduction
Nets are the generalisation of the concept of sequence to possibly uncountable
index sets, nowadays called nets or Moore-Smith sequences. These were first
described in [24] and then formally introduced by Moore and Smith in [25] and
by Vietoris in [51]. These authors also established the generalisation to nets of
various basic theorems due to Bolzano-Weierstrass, Dini, and Arzelà [25, §8–9]
and [51, §4].

One well-know application is the formulation of fundamental topological
notions like compactness in terms of nets, as pioneered in [3], while Kelley’s
textbook [16] is standard. Tukey’s monograph [49] builds a similar framework,
based on very specific nets, called phalanxes, where the index sets consist of
finite subsets ordered by inclusion. We now list some basic definitions.

Definition 6. A set D = ∅ with a binary relation ‘�’ is directed if

a. � is transitive, i.e. (∀x, y, z ∈ D)([x � y ∧ y � z] → x � z),
b. for x, y ∈ D, there is z ∈ D such that x � z ∧ y � z,
c. � is reflexive, i.e. (∀x ∈ D)(x � x).

For a directed set (D,�) and a topological space X, any mapping x : D → X is
a net in X. We denote λd.x(d) as ‘(xd)d∈D’ or ‘xd : D → X’ to suggest the con-
nection to sequences. The directed set (D,�) is not always explicitly mentioned
together with a net xd : D → X.

The following definitions readily generalise from the sequence notion.

Definition 7 [Convergence of nets]. If xd : D → X is a net, we say that it
converges to the limit limd xd = y ∈ X if for every neighbourhood U of y, there
is d0 ∈ D such that for all e � d0, xe ∈ U .

Definition 8 [Increasing nets]. A net xd : D → R is increasing if a � b implies
xa ≤R xb for all a, b ∈ D.

Between Turing and Kleene 291

Now, we shall mostly use nets where the index set consists of finite sets of real
numbers ordered by inclusion, i.e. Tukey’s ‘phalanxes’ from [49]. As noted in
Remark 1, real numbers can readily be represented via elements of Baire space
using primitive recursive operations. Thus, such phalanxes are essentially nets
indexed by N

N. The notion of ‘sub-sequence’ of course generalises to ‘sub-net’
(see e.g. [41]), but we do not need this (slightly technical) notion here.

Finally, we discuss an alternative to nets and why it is not suitable here.

Remark 9 (Nets and filters). For completeness, we discuss the intimate con-
nection between filters and nets. Now, a topological space X is compact if and
only if every filter base has a refinement that converges to some point of X,
which follows by [1, Prop. 3.4].

Whatever the meaning of the previous italicised notions, the similarity to the
Bolzano-Weierstrass theorem for nets is obvious, and not a coincidence: for every
net r, there is an associated filter base B(r) such that if the erstwhile converges,
so does the latter to the same point; one similarly associates a net r(B) to a
given filter base B with the same convergence properties (see [1, §2]).

Hence, filters provide an alternative to nets, but we have chosen to work with
nets for the following reasons, where the second one is the most pressing.

– Nets have a greater intuitive clarity compared to filters, in our opinion, due
to the similarity between nets and sequences.

– Nets are ‘more economical’ in terms of ontology: consider the aforementioned
filter base B(r) associated to the net r. By [1, Prop. 2.1], the base has strictly
higher type than the net. The same holds for r(B) versus B.

– The notion of refinement mirrors the notion of sub-net [1, §2]. The former
is studied in [40] in the context of paracompactness; the associated results
suggest that the notion of sub-net works better in weak systems.

On a conceptual note, the well-known notion of ultrafilter corresponds to the
equivalent notion of universal net [1, §3]. On a historical note, Vietoris intro-
duces the notion of oriented set in [51, p. 184], which is exactly the notion of
‘directed set’. He proceeds to prove (among others) a version of the Bolzano-
Weierstrass theorem for nets. Vietoris also explains that these results are part
of his dissertation, written in the period 1913–1919, i.e. during his army service
for the Great War.

2.1.2 Nets and Convergence
We obtain a first result concerning N -reduction and convergence theorems for
nets. In particular, as promised above, we connect the latter to the following
operation, which is central and seems to play the role of the Turing jump: for
given Y 2, define

J(Y) := {n ∈ N : (∃f1)(Y (f, n) = 0)}.

We now have Theorem 10 where C is Cantor space ordered via the lexicographic
ordering ≤lex, i.e. the notion of ‘increasing net in C’ is obvious following Defi-
nition 8. We note that subsets of NN or R are given by characteristic functions,

292 S. Sanders

well-known from measure and probability theory and going back one hundred
plus of years [11].

Theorem 10. The following strongly N -reduce to one and other:

– for all Y 2, there is X ⊂ N such that X = J(Y),
– a monotone net in C indexed by Baire space, has a limit.

Proof. To show that the second item strongly N -reduces to the first one, let
fd : D → C be an increasing net in C indexed by Baire space and consider the
formula (∃d ∈ D)(fd ≥lex σ ∗ 00 . . .), where σ0∗

is a finite binary sequence. The
latter formula is equivalent to a formula of the form (∃g1)(Y (g, n) = 0) where
Y has the form t(λd.fd, n) for a term t of Gödel’s T . Now use J(Y) to define
the limit f = limd fd, as follows: f(0) is 1 if (∃d ∈ D)(fd ≥lex 100 . . .) and zero
otherwise. One then defines f(n + 1) in terms of fn in the same way. Note that
we only used J(Y) to define f , i.e. we have a strong N -reduction.

For the remaining case, fix some Y 2 and let w1∗
be a sequence of ele-

ments in N
N. Define fw : D → C as fw := λk.F (w, k) where F (w, k) is 1 if

(∃i < |w|)(Y (w(i), k) = 0), and zero otherwise. Then λw1∗
.fw is a monotone net

(phalanx) in C indexed by Baire space (modulo coding). In case limw fw = f ,
then it is readily verified that:

(∀n0)
[
(∃g1)(Y (g, n) = 0) ↔ f(n) = 1

]
. (11)

In the notation of (4), the net λw1∗
fw has the form t(Y)(w) while s does not

depend on Y , i.e. we have a strong N -reduction. ��
The reader is warned that not all N -reduction results are as elegant.

2.1.3 Nets and Compactness
We connect the Heine-Borel theorem and convergence theorems for nets via N -
reduction.

First of all, the Heine-Borel theorem, aka Cousin’s lemma, [5,10] pertains
to open-cover compactness, which we study for the unit interval. Clearly, each
Ψ : [0, 1] → R

+ yields a ‘canonical’ covering ∪x∈[0,1]B(x, Ψ(x)), which must have
a finite sub-covering. This yields the principle HBU, which has the form (1).

(∀Ψ : [0, 1] → R
+)(∃x0, . . . , xk ∈ [0, 1])

(
[0, 1] ⊂ ∪i≤kB(xi, Ψ(xi))

)
. (HBU)

The reals in HBU are hard to compute (S1–S9) in terms of Ψ , as shown in
[28,31], as no type two functional can perform this task. Computing a Lebesgue
number5 is similarly hard as shown in [34]. Nonetheless, HBU seems stronger
than the Lebesgue number lemma expressing that a Lebesgue number exists for
any Ψ : [0, 1] → R

+. We believe that Theorem 11 expresses this fundamental
difference.
5 The notion of Lebesgue number is familiar from topology (see e.g. [26, p. 175]) and

amounts to the following: for a metric space (X, d) and an open covering O of X,
the real number δ > 0 is a Lebesgue number for O if every subset Y of X with
diam(Y) := supx,y∈Y d(x, y) < δ is contained in some member of the covering.

Between Turing and Kleene 293

Theorem 11

– HBU μN -reduces to: for a monotone convergent net in [0, 1] indexed by Baire
space, there is a modulus6 of convergence.

– The Lebesgue number lemma strongly μN -reduces to: a monotone net in [0, 1]
indexed by Baire space, has a limit.

Proof. For the first part, fix Ψ : [0, 1] → R
+ and define the following where w1∗

is a finite sequence of reals:

xw :=

{
1 (∀q ∈ Q ∩ [0, 1])(q ∈ ∪i<|w|B(w(i), Ψ(w(i))))
B(w)/2 otherwise

.

Here, B(w) is the left-most end-point in [0, 1] of the intervals of the form
B(w(i), Ψ(B(w(i)))) for i ≤ k that is not covered by the union. Note that B(w)
and xw are readily defined using μ2. Modulo coding of reals, λw1∗

.xw can be
viewed as a monotone net (phalanx) indexed by Baire space and we must have
limw xw = 1. If (wk)k∈N is a modulus of convergence, then |xw2 − 1| < 1

4 by
definition, implying xw2 = 1. Hence, ∪i<|w2|B(w(i), Ψ(w(i))) covers [0, 1] ∩ Q.
Now adjoin to w2 all the points w2(i) ± Ψ(w2(i)) for i < |w2|, to obtain a cover-
ing of [0, 1]. This ‘adjoining’ takes the form of s(Ψ,w2) while xw takes the form
t(Ψ, μ2)(w) for terms s, t of Gödel’s T , using the notation from (4).

For the second part, replace the output 1 by 3
4 + 1

2N+3 in the first case of xw,
where N is as follows: adjoin to w all the points w(i) ± Ψ(w(i)) for i < |w|, to
obtain a covering of [0, 1]. Now use μ2 to find N ∈ N such that 1

2N is a Lebesgue
number for the latter covering. Note that the modified net is still monotone
as extending w can only increase the associated Lebesgue number. Clearly, any
cluster point of the modified net is found in (34 , 1). A straightforward unbounded
search can now recover a Lebesgue number from the cluster point of the net
without access to Ψ , i.e. we have a strong μN -reduction. ��
In light of the first part of the previous proof, the ‘post-processing’ term s in (4)
seems necessary as a Turing machine cannot evaluate a third-order functional
at a given point due to type restrictions.

As shown in [41], the existence of a modulus of convergence as in the first
item of the theorem requires a fragment of the Axiom of Choice (AC) beyond
ZF. In fact, one readily shows that the former existence statement N -reduces
(and vice versa) to the following fragment of AC:

(∀Y 2)
[
(∀n0)(∃f1)(Y (f, n) = 0) → (∃Z0→1)(∀n0)(Y (Z(n), n) = 0)

]
,

where we exclude the trivial case (∃f1)(∀n0)(Y (f, n) = 0).
Finally, we connect the Lebesgue number lemma and NFP as follows.

Theorem 12. The Lebesgue number lemma strongly N -reduces to NFP for
A(n) ≡ (∃f1)(Y (f, n) = 0) for any Y 2.
6 A modulus of convergence for a net xd : D → R with limd xd = x is a sequence

(dk)k∈N with (∀k ∈ N)(∀d � dn)(|xd − x| < 1
2k).

294 S. Sanders

Proof. By Remark 1, quantifying over 2N or [0, 1] amounts to nothing more
than quantifying over Baire space. To see this, define b : NN → 2N as follows:
b(f)(n) := 0 if f(n) = 0, and 1 otherwise. Also, define r(f) :=

∑∞
n=0

b(f)(n)
2n as

the real in [0, 1] coded by f ∈ N
N. For Ψ : R → R

+, the following formula is
trivial (take g = f and large n):

(∀f ∈ N
N)(∃n ∈ N)

[
(∃g ∈ N

N)[B(r(f), 1
2n) ⊂ B(r(g), Ψ(r(g)))]

]
,

which merely expresses that for every x ∈ [0, 1], there is n ∈ N and y ∈ [0, 1]
such that B(x, 1

2n) ⊂ B(y, Ψ(y)). Applying NFP with parameter Ψ , we obtain
γ ∈ K0 such that

(∀f ∈ N
N)

[
(∃g ∈ N

N)[B(r(f), 1
2γ(f)) ⊂ B(r(g), Ψ(r(g)))]

]
.

Now compute an upper bound for γ on 2N, using the Kleene associate for the fan
functional [23, §8.3.2]. This upper bound yields the required Lebesgue number,
which only depends on γ1, not on Ψ , i.e. we have obtained a strong N -reduction.

��
We conjecture that HBU does not strongly μN -reduce to the fragment of NFP
from Theorem 12.

2.2 On the Uncountability of R

We study one of the most (in)famous properties of R, namely its uncountability,
established by Cantor in 1874 as part of his/the first set theory paper [9]. The
following two principles were first studied in [32,37].

– NIN: there is no injection from [0, 1] to N.
– Cantor’s theorem: for a set A ⊂ [0, 1] and Y : [0, 1] → N injective on A,

there is x ∈ (
[0, 1] \ A).

A trivial manipulation of definitions shows that NIN and Cantor’s theorem are
logically equivalent. We however have the following theorem and associated Con-
jecture 14.

Theorem 13

– The problem NIN N -reduces to the Heine-Borel theorem HBU.
– Cantor’s theorem N -reduces to the Heine-Borel theorem HBU restricted to

Baire class 2 functions.

Proof. For the first part, fix Z : [0, 1] → N and define t(Z)(x) := 1
2Z(x)+1 moti-

vated by the notation in (4). In case x0, . . . , xk ∈ [0, 1] is a finite sub-covering of
∪x∈[0,1]B(x, t(Z)(x)), there are i, j ≤ k with

Z(xi) = Z(xj) ∧ xi = xj . (12)

Indeed, in case there are no i, j ≤ k as in (12), then the measure of
∪i≤kB(xi, t(Z)(xi)) is at most

∑k
n=0

1
2i+1 < 1, contradicting the fact that

Between Turing and Kleene 295

∪i≤kB(xi, t(Z)(xi)) covers [0, 1]. In light of (12), given the finite sequence
s(Z, x0, . . . , xk) defined as x0, t(Z)(x0), . . . , xk, t(Z)(xk), we can perform an
unbounded search (on a Turing machine) to find i, j ≤ k and l ∈ N such that
t(Z)(xi) =Q t(Z)(xj) and [|xi −xj |](l) >Q

1
2l , where [z](m) is the approximation

of z ∈ R up to 1
2m+1 . Hence, we also obtain the consequent of (4) for the case at

hand.
For the second part, fix A ⊂ [0, 1] and Y : [0, 1] → N such that Y is injective

on A. Now consider the following:

t(Y,A)(x) :=

{
1

2Y (x)+5 x ∈ A
1
8 x ∈ A

.

One readily shows that t(Y,A) : R → R is Baire class 2, as it only has countably
many points of discontinuity by definition. For a finite sub-covering x0, . . . , xk ∈
[0, 1] of ∪x∈[0,1]B(x, t(Y,A)(x)), there must be j ≤ k, with xj ∈ A. Indeed, as
in the previous paragraph, the measure of ∪i≤kB(xi, t(Y,A)(xi)) is otherwise
at most

∑k
n=0

1
2i+5 < 1, a contradiction. One can effectively decide whether

t(Y,A)(xi) < 1
8 or t(Y,A)(xi) > 1

16 for i ≤ k, i.e. one readily finds a j ≤ k with
xj ∈ A. ��
In light of the previous proof, the ‘post-processing’ term s in (4) again seems
necessary as a Turing machine cannot evaluate a third-order functional at a
point due to type restrictions.

Based on the previous proof, we conjecture the following.

Conjecture 14. The problem NIN does not N -reduce to the Heine-Borel theo-
rem HBU restricted to Baire class 2 functions, nor to the full Lebesgue number
lemma.

2.3 Discontinuous Functions

We show that a representative equivalence from the Reverse Mathematics lit-
erature involving (∃2) gives rise to N -reductions between the members of the
equivalence. That N -reduction applies here was surprising to us, as the exis-
tence of a discontinuous function like ∃2 does not have the syntactic form (1).

A central role is played by Grilliot’s trick, a method for (effectively) obtaining
∃2 from a discontinuous function [13]. We discuss this trick in some detail in
Sect. 2.3.1, while the connection between this trick and N -reduction is discussed
in Sect. 2.3.2.

2.3.1 Grilliot’s Trick
In a nutshell, Grilliot’s trick is a method for effectively obtaining ∃2 from a
discontinuous function, say on N

N or R. Clearly, ∃2 is discontinuous at 11 . . . ,
making the former functional a kind of ‘canonical’ discontinuous function.

First of all, Grilliot’s paper [13] pioneers the aforementioned method, nowa-
days called Grilliot’s trick; we refer to [23, Remark 5.3.9] for a discussion of the

296 S. Sanders

general background and history. We note that Kohlenbach formalises Grilliot’s
trick in a weak logical system (namely his ‘base theory’ RCAω

0) in [19, §3].
Secondly, Kohlenbach’s rendition of Grilliot’s trick [19, §3] is quite easy to

understand conceptually. Indeed, assume we have a function F : R → R and a
sequence (xn)n∈N with limn→∞ xn = x such that limn→∞ F (xn) = F (x), i.e. F
is not sequentially continuous at x. Then there is a term t3 of Gödel’s T of low
complexity such that E(f) := λf1.t(F, λn.xn, x, f) is Kleene’s ∃2 as in (6). All
technical details, including the exact definition of t, are found in [19, §3].

Thirdly, Kohlenbach uses Grilliot’s trick in [19, §3] to show that e.g. the
following sentence implies the existence of ∃2:

(∃ε)(∀g ∈ L([0, 1]))[ε(g) ∈ [0, 1] ∧ (∀y ∈ [0, 1])(g(y) ≤ g(ε(g)))]. (13)

Here, ε(g) is a real in [0, 1] where the Lipschitz-continuous7 function g : [0, 1] → R

with constant 1 attains its maximum. We note that the underlined quantifiers can
be brought in the form7 ‘(∃Y 2)(∀α1)’, which can also be obtained by representing
continuous functions via second-order codes.

2.3.2 Discontinuous Functions and N-reduction
In this section, we discuss the connection between Grilliot’s trick from Sect. 2.3.1
and N -reduction. In particular, we show that the proof of [19, Prop. 3.14], estab-
lishing the equivalence (13) ↔ (∃2), gives rise to N -reductions involving (13) and
(∃2).

First of all, consider (13) from Sect. 2.3.1. The functional ε from (13) yields a
discontinuous function on R, which yields ∃2 in turn, following the proof of [19,
Prop. 3.14]. If we make all steps in the latter proof explicit8, we obtain a term
t of Gödel’s T of low complexity such that

(∀ε)
[
(∀g)A(g, ε(g)) → (∀f1)B(t(ε), f)

]
, (14)

where A(g, x) expresses that x ∈ [0, 1] is a real where the Lipschitz-continuous
function g : [0, 1] → R with Lipschitz constant 1 attains its maximum; the
formula (∀f1)B(∃2, f) is (6), i.e. the specification of ∃2. Clearly, (14) implies by
contraposition that:

(∀ε, f1)
[¬B(t(ε), f) → (∃g)¬A(g, ε(g))

]
, (15)

which is ‘almost’ the definition of N -reduction as in (4). Indeed, ‘(∃g)’ in (15)
is essentially a quantifier over R by Footnote 7, whence (∀ε) can be viewed as
7 A function g : [0, 1] → R is Lifschitz-continuous with constant 1 on [0, 1] if (∀x, y ∈

[0, 1])(|g(x)−g(y)| < |x−y|). Hence, to (effectively) recover the graph of g, it suffices
to have access to the sequence (g(q))q∈Q∩[0,1].

8 The construction of a discontinuous function on R in the proof of [19, Prop. 3.14]
depends on whether ε(g0) ∈ [0, 1

2
] or ε(g0) ∈ [1

2
, 1], where g0 is the constant 0

function and ε as in (13). This non-effective case distinction can be replaced by an
effective case distinction whether ε(g0) < 3

4
or ε(g0) > 1

4
. The proof in the first case

goes through unmodified, while one replaces yx in the second case by −yx.

Between Turing and Kleene 297

a quantifier (∀Z2). Furthermore, a detailed inspection of the proof that (13)
implies the existence of ∃2 in [19, Prop. 3.14], reveals the following: this proof
still goes through if we restrict (13) to a sentence of the form:

(∃ε)(∀n0))[ε(gn) ∈ [0, 1] ∧ (∀q ∈ [0, 1] ∩ Q)(gn(q) ≤ gn(ε(gn)))], (16)

for some effective9 sequence of functions (gn)n∈N all in L([0, 1]). In case the
formula in square brackets in (16) is false for some n ∈ N, an unbounded search
will yield this number. Hence, we can replace ‘(∃g)¬A(g, ε(g)’ in (15) by

{e}s(ε,f) ↓ ∧ ¬A({e}s(ε,f), ε({e}s(ε,f))
)

for some index e ∈ N and term s of Gödel’s T , which is exactly (4). The details
are somewhat tedious, but we nonetheless can say that the negation of (13)
N -reduces to the negation of (∃2).

Finally, the usual ‘interval-halving’ proof of the existence of a maximum of a
continuous function on [0, 1], can be done using ∃2, yielding a term t of Gödel’s
T such that:

(∀E2)
[
(∀f1)B(E, f) → (∀g)A(g, t(E)(g))

]
. (17)

The contraposition of (17) then has the same form as (15). One readily obtains
an index e ∈ N and term s of Gödel’s T with

(∀E2, g)
[¬A(g, t(E)(g)) → [{e}s(E,g) ↓ ∧ ¬B(E, {e}s(E,g))

]
, (18)

as one only needs to decide g(r) ≥ g(q) for r, q ∈ [0, 1] ∩ Q to find a maximum
of a (Lipschitz) continuous function g : [0, 1] → R. Hence, an unbounded search
on a Turing machine will find f1 with ¬B(E, f). We note that (18) is a case of
N -reduction of the negation of (∃2) to the negation of (13).

In conclusion, we observe that the negation of (∃2) will N -reduce to the
negation of (13), and vice versa. Thus, it perhaps makes sense to drop the
‘negation of’ here and distinguish between (1) and its negation in the definition
of N -reduction.

Acknowledgements. I thank Anil Nerode for his most helpful advise. My research
was kindly supported by the Deutsche Forschungsgemeinschaft via the DFG grant
SA3418/1-1. I thank the anonymous referees for their suggestions, which have greatly
improved this paper.

References

1. Bartle, R.G.: Nets and filters in topology. Am. Math. Mon. 62, 551–557 (1955)
2. Beeson, M.J.: Foundations of Constructive Mathematics: Metamathematical Stud-

ies. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 6. Springer, Heidelberg
(1985). https://doi.org/10.1007/978-3-642-68952-9

9 The join of the sequences (qx − q)q∈Q∩[0,1] and (−qx)q∈Q∩[0,1] suffices.

https://doi.org/10.1007/978-3-642-68952-9

298 S. Sanders

3. Birkhoff, G.: Moore-smith convergence in general topology. Ann. Math. 38(1),
39–56 (1937)

4. Bishop, E.: Foundations of Constructive Analysis. McGraw-Hill, New York (1967)
5. Borel, E.: Leçons sur la théorie des fonctions. Gauthier-Villars, Paris (1898)
6. Bridges, D., Richman, F.: Varieties of Constructive Mathematics. LMS Lecture

Note Series 97. Cambridge University Press (1987)
7. Brouwer, L.E.J.: Collected Works. Philosophy and Foundations of Mathematics,

vol. 1. North-Holland Publishing Co., Amsterdam (1975)
8. Buchholz, W., Feferman, S., Pohlers, W., Sieg, W.: Iterated Inductive Definitions

and Subsystems of Analysis: Recent Proof-Theoretical Studies. LNM, vol. 897.
Springer, Heidelberg (1981). https://doi.org/10.1007/BFb0091894

9. Cantor, G.: Ueber eine eigenschaft des inbegriffs aller reellen algebraischen zahlen.
J. Reine Angew. Math. 77, 258–262 (1874)

10. Cousin, P.: Sur les fonctions de n variables complexes. Acta Math. 19, 1–61 (1895)
11. Dirichlet, L.P.G.: Über die Darstellung ganz willkürlicher Funktionen durch Sinus-

und Cosinusreihen. Repertorium der physik, von H.W. Dove und L. Moser, bd. 1
(1837)

12. Feferman, S.: How a little bit goes a long way: predicative foundations of analysis.
In: 2013 Unpublished Notes from 1977–1981 with Updated Introduction. https://
math.stanford.edu/∼feferman/papers/pfa(1).pdf

13. Grilliot, T.J.: On effectively discontinuous type-2 objects. J. Symb. Log. 36, 245–
248 (1971)

14. Hamkins, J.D., Lewis, A.: Infinite time Turing machines. J. Symb. Log. 65, 567–604
(1998)

15. Hilbert, D., Bernays, P.: Grundlagen der Mathematik. II. Die Grundlehren der
mathematischen Wissenschaften, vol. 50. Springer, Heidelberg (1970). https://doi.
org/10.1007/978-3-642-86896-2

16. Kelley, J.L.: General Topology. Graduate Texts in Mathematics, vol. 27. Springer,
New York (1975). Reprint of the 1955th edn

17. Kleene, S.C.: Recursive functionals and quantifiers of finite types. i. Trans. Am.
Math. Soc. 91, 1–52 (1959)

18. Kohlenbach, U.: Foundational and mathematical uses of higher types. In: Lecture
Notes in Logic, vol. 15, 92–116. ASL (2002)

19. Kohlenbach, U.: Higher order reverse mathematics. In: Lecture Notes in Logic, vol.
21, pp. 281–295. ASL (2005)

20. Kohlenbach, U.: Applied Proof Theory: Proof Interpretations and their Use in
Mathematics. Springer Monographs in Mathematics. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-77533-1

21. Kreisel, G., Troelstra, A.S.: Formal systems for some branches of intuitionistic
analysis. Ann. Math. Logic 1, 229–387 (1970)

22. Kreuzer, A.P.: Bounded variation and the strength of Helly’s selection theorem.
Log. Meth. Comput. Sci. 10(4), 1–23 (2014)

23. Longley, J., Normann, D.: Higher-Order Computability. Theory and Applications
of Computability. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
47992-6

24. Moore, E.H.: Definition of limit in general integral analysis. PNAS 1(12), 628–632
(1915)

25. Moore, E.H., Smith, H.: A general theory of limits. Am. J. Math. 44, 102–121
(1922)

26. Vietoris, L.: Topology. Monatshefte für Mathematik und Physik 39(1), A17–A19
(1932). https://doi.org/10.1007/BF01699114

https://doi.org/10.1007/BFb0091894
https://math.stanford.edu/~feferman/papers/pfa(1).pdf
https://math.stanford.edu/~feferman/papers/pfa(1).pdf
https://doi.org/10.1007/978-3-642-86896-2
https://doi.org/10.1007/978-3-642-86896-2
https://doi.org/10.1007/978-3-540-77533-1
https://doi.org/10.1007/978-3-662-47992-6
https://doi.org/10.1007/978-3-662-47992-6
https://doi.org/10.1007/BF01699114

Between Turing and Kleene 299

27. Normann, D.: Computability and non-monotone induction, p. 41. arXiv
arXiv:2006.03389 (2020, submitted)

28. Normann, D., Sanders, S.: Nonstandard analysis, computability theory, and their
connections. J. Symb. Log. 84(4), 1422–1465 (2019)

29. Normann, D., Sanders, S.: On the mathematical and foundational signif-
icance of the uncountable. J. Math. Log. (2019). https://doi.org/10.1142/
S0219061319500016

30. Normann, D., Sanders, S.: Representations in measure theory. arXiv
arXiv:1902.02756 (2019, submitted)

31. Normann, D., Sanders, S.: The strength of compactness in computability theory
and nonstandard analysis. Ann. Pure Appl. Log. 170(11), 102710 (2019)

32. Normann, D., Sanders, S.: On the uncountability of R, p. 37. arXiv
arXiv:2007.07560 (2020, submitted)

33. Normann, D., Sanders, S.: Open sets in reverse mathematics and computability
theory. J. Log. Comput. 30(8), 40 (2020)

34. Normann, D., Sanders, S.: Pincherle’s theorem in reverse mathematics and com-
putability theory. Ann. Pure Appl. Log. 171(5), 102788 (2020)

35. Normann, D., Sanders, S.: The axiom of choice in computability theory and reverse
mathematics. J. Log. Comput. 31(1), 297–325 (2021)

36. Normann, D., Sanders, S.: Betwixt turing and Kleene. In: Artemov, S., Nerode, A.
(eds.) LFCS 2022. LNCS, vol. 13137, pp. 236–252. Springer, Cham (2022)

37. Normann, D., Sanders, S.: On robust theorems due to Bolzano, Weierstrass, and
Cantor in reverse mathematics, p. 30. arXiv arXiv:2102.04787 (2021, submitted)

38. Sanders, S.: Nets and reverse mathematics. In: Manea, F., Martin, B., Paulusma,
D., Primiero, G. (eds.) CiE 2019. LNCS, vol. 11558, pp. 253–264. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-22996-2 22

39. Sanders, S.: Reverse mathematics and computability theory of domain theory.
In: Iemhoff, R., Moortgat, M., de Queiroz, R. (eds.) WoLLIC 2019. LNCS, vol.
11541, pp. 550–568. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-
662-59533-6 33

40. Sanders, S.: Reverse mathematics of topology: dimension, paracompactness, and
splittings. Notre Dame J. Form. Log. 61(4), 537–559 (2020)

41. Sanders, S.: Nets and reverse mathematics: a pilot study. Computability 10(1),
31–62 (2021)

42. Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge
University Press (2009)

43. Simpson, S.G.: Subsystems of Second Order Arithmetic, 2nd edn. Perspectives in
Logic. Cambridge University Press (2009)

44. Soare, R.I.: Recursively Enumerable Sets and Degrees. Perspectives in Mathemat-
ical Logic. Springer, Heidelberg (1987)

45. Specker, E.: Nicht konstruktiv beweisbare sätze der analysis. J. Symb. Log. 14,
145–158 (1949)

46. Stillwell, J.: Reverse Mathematics, Proofs from the Inside Out. Princeton Univer-
sity Press (2018)

47. Troelstra, A.S.: Choice Sequences: A Chapter of Intuitionistic Mathematics. Oxford
Logic Guides. Clarendon Press, Oxford (1977)

48. Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics. Vol. I. Studies in
Logic and the Foundations of Mathematics, vol. 121. North-Holland (1988)

49. Tukey, J.W.: Convergence and Uniformity in Topology. Annals of Mathematics
Studies, vol. 2. Princeton University Press, Princeton, N.J. (1940)

http://arxiv.org/abs/2006.03389
https://doi.org/10.1142/S0219061319500016
https://doi.org/10.1142/S0219061319500016
http://arxiv.org/abs/1902.02756
http://arxiv.org/abs/2007.07560
http://arxiv.org/abs/2102.04787
https://doi.org/10.1007/978-3-030-22996-2_22
https://doi.org/10.1007/978-3-662-59533-6_33
https://doi.org/10.1007/978-3-662-59533-6_33

300 S. Sanders

50. Turing, A.: On computable numbers, with an application to the Entscheidungs-
problem. Proc. Lond. Math. Soc. 42, 230–265 (1936)

51. Vietoris, L.: Stetige mengen. Monatsh. Math. Phys. 31(1), 173–204 (1921)
52. Weihrauch, K.: Computable Analysis: An Introduction. TTCSAES, Springer, Hei-

delberg (2000). https://doi.org/10.1007/978-3-642-56999-9
53. Welch, P.D.: Transfinite Machine Models, pp. 493–529 (2014)

https://doi.org/10.1007/978-3-642-56999-9

Propositional Dynamic Logic
with Quantification over Regular

Computation Sequences

Igor Sedlár(B)

Institute of Computer Science, The Czech Academy of Sciences,
Prague, Czech Republic

sedlar@cs.cas.cz

Abstract. We extend test-free regular propositional dynamic logic with
operators expressing combinations of existential and universal quantifiers
quantifying over computation sequences represented by a given regular
expression and states accessible via these computation sequences. This
extended language is able to express that there is a computation sequence
represented by a given regular expression that leads only to states where
a given formula is satisfied, or that for all computation sequences rep-
resented by a given regular expression there is a state accessible via the
computation sequence where a given formula is satisfied. Such quanti-
fier combinations are essential in expressing, for instance, that a given
non-deterministic finite automaton accepts all words of a given regular
language or that there is a specific sequence of actions instantiating a
plan expressed by a regular expression that is guaranteed to accomplish
a certain goal. The existential-universal quantifier combination is mod-
elled by neighborhood functions. We prove that a rich fragment of our
logic is decidable and EXPTIME -complete by embedding the fragment
into deterministic propositional dynamic logic.

Keywords: Finite automata · Planning · Propositional dynamic
logic · Quantification

1 Introduction

Propositional dynamic logic, PDL, is a well-known modal logic originally intro-
duced to formalize propositional-level reasoning about correctness properties of
imperative programs [4,6]. PDL has been used since in a number of other settings
such as reasoning about action [8,9] or planning [13,14]. Multi-agent epistemic
logic with common knowledge [3] is a fragment of PDL.

In PDL, modal operators are indexed by programs, which are expressions
built up from a countable set of atomic programs using the operations of choice
∪, composition ; , Kleene star ∗ and, for each formula ϕ, test ϕ?. Programs are
interpreted semantically as binary relations on a set of states, where ∪ corre-
sponds to union, ; to relational composition, ∗ to reflexive-transitive closure and
c© Springer Nature Switzerland AG 2022
S. Artemov and A. Nerode (Eds.): LFCS 2022, LNCS 13137, pp. 301–315, 2022.
https://doi.org/10.1007/978-3-030-93100-1_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93100-1_19&domain=pdf
http://orcid.org/0000-0002-1942-7982
https://doi.org/10.1007/978-3-030-93100-1_19

302 I. Sedlár

ϕ? is interpreted as the identity relation on the set of states satisfying ϕ. In test-
free PDL the test operator is omitted and deterministic PDL requires atomic
programs to be interpreted as partial functions. Regular PDL over a finite alpha-
bet Σ is a version of test-free PDL where Σ replaces the set of atomic programs
and two zeroary program operators 0 and 1 are added, corresponding seman-
tically to the empty relation and the identity relation, respectively. In effect,
programs in regular PDL over Σ are regular expressions over Σ. Regular PDL
embeds into PDL, where 1 is represented by �? and 0 by ⊥?. Satisfiability (and
validity) problems for all these variants of PDL are decidable and EXPTIME -
complete.

It is easily observed that pairs (M,x), where M is a finite Kripke model
for regular PDL over Σ and x is a state in the model, correspond to non-
deterministic finite automata (NFA) over Σ where a fixed propositional variable
represents the set of accepting states. It can be shown that acceptance of words
by NFAs can be represented by formulas: for each word w over Σ, there is a
formula ϕw such that any (M,x) satisfies ϕw iff the NFA represented by (M,x)
accepts w. However, this does not hold for acceptance of regular languages: there
is no formula ϕα such that any (M,x) satisfies ϕα iff the automaton represented
by (M,x) accepts all strings in the language determined by the regular expres-
sion α. A similar deficiency is encountered when planning-related interpretations
of PDL are considered: if actions are non-deterministic, then there is no formula
of PDL saying that there is some course of action instantiating a given struc-
tured plan (represented by a regular expression) such that all states reachable
by that course of action satisfy a certain goal formula.

To represent these notions, one needs to extend PDL with modal operators
that express a combination of existential and universal quantification over words
belonging to the language determined by a regular expression on the one hand
and sets of states reachable by relations corresponding to such words on the
other hand. In this paper we introduce QPDL, an extension of regular PDL
with modal formulas of the form 〈 α]ϕ saying that there is a word w in the
language determined by α such that all states reachable via the relation corre-
sponding to w satisfy ϕ. Dual formulas [α 〉ϕ, defined as ¬〈 α]¬ϕ, say that for
all words w in the language determined by α there is a state reachable via the
relation corresponding to w that satisfies ϕ. The 〈 α]-operators are represented
semantically in terms of α-indexed neighborhood functions (of the kind used also
in concurrent PDL [12] and Game logic [11]) that are specifically related to the
relations corresponding to α.

Our main technical result is a decidability result for qPDL, the fragment
of QPDL where 1 is omitted and the reflexive-transitive closure operator ∗

is replaced by a transitive closure operator +; it is also shown that qPDL is
EXPTIME -complete. The result is established by embedding qPDL into deter-
ministic PDL.

The paper is structured as follows. After discussing some background material
on regular expressions in Sect. 2, we introduce QPDL and qPDL in Sect. 3.
In Sect. 4 we briefly discuss two notions that the language of QPDL is able

PDL with Quantification over Computation Sequences 303

to express, namely, that a given non-deterministic finite automaton accepts all
strings in the language determined by a given regular expression, and that there
is a way to execute an abstract plan, represented by a regular expression, in a
way that guarantees that a specific goal, expressed by a formula, is achieved. In
Sect. 5 we establish our decidability and complexity result on qPDL. In Sect. 6
we briefly discuss the problems that arise when our proof technique is applied to
QPDL itself. The concluding section summarizes the paper and outlines some
interesting problems we leave for future work.

2 Regular Computation Sequences

Definition 1. Fix a finite alphabet Σ. The set of expressions over Σ, denoted
Ex1(Σ), is defined by the following grammar:

α := a | 0 | 1 | α ∪ α | α;α | α+

where a ∈ Σ. We define α∗ := 1 ∪ α+. The set of 1-free expressions over Σ,
denoted Ex(Σ), is the set of α ∈ Ex1(Σ) such that 1 does not occur in α. For
all non-empty Γ = {a1, . . . , an} ⊆ Σ we define

⋃
Γ := a1 ∪ . . . ∪ an (assuming

some fixed bracketing).

The set Ex1(Σ) is virtually identical to the set of regular expressions over
Σ; our mode of presentation is determined by the fact that Ex(Σ) will be used
in our main technical result.

In what follows, we use the standard notation Σ∗ to denote the set of all
finite sequences of elements of Σ (words over Σ); the empty sequence is denoted
as ε. If w, u ∈ Σ∗, then wu denotes the concatenation of w and u. Σ+ is the set
of all finite non-empty sequences of elements of Σ (non-empty words over Σ).

Definition 2. For each α ∈ Ex1(Σ), we define L(α) ⊆ Σ∗, the language deter-
mined by α, as follows:

L(a) = {a} L(0) = ∅
L(1) = {ε} L(α ∪ β) = L(α) ∪ L(β)

L(α;β) = L(α) · L(β) L(α+) =
⋃

n>0

Ln(α)

where L1 · L2 = {wu | w ∈ L1 & u ∈ L2}, L1(α) = L(α) and Ln+1(α) =
Ln(α) · L(α).

For example L(a+; (1 ∪ (b ∪ c))) is the set of all non-empty words over the
alphabet {a, b, c} where all symbols but possibly the last one are a’s; words a,
ab, aac belong to this language but ca does not.

In what follows we usually do not distinguish between α and w if L(α) = {w}
(e.g. between the regular expression (a; b); c and the string abc). We will often
write αβ instead of α;β.

304 I. Sedlár

If elements of Σ are seen as representing (executions of) atomic programs
(or, more generally, instructions or actions), then L(α) can be seen as a set
of computation sequences—finite sequences of (executions of) atomic programs
(instructions, actions)—determined by the regular expression α. Such computa-
tion sequences may be called regular computation sequences.

3 QPDL and Its 1-Free Fragment qPDL

Definition 3. A Σ-frame is a pair (S,R), where S is a non-empty set and
R : Σ → (S → 2S) such that R(a)(x) is at most countable for each a ∈ Σ and
x ∈ S. A neighborhood Σ-frame is a tuple F = (S,R,N) where (S, R) is a
Σ-frame and N : Σ → (S → 22

S

) such that

N(a)(x) = {R(a)(x)}.

In each neighborhood frame F, the functions R and N are extended to domain
Ex1(Σ) ∪ Σ∗ as indicated in Fig. 1. (We define R(α) := {(x, y) | y ∈ R(α)(x)}
and N(α) = {(x, Y) | Y ∈ N(α)(x)}. For P ∈ {R,N}, ξ ∈ Ex1(Σ) ∪ Σ∗

and X ⊆ S we define P (ξ)(X) :=
⋃

x∈X P (ξ)(x) and P (ξ)({Xi | i ∈ I}) =⋃{P (ξ)(Xi) | i ∈ I}. We also define P (α)n(x) by fixing P (α)1(x) := P (α)(x)
and P (α)n+1(x) := P (α)(P (α)n(x)). We will often write Pξ instead of P (ξ)).

R(1) = idS = R()

R(0) = ∅
R(α ∪ β) = R(α) ∪ R(β)

R(αβ) = R(α) ◦ R(β)

R(α+) =
n>0

R(α)n

R(wa) = R(w) ◦ R(a)

N(1)(x) = {{x}} = N()(x)

N(0)(x) = ∅
N(α ∪ β)(x) = N(α)(x) ∪ N(β)(x)

N(αβ)(x) = N(β)((N(α)(x))

N(α+)(x) =
n>0

N(α)n(x)

N(wa)(x) = N(a)(N(w)(x))

Fig. 1. Accessibility relations and neighborhood functions for regular expressions and
words over Σ.

It is easily seen that R(α)(x) is at most countable for each α ∈ Ex1(Σ) and
x ∈ S. This “image-countability” property will be essential in Sec. 5.2. Note
that, for all α ∈ Ex1(Σ),

Rα = {(x, y) | ∃w ∈ L(α)Rwxy} (1)

It follows that if L(α) = L(β), then Rα = Rβ . We will use this fact later when
reasoning about R “using properties of regular expressions”.

PDL with Quantification over Computation Sequences 305

Proposition 1. For each neighborhood Σ-frame, each x in the frame and each
α ∈ Ex1(Σ):

Nα(x) = {Rw(x) | w ∈ L(α)} (2)

Rα(x) =
⋃

Nα(x) (3)

Proof. We prove (2) by induction on the complexity of α. The base holds by defi-
nition and the cases of the induction step corresponding to 1,0 and ∪ are trivial.
The case for ; is established as follows: Nαβ(x) = Nβ(Nα(x)) =

⋃{Nβ(X) | X ∈
Nα(x)} =

⋃{⋃{Nβ(y) | Rwxy} | w ∈ L(α)} = {Rwu(x) | w ∈ L(α) & u ∈
L(β)}. The case for + follows from the fact that Nαn(x) = {Rw(x) | w ∈ L(αn)},
which is established by induction on n (the induction step is established similarly
as the case for ; above). Claim (3) follows from (1) and (2).
�

Proposition 1 entails that we could have equivalently used (2) as a definition
of N in terms of R. Instead, we opted for a more “constructive” definition of N .

Example 1. An example of a Σ-frame for Σ = {a, b}, based on the N×N matrix,
is shown in Fig. 2. The frame is extended to a neighborhood frame by defining
N(a)((n,m)) = {{(n + 1,m)}} and N(b)((n,m)) = {{(n,m + 1)}}. Hence, for
example,

N((a ∪ b)+)((n,m))

=
{

{(n′,m′) | n ≤ n′ & m ≤ m′ & n′ + m′ = k + (n + m)}
∣
∣
∣ k > 0

}

(0, 0)

(0, 1)

(0, 2)

(0, 3)

(1, 0)

(1, 1)

(1, 2)

(1, 3)

(2, 0)

(2, 1)

(2, 2)

(2, 3)

(3, 0)

(3, 1)

(3, 2)

(3, 3)

· · ·

...

· · ·

...

· · ·

...

· · ·

...

a

a

a

a

a

a

a

a

a

a

a

a

b b b b

b b b b

b b b b

Fig. 2. An example of a Σ-frame.

306 I. Sedlár

That is, X ∈ N((a ∪ b)+)((n,m)) iff X is the set of pairs (n′,m′) that can be
reached from (n,m) by k steps along the a, b arrows (for some k > 0). The
highlighted states are reachable from (0, 0) in 3 steps.

Fix a countable set Pr of propositional variables. The set of Ex1(Σ)-
formulas, denoted Fm1(Σ), is defined by the following grammar:

ϕ := p | ¬ϕ | ϕ ∧ ϕ | [α]ϕ | 〈 α]ϕ

where p ∈ Pr and α ∈ Ex1(Σ). Boolean operators �,⊥,∨,→ and ↔ are defined
as usual; moreover, we define 〈 α 〉ϕ := ¬[α]¬ϕ and [α 〉ϕ := ¬〈 α]¬ϕ. A formula
ϕ ∈ Ex1(Σ) is a Ex(Σ)-formula iff 1 does not occur in ϕ; the set of Ex(Σ)-
formulas will be denoted as Fm(Σ). Ex1(Σ)-formulas and Ex(Σ) formulas will
be often referred to as formulas and 1-free formulas, respectively.

Definition 4. A neighbourhood Σ-model based on F is M = (F, V) where V is
a function from Pr to 2S.

For each M, the satisfaction relation |=M between states of M and formulas
is defined as follows:

– x |=M p iff x ∈ V (p);
– x |=M ¬ϕ iff x �|=M ϕ;
– x |=M ϕ ∧ ψ iff x |=M ϕ and x |=M ψ;
– x |=M [α]ϕ iff y |=M ϕ for all y ∈ Rα(x);
– x |=M 〈 α]ϕ iff X |=M ϕ for some X ∈ Nα(x).

(We write X |=M ϕ iff z |=M ϕ for all z ∈ X.) A formula ϕ is valid in M iff
x |=M ϕ for all x in M; formula ϕ is valid in F iff it is valid in all M based on
F. QPDL is the set of formulas valid in all neighborhood Σ-frames; qPDL is
the set of 1-free formulas valid in all neighborhood Σ-frames.

Remark 1. It follows from the definitions and Proposition 1 that

– x |=M [α]ϕ iff ∀w ∈ L(α)∀y ∈ R(w)(x) : y |=M ϕ;
– x |=M 〈 α]ϕ iff ∃w ∈ L(α)∀y ∈ R(w)(x) : y |=M ϕ;
– x |=M 〈 α 〉ϕ iff ∃w ∈ L(α)∃y ∈ R(w)(x) : y |=M ϕ;
– x |=M [α 〉ϕ iff ∀w ∈ L(α)∃y ∈ R(w)(x) : y |=M ϕ.

Hence, [α]ϕ is satisfied in x iff [w]ϕ is satisfied for all w ∈ L(α); 〈 α]ϕ is
satisfied in x iff [w]ϕ is satisfied for some w ∈ L(α); 〈 α 〉ϕ is satisfied in x iff
〈 w 〉ϕ is satisfied for some w ∈ L(α); and [α 〉ϕ is satisfied in x iff 〈 w 〉ϕ is
satisfied for all w ∈ L(α). (As a result, for instance, 〈 a+]p is equivalent to an
infinite “disjunction” [a]p∨ [a2]p∨) It follows from (3) that [α]ϕ is satisfied
in x iff X |=M ϕ for all X ∈ Nα(x).

Example 2. Let us return to the frame given in Example 1. Formula [(a∪ b)+]p
is satisfied in, say, (0, 0) iff p holds in all (n,m) such that n + m > 0, that is, in
all elements of the matrix but possibly (0, 0). Formula 〈 (a∪ b)+ 〉p is satisfied in
(0, 0) iff p is satisfied in some (n,m) such that n + m > 0. On the other hand,

PDL with Quantification over Computation Sequences 307

〈 (a ∪ b)+]p is satisfied in (0, 0) iff there is a set of (n′,m′), where n′ + m′ = k
for some k > 0, such that p is satisfied in all elements of the set. That is, there
is a number k > 0 of steps such that p holds in all elements we can get to from
(0, 0) by k steps. (Informally, you are “guaranteed” to end up in a p-state after
k rounds of “choosing” between “going right” and “going up”.) For instance, if
p holds precisely in the highlighted states in Fig. 2, then 〈 (a ∪ b)+]p holds in
(0, 0), but [(a ∪ b)+]p does not; 〈 (a ∪ b)+ 〉p would hold also if p was satisfied
only in some highlighted states. Finally, [(a ∪ b)+ 〉p is satisfied in (0, 0) iff, for
all k > 0, p is satisfied in some element of the matrix reachable from (0, 0) in k
steps. (For each k, there is a sequence of k choices that brings you to a p-state.)

Remark 2. It can be argued that the 1-free fragment of the language is still
quite expressive. First, it is known that each regular language L over Σ such
that ε �∈ L is determined by some α ∈ Ex(Σ). Second, [α∗]ϕ is equivalent to
ϕ ∧ [α+]ϕ. Hence, for instance, Fm(Σ) is still able to represent the fact that
ϕ is common knowledge in a group of agents Γ ⊆ Σ, namely, by means of the
formula ϕ ∧ [(

⋃
Γ)+]ϕ.

Proposition 2. The following are valid in each neighborhood model:

1. 〈 a]ϕ ↔ [a]ϕ;
2. 〈0]ϕ ↔ ⊥;
3. 〈1]ϕ ↔ ϕ;
4. 〈 α ∪ β]ϕ ↔ (〈 α]ϕ ∨ 〈 β]ϕ);
5. 〈 αβ]ϕ → 〈 α]〈 β]ϕ;
6. 〈 α∗]ϕ → ϕ ∨ 〈 α]〈 α∗]ϕ.

Proof. We prove the last two items. If x |= 〈 αβ]ϕ, then there is a word w ∈
L(αβ) such that x |= [w]ϕ (see Remark 1). But we know that in this case w = uv
for some u ∈ L(α) and v ∈ L(β). Hence, x |= [u][v]ϕ, and so x |= 〈 α]〈 β]ϕ.
(x |= [u]〈 β]ϕ since for all y that are u-accessible from x, there is a word
vy ∈ L(β), namely v, such that y |= [vy]ϕ.)

Assume that x |= 〈 α∗]ϕ, that is, 〈1 ∪ α+]ϕ. It follows that there is n ≥ 0
and w ∈ L(αn) such that x |= [w]ϕ. Hence, either x |= ϕ or there is m > 0
and u ∈ L(αm) such that x |= [u]ϕ. If follows that there is v ∈ L(α) such that
x |= [v]〈 α∗]ϕ, i.e. x |= 〈 α]〈 α∗]ϕ.

Remark 3. The converse implications to the last two items of Proposition 2 do
not hold. The reason why this is the case is illustrated by the counterexample to

0p 1 2 · · ·

· · ·

n · · ·

· · ·
a a a

b b b

Fig. 3. A counterexample to 〈 a]〈 b+]p → 〈 ab+]p.

308 I. Sedlár

〈 a]〈 b+]p → 〈 ab+]p shown in Fig. 3. In that model, Raxy iff x = 0 and y > x,
and Rbxy iff x > 0 and y = x − 1. It is assumed that p is satisfied only in 0.
Then, for all n > 0 there is wn ∈ b+ such that n |= [wn]p, namely wn = bn.
However, there is no w ∈ L(b+) such that n |= [w]p for all n > 0. (A finite
countermodel exists as well.)

Remark 4 (Similar formalisms). Leivant [7] introduced an extension of PDL
with program quantification, which he also denoted as QPDL. Leivant’s quan-
tification over programs is unrestricted: (∀a)ϕ is satisfied in x within a model
iff ϕ is satisfied in x within each model that results from the original model by
fixing the interpretation of a to be an arbitrary binary relation. Leivant proved
that the validity problem for his logic of unrestricted program quantification is
wildly undecidable – the set of valid formulas is not in the analytical hierarchy.
On the other hand, the notion of program quantification used in this paper is
restricted: we bound the quantifier by a given regular expression, using, in effect,
quantifiers (∀w ∈ L(α)) and (∃w ∈ L(α)), combined with modal operators [w];
see Remark 1.

Our semantics for the ∃∀ sequence-state quantifier 〈 α] is reminiscent of the
semantics of a number of known logics. Neighborhood functions for programs,
including the definitions of Nα for complex α employed here, are used in con-
current PDL [12], which also uses formulas equivalent to our 〈 α]ϕ. However,
concurrent PDL lacks the interplay between Nα and “standard relational acces-
sibility” via α which is crucial in our framework. A similar remark applies also
to Game logic [11].

It is interesting to note that there is a relation between the framework pre-
sented here and epistemic logic with names [2,5], containing epistemic operators
En and Sn, where n is a “name”, possibly referring to a number of agents, reading
“all agents named n know that...” and “some agent named by n knows that...”.
Our framework generalizes this construction to the setting where “names” are
regular expressions (i.e. they are structured in a particular way) and “agents”
are computation sequences.

4 Expressivity

4.1 Expressing Acceptance Properties of NFA

If (S,R) is a Σ-frame, then (S,Σ, s0, R, F), where s0 ∈ S and F ⊆ S, can be seen
as a nondeterministic finite automaton (NFA), where s0 is the starting state and
F is the set of accepting states. Recall that a NFA A accepts a string w ∈ Σ∗ iff
there is x ∈ F such that Rws0x. Let L(A) be the set of strings accepted by A.
Recall that L = L(α) for some α iff L = L(A) for some A. Note that we can see
A as a pointed neighborhood Σ-model (MA, s0), where F = V (q) for some fixed
q ∈ Pr.

Proposition 3. For all α and A, L(α) ⊆ L(A) iff s0 |=MA [α 〉q.

PDL with Quantification over Computation Sequences 309

4.2 Ways to Execute a Plan Successfully

In a more planning-related fashion, regular expressions can be seen as abstract
structured plans of action, e.g. ab+c as “do a once, then b some finite non-zero
times, and then c once”. Computation sequences can be seen as representing
sequential executions of specific actions by an agent. A computation sequence
w ∈ L(α) can be seen as a specific course of action instantiating the plan α. In
situations where actions are nondeterministic (for instance, the outcome of an
action may depend also on “outside influences”), computation sequences do not
yield a specific state as an outcome, but rather a set of states that may result
from the given computation sequence. Boolean formulas may be used to represent
specific desirable states of the world, or goals. A practically interesting question
concerning abstract plans is whether there is a course of action instantiating a
given plan that guarantees that a given goal is achieved. This is exactly what
formulas of the form 〈 α]ϕ express in our setting: there is a computation sequence
represented by α (a concrete way to execute the abstract plan α) such that all
states that may possibly result from executing the sequence satisfy ϕ.

5 Decidability and Complexity of qPDL

In this section we prove that the satisfiability (and validity) problem for qPDL
is decidable and EXPTIME -complete. The result is obtained via an embedding
into deterministic PDL, DPDL, [1,10].

5.1 DPDL

Let Δ be a countable alphabet; we may assume without loss of generality that
Σ ⊆ Δ. The sets of Δ-programs and Δ-formulas are defined by mutual induction
as follows:

Pm(Δ) π := r | π ∪ π | π;π | π∗ | ϕ?
Fm(Δ) ϕ := p | ¬ϕ | ϕ ∧ ϕ | [π]ϕ

where r ∈ Δ and p ∈ Pr. The usual definitions of the other Boolean operators
and 〈 π 〉 are assumed.

Definition 5. A Δ-model is a tuple M = (S,Q, V), where S is a non-empty
set, Q is a function Δ → 2S×S such that Q(r) is a partial function for all r, and
V : Pr → 2S. Q is extended to a function Pm(Δ) → 2S×S and V to a function
Fm(Δ) → 2S as indicated in Fig. 4. (As usual, Q(π)0 = idS for all π.) ϕ is valid
in M iff V (ϕ) = S. DPDL is the set of Δ-formulas valid in all M .

We will often write x |=M ϕ instead of x ∈ V (ϕ).

Theorem 1. The satisfiability (and validity) problem for DPDL is decidable
and EXPTIME-complete.

Proof. See [1,15].
�

310 I. Sedlár

Q(π1 ∪ π2) = Q(π1) ∪ Q(π2)

Q(π1;π2) = Q(π1) ◦ Q(π2)

Q(π∗) =
n≥0

Q(π)n

Q(ϕ?) = idV (ϕ)

V (¬ϕ) = S \ V (ϕ)

V (ϕ ∧ ψ) = V (ϕ) ∩ V (ψ)

V ([π]ϕ) = {x | Q(π)(x) ⊆ V (ϕ)}

Fig. 4. Interpretation of programs and formulas in models for deterministic PDL.

5.2 An Embedding of qPDL into DPDL

Definition 6. Fix d ∈ Δ \ Σ and define e := d+. Define a function t : Ex(Σ) ∪
Fm(Σ) → Pm(Δ) ∪ Fm(Δ) as follows:

t(a) = a

t(0) = ⊥?
t(α ∪ β) = t(α) ∪ t(β)

t(αβ) = t(α)e t(β)

t(α+) = t(α)(e t(α))∗

t(p) = p

t(¬ϕ) = ¬t(ϕ)
t(ϕ ∧ ψ) = t(ϕ) ∧ t(ψ)
t([α]ϕ) = [t(α)][e]t(ϕ)
t(〈 α]ϕ) = 〈 t(α) 〉[e]t(ϕ)

The translation reflects the following idea of “breaking down” the neighbor-
hood function, used in the proofs below: any set Xi ∈ N(α)(x) can be thought of
as the set of states reachable from an auxiliary state xi (itself reachable from x
via t(α)) via a finite sequence of executions of an auxiliary deterministic program
d (given our image-countability assumption). Reflecting this perspective, [α] can
be “broken down” to two boxes, [t(α)][d+] (“all states in all Xi ∈ N(α)(x) sat-
isfy...”), and 〈 α] into a diamond 〈 t(α) 〉 and a box [d+] (“all states in some
Xi ∈ N(α)(x) satisfy...”).

We prove first that for each M there is a neighborhood Σ-model M such
that, for all ϕ ∈ Fm(Σ), ϕ is valid in M iff t(ϕ) is valid in M . It follows that
ϕ ∈ qPDL only if t(ϕ) ∈ DPDL.

Definition 7. Let M = (S,Q, V) be a Δ-model. We define M ′ = (S,R,N, V)
by

– R(a) := Q(a) ◦ Q(e);
– Na(x) := {Ra(x)}.
R and N are extended to Ex(Σ) ∪ Σ∗ as in Fig. 1.

Lemma 1. For all α ∈ Ex(Σ), Q(t(α)e) = R(α).

Proof. Induction on α. The base case holds by definition. The cases of the induc-
tion step corresponding to 0, ∪ and ; are easy (the latter two use properties of
regular expressions – which can obviously be used in the context of Δ-frames as

PDL with Quantification over Computation Sequences 311

well). The case corresponding to + is established as follows:

Q(t(α+) e) = Q(t(α)(e t(α))∗ e)

=
⋃

n>0

Q(t(α) e)n =
⋃

n>0

R(α)n = R(α+)

�
Note that t(α) for each α ∈ Ex(Σ) can be regarded as a regular expression

over the alphabet Σt = Σ ∪ {d,�?,⊥?}, so the notation L(t(α)) makes sense.1

Note that ε �∈ L(α) for all α ∈ Ex(Σ). Moreover, for w = a1 . . . an, t(w) =
π1 . . . π2n−1 such that the i-th odd position is occupied by ai and each even
position is occupied by e. Thus u ∈ L(t(w)) iff

u = a1d
m1a2d

m2 . . . dmn−1an (4)

This means that u1 ∈ L(t(w1)) and u2 ∈ L(t(w2)) iff u1d
nu2 ∈ L(t(w1w2))

for all n > 0. Note also that (x, y) ∈ Qt(α) iff there is u ∈ L(t(α)) such that
(x, y) ∈ Qu (by appeal to (1) on Ex1(Σt)).

Lemma 2. For all α ∈ Ex(Σ), Qt(α) =
⋃

w∈L(α) Qt(w).

Proof. Induction on α. The base case is trivial. From the induction step, we
prove only the cases for ; and +. The former is established as follows:

Qt(αβ) =

⎛

⎝
⋃

w∈L(α)

Qt(w)

⎞

⎠ ◦ Qe ◦
⎛

⎝
⋃

u∈L(β)

Qt(u)

⎞

⎠

=
⋃ {

Q(w′dnu′)
∣
∣
∣ w′ ∈ L(t(w)) & w ∈ L(α) & n > 0

& u′ ∈ L(t(u)) & u ∈ L(β)
}

=
⋃ {

Qt(wu) | w ∈ L(α) & u ∈ L(β)
}

=
⋃ {

Qt(v) | v ∈ L(αβ)
}

In a similar fashion, we can prove by induction on n that Qt(αn) =
⋃{Qt(v) |

v ∈ L(αn)}. The claim for + follows from this.
�
Lemma 3. For all α ∈ Ex(Σ) and all x ∈ S, Nα(x) = {Qe(y) | Qt(α)xy}.
Proof.

Nα(x) = {Rw(x) | w ∈ L(α)} (by Prop. 1)
= {Qt(w)e(x) | w ∈ L(α)} (by Lemma 1)
= {Qe(y) | Qt(w)xy & w ∈ L(α)}
= {Qe(y) | Qt(α)xy} (by Lemma 2)

�
1 Take Ex1(Σt) and apply Definition 2.

312 I. Sedlár

Lemma 4. For all ϕ ∈ Fm(Σ), t(ϕ) is valid in M iff ϕ is valid in M ′.

Proof. We prove by induction on the complexity of ϕ that, for all x ∈ S, x |=M

t(ϕ) iff x |=M ′ ϕ. The base case holds by definition and the Boolean cases of the
induction step follow easily from the induction hypothesis. The claim for [α]ϕ
follows from Lemma 1. The claim for 〈 α]ϕ follows from Lemma 3.
�

Now we prove the other direction: for each neighborhood model M there is
a Δ-model M such that if ϕ is not valid in M, then t(ϕ) is not valid in M . It
follows that ϕ ∈ qPDL if t(ϕ) ∈ DPDL.

Recall our assumption that in each neighborhood Σ-model, Ra(x) is at most
countable for each x ∈ S and a ∈ Σ. This means that for each a and x, there is
a bijection θ between Ra(x) and either Z

+ or {k | 0 < k < m} for some m > 0.
It the former case, it is clear what n-th element of Ra(x) means (namely, θ(n)),
for all n > 0. In the latter case, let us stipulate that the n-th element of Ra(x)
does not exist, for all n, in case Ra(x) is empty and, if the cardinality of Ra(x)
is m > 0, then the n-th element of Ra(x) is θ(m) if m divides n and θ(n mod m)
otherwise. (Hence, for example, if m = 3, then the 4th element is θ(1) and the
6th element is θ(m).)

Definition 8. Let M = (S,R,N, V) be a neighborhood Σ-model. Let U = {u |
u ∈ L(t(w)) for some w ∈ Σ+}, i.e. the set of words of the form (4). Let T =
{ε} ∪ (

U · L(e)
)

and W = (S × U) ∪ (S × T). Note that w ∈ T iff w = ε or
w = vadn for some v ∈ T , a ∈ Σ and n > 0. We write xw instead of (x,w) for
w ∈ U ∪ T .

We define a partial function s : (S × T) → S by induction on the length of
w ∈ T as follows:

– s(xε) = x;
– s(xwadn) is the n-th element of Ra(s(w)) if it exists;
– s(xwadn) is undefined if Ra(s(w)) = ∅.

We define M′ = (W,Q, V ′) where

– Qa = {(xw, xwa) | x ∈ S & w ∈ T};
– Qd = {(xwa, xwad) | x ∈ S & w ∈ T & a ∈ Σ & Ra(s(xw)) �=

∅} ∪ {(xwadn, xwadn+1) | x ∈ S & w ∈ T & a ∈ Σ & n > 0};
– Qr = ∅ for all r ∈ Δ \ (Σ ∪ {d});
– V ′(p) = {xw | w ∈ T & s(w) ∈ V (p)}.
Lemma 5. If x = s(zw) and y = s(zu) for some z ∈ S and w, u ∈ T , then
Rαxy iff Qt(α)e(zw, zu).

Proof. Induction on the complexity of α. We assume throughout that x = s(zw)
and y = s(zu) for some z ∈ S and w, u ∈ T . Qt(a)e(zw, zu) iff Qd+(zwa, zu) iff
u = wadn for some n > 0 and s(zu) ∈ Ra(x) iff Raxy. The induction step is
easy and we omit it. (In the case for ; we use the obvious fact that Qπ(zw, z′u)
only if z = z′.)
�

PDL with Quantification over Computation Sequences 313

Lemma 6. For all x, y ∈ S, w ∈ T and α ∈ Ex(Σ), if Rαs(xw)y, then y =
s(xu) for some u ∈ T .

Lemma 7. For all x ∈ S, w ∈ T and α ∈ Ex(Σ), Nα(s(xw)) = {Qe(xu) |
Qt(α)(xw, xu)}.
Proof. This lemma is established quite similarly as Lemma 3, using Proposition
1, Lemma 5 and the claim that Qt(α) =

⋃
w∈L(α) Qt(w), which is established

exactly as Lemma 2.

Lemma 8. For all ϕ ∈ Fm(Σ), all M and all x in M: x |=M ϕ iff zw |=M′ t(ϕ)
for all z ∈ S and w ∈ T such that x = s(zw).

Proof. Induction on the complexity of ϕ. The base holds by definition and the
Boolean cases of the induction step follow easily from the induction hypothesis.
The case corresponding to [α]ϕ follows from Lemma 5 and the case correspond-
ing to 〈 α]ϕ follows from Lemma 7.
�
Theorem 2. ϕ ∈ qPDL iff t(ϕ) ∈ DPDL.

Proof. Lemmas 4 and 8.

Theorem 3. qPDL is decidable and the qPDL-satisfiability problem is
EXPTIME-complete.

Proof. Theorems 1 and 2, and the fact that the translation function t is
polynomial. (In particular, qPDL-sat is in EXPTIME by Theorem 2, since
¬ϕ �∈ qPDL iff ¬t(ϕ) �∈ DPDL, and qPDL-sat is EXPTIME -hard since, for
〈 α]-free formulas ϕ, ϕ ∈ qPDL iff ϕ is valid in test-free PDL, and the latter is
EXPTIME -hard [4].)

6 Discussion

A similar and somewhat simpler argument can be used to embed QPDL into
DPDL′, the logic arising from a variant of Δ-models where the atomic program
d is non-deterministic (and it plays the role of e in the embedding) and, in
addition, the property that Q(cd) = idS is assumed for some atomic program
c. However, we are not able to use this embedding to establish decidability of
QPDL since it is not clear at this point if the proof techniques used in [1,15] to
establish decidability of DPDL can be applied in some form to DPDL′ as well.

7 Conclusion

We argued that the language of regular PDL is not sufficiently strong to express
specific statements involving ∃∀ or ∀∃ combinations of quantifiers over compu-
tation sequences determined by a given regular expression and states in a model
reachable via such computation sequences. Examples include statements that

314 I. Sedlár

a particular NFA accepts all words in a given regular language or that some
finite number of iterations of an action is guaranteed to accomplish a given goal.
We introduced QPDL, an extension of regular PDL using a language contain-
ing modal operators expressing these quantifier combinations. We showed that
qPDL, the 1-free fragment of QPDL, is decidable and EXPTIME -complete.
These results were obtained by embedding qPDL into deterministic PDL.

Several interesting problems are left for future research. Most importantly,
we would like to settle the question of decidability of QPDL. A viable route to
achieve this is to determine if DPDL′ is decidable. Another attractive problem is
to find a sound and complete axiomatization of QPDL. The cursory observations
on valid formulas in Sect. 3 may provide a starting point. Finally, one might find
it interesting to study QPDL extended with tests.

Acknowledgements. The author is grateful to the anonymous referees for their com-
ments. This work was supported by the long-term strategic development financing of
the Institute of Computer Science (RVO:67985807).

References

1. Ben-Ari, M., Halpern, J.Y., Pnueli, A.: Deterministic propositional dynamic logic:
finite models, complexity, and completeness. J. Comput. Syst. Sci. 25(3), 402–417
(1982). https://doi.org/10.1016/0022-0000(82)90018-6

2. B́ılková, M., Christoff, Z., Roy, O.: Revisiting epistemic logic with names. In:
Halpern, J., Perea, A. (eds.) Proceedings of the 18th Conference on Theoretical
Aspects of Rationality and Knowledge (TARK 2021), pp. 39–54 (2021). https://
doi.org/10.4204/EPTCS.335.4

3. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge.
MIT Press, Cambridge (1995)

4. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular pro-
grams. J. Comput. Syst. Sci. 18, 194–211 (1979). https://doi.org/10.1016/0022-
0000(79)90046-1

5. Grove, A.J., Halpern, J.Y.: Naming and identity in epistemic logics. Part I: the
propositional case. J. Logic Comput. 3(4), 345–378 (1993). https://doi.org/10.
1093/logcom/3.4.345

6. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)
7. Leivant, D.: Propositional dynamic logic with program quantifiers. Electron. Notes

Theoret. Comput. Sci. 218, 231–240 (2008). https://doi.org/10.1016/j.entcs.2008.
10.014. Proceedings of the 24th Conference on the Mathematical Foundations of
Programming Semantics (MFPS XXIV)

8. Meyer, J.J.C.: A different approach to deontic logic: deontic logic viewed as a
variant of dynamic logic. Notre Dame J. Formal Logic 29(1), 109–136 (1987).
https://doi.org/10.1305/ndjfl/1093637776

9. Meyer, J.J.C.: Dynamic logic for reasoning about actions and agents. In: Minker,
J. (ed.) Logic-Based Artificial Intelligence. SECS, vol. 597, pp. 281–311. Springer,
Boston (2000). https://doi.org/10.1007/978-1-4615-1567-8 13

10. Parikh, R.: Propositional logics of programs: systems, models, and complexity.
In: Proceedings of the 7th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 1980, pp. 186–192. Association for Computing
Machinery, New York (1980). https://doi.org/10.1145/567446.567464

https://doi.org/10.1016/0022-0000(82)90018-6
https://doi.org/10.4204/EPTCS.335.4
https://doi.org/10.4204/EPTCS.335.4
https://doi.org/10.1016/0022-0000(79)90046-1
https://doi.org/10.1016/0022-0000(79)90046-1
https://doi.org/10.1093/logcom/3.4.345
https://doi.org/10.1093/logcom/3.4.345
https://doi.org/10.1016/j.entcs.2008.10.014
https://doi.org/10.1016/j.entcs.2008.10.014
https://doi.org/10.1305/ndjfl/1093637776
https://doi.org/10.1007/978-1-4615-1567-8_13
https://doi.org/10.1145/567446.567464

PDL with Quantification over Computation Sequences 315

11. Parikh, R.: The logic of games and its applications. In: Karplnski, M., van Leeuwen,
J. (eds.) Topics in the Theory of Computation, North-Holland Mathematics Stud-
ies, vol. 102, pp. 111–139. North-Holland (1985). https://doi.org/10.1016/S0304-
0208(08)73078-0

12. Peleg, D.: Concurrent dynamic logic. J. ACM 34(2), 450–479 (1987). https://doi.
org/10.1145/23005.23008

13. Rosenschein, S.J.: Plan synthesis: a logical perspective. In: Proceedings of the
Seventh International Joint Conference on Artificial Intelligence (IJCAI 1981), pp.
331–337 (1981)

14. Spalazzi, L., Traverso, P.: A dynamic logic for acting, sensing, and planning. J.
Logic Comput. 10(6), 787–821 (2000). https://doi.org/10.1093/logcom/10.6.787

15. Vardi, M.Y., Wolper, P.: Automata-theoretic techniques for modal logics of pro-
grams. J. Comput. Syst. Sci. 32(2), 183–221 (1986). https://doi.org/10.1016/0022-
0000(86)90026-7

https://doi.org/10.1016/S0304-0208(08)73078-0
https://doi.org/10.1016/S0304-0208(08)73078-0
https://doi.org/10.1145/23005.23008
https://doi.org/10.1145/23005.23008
https://doi.org/10.1093/logcom/10.6.787
https://doi.org/10.1016/0022-0000(86)90026-7
https://doi.org/10.1016/0022-0000(86)90026-7

Finite Generation and Presentation
Problems for Lambda Calculus

and Combinatory Logic

Rick Statman(B)

Rick Statman, Pittsburgh, PA 15213, USA
statman@cs.cmu.edu

Abstract. We solve several finite generation and presentation problems
for lambda calculus and combinatory logic.

1 Introduction

Although we prefer Dana Scott’s use of “Combinatory Algebra” for “Combina-
tory Logic” this has come to take on a technical meaning. So, we will stick with
CL. In 1937 Church [4] formulated lambda calculus as a semigroup. His ideas
were pursued by Curry and Feys [5], and later by Bohm [2] (see also [1, p. 532])
and Dezani [6]. If lambda terms in some way represent functions, then such a
presentation based on composition is a natural complement to the presentation
based on application. So, we have problems based on composition as well as
application.

In 1986 [11] the author proved that the problem of deciding if a finite set of
normal lambda terms forms an applicative basis is recursively unsolvable. The
problem for finite sets of normal proper lambda terms remains unresolved to
this day. However, Broda and Damas [3] have proved that the linear case is
decidable. There is a similar problem for the monoid, but here no finite set of
proper lambda terms can generate the entire monoid. This is because no such
set generates a normal closed lambda-I term with a proper closed subterm. Here
we prove that

(a) the membership problem for the submonoid generated by a finite set of
regular proper lambda terms is decidable, and

(b) the membership problem for the submonoid generated by a finite set of
normal lambda terms is undecidable. In particular, it is undecidable if a given
finite set of normal lambda terms generates the whole monoid.

In [1, 21.1, p. 532] Barendregt asks if the lambda calculus semigroup under
beta-eta conversion is finitely presented. Of course, there is the corresponding
question for application and the similar ones for CL. Here we answer all but the
first

c© Springer Nature Switzerland AG 2022
S. Artemov and A. Nerode (Eds.): LFCS 2022, LNCS 13137, pp. 316–326, 2022.
https://doi.org/10.1007/978-3-030-93100-1_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93100-1_20&domain=pdf
http://orcid.org/0000-0002-1825-0097
https://doi.org/10.1007/978-3-030-93100-1_20

Lambda Calculus and Combinatory Logic 317

(c) no extension of the linear lambda calculus by finitely many true equations
between closed lambda terms can present full beta-eta conversion, and

(d) no extension of super-linear combinatory logic by finitely many true equations
between applicative combinations of combinators can present full weak-beta
conversion.

Here “true” means resp. beta-eta conv. and weak-beta conv. Superlinear
combinatory logic extends linear CL by the addition of the axioms appropriate
for the combinator monoid. As a consequence we obtain

(e) no extension of super-linear combinatory logic by finitely many true equations
between applicative combinations of combinators can present the combinatory
monoid.

2 Finite Generation

We begin with a simple problem. A regular proper lambda term M is a normal
form

λa.λx1 · · · xn.aX1 · · · Xm

where each Xi is an applicative combination of the variables x1, . . . , xn. Here
m is the degree of M . These form a submonoid of the monoid of all lambda
terms under beta-eta conversion. If $ is a finite set of regular proper lambda
terms then let s be the maximum of the degrees of members of $. Let P be any
product of members of $. Then beta-eta normal form of P can be obtained by eta
postponement. It is easy to see that any eta reduction takes place on a term of
degree at most s. Now we assume that every member of $ has been eta expanded
to degree exactly s. Given $, M we wish to decide if M is in the submonoid
generated by $. For this we can assume that the degree of M is not larger than
s and we consider the individual eta expansions of M up to degree s separately.
For each such expansion we encode the problem into the corresponding problem
for Cartesian monoids (Statman [13], Theorem 3) as follows.

To each term P = λa.λy1 · · · yp.aY1 · · · Yq we associate a CQ expression #P
as follows. First, for subterms;

– #(yi) = R ∗ · · · ∗ R ∗ L for i occurrences of R,
– #(UV) = 〈#U,#V 〉 for applicative combinations of the yj , and finally
– #P = 〈L, 〈#Y1, 〈· · · 〈#(Yq−1),#(Yq)〉 · · · 〉〉〉.

Set #$ = {#P | P ∈ $}. Then it is easy to see that

Proposition 1. $ generates M iff #$ generates #M .

Thus by Statman [13] theorem 3 the problem is decidable.
We now consider the general case where $ is a finite set of beta-eta normal

forms. For each Godel number e we construct terms X, Y , Z such that

(i) X, Y , Z are beta-eta normal terms with one free variable x, and

318 R. Statman

(ii) if {e}(e) diverges then [I/x]X, [I/x]Y , [I/x]Z are all unsolvable, and
(iii) if {e}(e) converges then

– [I/x]X beta-eta conv. S
– [I/x]Y beta-eta conv. K
– [I/x]Z beta-eta conv. I.

Next, we define terms L, M , N , P as follows.

– L := λaλu.a(u(λx.X)I)
– M := λaλu.a(u(λx.Y)I)
– N := λaλu.λyz.a(u(λx.Z)I(yz))
– P := λaλu.λvλb.(λz.b(v(λx.Z)Iz)((λy.a(u(λx.Z)Iy))).

In addition we have Q := CII. Finally set

O = {L,M,N,P,Q}.

Now assume {e}(e) diverges. We write OMEGA for a generic unsolvable term.
We use the following notation;

a(OMEGA)+ := a(OMEGA)Z1 · · · Zm

for arbitrary Z1 · · · Zm.
zi+ := zi,1 . . . zi,s(i)

for the ith sequence of s(i) variables. Set

J := λz.λvλb.(b(v(λx.Z)Iz);

we almost get a numeral system.
Facts:

1. If R is a product of L, M , N , and P , then R beta-eta conv. to the form

λau.λz1 + .J(· · · (λzn + .J(λz + .a(uZ1..Zm))) · · ·)
where Z1 is λx.X, λx.Y , or λx.Z, and Z2 is I. The number of occurrences
of J can be 0.

2. If R is as in (1) then Qn ∗ R beta-eta conv.
– λa.λz1 + .J(· · · (λzn + .J(λz + .a(OMEGA)+) · · ·)
– λaλb.b(OMEGA), or
– λa.OMEGA

3. If R is a product of lambda terms of the form

λa.λz1 + .J(· · · (λzn + .J(λz + .a(OMEGA)+))) · · ·)
and

λau.λz1 + .J(· · · (λzn + .J(λz + .a(uZ1..Zm))) · · ·)),
where Z1 is λx.X, λx.Y , or λx.Z, and Z2 is I, and if there is at least one
of the first type then every occurrence of the first bound variable is in a
context (OMEGA)+. Diagrammatically, λa. · · · a(OMEGA)+· · · .

Lambda Calculus and Combinatory Logic 319

Lemma 1. If {e}(e) diverges then CIS is not generated by O.

Proof. Suppose not and R is a product on members of O which beta-eta converts
to CIS. We may suppose that R has the form

Qs(1) ∗ T1 ∗ Qs(2) ∗ T2 ∗ · · · ∗ Qs(n) ∗ Tn ∗ Qk

where for i = 2, . . . , n, s(i) ¿ 0 and for j = 1, . . . , n, Tj does not contain Q. Now
if s(i) > 0, Qs(i) ∗ Ti falls under Fact (2). It cannot be the case that Qs(i) ∗ Ti

beta-eta conv. to λaλb.b(OMEGA), or to λa.OMEGA since these together form
a semigroup ideal not containing CIS. Thus

Qs(1) ∗ T1 ∗ Qs(2) ∗ T2 ∗ · · · ∗ Qs(n) ∗ Tn

falls under Fact (3). Now, if every occurrence of the first bound variable is in
a context (OMEGA)+, then R beta-eta converts to a lambda term with the
same property, since Qk beta-eta conv. to λa.aI · · · I. Thus R beta-eta converts
to a product of terms of the form

λau.λz1 + .J(· · · (λzn + .J(λz + .a(uZ1..Zm))) · · ·)
followed by Qk. Clearly no such term beta-eta converts to CIS.

Theorem 1. O generates the monoid iff {e}(e) converges.

Proof. First suppose that {e}(e) converges. Then O generates B, CI, CIS, and
CIK. In particular, Q ∗ Q ∗ P beta-eta conv.

λab.(λz.bz)(λy.ay)

eta conv. λab.ba. Thus by Church’s theorem ([1, 21.1.2, p. 533]) O generates the
entire monoid. Conversely, if {e}(e) diverges then O does not generate CIS by
lemma 1.

3 Finite Presentation

We begin with some preliminaries. The equation calculus is a formal system
logically complete for proving equations X = Y from sets of equations $ such
that if U = V is in $ then so is V = U . The axioms and rules of the equation
calculus are the following

(ref) X = X

(axE) U = V provided U = V is in E

(sub) [U/u] (X = Y) and U = V ⇒ [V/u] (X = Y)

This system is normally formulated only for first order terms without bound
variables. So it is perfectly suited to CL. We can also use it for lambda calculus
since we assume that the substitution [U/u] in (sub) does not bind any variable

320 R. Statman

in U . We will not quibble about alpha conversion and allow it freely. We write
$ � X = Y if X = Y is provable from $ in the equation calculus.

An $ computation is a sequence of terms

X0, . . . , Xn

such that for each i = 0, . . . , n − 1 there exists X, U = V in $, and u with

Xi = [U/u]X
Xi+1 = [V/u]X

where u appears in X at most once. The following is an old observation from
[10].

Fact: $ � X = Y iff there is an $ computation beginning with X and ending
with Y .

Now we will be interested in $ which extend a particular set. The linear
lambda calculus consists of all lambda terms together with the congruence ∼
generated by the following

(bta) (λx.X)Y ∼ [Y/x]X provided x occurs exactly once in X

(eta) λx.(Xx) ∼ X provided x does not occur in X

(ref) X ∼ X

(sym) X ∼ Y ⇒ Y ∼ X

(tra) X ∼ Y and Y ∼ Z ⇒ X ∼ Z

(app) X ∼ Y and U ∼ V ⇒ (XU) ∼ (Y V)

(abs) X ∼ Y ⇒ λx.X ∼ λx.Y

Now let E be the set {P = Q | P ∼ Q}. Now the redex-contractum relation

(bta) (λx.X)Y → [Y/x]X provided x occurs exactly once in X

(eta) λx.(Xx) → X provided x does not occur in X

generates the 1-step reduction relation →, and this, in turn, generates the multi-
step reduction relation �, and the term congruence lin. conv. It is a well known
fact that

E � X = Y iff X lin. conv. Y.

Next we consider a couple of easy cases. CL first. Suppose that we have a
finite set of combinators; for example, B, C, K, I, W . In addition, suppose that
we have a finite set of closed equations between applicative combinations of these
combinators; for example, the Eqs. A.1–A.6 [1, 7.3.15, p. 161]. Then this set of
equations cannot present weak-beta conversion. This is because provability from
this set, without the use of the reduction rules for the given combinators, is
decidable by [9].

Let $ be a finite set of closed equations between lambda terms. We have the
following Jacopini type theorem [7,12] for linear lambda calculus, with additional
axioms $.

Lambda Calculus and Combinatory Logic 321

Lemma 2. For closed lambda terms P , Q we have $∪E � P = Q iff there exist
closed terms M1, . . . ,Mm and equations P1 = Q1, . . . , Pm = Qm in $

s.t.
P lin.conv.M1P1

M1Q1lin.conv.M2P2

...
Mm−1Qm−1lin.conv.MmPm

MmQmlin.conv.Q.

Proof. Given a proof of X = Y from $ ∪ E we construct an $ ∪ E computation
Y from X with the additional property that if in the transition

Xi = [U/u]X
Xi+1 = [V/u]X

we have U lin.conv. V then U is X.

Examples

Now the following are provable in the equation calculus from E alone with the
lambda terms

B := λabc.a(bc)
C∗ := λab.ba

I := λa.a.

They are organized into three distinct groups.
Combinatory:

(1) Ix = x
(2) C∗xy = yx
(3) Bxyz = x(yz)
(4) Lx1 · · · xn = X for any other linear combinator L with redex/contractum

rule Lx1 · · · xn → X

Monoid:

(5) B(Bxy)z = Bx(Byz)
(6) B(Bx)(By) = B(Bxy)
(7) BI = I
(8) BxI = x

Inverse Properties:

(9) B(B(Bx))B = BB(Bx)

322 R. Statman

(10) B(C∗x)(By) = By(C∗x)
(11) B(C∗x)C∗ = x
(12) B(C∗y)(B(C∗x)B) = C∗(xy).

Given a lambda term X and an occurrence of lambda λx in X we set |λx| =
the number of occurrences of x bound by λx, and we define —X— = the maxi-
mum of all |λx| in X. We observe

Lemma 3. Suppose that there is an integer n s.t. whenever M = N belongs to
$ we have |M | and |N | < n. Then if $ ∪ E � P = Q we have

|Q| < max{n, |P | + 1}.

Proof. Suppose $∪E � P = Q. We apply Jacopini’s theorem to get closed terms
M1, . . . ,Mm and P1 = Q1, . . . , Pm = Qm in $

s.t.
P lin.conv.M1P1

M1Q1lin.conv.M2P2

...
Mm−1Qm−1lin.conv.MmPm

MmQmlin.conv.Q.

Now we note that either

|MiQi| = |Mi| < |MiPi| + 1

or
|MiQi| = |Qi| < n

and the lemma follows by induction.

Corollary 1. No finite $ can prove all true P beta-eta conv. Q.

Remark 1. Even though (1)–(12) includes the full monoid of lambda calculus
the corollary does not mean that the monoid has no finite presentation. Given
a finite set of generators, like C∗S,C∗K,B,C∗, I, the P and Q would be linear
in the generators.

Finally, we settle finite representability for CL. First an intermezzo. The
following questions seems very natural. Take a finite set of weak-beta congruence
classes of S, K combinations. For each class take all the equations between
terms in that class and let $ be the union of this finite number of infinite sets of
equations. Is it possible to find a finite set such that for all closed M , N

Mweak − betaconv.N iff$ |= M = N?

It turns out that the answer to this question will recur in the general case for
CL. Let $ be determined as above by a finite set of weak-beta classes C1, . . . , Cn.

Lambda Calculus and Combinatory Logic 323

Lemma 4. Suppose that $ � M = N . Then there exists a context P [x1, . . . , xn]
and pairs P1, Q1 in C1, . . . , Pn, Qn in Cn such that

M = P [P1, . . . , Pn],

and
N = P [Q1, . . . , Qn].

Proof. Suppose that $ � M = N . Then there is an $ computation beginning
with M and ending with N . But overlapping steps

Xi = [U/u]X
Xi+1 = [[W/v]V/u]X
Xi+2 = [[Y/v]V/u]X,

and

Xi = [[Y/v]V/u]X
Xi+1 = [[W/v]V/u]X
Xi+2 = [U/u]X,

can be replaced by

Xi = [U/u]X
Xi+2 = [[Y/v]V/u]X,

and

Xi = [[Y/v]V/u]X
Xi+2 = [U/u]X.

Proposition 2. There is no finite set $ such that

Mweak − betaconv.N iff$ � M = N.

Proof. It suffices to find an S redex SPQR such that

(1) None of SP , P , Q and R belong to one of the weak-beta congruence classes
C1, . . . , Cn

(2) SPQR has a weak-beta head normal form.

For if $ � SPQR = T then T has the form LP ′Q′R′, where $ � L = S and
P = P ′ and Q = Q′ and R = R′, which is not in head normal form. Finding
such an SPQR is easy.

We now consider the following problem. Suppose that we are given a finite
set of true equations between applicative combinations of combinators; that is,
equations where the left hand side weak-beta converts to the right hand side.

324 R. Statman

Can this set together with the reduction rules for all linear combinators prove
all true (weak-beta) equations?

We will show that the answer is no. Indeed we can do somewhat better.
The set of superlinear reduction rules is defined as follows. They are simply

the equations from the above examples presented as reductions.
Combinatory:

(1) Ix � x
(2) C∗xy � yx
(3) Bxyz � x(yz)
(4) Lx1 · · · xn � X reduction rules for other proper linear combinators; these

can be added at will

Monoid:

(5) B(Bxy)z � Bx(Byz)
(6) B(Bx)(By) � B(Bxy)
(7) BI � I
(8) BxI � x

Inverse Properties:

(9) B(B(Bx))B � BB(Bx)
(10) B(C∗x)(By) � By(C∗x)
(11) B(C∗x)C∗ � x
(12) B(C∗y)(B(C∗x)B) � C∗(xy).

Next define height and weight of a lambda term as follows.

height(x) = 1
height(λx.X) = 1 + height(X)
height((XY)) = height(X) + height(Y)

weight(x) = 2
weight(λx.X) = 1 + weight(X)

weight((XY)) = (2weight(X)) + weight(Y).

Note 1. Let t(1) = 2 and t(n + 1) = 2t(n) then the maximum weight of a closed
term of height n is less than t(n).

Lemma 5. Every � reduction sequence terminates. � has the weak diamond
property.

Proof. Let the rank of X be (height(X), weight(X)) and these are ordered lexi-
cographically. � reductions reduce rank. Only (5) needs to be checked. For the
weak diamond property there are only 9 critical pairs worth noting. They are
(3) and (5)–(8), (3) and (9)–(12), and (5) and (8), and these are easily verified.

Corollary 2. �� is Church-Rosser.

Lambda Calculus and Combinatory Logic 325

Now suppose that we are given a finite set of true equations between applica-
tive combinations of combinators. Without loss of generality we can assume that

(i) the equations are weak-beta redex/contractum pairs,
(ii) the combinators are from among B,C∗, I,W ∗,K by combinatory complete-

ness.

Now, in addition, we will assume that the redexes of the weak-beta
redex/contractum pairs are � normal. � will be added back later. Thus the
redex/contractum pairs have the form

(iv) W ∗M weak-beta red. MM , or
(v) KMN weak-beta red. M .

Let the resulting set be $. We write ‘]→’ for ‘weak-beta red.’
Next we take a variant of the Knuth-Bendix [8] completion of $. The set $+

is obtained by applying the following closure operations to the initial $.

F [G]]→ H[G], G]→ J ⇒ F [J]]→ H[J]
F [G]]→ H[G], G]→ J ⇒ F [J]]→ H[J].

We obtain the following

Lemma 6.]� restricted to $+ is Church-Rosser.

Proof. The proof in [1, 3.2, p. 59] adapts well here. It is often called “the parallel
reduction proof.”

Lemma 7. Let)→ be the union of � unrestricted and]→ restricted to $+. Then
)→ is Church-Rosser.

Proof. By design � commutes with]→ restricted to $+. So, we can apply
Rosen’s theorem [1, p. 64].

Now if F]→ H is member of $+ then there exists a member of $ with a redex
weak-beta conv. to F . There are only finitely many of these. Thus there are
infinitely many MM normal w.r.t. the reductions

� ∪]→
s.t.

W ∗M

is normal w.r.t.]→ restricted to $+. For example, M := B(K(· · · (BK) · · ·))
Thus by the Church-Rosser theorem W ∗M = MM is not provable from the
original finite set of true equations.

Finally we show that the combinatory monoid is not finitely presented. More
precisely we do not consider full eta conv. for the combinator case which would
require either the combinatory axioms A.1–A.6 in [1, p. 157] or strong reduction.
Instead we add to weak-beta reduction the above Eqs. (1)–(12). These equations
give us Church’s finitely generated, recursively presented monoid in combinator
form.

326 R. Statman

Theorem 2. Church’s combinator monoid is not finitely presentable.

Proof. Suppose such a presentation exists. Without loss of generality we can
assume it is on the generators C∗S, C∗K, I, B, and C∗. Then there exists
a finite set of weak-beta combinatory reduction pairs which together with the
Eqs. (1)–(12) proves the equations in the presentation. But by Eqs. (11) and (12)
this contradicts the remarks of the previous paragraph.

References

1. Barendregt, H.P.: The Lambda Calculus: Its Syntax and Semantics. Studies in
Logic and the Foundations of Mathematics, vol. 103. North-Holland (1985)

2. Böhm, C.: Personal Communication
3. Broda, S., Damas, L.: On combinatory complete sets of proper combinators. J.

Funct. Program. 7(6), 593–612 (1997)
4. Church, A.: Combinatory logic as a semigroup. Bull. Am. Math. Soc. 43, 333

(1937)
5. Curry, H.B., Feys, R.: Combinatory Logic, vol. 1. North Holland (1958)
6. Dezani-Ciancaglini, M.: Characterization of normal forms possessing inverse in the

lambda-beta-eta-Calculus. Theor. Comput. Sci. 2(3), 323–337 (1976). https://doi.
org/10.1016/0304-3975(76)90085-2

7. Jacopini, G.: A condition for identifying two elements of whatever model of com-
binatory logic. In: Böhm, C. (ed.) λ-Calculus and Computer Science Theory.
LNCS, vol. 37, pp. 213–219. Springer, Heidelberg (1975). https://doi.org/10.1007/
BFb0029527

8. Knuth, D.E., Bendix, P.B.: Simple Word Problems in Universal Algebras, pp. 263–
297. Pergamon Press Ltd. (1970)

9. Kozen, D.: Complexity of finitely presented algebras. In: Hopcroft, J.E., Friedman,
E.P., Harrison, M.A. (eds.) Proceedings of the 9th Annual ACM Symposium on
Theory of Computing, Boulder, Colorado, USA, 4–6 May 1977, pp. 164–177. ACM
(1977). https://doi.org/10.1145/800105.803406

10. Statman, R.: Herbrand’s Theorem and Gentzen’s Notion of a Direct Proof. In:
Barwise, J. (eds.) Handbook of Mathematical Logic, pp. 897–912. North Holland
(1977)

11. Statman, R.: On translating lambda terms into combinators; the basis problem.
In: Proceedings of the Symposium on Logic in Computer Science, LICS 1986,
Cambridge, Massachusetts, USA, 16–18 June 1986, pp. 378–382. IEEE Computer
Society (1986)

12. Statman, R.: Consequences of Jacopini’s theorem: consistent equalities and equa-
tions. In: Girard, J.-Y. (ed.) TLCA 1999. LNCS, vol. 1581, pp. 355–364. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48959-2 25

13. Statman, R.: Products in a category with only one object. In: Spivak, D.I., Vicary,
J. (eds.) Proceedings of the 3rd Annual International Applied Category Theory
Conference 2020, ACT 2020. EPTCS, Cambridge, USA, 6–10 July 2020, vol. 333,
pp. 347–353 (2020). https://doi.org/10.4204/EPTCS.333.24

https://doi.org/10.1016/0304-3975(76)90085-2
https://doi.org/10.1016/0304-3975(76)90085-2
https://doi.org/10.1007/BFb0029527
https://doi.org/10.1007/BFb0029527
https://doi.org/10.1145/800105.803406
https://doi.org/10.1007/3-540-48959-2_25
https://doi.org/10.4204/EPTCS.333.24

Exact and Parameterized Algorithms
for Read-Once Refutations in Horn

Constraint Systems

K. Subramani(B) and Piotr Wojciechowski

LDCSEE, West Virginia University, Morgantown, WV, USA
{k.subramani,pwjociec}@mail.wvu.edu

Abstract. In this paper, we discuss exact and parameterized algorithms
for the problem of finding a read-once refutation in an unsatisfiable
Horn Constraint System (HCS). Recall that a linear constraint system
A · x ≥ b is said to be a Horn constraint system, if each entry in A
belongs to the set {0, 1, −1} and at most one entry in each row of A
is positive. In this paper, we examine the importance of constraints in
which more variables have negative coefficients than have positive coef-
ficients. There exist several algorithms for checking whether a Horn con-
straint system is feasible. To the best of our knowledge, these algorithms
are not certifying, i.e., they do not provide a certificate of infeasibility.
Our work is concerned with providing a specialized class of certificates
called “read-once refutations”. In a read-once refutation, each constraint
defining the HCS may be used at most once in the derivation of a refu-
tation. The problem of checking if an HCS has a read-once refutation
(HCS ROR) has been shown to be NP-hard. We analyze the HCS ROR
problem from two different algorithmic perspectives, viz., parameterized
algorithms and exact exponential algorithms.

1 Introduction

This paper is focused on the task of designing exact and parameterized algo-
rithms for the problem of finding a read-once refutation in an unsatisfiable Horn
constraint system (HCS ROR). Recall that a linear constraint system A · x ≥ b
is said to be a Horn constraint system, if each entry in A belongs to the set
{0, 1,−1} and at most one entry in each row of A is positive. Horn constraint
systems find applications in a number of practical domains, including power
systems, abstract interpretation, and econometrics. On account of their wide
applicability, there exist a number of algorithms to check if an HCS is feasi-
ble [3,20]. To the best of our knowledge, these algorithms are not certifying. In
particular, they do not provide an easily checkable “no”-certificate (refutation)

This research was supported in part by the Air-Force Office of Scientific Research
through Grant FA9550-19-1-0177 and in part by the Air-Force Research Laboratory,
Rome through Contract FA8750-17-S-7007.

c© Springer Nature Switzerland AG 2022
S. Artemov and A. Nerode (Eds.): LFCS 2022, LNCS 13137, pp. 327–345, 2022.
https://doi.org/10.1007/978-3-030-93100-1_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93100-1_21&domain=pdf
https://doi.org/10.1007/978-3-030-93100-1_21

328 K. Subramani and P. Wojciechowski

when given infeasible instances. It must be noted though, that negative certifi-
cates can be obtained through a general purpose linear programming algorithm
using Farkas’ lemma [6]. However, in general, these certificates are not “read-
once”. A read-once refutation is one in which each constraint is used by at most
one inference step. Read-once refutations are “visualizable”, especially in the
presence of a single inference rule (see Sect. 2). Such refutations are invaluable
from the perspective of explaining the infeasibility of a constraint system.

The HCS ROR problem has been shown to be NP-hard [14]. Accordingly,
we focus on parameterized and exact approaches for this problem. The goal
is to design algorithms that are efficient when certain parameters are “small”.
To achieve this, we use, as a parameter, the number of constraints in the HCS
which have more variables with negative coefficient than variables with positive
coefficient.

The rest of this paper is organized as follows: Sect. 2 formally describes the
problems under consideration in this paper. The motivation for our work and
related approaches in the literature are discussed in Sect. 3. In Sect. 4, we detail
an FPT algorithm for the read-once refutation problem in Horn constraints.
Section 5 describes an exact exponential algorithm for the same problem. In
Sect. 6, we relate literal-once refutations to read-once refutations in Horn con-
straint systems. In Sect. 7, we provide lower bounds on kernel size for the HCS
ROR problem, using the number of constraints with at least 3 variables as a
parameter. We conclude in Sect. 8 by summarizing our contributions.

2 Statement of Problems

In this section, we describe the problems under consideration. We are concerned
with read-once refutations in Horn constraint systems.

Definition 1. A constraint of the form ai ·xi−
∑

xj∈S xj ≥ b, where ai ∈ {0, 1},
S is a set of variables, and b ∈ Z, is called a Horn constraint.

Example 1. The following are Horn constraints:

x1 − x2 − x4 ≥ 3 x2 − x4 ≥ 5 − x3 − x4 ≥ 2.

Note that if only one coefficient in a Horn constraint is non-zero, then the
constraint is called an absolute constraint. If the coefficient of this constraint
is 1, then it is a positive absolute constraint. If a Horn constraint has more
negative coefficients than positive coefficients, then it is called a net-negative
constraint. Additionally, b is the defining constant of the constraint.

Definition 2. A conjunction of Horn constraints is called a Horn Constraint
System (HCS). An HCS can be represented in matrix form as A · x ≥ b.

In HCSs, we are interested in refutations which prove that the system has
no rational solutions. Such a refutation is called a linear refutation. In such a
refutation, each new constraint is derived by the addition rule.

Algorithms for Read-Once Refutations in HCSs 329

Definition 3. The ADD rule is given as:

ADD :
∑n

i=1 ai · xi ≥ b1
∑n

i=1 a′
i · xi ≥ b2∑n

i=1(ai + a′
i) · xi ≥ b1 + b2

(1)

We refer to Rule (1) as the addition (ADD) rule.

Example 2. Consider the constraints x1−x2−x3 ≥ 2 and x2−x4 ≥ −1. Applying
the ADD rule to these constraints lets us derive the constraint x1 −x3 −x4 ≥ 1.

A sequence of applications of the ADD rule that proves the infeasibility of an
HCS H, (by deriving the contradiction 0 ≥ b where b > 0) is known as a linear
refutation.

We are interested in refutations in which each constraint is used at most
once. Such a refutation is called a read-once refutation.

Definition 4. A read-once refutation is a refutation in which each constraint
can be used in at most one inference.

Example 3. Consider the HCS H defined by System (2).

l1 : x1 − x2 − x3 ≥ 0 l2 : x2 − x3 ≥ −1 l3 : x3 − x1 ≥ 1 l4 : x3 ≥ 1 (2)

System (2) has the following read-once refutation:

1. Apply the ADD rule to l1 and l2 to get l5 : x1 − 2 · x3 ≥ −1.
2. Apply the ADD rule to l5 and l3 to get l6 : −x3 ≥ 0.
3. Apply the ADD rule to l6 and l4 to get the contradiction 0 ≥ 1.

Note that this applies to constraints present in the original system as well as
those derived as a result of previous inferences. If a constraint can be re-derived
from a different set of input constraints, then the constraint can be reused.

There is a more restrictive form of read-once refutation known as literal-once
refutation.

Definition 5. A literal-once refutation is a refutation in which each constraint
can be used at most once and no two input constraints can share a literal (xi or
−xi).

Example 4. Note that the read-once refutation in Example 3 is not literal-once
since it reuses the literal x3 (and −x3). However, consider the HCS H defined
by System (3).

l1 : x1 − x2 − x3 ≥ 0 l2 : x2 ≥ −1 l3 : x3 − x1 ≥ 2 (3)

System (3) has the following literal-once refutation:

1. Apply the ADD rule to l1 and l2 to get l4 : x1 − x3 ≥ −1.
2. Apply the ADD rule to l4 and l3 to get the contradiction 0 ≥ 1.

330 K. Subramani and P. Wojciechowski

Note that in a literal-once refutation, two derived constraints can share a
literal. However, since no input constraints can share a literal, these constraints
must be part of a single chain of derivations.

In this paper, we are interested in measuring the number of constraints with
three or more variables used by a refutation. We will refer to these as “long”
constraints. Accordingly, we define the length of a read-once refutation as follows:

Definition 6. The length of a read-once refutation R of an HCS H is the
number of constraints in H used by R with three or more variables.

Example 5. The read-once refutation in Example 3 uses one constraint with
three or more variables. This is the constraint l1 : x1 − x2 − x3 ≥ 0. Thus, the
read-once refutation in Example 3 has length 1.

We can now define the problems examined in this paper.

Definition 7. HCS RORD: Given a Horn constraint system H, does H have a
read-once refutation?

Example 6. Let H be the HCS defined by System (4).

l1 : x1 − x2 ≥ 1 l2 : −x1 − x2 ≥ 0 l3 : x2 ≥ 0 (4)

Note that l1 is the only constraint in H with a positive defining constant.
Thus, l1 must be in any refutation R of H. To cancel the literal x1 from l1, R
must also use the constraint l2. Note that both l1 and l2 use the literal −x2.
However, the only constraint in H with the literal x2 is l3. Thus, any refutation
of H must use the constraint l3 at least twice. This means that H does not have
a read-once refutation.

Definition 8. HCS LORD: Given an HCS H, does H have a literal-once refu-
tation?

Example 7. Let H be the HCS defined by System (5).

l1 : x1 − x2 ≥ 1 l2 : −x1 − x2 ≥ 0 l3 : x2 ≥ 0 (5)
l4 : x2 − x3 ≥ 0 l5 : x3 ≥ 0

H has the following read-once refutation:

1. Apply the ADD rule to l1 and l2 to get l6 : −2 · x2 ≥ 1.
2. Apply the ADD rule to l3 and l6 to get l7 : −x2 ≥ 1.
3. Apply the ADD rule to l4 and l7 to get l8 : −x3 ≥ 1.
4. Apply the ADD rule to l5 and l8 to get the contradiction 0 ≥ 1.

Note that l1 is the only constraint in H with a positive defining constant.
Thus, l1 must be in any refutation R of H. To cancel the literal x1 from l1, R
must also use the constraint l2. Note that both l1 and l2 use the literal −x2.
Thus, H does not have a literal-once refutation.

Algorithms for Read-Once Refutations in HCSs 331

Definition 9. HCS ROROptD: Given an HCS H and a positive integer k, does
H have a read-once refutation of length at most k?

Example 8. Let H be the HCS defined by System (6).

l1 : x1 − x2 − x3 ≥ 0 l2 : x2 − x1 ≥ 1 l3 : x3 ≥ 0 (6)
l4 : −x2 ≥ 0 l5 : x1 − x3 ≥ 0

H has the following read-once refutation:

1. Apply the ADD rule to l1 and l2 to get l6 : −x3 ≥ 1.
2. Apply the ADD rule to l3 and l6 to get the contradiction 0 ≥ 1.

Note that this refutation uses two inferences and one long constraint. Thus,
this refutation has length 1. However, this is not a shortest read-once refutation
of H.

H also has the following read-once refutation:

1. Apply the ADD rule to l2 and l4 to get l7 : −x1 ≥ 1.
2. Apply the ADD rule to l5 and l7 to get l8 : −x3 ≥ 1.
3. Apply the ADD rule to l3 and l8 to get the contradiction 0 ≥ 1.

Note that this refutation uses three inferences and no long constraints. Thus,
this refutation has length 0. This is a shortest read-once refutation of H.

Definition 10. HCS LOROptD: Given an HCS H and a positive integer k, does
H have a literal-once refutation of length at most k?

Example 9. Note that the refutations in Example 8 are also literal-once refuta-
tions.

The principal contributions of this paper are as follows:

1. An FPT algorithm for the HCS RORD problem parameterized by the number
of net-negative constraints. This algorithm can also find the shortest read-
once refutation (Sect. 4).

2. An exact exponential algorithm for the HCS RORD problem. This algorithm
can also find the shortest read-once refutation. This algorithm extends the
FPT algorithm by utilizing non-trivial properties of the set of net-negative
constraints (Sect. 5).

3. A reduction from the HCS LORD problem to the HCS RORD problem
(Sect. 6).

4. Establishing that the HCS ROROptD problem does not have a polynomial
sized kernel when parameterized by the length (number of long constraints)
of the refutation (Sect. 7).

332 K. Subramani and P. Wojciechowski

3 Motivation and Related Work

In this section, we briefly motivate the read-once refutation problem in Horn
constraint systems and discuss related approaches in the literature.

This paper discusses algorithms for determining read-once refutations in a
subset of polyhedral constraint systems known as Horn constraint systems. Poly-
hedral constraint systems find applications in a number of domains in operations
research and combinatorial optimization. Refutations are negative certificates in
that they provide an explanation as to why a constraint system is unsatisfi-
able. Any problem in the class NP ∩ coNP has both “positive” and “negative”
certificates, which are succinct (short, polynomial in the size of the input con-
straint system) [11]. Problems which are NP-complete have short positive cer-
tificates, but negative certificates must be superpolynomial unless NP = coNP
[12]. It follows that even if a negative certificate for an NP-complete problem
is obtained, it is not possible to verify its correctness in time polynomial in the
size of the input constraint system. One technique of overcoming this issue is
to study incomplete (weak) but sound refutation systems for constraint sys-
tems. The idea underlying incomplete proof systems is to sacrifice completeness
for efficient decidability. One such refutation system called read-once resolution
refutation was introduced in [13]. That paper focuses on read-once refutations of
Boolean formulas and refers to the procedure as read-once resolution. [13] shows
that the problem of checking if a CNF formula has a read-once refutation is NP-
complete. Read-once refutation has been studied extensively in the literature
for a wide variety of constraint systems [14,18,19].

HCSs are used in both program verification [9] and as part of Satisfiability
Modulo Theories (SMT) solvers. The field of program verification uses Horn
constraints both in their own right and because of their use in SMT solvers
[4]. Due to their use in SMT solvers, Horn constraint systems are also used
for bounded model checking, infinite state systems, and test-case generation [5].
Additionally, [2,17] provide an in depth description of the use of Horn constraint
systems in the field of program verification.

Both the linear ROR and integer ROR problems have been studied for HCSs.
In contrast to Horn formulas, not every system of Horn constraints has a read-
once refutation. In fact, the linear ROR problem for HCSs is more closely related
to the problem of finding a read-once unit resolution refutation of a Horn formula
[14]. In [14], both the linear ROR and integer ROR problems for HCSs were
shown to be NP-hard. Read-once cutting plane proof systems were explored in
[15].

We have examined various properties of HCSs and Horn formulas in a number
of other papers. In [16], we looked at resolution refutations of Horn formulas.
In this paper, we showed that the problem of finding the shortest read-once
resolution refutation of a Horn formula is NP-hard. Additionally, we established
that the problem of checking if a 2-Horn formula with m clauses has a read-once
resolution refutation can be solved in O(m2) time.

Algorithms for Read-Once Refutations in HCSs 333

4 A Parameterized Algorithm

In this section, we describe a parameterized algorithm for the HCS RORD prob-
lem.

The algorithms in this paper rely on the following property of read-once
linear refutations of HCSs.

Lemma 1. Let H be an HCS. H has a read-once linear refutation R, if and
only if there exists a set HR ⊆ H, such that summing the constraints in HR

results in a constraint of the form 0 ≥ bR where bR > 0.

Proof. Assume that H has a read-once refutation R. Since R is a read-once
refutation, the constraint derived by R is a constraint of the form 0 ≥ bR where
bR > 0. Let HR be the set of constraints in H used by R. Since addition is
commutative and associative, summing all of the constraints in HR results in
the constraint 0 ≥ bR. Since bR > 0, this constraint has the desired form.

Now assume that there exists a set HR ⊆ H, such that summing all of the
constraints in HR results in a constraint of the form 0 ≥ bR where bR > 0. Note
that this summation imposes an order on the constraints in HR. For each i, let
li be the ith constraint in this summation. Let R be the following sequence of
applications of the ADD rule:

1. Apply the ADD rule to the constraints l1 and l2 to derive the constraint d1.
2. For each i = 1, . . . , (n − 2), apply the ADD rule to di and li+2 to derive the

constraint di+1.

Note that each constraint in HR is used exactly once in this summation. Since
addition is associative, the constraint dn−1 is the result of summing all the
constraints in HR together. Thus, dn−1 is the constraint 0 ≥ bR. Since bR > 0,
R is a read-once refutation. ��

Note that Lemma 1 applies to general linear systems, and not just HCSs.
Let H be a system of Horn constraints. We can partition H into H1, the set

of constraints with at least as many positive coefficients as negative coefficients
and H2, the set of net-negative constraints. Note that H1 consists of difference
constraints and positive absolute constraints. We now construct an FPT for the
HCS RORD problem parameterized by k = |H2|.

Let S be an arbitrary subset of H2, and let lS be the constraint derived from
summing the constraints in S. Let bS be the defining constant of lS . If there
is a read-once refutation of H using all of the constraints in S and none of the
constraints in H2 \S, then we can derive a constraint which cancels all variables
from the constraint lS using the constraints in H1. Our algorithm uses a flow
network to construct this derivation.

From H and S, we can create the weighted flow network GS as follows:

1. Create the vertices s0, s1, and t.
2. For each variable xi in H create the vertex xi.

334 K. Subramani and P. Wojciechowski

3. For each constraint of the form xi − xj ≥ b in H1, create an edge from xj to
xi of cost −b and capacity 1.

4. For each constraint of the form xi ≥ b in H1 create an edge from s1 to xi

with cost −b and capacity 1.
5. Let ai be the coefficient of xi in the constraint lS .
6. For each variable xi:

(a) If ai > 0, then create an edge from s0 to xi with cost 0 and capacity ai.
(b) If ai < 0, create an edge from xi to t with cost 0 and capacity −ai.

7. Create an edge from s0 to s1 with cost 0 and capacity −∑n
i=1 ai. Since each

constraint in S is net-negative, −∑n
i=1 ai ≥ 0

This graph construction is utilized by Algorithm 4.1 to find a read-once
refutation of an HCS.

Algorithm 4.1. FPT algorithm for the HCS RORD problem
Input: HCS H with m constraints over n variables.
Output: true if H has a read-once refutation, false otherwise.

1: procedure HCS-ROR-D(H)
2: Create sets H1 := ∅ and H2 := ∅.
3: for (each constraint l in H) do
4: if (l is a net-negative constraint) then
5: Add l to H2.
6: else
7: Add l to H1.

8: for (each subset S ⊆ H2) do
9: Let lS =

∑n
i=1 ai · xi ≥ bS be the constraint obtained by summing

the constraints in S.
10: Construct the flow network GS from lS and H1.
11: if (−∑

xi:ai<0 ai units of flow can be pushed from s0 to t in GS with
total cost less than bS) then

12: return true.
13: return false.

4.1 Correctness

We now show that Algorithm 4.1 correctly determines if an HCS H has a read-
once refutation.

Let XS be the set of variables, such that ai < 0. We will show that H has
a read-once refutation using the constraints in S, if and only if we can push
−∑

xi∈XS
ai units of flow from s0 to t with cost less than bS .

Algorithms for Read-Once Refutations in HCSs 335

Lemma 2. Let H be an HCS and S be a subset of H2. Let lS =
∑n

i=1 ai ·xi ≥ bS
be the constraint obtained by summing the constraints in S, and let XS be the set
of variables, such that ai < 0. H has a read-once refutation that uses all of the
constraints in S and no other constraints from H2, if and only if

∑
xi∈XS

−ai

units of flow can be pushed from s0 to t in GS with cost less than bS.

Proof. First, assume that H has a read-once refutation R that uses all of the
constraints in S, and none of the constraints in H2 \ S.

Let HR be the set of constraints in H used in R. Since R is a read-once
refutation of H, from Lemma 1, summing all of the constraints in HR results
in a constraint of the form 0 ≥ bR where bR > 0. Note that S ⊆ HR, thus the
constraints in HR \ S sum to produce the constraint −∑n

i=1 ai · xi ≥ bR − bS .
Additionally note that HR \ S ⊆ H1.

We will use HR to construct the desired flow in GS . This is done as follows:

1. For each constraint lr ∈ HR \ S:
(a) lr ∈ H1, thus lr is of the form xi − xj ≥ b or lr is of the form xi ≥ b.
(b) If lr is of the form xi − xj ≥ b, then push 1 unit of flow along the edge

from xj to xi.
(c) If lr is of the form xi ≥ b, then push 1 unit of flow along the edge from

s1 to xi.
2. For each variable xi:

(a) If ai > 0, then push ai units of flow along the edge from s0 to xi.
(b) If ai < 0, then push −ai units of flow along the edge from xi to t.

3. Push −∑n
i=1 ai units of flow along the edge from s0 to s1.

Observe the following:

1. For each xi, such that ai > 0, there are ai units of flow leaving s0 along the
edge to xi. There are an additional −∑n

i=1 ai units of flow leaving s0 along
the edge to s1. Thus, there are a total of

∑

xi �∈XS

ai −
n∑

i=1

ai = −
∑

xi∈XS

ai

units of flow leaving s0 as desired.
2. For each xi, such that ai < 0, there are −ai units of flow entering t along the

edge from xi. Thus, there are a total of −∑
xi∈XS

ai units of flow entering t
as desired.

3. For each xi:
(a) If ai = 0, then there is no edge from s0 to xi and no edge from xi to

t. Thus, the only flow through xi comes along edges corresponding to
constraints in HR \ S.
Note that xi has a coefficient of −ai = 0 in the constraint obtained by
summing the constraints in HR \ S. Thus, the number of constraints in
HR\S that use the literal xi equals the number of constraints that use the
literal −xi. Thus, the amount of flow entering xi is equal to the amount
of flow leaving xi.

336 K. Subramani and P. Wojciechowski

(b) If ai > 0, then there is no edge from xi to t. Additionally, there are ai

units of flow entering xi along the edge from s0.
Note that xi has a coefficient of −ai < 0 in the constraint obtained by
summing the constraints in HR \ S. Thus, there are ai more constraints
in HR \S that use the literal −xi than constraints that use the literal xi.
This means that there are a net ai units of flow leaving xi along edges
corresponding to constraints in HR \ S. Recall that ai units of flow enter
xi along the edge from s0. Thus, the amount of flow entering xi is equal
to the amount of flow leaving xi.

(c) If ai < 0, then there is no edge from s0 to xi. Additionally, there are −ai

units of flow leaving xi along the edge to t.
Note that xi has a coefficient of −ai > 0 in the constraint obtained by
summing the constraints in HR \S. Thus, there are −ai more constraints
in HR \S that use the literal xi than constraints that use the literal −xi.
Thus, there is a net −ai units of flow entering xi along edges correspond-
ing to constraints in HR \ S. Recall that −ai units of flow leave xi along
the edge to t. Thus, the amount of flow entering xi is equal to the amount
of flow leaving xi.

4. There are −∑
xi∈XS

ai units of flow leaving s0 and entering t. Additionally,
the net flow through each xi is 0. Thus, the net flow through the only remain-
ing vertex s1, must also be 0. This means that the flow constructed is valid.

Observe that each edge corresponding to a constraint of the form xi −xj ≥ b
or xi ≥ b in HR \ S contributes −b to the total cost of the flow. Additionally,
the cost of the flow along the remaining edges is 0. Thus, the total cost of the
flow is bS − bR < bS as desired.

Now assume that GR has a flow F which pushes
∑

xi∈XS
−ai units of flow

from s0 to t with total cost less than bS . Construct a subset HR of H as follows:

1. Add each constraint l ∈ S to HR.
2. For each constraint l ∈ H1, if flow is being pushed along the edge correspond-

ing to l in GS , then add the constraint l to HR. Note that these constraints
form HR \ S.

We now show that summing the constraints in HR results in a constraint of
the form 0 ≥ bR where bR > 0. This is equivalent to showing that summing the
constraints in HR \ S results in the constraint −∑n

i=1 ai · xi ≥ bR − bS where
bR > 0.

Observe the following:

1. For each xi, such that ai > 0, there is an edge of capacity ai from s0 to xi.
There is an additional edge of capacity

∑n
i=1 −ai from s0 to s1. By construc-

tion, there are no additional edges leaving s0. Thus, there is a total capacity
of

∑

xi �∈XS

ai −
n∑

i=1

ai = −
∑

xi∈XS

ai

leaving s0. Since this is the amount of flow that needs to leave s0, each of
these edges needs to be filled to capacity.

Algorithms for Read-Once Refutations in HCSs 337

2. For each xi, such that ai < 0, there is an edge of capacity −ai from xi to
t. By construction, there are no additional edges entering t. Thus, there is
a total capacity of −∑

xi∈XS
ai entering t. Since this is the amount of flow

that needs to enter t, each of these edges needs to be filled to capacity.
3. For each xi:

(a) If ai = 0, then there is no edge from s0 to xi and no edge from xi to
t. Thus, the only flow through xi comes along edges corresponding to
constraints in HR \ S.
Note that the amount of flow entering xi is equal to the amount of flow
leaving xi. Thus, the number of constraints in HR \S that use the literal
xi equals the number of constraints that use the literal −xi. This means
that xi has a coefficient of −ai = 0 in the constraint obtained by summing
the constraints in HR \ S as desired.

(b) If ai > 0, then there is no edge from xi to t. Additionally, there are ai

units of flow entering xi along the edge from s0.
Note that the amount of flow entering xi is equal to the amount of flow
leaving xi. Recall that, ai units of flow enter xi along the edge from s0.
Thus, there is a net ai units of flow leaving xi along edges corresponding
to constraints in H1. By construction, all of these edges are in HR \ S.
This means that there are ai more constraints in HR\S that use the literal
−xi than constraints that use the literal xi. Thus, xi has a coefficient of
−ai in the constraint obtained by summing the constraints in HR \ S as
desired.

(c) If ai < 0, then there is no edge from s0 to xi. Additionally, there are −ai

units of flow leaving xi along the edge to t.
Note that the amount of flow entering xi is equal to the amount of flow
leaving xi. Recall that, −ai units of flow leave xi along the edge to t. Thus,
there is a net −ai units of flow entering xi along edges corresponding to
constraints in H1. By construction, all of these edges are in HR \S. This
means that there are −ai more constraints in HR \ S that use the literal
xi than constraints that use the literal −xi. Thus, xi has a coefficient of
−ai in the constraint obtained by summing the constraints in HR \ S as
desired.

Thus, summing the constraints in HR \ S results in a constraint of the form

−
n∑

i=1

ai · xi ≥ bR − bS .

All that remains is to show that bR > 0.
Observe that each edge with non-zero flow and non-zero cost b corresponds

to a constraint of the form xi − xj ≥ −b or xi ≥ −b in HR \ S. Since summing
these constraints results in a constraint of the form −∑n

i=1 ai ·xi ≥ bR − bS , the
total cost of the flow is (bS − bR). Since the total cost of the flow is less than bS ,
we must have that bR > 0 as desired. ��
Theorem 1. Algorithm 4.1 returns true, if and only if the HCS H has a read-
once refutation.

338 K. Subramani and P. Wojciechowski

Proof. First, assume that H has a read-once refutation R. Let SR be the subset
of constraints in H2 used by R. Additionally, let lSR

=
∑n

i=1 ai · xi ≥ bSR
be

the constraint obtained by summing the constraints in SR.
From Lemma 2,

∑
xi∈XSR

−ai units of flow can be pushed from s0 to t in
GSR

with cost less than bSR
. Thus, the if statement on line 11 of Algorithm 4.1

will be satisfied when S = SR. Consequently Algorithm 4.1 will return true.
If H has no read-once refutation, then there is no S ⊆ H2, such that H has

a read-once refutation using all of the constraints in S and no other constraints
in H2. Thus, from Lemma 2, there is no subset S ⊆ H2, such that

∑
xi∈XS

−ai

units of flow can be pushed from s0 to t in GS with cost less than bS . This means
that the if statement on line 11 of Algorithm 4.1 is never satisfied. Consequently,
Algorithm 4.1 will return false. ��

Note that every long constraint in H is a net-negative constraint. Thus, every
long constraint in H is in the set H2. Consequently, to find the shortest read-
once refutation of H (see Definition 6), we simply need to order the subsets of
H2 by the number of long constraints they contain.

4.2 Resource Analysis

We now analyze the time and space requirements of Algorithm 4.1.
Let H be an HCS with m constraints over n variables. Constructing the

subsets H1 and H2 is performed by the for loop on line 3 of Algorithm 4.1. This
takes O(m) time.

Let k = |H2|. Thus, there are 2k possible subsets of H2. This means that
there are 2k iterations of the for loop on line 8 of Algorithm 4.1.

In each iteration of the for loop on line 8, it takes O(m+n) time to construct
GS . Note that GS has O(n) vertices and O(m) edges. The check on line 11 of
Algorithm 4.1 can be performed by solving the minimum cost flow problem. This
can be accomplished in O(m · n · (m + n · log n) · log n) time [1].

Thus, Algorithm 4.1 runs in O(2k · m · n · (m + n · log n) · log n) time. This is
an FPT algorithm for the HCS RORD problem parameterized by the number
of net-negative constraints in H.

Algorithm 4.1 needs to store the sets H1 and H2. Note that each constraint
has O(n) variables and there are m total constraints. Thus, this requires O(m·n)
space. Each iteration of the for loop on line 8 requires the set S ⊆ H2, the graph
GS , and the constraint lS . The set S requires O(m) space since we only need to
indicate which constraints in H2 are in S. Additionally, the graph GS requires
O(m+n) space, and the constraint lS requires O(n) space. Note that S, GS , and
lS are only used by a single iteration of the for loop on line 8. Thus, this space
can be reused by subsequent iterations of the for loop. Thus, we only need to
simultaneously store H1, H2, S, GS and lS . Consequently, Algorithm 4.1 uses
O(m · n) space.

Algorithms for Read-Once Refutations in HCSs 339

5 An Exact Exponential Algorithm

In this section, we describe an exact exponential algorithm for the HCS RORD

problem.
Let H be an HCS with m constraints over n variables. From Lemma 1, we

get a brute force O∗(2m) algorithm for finding a read-once refutation of H. This
algorithm proceeds as follows:

1. For each subset S of H, if summing the constraints in S results in a contra-
diction, then return that H has a read-once refutation.

2. If no such subset exists, then return that H has no read-once refutation.

We will utilize some additional properties of Horn constraints to improve the
running time of this algorithm.

We now show that the FPT algorithm in Sect. 4 can be converted to an exact
exponential algorithm for HCSs.

Let H be an HCS. To convert the FPT algorithm to an exact exponential
algorithm, we will establish a bound on the number of constraints in H2 that
can appear in a read-once refutation.

Lemma 3. Let H be an HCS and let H2 be the set of net-negative constraints
in H. Any read-once refutation R of H cannot use more constraints from H2

than positive absolute constraints.

Proof. Let HR be the set of constraints in H used by R. For each constraint lr ∈
H let cr be the sum of the coefficients in lr. Consider the set of constraints HR∩
H2. Note that cr ≤ −1 for each lr ∈ HR ∩ H2. Thus,

∑
lr∈HR∩H2

cr ≤ −|HR ∩
H2|. The only constraints in H with cr > 0 are positive absolute constraints. For
each such constraint cr = 1. Note that

∑
lr∈HR

cr = 0. Thus, HR must contain
at least

∑
lr∈HR∩H2

−cr ≥ |HR ∩ H2| positive absolute constraints. ��
From Lemma 3, we can limit Algorithm 4.1 to only check subsets S of H2,

such that |S| ≤ m − k. This results in Algorithm 5.1.
As with Algorithm 4.1, Algorithm 5.1 can find the shortest read-once refuta-

tion of H by ordering the subsets of H2 by the number of long constraints they
contain (see Definition 6).

5.1 Resource Analysis

Since k = |H2|, H has at most (m−k) absolute constraints. Thus, we only need
to consider subsets S of H2, such that |S| ≤ m − k. The total number of such
subsets is at most

∑m−k
j=0

(
k
j

)
.

Note that this only matters when k ≥ m
2 . Otherwise, we still consider all 2k

subsets of H2. In this case the running time is O∗(2
m
2) ⊆ O∗(1.42m).

Theorem 2. H2 has at most 2(m+1)· 5+
√

5
10 subsets of size at most (m − k).

340 K. Subramani and P. Wojciechowski

Algorithm 5.1. Exact exponential algorithm for the HCS RORD problem
Input: HCS H with m constraints over n variables.
Output: true if H has a read-once refutation, false otherwise.

1: procedure HCS-ROR-D(H)
2: Create sets H1 := ∅ and H2 := ∅.
3: for (each constraint l in H) do
4: if (l is a net-negative constraint) then
5: Add l to H2.
6: else
7: Add l to H1.

8: for (each subset S ⊆ H2, such that |S| ≤ m − |H2|) do
9: Let lS =

∑n
i=1 ai · xi ≥ bS be the constraint obtained by summing

the constraints in S.
10: Construct the flow network GS from lS and H1.
11: if (−∑

xi∈XS
ai units of flow can be pushed from s0 to t in GS with

total cost less than bS) then
12: return true.
13: return false.

Proof. For a fixed value of m, we will find the value of k that maximizes
m−k∑

j=0

(
k

j

)

.

Assume without loss of generality that k is even. From [10], when k ≥ 2·(m−k):

m−k∑

j=0

(
k

j

)

≤ 2k−1 ·
(

k
m−k+1

)

(
k
k
2

) =
2k−1 · (k2)! · (k2)!

(m − k + 1)! · (2 · k − m − 1)!
.

This can be bounded from above and below by Stirling’s Formula [7]. This
gives us the following bound:

2k−1 · e ·
√

k
2

· (k
2·e)

k
2 · e ·

√
k
2

· (k
2·e)

k
2

√
2 · π · (m + 1 − k) · (m+1−k

e
)m−k+1 · √

2 · π · (2 · k − m − 1) · (2·k−m−1
e

)2·k−m−1
.

Simplifying we get

m−k∑

j=0

(
k

j

)

≤ e2 · kk+1

8 · π · (m + 1 − k)m+1.5−k · (2 · k − m − 1)2·k−m−0.5
.

We want to find a value of k that maximizes this function. Note that this
value of k also maximizes the natural log of this function. Thus, we want to find

Algorithms for Read-Once Refutations in HCSs 341

k which maximizes

(k + 1) · ln k + ln
e2

8 · π
− (m + 1.5 − k) · ln(m + 1 − k)

− (2 · k − m − 0.5) · ln(2 · k − m − 1).

This happens when

ln k +
k + 1

k
+ ln(m + 1 − k) +

m + 1.5 − k

m + 1 − k

− 2 · ln(2 · k − m − 1) − 2 · 2 · k − m − 0.5
2 · k − m − 1

= 0.

When k and m are large we have that k
 1. Additionally since k > 2·(m−k),
we have that 2 · k
 m. Note that if (m − k) is constant then

∑m−k
j=0

(
k
j

)
is

polynomial in both m and k. Thus, without loss of generality, we can also assume
that m − k
 1. This means we can make the following simplifications:

k + 1
k

= 1,
m + 1.5 − k

m + 1 − k
= 1, and

2 · k − m − 0.5
2 · k − m − 1

= 1.

Thus, we can simplify the above equation to get

2 · ln(2 · k − (m + 1)) = ln k + ln(m + 1 − k).

This happens when 5 ·k2 − 5 · (m+1) ·k +(m+1)2 = 0. Solving for k results
in k = (m + 1) · 5±√

5
10 . When we add the assumption that k ≥ m

2 , we get that
the maximum occurs when k = (m + 1) · 5+

√
5

10 ≈ 0.72 · (m + 1).
Thus, we have that

max
k=m

2 ...m
(
m−k∑

j=0

(
k

j

)

) ≤ max
k=m

2 ...m
2k−1 ·

(
k

m−k+1

)

(
k
k
2

) ≤ 20.72·(m+1)−1 ·
(
0.72·(m+1)
0.28·(m+1)

)

(
0.72·(m+1)
0.36·(m+1)

)

≤ 20.72·(m+1) ≤ 1.66m+1.

Note that this bound only applies when k > 2 · (m − k). However, if k ≤
2 · (m − k) then k ≤ 2

3 · m. Thus,

m−k∑

j=0

(
k

j

)

≤
k∑

j=0

(
k

j

)

= 2k ≤ 2
2
3 ·m ≤ 1.59m.

This is a lower bound than the 1.66m+1 bound. Thus, the 1.66m+1 bound
applies even when k ≤ 2 · (m − k). ��

From Theorem 2, there are O(1.66m) subsets S ⊆ H2, such that |S| ≤ m−k.
Thus, this algorithm runs in time O∗(1.66m). This is an improvement over the
O∗(2m) brute force approach.

The exact exponential algorithm uses O(m ·n) space, just like Algorithm 4.1.

342 K. Subramani and P. Wojciechowski

6 Literal-Once Refutations

In this section, we show that the HCS LORD problem can be transformed to the
HCS RORD problem by a polynomial, many to one reduction. Thus, Algorithm
4.1 can be used to solve the HCS LORD problem.

Let H be an HCS with m constraints over n variables. We construct the HCS
H′ as follows:

1. For each variable xi in H create the variables x+
i and x−

i . Additionally create
the constraint x−

i − x+
i ≥ 0.

2. Add every constraint in H to H′ replacing each instance of the literal xi with
x+
i and each instance of the literal −xi with −x−

i . Note that every constraint
remains Horn.

We now show that H has a literal-once refutation, if and only if H′ has a
read-once refutation.

Theorem 3. The HCS H has a literal-once refutation, if and only if H′ has a
read-once refutation.

Proof. First, assume that H has a literal-once refutation R. We construct a
read-once refutation R′ of H′ as follows:

1. For each constraint of the form xi − ∑
xj∈S xj ≥ b used by R, add the

constraints x+
i − ∑

xj∈S x−
j ≥ b and x−

i − x+
i ≥ 0 to R′. Note that

xi − ∑
xj∈S xj ≥ b is the only constraint in R which uses the literal xi,

thus the constraint x−
i − x+

i ≥ 0 is only added to R′ once.
2. For each constraint of the form −∑

xj∈S xj ≥ b used by R, add the constraint
−∑

xj∈S x−
j ≥ b to R′. This is precisely the original constraint from H but

with each variable xi replaced by x−
i .

3. Summing the constraints x−
i − x+

i ≥ 0 and x+
i − ∑

xj∈S x−
j ≥ b results in

the constraint x−
i − ∑

xj∈S x−
j ≥ b. This is precisely the original constraint

from H but with each variable xi replaced by x−
i . Since R is a literal-once

refutation, it is also read-once. Thus, R′ is a read-once refutation of H′.

Now assume that H′ has a read-once refutation R′. We construct a literal-
once refutation R of H as follows:

1. For each constraint of the form x+
i − ∑

xj∈S x−
j ≥ b used by R′, add the

constraint xi − ∑
xj∈S xj ≥ b to R. Note that the only constraint in H′ with

the literal −x+
i is x−

i − x+
i ≥ 0. Thus, at most one constraint in R′ uses the

literal x+
i . Consequently, xi −

∑
xj∈S xj ≥ b is the only constraint in R which

uses the literal xi.
2. Summing the constraints x−

i − x+
i ≥ 0 and x+

i − ∑
xj∈S x−

j ≥ b results in the
constraint x−

i − ∑
xj∈S x−

j ≥ b. This is precisely the original constraint from
H but with each variable xi replaced by x−

i .

Algorithms for Read-Once Refutations in HCSs 343

3. For each constraint of the form −∑
xj∈S x−

j ≥ b used by R′, add the con-
straint −∑

xj∈S xj ≥ b to R. This is precisely the original constraint from H′

but with each variable x−
i replaced by xi. Since R is a read-once refutation, so

is R′. Recall that R has at most once constraint that uses the literal xi. This
means that R has at most once constraint that uses the literal −xi. Thus, R
is a literal-once refutation of H. ��
After the HCS LORD problem is reduced to the HCS RORD problem, Algo-

rithm 4.1 or Algorithm 5.1 can be run on the resulting HCS H′ to determine
if the original HCS H has a literal-once refutation. Let H have m constraints
over n variables with k long constraints. Note that, by construction, H′ has
m′ = (m + n) constraints over n′ = 2 · n variables. Since all added constraints
have only two non-zero coefficients, H′ still has k long constraints. Thus, run-
ning Algorithm 4.1 on H′ takes O(2k · (m + n) · n · (m + n · log n) · log n) time.
Additionally, running Algorithm 5.1 on H′ takes O∗(1.66m+n) time.

7 A Lower Bound on Kernel Size

In this section, we show that the HCS ROROptD problem does not have a kernel
whose size is polynomial in k, the length of the refutation (see Definition 6),
unless some well-accepted complexity theoretic assumptions fail. This is done
through the use of an OR-distillation [8].

Definition 11. Let P and Q be a pair of problems and let t : N → N \ {0} be
a polynomially bounded function. Then a t-bounded OR-distillation from P
into Q is an algorithm that for every S, given as input t(S) strings x1, . . ., xt(S)

with |xj | = S for all j:

1. runs in polynomial time, and
2. outputs a string y of length at most t(S) · log S, such that y is a yes instance

of Q, if and only if xj is a yes instance of P for some j ∈ {1, . . . , t(S)}.
If any NP-hard problem has a t-bounded OR-distillation, then coNP ⊆

NP/poly [8]. If coNP ⊆ NP/poly, then ΣP
3 = ΠP

3 [21]. Thus, the polynomial
hierarchy would collapse to the third level.

Theorem 4. The HCS ROROptD problem does not have a polynomial sized ker-
nel unless coNP ⊆ NP/poly.

Proof. We will prove this by showing that if the HCS ROROptD problem has a
polynomial sized kernel, then there exists a t-bounded OR-distillation from the
HCS ROROptD problem into itself.

For each j, let Hj be an HCS with m constraints over n variables. Let
bmax > 0 be such that the defining constants of every constraint in every Hj fall
between bmax and −bmax. We have that S = |Hj | = m · n + m · log bmax.

Assume that for some constant c, the HCS ROROptD problem has a kernel
of size kc. Let t(S) = Sc. Note that t(S) is a polynomial.

344 K. Subramani and P. Wojciechowski

For each j = 1 . . . t(S), let Hj be an HCS with m constraints over n variables,
such that |Hj | = S. From, these HCSs we can create a new HCS H with t(S) ·m
constraints over t(S) · n variables, such that: For each j = 1 . . . t(S), constraints
l1+m·(j−1) through lm·j use variables x1+n·(j−1) through xn·j and correspond to
the constraints in HCS Hj .

Note that no constraint in H corresponding to a constraint in Hj shares
variables with a constraint in H corresponding to a constraint in Hj′ , j′ = j.
Thus, any read-once refutation of H corresponds to a read-once refutation of
Hj for some j ∈ {1, . . . , t(S)}. Consequently, H has a read-once refutation of
length k, if and only if Hj has a has a read-once refutation of length k for some
j ∈ {1, . . . , t(S)}.

Let H′ be a kernel of H, such that |H′| ≤ kc. Since k ≤ m ≤ S, we have that
|H′| ≤ kc ≤ Sc = t(S). Additionally, H′ has a read-once refutation of length k, if
and only if Hj has a read-once refutation of length k for some j ∈ {1, . . . , t(S)}.
Thus, we have a t-bounded OR-distillation from the HCS ROROptD problem to
itself. This cannot happen unless coNP ⊆ NP/poly. ��

8 Conclusion

In this paper, we focused on the problem of checking if a Horn constraint system
has a read-once refutation under the ADD inference rule. Previous research had
established the NP-hardness of this problem [14]. We focused on the design
of algorithms. In particular, we showed that the problem is FPT and devised
an exact exponential algorithm that is asymptotically superior to the brute-
force approach of checking every combination of constraints. We also showed
that the HCS RORD problem does not admit a polynomial sized kernel when
parameterized by the length of the refutation. Note that we defined the length of
a refutation as the number of long (three variable) constraints in the refutation.
We also studied the literal-once refutation problem in HCSs and reduced the
HCS LORD problem to the HCS RORD problem.

References

1. Armstrong, R.D., Jin, Z.: A new strongly polynomial dual network simplex algo-
rithm. Math. Program. 78(2), 131–148 (1997)

2. Bjørner, N., Gurfinkel, A., McMillan, K.L., Rybalchenko, A.: Horn clause solvers
for program verification. In: Fields of Logic and Computation II - Essays Dedicated
to Yuri Gurevich on the Occasion of His 75th Birthday, pp. 24–51 (2015)

3. Chandrasekaran, R., Subramani, K.: A combinatorial algorithm for Horn programs.
Discret. Optim. 10, 85–101 (2013)

4. de Moura, L., Owre, S., Rueß, H., Rushby, J., Shankar, N.: The ICS decision
procedures for embedded deduction. In: Basin, D., Rusinowitch, M. (eds.) IJCAR
2004. LNCS (LNAI), vol. 3097, pp. 218–222. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-25984-8 14

5. Duterre, B., de Moura, L.: The YICES SMT solver. Technical report, SRI Inter-
national (2006)

https://doi.org/10.1007/978-3-540-25984-8_14
https://doi.org/10.1007/978-3-540-25984-8_14

Algorithms for Read-Once Refutations in HCSs 345

6. Farkas, G.: Über die Theorie der Einfachen Ungleichungen. Journal für die Reine
und Angewandte Mathematik 124(124), 1–27 (1902)

7. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 1 and
2. Wiley, Hoboken (1970)

8. Fomin, F.V., Lokshtanov, D., Saurabh, S., Zehavi, M.: Kernelization: Theory of
Parameterized Preprocessing. Cambridge University Press, Cambridge (2019)

9. Fouilhe, A., Monniaux, D., Périn, M.: Efficient generation of correctness certificates
for the abstract domain of polyhedra. In: Logozzo, F., Fähndrich, M. (eds.) SAS
2013. LNCS, vol. 7935, pp. 345–365. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-38856-9 19

10. Gallier, J.: Discrete Mathematics. UTX, 1st edn. Springer, New York (2011).
https://doi.org/10.1007/978-1-4419-8047-2

11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman Company, San Francisco (1979)

12. Haken, A.: The intractability of resolution. Theoret. Comput. Sci. 39(2–3), 297–
308 (1985)

13. Iwama, K., Miyano, E.: Intractability of read-once resolution. In: Proceedings of
the 10th Annual Conference on Structure in Complexity Theory (SCTC 1995), Los
Alamitos, CA, USA, June 1995, pp. 29–36. IEEE Computer Society Press (1995)

14. Kleine Büning, H., Wojciechowski, P., Chandrasekaran, R., Subramani, K.:
Restricted cutting plane proofs in horn constraint systems. In: Herzig, A., Popescu,
A. (eds.) FroCoS 2019. LNCS (LNAI), vol. 11715, pp. 149–164. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-29007-8 9

15. Büning, H.K., Wojciechowski, P.J., Subramani, K.: New results on cutting plane
proofs for Horn constraint systems. In: 39th IARCS Annual Conference on Foun-
dations of Software Technology and Theoretical Computer Science, FSTTCS 2019,
Bombay, India, 11–13 December 2019, pp. 43:1–43:14 (2019)

16. Kleine Büning, H., Wojciechowski, P., Subramani, K.: Read-once resolutions in
horn formulas. In: Chen, Y., Deng, X., Lu, M. (eds.) FAW 2019. LNCS, vol. 11458,
pp. 100–110. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18126-0 9

17. Komuravelli, A., Bjørner, N., Gurfinkel, A., McMillan, K.L.: Compositional ver-
ification of procedural programs using Horn clauses over integers and arrays. In:
Formal Methods in Computer-Aided Design, FMCAD 2015, Austin, Texas, USA,
27–30 September 2015, pp. 89–96 (2015)

18. Subramani, K.: Optimal length resolution refutations of difference constraint sys-
tems. J. Autom. Reason. (JAR) 43(2), 121–137 (2009)

19. Subramani, K., Wojciechowki, P.: A polynomial time algorithm for read-once certi-
fication of linear infeasibility in UTVPI constraints. Algorithmica 81(7), 2765–2794
(2019)

20. Subramani, K., Worthington, J.: Feasibility checking in Horn constraint systems
through a reduction based approach. Theor. Comput. Sci. 576, 1–17 (2015)

21. Yap, C.K.: Some consequences of non-uniform conditions on uniform classes. The-
oret. Comput. Sci. 26(3), 287–300 (1983)

https://doi.org/10.1007/978-3-642-38856-9_19
https://doi.org/10.1007/978-3-642-38856-9_19
https://doi.org/10.1007/978-1-4419-8047-2
https://doi.org/10.1007/978-3-030-29007-8_9
https://doi.org/10.1007/978-3-030-18126-0_9

Dialectica Logical Principles

Davide Trotta1(B) , Matteo Spadetto2 , and Valeria de Paiva3

1 University of Pisa, Pisa, Italy
trottadavide92@gmail.com

2 University of Leeds, Leeds, UK
matteo.spadetto.42@gmail.com
3 Topos Institute, Berkeley, USA

valeria@topos.institute

Abstract. Gödel’ s Dialectica interpretation was designed to obtain a
relative consistency proof for Heyting arithmetic, to be used in conjunc-
tion with the double negation interpretation to obtain the consistency of
Peano arithmetic. In recent years, proof theoretic transformations (so-
called proof interpretations) that are based on Gödel’s Dialectica inter-
pretation have been used systematically to extract new content from
proofs and so the interpretation has found relevant applications in sev-
eral areas of mathematics and computer science. Following our previous
work on ‘Gödel fibrations’, we present a (hyper)doctrine characterisation
of the Dialectica which corresponds exactly to the logical description of
the interpretation. To show that we derive the soundness of the inter-
pretation of the implication connective, as expounded on by Spector and
Troelstra, in the categorical model. This requires extra logical principles,
going beyond intuitionistic logic, namely Markov’s Principle (MP) and
the Independence of Premise (IP) principle, as well as some choice. We
show how these principles are satisfied in the categorical setting, estab-
lishing a tight (internal language) correspondence between the logical
system and the categorical framework. This tight correspondence should
come handy not only when discussing the applications of the Dialec-
tica already known, like its use to extract computational content from
(some) classical theorems (proof mining), its use to help to model specific
abstract machines, etc. but also to help devise new applications.

Keywords: Dialectica interpretation · Markov and independence of
premise principles · Categorical logic

1 Introduction

Categorical logic is the branch of mathematics in which tools and concepts from
category theory are applied to the study of mathematical logic and its connec-
tions to theoretical computer science. In broad terms, categorical logic represents

Research supported by the project MIUR PRIN 2017FTXR IT-MaTTerS (Trotta), by
a School of Mathematics EPSRC Doctoral Studentship (Spadetto), and by AFOSR
grant FA9550-20-10348 (de Paiva).

c© Springer Nature Switzerland AG 2022
S. Artemov and A. Nerode (Eds.): LFCS 2022, LNCS 13137, pp. 346–363, 2022.
https://doi.org/10.1007/978-3-030-93100-1_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93100-1_22&domain=pdf
http://orcid.org/0000-0003-4509-594X
http://orcid.org/0000-0002-6495-7405
http://orcid.org/0000-0002-1078-6970
https://doi.org/10.1007/978-3-030-93100-1_22

Dialectica Logical Principles 347

both syntax and semantics by a category, and an interpretation by a functor.
The categorical framework provides a rich conceptual background for logical and
type-theoretic constructions. In many cases, the categorical semantics of a logic
provides a basis for establishing a correspondence between theories in the logic
and instances of an appropriate kind of category. A classic example is the cor-
respondence between theories of βη-equational logic over simply typed lambda
calculus and Cartesian closed categories. Categories arising from theories via
term-model constructions can usually be characterised up to equivalence by a
suitable universal property. This has enabled proofs of meta-theoretical prop-
erties of logics by means of an appropriate categorical algebra. One defines a
suitable internal language naming relevant constituents of a category, and then
applies categorical semantics to turn assertions in a logic over the internal lan-
guage into corresponding categorical statements. The goal is to obtain ‘internal
language theorems’ that allow us to pass freely from the logic/type theory to
the categorical universe, in such a way that we can solve issues in whichever
framework is more appropriate.

Several kinds of categorical universe are available. Our previous joint work on
Gödel’s Dialectica Interpretation [4] used the fibrational framework expounded
by Jacobs in [9]. The identification of syntax-free notions of quantifier-free for-
mulae using categorical concepts is the key insight to our results in [29]. This
identification, besides explaining how Gödel’s Dialectica interpretation works as
a double completion under products and coproducts, is itself of independent
interest, as it deepens our ability to think about first-order logic, using categor-
ical notions. Here we show that the notions introduced in our previous paper
correspond to well-known (non-intuitionistic but) constructive principles under-
lying Gödel’s Dialectica interpretation.

2 Logical Principles in the Dialectica Interpretation

Gödel’s Dialectica interpretation [4,5] associates to each formula φ in the lan-
guage of arithmetic its Dialectica interpretation φD, a formula of the form:

φD = ∃u.∀x.φD

which tries to be as constructive as possible. The most complicated clause of the
translation (and, in Gödel’s words, “the most important one”) is the definition
of the translation of the implication connective (ψ → φ)D. This involves two
logical principles which are usually not acceptable from an intuitionistic point
of view, namely a form of the Principle of Independence of Premise (IP) and a
generalisation of Markov’s Principle (MP). The interpretation is given by:

(ψ → φ)D = ∃V,X.∀u, y.(ψD(u,X(u, y)) → φD(V (u), y)).

The motivation provided in the collected works of Gödel for this translation is
that given a witness u for the hypothesis ψD one should be able to obtain a
witness for the conclusion φD, i.e. there exists a function V assigning a witness

348 D. Trotta et al.

V (u) of φD to every witness u of ψD. Moreover, this assignment has to be
such that from a counterexample y of the conclusion φD we should be able to
find a counterexample X(u, y) to the hypothesis ψD. This transformation of
counterexamples of the conclusion into counterexamples for the hypothesis is
what gives Dialectica its essential bidirectional character.

We first recall the technical details behind the translation of (ψ → φ)D ([4])
showing the precise points in which we have to employ the non-intuitionistic
principles (MP) and (IP). First notice that ψD → φD, that is:

∃u.∀x.ψD(u, x) → ∃v.∀y.φD(v, y) (1)

is classically equivalent to:

∀u.(∀x.ψD(u, x) → ∃v.∀y.φD(v, y)). (2)

If we apply a special case of the Principle of Independence of Premise,
namely:

(∀x.θ(x) → ∃v.∀y.η(v, y)) → ∃v.(∀x.θ(x) → ∀y.η(v, y)) (IP*)

we obtain that (2) is equivalent to:

∀u.∃v.(∀x.ψD(u, x) → ∀y.φD(v, y)). (3)

Moreover, we can see that this is equivalent to:

∀u.∃v.∀y.(∀x.ψD(u, x) → φD(v, y)). (4)

The next equivalence is motivated by a generalisation of Markov’s Principle,
namely:

¬∀x.θ(u, x) → ∃x.¬θ(u, x). (MP)

By applying (MP) we obtain that (4) is equivalent to:

∀u.∃v.∀y.∃x.(ψD(u, x) → φD(v, y)). (5)

To conclude that ψD → φD = (ψ → φ)D we have to apply the Axiom of
Choice (or Skolemisation), i.e.:

∀y.∃x.θ(y, x) → ∃V.∀y.θ(y, V (y)) (AC)

twice, obtaining that (5) is equivalent to:

∃V,X.∀u, y.(ψD(u,X(u, y)) → φD(V (u), y)).

This analysis (from Gödel’s Collected Works, page 231) highlights the key role
the principles (IP), (MP) and (AC) play in the Dialectica interpretation of impli-
cational formulae. The role of the axiom of choice (AC) has been discussed from
a categorical perspective both by Hofstra [7] and in our previous work [29]. We
examine the two principles (IP) and (MP) in the next subsections.

Dialectica Logical Principles 349

2.1 Independence of Premise

In logic and proof theory, the Principle of Independence of Premise states
that:

(θ → ∃u.η(u)) → ∃u.(θ → η(u))

where u is not a free variable of θ. While this principle is valid in classical logic
(it follows from the law of the excluded middle), it does not hold in intuition-
istic logic, and it is not generally accepted constructively [2]. The reason why
the principle (IP) is not generally accepted constructively is that, from a con-
structive perspective, turning any proof of the premise φ into a proof of ∃u.η(u)
means turning a proof of θ into a proof of η(t) where t is a witness for the exis-
tential quantifier depending on the proof of θ. In particular, the choice of the
witness depends on the proof of the premise θ, while the (IP) principle tell us,
constructively, that the witness can be chosen independently of any proof of the
premise θ.

In the Dialectica translation we only need a particular version of the (IP)
principle:

(∀y.θ(y) → ∃u.∀v.η(u, v)) → ∃u.(∀y.θ(y) → ∀v.η(u, v)) (IP*)

which means that we are asking (IP) to hold not for every formula, but only
for those formulas of the form ∀y.θ(y) with θ quantifier-free. We recall a useful
generalisation of the (IP*) principle, namely:

(θ → ∃u.η(u)) → ∃u.(θ → η(u)) (IP)

where θ is ∃-free, i.e. θ contains neither existential quantifiers nor disjunctions
(of course, it is also assumed that u is not a free variable of θ). Therefore, the
condition that IP holds for every formula of the form ∀y.θ(y) with θ(y) quantifier-
free is replaced by asking that it holds for every formula free from the existential
quantifier.

This formulation of (IP) is introduced in [19] where, starting from the obser-
vation that intuitionistic finite-type arithmetic is closed under the independence
of premise rule for ∃-free formula (IPR), it is proved that a similar result holds for
many set theories including Constructive Zermelo-Fraenkel Set Theory (CZF)
and Intuitionistic Zermelo-Fraenkel Set Theory (IZF). The Independence of
Premise Rule for ∃-free formula (IPR) that we use in this paper, which is the
same as the one in [19], states that:

if � θ → ∃u.η(u)) then � ∃u.(θ → η(u)) (IPR)

where θ is ∃-free.

2.2 Markov’s Principle

Markov’s Principle is a statement that originated in the Russian school of
constructive mathematics. Formally, Markov’s principle is usually presented as
the statement:

¬¬∃x.φ(x) → ∃x.φ(x)

350 D. Trotta et al.

where φ is a quantifier-free formula. Thus, MP in the Dialectica interpretation,
namely:

¬∀x.φ(x) → ∃x.¬φ(x) (MP)

with φ(x) a quantifier-free formula, can be thought of as a generalisation of the
Markov Principle above. As remarked in [2], the reason why MP is not generally
accepted in constructive mathematics is that in general there is no reasonable
way to choose constructively a witness x for ¬φ(x) from a proof that ∀x.φ(x)
leads to a contradiction. However, in the context of Heyting Arithmetic, i.e.
when x ranges over the natural numbers, one can prove that these two formula-
tions of Markov’s Principle are equivalent. More details about the computational
interpretation of Markov’s Principle can be found in [17]. We recall the version
of Markov’s Rule (MR) corresponding to Markov’s Principle:

if � ¬∀x.φ(x) then � ∃x.¬φ(x) (MR)

where φ(x) is a quantifier-free formula.

3 Logical Doctrines

One of the most relevant notions of categorical logic which enabled the study of
logic from a pure algebraic perspective is that of a hyperdoctrine, introduced in a
series of seminal papers by F.W. Lawvere to synthesise the structural properties
of logical systems [10–12]. Lawvere’s crucial intuition was to consider logical
languages and theories as fibrations to study their 2-categorical properties, e.g.
connectives, quantifiers and equality are determined by structural adjunctions.
Recall from [10,23] that a hyperdoctrine is a functor:

P : Cop −→ Hey

from the opposite of a Cartesian closed category C to the category of Heyting
algebrasHey satisfying some further conditions: for every arrow A

f−→ B in C, the
homomorphism Pf : P (B) −→ P (A) of Heyting algebras, where Pf denotes the
action of the functor P on the arrow f , has a left adjoint ∃f and a right adjoint ∀f

satisfying the Beck-Chevalley conditions. The intuition is that a hyperdoctrine
determines an appropriate categorical structure to abstract both notions of first
order theory and of interpretation.

Semantically, a hyperdoctrine is essentially a generalisation of the contravari-
ant powerset functor on the category of sets:

P : Setop −→ Hey

sending any set-theoretic arrow A
f−→ B to the inverse image functor

PB
Pf=f−1

−−−−−→ PA. However, from the syntactic point of view, a hyperdoctrine
can be seen as the generalisation of the so-called Lindenbaum-Tarski algebra of

Dialectica Logical Principles 351

well-formed formulae of a first order theory. In particular, given a first order
theory T in a first order language L, one can consider the functor:

LT : Vop −→ Hey

whose base category V is the syntactic category of L, i.e. the objects of V are
finite lists −→x := (x1, . . . , xn) of variables and morphisms are lists of substitutions,
while the elements of LT (−→x) are given by equivalence classes (with respect
to provable reciprocal consequence ��) of well-formed formulae in the context
−→x , and order is given by the provable consequences with respect to the fixed
theory T . Notice that in this case an existential left adjoint to the weakening
functor LT π is computed by quantifying existentially the variables that are not
involved in the substitution given by the projection (by duality the right adjoint
is computed by quantifying universally).

Recently, several generalisations of the notion of a Lawvere hyperdoctrine
were considered, and we refer for example to [13,15,16] or to [8,24] for higher-
order versions. In this work we consider a natural generalisation of the notion of
hyperdoctrine, and we call it simply a doctrine. A doctrine is just a functor:

P : Cop −→ Pos

where the category C has finite products and Pos is the category of posets.
Depending on the categorical properties enjoyed by P , we get P to model

the corresponding fragments of first order logic formally in a way identical to
the one for P, which we call a generalised Tarski semantics and which continues
to be complete. Again, the syntactic intuition behind the notion of doctrine
P : Cop −→ Pos remains the same, one should think of C as the category of
contexts associated to a given type theory. Given such a context A, the elements
of the posets P (A) represent the predicates in context A and the order relation
of P (A) represents the relation of syntactic provability (with respect to the

fragment of first order logic modelled by P). Arrows B
f−→ A of C represent

(finite lists of) terms-in-context:

b : B | f(b) : A

in such a way that the functor Pf models the substitution by the (finite list of)
term(s) f . For instance, if α ∈ PA represents a formula in context a : A | α(a),
then Pf (α) ∈ P (B) represents the formula b : B | α(f(b)) in context B obtained
by substituting f into α.

Now we recall from [13,15,26] the notions of existential and universal doc-
trines, and we refer to [23] for a detailed introduction to the theory of doctrines
and hyperdoctrines. For further insights and applications to higher-order logic
or realizability, we refer to [8,20,24].

Definition 1. A doctrine P : Cop −→ Pos is existential (resp. universal) if,
for every A1 and A2 in C and every projection A1 × A2

πi−→ Ai, i = 1, 2, the
functor:

PAi

Pπi−−→ P (A1 × A2)

352 D. Trotta et al.

has a left adjoint ∃πi
(resp. a right adjoint ∀πi

), and these satisfy the Beck-
Chevalley condition: for any pullback diagram

X ′ π′
��

f ′

A′

f

X

π
�� A

with π and π′ projections, for any β in P (X) the equality:

∃π′Pf ′β = Pf∃πβ (resp. ∀π′Pf ′β = Pf∀πβ)

holds (however, observe that the inequality ∃π′Pf ′β ≤ Pf∃πβ (resp. ∀π′Pf ′β ≥
Pf∀πβ) always holds).

If a doctrine P : Cop −→ Pos is existential and α ∈ P (A × B) is a formula-
in-context a : A, b : B | α(a, b) and A × B

πA−−→ A is the product projection on
the component A, then ∃πA

α ∈ PA represents the formula a : A | ∃b : B.α(a, b)
in context A. Analogously, if the doctrine P is universal, then ∀πA

α ∈ PA
represents the formula a : A | ∀b : B.α(a, b) in context A. This interpretation is
sound and complete for the usual reasons: this is how classic Tarski semantics
can be characterised in terms of categorical properties of the powerset functor
P : Setop −→ Pos.

One of the most interesting aspects of this categorical approach to logic is that
there is categorical equivalence between logical theories and doctrines, via the so-
called internal language of a doctrine [14,23]. The internal language of a doctrine
P essentially constitutes a syntax endowed with a semantics induced by P itself:
there is a way to interpret every sequent in the fragment of first-order logic
modelled by P into a categorical statement involving P . This interpretation is
sound and complete; this is precisely why we can deduce properties of P through
a purely syntactical procedure. We define the following notation for this syntax,
taking advantage of these equivalent ways of reasoning about doctrines and logic.
Notation. From now on, we shall employ the logical language provided by the
internal language of a doctrine and write:

a1 : A1, . . . , an : An | φ(a1, . . . , an) � ψ(a1, . . . , an)

instead of:
φ ≤ ψ

in the fibre P (A1 × · · · × An). Similarly, we write:

a : A | φ(a) � ∃b : B.ψ(a, b) and a : A | φ(a) � ∀b : B.ψ(a, b)

in place of:
φ ≤ ∃πA

ψ and φ ≤ ∀πA
ψ

Dialectica Logical Principles 353

in the fibre P (A). Also, we write a : A | φ �� ψ to abbreviate a : A | φ � ψ and
a : A | ψ � φ. Substitutions via given terms (i.e. reindexings and weakenings) are
modelled by pulling back along those given terms. Applications of propositional
connectives are interpreted by using the corresponding operations in the fibres
of the given doctrine. Finally, when the type of a quantified variable is clear from
the context, we will omit the type for the sake of readability.

4 Logical Principles via Universal Properties

It is possible to characterise, in terms of weak universal properties, those pred-
icates of a doctrine that are free from a quantifier. In the following defini-
tions, we pursue this idea of defining those elements of an existential doctrine
P : Cop −→ Pos which are free from the left adjoints ∃π. This idea was origi-
nally introduced in [27] and, independently, in [3], and then further developed
and generalised in the fibrational setting in [29].

Definition 2. Let P : Cop −→ Pos be an existential doctrine and let A be an
object of C. A predicate α of the fibre P (A) is said to be an existential splitting
if it satisfies the following weak universal property: for every projection A×B

πA−−→
A of C and every predicate β ∈ P (A × B) such that α ≤ ∃πA

(β), there exists an
arrow A

g−→ B such that:
α ≤ P〈1A,g〉(β).

Existential splittings stable under re-indexing are called existential-free elements.
Thus we introduce the following definition:

Definition 3. Let P : Cop −→ Pos be an existential doctrine and let I be an
object of C. A predicate α of the fibre P (I) is said to be existential-free if

Pf (α) is an existential splitting for every morphism A
f−→ I.

Employing the presentation of doctrines via internal language, we require
that for the formula i : I | α(i) to be free from the existential quantifier, whenever
a : A | α(f(a)) � ∃b : B.β(a, b), for some term a : A | f(a) : I, then there is a
term a : A | g(a) : B such that a : A | α(f(a)) � β(a, g(a)).

Observe that in general we always have that a : A | β(a, g(a)) � ∃b : B.β(a, b),
in other words P〈1A,g〉β ≤ ∃πA

β. In fact, it is the case that β ≤ PπA
∃πA

β (as
this arrow of P (A × B) is nothing but the unit of the adjunction ∃πA

� PπA
),

hence a re-indexing by the term 〈1A, g〉 yields the desired inequality. Therefore,
the property that we are requiring for i : I | α(i) turns out to be the following:
whenever there are proofs of ∃b : B.β(a, b) from α(f(a)), at least one of them
factors through the canonical proof of ∃b : B.β(a, b) from β(a, g(a)) for some
term a : A | g(a) : B. This fact implies that, while freely adding the existential
quantifiers to a doctrine, we do not add a new sequent α � ∃b.β(b) (where α and
β(b) are predicates in the doctrine we started from) as long as we do not allow
a sequent α � β(g) as well, for some term g (see [28] for more details). For the
proof-relevant versions of this definition we refer to [29].

We dualise the previous Definitions 2 and Definition 3 to get the correspond-
ing ones for the universal quantifier.

354 D. Trotta et al.

Definition 4. Let P : Cop −→ Pos be a universal doctrine and let A be an object
of C. A predicate α of the fibre P (A) is said to be a universal splitting if it
satisfies the following weak universal property: for every projection A×B

πA−−→ A
of C and every predicate β ∈ P (A × B) such that ∀πA

(β) ≤ α, there exists an
arrow A

g−→ B such that:
P〈1A,g〉(β) ≤ α.

Definition 5. Let P : Cop −→ Pos be a universal doctrine and let I be an object
of C. A predicate α of the fibre P (I) is said to be universal-free if Pf (α) is a

universal splitting for every morphism A
f−→ I.

The property we require of the formula i : I | α(i), so that it is free from
the universal quantifiers, is that whenever a : A | ∀b : B.β(a, b) � α(f(a)), for
some term a : A | f(a) : I, then there is a term a : A | g(a) : B such that
a : A | β(a, g(a)) � α(f(a)).

Definition 6. Let P : Cop −→ Pos be a doctrine. If P is existential, we say
that P has enough existential-free predicates if, for every object I of C and
every predicate α ∈ PI, there exist an object A and an existential-free object β
in P (I × A) such that α = ∃πI

β.
Analogously, if P is universal, we say that P has enough universal-free

predicates if, for every object I of C and every predicate α ∈ PI, there exist
an object A and a universal-free object β in P (I × A) such that α = ∀πI

β.

Now we can introduce a particular kind of doctrine called a Gödel doctrine.
This definition works as a synthesis of our process of categorification of the
logical notions.

Definition 7. A doctrine P : Cop −→ Pos is called a Gödel doctrine if:

1. the category C is cartesian closed;
2. the doctrine P is existential and universal;
3. the doctrine P has enough existential-free predicates;
4. the existential-free objects of P are stable under universal quantification, i.e. if

α ∈ P (A) is existential-free, then ∀π(α) is existential-free for every projection
π from A;

5. the sub-doctrine P ′ : Cop �� Pos of the existential-free predicates of P has
enough universal-free predicates.

The fourth point of the Definition 7 above implies that, given a Gödel doctrine
P : Cop −→ Pos, the sub-doctrine P ′ : Cop −→ Pos, such that P ′(A) is the
poset of existential-free predicates contained in P (A) for any object A of C, is a
universal doctrine. From a purely logical perspective, requiring existential-free
elements to be stable under universal quantification is quite natural since this
can be also read as if α(x) is an existential-free predicate, then ∀x : X.α(x) is
again an existential-free predicate.

Dialectica Logical Principles 355

An element α of a fibre P (A) of a Gödel doctrine P that is both an existential-
free predicate and a universal-free predicate in the sub-doctrine P ′ of existential-
free elements of P is called a quantifier-free predicate of P . In order to
simplify the notation, but also to make clear the connection with the logical
presentation in the Dialectica interpretation, we will use the notation αD to
indicate an element α which is a quantifier-free predicate. Applying the definition
of a Gödel doctrine we obtain the following result.

Theorem 8. Let P : Cop �� Pos be a Gödel doctrine, and let α be an ele-
ment of P (A). Then there exists a quantifier-free predicate αD of P (I × U × X)
such that:

i : I | α(i) �� ∃u : U.∀x : X.αD(i, u, x).

This theorem shows that in a Gödel doctrine every formula admits a presentation
of the precise form used in the Dialectica translation.

Now we show that employing the properties of a Gödel doctrine we can pro-
vide a complete categorical description and presentation of the chain of equiva-
lences involved in the Dialectica interpretation of the implicational formulae. In
particular, we show that the crucial steps where (IP) and (MP) are applied are
represented categorically via the notions of existential-free element and universal-
free element.

Let us consider a Gödel fibration P : Cop �� Pos and two quantifier-free
predicates ψD ∈ P (U × X) and φD ∈ P (V × Y). First notice that the following
equivalence follows by definition of left adjoint functor (for sake of readability we
omit the types of quantified variables as we anticipated in the previous section):

− | ∃u.∀x.ψD(u, x) � ∃v.∀y.φD(v, y) ⇐⇒ u : U | ∀x.ψD(u, x) � ∃v.∀y.φD(v, y)
(6)

Now we employ the fact that the predicate ∀x.ψD(u, x) is existential-free in the

Gödel doctrine, obtaining that there exists an arrow U
f0−→ V , such that:

u : U | ∀x.ψD(u, x) � ∃v.∀y.φD(v, y) ⇐⇒ u : U | ∀x.ψD(u, x) � ∀y.φD(f0(u), y)

Then, since the universal quantifier is right adjoint to the weakening functor, we
have that:

u : U | ∀x.ψD(u, x) � ∀y.φD(f0(u), y) ⇐⇒ u : U, y : Y | ∀x.ψD(u, x) � φD(f0(u), y).

Now we employ the fact that φD(f0(u), y) is universal-free in the subdoctrine of
existential-free elements of P . Notice that since ψD(u, x) is a quantifier-free ele-
ment of the Gödel doctrine, we have that ∀x.ψD(u, x) is existential free. Recall
that this follows from the fact that in every Gödel doctrine, existential-free
elements are stable under universal quantification (this is the last point Defini-

tion 7). Therefore we can conclude that there exists an arrow U × Y
f1−→ X of C

such that:

u : U, y : Y | ∀x.ψD(u, x) � φD(f0(u), y) ⇐⇒ u : U, y : Y | ψD(u, f1(u, y)) � φD(f0(u), y)

(7)

356 D. Trotta et al.

Then, combining the equivalence (6) and (7), we obtain the following equivalence:

− | ∃u.∀x.ψD(u, x) � ∃v.∀y.φD(v, y) ⇐⇒
there exist (f0, f1) s.t. u : U, y : Y | ψD(u, f1(u, y)) � φD(f0(u), y).

The arrow U
f0−→ V represents the witness function, i.e. it assigns to every witness

u of the hypothesis a witness f0(u) of the thesis, while the arrow U×Y
f1−→ X rep-

resents the counterexample function. Notice that while the witness function f0(u)
depends only of the witness u the counterexample function f1(u, y) depends on a
witness of the hypothesis and a counterexample of the thesis. This is a quite nat-
ural fact because, considering the constructive point of view, the counterxample
has to be relative to a witness validating the thesis.

This provides a proof of the following theorem which establishes the connec-
tion between Gödel doctrines and the Dialectica interpretation. Notice that for
the sake of clarity, but also to keep the presentation closer to the original one,
in the previous paragraph we have considered formulae ∃u.∀x.ψD(u, x) with no
free-variables. However, the previous arguments can be easily generalised also
for the case of formulae of the form ∃u.∀x.ψD(u, x, i), i.e. with free-variables i.
In this case one needs to change just the domains of the functions f0 and f1,
since they are allowed to depend also on the free-variables.

Theorem 9. Let P : Cop �� Pos be a Gödel doctrine. Then for every ψD ∈
P (I × U × X) and φD ∈ P (I × V × Y) quantifier-free predicates of P we have
that:

i : I | ∃u.∀x.ψD(i, u, x) � ∃v.∀y.φD(i, v, y)

if and only if there exists I × U
f0−→ V and I × U × Y

f1−→ X such that:

u : U, y : Y, i : I | ψD(i, u, f1(i, u, y)) � φD(i, f0(i, u), y).

This theorem shows that the notion of Gödel doctrine encapsulates in a pure
form the basic mathematical feature of the Dialectica interpretation, namely its
interpretation of implication, which corresponds to the existence of functionals
of types f0 : U → V and f1 : U × Y → X as described. One should think of
this as saying that a proof of ∃u.∀x.ψD(i, u, x) → ∃v.∀y.φD(i, v, y) is obtained
by transforming to ∀u.∃v.∀y.∃x.(ψD(i, u, x) → φD(i, v, y)), and then Skolemiz-
ing along the lines explained in the Sect. 2 and by Troelstra [4]. So, combining
Theorems 8 and 9 we have strong evidence that the notion of Gödel doctrine
really provides a categorical abstraction of the main concepts involved in the
Dialectica translation. Now we show that this kind of doctrine embodies also
the logical principles involved in the translation. The first principle we consider
it the axiom of choice (AC) also sometimes called the principle of Skolemisation.
Since the following theorem is the proof-irrelevant version of the proof we refer
to [29, Prop. 2.8] for the detailed proof.

Dialectica Logical Principles 357

Theorem 10. Every Gödel doctrine P : Cop �� Pos validates the
Skolemisation principle, that is:

a1 : A1 | ∀a2.∃b.α(a1, a2, b) �� ∃f.∀a2.α(a1, a2, fa2)

where f : BA2 and fa2 denote the evaluation of f on a2, whenever α(a1, a2, b)
is a predicate in the context A1 × A2 × B.

Remark 11. In the proof of Theorem 10 we do not need the property 5. of
Definition 7. That is why, according to [29], one calls a Skolem doctrine a doctrine
satisfying all of the properties satisfied by a Gödel doctrine, except for the 5.
one.

Recall that the notion of Dialectica category introduced in [21] has been gen-
eralised to the fibrational setting in [7], and then, in particular, we can consider
the proof-irrelevant construction associating a doctrine Dial(P) to a given doc-
trine P :

Dialectica construction. Let P : Cop �� Pos be a doctrine whose base cat-
egory C is cartesian closed. The dialectica doctrine Dial(P) : Cop �� Pos
is defined as the functor sending an object I into the poset Dial(P)(I) defined
as follows:

– objects are quadruples (I,X,U, α) where I,X and U are objects of the base
category C and α ∈ P (I × X × U);

– partial order: we stipulate that (I, U,X, α) ≤ (I, V, Y, β) if there exists a

pair (f0, f1), where I × U
f0−→ V and I × U × Y

f1−→ X are morphisms of C
such that:

α(i, u, f1(i, u, y)) ≤ β(i, f0(i, u), y).

In [29] we proved that a fibration is an instance of the Dialectica construction
if and only if it is a Gödel fibration, and to prove this result we employ the
decomposition of the Dialectica monad as a free-simple-product completion fol-
lowed by the free-simple-coproduct completion of fibrations. So we can deduce
the same result for the proof-irrelevant version here simply as a particular case.

However, notice that employing Theorems 8 and 9 we have another simpler
and more direct way for proving such correspondence, because Theorem 9 states
that the order defined in the fibres of a Gödel doctrine is exactly the same order
defined in a dialectica doctrine. The idea is that if P is a Gödel doctrine and
P ′ is the subdoctrine of quantifier-free elements of P it is easy to check that

the assignment P (I)
(−)D

−−−→ Dial(P ′)(I) sending α �→ (I,X,U, αD) where αD is
the quantifier-free element such that α(i) �� ∃u∀xαD(i, u, x) (which exists by
Theorem 8), provides an isomorphism of posets by Theorem 9, and it can be
extended to an isomorphism of existential and universal doctrines.

Theorem 12. Every Gödel doctrine P is equivalent to the Dialectica completion
Dial(P ′) of the full subdoctrine P ′ of P consisting of the quantifier-free predicates
of P .

358 D. Trotta et al.

Therefore, we have that Theorem 12 provides another way of thinking about
Dialectica doctrines (or Dialectica categories) since it underlines the logical prop-
erties that a doctrine has to satisfy in order to be an instance of the Dialectica
construction.

5 Logical Principles in Gödel Hyperdoctrines

Gödel doctrines provide a categorical framework that generalises the princi-
pal concepts underlying the Dialectica translation, such as the existence of
witness and counterexample functions whenever we have an implication i :
I | ∃u.∀x.ψD(u, x, i) � ∃v.∀y.φD(v, y, i). The key idea is that, intuitively, the
notion of existential-quantifier-free objects can be seen as a reformulation of the
independence of premises rule, while product-quantifier-free objects can be seen
as a reformulation of Markov’s rule. Notice that in the proof of Theorem 9 exis-
tential and universal free elements play the same role that (IP) and (MP) have
in the Dialectica interpretation of implicational formulae.

The main goal of this section is to formalise this intuition showing the exact
connection between the rules (IPR) and (MR) and Gödel doctrines. So, first of
all we have to equip Gödel doctrines with the appropriate Heyting structure in
the fibres in order to be able to formally express these principles. Therefore, we
have to consider Gödel hyperdoctrines.

Definition 13. A hyperdoctrine P : Cop �� Hey is said a Gödel hyper-
doctrine when P is a Gödel doctrine.

From a logical perspective, one might want the quantifier-free predicates to
be closed with respect to all of the propositional connectives (or equivalently
that P is the dialectica completion of a hyperdoctrine itself - see [28]), since this
is what happens in logic. However, we do not need such a strong condition here.
We only require in the next statements that ⊥ is quantifier-free and/or that �
is existential free.

Theorem 14. Every Gödel hyperdoctrine P : Cop �� Hey satisfies the
Rule of Independence of Premise, i.e. whenever β ∈ P (A×B) and α ∈ P (A)
is a existential-free predicate, it is the case that:

a : A | � � α(a) → ∃b.β(a, b) implies that a : A | � � ∃b.(α(a) → β(a, b)).

Proof. Let us assume that a : A | � � α(a) → ∃b.β(a, b). Then it is the case that
a : A | α(a) � ∃b.β(a, b). Since α(a) is free from the existential quantifier, it is
the case that there is a term in context a : A | t(a) : B such that:

a : A | � � α(a) → β(a, t(a)).

Therefore, since:

a : A | α(a) → β(a, t(a)) � ∃b.(α(a) → β(a, b))

Dialectica Logical Principles 359

(as this holds for any predicate γ(a,−) in place of the predicate αD(a) →
β(a,−)) we conclude that:

a : A | � � ∃b.(α(a) → β(a, b)).

Notice that Theorem 14 formalises precisely the intuition that the notion of
existential-free element can be seen as a reformulation of the independence of
premises rule: in a Gödel hyperdoctrine we have that existential-free elements
are exactly elements satisfying the independence of premises rule.

Theorem 15. Every Gödel hyperdoctrine P : Cop �� Hey satisfies the fol-
lowing Modified Markov’s Rule, i.e. whenever βD ∈ P (A) is a quantifier-free
predicate and α ∈ P (A × B) is an existential-free predicate, it is the case that:

a : A | � � (∀b.α(a, b)) → βD(a) implies that a : A | � � ∃b.(α(a, b) → βD(a)).

Proof. Let us assume that a : A | � � (∀b.α(a, b)) → βD(a). Then it is the case
that a : A | (∀b.α(a, b)) � βD(a). Hence, since βD is quantifier-free and α is
existential-free, there exists a term in context a : A | t(a) : B such that:

a : A | � � α(a, t(a)) → βD(a)

therefore, since:

a : A | α(a, t(a)) → β(a) � ∃b.(α(a, b) → βD(a))

we can conclude that:

a : A | � � ∃b.(α(a, b) → βD(a)).

While for the case of (IPR) we have that existential-free elements of a Gödel
hyperdoctrine correspond to formulae satisfying (IPR), we have that the ele-
ments of a Gödel doctrine that are quantifier-free, i.e. universal-free in the
subdoctrine of existential-free elements, are exactly those satisfying a modified
Markov’s Rule by Theorem 15. Moreover, notice that this Modified Markov’s
Rule is exactly the one we need in the equivalence between (4) and (5) in the
interpretation of the implication in Sect. 2. Alternatively, in order to get this
equivalence one requires βD to satisfy the law of excluded middle and the usual
Markov’s Rule (see Corollary 16), as these two assumptions yield the Modified
Markov’s Rule. In particular, any boolean doctrine (a hyperdoctrine modelling
the law of excluded middle) satisfies the Modified Markov’s Rule (see Remark
17).

To obtain the usual Markov Rule as corollary of Theorem 15, we simply have
to require the bottom element ⊥ of a Gödel hyperdoctrine to be quantifier-free.

Corollary 16. Every Gödel hyperdoctrine P : Cop �� Hey such that ⊥ is a
quantifier-free predicate satisfies Markov’s Rule, i.e. for every quantifier-free
element αD ∈ P (A × B) it is the case that:

b : B | � � ¬∀a.αD(a, b) implies that b : B | � � ∃a.¬αD(a, b).

360 D. Trotta et al.

Proof. It follows by Theorem 15 just by replacing βD with ⊥, that is quantifier-
free by hypothesis.

Remark 17. Any boolean doctrine satisfies the Rule of Independence of Premises
and the (Modified) Markov Rule. In general these are not satisfied by a usual
hyperdoctrine, because they are not satisfied by intuitionistic first-order logic.
It turns out that the logic modelled by a Gödel hyperdoctrine is right in-between
intuitionistic first-order and classical first-order logic: it is powerful enough to
guarantee the equivalences in Sect. 2 that justify the Dialectica interpretation of
the implication.

Remark 18. We observe that Theorem 15 and Theorem 14 deal with the validity
of the rule versions of (IP) and (MP), and not the usual presentation in form of
axioms or principles. As pointed out in [19], even if HA validates these rules, in
general, these are not valid in an arbitrary intuitionistic theory, so it becomes
interesting to find out which are the intuitionist theories that validate these
rules. The validity of these rules in arbitrary Gödel hyperdoctrines have two
main consequences: first, since HA validates these rules and Gödel’s Dialectica
interpretation was originally introduced to provide proofs of the relative consis-
tency of HA, the fact that Gödel doctrines validate these rules too underscores
how faithful the modelling is. If Gödel doctrines or Dialectica categories didn’t
validate these rules, it would be hard to say that these categorical constructions
abstract the main features of the logical translation, since they could not be
employed for giving proofs of relative consistency of HA.

Secondly, we have that validating these rules suggests that the internal logic
of Gödel hyperdoctrines could represent an interesting family of theories being
intuitionistic, but at the same time they validate the rule version of (IP) and
(MP) as HA.

We conclude by presenting two other results about the Rule of Choice and
the Counterexample Property previously defined in [28], which follow directly
from the definitions of existential-free and universal-free elements.

Corollary 19. Every Gödel hyperdoctrine P : Cop �� Hey such that ⊥ is a
quantifier-free object satisfies the Counterexample Property, that is, when-
ever:

a : A | ∀b.α(a, b) � ⊥
for some predicate α(a, b) ∈ P (A × B), then it is the case that:

a : A | α(a, g(a)) � ⊥

for some term in context a : A | g(a) : B.

Corollary 20. Every Gödel hyperdoctrine P : Cop �� Hey such that � is
existential-free satisfies the Rule of Choice, that is, whenever:

a : A | � � ∃b.α(a, b)

Dialectica Logical Principles 361

for some existential-free predicate α ∈ P (A × B), then it is the case that:

a : A | � � α(a, g(a))

for some term in context a : A | g(a) : B.

The rule appearing in Corollary 20 is called Rule of Choice in [13], while it
appears as explicit definability in [19].

6 Conclusion

We have recast our previous fibrational based modelling of Gödel’s interpre-
tation [29] in terms of categorical (hyper)doctrines. We show that the notions
we considered in our previous work (existential-free and universal-free objects)
really provide a categorical explanation of the traditional syntactic notions as
described in [4]. This means that we are able to mimic completely the purely
logical explanation of the interpretation, given by Spector and expounded on by
Troelstra [4], using categorical notions. We show how to interpret logical impli-
cations using the Dialectica transformation. Through this process we explain
how we go beyond intuitionistic principles, adopting both the Independence of
Premise (IP) principle and Markov’s Principle (MP) as well as the axiom of
choice in the logic.

Our main results show the perfect correspondence between the logical and
the categorical tools, in the cases of Markov’s principle (MP) and the indepen-
dence of premise (IP) principle. This is very interesting by itself, as it shows
that the categorical modelling really captures all the essential features of the
interpretation. But it also opens new possibilities for modelling of constructive
set theories (in the style of Nemoto and Rathjan [19]) and of categorical mod-
elling of intermediate logics (intuitionistic propositional logic plus (IP) or (MK),
see [1,6]). This leads into applications both into the investigation of functional
abstract machines [18,22], of reverse mathematics [19] and of quantified modal
logic [25].

Acknowledgements. We would like to thank Milly Maietti for ideas and discussions
that inspired this work, and the anonymous referees for extremely useful comments.

References

1. Aschieri, F., Manighetti, M.: On Natural Deduction for Herbrand Constructive
logics II: Curry-Howard correspondence for Markov’s Principle in First-Order Logic
and Arithmetic. CoRR abs/1612.05457 (2016)

2. Avigad, J., Feferman, S.: Gödel’s functional (Dialectica) interpretation. In: Hand-
book of Proof Theory, vol. 137 (February 1999)

3. Frey, J.: Categories of partial equivalence relations as localizations. preprint (2020)
4. Gödel, K., Feferman, S., et al.: Kurt Gödel: Collected Works: Volume II: Publica-

tions 1938–1974, vol. 2. Oxford University Press, Oxford (1986)

362 D. Trotta et al.

5. Gödel, K.: Über eine bisher noch nicht benützte erweiterung des finiten standpunk-
tes. Dialectica 12(3–4), 280–287 (1958)

6. Herbelin, H.: An intuitionistic logic that proves Markov’s principle. In: 2010 25th
Annual IEEE Symposium on Logic in Computer Science, pp. 50–56 (2010)

7. Hofstra, P.: The Dialectica monad and its cousins. Models, Logics Higherdimen-
sional Categories Tribute Work Mihály Makkai 53, 107–139 (2011)

8. Hyland, J., Johnstone, P., Pitts, A.: Tripos theory. Math. Proc. Camb. Phil. Soc.
88, 205–232 (1980)

9. Jacobs, B.: Categorical Logic and Type Theory, Studies in Logic and the Founda-
tions of Mathematics, vol. 141. North Holland Publishing Company, Amsterdam
(1999)

10. Lawvere, F.: Adjointness in foundations. Dialectica 23, 281–296 (1969)
11. Lawvere, F.W.: Diagonal arguments and cartesian closed categories. In: Category

Theory, Homology Theory and their Applications II. LNM, vol. 92, pp. 134–145.
Springer, Heidelberg (1969). https://doi.org/10.1007/BFb0080769

12. Lawvere, F.: Equality in hyperdoctrines and comprehension schema as an adjoint
functor. In: Heller, A. (ed.) New York Symposium on Application of Categorical
Algebra, vol. 2, pp. 1–14. American Mathematical Society, Rhode Island (1970)

13. Maietti, M., Pasquali, F., Rosolini, G.: Triposes, exact completions, and Hilbert’s
ε-operator. Tbilisi Math. J. 10 (2017). https://doi.org/10.1515/tmj-2017-0106

14. Maietti, M.E.: Modular correspondence between dependent type theories and cat-
egories including pretopoi and topoi. Math. Struct. Comput. Sci. 15(6), 1089–1149
(2005)

15. Maietti, M., Rosolini, G.: Quotient completion for the foundation of constructive
mathematics. Log. Univers. 7(3), 371–402 (2013)

16. Maietti, M., Rosolini, G.: Unifying exact completions. Appl. Categ. Structures 23,
43–52 (2013)

17. Manighetti, M.: Computational interpretations of Markov’s principle (2016)
18. Moss, S., von Glehn, T.: Dialectica models of type theory. In: 33rd Annual

ACM/IEEE Symposium on Logic in Computer Science, pp. 739–748. Association
for Computing Machinery, New York (2018)

19. Nemoto, T., Rathjen, M.: The independence of premise rule in intuitionistic set
theories (November 2019)

20. van Oosten, J.: Realizability: An Introduction to its Categorical Side. ISSN, Else-
vier Science (2008). https://books.google.it/books?id=0Fvvurmr7FsC

21. de Paiva, V.: The Dialectica categories. Categories Comput. Sci. Logic 92, 47–62
(1989)

22. Pédrot, P.: A functional functional interpretation. In: CSL-LICS 2014 Science Logic
and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer
Science (2014)

23. Pitts, A.M.: Categorical logic. In: Abramsky, S., Gabbay, D.M., Maibaum, T.S.E.
(eds.) Handbook of Logic in Computer Science, vol. 6, pp. 39-.129. Oxford Univer-
sity Press, Oxford (1995)

24. Pitts, A.M.: Tripos theory in retrospect. Math. Struct. in Comp. Science 12, 265–
279 (2002)

25. Shimura, T., Kashima, R.: Cut-elimination theorem for the logic of constant
domains. Math. Log. Q. 40, 153–172 (1994)

26. Trotta, D.: The existential completion. Theor. Appl. Categories 35, 1576–1607
(2020)

27. Trotta, D., Maietti, M.: Generalized existential completions and their regular and
exact completions. Preprint (2021)

https://doi.org/10.1007/BFb0080769
https://doi.org/10.1515/tmj-2017-0106
https://books.google.it/books?id=0Fvvurmr7FsC

Dialectica Logical Principles 363

28. Trotta, D., Spadetto, M.: Quantifier completions, choice principles and applica-
tions. preprint (2020). https://arxiv.org/abs/2010.09111

29. Trotta, D., Spadetto, M., de Paiva, V.: The Gödel fibration. In: 46th International
Symposium on Mathematical Foundations of Computer Science (2021), LIPIcs,
vol. 202, pp. 87:1–87:16 (2021). https://doi.org/10.4230/LIPIcs.MFCS.2021.87

https://arxiv.org/abs/2010.09111
https://doi.org/10.4230/LIPIcs.MFCS.2021.87

Small Model Property Reflects in Games
and Automata

Maciej Zielenkiewicz(B)

Institute of Informatics, University of Warsaw, Warsaw, Poland
maciekz@mimuw.edu.pl

Abstract. Small model property is an important property that implies
decidability. We show that the small model size is directly related to some
important resources in games and automata for checking provability.

1 Introduction

Dependent types is one of the popular logic-based approaches developed in the
field of functional programming. With the help of such types it is possible to more
precisely capture the behaviour of programs. Intuitionistic first order logic is the
primary form of dependent types and the Curry-Howard isomorphism strictly
relates functional program synthesis and construction of proofs in intuitionistic
first order logic.

One of the well established ways towards understanding different aspects of
logic, proofs and proof search is through correspondence with different represen-
tations, e.g. ones that are more abstract like games and tableaux or ones that
are more detailed like linear logic. One of the most fruitful ideas fulfilling the
pattern is the game based approach, in the spirit of Ehrenfeucht-Fräıssé games
[3,4]. Another game-based technique was introduced for intuitionistic first order
logic [6]. The duality between proof-search and countermodel search [1] has been
interpreted there in terms of games and was used to make one unified game that
yields either a proof or a Kripke countermodel.

We extend the game based approach [6] to classes that have the finite model
property which, for algorithmically well-behaved classes, implies decidability [2,
p. 240]. A stronger property, the small model property, that also gives an upper
bound on the complexity of the satisfiability problem, is also studied. As it turns
out these two properties are equivalent for many interesting classes.

We show in the current work a correspondence between the limit of the
model size given by the small model property and some resources in automata
and games used for the description of logic. Section 2 contains preliminaries and
definitions. Section 3 discusses the automata and Theorem 1 bounds the size of
the set of eigenvariables with a number dependent on the number of subformulas
in the formula, the limit on the model size and the number of variables in the
initial formula. Section 4 covers games and Theorem 2 shows that a strategy can
be constructed that uses a number of maximal variables at most equal to the

c© Springer Nature Switzerland AG 2022
S. Artemov and A. Nerode (Eds.): LFCS 2022, LNCS 13137, pp. 364–375, 2022.
https://doi.org/10.1007/978-3-030-93100-1_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93100-1_23&domain=pdf
https://doi.org/10.1007/978-3-030-93100-1_23

Small Model Property Reflects in Games and Automata 365

limit on the model size; the maximal variable would be understood as the one
havina a maximal, by inclusion, set of known facts.

The paper is structured as follows. Section 2 contains preliminaries and defi-
nitions necessary to understand the following sections and discusses basic facts
about the small model property. Section 3 defines a quasiorder on variables cap-
turing the notion of variable with more facts. Using this order we show that the
size of the small countermodel defined in the small model property is also a limit
on the number of maximal variables in Afrodite strategy. Section 4 shows a limit
on the size of the set of eigenvariables of an Arcadian automaton, which depends
on the size of the small model, number of subformulas in the original formula
and the number of its variables.

2 Preliminaries

We work in intuitionistic first-order logic with no function symbols or constants.
The logic is the same as in previous works on games [6] and automata [7]. There
is a set of predicates P and every predicate P ∈ P has a defined arity. First
order variables are noted as X, Y , . . . (with possible annotations) and form an
infinite set X1. The formulas are understood as abstract syntax trees and the
possible formulas are generated with the grammar

τ, σ ::= P (X, . . . ,X) | τ ∧ σ | τ ∨ σ | τ → σ | ∀X.τ | ∃X.τ | ⊥.

We define the set FV(τ) of free variables of a formula τ as

– FV(P (X1, . . . , Xn)) = {X1, . . . , Xn},
– FV(τ1 ∗ τ2) = FV(τ1) ∪ FV(τ2) where ∗ ∈ {∧,∨,→},
– FV(�X.τ) = FV(τ)\{X} where � ∈ {∃,∀},
– FV(⊥) = ∅.

We assume that there is an infinite set Xp of proof term variables usually noted
as x, y,. . . that can be used to form the following terms.

M, N,P ::= x | 〈M,N〉 | π1M | π2M | λx : ϕ.M | MN | λXM
MX | in1,ϕ∨ψ M | in2,ϕ∨ψ M | case M of [x : ϕ] N, [y : ψ] P |
pack M, Y to ∃X.ϕ | let x : ϕ be M : ∃X.ϕ in N | ⊥⊥ϕM

The free variables in terms are defined by structural recursion on the terms, i.e.
FV(λx : ϕ.M) = FV(ϕ) ∪ FV(M). The inference rules for the logic are shown
in Fig. 1.

2.1 Models

We follow the definition of Kripke model from the work of Sørensen and Urzyczyn
[5]: A Kripke model is a triple 〈C, ≤, {Ac : c ∈ C}〉 where C �= ∅ is a set of states,
≤ is a partial order on C and Ac = 〈Ac, P

Ac
1 , . . . , PAc

n 〉 are structures such that
if c ≤ c′ then Ac ⊆ Ac′ and for all i the relation PAc

i ⊆ P
Ac′
i holds. A valuation

ρ maps variables to elements of Ac. The satisfaction relation c, ρ |= ϕ is defined
in the usual way:

366 M. Zielenkiewicz

c, ρ |= P (t1, ... , tn) iff Ac, ρ |= P (t1, ... , tn) classicaly,
c, ρ |= τ ∨ σ iff Ac, ρ |= τ or Ac, ρ |= σ,
c, ρ |= τ ∧ σ iff Ac, ρ |= τ and Ac, ρ |= σ,
c, ρ |= τ → σ iff for all c′ ≥ c if c′, ρ |= τ then c′, ρ |= σ,
c, ρ |= ∀aτ iff for all c′ ≥ c if â ∈ Ac′ then c′, ρ[â/a] |= τ,
c, ρ |= ∃aτ iff for some â ∈ Ac, c, ρ[â/a] |= τ .

Proposition 1 (completeness, Theorem 8.6.7 of of [5]). The Kripke mod-
els as defined above are complete for the intuitionistic predicate logic, i.e. Γ |= τ
iff Γ � τ .

2.2 The Finite Model Property and the Small Model Property

We focus on classes of formulas that have finite model property . Our definitions
closely follow that of Börger et al. [2]:

Γ, x :τ � x : τ
(var)

Γ � M1 : τ1 Γ � M2 : τ2
Γ � 〈M1, M2〉 : τ1 ∧ τ2

(∧I)

Γ � M : τ1 ∧ τ2
Γ � π1M : τ1

(∧E1)
Γ � M : τ1 ∧ τ2
Γ � π2M : τ2

(∧E2)

Γ � M : τ1
Γ � in1,τ1∨τ2 M : τ1 ∨ τ2

(∨I1)
Γ � M : τ2

Γ � in2,τ1∨τ2 M : τ1 ∨ τ2
(∨I2)

Γ � M : τ1 ∨ τ2 Γ, x1 : τ1 � N1 : τ Γ, x2 : τ2 � N2 : τ

Γ � case M of [x1 : τ1]N1, [x2 : τ2]N2 : τ
(∨E)

Γ, x :τ1 � M : τ2

Γ � λx : τ1.M : τ1 → τ2
(→ I)

Γ � M1 : τ1 → τ2 Γ � M2 : τ1
Γ � M1M2 : τ2

(→ E)

Γ � M : τ
Γ � λXM : ∀X.τ

(∀I)∗ Γ � M : ∀X.τ
Γ � MY : τ [X := Y]

(∀E)

Γ � M : τ [X := Y]
Γ �packM, Y to ∃X. τ : ∃X.τ

(∃I)

Γ � M1 : ∃X.τ Γ, x :τ � M2 : σ

Γ � let x :τ be M1 :∃X.τ in M2 : σ
(∃E)∗

Γ � M : ⊥
Γ � ⊥⊥τM : τ

(⊥E)

∗ Under the eigenvariable condition X �∈ FV(Γ, σ).

Fig. 1. The rules of the intuitionistic first-order logic ([7])

Small Model Property Reflects in Games and Automata 367

Definition 1 (finite model property). A class of formulas X has the finite
model property when, for all formulas τ ∈ X, if τ is satisfiable, there exists a
finite model M such that M |= τ .

Since all classical theories can be easily expressed as intuitionistic theories by
explicitly including the law of excluded middle, so there are many interesting
classes that have finite model property.

Although the finite model property in the book by Börger et al. [2] is strongly
attached to decidability of a particular fragment of logic, this is not a property
that implies this computational feature. The following property is what actually
takes place in the fragment considered in the book.

Definition 2 (small model property). A class X has the small model prop-
erty when there exists a computable function sX such that for all formulas τ ∈ X,
if τ is satisfiable, there exists a finite model M of size sX(τ) such that M |= τ .

This definition was used in the book [2] in the context of classical logic. It can also
be used for intuitionistic first order logic, but the finiteness concerns a different
but relevant notion of size. We say that a model M = 〈C, ≤, {Ac : c ∈ C}〉 is
finite when C is finite and Ac is finite for all c ∈ C. The number u = |C| +
|⋃c∈C Ac| is the size of the model M.

Lemma 1. For all formulas τ from a class X that has the finite model property
either � ¬τ or there exists a finite model M and a state s such that s,M |= τ .

Proof. If ¬τ or τ is true the proof follows by the completeness theorem and by
definition. Otherwise there exists a model M of class X such that s,M �|= τ ,
and a state s′ > s such that s′,M |= τ (if M , s and s′ do not exist either τ or
¬τ would be valid in the model). Note that it does not necessarily mean that a
proof for ¬τ exists. But, since Kripke models are monotonous, (s′,M) ∈ X and
we have a model of τ in the class X: the part of the original model starting in
s′. ��
Definition 3 (effective class). We say that a model M is a model of a class
of formulas X when for each ϕ ∈ X it holds that M |= ϕ.

A class of formulas X is effective iff, it is decidable that given a final model
M whether M is a model of the class X.

For example every class that has a finite number of axioms or axiom schemes,
as well as prefix classes from the book of Börger et al. [2] is effective.

Proposition 2. An effective class X has finite model property iff it has small
model property.

Proof. The implication from right to left is trivial. For the other one: we show
how to compute sX(τ). Given τ we run two processess in parallel: one generates
finite models and checks whether they are models of X and then if τ is satisfied
in them, and another one generates proof and checks if one of them proves ¬τ .
If the first process succeeds, we return the size of the model found, and if the
second suceeds we return 1. Lemma 1 shows that one of the processess succeeds.
This function is correct as it returns the size of a finite model if it exists, and
otherwise the formula is not satisfiable, so the return value does not matter. ��

368 M. Zielenkiewicz

In the proof above we can also make the function return the smallest finite model
by enumerating the models ordered by size, but it is not needed in this paper.

3 Small Model Size and Small Afrodite Strategies

In this section we show that from a finite countermodel of a given size we can
construct a small Afrodite strategy. First we introduce games, strategies and
introduce tools to replace some variables in a strategy. Then we use these tools
to show a limit on the set of eigenvariables in the game depending on the size of
the small model, proving the Theorem 1.

3.1 Better Variables

Notation. We define substitutions applied to a formula: ϕ[x/y] is the formula
ϕ with all free occurrences of x replaced by y in a capture-avoiding fashion.
The disjuncts of a formula α ∨ β are α and β, and for a formula that is not a
disjunction the whole formula is called a disjunct. We understand the formula
α ∨ β ∨ γ to mean α ∨ (β ∨ γ), but understanding it as a disjunction of three
disjuncts would also be possible with minor technical changes.

Games. We show how the small model property can be expressed in terms asso-
ciated with the notion of intuitionistic games for first-order logic as defined in
Sect. 5 of the work by Urzyczyn [6]. The game describes a search for a proof and
has two players: Eros, tryig to prove the judgement and Afrodite, showing that
it can’t be proven. We write Γ � τ �move Γ ′ � τ ′ to state that the positions
Γ � τ and Γ ′ � τ ′ are connected with a turn. A game is a sequence of positions
connected by turns, i.e. a sequence P1, . . . ,Pn, . . . such that Pi �move Pi+1 for
each i ∈ N. Possible moves are shown in Fig. 2. We omit the subscript “move”
when it is not needed or clear from the context. A game starts in a position Γ � τ
and begins with Eros’ move, followed by Afrodite’s move which determines the
next turn. If Eros reaches a final position he wins, otherwise the game is infinite
and Afrodite wins. We call Γ � τ the precedent and Γ ′ � τ ′ the antecedent of the
move. Some turns have players associated with them: if Afrodite makes a choice
in a move we call the precedent an Afrodite’s position, and if Eros makes a choice
we call it an Eros position. A disjunct of τ is an aim. In order to avoid confusion
with classical provability we write Γ �IFOL τ to denote that τ is provable from
Γ in first-order intuitionistic logic. If the exact proof p is important we use the
notation Γ �IFOL,p τ .

Strategies. A strategy is a tree of nodes labeled by positions linked by edges
labeled by turns, which we call moves. In each position either one or none of
the players makes a choice. In a position with no choice the next position is
determined by game rules (see Fig. 2) and the corresponding turn must appear
in the strategy. For Afrodite strategy the tree consists of non-final positions and
all paths are infinite as well as the tree has at least one move in each Afrodite’s
position and all the possible moves (up to renaming of fresh and bound variables)

Small Model Property Reflects in Games and Automata 369

in Eros positions. A final position is a position in which τ ∈ Γ or ⊥ ∈ Γ . For
Eros strategy all paths end at a final position and the tree has at least one move
in each Eros’ position and all the possible moves (up to renaming of fresh and
bound variables) in Afrodite positions. It should be obvious that if Eros cannot
make a move that introduces something new to the game, he is forced to replay
one of the previous moves and Afrodite wins.

Ordering of Variables. Intuitively speaking we would like to capture the fact that
one variable is “better” than the other if all the information that was known
about the “worse” variable is kept and possibly extended with new facts. More
formally we say x1 �Γ x2 when for every formula τ

if Γ �IFOL τ then Γ �IFOL (τ [x1/x2]).

The relations ≺Γ and ∼Γ are defined in the following way:

x1 ∼Γ x2 when x1 �Γ x2 ∧ x2 �Γ x1,

x1 ≺Γ x2 when x1 �Γ x2 ∧ x2 �∼Γ x1.

In cases when Γ is clear we omit it for brevity.

Proposition 3. For any Γ , the relation �Γ is a quasiorder, but not a partial
order.

Proof. The relation �Γ is trivially reflexive and transitivity follows imme-
diately from definition with help of an observation that τ [x1/x2][x2/x3] =
τ [x1/x3], so it is a quasiorder.

If we choose two distinct fresh variables xα and xβ , i.e. not in FV(Γ), we
have xα � xβ and xβ � xα, but xα �= xβ , so � is not a partial order. ��
This leads to the conclusion that the only important variables are those that are
maximal in the � relation, as we can replace all the other variables with their
maximal counterparts.

Proposition 4. Let τ be a formula such that FV(τ) = x1, . . . , xn. If Γ �IFOL τ ,
then Γ �IFOL τ [x1/x′

1, . . . , xn/x′
n], where, for all i, xi � x′

i.

Proof. We apply the definition of � for each xi in turn. ��

Proposition 5. If Eros or Afrodite has a strategy in position P = Γ � τ and
if at some position Pi0 and all subsequent positions in that strategy we have
x′
1 � x1, . . . , x′

n � xn then we can replace all occurrences of variables x′
i with

xi at Pi0 and the same player still has strategy in position Pi0 .

Proof. The replacement is done while looking at the whole game tree and with
maximum knowledge (i.e. trueness of predicates through the whole game tree)
about variables, which is not a problem since our aim is to construct the strategy
for Afrodite, which implies knowledge of all the possible turns.

370 M. Zielenkiewicz

Suppose Afrodite has a strategy in P. Let us focus on a path in the tree of
the strategy

Γ1 � τ1 � Γ2 � τ2 � . . . � Γn � τn � . . .

Each of the moves may add something to Γ , but nothing is removed and we can
separate the newly added facts:

Γ2 = Γ1, ψ1 . . . Γn+1 = Γn, ψn

Another view of the new facts would be to separately keep track of those referring
to the variables xi:

Γn = Γ1, Δn, Δ̂n

where Δn has all the facts that reference the variables xi and Δ̂n the others. To
make the notation concise we write Γ,Δ1,Δ2 � τ as a shorthand for Γ, (Δ1 ∪
Δ2) � τ .

Instead of taking the original path we can take the following one

Γ1 � τ1 � Γ ′
2 � τ ′

2 � . . . � Γ ′
n � τ ′

n � . . .

where Γ ′
n = Γn−1, ψ′

n−1, ψ′
n = ψ[x′

i/xi] and τ ′
n = τn[x′

i/xi]. Or, viewed in the
terms of Δs,

Γ ′
n = Γ1,Δ

′
n, Δ̂n

where Δ′
n = Δn[x′

i/xi].
To make this construction sound we need to show that Γ1, Δ′

n, Δn � x′
i � xi

and that the move (Γ1, Δ′
n, Δ̂n � τ ′

n) � (Γ1, Δ′
n+1, Δ̂n+1 � τ ′

n+1) is possible.
The first part follows directly from Proposition 4. For the second part we show
how to adapt the original move Γn � τn. The possible moves are listed in Fig. 2.
Only two of them have direct interaction with non-fresh variables: in (a4) and
(b5) Eros is free to choose any variable and the replacement variables x1, . . . , xn

are already available, so would not lead him to winning the game, otherwise he
could have played this move in the original strategy.

The other case is when Eros has a strategy in P. The substitution is almost
the same as in the previous case except some nonfinal positions might become
final, as the set of facts known about x′

i is bigger or equal to those that were
known about xi, as x′

i � xi. Final positions remain final by Proposition 4.
Nonfinal positions might become final, but it only makes Eros win faster. ��

3.2 Construction of the Strategy

Small Strategies of Afrodite. With the aim of relating the size of the Afrodite
strategy and the size of the small model we define a notion of a small strategy.
Proposition 5 suggest the following definition. Since we know that using only the
maximal variables is sufficient in the game, we define small strategy of Afrodite
for a formula τ from class X as a strategy that has at most sX(τ) �-classes of
abstraction of maximal variables. Given a small countermodel M of a formula we

Small Model Property Reflects in Games and Automata 371

aim to construct a small winning Afrodite strategy S, i.e. one that gives at least
one possible response for each possible Eros’ move. For a given turn t = Γ � τ
we need to choose a response to Eros moves. We associate a state s ∈ M with
each turn t. Our strategy has the following invariant that holds at each turn:

∃ρ:FV(Γ)→As
(ρ, s |= Γ) ∧ ∀ρ:FV(Γ)→As

(ρ, s |= Γ → ρ, s �|= τ) , (1)

and the sets of maximal variables corresponds to states of the small counter-
model. The part of the invariant quantified with ∃ is called the existential part
and the part quantified with ∀ is called the universal part.

Figure 2 lists possible moves and the choices players make. We define a strat-
egy for Afrodite and she makes a choice in cases marked with * in the figure.
Afrodite should choose in the indicated moves:

(a1) We choose Γ, γ � τ when ρ, s |= Γ, γ.
(a2) We choose β when ρ, s |= Γ, β.
(b2) We choose β when ρ, s �|= β.

In case of (b1) and (b4) the current model state s might needs to be advanced
to some subsequent state to keep the invariant.

We still need to show that each move preserves the invariant.

Proposition 6. At each position P : Γ � τ the invariant (1) holds.

Proof. We assume the notation of Fig. 2 and show that each move preserves the
invariant (1).

Moves manipulating assumptions:

*a1) If α is an assumption β → γ then Afrodite chooses between positions Γ, γ � τ and
Γ � β.

*a2) If α is an assumption β ∨ γ then Afrodite chooses between positions Γ, β � τ and
Γ, γ � τ .

a3) If α is an assumption β ∧ γ then the next position is Γ, β, γ � τ .
a4) If α is an assumption ∀xϕ then Eros chooses a variable y and the next position is

Γ, ϕ[y/x] � τ .

Moves manipulating the proof goal:

a5) If α is an assumption ∃xϕ then the next position is Γ, ϕ[y/x] � τ where y is a fresh
variable.

b1) If α is an aim of the form β → γ the next position is Γ, β � γ.
*b2) If α is an aim of the form β ∧ γ then Afrodite chooses between positions Γ � β

and Γ � γ.
b3) If the aim α is an atom or a disjunction the next position is Γ � α.
b4) If α is an aim of the form ∀xϕ the next position is Γ � ϕ[y/x] where y is fresh.
b5) If α is an aim of the form ∃xϕ then Eros chooses a variable y and the next position

is Γ � ϕ[y/x].

Fig. 2. Table of moves in position Γ � τ for the intuitionistic game [6, Fig. 11, p. 32].
In each move Eros chooses a formula α - either an assumption or an aim, and the move
is selected from this table according to the α chosen.

372 M. Zielenkiewicz

(a1) We have two possibilities:
• In case ρ, s |= Γ, γ: we choose Γ, γ � τ . The existential part of the invariant

follows directly from the invariant of the previous step. For the universal
part suppose the opposite, i.e. ρ, s |= τ , so for given ρ we either have
contradiction with ρ, s �|= τ from invariant of the previous step or ρ, s �|= γ,
but then we would not choose this move for the strategy.

• Otherwise ρ, s �|= Γ, γ and we choose Γ � β. The existential part of the
invariant remains true as Γ does not change. For universal part suppose
ρ, s |= β, but then ρ, s |= γ → β, which is in contradiction with the
invariant from the previous step.

(a2) Once again we have two possibilities:
• In case ρ, s |= Γ, β: we choose Γ, β |= τ . The existential part of the

invariant follows directly from the invariant of the previous step. The
universal part is the same as in the corresponding point of the move (a1).

• Otherwise ρ, s �|= Γ, γ and the proof is the same as in the corresponding
point of (a1).

(a3) The existential part is true because ρ, s |= β, γ follows from ρ, s |= β ∧ γ.
The universal part is proven by simply applying the definition of |=.

(a4) We can choose any value for ρ(y). Existential part: from the invariant in
the previous move we have ρ, s |= ∀xϕ, so we apply definition of |= to get
ρ, s |= ϕ[y/x]. Universal part: suppose that ρ, s |= Γ, ϕ[y/x] and ρ, s |= τ .
But this means ρ, s |= Γ which implies have a contradiction with ρ, s �|= τ
from the previous move.

(a5) Since ρ, s |= ∃xϕ we know that there exists x̂ such that ρ[x̂/x], s |= ϕ.
In the existential part we just need to take ρ(y) = ρ(x̂). Universal part:
identical with the universal part of (a4).

(b1) Using the assumption we have a state s′ ≥ s such that ρ, s′ |= Γ, β but
ρ, s′ �|= γ. We advance s to s′. The existential part is trivially true. For the
universal part: suppose ρ, s′ |= Γ, β and ρ, s′ |= γ. This is in contradiction
with ρ, s �|= β → γ.

(b2) We have the following cases:
• ρ, s �|= β: the set of assumptions does not change so the existential part

is proven by applying the existential part from the previous move. For
the universal part, ρ, s �|= β is exactly the assumption of the case under
investigation.

• otherwise ρ, s |= β. We choose the position Γ � γ; the existential part is
the same as in the previous step. For the universal part suppose ρ, s |= γ:
then ρ, s |= β ∧ γ contradicts the invariant ρ, s �|= β ∧ γ from the previous
move.

(b3) The existential part is the same as in the previous move. The universal part
is the same as in the second bullet of (b2).

(b4) We can choose any value for ρ′(y). The existential part is true since Γ is the
same as previously and the valuation of y does not affect it. The universal
part: suppose that ρ′, s |= ϕ[y/x]. Then by definition ρ, s |= ϕ, which is in
contradiction with the invariant from the previous move.

Small Model Property Reflects in Games and Automata 373

(b5) The existential part is the same as in the previous move. For the universal
part suppose ρ, s |= ϕ[y/x]. Then by definition of |= we have ρ, s |= ∃xϕ,
which is a contradiction with the invariant of the previuos step. ��

The constructed strategy is small : elements of As correspond to �-classes
and the valuation ρ proves that all the variables fit in sX(ϕ) classes as the size
of the model is sX(ϕ). This proves the following:

Theorem 1. For all classes X that have the small model property and all for-
mulas τ ∈ X, if a strategy of Afrodite exists for τ then a small strategy of Afrodite
for τ also exists.

4 Small Model Size and the Arcadian Automata

Here we show a limit on resources of Arcadian automata [7] checking derivability
of a formula ϕ from an effectively axiomatized class X that has the finite model
property. Theorem 2 shows a limit on the size of the set of eigenvariables of
the automaton in terms of the numbers of variables and subformulas in ϕ and
the size of the small model. We reason only about automata that are translated
from a formula as defined in Sect. 4 of [7]. In Sect. 4.1 we introduce Arcadian
automata, show how to replace variables in their runs in Sect. 4.2, and limit the
size of the set of eigenvariables in 4.3.

4.1 Arcadian Automata

Notation. We already know that �-maximal variables play a crucial role. Given
a set of facts Γ we denote by Γ̌ the set obtained from Γ by selecting only those
facts γ that do have only maximal variables in FV(Γ). An Arcadian automaton
is a tuple 〈A, Q, q0, ϕ0, I, i, fv〉, where A is a finite tree, Q and I are sets of states
and instructions with i mapping states to instructions, fv : A → P (A) describes
the binding of variables and q0 and ϕ0 are the inital state and node. The function
fv satisfies the condition that for all v either v is a leaf or fv(v) =

⋃
w∈B(v) fv(w)

where B(v) = {w | v succ w} and � is the usual predicate of being a successor.
An instantaneous description is 〈q, κ, V, w,w′, S〉 where q ∈ Q and κ ∈ A are the
current state and node, V is a set of eigenvariables, w and w′ are interpretations
of bindings and S is the store. For more details see [7].

4.2 Better Variables in Arcadian Automata

Equivalent Positions. We say that the position Γ � τ and Γ ′ � τ ′ are equivalent
when Γ̌ = Γ̌ ′ and τ = τ ′.

Proposition 7. Suppose Γ, Γ̂ �IFOL M : τ where for some α and α′ � α such
that α ∈ FV(Γ) and α �∈ FV(Γ̂). If Γ = x1 : τ1, . . . , Γ �IFOL xn : τn then
Γ̂ , Γ, Γ ′ �IFOL M [x1/x′

1] . . . [xn/x′
n] : τ [α/α′] where Γ ′ = x′

1 : τ1[α/α′], . . . , x′
n :

τn[α/α′] and x′
1, . . . , x

′
n are fresh variables, i.e. x′

i �∈ FV(M).

374 M. Zielenkiewicz

Proof. Proof is by induction over the length of the proof of τ . We look at the
last rule in the proof. In most of the cases the conclusion follows by simple
application of the inductive hypothesis, but there are three rules that change
the environment, namely (∨E), (→ I) and (∃E) and the proof is more subtle
for them. Let us focus on the (→ I) rule. If (xi : τi) ∈ Γ̂ we do not need to
change anything, in the other case we know that (xi : τi) ∈ Γ and we apply
the induction hypothesis and use the assumption (x′

i : τi[α/α′]) ∈ Γ ′ for the
λ-abstraction. We can now remove the variable xi : τi as it is not referenced in
M [x1/x′

1] . . . [xn/x′
n] : τ [α/α′].

The induction base is the var rule, since the proof must begin with this
rule, and the correctness of replacing α with α′ follows immediately from the
definition of Γ ′. ��
Proposition 8. If Γ �IFOL M : τ , α and α′ are variables in M such that α � α′

then Γ �IFOL M [α/α′] : τ [α/α′] and α �∈ FV (τ).
Proposition 9. If Γ �IFOL,p M : τ then there exists M ′ and p′ such that
Γ �IFOL,p′ M ′ : τ and in each step Γ ′ � τ ′ of p′ only maximal variables are
mentioned in τ ′.
Proof. Apply Proposition 8 sequentially to each nonmaximal variable. ��

4.3 Loquacious Runs

Note that our logic has the subformula property ([7]). This means that there
is only a limited number of possible targets τ . Let us review fragments of an
automaton run p0 →α Γ � τ →β Γ ′ � τ →γ p1. If Γ � τ and Γ ′ � τ are
equivalent, then a part of the run →β is removable, i.e. there exists a run of
the same automaton pp →α Γ � τ →γ̄ p̄1 where γ̄ and p̄1 are obtained from γ
and p1 by replacing some variables by their maximal counterparts. Otherwise
that fragment is not removable, as new fact about the maximal variables are
discovered, but the number of such non-removable runs is limited: there are at
most sX(ϕ) maximal variables. Suppose v(ϕ) is the number of variables in ϕ and
f(ϕ) is the number of subformulas in ϕ. The maximum size of an environment Γ
is μ = f(ϕ) · sX(ϕ)v(ϕ). Each non-trivial step has to either add something to the
environment or change the target τ as otherwise the previous state is repeated.
We have at most μ possible targets, so after at most μ steps the target repeats
and in the worst case each step introduces a new variable, so the maximum size
of V in the automaton is μ2.

This proves the following:

Theorem 2. Let τ be a formula from an effective class X that has the small
model property. For a given accepting run of an Arcadian automaton for that
formula there exists an accepting run of the same automaton with the same result
that has the property |V | ≤ μ2, where V is the working domain of the automaton
and μ is the maximum size of the environment defined in the previous paragraph.

Small Model Property Reflects in Games and Automata 375

5 Conclusion

The small model size is directly related to important resources in games and
automata for checking provability. In terms of games, the elements of models
directly correspond to abstraction classes of maximal elements of a quasiorder
on eigenvariables that captures the relation of having more information available
about a variable.

For automata the number of such maximal elements can be directly related
to the size of set of eigenvariables V ; the dependency is exponential, caused by
the necessity of representing the eigenvariables that correspond to non-maximal
elements of the quasiorder.

These observations lead to an idea for implementing proof theory bases proves
in a manner that would not be substantially less powerful than those based on
model theory. More specifically we suggest that V should not be represented
syntactically but rather as an abstraction class of the quasiorder.

References

1. van Benthem, J.: Logic in Games. Perspectives in Mathematical Logic. MIT Press,
Cambridge (2014)

2. Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Perspectives
in Mathematical Logic. Springer (1997)

3. Ehrenfeucht, A.: An application of games to the completeness problem for formalized
theories. Fundamenta Mathematicae 49, 129–141 (1961). https://doi.org/10.4064/
fm-49-2-129-141

4. Fräıssé, R.: Sur une nouvelle classification des systèmes de relation. Comptes rendus
hebdomadaires des séances de l’Académie des sciences 230, 1022–1024 (1950)

5. Sørensen, M.H., Urzyczyn, P.: Lectures on the Curry-Howard Isomorphism, Studies
in Logic and the Foundations of Mathematics, vol. 149. Elsevier (2006). https://
doi.org/10.1016/S0049-237X(06)80499-4

6. Urzyczyn, P.: Intuitionistic games: determinacy, completeness, and normalization.
Studia Logica 104(5), 957–1001 (2016). https://doi.org/10.1007/s11225-016-9661-
4

7. Zielenkiewicz, M., Schubert, A.: Automata theory approach to predicate intuition-
istic logic. In: Hermenegildo, M.V., López-Garćıa, P. (eds.) Logic-Based Program
Synthesis and Transformation - 26th International Symposium, LOPSTR 2016, 6–8
September 2016, Edinburgh, UK. Revised Selected Papers. Lecture Notes in Com-
puter Science, vol. 10184, pp. 345–360. Springer (2016). https://doi.org/10.1007/
978-3-319-63139-4 20

https://doi.org/10.4064/fm-49-2-129-141
https://doi.org/10.4064/fm-49-2-129-141
https://doi.org/10.1016/S0049-237X(06)80499-4
https://doi.org/10.1016/S0049-237X(06)80499-4
https://doi.org/10.1007/s11225-016-9661-4
https://doi.org/10.1007/s11225-016-9661-4
https://doi.org/10.1007/978-3-319-63139-4_20
https://doi.org/10.1007/978-3-319-63139-4_20

Author Index

Aguilera, Juan Pablo 1

Baaz, Matthias 9
Bydzovsky, Jan 1

Caleiro, Carlos 180
Cenzer, Douglas 25

de Paiva, Valeria 346
DeBoer, Neil J. 37

Fernández-Duque, David 1, 52
Filipe, Pedro 180
Forster, Yannick 70

Hagemeier, Christian 90

Joosten, Joost J. 52

Katsumata, Shin-ya 217
Kirst, Dominik 90
Kjos-Hanssen, Bjørn 112
Kontinen, Juha 125
Krogman, Richard 25

Lehnherr, David 143
Liu, Yanhong A. 156
Lolic, Anela 9

Mahmood, Yasir 125
Marcelino, Sérgio 180
Meier, Arne 125
Moore, Eoin 198
Motoura, Shota 217

Niraula, Saroj 112
Normann, Dag 236

Ognjanović, Zoran 143

Papafilippou, Konstnatinos 52
Petrakis, Iosif 253

Rogozin, Daniel 266

Sanders, Sam 236, 281
Sedlár, Igor 301
Spadetto, Matteo 346
Statman, Rick 316
Stoller, Scott D. 156
Studer, Thomas 143
Subramani, K. 327

Trotta, Davide 346

Wojciechowski, Piotr 327

Yoon, Soowhan 112

Zielenkiewicz, Maciej 364

	 Preface
	 Organization
	 Contents
	A Non-hyperarithmetical Gödel Logic
	1 Introduction
	2 Preliminaries
	3 Standard Models via Vagueness
	4 Satisfiability in G"3223379
	5 Validity in G"3223379
	6 Concluding Remarks
	References

	Andrews Skolemization May Shorten Resolution Proofs Non-elementarily
	1 Introduction
	2 The Sequent Calculi LK, LK+ and LK++
	3 Skolemization and Deskolemization
	4 Cut-Free LK-Proofs with Weak Quantifiers and Resolution
	5 Andrews Skolemizations Allows for Non-elementarily Shorter Resolution Refutations
	6 Conclusion
	References

	The Isomorphism Problem for FST Injection Structures
	1 Introduction and Preliminaries
	2 The Isomorphism Problem for FST Injection Structures
	3 Conclusions and Further Research
	References

	Justification Logic and Type Theory as Formalizations of Intuitionistic Propositional Logic
	1 Introduction
	1.1 The BHK Interpretation and Its Formalizations

	2 Justification Logic
	2.1 Substitution

	3 Comparing Formalizations
	3.1 Comparing Proofs

	4 Conclusion
	References

	Hyperarithmetical Worm Battles
	1 Introduction
	2 Preliminaries
	3 Arithmetical Soundness of GLP
	4 Worm Battles Outside PA
	4.1 The Reduction Property
	4.2 From 1-consistency to the Worm Principle
	4.3 From the Worm Principle to 1-consistency

	5 Concluding Remarks
	References

	Parametric Church's Thesis: Synthetic Computability Without Choice
	1 Preliminaries
	1.1 Common Definitions in CIC
	1.2 Partial Functions
	1.3 The Universe of Propositions P, Elimination, and Choice Principles
	1.4 Notions of Synthetic Computability

	2 Church's Thesis
	3 Synthetic Church's Thesis
	4 Variations of Synthetic Church's Thesis
	5 The Enumerability Axiom
	6 Rice's Theorem
	7 [def:CT]CT in the Weak Call-by-Value -Calculus
	8 Related Work
	A Consistency and Admissibility of CT in CIC
	References

	Constructive and Mechanised Meta-Theory of Intuitionistic Epistemic Logic
	1 Introduction
	2 Preliminaries
	3 Basic Intuitionistic Epistemic Logic
	4 Cut-Free Sequent Calculus
	5 Decidability via Proof Search
	6 Constructive Completeness
	6.1 Lindenbaum Extension
	6.2 Canonical Models
	6.3 Finite Model Property
	6.4 Semantic Cut-Elimination

	7 Completeness for Infinite Theories
	7.1 Arbitrary Theories
	7.2 Enumerable Theories

	8 Conclusion
	8.1 Related Work
	8.2 Future Work

	1 Natural Deduction System for IEL
	2 Coq Mechanisation
	2.1 The Classical Modal Logic K
	2.2 Height-Encoding

	3 Cut-Elimination: Selected Cases
	References

	A Parametrized Family of Tversky Metrics Connecting the Jaccard Distance to an Analogue of the Normalized Information Distance
	1 Introduction
	2 Results
	3 Application to Phylogeny
	4 Conclusion
	References

	A Parameterized View on the Complexity of Dependence Logic
	1 Introduction
	2 Preliminaries
	3 Complexity Results
	3.1 Data Complexity (dc)
	3.2 Expression and Combined Complexity (ec, cc)

	4 Conclusion
	References

	A Logic of Interactive Proofs
	1 Introduction
	2 Syntax
	3 Semantics
	4 Properties and Results
	5 Conclusion
	References

	Recursive Rules with Aggregation: A Simple Unified Semantics
	1 Introduction
	2 Problem and Solution Overview
	3 Language
	4 Formal Semantics
	4.1 Interpretations and Derivability
	4.2 Founded Semantics Without Closed Declarations
	4.3 Founded Semantics with Closed Declarations
	4.4 Constraint Semantics
	4.5 Properties of the Semantics

	5 Examples: Company Control and Double Win
	5.1 Company Control—A Well-Known Challenge
	5.2 Double-Win Game—For Any Kind of Moves
	5.3 Experiments

	6 Related Work and Conclusion
	References

	Computational Properties of Partial Non-deterministic Matrices and Their Logics
	1 Introduction
	2 Warming Up
	3 Checking Theorem Universality
	3.1 Computing Total Components
	3.2 Determining the Existence of Non-theorems

	4 Checking Theorem Existence
	4.1 A Bridge with (Term-DAG) Automata

	5 Deciding Equality of Theoremhood
	6 Conclusions and Further Work
	References

	Soundness and Completeness Results for LEA and Probability Semantics
	1 Introduction
	1.1 Overview of the Logic of Evidence Aggregation
	1.2 LEA Definition
	1.3 Alternative Formulation of LEA
	1.4 Probability Semantics Definition

	2 Sound and Complete Semantics for LEA
	2.1 Basic Models
	2.2 Deductive Basic Models

	3 Sound and Complete Axiomatization of Probability Semantics
	3.1 LEA- Definition and Models
	3.2 More LEA- Results
	3.3 LEA+ Definition and Basic Results
	3.4 Basic Models of LEA+
	3.5 Probability Semantics for LEA+

	4 Further Discussion
	4.1 Decidability Results
	4.2 Justification Logic as Propositional Logic
	4.3 Future Research

	References

	On Inverse Operators in Dynamic Epistemic Logic
	1 Introduction
	2 A General Framework for DEL
	2.1 Syntax
	2.2 Semantics

	3 Inverse Operators
	3.1 Introduction of Inverse Operators
	3.2 Completeness
	3.3 Irreducibility
	3.4 Conservativity

	4 Categorical Construction of Model Transition Systems
	5 Related Work
	6 Conclusion and Future Work
	References

	Betwixt Turing and Kleene
	1 Introduction: Jordan, Turing, and Kleene
	2 Preliminaries
	2.1 Kleene's Higher-Order Computability Theory
	2.2 Some Higher-Order Notions

	3 Main Results
	3.1 Jordan Realisers and Equivalent Formulations
	3.2 Jordan Realisers and Countable Sets
	3.3 Computing Kleene's 3 from Jordan Realisers
	3.4 Jordan Realisers and the Uncountability of R

	References

	Computability Models over Categories and Presheaves
	1 Introduction
	2 Computability Models
	3 Total Computability Models over Categories
	4 Partial Models over Categories with Pullbacks
	5 Categories with a Base of Computability
	6 Concluding Comments and Future Work
	References

	Reducts of Relation Algebras: The Aspects of Axiomatisability and Finite Representability
	1 Introduction
	2 Definitions
	2.1 Relation Algebras and Their Reducts
	2.2 Residuated Semigroups
	2.3 Join Semilattice-Ordered Semigroups
	2.4 Order-theoretic Definitions
	2.5 Pseudo-elementary Classes

	3 The Finite Representation Property for Residuated Semigroups
	4 Join Semilattice-Ordered Semigroups: The Explicit Axiomatisation
	References

	Between Turing and Kleene
	1 Between Turing and Kleene Computability
	1.1 Short Summary
	1.2 Extending the Scope of Turing Computability
	1.3 The Need for an Extension of Turing Computation

	2 Some Results
	2.1 Nets and Computability Theory
	2.2 On the Uncountability of R
	2.3 Discontinuous Functions

	References

	Propositional Dynamic Logic with Quantification over Regular Computation Sequences
	1 Introduction
	2 Regular Computation Sequences
	3 QPDL and Its ĭ䘀爀攀攀 䘀爀愀最洀攀渀琀 焀倀䐀䰀
	4 Expressivity
	4.1 Expressing Acceptance Properties of NFA
	4.2 Ways to Execute a Plan Successfully

	5 Decidability and Complexity of qPDL
	5.1 DPDL
	5.2 An Embedding of qPDL into DPDL

	6 Discussion
	7 Conclusion
	References

	Finite Generation and Presentation Problems for Lambda Calculus and Combinatory Logic
	1 Introduction
	2 Finite Generation
	3 Finite Presentation
	References

	Exact and Parameterized Algorithms for Read-Once Refutations in Horn Constraint Systems
	1 Introduction
	2 Statement of Problems
	3 Motivation and Related Work
	4 A Parameterized Algorithm
	4.1 Correctness
	4.2 Resource Analysis

	5 An Exact Exponential Algorithm
	5.1 Resource Analysis

	6 Literal-Once Refutations
	7 A Lower Bound on Kernel Size
	8 Conclusion
	References

	Dialectica Logical Principles
	1 Introduction
	2 Logical Principles in the Dialectica Interpretation
	2.1 Independence of Premise
	2.2 Markov's Principle

	3 Logical Doctrines
	4 Logical Principles via Universal Properties
	5 Logical Principles in Gödel Hyperdoctrines
	6 Conclusion
	References

	Small Model Property Reflects in Games and Automata
	1 Introduction
	2 Preliminaries
	2.1 Models
	2.2 The Finite Model Property and the Small Model Property

	3 Small Model Size and Small Afrodite Strategies
	3.1 Better Variables
	3.2 Construction of the Strategy

	4 Small Model Size and the Arcadian Automata
	4.1 Arcadian Automata
	4.2 Better Variables in Arcadian Automata
	4.3 Loquacious Runs

	5 Conclusion
	References

	Author Index

