
Chapter 16
On Dynamic Fracture
of One-Dimensional Elastic Chain

Nikita A. Kazarinov, Yuri V. Petrov, and Aleksey A. Gruzdkov

Abstract Dynamic fracture of a one-dimensional chain of identical linear oscilla-
tors (masses connected by springs) is regarded in the work. The considered system
consists of arbitrary but finite number of links and the first mass is supposed to be
fixed. Two types of load are discussed: free oscillations of the initially uniformly
stretched chain and loading the chain with a short deformation pulse. Both problems
are solved analytically for an arbitrary number of links. The obtained solutions are
investigated, and a dynamic fracture effect related to the discreetness of the system
is discussed: a deformation wave travelling through the chain is distorted and some
links may be subjected to critical deformation. The obtained solutions for the chain
are compared to the solutions of analogous problems stated for an elastic rod—a con-
tinuum counterpart of the considered discrete system. It is shown that the discussed
fracture effect is not observed in a continuous system.

Keywords Dynamic fracture · Oscillator chain · Analytic solution

N. A. Kazarinov (B)
Emperor Alexander I Saint Petersburg State Transport University, Moskovsky av., 9, St.
Petersburg 190031, Russia

Institute of Problems in Mechanical Engineering RAS, V.O., Bolshoy pr., 61, St. Petersburg
199178, Russia

Y. V. Petrov
Institute for Problems in Mechanical Engineering RAS, V.O., Bolshoy pr., 61,
St. Petersburg 199178, Russia

A. A. Gruzdkov
Saint Petersburg State University of Technology, Moskovsky av., 26,
St. Petersburg 190013, Russia
e-mail: gruzdkov@mail.ru

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
V. A. Polyanskiy and A. K. Belyaev (eds.), Mechanics and Control of Solids
and Structures, Advanced Structured Materials 164,
https://doi.org/10.1007/978-3-030-93076-9_16

303

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93076-9_16&domain=pdf
mailto:gruzdkov@mail.ru
https://doi.org/10.1007/978-3-030-93076-9_16


304 N. A. Kazarinov et al.

16.1 Introduction

Mass-springmodels are a common tool in mechanics due to their simplicity and abil-
ity to address rather complicated phenomena. For example, in work [1], the oscillator
model is coupled with finite element method to address the acoustic emission studies
of rocks.

Oscillator chains were considered in works by L. Slepyan and his co-workers
[2]; however, this approach considers infinite oscillator chains. Moreover, the chain
models are successfully used to study peculiar heat conduction effects in crystals.
Two-dimensional models have been also used to address the effects encountered in
dynamic crack propagation problems. For example, in work [3], the crack velocity
oscillations are explained using a lattice model, while in [4], a bi-material model is
studied in order to investigate various regimes of the interface crack propagation.
The chain models have been also used to address martensitic phase transformations
as seen from work [5].

Simple mass-spring models have been effectively applied to study rate sensitivity
of materials and inverse rate sensitivity in particular [6].

In this paper, dynamic fracture effects related to discreetness of the oscillator chain
system are discussed. First, an analytic solution for the system of differential equa-
tions governing the chain movement is obtained. This solution is then compared to
the solution of a one-dimensional wave equation, which describes wave propagation
in an elastic rod—a continuous analogue of the oscillator chain.

16.2 Static Preload with Abrupt Link Failure

16.2.1 Analytic Solution of the Chain Problem

Consider a uniformly deformed chain consisting of N + 1 equal linear oscillators
with both ends fixed.

If the masses are taken equal m, stiffnesses of the springs-c, the following system
of differential equations coupled with initial conditions describes the chain motion:

M Q̈ + C Q = 0
qi (t = 0) − qi−1 (t = 0) = lc

q̇i (t = 0) = 0
q0 (t) = 0

(16.1)

where Q = (q1, q2, . . . , qN ) is a vector containing relative mass displacements, M
is the mass matrix and C is a stiffness matrix and lc is critical link deformation.
Moreover, it is supposed that link with number N + 1 (dashed link in Fig. 16.1)
does not bear this load and breaks abruptly at t = 0 initiating a release wave. The
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Fig. 16.1 Uniformly deformed chain with an abruptly failing link

following fracture conditions are used: |qi − qi−1| > lc, i = 1 . . . N . Matrices M
and C read as (E is identity matrix):

M = mE;C = c

⎛
⎜⎜⎜⎜⎜⎝

2 −1 · · · 0 0
−1 2 −1 · · · 0

. . .
. . .

. . .

0 −1 2 −1
0 0 · · · −1 1

⎞
⎟⎟⎟⎟⎟⎠

= cK ′. (16.2)

One of the chain ends remains fixed, and therefore q0 (t) = 0 ∀t . The substi-
tution t ′ = t

√
c/m yields the dimensionless problem with the mass matrix equal-

ing identity matrix and the stiffness matrix K ′ = 1
cC from Eq.16.2. Additionally,

normalized deformations of the chain links are introduced according to equation
ui = qi − qi−1/lc, i = 1 . . . N resulting in amodified stiffness matrix K = SK ′S−1

with S being a matrix of coordinates transformation. The fracture condition has the
form: |ui (t)| > 1, i = 1 . . . N . This way, the following problem is solved if vector
U = (u1, u2, . . . , uN ) is introduced:

Ü + KU = 0
ui (t = 0) = 1
u̇i (t = 0) = 0
u0 (t) = 0

|ui (t)| > 1.

(16.3)

Solution of the system Eq.16.3 is sought in form

U (t) =
n∑
j=1

c j R jcos(ω j t) (16.4)

where ω j are the system eigenfrequencies, R j =
(
r ( j)
1 , r ( j)

2 , . . . , r ( j)
N

)T
are corre-

sponding eigenvectors and c j is the set constants evaluated using the initial condi-
tions.
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The eigenfrequencies are calculated from eigenvalues λ j of the system stiffness
matrix K : ω j = √

λ j . The eigenvalues of K are calculated from equation

Det (K − λE) = Det
(
K ′ − λE

) = 0. (16.5)

If we put α = 2 − λ, (5) can be rewritten explicitly in the following way:

∣∣∣∣∣∣∣∣∣∣∣

α −1 · · · 0 0
−1 α −1 · · · 0

. . .
. . .

. . .

0 −1 α −1
0 0 · · · −1 α − 1

∣∣∣∣∣∣∣∣∣∣∣

= DN = 0. (16.6)

In Eq.16.6, DN is determinant of order N . One may note that a recursive equation
can be composed for a determinant of order k:

Dk = αDk−1 − Dk−2 (16.7)

and the following relations hold: D0 = 1, D1 = α − 1. Equation16.7 is reduced to
a quadratic equation p2 − αp + 1 = 0 with roots p1,2 using substitution Dk = pk .
This way the following expression is obtained:

DN = b1 p
N
1 + b2 p

N
2 = 0 (16.8)

where b1 and b2 are constants to be evaluated using conditions D0 = 1, D1 = α − 1
and substitution α = 2cos(θ). Equation16.8 yields the following formula for eigen-
values of the stiffness matrix:

λk = 2 − 2cos

(
π (2k − 1)

2N + 1

)
, k = 1 . . . N (16.9)

and thus, we obtain the formula for eigenfrequencies of the studied system:

ωk = 2sin

(
π(2k − 1)

4N + 2

)
, k = 1 . . . N . (16.10)

For components of the eigenvectors of matrix K the following equation holds:

r j
i = Pi−1

(
x j

) − Pi−2
(
x j

)
(16.11)

where x j = (
2 − λ j

)
/2 and Pk(x) is a k-order Chebyshev polynomial of second

kind, which can be expressed in the following way:

Pk (y) = sin((k + 1)arccos (y))

sin(arccos (y))
. (16.12)
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Thus, the following expression can be obtained for the components of eigenvectors
R j :

r j
i =

cos
(

π(2i−1)(2 j−1)
4N+2

)

cos
(

π(2 j−1)
4N+2

) , i = 1 . . . N . (16.13)

In order to evaluate constants c j to satisfy the initial conditions the following system
should be solved accounting for Eq.16.11:

⎛
⎜⎜⎜⎝

P0 (x1) P0 (x2) · · · P0 (xN )

P1 (x1) − P0 (x1) P1 (x2) − P0 (x2) · · · P1 (xN ) − P0 (xN )

.

.

.
.
.
.

.

.

.
.
.
.

PN−1 (x1) − PN−2 (x1) PN−1 (x2) − PN−2 (x2) · · · PN−1 (xN ) − PN−2 (xN )

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

c1
c2
.
.
.

cN

⎞
⎟⎟⎟⎠ =

=

⎛
⎜⎜⎜⎝

1
1
.
.
.

1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

P0(1)
P1 (1) − P0 (1)

.

.

.

PN−1 (1) − PN−2 (1)

⎞
⎟⎟⎟⎠ .

(16.14)

If the second-order Chebyshev polynomials are explicitly written and elementary
matrix operations are performed, the system Eq.16.14 is reduced to the system with
a Vandermonde matrix:

⎛
⎜⎜⎜⎝

1 1 · · · 1
x1 x2 · · · xN
...

...
...

...

x1N−1 x2N−1 · · · xN N−1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

c1
c2
...

cN

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1
1
...

1

⎞
⎟⎟⎟⎠ . (16.15)

Constants c j can be evaluated from Eq.16.15 using Cramer rule and formula for
the determinant of the Vandemonde matrix:

c j = (1 − x1) · · · (1 − x j−1)(1 − x j+1) · · · (1 − xN )

(x j − x1) · · · (x j − x j−1)(x j − x j+1) · · · (x j − xN )
. (16.16)

Let’s put MN (x) = 2N
∏N

k=1 (x − xk). Then Eq.16.16 can be rewritten:

c j = MN (1)

MN
′(x j )(1 − x j )

. (16.17)

Considering the fact that MN (x) has zeros at points x j and multiplier 2N , one
may conclude that MN (x) = PN (x) − PN−1 (x) and thus one can deduce formula
for constants c j taking into account that MN (1) = 1:
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c j =
(−1) j+12sin

(
π(2 j−1)
2n+1

)
cos

(
π(2 j−1)
4n+2

)

(2n + 1)
(
1 − cos

(
π(2 j−1)
2n+1

)) . (16.18)

Now general solution of the problem Eq.16.3 is the following:

ui (t) = 2
(2N+1)

∑n
j=1

(−1) j+1sin(β j)cos
(

β j
2 (2i−1)

)

(1−cos(β j))
cos

(
ω j t

)

β j = π(2 j−1)
2N+1 .

(16.19)

In Eq.16.19, ui (t) stands for deformation of the chain link with number i .

16.2.2 Forced Chain Oscillations, Inhomogeneous System of
Equations

The following problem is considered: a chain of oscillators with N links and a fixed
end is loaded with an arbitrary force f (t) applied to the chain free end (Fig. 16.2).

The system of dimensionless equations describing deformation of the chain links
is the following:

Ü + KU = F (t) = (0, 0, . . . , f (t))T

ui (t = 0) = 0
u̇i (t = 0) = 0
u0 (t) = 0.

(16.20)

In Eq.16.20, U = (u1, u2, . . . , uN ) and i = 1 . . . N . In order to solve system
Eq.16.20, an auxiliary homogeneous system of differential equations with modified
initial conditions is introduced and solved following Duhamel’s method (system
inhomogeneity is transferred to the initial conditions [7]:

Ẅ + KW = 0
wi (t = 0) = 0
ẇi (t = 0) = 0

ẇN (t = 0) = f (p)
w0 (t) = 0.

(16.21)

Fig. 16.2 Chain loaded with an arbitrary force f (t)
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In Eq.16.21, W = (w1,w2, . . . , wN ) and i = 1 . . . N and p is an arbitrary real
number. Systems, Eqs. 16.20 and 16.21, share stiffness matrix K with the system
solved in the previous section. Solution of Eq.16.20 is further obtained using solution
of Eq.16.21.

Solution steps for Eq.16.21 are similar to those for Eq.16.3. The general solution
is sought in form

W (t) =
N∑
j=1

a j R j sin(ω j t) (16.22)

where eigenfrequencies and eigenvectors ω j and R j are evaluated according to for-
mulas Eqs. 16.10 and 16.13. In order to obtain the solution, constants a j should be
calculated satisfying the initial conditions. Let’s put b j = a jω j . Then the system for
b j reads as:

⎛
⎜⎜⎜⎝

P0(x1) P0(x2) · · · P0(xN )

P1 (x1) − P0(x1) P1 (x2) − P0(x2) · · · P1 (xN ) − P0(xN )
...

...
...

...

PN−1 (x1) − PN−2(x1) PN−1 (x2) − PN−2(x2) · · · PN−1 (xn) − PN−2(xN )

⎞
⎟⎟⎟⎠ ·

·

⎛
⎜⎜⎜⎝

b1
b2
...

bN

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0
0
...

f (p)

⎞
⎟⎟⎟⎠

(16.23)
In Eq.16.23 x j = (

2 − λ j
)
/2 and Pk(x) is a k-order Chebyshev polynomial of

second kind. As in the previous case, Eq.16.23 is reduced to a system with a Van-
dermonde matrix:

⎛
⎜⎜⎜⎝

1 1 · · · 1
x1 x2 · · · xN
...

...
...

...

x1N−1 x2N−1 · · · xN N−1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

b1
b2
...

bN

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0
0
...

f (p) /2N−1

⎞
⎟⎟⎟⎠ (16.24)

If the Cramer’s rule is applied and function MN (x) = 2N
∏N

k=1 (x − xk) is intro-
duced, the following formula holds:

b j = 2 f (t)

M ′
N

(
x j

) . (16.25)

Thus, if MN (x) is expressed using Pk(x), final formula for the constants a j can
be written:

b j =
(−1) j+14cos2

(
π(2 j−1)
4N+2

)
f (t)

(2N + 1)
. (16.26)
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Fig. 16.3 Loading function: pulse with duration T

Since the auxiliary system is explicitly solved, solution to the initial system
Eq.16.20 can be written:

U (t) =
N∑
j=1

a j R j

∫ t

0
sin

(
ω j (t − s)

)
f (s) ds. (16.27)

The considered loading function f (t) is shown in Fig. 16.3.
Then Eq.16.27 is transformed into the following expression:

U (t) =
{ ∑N

j=1
a j R j

ω j

(
1 − cos

(
ω j t

))
, t < T∑N

j=1
a j R j

ω j

(
cos

(
ω j (t − T )

) − cos
(
ω j t

))
, t ≥ T

. (16.28)

Thus, Eq. 16.28 is a formula for the deformation of links of the chain subjected
to pulse load.
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16.3 Results. Comparison with Solutions for an Elastic Rod

In this section formulas, Eqs. 16.19 and 16.28 will be used to evaluate deformations
in particular chain links. Moreover, these solutions will be compared to deformations
of an elastic rod, subjected to similar loads. The rod can be regarded as a continuous
counterpart of the chain.

A prestressed elastic rod is a complete analogue of the chain problem considered
in 2.1. A release wave propagation in the homogeneously deformed elastic rod of
length l with model material parameters (elastic modulus and density equal 1) is
considered. If displacements of the rod points are described by functionU (x, t) and
deformations by ε(x, t) and sealing of the rod end x = 0 is supposed, the following
initial boundary value problem can be stated:

∂2U (x,t)
∂x2 = ∂2U (x,t)

∂t2

U (x, 0) = x ⇒ ε (x, t) = 1
∂U (x,t)

∂t

∣∣∣
t=0

= 0

U (0, t) = 0
∂U (x,t)

∂x

∣∣∣
x=l

= H(−t)

. (16.29)

Additionally, the following fracture condition is set: fracture takes place if
|ε (x, t)| > 1. Solution of Eq.16.29 can be obtained as a combination of travelling
and reflected waves. In Fig. 16.4, deformation of the first link and deformation of the
rod sealing are shown. It is clear that deformations of the elastic rod never exceed
the initial value 1 and thus fracture never takes place, while deformation of the first
link of the chain exceeds critical value by about 50% leading to the system failure.
This way, equal loading conditions result in fracture for the discrete system, while
its continuous analogue remains intact.

Now the rod is supposed to be loaded by a deformation pulse. Model material is
used and the rod is supposed to be sealed from one end. Thus, the initial boundary
value problem reads as:

∂2ε(x,t)
∂x2 = ∂2ε(x,t)

∂t2

ε (x, 0) = 0
∂ε(x,t)

∂t

∣∣∣
t=0

= 0

U (0, t) = 0
ε (l, t) = f (t) = H (t)−H (t−T )

. (16.30)
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Fig. 16.4 Deformation of the first chain link (solid line) and deformation of rod in a sealed point
(dashed line). Arrow indicates the link fracture. Results for 50 links and a rod with length l = 50
are shown

If d’Alembert method is applied, one can find that an undistorted deformation
pulse f (t) travels through the rod and no fracture occurs, since |ε (x, t)| > 1 fracture
condition is considered. On the contrary, solution for the chain shows distortion of
the pulse, which leads to failure of the link with number N . This phenomenon is
shown in Fig. 16.5 for a chain consisting of 100 links, pulse duration T = 10 and
rod with length l = 100.

This way pulse load applied to a discrete system may lead to failure, while the
continuous system remains intact for the identical load.
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Fig. 16.5 Deformation of the chain link with number N (solid line) and rod deformation at point x
= l (dashed line). Link fracture is indicated by an arrow. In this case number of links N = 100 and
rod length l = 100

16.4 Conclusion

Dynamic fracture of linear oscillator chains is considered in the work. In particu-
lar, the effect related to discreetness of the system is studied. Two load cases are
considered: abrupt release of a prestressed chain and pulse loading of an unde-
formed chain. For both cases, analytical solutions for the chain link deformations
are obtained. These solutions are compared to the results for a continuous analogue
of chain—elastic rod. It is demonstrated that the wave travelling through a chain
(resulting either from abrupt release or from deformation pulse applied) is distorted
comparing to an elastic rod, which can result in fracture. On the contrary, such effect
is not possible for the continuous system.

This effect can be accounted for when structures with explicit discreetness and
periodicity are designed and studied, e.g. construction facilities in civil engineering.
A railway train could serve as another example of possible application of the studied



314 N. A. Kazarinov et al.

discrete problem. A railway train moving with a constant velocity can be modelled
by a statically uniformly deformed chain of oscillators. Thus, a sudden break of a
damaged or worn coupling device can potentially lead to the failure of normally
functioning coupling devices.
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