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Preface

The Institute for Problems in Mechanical Engineering of the Russian Academy of
Sciences, abbreviated as IPME RAS, was established in September 1986 as the
Leningrad branch of the Institute of Mechanical Engineering of the USSR Academy
of Sciences named after academician A. A. Blagonravov.

In 1991, according to the Decree of the Presidium of the USSR Academy of
Sciences, the Leningrad branch of the Blagonravov Institute of Mechanical Engi-
neering of the USSR Academy of Sciences was renamed into the Institute for Prob-
lems in Mechanical Engineering of the USSR Academy of Sciences. This was the
beginning of a new stage of the institute as an independent institution.

In Leningrad—St. Petersburg there were schools of scientists and engineers in
mechanics, which originated from the Bernoulli brothers and Leonard Euler, who
worked in St. Petersburg for a long time. In the 20th century, all these schools
were at universities. The Institute for Problems of Mechanical Engineering of the
Russian Academy of Sciences became the first scientific academic institute whose
main activity was solving the fundamental problems of mechanics and engineering
science.

The organizer and the first director of the IPME RAS from 1986 to 2002 was
Doctor of Technical Sciences, Prof. Vladimir Pavlovich Bulatov.

From the very beginning of the foundation, the Institute was able to attract
outstanding engineers and scientists with the closest ties to industry. The Institute
laboratories were headed by the leading scientists, heads of the design calculation
departments and research scientific departments of large industrial corporations who
were also engaged in recruiting the scientific staff. As a result, a creative and truly
innovative atmosphere was developed at the Institute, many original approaches to
solving problems of theoretical and applied mechanics, engineering science and
control in technical systems have been formulated.

Now the IPME RAS (also known as IPMash) includes 17 structural units:

1. Laboratory for Mathematical Modeling of Wave Processes (Head, Corre-
sponding Member of RAS Dmitry A. Indeitsev).
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2. Department of Extreme States of Materials and Structures (Head, Corre-
sponding Member of the Russian Academy of Sciences Yuri V.Petrov).

3. Laboratory of Mechatronics (Head, Corresponding Member of the Russian
Academy of Sciences Alexander K. Belyaev).

4. Laboratory "Discrete Models in Mechanics" (Head, Corresponding Member
of the Russian Academy of Sciences Anton M. Krivtsov).

5. Laboratory of Mechanics of Nanomaterials and Theory of Defects (Head,
Professor Mikhail Yu. Gutkin).

6. Laboratory of Mathematical Methods in Mechanics of Materials (Head,
Professor Alexander B. Freidin).

7. Laboratory of Numerical Models of Mechanics of Materials and Structures
(Head, Professor Sergei V. Petinov).

8. Laboratory of Micromechanics of Materials (Head, Professor Alexey V.
Porubov).

9. Laboratory of Friction and Wear (Head, Professor Elena B. Sedakova).
10. Laboratory of Vibrational Mechanics (Head, Dr. Leonid I. Blekhman).
11. Laboratory of Physics of Fracture (Head, Professor Yurii I. Meshcheryakov).
12. Laboratory of Material Surfaces Modification (Head, Dr. Viacheslav G.

Kuznetsov)
13. Laboratory of Structural and Phase Transformations in Condensed Matter

(Head, Professor Sergey A. Kukushkin).
14. Laboratory for Control of Complex Systems (Head, Professor Alexander L.

Fradkov).
15. Laboratory of Reliability Analysis Methods (Head, Professor Boris P. Khar-

lamov).
16. Laboratory of Intelligent Electromechanical Systems (Head, Professor Andrey

E. Gorodetsky).
17. Laboratory for Applied Research (Head Dr. Yuri A. Yakovlev).

The advanced research areas of the institute include dynamics, strength and reli-
ability of machines and structures, among them marine, arctic and underwater ones,
operating in extreme conditions, as well as vibration and stability, wave and vibroim-
pact processes, theory and methods of control processes in complex physical and
technical systems. Other directions are focused on mechanics of materials, thermo-
dynamics and kinetics of transient processes in nanomaterials and smart materials,
phase transitions and structural defects, nano- and microtribology, coupled problems
of chemo-mechanics and interdisciplinary problems of mechanics.

In the framework of these directions the following approaches were developed:

• the experimental technique for visualizing kinematic modes of material deforma-
tion based on the use of liquid crystals.

• vibrational mechanics—a new branch of mechanics which offers a general
mechanical and mathematical approach to describing the effect of vibration on
nonlinear mechanical systems and media.

• mechanics of discretemedia—a newbranch ofmechanics focusing onmechanical
and physical phenomena for which discreteness of a medium is important.
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• the hydrodynamic theory of friction during the ordering of themolecular structure
of the lubricant on rubbing surfaces.

• new ion-plasma technologies for controlling the structure and physical-
mechanical properties of materials for changing the surface properties of mate-
rials, creating superhard coatings, carbon nano- andmicrostructures and powdered
composites.

• experimental and theoretical study ofmultiscale dynamic fracture of solids, shock-
wave propagation in solids.

• the correlation method for determining the abrasive wear of a rubbing part which
does not interfere with the operation of the machine.

• new algorithms for controlling transport robots in sliding modes, adaptive
synchronization of interacting subsystems.

• mathematical models of wave processes in continuous media with inclusions.
• theoreticalmodels of plasticity and fracture in nanostructuredmaterials consisting

of nanocrystallites and grain-boundary phase, which reveal the leading role of
interfaces in the processes of inhomogeneous plastic deformation in ultra-strong
nanostructured metals, ceramic and nanocomposites.

• newapproaches to the descriptionof phase transitions and stress-affected chemical
reactions.

• the new method of growing defect-free nanoscale silicon carbide films on silicon
proposed theoretically and implemented experimentally.

• the theory of condensation ofmulticomponent films from vapor and liquid phases,
accompanying the growth of a new phase.

• the laboratory for the study of neuro-feedback processes.
• the platform-independent software environment for conducting experiments of

any complexity in the electroencephalography paradigm of neuro-feedback.
Clinical trials of software completed.

• the unique laboratory stand for development and research of algorithms for
controlling electric power networks in normal operation and emergency situations.

The leading researchers of the institute are actively involved in the educational
process, forming scientific schools at the universities of St. Petersburg, including:
Faculty of Mathematics and Mechanics of St. Petersburg State University, Physics
and Mechanics Institute of the Peter the Great St. Petersburg Polytechnic University,
ITMO University, St. Petersburg State University of Aerospace Instrumentation,
Baltic State Technical University and others.

The foundations laid in the creation of the IPMERAS allow our Institute to remain
the center of attraction for scientists, to conduct a variety of scientific research in
the most seemingly unrelated directions, but having common fundamental roots in
natural sciences. This is evidenced by the book offered to the reader.

St. Petersburg, Russia
October 2021

Vladimir A. Polyanskiy
Alexander K. Belyaev
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Chapter 1
Mathematical Modeling of Some
Diffusion and Thermomechanical
Problems

Andrei K. Abramian, Sergey A. Vakulenko, Dmitry A. Indeitsev,
Mikhail V. Khovaiko, and Alexander S. Nemov

Abstract In this paper, we consider themathematical methods which can be applied
for the solution of two mechanical problems which have varying in space and time
parameters, and some of them are described by the hyperbolic equations. The first
problem is an interaction between the deformation waves and the diffusion process in
a rigid solid. The main effect accompanying the transport of impurity in the material
is a reduction of its initial rigidity parameters. Unlike the existing works, in our
paper, an analytical approach is applied to the analysis. Considering the interaction
of impurity waves and deformation waves, we obtained a number of solutions which
can be used to develop acoustic diagnostics of defects in a material. For the one-
dimensional case, analysis is given by taking into account the influence of a changing
stress state of the environment. The second problem is a mathematical modeling of
the thermomechanical processes in soils. We consider a plane thermal state of the
soil surrounding the gas-main pipeline.
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1.1 Introduction

In this paper, we consider the mathematical methods which can be applied for the
solution of two mechanical problems. Both problems are nonlinear. The first prob-
lem is an interaction between the deformation waves and diffusion process in a rigid
solid. We continue the solution of diffusion problem in a strained material, which
was presented in [1]. An analysis of that problem leads us to complicated systems of
hyperbolic and parabolic nonlinear equations. The second problem is a mathemati-
cal modeling of the thermomechanical processes in soils. It is nonlinear because of
the boundary conditions on the moving boundaries. In this problem, the behavior of
the media near the moving wavefront or boundary is of special interest. Localized
solutions for the first problem were studied in [1] and for similar hydroelastic prob-
lems in [2–4]. Our main results are as follows. By a new model of diffusion in a
strained material, we find solutions describing the propagation of linear and periodic
perturbations. The main effect accompanying the transport of impurity in material is
a reduction of its initial rigidity parameters. Unlike the existing works, in our paper,
an analytical approach is applied to the analysis. As a result, we obtained a number of
solutions which can be used to develop acoustic diagnostics of defects in a material.
For the one-dimensional case, analysis is given by taking into account the influence
of a changing stress state of the environment. The interest in the second problem is
caused by the fact that permafrost as a natural phenomenon is widespread in a large
area of the globe, covering more than 60% of the territory of Russia. Recently, due
to the active construction of buildings and structures in permafrost conditions, the
problem of designing foundations and underground utilities has gained importance
in view of the possible subsidence or heaving of the soil as a result of freezing or
thawing [8–10]. Those phenomena are caused not only by the seasonal fluctuations
in the temperature, depth of snow cover, and intensity of solar radiation, but also by
the climatic changes and industrial human activities [11, 12]. Mathematical model-
ing of the thermomechanical processes in soils makes it possible to develop reliable
and durable structures and to avoid the severe consequences of accidents. In view of
the complexity of these thermomechanical calculations, it is advisable to use various
computational methods [13–15]. The most perfect method for thermal state calcula-
tions of a solid is the finite element method [8, 13, 14]. The results of the application
of this method are presented in this paper.

1.2 Statement of the Diffusion Problem

We will consider a solution of diffusion problem in a strained material which has
two components. For example, the diffusing components can be solute atoms and
vacancies. We introduce the one-dimensional model of two-component continuum,
which allows us to describe both the hydrogen diffusion and its interaction with the
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material, and therefore, to find the equation of state for hydrogen-containing media.
The first component is represented by the crystal lattice of the initial material includ-
ing stationary hydrogen atoms embedded (attached) in chemical bonds between
atoms, the second component is represented by free mobile hydrogen atoms dis-
solved in the material. The specific feature of the model is that some of the hydrogen
atoms are embedded in existing atomic bonds, breaking them and creating new bonds
which are significantly less strong than the initial ones. In our paper, the problem of
interference between the wave of deformation and wave of impurity has been consid-
ered and solved with the help of an analytical approach. For one-dimensional (1D)
case, the solutions, which take into account possible variations of the strain state of
the considered medium, have been found and analyzed. We establish the following
basic relation: the deformation ε, induced by a localized perturbation of impurity
density ρ1, is proportional to the product of the inverse speed V−1 of propagation of
that impurity perturbation, the space derivative of logarithm of the impurity density
ρ1 and the diffusion coefficient of that impurity D̄, i.e.

ε = D̄V−1 d ln ρ1

dx
, (1.1)

where for small concentrations ρ1 the speed V is defined by the relation

V 2 ≈ E0(1 + κ R̄)−1, (1.2)

where κ = (E0/E1 − 1)/m1 > 0
E0 is Young’s modulus of pure material in the absence of hydrogen, E1 is Young’s

modulus of material with all bonds occupied by hydrogen, m1 is the mass of embed-
ded atoms; R̄ is the impurity perturbation. The velocity V is always less than the
sound velocity in that material. So, finally, the problem can be described as follows:

∂σ

∂x
= ∂2u

∂t2
, (1.3)

σ = E0ε

1 + κρ1
, (1.4)

∂ρ2

∂t
− ∂

∂x

[
D(ε)

(
∂ρ2

∂x
+ ηρ2

∂2u

∂t2

)
− ρ2

∂u

∂t

]
= −αρ2, (1.5)

∂ρ1

∂t
+ ∂

∂x

[
ρ1

∂u

∂t

]
= αρ2, (1.6)

where

1. ρ1(x, t) is the density of impurity particles of the first component (x ∈ [0, L] and
t ≥ 0) connected with the main structure;

2. ρ2(x, t) is the density of the second component;
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3. u(x, t) is the deviation of the first component;
4. ε = ∂u

∂x is the deformation of the first component;
5. J (x, t) = αρ2(x, t) is the source term, which determines the exchange between

the first and the second components. The constant α can have any sign.

Here, η, κ, E0 are positive constant parameters. System (1.3)–(1.6) is complicated
andwe first consider particular solutions of that systemdescribing propagatingwaves
and periodic structures (patterns) in space. Below we assume that

D(ε) = D0 + D1ε,

where D0 > 0, D1 are constants, and ε is small, so, D(ε) > 0 (to avoid negative
diffusion coefficients). Equation (1.6) does not contain a diffusion term. To take into
account diffusion effects, we can modify it as follows:

∂ρ1

∂t
+ ∂

∂x

[
ρ1

∂u

∂t

]
= D̄

∂2ρ1

∂x2
+ αρ2. (1.7)

The system of Eqs. (1.3), (1.4), (1.5) and (1.7) should be complemented by the
boundary conditions:

u(x, t)|x=0 = 0, σ (x, t)|x=L = g(t), (1.8)

D(ux )

(
∂ρ2

∂x
+ ηρ2

∂2u

∂t2

)
− αρ2|x=L = 0, (1.9)

(
∂ρ1

∂x

)
|x=0 = 0,

(
ρ1

∂u

∂t
− D̄

∂ρ1

∂x

)
|x=0,L . (1.10)

We set as well standard initial conditions at t = 0, however, we don’t specify here
the choice of these conditions. We also assume that at the initial moment of time,
the density distribution is localized in a certain area, for example, it has the form of
a Gaussian distribution.

1.3 General Properties of Model

The model is correctly posed, solutions exist for all t > 0. Moreover, they conserve
positivity: if ρ1(x, 0) > 0 and ρ2(x, 0) > 0 then ρ1(x, t) > 0 and ρ2(x, t) > 0. It
can be shown by the standard a priori estimates and the maximum principle [5–7].
Throughout below we suppose that ρ j (x, t) ≥ 0.
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The total impurity masses Mj is defined by

Mj (t) =
∫ L

0
ρ j (x, t)dx .

Let us compute dM2/dt . By integrating (1.4) over x , we have

dM2

dt
= −αM2 + R(x, t)|x=L

x=0 ,

where

I (x, t) = D(ux )

(
∂ρ2

∂x
+ ηρ2

∂2u

∂t2

)
.

We observe that I (0, t) = 0. In fact, condition (1.10) implies that ∂ρ2

∂x = 0 at x = 0

and (1.8) shows that ∂2u(0,t)
∂t2 = 0 and thus I (0, t) = 0. Condition (1.9) gives that

I (L , t) = 0. Therefore
dM2

dt
= −αM2. (1.11)

In a similar way, one can show that

dM1

dt
= αM2. (1.12)

Those two last relations show that the total mass M = M1 + M2 conserves:

M(t) = const.

This relation shows that themodel is correct.Moreover,we observe the following. For
α > 0 one has M2(t) = M2(0) exp(−αt) and thus since ρ2 ≥ 0, we have ρ2(x, t) →
0 as t → 0. Thismeans that for large times our system can be simplified and it reduces
to the following shorted system:

∂σ

∂x
= ∂2u

∂t2
, (1.13)

∂ρ1

∂t
+ ∂

∂x

[
ρ1

∂u

∂t

]
= D̄

∂2ρ1

∂x2
. (1.14)

For α < 0, we have M2(t) → ∞ as t → ∞. Therefore, in this case our model
describes an instability.
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1.4 Particular Solutions

1.4.1 Reduction to Nonlinear Oscillator Equation

We consider solutions of system (1.3)–(1.6), which have the form of propagating
waves

u = U (z), ρi = Ri (z), z = x − V t, (1.15)

where V is the velocity, U, R j are unknown functions. We assume that x ∈
(−∞,+∞) and u, ux are bounded as |x | → ∞. Then by substituting relations (1.15)
into system (1.3)–(1.6), we obtain that Eqs. (1.3) and (1.4) give

∂

∂z

[
E0u

1 + κρ1

]
= V 2 ∂u

∂z
+ const. (1.16)

We suppose for simplicity that const = 0 and then

ρ1 = (E0V
−2 − 1)κ−1. (1.17)

Therefore, V 2 < E0. We substitute that relation for ρ1 in (1.5) and (1.6), which leads
to the following differential equation of the second order:

V εz + D(ε)(εzz − ηV 2ε2z ) − V εzε − αV ε = C, (1.18)

where εz = dε
dz , εzz = d2ε

d2z and C is a constant.

1.4.2 Analysis of Nonlinear Equation

The results of numerical solutions of the nonlinear equation are shown in Figs. 1.1,
1.2, and 1.3. Notice that the differential equation, boundary, and initial conditions can
be transformed to a dimensionless form when we rescale the variables. All following
results are presented in dimensionless form, in particular, x̄ = x/L , z̄ = z/L , where
L is the characteristic size of the first component.

From the Fig. 1.1, it follows that in the case D(ε) = D0 + D1ε Eq. (1.18) has a
family of linear solutions ε = az + b. The blue line corresponds to α = 0.05 and the
red line to α = 0.1. The constants a, b can be found directly from (1.18) for D = D0.
We obtain a = α/V . The huge values of deformation correspond to the destruction
of material. Equation (1.18) can be studied for small V , and α = O(1) (or, that is
the same, for large α). We also assume that term D1ε is small, and thus we can use
approximation

D(ε)−1 = D−1
0 (1 − D1/D0ε).
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Fig. 1.1 This plot shows the linear solutions of Eq. (1.18); the blue line corresponds to the defor-
mation for α = 0.1, V = 50; the red curve to the deformation for α = 0.1, V = 8

Fig. 1.2 This plot shows a periodic solution for α > 0

Let ε0 be the principal term and ε1 be a correction, then the solution has the form

ε = ε0 + V ε1 + . . .

Then the main terms give
D0ε0zz − αε0 = C, (1.19)
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Fig. 1.3 This plot shows a solution of Eq. (1.18) in the case D = D0 + D1ε. The parameters
are D0 = 1; D1 = 0; V = −0.2; η = 1; α = 0.1 and C = 0.1—the blue line corresponds to the
deformation, the red curve to the strain gradient

and the first corrections give

D0ε1zz − αε1 = F, (1.20)

where F is a given function of z.
For α < 0, we obtain periodically oscillating solutions which can be seen in

Fig. 1.2. For α = 0, there are possible shock waves (see [1]). A typical result of the
numerical simulations for α > 0 is given in Fig. 1.3. The red curve corresponds to
the strain gradient. To conclude this section, let us note that unbounded solutions can
be interpreted as the destruction waves.

1.5 Simplified Problem

System (1.3)–(1.6) can be simplified for the case where D is a given function:

D(x) = D0 + D1 sin(kx),

where D(x) is a impurity diffusion coefficient depending on x periodically. Then
this system can be reduced to the following hyperbolic equation:
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μ−1 ∂2ρ

∂t2
+ ∂ρ

∂t
− ∂

∂x

(
D(x)

∂ρ

∂x
− v(x)ρ

)
= 0, (1.21)

where ρ(x, t) is a unknown impurity density, t ≥ 0, x ∈ [0, 1], andμ > 0 is a param-
eter.

We set the boundary conditions

∂ρ

∂x
∣∣∣x=0

= 0,
(
D(x)

∂ρ

∂x
− v(x)ρ

)∣∣∣x=1
= 0. (1.22)

In the general case, Eq. (1.21) cannot be resolved analytically, however, we can
find certain asymptotic solutions and investigate the large time behavior of the solu-
tions.

The following case should be distinguished:
DD μ >> 1 (diffusion dominates);
DH μ << 1 (the hyperbolic part of Eq. (1.21) dominates).
In the second case, we can expect wave propagation effects, and then diffusion

works as a weak damping.

1.6 Eigenfunctions of Linearized Problem

In the case DD, the Fourier decomposition can be applied. Then Eq. (1.21) can
be resolved by the Fourier method by substitution u(x, t) = ψ(x) exp(iωt). Let us
consider the operator

Lψ = ∂

∂x

(
D(x)

∂ψ

∂x
− v(x)ψ

)
, (1.23)

and the eigenfunction problem
Lψn = λnψn, (1.24)

where the functions ψn satisfy the boundary conditions (1.22). Solutions of that
spectral problem can be found with the help of asymptotic methods. In certain cases
the main contribution into ρ is given by the zero mode ψ0 with λ0 = minn λn . For
self-adjoint operators L , without any loss of generality, we can assume that ψn form
an orthonormal basis in L2([0, 1]), and that λn are ordered as

λ0 < λ1 < · · · < λn < · · ·

For non self-adjoint L , we use the bi-orthogonal system of functions ψn, φn such
that

〈ψm, φn〉 = δnm,



10 A. K. Abramian et al.

where δnm stands for Kronecker symbol and 〈 f, g〉 = ∫ 1
0 f (x)g(x)dx . It is easy to

prove that for operator L , all eigenvalues are real numbers. In fact, by the substitution
ρ = β(x)ρ̃, where

ln β =
∫ x

0

Dx(s) − v(s)

2D(s)
ds,

the operator L reduces to a self-adjoint operator H of Schrödinger type,

H = ∂2

∂x2

with boundary conditions ρx + a(x)ρ = 0 at x = 0, 1. Therefore, all λn are real.
According to the Sturm–Liouville theory, the eigenfunction ψ0 with the minimal

Reλn has no roots on [0, 1] and physically it corresponds to an equilibrium density.
If v(0) = 0 then

ψ0(x) = exp
( ∫ x

0
D−1(s)v(s)ds

)
. (1.25)

The adjoint operator L∗ has the form

L∗φ = ∂

∂x

(
D(x)

∂φ

∂x

) − v(x)
∂φ

∂x
,

with the boundary conditions

φx (x) = 0, (x = 0, 1).

Therefore, φ0(x) ≡ 1.

1.7 Fourier Decomposition

By the eigenfunctions, ψn solutions of (1.21) can be represented in the form

ρ(x, t) =
∞∑
n=0

cn exp(θnt)ψn(x), (1.26)

where

cn =
∫ 1

0
ρ(x, 0)φn = 〈ρ(·, 0)φn〉,

2θn = μ(−1 ±
√
1 − 4λnμ−1).
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The last relation shows that if λn ≤ 0 then θn ≥ 0. According to (1.26), for large
t >> 1 the asymptotic of solutions ρ is defined by the main eigenfunction with the
minimal Reλn:

ρ(x, t) = c0 exp(θ0t)ψ0(x) + O(exp(−δt)), t → +∞. (1.27)

where δ > 0. For λ0 that asymptotic means that solution goes to an equilibrium
density ρeq = const ψ0.

1.8 Peculiarities of the Interphase Boundary Movement in
Thawing/Freezing Problems

In this section, we start the investigation of the second mechanical problem which
was mentioned in the Introduction. Mathematical modeling of the thermomechan-
ical processes in soils makes it possible to develop reliable and durable structures
and to avoid the severe consequences of accidents. In view of the complexity of
these thermomechanical calculations, it is advisable to use various computational
methods [13–15]. In particular, the finite element method is known as one of the
most suited for the modeling of thermal state calculations of a solid [8, 13, 14]. The
basic steps in finite element modeling for a given problem include construction of a
computational domain, choice of constitutive equations, and identification of initial
and boundary conditions. The first step, the correct definition of the boundaries of
the computational domain, is often not obvious and may strongly affect the results
when simulating thermomechanical processes in soils. Let us consider a plane ther-
mal state of the soil surrounding the gas-main pipeline (Fig. 1.4). Constant positive
temperatures are maintained at the upper boundary of the computational domain and
inside the pipeline, while on the remaining boundaries zero heat flux is set (thermal
insulation). The initial temperature of the soil is assumed to be −8 ◦C. Two options
for the vertical dimension of the computational domain are considered: 15 and 30m.
As a result of thermal calculations, we determine the distribution of temperature in
the computational domain and the vertical dimension of the area in which the tem-
perature exceeded 0 ◦C. This dimension corresponds to the depth of the melt soil
layer under the pipeline. Figure1.5 shows the temperature distribution obtained as a
result of transient finite element calculations for the two considered options of the
domain geometry at the same time point. The area where temperatures exceed 0 ◦C
is shown with gray color.

As can be seen from the presented results, the depth of the thawed layer sig-
nificantly (more than 1.5 times) differs depending on the depth of the soil layer
included in the computational domain. A considerable difference is also observed in
the temperature field—the minimum temperature values also differ by 1.5 times.

It was found that the difference in the depth of the melt soil layer increases as
this area approaches the lower boundary of the computational domain, at which the
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Fig. 1.4 Finite element model of the soil surrounding the gas-main pipeline

Fig. 1.5 Temperature distribution ◦C and the depth of the thawed soil layer for two options of the
computational domain size

thermal insulation conditions are prescribed. A simplified model of the soil without
pipeline is used to illustrate this effect (problem statement is similar to the one
previously illustrated in Fig. 1.4). The position of the isotherm 0 ◦C is denoted with
ξ . As previously, two options are considered for the computational domain depth:
15 and 30m (Fig. 1.6).

When the depth of themelted region reaches a certain value,weobserve an increas-
ing discrepancy in the size of the melted layer obtained for two considered options.
In the considered example, this discrepancy reaches 2.2m, which is approximately
15%. The results indicate that the speed at which 0 ◦C isotherm is moving increases
abruptly when it approaches the lower boundary of the model. Additionally, it was
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Fig. 1.6 Position of the 0 ◦C isotherm versus time for two different options for the computational
domain size

Fig. 1.7 Position of the 0 ◦C isotherm versus time for different initial temperatures

found that this increase in the speed at which 0 ◦C isotherm moves when it gets close
to the lower boundary of the computational domain is observed regardless of the
initial temperature of the soil. Figure1.7 depicts results obtained for three different
values of the initial temperature of the soil.

The statement of the problem considered above is of course a strongly simplified
one. In particular, the assumption of a constant temperature at the upper boundary
of the computational domain violated in most real situations. To make the statement
slightlymore realistic, we considered the case when the temperature prescribed at the
upper boundary fluctuates with some amplitude �T . That change in the boundary
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Fig. 1.8 Position of the 0 ◦C isotherm versus time for different options of the boundary condition
at the upper boundary of the computational domain: constant temperature +10 ◦C and fluctuations
of the prescribed temperature characterized by different amplitude �T

conditions affects the position of the 0 ◦C isotherm in the results, but the effect of the
increase in the speed at which this isotherm moves when approaching the insulated
boundary remains; see Fig. 1.8.

The observed phenomenon of the increase in the speed at which 0 ◦C isotherm
(phase boundary) moves is clearly associated with the choice of the dimensions of
the computational domain. In that sense, it can be considered as an error caused by
computational assumptions and should be avoided as much as possible. An obvious
way to eliminate this effect is to increase the computational area by placing the
lower (insulated) boundary at a considerable distance from the area of interest. This
approach, however, leads to an increase in the total number of degrees of freedom of
the finite element model and, therefore, to the computational cost of the solution.

The objective of the presented research is to find ways to reduce the effect of
increasing the speed of interphase boundary propagationwithout increasing the com-
putational domain (the finite element model).

We first check whether the described phenomenon is only presented in the numer-
ical solution, or it is a feature of the correct analytical solution of the boundary-value
problem. The analytical solution for the problem of heat propagation in a rod of
limited length is presented below.

Let us consider the heat conduction equation for a one-dimensional problem

∂u

∂t
= a2

∂2u

∂x2
, (1.28)
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Fig. 1.9 Position of the 0 ◦C isotherm versus time. Comparison of the analytical and numerical
solutions

where a is the thermal diffusivity coefficient. We consider the following initial and
boundary conditions: u|t=0 = u0; ∂u

∂x

∣∣
x=0

= 0; u|x=l = ũl—prescribed temperature
at the upper boundary.

The solution for the described problem can be expressed as follows [16]:

u = ũl + 4(u0 − ũl)

π

∞∑
n=0

(−1)n
cos (2n+1)πx

2l

2n + 1
e− (2n+1)2π2a2 t

4l2 . (1.29)

The time-dependent position of the 0 ◦C isotherm was calculated on the basis
of the presented temperature distribution. Figure1.9 depicts a comparison between
the evolutions of the position of the isotherm calculated from the results of the
analytical and numerical (finite element) solutions. It can be seen that the increase
in the propagation speed of the 0 ◦C isotherm near the heat-insulated boundary is
predicted by the analytical solution also. The difference between numerical and
analytical solutions does not exceed 5%.

Both numerical and analytical results presented above were obtained using a sim-
plified statement of the problem, where we tracked the position of the 0 ◦C isotherm,
but the actual freezing and thawing processed happening at this temperature were
neglected. When analyzing the real problem of freezing/thawing of soil, it is nec-
essary to take into account different thermal parameters of the frozen and thawed
soils, as well as the latent heat of the phase transition. A more elaborated statement
of problem, which accounts for the phase transition processes, is considered below
with the purpose to check whether the described above effect of the increase in speed
of isotherm propagation is a consequence of the simplified statement.
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In order to take into account the phase transition processes, we consider the
classical Stefan problem

⎧⎪⎪⎨
⎪⎪⎩

∂u1
∂t

= a1
2 ∂2u1

∂x2
, 0 < x < ξ

∂u2
∂t

= a2
2 ∂2u2

∂x2
, ξ < x < l

(1.30)

with the initial and boundary conditions

u2|t=0 = u0; ∂u2
∂x

∣∣∣∣
x=0

= 0; u1|x=l = ũl,

and interphase boundary conditions:

u1 = u2 = 0, x = ξ (t) , ξ (0) = 0,

k1
∂u1
∂x

∣∣∣∣
x=ξ

− k2
∂u2
∂x

∣∣∣∣
x=ξ

= λρ
dξ

dt
.

There are various methods for the numerical solution of this problem [17–20].
One possibility is to use the enthalpy form [17]:

∂h

∂t
= div(λ grad (u)) (1.31)

h(u) =
⎧⎨
⎩
C1(u − u f ), u < u f

�, u = u f

� + C2(u − u f ), u > u f

(1.32)

where C1 is the volumetric heat capacity of the frozen phase, C2 is the volumetric
heat capacity of the thawed phase, � is the volumetric heat of the phase transition,
and u f is the temperature of the phase transition. According to this model, thermal
processed in all three phases (thawed, frozen and transition phase) are described
by a single differential equation. Figure1.10 shows the dependence of enthalpy on
temperature for coarse soils, where all moisture is in a free state.

The numerical implicit solution of this problem is based on the method of “smear-
ing the heat of the phase transition over temperature”, when the transition of phase
is assumed to happen, not at a specific temperature, but within an interval �u f [10].
The heat conduction equation, which is common for both phases, has a clearly pro-
nounced nonlinearity due to the rapid change of C(u) within the interval �u f . In
this case, the enthalpy is defined as
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Fig. 1.10 Enthalpy versus temperature for coarse soils

Fig. 1.11 Position of the 0 ◦C isotherm versus time considering phase transition and without it

I (T ) =
T∫

T0

(
C(u) + �δ(u − u f )

)
du (1.33)

where δ is the Dirac delta function.
The dependence of the enthalpy on temperature is applied with the jump within

the finite interval �u f in order to ensure the convergence of the iterative process of
the nonlinear implicit solution.

Figure1.11 shows a comparison of the position of the isothermbased on the results
of the finite element solutions with accounting for the phase transition and without
it.

Figure1.11 illustrates that the increase in the speed of the interphase boundary
propagation is also observed in the case when the heat of the phase transition is
taken into account. It should be noted that similar phenomenon is also observed
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Fig. 1.12 Modified finite element mesh

Fig. 1.13 Position of the phase interphase boundary versus time considering different enthalpy
jump interval

when calculating the thermal state of a cylinder under external heating [21]. In that
case, an increase in the speed of phase boundary propagation was detected near
the center of the cylinder. However, in for the cylinder that effect has a simple
geometrical explanation: the area on which the phase transition occurs is decreasing
as the interphase boundary moves. It is necessary to note that the “smearing of the
heat of the phase” method distorts the real temperature field, and the extent of that
distortion depends on the chosen temperature interval �u f [10].

Thus, reduction of �u f is an important intermediate task. Convergence can be
achieved by element size decreasing. Figure1.12 shows a modified FE mesh, in
which smaller element size is used near the thermally insulated boundary. The size
of the computational domain in depth (L) is 5m.

Adjusting the size of the finite element mesh and decreasing timesteps made it
possible to reduce�u f interval from 2 to 0.5 ◦C. Figure1.13 shows how the different
values of �u f affect the propagation of the interphase boundary. The corresponding
dependence for a model with an increased depth size (L = 10m), is also presented in
this figure. The boundary of the computational domain of this model does not affect
the position of the interphase boundary in the investigated range.

Thus, the effect interphase boundary speed increase near the thermally insulated
boundary of the computational region speed can be explained by the peculiarities of
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Fig. 1.14 Enthalpy versus temperature for finely dispersed soils

Fig. 1.15 Position of the interphase boundary versus time considering temperature fluctuations at
the upper boundary

numerical problem statement. We demonstrated that this effect can be reduced by
the refinement of the finite element mesh and by decreasing of the phase transition
interval. The impact of these measures is, however, limited. In addition, for finely
dispersed soils, the enthalpy function has a different character (Fig. 1.14), and the
reduction of phase transition interval will not represent the real behavior of the soil.
Therefore, it is desirable to find alternative ways to reduce the effect of the increase
in the interphase boundary speed.

An alternative way to reduce the discussed effect may be adjusting the conditions
at the lower boundary of the computational domain. We suggest using heat transfer
according to Newton’s law convection boundary condition instead of thermal insu-
lation conditions. Figure1.15 shows the dependences of the interphase boundary
motion on the condition prescribed at the lower boundary. The condition of heat
transfer according to Newton’s law was considered with various values of the heat
transfer coefficients. The initial computational statement with the thermal insulation
condition applied at the lower boundary is presented in Fig. 1.15 for two options of
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the computational domain size (5 and 10m). It can be seen from the results presented
that results obtained with heat transfer coefficients from 3 to W/m2K are close to
the ones obtained for a larger size of the computational domain.

1.9 Conclusion

In this paper, we first consider effects of impurity diffusion and convection in strained
elastic materials. To describe those effects, we use the two-component continual
model, taking into account the change in the rigid properties of the material, and
prove that the model is mathematically well posed, its solutions exist and are unique.
Moreover, we found a priori estimates of solutions and some asymptotic. The fol-
lowing conclusions can be drawn from the study:

• Aphenomenon of an unrealistic increase in the propagation speed of the interphase
boundary when it approaches the boundary of the computational domain was
revealed in solution of the problem of soil freezing or thawing.

• It was proven that this phenomenon exists for various conditions of the phase tran-
sition, but its influence on the calculation result can be reduced by the refinement
of the FE solution.

• It is possible to adjust the statement of the problem so as to reduce the effect
of the phenomenon and obtain a more accurate solution without including larger
region of the soil in the computational domain. In particular, using the convection
boundary condition instead of thermal insulation may be an easy solution.

The results and recommendations obtained in this study can be helpful in solving
various thermal problems for frozen and permafrost soils as well as in the design of
foundations for buildings and underground pipelines.
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Chapter 2
On an Attraction Basin of the
Generalized Kapitsa’s Problem

Alexander K. Belyaev, Nikita F. Morozov, Petr E. Tovstik, Tatiana M. Tovstik,
and Tatiana P. Tovstik

Abstract The problem of the generalized Kapitsa pendulum on the stability of the
vertical position of the rod under the vertical vibration of the support was studied
in various settings. A vertical deformable rod with a free upper end and clamped
or simply supported lower end under the action of harmonic or stationary random
vibrations of the support is considered. We model the rod as a system with several
degree of freedom. The conditions for stability of the upper vertical position of the
pendulum are found. Both bending and longitudinal vibrations of the bar are taken
into account. We found the attraction basin of the stable vertical position.

Keywords Kapitsa’s pendulum · Stability · Attraction basin · Two-scale
asymptotic expansion · Harmonic and random vibrations · Flexible rod · Single
mode approximation

2.1 Introduction

Interest in the problem of pendulum oscillations was born 300 years ago in the works
of Galileo, who studied the periods of pendulum oscillations. It was A. Stephen-
son [12] who in 1908 first drew attention to one of the very interesting types of
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pendulum oscillations, namely, the stability of a pendulum in a gravity field in the
upward position with vertical support vibrations.

With the development of high-energy physics, the problems involving oscillatory
behaviour of objects with different time scales have received practical application
and have attracted a vivid attention of researchers. In 1951 P.L. Kapitsa [7, 8] carried
out various statements of theoretical and experimental studies of the oscillations of an
inverted pendulum. It is known that the problems of oscillations of a pendulum with
a vibrating support lead to the Mathieu equation which can be solved only in terms
of elliptic functions. Kapitsa made an additional assumption of small oscillation
amplitude of the support and considered a type of motion in which the period of
the support oscillation is much less than the oscillation period of the pendulum
itself. Under these assumptions, the pendulum can stand, without falling, in the
upward position which was confirmed by a number of experiments described in the
Kapitsawork. In theKapitsaworks one find the theory of calculation of the pendulum
oscillation period, the restoring moment acting on the pendulum deviated from the
upper equilibrium position by a finite angle, aswell as the equilibrium condition itself
and an accuracy estimate under the assumption of small oscillation amplitude of the
pivot point. The equilibrium condition occurs with sufficiently intense vibrations of
the support.

The problem of the Kapitsa pendulum as well as similar beautiful and instruc-
tive phenomena of dynamic stability and instability associated with vibrations were
included in the monographs by I.I. Blekhman [4, 5].

The present paper suggests the boundaries of the attraction basin of the upper sta-
ble position of the pendulum found by themethod of two-scale asymptotic expansion.
The solutions of the generalized problem of oscillations of the Kapitsa pendulum are
investigated as they are important for practical application, too. Even P.L. Kapitsa in
his work drew attention to the parameters of a pendulum suitable for practical exper-
iments and predicted that bending vibrations at resonance frequencies can grow for
a thin rod.

This paper gives attention to the generalized formulations of the problem in which
the pendulum rod is not an absolutely rigid body. The flexible pendulum is assumed
to be a homogeneous rod that obeys the hypotheses adopted for the Bernoulli - Euler
beam. To analyze the solution of the problem, a series expansion in eigenforms of an
auxiliary boundary value problem associated with free transverse vibrations of a rod
compressed by a longitudinal force is used. Here the stability condition is found from
the system of equations obtained by the method of two-scale asymptotic expansions.

A pendulum in the form of a vertical elastic rod is considered, which can be
unstable not only in the case of a hinged support of the lower end, but also in the
case of rigid fixation (provided that the rod is long enough). The influence of the
propagation of longitudinal waves along the rod is investigated and the attraction
basins are found [3].

The generalised Kapitsa problem is also considered in the case when the vibra-
tions of the vertical support is a stationary random process [16]. As in the case of
high vibration levels, the vertical position of the rod is stable and we determine the
corresponding attraction basin.
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Fig. 2.1 TheKapitsa’s pendulum and its generalizedmodels: aClassicalmodel;bFlexible support;
c Flexible rod with a hinged lower end; d Flexible rod with a clamped lower end

2.2 Classical Model of the Kapitsa’s Pendulum

2.2.1 Stability of the Kapitsa’s Pendulum

We consider a pendulum as a thin homogeneous rigid rod of length L , see Fig. 2.1a.
Its motion in the movable co-ordinate system is described by the equation

J
d2ϕ

dt̃2
+ n1

dϕ

dt̃
− m

L

2
(g − aω2 sin(ωt̃ + β)) sin ϕ = 0, (2.1)

where ϕ(t̃) is the angle between a rod and a vertical axis; n1, J = mL2/3, m, g are
the damping coefficient, the inertia moment of a rod, its mass, and the gravitational
acceleration; respectively, a, ω, β are the amplitude, frequency and initial phase of
the support vibration.

The limitation of small amplitude a � L of the support vibration is introduced.
Additionally, it is known [7] that for the fixed values of L and a the stability condition
for the Kapitsa effect is fulfilled for the sufficiently high frequency ω � 1. For
this reason, for the following analysis is convenient to write down Eq. (2.1) to the
dimensionless form:

ϕ̈ + εnϕ̇ − (ε2q − ε sin(t + β)) sin ϕ = 0, (2.2)

where

t = ωt̃, n = 2n1
mLaω

, q = 2Lg

3a2ω2
, ε = 3δ

2
, δ = a

L
. (2.3)

Here q is the loading parameter, ε is the small parameter. A derivative with respect
to time t is denoted by a dot. We introduce the relative acceleration of the support
vibration κ as the critical parameter which ensures the pendulum stability

κ = aω2

g
= 2

3δq
. (2.4)
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Fig. 2.2 Part of the
Anis-Strett diagram for the
equation
ϕ̈ − (q̂ − ε sin t)ϕ = 0

0 0.1

q

- 152.0- .0

0.1

0.3

0.5

For small ϕ (namely, for sin ϕ ≈ ϕ) Eq. (2.2) is the Mathieu equation and for small
q > 0 the solution ϕ ≡ 0 is stable under the condition [1] (see Fig. 2.2)

q < 1/2, κ >
4

3δ
. (2.5)

2.2.2 Attraction Basin of the Solution of the Kapitsa’s
Pendulum

Now we proceed to the attraction basin of this solution and consider the Cauchy
problem consisting of Eq. (2.2) and the initial conditions

ϕ(0) = ϕ0, ϕ̇(0) = 0. (2.6)

We seek an asymptotic solution of Eq. (2.2) as a two-scale expansion [6]:

ϕ(t, θ, ε) =
∞∑

m=0

(Um(θ) + Vm(t, θ))εm,

∫ 2π

0
Vm(t, θ))dt = 0, m = 0, 1, . . . ,

(2.7)
where θ = εt is the slow time and

ϕ̇ = ∂ϕ

∂t
+ ε

∂ϕ

∂θ
, ϕ̈ = ∂2ϕ

∂t2
+ 2ε

∂2ϕ

∂t∂θ
+ ε2

∂2ϕ

∂θ2
. (2.8)

An expansion of Eq. (2.2) in powers of ε yields consecutively
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V0(t, θ) = 0, V1(t, θ) = sinU0 sin(t + β),
∂2V2

∂t2
+ H(θ, t) = 0, (2.9)

with

H = 2
∂2V1

∂t∂θ
+ d2U0

dθ2
+ n

dU0

dθ
− q sinU0 + (U1 + V1) cosU0 sin(t + β). (2.10)

According to (2.7) the average value in t of function H(t, θ) is to be equal zero that
gives an equation for function U0(θ)

d2U0

dθ2
+ n

dU0

dθ
+ F(U0) = 0, F(U0) = ((1/2) cosU0 − q) sinU0. (2.11)

Due to relation ϕ̇ = ε(dU0/dθ + ∂V1/∂t) + O(ε2) = 0, we solve Eq. (2.11) with
initial conditions

U0 = ϕ0, U ′
0 = dU0/dθ = − sin ϕ0 cosβ for θ = 0. (2.12)

The problem (2.11), (2.12) is the zero asymptotic approximation of the exact problem
(2.2), (2.6).

For a definiteness we take α = 0.01, n = 0.1 and for some values ϕ0 and β we
find q∗(ϕ0, β) such that for q < q∗( f0, β) the limiting equality

ϕ(t) → 0 at t → ∞, (2.13)

is valid, whereas in the opposite case q > q∗( f0, β) Eq. (2.13) is not fulfilled. The
boundary q∗(ϕ0, β) depends on the initial phase β which is unknown in the general
case. That iswhywe introduce two attraction basins in the plane of parameters (ϕ0, q)

Ga(ϕ0) : q < q−∗ (ϕ0), q−∗ (ϕ0) = min
β∈[0,2π)

q∗(ϕ0, β),

Gp(ϕ0) : q−∗ (ϕ0) < q < q+∗ (ϕ0), q+∗ (ϕ0) = max
β∈[0,2π)

q∗(ϕ0, β).
(2.14)

see Fig. 2.3 Eq. (2.13) is fulfilled for all values β In basin Ga ; it is fulfilled only for
some values β in basin Gp, and it is newer fulfilled in part G0 of plane (ϕ0, q).

The boundaries q−∗ (ϕ0) and q+∗ (ϕ0) are numerical solutions of the exact problem
(2.2), (2.6). The approximate problem (2.11), (2.12) gives the close results (the
corresponding curve q−∗ (ϕ0) in Fig. 2.3 is shown as a dashed line, and the difference
between the exact and approximate curves is so small that it is impossible to see it
in figure q+∗ (ϕ0)).

Equation (2.11) is convenient for qualitative analysis in the phase plane (U0,U ′
0).

The trajectoriesU0(θ),U ′
0(θ) for q = 0.3, n = 0 are shown in Fig. 2.4. A bold curve

separates the attraction basin while the possible values |U ′
0| ≤ | sinU0| are marked

by dashed lines.



28 A. K. Belyaev et al.

q

Gp

G0

Ga

0

0.9 1.2 1.50.30

0.3

0.5

Fig. 2.3 The attraction basins

Fig. 2.4 The attraction basin
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2.2.3 Attraction Basins for Kapitsa’s Problem at Random
Excitation

Let the vertical support vibration xe(t) = ξ(t) be random (Fig. 2.1a), and ξ(t) be a
stationary process with zero excitation and spectral density Sξ (λ). We consider the
problems of Sect. 2.2 for the case of random excitation. Equation (2.1) reads as:

J
d2ϕ

dt̃2
+ n1

dϕ

dt̃
− mL

2

(
g + d2ξ̃

dt̃2

)
sin ϕ = 0. (2.15)

We rewrite Eq. (2.15) in the dimensionless form, relating time t̃ to 1/ω (ω is the
typical frequency of vibration of support), and relating excitation ξ̃ (t̃) to the average
amplitude of support vibration σξ̃ :

ϕ̈ + εnϕ̇ − (
ε2q + εξ̈

)
sin ϕ = 0, (2.16)

where derivative with respect to t is denoted by a dot, and
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t = ωt̃, ξ̃ (t̃) = σξ̃ ξ(t), σ 2
ξ̃

=
∫ ∞

−∞
Sξ̃ (λ̃)dλ̃, ε = 3σξ̃

2L
, q = 3Lg

2σ 2
ξ̃
ω2

. (2.17)

Here ε is a small parameter that is proportional to the average amplitude of the
support vibration σξ̃ and ξ(t) is the normalized process with a unit dispersion. The
spectral densities and the dispersions of ξ(t) and its derivatives are as follows:

Sξ (λ) = Sξ̃ (λ̃ω)

σ 2
ξ̃

, Sξ̇ (λ) = λ2Sξ (λ), Sξ̈ (λ) = λ4Sξ (λ), (2.18)

σ 2
ξ̇

=
∫ ∞

−∞
Sξ (λ)λ2dλ.

We solve Eq. (2.16) with the initial conditions ϕ(0) = ϕ0, ϕ̇(0) = 0, and use two
ways for solving the problem.

One of them is a statistical simulation [11, 15]. We model a random process ξ(t)
as a sum of harmonic summands with random amplitudes and phases. For this aim
we choose � so that the part of frequencies λ > � can be neglected and divide the
interval 0 ≤ λ ≤ � by points λn, n = 1, . . . , N . Then the approximate realization
of a random process ξ(t) read as:

ξ(t) =
N∑

n=1

pn(ηn cos(λ̂nt) + κn sin(λ̂nt)), (2.19)

pn =
√
2Sξ (λ̂n)(λn − λn−1), λ̂n = (λn + λn−1)/2,

where ηn and κn are the random independent standard Gaussian numbers (Eηn =
Eκn = 0, Eη2

n = Eκ2
n = 1, and E denotes expectation). Then a numerical solution

of Eq. (2.16) with the initial conditions (2.6) gives a realization of a random process
ϕ(t).

As an example, we consider random process ξ̃ (t̃) with the spectral density

Sξ̃ (λ̃) = c̃

(λ̃4 + 2(α̃2 − ω2)λ̃2 + (α̃2 + ω2)2)(λ̃2 + ω2)
. (2.20)

According to Eqs. (2.17), (2.18), for the dimensionless process ξ(t) the spectral
density reads as:

Sξ (λ) = c

(λ4 + 2(α2 − 1)λ2 + (α2 + 1)2)(λ2 + 1)
, λ = λ̃/ω, α = α̃/ω,

(2.21)
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Fig. 2.5 Spectral density (left); Attraction basins (right)

where constant c is to be found from the condition σ 2
ξ = ∫ ∞

−∞ Sξ (λ)dλ = 1. We find
σ 2

ξ̇
= (1 + α̃2)/(1 + 2α). The constant c̃ is introduced so that the value of σ 2

ξ̃
and

small parameter ε can be taken arbitrary.
We take the following values: ε = 0.01, n = 0.1, α = 0.2, N = 200 and con-

sider the case ϕ0 > 0. The spectral density Sξ (λ) of the normalized process ξ(t) is
plotted in Fig. 2.5. The maximum of Sξ (λ) is close to λ = 1 and σξ = 1. The attrac-
tion basins Ga and Gp obtained by a numerical solution of Eq. (2.16) are shown
in Fig. 2.5. In each numerical experiments we take 10 independent realizations of
process ϕ(t). A point (ϕ0, q) is included in Gp if at least one realization converges
to zero at t → ∞, and at least one realization converges to ±π . Hence in the areas
Gp and G0 all 10 realizations tends to zero and to ±π at t → ∞, respectively. The
boundaries of Gp are denoted by q̂− and q̂+.

The second way of analysis of Eq. (2.16) is applying the two-scale expansion
(2.7):

ϕ(t, θ, ε) = U (θ, ε) + V (t, θ, ε), (2.22)

U (θ, ε) =
∞∑

m=0

Um(θ)εm, V (t, θ, ε) =
∞∑

m=0

Vm(t, θ)εm,

where the average value V is equal to zero

〈V 〉 = 1

T

∫ T

0
V (t, θ, ε)dt = 0, T = O(ε−1). (2.23)

Repeating the calculations of Sect. 2.2.2, we successively obtain:

V0(t, θ) = 0, V1(t, θ) = ξ(t) sinU0,
∂2V2

∂t2
+ H(t, θ) = 0, (2.24)

with
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H = 2
∂2V1

∂t∂θ
+ d2U0

∂θ2
+ n

dU0

∂θ
− q sinU0 − (U1 + V1)

d2ξ

dt2
cosU0. (2.25)

The condition 〈H〉 = 0 leads to equation for function U0(θ)

U ′′
0 + nU ′

0 + (χ cosU0 − q) sinU0 = 0, χ = − 〈
ξ(t)ξ̈ (t)

〉
, U0(0) = ϕ0,

(2.26)
The second initial condition ϕ̇(0) = 0 due to Eqs. (2.8) and (2.24) yields

U ′
0(0) = −ξ̇ (0) sin ϕ0. (2.27)

The problem (2.26), (2.27) contains two random values: χ and ξ̇ (0), and we use
this problem to estimate the attraction basins. To construct them we note that for
Gaussian values with a probability 0.95 the following inequalities are valid:

E(χ) − 2σχ ≤ χ ≤ E(χ) + 2σχ , −2(E(χ) − 2σχ )1/2 ≤ ξ̇ (0) ≤ 2(E(χ) + 2σχ )1/2, (2.28)

where E(χ) is the expectation of χ and σχ is the root-mean-square.
For the taken values of the random process (2.19) we obtain

E(χ) ≈ − 1

T

∫ T

0
ξ(t)ξ̈ (t)dt ≈ 1

T

∫ T

0

(
ξ̇ (t)

)2
dt ≈ σ 2

ξ̇
= 0.743. (2.29)

From Eq. (2.19) we have:

χ ≈ 1

2

N∑

n=1

pnλ̂
2
n(η

2
n + κ2

n ). (2.30)

Taking a large number (say, 10000) of random sets (ηn, κn, n = 1, . . . , N ) and using
(2.30) we obtain the following value of root-mean-square σχ = 0.157.

We put the upper and lower bounds of values of χ and ϕ̇(0) in Eq. (2.28) and
obtain from Eq. (2.26) the boundaries q−(ϕ0) and q+(ϕ0) of attraction basins which
are shown in Fig. 2.5. For comparison, curve q±(ϕ0) corresponding to the values
χ = σ 2

ξ̇
, ξ̇ (0) = 0 is also given there.

In particular, it follows fromEq. (2.26) that the vertical position (with a probability
0.95) is stable provided that

q < σ 2
ξ̇

− 2σχ, (2.31)

and for taken values if q < 0.429.
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Fig. 2.6 Attraction basins in
the plane (ϕ0, q)
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2.2.4 A Kapitsa’s Pendulum on the Flexible Support

Let us consider a rigid rod with an elastically supported lower end, see Fig. 2.1b. In
terms of the dimensionless variables (2.3) the motion of rod on vibrating support is
described by the equation

ϕ̈ + nαϕ̇ + α2(bϕ − q sin ϕ) + α sin ϕ sin(t + β) = 0, b = 4b0L

3ma2ω2
. (2.32)

In addition to Eq. (2.2) describing the classic Kapitsa’s pendulum, the bending sup-
port stiffness b0 is introduced.

At b < q and a = 0 the vertical rod position is unstable. The rod is stable at
ϕ = ϕ0, where ϕ0 is the root of equation

bϕ0 = q sin ϕ0, or b = kq, k = sin ϕ0

ϕ0
< 1. (2.33)

Now we seek the conditions ensuring stable vertical position in the presence of
support vibration.

We seek a solution ofEq. (2.32) satisfying the initial conditionsϕ(0) = ϕ0, ϕ̇(0) =
0.We assume that the angle ϕ0 < π is a leading parameter of problem, and a stiffness
parameter b = kq. As in Sects. 2.2.2, and 2.2.3, we use two-scale expansions, that in
the first approximation for a slowly changing functionU0(θ) lead toCauchy problem:

U ′′
0 + nU ′

0 + F(U0) = 0, U0(0) = ϕ0, U ′
0(0) = − sin ϕ0 sin β, (2.34)

with F(U0) = kqU0 + ((1/2) cosU0 − q) sinU0.Atn > 0, q < q+∗ = 1/(2(1 − k))
the solutionU0(θ) ≡ 0 is asymptotically stable. As in Sect. 2.2.2, at q < q+∗ we seek
an attraction basin of this solution. A plane of parameters (ϕ0, q) consists of three
parts Ga,Gp,G0 and for ε = 0.01, n = 0.1, q ≤ 3 it is shown in Fig. 2.6. At q > 3
the boundaries q− and q+ coincide, and q− ≈ q+ ≈ q+∗ .
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Fig. 2.7 A phase plane at f0 = 1, and at q = 1 (left) and q = 0.1 (right)

At n = 0 the trajectories

U̇ 2
0 + 2

∫ U0

0
F(U )dU = C, (2.35)

(with arbitrary constant C) in a phase plane (U0,U ′
0) are symmetric with respect to

axes OU0 and OU ′
0, and we consider a quarter part of plane U0,U ′

0 ≥ 0. At n > 0
a point passes from one trajectory to another with the lower value of C . In Fig. 2.7
the phase planes for ϕ0 = 1 and for two values q = 1 and q = 0.1 are shown. The
direction of decreasing values of C is indicated by arrow. A set of possible values
of |U ′

0| is marked by a vertical line. For q = 1 all |U ′
0| lie in the attraction basin

of point U0 = U ′
0 = 0, therefore, for all values of the initial phase β Eq. (2.13) is

fulfilled, and (ϕ0, q) ∈ Ga . For q = 0.1 only a part of values |U ′
0| lie in the attraction

basin of pointU0 = U ′
0 = 0 (that is separated by a bold line), and as a result we have

(ϕ0, q) ∈ Gp.

2.3 Generalized Kapitsa’s Pendulum. Flexible Rod

We consider a flexible inverted pendulum in the case of a harmonic vertical vibration
of the support z0(t) = a sin(ωt + β) (see also [2, 10]). Small transverse oscillations
of a longitudinally compressed flexible rod of length L about the vertical position in
the coordinate frame of the support are described by the equation

D
∂4w

∂x4
+ ∂

∂x

(
Ps

∂w

∂x

)
+ ρS

∂2w

∂t2
= 0, Ps = Pw(x) + Pv(x, t). (2.36)

Here w(x, t) is the deflection, D = E I is the bending rigidity, ρ is the material
density, S is the cross-sectional area. The upper end x = L of the rod is free (wxx =
wxxx = 0), and the lower end is clamped (w = wx = 0).
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The axial force Ps is assumed to have two summands: Pw(x) = P(L − x)/L with
P = ρgSL is caused by weight of the rod, and Pv(x, t) is due to the support vibra-
tion. For the inextensible rod Pv(x, t) = −ρaω2 S(L − x) sin(ωt + β), and for the
extensible rod the axial force Pv(x, t) is determined by the propagating longitudinal
waves, see [2, 10] for detail:

Pv(x, t) = −ES
∂u

∂x
= −ES(a/ν)(cos ν x̂ tg ν − sin ν x̂) sin(ωt + β), (2.37)

with x̂ = x/L , ν = Lω/c, c2 = E/ρ. Here E, ρ, c, ω, ν are the Young modules,
the mass density, the sound velocity in the rod, the support frequency and the dimen-
sionless frequency, respectively. For the inextensible rod ν = 0.

The conditions for stability of the vertical position of the rod subjected to the
support vibrations was found in [2, 10] for both inextensible and extensible flexible
rods. Our aim is to obtain the attraction basin of this problem, but at first we repeat
some results of papers [2, 10].

Equation (2.36) in the dimensionless form is given by:

∂4w

∂ x̂4
+ P∗

∂

∂ x̂

(
(1 − x̂ − ga pv(x̂) sin(t̂ + β))

∂w

∂ x̂

)
+ P∗gL

∂2w

∂ t̂2
= 0, P∗ = P0L

2

D
, (2.38)

with t̂ = ωt, ga = aω2/g, gL = Lω2/g. For an extensible rod pv(x̂) = (cos ν x̂
tg ν − sin ν x̂)/ν, and for the inextensible rod pv(x̂) = 1 − x̂ . The last expression
follows from the previous one at ν → 0.

In what follows we omit a sign .̂

The solution of Eq. (2.38) is sought in the form of a series

w(x, t) =
N∑

k=1

�k(x)wk(t), (2.39)

where �k(x) are eigenfunctions of the boundary-value problem

d4�

dx4
+ λ

d

dx

(
(1 − x)

d�

dx

)
= 0, �(0) = �x (0) = �xx (1) = �xxx (1) = 0.

(2.40)
This problem relates to the problem of static equilibrium bifurcation of a heavy
rod with a free upper end and a clamped lower end. The solution of Eq. (2.40)
may be expressed in terms of the Airy functions [1], and the first eigenvalues are
λ1 = 7.8373, λ2 = 55.98, λ3 = 148.5, λ4 = 285.4. For P∗ > λ1 the rod buckles
due to the gravity.

Due to the orthogonality relation
∫ 1
0 (1 − x)� ′

k�
′
n dx = 0 for functions �k(x),

we obtain the system for unknown functions wk(t):
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∑N
k=1 ank

d2wk

dt2
+ ε

(
bn
ga

( pn
P ∗

− 1
)

+ cn sin(t + β)

)
wn = 0, n = 1, ..., N ,

ε = a

L
� 1,

(2.41)
whereakn = ∫ 1

0 �k�ndx, bn = ∫ 1
0 (1 − x)(� ′

n)
2dx, cn = ∫ 1

0 pv(x)(� ′
n)

2dx , and
for the inextensible rod cn = bn .

The first coefficients are a11 = 0.128, b1 = 0.202. For the extensible rod the
coefficient c1 depends on ν and |c1(ν)| is plotted in Fig. 2.8. At ν = π/2 + nπ, n =
0, 1, . . . , the value c1(ν) → ∞, that corresponds to resonances of longitudinal vibra-
tion of the rod.

2.3.1 Conditions of Stability of the Vertical Position

The introduced small parameter ε allows us to use two-scale expansions. We put
ga = ζ/ε and write Eq. (2.41) in the matrix form:

A · d
2W
dt2

+ ε2

ζ
P · W + εC · W sin t = 0, (2.42)

where W = {wk}Tk=1,N is the vector of unknown functions, A = {akn}k,n=1,N is the
symmetric matrix, P and C are the diagonal matrices with elements {bk(λk/P∗ −
1)}k=1,N and {bk}k=1,N , respectively.

Similar to Sect. 2.2, we look for the unknown function W = W(t, θ, ε), θ = ε t
in the form:

W (t, θ, ε) =
∞∑

m=0

(Um(θ) + Vm(t, θ))εm,

∫ 2π

0
Vm(t, θ))dt = 0, m = 0, 1, . . .

(2.43)
Then from Eq. (2.42) we obtain consecutively:

V0(t, θ) ≡ 0, V1(t, θ) = A−1 · C · U0 sin t,

A · d
2U0

dθ2
+ D · U0 = 0, D = P

ζ
+ 1

2
C · A−1 · C.

(2.44)

It follows from Eq. (2.44) that the vertical position of rod is stable if matrix D is
positively definite that allows us to find the critical value ζ∗ of the loading parameter
ζ = a2ω2/(Lg).

For the single mode approximation (N = 1)

ζ∗ = 2a11b1
c21

(
1 − λ1

P∗

)
= 0.0517

c21

(
1 − 7.84

P∗

)
, (2.45)
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Fig. 2.8 Schematic of
coefficient |c1(ν)|
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Table 2.1 Dependence of approximations ζ
(1)∗ and ζ

(2)∗ on P∗
P∗ ≤ λ1 8 10 25 50 100 ∞
ζ

(1)∗ 0 0.02 0.27 0.87 1.06 1.16 1.26

ζ
(2)∗ 0 0.02 0.25 0.85 1.06 1.17 1.29

and for the inextensible rod

ζ∗ = 2a11
b1

(
1 − λ1

P∗

)
= 1.27

(
1 − 7.84

P∗

)
. (2.46)

Calculation ofmatrixD shows that the singlemode approximation gives an accept-
able accuracy for the critical value ζ∗. The single mode (ζ (1)∗ ) and the two-mode (ζ (2)∗ )
critical values of ζ are given for some values of P∗ in Table2.1 for the inextensible
rod.

Remark 1 The hinged support (w = wxx = 0 at x = 0) of lower end is also stud-
ied in Refs. [2, 10]. In this case λ1 = 0, λ2 = 25.64, a11 = 1/3, b1 = 0.5, and
Eq. (2.46) gives ζ∗ = 4/3 independently of the value P∗ that exactly corresponds to
the critical value (q = 1) for a rigid rod (see Sect. 2.2). The higher approximations
in Eq. (2.39) show that the value ζ∗ slightly exceeds ζ∗ = 4/3, namely ζ∗ = 1.37
at P∗ = 120. Dependence ζ∗(P∗) for the hinged and clamped lower end of rod are
shown in Fig. 2.9.

For extensible rod, the inequality |c1(ν)| > b1 is valid at some intervals of param-
eter ν (see Fig. 2.8 with |c1(0)| = b1), therefore according to Eqs. (2.45) and (2.46)
the influence of longitudinal waves in the rod tends to decrease the critical level ζ∗
of the support vibrations. A numerical example is presented in [10].

In Ref. [14], stationary positions were found and the stability was investigated for
a flexible Chelomei pendulum under the support vibration and the used investigation
methods were close to ours. However in contrast to Eq. (2.36), the axial compressive
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Fig. 2.9 Functions ζ∗(P∗)
for a hinged (1) and for a
clumped (2) lower end of rod

P*
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0.8
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80 120

Fig. 2.10 Equilibrium forms
of buckled rod

force caused by the rod weight is not taken into account when describing the flexural
deformation of the rod. That is why no benchmark of the results was made.

2.3.2 On the Attraction Basins for a Flexible Rod

We consider a vertical flexible inextensible rod with a clamped lower end and a
free upper end, cf. [9]. The long rod buckles under weight at P∗ > λ∗ = 7.84 (see
Fig. 2.10), however the rod takes again the stable vertical position for high level of
the support vibration, namely at ζ > ζ∗, see Eq. (2.45). Now we seek the attraction
basin of this position.

Motion of the extensible rod under weight and vertical support vibrations is
described by the equilibrium equations [13]:
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D
∂ϕ

∂s
= M(s, t) =

∫ L

s
(Fx (s1)(z(s1) − z(s)) − Fz(s1)(x(s1) − x(s)))ds1,

E e(s, t) = sin ϕ(s)
∫ L

s
Fx (s1)ds1 + cosϕ(s)

∫ L

s
Fz(s1)ds1,

(2.47)
where

x(s) =
∫ s

0
sin ϕ(1 + e) ds, z(s) =

∫ s

0
cosϕ(1 + e) ds,

Fx = −Sρ ẍ, Fz = −Sρ(g + aω2 sin(ωt + β) + z̈).

(2.48)

Here s (0 ≤ s ≤ L) is the length of arc of the rod axis, ϕ(s, t) is the angle between
tangent to the rod axis and the vertical and e(s, t) is the longitudinal deformation of
the rod axis.

For the inextensible rod e = 0.
In the static case (with a = 0) and for inextensible rod we can simplify Eq. (2.47)

to obtain the boundary-value problem

d2ϕ

ds2
+ P∗(1 − s) sin ϕ = 0, ϕ(0) = 0, ϕ′(1) = 0, (2.49)

where s is related to L . The forms of buckled rod shown in Fig. 2.10 are obtained
from Eq. (2.49).

For the approximate analysis of attraction basin in the neighborhood of vertical
position of the rod we use the single mode approximations for unknown functions
ϕ(s, t) and e(s, t):

ϕ(s, t) = �(s)u(t), �(s) = s − 0.200383s2 − 0.81018s3 + 0.457827s4,

e(s, t) = e(s)v(t), e(s) = 1 − s, 0 ≤ s ≤ 1.
(2.50)

Function e(s) = 1 − s yields the first natural frequency 1.58 of longitudinal vibra-
tion instead of the exact value π/2 = 1.57. Function �(s) is close to the first eigen-
function �1(x) of problem (2.40).

Table2.2 displays the exact coordinates xe, ze of the rod end s = 1 obtained from
Eq. (2.49). They are compared with the approximate values xa, za from approxima-
tion (2.50) and shown in Fig. 2.10. Here u∗ corresponds to the equilibrium state of
vibration-free rod at given P∗. In what follows we will use approximation (2.50) at
|u| ≤ 6.

Remark 2 The other possibility, that is not used here, consists in replacing a flexible
rod by a system of N rigid rods connected by elastic angular strings (Fig. 2.11). For
the Kapitsa problem the case N = 1 is considered in [9, 16] where an attraction basin
is constructed.

Assumption (2.50) suggests the rod to be reduced to a system with two degrees of
freedom, therefore we use the Lagrange equations of the second kind. We introduce
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Table 2.2 Exact and approximate coordinates of the upper rod end

P∗ u∗ xe xa ze za

8 0.942 0.298 0.293 0.946 0.947

9 2.432 0.674 0.672 0.667 0.668

10 3.206 0.793 0.788 0.456 0.457

11 3.760 0.838 0.829 0.292 0.292

12 4.195 0.850 0.836 0.162 0.181

13 4.555 0.845 0.825 0.057 0.054

14 4.863 0.831 0.804 −0.030 −0.034

15 5.133 0.812 0.777 −0.102 −0.108

Fig. 2.11 Discrete model of
a flexible rod
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the designations

{s, x, z, a} = L{ŝ, x̂, ẑ, ε}, ωt = t̂,

P∗ = PL2

D
, gL = Lω2

g
, T̂ = T

PL
, �̂ = �

PL
,

(2.51)

and then omit a sign .̂ Here T and � are the kinetic and potential energy

T = gL
2

∫ 1

0

(
ẋ2 + (ż + ε cos(t + β))2

)
ds, ( )′ = d( )

du
,

� =
∫ 1

0

(
(ϕ′)2

2P∗
ds + z + c2e2

2gL

)
ds.

(2.52)

where x(s, t) and z(s, t) are given by Eq. (2.48).

2.3.3 Lagrange Equations of the Second Kind

At first, we find from Eqs. (2.48) and (2.50)
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x(s, t) = X (u, s) + vX1(u, s), z(s, t) = Z(u, s) + vZ1(u, s) (2.53)

with

X =
K∑

k=0

(−1)ku2k+1 I2k+1

(2k + 1)! , X1 =
K∑

k=0

(−1)ku2k+1 J2k+1

(2k + 1)! , Z =
K∑

k=0

(−1)ku2k I2k
(2k)! ,

Z1 =
K∑

k=0

(−1)ku2k J2k
(2k)! , In(s) =

∫ s

0
�n(σ )dσ, Jn(s) =

∫ s

0
�n(σ )e(σ )dσ.

and
ẋ(s, t) = (X ′(u, s) + vX ′

1(u, s))u̇ + X1(u, s)v̇,

ż(s, t) = (Z ′(u, s) + vZ ′
1(u, s))u̇ + Z1(u, s)v̇.

Now the kinetic and the potential energy are as follows:

T = gL

[(
F00
2

+ F01v + F02v2

2

)
u̇2 + (F10 + F11v)u̇v̇ + F20v̇2

2
+ εG cos(t + β)

]
,

G = (G00 + G01v)u̇ + G10v̇,

� = c0u2

2P∗
+

∫ 1

0
(Z + vZ1)ds + c2v2

2gL

∫ 1

0
e2ds, c0 =

∫ 1

0
(�′)2ds = 0.3184

(2.54)

with

F00 =
∫ 1

0
(X ′2 + Z ′2)ds, F01 =

∫ 1

0
(X ′X ′

1 + Z ′Z ′
1)ds,

F10 =
∫ 1

0
(X ′X1 + Z ′Z1)ds, F11 =

∫ 1

0
(X ′

1X1 + Z ′
1Z1)ds,

F02 = ∫ 1
0 (X ′2

1 + Z ′2
1 )ds, F20 = ∫ 1

0 (X2
1 + Z2

1)ds,

G00 =
∫ 1

0
Z ′ds, G01 =

∫ 1

0
Z ′
1ds, G10 =

∫ 1

0
Z1ds.

The Lagrange equations read as:

d

dt

(
∂L
∂ u̇

)
− ∂L

∂u
= 0,

d

dt

(
∂L
∂ v̇

)
− ∂L

∂v
= 0, L = T − �. (2.55)

We seek solutions of Eq. (2.55) by using two-scale expansions, and we keep only
the following first terms:

u(t) = U (θ) + εu1(θ, t) + ε2u2(θ, t), v(t) = v0(θ) + εv1(θ, t),
〈u1〉 = 〈u2〉 = 〈v1〉 = 0.

(2.56)
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where θ = εt is the slow time. Then the derivatives with respect to time are given
by:

u̇ = εu̇1 + εU,θ + ε2u̇2 + O(ε3), ü = εü1 + ε2U,θθ + ε2ü2 + 2ε2u̇1,θ + O(ε3).

Equations in (2.55) are cumbersome. In the first and second equations in Eq. (2.55)
we omit the terms with orders smaller than ε2 and ε, respectively. Then we have

gL [ F00ü +2F01(u̇v̇+üv) +F ′
00u̇

2/2 +F10v̈ −F ′
20v̇

2/2 −G00ε sin(t+β) ]+
+c0u

P∗
+ G00 = 0,

gL [F10ü + F20v̈ − G10ε sin(t + β)] + G10(u) + c2v

3gL
= 0.

(2.57)
Here all the functions Fi j ,Gi j depend on u.

We find v0 = −3gL/c2G10(U0) and put u1 = û1(θ) sin(t + β), v1 = v̂1(θ)

sin(t + β). Then the terms of order ε in Eq. (2.57) give equations for functions
û1(θ), v̂1(θ):

F00(U )û1 + F10(U )v̂1 + G00(U ) = 0,

ν2
(
F10(U )û1 + F20(U )v̂1 + G10(U )

) − v̂1/3 = 0, ν = Lω

c
.

(2.58)

In what follows the signˆ is omitted.
After time averaging the terms of order ε2 in the first equation in Eq. (2.57) give

the equation for function U (θ):

ζ
(
F00U,θθ + 1/2F ′

00

(
U 2

,θ − 1/2u21
) − 1/2F ′

10u1v1 − 1/4F ′
20v

2
1 − 1/2G ′

00u1
) +

+c0U

P∗
+ G00 = 0

(2.59)
with ζ = ε2gL . Here all the functions Fi j and G00 depend on U .

Equation (2.59) is the principle equation for following analysis of the attraction
basin. We rewrite it in the form:

F00U,θθ + 1/2F ′
00U

2
,θ + nU,θ + F(U ) = 0,

F(U ) = −1/4F ′
00u

2
1 − 1/2F ′

10u1v1 − 1/4F ′
20v

2
1 − 1/2G ′

00u1 + ζ−1
(
c0U

P∗
+ G00

)
,

(2.60)

where the resistance term nU,θ is introduced.
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2.3.4 Attraction Basins for Inextensible Rod

For the inextensible rod we put ν = 0, v1 = 0, u1 = −G00/F00 in the previous
formulas, then Eq. (2.60) is as follows

F(U ) = −1/4 F ′
00u

2
1 − 1/2G ′

00u1 + ζ−1

(
c0U

P∗
+ G00

)
(2.61)

with
F00(u) = 0.02565 − 0.000221u2 + 0.00000117u4,

G00(u) = −0.0406u + 0.00093u3 − 0.00000736u5.

Function F(U ) is odd. Condition F ′(0) > 0 yields the boundary of stability of the
vertical position under the support vibration ζ∗ = 1.26(1 − 7.84/P∗) which is very
close to Eq. (2.46).

According to Eq. (2.8) the initial conditions for Eq. (2.60) are as follows

U = u0,
dU

dθ
= −u1(u0) cosβ at θ = 0, (2.62)

where β is the initial phase of vibration excitation.
For the inextensible rod the attraction basins are shown in Fig. 2.12 in plane

{u0, ζ } for various values of a weight-length parameter P∗. The resistance coefficient
n = 0.1 is taken. For P∗ ≤ 12 the boundaries ζ∗(u0) are approximately constant and
do not depend on β. As a result, the absolute (Ga) and the partial (Gp) attraction
basins coincide. For these values of P∗ the equilibrium points u∗ (see Table2.2)
marked by bold dots in Fig. 2.12 lie within the attraction basins. The case P∗ = 13
is intermediate. For P∗ ≥ 14 the points u∗ lie outside the attraction basins, and areas
Ga and Gp differ from each other. The boundaries g− of areas (Ga : ζ ≥ ζ∗(u0))
are pictured by continuous lines, and the boundaries g+ of areas Gp are denoted by
dashed lines.

For P∗ ≥ 14 the attraction basins lie at u0 < 6, therefore the single mode approx-
imation (2.50) is acceptable for their approximate construction.

For P∗ ≤ 13 the rod takes a curvilinear equilibrium position u = u∗ (see Fig. 2.10
with λ = P∗). For vibrations with ζ > ζ∗ the rod takes the vertical position. For
P∗ ≥ 14, the initial condition u0 = u∗ and under vibration the rod comes to another
(non-vertical) position:U (θ) → u∞ at θ → ∞with F(u∞) = 0. The stable vertical
position can be achieved if the initial position u0 of rod lies within the attraction basin
(see the example below).

We consider, for example, the case P∗ = 15, ζ = 0.7. Then we have u∗ =
5.133, u∞ = 3.157, u− = 1.654, u+ = 3.301 where the points u− and u+ lie on
the boundaries g− and g+, respectively. At θ → ∞ the following limit relations are
valid:
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Fig. 2.12 Attraction basins for inextensible rod

β = 0 : U (θ) → 0 at u0 < u−, U (θ) → u∞ at u0 > u−,

β = π : U (θ) → 0 at u0 < u+, U (θ) → u∞ at u0 > u+.

2.3.5 The Influence of Longitudinal Waves on Stability of the
Vertical Position and Attraction Basins of the
Extensible Rod

For study we use Eq. (2.60) in which functions u1(U ) and v1(U ) satisfy the linear
system (2.58).

From Eq. (2.60) we obtain the condition for stability of the vertical position
F ′(0) > 0 or

F ′(0) = −(1/2)F ′
10u

′
1v1 − (1/4)F ′′

20v
2
1 − (1/2)G ′

00u
′
1 + ζ−1

(
c0
P∗

+ G ′
00

)
> 0,

(2.63)
where all functions are to be calculated at U = 0,

v1(0) = (5/2)ν2

(5/2)−ν2
, u′

1(0) = − F ′
10(0)v1(0)+G′

00(0)

F00(0)
,

ν2 = f ζ, f = Lg

c2ε2
= L3g

c2a2
,

F00(0) = 0.02565, F ′
10(0) = −0.005847, F ′′

20(0) = −0.00408, G′
00(0) = −0.04062.

(2.64)

The single mode approximation (2.50) e(s, t) = (1 − s)v(t) is not sufficient for
the complete analysis of extensible rod because higher longitudinal resonances (see
Fig. 2.8) are not taken into account. We consider only the cases with ν ≤ π . For the
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Fig. 2.13 Areas of the vertical position stability

Fig. 2.14 Attraction basins for an extensible rod

fixed values of parameter f the inequalities

ζ ≤ π2

f
or ω ≤ πc

L
. (2.65)

are to be fulfilled.
Figure2.13 displays the area of the vertical stability (area S between lines b0 and

b1) under the support vibration for two values P∗ = 9 and P∗ = 20 of parameter P∗.
The value f = 0 corresponds to the inextensible rod. The lower boundary decreases
with growth of f . The lines c1 and c2 correspond to the first longitudinal resonance
ν = π/2 and curve ν = π , respectively. The instability zone (U1) is above line c1. As
for the domain above c2, the results of the performed analysis are unreliable because
the influence of second resonance is to be taken into account, see Fig. 2.8.

To construct the attraction basin of the vertical position we solve numerically
the average equation (2.60), in which functions u1(U ) and v1(U ) are found from
Eq. (2.58) with the initial conditionsU (0) = u0, U,θ (0) = −u1(u0) cosβ. For three
values of parameter P∗ the results are shown in Fig. 2.14. The results for the extensible
rod basically repeat those for the inextensible rod (see Fig. 2.12), however there
appears an additional parameter f describing extension. In all studied cases the
boundaries g− and g+ decrease with growth of f . For small values of P∗ (see P∗ = 9
in Fig. 2.14) in the studied interval 0 ≤ u0 ≤ 5 the boundaries g− and g+ coincide
and do not depend on u0. In the intermediate case P∗ = 13 the influence of initial
phase β is essential and g− ≤ g+.
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In the case P∗ = 20 the attraction basins occupy areas smaller than u0 ≤ 5 because
Eq. (2.60) has a singular point at resonance (at ζ = 2.5/ f ). As a result, three various
kinds of behavior of solution ofEq. (2.60) are possible dependingupon the parameters
(P∗, f, ζ, u0, β):

(i) U (θ) → 0 at θ → ∞, then the point lies in the attraction basin;
(ii) U (θ) → u∗ �= 0 at θ → ∞ with F(u∗) = 0, F ′(u∗) > 0, then the point

comes to the equilibrium state u = u∗;
(iii) U (θ) → ∞ at θ → θ∗ < ∞ then the point approaches the singular point of

Eq. (2.60).

2.4 Discussion

Attraction basins of the vertical position for the Kapitsa’s pendulum under action of
various types of support motion are constructed. A two-scale asymptotic expansion
is used, and the average motion of pendulum is shown to depend on a slow time. A
peculiarity of the problem is that the average motion of pendulum is sensitive to the
initial (positive or negative at the initial time instant) impulse that depends on the
initial phase of excitation. As a result, the attraction basin consists of two areas: in
the so-called absolute areaGa the pendulum comes to vertical position for any initial
phase, whereas in the so-called partial area Gp it comes to the vertical position only
for a part of initial phases. The averaged system of equations by Blekhman [4, 5]
obtained as a result of introduction of the vibrational force correctly determines the
stability conditions, however, it does not allow one to construct the attraction basin
because it does not account for the initial pulse generated by the initial phase of the
disturbance.

Motion of the Kapitsa’s pendulum at random stationary vibration of support is
basically similar to poly-harmonic vibrations with the following differences. The
attraction basins obtained are not definite, and they can be described with some
probability. Three kinds of attraction basins are constructed:

(i) theoretical attraction basins. The study is based solely upon the properties of
spectral density of excitation;

(ii) attraction basins obtained by approximation of the random process by a sum of
periodic terms with random amplitudes and phases. In the limit, (ii) tends to (i) in the
mean-square sense with an unbounded increase in the number of terms. With a finite
(albeit large) number of terms, the results differ markedly which is also mentioned
in the present article;

(iii) attraction basins obtained by a probabilistic elaboration of numerical solu-
tion of equations with this sum as excitation. The study is based on the numerical
simulation of random variables included in the sum and the subsequent numerical
solution of Eq. (2.15). The behavior of the solution with increasing time is revealed.
This numerical simulation is repeated many times and the results are processed by
methods of mathematical statistics. Particularly, in the present paper the results of
ten simulations are processed to construct the attraction basin boundary.
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Motion of a flexible rodwith a clamped lower end and a free upper end subjected to
harmonic vertical vibration of support is described by a system of non-linear integro-
differential equations in partial derivatives. The exact solution is not constructed. We
suggested an approximate model with two degrees of freedom which is acceptable
if the rod inclination from the vertical position is not considerable and the excitation
frequency is smaller than the second natural frequency of longitudinal vibrations of
rod. The two-scale expansions are used to this approximate model, too.

For the inextensible rod the dimensionless equations contain a universal parameter
P∗ that depends on weight, length and bending stiffness of the rod. For P∗ < 7.84
the vertical position of rod is stable (without the support vibration) thus the cases of
P∗ > 7.84 are of special interest. For the extensible rod an additional wave parameter
f turns out to be important as it describes the influence of longitudinal vibration of
the rod.

First we considered an inextensible rod. It is established that for P∗ ≤ 13 the
rod with some initial static curvilinear equilibrium state (see Fig. 2.10) achieves the
vertical position under the support vibration of high intensity ζ . In these cases the
static equilibriumposition lieswithin the attraction basin.At P∗ ≥ 14 the equilibrium
lies outside the attraction basin, and the rod with the same initial conditions comes
under vibration to another equilibrium of average motion. To obtain a vertical limit
position it is necessary to shift the initial position of rod within the attraction basin
more close to the vertical, see Fig. 2.12.

We studied the impact of longitudinal vibration of the extensible rod on its stability.
The area of stable vertical position has the upper boundary that lies upper the first
resonance of longitudinal vibrations of rod, cf. see Fig. 2.13. As for an inextensible
rod, the lower boundaries g− and g+ of the attraction basins at P∗ ≤ 13 in the
studied interval 0 ≤ u0 ≤ 5 weakly depend on u0 and essentially depend on the
wave parameter f (see Fig. 2.14). For both inextensible (Fig. 2.12) and extensible
(Fig. 2.14) rods, at small weight parameter P∗ ≤ 12 the attraction basins occupy all
studied interval of initial position u0 ≤ 6, while for P∗ ≥ 14 the right boundaries of
attraction basins in plane (u0, ζ ) move left, close to the vertical position.

The level ζ of support vibrations bringing the rod to vertical position for the
extensible rod is lower than that for the inextensible rod.

In order to demonstrate how broad can be the attraction basins we refer to Ref. [5]
in which the theoretical analysis carried out in the present paper got an exper-
imental confirmation. Book [5] reported the following experiment performed by
V.B.Vasil’kov. A soft rope of ca. 10cm length and 1cm diameter is clamped at the
lower end while the upper end is free. The rope has such a low bending rigidity that
the upper end lies on the support. Under intensive vertical vibration of the support in
some frequency band the rope takes stable upward position regardless of the initial
shape. The theoretical study presented here explains existence of stable vertical posi-
tion, however it is not capable to describe the rope motion from the initial state to the
stable vertical position as our analysis is restricted to the case of small inclinations
(u ≤ 6) of the rope from the vertical.
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2.4.1 Conclusions

We consistently considered the attraction basins of the upward vertical position of the
pendulum which is known to be unstable without support vibration. The previously
obtained areas of the attraction basins for the pendulum upward position are given
for harmonic, polyharmonic and random vibration of the support. The attraction
basins for a vertical flexible inextensible and extensible rod with a free upper end are
constructed. The analytical solutions are constructed in the classical Kapitsa problem
whereas for a flexible rod one has to restrict oneself to an approximate solution of
systems with one or two degrees of freedom. The method of two-scale expansions is
used. In all cases, the attraction basin consists of two parts: absolute and partial. In
the first of them, the attraction takes place for all initial phases of the perturbation,
while in the second one, only for some initial phases. For the sake of consistency,
our previously published results are given, and the necessary references are made to
them.
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Chapter 3
Application of Micropolar Theory to the
Description of Ultrathin Liquid Layers

Nikolay M. Bessonov and Ksenia P. Frolova

Dedicated to the memory of Professor E.L. Aero

Abstract Experiments show that the coefficient of shear viscosity calculated by
formulas of the classical theory of viscous fluid loses the sense of material constant
when the thickness of the liquid flow becomes small enough. It becomes an effective
quantity that changes significantly with decreasing flow thickness and takes a finite
limit value on the wall. The limit (named the boundary viscosity) can be considered
as the empirical material characteristic of given liquid–solid surface pair. This and
many other facts indicate that the classical theory fails near a solid surface, that most
real liquids (including usual water) form near solid surfaces a specific thin (∼some
µm and less) “subboundary” layer where new physical mechanisms of liquid flow
become important. Modern experiments also show that the next specific ultrathin
(∼0.1 µm and less) layer is formed under subboundary layer. It consists of very
orderly packed molecules of the liquid and flow does not take place in this “solid-
like” layer. These fundamental effects have to be taken into account in the modern
theory of fluid. It is especially important for the analysis of such problems as filtration,
lubrication, flow of suspensions, polymer solutions, polar, and other real liquids. We
show here that this aim can be achieved by combination of the Eringen-Aero theory
of micropolar fluid and new generalized boundary conditions that take explicitly into
account the existence of boundary viscosity and solid-like layer.
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3.1 Introduction

The correct theoretical analysis of liquid flows is impossible without taking into
account the influence of solid surface (further—surface) surrounding the flow. At
large distances from the surface, the flow of real liquid is adequately described by
the theory of ideal fluid and slip boundary condition. At approaching the surface,
within classical boundary layer, one ought to use a more complex classical theory
of viscous fluid (further—classical theory or TCF) and nonslip boundary condition
directly on the surface. Experiments with thin layers of liquids flowing along or
between surfaces show that the correct description of liquid flow at small distances
h from the surface is impossible without further improvement of fluid theory [1–5].
At h ≤ hb (hb ∼ some µm and less) TCF does not agree any more with experiment.
Here, the coefficient of dynamic shear viscosity μ (further—viscosity) calculated
from experimental data by formulas of TCF loses the sense of fundamental material
constant of the liquid. It becomes an “effective” viscosity μe depending on h. It
decreases or increases efficiently in comparison with μ at decreasing of h and tends
clearly to some finite limit named the “boundary” viscosity μb. The value of μb

depends only on the nature of the liquid-surface system and can be considered as a
new empiricalmaterial constant that has to be taken into account in fluid theory. Some
earlier works [1, 2] and especially more modern experiments of J.N. Israelachvili
and colleagues [6] show that at still less distances h ≤ hs (hs ∼ 0.1µm and less), the
next specific layer is formed directly on the surface. It consists of high orderly packed
molecules of the liquid and manifests the properties of elasticity and plasticity. Flow
on its usual sense cannot take place here.

Thus, one can distinguish in real liquids two specific near-the surface layers with
different physical properties. Their existence has been establishedbynot only viscosi-
metric, but also by optical, thermal, and other physical methods [3, 4]. Boundaries
between the layers are smooth but their characteristic thicknesses can be estimated
reliably by experimental data. The specific layer of thickness hs < h ≤ hb in which
the liquid keeps fluidity and to which we shall pay here the most attention will
be called further the “subboundary” layer. The layer of thickness 0 < h ≤ hs , will
be called further the “solid-like” layer. Evidently that TCF has to be modified at
approaching to surface. The complete theory must describe the flow of real liquids at
any distance from the surface. The arising situation is shown in Fig. 3.1. The situation
will be yet discussed further.

In this work, we consider at first the empirical dependencies of effective viscosity
μe on thickness h or on effective thickness he = h − hs of flowing layer, which were
discoveredbyviscosimetric experiments. Thenumerical values of boundaryviscosity
μb and characteristic thicknesses hb and hs corresponding to these experiments for
different liquids and surfaces are also discussed. We show then that all the diversity
of empirical dependencies μe (he) can be described with the help of Eringen-Aero
theory of micropolar fluid [7–9] and new boundary conditions. The Eringen-Aero
theory of micropolar fluid (further—TMPF) is a generalization of TCF in which the
rotational mobility of liquid microparticles and momental (orientational, rotational)
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Fig. 3.1 States of real liquid
and generalization of fluid
theory at approaching to
surface; he is an effective
(mobile) part of fluid

interactions between them and with the surface are taken additionally into account.
The new generalized boundary condition (further—GBC) proposed here takes into
account the existence of the solid-like layer and boundary viscosity. GBC takes also
into account all the possible variants of rotational interaction between the liquid
microparticles and surface.

3.2 Viscosimetric Experiments

3.2.1 Squeeze of Liquid by Disks

Needs was the first who has determined reliably at what thicknesses and how the
correspondence between TCF and experiment is lost [1]. He measured the velocity
V of the approaching two parallel smooth steel disks of radius R, separated by a
thin layer of liquid, under the dead load f . Carefully refined light oils were tested.
It was discovered that at large thickness h of the oil layer the Stephan-Raynolds
formula μ = 2 f h3/3πV R4 derived on the base of TCF, was kept accurately and
gave the value of μ independent on h. But at small thicknesses h ≤ 2hb (hb ∼ some
µm), the formula stopped working for most tested liquids except castor oil. Here, the
combination of experimental data in the right part of the Stephan-Reynolds formula
became some effective value μe with the dimensionality of viscosity but dependent
on the thickness μe = μe (h). The relative effective viscosity
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μ̄e = μe/μ = 2 f h3/3πμV R4 (small graps, h ≤ 2hb) (3.1)

was correspondingly not equal to unity and grow quickly with decreasing of h
(according to μ̄e = 1 for any h!). This fact is the direct evidence of the existence
of subboundary layers of thickness hb on the surfaces of both disks. Needs has also
discovered that by decreasing the gap thickness to h = 2hs , the movement of the
disks stopped completely (V = 0), though the value hs was certainly more than the
zero reading of the instrument (the gap between dry disks). In this case, μe → ∞
according to Eq. (3.1). Needs positively said that it indicates the existence of solid-
like layer of tested oil on the steel surfaces. He connected the effect of decreasing of
hs value at increasing of the load f and (or) temperature with the separation of oil
molecules from the outer surface of solid-like layer due to the increasing radial flow
velocity and (or) thermal movement of the molecules.

After Second World War Fuks has repeated experiments with disks, using more
precise technique of h measuring and other liquids and materials of disks [2]. He
proposed to take into account at calculations the effective thickness of the gap (the
mobile part of the liquid) he = h − 2hs . Then Eq. (3.1) converts into

μ̄e = 2 f h3e/3πμV R4 (3.2)

and μ̄e value remains finite at any velocity including the case V = 0. Experimental
values of μ̄e calculated with the help of Eq. (3.2) from Needs data for olive oil are
shown by triangles in Fig. 3.2 (experimental value of hs was 0.31 µm). According to
Fig. 3.2, the equality for μ̄e following fromTCF is kept only at he > 3µm. Figure3.2
shows also that the empirical dependence μ̄e (he) has two limit transitions. The first
one

μ̄e → 1 at he → ∞ (3.3)

is the transition into the region of TCF applicability. The second one

μ̄e → μ̄b at he → 0 (3.4)

allows to introduce the concept of boundary viscosity μ̄b as an empirical material
constant characterizing the liquid-surface pair. In the case of olive oil and steel
μ̄b = 0.2.

Theoretical dependencies μ̄e (he) are shown in Fig. 3.2 by solid (TMPF andGBC)
and dotted (TCF) lines. Numerical values of μ̄b, hb and hs calculated from experi-
mental data of Needs and Fuks or quoted in their works are collected in Table3.1.
It gives the possibility to discuss more thoroughly the empirical characteristics of
anomalous near the surface flow of real liquids. For castor oil, the condition μ̄e = 1
was fulfilled at all gaps up to the least possible ones limiting by the roughness of disk
surfaces, equal in practice to ∼0.1 µm or less. Therefore, the thickness of the sub-
boundary layer of castor oil in steel is if the latter exists no more than 0.05 µm. But
both subboundary and solid-like layers were discovered for all other tested liquids
(Table3.1, rows 2 to 7). The values μb calculated by the limit transition (3.4) were
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Fig. 3.2 Relative effective
viscosity μ̄e of olive oil
versus effective thickness he
of gap between two steel
disks. Treatment of
experiments (Needs [1])

found to be 5–10 times less than the bulk shear viscosities μ of these liquids. We
have calculated the mean radial velocity of flow 〈υr 〉 at r = R for the moment when
the thickness of the gap between approaching disks in Needs’ and Fuks’ experiments
became equal to 1 µm. The comparison of 〈υr 〉, hb and hs (Table3.1, rows 2 to 7)
shows that thicknesses of both specific subboundary and solid-like layers depend on
the mean velocity of the liquid flow. The rough estimation of this dependence by
these data shows that hb and hs decrease in proportion with lg〈υr 〉 and drop to zero
at 〈υr 〉 ∼ 200 µm/s. In contrast with hb and hs , the value of boundary viscosity μ̄b

does not practically depend on 〈υr 〉. Indeed all light oils on steel have μ̄b in interval
between 0.12 and 0.2 at variation of 〈υr 〉 from 0.02 to 50 µm/s; μ̄b of 0.01N water
solution of NaCl changes in interval 0.06–0.08 at variation of 〈υr 〉 from 35 to 58
µm/s (Table3.1, rows 2 to 5 and 6 and 7 correspondingly). These are the weighty
arguments to consider the value μ̄b as the material constant of the liquid-surface pair.
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Table 3.1 Collected results for tested liquids

Liquid Surface 〈υr 〉,
µm/s

hb, µm/s hs , µm/s μ̄b L , µm

1 2 3 4 5 6 7

Squeeze by disks (Needs)

1 Castor oila Steel 0.45 <0.05 – – –

2 Olive oilb Steel 0.3 1.8 0.31 0.2 0.02

3 DTE light mineral
oil

Steel 0.02 2.4 0.39 0.12 0.01

Squeeze by disks (Fucks)

4 Transformer oil Steel 30 0.6 0.07 0.18 0.006

5 Transformer oil Steel 50 0.5 0.028 0.16 0.005

6 0.01N water solution
of NaCl

Glass 35 0.8 0.06 0.06 0.003

7 0.01N water solution
of NaCl

Glass 55 0.7 0.02 0.08 0.0035

Flow in capillar (Derjaguin)

8 Benzenea Glass unknown <0.05 – – –

9 CCl4a Glass unknown <0.05 – – –

10 Waterb,c Glass unknown 1 (a) 0 1.6 0.032

(b) 0.02 0.09 0.003

Blowing-off (Derjaguin)

11 PMS-70b Glass unknown 0.03 – 2.2 0.02

12 PMS-70b Steel unknown 0.004 – 0.15 0.02

13 Vaseline oila Steel unknown <0.001 – – –

Shear oscillations (Kondrashov and Marchasin)

14 DBPhb Glass unknown >5 0.4 0.2 0.6
aAnomalous effects are absent
bDependence μe (he) is shown in figure
cExperiment shows only the possible interval 0 ≤ hs ≤ 0.05 µm

3.2.2 Flow in Capillar

In 70s, Derjaguin and colleagues have carried on the systematic investigation of
the flow of low viscous liquids in superthin capillaries made of quartz glass [3].
They measured the liquid discharge Q at a constant longitudinal gradient of pres-
sure dp/dz. Capillary diameters h were varied from 0.1 to 10 µm. Results of the
experiments were treated by classical Poiseuille’s formula that gave at large capillary
diameters the “true” constant viscosity μ. But at small diameters, the same formula
gave the effective viscosity dependent on h. The deviation of relative effective vis-
cosity

μ̄e = − πh4

128μQ

dp

dz
(small diameters, h ≤ 2hb) (3.5)
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from 1 allowed to determine the thickness hb of subboundary layer. The experiments
showed that in case of unpolar benzene and CCl4, the condition μ̄e = 1 was kept at
all capillar diameters up to the least ones h ∼ 0.1 µm. Thus, if these liquids form
subboundary layer on quarts glass, its thickness hb < 0.05µm (Table3.1, rows 8
and 9). For water (high polar liquid), the divergence of TCF and experiment began at
capillar diameters ∼2 µm and became very significant at further decreasing of h. So
the thickness of subboundary layer hb was in this case ∼1 µm. As water movement
took place even in capillaries with the least diameters, the question about existence
of the solid-like layer remains open. One can only affirm that its thickness is in the
range 0 ≤ hs ≤ 0.05 µm. It is possible to take into account by analogy with the
previous case (3.2) if one writes Eq. (3.5) as

μ̄e = − πh4e
128μQ

dp

dz
(3.6)

where he = h − 2hs . The results of treatment of experimental data for water by
Eq.3.6 for two hs values from the mentioned range (0 and 0.02 µm) are shown in
Fig. 3.3 and Table3.1 (rows 10a and 10b). It is clear that indefinitely in estimation of
hs value can sufficiently change the form of dependence μ̄e (he) and μ̄b value.

Unfortunately, Derjaguin did not provide data on the values of mean flow rate in
capillaries [3]. Nevertheless, if one proposes that the thickness of water solid-like
layer on quartz glass in Derjaguin’s experiments was equal to 0.02 µm (Table3.1,
row 10b), i.e., as in Fick’s experiments with NaCl water solution on glass (Table3.1,
row 7), then the calculated values μ̄b are found to be very close (0.09 and 0.08
correspondingly). This estimation shows that the empirical dependence shown in
Fig. 3.3 by triangles is more realistic.

3.2.3 Blow of Liquid Layer Off Surface

Above mentioned viscosimetric techniques give the integral value of the effective
viscosity that characterizes the whole tested layer of the liquid. In the end of 40s,
Derjaguin and colleagues haveproposed the blow-offmethod that allows to determine
directly the dependence of local effective viscosity on distance from surface [3]. In
this method, the thin layer of tested nonvolatile liquid is applied on a flat smooth
horizontal surface and its stationary movement along the surface is excited by the
steady gas flow. The structure of the liquid flow reminds, in this case, the uniform
shear of a paper ream. The front of the moving liquid film takes gradually the form of
a very flat wedge. The profile of the wedge h (x) (h—thickness, x—distance in flow
direction) is measured by optical method. It is possible to calculate the velocity u of
flow at different distances h from the surface. The working formula for calculation
of local relative effective viscosity has the form
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Fig. 3.3 Relative effective
viscosity μ̄e of water versus
effective diameter he of glass
quarts capillary. Treatment of
experiments (Derjaguin [3])

μ̄e = dh/dx

dh/dx |h→∞
= du/dh|h→∞

du/dh
= du/dhe|he→∞

du/dhe
. (3.7)

Rectilinear profile of the wedgelike front of vaseline oil film on steel manifested
that the efficiency of TCF (condition μ̄e = 1) is kept, in this case, up to the distance
from surface h ∼ 0.001 µm. The influence of surface nature on subboundary layer
was discovered for polydimethylsiloxane liquids (PMS). Dependencies μ̄e (he) cal-
culated by Eq. (3.7) from experimental data for the liquid PMS-70 on glass and steel
are shown in Fig. 3.4 and in Table3.1. There were no indications of solid-like layer
in this case (hs = 0, he = h). It is seen from the figure that deviations from TCF
begin at hs ∼ 0.1 µm but the character of the deviations is different for glass and
steel. In the first case, μ̄e increases at decreasing of distance from the surface so that
the relative boundary viscosity of PMS-70 on glass μ̄b > 1. In the second case, μ̄e

decreases at decreasing of he and μ̄b < 1 for PMS-70—steel pair.
The blow-off method was applied to some other monomer and polymer liquids

and, in most cases, the existence of subboundary layer of thickness ∼1 µm and less
was discovered. Derjaguin connects the effects of changing of μ̄s value at approach-
ing to surface with unfolding of polymer molecules and orientation of small asym-
metric molecules under the action of surface and hydrodynamic field [3].
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Fig. 3.4 Relative effective
viscosity μ̄e of PMS-70
versus effective distance he
from glass and steel flat
surfaces at blowing-off.
Treatment of experiments
(Derjaguin [3])

3.2.4 Liquid Layer Between Two Moving Plates

Derjaguin and colleagues have proposed the method of testing of viscoelastic prop-
erties of thin liquid layers between two flat smooth surfaces performing the relative
plane-parallel oscillations [3]. Themain idea of themethod consists of measuring the
resonant frequency of the system before and after entering the tested liquid between
the plates. It allows to calculate the shear modulus and viscosity of the liquid using
simple rheological models.

Kondrashov and Marchasin have investigated by this technique the changing of
viscoelastic properties of dibutyl phthalate (DBPh) at variations of the gap thickness
between two plates of quartz glass [10]. They discovered the existence of solid-like
layer with thickness hs ∼ 0.4 µm. We used these data to calculate the dependence
μ̄e (he) for DBPh. As it is seen from Fig. 3.5, all the experiments were realized in
conditions when μ̄e �= 1 and the gap between plates was completely filled by closing
subboundary layers. The thickness of the layers hb has to be, according to Fig. 3.5, not
less than 5µm. It is necessary to point out that DBPhmanifested in these experiments
not only viscous, but also to some extent elastic properties. Therefore, the calculated
numerical values of h̄b and μ̄b (Table3.1, row 14) are, in this case, not very reliable.
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Fig. 3.5 Relative effective
viscosity μ̄e of DBPh versus
effective thickness he of gap
between two glass flat
surfaces at shear oscillations.
Treatment of experiments
(Kondrashov and Marchasin
[10])

3.3 Experiments and Development of Fluid Theory

From today’s point of view, the above discussed experimental works have certain
limitations. The choice of tested liquids and surfaces was arbitrary. The comparison
of numerous data from different works is possible only in rare cases. But one must
not forget that only one general question arises there: if there are, then what are the
peculiarities of the state and flow of real liquids near surfaces? And these works
in total have given the clear answer: most of the real liquids form near surfaces
two anomalous (from classical point of view) layers—subboundary and solid-like.
The main physical properties of the liquids in these layers are known now quite
reliably. Evidently these circumstances require the sufficient improvement of TCF.
Otherwise, it is impossible to describe quantitatively the “anomalous” effects and
solve the problems where near-wall flow is the dominant form of liquid movement.

Fluid theory has already been greatly improved to describe flows near the surface.
At large distances from the surface, the real liquid flow iswell described by the theory
of ideal fluid. In this case, it is entirely sufficient to replace the solid surface with a
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classical boundary layer and use the slip boundary condition at its outer surface. At
smaller distances from the surface, in limits of the classical boundary layer, the theory
of ideal fluid loses the accordance with experiment and is replaced by TCF. In TCF,
the tangential viscous forces are introduced additionally. The influence of surface
on fluid flow is taken into account by nonslip condition on the surface. It is clear
now that this condition has to be referred to the outer surface of subboundary layer.
However, the existence of this specific layer has no importance in many problems
because of its extremely small thickness.

Two approaches are usually used in the improvement of fluid theory. In the first
one, the basis of the theory (the fluid mathematical model) is not changed but some
important conditions or postulates are additionally assumed to extend the field of
the theory validity. The Kutta-Joukowski condition of attached vortex in dynamics
of ideal fluid can be called as an example of such approach. The second approach is
to revise the foundations of the theory in the transition from the theory of ideal fluid
to TCF. The new theory (TCF) describes the liquid flow both within the classical
boundary layer and far from it without additional assumptions.

Evidently that the correct description of liquid flow at micron and submicron
distances from the surface is impossible without further improvement of fluid theory.
In order to carry out such improvement, both the aforementioned approaches can be
used. In the first approach, some empirical dependence of effective viscosity on
distance μ̄e (h) may be introduced in TCF. This can help to solve a number of
similar problems, but there is no guarantee that the accepted dependency μ̄e (h) is fit
to any other ones. One may try also to use in TCF nonnewtonian rheological models
consistent with real behavior of liquids in thin layers. But then the new theory will
work only in limits of specific subboundary layer and the joining of two solutions
based on newtonian and nonnewtonian models will be required on outer surface of
the layer. The second approach consisting of improvement of the classical theory
basis seems to be more reliable and universal. Of course, the efficiency of any new
theory has to be tested with an experiment.

Some preliminary considerations of ways of TCF basis refinement can be done
apriori. The fluid molecules are modeled in TCF by material points that interact one
with another and with the surface by central forces and move only translationally.
Accordingly, the fields of central forces and translation velocities are figured in
the theory. As it works very well in and far off the classical boundary layer, the
question of taking into account other physical properties of molecules than mass and
translation velocity was not arised. As was shown above, TCF loses the accordance
with experiment at micron and less distances from surface, i.e., when the transverse
dimension of the flow approaches to dimensions of microparticles in real liquids. It
manifests that “anomalous” effects are connected first of all with interactions and
movements which are characteristic of material objects of finite dimensions. In this
case, not only translational movement, but rotational movement and not only central
forces, but moments of forces have to be taken into account. Then it is reasonable to
suppose that the formation of subboundary layer is connected just with the influence
of the surface on rotational mobility of liquid microparticles exactly as the formation
of classical boundary layer is connected with the influence of surface on translational
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mobility. If so, then the theory that describes adequately the flow, both in classical
and specific boundary layers, has to be seeked among the theories of microstructural
fluids where fields of moments and rotation velocities are certainly introduced in
addition to fields of central forces and translation velocities.

3.4 Principles of Micropolar Fluid Theory

Eringen has proposed the very general theory of “micromorphous” fluid in which
the motion of fluid microparticles is characterized by translation velocity v as in
classical theory and additionally by microrotation velocity ω nonequal in general to
1/2∇ × v [7]. The microparticles are considered to be deformable. But the practi-
cal application of the theory is complicated by great mathematical difficulties. The
first rigorous and workable theory of fluid with microstructure has been proposed by
Aero, Bulygin, and Kuvshinskii—the theory of “asymmetric” or “momental” fluid
[8]. The analogous theory was proposed independently by Eringen [11]. He used
the term “micropolar” fluid that has became most popular in science literature (see
[12–14]). In the Eringen-Aero theory of micropolar fluid (further—TMPF), the fluid
microparticles are considered to be nondeformable. The basic ideas of TMPF dis-
cussed below are given in accordance with two above mentioned fundamental works
and the exhaustive review of Stokes [15].

The laws of conversation of mass, momentum, angular momentum, and energy
E have in TMPF the following form:

d

dt

∫

�

ρd� = 0, (3.8)

d

dt

∫

�

vρd� =
∮

s

fds +
∫

�

tρd�, (3.9)

d

dt

∫

�

(
r × v + Iω

)
ρd� =

∮

s

(
r × f + m

)
ds +

∫

�

(
r × t + c

)
ρd�, (3.10)

d

dt

∫

�

Eρd� =
∮

s

(
v · f + ω · m)

ds +
∫

�

(
v · t + ω · c) ρd�, (3.11)

where ρ—density, �—region of space bounded by the surface s, t, and c—body
force and body moment correspondingly, f and m—surface force and moment cor-
respondingly, and I is moment of microinertia per mass unit. Terms underlined in
Eqs. (3.8)–(3.11) show the contribution of microrotations and also surface and body
moments (in the Appendix, we provide simple (not rigorous) but vivid derivation of
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pre-imaged of TMPM conservation laws on the basis of the mechanics of material
points).

In addition to usual tensor of force stresses F, the tensor of moment stressesM is
introduced in TMPF and the following relations take place:

f = e · F, m = e · M, (3.12)

where e—outer normal to s.
Substitution of Eq. (3.12) in conservation laws (3.8)–(3.11) allows to write the

equations of motion in differential form (the case of uncompressible fluid in the
absence of external body forces and moments)

∇ · v = 0, (3.13)

ρ
dv
dt

= ∇ · F, (3.14)

ρ I
dω

dt
= i × (i · F) + j × (j · F) + k × (k · F) + ∇ · M, (3.15)

ρ
dE

dt
= ∇ · (F · v) + ∇ · (M · ω), (3.16)

where t—time, i, j, and k—unit vectors along coordinate axes. In TCF the fluid
microparticles are regarded tobepoints. Therefore, the termsunderlined inEqs. (3.15)
and (3.16) disappear. Then Eq. (3.15) gives the equalities for components of tensor
F

F23 = F32, F31 = F13, F12 = F21, (3.17)

that point to its symmetry in classical (“symmetrical”) hydrodynamics. In TMPF
tensor, F is asymmetrical (hence the term “asymmetrical” hydrodynamics).

The connection between kinematic and dynamic characteristics of fluidmovement
is set in TMPF by the following linear rheological relations

Fnk = −pδnk + μ
(
υn,k + υk,n

) + μr
(
υk,n − υn,k − 2ωqεqnk

)
, (3.18)

Mnk = γωk,n + λωn,k + ϑδnkωq,q , n, k, q = 1, 2, 3, (3.19)

where μr—coefficient of microrotation viscosity, p—pressure, γ , λ, and ϑ—
coefficients of dissipation in consequence of microrotation gradients, δnk and εqnk—
Kroenecker’s and permutation symbols correspondingly. Doubly repeated subscripts
imply summation over the range 1, 2, 3, υn,k = ∂υn/∂xk , etc.

The basic thermodynamics laws are satisfied if allmaterial constants in Eqs. (3.18)
and (3.19) are nonnegative. The substitution of Eqs. (3.18) and (3.19) in Eqs. (3.13)–
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(3.16) give the full system of TMPF equations of motion

∇ · v = 0, (3.20)

ρ
dv
dt

= −∇ p + μ∇2v + μr∇ × (2ω − ∇ × v) , (3.21)

ρ I
dω

dt
= γ∇2ω + (λ + ϑ)∇ (∇ · ω) − 2μr (2ω − ∇ × v) . (3.22)

Let the scales of length, translation velocity, time, microrotation velocity, and
pressure are taken to be h, U , h/U , U/h, and ρU 2 correspondingly, where h—
transverse dimension of the flow region and U—characteristic velocity of the flow.
Then the Eqs. (3.20)–(3.22) take the following nondimensional form:

∇ · v = 0, (3.23)

dv
dt

= −∇ p + 1

Re
∇2v + 1

Rer
∇ × (2ω − ∇ × v) , (3.24)

(
L1

h

)2

Re
dω

dt
=

(
L2

h

)2

∇2ω +
(
L3

h

)2

∇ (∇ · ω) − 2Re

Rer
(2ω − ∇ × v) ,

(3.25)
where Re = ρhU/μ, Rer = ρhU/μr , L1 = I 1/2, L2 = (γ /μ)1/2, and L3 =
((λ + ϑ/μ))1/2. All nondimensional values in Eqs. (3.23)–(3.25) keep the same nota-
tions as the correspondent dimensional ones in Eqs. (3.20)–(3.22). The complexes
L1, L2, and L3 have the dimensions of length and play the role of inner linear scales
of the liquid microstructure. The role of nonclassical terms in Eqs. (3.23)–(3.25)
(in other words—the influence of fluid microstructure) grows with decreasing of
the dimension h of the flow region. In contrast, when h becomes much bigger than
L1, L2, and L3, Eq. (3.25) converts to the relation ω = 1/2∇ × v and Eq. (3.24)
transforms into the classical Navier–Stokes equation as the partial case.

3.5 Boundary Conditions

The question of boundary conditions is one of the central in any theory of fluid.
TMPF needs in boundary condition for both v and ω [16]. The classical nonslip
condition is used for translation velocity

v = V at h = 0, (3.26)

where V—the surface velocity.
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Other boundary conditions have to reflect the mechanism of the surface influence
on the field of microrotations. In limit case when the fluid microparticles cannot
rotate at all on the surface, the boundary condition for microrotation is written in the
form

ω = 0 at h = 0, (3.27)

analogous to nonslip condition for v given by Eq. (3.26). Thus, the simplest boundary
condition is used in almost all works where TMPF is applied to practical problems
[15]. Migun has proposed more general boundary condition [17]

ω = α

2
∇ × v at h = 0, (3.28)

which admits the slip of microrotations on surface. The coefficient α in Eq. (3.28)
characterizes the degree of microrotation slip and changes (as Migun has supposed
apriori) in the range 0 ≤ α ≤ 1.

As it will be shown below, the boundary condition (3.28) and the more so (3.27)
are not in full agreement with experimental results discussed above. The problem has
been advanced by introducing the coefficient of empirical boundary viscosityμb into
boundary conditions [18, 19]. But theywere related as earlier to h = 0 (hs = 0). Now
we can consider the more general case hs ≥ 0 and relate the boundary conditions
to outer surface of solid-like layer. According to Eq. (3.18), the friction force of
micropolar fluid acting on the outer surface of solid-like layer is equal to

en
[−pδnk + μ

(
υn,k + υk,n

) + μr
(
υk,n − υn,k − 2ωqεqnk

)]
, (3.29)

where en—normal to surface. On the outer side, the same force can be determined
with the help of empirical boundary viscosity μb as

en
[−pδnk + μb

(
υn,k + υk,n

)]
. (3.30)

The combination of Eqs. (3.26), (3.29), and (3.30) gives the following general
boundary conditions (further—GBC):

en
[
(μ − μr − μb) υn,k + (μ + μr − μb) υk,n − 2μrωqεqnk

] = 0,

v = V at he = 0 (h = hs) . (3.31)

In thin layer approximation, when the coordinate axes are directed along the
surface, GBC take the following particular form:

ω = μ + μr − μb

2μr
∇ × v, v = V at he = 0, (3.32)
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It follows from Eq. (3.32) that the boundary condition (3.27) corresponds to the
case hs = 0 and μb = μ + μr . It contradicts the experiment because we know now
that μb depends on the properties of both the liquid and the surface (Table3.1). The
boundary condition (3.28) corresponds to the case hs = 0 and μ ≤ μb ≤ μ + μr .
But it is known now that the case hs �= 0 and μb < μ is also possible (Table3.1).
Thus, GBC (3.32) have now the best experimental grounds.

3.6 Theory of Micropolar Fluid and Viscosimetric
Experiments

TMPF andGBC are used below in derivation of theoretical dependencies μ̄e (he) cor-
responding to empirical ones obtained by different experimental techniques. Equa-
tions (3.20)–(3.22) are taken in thin layer approximation as the examined flows are
laminar and slow [15, 20].

3.6.1 Squeeze of Liquid by Disks

The movement of the layer of micropolar fluid squeezing out of gap between two
smooth disks id described in cylindrical coordinates (r, ϕ, z) by the following system
of equations [21].

(μ + μr )
∂2υr

∂z2
− 2μr

∂ωϕ

∂z
= dp

dr
,

γ
∂2ωϕ

∂z2
− 2μr

(
2ωϕ − ∂υr

∂z

)
= 0, (3.33)

where v = (υr , 0, υz),ω = (
0, ωϕ, 0

)
and z axis is directed perpendicular to the disk

surfaces. Prakash and Sinha have also given the general solution of Eq. (3.33) and
solved them using the simplest boundary conditions (3.26) and (3.27) [21]. GBC
(3.32) in this case have the following form:

υr = 0, υz = 0, ωϕ = μ + μr − μb

2μr

∂υr

∂z
at z = 0 and

υr = 0, θz = −V, ωϕ = μ + μr − μb

2μr

∂υr

∂z
at z = he. (3.34)

The boundary conditions for pressure have the form
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dp

dr
= 0 at r = 0 and p = 0 at r = R. (3.35)

The substitution of Eq. (3.34) in general solution of Eq. (3.33) allows to determine
the analytical expression for the radial velocity υr . The subsequent substitution of
υr in continuity equation

1

r

∂ (rυr )

∂r
+ ∂υz

∂z
= 0 (3.36)

and integration of the latter with respect to z from 0 to he give the following equation
for distribution of pressure between disks:

1

r

d

dr

(
r
dp

dr

)
= −12μμ̄eV

h3e
, (3.37)

where

μ̄e = 1

1 + 3K
(
1 − h̄e coth h̄e

)
/h̄2e

, (3.38)

h̄e = he/L , K =1 − 1/μ̄b, μ̄b = μb/μ, L = [
γ (1/μ + 1/μr )

]1/2
. (3.39)

The solution of Eq. (3.37) with respect to p at boundary condition (3.35) allows
to determine the connection of the problem parameters with outer force f

f = 2π

R∫

0

prdr = 3πμμ̄eV R4/2h3e, (3.40)

and to receive the following formula for μ̄e

μ̄e = 2 f h3e/3πμV R4. (3.41)

The comparison of Eqs. (3.40) and (3.2) shows that the relation (3.38) derived on
the base of TMPF and GBC is just the theoretical dependence of relative effective
viscosity μ̄e on effective gap thickness h̄e for the problem of two disks. Such depen-
dencies at different μ̄b values are shown graphically in Fig. 3.6. It is seen that the
sufficient deviation of μ̄e value from unity takes place when the effective thickness of
gap he becomes comparable with the inner linear scale L of the liquid microstructure
(h̄e ≤ 10). Besides it is always μ̄e < 1 at μ̄b < 1 and μ̄e > 1 at μ̄b > 1. At large
gaps (h̄e > 10) μ̄e → 1, and the classical case takes place. As it is shown in Fig. 3.2,
the theory is in good accordance with experiment. The values of L calculated by
fitting of theoretical curves and experimental data are given in the last column of
Table3.1.
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Fig. 3.6 Theoretical
dependencies of relative
effective viscosity μ̄e of
micropolar fluid on relative
effective gap thickness h̄e.
Value of μ̄b is varied from
0.2 to 5.0 in steps 0.2

3.6.2 Flow in Capillar

The problem of flow of micropolar fluid in cylindrical capillar comes to solution of
the following equations

(μ + μr )
d

dr

(
r
dυz

dr

)
+ 2μr

d
(
rωϕ

)
dr

= r
dp

dz
, (3.42)

γ
d

dr

[
1

r

d
(
rωϕ

)
dr2

]
− 2μr

(
2ωϕ + dυz

dr

)
= 0, (3.43)

where v = (0, 0, υz), ω = (
0, ωϕ, 0

)
and z axis is directed along the capillar axis.

The continuity equation is satisfied here identically. Many authors, beginning from
Eringen [11] solved the problem using the condition of full retardation of microro-
tations on surface (3.27). GBC (3.32) are written for the given problem as
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dυz

dr
= 0,

dωϕ

dr
= 0, at r = 0

and υz = 0, ωϕ = −μ + μr − μb

2μr

dυz

dr
at z = he/2. (3.44)

The solution of Eqs. (3.42)–(3.43) in combination with conditions (3.44) allows
to derive an equation for longitudinal velocity υz and calculate the fluid discharge Q
through the capillar by formula

Q = 2π

he/2∫

0

υzrdr = − πh4e
128μμ̄e

dp

dz
, (3.45)

where

μ̄e = 1

1 − 4K I2
(
h̄e

)
/
(
h̄e I1

(
h̄e

)) , (3.46)

I1 and I2—Bessel’s functions. Comparison of Eqs. (3.6) and (3.45) shows that
Eq. (3.46) is the theoretical dependence of the relative effective viscosity μ̄e deter-
mined by capillar on relative effective diameter h̄e. The form of dependence in
Eq. (3.46) is quantitatively the same as that of analogous dependence for disks,
shown in Fig. 3.6. It has also two limits transitions (3.3) and (3.4) and is easily fitted
to the experimental curves as it is shown in Fig. 3.3.

3.6.3 Blow of Liquid Layer Off Surface

The stationary movement of the layer of micropolar fluid under action of steady gas
flow along the surface is described by equations

(μ + μr )
d2u

dh2e
+ 2μr

dωz

dhe
= 0,

γ
d2ωz

dh2e
− 2mur

(
2ωz + du

dhe

)
= 0, (3.47)

where v = (u, 0, 0) and ω = (0, 0, ωz). The general solution of the equations is
analogous to the solution of Eq. (3.33). GBC (3.32) on outer surface of solid-like
layer have the following form:

u = 0, ωz = −μ + μr − μb

2μr

du

dhe
at he = 0. (3.48)

The boundary conditions on the outer surface of the layer of the fluid can be
written as
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dωz

dhe
= 0,

du

dhe
= du

dhe

∣∣∣∣
he→∞

at he → ∞. (3.49)

The solution of Eq. (3.47) with the boundary conditions (3.48) and (3.49) give
the value u as

u = du

dhe

∣∣∣∣
he→∞

L
[
h̄e − K

[
1 − exp

(−h̄e
)]]

. (3.50)

As it follows from Eq. (3.50)

μ̄e = du/dhe
du/dhe|he→∞

= 1

1 − K exp
(−h̄e

) . (3.51)

Comparison of Eqs. (3.51) and (3.7) shows that Eq. (3.51) is the theoretical for-
mula for local effective viscosity. As it is seen from Fig. 3.4, TMPF and GBC are in
good agreement with experiment.

3.6.4 Liquid Layer Between Two Moving Plates

The flow of the layer of micropolar fluid between two moving parallel plates is
described by Eq. (3.47). GBC (3.32) have here the form

u = 0, ωz = −μ + μr − μb

2μr

du

dy
at y = 0

and u = U, ωz = −μ + μr − μb

2μr

du

dy
at y = he. (3.52)

The solution of Eq. (3.47) with the boundary conditions (3.52) give the value of
tangential stress acting on the plates from the fluid equal to μμ̄eU/he, where

μ̄e = 1

1 − (
K tanh h̄e

)
/h̄e

. (3.53)

The theoretical formula for relative effective viscosity (3.53) can be again fitted
with the correspondent experimental curves (Fig. 3.5).
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3.7 Conclusions

Independent viscosimetric experiments discussed above showambiguously thatmost
real liquids form near solid surfaces thin specific subboundary layer where the theory
of classical fluid becomes unsuitable. Modern experiments also show that many liq-
uids form directly on a solid surface the superthin solid-like layer where the liquids
do not flow. The application of Eringen-Aero theory of micropolar fluid and new
general boundary conditions to analyses of anomalous (from the classical point of
view) effects in the flow of real liquids near solid surfaces has given good results. In
all cases considered here (squeeze from gap, flow in thin capillaries, blow-off solid
surface, and flow between moving plates), the full solutions of the correspondent
hydrodynamic problems have been obtained. The theoretical dependencies of rela-
tive effective viscosity μ̄e on effective thickness he of flow derived here are fitted
quite well with experimental dependencies (Figs. 3.2, 3.3, 3.4, and 3.5). Thus, we
can conclude that the theory of micropolar fluid and new general boundary condi-
tions allow to describe adequately the “anomalous” effects in subboundary layer and
extend fluid theory up to the nearmost distances from solid surface, more exactly—to
the otter surface of solid-like layer, i.e., to 0.1 µm and less from the solid surface.

It is possible to make some additional remarks in connection with these con-
clusions. As was shown the empirical values of thicknesses of subboundary and
solid-like layers (hb and hs in Table3.1) depend on the mean velocity of the liq-
uid flow. The empirical coefficient of boundary viscosity μb is determined by the
nature of the system liquid-solid surface. These facts do not contradict the theory of
micropolar fluid. According to this theory, the microstructure parameter L has to be
dependent only on the liquid nature. The numerical values of L calculated from the
condition of the best fitting of theoretical dependencies μ̄e (he) with the correspon-
dent experimental ones are shown in Table3.1. As it is seen (Table3.1, rows 4 and 5;
6, 7 and 10b; 11 and 12) the calculations have given practically the same value of L
for given liquid independently on conditions of experiment in all three cases pointed
above. It is an objective argument in favor of the theory of micropolar fluid.

All theoretical dependencies of the relative effective viscosity μ̄e
(
h̄e

)
obtained

above satisfy the necessary thermodynamic condition μ̄e �= 0 at h̄e �= 0 and limit
passes (3.3) and (3.4). These properties of the dependencies are visualized in Fig. 3.7.
Figure3.7 shows also that deviations from the classical condition μ̄e = 1 begin at
different distances from solid surface in different experimental situations. The biggest
effect corresponds toflow in capillarwhen subboundary layer surrounds theflow from
everywhere. The smallest effect corresponds to the blowing-off when there is only
one solid boundary of the flow. So we can say that geometry of flow is the another
important factor controlling the intensity of nonclassical near-the wall effects.

Though the calculations by the theory of micropolar fluid are in good accordance
with experimental data, some quantitative deviations take place sometimes as seen in
figures. The deviations can be provoked by both mistakes in measurements and in the
completeness of calculations. One might notice that the theory of micropolar fluid
permits if necessary the further generalizations by passing to nonlinear rheological
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Fig. 3.7 Theoretical
dependencies of relative
effective viscosity μ̄e of
micropolar fluid on relative
effective distance h̄e from
surface at different
experimental conditions.
Value of μ̄b is taken equal to
0.2 and 5.0

relations. But at first, all the possibilities of the linear theory of micropolar fluid that
has already shown its effectiveness have to be utilized completely. And the most
important (and difficult) problem is now the organization of systematic experiments
to obtain the most reliable and full empirical data on near-the wall flows that can
be analyzed theoretically without doubts. The chain of successive generalizations of
fluid mathematical models: ideal fluid → classical viscous fluid → micropolar fluid
is not finished now (Fig. 3.1). The existence of a specific solid-like layer prevents
to use the theory of micropolar fluid (linear or not) directly up to the solid surface.
The next step will be evidently the theory of micropolar viscoelastic fluid that has to
take into account the properties of elasticity and plasticity which are manifested in
solid-like layers of real liquids.
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Appendix. Derivation of the Pre-images of TMPF
Conversation Laws by Means of Particle System Mechanics

Let there is a system of particles (material points) with equal masses m. Let every Q
neighboring particles are joined together in J equal rigid subsystems with constant
mass M = Qm, dM/dt = 0. This rigid subsystems (further—bodies) are the pre-
images ofmolecules or stablemolecular aggregates. The radius vector r j and velocity
v j of inertia center of the j-th body are equal to

r j =
⎛
⎝ Q∑

q=1

rq j

⎞
⎠ /Q and v j = dr j/dt, (3.54)

where rq j and vq j = drq j/dt—radius vector and velocity of the q j-th particle
in motionless coordinate system OXY Z correspondingly (q = 1, 2, . . . Q; j =
1, 2, . . . J ). Let every j-th body is connected rigidly with mobile coordinate sys-
tem O ′X ′Y ′Z ′ (with origin in inertia center of the body) rotating about axis OXY Z
with angular velocity ω j . Then

rq j = r j + r′
q j and vq j = v j + ω j × r′

q j , (3.55)

where rq j—radius vector of the q j-th particle in coordinate system O ′X ′Y ′Z ′.
Let inner paired central forces f (f type forces) act between all particles of the

system. Then the following equalities take place for any particles a and b

fa = −fb, ra × fa = −rb × fb, r′
a × fa = −r′

b × fb. (3.56)

Let fq j is the resultant of all f type forces acting on the particle q j from all other
particles. The outer forces as gravity, etc., with the resultant tq j (t type forces) can
also act. Then the Newton law for the q j-th particle is written as

m
dvq j
dt

= fq j + tq j . (3.57)

The summation of Eq. (3.57) over all particles of the system gives

M
d

dt

J∑
j=1

v j =
J∑

j=1

f j +
J∑

j=1

t j . (3.58)

where f j = ∑Q
q=1 fq j , and tq j—the resultants of all correspondent forces acting

on the j-th body. The left-hand side of Eq. (3.58) is the time derivation of the
systemmomentum. The f type forces between all particles of the system aremutually
compensated according to Eq. (3.56). So the first sum in right-hand side of Eq. (3.58)
contains in fact only f type forces acting on the peripheral particles of the system
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from outer ones. Therefore, the first sum may be named the “surface” sum. Thus,
Eq. (3.58) is, up to notations, the full pre-image of momentum conservation law for
micropolar fluid (3.9).

The vector multiplication of both sides of Eq. (3.57) on rq j and summation with
respect to all particles give the following equation:

M
d

dt

J∑
j=1

(
r j × v j + I · ω j

)
=

J∑
j=1

(
r j × f j + m j

)
+

J∑
j=1

(
r j × t j + c j

)
,

(3.59)
wherem j = ∑Q

q=1 rq j × fq j , c = ∑Q
q=1 rq j × tq j are the resultant moments of cor-

respondent forces acting on j-th body relatively its inertia center, I—tensor of inertia
moments of the bodies related to the mass unit. For rigid body of sphere symmetry
I = IE, where E—unit tensor. The first sum in the right-hand side of Eq. (3.59) can
be again named due to Eq. (3.56) the “surface” sum while the second sum remains
“volume”. Thus, the Eq. (3.59) is, up to notations, the full pre-image of angular
momentum conservation law for micropolar fluid (3.10). The change in full energy
of any system is equal to the work of all outer forces acting on it. Therefore, one can
write

M
d

dt

J∑
j=1

E j =
J∑

j=1

(
v j · f j + ω j · m j

)
+

J∑
j=1

(
v j · t j + ω j · c j

)
, (3.60)

where E j = ∑Q
q=1 Eqj—resultant energy of the j-th body.

As before, the first sum on the right-hand side of Eq. (3.60) is “surface” sum,
while the second one is “volume”. It is clear that Eq. (3.60) is, up to notations, the
full pre-image of energy conservation law for given volume of the micropolar fluid
(3.11).

It should be noted that the only feature of the listed transformations in comparison
with the usual ones is the division of the system of particles into equal subsystems
of particles (solids) stationary relative to each other. When all subsystems contain
only one particle (Q = 1), Eqs. (3.58), (3.59), and (3.60) transform into conservation
laws for classical point continuum. Besides Eqs. (3.58), (3.59), and (3.60) contain
velocities of subsystem inertia centers instead of velocities of particles as in classical
case.
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Chapter 4
Research on Vibration Processes and
Devices: New Results and Applications

Leonid I. Blekhman, Eugen B. Kremer, and Vladislav B. Vasilkov

Abstract This paper presents an overview of recent studies on the development of
the theory of vibration processes and devices and on their industrial implementa-
tion. The work under consideration was completed by employees of the Laboratory
of Vibrational Mechanics or with their participation. The fundamental principles of
this work were established earlier due to the discovery and framing of the theory
of self-synchronization of rotating bodies and the theory of vibrational displace-
ment and to the development of new analytical approaches to studying the effect
of vibration on nonlinear systems and media (vibrational mechanics and vibrational
rheology). The work covered in this article provided a significant generalization and
further development of these approaches. Their application allowed solving a large
number of urgent applied problems in various fields of knowledge. As a significant
recent achievement, a number of nonlinear vibration effects with a great potential
for practical application have been discovered and studied. Moreover, new highly
efficient vibration machines for the processing of natural and technogenic materials
(crushers, screens, separators) and related laboratory and test vibration equipment
are being designed, with the development of respective calculation methods.
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4.1 Introduction

Processes in various industries, such as construction, mining, chemical, food manu-
facturing industry, etc., are associatedwith handling and processing of bulkmasses of
granular solids and multicomponent media. The effectiveness of vibration in these
processes is due to the fact that vibration causes an apparent change in material
properties (granular media and suspensions). In particular, a granular medium may
behave like a solid, a viscous liquid, or a gas, depending on the vibration intensity.
Under the influence of vibration, effective dry friction coefficients are reduced to
zero and additional forces are generated (the so-called vibration forces), which may
be utilized.

Vibration enhances the contrast between the properties of components inmixtures
and ensures the separation of particles that have similar characteristics under normal
conditions. The relativemobility of dissimilar particles under vibration intensifies the
exchange processes, for example, by accelerating chemical reactions. Under certain
conditions, vibration induces chaoticmotions of themediumand its intensivemixing,
which may be beneficial for a number of industrial processes. In other words, vibra-
tion makes it possible to change the natural behavior and optimize such processes.
In many cases, vibration effects enable the design of environmentally friendly dry
technologies and provide significant energy savings. When designing and improving
vibration equipment and technology, a number of unique new problems ofmechanics
and the theory of nonlinear oscillations emerge. It becomes increasingly urgent to
improve the analytical and numerical methods used to study the effects of vibration
on various systems andmedia and to research respective vibration excitationmethods
and workflows.

This review examines the main recent developments in these areas. Many of
the results described were obtained at the Laboratory of Vibrational Mechanics,
a joint laboratory of the Institute for Problems in Mechanical Engineering of the
Russian Academy of Sciences and Mekhanobr-Tekhnika Research and Engineering
Corporation. The major contribution to this research was made by the long-standing
leaders of the teams, the head of the Laboratory of Vibrational Mechanics, Professor
Ilya Blekhman, and the scientific director of the Mekhanobr-Tekhnika Corporation,
Academician Leonid Vaisberg. All colleagues, employees, and students will cherish
their fond memories of these outstanding scientists.

Owing to the cooperation with the academic and scientific-industrial organiza-
tions, many developments have been completed to the full cycle: from the fundamen-
tal scientific research to the design of actual machines, development of applicable
technologies, and their industrial implementation. The studies considered and their
underlying work were conducted by an extensive team of scientists, whose con-
tribution is partially reflected in the references below. The list is far from being
exhaustive and starts with the monographs [1–25] by respective St. Petersburg sci-
entists, covering the studies on vibration processes and machines. The collaboration
with colleagues from academic and educational institutions in Russia and abroad has
also been critical.



4 Research on Vibration Processes and Devices: New Results and Applications 77

4.2 Fundamental Principles of Research: Theoretical and
Applied Developments

The main theoretical achievements underlying the work of the recent years include:

• the development of the theory of vibrational displacement [1, 2];
• the discovery and framing of the theory behind the phenomenon of
self-synchronization of rotating bodies (rotors) and the development of a new
class of vibration machines and devices on this basis [3–6];

• the creation of new analytical approaches to studying the effects of vibration on
nonlinear systems and media in the form of vibrational mechanics and vibrational
rheology [7–14].

The studies and approaches listed are of a general mechanical nature and have
effectively become new branches of the theory of oscillations and nonlinear dynam-
ics. The approaches of vibrational mechanics and vibrational rheology are, in turn, a
continuation of the classical studies on the theory of nonlinear oscillations based
on the methods developed by A. Poincare, A.M. Lyapunov, N.M. Krylov, N.N.
Bogolyubov, P.L. Kapitza, L.I. Mandelstam, N.D. Papaleksi, and other researchers.

The applied research basis is represented by the new class of highly efficient
vibration machines designed in the recent decades (crushers, mills, screens, feeders,
conveyors, separators, flotation machines [9, 10, 15–25]), as well as by the related
process design and strength calculation methods [15–25] and by a set of labora-
tory and test vibration equipment. For many years, the universal vibration stand,
designed using the phenomenon of self-synchronization, has been holding a special
place among the equipment of the experimental base. Many of the new devices, tech-
nologies, and effects considered below have been tested using this setup. The main
results of respective studies were reflected in the six-volume Vibrations in Engi-
neering handbook [26] and in the monographs published in subsequent years. New
advances, that build on these results, are discussed later in this overview (Sects. 4.3–
4.8) and include, in particular, detection, theoretical substantiation, and analytical
description of a number of nonlinear vibration effects and phenomena (vibratory
injection, vibrational gradient segregation, abnormal segregation, vibrational main-
tenance and inhibition of rotation, abnormal behavior of solids and air bubbles in
an oscillating fluid, vibrational rheological effects, including the formation of vibra-
tional dynamic materials, stochastic resonance, etc.) [7–10].

4.3 Development of Vibrational Mechanics and Vibrational
Rheology Approaches

1. Vibrational mechanics and vibrational rheology have been developed as the gen-
eral analytical methods for studying the effect of vibration on nonlinear dynamic
systems, as well as oscillatory strobodynamics as a generalization of these meth-
ods. The scientific foundations for these approaches, as set out in monographs
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[9, 10], have been developed in the works by Sorokin [27] and Kremer [28] and
publications by I. I. Blekhman and V. S. Sorokin in Procedia IUTAM 19 (2016,
pp. 75–82) and Nonlinear Dynamics (2016, Vol. 83, Iss. 4, pp. 324–338), which
also contain numerous examples of their practical use for solving relevant applied
problems.
The oscillatory strobodynamics approach is presented anddescribed inChaps. 29–
31 of the book [10], with the examples of use for solving problems from various
fields of knowledge, indication of the main classes of problems, and an overview
of the results. In particular, the impact on the following systems is considered:

• a Lorentz oscillator (chaos suppression);
• a Lotka-Volterra system (�predator/prey�);
• a brusselator system, describing oscillatory chemical reactions;
• a Mathieu oscillator, describing the phenomenon of parametric resonance.

In all cases, it has been found that the oscillatory effect significantly affects the
behavior of the system. The name of the approach is explained by the fact that
it corresponds to the perception of system motion by an observer viewing the
system in stroboscopic lighting.

2. The use of the oscillatory strobodynamics approach for solving applied prob-
lems may be illustrated by the study of the behavior of bound hydrogen in a
rod under high-frequency pulsations [29]. It is known that accumulation of dis-
solved hydrogen can cause structural failure. When deriving the equations of
hydrogen diffusion in a metal according to the general approach, a transition is
made from the initial equations of the system to the equations describing only
the slow component of the process (�vibration-transformed� equations). The
slow component is usually of the main interest. In this case, an approximate solu-
tion to the problem shows that the dynamic effect leads to a redistribution of
the hydrogen concentration and can affect the strength properties of the structure
in different ways. In certain cases, the generalized stiffness of the rod decreases
with higher cyclic load frequencies, which may lead to its failure. It is noteworthy
that the equation describing slow changes in the average concentration of bound
hydrogen differs significantly from the original equation, in particular, in that it
has a higher order in spatial variables. A certain analogy with the problems of
parametric excitation of a string or a rod, solved in a similar way [10], may be
noted here. The tension pulsations lead, as it were, to the generation of additional
bending stiffness. This explains the effect of the so-called Indian magic rope,
which straightens and maintains an upright position when its lower end is under
vibration. Vibration �turns a string into a rod and a rod into a beam� [10].

3. The vibrational mechanics approach has been extended to include systems with
random effects. With regard to vibration machines, the practical significance of
this generalization is due to the fact that the properties and composition of the
medium (process load) in these machines tend to vary randomly. The results of
respective studies are presented in the works by I. I. Blekhman, E. B. Kremer
and V. S. Sorokin in Journ. of Sound and Vibration (2018, Vol. 437, pp. 422–
436); Nonlinear Dynamics (2018, Vol. 93, Iss. 2, pp. 767–778); European Journ.
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of Applied Mathematics (2019, Vol. 30, Iss. 5, pp. 986–1003) and Journ. of
Mechanical Engineering Science. Part C (2019, Vol. 233, Iss. 23–24, pp. 7476–
7488).

4. The idea of creating fundamentally newmaterials, the so-called dynamicmaterials
and composites, has been put forward and developed by I. I. Blekhman and K. A.
Lurie (2000) [9, 10, 30]. Dynamic materials refer to nonlinear media with their
material parameters (density, rigidity, dissipative characteristics, self-induction,
capacity, etc.) changing both in space and in time. Examples of dynamic materials
are given in [10]. Vibratory dynamic materials and composites are an important
class in this regard (2007) [9, 10]. Vibratory dynamic materials are materials, the
parameters and properties of which with respect to relatively slow or static effects
are significantly changed under the influence of vibration, i.e., relatively rapid
impacts. Vibrational rheology lays down the theoretical basis for the creation of
such materials.

4.4 Studies on the Problem of Stochastic Resonance

A series of studies have been completed on the problem of stochastic resonance,
a fundamental physical phenomenon that manifests itself in a variety of nonlinear
systems in different fields of science (geophysics, physics, biology, radio engineering,
etc.). After the pioneering work by R. Benzi, A. Sutera, and A. Vulpiani [31], many
other publications were released on this topic (by P. S. Landa, V. S. Anischenko,
Cristina Stan, U.E. Vincent, P. V. E. McClintock, S. Rajasekar, I. A. Khovanov, etc.).

Since 2000, the team of the Laboratory of VibrationalMechanics represented by I.
I. Blekhman and thenbyE.B.Kremer,V. S. Sorokin, and later by I.V.Demidov joined
the research on the stochastic resonance (largely under the influence of P. S. Landa).
In previous studies, stochastic resonance was considered as a purely probabilistic
phenomenon, requiring such approaches as, for example, a transition to the Fokker-
Planck equations for its consideration. It has been shown in theLaboratory’swork that
the vibrational mechanics approach is a simple and effective way to mathematically
study such phenomena. It has also been found that a phenomenon very similar to
stochastic resonance can occur in a system under a deterministic rather than random
high-frequency effect. In this regard, the term �vibrational resonance� has been
established alongwith the term�stochastic resonance�.While, under the stochastic
approach, the resonant response of the system corresponds to a certain intensity of
the random action, in vibrational resonance, it matches a certain amplitude of the
high-frequency effect. In both cases, the resonant response of the system is caused
by a change in the effective natural frequency of the system under the influence of a
changing high-frequency effect rather than by the excitation frequency.

In recent years, the vibrational mechanics approach has been used to obtain new
results and improve the understanding and mathematical description of the laws of
stochastic resonance (see the references above in Sect. 4.3). The stochastic and vibra-
tional resonance phenomena have been studied for a number of application-specific
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nonlinear and parametrically excited systems. In addition to stochastic resonances,
the improved understanding of the vibromechanical nature of stochastic resonance
allowed identifying stochastic antiresonances in rotating mechanisms, which are
critical for the design of dynamic vibration dampers.

Methods have also been developed for controlling vibration machines using the
stochastic nature of the feedback caused by the chaotic effects of the medium being
processed on the working body of the machine. A vibration machine control strat-
egy has been proposed that maintains the resonant state and ensures energy-saving
operation. The results obtained expand the possibilities of using the resonance phe-
nomenon in vibration technology and materials processing technologies, where, in
contrast to electrical and radio engineering, the applications of the resonance phe-
nomenon are still very limited. This latter fact is largely due to the difficulties in
controlling mechanical properties of materials.

The most recent results of the Laboratory’s work in these areas were published
in the form of three articles in the special issue of Philosophical Transactions of
the Royal Society A. (2021), devoted to the problems of stochastic and vibrational
resonance.

4.5 Self-synchronization Phenomenon: Development of the
Theory and New Applications

1. A general overview of the problem of frequency self-synchronization
(�frequency attraction�), a universal phenomenon characteristic of all pro-
cesses, in which oscillations or rotations occur, is presented in [32]. The article
was published in one of the issues of the Avtomatika i Telemekhanika (Automa-
tion and Telemechanics) journal dedicated to the 100th anniversary of the birth
of Yuri Neimark, an outstanding scientist in the fields of mathematics, mechan-
ics, and control theory. The active interest of Yu. I. Neimark and his substantial
support for the research on frequency synchronization is noted in the introduction.
The basic, not yet fully established, definitions and concepts of the theory of
frequency synchronization are discussed in the article. Significant differences
between the phenomena of synchronization, self-synchronization, and capture
are described. It is noted that capture may be considered as an extreme special
case of self-synchronization. The often-ignored affiliation of self-synchronization
with the self-organization phenomena is emphasized. Certain relevant unsolved
problems of the theory of frequency synchronization are listed. Among them, the
question on the potential fundamental role of synchronization in the microworld
is discussed in detail. An opinion is expressed on the advisability of attempting to
describe the physical reality using the unified deterministic laws of physics, taking
into account those listed in the work and other new achievements in nonlinear
dynamics.
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2. The possibilities of improving vibrationmachineswith self-synchronizing inertial
(unbalanced) vibration exciters operating at superresonance oscillation frequen-
cies have been considered. One of them covers machine start-up regimes and the
other ensures steady-state operation. The improvements proposed allow reducing
the installed motor power, energy consumption, and dynamic loads in opera-
tion of the machines. Oscillations in drives of vibration machines with inertial
(unbalanced) oscillation exciters have also been theoretically and experimentally
studied; in these machines, the shafts of the electric motor and the exciter are cou-
pled so as to enable relative displacement of the shafts (using an elastic coupling,
V-belt drive, universal-joint shaft); see the works by N. P. Yaroshevich, written
in collaboration with the team of the Laboratory of Vibrational Mechanics and
published in the Journ. of Machinery Manufacture and Reliability (2013, Vol. 42,
Iss. 3, pp. 192–195) and Obogashchenie Rud (Mineral Processing Journ., 2017,
Issue 4, pp. 20–25).

3. The paper [33] focuses on the possibility of using the phenomenon of self-
synchronization of vibration exciters to design vibration machines with their
vibration conditions changing throughout the operation cycle (adaptive vibration
machines). Several possible dynamic layouts are provided for such devices. The
practical significance of this work consists in the resulting ever-growing use of
vibration machines with self-synchronizing vibration exciters. However, almost
all existing types of vibration machines are limited to a certain type of oscilla-
tions. Meanwhile, a number of processes, in particular, screening and compaction
of concrete mixtures, could be significantly intensified by changing the vibration
conditions according to a certain pattern. In [33], this idea is illustrated using
several classes of machines with self-synchronizing exciters. It is assumed that
the program for changing the vibration conditions will be set by the process
engineers. It may be expected that the above applications for the phenomenon
of self-synchronization of vibration exciters will contribute to the design of new
types of vibration machines, in particular, using the patterns suggested in this
work.

4.6 Vibrational Displacement: Theory, Applications,
Energy Saving

1. The works published in Vibroengineering Procedia (2020, Vol. 32, pp. 26–31)
and Obogashchenie Rud (Mineral Processing Journal, 2020, No. 4, pp. 21–26)
devoted to the average speed of vibrational transportation of piece goods and
granular materials, which is a problem of significant interest for designers of
vibration equipment and process engineers. The theory of vibrational displace-
ment [1] is currently used for average speed calculations, presented in the form
of a model based on the motion of a single particle (material point). This model is
perfectly applicable under wide conditions. However, it may also require rather
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complex calculations or the use of a series of graphs or special nomograms.
The publications under consideration show that, in typical vibrational transporta-
tion conditions and process machines (conveyors, feeders, screens) and, namely,
under the conditions with intensivematerial tossing, the vibrational transportation
speed may be assessed using simple formulas that clearly reflect the dependence
between the speed and the parameters. These formulas are obtained on the basis
of respective physical considerations using only some of the fundamental provi-
sions of the theory of vibrational displacement. Incidentally, an expression was
obtained for the relative flight duration of thematerial, an important process quan-
tity. The calculation results for the formulas proposed are in good agreement with
the experimental data.
The research touches upon the issue of modeling dynamic systems with complex
behavior. It is suggested that, in cases similar to the one considered, it is advis-
able to move to a simpler (�crude�) model or to a probabilistic description.
With regard to the problem, this approach eliminates the need to design separate
complex formulas for each of the many regimes predicted by the basic model.

2. Vibrational transportation of solid and granular bodies over a surface performing
non-translational, in particular, rotary vibrations has been studied [34, 35]. Non-
linear differential motion equations for the bodies on such a surface have been
obtained. It has been shown that, for a case when the influence of the centrifugal
and Coriolis forces of inertia may be ignored, the results of the existing theory
may be used when finding the local average speed of vibrational transportation,
provided that certain additional parameters are introduced. It has been found that,
depending on the location of the vibrators relative to the center of gravity, themate-
rial may travel either in the direction of the plane of symmetry or in the opposite
direction. This pattern has been confirmed experimentally using the vibration
stand. The specific features of the emerging motion suggest that the results of
these studies will allow developing new vibration devices for processing natural
and technogenic materials. As an important by-product, recommendations were
issued allowing to reduce the accident rate for vessels carrying granular materials
and loose cargo under rolling conditions.

3. The main sources of energy consumption in vibrational transportation-based pro-
cessmachines, in particular, in screens, conveyors, and feeders, have been studied.
The studies focus on the energy consumption in these machines that is required
to ensure the vibration effect on the material being processed and to overcome
the resistance forces in the drive. The power required to maintain the oscillatory
motion in the steady state and the motor power required to start the machines
are also considered. For machines driven by inertial unbalanced exciters, these
are the power values required to lift the unbalanced loads and to overcome the
resonant frequency during start-up. It is shown that these power values may be
practically reduced to zero using relatively simple motor start control systems.
Formulas have been obtained for estimating each type of energy consumption
depending on the vibration parameters for the tossing regimes. The compari-
son of the calculated data against the technical specifications of actual machines
indicates that, for example, the installed power of a number of screens may be
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significantly reduced by reducing or eliminating the start-up consumption. The
research results are published as a chapter in the monograph: Sapountzakis E. J.,
Banerjee M., Biswas P., Inan E. (eds) Proc. of the 14th Intern. Conf. on Vibration
Problems. Lecture Notes inMechanical Engineering. Springer, Singapore (2021),
pp. 29–46.

4. The research presented in [36] (2020) is also directly related to the problems of
energy saving in vibration machines. This work analyzes systems with ampli-
tude and phase modulation and identifies the conditions for modifying their low-
frequency behavior under this effect. In particular, it is shown that a vibration
force may only emerge if at least one of the following conditions is met:

• the initial slow force is nonlinearly dependent on the speed;
• the amplitude modulation depends on the position of the system;
• the amplitude modulation is speed dependent;
• the phase modulation is speed dependent.

A comparison shows good agreement between the numerical and analytical results
of the calculations. The practical significance of this work is to discover new pos-
sibilities for energy-efficient vibration control. In particular, vibration machines
may be maintained near the resonance state as a result of a high-frequency mod-
ulated action rather than by the selection of proper rotation speeds, which is not
always optimal. This opens up wide opportunities for the development of respec-
tive process solutions in mechatronics.

4.7 New Nonlinear Vibration Effects: Research and
Applications

1. Theoretical and experimental studies of the unusual behavior of solid particles
and air bubbles in a liquid under vibration have been carried out [9, 10, 37–40].
The main effects include the immersion of bubbles in an oscillating liquid deep
into the vessel and, conversely, the floating of bodies with densities higher than
that of the liquid. In particular, relations were obtained to establish the manifes-
tation conditions for these effects. It has been confirmed, that the immersion of
bubbles and light elastic particles and the floating of heavy bodies in an oscil-
lating liquid are associated with the following two factors: with the acquisition
of elastic properties by the gas-saturated layer of the liquid and with the elastic
properties of each bubble. (Due to their own elasticity, bubbles can �sink�
even in an incompressible liquid.) The speed of sound in the resulting gas-liquid
medium is paradoxically low at approximately 20m/s in a wide range of gas
content values. A standing wave arises in the liquid with a node located at the
bottom of the vessel. Depending on their compressibility (the size of the bubbles
and the vibration frequency), the bubbles rush to the nodes or to the antinodes
of the standing wave. Observations show that, with an increase in the vibration
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intensity of the vessel holding the liquid, the bubbles are first captured by the
turbulized surface layer of the liquid; this is followed by a gradual increase in the
thickness of this layer, accompanied by a change in the size of the bubbles and
the height of liquid splashes, a sharp (�explosive�) immersion of the bubbles
and a transformation of the entire liquid into a gas-liquid medium, and then by
the periodic formation at the bottom and floating of large air cavities. The results
obtained may be used for process control and intensification.

2. The phenomenon of vibratory injection of gases into liquids has been discov-
ered and studied [9, 10, 41]. This phenomenon is observed when air or gas is
intensively sucked in the form of series of bubbles through the holes in the lower
part of a vibrating vessel filled with liquid and the liquid flows out of the vessel
in the form of drops. This effect may be used for processes intensification in
mining and processing and other industries and makes it possible to improve
various vibration devices, for example, for liquid dosing and aeration (Patents
RU 2263883 and 2278738). It has been shown that vibratory injection and the
previously known other nonlinear phenomenon of the vibrating-jet effect may
be considered jointly as special cases of a more general theory. These effects
are not only useful but have previously also caused accidents in the chemical
industry and might have been the cause of a number of aviation accidents when,
due to vibration, fuel supply from the gas tanks was cut off due to vibrational
locking of the holes. Ways to suppress these undesirable phenomena have been
developed.
New results of studying the phenomenon of vibratory injection were obtained
in [42]. The calculations and experiments performed made it possible to clarify
the specifics of the phenomenon and propose refined formulas for establishing
the respective gas and liquid flow rates.

3. The wear of contacting nominally fixed machine parts operating under system-
atic vibration or shock effects (fretting wear) has been studied. The wear is
due to micro- and sometimes macro-mobility of the joints. It occurs in bolted
joints, seating surfaces of rolling bearings, shaft-sleeve joints, leaf springs, gears,
couplings, and other devices. The same applies to hydraulic power units, con-
struction and other machines. At the level of simple physical models, formulas
for the wear rate have been obtained and recommendations have been developed
on the design and operation of the corresponding equipment.
The relative shift (microslippage) of contacting bodies under high-frequency
effects caused by shocks has also been theoretically and experimentally studied.
The amount of the microslippage has been determined that allows estimating
the wear rate and the trouble-free service life for the parts. Expressions for the
effective coefficients of dry friction have been obtained, indicating a significant
(down to zero) reduction of these coefficients under shock loads. The models
considered are quite universal, may be used to explain and describe certain
technogenic seismic phenomena and are applicable to the problem of increasing
the efficiency of oil-bearing formations using vibration effects. These results
were published in Obogashchenie Rud (Mineral Processing Journ.): 2011, Iss.
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6, pp. 40–45; 2016, Iss. 6, pp. 32–39) and Doklady Physics (2017, Vol. 62, Iss.
5, pp. 253–256).

4. A series of studies have been carried out on the phenomenon of vibrational seg-
regation of granular bodies, which underlies the processes of material separation
by size, density, and shape [9, 10, 43–46].

a. Two types of the process have been established and studied. In the first case,
segregation occurs in the direction of reduction of the potential energy of
the system (normal segregation). In the second case, vice versa, the process
occurs in the direction of increasing the potential energy, in particular, when
large heavy particles float with fine and light particles (the Brazil nut effect).
The latter is implemented in regular screens. It also forms the basis of the
newly developed screenless wedge wire classifiers (Patent RU 2407600).

b. The effect referred to as vibrational diffusion (gradient) segregation has been
discovered and studied [46]. It is observed when, under sufficiently intense
vibration applied to a granular mixture, the particles of each specific size
(fraction) slowly (as compared with the vibration rate) move in the direction
of their lowest concentration, that is, in the direction opposite to the direction
of the concentration gradient for this fraction. The motion of relatively fine
particles in a vibrating granular medium is similar to the processes of matter
propagation during diffusion and heat propagation. A significant result of these
studies indicates that, with sufficiently intense vibration (up to 10g), the fines
fraction is discharged more efficiently through inclined and, in particular, ver-
tical screening surfaces of the tray than through the traditional bottom surfaces.
Based on this effect, new high-performance screens have been developed and
patented (Patent RU 2550607; Patent RU 155723, utility model).

5. A group of vibration effects associated with the unusual behavior of a granular
medium in communicating vibrating vessels is discussed in [10] (see Chap. 20).
In addition to the phenomena studied earlier, the overview in [10] describes new
and rather unexpected effects discovered for a case when one of the vessels has
the shape of a tube. If a straight tube filled with material is immersed in a vessel
with a granular material, the tube may quickly become empty when the vessel
vibrates. If an empty tube with a slightly bent end is immersed in a vessel with a
granular material, it is filled with material during vibration. That is, in one (the
latter) case, the granularmediumbehaves like a liquid during vibration and, in the
other case, it behaves differently. These effects are experimentally investigated
and mathematically described using the methods of vibrational mechanics. The
patterns considered enable classification of granular media during vibration as
vibratory dynamic materials (see Sect. 4.3).

6. The phenomenon of oscillation-induced suspension of a heavy body vibrating
in a liquid near a solid wall has been investigated and explained. Suspension
force expressions have been obtained for bodies of revolution of an arbitrary
shape and the suspension height has been determined in [43]. The results may
be used in the theory of suspension flows and the theory of vibration pumps to
explain the paradox of �unsinkable� nodules and in other applications. The

http://dx.doi.org/10.1007/978-3-030-93076-9_20
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general problemof the behavior of vibrating solid and deformable bodies near the
interface between twomedia has been formulated. The increase in buoyancy of a
vibrating body near the interface has been noted and investigated. The difference
in the physical mechanisms of suspension for heavy bodies in a liquid and in a
granular medium has been considered.

7. The effect of separation of particles in a fluidized state in magnetic and electro-
static fields has been studied analytically (Intern. Journ. of Engineering Science,
2019, Vol. 141, pp. 141–156). The study was carried out with respect to the
design of improved separators for the processing of finely disseminated ores. A
distinctive feature of these machines is the intense vibration effect on the feed
material during its vibrational transportation and loading into the working area
in a fluidized state. This effect eliminates the negative impact on the process gen-
erated by the forces of adhesive interaction between the finely ground particles.
The results include an increase in the concentrate grade and higher recoveries.
Such technologies may significantly reduce the consumption of water used as a
dispersion medium for separation or, as in this case, completely eliminate water
consumption through the principle of �vibration instead of water�.

8. Generalization of the classical equation describing the motion of a complex
actual machine using the vibrational mechanics approach to make it applicable
to systemswith several degrees of freedom.The equation is used in the analysis of
resonances for vibration machine start-up and coasting (the Sommerfeld effect);
see the works by I.I. Blekhman and E.B. Kremer (2017) in Journ. of Machinery
Manufacture and Reliability (Vol. 46, Iss. 4, pp. 330–335), Journ. of Sound and
Vibrations (Vol. 405, pp. 306–313) and Procedia Engineering (Vol. 199, pp.
3278–3283).

9. The effect of periodic energy ripples in common devices used for exciting useful
vibration has been established and investigated [47]. It has been shown that
the vibration frequency excited is not constant, but experiences periodic ripples
with the same frequency and its multiple frequencies. As a result, oscillations are
excited both with a certain vibration frequency and its multiple frequencies. The
study was carried out both by solving nonlinear differential equations of motion
and based on relevant energy considerations. The frequency ripple values are
usually small, amounting to 10–15% of the nominal values, and may only reach
25% in special cases. The energy ripple is characterized byvalues that are twice as
high. The energy and frequency ripple effects considered may cause undesirable
phenomena in devices with inertial excitation of oscillations and, at the same
time, serve as the basis for a number of applications, including those using the
concept of vibrational resonance.

10. A cycle of theoretical and experimental studies has been carried out to develop
measures to prevent or reduce the risk of accidents at industrial facilities, struc-
tures, and vehicles caused by non-linear oscillatory phenomena (see [9, 10,
41], as well as Sect. 4.2, 4.3, 4.7, 4.9 above and the references cited therein).
The phenomena of vibrational braking and vibrational maintenance of rotation,
the phenomenon that occurs when several unbalanced machines are installed
on a single foundation (self-synchronization and in-phase operation), the phe-
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nomenon of vibratory injection of gas into liquid, the associated phenomenon
of liquid locks in holes of vibrating vessels, and the phenomenon of relative
displacement of bodies in contact under the forces of dry friction due to weak
vibration or shock effects have been studied. In particular, themechanisms ensur-
ing a significant reduction in the effective coefficient of dry friction under weak
shock and vibration effects have been investigated. The magnitude of the result-
ing displacement of the bodies has been estimated. The following groups of
accidents have been explained and described on this basis:

• the influence of technogenic factors on seismic phenomena;
• the impact of granular materials and loose cargo on the accident rate for vessels
carrying such cargo under rolling conditions;

• the surface wear rate for nominally fixed machine parts in contact by means of
dry friction forces;

• themanifestationmechanismof theSommerfeld effect for irregular travel paths.

4.8 New Ways of Damping Harmful Vibrations

1. Amethod has been developed for damping harmful vibration, in which this vibra-
tion is simultaneously used for energy generation (Patent RU 2637156). This
method is based on the use of the two physical phenomena associated with the
behavior of an unbalanced rotor on a vibrating support [9, 10]: the phenomenon of
vibrational maintenance of rotation and the phenomenon of vibrational capture
of rotation of an unbalanced rotor. The advantages of this invention consist in
the ease of its implementation and in the possibility to generate (mechanical or
electrical) energy without significant heat losses. It is essential that the electricity
generated is proportional to the cubed vibration frequency. This allows applying
the proposedmethod at a low vibration frequency andmakes it especially effective
in the case of high-frequency vibration.

2. A fundamentally newmethodof vibration damping in elastic structural elements is
proposed, for example, for rods, cables, plates, or enclosures (PatentRU2678932).
The method is based on a calculated periodic variation of an element’s shape or
material physical/mechanical properties along its spatial coordinates. In particu-
lar, the law of variation for a parameter of the element may be selected in the form
of a harmonic standing wave of properties. This simplifies the design of vibra-
tion dampers, improves vibration damping, and increases operational reliability
of external vibration damping devices.
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4.9 Conclusions

This paper presents a brief and non-exhaustive overview of the results of recent years
related to the problem of vibration effects on nonlinear systems and media. The
results covered were mainly obtained by the Laboratory of Vibrational Mechanics
(St. Petersburg). Analytical research methods have been developed, new peculiar
vibration effects have been discovered and investigated, a number of urgent applied
problems from various fields of knowledge have been solved, and new efficient
vibration machines and technologies have been created. The results described have
a great potential for further development and industrial use.
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Chapter 5
Micromechanics of Strength and
Plasticity in Nanostructured Materials

Sergey V. Bobylev, Mikhail Yu. Gutkin, Alexander G. Sheinerman,
and Nikolay V. Skiba

Abstract A brief review of the research activity provided during the last three
decades in the Laboratory of Mechanics of Nanomaterials and Theory of Defects at
the Institute for Problems in Mechanical Engineering of Russian Academy of Sci-
ences in thefield ofmicromechanics of strength andplasticity in nanostructuredmate-
rials is presented. It covers theworks aimed at explanation and theoretical description
of the following features in mechanical behavior of these materials: deviations from
the classical Hall-Petch law, homo- and heterogeneous nucleation of dislocations,
grain boundary sliding and mechanisms of its accommodation, rotational deforma-
tion, deformation twinning, deformation-induced grain growth and refinement, and
interaction between deformation and fracture processes. Some most important and
interesting results are discussed and compared with available data of experimental
studies and computer simulations.

Keywords Micromechanics · Strength · Plasticity · Nanostructured materials ·
Hall-Petch law · Dislocations · Disclinations · Grain boundaries · Deformation
twinning · Deformation-induced grain growth

5.1 Introduction

The present paper is a brief review of the research activity provided in the Labora-
tory of Mechanics of Nanomaterials and Theory of Defects, founded by Prof. I.A.
Ovid’ko (1961–2017) in 1991 at the Institute for Problems in Mechanical Engineer-
ing of Russian Academy of Sciences (IPME RAS), in the field of micromechanics
of strength and plasticity in nanostructured materials (NSMs) during the last three
decades. This activity has concentrated at the development of theoretical models
describing the physical mechanisms responsible for novel and often unpredictable
phenomena in the mechanical behavior of such NSMs as nanocrystalline, ultrafine-
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grained and nanocompositemetals, alloys and ceramics. In particular, the explanation
and description of deviations in the dependence of the yield stress on the grain size
from the classical Hall-Petch law (including the inverse Hall-Petch dependence),
homo- and heterogeneous nucleation of dislocations, transition from translational to
rotational plasticity, codevelopment and competing of different mechanisms of plas-
ticity (dislocation glide, grain-boundary sliding, Coble creep, triple-junction creep,
grain rotation, etc.), deformation twinning, stress-coupled migration of grain bound-
aries (GBs), pore and crack nucleation, fracture and toughening mechanisms have
been in the focus of the studies. Most of these models were reviewed inmore detail in
parallel with work, experimental and theoretical, of other authors in monographs [1–
5], textbook [6] and reviews [7–34]. It is also worth noting that elaboration of the
majority of these models was initiated and guided by Prof. I. A. Ovid’ko who made
a great contribution in the field. We devote this review to his memory as well as to
the 30th anniversary of IPME RAS.

5.2 Deviations from the Classical Hall-Petch Law

The classical Hall-Petch law relates the yield stress σy of a polycrystalline solid with
its average grain size d as follows [35, 36]:

σy = σ0 + Kd−1/2, (5.1)

where σ0 and K are thematerial dependent constants; σ0 is the friction stress required
for dislocation glide in the single-crystalline material and K is just a slope of the
linear dependence σy(d−1/2). The physical interpretation of Eq. (5.1) may be given
from different viewpoints (see, e.g., the reviews [37–39]), however, this law was
treated as rather universal one until the invention of nanocrystalline metals (NCMs).
In 1989, Chokshi et al. [40] first observed the inverse dependence of σy on d−1/2 in
nanocrystalline Cu, when σy decreased with grain refinement in the range from 16
to 8nm, and explained this effect by Coble creep that is mass transfer along GBs.
A bit later, Jang and Koch [41] reported on direct dependence σy(d−1/2) similar to
(5.1) in nanocrystalline Fe in the range from 11 to 6nm, which however could also
be well described by the Kocks relationship σy ∼ d−1 [42]. These controversial data
stimulated extensive experimental and theoretical research in the following three
decades (see, e.g., [1–4, 7, 8, 11, 31, 39, 43–47] for review).

One of the first theoretical models of such kind was suggested by Gryaznov
et al. [48] who extended the ‘composite’ model of Kocks [42] to the case of NCMs.
They represented an NCM as a composite material in which the intragrain material
was treated as single-crystalline matrix while the GBs as inclusions in the shape
of oblate ellipsoids randomly spaced and oriented with volume fraction c ≈ 3δ/d,
where δ is the GB thickness. Using the rule of mixture for the effective shear modulus
of such a composite [49] and assuming linear relationships of the shear moduli of
the composite components and their yield stresses satisfying Eq. (5.1) with corre-
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sponding constants for intragrain and GB phases, Gryaznov et al. [48] finally found
the relationship

σy = (
σ0m + Km d−1/2)

(
1 − 1 − q2

2q

3δ

d

)
, (5.2)

where σ0m and Km are the constants of the matrix and q is the dimensionless constant
smaller than 1, which characterizes the effect of GB porosity on the GB constants:
q ≈ σ0GB/σ0m ≈ KGB/Km with σ0GB and KGB attributed to the GB phase. The
lower is the atomic density of the interface, the smaller is the values of q. When
Eq. (5.2) is plotted as a dependence σy(d−1/2), the straight line in the usual Hall-
Petch law will remain straight only at large d or else as q → 1. For q < 1, its slope
will gradually decrease with decreasing d down to some critical size dc, where the
effective Hall-Petch factor will change sign. The critical size dc is easily found
from the condition ∂σy/∂(d−1/2) = 0. Gryaznov et al. [48] showed that it may be
estimated as dc ≈ 9δ (1 − q2)/(2q) in practically any nanocrystalline metal. They
also demonstrated that the contradictions arising on comparison of experimental
results obtained by Chokshi et al. [40] and Jang and Koch [41] can be resolved in the
framework of this approach. It is worth noting that many similar models operating
within the ‘rule-of-mixture’ approach have been later developed (see [3] for a review
and references).

Another theoretical approach dealingwith competition of different physicalmech-
anisms of plasticity in intragrain and GB phases of NCMs, has been developed by
many research groups. A great step ahead in this direction was done by Masumura
et al. [50] who took into account the lognormal distribution of grain volumes in
real NCMs. They assumed that, in larger nanograins, the plastic deformation is real-
ized by the glide of lattice dislocations, which should lead to the classical Hall-
Petch relationship (5.1), while in smaller grains, the Coble creep dominates, which
results in the inverse Hall-Petch relationship like σy ∼ d3. As a result, the mean
yield stress

〈
σy

〉
, averaged over the sample volume, followed the classical Hall-Petch

law,
〈
σy

〉 ∼ d̄−1/2, in the range of large average grain size (d̄ > d∗) and the inverse
Hall-Petch law,

〈
σy

〉 ∼ d̄3, in the range of small average grain size (d̄ < d∗), where
d∗ is a grain size at which the classical Hall-Petch mechanism switches to the Coble
creep mechanism [50].

In developing this approach, Gutkin et al. [51] suggested to replace the Coble
creep mechanism by the GB sliding mechanism for NCMs produced by severe plas-
tic deformation (SPD). In such NCMs, GBs are commonly in a non-equilibrium
state due to some excess of extrinsic GB dislocations (GBDs) stored at the fabrica-
tion stage [52]. Some of these GBDs are capable to glide within GBs, thus providing
the GB sliding [53, 54]. In this case, triple junctions of GBs serve as natural obsta-
cles for the motion of gliding GBDs, and the critical stress, which is needed for the
transfer of the GB sliding from one GB to other GBs in their triple junctions, can
be treated as the yield stress for the NCMs produced by SPD. In the simplest model
case, the yield stress is [51] σy = p + q (l/d) + s (l/d)2, where p (> 0), q (> or
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< 0) and s (> 0) are the material and structure dependent parameters of the model,
and l is about of interatomic distance. By using the averaging procedure similar to
that by Masumura et al. [50], Gutkin et al. [51] obtained significant deviation of the〈
σy

〉
(d̄−1/2) dependence from the classicalHall-Petch law (5.1). TheHall-Petch slope

started to decrease for d̄ smaller than roughly 25nm, in good accordance with exper-
imental data obtained on as milled nanocrystalline NiAl powders [55]. However, this
model gives no inverse Hall-Petch dependence. Interestingly, the measurements on
heat treated nanocrystalline NiAl powders [55], in which the GB sliding had to be
suppressed due to elimination of the excess density of extrinsic GBDs, did show
the inverse Hall-Petch dependence. Gutkin et al. [51] showed that it could be well
described by the model of Masumura et al. [50] with account for the Coble creep
contribution.

Fedorov et al. [56] extended the approach ofMasumura et al. [50] by including the
contribution of mass transfer along triple junctions of GBs. As with GB diffusion,
triple junction diffusion is capable of playing a very important role in plastically
deformed NCMs, where the volume fraction of triple junctions of GBs is extremely
high. It was shown that the competition between conventional lattice dislocation
glide, grain boundary diffusional creep and triple junction diffusional creep, which
is characterized by the σy ∼ d4 dependence, may result in the inverse Hall-Petch
dependence for the yield stress of NCMs with finest nanograins [56]. In the exem-
plary case of nanocrystalline Cu, this was expected for d̄ < d∗ ≈ 18 nm, in good
accordance with experiments of Chokshi et al. [40].

Recently, the problem of the inverse Hall-Petch dependence interpretation has
appeared for nanocrystalline ceramics (NCCs) as well [31]. As before for nanocrys-
talline metals, some authors have reported on their observations of the inverse Hall-
Petch dependence in NCCs, while some others have not. To resolve the contradic-
tions, Sheinerman et al. [57, 58] suggested two models describing the initial stage of
plastic deformation in nanocrystalline ceramics.Within the first model, plastic defor-
mation is realized via the thermally activated GB sliding, but without GB diffusion.
Within the second model, plastic deformation occurs through the emission of lattice
and GB dislocations from GBs and their triple junctions. Both models predict the
transition from the direct to the inverse Hall-Petch dependence at some critical grain
size. At the same time, the critical grain size for this transition can be smaller than the
smallest grain size of the ceramic specimens fabricated in experiments. This explains
the absence of the transition from the direct to the inverse Hall-Petch dependence in
some experiments.

5.3 Homo- and Heterogeneous Nucleation of Dislocations
in NCMs

The origin of lattice dislocations, which are carriers of plastic deformation in the
internal regions of nanograins, is one of the most disputable questions in NCMs.
The problem is that such well-known sources of dislocations as the Frank-Read
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sources and the double-cross slip, which are responsible for dislocation nucleation
and multiplication in conventional coarse-grained polycrystalline materials [59], are
suppressed due to lack of space inside nanograins. On the other hand, many authors
reported on experimental evidence of lattice dislocations, both perfect [60, 61] and
partial [62–64], in NCMs. In the special case of shock-loaded nanocrystalline Ni, the
density of observed dislocations was extremely high, ∼ 1016 m−2 [65]. Molecular-
dynamics computer simulations demonstrated the generation of partial and extended
perfect dislocations by GBs and their triple junctions [66, 67].

In our lab, two types of theoretical models for dislocation generation in NCMs
were elaborated. Themodels of the first type describe the homogeneous nucleation of
glide dislocation loops,while those of the second type dealwith heterogeneous nucle-
ationof various dislocation configurations atGBs.The classical theoryof dislocations
predicts that lattice dislocations can nucleate homogeneously under an extremely
high shear stress of the order of the theoretical shear strength of the material [59].
Analyzing the high-resolution transmission electronicmicroscopy (HRTEM) images
of crystalline lattice in deformed multicomponent titanium alloys called Gum Met-
als, Gutkin et al. [68] noticed some characteristic nanoscale lattice disturbances
which could be considered as precursors of dipoles of edge dislocations. They called
these precursors ‘nanodisturbances’ and described them theoretically as finite-arm
dislocation dipoles with variable Burgers vectors. According to this model, the nan-
odisturbances form randomly under local stress and thermal fluctuations. They have
at once finite (nanoscopic) sizes and very small (smaller than the interatomic distance
in the material) Burgers vectors, which both can increase under shear stress. Even-
tually nanodisturbances can gradually transform first to the dipole of conventional
partial dislocations and then to the dipole of perfect dislocations. It was shown, that
this process requires much smaller stress level than the classical model of homo-
geneous nucleation of dislocations. Experimental evidence of direct transformation
of nanodisturbances to dislocation dipoles and reverse transformation of the latter
to nanodisturbances was demonstrated by Cui et al. [69] in their HRTEM in situ
observations of Gum Metal deformation under tension.

The initial idea of homogeneous nucleation of dislocation dipoles from nan-
odisturbances [68] was later extended to generation of glide dislocation loops in
NCMs [70–72] and used in modelling of twinning, GB sliding and fracture of
NCMs [73–76].

Regarding the heterogeneous nucleation of dislocations in NCMs, a number of
different models were suggested to describe the decay of low-angle tilt GBs into
lattice edge dislocations [77–79], the emission of partial and perfect dislocations by
GBDs [78, 80–84], GB disclinations [85–89], GB triple junctions [54, 80–82, 90,
91] and GB pores [92]. In particular, Bobylev et al. [77–79] showed that the decay of
low-angle GBs into ensemble of mobile lattice dislocations in mechanically loaded
NCMs causes local plastic deformation in the grain where the decay takes place,
as well as in neighboring grains. The decay of one low-angle GB can initiate a
chain decay of neighboring GBs and the generation of a shear band (a narrow region
where plastic deformation is localized). The critical stress τc of GB decomposition
characterizes the initial stage of plastic deformation occurring via the development
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of shear bands. For nanocrystalline Fe, the value of τc was estimated to vary from
0.5 GPa (for GB misorientation angle ω ∼ 2◦) to 2.5 GPa (for ω ∼ 10◦). Its average
value 〈τc〉 ∼ 1.5 GPa coincides with the experimentally measured value of the shear
stress [93] at which shear bands are formed in nanocrystalline Fe.

Bobylev et al. [78] also proposed dislocation-based model describing emission
of partial lattice dislocations from high-angle GBs nucleated on GBDs as well as
experimentally observed effect of GB bowing. Through energetic description, both
processes were found to be highly sensitive to applied mechanical stress and GB
misorientation angle. The results of this theoretical model account for experimental
observations of curved GBs [62] and emission of partial dislocations by GBs [62] in
deformed NCMs.

Gutkin and Ovid’ko [80] considered the generation of rectangular lattice perfect,
lattice partial and GB dislocation loops at similar pre-existent dislocation loops and
showed that these modes of dislocation generation can effectively provide plastic
flow transfer from grain to grain, from grain to GB, from GB to grain, and from GB
toGB in deformedNCMs, depending on their geometric andmaterial characteristics.
Bobylev et al. [81, 82] further developed this approach and considered more general
case of the generation of two (one after another) rectangular lattice partial dislocation
loops at a pre-existent GB dislocation loop with these two new loops having arbitrary
Burgers vectors making the gliding segments of the loops of either mixed (edge and
screw) or screw types (before they were of the edge type only [80]). Three different
dislocation slip systems typical for the face-centered cubic (FCC) crystalline lattice
were considered and it was found that emission of the partial dislocation loops
belonging to the 60°-I slip system is themost probable in nanocrystalline FCCmetals.
This model also allowed to establish that experimentally detected [64] anomalously
wide stacking faults in nanocrystalline Al are caused by high stresses but not by
small grain size as was initially believed [64, 94, 95].

In a similar manner, Bobylev et al. [96] considered the generation of lattice partial
dislocations at amorphous GBs in NCCs. In contrast to conventional GBs that emit
lattice dislocations due to transformations of pre-existing GBDs (see above), the
micromechanism of emission from amorphous GBs is different. Within the frame-
work of the model, a dipole of immobile non-crystallographic edge dislocations is
generated at the triple junctions (at the ends of an amorphous GB) through local shear
events in this GB. These dislocations can split resulting in emission of partial lattice
dislocations into grain interior. It was concluded that this process is energetically
favorable and can proceed in athermal way in nanocrystalline 3C–SiC. The critical
stress required to carry out this process was found to decrease with an increase of
the GB length (in fact, the grain size). In other words, the transition from intergran-
ular slip to intragranular dislocation slip becomes more difficult as the grain size
decreases.

Fedorov et al. [54] focused their attention on the emission of lattice disloca-
tions from the head of a pile-up of GBDs pressed to a triple junction of GBs in
a deformed NCM. They calculated the energy barriers, which lattice dislocations
must overcome to be emitted, and concluded that this process of stress relaxation
at the GBD pile-ups looks hardly realistic as compared with some other possibili-
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ties such as emission of GBDs along the adjacent GBs. It is worth noting that this
model has recently been used as a component of more general models aimed at the
explanation and theoretical description of the effects of hardening by annealing and
subsequent deformation-induced softening in ultra-fine grained (UFG) Al produced
by high-pressure torsion [97–99].

Gutkin et al. [90, 91] analyzed in detail the emission of lattice dislocations from
sessile GBDs which formed at triple junctions of GBs in the course of GB sliding
during (super)plastic deformation of NCMs. In particular, they showed [90] that, in
NCMs with FCC crystalline structure (Al, Cu and Ni), partial Shockley dislocations
can be emitted from dislocated triple junctions to accommodate the GB sliding. In
a similar way, the process of emission of perfect dislocations from dislocated triple
junctions under superplastic deformation of NCMs was examined in [91]. The pro-
cesses of accumulation of sessile GBDs at triple junctions and their further transfor-
mation through the emission of lattice dislocations were considered as mechanisms
playing important roles in strengthening and softening of NCMs under superplastic
deformation [91, 100].

Ovid’ko and Sheinerman [92] considered the emission of lattice and GB dislo-
cations from nanovoids in single-phase and composite NCMs. They demonstrated
that a GB nanovoid that serves as a sink for dislocations and therefore contains a
dislocation with a large Burgers vector can emit lattice dislocations at room temper-
ature. In contrast, the emission of lattice dislocations or lattice dislocation dipoles
from a dislocation-free nanovoid is not realistic at room temperature. At the same
time, a dislocation-free nanovoid at a GB can emit individual GB dislocations or GB
dislocation dipoles. This provides a mechanism for void growth via GB dislocation
emission in deformed NCMs.

5.4 Grain Boundary Sliding and Mechanisms of Its
Accommodation

Among themodes of GBmediated plastic deformation, one of the keymechanisms is
GB sliding. In particular, it has been experimentally proven that GB sliding processes
dominate during superplastic deformation of NCMs and NCCs [1]. Computer sim-
ulations [101, 102] also confirm the key role of GB sliding in plastic deformation of
NCMs, especially at high stresses and strain rates [103]. GB sliding is plastic shears
localizedwithinGBs and normally it creates defects – sources of internal stresses – in
GB triple junctions [1, 104] capable of initiating the nucleation of nanocracks [1, 104]
and subsequent brittle fracture of the nanomaterial [104]. However, in the material,
in parallel with GB sliding, accommodation processes can develop, which trans-
form defects produced by GB sliding severely reducing the level of internal stresses
and increasing ductility and fracture toughness of the nanomaterial. Understanding
the micromechanics of these accommodation processes provides key insight in the
nature of superplastic deformation of NCMs and NCCs.
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Typical GB sliding accommodation mechanisms include the emission of lattice
dislocations from GB triple junctions [1, 54, 90, 91], diffusion [73, 105], and rota-
tional deformation [106]. At the same time, some original approaches have been
developed in our lab like accommodation via GB splitting and migration [107, 108].
In particular, Bobylev et al. [108] developed a theoretical model of the mechanism
of cooperative action of GB sliding, GB splitting and GB migration, which plays the
role of a special mode of plastic deformation in NCMs. It was shown that GB sliding
and GB migration are able to effectively accommodate each other by transforming
GB disclinations. It was shown theoretically (using nanocrystalline Ni as an exam-
ple) that the ductility and fracture toughness of a material increases if the described
cooperative mechanism dominates over pure GB sliding or cooperative GB sliding
and migration (without GB splitting [107]). The results of theoretical analysis (in
particular, the formation of nanograins in the vicinity of GB triple junctions) are
consistent with experimental data [109, 110] and computer models [111, 112] on
the observation of nano- and microscopic grain nucleation at triple junctions.

Accommodation of GB sliding affects not only ductility, but fracture toughness
as well. Bobylev et al. [73] investigated fracture toughness enhancement by means
of non-accommodated and accommodated GB sliding in NCMs at low and medium
temperatures, respectively. In the case of non-accommodated GB sliding, immobile
non-crystallographic Volterra dislocations are produced at GB triple junctions near
crack tips at relatively low temperatures. For nanocrystalline Al, Ni, and 3C–SiC,
using the force criterion of crack growth, it was calculated that the effective stress
intensity factor K ∗

IC (fracture toughness) increases byup to 30%due to the dislocation
created by non-accomodated GB sliding. The effect is stronger when dislocation
is closer to the triple junction. The sensitivity of the stress intensity factor to this
distance correlates with the sensitivity to grain size, since the smaller the grain size,
the greater the probability of detecting a triple junction near the crack tip. At higher
temperatures, GB sliding is effectively accommodated by diffusion-controlled climb
of GBDs and emission of lattice dislocations into the grain body. Accommodated
GB sliding can lead to significant blunting of crack tips, which, in turn, significantly
(from 1.1 to 3 times, depending on temperature) increases fracture toughness. This
effect is most pronounced in nanomaterials with very small grain sizes and decreases
significantly with increasing grain size as K ∗

IC ∼ d−5/2.
Bobylev et al. [106] considered a special mechanism of transition fromGB sliding

into rotational deformation in NCMs. This transition is also a mechanism for the
accommodation of GB sliding. The mechanism was effectively described through
the formation of immobile wedge disclinations at GB triple junctions characterized
by gradually increasing power. Calculations using Ni and α-Al2O3 as examples
demonstrated that this mechanism is energetically favorable. Typical values of the
equilibrium disclination power (which is equal to the angle of grain rotation) were
found to be in the range from 3° to 7.5° in nanocrystalline Ni when applied shear
stress τ = 0.5 GPa, and from 4° to 11° in nanocrystalline α-Al2O3 when τ = 2 GPa.
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5.5 Rotational Deformation in NCMs

It is well known that the unique deformation behavior ofNCMs is treated to be caused
by suppression of conventional lattice dislocation slip and effective action of alter-
native deformation mechanisms occurring through generation, transformation and
motion of GB defects. One of such defects are disclinations which are considered as
carriers of rotational plastic deformation in solids [113, 114]. Experimental evidence
of wedge disclinations in NCMs was demonstrated by Murayama et al. [115].

In the 1990s, the efforts of our lab were concentrated on theoretical description of
transformation of wedge disclinations placed at GBs and their triple junctions as well
as on crack generation in their vicinity. Gutkin and Ovid’ko [116] considered the
splitting of a wedge triple-junction disclination of strength � into a circular periodic
array of N similar disclinations of smaller strength�/N and related this process with
solid-state amorphization of the triple junction. They showed that such a process can
effectively compete with generation of microcracks at the GB triple junctions, thus
making the material more ductile. Gutkin et al. [117–119] suggested similar models
for linear splitting of GB disclinations.

In the early 2000s, the motion of dipoles of disclinations in NCMs was in the
focus of research. Ovid’ko [120] and Gutkin et al. [88] considered deformation
mechanism occurring through the motion of GB disclination dipoles as the mecha-
nism of rotational deformation effectively contributing to the plastic flow in NCMs.
As was assumed, the rotational deformation realized only due to movement of the
GB disclination dipoles along parallel GB facets, accompanied by crystal lattice
rotation between these facets. Gutkin et al. [121] analyzed the mechanisms of gen-
eration of mobile disclination dipoles from various (dipole and multipole) discli-
nation configurations at the kinks, double kinks and triple junctions of GBs and
related these models with generation and propagation of misorientation bands in
poly- and nanocrystalline metals under severe plastic deformation. Mikaelyan et
al. [122] clarified some details of the disclination dipole motion through accepting
edge dislocations from the surrounding material by means of computer simulations
using combined discrete dislocation-disclination dynamics.

In fact, GBs inNCMs are short and curved, and different deformationmechanisms
strongly influence each other. For example, according to experimental data [123],
GB sliding and rotational deformation are the key mechanisms of superplastic defor-
mation in NCMs. Gutkin et al. [124] suggested a theoretical model describing the
combined action of GB sliding and rotational deformation in NCMs, with focuses
placed on the crossover from GB sliding to rotational deformation occurring at triple
junctions of GBs. In the model [124], grain rotations occurred via the splitting of
gliding GBDs at triple junctions into climbing GBDs which moved along GBs adja-
cent to the triple junction and caused crystal lattice rotation in the grain interior. It was
shown that the splitting of the GBDs effectively occurs at triple junctions with large
values of the triple junction angle. The experimentally detected [123] grain rotations
in superplastically deformed nano- and microcrystalline materials, where GB sliding
is the dominant deformation mechanism, support the theoretical model [124].
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Recently, Borodin et al. [125] developed a coupled model for grain rotation, dis-
location plasticity and GB sliding in UFG solids and NCMs under high-strain-rate
deformation. They showed that competition between primal rotation caused by dis-
location activity and inverse rotation provided by diffusional flux leads to the appear-
ance of a critical grain size belowwhich grainsmaintain their initial form in the course
of deformation process. Under quasi-static deformation conditions, they obtained the
critical grain size of NCMs, which is equal to just a few nanometers that is close to
the experimentally found value of 6nm [126]; the other value, of about 200nm, was
obtained for UFG metals, which is also in a good agreement with microstructural
investigations [127]. For larger grains, dislocation kinetics fully determines the angle
of rotation and accommodation of GB sliding. Borodin et al. [125] also estimated
the maximum strain rate, below which equiaxed grains are still possible during the
deformation process. For NC and UFG copper, their model predicted the values of
50 s−1 and 6 s−1, respectively, for this maximum strain rate.

5.6 Deformation Twinning in UFG and NC Materials

One of the main specific deformation modes, which greatly contributes to plastic
flow in NC and UFG materials, is deformation twinning (DT). Following numerous
experimental data, computer simulations and theoretical models [64, 83, 128–133],
nanoscale DT effectively operates in NCMs with various chemical compositions and
structures. In contrast to coarse-grained polycrystals, in which deformation twins are
typically generated within grain interiors, in NCMs under mechanical load, twins
are often generated at GBs; see [130] and references therein. In order to explain
this experimentally documented fact indicative of specific deformation behavior of
NCMs, it was suggested that nanoscale DT occurs through consequent emission of
partial dislocations from GBs [64, 128–130]. According to this explanation scheme,
partial dislocations should either pre-exist at GBs on every slip plane or be resulted
from transformations of pre-existent GBDs located on every slip plane to form a
single twin through dislocation emission from the GB. However, it is practically
impossible to have pre-existent GBDs or partial ones at a GB on every slip plane
in real materials [64]. In order to avoid the discussed discrepancy, Zhu et al. [64]
suggested that multiplication of partial dislocations can occur through dislocation
reactions and cross-slip processes in deformed nanomaterials. As a result of such
defect transformations, partial dislocations are capable of existing at a GB on every
slip plane, in which case their consequent emission events provide a twin to grow
continuously [64]. However, within this explanation, each dislocation reaction trans-
forms a partial dislocation into two dislocations: a perfect dislocation and another
partial dislocation. As a corollary, the dislocation reactions in question are character-
ized by very large energy barriers being of the order of the perfect dislocation energy.
Such reactions can come into play, if only a very high level of the applied stress acts
in a specimen. Therefore, multiplication of partial dislocations is hardly typical in
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NCMs inwide ranges of their deformation parameters. This motivates search for new
alternative explanations of twin generation at GBs in mechanically loaded NCMs.

Gutkin et al. [83] suggested a theoretical model of deformation twin formation
from the region at a GB, which occurs in the local stress field created by a bi-
axial dipole of triple-junction wedge disclinations. Sequential emission of twinning
Shockley partial Shockley dislocations under the combined action of the disclination
and external shear stresses were modeled and analyzed in detail. It was shown that,
in the exemplary cases of NC aluminum and copper with the average grain size
of 30nm, if the applied stress τ and disclination strength ω are high enough (but
still realistic for NCMs), the DT generation is characterized by the absence of any
energy barrier and the critical stress τc causing the emission of the first twinning
dislocation is rather low, ~0.1 GPa and ~0.3 GPa, for Cu and Al, respectively, at
ω = 0.5. The generation of a thick DT lamella needs some increase in τc. That is,
DT in NCMs is characterized by local strain hardening. Similar results were obtained
by Gutkin et al. [131] when considering generation of deformation twin near the tip
of a microcrack of mixed modes I and II in a sample of NCM under tension.

Within another approachdescribed in theoreticalworks ofOvid’ko andSkiba [132,
133], nanoscale deformation twins are generated at locally distorted GBs that contain
local, deformation-distorted fragments with GBDs located on every slip plane and
produced by preceding deformation processes. The twinning mechanisms represent
(i) the successive events of partial dislocation emission from GBs; (ii) the cooper-
ative emission of partial dislocations from GBs; and (iii) the multiplane nanoscale
shear generated at GBs. It was found that the deformation twinning mechanisms can
operate in NC and UFG materials at rather high, but realistic levels of the stress.
The suggested representations on generation of nanotwins at locally distorted GBs
logically explains numerous experimental observations [64, 129] of generation of
nanoscale twins atGBs inNCandUFGmaterials. These deformation twinningmech-
anisms illustrate complicated interactions between different deformationmodes such
as deformation twinning, GB sliding and GB dislocation climb.

5.7 Deformation-Induced Grain Growth and Refinement in
UFG and NC Materials

UFG and NC structures are typically formed due to severe plastic deformation that
causes grain refinement in initially coarse-grained structures. In order to control
the final UFG and NC structures in severely deformed materials, it is important
to understand and describe both the nature and micromechanisms of deformation-
induced grain refinement. In these circumstances, of particular interest is the stress-
driven GB migration which by definition represents a plastic deformation mode
carried by migrating GBs [134]. It is conventionally treated that the stress-driven GB
migration is responsible for both nanoscale plastic flow and grain growth [134].
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A brief summary of early experimental observations of athermal stress-driven
grain growth andGBmigration is given in [135].Gutkin andOvid’ko [136] suggested
probably the first simple analytical model to describe this phenomenal. They treated
the migration of a tilt GB, characterized be the length 2a and the misorientation
angle ω, over a distance d under an applied shear stress τ as an athermal process
accompanied with generation of a quadrupole of partial wedge disclinations with
strengthω and sizesd × 2a.Analyzing the energy change causedby this process, they
found two critical stress values: τc1 which is necessary for starting the GBmigration,
and τc2 which separate the stable and unstable regimes of the GB migration. These
critical stresses are given by very simple formulas [135, 136]:

τc1 ≈ Dωb
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)
, τc2 ≈ 0.8Dω, (5.3)

where D = G/[2π(1 − ν)], G is the shear modulus, ν is the Poisson ratio, and b
is the interatomic distance. It was also shown that, if τc1 ≤ τ < τc2, the equilibrium
distance deq of the GB migration is determined from the following equation:
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If τ ≥ τc2, the GB migration becomes unstable when the GB propagation does not
depend on the value of τ . This model was later supported by computer simula-
tions [137].

Gutkin et al. [135, 138] extended the model [136] to the case of cooperative
migration of two neighboring GBs with opposite signs of misorientation angles.
They showed that the elastic interaction of two migrating GBs leads to a decrease of
the critical stress τc1. For GBs with misorientation angles of equal magnitude ω, the
difference is �τc1 ≈ 3Dωb/4a. In this case, the stress value τm , at which these GBs
can meet, is given by τm ≈ 1.6Dω. In general, it was shown that the stable migration
of GBs at τc1 ≤ τ ≤ τm leads to a decrease of the grain bounded by them at the cost
of growth of the neighbor grains and can result in complete or partial annihilation
of the GBs and the collapse of this grain. Unstable migration at τ > τm can lead
either to annihilation of GBs or to passage of them through each other, which can
be considered as the disappearance of the grain and nucleation and growth of a new
grain.

The models [135, 136, 138] described the GB migration in an infinite NCM.
However, most of experiments on the stress-driven grain growth were done on thin
films, either free standing or deposited on special substrates [134], in which case
the role of free surface(s) could be important. To take this into account, Dynkin and
Gutkin [139, 140] considered the migration of a tilt GB in a stretched ultrathin NC
layer. In doing so, they suggested and analyzed two models. In the first model, the
migratingGB emerges on the layer surface, while in the second it migrates in the bulk
of the layer. It was shown that both the critical stresses, τc1 and τc2, decrease with
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decreasing GBmisorientation angleω and layer thickness h, and with increasing GB
length 2a. While a GB migrates in the stable regime, its equilibrium displacement
deq increases with increasing τ and 2a, and with decreasing ω, and practically does
not depend on h. Thus, the least resistant to the stress-induced growth must be larger
grains having low-angle GBs which are placed near free surfaces in the thinnest
layers. The most advantageous case for athermal grain growth is that in which the
migrating GB emerges on the layer surface.

Alternative role of stress-driven GB migration as a process responsible for nucle-
ation of new nano-grains in NC and UFGmaterials (stress-induced grain refinement)
has been suggested and investigated in a number ofworks [108, 109, 141–146]within
our lab. The common approach employed in these works is a disclination description
of stress-induced GB splitting and migration (modeled as splitting and movement of
disclination dipoles) resulting in nucleation of new nanograins. First models using
this method were developed by Bobylev and Ovid’ko [141, 142]. Within the frame-
work of these models, nanograin nucleation occurs through splitting and migration
of GBs containing disclination dipoles produced by GB sliding and/or lattice slip. It
was shown that the nanograin nucleation is energetically favorable in mechanically
loaded NC Al and α-Al2O3 in certain ranges of their parameters and the external
stress levels.

Models [141, 142] considered simplifiedGBmigration scenario producing rectan-
gular nanograins. More realistic hexagonal grain shapes were considered by Bobylev
et al. [108] in a similar manner. Further development of this approach included
description [143] of nanograin nucleation near crack tips in NCMs, where GB split-
ting happened at a highly stressed, disclination-free region near a crack tip. The sug-
gested theoretical models [108, 143] of plastic flow occurring through generation
of nanograins at GBs in UFG materials were well consistent with the experimental
observation [109] of nanograins generation at GBs in cobalt.

Morozov et al. [144] suggested a theoretical model which describes nanograin
chain formation. In this model, the initial GB structure contained a quadrupole of
disclinations located at GB junctions of a previously formed nanograin in a NC or
UFG specimen. The final structure contained two neighboring nanograins which
are elongated along the same direction and may serve as nuclei for experimentally
observed [145] nanograin agglomerates (groups of nanograins with low-angle and/or
special GBs within comparatively large grains having high-angle GBs) in NC and
UFG materials.

Bobylev and Ovid’ko [146] extended description above on deformation-distorted
GBs – non-equilibrium GBs containing trapped ensembles of lattice dislocations
typical for NC and UFG materials produced by severe plastic deformation meth-
ods. It was concluded that the splitting processes in deformation-distorted GBs is
specific to these GBs and do not have their analogs in the previously examined con-
ventional, non-distorted GBs and lead to formation of new nanoscale (sub)-grains
in nanomaterials. Thus, the stress-driven splitting of deformation-distorted GBs can
effectively contribute to grain refinement in bulk metallic materials under severe
plastic deformation.
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Common feature of GBmigration processes is the existence of unstable migration
regime [108, 135–144, 146, 147] and corresponding critical stress τc2 for its onset.
When applied stress exceeds this critical stress, GB starts migrating uncontrollably
until it is stopped at some obstacle or destroyed completely (which is the case with
low-angle GBs). Bobylev and Ovid’ko [146, 147] assumed that this process is effec-
tively controls grain refinement under SPD processing. It is known [148] that the
grain size of metallic materials processed by SPD cannot be reduced below certain
minimum value, i.e. there exists saturation of grain size. Indeed, grain refinement
often occurs through formation and evolution of lattice dislocation cells [149]. In
their turn, individual dislocations that form cell boundaries are generated at sources
like Frank-Read ones. Thus, Bobylev and Ovid’ko [146, 147] assumed that satura-
tion of grain size in metals under SPD occurs when the dislocation cell boundaries
start intensively migrating (in unstable regime) under stress and saturated grain size
can be estimated via the balance of the critical stress τc2 and the stress of Frank-Read
source operation. The following estimation for saturated grain size ds was obtained:

ds ≈ 15π(1 − ν)b

2ω
. (5.5)

Using Eq. (5.5) in the case of dislocation cell misorientation ~1°–3°, Bobylev and
Ovid’ko [146, 147] estimated ds ∼ 78 − 233 nm in Cu and ∼80 − 239 nm in Ni.
These estimates are well consistent with experiments showing ds ∼ 200 nm in Cu
processed by equal-channel angular pressing [150], and ds ∼ 50 − 200 nm in Ni
processed by high pressure torsion [151, 152].

5.8 Interaction Between Deformation and Fracture
Processes in NCMs

Another research topic of our lab concerned the theoretical studies of the interaction
between plastic deformation processes and fracture in deformed NCMs. The first
work in this field [153] considered the generation of nanocracks in the stress field
of dislocations with large Burgers vectors formed in triple junctions of GBs due
to the coalescence of GBDs. This model [153] assumes that both GB sliding and
conventional lattice dislocation slip cause plastic flow of a NC specimen. This means
that when a mechanical load is applied to the specimen, mobile GBDs (with the
Burgers vectors parallel to GB planes) move, causing GB sliding. These dislocations
stop at triple junctions of GBs, where GB planes are curved and thereby dislocation
movement is hampered.At some critical shear stress,GBDsmerge at a triple junction,
producing a sessile triple junction dislocation. This process is an elementary act of
plastic deformation involving GB sliding. The process under consideration repeats
and is accompanied by an increase of the Burgers vector magnitude of the sessile
dislocation at each step. Within the model [153], a nanocrack at the triple junction is
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generated to release the strain energy of the sessile triple junction dislocation. In this
scenario, mobile GBDs that carry GB sliding also influence nanocrack generation.

The calculations [153] demonstrated that the triple junction nanocrack is charac-
terized by the equilibrium length that corresponds to the stable, low-energy state of
the nanocrack. The equilibriumnanocrack length is highly sensitive to the parameters
characterizing the triple junction geometry, the specific energy of the nanocrack sur-
face, and GBD storage at the triple junction. In particular, triple junction nanocracks
nucleate and rapidly grow with rising the Burgers vectors of GBDs generated and
accumulated at triple junctions due to GB sliding. More precisely, a stable nanocrack
nucleates at a triple junction after just several (about 5) acts of the GBD coalescence
at the triple junction.

The theoretical model suggested in [153] accounts for the experimental observa-
tion [154] of nanocracks nucleating at triple junctions during plastic deformation of
nanocrystalline Ni samples exhibiting substantial ductility. Also, this model predicts
a certain stability of triple junction nanocracks. This prediction is in agreement with
experiments [154], inwhichgoodductility of deformedNCMsandanon-catastrophic
character of failure processes have been detected.

At the same time, at low strain rates and/or high enough temperatures, the pro-
cess of dislocation accumulation at triple junctions and the resulting generation of
nanocracks can be suppressed due to GB diffusion. GB diffusion can provide partial
relaxation of the stress fields created by triple junction superdislocations and thereby
hampers nanocrack generation at triple junctions. The theoretical study of the com-
bined effect of GB sliding and GB diffusion [155] demonstrated that the intense
generation of nanocracks occurs at some critical plastic strain, which depends on the
strain rate and temperature. In particular, at high strain rate and low temperatures,
when GB diffusion is low, the critical strain for the intense nanocrack generation
is small. In contrast, at small strain rates and high enough temperatures, when GB
diffusion is fast, the critical strain for nanocrack generation is large. In the latter case,
during the extensive stage of (super)plastic deformation, the stress relaxation effect
of GB diffusion is dominant, which causes suppression of nanocrack generation.

In addition to the formation of triple junction dislocations,GB sliding can also lead
to the formation of another kind of defect – disclination dipoles [156]. The formation
of disclination dipoles is related to the shift of triple junctions during GB sliding.
If the formation of disclination dipoles is not accommodated by GB diffusion, the
stress fields of these dipoles can result in strain hardening during plastic deformation
of NCMs and, at the same time, can lead to the generation of nanocracks. The
effects of such dislocation dipoles on strain hardening and nanocrack generation
were theoretically analyzed in Refs. [156, 157]. It appeared that disclination dipoles
can cause high strain hardening and, besides, lead to the formation of long enough
nanocracks,whose equilibrium length can be comparable to the grain size.As a result,
such nanocracks can merge, leading to the generation and growth of microcracks.

As in the case of triple junction dislocations, the stress fields of disclination dipoles
produced due to GB sliding can be affected by GB diffusion. The study of the com-
bined effects of GB sliding (accompanied by the formation of disclination dipoles)
and GB diffusion [105] has demonstrated that the mechanical behavior of plastically
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deformed NC specimens depends on strain rate and deformation temperature. At
high strain rates and/or low temperatures, NCMs fail due to enhanced cracking. At
high temperatures and/or low strain rates, they fail due to necking. In contrast, at
intermediate strain rates and temperatures, NCMs can demonstrate good ductility.
The region in the parameter space (strain rate, temperature) where NC specimens do
not fail due to cracking or necking shrinks with an increase in the plastic strain, and
at some critical plastic strain, NCMs fail at any strain rate and temperature.

Besides initiating the formation of new cracks, GB sliding can also affect the
growth of existing cracks (see Sect. 5.4, the discussion ofwork byBobylev et al. [73]).

As is indicated above, in addition to triple junction dislocations, GB sliding can
also lead to the formation of disclination dipoles, which can also affect the growth
of the existing cracks. The effect of the GB-sliding-induced disclination dipoles
on the growth of existing cracks was analyzed in Ref. [158]. It was demonstrated
that GB-sliding-induced disclination dipoles can increase the critical length for the
catastrophic crack growth and thereby toughen NCMs. The increase in the critical
nanocrack length is especially pronounced at very small grain sizes of NCMs and
high misorientation angles of their GBs.

In parallel with GB sliding, other plastic deformation mechanisms also influence
the fracture processes in NCMs. One such mechanism is the stress-driven GBmigra-
tion, which can result in the formation of a quadrupole of wedge disclinations [135].
The effect of GB migration on the generation of nanocracks and the growth of pre-
existent cracks in NCMs has been examined in Refs. [159, 160]. It was shown that,
similar to GB sliding, GBmigration can promote the generation of nanocracks in the
stress fields of disclination quadrupoles and, at the same time, hinders the growth
of the pre-existent cracks, leading to a small increase of the fracture toughness (by
10–15%).

Another example of a plastic deformation mechanism specific to NCMs is rota-
tional deformation, which is accompanied by the rotation of crystal planes in a spec-
ified grain [30]. Such rotational deformation can lead to the formation of a wedge
disclination dipole [30]. The effect of rotational deformation on the fracture tough-
ness of NCMs was theoretically analyzed in Ref. [161]. It was shown [161] that
rotational deformation can increase the fracture toughness by 10–15%.

In many cases, various plastic deformation mechanisms can be combined and
accommodate each other in NCMs. An example is GB sliding accommodated by
GB migration. Such mechanism was first suggested in Ref. [107]. The study of the
effect of such deformation mechanism on the fracture toughness of NCMs [162]
showed that this mechanism can dramatically increase the fracture toughness of
NCMs (by a factor of 3 or more).

The importance of the above tougheningmechanisms acting in NCMs is related to
the low fracture toughness documented in thesematerials,which ismuch smaller than
that of their coarse-grained counterparts. To explain the low fracture toughness of
NCMs, the authors of Refs. [163, 164] considered the emission of dislocations from
a tip of a large crack.Within the models [163, 164], the first emitted dislocation stops
at a nearest GB. As a result, a pileup of dislocations is produced ahead of the crack
tip, whose length decreases with a decrease in grain size. The emitted dislocations
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can increase the fracture toughness in two ways: first, due to their stress fields that
shield the crack tip, and, second, due to crack blunting. In coarse-grained metallic
materials, the number of emitted dislocations can be large, and both toughening
effects are strong. Therefore, suchmaterials have high fracture toughness. In contrast,
in NCMs, the length of dislocation pileups between the crack tip and the nearest GB
is small. As a result, the number of dislocations emitted from a crack tip is also small,
and their toughening effect is not essential. This explains the low fracture toughness
of NCMs.

5.9 Conclusions

Thus, we gave a brief review of research efforts provided in our lab over almost
30years on the development of theoretical models describing various aspects of
mechanical behavior of nanostructured materials. As one could see, our contribution
to the field has been rather extensive. In fact, ourmodels have coveredmany important
areas in micromechanics of plasticity of these materials with touching, although
rather rarely, some problems of their fracture. In conclusion, we should say that
nanostructured materials are specific solids in which plastic deformation develops
through simultaneous action of various interacting physicalmechanisms involving all
elements of the defect structure, both in the bulk of nanograins and in their boundaries
and triple junctions. These structural elements continuously change in the course of
plastic deformation that makes their theoretical modeling rather difficult but very
interesting for sure.

At present, some new topics are in focus of research in our lab, which we have
not touched in this review. They concern theoretical modeling in the following areas:
(i) plastic deformation and fracture in metal-graphene nanocomposites, (ii) frac-
ture toughness of ceramic-graphene nanocomposites, (iii) mechanical behavior of
monolitic nanoceramics, and (iv) evolution of structure and mechanical properties
in ultra-fine grained aluminum and aluminum-based alloys in the process of thermal
and mechanical treatment. We hope that, in the future, we will be capable to present
an extended review of results obtained in these fields as well.
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Chapter 6
Solution of Dynamic Equations of Plane
Deformation for Nonlinear Model
of Complex Crystal Lattice

Anatolii N. Bulygin and Yurii V. Pavlov

Abstract Solutions of dynamic equations of plane deformation for a nonlinear
model of complex crystal lattice are obtained. Crystalline media of cubic symmetry
are considered. Macrofield vectorU (acoustic mode) andmicrofield vector u (optical
mode) describe the deformation of the medium in the nonlinear model. In the case
of plane deformation, the vectorsU and u can be found from a system of four related
nonlinear equations. A complex representation of the general solution of macrofield
equations is given. Macrostress tensor σi j and vectorU are expressed through a func-
tion Q(t, x, y), which is a dynamic analogue of the Airy function. A general solution
of the microfield equations was found.

Keywords Nonlinear model · Crystal lattice · Plane deformation · Dynamic
equations

6.1 Introduction

Materials with internal nanostructure play an important role in modern materials sci-
ence. Technologies are being developed to produce such materials from amorphous
and crystalline solids. As a rule, materials with internal nanostructure are produced
under the influence of intensive external effects. In this case, the structure and prop-
erties of the initial material undergo profound changes. The cell of the crystalline
medium is fundamentally changing, singular defects such as micropores, microseals,
trunk cracks, dislocations, etc. are forming. Potential barrier of interaction of atoms is
reduced, switching of interatomic bonds is realized, and phase transitions of marten-
sitic type occur. The problem of developing scientific foundations of technology for
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obtaining materials with nanostructure becomes urgent. It was necessary to create
an analytical model that adequately describes both the physical and mechanical pro-
cesses that are implemented in the processes of obtaining materials with the required
nanostructure, as well as the behavior of new materials in the operating conditions
(deformation, aging, fatigue, and destruction). Nonlinear model of deformation of
crystalline bodies with complex lattice was proposed in works [1, 2] and developed
in [3, 4].

6.2 Basic Equations of Nonlinear Model

Let us limit ourselves to the consideration of crystal media of cubic symmetry con-
sisting of two sublattices. In this case, the medium deformation is described by the
macroshift vector U (acoustic mode) and the microshift vector u (optical mode) [1,
2]. They satisfy the equations of motion that are derived from the Lagrange variation
principle

ρ
∂2Ui

∂t2
= σi j, j , (6.1)

μ0
∂2ui
∂t2

= χi j, j − R
∂Φ(us)

∂ui
. (6.2)

Hereρ,μ0 are average and specificmass densities of atoms; σi j andχi j aremacro-
and microstress tensors, respectively,

σi j = λi jmnemn − si jΦ(us), emn = Um,n +Un,m

2
, (6.3)

χi j = ki jmnεmn, εmn = um,n + un,m

2
, (6.4)

λi jmn, ki jmn are macro- and microelasticity tensors, si j is the tensor of nonlinear
striction. The index after the comma denotes the partial derivative with respect to
corresponding variable. The multiplier before function Φ(us) in Eq. (6.2)

R = p − si j ei j (6.5)

is an effective interatomic barrier—the energy of activation of communications. Here
p is half of the activation energy of the rigid shift of sublattices.

The functionΦ(us) describes the energy of the interaction of sublattices. By phys-
ical meaning, it must be an even function invariant to Bravais sublattice translations
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along the direction of vectors (b1,b2,b3) elementary cell. In pioneer work [5] and
in most modern works [6], it is accepted that

Φ(us) = 1 − cos us . (6.6)

The argument is
us = Bu. (6.7)

Here B is vector of inverse lattice [7].
In the case of spatial problems Eqs. (6.1)—(6.4) are rather complex system of six

connected nonlinear equations. For this reason, we will make simplifying assump-
tions. Below we will consider the plane deformation of crystalline media of cubic
symmetry with weak anisotropy

The deformed state of the medium will be called the state of plane deformation,
parallel to the axis OZ , if

Ux = Ux (t, x, y), Uy = Uy(t, x, y), Uz = 0,

ux = ux (t, x, y), uy = uy(t, x, y), uz = 0. (6.8)

Then the motion Eqs. (6.1), (6.2) take the form

ρ
∂2Ux

∂t2
= σxx,x + σxy,y, (6.9)

ρ
∂2Uy

∂t2
= σyx,x + σyy,y, (6.10)

μ0
∂2ux

∂t2
= χxx,x + χxy,y − R

∂Φ(us)

∂ux
, (6.11)

μ0
∂2uy

∂t2
= χyx,x + χyy,y − R

∂Φ(us)

∂uy
. (6.12)

If one uses symbols

λ1122 = λ12 = λ, λ1212 = λ44 = μ, k1122 = k12, k1212 = k44, (6.13)

for macro- and microelastic modules, then material relations (6.3), (6.4) are written
as

σxx = λ(Ux,x +Uy,y) + 2μUx,x − sΦ(us), (6.14)

σyy = λ(Ux,x +Uy,y) + 2μUy,y − sΦ(us), (6.15)

σxy = μ(Ux,y +Uy,x ), (6.16)



118 A. N. Bulygin and Yu. V. Pavlov

χxx = 2k44ux,x + k12(ux,x + uy,y), (6.17)

χyy = 2k44uy,y + k12(ux,x + uy,y), (6.18)

χxy = k44(ux,y + uy,x ). (6.19)

The relations (6.14)–(6.19) take into account that si j = s δi j , λ11 − λ12 = 2λ44,
k11 − k12 = 2k44 and for isotropic medium λ44 = 0 = k44.

6.3 Solution of Dynamic Macrofield Equations

Let’s differentiate Eq. (6.9) with respect to x , Eq. (6.10) with respect to y and find
the difference of derivatives

ρ
∂2

∂t2
(Ux,x −Uy,y) = σxx,xx − σyy,yy . (6.20)

From Eqs. (6.14), (6.15), we find

2μ(Ux,x −Uy,y) = σxx − σyy . (6.21)

Taking into account (6.21) Eq. (6.20) takes form

(
∂2

∂x2
− 1

2V 2
2

∂2

∂t2

)
σxx =

(
∂2

∂y2
− 1

2V 2
2

∂2

∂t2

)
σyy, (6.22)

where

V2 =
√

μ

ρ
(6.23)

is velocity of shift. Equation (6.22) describes the distortion of the medium without
changing the volume. In seismology, this wave is called a secondary wave or S-wave.
Equation (6.22) allows us to express stress tensor components σxx , σyy through some
function Q(t, x, y)

σxx =
(

∂2

∂y2
− 1

2V 2
2

∂2

∂t2

)
Q, (6.24)

σyy =
(

∂2

∂x2
− 1

2V 2
2

∂2

∂t2

)
Q, (6.25)

σxx + σyy =
(

Δ − 1

V 2
2

∂2

∂t2

)
Q, Δ = ∂2

∂x2
+ ∂2

∂y2
. (6.26)
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If one differentiates Eqs. (6.9), (6.10) with respect to y and x , respectively, take
into account (6.16), (6.26), then for the sum of derivatives, one finally gets

(
Δ − 1

2V 2
2

∂2

∂t2

) (
σxy + ∂2Q

∂x∂y

)
= 0. (6.27)

Equation (6.27) allows us to express the tensor component σxy through the sought
function Q(t, x, y). The function Q(t, x, y) must satisfy the equation that follows
from compatibility conditions for macrodeformations [8] (Saint-Venant condition).
One compatibility condition

exx,yy + eyy,xx = 2exy,xy (6.28)

remains for the case of plane deformation.Equation (6.28) canbewritten asBeltrami–
Michell condition [8] for stress tensor, if one expresses the component of deformation
tensor (exx , eyy, exy) using (6.3) and (6.14)–(6.16) through the components of stress
tensor (σxx , σyy, σxy)

exx = σxx

2μ
− λ(σxx + σyy)

4μ(λ + μ)
+ sΦ(us)

2(λ + μ)
,

eyy = σyy

2μ
− λ(σxx + σyy)

4μ(λ + μ)
+ sΦ(us)

2(λ + μ)
, (6.29)

exy = σxy

2μ
.

Substituting (6.29) in (6.28), we find

σxx,yy + σyy,xx − 2σxy,xy = Δ

[
λ

2(λ + μ)
(σxx + σyy) − μ

(λ + μ)
sΦ(us)

]
.

(6.30)
Left side of equality (6.30) can be written as follows:

σxx,yy + σyy,xx − 2σxy,xy =
σxx,yy + σxx,xx + σyy,xx + σyy,yy − σxx,xx − σyy,yy − 2σxy,xy =
Δ(σxx + σyy) − (

σxx,xx + σyy,yy + 2σxy,xy
)
. (6.31)

From the equations of motion (6.9), (6.10), one obtains

ρ
∂2Ux,x

∂t2
= σxx,xx + σxy,xy, (6.32)

ρ
∂2Uy,y

∂t2
= σyx,xy + σyy,yy, (6.33)
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σxx,xx + σyy,yy + 2σxy,xy = ρ
∂2

∂t2
(
Ux,x +Uy,y

)
. (6.34)

From the material relations (6.14), (6.15), we find

Ux,x +Uy,y = 1

2(λ + μ)

(
σxx + σyy + 2 sΦ(us)

)
. (6.35)

That is why

σxx,xx + σyy,yy + 2σxy,xy = ρ

2(λ + μ)

∂2

∂t2
(
σxx + σyy + 2 sΦ(us)

)
(6.36)

and

σxx,yy+ σyy,xx− 2σxy,xy =
(

Δ− ρ

2(λ+μ)

∂2

∂t2

)
(σxx+ σyy) − ρ s

λ+μ

∂2Φ(us)

∂t2
.

(6.37)
Taking into account (6.37) the Beltrami–Michell condition (6.30) takes the form

(
Δ − 1

V 2
1

∂2

∂t2

)
(σxx + σyy) + 2 sμ

λ + 2μ

(
Δ − 1

V 2
2

∂2

∂t2

)
Φ(us) = 0, (6.38)

V1 =
√

λ + 2μ

ρ
. (6.39)

Here V1 is velocity of a longitudinal wave. It describes the condensation–
rarefaction of the medium with volume change. In seismology, this wave is called
P-wave. If taking into account Eq. (6.26) in the condition (6.38), then one gets
equation for finding the function Q(t, x, y)

(
Δ − 1

V 2
2

∂2

∂t2

) [(
Δ − 1

V 2
1

∂2

∂t2

)
Q + 2 s

V 2
2

V 2
1

Φ(us)

]
= 0. (6.40)

From (6.40), one can see that the function Q(t, x, y) is a dynamic equivalent
of the Airy function which is introduced to solve static problems of classical plane
deformation. Unlike the classical Airy function, the function Q(t, x, y) satisfies
non-uniform dynamic biharmonic equation. The functionΦ(us) plays the role of the
potential for volume sources of macrostresses.
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6.4 Complex Representation of General Solution
of Macrofield Equations

Generally, a solution to Eq. (6.40) can be represented as the sum of two functions

Q(t, x, y) = F(t, x, y) + Q0(t, x, y), (6.41)

where the function F(t, x, y) satisfies the homogeneous biharmonic equation

(
Δ − 1

V 2
1

∂2

∂t2

)(
Δ − 1

V 2
2

∂2

∂t2

)
F = 0, (6.42)

and Q0(t, x, y) is a partial solution to non-uniform equation

(
Δ − 1

V 2
1

∂2

∂t2

)
Q0 + 2 s

V 2
2

V 2
1

Φ(us) = 0. (6.43)

Instead of independent variables t, x, y, we will introduce new variables

ξ = x + C1t, η = y + C2t. (6.44)

Here C1,C2 are arbitrary velocities. In the new variables, one has

∂

∂x
= ∂

∂ξ
,

∂

∂y
= ∂

∂η
,

∂

∂t
= C1

∂

∂ξ
+ C2

∂

∂η
, (6.45)

∂2

∂x2
+ ∂2

∂y2
− 1

V 2
1

∂2

∂t2
=

(
1 − C2

2

V 2
1

)
D1D2, (6.46)

∂2

∂x2
+ ∂2

∂y2
− 1

V 2
2

∂2

∂t2
=

(
1 − C2

2

V 2
2

)
D3D4. (6.47)

Here D1, D2, D3, D4 are differential operators

D1 = ∂

∂η
− μ1

∂

∂ξ
, D2 = ∂

∂η
− μ̄1

∂

∂ξ
, (6.48)

D3 = ∂

∂η
− μ2

∂

∂ξ
, D4 = ∂

∂η
− μ̄2

∂

∂ξ
, (6.49)

μ1 = C1C2

V 2
1 − C2

2

(1 + iβ1), μ2 = C1C2

V 2
1 − C2

2

(1 + iβ2), (6.50)
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β1 = V1

C2

√
V 2
1

C2
1

− C2
2

C2
1

− 1, β2 = V2

C2

√
V 2
1

C2
1

− C2
2

C2
1

− 1. (6.51)

Here and further, the line over denotes complex conjugation.
Taking into account (6.45), Eqs. (6.42) and (6.43) are written as

D1D2D3D4F = 0, (6.52)

D1D2Q0 = −2 s
V 2
2

V 2
1 − C2

2

Φ(us). (6.53)

The solution to Eq. (6.52) is expressed through two functions F1(z1), F2(z2) and
the functions complex conjugate to their

F = F1(z1) + F̄1(z̄1) + F2(z2) + F̄2(z̄2) = 2Re [F1(z1) + F2(z2)], (6.54)

z1 = ξ + μ1η, z2 = ξ + μ2η.
Through the functions F1(z1) and F2(z2), one can represent the stress tensor

(σxx , σyy, σxy) and the macrovector (Ux ,Uy) if using the following derivatives:

∂2 F

∂x2
= ∂2 F

∂ξ 2
= F ′′

1 + F̄ ′′
1 + F ′′

2 + F̄ ′′
2 ,

∂2 F

∂y2
= ∂2 F

∂η2
= μ2

1 F
′′
1 + μ̄2

1 F̄
′′
1 + μ2

2 F
′′
2 + μ̄2

2 F̄
′′
2 , (6.55)

∂2 F

∂x∂y
= ∂2 F

∂ξ∂η
= μ1F

′′
1 + μ̄1 F̄

′′
1 + μ2 F

′′
2 + μ̄2 F̄

′′
2 .

Here, the prime denotes the derivative with respect to corresponding argument. Tak-
ing into account (6.24)–(6.26) and (6.55), one has

σxx = Re
{[
a11 − (1 − μ2

1)
]
F ′′
1 − (1 − μ2

2)F
′′
2

} + L11Q0, (6.56)

σyy = Re
{[
a11 + (1 − μ2

1)
]
F ′′
1 + (1 − μ2

2)F
′′
2

} + L22Q0, (6.57)

σxx + σyy = 2Re
(
a11F

′′
1

) + (L11 + L22)Q0, (6.58)

where

a11 =
(
1 − C2

2

V 2
2

)
(μ1 − μ2)(μ1 − μ̄2) =

(
1 − V 2

1

V 2
2

)
(1 + μ2

1), (6.59)

L11 = ∂2

∂y2
− 1

2V 2
2

∂2

∂t2
, L22 = ∂2

∂x2
− 1

2V 2
2

∂2

∂t2
. (6.60)



6 Solution of Dynamic Equations of Plane Deformation … 123

Using the functions F1(z1), F2(z2), one can also write the components of the
macroshift vector taking into account (6.56), (6.57) in the relations (6.29):

μUx = Re

[
a1F

′
1 − 1

2
(1 − μ2

2)F
′
2

]
− 1

2

∂Q0

∂x
, (6.61)

μUy = Re

[
a2 F

′
1 − 1

2μ2
(1 − μ2

2)F
′
2

]
− 1

2

∂Q0

∂y
, (6.62)

where

a1 = 1

2

[
V 2
2 a11

V 2
1 − V 2

2

− (1 − μ2
1)

]
, a2 = 1

2μ1

[
V 2
2 a11

V 2
1 − V 2

2

+ (1 − μ2
1)

]
. (6.63)

Using the relations (6.61), (6.62), and (6.15), one can express tangent component
of the microstress tensor through the functions F1(z1) and F2(z2)

σxy = Re

[
a12F

′′
1 + 1

2μ2
(1 − μ2

2)F
′′
2

]
− ∂2Q0

∂x∂y
, (6.64)

where
a12 = a1μ1 + a2.

The found representations of macrostress tensor (σxx , σyy, σxy) and macroshift
vector (Ux ,Uy) through arbitrary analytical functions F1(z1) and F2(z2) give a gen-
eral solution to dynamic equations of macrofield for plane deformation in nonlinear
model.

If we limit ourselves to solving dynamic problems for a semi-infinite body y >

0(axis y is directed inside the body) and accept that the optical mode is not excited
(us = 0), and the perturbation of the acoustic mode propagates at speed C1 parallel
to the axis x , i.e., accept that C2 = 0. Then, we have

μ1 = iβ10, μ2 = iβ20, β2
10 = 1 − C2

1

V 2
1

, β2
20 = 1 − C2

1

V 2
2

,

C12 = −iβ10, a1 = −1, a2 = −iβ10, a11 =
(
1 − V 2

1

V 2
2

)
C2
1

V 2
1

, (6.65)

and formulas (6.56)–(6.58), (6.61), and (6.62) become the solutions of the dynamic
plane deformation equations of classical elasticity theory which were received by
Sneddon [9] and later by Radok [10].

Note that in the present work, the general solution of the equations of the non-
linear dynamic model is found for the case of C1 �= 0 and C2 �= 0. Therefore, with
uS = 0, we obtain a solution of the dynamic equations of the classical theory of
elasticity in a more general case compared to solutions [9, 10]. Solutions [9, 10] are
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obtained by additionally assuming thatC2 = 0. Thismeans that the solution obtained
in the present work allows to solve boundary problems when external disturbances
propagate not only parallel to the OX axis, but also along the OY -axis.

6.5 Solution of Dynamic Microfield Equations

The microfield Eqs. (6.11), (6.12) taking into account (6.17)–(6.19) can be repre-
sented in the form

μ0
∂2ux

∂t2
= k44Δux + (k12 + k44)(ux,xx + uy,xy) +

(k11 − k12 − 2k44)ux,xx − R

b
sin us,

μ0
∂2uy

∂t2
= k44Δuy + (k12 + k44)(ux,xy + uy,yy) + (6.66)

(k11 − k12 − 2k44)uy,yy − R

b
sin us .

Instead of the components (ux , uy), one can use the values us and um = (ux −
uy)/b. Then for the sum and difference of Eqs. (6.66), we get

2μ0
∂2us
∂t2

= (k11 + k44)Δus + 2(k12 + k44)us,xy +

(k11−k44)(um,xx−um,yy) − 4R

b2
sin us,

2μ0
∂2um
∂t2

= (k11 + k44)Δum − 2(k12 + k44)um,xy + (6.67)

(k11 − k44)(us,xx − us,yy).

In moving coordinate system (ξ = x + ct, y), Eqs. (6.67) are written as follows:

(k11 + k44)

[(
1 − c2

v2
1

)
∂2us
∂ξ 2

+ ∂2us
∂y2

+ 2k0
∂2us
∂ξ∂y

]
+

+ (k11 − k44)(um,ξξ − um,yy) − 4R

b2
sin us = 0, (6.68)

(k11 + k44)

[(
1 − c2

v2
1

)
∂2um
∂ξ 2

+ ∂2um
∂y2

− 2k0
∂2um
∂ξ∂y

]
+

(k11 − k44)(us,ξξ − us,yy) = 0,

where
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v2
1 = k11 + k44

2μ0
, k0 = k12 + k44

k11 + k44
. (6.69)

One can see that Eqs. (6.68) are coupled. They are separated if k11 = k44. We
accept this condition and instead of variables (ξ, y) enter

q1 = L1(ξ + αy), q2 = L2(ξ − αy), α =
√
1 − c2

v2
1

,

L1 = 1

b

√
2p

(k11 + k44)α(α + k0)
, L2 = 1

b

√
2p

(k11 + k44)α(α − k0)
. (6.70)

In the new variables, Eqs. (6.68) take the form

∂2us
∂q2

1

+ ∂2us
∂q2

2

= R

p
sin us, (6.71)

ω2 ∂2um
∂q2

1

+ ∂2um
∂q2

2

= 0, ω =
√

α − k0
α + k0

. (6.72)

Thus, the solution of the dynamic equations of the microfield is reduced to the
solution of the nonlinear Eq. (6.71) and the linear Eq. (6.72). Equation (6.71) differs
from the classical dynamic sine-Gordon equation in that R/p is not a constant value,
but a function of (t, x, y).

Solution ofEq. (6.71) is determined by amplitude R/p. From relations (6.5)–(6.7),
(6.29), we find

R

p
= P1 + 2P2 cos us, P1 = 1 − P2

[
2 + 1

s
(σxx + σyy)

]
, P2 = s2

2p(λ + μ)
.

(6.73)
Taking into account (6.73), Equation (6.71) takes the form

∂2us
∂q2

1

+ ∂2us
∂q2

2

= P1 sin us + P2 sin 2us . (6.74)

In Eq. (6.74) P2 = const and P1 is a function of (t, x, y). In this way, it differs
from the classical double sine-Gordon equation. There are no analytical methods
for solving such equation in the literature. For this reason, we make assumptions
that convert (6.74) to equations that have analytical solutions. We assume that in
the studied domain (σxx + σyy) changes smoothly, then it can be assumed that P1 =
const and Eq. (6.74) will become the classical double sine-Gordon equation.

For case s = 0, Equation (6.74) becomes the classical sine-Gordon equation

∂2us
∂q2

1

+ ∂2us
∂q2

2

= sin us . (6.75)
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The condition s = 0means that the nonlinear model does not take into account the
influence of stressed state on the activation energy of the rigid shift of the sublattices.
Equation (6.75) is obtained under a weaker assumption, namely, P2 � 1. For s2 �
2p(λ + μ) and s ≈ |σxx + σyy |/2p(λ + μ), Eq. (6.74) takes the form of a sine-
Gordon equation with variable amplitude

∂2us
∂q2

1

+ ∂2us
∂q2

2

= p(q1, q2) sin us, (6.76)

p(q1, q2) = 1 − s(σxx + σyy)

2p(λ + μ)
. (6.77)

The sine-Gordon equation and the double sine-Gordon equation are well
researched in the literature [11, 12]. For the sine-Gordon equation with variable
amplitude (6.76), solutions are constructedonly for a some typeof functions p(q1, q2)
[13–17].

The found general macro- and microfield solutions allow to set and solve the
concrete dynamic boundary problems on basic of nonlinear model.

6.6 Uniform Movement of the Constant Localized Force
Over the Surface of the Half-Space

Let the localized force uniformly movement with a speed C on the surface of the
half-space. Force is directed normal to the surface and creates a constant localized
stress G. To solve this problem, we use the moving coordinate system (ξ = x +
Ct, y) associated with the force. In the moving coordinate system, Eq. (6.42) takes
the form [

(1 − M2
1 )

∂2

∂ξ 2
+ ∂2

∂y2

] [
(1 − M2

2 )
∂2

∂ξ 2
+ ∂2

∂y2

]
F = 0, (6.78)

M1 = C

V1
, M2 = C

V2
.

The solutions of Eq. (6.78) are determined by the speed C .

6.6.1 Subsonic Speed of Movement

We will call the speed of movement subsonic, if

M1 < 1, M2 < 1. (6.79)



6 Solution of Dynamic Equations of Plane Deformation … 127

In this case, the solution (6.78) will be

F = F1(z1) + F1(z1) + F2(z2) + F2(z2), (6.80)

z1 = ξ + μ1y, μ1 = i
√
1 − M2

1 , z2 = ξ + μ2y, μ2 = i
√
1 − M2

2 . (6.81)

Here F1(z1) and F2(z2) are arbitrary analytical functions of the corresponding
complex variables, and a line from above denotes complex conjugation.

In our case, the following conditions must be met on the surface of the half-space

σxy

∣∣
y=0 = 0, σyy

∣∣
y=0 = −G δ(ξ), G = const. (6.82)

Here δ(ξ) is Dirac delta-function. In addition, we will assume that (vx , vy ,
σxx , σxy, σyy) are decreasing when |x |, |y| → ∞. Macrostress tensor components
(σxx , σxy, σyy) can be expressed through functions F1, F2 and Q0. To do this, the
representation (6.80) must be substituted in (6.24), (6.25), (6.64) and taking into
account (6.41), (6.65), we get

σxx = −(M2
2 − 2M2

1 + 2)Re F ′′
1 + (M2

2 − 2)Re F ′′
2 + L11(Q0), (6.83)

σyy = −(M2
2 − 2)(Re F ′

1 + Re F ′′
2 ) + L22(Q0), (6.84)

σxy = 2
√
1 − M2

1 Im F ′′
1 + (M2

2 − 2)2

2
√
1 − M2

2

Im F ′′
2 − ∂2Q0

∂x∂y
. (6.85)

Components of macroshifts vector are found from (6.61), (6.62) with taking into
account (6.65)

μUx = −Re F ′
1 + 1

2
(M2

2 − 2)Re F ′
2 − 1

2

∂Q0

∂x
, (6.86)

μUy =
√
1 − M2

1 Im F ′
1 − M2

2 − 2

2
√
1 − M2

2

Im F ′
2 − 1

2

∂Q0

∂y
. (6.87)

The found representation of the macrostress tensor allows to write boundary con-
ditions that functions F1, F2, and Q0 must satisfy. Substituting Eqs. (6.84) and (6.85)
into (6.82), one has

⎛
⎝2

√
1 − M2

1 Im F ′′
1 + 1

2

(M2
2 − 2)2√
1 − M2

2

Im F ′′
2

⎞
⎠

∣∣∣∣∣∣
y=0

= ∂2Q0

∂x∂y

∣∣∣∣
y=0

, (6.88)
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(M2
2 − 2)

[
Re F ′′

1 + Re F ′′
2

]
y=0 = G δ(ξ) + L22(Q0)

∣∣∣
y=o

. (6.89)

The ratios (6.88) and (6.89) can be integrated over x . Then the boundary conditions
will take the form

⎛
⎝2

√
1 − M2

1 Im F ′
1 + 1

2

(2 − M2
2 )

2√
1 − M2

2

Im F ′
2

⎞
⎠

∣∣∣∣∣∣
y=0

= ∂Q0

∂y

∣∣∣∣
y=0

, (6.90)

(M2
2 − 2)

[
Re F ′

1 + Re F ′
2

]
y=0 = G H(ξ) +

∫
L22(Q0) dx

∣∣∣∣
y=o

, (6.91)

where

H(ξ) =
{
1, ξ ≥ 0,
0, ξ < 0,

and the integration constant is omitted due to the accepted behavior of themacrostress
tensor at infinity.

From the boundary conditions (6.90) and (6.91), one can see that in a nonlinear
model the deformation and stress states of the medium are determined by both exter-
nal influences and gradients of the optical mode. The latter play the role of volumetric
sources of macrodeformations and macrostresses. For the analysis of the deformed
and stress states of the medium, it is advisable to separate these components. For this
purpose, the functions F ′

1 and F ′
2 are represented as the sum of two terms

F ′
1 = F ′

11 + F ′
12, F ′

2 = F ′
21 + F ′

22 (6.92)

and we will require that the functions F ′
11 and F ′

21 satisfy the boundary conditions

⎛
⎝2

√
1 − M2

1 Im F ′
11 + 1

2

(2 − M2
2 )

2√
1 − M2

2

Im F ′
21

⎞
⎠

∣∣∣∣∣∣
y=0

= 0, (6.93)

(M2
2 − 2)

[
Re F ′

11 + Re F ′
21

]
y=0 = G H(ξ), (6.94)

and for the functions F ′
12 and F ′

22

⎛
⎝2

√
1 − M2

1 Im F ′
12 + 1

2

(2 − M2
2 )

2√
1 − M2

2

Im F ′
22

⎞
⎠

∣∣∣∣∣∣
y=0

= ∂Q0

∂y

∣∣∣∣
y=0

, (6.95)

(M2
2 − 2)

[
Re F ′

12 + Re F ′
22

]
y=0 =

∫
L22(Q0) dx

∣∣∣∣
y=o

. (6.96)
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With this separation, the functions F ,′
11 and F

,′
21 will describe the contribution to the

deformation and stress of the medium due to external impact, and the functions F ,′
12

and F ,′
22 determine the contribution to the same values from the optical mode. Condi-

tion (6.93) remains valid if Im F ,′
11 is replaced by Re F ,′

11 , and Im F ,′
21 is replaced by

Re F ,′
21 . This statement becomes apparent if one makes Hilbert transformation [18]

for Condition (6.93). So

Re F ′
11

∣∣
y=o = −

4
√

(1 − M2
1 )(1 − M2

2 )

(2 − M2
2 )

2
Re F ′

21

∣∣
y=o . (6.97)

Substitution (6.97) in (6.94) reduces the finding of the function F ′
11 and F ′

21 to the
solution of the Dirichlet problem

Re F ′
11

∣∣
y=o= G11G H(ξ), G11 = M2

2 − 2

(M2
2 − 2)2− 4

√
(1− M2

1 )(1− M2
2 )

,

Re F ′
21

∣∣
y=o= G12G H(ξ), G12 =

−4
√

(1 − M2
1 )(1 − M2

2 )

(M2
2 − 2)2− 4

√
(1− M2

1 )(1− M2
2 )

. (6.98)

The functions F ′
11 and F ′

21 are found using the Poisson formula for half-plane [19]

F ′
11(z1) = G11

(
i

π
ln z1 + 1

)
, (6.99)

F ′
21(z2) = G12

(
i

π
ln z2 + 1

)
. (6.100)

The functions F ′
11 and F

′
21 allow to calculate the components of themacrostress tensor

and the components of the macroshift vector that are due to external influences on
the medium. To do this, in solutions (6.83)–(6.87), one needs to leave the terms

Re F ′
11 = G11

(
1 − θ1

π

)
, Im F ′

11 = G11
1

π
ln r1,

Re F ′
21 = G12

(
1 − θ2

π

)
, Im F ′

21 = G12
1

π
ln r2,

Re F ′′
11 = G11

sin θ1

πr1
, Im F ′

11 = G12
cos θ1

πr1
, (6.101)

Re F ′′
21 = G11

sin θ2

πr2
, Im F ′

21 = G12
cos θ2

πr2
,
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where

r1 = |z1| =
√

(x + Ct)2 + (1 − M2
1 )y

2, θ1 = arctan

√
1 − M2

1 y

x + Ct
,

r2 = |z2| =
√

(x + Ct)2 + (1 − M2
2 )y

2, θ2 = arctan

√
1 − M2

2 y

x + Ct
.

6.6.2 Transonic Speed of Movement

We will call the speed of movement transonic, if

M1 < 1, M2 > 1. (6.102)

In this case, solution (6.78) will be

F = F1(z1) + F1(z1) + Φ2(ζ2). (6.103)

Here Φ2(ζ2) are arbitrary functions of ζ2 = ξ −
√
M2

2 − 1 y. The components of
the macrostress tensor and the components of the macroshift vector are expressed
through the functions F1 and Φ2 as follows:

σxx = −(M2
2 − 2M2

1 + 2)Re F ′′
1 + 1

2
(M2

2 − 2)Φ ′′
2 + L11(Q0),

σyy = −(M2
2 − 2)Re F ′′

1 − 1

2
(M2

2 − 2)Φ ′′
2 + L22(Q0), (6.104)

σxy = 2
√
1 − M2

1 Im F ′′
1 − 1

4

(M2
2 − 2)2√
M2

2 − 1
Φ ′′

2 − ∂2Q0

∂x∂y
,

μUx = −Re F ′
1 + 1

4
(M2

2 − 2)Φ ′
2 − 1

2

∂Q0

∂x
,

μUy =
√
1 − M2

1 Im F ′
1 + M2

2 − 2

4
√
M2

2 − 1
Φ ′

2 − 1

2

∂Q0

∂y
. (6.105)

According to (6.82), the functions F1 and Φ2 must satisfy boundary conditions

⎛
⎝2

√
1 − M2

1 Im F ′
1 − 1

4

(M2
2 − 2)2√
M2

2 − 1
Φ ′

2

⎞
⎠

∣∣∣∣∣∣
y=0

= − ∂Q0

∂y

∣∣∣∣
y=0

, (6.106)
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(M2
2 − 2)

(
Re F ′

1 + 1

2
Φ ′

2

)∣∣∣∣
y=0

= G H(ξ) +
∫

L22(Q0) dx

∣∣∣∣
y=o

. (6.107)

From (6.106), (6.107), we find a boundary condition for the function F1

(
4
√

(1 − M2
1 )(M

2
2 − 1) Im F ′

1 + (M2
2 − 2)Re F ′

1

)∣∣∣∣
y=0

=

(M2
2 − 2) [G H(ξ) + A(ξ)], (6.108)

A(ξ) =
⎡
⎣∫

L22(Q0) dξ + 2

√
M2

2 − 1

M2
2 − 2

∂Q0

∂y

⎤
⎦

y=o

,

and function Φ2

Φ ′
2

∣∣
y=0 =

8
√

(1 − M2
1 )(M

2
2 − 1)

(M2
2 − 2)2

⎡
⎣ Im F ′

1 − 1

2
√
1 − M2

1

∂Q0

∂y

⎤
⎦

y=o

. (6.109)

From (6.108), one can see that function F1 is the solution of Riemann–Hilbert prob-
lem [18, 19]. However, condition (6.108) can be converted to Dirichlet condition.
To do this, instead of F ′

1, we enter the function Ψ ′
1

F ′
1(z1) = (G21 + i G22)Ψ

′
1(z1). (6.110)

Here G21 and G22 are constants

G21 = (M2
2 − 2)3

16(1 − M2
1 )(M

2
2 − 1) + (M2

2 − 2)4
,

G22 =
4
√

(1 − M2
1 )(M

2
2 − 1)(M2

2 − 2)

16(1 − M2
1 )(M

2
2 − 1) + (M2

2 − 2)4
. (6.111)

For the function Ψ ′
1, the ratio (6.108) becomes the Dirichlet condition

ReΨ ′
1

∣∣
y=o = G H(ξ) + A(ξ). (6.112)

The functions Ψ ′
1 and Φ ′

2 are represented as the sum of two terms

Ψ ′
1 = Ψ ′

11 + Ψ ′
12, Φ ′

2 = Φ ′
21 + Φ ′

22, (6.113)

satisfying boundary conditions
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ReΨ ′
11

∣∣
y=0 = G H(ξ), (6.114)

ReΨ ′
12

∣∣
y=0 = A(ξ), (6.115)

Φ ′
21

∣∣
y=0 =

8
√

(1 − M2
1 )(M

2
2 − 1)

(M2
2 − 2)2

[
G21

1

π
ln r1 + G22H(ξ)

]
y=0

G, (6.116)

Φ ′
22

∣∣
y=0 =

8
√

(1 − M2
1 )(M

2
2 − 1)

(M2
2 − 2)2

[
G21 ImΨ ′

12 + G22 ReΨ ′
12 −

1

2
√
1 − M2

1

∂Q0

∂y

⎤
⎦

y=0

. (6.117)

Boundary conditions (6.114) and (6.116) are satisfied by functions

Ψ ′
11(z1) =

(
i

π
ln z1 + 1

)
G, (6.118)

Φ ′
21(ζ2) =

8
√

(1 − M2
1 )(M

2
2 − 1)

(M2
2 − 2)2

[
G21

1

π
ln |ζ2| + G22H(ζ2)

]
G. (6.119)

The functions Ψ ′
11 andΦ ′

21 allow to find deformations and stresses that are caused
by external influences on the medium. To do this, in solutions (6.104), (6.105), it
needs to leave the terms that are determined by the functions Ψ ′

11 and Φ ′
21

ReΨ ′
11 =

[
G21H(z1) − G22

1

π
ln |z1|

]
G,

ImΨ ′
11 =

[
G21

1

π
ln |z1| + G22H(z1)

]
G,

ReΨ ′′
11 =

[
G21

sin θ1

r1
− G22

cos θ1

r1

]
G

π
, (6.120)

ImΨ ′′
11 =

[
G21

cos θ1

r1
+ G22

sin θ1

r1

]
G

π
,

Φ ′′
21 =

8
√

(1 − M2
1 )(M

2
2 − 1)

(M2
2 − 2)2

[
G21

1

πζ2
+ G22δ(ζ2)

]
G.

The function Φ ′
21 describes the deformation and stress that are caused by the

external influence on the medium and the function Φ ′
22 describes the deformation
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and stress that are caused by optical mode. The functions Φ ′
21 and Φ ′

22 are known
solutions to boundary problems for the two-dimensional hyperbolic equation [20].

6.6.3 Supersonic Speed of Movement

We will call the speed of movement supersonic, if

M1 > 1, M2 > 1. (6.121)

For supersonic speed of motion, the solution to Eq. (6.78) is a function

F = Φ1(ζ1) + Φ2(ζ2), ζ1 = x + Ct −
√
M2

1 − 1 y, (6.122)

where Φ1(ζ1) and Φ2(ζ2) are arbitrary functions of arguments ζ1 and ζ2. The
macrostress tensor and the components of the macroshift vector are written through
the functions Φ1(ζ1) and Φ2(ζ2) as follows:

σxx = −1

2
(M2

2 − 2M2
1 + 2)Φ ′′

1 + 1

2
(M2

2 − 2)Φ ′′
2 + L11(Q0),

σyy = −1

2
(M2

2 − 2)(Φ ′′
1 + Φ ′′

2 ) + L22(Q0), (6.123)

σxy =
√
M2

2 − 1Φ ′′
1 − 1

4

(M2
2 − 2)2√
M2

2 − 1
Φ ′′

2 − ∂2Q0

∂x∂y
,

μUx = − − 1

2
Φ ′

1 + 1

4
(M2

2 − 2)Φ ′
2 − 1

2

∂Q0

∂x
,

μUy = 1

2

√
M2

2 − 1Φ ′
1 + M2

2 − 2

4
√
M2

2 − 1
Φ ′

2 − 1

2

∂Q0

∂y
. (6.124)

According to (6.82), the functions Φ1 and Φ2 must satisfy boundary conditions

⎛
⎝√

M2
1 − 1Φ ′

1 − (M2
2 − 2)2

4
√
M2

2 − 1
Φ ′

2

⎞
⎠

∣∣∣∣∣∣
y=0

= − ∂Q0

∂y

∣∣∣∣
y=0

, (6.125)

1

2
(M2

2 − 2)
(
Φ ′

1 + Φ ′
2

)∣∣
y=0 = G H(ξ) +

∫
L22(Q0) dξ

∣∣∣∣
y=o

. (6.126)
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From (6.124) and (6.125), we find boundary conditions separately for functions
Φ1 and Φ2

Φ ′
1

∣∣
y=0 = G31

⎡
⎣G H(ξ) +

∫
L22(Q0) dξ +

2
√
M2

2 − 1

M2
2 − 2

∂Q0

∂y

⎤
⎦

y=0

, (6.127)

Φ ′
2

∣∣
y=0 = G32

⎡
⎣G H(ξ) +

∫
L22(Q0) dξ − (M2

2 − 2)

2
√
M2

1 − 1

∂Q0

∂y

⎤
⎦

y=0

, (6.128)

where

G31 = 2(M2
2 − 2)

4
√

(M2
1 − 1)(M2

2 − 1) + (M2
2 − 2)2

,

G32 =
8
√

(M2
1 − 1)(M2

2 − 1)

(M2
2 − 2)

[
4
√

(M2
1 − 1)(M2

2 − 1) + (M2
2 − 2)2

] .

The functions Φ ′
1 and Φ ′

2 are solutions to boundary problems for the two-
dimensional hyperbolic equation. They are found in the same way as Φ ′

21 and Φ ′
22.

6.7 Conclusion

General solutions of dynamic equations for plane deformation of nonlinear model
are constructed. The found solutions allow you to set and solve specific boundary
dynamic problems based for the nonlinear model, such as press die movement on
semi-space surface, crack propagation, diffraction problems, etc. The solution of
these problems based on the equations of linear theory of elasticity is obtained by
many authors and is well studied. However, linear theory does not describe the occur-
rence of structural features such as cracks in an initially homogeneous environment,
formation of nanostructures, phase transitions, dislocations, etc. Linear theory only
describes the strain–stress state of the medium in which these structural features are
introduced.

The nonlinear model, unlike a linear model, describes the occurrence of these
structural defects. They can be found from solutions to nonlinear equations. This
allows you to establish the conditions for the occurrence of these structural features
depending on the external effects and properties of the medium, as well as describe
the stress–strain state of the medium with these structural defects. The solution of
these problems has both fundamental and practical interests. In modern technologies
for the production of solid materials with an internal nanostructure, physical and
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mechanical phenomena and structural features are realized, which are described by
the nonlinear model. It is hoped that the nonlinear model will be used both in the
development of mathematical models and as the scientific foundation of modern
technologies for the production of solid materials with an internal structure.

The solutions found relate to the case when the external influence propagates with
a speed that is less than the longitudinal wave velocity V1. The proposed method is
easily generalized for the case of any speed of propagation of external perturbations.
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Chapter 7
Effective Directions of Development
of the Method of Artificial Bases for
Evaluating the Volumetric Wear
Resistance of Materials

Leonid V. Efremov

Abstract This article presents some results of our work on improving the original
version of the artificial bases method in the following areas. Determination of linear
wear resistance based on the formation of a hole with a simple and precise tool
is given. Justification of simplified algorithms for evaluating the volumetric wear
resistance in testing materials is done. The “block-on-ring” method for evaluating
the volumetricwear resistance taking into account the level of hardness of thematerial
is applied.

Keywords Wear · Wear resistance · Sample · Evaluation · Segment · Testing ·
Friction · Chord · Block-on-ring

7.1 Introduction

In the science of tribology, the use of the artificial bases method, proposed in the last
century byProfessorM.M.Khrushchev, is of great importance in testingmaterials for
wear [1]. Recognizing the originality of the idea of this method, it should be noted
that it does not provide for an assessment of the volumetric wear resistance and
requires its adjustment in accordance with the current level of control and measuring
devices and software.

This article presents some results of our work on improving the original version
of this method in the following areas:

1. Determination of linear wear resistance based on the formation of a hole with a
simple and precise tool.

2. Justification of simplified algorithms for evaluating the volumetricwear resistance
in testing materials.
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3. Application of the “block-on-ring” method for evaluating the volumetric wear
resistance, taking into account the level of hardness of the material.

7.2 Determination of Linear Wear Resistance Based on the
Formation of a Hole with a Simple and Precise Tool

The tests were initiated by testing the indentation method with an indenter in the
form of a ball with a diameter of 10mm by striking with a hammer. This operation
confirmed the formation of a small swelling around the print and its different sizes
depending on the direction of the friction path. Therefore, this method is not recom-
mended for practical use, as well as the use of a diamond prism of a Vickers hardness
tester. It was decided to form holes only by cutting or scraping.

Based on control tests of more than 10 cutting tools, it was found that the main
tool should be taken as a conventional drill according to GOST 10902-77 with a
diameter of 6–10mm with a sharpening angle of 1180 (Fig. 7.1d).

The advantages of this method in comparison with the manufacture of a complex
device according to the rules of the original version of the artificial bases method are
as follows:

• Incommensurably lower tool cost.
• Easy function of the depth of the hole from its diameter (Fig. 7.1e).
• High accuracy and quality of the formation of a round hole (Fig. 7.1c) with a
diameter of up to 5mm and a depth of up to 1.5mm due to the factory production
of the cutting part of the drill with a sharpening angle of 1180 and a strictly vertical
tool feed on the drilling machine (Fig. 7.1b).

• Use of a low-cost modern digital microscope with a built-in image recognition
program to accurately determine the diameter and depth of the hole (Fig. 7.1a).

μ = tg(ϕ/2)/2 = tg
(
1180/2

)
/2 = 0.3 (7.1)

h = μd = 0.3d

Figure7.2 shows a screenshot of the estimation of the diameter of a round hole
using the image recognition microscope program, which consists of the following
operations:

• Photographing an enlarged hole—(a)
• Image scale calibration—(b), (c), and (d)
• Measurement of the hole diameter—(e) and (f)
• Image recognition software IMAGEJ—(g)

These procedures are performed at the end of each test session or in total for the
total test time.
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Fig. 7.1 Tools for forming and measuring the diameter of a round hole in order to accurately assess
the wear of the sample

Initially, the method of artificial bases is designed to determine the linear wear
resistance εL km/mm or the wear intensity JL = 1/εL mm/km of the material.

In the case of a friction pair consisting of a rotating disc (the element to be sewn)
and a pad (counterbody), the following parameters are the constant initial data for
their determination:

d and r = 500d are diameter and radius of the disk, n is the disk speed (rpm).
The speed of friction on the disk V (km/min) is

V = 2πrn/106 (7.2)

Diameter of the first hole when cutting with a drill before testing is d0.
The source data variables include: session number i, i = 1 . . . k, operating time

value ti min and the results of diameter measurements di for each i th session, well
depth hi according to the formula (7.1), wear �hi and friction path Si according to
formulas (7.3) and (7.4) during the session

�hi = hi−1 − hi (7.3)

Si = V ti (7.4)

Thus, all the initial data for calculating εL and JL according to formulas (7.5) and
(7.6) for each session are obtained. For the total estimation of these parameters, the
formulas (7.8)–(7.10) should be used. The latter option is used for comparative tests
of materials with a constant test duration.
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Fig. 7.2 Software for measuring the diameter of a round hole on a digital microscope

εLi = Si/�hi (7.5)

t =
k∑

1

ti (7.6)

�hi = μ (di−1 − di ) (7.7)

�h = μ (d0 − dk) (7.8)

S = V t (7.9)

εL = S/�h (7.10)

The described method is completely suitable for any methods of forming holes.
For example, the zero size of the length of a slit-shaped hole 10mm, similar to the
one created in [2], can be instantly cut out by a mini-disk with a radius r = 12 mm.
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And then the wear of �hi for the i-th session will be equal to (7.12)

μ = 1/8r (7.11)

�hi = μ
(
l20 − l2i

)
(7.12)

Further calculations are performed according to the formulas (7.5)–(7.10).

7.3 Justification of Simplified Algorithms for Estimating
Volumetric Wear Resistance

The main purpose of testing sliding friction pairs for wear by the artificial bases
method is to evaluate the linear wear resistance of materials that have an inverse
relationship with the intensity of linear wear JL = 1/εL mm/km. The application
of an accurate and simple tool and the algorithm to solve this problem were shown
above.

However, when testing materials for friction and wear, the evaluation of the volu-
metric wear resistance εW nm/mm3 and the intensity JW = 1/εW mm3/nm is becom-
ing increasingly common. This is usually due to the application of the method of
weighing small samples. Some test standards only require the determination of vol-
umetric wear resistance. This applies to the “block on ring” method in accordance
with the international standard ASTM G77, which will be considered, in particular,
because it has a variable specific pressure. Next, wewill perform the original proof of
the universal algorithm of the εW function, taking into account the following obvious
dependencies. If the contact spot area sk can be determined, then the volume of wear
products W = sk �h, and the specific pressure is determined by the formula (7.13).
From this we obtain the function εW (7.14), taking into account the formula (7.10)
for estimating εL .

For the first time, this expression was proved in a more complex way in our work
[8].

P = F/sk (7.13)

εW = FS/W = FS/sk�h = 1000PεL (7.14)

To confirm the universality of function (7.14), we consider models of friction
pairs in order to simplify the algorithms for estimating W and sk with an acceptable
error. It is advisable to start the problem by considering the models of friction pairs
in Fig. 7.3 with a conditionally constant specific pressure P MPa, due to the constant
contact spot area sk mm2 and the load F H during wear. This can be seen from Eq.
(7.13).

The simplest way to solve this problem is to use it for the popular model 3a to
wear out the end of a small sample 2 in the process of rubbing it against the plane
of the disk 1 at a distance of the friction path r mm from the center. The sample
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Fig. 7.3 Models of friction pairs with constant pressure

has a contact area of sk mm2 under load F N at a speed of n rpm. The method of
determining sk is simple and does not matter. The standard test session time is t min.
The wear mass in mg is determined from the ratio (7.15) by weighing the sample on
an accurate balance at a known material density of γ mg/mm3

W = G/γ (7.15)

�h = W/sk (7.16)

εL = S/
(
106�h

)
(7.17)

εW = FS/W = FS/ (sk�h) = 1000PεL (7.18)

Based on calculations and formulas (7.15)–(7.18) it can be concluded that the last
formula exactly corresponds to the standard (7.14).

Further, it is advisable to confirm the universality of expression (7.14) by the
example of three more models in Fig. 7.3, operating at a constant specific pressure
on the friction machine.
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Fig. 7.4 Examples of samples for measuring wear: a—disk, b—sliding bearing

Model 3b—wear pads standard machine Tre-tion angle θ with radius = π/4 when
the diameter of the disk is r = 25 mm and with a maximum wear of 1mm,

Model 3c—wear markup sliding bearing with angular radius θ = π when the
diameter of the disk is r = 25 mm and with a maximum wear of 1mm,

3d model—wear of the end face of the disk with an angle of radius θ = 2π with
a diameter r = 25 mm and with a wear of up to 1mm.

Figure7.4 shows a photo of the 3d (disc) and 3c (sub-pin) models with cut-out
holes in the wear holes.

The calculated version of determining the volume W with the simplification of
formula (7.19) for models 3b and 3c, as well as formula (7.20) for the 3d model, is
considered. Simplification (7.22) with an error of 2% is achieved by neglecting the
small value of the ratio �h/r = 0.04 in the sum (2 ∓ �h/r ).

The wear value �h included in the formulas is preliminarily determined by the
method of artificial bases (7.8), which allows us to estimate the contact spot area
sk = W/(�h) for each model of the friction pair:

sk = 0.25πr Hk for model 3b pad wear,
sk = πr Hk for model 3c bearing wear,
sk = 2πr Hk for 3d disc model wear.

Since the friction path is known for all models, we can confirm the expression
(7.14) by calculating (7.21).

W = θ

2

(
(r + �h)2 − r2

)
Hk = θ

2

(
r2 − r2 + 2�hr + �h2

) =

= θ

2

(
2 + �h

r

)
r�hHk ≈ θr�hHk = sk�h (7.19)

W = π
(
r2 − (r − �h)2

)
Hκ = π

(
r2 − r2 + 2�hr − �h2

)
Hκ

= π

(
2 − �h

r

)
r�hHκ ≈ 2πr�hHκ ≈ sk�h (7.20)
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Fig. 7.5 Formation of the chord of the embedding of the disc—a, examples of wear of samples of
materials—b

εW = FS/W = FS/ (sk�h) = 1000PεL (7.21)

� = (2 ± �h/r) − 2

(2 ± �h/r)
= ±�h/r

(2 ± �h/r)
= |0.04|

2.04
= 0.02 = 2% (7.22)

Thus, the error of the eW estimation for all the considered models does not exceed
2%.

Features of the “block on the ring” method.
As previously noted, the “block on ring” method according to the international

standard ASTMG77 is widely used in the testing of materials for wear. This method
is one of the most effective ways of testing materials for wear by the method of
artificial bases [1–7]. As shown in Fig. 7.5a the test friction pair consists of a ring (or
disk) 1 with a radius of p and a rectangular flat bar (block) with a width of 2h, into
the flat surface of which the disk cuts, forming a wear mass in the form of a segment
(in contrast to the layout 3b). This method is called the chord method in our works,
since all the parameters under study are a function of the L mm chord formed due
to the disk embedding in the sample. The value of L can be easily and accurately
measured in tests (Fig. 7.5b). Since it increases with the wear of the sample, this
method is characterized by a variable specific pressure, unlike the models in Fig. 7.3.

The algorithm for estimating linear and volumetric wear resistance by this method
consists of the formulas (7.23)—(7.26), while (7.26) is the desired expression for
evaluating εW in terms of linear wear resistance eL and specific load P .

Note that, in contrast to the previously published simplified functions of the prod-
uct volume W mm3 and the value �h mm of wear, the analysis of the Taylor series
takes into account not one of its first terms L2/(12r), but two of its first terms,
L2

(
1 + 0.075L2/r2

)
/(12r) which reduced the calculation error from 5 to 1% with

a maximum chord of L = 20mm. As the chord decreases, the error decreases.

W =
⎡

⎣r2 arcsin
(
L

2r

)
− L

2

√

r2 −
(
L

2

)2
⎤

⎦ HL → (7.23)
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(
L3

12r
+ L5

160r3
+ 3 L7

3584r5
+ · · ·

)
HL ≈ HL

L3

12r

(
1 + 0.075

L2

r2

)
⇒ � ≤ 1

�h = W/LHL ≈ L2

12r

(
1 + 0.075

L2

r2

)
⇒ � ≤ 1 (7.24)

P = F

LHL

εL = S

�h
(7.25)

εW = FSL
W

= FS

HL
L3

12r

(
1 + 0.075 L2

r2

) =

= FS

LHL
L2

12r

(
1 + 0.075 L2

r2

) = FS

LHL�h
= 1000PεL (7.26)

Based on the consideration of the formulas for all models of friction pairs, the
universality of the function (7.14) and its suitability for assessing the wear resistance
and wear intensity of any friction pairs in Fig. 7.3 can be considered proven with an
error of no more than 2%.

To confirm the effectiveness of the simplified “block-on-ring” version, compara-
tive wear tests were performed on 14 samples of various materials in a wide range
of their hardness [6–8]. Their wear tests were carried out on the SMC-2 friction
machine under the following conditions: r = 25 mm, HL = 10 mm, F = 200 N,
n = 100 rpm, t = 10 min and cv = nt = 1000 cycles, which are further considered
as model cycles. This solution is related to the alignment of all the hardness functions
under these conditions.

The first four samples (steel, cast iron, copper, and aluminum) were tested for
abrasive wear from the P600 abrasive skin glued to the disc. The remaining nine
samples fromvariousmaterialswereworn byboundary friction on the smooth surface
of the disk with grease. It is proved that for the same material, the chord length at
abrasive friction is about three times greater than at boundary friction. This should
be taken into account when proceeding to the calculation in accordance with the
boundary friction test rules.

7.4 Modeling of the Dependence of Wear Parameters on
the Hardness of the Material

In conclusion, we will consider the original justification for the dependence of the
wear characteristics on the hardness level of various materials on the Mohs scale.
A nomogram of the hardness scales was found on the Internet, which allowed us to
find a correlation between the Mohs and Brinell HB scales.
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According to the test results of 14 samples, 6 materials were selected, tested at the
boundary friction with the lubricant, having a hardness close to the recommended
ones.

As the research experience in [9] shows, it is most likely that these functions
have the power form y(x) = a · xb. Then the constants a and b can be determined
by the least squares method (OLS) using the logarithm, for example, X = lg(θ) and
Y = lg(HB). In the Mathcad editor, when using OLS, complex calculations of the

constants c0 and c1 are performed using a simple operator c = line (X,Y ) =
∣∣
∣∣
c0
c1

∣∣
∣∣,

followed by a = 10c0 and b = c1.
For the correlation analysis of the dependence of hardness on the Mohs scale and

wear parameters, Table7.1 is obtained.
The described method is completely suitable for any methods of forming holes.

For example, the zero size of the length of a slit-shaped hole 10mm, similar to the
one created in [2], can be instantly cut out by a mini-disk with a radius r = 12 mm.

Further, it is advisable to consider working algorithms for assessing wear resis-
tance in production conditions, taking into account the level of hardness of materials.

To do this, it is recommended to equip the SMC-2 friction machine with a “block-
on-ring” device with suitable disc and rod sizes. For example, [10] uses a disk with a
radius of 20mm and a width of 10mm and a rod with a length of 30mm and a width
of 7mm. This allows you to increase the permissible chord to 26–28mm, compared
to 15–16mm for the length of the rod 2 with a length of 18mm, shown in Fig. 7.1.

The values of the load F, the speed n, the measurement time t and the number of
cycles cv = nt are set dependingon the choice of test options,which are characterized
by a constant value of β according to the formula

β = r HL
√
cv

F
. (7.27)

The input measured parameter can be either the chord length L or the mass of the
wear products G, if it is determined by weighing the sample before and after the test
session.

This method is used to justify the following correlation functions (7.28)–(7.34):

HB(θ) = 4, 32θ2,63 (7.28)

θ =
(
r
√
cv

20 L

)1/2

=
(

β

604IW

)1/6

(7.29)

L(θ) = r
√
cv

20θ2
= βF

20 HLθ2
(7.30)

h(θ) = L(θ)2

12r
= rcv

4800 θ4
(7.31)

P(θ) = F

L(θ)HL
= 20θ2

β
(7.32)
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Table 7.1 Baseline data for hardness function evaluation

Material Hardness Indicator

θ HB, MPa L , mm εL , km/mm P , MPa εW /1000,
Nm/mm3

Tin O1 1.8 20 12.6 0.327 1.67 0.55

Copper M3r 3.0 100 4.1 2.5 4.93 12.3

Steel 40 4.0 200 2.53 6.68 7.53 50.3

Steel
08H18N10T

5.0 300 1.5 21.4 13 278.2

VK6 Alloy 6.0 500 1.11 37.7 17.88 674.1

Si2O3
Ceramic

8.0 1000 0.63 121 32.05 3878

εL(θ) = 2πrcv4800θ4

106rcv
= 0, 0302θ4 (7.33)

εW (θ) = 1000P(θ)εL(θ) = 604θ6

β
(7.34)

If the tests are carried out at any initial data (Table7.2), the calculated value of θ

will not coincide with the reference hardness. In this case, it is suggested to call it
the level of hardness. The possibility of reducing this value to the model hardness is
shown in the studied version of the evaluation of wear parameters.

Based on the initial data and the results of research by scientists of the People’s
Republic ofChina [1] on various properties of a polytetrafluoroethylene (PTFE) com-
posite, taking into account the filling with ultrafine diamond (UDF), a new method
for evaluating wear parameters has been developed. The “block-on-ring” method
was used to determine the volumetric wear rate of both pure PTFE and its composite
with different concentrations of UFD filler as a percentage. The wear of the polished
surfaces of the disc and rod was measured during dry sliding under conditions of
formation of a polymer transfer film on the disc, which acts as a lubricant.

The following test modes are specified as the initial data in [10]: F = 200 N,
n = 200 rpm, and t = 120 min;

The results of calculating the wear rate IW are given: 626 · 10−6 ± 124 · 10−6 for
pure PTFE and 26 · 10−6 ± 5 · 10−6 for a composite with a UVD of 5%.

Two-hour test sessions are used to study not only wear but also the dynamics
of changes in the coefficient of friction, temperature, material structure depending
on the percentage of UFD, etc. Unfortunately, [10] does not provide the results of
measurements of the initial chord length L or the mass of wear products G, as well
as the method for calculating the parameters: h, P, εL and εW .

This problem is solved using the algorithms discussed above, and the results are
shown in Table7.2. It follows from Table that the chord length L should formally
be used as the initial parameter, but it is unknown. This parameter is obtained as
follows:



148 L. V. Efremov

Table 7.2 Results of wear resistance assessment
The set parameters The set parameters

F , N n,
rpm

t , m L(θ),
mm

h(θ),
mm

P(θ),
MPa

εL (θ),
km/mm

εW (θ),
Nm/mm3

×10−3

IW ,
mm3/Nm
×10−6

β,
mm/N

θ HB,
MPa

1 200 200 120 23.4 2.28 1.22 1.32 1.60 626 108 2.57 52

2 8.14 0.28 3.51 10.94 38.5 26 108 4.36 208

3 200 100 10 8.4 0.24 2.38 0.67 1.60 626 39.5 2.17 33

4 2.9 0.028 6.88 5.6 38.5 26 39.5 3.69 134

The constantβ is determined by the formula (7.27) and the hardness level θ (7.29),
taking into account the known wear intensity IW ;

Calculate the chord length L(θ) (7.30); h(θ), P(θ), εL(θ) and εW (θ) according
to the formulas (7.31)–(7.34) and IW = 1/εW (θ).

Due to the significant difference between the input parameters n and t from the
sample values (Table7.2) the hardness level θ may be slightly higher than the ref-
erence value. This can be seen from the recalculation of the hardness on the Mohs
scale θ in the lines of materials 3 and 4 according to the formula (7.10) at the model
values of F and cv and at a given volumetric wear intensity IW. The Brinell hardness
HB is determined by the formula (7.8). The obtained conditional Brinell hardness
of PTFE before and after the introduction of the filler (33 and 134 MPa) is in good
agreement with the reference data.

Note. Material: 1, 2-values for pure PTFE and composite; 3, 4-sample values.
This leads to the conclusion that the pure PTFE composite has a relatively low

hardness, which increases by a factor of 4 when 5% of the UFD filler is added.

Acknowledgements The present work was supported by the Ministry of Science and Higher
Education within the framework of the Russian State Assignment under contract No. FFNF-2021-
0006.

References

1. Lai, S.-Q., Yueb, L., Li, T.-S., Zhi-Meng, H.: The friction and wear properties of polytetraflu-
oroethylene filled with ultrafine diamond. Wear 260, 462–468 (2006)

2. Khrushchev, M.M. (ed.): Methods of wear testing: proceedings of the meeting held on Decem-
ber 7–10, 1960. Publishing House of the USSR Academy of Sciences (1962)

3. Wang, B., Lv, Q., Hou, G.: Tribological behavior of Nano-Al2O3 and PEEK reinforced PTFE
composites. In: AIP Conference Proceedings, vol. 1794. AIP Publishing LLC (2017)

4. Musalimov, V.M., Valetov, V.A.: Dynamics of Frictional Interaction. St. Petersburg State Uni-
versity ITMO, St. Petersburg (2006)

5. Musalimov, V.M., Nuzhdin, K.A.: Modelling of external dynamics of frictional interaction
using the elastic system stability theory. J. Frict. Wear 40, 51–57 (2019)

6. Ginzburg, B.M., Tochilnikov, D.G.: The influence of fullerene-containing additives to fluoro-
layers on their bearing capacity under friction. J. Tech. Phys. 71, 120–124 (2001)



7 Effective Directions of Development of the Method of Artificial Bases … 149

7. Efremov,L.V., Tikalov,A.V.:Algorithms for estimating the linear, volumetric (weight) intensity
of wear of materials on a friction machine. Izv. vuzov. Speed control 63(4), 291–299 (2020)

8. Efremov, L.V., Tikalov, A.V.: Modeling of the wear process of flat samples of materials on a
friction machine. Izv. vuzov. Instrumentation 63(2), 163–169 (2020)

9. Efremov, L.V., Tikalov, A.V.: Evaluation of the wear resistance of materials on a friction
machine with a decrease in the specific pressure on a flat sample. J. Instrum. Eng. 620203(1),
157–166 (2020) (in Russian)

10. Efremov, L.V.: Problems of Management of Reliability-Oriented Technical Operation of
Machines. Art-Xpress, St. Petersburg (2015)



Chapter 8
Local, Modal and Shape Control
Strategies for Active Vibration
Suppression of Elastic Systems:
Experiment and Numerical Simulation

Aleksandr V. Fedotov, Alexander K. Belyaev, Vladimir A. Polyanskiy,
and Nina A. Smirnova

Abstract The problem of active vibration suppression of the distributed elastic
system is considered in the example of a slender metal beam undergoing bending
vibrations. Control systems include piezoelectric sensors and actuators. Three dif-
ferent strategies for vibration suppression are considered: local, modal and shape
control strategy. The local approach means that each feedback loop includes only
one sensor–actuator pair placed at specific location on the beam, while the modal
strategy implies that each feedback loop corresponds to a specific vibration mode
of the object. The shape control method is based on the compensation of known
distribution of the external excitation using only one feedback loop with all avail-
able sensors and actuators. First, experimental results are obtained for the local and
the modal control systems using the same two sensor–actuator pairs, and then the
transfer functions in feedback loops for these systems are improved as the result of
numerical modeling. After that, the modal method is compared numerically with the
shape control strategy. The results show that the modal method is the most effective
if it is needed to suppress several vibration modes of the object.
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8.1 Introduction

Undesirable vibrations can be dangerous for mechanical systems and cause failure,
damage and unwanted noise, while the resonance vibrations are especially harm-
ful. Active vibration control is a modern method of vibration attenuation, which
is developing rapidly due to advances in digital signal processing and sensor and
actuator technology. The presence of the infinite number of eigenmodes and res-
onance frequencies complicates the active vibration control of the elastic systems
with distributed parameters and leads to reduced accuracy and stability of the control
systems.

Piezoelectric materials give wide opportunities for control and monitoring of
elastic systems, since these are smart materials, which combine two physical fields:
mechanical and electrical. On one hand, sensor networks can be used for health
monitoring and damage detection in engineering structures [1]. On the other hand,
actuators allow one to control the stress–strain state of structures by applying elec-
trical voltage, which helps to realize not only the displacement tracking but also the
stress control in order to protect the structure or the piezoelectric actuator itself from
damage and destruction [2]. The joint use of sensors and actuators allows one to
organize the feedback control of elastic systems. This raises the following questions:
how to locate the piezoelectric elements on the object, how to process the sensor
signals, how to arrange the feedback loops and which control laws in these loops to
specify. There are several strategies to control the elastic objects, which give different
answers to the aforementioned questions.

The most simple is the local approach [3]: sensors and actuators are placed in
pairs at several locations on the object, and each feedback loop includes only one
sensor–actuator pair. The second method is modal and it accounts for the dynamics
of the object: each control loop corresponds to a specific vibration mode of the object
and uses all sensors to measure this mode and all actuators to affect it [4]. The third
approach under consideration is the shape control strategy [5]. This strategy was
originally formulated as a method to fully compensate the external excitation on
the elastic object with known spatial distribution provided that the disturbance is
known and the appropriate control capabilities are available. In real cases, the time
variation of the external excitation may be not given, which makes it necessary to use
feedback control. The shape control method can be used if the spatial distribution of
the disturbance is known in advance and does not vary in time. The control action is
distributed on the object in the way that allows one to compensate this disturbance,
while sensor and actuator systems are collocated and form a single feedback loop.

The objective of the present study is to compare the three mentioned strategies
for the problem of active vibration suppression of a slender metal beam using piezo-
electric sensors and actuators. The previous work of the authors [6] provides the
experimental comparison of local and modal approaches, and in the present study,
control systems obtained previously are improved by means of numerical modeling,
and their results are compared with the numerically obtained results for the shape
control strategy.
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8.2 Theoretical Background

This section presents the basic theoretical information and schemes for the three
control strategies under consideration.

8.2.1 Local Method

Figure8.1 shows the scheme of the local control system with two sensor–actuator
pairs. In the scheme, yi are the sensor signals, and ui are the control actions on the
actuators. After attaching sensors and actuators to the control object, it is necessary
to specify the transfer function for each feedback loop Ri (s). The drawback of
this approach is that different feedback loops are not independent, because they are
connected through the elastic object and can strongly influence each other.

8.2.2 Modal Method

Modal control of flexible structures is also called independent modal space control
(IMSC). This approach was first formulated by Gould and Murray-Lasso [4] and
further developed by Meirovitch [7].

Let us consider a thin metal beam undergoing bending vibrations. Consider the
equation of motion of the beam in spectral decomposition, assuming that n eigen-
modes are enough to describe the motion of the beam:

w(x, t) =
n∑

i=1

wi (x)qi (t), (8.1)

where w is the displacement, wi is the i th bending mode of the beam, and qi is the
i th generalized coordinate. The matrix equation of motion for the vibration modes

Fig. 8.1 Scheme of the local
control system
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Fig. 8.2 Scheme of the modal control system

will have the following form:

q̈ + 2ξ�q̇ + �2q = Qd + Qc, (8.2)

where q is the vector of generalized coordinates, ξ is the diagonal damping matrix,
� is the diagonal matrix of eigenfrequencies, Qd is the vector of external excitation
and Qc is the vector of control actions on the modes.

The scheme of the modal control system is given in Fig. 8.2. For simplicity, we
consider a system with two sensors, two actuators and two modal control loops. In
the scheme q̃i are the estimates of the first and the second generalized coordinates,
Q̃i are the desired generalized forces acting on the first and the second modes, T is
the mode analyzer matrix, used to estimate the generalized coordinates, and F is the
mode synthesizer matrix, used to generate proper control actions.

Let us introduce the excitation matrix θa and the measurement matrix θ s . The
excitation matrix θa shows how strong is the influence of each actuator on each
eigenmode of the object, and the measurement matrix θ s shows how strong is the
influence of each eigenmode on each sensor:

Qc = θau = θa F Q̃, (8.3)

q̃ = T y = T θ sq. (8.4)

It is obvious that the correspondence between eigenmodes of the object and the
modal control loops requires that the modal matrices T and F have the following
form:

F = (θa)−1, T = (θ s)−1. (8.5)

Then, the single equation from the system (8.2) for i th eigenmode of the beam
takes the following form:

q̈i + 2ξi�i q̇i + �2
i qi = Qd − Ri (s)qi . (8.6)
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Thismeans that one can control eachmode individually by setting the correspond-
ing transfer function Ri (s) and thus realize the independent modal space control. Of
course, all these derivations are valid only if the matrices θa and θ s are square and
have the size n × n, which means, that there are enough sensors and actuators in
the control system and no higher modes are active. In real problems, the presence of
higher, uncontrolled modes always complicates the overall situation: for example,
some higher modes can become unstable. This is called the spillover effect, which
can be minimized by increasing the number of sensors and actuators.

8.2.3 Shape Control Method

Originally, the notion shape control was first mentioned in a study by Haftka and
Adelman [8], where the problem of minimizing static distortion of large space struc-
tures using thermal control elements was considered. Then, the shape control method
was further developedbyAustrian researchers fromJohannesKeplerUniversityLinz.
The review of shape control is given in [9]. Paper [5] presents the theory of dynamic
shape control of beams by piezoelectric actuation and sensing. The presentedmethod
allows one to eliminate force-induced vibrations of a beam by the use of piezoelectric
actuators attached to the structure.

As stated in [5], in order to fully compensate the deformations of the beam, the
actuation bendingmomentMt should be opposite to the statically admissible bending
moment Mq,pz produced by the distributed forces pz :

Mq,pz (x, t) + Mt (x, t) = 0. (8.7)

Thus, in order to compensate the external disturbance by the piezoelectric actu-
ation, the distribution of this disturbance should be known in space and time, and
the needed actuation should be available. However, usually in real problems, the
possibilities of actuation are limited: for example, often only finite set of rectangu-
lar piezoelectric actuators is available. In these cases, the desired distribution of the
actuation moment should be approximated by discrete step functions corresponding
to separate piezoelectric patches [10]. In the present study, the deflection of the beam
with applied actuation is analyzed directly, and the condition of minimization of the
maximum deflection is applied in order to find positions and actuation intensity for
discrete piezoelectric actuators.

Classic example of feedback control within the framework of shape control strat-
egy in application to bending vibrations of a beam is given in the book of Nader [10].
The following control scheme is used: all the actuators and all the sensors form a
single control loop, which means that q̃ and Q̃ in the scheme in Fig. 8.3 are scalars,
and vectors f s and f a are used instead of matrices T and F in the modal system.
Moreover, the design of the sensor system completely repeats the design of the actu-
ator system (sensors are located symmetrically to the actuators at the opposite side
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Fig. 8.3 Scheme of the shape control system

of the beam), that is, the sensor and the actuator systems are collocated. Therefore,
vectors of weighting factors f s and f a are equal:

f s = f a . (8.8)

8.3 Experimental Setup

The first part of the study is the experimental investigation and comparison of local
and modal approaches to active vibration suppression of a metal beam, which is
described in detail in the paper [6]. The second part of the study is the numerical
modeling of the same system and the synthesis of more efficient control laws [11]. At
the final stage of the study, the shape control systems are synthesized and compared
to the previously obtained local and modal systems.

The experimental setup is shown in Fig. 8.4. The control object is an aluminum
beam 70cm long with the cross-section of 3 × 35mm. It is disposed vertically and
fixed at one point 10 cm far from the lower end. The external excitation is the base
vibration. It is applied by means of a piezoelectric stack actuator, which is a part
of the fixation that connects the beam to the massive basement. Axial displacement
of the stack actuator causes bending vibration of the beam. The control system
includes PICeramicDuraAct patch transducers P-876.A15,which are used as sensors
and actuators. They consist of rectangular PZT plates with dimensions 50 × 30 ×
0.5mm, thin metal electrodes and the polymer coating. Actuators and sensors are
connected through a digital controller dSPACEDS1103 PPCController Board. Apart
from this, feedback loops also contain low-pass-filters (LPF) and a signal amplifier,
which also gives contribution to the frequency characteristics of the object.

The purpose of the control system is to reduce forced vibrations of the beam in
the frequency range containing the first and the second resonance frequencies. The
first and the second bending modes are shown in Fig. 8.4. Two sensor–actuator pairs
are located on the beam on both sides at the beginning of the experiment and hold
the same positions for all tested local and modal control systems. In order to monitor
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Fig. 8.4 Experimental setup

the control efficiency, the vibration amplitude of the upper endpoint of the beam is
measured by the laser Polytec Scanning Vibrometer PSV-400. The choice of this
point is caused by the fact that the amplitude of its vibration is the highest among all
points of the beam for the first and the second vibration modes.

8.4 Sensor and Actuator Placement

In this section, we consider a problem of sensor and actuator placement on the beam
for each control strategy and choosing proper matrices T and F for the modal control
systems and vectors f a and f s for the shape control systems.

8.4.1 Local and Modal Methods

First, we need to define the positions of the piezopatches on the beam for the experi-
mental study of local and modal methods. This process is described in the paper [6].
The positions of sensors and actuators in the framework of the numerical investiga-
tion are the same as for the experimental research. These positions are obtained as
a result of analyzing the first and the second bending modes of the beam. Sensors
and actuators should be placed in those locations where the curvature w′′(x) of these
modes gets maximum values: in this case, they can excite and measure these modes
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Fig. 8.5 Curvature of the first and the second bending modes of the beam with the piezopatch
locations

most effectively. The curvature of the first and the second modes with the chosen
positions of two sensor–actuator pairs is shown in Fig. 8.5. The coordinates of the
centers of the piezopatches are the following: x1 = 0.0355 m, x2 = 0.3025m.

The matrices T and F (mode analyzer and synthesizer) for the experimental
study are obtained using the identification procedure described in detail in [12]. As
the result, these matrices are defined in the following way:

T (exp) =
(

0.99 1.03
−0.49 1.53

)
, (8.9)

F (exp) =
(
0.98 −0.49
1.02 1.51

)
. (8.10)

8.4.2 Shape Control Method

Here, we need to specify the positions for sensors and actuators and define the vectors
of weighting factors f a and f s for the numerical study of the shape control method.
As stated before, sensor and actuator systems are collocated; therefore, f a = f s .
We consider a system with either two or five sensor–actuator pairs. Thus, we need
to define the positions of the piezopatches and the weighting factors, that is, the
actuation moments for each actuator, from the condition of the best compensation of
the external excitation.

We know the form of the external excitation: it is the transverse vibration of the
support, which is equivalent to the transversal inertia force uniformly distributed
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Fig. 8.6 Beam with two sensor–actuator pairs

over the whole beam as shown in Fig. 8.6. Here, the model of the beam from the
experimental setup shown in Fig. 8.4 is presented. We use for calculations the value
of the distributed load p0 = 1N/m. In the case of using sensors and actuators, the
load is not uniform: the control elements present an additional mass, therefore, the
distributed load at the corresponding locations slightly increases (the resulting load
is denoted as p1). The fixation is modeled by the torsional spring with the stiffness
c = 400 N · m/rad (this model is verified in [6] and [11]).We choose the locations of
the piezopatches and actuation moments Mi from the condition of the minimization
of the maximum deflection of the beam in the static case. We also require that the
deflection at the right endpoint of the beam is zero, because the efficiency of the
obtained control systems is defined using the deflection at this point.

As a result of the investigation, two configurations of shape control systems
were obtained, differing in the number of sensor–actuator pairs. The beam deflec-
tion corresponding to these two systems in the static case with feedforward con-
trol is shown in Fig. 8.7. The black curve corresponds to the system with two
sensor–actuator pairs, and the red curve corresponds to the system with five pairs
of piezopatches. The maximum deflection of the beam without control (not dis-
played in the figure) is 3.2mm, while for the systems with two and five sensor–
actuator pairs this value equals to 0.044mm and 0.012mm, respectively. For the
system with two pairs of piezopatches, the maximum deflection cannot be smaller
because the actuators on the right side of the beam do not influence the deflec-
tion of the left side. For the system with five sensor–actuator pairs, the maximum
deflection cannot be smaller because the piezopatches technically cannot be located
closer than 10mm to the fixation point due to the presence of a nut, which fixates
the beam. For the first system, the coordinates of the centers of the piezopatches
are the following: x1 = 0.048 m, x2 = 0.237 m, and the actuation moments are:
M1 = 0.835 N · m, M2 = 0.603 N · m. For the second system, the coordinates are:
x1 = −0.035 m, x2 = 0.035 m, x3 = 0.1345 m, x4 = 0.235 m, x5 = 0.363 m, and
the moments are: M1 = −0.22 N · m, M2 = 0.622 N · m, M3 = 0.354 N · m, M4 =
0.267 N · m, M5 = 0.1603 N · m.

Thus, the vectors of the weighting factors for the shape control systems with two
or five pairs of piezopatches are defined, since they are taken equal to the actuation
moments:
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Fig. 8.7 Compensation of the external excitation with two or five sensor–actuator pairs

f a(2) = f s(2) = (
0.835 0.603

)T
, (8.11)

f a(5) = f s(5) = (−0.22 0.622 0.354 0.267 0.1603
)T

. (8.12)

8.5 Finite Element Modeling

Before the synthesis of the transfer functions in the feedback loops of the control
systems, one needs to obtain the frequency response functions (FRFs) of the beam.
In order to obtain FRFs of the beams with piezopatches and without piezopatches
for reference, the finite element (FE) models of these beams are created in ANSYS
software. The choice of this software is caused by the fact that it can give precise
results for a wide range of eigenmodes of the beam, while the numerical simula-
tion of the beam dynamics in MATLAB software resulted in errors for the higher
vibration modes. The previous numerical research in MATLAB for the beam with
different boundary conditions (simply supported beam) has shown the importance
of taking into account the influence of piezopatches on the beam eigenmodes during
the modeling of beam dynamics [13, 14].

Two types of FE models of the system were created: the first one (Fig. 8.8a)
constructed of three-dimensional elements (Solid186 for ordinary materials and
Solid226 for piezoelectric materials), and the second one (Fig. 8.8b) constructed
of one-dimensional elements Beam189. At first, both models were created for the
systemwith two sensor–actuator pairs constructedwithin the experimental study, and
both were verified using the experimental data [11]. These models differ greatly in
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(a) Model with 3D solid elements (b) Model with 1D beam elements

Fig. 8.8 Finite element models of the beam

complexity: the first contains 3534 elements and 21088 nodes, and the second—only
161 element and 283 nodes. Moreover, in the 3D model, the fixation construction is
modeled entirely with the stack actuator and additional elements, and the piezoelec-
tric effect is modeled directly, while in the 1D model the beam fixation is modeled
by two springs (longitudinal and torsional), and the piezoelectric effect in this model
is absent. Instead of this, the actuator excitation is specified by an application of
corresponding forces and moments, and the sensor signal is calculated from the
longitudinal deformation of the piezoelectric material.

The modeling has shown no big difference in the results for two described FE
models. Therefore, for testing local and modal control systems, the 3D model was
used as more precise one, and for the subsequent calculations (shape control systems
and the beam without piezopatches for reference) for simplicity, the 1D model was
used. Figure8.8b shows the 1D model of the system with five sensor–actuator pairs
created for the testing of the shape control strategy.

In order to obtain FRFs of the beams, the harmonic analysis is performed in the
frequency range from 1 to 2000Hz, where a harmonic excitation is applied either to
the beam support or to the actuators. The measured values are the sensor signals and
the deflection of the right endpoint of the beam. In all models, the same damping
coefficient ξ = 0.002 is used for all vibration modes; this choice is justified in [15].

In order to obtain the mode analyzer and synthesizer for the modal control system
in the framework of the numerical study, the FRFs of the beamwith piezopatches are
analyzed. The height of the resonance peaks in the FRFs allows one to determine the
matrices θa and θ s . It is important to mention here that the rows of matrix θa and the
columns of matrix θ s , therefore, the rows of matrix T and the columns of matrix F
are defined up to a constant. The matrices T and F are calculated from the matrices
θa and θ s using Eq. (8.5). The results are the following:

T = FT =
(

1.01 0.96
−0.49 1.49

)
. (8.13)

8.6 Design of the Transfer Functions

Within the experimental study, the transfer functions for local and modal strategies
were designed using the frequency response design method [16, 17]. In order to do
this, FRFs of the beamwere previously measured for two variants of excitation (each
of two actuators) and two variants of measured signal (each of two sensors) in the
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frequency range from 1 to 2000Hz. After that, the designed control systems were
tested experimentally. The optimization criterion was the height of the resonance
peaks in the FRF showing the vibration amplitude of upper endpoint of the beam
under the excitation of the fixation point at the first and the second resonances of the
beam. As a result, three most efficient control systems were obtained: the first local
system is designed to work at the first resonance, the second local system—at the
second resonance, and the modal system with two feedback loops is effective at both
resonances. These results are presented in the paper [6], and they are also included
in Table8.1.

At the next stage of the investigation, the designed transfer functions for local and
modal systems were improved in the framework of the numerical simulation. During
this process, the FRFs of the beam were used that were obtained not experimentally,
but numerically by means of FE modeling (Sect. 8.5). In order to calculate the FRF
of the beam under feedback control with two loops using only existing FRFs of
the beam without control and the control laws, the mathematical procedure is used
described in [11, 15].

The main advantage of the numerical simulation is that it is so fast and precise,
that it is possible to realize the numerical optimization of the designed transfer func-
tions. Thus, the special optimization procedure was realized in MATLAB [11]. This
algorithm optimizes parameters of different filters composing the transfer function of
selected feedback loop and its gain value and ensures the stability of the closed-loop
system. Let us consider this procedure in more detail.

First of all, each transfer function is constructed from the finite number of special
filters. The first one is an inverse notch filter, which raises the phase of the control
signal in the working frequency domain near to the resonance to be controlled so
that the control action has the opposite phase with the external excitation and can
effectively compensate it. The second one is a low-pass filter, which reduces the
amplitude of the signal at high frequencies and thus increases the stability of the
closed-loop system. The third one is optional—it is a notch filter, which reduces the
amplitude of the signal at one of the higher resonances where the risk of instability is
the greatest, and thus allows one to raise the overall gain value. The transfer function
of the designed feedback loop is obtained bymultiplying the transfer functions of the
individual filters. The described procedure calculates the control results for different
variants of filter parameters from the specified range, finds the optimal gain value
for each variant of the control law, compares the control results and finds the best
combination of parameters, which provides the most effective vibration suppression
and at the same time does not cause instability in the closed-loop system.

With the help of the described algorithm, the control loops were optimized for
local, modal and shape control strategies. The results are presented in Sect. 8.7. Here
as an example, the control laws and the Bode diagrams are presented for the most
efficient of the created control systems—namely, the modal control system with two
feedback loops. Mode analyzer and synthesizer for this system are given in Sect. 8.5.
The transfer functions in the feedback loops are the following:
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Fig. 8.9 Bode diagram for the first loop of the modal control system (blue lines—control object,
red lines—open-loop system)

R1(s) = (
3.07 · 105 s4 + 9.84 · 106 s3 + 1.52 · 1011s2 + 2.74 · 1012s +

+6.14 · 1013)/(
s6 + 572 s5 + 5.99 · 105 s4 + 2.79 · 108 s3 + 4.48 · 1010s2 +

+3.72 · 1012s + 4.83 · 1014), (8.14)

R2(s) = 2.17 · 105 s2 + 3.61 · 106 s + 3.43 · 107
s4 + 414 s3 + 5.57 · 105 s2 + 7.65 · 107 s + 6.13 · 1010 . (8.15)

The Bode diagrams for both loops of the modal control system are given in
Figs. 8.9, 8.10. Here, the blue lines correspond to the control object, and the red lines
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Fig. 8.10 Bode diagram for the second loop of the modal control system (blue lines—control
object, red lines—open-loop system)
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—to the open-loop system. In the used FRFs of the control object, the characteristics
of the low-pass filters and the amplifier, which are included in the control loop, are
also taken into account. These characteristics weremeasured during the experimental
part of the investigation [6].

8.7 Comparison of the Results

In this section, the control results for all designed systems are summarized. In
Figs. 8.11, 8.12, 8.13 and 8.14, the resulting FRFs of the beam with control showing
the vibration amplitude of upper endpoint of the beam under the excitation of the
fixation point in the vicinity of the first and the second resonances are shown in
comparison with the FRF of the beam without piezopatches. Then, the difference
in the level of endpoint vibrations of the beam at both resonances for each control
system compared to the level of vibrations without control is given in Table8.1.
Figures show only results obtained numerically, while the experimental results for
tested earlier local and modal systems are presented in the table. In the table, �w1

and �w2 are the change in the magnitude of endpoint vibrations at the first and the
second resonances, respectively.

First, three local and threemodal control systemswere obtained (Figs. 8.11, 8.12).
In the first local system, both loops were designed to work at the first resonance
of the beam, and in the second system—at the second resonance. In the third local
system, the first feedback loop (lower sensor–actuator pair) was designed to suppress
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Fig. 8.11 Compensation of the first resonance of the beam with local and modal control systems
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Fig. 8.14 Compensation of the second resonance of the beamwithmodal and shape control systems

the first resonance, and the second loop (upper sensor–actuator pair)—the second
resonance. The first and the second modal systems have only one active feedback
loop—either the first (corresponding to the first bending mode of the beam) or the
second (corresponding to the second bending mode), while in the third system both
loops are active.

After that, four shape control systems were obtained (Figs. 8.13, 8.14). The first
and the second variants of the shape control system with two sensor–actuator pairs
were designed to suppress the first and the second resonances of the beam, respec-
tively, and the same is true for the systemswith five sensor–actuator pairs. The results
for these four systems are compared to the results for the modal control system with
two feedback loops.

The results of all the obtained control systems are summarized in Table8.1. As
can be seen from the table, the local and modal systems tested experimentally are
much less effective than the systems obtained numerically. This result emphasizes
the effectiveness of the optimization procedure used to design the latter systems.
The second conclusion is that the modal system with two loops is the most efficient
at both resonances among all local and modal systems. The local system №3 is
works also very well at both resonances, but its efficiency is lower compared to
the modal system. The results of the local system №1 is close to the local system
№3 at the first resonance, and the same holds for local systems №2 and №3 at
the second resonance. Similarly, the results of the modal system with two loops
practically repeat the individual results of the modal systems with only one loop at
corresponding resonances. This means that two loops almost do not interfere with
each other not only in the modal system, but, surprisingly, in the local system too.
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Table 8.1 Change in the level of endpoint vibrations of the beam at the first and the second
resonances for different control systems (experiment and simulation)

Control system �w1, dB �w2, dB

Local control, №1 (exp.) −12.7 4.8

Local control, №2 (exp.) −5.2 −18.9

Modal control, both loops
(exp.)

−15.7 −17.9

Local control, №1 −30.48 22.55

Local control, №2 0.67 −29.29

Local control, №3 −30.47 −26.37

Shape control, two pairs, №1 −34.69 1.42

Shape control, two pairs, №2 0.72 −4.57

Shape control, five pairs, №1 −39.19 1.51

Shape control, five pairs, №2 −1.47 −15.82

Modal control, first loop −31.7 0.57

Modal control, second loop 0.31 −30.33

Modal control, two loops −31.65 −30.5

It can also be seen that the first variants of the shape control systems work only at
the first resonance, while the second variants of the shape control systems suppress
vibrations only at the second resonance. At the same time, the shape control systems
with five sensor–actuator pairs are more efficient than the similar systems with two
pairs, what is expected. At the first resonance, the shape control systems are more
effective than the modal system; on the contrary, at the second resonance, the modal
system with two sensors and two actuators is much more effective even than the
shape control system with five sensor–actuator pairs. Therefore, the modal control
strategy is preferable compared to the shape control strategy in the cases, where it is
necessary to suppress vibrations at several resonance frequencies.

8.8 Conclusion

Within the present study, the problem of active suppression of forced bending vibra-
tions of a thinmetal beamwas analyzed experimentally and numerically. The purpose
of the designed control systems was to suppress forced vibrations in the frequency
range containing the first and the second eigenfrequencies of bending vibrations of
the beam. Different control systems based on each of the three strategies (local,
modal and shape control strategy) were tested and compared to each other. All
considered systems contained piezoelectric sensors and actuators, but the number
of piezopatches and feedback loops in these systems was different. The local and
modal systems included two sensor–actuator pairs and two feedback loops, while
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in the shape control systems either two or five pairs of piezopatches integrated into
only one control loop were used.

The results of the investigation show that local and modal systems can demon-
strate effective vibration suppression at both resonances together, and the efficiency
of the modal system is higher than the local one (more than 30 dB resonance ampli-
tude suppression for the systems under consideration). It should be noted that the
experimental results for local and modal systems were significantly improved by the
numerical optimization procedure. At the same time, the efficiency of the shape con-
trol systems at the first resonance is much greater than at the second resonance (for
the system with five sensor–actuator pairs, the results are, respectively, 39 dB and
16 dB). This can be explained by the fact that the distribution of the control action
of the shape control system is designed to compensate the static disturbance, which
causes the deflection of the beam close to the first bending eigenmode. Therefore,
the influence of the control loop of this system on the second eigenmode of the beam
is rather small. On the contrary, in the modal system, each control loop corresponds
to the particular bending mode of the beam. The lower result of the modal control
system at the first resonance compared to the shape control systems can be explained
by the fact that the distribution of the control action in the first control loop of the
modal system is specified not to compensate the first mode most effectively, but it is
specified from the condition of not affecting the second mode (in order to separate
the modes).

In summary, the shape control strategy is the best choice if it is needed to suppress
vibrations only at the first resonance of the beam, but not at the higher resonances. In
the cases, where it is necessary to suppress vibrations at several resonance frequen-
cies, the modal control strategy gives the best result.
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Chapter 9
Speed-Gradient Method in Mechanical
Engineering

Alexander L. Fradkov and Boris Andrievsky

Abstract The paper is devoted to development of the speed-gradient method in
the IPME RAS in 1986–2021 and its applications to the problems of mechanical
engineering.

Keywords Speed gradient · Mechanical engineering · Nonlinear dynamics ·
Control · Adaptation · Identification · Energy · Oscillations

9.1 Introduction

Control problems in mechanics and mechanical engineering are characterized by
complex, nonlinear dynamics, and high-dimensional models of controlled systems.
This often leads to the need to create new, specific control algorithms for each new
control object and each new control problem. Therefore, of particular interest are
schemes and methods for synthesizing algorithms that allow a unified approach
to solving various control problems. One of these methods is the so-called speed-
gradient method, which appeared back in the 1970s [1, 2], and has been inten-
sively developed in relation to mechanical objects at the IPME RAS and other orga-
nizations since the early 1990s [3–14]. This article provides a brief overview of
the applications of the velocity gradient method in mechanics and technical prob-
lems. Section9.2 gives a short description of the method, following [15]. Section9.3
describes approaches to the problem of controlling energy and other properties
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of nonlinear oscillations. Section 9.4 gives examples of applying the SG method
to solving control problems in technical systems. The description of some examples
follows the survey [16].

9.2 Speed-Gradient Method

Acontinuous-time counterpart of the gradient method is the so-called speed-gradient
(SG) method. Like the gradient method for discrete-time systems, SG method is
intended for control problems where control goal is specified by means of a goal
function.

Consider a nonlinear time-varying system

ẋ = F(x, u, t) (9.1)

and control goal
lim
t→∞ Q(x(t), t) = 0, (9.2)

where Q(x, t) ≥ 0 is a smooth goal function.
In order to design control algorithm the scalar function Q̇ = ω(x, u, t) is calcu-

lated that is the speed (rate) of changing Qt = Q(x(t), t) along trajectories of (9.1):
ω(x, u, t) = ∂Q(x, t)/∂t + (∇x Q(x, t))

T
F(x, u, t). Then it is needed to evaluate

the gradient ofω(x, u, t)with respect to input variables:∇uω(x, u, t) = (∂ω/∂u)
T =

(∂F/∂u)
T ∇x Q(x, t). Finally, the algorithm of changing u(t) is determined accord-

ing to the differential equation

du

dt
= −�∇uω(x, u, t), (9.3)

where � = �
T

> 0 is a positive-definite gain matrix, e.g., � = diag {γ1, . . . , γm},
γi > 0. The algorithm (9.3) is called speed-gradient (SG) algorithm, since it suggests
to change u(t) proportionally to the gradient of the speed of changing Qt .

The origin of the algorithm (9.3) can be explained as follows. In order to achieve
the control goal (9.2), it is desirable to change u(t) in the direction where Q(x(t), t)
decrease. However, it may be a problem since Q(x(t), t) does not depend on u(t)
directly. Instead one may try to decrease Q̇, in order to achieve the inequality Q̇ < 0,
which implies decrease of Q(x(t), t). The speed Q̇ = ω(x, u, t) generically depends
on u explicitly which allows to write down (9.3). The speed-gradient algorithm can
be also interpreted as a continuous-time counterpart of the gradient algorithm, since
for small sampling step size the direction of the gradient is close to the direction of
the speed gradient.

Let us illustrate speed-gradient design methodology for a class of tracking control
problems for controlled systems linear in the inputs:
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ẋ = A(x, t) + B(x, t)u, (9.4)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m is vector of controlling variables
(inputs) which may be either physical quantities or adjustable parameters, A(x, t) is
n-vector, and B(x, t) is n × m-matrix. Let the control goal have the form

lim
t→∞

(
y(t) − y∗(t)

) = 0, (9.5)

where y(t) = h(x(t)) ∈ R
l is l-vector of regulated variables (outputs) and y∗(t) ∈ R

l

is the goal trajectory (desired trajectory) of the outputs. It is clear that the goal (9.5)
has equivalent form (9.2) if the goal function Q(x, t) is chosen as follows:

Q(x, t) = 1

2

(
y − y∗(t)

)T

P
(
y − y∗(t)

)
, (9.6)

where P is symmetric positive-definite l × l-matrix.
For the purpose of control algorithm design, rewrite Eq. (9.4) in the form

ẋ = A(x, t) +
m∑

i=1

Bi (x, t)ui , (9.7)

where ui are components of the vector u ∈ R
m and Bi (x, t) ∈ R

n are columns of the
matrix B(x, t). Then the rate (speed) of changing Q(x(t), t) along trajectories of the
system (for constant u) is as follows:

ω(x, u, t) = (
y − y∗(t)

)T

P
(
CA(x, t) + CB(x, t)u − ẏ∗(t)

)
, (9.8)

where C = C(x, t) = ∂G(x, t)/∂x . Taking the gradient of (9.8) in u, we obtain the
speed gradient and the speed-gradient algorithm in the following form:

∇uω(x, u, t) = B(x, t)
T
C

T
P

(
y − y∗(t)

)
, (9.9)

du

dt
= −�B(x, t)

T
C

T
P

(
y − y∗(t)

)
. (9.10)

To simplify design, the gain matrix � is often chosen as diagonal matrix (� =
= diag {γi }) or scalar matrix (� = γ I ) where γi , γ are positive numbers. For special
case of the system linear in inputs, the algorithm (9.10) is nothing but the classical
integral control law.

In a similar way, the so-called speed-gradient algorithm in finite form is designed

u(t) = u0 − �∇uω(x(t), u(t), t), (9.11)
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where u0 is some initial value of control variable, e.g., u0 = 0). Algorithm (9.11) is
a generalization of classical proportional control law.

More general form of speed-gradient algorithms is sometimes useful:

u(t) = u0 − γψ(x(t), u(t), t), (9.12)

where γ > 0 is the scalar gain parameter and vector function ψ(x, u, t) satisfies the
so-called pseudogradient condition

ψ(x, u, t)
T∇uω(x, u, t) ≥ 0 (9.13)

for all x, u, t . Special case of (9.12) is called sign-like or relay-like algorithm:

u(t) = u0 − γ sign∇uω(x(t), u(t), t), (9.14)

where sign of a vector is understood component-wise: for a vector z =
col (z1, . . . , zm) sign z is defined as sign z = col (sign z1, . . . , sign zm).

In order to make a reasonable choice of the control algorithm parameters the
applicability conditions should be verified. The main conditions are convexity of the
function ω(x, u, t) in u and existence of “ideal” control u∗ such that ω(x, u∗, t) ≤ 0
for all x (attainability condition). More precise formulations can be found in
[17, 18].

The speed-gradient algorithms can be modified to take into account constraints.
For example, let the equality constraint be given

g(x(t), u(t), t) = 0, (9.15)

where g is a smooth scalar function, and a scalar control function u(t) is to be chosen
such that (9.15) is satisfied for all t ≥ 0. The modified (constrained) SG algorithm
in differential form is as follows:

u̇(t) = −γ∇uω(x(t), u(t), t) − λ(t)∇ug(x(t), u(t), t), (9.16)

where the Lagrange multiplier λ(t) is chosen to satisfy condition ġ = 0, that is,

λ(t) = −γ∇uω(x(t), u(t), t) + ∇x g
T
F(x(t), u(t), t) + ∂g/∂t

|∇ug(x(t), u(t), t)|2 . (9.17)

Initial condition u(0) should satisfy constraint too: g(x(0), u(0), t) = 0. The case
of SG algorithms in finite form and the case of inequality constraints are considered
in a similar way.

The speed-gradient algorithm is tightly associated to the concept of Lyapunov
function V (x)—a function of the system state nonincreasing along its trajectories.
Lyapunov function is an abstraction for such physical characteristics as energy and
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entropy. It is important that Lyapunov function can be used not only for analysis
but also for system design. In particular, for the speed-gradient algorithms in the
finite form, the goal function itself may serve as the Lyapunov function: V (x) =
Q(x). The Lyapunov function for differential form of SG algorithms is as follows:
V (x, u) = Q(x) + 0.5(u − u∗)T�−1(u − u∗), where u∗ is the desired “ideal” value
of controlling variables. Note that in order to justify discrete-time gradient algorithm
one may use Lyapunov function as square distance between the current and the
“ideal” controlling variables V (u) = |u − u∗|2.

9.3 Control of Energy and Nonlinear Vibrations

In the development of the speed-gradient (SG) method in the 1990s, two important
milestones can be subdivided. Firstly, it was possible to systematize on the basis
of the SG algorithms [3] the methods of adaptive control of mechanical systems,
including robotic manipulators, based on the passivity concept [19–22].

Secondly, itwas proposed to design control algorithms for the excitation of oscilla-
tions of Hamiltonian systems based on the SG using objective functions that depend
on the Hamiltonian (the energy) of a free system. In particular, for a controllable
Hamiltonian systemwith the Hamiltonian H(q, p) = H0(q, p) + H1(q, p)u, where
q∈ R

n is the vector of generalized coordinates, p∈ R
n is a vector of generalized

momenta, u is a scalar control action, H0(q, p) is the Hamiltonian of a free system,
and H1(q, p)u is an interaction Hamiltonian, the following control goal is posed:

H0(q(t), p(t)) → H∗ as t → ∞, (9.18)

where H∗ is the desired value of the system energy. Choosing the objective function
in the form of Q(x) = 1/2(H0(x) − H∗)2, one obtains the SG algorithm in the form

u = −γ (H0 − H∗)p, (9.19)

where γ > 0 is the gain [4, 23–25]. The results obtained were summarized in the
books [17, 18] and became the basis for the synthesis of control algorithms in numer-
ous problems of oscillation control in systems and networks. In [3, 4, 25], these
methods were extended to systems in more general form than Hamiltonian ones.
The conditions for the applicability of the SG method for controlling invariants of a
wide class of nonlinear systems were also obtained.

The concept of the “swinging control” is introduced, ensuring achievement of
an arbitrarily large level of the objective function using an arbitrarily small control
level. The existence of a swinging control is established for Hamiltonian systems.
The simulation results of swinging up a pendulum are presented. The results further
are developed in [25], where the method of synthesis of control of oscillatory non-
linear systems is extended to the problems with several objective functionals under
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constraints. For the first time, an approach based on the SG method to the problem
of controlling the passage through resonant zones is proposed.

In [26], the method is proposed for using the SG approach to controlling the
synchronization of two oscillators, using the example of two pendulums weakly
coupled by a spring. In this case, the equation of the controlled system has the form

{
ϕ̈1 + ρϕ̇1 + ω2 sin ϕ1 = k(ϕ2 − ϕ1) + u,

ϕ̈2 + ρϕ̇2 + ω2 sin ϕ2 = k(ϕ1 − ϕ2),
(9.20)

where ϕi = ϕi (t) are the angles of rotation of the pendulums (i = 1, 2); u = u(t)
denotes the external moment (control action) acting on the first pendulum;ω, k, ρ are
the system parameters: ω is the frequency of natural oscillations of small amplitude,
k is the coupling coefficient between pendulums (for example, the coefficient of
elasticity of a spring), and ρ is the damping factor.

The objective function is taken in the following form:

Q(x) = αQϕ(ϕ̇1, ϕ̇2) + (1 − α)QH (x), (9.21)

where x = [
ϕ1, ϕ2, ϕ̇1, ϕ̇2

]T
is the system state vector,

Qϕ(ϕ̇1, ϕ̇2) = 1

2
δ2ϕ, QH (x) = 1

2

(
H(x) − H∗

)2
, (9.22)

H(x)= 1

2
ϕ̇2
1+ω2(1−cos ϕ1) + 1

2
ϕ̇2
2+ω2(1 − cosϕ2) + k

2
(ϕ1 − ϕ2)

2 (9.23)

stands for the total energy of the system, δϕ = ϕ̇1 − ϕ̇2 is the synchronization error,
H∗ is the desired energy value, and α > 0 is the weight coefficient. Obviously, the
minimum (zero) value of the objective function corresponds to the synchronous
movement of the pendulums at a given level of the entire system oscillations energy.

The SG algorithm in the final form, designed for such an objective function, has
the form

u(t) = −γ
(
αδϕ(t) + (1 − α)δH (t)ϕ̇1(t)

)
,

δϕ(t) = ϕ̇1(t) + ϕ̇2(t),

δH (t) = H
(
x(t)

) − H∗, (9.24)

where γ > 0 is the gain.
The simulation results show that the SG algorithm (9.24) creates a synchronous

regime in the system with two degrees of freedom (two coupled pendulums), and at
a low friction coefficient ρ > 0, an energy close to the specified H∗ can be achieved
at a low gain γ > 0, i.e., the system exhibits the feedback resonance effect.
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A similar problem is considered in [27], where the control law is synthesized by
the SG method with an energy goal functional. The analysis of the system is carried
out according to a simplified model of its dynamics. The results of both computer
simulation and experiments on the laboratory setup demonstrated the efficiency of
the adopted control method.

The problem of raising the Furuta pendulum up is analyzed in [28] by comparing
the results obtained using the traditional Åström–Furuta strategy based on a model
of dimension two with a new strategy, based on the SG law on a manifold of dimen-
sion three. A counterexample is given where the new law works well but the old
one does not. The problem of bringing the Furuta pendulum to the top position is
usually solved by a hybrid controller, in which the global problem is divided into
two stages. First, the pumping of energy brings the pendulum to a vertical position.
The pendulum then stabilizes in this position. In [29], different control strategies for
both problems are analyzed both by simulation and using a real laboratory pendu-
lum. The problem of raising the Furuta pendulum is solved in [30] by applying the
SG method to a model of a system with dimension four. The new law is compared
to the traditional Åström–Furuta strategy based on a two-dimensional model. The
results of a comparative analysis, including modeling and experiments, which show
the advantages and efficiency of the proposed swinging law, are presented.

The problem of stabilizing the vertical position of a spherical pendulum is dis-
cussed in detail in [31]. This problem is reduced to stabilization of the stable man-
ifold �st of the vertical position of a free spherical pendulum. It is shown that for
any smooth feedback control obtained using the SG algorithm to stabilize �st, the
closed-loop system has a limit cycle � that does not belong to the desired attractor
� st.

In [32], the available results on the stabilization of invariant sets for nonlinear
systems based on the SG method and the notion of V -detectability are generalized
and extended. The results on the control of oscillations of a pendulum, a pendulum
on a trolley, and a spherical pendulum are presented. The algorithm providing the
global attractiveness of the vertical (unstable) equilibrium position of the pendulum,
based on the discontinuous version of the SG energy method, is obtained in [33]. It
is shown that global attractiveness cannot be obtained using continuous static state
feedback. A detailed global analysis of the transient behavior of a closed-loop system
is presented. In addition, it is shown that the global attractiveness of the vertical
equilibrium position can be achieved by applying an arbitrarily small control action.

In [34], the problem of numerical computation of the excitability index for oscilla-
tory systems is considered. It is shown that excitation by the SG method provides an
exact solution to the problem of achieving the maximum energy for a second-order
linear oscillator over an infinite time interval. The upper and lower limits of the total
energy of the system in the steady oscillations mode and the excitability index were
estimated. The exact value of the available energy of the system is found for the
harmonic excitation case.

SG algorithm for control of nonlinear oscillations of a dynamical system for the
regulation and tracking problems is presented in [35]. The Colpitts oscillator, see
[36], which has a chaotic behavior, is taken as an example. The algorithm uses only
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structural information about the dynamic model to designing the control law and can
globally asymptotically converge to the given regular orbits or fixed points.

In [37], the problems of excitation and synchronization of oscillations in a double-
coupled double pendulummechatronic system are considered. Hardware, communi-
cation interface, and software for laboratory experiments and control are described.
The pulse-modulated control law for excitation/synchronization of oscillations is
obtained by means of the SG method. Laboratory experiments were performed to
check and evaluate the parameters of the adopted mathematical model. The com-
parison results of simulation and laboratory experiments for excitation and synchro-
nization analysis are presented.

The authors of [38] have used adaptive gain tuning in time-delayed feedback for
improving the control quality. The adaptive controller proposed in [38] is used to
stabilize an unstable fixed point and an unstable periodic orbit built into a chaotic
attractor. The adaptation algorithm is designed bymeans of the SGmethod.Computer
simulations presented in [38] show that the adaptation algorithm can find a suitable
feedback gain for single and multiple delays. In addition, the [38] method is shown
to be robust against noise and variations of the initial conditions.

The problem of adaptive synchronization of two connected non-identical models
ofHindmarsh–Rose neurons is considered in [39]. It is shown that the use of the devel-
oped controller based on the SG method ensures achievement of the synchronous
behavior of the systems under study. The results obtained aremathematically verified
and illustrated by the simulations.

The problem of controlling pendulum mechanisms is discussed in [40]. The
Hamiltonian formalism is used to describe the pendulum’s dynamics. An algorithm
for achieving equal energy values of oscillating pendulums by means of feedback
control based on the SG method is proposed. The conditions for the attainability of
the control goal are obtained. A connection has been established between the syn-
chronization of energy and the frequency of oscillations. The results of computer
simulations are presented, demonstrating the control goal achievement and showing
the dynamic properties of a closed-loop system.

In [41], the problem of controlling the energy of a pendulum in the presence of
an irregular input disturbance is considered. The feedback control law based on the
SGmethod is designed. The main result is the precise estimates for the initial set and
the final set (attractor), as well as conditions guaranteeing that all solutions starting
in the initial set reach the attractor in a finite time.

Using the example of controlling the pendulum energy, in [42], the problem of
controlling a nonlinear system on an invariant manifold using quantized state feed-
back is considered. A SG feedback control law is employed. The main result of [42]
is an accurate description of the limits of the allowable quantization error and the
resulting limits of the energy deviation.

In [43], the problems of energy control for the Frenkel–Kontorovamodel are posed
and their connection with the control of pendulum chains is discussed. An energy
control algorithm based on the SG method is proposed and analyzed. Simulation
results are presented, illustrating the proposed algorithm convergence.
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9.4 Control of Technical Systems

9.4.1 Control of Vibrating Machines

In [44, 45], the problemof controlledpassage through the resonance zone formechan-
ical systems with several degrees of freedom is investigated. In [44], a control algo-
rithm has been developed based on the SG method and the estimation of the slow
motion frequency near resonance (“Blechman frequency”). The simulation results of
two-rotor flexible vibrating plants are presented, demonstrating the efficiency of the
proposed algorithms and the fractal dependence of the transient time on the initial
conditions. A feature of the research given in [45] is the study of the operation of
a closed-loop system, taking into account the dynamics of an electric drive. It was
found that the time of passage through the resonance zone may turn out to be shorter
than for the simplifiedmodel without taking into account the dynamics of the electric
drive. Research was continued in [46]. It is noted that the existing control algorithms
based on the SG method require measuring the full state vector of the system. To
eliminate this drawback, a control algorithm based on a partial observer has been
developed to estimate the vertical velocity of the supporting body. The proposed
observer is based on a simplified nonlinear model of a two-mass oscillatory system.
The efficiency of controlled passage through the resonance zone with a control algo-
rithm based on the proposed observer is analyzed using computer simulations for a
complete model of a mechanical system.

Thework [47] is devoted to the control of vibrations ofmechanical systems during
start-up and passing through resonant modes. In both cases, the control algorithm is
based on the SG method with energy-based objective functions. It is shown that for
Hamiltonian systems with one degree of freedom, in the general case, it is possible
to move the system from any initial state to any final state using a control force
of arbitrarily low intensity. A controlled passage through resonance on a vibration
machine with five degrees of freedom with the presence of friction forces is investi-
gated. Simulations have shown that the use of feedback control makes it possible to
pass through a lower resonance with a lower control intensity compared to passing
through a resonance with a constant control torque. A feature of [47] is the consid-
eration of the case when constant control torques do not allow the rotors to even
start rotating. The use of closed-loop control allows the rotors to overcome gravity
and start rotating. In [47], a comparison of the simulation results with the experi-
mental ones obtained on the SV-2M double-rotor laboratory mechatronic setup of
the Institute for Problems in Mechanical Engineering of the Russian Academy of
Sciences (IPME RAS), which includes unbalanced vibration exciters installed on a
spring-loaded platform, sensors, electric motors, control computer, interface for data
exchange, cf. [48–51], is presented. Most of the results are in qualitative agreement,
which confirms the adopted model adequacy.

Results of an experimental study of the phenomenon self-synchronization and
Sommerfeld effect [52, 53] in both open and closed control loops are presented in
[49]. Experiments were performed on a multiresonant mechatronic laboratory setup
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SV-2M. It is shown that closed-loop control based on the SG method allows more
accurate stabilization of the rotation speed than the open-loop control of motors
usually used in vibration technology. Some additional effects such as low-frequency
self-oscillationmay appear due to the integral (I) component feedback control signal.

In [54], the synchronization of a controlled unbalanced rotor with a viscoelastic
base and force excitation is studied. By the method of direct separation of motion,
the conditions for the existence and stability of the synchronous mode of motion
are derived for the general control law. Then, using the SG method, a control law
is developed to transfer the maximum energy from the excitation to the rotor. The
free parameters of the control law are derived in such a way that the controlled
synchronization is stable at the bound of its existence.

The authors of [55] consider the problem of controlling the number of the electric
machine rotor cycles slipping using the influence of an external moment using a
simple mathematical model as an example. To solve the problem, the SG method
was used with an objective function determined by the function of the vibration
energy. A feature of this approach is the possibility of using a sufficiently small
control, which contributes to energy conservation. An algorithm for controlling the
oscillations of the rotor of an electric machine is designed, using which a given
number of cycle slips occurs. In [56], the use of the SG and relay algorithms is
compared. In the simulation, the task is to perform the desired number of cycle slips
at the beginning, and then excite the rotor oscillations with a constant amplitude. The
simulation results showed the efficiency of the proposed algorithms.

In [57], the adaptive estimation of unknown parameters and states of a spherical
robot with a pendulum drive is considered. For this purpose, the following general-
ized problem is considered: for a nonlinear plant model in the form ẋ = f (x, p, u),
where x ∈ R

n , p∈ R
k , find the estimate ˙̂x = f (x̂, p̂, u) for ensuring the goal condi-

tion lim
t→∞ |p − p̂(t)| = 0. To use the SG method, the following objective functional

is introduced: J (x, x̂) = 1

2

∑n
i=1 wie2i , where ei = x̂i − xi , wi are the weight coef-

ficients chosen by the developer; i = 1, . . . , n. The SG design method leads to the

following expressions: J̇ = ∂ J

∂t
+ f̂ (x̂, p̂, u)T∇x̂ J =

n∑

i=1
wiei

(
ėi + f̂i (x̂, p̂, u)

)
=

n∑

i=1
wiei

(
2 f̂i (x̂, p̂, u) − fi (x, p, u)

)
. The result is the following SG estimation law:

˙̂p = −�∇ p̂

( n∑

i=1

wiei f̂i (x̂, p̂, u)
)
. (9.25)

Algorithm (9.25) is applied in [57] for real-time estimation of states and unknown
parameters of a spherical robot for various values of the step length and the initial
conditions. For adaptive adjustment of this gain, a heuristic fuzzy-logic controller
is used. The simulation results presented in [57] show that the proposed approach
is quite encouraging to identify this nonlinear chaotic system, even if the initial
conditions change and the level of uncertainty increases.
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9.4.2 Control of Vehicles

9.4.2.1 Regulation of the Speed of Heavy Vehicles.

Authors [58] consider the problem of longitudinal speed control of heavy vehicles
equipped with variable compression brakes. Nonlinear controllers have been devel-
oped that perform both non-critical and critical maneuvers. The design technique
is based on the SG method. The nominal objective function is selected to solve the
speed control problem, and then it is modified accordingly by introducing the bar-
rier functions to meet the critical requirements of the maneuver. In order to perform
more aggressive (critical) braking maneuvers or to control the vehicle speed during
large slope changes, the compression brake should be matched with the gear ratio
control and the friction brakes. Two ways of controlling under the condition of the
road slope uncertainty are discussed: by using the integral action of the SG controller
for constant (but unknown) slopes and by using an additional differential action for
various slopes.

9.4.2.2 Controlling the Operation of Gasoline Engines with Direct
Injection Stratified Charge.

TheSGmethod is used in [59] to develop a law for coordinated air-to-fuel ratio control
and torque control in direct injection stratified charge gasoline engines (DISCE). The
method is based on dynamic minimization of the objective function.

The following process model is used in [59]:

ẋ = f (x) + g(x)u, (9.26)

where the state vector x = [pm,W f , δ]T and the control vector u = [uth, u f , uδ]T are
the sumof the pressure in the intakemanifold pm , the effective flowarea of the throttle
valve uth , the flow through the throttle W f , and ignition time δ. For introducing the
integral action into the control law, it is assumed that W f and δ are governed by the
following equations: Ẇ f = u f , δ̇ = uδ .

For the controller design, the objective function Q = Qp + Qb is used, where

• Qp is transient penalty—squared deviations the moment of braking of the motor,
the flow through the cylinders, and the ignition time from their settings;

• Qb is a penalty for violating the constraint λ ∈ [λmin, λmax], where λ(t) is the
air-to-fuel ratio inside the cylinder.

The control goal is to stabilize the desired equilibrium state x = xd so that f (xd) +
g(xd)ud = 0, minimizing Q

(
x(t)

)
to ensure Q

(
x(t)

) → 0.
For the selected objective function Q, the speed gradient is ω(x) ≡ ∇u Q̇

(
x(t), u

) =
(∂Qp

∂x
g(x)

)T +
(∂Qb

∂x
g(x)

)T

. Then, for the considered objective func-

tion, the SG method leads to the following control law:
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u = ud − �ω(x). (9.27)

In [59], the numerical procedure that can be used in practice to test the stability
conditions of the considered feedback system is proposed.

9.4.2.3 Adaptive Control of an Autonomous Underwater Manipulation
Robot.

Papers [35, 60, 61] are devoted to the adaptive control of an autonomous underwater
vehicle (AUV) with a manipulator. In [35, 60, 61], a nonlinear adaptive AUV control
system with six degrees of freedom based on the SG method has been developed.
Based on the adaptive approach, the problems of positioning and kinematic track-
ing are solved together. To develop a control algorithm, no prior knowledge of the
parameters of the dynamics and hydrodynamics of the AUV is required, except for
the dynamics of the engine. The adaptationwas carried out using a nonlinear adaptive
SG control law. The design takes into account the dynamics of the motors using the
method of reverse dynamics and observation of the state/disturbance.

In [60], a class of fully controlled AUVs with two planes of symmetry and six
degrees of freedom is considered. The AUV dynamics model is based on the results
of [62, 63] and has the following form:

M v̇ = −C(v)v − D(|v|)v + Fb(η) + Fc + Ft , (9.28)

η̇ = J (η)v (9.29)

with systemmatrices M(t) = Mb(t) + Ma(t),C(t, v) = Cb(t, v) + Ca(t, v), where
Mb is the inertia matrix of the body, Ma denotes the matrix of added masses (mass of
the surrounding fluid), and Cb(t, v), Ca(t, v) are Coriolis and centripetal matrices,
D(|v|) = Dl + Dq diag(|v|). The following generalized coordinates and velocities
are introduced into (9.28), (9.29): η = [x, y, z, ϕ, θ, ψ]T is the generalized position
in the frame of reference fixed to the Earth, v = [u, v,w, p, q, r ]T is the vector of the
generalized velocity on the trajectory of the AUV in the body reference frame, J (η)

is the rotation matrix with Euler angles (ϕ, θ, ψ), Fb stands for the pure buoyancy
force, Fc is the rope reaction force, and Ft denotes the generalized thrust.

From (9.29), it follows that v = J (η)−1η̇. With the substitution of this relation in
(9.28), the AUV model takes the form

Mη(η)η̈ + 1

2
Ṁη(η)η̇ + Dη(v, η)η̇ + gη(η) = τη, (9.30)

where τη is the generalized controlling torque. By introducing the orientation
and speed errors as η̃(t) = η(t) − η∗(t), ṽ(t) = v(t) − v∗(t) in [60] the follow-
ing tracking problem is posed: to ensure the limiting relations limt→∞ η̃(t) = 0,
limt→∞ ṽ(t) = 0.
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To solve this problem in [60], the energy estimation functional Q(η̃, ṽ) = 1

2
η̃Tη̃ +

1

2
ṽTM ṽ is employed and the following control aim is chosen: Q(η̃, ṽ) → 0 for

t → ∞. The SG design procedure consists of the following steps: Q̇(η, v), therefore
∇τ Q̇(η, v), and finally the SG control law has the form τ(η, v, η̃, ṽ).

Due to the AUV parameters uncertainty, the following SG adaptive control law
was used

U̇i = −�i
∂ Q̇(Ui )

∂Ui
, i = 1, . . . , 6, (9.31)

where Ui are the matrix controller parameters and �i = �T
i > 0 are the adaptation

gains. In [60, 61], the simulation results are presentedwhich demonstrate the features
of the proposed approach.

The approach to direct adaptive control and the development of a fast navigation
system for 3D tracking of all-wheel drive remote controlled vehicles is presented in
[64], where the SG algorithm is combined with the time-optimal tracking law.

9.4.2.4 Neural Network Control System for Underwater Robot

Works [65–67] are devoted to the design of control systems for an underwater robot
based on an intelligent neural network. A new learning algorithm for an intelligent
controller is obtained using the SG method. The proposed systems provide robot
dynamics close to the desired one.

Let us present the results of [67] in more detail. As an initial model of an under-
water robot (UR), [67] uses its standard description in the form of a set of kinematic
and dynamic equations [68]

q̇1 = J (q1)q2, (9.32)

D(q1)q̇2 + B(q1, q2)q2 + G(q1, q2) = U, (9.33)

where J denotes the kinematic matrix; q1, q2 are the vectors of generalized coor-
dinates and velocities of UR in the body-frame reference system; U is the vector
of control forces and moments; D is the matrix of inertia taking into account the
added mass of water; B denotes the matrix of Coriolis and centrifugal forces; and
G is the vector of generalized forces and moments of gravity, buoyancy, and non-
linear damping. In [67], it is proposed to overcome the existing incompleteness of a
priori information about the parameters of the UR model based on intelligent neural
network (NN) control.

The problem is to track the UR of a given trajectory q∗
1 (t), q

∗
2 (t). Tracking the

velocities q∗
2 (t) is discussed first. Tracking error e2(t) = q∗

2 (t) − q2(t) is introduced,
with respect to which the following local goal functional is constructed
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Q = 1

2
eT
2De2 (9.34)

with some matrix D(t) = D(t)T > 0. Following the SG method, the derivative Q̇ is
calculated by virtue of system (9.34):

Q̇ = eT
2Dė2 + 1

2
eT
2 Ḋe2, (9.35)

whence, after substitutions, one obtains

Q̇ = eT
2

(
D(q1)q̇

∗
2 + B(q1, q2)q

∗
2 + G(q1, q2) −U

)
. (9.36)

It is proposed to implement the UR control law using a two-layer NN [69], i.e.,
as

U = W f (w, x), (9.37)

where W is the matrix of the transfer coefficients from the neurons of the inner
(hidden) layer to the output neurons, f (·) are the activation functions of the neurons
of the hidden layer, and w is the matrix of the transfer gains from the input neurons
to the neurons of the hidden layer.

Expressions (9.36), (9.37) lead to the following formula for the derivative of the
objective function rate of change with respect to the coefficients of matrix W :

∂ Q̇

∂W
= −e2 f

T(w, x). (9.38)

The neuron activation functions are taken in the exponential form f (w, x) =
1/(1 + e−τwx ) with some τ > 0.

Paper [67] is illustrated by the computer simulation results.

9.4.3 Control of Power System

The problem of controlled synchronization of a multi-machine power system with
losses is considered in [70], where conditions for the existence of invariants in the
system are obtained and a synchronization algorithm based on the SG method is
developed for the objective function penalizing for deviations from the existing
invariant. The quality evaluation of the closed-loop system is made based on the
simulation results.

Works [71, 72] present an inverse optimal neural controller according to the
SG method for nonlinear systems with discrete time in the presence of external
disturbances and parameter uncertainties for a power system with various types of
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faults in transmission lines, including the load fluctuations. The controller is based
on a discrete-time recurrent high-order neural network (RHONN) trained using an
algorithm based on the extended Kalman filter (EKF). In [72], a simplified neural
model of a synchronous machine to stabilize a nine-bus system in the presence of a
fault in three different cases on the transmission lines is proposed.

The problem of increasing the stability and quality of operation of electrical
networks using control is considered in [73]. In this work, the approach based on
the use of an invariant function depending on system variables and the SG method
for control synthesis, proposed in [70], has been expanded. Namely, changes have
been made to the algorithm of [70] for more flexibility in the control system design.
The stability and performance of a closed-loop system for a network consisting of
three generators has been studied. The simulation results are presented to illustrate
the system dynamics.

9.4.4 Control of Gyroscopes

Works [74, 75] are devoted to the control of nonlinear oscillations of an annular
vibrating microgyroscope, the resonator of which is a thin elastic ring of thickness
h connected to the base by means of eight semicircular spokes [76, 77]. The center
line of the resonator in the undeformed state has the form of a circle of radius R.
Its oscillations are excited and recorded by the system of control and measuring
electrodes. In [74, 75], the errors of a vibrating microgyroscope arising from the
nonlinear elastic properties of the ring resonator material are studied. The aim of
[74, 75] is to synthesize the control law for resonator oscillations to reduce the effect
of nonlinear elasticity of the ring material on the gyroscope errors. Using the SG
method, a control law of the potentials of the electrodes is designed, which allows
maintaining a given amplitude of the normal deflection of the resonator and parrying
gyroscope errors arising from the nonlinear elastic properties of the material.

For describing the resonator dynamics, the quantities v, w are introduced, which
stand for the elastic displacements of the resonator ring element in the circumferential
and radial directions, respectively. To simplify the solution, a single-mode approx-
imation is used, i.e., it is assumed that w = f sin(nϕ) + g cos(nϕ), where n is the
number of the oscillation mode of the resonator; f = f (τ ), g = g(τ ) are functions
of dimensionless time τ = ωnt , determined by a system of two nonlinear differential
equations of the second order obtained from the equation of normal deflection using
the Bubnov–Galerkin procedure. The right-hand sides of the equations for f (τ ),
g(τ ) contain the control voltages Ũ1 (for f ) and Ũ2 (for g), which are taken in the
form

Ũ1 = u1 sin τ + u2 cos τ, (9.39)

Ũ2 = u3 sin τ + u4 cos τ, (9.40)

where u1, . . . , u4 are the slowly changing control actions.
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For studying the system by the Krylov–Bogolyubov averaging method [78], the
following change of variables was performed:

f = p1 sin τ + q1 cos τ, g = p2 sin τ + q2 cos τ, (9.41)

where slowly changing variables p1, q1, p2, q2 are introduced.
Further, the equations of the system are represented in the Hamiltonian form:

qi = ε

(
∂H

∂pi
− 1

2
γ qi

)
, pi = ε

(
∂H

∂qi
− 1

2
γ pi

)
, i = 1, 2 (9.42)

with the Hamilton function

H = −1/2ν(p2q1 − p1q2) − 1/8ξ(p2q1 − p1q2)
2+

3/32ξ
(
q2
1 + p21 + q2

2 + p22
)2 + 1/2(p2u1 + q1u2 + p2u3 + q2u4). (9.43)

Coefficient γ in (9.42) corresponds to the system damping (the energy dissipa-
tion). In [74, 75], it is shown that in the absence of damping (γ = 0), functions

G1 = q2
1 + p21 + q2

2 + p22, G2 = p2q1 − p1q2 (9.44)

are the first integrals of system (9.42), which makes it possible to reduce the problem
of nonlinear oscillations of a ring resonator to quadratures.

The considered problem of excitation and stabilization of oscillations of a ring
resonator is formalized in [74, 75] using scalar objective functions G1, G2, while
the control goal is set as reaching the limit equality

lim
t→∞ Gi = G∗

i , i = 1, 2, (9.45)

where G∗
1 = r2∞, G∗

2 = 0.
For exciting and maintaining a given amplitude of the resonator oscillations in the

form of a standing wave, the following quadratic objective function is introduced

V = 0.5
(
ζ(G1 − G∗

1)
2 + (1 − ζ )G2

2

)
, (9.46)

where 0 ≤ ζ ≤ 1 is the weight coefficient chosen during the synthesis.
The control algorithm is derived based on the SG method. For this, the time

derivative V̇ of function (9.46) is calculated

V̇ = ζ(G1 − G∗
1)Ġ1 + (1 − ζ )G2Ġ2, (9.47)
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where the derivatives of functions Gi due to (9.42) have the form

Ġi = ε(−γGi + uT{H̄,Gi }), i = 1, 2,

H̄ = 1/2(p1, q1, p2, q2)
T, u = (u1, u2, u3, u4)

T, (9.48)

where u is the control vector and {H̄,Gi } is the column vector of Poisson
brackets [79].

For objective function (9.46), the following SG algorithm in the final form is
derived

u = −η
(
ζ(G1 − G∗

1){H̄,G1} + (1 − ζ )G2
{
H̄,G2

})
, (9.49)

where η > 0 is the control gain.
Further, in [74, 75], an analysis of the properties of a closed-loop system with

SG algorithm is performed. To this end, the influence of gain η on the form of phase
trajectories and on the location of singular points in the space (G1,G2) is examined,
and the relations for choosing weight coefficient ζ in (9.46) are found, which provide
the highest degree of damping of oscillations depending on the model parameters.

9.4.5 Control of Induction Motors

9.4.5.1 Starting Induction Squirrel-Cage Motor

Paper [80] is devoted to the problem of soft start of an induction electric motor (IM)
with a squirrel-cage rotor. An unsatisfactory dynamics of the starting processes of
the IM was noted, which is especially pronounced in electric drives with frequent
starts or operating in intermittent mode. To improve the starting processes of the
IM, one can use a soft starter, i.e., a special starter based on power semiconductor
devices. In [80], the control law is proposed for smooth start of IM based on the SG
method based on the assumption that at a constant frequency of the supply voltage,
the starting device is capable of changing its amplitude at an infinitely high speed.

To describe the starting process in [80], the following model of a generalized
two-phase electric machine is used, written for the coordinate system x-y, rotating
synchronously with the stator voltage vector:

ẋ = A(x) + B(x)u, (9.50)

where
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A(x) =

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

− R1

L1
ψ1x + R1

L1
k2ψ2x + ω0ψ1y

− R1

L1
ψ1y + R1

L1
k2ψ2y + ω0ψ1x

− R2

L2
ψ2x + R2

L2
k1ψ1x + (ω0 − pω)ψ2y

− R2

L2
ψ2y + R2

L2
k1ψ1y − (ω0 − pω)ψ2x

1

J
(M − Mc)

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

, B =

⎡

⎢⎢⎢⎢
⎣

1
0
0
0
0

⎤

⎥⎥⎥⎥
⎦

, (9.51)

u = Um , x = [
ψ1x ψ1y ψ2x ψ2y ω

]T
are the components of stator (index 1) and rotor

(index 2) flux linkages; R1, R2, L1, L2 are active resistances and total inductances of
the stator and rotor, respectively; ω0, ω are frequencies of the field and rotor rotation,
respectively; p is the number of pole pairs; M = c(ψ1yψ2x − ψ1xψ2y) denoted the
electromagnetic torque developed by the motor; Mc is the moment of resistance; J
stands for the moment of inertia of the electric drive; k1 = Lm/L1; k2 = Lm/L2; Lm

is the inductance of the magnetizing circuit.
Twocontrol objectives are posed: stabilization of the torque and stabilization of the

flux linkage vector modulus. The first goal is aimed at minimizing the pulsations of
the electromagnetic moment, and the second is to exclude saturation of the magnetic
system. These control goals are expressed by means of the local goal functional

Q(x, t) = 1

2

(
y − y∗)T

H
(
y − y∗), (9.52)

where y = [
M ψ2

1

]T
is the vector of controlled quantities; y∗ = [

M∗ ψ1
∗2]T is the

vector of reference actions; H denotes the unit matrix of order 2; ψ2
1 = ψ2

1x + ψ2
1y

is the square of the modulus of the stator flux linkage vector; and M∗, ψ1
∗2 are the

desired values of the electromagnetic moment and the squared modulus of the stator
flux linkage vector, respectively.

The controlled plant (9.51) is affine in input, and therefore the SG algorithm in
the integral form is as follows:

u =
∫ (−�B(x)TCTH(y − y∗)

)
dt, (9.53)

where � = �T > 0,C = ∂y(x)

∂x
is the Jacobi matrix for the vector of controlled vari-

ables. Taking into account (9.50), (9.52), the following control algorithm is derived:

Um = −γ

∫ (
2ψ1x (ψ

2
1 − ψ∗2

1) − ψ2y(MM∗)
)
dt, (9.54)

where γ > 0 is the selected control gain.
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In [80], the proposed control algorithm was simulated for induction motor
4A80A4U3. The results showed that when using the (9.54) algorithm, the time his-
tories of the electromagnetic torque and flux linkage module have much less ripple
than when starting by direct connection to the power network.

9.4.5.2 Multi-motor Drive Control

The task of controlling a multi-motor induction drive is discussed in [81]. The prob-
lem is posed to ensure the coordination of the values of the electromagnetic torque
developed by each of the n IM, maintaining the value of the total torque M� at the
required level. In addition, it is required to maintain the values of each IM at a given
level.

Paper [81] uses the following mathematical model of the set of induction motors
working on one shaft:

ẋ = A(x, t) + B(x, t)u, (9.55)

where x = col{x1, . . . , xi , . . . , xn} is a column vector composed of the state vectors
of each motor xi = [

ψ1α,i , ψ1β,i , ψ2α,i , ψ2β,i , ω
]T
, i = 1, . . . , n, ψ· denote compo-

nents of the stator and rotor flux linkage vectors, ω is the rotor angular velocity, and
ui = [

u1,α, u1,β
]T
are the components of the voltage vector supplied to the IM stator

in a fixed coordinate system α—β (control vector). The matrix A has a block form.
The vector of deviations of the controlled variables

[
y(t) − y∗(t)

]
is introduced,

where its individual components are as follows:

[
y(t) − y∗(t)

] =
[[

piσi L12,i (ψ1β,iψ2α,i − ψ1α,iψ2β,i ) − M∗
i (t)

]
[
ψ2

1α,i + ψ2
1β,i − ψ∗2

1,i

]
]

, (9.56)

where L1 = L12 + Lσ1, L2 = L12 + L2 are the total stator and rotor inductances,
respectively; σ = 1/(L1L2 − L2

12) denotes the engine dissipation factor; p is the
number of pole pairs; and M∗ is the desired electromagnetic torque of the motor.

For designing the control algorithm, a following local goal functional is intro-
duced:

Q(x, t) = 0.5
(
y(t) − y∗(t)

)T
H

(
y(t) − y∗(t)

)
. (9.57)

Applying the SG method for goal functional (9.57), expressions were found for
the components of the voltage vector at the output of the frequency converter, which
ensure the achievement of the posed control goal. It is noted that the obtained expres-
sions are computationally laborious, and also require information on the components
of the flux linkage vectors of the rotor of each IM in real time, and therefore it is dif-
ficult to apply the obtained SG algorithm in practice. To avoid these disadvantages,
following [82], in [81], a number of assumptions aremade, taking into account which
law of torque control of a multi-motor induction drive takes the form:
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u1α = −γ

∫ (
n∑

i=1

(

hi

(
−Mi − M∗

i

MHi
ψ1β,i + |ψ1,i |2 − ψ∗2

1,i

ψ2
1H,i

ψ1α,i

)))

dt,

u1β = −γ

∫ (
n∑

i=1

(

hi

(
−Mi − M∗

i

MHi
ψ1α,i + |ψ1,i |2 − ψ∗2

1,i

ψ2
1H,i

ψ1β,i

)))

dt . (9.58)

Checking the functionality of the proposed control law is performed by computer
simulation for explosion-proof asynchronous electric motors DKV355L4, operating
on one shaft and controlled by a single frequency converter. As a result of research,
it has been shown that using (9.58) for multi-motor ID drives with group connection
of motors to a frequency converter, it is possible to achieve high-quality control of
the total torque of the drive with a spread of ID parameters in a wide range.

9.5 Conclusions

In the paper, the main statements of the speed-gradient method with the focus on
mechanical engineering problems are presented. Such directions of the SG method
applications in the fields as the problem of controlling energy and other properties of
nonlinear oscillations, control of car engines, adaptive control of autonomous under-
water vehicles, and identification of spherical robot parameters are reviewed. It is
demonstrated that the SG method is a useful and an efficient tool for solving a wide
range of engineering problems, confirming that it “enables a transparent trade-off
between control performance and design parameters. Furthermore the steps for con-
troller design results in general simple…it has become widespread in other multiple
successful applications in adaptive control mainly in Physics and Mechanics” [60].
Recent research on [83] shows that this method can also serve as a bridge between
control theory and the field of machine learning, revealing the commonality of many
approaches in these areas.
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Chapter 10
FEM-simulations of a Chemical Reaction
Front Propagation in an Elastic Solid
with a Cylindrical Hole

Alexander B. Freidin, Igor K. Korolev, and Sergey P. Aleshchenko

Abstract The influence of a stress concentrator on a chemical reaction front prop-
agation in a solid is investigated for the reaction between diffusing and deformable
solid constituents. A kinetic equation is used in a form of the dependence of the reac-
tion front velocity on the normal component of the chemical affinity tensor which in
turn depends on the mechanical stresses. A plane problem for a linear-elastic body
with a cylindrical hole as a concentrator is studied using numerical FEM-simulations.
An analytical solution of the axially symmetric problem is used for the verifications
of the numerical procedure. Then reaction front propagation in the vicinity of the
hole is studied for all-round and uniaxial external loadings.

Keywords Mechanochemistry · Chemical affinity tensor · Reaction front · Stress
analysis · FEM-simulations · Coupled problems

10.1 Introduction

The present paper considers a chemical reaction between diffusing and deformable
solid constituents and continues studies of the propagation of chemical reaction
fronts in solids which were started in [9, 11, 12] for elastic solids in the case of
small strains and were extended for finite strains in nonlinear viscoelastic solids [31]
and composite materials [32, 42] and were applied for modeling intermetallic phase
growth in lead-free solders [29, 30]. Modeling the front propagation is based on the
concept of a chemical affinity tensor. The expression of the chemical affinity tensor
was derived in [8, 10] for the case of a reaction between a diffusing constituent and
deformable solid of an arbitrary rheology from the analysis of fundamental laws and
the entropy inequality (see also Appendix in [9], and a review [13] where a state of
the art and references are also presented). Earlier the chemical affinity tensor was
derived for the case of nonlinear reaction constituents in [7] similar to how it was
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done for nonlinear-elastic phases in the case of propagating interface in the case of
stress-induced phase transformations [19].

It was shown that the energy dissipation due to the propagation of a chemical
reaction front equals to the product of the reaction rate at the oriented surface element
by the normal component of a tensor that was naturally to call a chemical affinity
tensor. Tensorial nature of the chemical affinity, analogously to the tensorial nature
of a chemical potential (see discussions of a chemical potential tensor in [16]), can
be explained by the fact that the reaction in a deformable solid takes place not just in
a point but at an oriented surface element. Tensorial nature of the chemical potential
and affinity was also pointed out in [37, 38].

The expression of the dissipation gave a hint for formulating the kinetic equation
in a thermodynamically consistent form of the dependence of the reaction rate and,
thus, the reaction front velocity on the normal component of the affinity tensor. This,
in turn, allowed to include the influence of stress-strain state on the reaction rate
through the affinity tensor.

Note other approaches to the description of the influence of stresses on the reaction
front propagation. Stresses may affect the reaction rate via stress-dependent diffu-
sion coefficient, e.g., [18, 39], concentration-volumetric expansion due to diffusion
[35, 36] or/and additional stress-dependent driving force in the diffusion equation
[20, 21]. Another group of models includes the influence of stresses on the diffusion
flux and the chemical reaction rate via a scalar chemical potential that depends not
only on the concentration but also on the stresses [1–5, 20–25]. As an alternative to
considerations of the transformation front as a sharp interface, phase field models
have been developed, e.g., [40].

In the present paper we consider the chemical reaction front as a sharp interface
across which corresponding strain compatibility conditions are satisfied. Recogniz-
ing the influence of stresses on diffusion, we focus on the stress effects via the tenso-
rial affinity only and accept the simplest Fick’s law of the diffusion. Note that even in
this case stresses affect the diffusion via the boundary condition for the diffusion flux
at the reaction front. This leads to coupling of stress, diffusion, and mechanochem-
istry problems. Since analytical solutions of the coupled boundary value problems
“diffusion–chemistry–mechanics” can be obtained only for simplest cases, the prob-
lems of the chemical reaction front propagation stimulated the development of the
numerical simulation methods. For example, in [14, 36], along with a development
of the theoretical approach, the integral numerical methods and gradient FEM were
used for the problems with the unknown internal boundary. XFEM procedure was
used in [6, 43]; CutFEM approach [33] and isogeometric analysis [26, 27] were tried
for problems with moving interfaces.

In the present paper we utilize the concept of the chemical affinity tensor devel-
oping a numerical procedure based on FEM and, in this sense, continue studies
presented in [11, 28, 30, 32], focusing on the reaction front propagation in the vicin-
ity of a stress concentrator, namely, in the vicinity of a cylindrical hole in a plane
strain statement.
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10.2 Chemical Affinity Tensor and Chemical Reaction
Front Kinetics

We consider a chemical reaction of the following type:

n−B− + n∗B∗ → n+B+, (10.1)

where B−, B+ and B∗ are the chemical formulae of the reacting constituents, B− and
B+ are the initial and transformed deformable solid constituents, B∗ is the diffusing
constituent, n± and n∗ are the stoichiometric coefficients.

The following assumptions are accepted:

1. The reaction is localized at the reaction front and is sustained by the diffusion
of the diffusing constituent B∗ through the transformed material B+.

2. The diffusing constituent is completely consumed by the reaction at the front.
3. The Fick’s diffusion law with stress independent diffusivity coefficient is

accepted.
4. In comparison with the reaction front propagation, the diffusion is fast enough

to consider a steady-state diffusion process.
5. The transformed material is considered as a solid skeleton for the diffusing

constituent, i.e., the diffusing constituent does not induce additional strains in
the solid constituent.

6. The reaction front is coherent: the displacement in solid phases is continuous
across the front.

7. The influence of the pressure produced by the diffusing constituent on the stress
state is neglected.

8. The temperature effects of the reaction are neglected.
9. A small strains approach and quasi-static case are considered.

In [8, 10] it was derived that the energy dissipation due to the chemical reaction
front propagation takes the form

Dis = ω(n)Ann = ρ−
n−M−

AnnW, (10.2)

where ρ− is the mass density of the initial material, ω(n) is the reaction rate at the
front surface element with the normal n, W is the normal component of the reaction
front velocity, Ann = n · A · n is the normal component of the chemical affinity tensor
which is defined in a quasi-static case by the formula

A = n−M−M− + n∗M∗μ∗I − n+M+M+, (10.3)

where M± and M∗ are the molar masses of the solid and diffusing constituents, I
is the unit tensor, μ∗ is the chemical potential of the diffusing constituent, M± are
the Eshelby energy-momentum tensors divided by the reference mass densities of
the solid constituents. Note the similarity between (10.2), (10.3) and the classical
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expression of the dissipation Dis = Aω with the reaction rate ω in a point, the scalar
chemical affinity A = −∑

nkMkμk and the scalar chemical potentials μk , where
the stoichiometric coefficients nk (k = 1, 2...) are substituted into the sum with the
sign “+” if the kth constituent is produced in the reaction and with the sign “−”
otherwise [34].

Further we suppose that the solid constituents are linear-elastic, and take μ∗ in
the form

M∗μ∗ = η∗(T ) + RgT ln
c

c∗
, (10.4)

where Rg is the universal gas constant, c is the molar concentration of B∗, c∗ is the
reference concentration of B∗ taken as the solubility of B∗ in B+, T is the temperature,
η∗(T ) is the reference free energy of B∗. Then the normal component of the chemical
affinity tensor can be written in a form [9–11]:

Ann = n−M−
ρ−

{

γ (T ) + 1

2
ε− : σ− −1

2
σ+ : (ε+ − εch)

+σ− : (ε+ − ε−)

}

+ n∗RgT ln
c

c∗
, (10.5)

where ε± are the strain tensors of the solid constituents, εch is the transformation
strain, σ− = C− : ε− and σ+ = C+ : (ε+ − εch) are the Cauchy stress tensors, C±
are the elasticity tensors. The temperature-dependent energy parameter γ is the com-
bination of the chemical energies η∓

0 of the solid constituents B∓ (Helmholtz free
energies of solids in stress-free states) and the reference energy of B∗:

γ = η−
0 − η+

0 + ρ−
n−M−

n∗η∗. (10.6)

Note that mechanical stresses affect the front propagation only if the input of the
strain energy is comparable with γ .

Following [8, 9], we formulate the kinetic equation for the reaction rate ω(n) by
replacing the scalar chemical affinity in a known formula (e.g., [15]) for the reaction
rate in a point by the normal component of the chemical affinity tensor, as

ω(n) = k∗c
{

1 − exp

(

− Ann

RgT

)}

, (10.7)

where k∗ is the reaction constant. Then from the mass balance it follows that the
normal component of the reaction front velocity is defined by the formula:

W = n−M−
ρ−

k∗c
{

1 − exp

(

− Ann

RgT

)}

. (10.8)
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The stresses can be found from the equilibrium equations

∇ · σ = 0 (10.9)

with the boundary conditions and traction and displacement continuity conditions
across the reaction front.

The concentration of the diffusing constituent is found from the diffusion problem
which, in accordance with the assumptions, includes the Laplace equation

�c = 0 (10.10)

and the boundary conditions

c|Ω+ = c∗ or D
∂c

∂n

∣
∣
∣
∣
∣
Ω+

− α (c∗ − c(Ω+)) = 0, (10.11)

D
∂c

∂n

∣
∣
∣
∣
∣
Γ

+ n∗ω(n) = 0, (10.12)

where Ω+ is the part of the outer surface of the body through which the diffusion
flux is supplied, Γ is the reaction front, c∗ is the given concentration or solubility of
B∗ in the material B+, α is the mass transfer coefficient. Without loss of generality,
one may take c∗ also as the reference volume density in Eqs. (10.4), (10.5).

Kinetic equations (10.7), (10.8) can be rewritten in terms of the equilibrium con-
centration ceq [8, 9], introduced such that

Ann(c = ceq) = 0. (10.13)

By the solid skeleton approach the mechanical part in (10.5) does not depend on
the concentration and, therefore, Ann can be rewritten as

Ann = n∗RgT ln
c

ceq
. (10.14)

Further, the stoichiometric coefficients are normalized by n∗:

n− → n−/n∗, n+ → n+/n∗, n∗ → 1.

Then, by (10.7), (10.8) and (10.14), the reaction rate and reaction front velocity
are expressed through the current concentration of the diffusing constituent and the
equilibrium concentration corresponding to the stresses and strains at the front (see,
e.g., [11]):
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ω(N) = k∗
(
c(Γ ) − ceq

)
, W = n−M−

ρ−
k∗

(
c(Γ ) − ceq

)
, (10.15)

where ceq is determined by Eq. (10.13). The boundary condition (10.12) takes the
form

D
∂c

∂n

∣
∣
∣
∣
∣
Γ

+ k∗
(
c(Γ ) − ceq

) = 0, (10.16)

In such a representation stresses and strains affect the reaction rate via the equi-
librium concentration, and the front may propagate only if c(Γ ) > ceq .

10.3 Numerical Simulations

The formulated coupled problem can be solved analytically only in simple cases.
Thus, using the subroutine written in ANSYS internal programming language, we
develop a numerical approach for the modeling localized chemical reactions in
deformable solids. The finite-element modeling in the case of elastic solid con-
stituents includes the following steps:

1. Choose the initial layer of the transformed material.
2. Calculate stresses at the reaction front.
3. Find the equilibrium concentration of the diffusing constituent for stresses at the

reaction front.
4. Find the current concentration of the diffusing constituent at the reaction front.
5. Calculate the normal component of the reaction front velocity W .
6. Give the increment �s = Wτ to each reaction front point and find the new front

position. Here τ is a time increment.
7. Repeat the procedure from the Step 2 for the new reaction front position.

The developed subroutine allows to simulate the reaction front propagation in
a fully automatic mode. As an output, the position and the velocity of the every
reaction front point as well as the stresses and strains are found in dependence of
time. The diffusion problem is solved using thermo-diffusion analogy. This allows
us easily switch between the mechanical and diffusion problems, thus the automatic
operation of the whole subroutine is provided. An additional subroutine is developed
to avoid any kind of reaction front intersection during propagation, which can cause
the numerical problems.
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10.3.1 Axially Symmetric Problem

To verify the numerical model we compare finite-element results and analytical
solution of the axially symmetric plane problem for the front propagation in the
vicinity of a cylindrical hole under all-round external tension σ 0. The reaction starts
at the inner surface of the hole, and the material B∗ forms the cylindrical layer of a
thickness h round the hole (Fig. 10.1). For the sake of simplicity, we suppose that
the concentration c∗ of the diffusing constituent is constant inside the hole.

In cylindrical coordinates (r, ϕ, z), the radial displacements u± in domains occu-
pied by the materials B+ and B− are given by the Lame solution:

u± = A±r + D±/r, (10.17)

where A±, D± are found from the boundary conditions and from displacement and
traction continuity across the reaction front.

The stresses and strains are given by formulae:

ε±
r = A± − D±/r2, ε±

ϕ = A± + D±/r2

σ±
r = 2K±(A± − εch± ) − 2μ±D±/r2,

σ±
ϕ = 2K±(A± − εch± ) + 2μ±D±/r2,

(10.18)

where εch− = 0, εch+ = εch , the constants A± and D± can be easily found from the
boundary and interface conditions. Then the stress-strain dependent part in the
expression (10.5) of Ann can be written in an explicit form as the function of the
reaction front radius and external stress, and the equilibrium concentration ceq at the
reaction front can be found from Eq. (10.13).

To find the concentration of the diffusing constituent at the reaction front one have
to solve the diffusion equation

∂2c

∂r2
+ 1

r

∂c

∂r
= 0, (10.19)

Fig. 10.1 The axially
symmetric problem
(all-round tension)
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Table 10.1 The material parameters

The parameter The component B− The component B+
Young modulus, E (GPa) 163 60

Poisson’s ration, ν 0.23 0.17

Transformation strain, εch − 0.015

ρ/M (Mol/m3) 8.29 · 104 3.66 · 104

with the boundary conditions:

c|r=R = c∗, D
∂c

∂r

∣
∣
∣
∣
r=R+h

+ k∗ (c − ceq)
∣
∣
r=R+h = 0, (10.20)

where h is the thickness of the transformed material layer.
Finally, the expression (10.15) of the reaction front velocityW = ḣ can be written

down and then integrated.
Thenumerical simulation is carriedout formaterial parameters given inTable10.1.

The energy parameter γ = 9.6 · 107 J/Mol. The results are shown in Fig. 10.2. Due
to the symmetry, only a quarter of the model is pictured.

One can see that the reaction front remains cylindrical and keeps axial symmetry.
We emphasize that the front velocity was independently calculated in every point
of the front from the local numerical values of stresses and concentration, and axial
symmetry was not assumed during the simulation but was obtained. The results
of the numerical simulation are compared with the analytical solution in Fig. 10.3
and 10.4 where the dependencies of the reaction front position on time and the front
velocity on the front position are shown. The square dots correspond to the numerical
simulation, and the dashed line represents the analytical solution. One can observe
a good agreement between analytical results and numerical simulations.

10.3.2 The Hole Under Uniaxial Tension or Compression

Figure10.5 demonstrates the reaction front kinetics near the cylindrical hole under
uniaxial tension and uniaxial compression in the horizontal direction. The detailed
front kinetics through the time dependencies of the position of points A (the pole
of the hole) and B (the “equator” of the hole) is presented in Fig. 10.6, 10.7 for
various types of external loading. One can see that the stress-strain state affects the
chemical reaction front propagation, and in the vicinity of the hole the tensile stress
concentration increases the reaction front velocity, while compressive stresses near
the hole retard the front.
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Fig. 10.2 The reaction front kinetics in the vicinity of the hole at all-round tension σ0 = 400 MPa:
(a) t = τ , (b) t = 8τ , (c) t = 15τ , (d) t = 19τ

Fig. 10.3 Comparing numerical and analytical results: the reaction front position vs time at all-
round tension
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Fig. 10.4 Comparing numerical and analytical results: the reaction front velocity vs reaction front
position at all-round tension

10.4 Conclusions

This paper is devoted to the modeling the influence of a stress-state on the chemical
reaction front kinetics. The theoretical approach to the solution of a coupled problem
“diffusion–chemistry–mechanics” is based on the chemical affinity tensor concept
which puts the problem into the framework of the mechanics of configuration forces.
Numerical simulations allow to investigate complicate problems of the chemical
reaction front propagation. In the present paper an example of the procedure is
given for the case of linear-elastic solid reaction constituents and quasi-stationary
diffusion, which includes the FEM software development, analytical solution of a
simple problem which is used for the verification of the procedure, and finally the
use of the procedure for the solution of a problem that cannot be solved analytically.
A reaction in the vicinity of a stress concentrator was chosen as a trial problem. For
the simplicity sake, only the case of linear-elastic solid constituents was considered,
and the transformation strain was taken small for the consistency with a small strain
approach. Nevertheless the results obtained give understanding of the influence of
stress concentrators on the chemical reaction front propagation.



10 FEM-simulations of a Chemical Reaction Front Propagation in an Elastic … 205

Fig. 10.5 The chemical reaction front kinetics: a–d at horizontal uniaxial tension σ0 = 400 MPa,
e–h at uniaxial horizontal compression σ0 = −400 MPa, a, e t = τ , b, f t = 4τ , c, g t = 8τ ,
d, h t = 12τ
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Fig. 10.6 The reaction front position vs time for point A at all-round and uniaxial ten-
sion/compression

Fig. 10.7 The reaction front position vs time for point B at all-round and uniaxial ten-
sion/compression
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Chapter 11
Diffusion in Media with Spheroidal Pores

Ksenia P. Frolova, Nikolay M. Bessonov, and Elena N. Vilchevskaya

Abstract The chapter describes the diffusion process in a composite material with
non-uniformly distributed isolated spheroidal pores. The pores are assumed to present
in the material initially or to form during the mass transport. The influence of the
segregation effect, shape of pores, and its orientation scatter on the distribution of
impurity is discussed. Various constitutive equations for the diffusion flux are com-
pared. Consideration of Fick’s first law allows to account for effective diffusion
properties of material with microstructure. Consideration of the constitutive equa-
tion introducing chemical potential allows to account for effective diffusion and
effective elastic properties of a porous material.

Keywords Effective properties · Effective diffusivity · Segregation effect ·
Homogenization methods · Chemical potential

11.1 Introduction

The diffusion process is largely determined by the microstructure of the material.
Usually, the diffusion coefficient along grain boundaries is several times higher than
the one for the bulk diffusion [1]. Impurity can be partially trapped inside vacancies,
voids, and microcracks [2–4]. In addition, the mobility of impurity can be changed
by a stress field [5] that depends not only on strains, but also on the stiffness of a
heterogeneous solid.

A detailed examination of the surface layer of a uniform monocrystal shows that
there are voids near the boundary [6]. Subsurface regions of the metal specimens
can contains vacancies [7]. In some cases accumulation of impurity within grain
boundaries can initiate intergranular microcracks. A non-uniform distribution of
microstructural defects can affect the distribution of impurity in a host material.
Sometimes, a local increase of impurity can change the properties and behavior

K. P. Frolova (B) · N. M. Bessonov · E. N. Vilchevskaya
Institute for Problems in Mechanical Engineering RAS, V.O., Bolshoy pr., 61, St. Petersburg
199178, Russia

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
V. A. Polyanskiy and A. K. Belyaev (eds.), Mechanics and Control of Solids
and Structures, Advanced Structured Materials 164,
https://doi.org/10.1007/978-3-030-93076-9_11

209

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93076-9_11&domain=pdf
https://doi.org/10.1007/978-3-030-93076-9_11


210 K. P. Frolova et al.

of material [8]. For this reason, a realistic picture of the distribution of impurity
concentration in material with microcracks must be drawn.

The dependence of the diffusion process on the microstructure of material can
be accounted for in a mathematical expression for the diffusion flux. The last one
can be defined in different ways in accordance with various constitutive equations.
According to the classical Fick’s first law, matter flows from regions of high concen-
tration to regions of low concentration, with a magnitude that is proportional to the
concentration gradient. This law allows for the introduction of the dependence of the
diffusion coefficient on the microstructure of a host material. Fick’s first law is some-
times referred to as local law since it relates the local flux to the local concentration
gradient. This local law may be amended to include local gradients of other field
variables through the introduction of a chemical potential that makes the law non-
local [9–11]. In general, the chemical potential is a sum of the stress-independent and
stress-dependent parts. In this case, the dependence of diffusivity and the dependence
of stiffness on the microstructure of a solid can be introduced.

Effective properties of heterogeneous materials can be determined by different
methods. A detailed review of the history of various methods can be found in [12],
whereas the current state of knowledge of the problem is described in [13]. Elastic
and conductivity properties have been determined for various composites. A num-
ber of approximate schemes were rewritten in [14] for diffusivity on the basis of
similarity between governing equations in the diffusivity and conductivity prob-
lems. However, a principal difference between the two problems is that temperature
is a continuous function across the phase boundaries, while concentration is usu-
ally not. Therefore, the segregation effect should be taken into account [15]. Typical
micromechanicalmodelswere rewritten for diffusivity in [1] to calculate the effective
diffusion coefficient of a polycrystalline material accounting for the isotropic distri-
bution of spheroidal inhomogeneities over orientation. In [16] we rewroteMaxwell’s
homogenization scheme for a transversely isotropic material accounting for various
orientation distributions of spheroidal inhomogeneities.

The present paper is concerned with modeling of mass transport process in trans-
versely isotropic composite material consisting of grains, grain boundaries, and non-
uniformly distributed isolated pores. Impurity is assumed to diffuse along grain
boundaries and fill the pores. A composite consisting of grains and grain boundaries
is represented here by a homogenized background matrix with a known diffusivity
calculated in [1]. Pores are considered as embedded inhomogeneities. Two different
processes are considered:

1. Diffusion process inmaterial initially containing unevenly distributed spheroidal
pores. The effect of oblate and prolate spheroidal pores, as well as spherical
ones, is investigated. The following orientation distribution of inhomogeneities
is considered: arbitrary orientation distribution, orientational scatter of pores
about a preferential orientation, arbitrary orientation distribution of rotational
axes of spheroidal pores in one plane.
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2. Diffusion process accounting for the pore formation during the mass transport.
The effect of oblate spheroidal pores modeling intergranular microcracks is
investigated. An arbitrary orientation distribution is considered since the external
loading that could lead to a specific orientation distribution is absent.

11.2 Problem Statement

The modeling of the mass transport process in a porous material consists of two
stages. At the first stage, the effective properties of a composite are calculated. Effec-
tive diffusivity of a material containing spheroidal pores with different orientation
distribution corresponding to the transversally isotropic material was calculated in
our paper [16] using Maxwell’s homogenization scheme. Inhomogeneities with dif-
fusion coefficient D1 were embedded in a solid withmuch lower diffusion coefficient
D0 (α = D0/D1 = 0.05). We assumed continuity of the normal component of the
solute flux across the matrix (denoted by “+”)/pore (denoted by “-”) interface and a
constant jump in impurity concentration, c, described by the segregation factor, s, as
follows

c (x) |x→∂V+ = sc (x) |x→∂V− (11.1)

When concentration is a continuous function across the phase boundaries, there
is no segregation effect and s = 1. The presence of the segregation effect leads to
a fundamental distinction of the diffusion process from that of conductivity. In the
present paper, we assume that impurity can be partially trapped inside the pores
that mean s ≤ 1. The effect of the segregation factor on the concentration profiles is
investigated.

Effective elastic properties of composite materials consisting of pores with com-
pliance S1 → ∞ and matrix with compliance S0 were calculated in a large number
of works using various homogenization schemes (in particular, Maxwell’s homoge-
nization scheme), see [12, 13] for details. Effective elastic properties can be also cal-
culated by means of effective diffusivity properties on the base of the cross-property
connections that interrelate the changes in different physical properties caused by a
certain microstructure. Explicit connections between effective elastic and conductive
properties of materials were established in [17, 18]. In a similar way, we obtained
explicit connections between the effective elastic moduli and diffusion coefficient of
a two-phase material with isolated inhomogeneities identical in shape in [19].

At the second stage of modeling, a diffusion problem is solved for a long cylin-
der. For simpleness, in the case of initially unevenly distributed spheroidal pores
in a matrix we consider only a stress-free diffusion following classical Fick’s first
law. Hence, only effective diffusion coefficients are introduced. In the case of pore
formation directly during the mass transport, we assume that stresses and strains may
appear due to the inhomogeneous distribution of impurity. We consider a stress-free
and stress-induced diffusion that allows for investigating the influence of effective
diffusion coefficients on the concentration profiles and the joint influence of effective
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diffusivity and compliance on the distribution of impurity. A linear dependence of
the volume fraction of pores on concentration is considered.

We now discuss two stages of modeling.

11.3 Effective Properties of a Porous Material

This section provides the main ideas and results of calculation effective diffusivity
and elastic properties of material with spheroidal pores.

11.3.1 Effective Diffusivity Properties

In the present research, we refer to our results obtained in [16] for effective diffusivity
of a composite material containing isolated pores. Let us briefly recall themain ideas.

Following [13, 20], we use property contribution tensors to express the effect of a
given inhomogeneity on the properties of interest. Their sums are proper microstruc-
tural parameters that reflect contributions of individual inhomogeneities to the overall
effective properties.

To explain the influence of an isolated inhomogeneity on the process of the mass
transport we use the second-rank diffusivity contribution tensor, HD , and resistance
contribution tensor,HDR. In the case of spheroidal inhomogeneity with the isotropic
diffusivity tensor D1 = D1I embedded in a matrix with D0 = D0I, property contri-
bution tensors are as follows

HD = −D2
0H

DR = [B1θ + B2nn] , (11.2)

where θ = I − nn, I is the second-rank unit tensor, n is a unit vector along the axis
of symmetry of spheroidal inhomogeneity, and

B1 = 1 − sα

sα + (1 − sα) f0
, B2 = 1 − sα

1 − 2 (1 − sα) f0
. (11.3)

Here the shape function f0 = f0 (γ ) depends on the aspect ratio of the spheroidal
inhomogeneity γ (γ < 1, γ = 1, and γ > 1 correspond respectively to an oblate
spheroid, sphere, andprolate spheroid).Hence, functions B1 = B1 (s, α, γ ) and B2 =
B2 (s, α, γ ) depend on the segregation factor, contrast in diffusivity of the matrix and
inhomogeneity and shape of the inhomogeneity.

To solve the homogenization problem for a composite material with multiple
inhomogeneities we use formulation of Maxwell’s homogenization scheme in terms
of diffusivity (resistivity) contribution tensors [21, 22]. According to Maxwell’s
idea, it is necessary to evaluate far-field perturbations due to inhomogeneities in
two different ways and equate the results. The first way is to evaluate this field as
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the one generated by some homogenized region possessing (yet) unknown effective
properties. This field can be expressed in terms of the property contribution tensor of
the domain denoted by ∗. The second way is based on consideration of the sum of far
fields generated by all the individual inhomogeneities within this domain (treated as
non-interacting ones). Equating the results yields the effective diffusion properties
in the form

(
Deff

)−1 = 1

D0
I +

⎧
⎨

⎩

[
1

V

∑

k

VkHDR
k

]−1

− Q∗

⎫
⎬

⎭

−1

(11.4)

in terms of the resistivity and

Deff = D0I +
⎧
⎨

⎩

[
1

V

∑

k

VkHD
k

]−1

− P∗

⎫
⎬

⎭

−1

(11.5)

in terms of diffusivity. Here P∗ and Q∗ = [D0 − D0 · P∗ · D0] are the second-rank
Hill’s tensors that reflect the shape of the homogenized spheroidal domain and take
into account interactions between the inhomogeneities. The first Hill’s tensor P∗ can
be expressed in terms of derivatives of Green’s function G for concentration as

P∗ =
(

∇
∫

V1

∇′G
(
x − x ′) dx ′

)S

.

In the absence of P∗ and Q∗, Maxwell’s scheme coincides with the non-interaction
approximation.

In [16] we obtained the following expression for the effective diffusion coefficient
of a composite material with an arbitrary orientation distribution of spheroidal pores:

Deff

D0
= 3 + 2φ (2B1/3 + B2/3)

3 − φ (2B1/3 + B2/3)
. (11.6)

In the case of orientational scatter of pores about a preferential orientation,Eqs. (11.4),
(11.5) reduced to

Deff
11

D0
= Deff

22

D0
=

(
1 + φ (B1 (1 − g1) + B2g1)

1 − φ f0 (γ ∗) (B1 (1 − g1) + B2g1)

)
, (11.7)

Deff
33

D0
=

(
1 + φ (B1 (1 − g2) + B2g2)

1 − φ (1 − 2 f0 (γ ∗)) (B1 (1 − g2) + B2g2)

)
, (11.8)

where g1 = g1
(
λ̄
)
, g2 = g2

(
λ̄
)
are functions of the scatter parameter λ̄ that appears

in the expression for the probability density function introduced in [21]. The scatter
parameter varies in the range from zero to infinity that corresponds to fully random
and strictly parallel orientations of pores, respectively.
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In the case of arbitrary orientation distribution of rotational axes of spheroidal
pores in one plane, Eqs. (11.4), (11.5) took the form

Deff
11

D0
= Deff

22

D0
=

(
1 + φ (B1 + B2)

2 − φ f0 (γ ∗) (B1 + B2)

)
, (11.9)

Deff
33

D0
=

(
1 + φB1

1 − φ (1 − 2 f0 (γ ∗)) B1

)
. (11.10)

Note that Maxwell’s scheme formulated in terms of diffusivity and resistivity con-
tribution tensors led to the same result.

11.3.2 Effective Elastic Properties

Effective elastic properties can be determined in a similarway bymeans ofMaxwell’s
homogenization scheme in terms of fourth-rank compliance contribution tensor H
describing extra strain occurring over a reference volume due to the presence of
the isolated inhomogeneity or in terms of fourth-rank stiffness contribution tensor
N describing extra stress [13]. Property contribution tensors of a spheroidal inho-
mogeneity embedded in an isotropic matrix are transversely isotropic and can be
expressed as linear combinations of the tensor basis elements

T1 = θθ , T2 = 1

2

(
(θθ)T(1,4) + (θθ)T(2,4) − θθ

)
, T3 = θnn, T4 = nnθ

T5 = 1

4

(
nθn + (nθn)T(1,2),(3,4) + (θnn)T(1,4) + (θnn)T(2,3)

)
, T6 = nnnn,

so

H =
6∑

i=1

hkTk, N =
6∑

i=1

nkTk . (11.11)

When inhomogeneities have a spherical shape, the compositematerial is isotropic,
and Maxwell’s homogenization scheme results in the following expressions for the
effective bulk modulus Keff and effective shear modulusGeff [13]:

Keff

K0
= 1 − 3K0αKφA

1 + 3K0 (1 − αK ) φA
, (11.12)

Geff

G0
= 1 − 2G0αGφB

1 + 2G0 (1 − αG) φB
, (11.13)

where
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αK = 2 (1 − 2ν0)

(1 − ν0)
, αG = (7 − 5ν0)

15 (1 − ν0)
,

A = 20h1 + 10 (h3 + h4) + 5h6
15

, B = 2h1 + 6h2 − 2 (h3 + h4) + 3h5 + 2h6
15

,

ν0 is the Poisson’s ratio of the matrix.
In [19] we calculated effective elastic properties by means of effective diffusivity

properties on the base of the cross-property connections. Twomain assumptionswere
used in the course of deriving the connections: inhomogeneities are spheroidal and
effective properties are determined in the framework of the non-interaction approxi-
mation [17, 18]. Establishing explicit connections between the effective elastic and
diffusion properties is possible if they are expressed in terms of the same microstruc-
tural parameters. To this end, an approximate expression for the effective compliance
(stiffness) tensor introduced in [17, 18] must be used. These expressions coincide
with the exact ones only in the case when inhomogeneities have a spherical shape.
In the case of spheroidal inhomogeneities with an arbitrary orientation distribution,
the explicit connections obtained in [19] lead to the following expressions for the
effective Young’s modulus Eeff and shear modulus Geff:

Eeff

E0
=

[
1 + 3 (s1 + s2) + s3 + s4

2B1 + B2

(
Deff

D0
− 1

)]−1

, (11.14)

Geff

G0
=

[
1 + 3s2 + s4

2 (1 + ν0) (2B1 + B2)

(
Deff

D0
− 1

)]−1

, (11.15)

where si = si (hk) (i = 1..6, k = 1..6) are coefficients of the approximate fourth-
order effective compliance tensor obtained in [17, 18]. The effective bulk modulus
can be calculated as

Keff = EeffGeff

3
(
3Geff − Eeff

) . (11.16)

11.4 Diffusion Problem

We now turn to the diffusion problem and introduce equations describing the mass
transport of impurity in a host material.

11.4.1 Constitutive Equations for the Flux

Following linear non-equilibrium thermodynamics we define the diffusion flux J as

J = −Mc∇μ, (11.17)
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where M = D/RT is the impurity mobility (D is the diffusion coefficient, R =
8.31455 J/(mol·K) is the universal gas constant, T is the absolute temperature), c is
concentration and μ is the chemical potential.

The chemical potential of the impurity/host material system may contain the
stress-independent part μ0 and stress-dependent part μS:

μ = μ0 + μS. (11.18)

We take the stress-independent part in the form of the chemical potential of the
ideal gas

μ0 = μ0
0 + RT lnc, (11.19)

where μ0
0 is a constant that represents the chemical potential at a standard state.

The stress-dependent part of the chemical potential is proportional to the trace of
the Eshelby energy-momentum tensor � [10]:

μS = mS

(
f 0S + ᾱ

ρ
tr�

)
, (11.20)

where mS is a molar mass of the solid host material, f 0S is the free energy density
of the solid in a stress-free state, ᾱ is a linear expansion coefficient, ρ is the initial
density of impurity/host material system (we assume that ρ ≈ ρS , where ρS is the
initial density of the host material).

The Eshelby energy-momentum tensor is defined by [23]

� = W I − P · F, (11.21)

where W the strain energy density per initial volume, P = detFF−1 · σ is the Piola

stress tensor (σ is the Cauchy stress tensor), F = r
◦∇ is the deformation gradient

(r is the position occupied at the current time, operator
◦∇ is defined in the initial

configuration).
In conjunction with Eq. (11.21),

tr� = 3W − detFtrσ . (11.22)

If the host material is linearly elastic, one has

W = detFw, detF = 1 + trε, w = 1

2
εel · ·4C · ·εel , (11.23)

where ε are strains, εel are elastic strains.
Therefore, in the case of linear elasticity, Eq. (11.22) reduces to

tr� = 3w − (1 + trε) trσ (11.24)
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and the constitutive equation (11.17) takes the form

J = −D

(
∇c + c

RT

mSᾱ

ρ
∇ (3w − (1 + trε) trσ )

)
. (11.25)

Neglecting the influence of the stress-dependent part of the chemical potential,
Eq. (11.25) reduces to Fick’s first law

J = −D∇c. (11.26)

11.4.2 Elasticity Problem Due to Mass Transport

We now identify the stress-strain state of material due to inhomogeneous distribution
of impurity by using the balance of linear momentum, which in the absence of body
forces can be written in a local form as

∇ · σ = 0. (11.27)

We assume that impurity leads to dilatation only. Therefore, the eigenstrain tensor
of the host material due to impurity is spherical, ε∗ = ᾱcI, and the stresses satisfy
the Duhamel-Neumann relations

σ = (λtrε − 3K ᾱc) I + 2Gε, (11.28)

where λ, G and K are elastic moduli; λ = K − 2G/3.
The linear strain tensor can be introduced as follows:

ε = 1

2
(∇u + u∇) , (11.29)

where u is a displacement.
The system of elasticity equations supplements with the mass balance equation

for impurity
∂c

∂t
= −∇ · J. (11.30)

To solve a boundary-value problem, we consider a long circular cylindrical spec-
imen of radius r0 in a cylindrical coordinate system (r, ϕ, z). The displacement uϕ

is absent due to the axial symmetry. We neglect the influence of the end faces of
the cylinder and assume the cross-sections to be under the same conditions so that
they remain flat. Hence, the radial displacement depends only on the radial coordi-
nate, ur = ur (r), and the axial displacement depends only on the axial coordinate,
uz = uz (z) [24].



218 K. P. Frolova et al.

Substitution of the constitutive equations (11.28) into the balance (11.27) leads
to the following differential equations for the displacements:

∂2ur
∂r2

+ 1

r

∂ur
∂r

− ur
r2

= ᾱ
3K

K + 4G/3

∂c

∂r
, (11.31)

∂uz

∂z
= const (εzz = const) .

Substitution of the constitutive equation for the flux into the mass balance (11.30)
results in

∂c

∂t
= 1

r

∂

∂r

[
r D

(
∂c

∂r
+ cP

)]
, (11.32)

where P is equal to

P = 1

RT

mSᾱ

ρ

∂

∂r

(
3

2
(ε − 3ᾱc) · ·4C · · (ε − 3ᾱc) − (1 + trε) trσ

)
(11.33)

if one uses the constitutive equation (11.25) or

P = 0 (11.34)

if one uses Fick’s first law (11.26).
In linear elasticity, W << trσ when only normal stresses occur in material or

when normal components of the stress tensor exceed shear stresses. Since impurity
is assumed to lead to dilatation only, only normal components of the stress tensor
are non-zero in the considered problem. Hence, Eq. (11.33) can be simplified as

P = − 1

RT

mSᾱ

ρ

∂trσ

∂r
. (11.35)

The boundary conditions in the elasticity problem due to mass transport are as
follows:

ur |r=0 < ∞, σrr |r=r0 = 0. (11.36)

According to Saint-Venant’s principle, the stress-strain state in a long cylinder
loaded at its end faces is practically independent on the distribution of the surface
forces acting on the end cross-sections [25]. At a certain distance from the end faces
the stress state is determined only by the principal force, and boundary conditions on
the end faces can be replaced by the integral relationship. The end faces are assumed
to be free of loads, so ∫ r0

0
Tzz rdr = 0. (11.37)
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We assume that a constant concentration is maintained on the lateral surface of
the cylinder, so the boundary conditions for the diffusion problem are as follows:

∂c

∂r

∣∣∣∣
r=0

= 0, c|r=r0 = c0. (11.38)

11.5 Results

We seek a numerical solution of the mass transport problem accounting for the
microstructure and stress-strain state of the host material. To this end, an implicit
finite difference method was applied. The Thomas algorithm was realized with C++.
Concentration and displacement components were specified in mesh nodes, whereas
diffusion coefficient, deformations, stresses (and, therefore, chemical potential) were
specified in mesh cells.

To be specific, we investigate distribution of impurity in aluminum with elastic
moduliμ0 = 27GPa and E0 = 70GPa, molar massmS = 0.027 kg/mol and density
ρ = 2700 kg/m3. The diffusion problem is solved at room temperature T = 293K,
the concentration is determined after 50 h. We assume that the linear expansion
coefficient of the impurity in aluminum ᾱ = 0.03, constant diffusion coefficient
D0 = 1 · 10−12 m2/s. Note that the choice of the solid host material and impurity
should not affect the solution qualitatively.

11.5.1 Diffusion Process in Material Initially Containing
Inhomogeneities

We start with a discussion of the results of modeling the diffusion process in the
material containing non-uniformly distributed spheroidal pores. To be specific, we
introduce an exponential function

φ = 0.1e− r0−r
r0 ,

here the volume fraction of pores takes its maximum value on the outer border.
Oblate spheroidal pores with γ = 0.1, prolate spheroidal pores with γ = 10 and

spherical pores with γ = 1 are considered. Diffusion flux follows Fick’s first law.
The concentration profiles corresponding to the diffusion problem with effective

diffusion coefficient Deff (φ) at various values of the segregation factor are shown in
Figs. 11.1, 11.2.We compare the results with the solution of a diffusion problemwith
a constant diffusion coefficient D0 (black dashed line). An arbitrary orientation dis-
tribution of oblate and prolate spheroidal pores is considered in Fig. 11.1. According
to the results, the segregation factor affects the distribution of impurity. Increasing
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Fig. 11.1 Concentration profiles at different values of the segregation factor: material with oblate
spheroidal pores (left) and prolate spheroidal pores (right)

Fig. 11.2 Concentration
profiles: material with
spherical pores

the jump in the concentration of particles at the matrix/pore interface (decreasing
of s) results in deeper penetration of the solute. The distribution of spherical pores
is considered in Fig. 11.2. The solution of the problem with the effective diffusion
coefficient was found to be close to the one obtained at a constant diffusion coef-
ficient at any s. The maximum difference was at the least value of the segregation
factor s = 0.1, the corresponding concentration profile is shown. Prolate spheroidal
pores with γ = 10 have a greater influence on the distribution of impurity than oblate
spheroidal pores with γ = 0.1 and spherical pores.

Consideration of orientation scatter of oblate spheroidal pores about a preferential
orientation ez or eϕ , as well as arbitrary orientation distribution of rotational axes
of oblate spheroidal pores in the plane normal to er lead to results close to the ones
shown in Fig. 11.1 (left). Consideration of other orientation scatters (when ni are
preferentially oriented along er or when ni are distributed in the plane normal to ez
or to eϕ) leads to the concentration dependencies that coincide with the one obtained
at a constant value of the diffusion coefficient. At the same time, consideration of

1. arbitrary orientation distribution of prolate pores,
2. arbitrary orientation distribution of rotational axes of prolate spheroidal pores in

one plane normal to ez or to eϕ ,
3. orientational scatter of prolate spheroidal pores about a preferential orientation

er (the scatter parameter λ̄ = 100)

results in different distributions of impurity. Figure11.3 compares the results. The
deepest penetration of impurity takes place in material with pores that have a prefer-
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Fig. 11.3 Concentration
profiles: different orientation
scatter of prolate pores (see
discussion in the text)

ential orientation (blue dot-dashed line). Note that consideration of other orientation
scatter (when ni are preferentially oriented along ez or eϕ , as well as when ni are
distributed in the plane normal to er ) leads to the dependencies of concentration that
coincide with the one obtained at a constant value of the diffusion coefficient.

Consideration of material containing non-uniformly distributed spheroidal pores
allows to conclude that the difference between solutions obtained at Deff and D0 can
be significant. It depends on the segregation factor, shape of pores, and its distribution
over orientations.

11.5.2 Pore Formation During the Diffusion Process

We now turn to the problem of pore formation during the diffusion process and
introduce a linear dependence of the volume fraction of pores on concentration in
the form φ = 0.1c. An arbitrary orientation distribution of oblate spheroidal pores
with γ = 0.1 is considered, the segregation factor s = 0.1.

Let us first assume the diffusion flux to followFick’s first law (P = 0). In this case,
equations in the elasticity problem due to mass transport are partially coupled: the
displacement field depends on the concentration distribution, whereas concentration
is independent on the stress-strain state of the host material.

The concentration profile corresponding to the diffusion problem with effective
diffusion coefficient Deff (φ (c)) is shown in Fig. 11.4 (red solid line).We compare the
result with the solution of a diffusion problemwith a constant diffusion coefficient D0

(black dashed line). If pore formation is accounted for, a deeper impurity penetration
results.

Let us account for the chemical potential in the constitutive equation for the
diffusion flux (P is given by Eq. (11.35)). In this case, equations in the elasticity
problem due to mass transport are fully coupled and there is a reason to account for
the effective diffusion coefficient Deff (φ (c)) and effective elasticmoduli Keff (φ (c)),
Geff (φ (c)). Concentration profiles are shown in Fig. 11.5. We compare the solutions
of four problems:

• Constant diffusion coefficient and constant elastic moduli, see black dashed line,
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Fig. 11.4 Concentration
profiles: diffusion flux
follows classical Fick’s law

Fig. 11.5 Concentration
profiles: diffusion flux
accounts for chemical
potential. Solutions of four
problems are compared (see
discussion in the text)

• Effective diffusion coefficient and constant elastic moduli, see green dot-dashed
line,

• Effective diffusion coefficient and effective elastic moduli, see red solid line,
• Constant diffusion coefficient and effective elastic moduli, see blue dotted line.

Accounting for the effective diffusion coefficient only increases concentration
excessively, whereas accounting both for effective diffusion coefficient and effective
elasticmoduli leads to amore accurate result (see red solid line and green dash-dotted
line). Accounting only for effective elastic moduli, in turn, underestimates the result
(see blue dotted line). The reason is that pore formation increases the diffusion coef-
ficient of composite material and, vice versa, decreases its elastic moduli. As a result,
the stresses and chemical potential decrease. For this reason, it is necessary to account
for changes in different physical properties caused by a certain microstructure.

As itwas discussed above, the effective elasticmoduli can be calculated directly on
the base of the homogenization scheme, or bymeans of effective diffusivity properties
on the base of the cross-property connections. Figure11.6 displays the concentration
profiles corresponding to these twomethods.Thedifference is insignificant in the case
of the consideredhostmaterial. Therefore, it is not necessary to applyhomogenization
methods to find all physical properties. It is enough to estimate only one type of
properties. However, further investigations are necessary for materials with other
physical properties/microstructure.
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Fig. 11.6 Concentration
profiles obtained by various
methods of calculating
effective elastic moduli (see
discussion in the text)

Comparison of the results accounting for the microstructure (red solid lines on
Figs. 11.4, 11.5, 11.6) with the results obtained at constant values of the diffusion
coefficient and elastic moduli (black dashed lines on Figs. 11.4, 11.5, 11.6) allows
one to conclude that the difference can be significant for specific materials and
specific impurities. An observed increase of impurity concentration can affect the
material behavior when it is “sensitive” to low concentrations of the dissolved flux
(in particular, to low concentrations of hydrogen in the context of the problems of
hydrogen degradation). Additionally, it is shown that introduction of the chemical
potential in the equation for the diffusion flux results in higher concentration.

11.6 Conclusions

The chapter describes the diffusion process in material with non-uniformly dis-
tributed isolated pores. The main focus is on the influence of microstructure on the
distribution of impurity in a host material. Initial non-uniform distribution of pores is
commonly observed in experiments since subsurface layers usually contain micro-
cracks and discontinuities. Pore formation can be also caused directly by impurity.
Both mentioned cases are modeled. Diffusion flux in media with initial non-uniform
distribution of inhomogeneities follows Fick’s first law, effective diffusion coefficient
is introduced in the model. Diffusion flux accompanied by pore formation follows
non-local Fick’s law including chemical potential. The corresponding model intro-
duces effective diffusion coefficient and effective elastic moduli. It is shown that it
is necessary to account for changes in all material parameters entering the diffusion
equation.

Accounting for the effective properties of material in mass transport models can
change the result significantly. On the one hand, the degree of influence depends on
the segregation factor, shape of pores, and its distribution over orientations. On the
other hand, it depends on the nature of the interaction between the host material and
impurity. For example, metals are “sensitive” to low concentrations of hydrogen,
whereas other impurities may not affect steels at low concentrations.
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Chapter 12
Divergence Method for Stability Study
and Control of Dynamical Systems

Igor B. Furtat and Pavel A. Gushchin

Abstract A novel method of instability and stability of equilibrium points of
autonomous dynamical systems using a flow and divergence of the vector field is pro-
posed. A relation between the method of Lyapunov functions, Gauss (Ostrogradsky)
and Chetaev theorems with the divergence conditions is established. The generaliza-
tions of Bendixon and Bendixon–Dulac theorems about a lack of periodic solutions
in arbitrary order systems are considered. The state feedback control law design is
proposed based on new divergence conditions. Examples illustrate the efficiency of
the proposed method and the comparison with some existing ones.

Keywords Divergence stability conditions · Control law design · Lyapunov
method · Gauss’s theorem · Asymptotic stability

12.1 Introduction

The method of Lyapunov functions is a widely used approach to instability/stability
study of system equilibrium points and the control law design [1]. However, a search
of Lyapunov functions may be a rather difficult problem and sometimes it may be
not feasible. In the present paper, we consider another method based on properties
of the vector field divergence for stability/instability study of system equilibrium
points and the control law design. The first instability conditions for arbitrary order
systems and the stability conditions for the second-order systems are proposed in
[2–7]. These conditions are improved for instability study in [8, 9] and stability study
of the second-order systems in [10]. Differently from [10], the asymptotic stability
and the convergence of almost all solutions of arbitrary order systems are considered
in [11, 12]. Unlike [2–7], the improved stability/instability conditions [8–12] are
obtained by using the positive definite auxiliary (density) function. In [11, 12], the
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control law design based on divergence conditions is considered. Currently, method
[11, 12] has been extended to various kind of dynamical systems, see, i.e. [13–16].

However, necessary stability and sufficient instability conditions [8, 9] remain
rough in some cases. The sufficient stability condition [10] is proposed only for
second-order systems. The method [11, 12] guarantees the convergence of almost
all solutions, but not all solutions, or ensure asymptotic stability only.

Recently, a new divergent method is proposed in [17, 18] for stability study
of equilibrium points of autonomous dynamical systems. The necessary stability
conditions in the integral form [17, 18] improve results [2–9]. Differently from
[10–12], the sufficient stability conditions [17, 18] allow to study both stability and
asymptotic stability of equilibrium points of arbitrary order systems.

Inspired by an idea from [17, 18], we obtain new results of instability/stability of
equilibrium points, lack of periodic solutions and control law design. Thus, the main
contributions of the present paper are as follows:

(i) we propose new improved instability conditions, where the auxiliary (density)
function can be not positive definite, and instability may be established in a
part of the domain. It significantly extends a class of investigated systems in
comparison with [8, 9];

(ii) we obtain new improved stability conditions and new conditions of the control
law design in comparison with [10–12, 17, 18]. We simplify results [17, 18]
in equilibrium points. It is shown that the necessary stability conditions have
the form of a continuity equation. Thus, the proposed results can be applied in
tasks of fluid dynamics, electromagnetism, energy conservation and quantum
mechanics;

(iii) based on the proposed divergence conditions, we generalize Bendixon and
Bendixon–Dulac theorems (about lack of periodic solutions, see [1, 19]) to
systems with arbitrary order.

The paper is organized as follows. Section12.2 describes instability conditions.
Section12.3 contains an extension of Bendixon and Bendixon–Dulac theorems.
Section12.4 describes new necessary and sufficient stability conditions. Section12.5
describesmethods for designing the state feedback control law.Also, Sects. 12.2, 12.4
and 12.5 present the numerical examples and the comparisons with themethods from
[8, 10–12]. Finally, Sect. 12.6 collects some conclusions.

Notations. In the paper, the superscript T stands for matrix or vector transposition;
R

n denotes the n dimensional Euclidean space with the vector norm | · |; Rn×m is

the set of all n × m real matrices; ∇{W (x)} =
[

∂W
∂x1

, ..., ∂W
∂xn

]T
is a gradient of the

scalar function W (x); ∇ · {h(x)} = ∂h1
∂x1

+ ... + ∂hn
∂xn

is a divergence of the vector
field h(x) = [h1(x), ..., h(x)n]T. We mean that the zero equilibrium point is stable
(unstable) if it is Lyapunov stable (unstable) [1].
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12.2 Instability Conditions

Consider an autonomous dynamical system in the form

ẋ(t) = f (x(t)), (12.1)

where x = [x1, ..., xn]T is the state, f = [ f1, ..., fn]T : D → R
n is the continuously

differentiable function in D ⊂ R
n . The set D contains the origin and f (0) = 0.

Assume that the domain of attraction DA of the point x = 0 coincides with the
domain D. However, all obtained results are valid if DA ⊂ D or DA = R

n . Denote
by D̄ a boundary of the domain D.

The first instability condition in the form ∇ · { f (x)} > 0 in x ∈ D \ {0} is con-
sidered in [2–6, 8]. The improved condition ∇ · {ρ(x) f (x)} > 0 in x ∈ D \ {0} [9]
extends a class of investigated systems in comparison with [2, 5] through the use the
positive definite continuously differentiable function ρ(x).

Differently from [2–6, 8, 9], we propose a new instability condition, where the
function ρ(x) can be not a positive definite in D and instability may be established
in a part of the domain x ∈ D. It significantly extends a class of investigated systems
in comparison with [2–6, 8, 9].

Let us formulate the instability conditions of (12.1) in the following theorem.

Theorem 12.1 Let ρ(x) : D → R be a continuously differentiable function, ρ(0) =
0 and ρ(x0) > 0 for some x0 with arbitrary small ‖x0‖. Denote by B = {x ∈ R

n :
‖x‖ ≤ r, r > 0} ⊂ D and U = {x ∈ B : ρ(x) > 0}. The equilibrium point x = 0 of
the system (12.1) is unstable, if at least one of the following conditions holds for any
x ∈ U:

(i) ∇ · {ρ(x) f (x)} > ρ(x)∇ · { f (x)};
(ii) ∇ · {ρ−1(x) f (x)} < 0 and ∇ · { f (x)} ≥ 0;
(iii) ∇ · {ρ(x) f (x)} > β(x)ρ2(x)∇ · {ρ−1(x) f (x)}, where β(x) > 1 and ∇ ·

{ f (x)} ≥ 0 or only β(x) = 1;
(iv) ∇ · {ρ(x) f (x)} > 0 and ∇ · {ρ−1(x) f (x)} < 0.

Proof According to Chetaev theorem [1], if ∇{ρ(x)} f (x) > 0 for x ∈ U , then the
equilibrium point x = 0 is unstable.

From the relation∇ · {ρ(x) f (x)} = ∇{ρ(x)}T f (x) + ∇ · { f (x)}ρ(x) implies that
if ∇ · {ρ(x) f (x)} > ∇ · { f (x)}ρ(x) for x ∈ U (see case (i)), then ∇{ρ(x)} f (x)
> 0 for x ∈ U .

Consider expression ∇{ρ(x)}T f (x)=ρ(x)∇ · { f (x)} − ρ2(x)∇ · {ρ−1(x) f (x)}.
If ∇ · {ρ−1(x) f (x)} < 0 and ∇ · { f (x)} > 0 (see case (ii)), then ∇{ρ(x)}T f (x) > 0
for x ∈ U .

Consider relation (1 + β(x))∇{ρ(x)}T f (x) = ∇ · {ρ(x) f (x)} − β(x)ρ2(x)∇ ·
{ρ−1(x) f (x)} + (β(x) − 1)ρ(x)∇ · { f (x)}. If ∇ · {ρ(x) f (x)} > β(x)ρ2(x)∇ ·
{ρ−1(x) f (x)} for β(x) = 1 or β(x) > 1 and ∇ · { f (x)} > 0 for x ∈ U (see case
(iii)), then ∇{ρ(x)}T f (x) > 0 for x ∈ U .
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Consider equality 2∇{ρ(x)}T f (x)= − ρ2(x)∇ · {ρ−1(x) f (x)}+∇ · {ρ(x) f (x)}.
If ∇ · {ρ(x) f (x)} > 0 and ∇ · {ρ−1(x) f (x)} < 0 for x ∈ U (see case (iv)), then
∇{ρ(x)}T f (x) > 0 for x ∈ U . Theorem 12.1 is proved. �

12.3 Extension of Bendixson and Bendixson–Dulac
Theorems to nth Dimensional Systems

The lack of periodic solutions in a simply connected domain inR2 can be established
by Bendixson and Bendixson–Dulac theorems [1, 19].We generalize these theorems
to the nth dimensional systems.

Theorem 12.2 Let D ⊆ R
n is a simply connected domain. If ∇ · { f (x)} does not

change the sign for all x ∈ D (except possibly in a set of measure 0), then the system
(12.1) has no invariant closed subset with a positive measure in D.

Proof Denote by � the closed invariant subset with a positive measure in D, �̄ is
the boundary of �, int{�} is the interior of �, V = �̄ ∪ int{�}, and V̄ is a volume
of V . According to Liouville’s theorem and [20, Theorem 1 in p. 69], dV̄ /dt =∫
V ∇ · { f (x)}dV = 0, i.e. the volume of a closed invariant subset does not change
at any time t . If ∇ · { f (x)} does not change the sign in D, then the value of dV̄ /dt
has a negative or a positive value, i.e. the volume V̄ is decreased or increased. We
have a contradiction except possibly in a set of measure 0, where ∇ · { f (x)} can be
zero. Thus, system (12.1) has no invariant closed subset with a positive measure in
D. Theorem 12.2 is proved. �
Theorem 12.3 Let D ⊆ R

n is a simply connected domain. If there exists the con-
tinuously differentiable function ρ(x) such that ∇ · {ρ(x) f (x)} does not change the
sign for all x ∈ D (except possibly in a set of measure 0), then the system (12.1) has
no invariant closed subset with a positive measure in D.

Proof Let � = {x ∈ D : S(x) = C} be an invariant closed subset, V̄ be a phase
volume of V = {x ∈ D : S(x) ≤ C} and ρ(x) = φ(x)|∇{S(x)}|, where φ(x) is a
continuously differentiable function. If ∇ · {ρ(x) f (x)} �= 0, then

∫
V ∇ · {ρ(x) f (x)}

dV �= 0. Considering Divergence theorem, we have
∫
V ∇ · {ρ(x) f (x)}dV= ∮

�
φ(x)

∇{S(x)}T f (x)d� �= 0. If system (12.1) has an invariant closed subset with a positive
measure, then ∇{S(x)}T f (x) = 0 and

∮
�

φ(x)∇{S(x)}T f (x)d� = 0. We have a
contradiction except possibly in a set of measure 0, where ∇{S(x)}T f (x) can be
zero. Thus, system (12.1) has no invariant closed subset with a positive measure in
D. Theorem 12.2 is proved. �

12.4 Stability Conditions

Let us formulate necessary stability conditions in the following theorem.
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Theorem 12.4 Let x = 0 be an asymptotically stable equilibriumpoint of the system
(12.1). Then there exist twice differentiable functionsφ(x) and S(x) such that S(x) >

0 andφ(x) > 0 for any x ∈ D \ {0}, S(0) = 0 andφ(0) ≥ 0, S(x) → ∞ for x → D̄,
|∇{S(x)}| �= 0 for any x ∈ D \ {0} and at least one of the following conditions holds:
(i) the function div{ρ(x) f (x)} is integrable in the domain V = {x ∈ D : S(x) ≤ C}

and
∫
V ∇ · {ρ(x) f (x)}dV < 0 for all C > 0, where ρ(x) = φ(x)|∇{S(x)}|;

(ii) the function ∇ · {ρ−1(x) f (x)} is integrable in the domain Vinv = {x ∈ D :
S−1(x) ≥ C} and ∫

Vinv
∇ · {ρ−1(x) f (x)}dVinv > 0 for all C > 0, where ρ−1(x)

= φ−1(x)|∇{S−1(x)}|.
Proof Denote by F1 the flow of the vector field ρ(x) f (x) through the surface � =
{x ∈ D, t ≥ 0 : S(x) = C} with the unit normal vector 1

|∇{S(x)}|∇{S(x)}. Addition-
ally, denote by F2 the flow of the vector field ρ−1(x) f (x) through the surface �inv =
{x ∈ D, t ≥ 0 : S−1(x) = C} with the unit normal vector 1

|∇{S−1(x)}|∇{S−1(x)}.
According to [1], if x = 0 is an asymptotically stable equilibrium point of the system
(12.1), then there exists a continuously differentiable positive definite function S(x)
such that S(x) → ∞ for x → D̄, grad{S(x)}T f (x) < 0 for any x ∈ D \ {0} and

grad{S(x)}T f (x)
∣∣∣
x=0

= 0. If D = R
n , then the function S(x) is radially unbounded.

Next, we consider two cases separately which correspond to the functions S(x) and
S−1(x).

Case (i). If ∇{S(x)}T f (x) < 0, then 1
|∇{S(x)}|∇{S(x)}Tρ(x) f (x) < 0. Therefore,

we have F1 = ∮
�

1
|∇{S(x)}|∇{S(x)}Tρ(x) f (x)d� < 0.Using Divergence theorem (or

Gauss theorem), one gets F1 = ∫
V ∇ · {ρ(x) f (x)}dV < 0.

Case (ii). If ∇{S(x)}T f (x) < 0, then ∇{S−1(x)}Tφ−1(x) f (x) = −S−2(x)grad
{S(x)}Tφ−1(x) f (x) > 0.Also, grad{S−1(x)}Tφ−1(x) f (x)= 1

|grad{S−1(x)}|∇{S−1(x)}T
ρ−1(x) f (x). Therefore, the following relation F2=

∮
�inv

1
|∇{S−1(x)}|∇{S−1(x)}Tρ−1(x)

f (x)d�inv > 0 is satisfied. According to Divergence theorem, we get F2 = ∫
Vinv

∇ ·
{ρ−1(x) f (x)}dVinv > 0. Theorem 12.4 is proved. �

Remark 12.1 The relation ρ(0) = 0 is required in [17, 18], whereas ρ(0) ≥ 0 is
used in Theorem 12.4. Therefore, the proposed results extend a class of investigated
system through the use of a more general function ρ(x), than in [17, 18].

Remark 12.2 The integrability of ∇ · {ρ−1(x) f (x)} and the positivity of ∇ ·
{ρ−1(x) f (x)} are required in [12] for convergence of almost all solutions of (12.1).
Thus, the results of [12] are particular case in Theorem 12.4, case (ii).

Remark 12.3 Consider the physical interpretation of Theorem 12.4. Rewriting the
integral inequalities as

∫
V ∇ · {ρ(x) f (x)}dV = −� or

∫
Vinv

∇ · {ρ−1(x) f (x)}dVinv

= �, � ≥ 0, one gets the integral forms of stationary continuity equation with the
sources (the flux is directed inward) located in the equilibrium points [20]. In partic-
ular, one has the continuity equation:

(a) in fluid dynamics [21], where ρ(x) or ρ−1(x) is fluid density and f (x) is a flow
velocity of the vector field;
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(b) in electromagnetic theory [22], ρ(x) f (x) or ρ−1(x) f (x) means the current den-
sity and ρ(x) is a charge density;

(c) in the form of energy conservation [21], ρ(x) f (x) or ρ−1(x) f (x) is a vector
energy flux and ρ(x) is local energy density;

(d) in quantummechanics [23],ρ(x) is the probability density function andρ(x) f (x)
or ρ−1(x) f (x) is a probability current.

If ∇ · {ρ(x) f (x)} or ∇ · {ρ−1(x) f (x)} are integrable and ∇ · {ρ(x) f (x)} = −σ or
∇ · {ρ−1(x) f (x)} = σ, σ > 0 holds for x ∈ D \ {0}, then one gets corresponding
stationary differential forms of continuity equation [20–23].

Now let us formulate a sufficient stability condition.

Theorem 12.5 Let ρ(x) be a positive definite continuously differentiable function
in D. The equilibrium point x = 0 of the system (12.1) is stable, if at least one of the
following conditions holds:

(i) ∇ · {ρ(x) f (x)} ≤ ρ(x)∇ · { f (x)} for any x ∈ D;
(ii) ∇ · {ρ−1(x) f (x)} ≥ 0 and ∇ · { f (x)} ≤ 0 for any x ∈ D \ {0};
(iii) ∇ · {ρ(x) f (x)} ≤ β(x)ρ2(x)∇ · {ρ−1(x) f (x)}, whereβ(x) > 1and∇ · { f (x)}

≤ 0 or only β(x) = 1 for any x ∈ D \ {0};
(iv) ∇ · {ρ(x) f (x)} ≤ 0 and ∇ · {ρ−1(x) f (x)} ≥ 0 for any x ∈ D \ {0}.
If the inequalities are strict in the cases (i)–(iv) in x ∈ D \ {0}, then x = 0 is asymp-
totically stable.

Proof We consider the proof of stability. The proof of asymptotic stability is omitted
because it is similar to the stability proof, but taking into account the sign of a strict
inequality. Also, according to Lyapunov theorem [1], the system (12.1) is stable, if
∇{ρ(x)}T f (x) ≤ 0 in D.

Case (i). From the relation ∇ · {ρ(x) f (x)} = ∇{ρ(x)}T f (x) + ∇ · { f (x)}ρ(x)
implies that if ∇ · {ρ(x) f (x)} ≤ ∇ · { f (x)}ρ(x), then ∇{ρ(x)}T f (x) ≤ 0 in D.
Therefore, the system (12.1) is stable.

Case (ii). From the expression∇ · {ρ−1(x) f (x)}=∇{ρ−1(x)}T f (x) + ∇ · { f (x)}
ρ−1(x) it follows that ∇{ρ(x)}T f (x) = ρ(x)∇ · { f (x)} − ρ2(x)∇ · {ρ−1(x) f (x)}.
If ∇ · {ρ−1(x) f (x)} ≥ 0 and ∇ · { f (x)} ≤ 0, then ∇{ρ(x)}T f (x) ≤ 0 in D \ {0}.
Thus, the system (12.1) is stable.

Case (iii) is a combination of the cases (i) and (ii). Summingβ(x)grad{ρ(x)}T f (x)
= β(x)ρ(x)∇ · { f (x)} − β(x)ρ2(x)div{ρ−1(x) f (x)} and ∇{ρ(x)}T f (x) = ∇ ·
{ρ(x) f (x)} − ∇ · { f (x)}ρ(x), we get (1 + β(x))∇{ρ(x)}T f (x)=∇ · {ρ(x) f (x)} −
β(x)ρ2(x)∇ · {ρ−1(x) f (x)} + (β(x) − 1)ρ(x)∇ · { f (x)}. If∇ · {ρ(x) f (x)} ≤ β(x)
ρ2(x)∇ · {ρ−1(x) f (x)} forβ(x) = 1 orβ(x) > 1 and∇ · { f (x)} ≤ 0, then∇{ρ(x)}T
f (x) ≤ 0 in D \ {0}. Therefore, the system (12.1) is stable.
Case (iv). The case (iii) is satisfied if∇ · {ρ(x) f (x)} ≤ 0 and∇ · {ρ−1(x) f (x)} ≥

0 in D \ {0}. Theorem 12.5 is proved. �
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Remark 12.4 Differently from [17, 18], we have simplified the cases (i)–(iii) at
the equilibrium point and have proposed the additional case (iv) in Theorem 12.5.
Further, these cases will allow one to get new conditions for the stability study of
linear systems and a new method for the control law design.

The result of [8, 10] is applicable only to second-order systems. Next, we con-
sider an illustration of the proposed results for third-order systems and compare the
obtained results with ones from [12].

12.4.1 Stability of Linear Systems

Theorem 12.6 Givenα > 0. The linear system ẋ = Ax, x ∈ R
n, A ∈ R

n×n is stable
if at least one of the following conditions holds:

(i) ATP + PA − 1
α

β−1
β+1 trace(A)P < 0 for β = 1 or for β > 1 and trace(A) ≤ 0;

(ii) ATP + PA − 1
α
trace(A)P < 0 and ATP + PA + 1

α
trace(A)P < 0.

Proof Let ρ(x) = (xTPx)α. According to Theorem 12.5 (case (iii)), the relation∇ ·
{ρ(x) f (x)} − βρ2(x)∇ · {ρ−1(x) f (x)} = α(1 + β)(xTPx)α−1xT[ATP + PA −
1
α

β−1
β+1 trace(A)P]x < 0 is satisfied, if ATP + PA − 1

α
β−1
β+1 trace(A)P < 0 holds for

β = 1 or for β > 1 and trace(A) ≤ 0.
ConsideringTheorem12.5 (case (iv)), the relations∇ · {ρ(x) f (x)}=α(xTPx)α−1

xT[ATP + PA + 1
α
trace(A)P]x < 0 and ∇ · {ρ−1(x) f (x)} = −α(xTPx)−α−1xT

[ATP + PA − 1
α
trace(A)P]x > 0 are satisfied, if ATP + PA + trace(A)P < 0

and ATP + PA − trace(A)P < 0 simultaneously hold. Theorem 12.6 is
proved. �

As a result, the matrix inequality in Theorem 12.6 (case (i)) simultaneously
includes Lyapunov inequality (for β = 1) and inequality from [12] (for β > 1). In
Theorem 12.6 (case (ii)), the matrix inequality ATP + PA − trace(A)P < 0 from
[12] is complemented by a new inequality ATP + PA + trace(A)P > 0. The sum
of the inequalities from Theorem 12.6 (case (ii)) gives Lyapunov inequality.

12.5 Control Law Design

Consider a dynamical system in the form

ẋ = ξ(x) + g(x)u(x), (12.2)

where x ∈ D ⊂ R
n ,u(x) ∈ R

m is the control signal, the functions ξ(x),g(x) andu(x)
are continuously differentiable in D, ξ(0) + g(0)u(0) = 0, and the system (12.2) is
stabilizable in D.
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Theorem 12.7 Let ρ(x) be a positive definite continuously differentiable function
in x ∈ D. The closed-loop system is stable if the control law u(x) is chosen such that
at least one of the following conditions holds:

(i) ∇ · {ρ(x)(ξ(x) + g(x)u(x))} ≤ ρ(x)∇ · {ξ(x) + g(x)u(x)} for any x ∈ D;
(ii) ∇ · {ρ−1(x)(ξ(x) + g(x)u(x))} ≥ 0 and ∇ · {ξ(x) + g(x)u(x)} ≤ 0 for any

x ∈ D \ {0};
(iii) ∇ · {ρ(x)(ξ(x) + g(x)u(x))} ≤ β(x)ρ2(x)∇ · {ρ−1(x)(ξ(x) + g(x)u(x))},

where β(x) > 1 and ∇ · {ξ(x) + g(x)u(x)} ≤ 0 or only β(x) = 1 for any
x ∈ D \ {0};

(iv) ∇ · {ρ(x)(ξ(x) + g(x)u(x))} ≤ 0 and ∇ · {ρ−1(x)(ξ(x) + g(x)u(x))} ≥ 0 for
any x ∈ D \ {0}.

If the inequalities are strict in the cases (i)-(iv) in x ∈ D \ {0}, then the closed-loop
system is asymptotically stable.

Since system (12.2) is stabilizable in D, the proof of Theorem 12.7 is similar to
the proof of Theorem 12.5 (denoting by f (x) = ξ(x) + g(x)u(x)).

Remark 12.5 Differently from [17], we have modified cases (i)–(iii) at the equilib-
rium point and have proposed the additional case (iv) in Theorem 12.7.

Remark 12.6 If the control law design is based on the method of Lyapunov func-
tions, then it is required to solve the algebraic inequality∇{V }( f + gu) < 0.Accord-
ing to Theorem 12.7, the control law is chosen from the feasibility of differential
inequality. This gives new opportunities for the control law design.

12.6 Conclusions

A newmethod of stability and instability study of dynamical systems using the prop-
erties of the flow and divergence of the vector field is proposed. To study the stability
and instability, the existence of a certain type of integration surface or the existence of
an auxiliary scalar function is required. Necessary and sufficient stability and insta-
bility conditions are proposed. The generalization of Bendixon and Bendixon–Dulac
theorems for nth dimensional systems is given. The relation between the necessary
condition and the continuity equation is shown.

The obtained results are applied to the synthesis of the state feedback control law.
It is shown that the control law is found as a solution of a differential inequality, while
the control law based on the method of Lyapunov functions is found as a solution of
an algebraic inequality.
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15. Casta A., ñeda, Robledo, G. Differentiability of Palmer’s linearization theorem and converse

result for density functions. J. Differ. Equ. 259(9), 4634–4650 (2015)
16. Karabacak, O., Wisniewski, R., Leth, J.: On the almost global stability of invariant sets. In:

Proceedings of the 2018 European Control Conference (ECC 2018), Limassol, Cyprus, 1648–
1653 (2018)

17. Furtat, I.B.: Divergent stability conditions of dynamic systems. Autom. Remote Control 81(2),
247–257 (2020)

18. Furtat, I.B., Gushchin, P.A.: Divergence conditions for stability study of autonomous nonlinear
systems. IFAC-PapersOnLine 53(2), 6317–6320 (2020)

19. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations
of Vector Fields. Springer, New York (1983)

20. Arnold, V.I.: Mathematical Methods of Classical Mechanics, 2nd edn. Springer (1989)
21. Pedlosky, J.: Geophysical Fluid Dynamics. Springer, New York (1979)
22. Griffiths, D.J.: Introduction to Electrodynamics (4th ed.). Cambridge University Press (1981)
23. McMahon, D.: Quantum Mechanics Demystified (2nd edn.). McGraw-Hill Education (2013)



Chapter 13
Development of Situational Control
Methods for a Group of Interacting
Robots

Andrey E. Gorodetskiy, Irina L. Tarasova, Vugar G. Kurbanov,
Andrey Yu. Kuchmin, and Boris A. Kulik

Abstract Recently, there has been a tendency to use parallel structures in the design
of intelligent robots. In particular, such structures are used in the smart electrome-
chanical systems (SEMS)proposedby the IEMS laboratory.This is oneof the variants
of cyber physical systems (CPhS). Cyber physical systems the ability to integrate
computing, communication, and storage of information, monitoring, and control of
the physical world objects. The main tasks in the field of theory and practice CPhS
are to ensure the efficiency, reliability, and safety of functioning in real time. It is
important to keep in mind that the behavior of the system is based on making deci-
sions based on information received from the sensors of the Central nervous system
(CNS) about the environment and its own state. The task of making a decision about
the behavior of SEMS in a group interaction of several SEMS is much more compli-
cated, since in this case additional information about the planned behavior of other
members of the group is necessary.
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13.1 Logical and Mathematical Method of Making
Behavioral Decisions

The functioning of the automatic control system (ACS) of the robot relies on infor-
mation from sensor systems regarding the environment and the state of the robot
itself. However, in order for robots created on the basis of SEMS modules to be able
to independently formulate tasks and perform them successfully, without human
intervention, they must be equipped not only with more advanced sensory sensors
(sensors), but also have the ability to understand the language of sensations. That
is, to have feelings such as “friend–alien”, “dangerous–safe”, “loved–unloved”, and
“pleasant–unpleasant”. In the presence of such abilities in the central nervous system
of the robot (CNSR), it becomes possible to independently decision-making regard-
ing expedient behavior [1]. In particular, as a result of solving systems of logical
equations formed on the basis of the language of sensations, robots can acquire the
ability for reflexive and conscious reasoning.

13.1.1 Stages of the Formation of Behavioral Decisions

After collecting numerical information from the sensor system of the robot, it
becomes possible to proceed to the formation of the language of sensations of the
robot. In this case, it is necessary to perform the following steps (operations), which
are included in the software of the robot:

• Fuzzification of numerical data received from the sensor system, i.e., obtaining
high-quality data of a logical type;

• Selection of images based on the combination of quality data using logical infer-
ence rules;

• Formation of binary evaluations of images of the type “dangerous–not danger-
ous”, “strong–weak”, “bad–good”, etc. on the basis of solving systems of logical
equations that form binary relations;

• Formation of reflective reasoning based on logical analysis of binary evaluations
of images in the environment of the robot;

• Formation of goals for the functioning of the robot based on the choice of reflective
reasoning corresponding to the maxima (minima) of the used quality criteria;

• Decision-making about expedient behavior to achieve the formed goals based on
solving optimization problems with constraints.

13.1.2 Fuzzification Data and Forming Images

Operation fuzzification numerical data is widely used in intelligent control systems,
[2] and in the intelligent robot control systems. For example, when forming databases
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of expert regulators. After performing the fuzzification operation, sets Xi are formed
for each sensor measuring channel, containing sets of logical variables xi j . For exam-
ple, for the channel for measuring the brightness of the image, you can obtain the
following logical variables: x11 – “very dark”, x12 – “dark”, x13 – “semi-dark”, x14 –
“semi-light”, x15 – “light”, x16 – “semi-bright”, x17 – “bright”, x18 – “very bright”.
The obtained logical variables for various points of the space surrounding the robot
can be true

(
xi jk = 1

)
or false

(
xi jn = 0

)
. In this case, often there may be a situation

where when fuzzification numerical data about the truth or falsity of the received
one or other logical variables can only say with some confidence. In this case, each
obtained logical variable xi jk is supplied with a corresponding attribute in the form
of probability values P{xi jk = 1} or membership function μ

(
xi jk

)
[3], which are

stored in the database along with them. In addition, together with logical variables
are stored in the database the coordinates of points of the surrounding space of the
robot corresponding to each logical variable.

Fuzzification of data coming through the sensory information channels of the
CNSR from various sensors is an important operation for further logical construc-
tions when decision-making. After fuzzification data possible imaging to select the
environment and their classification.

The operation of selecting images in the space surrounding the robot is widely
used in the systems of technical vision of intelligent robots. In this setting, this
operation, in the simplest case, is reduced to combining into one set Mi those points
in space that have the same set of logical variables with the same attributes and
provided that the distance to the nearest neighboring point with the same parameters
does not exceed some predetermined value. In this case, the coordinates of the center
of gravity of the obtained images are also determined. After combining points into
sets, the latter can obtain additional qualitative parameters in the form of logical
variables yi j obtained after, for example, analyzing the geometric parameters of these
images (areas, volumes, contours, etc.). These additional parameters: y11 – “large
volume”, y21 – “smooth contour”, etc. are entered into the database in the section
“set of images” together with other logical parameters of sets and coordinates of their
centers of gravity. The contents of this section of the database are also updated when
changing the environment of the robot. When situations of incomplete certainty arise
in the process of combining points in space into a set (image) due to, for example, the
probabilistic attributes of logical variables, it is necessary, in addition to geometric
measures of proximity of points, to introduce additional measures of proximity,
such as the admissible spread of values of the probability of logical variables in
neighboring points.

Formation of binary estimates of images is carried out by logical analysis of the
parameters of images. To do this, you first need to draw up rules, such as “if –
then”, assigning a given image of one or another binary assessment. For example,
if the image is very bright, large and quickly moves toward the robot, then this
image (object) is very dangerous. The system of such rules is entered into the CNSR
knowledge base at the stage of robot creation. In some cases, it can be corrected
during the operation of the robot through training or self-learning [4]. With a large
number of such rules, it is advisable to reduce them to a system of algebraic equations
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modulo two or to the algebra of Zhegalkin’s logic [5]. In this case, we obtain matrix
equations, the solution of which is easily parallelized bymatrix processors. The latter
allows you to dramatically speed up the logical analysis of the parameters of images.

However, this approachwill usually beobtainedmatrix system is very large dimen-
sion. In a real CNSR, not all components of logical equations (not all combinations
of logical variables) are physically realizable and can be discarded. As a result of
such a reduction, we obtain a matrix system of equations mod2 of a lower dimension
[3]:

C∗R = G, (13.1)

where C ⊂ A, R ⊂ F, G ⊂ B, B is a binary vector of dimension n, F is a funda-
mental vector of a logical system of dimension n, built from combinations of logical
variables obtained during fuzzification of sensory data, and supplemented by 1 in
place of the last element, A is a rectangular binary matrix of dimension [n,m].

In addition, not every solution obtained from (13.1) a specific robot is feasible in
the current environment (the state of functioning of the environment). This means
that the solution obtained by the CNSR from (13.1) must satisfy the constraints,
which can also be expressed in the form of systems of logical equations [5]:

C∗
i Ri = H, (13.2)

C∗
j R j = D, (13.3)

where: Ci and C j are constraint matrices obtained by analogy with the matrix C,

H and D are binary vectors obtained by analogy with the vector G, Ri ⊂ Fi and
R j ⊂ Fj .

Many solutions obtained by the CNSRwhen solving Eqs. (13.1)–(13.3) will natu-
rally lead to ambiguity in the behavior of the robot. A person in this situation behaves
expediently or purposefully intuitively, relying on his own experience, or a geneti-
cally inherent behavioral stereotype. Therefore, the procedure for pattern recognition
in the case of their representation in algebra modulo 2 requires the setting of rules
or algorithms for processing the linguistic attribute part that characterizes logical
variables when performing addition and multiplication operations on them mod 2.

Linguistic attributes characterizing images form non-metrizable sets Bi . In this
case, during recognition, the choice of the best class from the set of alternative ones
can be based on the procedure for finding binary relations Bi g Bj . Where Bcj is a
set characterizing an ideal image from the class C jm under consideration, to which
we want to get as close as possible, and g is a two-place predicate on the analyzed
sets, which can be given. For example, by specifying the formulas of a logical-
mathematical language or by specifying a formalized linguistic expression [2]. In
this case, the problem of identifying the best approximation is reduced to two tasks.
The first is the task of obtaining the sets Bi , Bcj , and the second is the construction
of an optimal procedure g that allows one to obtain a quantitative estimate of the
proximity of Bi to Bcj .
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It is advisable to start creating the initial base for constructing g by selecting
metrizable subsets in each of the compared sets (for example, subsets of decision
probabilities), for whose elements relations and numericalmeasures of proximity can
be specified. The next, most difficult step is to order the elements of non-metrizable
subsets. It is very likely that to solve this problem, youwill need to build a new system
of logical equations, the solution of which will lead either to metrizable sets, or to
ordered ones. In the first case, we immediately get numerical measures of proximity.
In the second case, these measures will have to be built anew. As possible numerical
estimates, the cardinality of sets, the number of matching elements, the number of
groups of matching elements, and so on can be used. Any recommendations on the
choice of these or other estimates cannot be recommended at present due to the lack
of knowledge of such models. Therefore, if it is impossible to order non-metrizable
sets, the decision about the greatest proximity of any set to the standard should be
made by the developer or operator himself, based on their preferences, experience
and intuition [3].

The most commonly used and easily constructed binary functional relationships
include the following:

• estimation by the maximum deviation of power sets:

∑

i

xi −
∑

i

yi = �, (13.4)

where xi = 1 and yi = 1 for non-zero (non-empty) elements of the compared sets
and, respectively, xi = 0 and yi = 0 for zero (empty) elements of the compared
sets, and � is the numerical proximity estimate.

• estimation based on the standard deviation of set capacities:

√√√
√

(
∑

i

xi

)2

−
(

∑

i

yi

)2

= δ, (13.5)

where δ is the numerical estimate of proximity.
• probabilistic estimation based on the maximum deviation of power sets:

∑

i

P (xi = 1) xi −
∑

i

P (yi = 1) yi = �p, (13.6)

where P(.) is the probability, and �p is the numerical probability estimate of
proximity.

• probabilistic estimation based on the standard deviation of set capacities:

√√
√√

(
∑

i

P (xi = 1) xi

)2

−
(

∑

i

P (yi = 1) yi

)2

= δp, (13.7)



242 A. E. Gorodetskiy et al.

where δp is a numerical probability estimate of proximity.

Using these binary functional relationships makes it easy to rank Bi images by
their proximity to Bcj standards, and at the same time allows you to enter a numerical
proximity score.

13.1.3 The Adoption of Reflective Solutions

The robot’s reflexive reasoning can be formed on the basis of logical analysis of
binary evaluations of images in its environment. To do this, you need to create rules
of the “if – then” type of reaction to a particular binary evaluation of the image,
taking into account its location and the state of the robot itself. For example,

1. if the image is very dangerous and is located nearby, the robot must move away
from it;

2. if the image is very dangerous, is nearby and there is a large good image nearby,
the robot must hide behind it.

These rules are compiled and entered into the knowledge base at the stage of
creating the robot. There can be a lot of them and they can be adjusted during
operation. At the same time, it is also advisable to bring them to the system of
algebraic equationsmodulo twoor to the algebra of logicZhegalkin for parallelization
of calculations. The program for translating a system of rules into algebraic equations
modulo two should be included in the mathematical support of the CNSR.

The formation of robot functioning goals based on the choice of reflexive rea-
soning obtained after analyzing binary evaluations of images surrounding the robot
is a complex problem associated with solving poorly formalized multi-criteria opti-
mization problems [6]. In this case, it is often necessary to choose not one specific
goal, but a sequence of consecutive goals when the previous goals are successfully
completed. At the design stage of the robot, it is impossible to foresee all the situa-
tions that the robot may be in when making a decision about choosing the purpose of
functioning. Therefore, the robot’s memory is filled with possible situations based
on the expected operating conditions and the corresponding possible goals with an
index of their effectiveness. Then the CNSR should have such software that could, by
evaluating acceptable reflexive reasoning and available suitable most effective goals
for functioning in a given situation, create a sequence of goals that would provide the
maximum (minimum) quality criteria expressed numerically. The formation of such
a quality criterion is a complex and time-consuming task, the solution of which is
primarily associated with the formation and solution of a number of logical problems
that lead to the formula for calculating the quality criterion [6].

When choosing optimal reflexive reasoning described by systems of logical equa-
tions in the Zhegalkin algebra, it is necessary to solve optimization problems with
restrictions. In this case, the simplest solutions will be those where it is possible
to build a scalar quality criterion, including from attributes of logical variables. In
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this case, the optimal search can be reduced to mathematical programming (MP)
problems [7].

In theMP problem, we need to calculate an n-dimensional vector X that optimizes
(converts to a maximum or minimum, depending on the content of the problem)
the quality criterion of the solution f0(x), subject to the restrictions f j (x) ≤ u j ,

j = 1, 2, . . . , r, x ∈ G, where f j—known scalar functional, u j—given numbers,
G—a predetermined set of n-dimensional space Rn.

Thus, the MP task has the form:

f0(X) → extr/ f j (x) ≤ u j , j = 1, 2, . . . , r, x ∈ G ⊆ Rn. (13.8)

For the probabilistic attribute part of logical variables in the specified systems of
equations [8], the optimization goal can be to search for those identification rows of
the matrix of the system of logical equations describing the solution that give the true
values of logical functions yi with the maximum values of probabilities P{yi = 1}.
Then the quality criterion can be expressed as follows:

f0(Y ) =
n∑

i=1

P{yi = 1} → max . (13.9)

The probability values P{yi = 1} can be calculated approximately using the algo-
rithm described in [6].

If the analysis of a complexCNSR reveals that the influence of certain components
of yi on its behavior is different, then the quality criterion (13.9) should be given the
form:

f0(Y ) =
n∑

i=1

βi P{yi = 1} → max, (13.10)

where βi is the assigned weight coefficients.
If the attribute part of logical variables in the specified systems of equations [6]

contains membership functions, the optimization goal may be to search for those
identification rows of the matrix of the system of logical equations describing the
solution that give values of logical functions yi with the maximum values of their
membership functionsμ (yi ) .Then the quality criterion can be expressed as follows:

f0(Y ) =
n∑

i=1

μ (yi ) → max . (13.11)

The values of the membership functions μ (yi ) can be calculated using the algo-
rithms described in [6].

If the analysis of a complexCNSR reveals that the influence of certain components
of yi on its behavior is different, then the quality criterion (13.11) should be given
the form:
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f0(Y ) =
n∑

i=1

βiμ (yi ) → max, (13.12)

where βi is the assigned weight coefficients.
If the attribute part of logical variables in the specified systems of equations [6]

contains intervals
[
a ji , b ji

]
, then the following scalar functional can be used:

J1 =
m∑

j

n∑

i

k ji
(
b ji − a ji

) → min, (13.13)

J2 =
m∑

j

n∑

i

[
k ji

(
b ji − a ji

) − c ji
]2 → min, (13.14)

J3 =
m∑

j

n∑

i

k ji
[(
b ji − a ji

) − (
b0j i − a0j i

)]2 → min, (13.15)

J4 =
m∑

j

n∑

i

[
kbji

(
b ji − b0j i

)2 + kaji
(
a ji − a0j i

)2] → min, (13.16)

where: k ji , kbji , k
a
ji—coefficients of preference of the decision-maker (DM) on opti-

mality, c ji—the desiredDM interval width, b0j i , a
0
j i—the desiredDM interval bound-

aries.
However, the recommendations available in various literatures [8–10] for calcu-

lating integrals of complex logical functionswith known intervals of logical variables
are still very contradictory and may give completely unacceptable results. This issue
is discussed in more detail in [10]. The most acceptable results in solving this prob-
lem can be obtained using multi-step generalized programming [11] and software
environments such as A-life [12].

13.1.4 Informed Decision-Making

After completing the formation of a sequence of goals for the robot’s functioning, it
is necessary to make a decision about the appropriate behavior to achieve the formed
goals. The task of providing robots with appropriate behavior skills is still at an early
stage. Currently, the most fully studied problems of choosing optimal solutions in
conditions of incomplete certainty of interval, probabilistic, or linguistic type [6].
The process of making a decision about appropriate behavior can be significantly
accelerated by recognizing the formed Mi images, i.e., assigning them to certain
classes of C jm images containing the so-called ideal M∗

i images, for which the
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previously accepted optimal solutions are known
(
M∗

i ∈ C jm
)
. In this case, you can

use the method of the situation of familiarity [13] (analogous to intuition in humans),
i.e., replace the desired solution with an analog.

A person in the process of thinking and making decisions based on the processing
of available information usually adheres to one of two styles of deductive or induc-
tive. There is also a third, poorly studied and rarely encountered type of thinking—the
abductive. When using such approaches in the CNSR, it is necessary to solve a num-
ber of optimization problems with restrictions. The basis for solving these problems
can be various methods of mathematical programming, mathematical programming
in ordinal scales, generalized mathematical programming and multi-step general-
ized mathematical programming [7, 11]. A number of new approaches to solving
optimization problems with interval uncertainty are described in [10]. When solv-
ing such optimization problems of solutions described by systems of equations in
algebra modulo two, decisions about optimality can be made based on the concept
of sequential preference of one of the compared options to another. When using this
approach in the CNSR, it is advisable to set the acceptable set of alternatives not by
inequalities, but by certain conditions of preference for the selected options. To solve
such problems, you can generalize the scheme of mathematical programming, mov-
ing from quantitative scales to ordinal ones, i.e., moving from models that require
the assignment of functions that define the goals and limitations of the problem to
models that take into account the preferences of the persons involved in choosing the
solution. This extends the range of applications of the theory of extreme problems
and can be useful in a number of choice situations [2, 14]. The transition to problems
of mathematical programming in ordinal scales, generalized mathematical program-
ming, and multi-step generalized mathematical programming is described in more
detail in [3]. In this case, when choosing the optimal solution to a system of logical
equations, part of the attributes of logical variables can be linguistic expressions
that describe preferences in the form of, for example, score ratings formed based on
the analysis of the opinions of decision-makers. Moreover, there is a fundamental
possibility of ordering preferences.

In deductive decision-making, the process of thinking in the Central Nervous
System begins at the global level and then moves down to the local level [15].
The technical equivalent of this type of thinking can be the optimization process,
when first the best possible solution is found based on the available information, and
then the solution is corrected by checking all the restrictions based on the available
information. In this case, after calculating the quality criteria for all possible solutions,
all the solutions found are ranked. The solutions are then checked for compliance
with the restrictions, starting with the first one that has the highest quality criteria.
In this case, the first of the tested solutions that meet the restrictions is considered
optimal.

In inductive decision-making, the process of thinking in the Central nervous sys-
tembeginswith the analysis of individual decisions and then the search for a common,
global conclusion [15]. The technical equivalent of this type of thinking can be the
optimization process, when first all solutions are checked for the feasibility of type
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constraints based on available information, and then the best solution is found out of
all possible solutions based on type criteria.

In abduction decision-making according toPeirce, cognitive activity in theCentral
nervous system is an interaction of induction, deduction and abduction [16]. In this
case, abductionmakes the acceptance of plausible hypotheses by explaining the facts,
with the help of induction, testing of the hypotheses put forward is implemented, and
by deduction, consequences are deduced from the accepted hypotheses. A technical
analogue of this type of thinking can be the process of searching for an optimal
solution by analogy, when from all possible solutions, the solutions that are closest
to the existing solutions stored in the CNSR database and that gave good results
in the past are first selected using image recognition methods [17]. Then you can
use deductive and/or inductive decision-making methods to select the best quality
criteria.

Comparing the described decision-making methods, we can conclude that the
abduction method is the fastest by analogy with intuition, but its reliability depends
on the completeness of the database of good decisions from past experience, i.e., it
strongly depends on the time of operation of similar robots in similar environments.
The deductive method is faster than the inductive method for a large number of
constraints, since it does not require checking the constraints for all solutions. With
complex quality criteria and a small number of restrictions, the inductive method
can give a faster result, since it will reject the search for solutions based on complex
quality criteria for solutions that are unacceptable by restrictions.

13.2 Principles of Forming the Language of Sensation for
Decision-Making in the Central Nervous System of
SEMS

The development of modern robots is closely connected with the creation of their
languages of sensations, on the basis of which a figurative representation of the
environment and the intellectual interaction of robots between themselves and with
the human operator is possible. In this area, many developments are devoted to the
control of robots in different conditions. For example, in [18], a spoken language is
proposed as a convenient interface (ELI- Extensible Language Interface) for control-
ling a mobile robot. It is designed to interpret speech commands to perform the tasks
of extracting and transmitting information for use in specific, narrow tasks, such as
caring for the elderly. In order to use it effectively, a number of basic terms must
be associated with perception and motor skills. Therefore, at present there is a wide
range of tasks for which the robot using the ELI cannot be pre-programmed. For
example, such as the nature of specific tasks in the household that he may be asked
to perform. In [19], an algorithm is proposed for teaching the robot to see various
objects. Developed robotic vision systems are based on what animals are supposed
to see as developers. That is, they use the concept of layers of neurons, as in the
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brain of animals. Engineers program the structure of the system, but do not develop
an algorithm that works in this system.

Since the 1970s, robotics engineers havebeen thinking about reducing information
for displaying images in a computer’s memory, using the features of images. These
can be lines or points of interest, such as angles or certain textures. Algorithms are
created for finding these functions and tracking them from the image frame to the
image frame in the video stream. This significantly reduces the amount of data from
millions of pixels in an image to several hundred or thousands of objects. Then
the engineers think about how the robot can realize what they saw and what it will
need to do. They write software that recognizes patterns in images to help the robot
understand what’s around it.

It should be noted that certain specific tasks have been solved for the process-
ing and comprehension of the sensory information of robots, but there is no inte-
gral algorithm that takes into account all the organs of the robot’s sense: organs of
sight, hearing, smell, taste, touch, etc. no. Therefore, in order that intelligent robots
could independently, go without human intervention, formulate tasks and success-
fully accomplish them, they must not only be equipped with sensation sensors (sen-
sors), but also have the ability to understand the language of sensations, i.e., have
sensations such as “yours is alien”, “dangerous – safe”, “beloved – unloved”, “pleas-
antly – unpleasantly”, etc., formed as a result of solving systems of logical equations
describing the environment in the language of feelings. For this, it is possible to use
logical inference systems, which in intellectual systems are associated with solving
systems of logical equations [2]. They may have a higher dimension. The number of
variables usually exceeds the number of equations, which leads to non-uniqueness of
the solution. Using the Zhegalkin algebra [20] allows one to perform algebraization
of the problem, so that the Euclidean norm can serve as a scalar measure of the qual-
ity of the solution. At the same time, to solve it, you can use a method similar to the
Gauss elimination method when solving linear systems of algebraic equations with
real numbers. This technique can be the basis for providing the robot with the ability
to form a sensation language in the database of the “Central Nervous System of the
Robot” (CNSR). In this case, the robot has the opportunity to make independent
decisions regarding expedient behavior [21].

13.2.1 Algorithm of Formation of the Language of
Sensations of the Robot

The central nervous system of a robot is built by analogy with the central nervous
system of a person who has sensory organs that perceive information about the envi-
ronment and their own state. Therefore, the solution to the problem of creating a
central nervous system of a robot is reduced, first of all, to research and development
of circuits of the type of the following circuit (consisting of approximately seven
blocks): 1 – (robot sensors) → 2 – (signal receiving channel), 3 – (primary pro-
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cessing of measuring signals) → 4 – (combining signals, fuzzification, recognition,
classification, decision-making) → 5 – (transmission channel of control signals), 6
– (transformation and formation of a control action) → 7 – (moving, stretching, and
other actions of the working parts of the robot).

The description of all CNSRblocks is described in detail in [22]. It should be noted
that one of the most promising options for the mathematical implementation of the
fuzzification block is a logical-mathematical model for the formation of behavioral
processes based on the analysis of sensations in the form of signals from the robot’s
sensory system. To do this, the robot’s sensor system collects environmental infor-
mation from various sensors and transmits it to the CNSR. Next, the measurement
signal preprocessing unit and the fuzzification, recognition, and decision-making unit
[23] of the CNSR processor form the robot’s sensory language using the following
algorithm:

1. Quantization of the surrounding space in the visibility zone of the robot’s sensor
system with the assignment of the resulting pixels a value in the form of a pixel
number.

2. Fuzzification of the robot’s sensory information for each pixel of the surround-
ing space and the formation in the memory of the CNSR of the display of the
surrounding space in the form of pixels with their coordinates and fused data.

3. The formation of images in the display of the surrounding space for each sense
organ of the robot.

4. Formation of images by combining images from different senses.
5. Assigning names to images in the form of words of the English language.
6. Write words in the form of a combination of letters of the English language.
7. If for any images there was no suitable word of the English language, then such

images can be combined with others in various combinations until all possible
combinations have been used.

8. If any combination finds the appropriate words of the English language, then these
names are assigned to these combinations of images.

9. If after the completion of operation (8) any images cannot be found suitablewords,
such images are given a name in the form of a new word from a combination of
English letters and the corresponding message is transmitted to the robot com-
munity to legitimize a new reference word and the corresponding image. English
language and the correspondingmessage is transmitted to the community of robots
to legitimize the new reference word and the corresponding image.

Let us consider in more detail the basic operations of this algorithm.

13.2.2 Quantization of the Surrounding Space

The center of gravity of the robot is placed in the center of the Euclidean space
E3. The boundaries of the sensitivity zones (intervals) of the sensor system are
determined: [−X,+X ], [−Y,+Y ], [−Z ,+Z ]. The result is a three-dimensional
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subspace C ⊂ E3. This subspace is divided into quanta along the X axis with a step
hx , along the Y axis with a step hy, and along the Z axis with a step hz . The quanta
in [−X,+X ], [−Y,+Y ], [−Z ,+Z ] are assigned numbers i, j, k, respectively. As
a result, the entire subspace C will be divided into many pixels pi jk . Each pi jk pixel
will correspond to information measured by the CNSR sensor system on sensations
of the organs of vision, hearing, smell, taste, touch, etc.

13.2.3 Fuzzification of Sensory Information

A very important operation for forming the language of sensations is fuzzification
of sensory data assigned to pixels and recorded in the CNSR database. To do this,
first of all, it is necessary to combine the sensory information of each pixel pi jk into
groups that form, like a person, the following senses of the robot: vision in the form
of the set E; hearing in the form of the set R; sense of smell in the form of the set
S; taste in the form of a set U ; the sense of V .

In each of the introduced sets, it is possible to distinguish the subsets forming
them that characterize the properties of the observed pixel (object):

Ei ⊂ E, Ri ⊂ R, Si ⊂ S, Ui ⊂ U, Vi ⊂ V .

The set of such subsets depends on the set of sensors that form the sensory organs
of a particular robot. For example, for vision, the following subsets can be intro-
duced: E1—image brightness; E2—image color; E3—flashing frequency; E4—rate
of change of brightness; E5—speed of color change, etc.

For hearing, the following subsets can be introduced: R1—sound power; R2 is
the key; R3 is the interval; R4—rate of change of volume; R5—rate of change of
tonality; R6—interval change rate, etc.

For the sense of smell, the following subsets can be introduced: S1—type of smell;
S2—odor intensity; S3 is the rate of rise or fall of the odor; S4 is the rate of change
of the type of smell; S5 - odor interval, etc.

For taste, the following subsets can be introduced: U1—type of taste; U2 is the
power of taste; U3—rate of change in taste, etc.

For touch, the following subsets can be entered: V1—flatness of the surface; V2—
dry surface; V3—surface temperature, etc.

The data forming these subsets are extracted from signals from sensors of the
senses of robots by their fuzzification [22]. This data can be of logical, logical-
probabilistic, or logical-linguistic types.

Data of a logical type is formed from data or signals from sensors of the sense
organs of robots by quantizing the entire range of a specific sensor and assigning�n,

(where n = 1, 2, . . . N is the number of a quantum), the names of logical variables
that take values: true (1) or false (0). For example, logical variables are formed by
quantizing the entire range of the acoustic sensor and assigning the obtained �n

quanta to the names of logical variables that take the value true (1) or false (0).
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Then, if the range of the sound intensity sensor lies in the range from 0dB to 80dB,
then by entering a quantum of 20dB, you can divide the entire range of the change
in sound intensity into four quanta �1 = [0, 20], �2 = [20, 40], �3 = [40, 60],
�4 = [60, 80]. Then, the quantum �1 can be given the name Rr1 very weak sound,
the quantum�2 should be given the name Rr2 weak sound, the quantum�3 should be
given the name Rr3 strong sound, and the quantum �4 should be given the name Rr4

very strong sound. In particular, if, for example, the sensor shows the sound intensity
r = 50dB, then after fuzzification, the followingvalues of the logical variables Rr1 =
0, Rr2 = 0, Rr3 = 1, Rr4 = 0 and the corresponding intervals described above will
be entered into the CNSR database as attributes of these logical variables.

When receiving data of a logical-probabilistic type, the probabilities P (ri ) are
additionally added to the attributes, which can be determined under the normal law
of the distribution of sound strength as follows:

P (rn) = 2

(
�(3) − �

( |rn − m|
σ

))
,

where: a is the lower boundary of the quantum, b is the upper boundary of the
quantum, m = (b − a)/2 is the expected value and σ = (b + a)/6 is the standard
deviation, �(.)—Gaussian standard distribution function, which corresponds to the
simplest normal law with parameters m = 0, σ = 1 and whose values are known.

Naturally, for logical variables corresponding to quanta, which do not include
sensor readings, the probabilities will be zero.

In particular, if the sensor shows the sound strength r = 50dB, then after fuzzi-
fication, the following values of the logical variables Rr1 = 0, Rr2 = 0, Rr3 = 1,
Rr4 = 0 and the following attributes corresponding to them will be entered into the
CNSR database: for Rr1—interval [0; 20] and the probability P (r1) = 0; for Rr2,

the interval [20; 40] and the probability P (r2) = 0; for Rr3, the interval [40; 60] and
the probability P (r3) = 1; for Rr4, the interval [60; 80] and P (r4) = 0.

It should be noted that in the formation of logical-probabilistic variables, the
quantization of the sensor range can be carried out with overlap. For example, if
the range of the sound intensity sensor lies in the range from 0dB to 75dB, then
by entering a quantum value of 30dB, you can break the entire range of sound
strength into the following four quanta: [0; 30]; [15; 45]; [30; 60]; [45; 75]. Then, if
the sound intensity sensor shows r = 50dB, then after fuzzification, the following
values of the logical variables Rr1 = 0, Rr2 = 0, Rr3 = 1, Rr4 = 1 and the following
attributes corresponding to them will be entered into the CNSR database: for Rr1—
the interval [0; 30] and the probability P (r1) = 0; for Rr2, the interval [15; 45]
and the probability P (r2) = 0; for Rr3, the interval [30; 60] and the probability
P (r3) = 0.12; for Rr4, the interval [45; 75] and the probability P (r4) = 0.12.

When receiving data of a logical-probabilistic type and with a uniform law of the
distribution of sound strength, the probabilities P (rn) are additionally added to the
attributes, which can be determined as follows:
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P (rn) =
⎧
⎨

⎩

2(b−rn)
b−a , if rn ≥ m

2(rn−a)

b−a , if rn < m

⎫
⎬

⎭
.

In this case, for the above example, after fuzzification, the following values of the
logical variables Rr1 = 0, Rr2 = 0, Rr3 = 1, Rr4 = 1 and the following attributes
corresponding to them will be entered into the CNSR database: for Rr1, the interval
[0; 30] and the probability P (r1) = 0; for Rr2, the interval [15; 45] and the prob-
ability P (r2) = 0; for Rr3, the interval [30; 60] and the probability P (r3) = 0.25;
for Rr4, the interval [45; 75] and P (r4) = 0.25.

When receiving data of a logical-linguistic type, the membership functions are
additionally added to the attributes, which can be determined in the triangular form
of the function as follows:

μ (rn) =
⎧
⎨

⎩

2(b−rn)
b−a , if rn ≥ a+b

2

2(rn−a)

b−a , if rn < a+b
2

⎫
⎬

⎭
.

In this case, for the above example, after fuzzification, the following values of the
logical variables Rr1 = 0, Rr2 = 0, Rr3 = 1, Rr4 = 1 and the following attributes
corresponding to them will be entered into the CNSR database: for Rr1, the interval
[0; 30] and the value of the membership function μ (r1) = 0; for Rr2, the interval
[15; 45] and the value of the membership function μ (r2) = 0; for Rr3, the interval
[30; 60] and value of the membership function μ (r3) = 0.25; for Rr4, the interval
[45; 75] and μ (r4) = 0.25.

Thus, after fuzzification of sensory data in the database for each pixel there will
be a set of logical, logical-probabilistic, and logical-linguistic variables. The next
step in creating a robot sensation language will be the task of forming images in the
surrounding space for each sensory organ.

13.2.4 Image Formation in the Display of the Surrounding
Space

The formation of images is performed for the display of the surrounding space for
each sensory organ individually. In particular, for the view there will be a display of
the surrounding spaceCE ⊂ C, for hearingCR ⊂ C, for the sense of smellCS ⊂ C;
for the taste ofCU ⊂ C and for the sense ofCV ⊂ C. In each of thesemappings, adja-
cent pixels with equal values of logical variables and close values of their attributes
can be combined. Then in the spaces of the sense organs CE , CR, CS, CU and CV

we get sets of images ImE , ImR, ImS, ImU , ImV with certain contours. Since
attributes of logical variables can be intervals, probabilities, membership functions,
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etc., for each type of attribute it is necessary, accordingly, to introduce a measure of
proximity δ�, δP , δμ.

After the operation of combining pixels into image sets ImE (i), ImR(i), ImS(i),
ImU (i), ImV (i), in each space of the sensory organs CE , CR, CS, CU and CV , one
can depict image contours and give each circuit a name. As a result, there will be
five cards KE , KR, KS, KU and KV with sets of image contours ImE (i), ImR(i),
ImS(i), ImU (i), ImV (i), where i = 1, 2, . . ..

It should be noted that, when processing two images, a preliminary analysis is
first performed (spectral and correlation analysis), which includes the selection and
application of the most suitable filter (linear filtering), on the basis of which contour
representations (polygonal contours) are formed.

13.2.5 Formation of Images by Combining Images from
Different Senses

Typically, the formation of images from images consists in operations on images
such as intersection, union, or symmetric difference of ordered sets and assigning
the result to one or another reference image stored in the database. If there is not a
single suitable image in the database, then such a combination of images is given
the name of the new image, which is placed in the database for temporary storage.
When this new image is repeated many times during the operation of the robot, this
image becomes a reference image and is given a permanent name.

To assign a combination of images to a particular standard, it is necessary to
introduce a measure of proximity of ordered sets. Among the most well-known
proximity measures (criterion), the following can be distinguished [24]: estimation
by the maximum deviation of cardinalities of sets; estimate of the standard deviation
of the cardinality of sets; probabilistic assessment of the maximum deviation of
cardinalities of sets; probabilistic estimate of the standard deviation of cardinalities
of sets. Using these criteria allows you to rank combinations of images according
to their proximity to the reference image and at the same time allows you to enter a
numerical estimate of proximity.

The process of forming images based on information from the senses of the robot
is carried out in the following sequence.

First, we look for the presence of images that are close to the database standards
in each of the KE , KR, KS, KU , and KV cards. The found images are assigned
the names of the standards. They are recorded in the observable data base of the
central nervous system together with their coordinates and are excluded from the
corresponding maps.

Then a sequential pairwise overlay of cards is performed on each other with
the operation of intersecting the sets KE , KR, KS, KU , and KV . Similarly, three
(four, five) cards are superimposed on top of each other. At each intersection of
images, the presence of images close to the database standards is searched for. The
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found intersections of the images are assigned the names of the standards. They
are recorded in the observable data base of the central nervous system together with
their coordinates and excluded from the corresponding map intersections. Therefore,
in each subsequent intersection, the maps corrected by the results of deletions are
involved.

If any images appear in the corrected intersection, then new names are assigned
to them. They are also recorded with their coordinates in the observational database
of the central nervous system.

At the last stage, in the symmetric differences of the sets from the maps KE , KR,

KS, KU , and KV , the presence of images close to the standards in the databases is
searched. Moreover, it is similar at first by the operation of the symmetric difference
of two sets, then three, four, and five. The found symmetrical differences of the
images are assigned the names of the standards. They are recorded in the database
of observable data of the Central nervous system together with their coordinates and
are excluded from the respective map associations. Therefore, in each subsequent
association, cards corrected by the results of deletions are involved.

Thus, semantic data about the space surrounding the robot are generated in the
central nervous system database, based on which the robot makes behavioral deci-
sions [23] using standard behavioral algorithms stored in the robot knowledge base.
These algorithms are recorded in the knowledge base of the robot at the stage of
its creation, based on its purpose. Therefore, such algorithms will be called genetic.
However, after the formation of the semantic database of the space surrounding the
robot, it may turn out that two or more images are partially or completely present in
the same place in space. Therefore, it is necessary to adjust the semantic database
in order to exclude detected collisions. Such adjustment is closely related to the for-
mation of semantic data - pragmatic, corresponding to the problem being solved by
the robot at the moment.

13.3 Problems with Secure Control of SEMS Group

To create a future of humanity that will be literally filled with robots and all sorts
of “smart” systems, it is required that these robots and artificial intelligence systems
have “instincts” that allow them to avoid collisions with obstacles and with each
other while driving. However, if these instincts are too strong, the robots will be too
slow, which will negatively affect the effectiveness of their actions. To solve this
problem, we need to develop algorithms that constantly strive to find the optimal
balance between speed and safety, which will allow robots to always act with high
efficiency.

Collision avoidance is the main aspect of the systems of all vehicles and other
robotic devices that can move completely independently, in automatic mode. Some
of the developers of control systems for robot cars deliberately allow them to commit
minor traffic violations in the event of a collision hazard.
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In addition, the task of managing a group of robots has an additional complexity
due to the need to ensure coordination between robots. In complex robotic sys-
tems, each robot must satisfy its own kinematic equations, as well as existing phase
constraints, including dynamic constraints that ensure that there are no collisions
between robots.

13.3.1 The Principles of Safe Control

Safe control is closely related to survivability control, algorithms that are included
in the mathematical support of intelligent robots. In this case, the behavior of SEMS
can be adjusted due to the flexible response of the automatic survivability control
system included in the automatic control system (ACS) to sudden changes in time of
external conditions and the internal state of the SEMS itself. The most studied and
frequently encountered tasks of survivability control are adaptation, hot redundancy,
compensation, and borrowing [25]. Less studied and less common is the problems
of stress and stupor or switching on emergency mode. In the process of development
of robot ACS and their intellectualization, new modes of their functioning began to
appear. In particular, robots created on the basis of SMS are able to work as part of
a group of robots under the control of an operator or a higher level ACS [26]. In this
case, there may be situations when the operator’s instructions and/or higher level
ACS will contradict the internal state of the SEMS itself. Another, no less difficult
task is to build algorithms for checking the feasibility of conditions. They should
probably rely on simulating the behavior of SEMS when executing the proposed
operator instructions and/or top-level control system instructions. At the same time,
it is desirable that the created algorithms can take into account the possible rapid
degradation of SEMS and include survivability control mechanisms in advance with
the output of messages to the upper level of group control about the undesirability
or danger of the proposed behavior instructions.

When forming a set of acceptable controls (SEMS behavior instructions), it is first
necessary to identify and write to the SEMS ACS database the acceptable values
of parameters of individual group members, as well as their static and dynamic
characteristics. Then, based on the purpose of a particular SEMS, you need to make
a list of possible Uki (t) instructions. Next, you need to identify a set of acceptable
Yd(t) behavior instructions by mathematical and computer modeling of the dynamic
configuration space. The task is divided into two stages.

At the first stage, for example, using computer simulations of SEMS, invalid
U ∗

ki (t) instructions are identified among possible Uki (t) instructions, which lead to
the output of certain parameters and characteristics beyond the acceptable limits:

U ∗
ki (t) ⊆ Uki (t).
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These instructions should be excluded from the possible:

Ud
ki (t) = Uki (t)/U

∗
ki (t).

At the second stage, dangerous instructions are identified among Ud
ki (t) instruc-

tions, i.e., thoseUo
ki (t)whose frequent repetition leads to rapid degradation of SEMS

with subsequent failures and breakdowns. In this case, logical-probabilistic and
logical-linguistic modeling of SEMS degradation is required [27, 28] with analy-
sis of degradation time. If the degradation time of the tdi system during repeated
application of any Ud

ki (t) instruction is less than the permissible tdop
(
tdi < tdop

)
,

then these instructions are classified as dangerousUo
ki (t) and they are excluded from

the possible ones. Therefore:

Yd(t) = (
Ud

ki (t)/U
o
ki (t)

)
.

Next, among the Yd(t) instructions, we identify those Uc
ki (t) that can lead to

collisions. They are also excluded from the possible ones. As a result, the safe control
instructions will be

Us(t) = (
Yd(t)/U

c
ki (t)

)
.

In some cases,when implementing group control systems for robots, some instruc-
tions issued by the top-level ACS (coordinator-planner ACS) may not be clear to the
SEMS ACS, although they were considered acceptable by the simulation results.
This, for example, may be due to incomplete adequacy of the models used. You
can partially remove such instructions from acceptable ones by semantic analysis
of instructions for correctness and non-inconsistency, and by organizing a dialogue
between interacting SEMS ACS.

In order to achieve a specific goal for a group of robots, each robot can perform
a pre-defined sequence of actions without collisions in the case of a deterministic
environment. In the case of a nondeterministic environment, this sequence must be
found by the control system of a group of robots in the process of achieving the goal.
At the same time, you first need to synthesize a single control system to stabilize the
robot relative to a certain point in the state space with phase constraints. Then you
need to look for optimal robot trajectories in the form of points in the state space for
robots to move from different initial conditions to the specified end positions.

First, we solve the problem of choosing the optimal route for all members of the
group without intersections. If the routes of the group members do not intersect and
the time to reach the goal of moving the group does not exceed the required time,
then the solution to the task is found, otherwise they move on to the next stage.

At this stage, the task of driving group members in the case of possible intersec-
tions of traffic routes is solved. If the time to reach the goal of moving the group,
taking into account the passage of intersections without collisions, does not exceed
the required time, then the solution to the task is found, otherwise they proceed to
the next stage.
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At this stage, the problem of safe traffic with the crossing of the trajectories and
dynamics of movements with delays at the intersections to avoid collisions, applying
the rules of journey of intersections or prioritization of journey of intersections of
members of the group.

13.3.2 Managing the Safe Movement of the Group Through
the Intersection, Taking into Account the Rules of
Passage

In this case, in the vicinity of the intersection, the surrounding space L3 is allocated
with the dimension Lx , Ly, Lz along the X, Y, and Z axes. It is divided at the
beginning of control t0 into cells eq (t0)with constant steps hx , hy, hz on the X, Y, Z
axes. Robot cars A = {a1, a2, . . . , an} are located at points S = {s1, s2, . . . , sn} of the
surrounding space L3 and in their corresponding cells. Each of them is characterized
by the speed of movement, acceleration, and target points F = { f1, f2, . . . , fn} of
this space. They need to arrive at the time t f in the minimum time T . Moreover, the
number of possible collisions of robot cars must satisfy the inequality:

∑

i, j

mi j (tk) ≤ M, (13.17)

where: M—the maximum allowed number of collisions, i, j—robot numbers from
numbers from 1 to n (i 	= j), k—the number of the moment of collision time from
the time interval T, the value mi j (tk) is determined from the logical expression:

“If at time tk the trajectory ri of the robot ai intersects the trajectory r j of the robot
a j , that is, ri ∩ r j 	= 0, then mi j (tk) = 1, otherwise mi j (tk) = 0.”

Cell sizes (steps hx , hy, hz) are selected larger than the dimensions of the
largest robot car. Each eq (tk) cell is characterized by the presence or absence
of ai robot cars and Bi (tk) obstacles. In addition, each cell is characterized by
the interaction of the robot car with the environment in the form of matrices
G (tk) = {G1 (tk) ,G2 (tk) , . . . ,Gn (tk)} , describing the effect of the cell environ-
ment (road surface, humidity, temperature, etc.) on the dynamic state of the robot. In
the linear formulation, these are the transfer functions of the work-car perturbation.

If rules are used, the set of cells is characterized by Rm (tk) traffic rules through an
intersection of the type: if-then. These rules are determinedby the type of intersection.
For example:

When passing through an intersection:
If: There are no traffic lights and no additional signs and Each street has 1 lane

of traffic
then: necessary to turn to the right.
If: There is a robot car in front of the intersection and It moves at a speed greater

than controlled
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then: the controlled robot car continues to the intersection (moves to the next cell)
without braking.

The selection environment O(t) containing cells and robot cars changes over time
t, i.e., it is dynamic. It can be split into O (tk) layers with some constant or variable hk
step depending on the dynamic properties of robot cars and the disturbing properties
of the cell environment. Then, taking into account restrictions of type (13.1) and other
logical, logical-probabilistic, and logical-linguistic restrictions, such as the type of
intersection rules, the optimization problem will be

T = t f − t0 → min,

where: t f is the end time of the group’s movement, and t0 is the start time of the
movement.

This problem can be solved sequentially for each layer of the O(t) selection
environment. However, this approach does not guarantee that the entire group of
vehicles A = {a1, a2, . . . , an} will pass through the intersection, since the selection
environment at each subsequent step depends on the decisions made in the previous
steps and may change over time. Therefore, it is necessary to solve this problem
using forecasting and modeling sequences of situations during the transition from
one layer to another before reaching the final goal.

13.3.3 Control the Group’s Safe Movement Based on
Priorities

Using the well-known potential field control method to solve this problem is inef-
ficient, since it is essentially kinematic and may not be acceptable for fast-moving
SEMS. An example of another approach to solving the problem of safe management
of a group of SEMS with priority setting can be the problem of interaction in the
warehouse of robot forklifts built on the basis of SEMS modules. In this task, you
need to move three robots from the specified points (areas) to the end points (a rect-
angular storage room) without colliding with the set robot priority values: PR1—for
robot R1, PR2—for robot R2, and PR3—for robot R3, for example, as numbers 1,
2, 3.

In addition, priorities can be determined during the movement of robots in the
event of a dangerous situation (possible collision). For this purpose, robot parameters
can be compared. For example, if the size of the i-th robot is larger than the j-th, then
its priority is greater (PRi > PRj ). Other robot parameters can also be used (speed,
proximity to an intersection, weight, destination, etc.). More fine-grained prioritiza-
tion will be used when comparing several robot parameters at once, especially taking
into account their significance by introducing significance coefficients:

PRi =
N∑

n=1

pinkin,
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where: pin is the n-th parameter of the i-th robot, and kin is the coefficient of signif-
icance of this parameter.

Algorithms for controlling these robots at each step of the movement, i.e., when
moving from one cell eq (ti ) of the configuration space to an adjacent one, eq+1 (ti+1)

determines the possibility of a collision (ri ∩ r j 	= 0, then mi j (tk) = 1, otherwise
mi j (tk) = 0). Ifmi j (tk) = 1, the control algorithm determines the robot that has the
highest priority and gives it a command to pass the intersection and gives the other
robot a command to delay the passage for the time when the first robot passes the
intersection, taking into account the maximum braking time, depending on the speed
and road conditions.

Building such an optimal algorithm is a difficult task, since some of the parameters
of control objects and the environment, taking into account possible obstacles on
traffic routes, are not fully defined. They can be described as logical-probabilistic
and/or logical-linguistic expressions [3]. To solve such problems, it is necessary to
use multi-step generalized mathematical programming [11] and software tools of
the A-life type [12]. The solution can be significantly simplified by reducing logical-
probabilistic and logical-linguistic expressions to logical-interval expressions [29].
In this case, the group’s travel time will be slightly longer, but the safety is higher.

13.4 Using Binary Relationships in Decision-Making

Decision-making on control the behavior of a group of interacting SEMS as dynamic
objects is determined by structural approaches to organizing situational control of a
group of robots and the methods of situational control used [30]. In this case, control
consists in making control decisions as problems arise when solving a group task in
a dynamically changing environment of choice [31]. Such control can be attributed
to the optimization problems of situational control [32, 33].

The quality of situational control in solving various problems of group control
depends on the structural organization of control and on decision-making methods.
Among the control structures, the following can be distinguished: decentralizedwith-
out the allocation of a robot leader; decentralized with a leader, centralized with an
operator, combined with an operator and without a leader and combined with an
operator and a leader [34].

The choice of control type is determined by the available technical means and the
type of group task to be solved. Moreover, the choice of a decision-making method
for situational control of a SEMS group largely depends on the type of group control
scheme.
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13.4.1 The Tasks of Situational Control of a Group of
Dynamic Objects

A typical task of situational control is the problem of the optimal transition of a
group of controlled objects from a certain initial variety of points of space to a finite
variety, and the dimensions of these varieties can be arbitrary if the phase spaces of
the controlled objects themselves are taken into account. It is completely obvious
that in technical systems not only control parameters, but also the coordinates of
control objects must obey certain physical restrictions.

Traditionally, under optimal control, such objects control problems are consid-
ered: problemswhen each object can be described by a systemof ordinary differential
equations [6]; problems of optimal hit of objects in moving points of space, tasks
when the movement of pursued objects (moving points of space) is not known in
advance, and information about them comes only with time; tasks when the pursued
objects are controllable and their movement is described by a system of differential
equations [35, 36].

Finally, in situational control of intelligent systems with appropriate behavior,
which include smart electromechanical systems SEMS [37], control can consist in
choosing the best solution from a variety of alternative solutions with a fuzzy and not
necessarily probabilistic or statistical description of the dynamics of control objects
and the environment, and also with a non-scalar indicator of the quality of the control
system. Such problems relate to decision theory [11], i.e., decision-making problems
on the optimality of the system. For cases where it is possible to indicate a scale—
the objective function, the value of which determines the solution, the theory and
methods of mathematical programming are known and well developed [7], which
allow for a qualitative and numerical analysis of the clear-cut solution optimization
problems that arise in this case. Taking into account the uncertainties that may arise
when solving decision problems with a fuzzy mathematical description of complex
systems, including the SEMS group operating in a poorly formalized environment;
it is possible to use these mathematical programming methods with more or less
success in these cases [38].

In the simplest decision-making situation, the Decision-Maker (DM) pursues a
single goal and this goal can be formally defined as a scalar function, i.e., quality
criterion of choice. In this case, the values of the quality criterion can be obtained
for any admissible set of argument values. It is also assumed that the domain of
determination of the selection parameters is known, i.e., component of the selected
vector, or, in any case, for any given point, it can be established whether it is an
acceptable choice, i.e., Does it belong to the domain of determining the quality cri-
terion for a solution. In such a situation, the problem of choosing a solution can be
formalized and described by a Mathematical Programming model (MP). In other
cases, one should use Mathematical Programming in Ordinal Scales (MPOS), Gen-
eralizedMathematical Programming (GMP), or Multi-step Problems of Generalized
Mathematical Programming (MsPGMP) [6].
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13.4.2 Mathematical Methods for Using Binary Relations in
Decision

In the process of searching for the best decision to be made using binary relations,
it is necessary to consistently solve the following basic mathematical problems,
namely, determining the adequacy of mathematical models of control objects and
the environment, constructing a set of accepted Oi , and reference O� decisions,
constructing a set of binary relations δi j and calculating values characterizing these
binary relations.

When constructing a mathematical model, the researcher usually takes into
account only the most significant factors for achieving the set control goals. At
the same time, the adequacy of the model depends on the control goals and control
quality criteria adopted for optimization. Building a perfectly adequate model is fun-
damentally impossible due to the practical impossibility of taking into account the
infinite number of parameters of the original object.

As a rule, the behavior of the SEMS group in the environment of choice is not
fully defined. Therefore, when searching for optimal or best solutions for situational
management of the SEMS group, fuzzy mathematical models of dynamic objects
and functioning environments are usually used, among which one can distinguish:
Logical-Interval (LIM), Logical-Probabilistic (LPM) and Logical-Linguistic (LLM)
[3]. Moreover, their logical and mathematical part can be written in the following
form [39]:

X (t + 1) = A
⊗

x(t)
⊕

B
⊗

u(t)
⊕

r
Y (t) = C

⊗
x(t)

⊕
D

⊗
u(t)

⊕
h

}
, (13.18)

where: X (t) is the extended binary state vector, u(t)—input vector; Y (t)—output
vector; r, h—0, 1 vectors; A, B,C, D—0, 1matrices,

⊗
—multiplication according

to mod 2,
⊕

—addition according to mod 2.
Moreover, each component xi ,u j , yk of vectors X,u,Y should be characterized by

the corresponding values of their probabilities or membership functions or intervals,
the calculations of which are described in detail in [3].

The process of assessing the adequacy of such models of complex systems in
general form can be reduced to solving the problem of finding a binary relation gi ,
which is an element or a subset of the set G (gi ⊆ G) and which corresponds to
the relation Ii go I� when the constraints Ii qi Ui and I� qi Ui (qi ⊆ Q, i = 1, 2, m) ,

where Ii and I� aremathematicalmodels or images of the estimated i-th and reference
model, G and Q are some fixed compact sets, go is the best binary ratio, and Ui are
the models or images given a priori restrictions. In this case, we can assume that the
plans or strategies and tactics of building amodel are admissible by the i-th constraint
if the pair (Ii ,Ui ) ∈ qi and the pair (I�,Ui ) ∈ qi , and the plan or strategy and tactics
of building the model are optimal if the pair (Ii , I�) ∈ g0, q0 is the preference of the
decision-maker, the cardinality of the set go is minimal and the elements of the set
are ordered according to some feature.
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The relations g and q can be expressed as a system of logical equations [6]:

CG = E (13.19)

or
DQ = Y (13.20)

Vectors G and Q have dimension N and in the most general case can have N =
2n − 1 component of the form:

〈g1, g2, . . . , gn, g1g2, . . . , gn−1gn, g1g2g3, . . . , gn−2gn−1gn, . . . , g1g2 . . . gn−1gn〉,

〈q1, q2, . . . , qn, q1q2, . . . , qn−1qn, q1q2q3, . . . , qn−2qn−1qn, . . . , q1q2 . . . qn−1qn〉.

The components gi of the vector G is logical variables that characterize the prox-
imity of the objects and relations of the constructed model Ii to the elements and
relations of the ideal model I�. The qi components of the Q vector are logical vari-
ables that characterize the correspondence of objects and relations of the constructed
model Ii to the elements and relations of the Ui constraint model.

Matrices C and D consist of identification strings ci and di having the dimension
of vectors G and Q and containing elements 0 and 1 in the specified order. For
example,

c1 = (0 0 1 1 . . . 0 1) .

Vector E has the dimension of vector G, its ei components can take the value 1
with some probabilities Pi (ei ) . The vector Y has the dimension of the vector Q and
its yi components can take the value 1 with some probabilities Pi (yi ) . The values of
these probabilities are calculated using the probabilities of the gi and qi components.
In this case, the probability values can be calculated approximately according to the
algorithm described in [40].

Mathematical methods for solving problems of determining go are described in
detail in [6]. After choosing an adequate model, it is necessary to start calculating
the quantities characterizing the binary relations gi j . In the process of solving this
problem for SEMS group control systems, in which control objects are described
by LPM, LLM, or LIM, measures of the quality of decisions made are also set in
the form of binary relations describing the preferences of the decision-maker, in the
form of, for example, point scores formed on the basis of analysis of the opinion of
experts in a given area. Then the estimation of the proximity of the decision to the
reference (optimal) one is reduced to the problem of mathematical programming in
ordinal scales [11].

In contrast to the MPOS problem, optimization by the Generalized Mathematical
Programming method corresponds to the choice of the decision to be made based
on comparing its characteristics with the characteristics of an ideal solution, and not
their parameters [11]. Mathematical methods for solving these problems are also
described in detail in [6]. At the same time, the search for the optimal solution can
be automated by artificial intelligence software.
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Appendix

The stages of forming decision-making in CNSR based on the use of systems of
equations modulo two or systems of logical equations in the Zhegalkin algebra are
considered. The features of pattern recognition described by systems of equations
in algebra modulo two are described. The effectiveness of using the method of the
usual situation in the CNSR, which is an analog of human intuition and allows you to
replace the desired solution with an analog, is shown. This dramatically increases the
speed of forming reflexive reasoning.When choosing the optimal reflexive reasoning
described by systems of logical equations in the Zhegalkin algebra, as well as when
making optimal decisions about the appropriate behavior to achieve the formed goals,
it is desirable to reduce the search for the optimum to well-studied problems of
mathematical programming. If some of the attributes of logical variables in theCNSR
system of equations are linguistic expressions, then a more natural way to choose
the optimal solution is to switch to the concept of consistently preferring one of the
compared options to another. To solve such problems, you can generalize the scheme
of mathematical programming, moving from quantitative scales to ordinal ones, i.e.,
moving frommodels that require the assignment of functions that determine the goals
and limitations of the problem, to models that take into account the preferences of
the persons involved in choosing the solution.

The proposed principles of deductive, inductive and inductive decision-making
basedon information from the central nervous systemusing algebraization andmatrix
solution of systems of logical equations are effectively used in the formation of
strategies and tactics for controlling intelligent robots in conditions of incomplete
certainty. In this case, the fastest decision-making will be when using the principle
of abduction, which includes elements of deductive and inductive thinking. The
reliability and reliability of decision-making with this approach can be improved
during the operation of the robot, if you include elements of self-learning in the
control system, adding to the database selected good solutions that gave the right
decisions in the past.

The article proposes an algorithm for the formation of the robot’s language of
sensations, which allows robots to provide the possibility of reflexive and reasoned
reasoning. To do this, the following procedures are proposed: quantization of the sur-
rounding space, blurring of sensory information, image formation when displaying
the surrounding space, image formation by combining images from different sensory
organs and assigning words to the generated language.

In the considered principles and decision-making stages for control the safemove-
ment of a group of robots built on the basis of SEMS modules, it is assumed that
when forming a set of acceptable controls (SEMS behavior instructions), it is first
of all advisable to identify and record the acceptable values of the parameters of
individual members of the group, as well as their static and dynamic characteristics
in the SEMSACS database. The next step is to determine a set of acceptable behavior
instructions for group members by mathematical and computer simulations of the
dynamic configuration.
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The article describes the mathematical formulation of the problem of controlling
the safe movement of a group through an intersection, taking into account the rules of
passage. It is proposed to solve this problem by predicting and modeling sequences
of situations during the transition from one layer to another before reaching the final
goal.

When solving problems of making decisions on the safe management of the
movement of a group of robots based on their priorities, the construction of an
algorithm for controlling the movement of a group of robots should begin with
determining each step of movement, the possibility of a collision, and the robot with
a higher priority should be given a command to pass the intersection, and the other
robot should be given a command to delay the passage at the moment of passing the
intersection by the first robot with the maximum braking time, depending on speed
and road conditions. To solve such problems, you can use multi-stage generalized
mathematical programming and software tools such as A-life. In this case, the quality
of optimization will bemainly determined by the correctness of constructing a binary
relation describing the measure of proximity of the designed SEMS control system
to the ideal one. This can be a time-consuming and complex task, often involving
solving a number of logical problems. The quality of setting and solving these tasks
depends on the experience and skill of the developer as a decision-maker. To increase
the objectivity of the optimality assessment, it is advisable to make the decision-
making collective with the involvement of the customer in the work on building
binary relations.
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Chapter 14
Boundary-Value Problems for Defects in
Nanoscale and Nanocomposite Solids

Mikhail Yu. Gutkin, Anna L. Kolesnikova, Alexey E. Romanov,
and Alexander G. Sheinerman

Abstract A brief review of solutions of boundary-value problems in the theory of
elasticity for defects in nanoscale andnanocomposite solids,whichwere foundduring
the last three decades in the Laboratory ofMechanics ofNanomaterials andTheory of
Defects at the Institute for Problems inMechanical Engineering of RussianAcademy
of Sciences, is presented. It covers the elastic behavior of dislocations, disclinations,
and inclusions near free surfaces and interfaces in such inhomogeneous nanostruc-
tures as composite nanolayers, core-shell nanowires and nanoparticles, quantum dots
and wires in subsurface layers, etc. Some relevant works dealing with application of
the solutions found to the theoretical models describing the nucleation and develop-
ment of different defect structures in the process of crystal growth and misfit stress
relaxation in advanced composite nanostructures which are highly promising for use
in modern electronics, optoelectronics and photonics, are also briefly reviewed.

Keywords Boundary-value problems · Theory of elasticity · Dislocations ·
Disclinations · Inclusions · Interfaces · Composite nanostructures · Misfit stress ·
Stress relaxation

14.1 Introduction

In the present paper, we give a brief review of solutions of boundary-value problems
in the theory of elasticity for defects in nanoscale and nanocomposite solids, which
were found and used during the last three decades in the Laboratory of Mechanics
of Nanomaterials and Theory of Defects at the Institute for Problems in Mechanical
Engineering of Russian Academy of Sciences (IPME RAS). These solutions were
given within isotropic elasticity for straight dislocations and disclinations, circular
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and rectangular dislocation loops, circular disclination loops, inclusions of different
shapes, sharp and diffuse interfaces in elastic solids bounded by planar, cylindrical,
and spherical free surfaces, and in inhomogeneous elastic solids with planar, cylin-
drical, and ellipsoidal interfaces. The results normally included the displacement
and stress fields of the defects, their strain energies and sometimes the interaction
energies of the defects, and elastic image forces acting on the defects from the free sur-
faces and/or interfaces. These results were extensively applied to theoretical models
describing misfit strain/stress relaxation and defect generation in various solid-state
micro- and nanoheterostructures which are the basis of advanced structural and func-
tional materials. Some of these solutions and results were reviewed in more detail
in monographs [1, 2] and reviews [3–10]. In most cases, our results were obtained
within the classical theory of elasticity and this will not be specially noted anymore,
although sometimes the gradient elasticity and the surface/interface elasticity were
used as well. In both the latter cases, we will specially announce about. We devote
this brief review to the 30 anniversary of IPME RAS.

14.2 The Method of Virtual Surface Defects in the Solution
of Boundary-Value Problems of the Theory of Defects

Elasticity boundary-value problems for defects of different dimensionality, i.e., for
point, line, surface, and volume defects, with prescribed geometrical characteristics,
e.g., configuration of dislocation line, or inclusion shape, located in the bodies with
various geometries, were solved analytically both by standard methods of mathe-
matical physics and theory of elasticity (see, e.g., [11, 12]) and by a new method of
virtual surface defects (MVSD) that were advanced for the solution of such problems.

In the framework of the MVSD, which is further development of surface straight-
linear dislocation–disclination technique [13–17], virtual defect types are chosen
according to the symmetry of the boundary-value problem for real defect under con-
sideration. Virtual defects are then continuously distributed on free surfaces or/and
interfaces in such a way that their elastic field together with the field of the real defect
satisfy the imposed boundary conditions. In works [18–20], defect loops (including
Volterra and Somigliana ring dislocations) were proposed as virtual defects for solv-
ing elasticity boundary-value problems with axial symmetry. Defect ring loops were
defined as planar defects with the eigenstrain prescribed in the part of the plane
bounded by a circle [21, 22].1 A characteristic feature of the elastic fields of the
circular (ring) loops is a possibility to express their fields though Lipschitz–Hankel
integrals [23] that is extremely convenient because of separation of axial and radial
variables.

1 Note that only Volterra dislocations, i.e., translation (ordinary) dislocations and disclinations, can
be considered as linear (1D) defects as a degenerate case of more general class of surface (2D)
defects—Somigliana dislocations [22].
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Boundary conditions accounting for the distributed virtual loops acquire the form
of integral equations for unknown distribution functions which are solved by the inte-
gral transformations. For the case of the planar boundaries, Hankel–Bessel transform
is used, see, e.g. [24, 25]; for the case of cylindrical boundaries—Fourier trans-
form [25, 26]; and for the case of spherical surfaces, the expansion of the elastic
field components of virtual defect loops in the series with Legendre polynomials is
used [27]. When discussing below the results of our studies, MVSD is presented in
necessary details and variety.

14.3 Dislocations

General reviews on the boundary-value problems for dislocations in the classical
theory of elasticity were given by Dundurs [28], Eshelby [29], Lothe [30], and
Belov [31]. A great number of more recent solutions are spread over original papers,
from which we will consider the works of our lab only.

14.3.1 Straight Dislocations

14.3.1.1 Edge Dislocations

Gutkin and Romanov [32, 33] considered an edge dislocation parallel to the surfaces
in a thin two-layer filmwith different elastic moduli. The solution was obtained in the
integral form using a modernized MVSD, i.e., using the fields of both the considered
dislocation and virtual surface dislocations, which satisfy the boundary conditions
on the interface [32]. It was shown [33] that the dislocation may have from one to
five equilibrium (stable and unstable) positions in the film interior, depending on
the Burgers vector orientation and the ratio between elastic moduli of the layers.
These results were later applied to some related problems, the first of which were the
models of misfit dislocations (MDs) in similar systems with lattice mismatch of the
layers [34, 35]. The strain energy of the dislocation found in [33] allowed to define the
critical conditions for nucleation ofMDs and their stable positions near the interface.
It was shown that, depending on the parameters of the two-layer film, a MD may
occupy the stable equilibrium position in the softer layer (the so-called ‘stand-off
position’) or directly in the interface.More recently, the stress fields and strain energy
found in [33, 34] have been used in the models describing the critical conditions for
the formation of MDs in core-shell nanoparticles (NPs) [36]; the glide of circular
prismatic [37, 38], and mixed [39, 40] dislocation loops along the interface between
straight [37, 38] or Y-shaped [39, 40] nanotubes (NTs) and ceramic matrix at the
bridging [37, 38] or pull-out [39, 40] stages of fracture in ceramic nanocomposites;
and the emission of dislocation dipoles from an edge of a long prismatic nanowire
(NW) of rectangular cross-sectional embedded in a free-standing nanolayer [41].
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Using Romanov’s [42] solution for the Airy stress function of an edge dislocation
(as a limiting case of a bi-axial dipole of wedge disclinations) in an elastic cylinder,
Gutkin et al. [43] for the first time considered the generation of a straight edgeMD in
a core-shell NW. The formation of the MD in such a NW was assumed to be driven
by the misfit stresses associated with the mismatch of the lattice parameters of the
core and the shell. It was shown that the generation of the MD decreases the strain
energy of the system and can be realized at some ranges of parameters (misfit, core
radius, and shell thickness). To calculate the conditions for the formation of a straight
MD parallel to the NW axis, Gutkin et al. [43] first calculated the misfit stresses and
then cast the conditions at which the MD generation is energetically beneficial. It
appeared that the MD generation is favored if the thicknesses of both NW phases
(the core and the shell) are not too small. Also, according to [43], the generation
of an MD requires that the misfit should be large enough and the core radius and
shell thickness should be not too different. The calculations [43] also predict that
a decrease in the core radius makes the generation of a straight MD more difficult.
This situation is similar to the case of MDs in films on planar substrates, where a
decrease in the substrate thickness also hinders the formation of MDs at or near the
film/substrate interface [44, 45].

The theoretical analysis of MD formation in NWs was complemented by the
analysis of their generation in uncapped islands and NWs on the surface of a thick
substrate or on the surface of a thin film layer located on a substrate. For example,
theoretical models describing the formation of partial, split, and delocalized dislo-
cations in NWs on the substrate surface were suggested in Refs. [46–48]. The first
of these models [46] considers a composite solid consisting of a semi-infinite crys-
talline substrate and a pyramidal crystalline island modeled as a triangular NW. In
this case, the author approximated the self-strain energies and the interaction energies
of MDs by the solutions found for edge dislocations parallel to the flat free surface
of a half-space [28, 29]. In contrast, in Refs. [47, 48], the substrate and the island
were modeled as cylindrical segments that together composed a cylinder, in which
case the authors used the Airy stress function [42] as the departure point. As with
model [46], 2D models [47, 48] describe dislocations in a 2D NW. However, their
results can be extended to the case of 3D islands.

The calculations performed in Ref. [47] demonstrated that near an island edge
the most energetically favorable dislocation structure is a single partial MD. During
the motion of this MD inside the island, the nucleation of a second partial MD at
the island edge and its motion along the substrate-island interface become favorable.
The motion of partial MDs may happen until they have reached their equilibrium
positions located symmetrically at opposite sides from the island base center. In
parallel with localized dislocations, the formation of dislocations delocalized over
a strip of a certain width can occur in islands [48]. The calculations [48] showed
that the energy of a delocalized dislocation in an island is always smaller than the
energy of a localized one. As a result, the nucleation of a delocalized dislocation
in an island may occur even in small islands, where the formation of conventional
localized dislocations is energetically unfavorable.
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Recently, Smirnov et al. [49] have used the solution [42] for an edge dislocation
in a cylinder for analyzing the mechanisms of misfit stress relaxation in core-shell
NWs, in which the cores had the shape of long prisms of square cross sections.
In particular, they have shown that the emission of dipoles of partial and perfect
dislocations by edges of the cores are the most energetically favorable relaxation
mechanisms in relatively thin and thick NWs, respectively.

Besides the solutions obtained within the classical theory of elasticity, some
boundary-value problems were also solved for edge dislocations within the gradi-
ent elasticity [50] and the surface/interface elasticity [52–56]. Mikaelyan et al. [50]
used one of the early versions of the stress/strain-gradient elasticity, first suggested
by Ru and Aifantis [51], to obtain a solution of the boundary-value problem for a
straight edge dislocation parallel to the planar interface between two elastic isotropic
media with different elastic constants and different gradient coefficients. The main
difference of this gradient solution from the classical one [11] is that the dislocation
stress field has no singularities on the dislocation line and remains continuous at the
interface, while the classical solution is singular at the dislocation line and allows a
discontinuity of two stress components at the interface. The gradient solution also
removes the classical singularity of the image force for the dislocation on the inter-
face. Moreover, an additional elastic image force associated with the difference in
the gradient coefficients of contacting phases was determined. It was shown that
this force, which has a short range and a maximum at the interface, expels the edge
dislocation into the material with a smaller gradient coefficient.

The surface/interface elasticity was used to reveal new nanoscopic peculiarities
in elastic behavior of edge dislocations inside the wall of a nanotube [52], near
an elliptical nano-inhomogeneity [53], in a core-shell NW embedded to an infinite
matrix [54] as well as in the shell of a free-standing core-shell NW [55]. Based on
the results of these work, one can conclude that there is no special need to use the
more complicated surface elasticity theory for describing the dislocation fields and
behavior in the bulk of a nanoscale solid at distances larger than about 1 nm from
the free surface or the interface. When studying the situation near the free surface
or the interface, the choice between the classical and surface theories of elasticity
depends on the values of surface elastic moduli. On the other hand, the non-classical
effects in nanoscale solids can be very impressive. For example, in the case of an edge
dislocation placed in the shell of a core-shell NW, these effects are [55]: (i) the stress
oscillations along the shell surface and core-shell interface for negative values of the
surface/interface elastic moduli; (ii) a strong dependence of image forces on the core
size; (iii) extra repelling (attraction) of the dislocation from (to) the shell surface
and core-shell interface characterized by positive (negative) interface modulus; and
(iv) a decrease of the dislocation strain energy in the central region of the shell and
its local increase with an extra maximum in the vicinity of the shell surface for
negative values of the surface/interface elastic moduli. Moreover, the study of the
surface/interface effects on the formation of MDs in a core-shell NW showed [39]
that these effects are significant for fine cores of radius smaller than roughly 20
interatomic distances. The positive and negative surface/interface Lamé constants
mostly make the generation of the MD easier and harder, respectively. The positive
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(negative) residual surface/interface tensions mostly make the generation of the MD
harder (easier).

14.3.1.2 Screw Dislocations

For screwdislocations, a number of boundary-value problems have been solved in our
lab within the classical, gradient, and surface/interface theories of elasticity. Some of
these problems concern “normal” screw dislocations with full cores, while the others
deal with “abnormal” hollow-core screw dislocations which are commonly referred
to as “micropipes” (MPs). First, wewill consider the solutions done for normal screw
dislocations, and then turn to MPs.

Gutkin et al. [57] solved the problem of a screw dislocation placed near a triple
junction of flat interfaces separating phases with different elastic moduli. In doing
so, they used the modernized MVSD similar to that suggested by Gutkin and
Romanov [32]. The exact analytical expressions for the dislocation stress fields were
found in the Mellin space in the general integral form. For the limiting case, when
the interphase boundaries contacted under right angles, the Mellin transforms for
the functions of distribution of virtual surface dislocations were represented in the
closed explicit form.

Gutkin andSheinerman [58] analyzed the elastic behavior of a screwdislocation in
thewall of a hollowNT. They used themethod of infinite image-dislocation rows [59]
and represented their solutions for the stress fields, strain energy, and image force
by infinite series convenient for numerical analysis. The internal space of the NT
was shown to cause (i) a change in the sign of stress-tensor components near the
inner NT surface, (ii) a high stress concentration, and (iii) a strong stress gradient
at this surface. It was also shown that the dislocation has one position of unstable
equilibrium in the NT wall, which is always shifted toward the inner NT surface. As
the internal-space radius increases, the dislocation energy decreases, and the position
of its equilibrium shifts toward the outer NT surface; in the limiting case of a flat
layer, it reaches the center of the layer.

The technique of infinite arrays of image dislocations was also used [60] to calcu-
late the stress field and strain energy of a screw dislocation in an elastically isotropic
solid containing two cylindrical voids. Based on the solution derived, the image force
exerted by the two voids on a screw dislocation was also calculated and studied. As
a limiting case of the solution obtained, the authors derived the stress field of a screw
dislocation in a half-space containing a cylindrical void. It was shown, in particular,
that, if the void radii are smaller than their spacing from the dislocation, the voids
significantly influence the dislocation stress fields at the distances of several void
radii from the void surfaces.

Kolesnikova et al. [61] solved the boundary-value problems for screw dislocations
normally piercing two-layer flat film and two-layer hollow sphere. The analytical
solutions were found by the MVSD. Elastic fields of the dislocation in the film were
presented in the formof integralswithBessel functions, while those of the dislocation
in the hollow sphere in the formof serieswith Legendre polynomials. The stress fields
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were analyzed by stress maps which allowed to reveal some peculiarities in stress
distribution in dependence of the geometric and elastic parameters of the systems.
It was demonstrated that in the limiting cases of a homogeneous plate and a half-
space, the solutions for a screw dislocation coincide with the solutions found by
the authors earlier [18, 19], as well as with the solutions the first given by Eshelby
and Strogh (plate) [62] and Yoffe (half-space) [63] and found with other techniques.
When passing from a two-phase spherical layer to a solid sphere, the fields of a
screw dislocation become fields first derived by Polonsky et al. [64], and after that
recalculated with the MVSD [27].

Gutkin et al. [65, 66] found the solution for a screw dislocation parallel to the
planar interface between two elastic isotropic media with different elastic constants
and different gradient coefficients within the stress/strain-gradient elasticity [51].
The principal differences from the well-known classical solution [28] are practically
the same as in the case of an edge dislocation (see above Sect. 14.3.1.1).

Shodja et al. [67] used the simplest strain-gradient elasticity theory [68] to analyze
the displacement and strain fields of a screw dislocation in a free-standing NW.
They showed that these fields do not contain classical jumps and singularities at the
dislocation line.Moreover, themaximumvalues of the displacement and elastic strain
strongly depend on both the dislocation position and NW radius, thus demonstrating
a non-classical size effect.

Davoudi et al. [69, 70] considered the cases of a screw dislocation inside [69] and
near [70] an embedded NW within the gradient elasticity theory suggested in [51].
In both the cases, the classical stress singularity was removed from the solutions and
all stress components were continuous and smooth across the interface, in contrast
with the results obtained within the classical theory of elasticity [28]. As a result, the
image force exerted on the dislocation due to the differences in elastic and gradient
constants of the matrix and NW, remained finite when the dislocation approaches
the interface. The maximum magnitude of dislocation stress greatly depended on
the dislocation position, the NW size, and the ratios of shear moduli and gradient
coefficients of the matrix and NW materials.

The surface/interface effects on elastic behavior of a screw dislocation in finite-
size and inhomogeneous nanostructures were studied in Refs. [71–73]. Shodja et
al. [71] studied the same case of a screw dislocation inside the wall of a NT as
Gutkin and Sheinerman [58] within the classical elasticity. The non-classical results
demonstrated [71] that in tiny NTs with wall thickness in the order of a few nanome-
ters, the surface stresses noticeably affect the bulk stress fields over the NT’s cross
section, while in coarser NTs, the surface stress effect is negligibly small. Further,
a screw dislocation was repelled by the inner and outer free surfaces, which is an
atypical behavior in the context of classical elasticity. Thus, a screw dislocation had
one unstable equilibrium position in the bulk of the NT wall, as is also the case with
the classical elasticity [58], and additionally two stable equilibrium positions in close
vicinity of the free surfaces. However, this non-classical effect was strictly localized
in atomically thin subsurface layers. It was also shown that the image force strongly
depends on the NT radii and elastic characteristics of the surfaces.
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Ahmadzadeh-Bakhshayesh [72] analyzed the surface/interface effects for a screw
dislocation in an eccentric core-shell NW. They showed that (i) near the free surface
and the interface, the stress fields considerably differ from the classical ones, while
this difference practically vanishes in the bulk of the NW; (ii) the surface with pos-
itive (negative) shear modulus applies an extra non-classical repelling (attracting)
image force to the dislocation, which can change the nature of the equilibrium posi-
tions depending on the system parameters; (iii) the non-classical surface/interface
effect has a short-range character and becomes more pronounced when the nanowire
diameter is smaller than 20 nm.

Shodja et al. [73] considered the interface effect on the critical condition for the
formation of a screw misfit dislocation dipole (MDD) at the interface between an
embeddedNWwith uniform shear eigenstrain field and surroundingmatrix. The crit-
ical radius of the NW corresponding to the MDD generation was shown to decrease
with the increase in the uniform shear eigenstrain inside the NW as well as when the
stiffness of the NW increases with respect to the matrix, and to strongly depend on
the non-classical interface parameter.

In addition to boundary-value problems for full-core screw dislocations, the stud-
ies of our lab included the investigations of the elastic behavior of MPs which are in
fact hollow-core superscrewdislocationswith giantBurgers vectors often observed in
some crystals with hexagonal crystalline lattice, for example, in silicon carbide [74].
The first of these works [75] considered the elastic interaction of a dislocated MP
with a screw dislocation or another dislocated MP. For the analysis of the elastic
interaction between MPs, the stress field of a dislocated MP in the solid containing
another MP was derived using the technique of infinite arrays of image disloca-
tions [59]. The stress field, strain energy, and the force of interaction of two MPs,
the parameter regions where they are attracted or repelled were determined. It was
demonstrated that at distances large as compared to the radii of the MPs, the pres-
ence of MP free surfaces can be neglected, and the interaction force between MPs
approaches that of two dislocations in an infinite medium. That is, in this case, the
MPs with opposite-sign Burgers vectors attract each other, while those with same-
sign Burgers vectors repel each other. At the same time, when the distances between
the MPs are short enough, the contribution of the MP free surfaces to the interaction
force may dominate. As a consequence, for same-sign MPs, there exists a parameter
region where they attract each other. The attraction area for such MPs exists if the
ratios of their radii and Burgers vectors magnitudes are sufficiently different.

Using the expression for the energy of a pair ofMPs, the criterion forMP split into
two smaller MPs has been derived [76]. With the assumption that the split is possible
if the energy of MPs after the split is smaller than the energy of the initial MP, it
was shown that the MP split is energetically favorable in a certain parameter region
if the MPs are of the same sign. The parameter region comprises the normalized
magnitudes of the Burgers vectors as well as the radii of the initial and split MPs.
This region expands if the radius of the initial MP rises. The split of an MP into two
smaller ones is possible if the radius of the initial MP exceeds the equilibrium radius
and the total MP surface energy decreases due to the split. TheMP split also requires
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that the ratio of the split MP radii should be close to that of the magnitudes of the
MP Burgers vectors.

In works [75, 76], it was supposed that theMPs are situated in an infinite medium.
However, the split of an MP is also likely to happen at the crystal growth front. For
example, in work [77] the split of a MP into another MP and a full-core screw
dislocation has been proposed to occur through the lateral motion of the surface step
produced by the MP. In terms of the dislocation theory, the split of an MP at or near
the crystal growth front may be considered as the formation of a glide dislocation
semi-loop. Since such a split occurs near the crystal free surface, its theoretical
analysis required preliminary solving a number of boundary-value problems for the
MPs terminated at the free crystal surface.

The first of these problems was the problem about an MP perpendicular to a free
crystal surface [78]. The exact analytic solution of this problemwas obtained with an
account for both the cylindrical surface of the MP and its perpendicular flat crystal
surface. The displacement, strain, and stress fields of the MP in a half-space were
calculated in [78] through distributing virtual twist disclination loops over the MP
surface. As a result, it was demonstrated, in particular, that the rigorous account for
the boundary conditions at the cylindrical MP surface considerably influences the
stress field of the MP. The region of strong influence is situated around the MP at the
distance of the order of the MP radius. In this region, the elastic strains may reach
high enough values of several tenths of a percent.

Another boundary-value problem whose solution is necessary for the analysis of
the MP split near the crystal free surface is the problem on glide rectangular dislo-
cation loops that are perpendicular to a free surface. The energy of such dislocation
loops was calculated in [77] using the Green function method.

Using the obtained solutions of the boundary-value problems for the MP and
dislocation loops perpendicular to a free surface, Gutkin and Sheinerman [77] carried
out a theoretical analysis of the MP split into a smaller MP and a dislocation semi-
loop. The calculations demonstrated the existence of the MP attraction zone (with
the width of several hundredths to tenths of MP radius) and the flat crystal surface
attraction zone (with the width of several MP radii), which the semi-loop has to
overcome before its expansion becomes energetically favorable. The semi-loop can
pass over the flat crystal surface attraction zone owing to the crystal growth, while
going through theMPattraction zone requires the presence of an external perturbation
or a stress source. After the semi-loop has left the attraction zones, it becomes stable,
and the MP split becomes irreversible. Thus, a fast crystal growth may get it easier
for the semi-loop to pass over the attraction zone and thereby promote the split of an
MP (provided that the split has already been initiated due to an external perturbation
or a stress source). Therefore, one may suppose that MPs are most likely to split and
be overgrown if the crystal growth rate is sufficiently high.

Gutkin and Sheinerman [77] also theoretically showed that the most expectable
trajectory of the semi-loop central point goes rather closely to the MP in such a
manner that the shape of the semi-loop becomes strongly elongated along the MP.
Therefore, the new MP, which may be formed around the semi-loop line, has to lie
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just near the initial MP. This conclusion is in good agreement with the experimental
observations of ramifying MPs in silicon carbide [76].

Another boundary-value problem solved for the MPs concerns the calculation of
the elastic fields of MPs with axially symmetric steps [79]. The evidence of such
steps is clearly demonstrated by scanning electron microscopy observations of MPs
appearing at the free surface of a crystal (see, for example, [76]). In view of the
presence of the sharp step edge, such a problem cannot be solved using traditional
methods of dislocation theory. However, its approximate but fully analytical solution
was obtained [79] using themethod [80] for studying the effect of stress concentration
near rough surfaces. Gutkin and Sheinerman [79] considered separately MPs that lie
in an infinite medium and MPs perpendicular to a planar free surface. For both the
cases, they calculated the thermodynamic forces acting on the steps. For MPs in an
infinite medium, the force of interaction between their steps was also found. For an
MP with a step, perpendicular to a free surface, the equilibrium position of the step
was estimated. It was shown that subsurface MP steps repulse from the free surface
if they result in decreasing the MP radius. This means that, in vicinity of the free
surface, the MP radius may reduce compared to its radius far from the free surface if
the energetic barrier for the generation of subsurface steps is overcome. It was also
shown that same-sign steps attract each other (at least, as long as they are small), and
so the formation of large enough steps at the MP surface is possible.

It is worth noting in conclusion that the solution for a screw dislocation interact-
ing with two cylindrical voids [60] was used to describe the effect of contact-less
reaction of two MPs by exchange of full-core screw dislocations that should lead to
diminishing the radii of reacting MPs and potentially to their healing in the growing
crystal [81, 82]. This theoretical model was supported by experimental observations
combined with computer simulation of the phase contrast images of MPs obtained
in X-ray synchrotron radiation [81, 82].

14.3.2 Dislocation Loops

In real materials and solid-state structures, dislocations often form closed loops of
various shapes [59]. Dislocation loops are of special interest for theoretical models
dealing with nucleation and multiplication of dislocations. In our lab, a number of
boundary-value problems have been solved for circular and rectangular dislocation
loops with some application to the models of MD generation in core-shell NPs and
NWs, quantum dots (QDs), and stress relaxation in pentagonal NPs and whiskers.

For example, the problem of a circular prismatic dislocation loop (CPDL; “pris-
matic” means that the Burgers vector of the loop is normal to its plane, in contrast to
“glide” dislocation loopwith its Burgers vector parallel to the loop plane [59]) placed
in the axisymmetric position in the cross section of a long elastic circular cylinder
was solved independently by Ovid’ko and Sheinerman [83], Aifantis et al. [84], and
Chernakov et al. [85]. The authors used different techniques and found different
mathematical forms for their solution, however the aim was in general the same: to
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analyze the critical conditions for the generation of MDs in core-shell NWs. Indeed,
besides the formation of straight MDs, the relaxation of misfit stresses in core-shell
NWs is possible via the formation of MD loops at the NW cross sections. It was
found that the formation of a CPDL is energetically favored if the misfit exceeds
a critical value. This critical misfit decreases with an increase in the core radius or
shell thickness, similar to the case of the nucleation of a straight MD. For a spec-
ified misfit, the formation of a CPDL in a core-shell NW is beneficial if the core
radius and the shell thickness are not too small. Chernakov et al. [85] also calculated
the energy of elastic interaction between two similar CPDLs and used this result to
determine the equilibrium density of such CPDLs in a core-shell NW. In the special
case of the InAs-GaAs core-shell NW of diameter 100 nm and core-shell radii ratio
~0.7, experimentally grown and studied by Popovitz-Biro et al. [86], the authors [85]
showed that the calculated equilibrium spacing ofmisfit CPDLs 8.35–9.05 nmwas in
good agreement with their experimentally observed spacing 7.0–8.5 nm. The relative
energy gain caused by such partial misfit stress relaxation was estimated as roughly
31%.

Another research topic of the lab comprised the analysis of dislocation behavior
in nanocomposites containing capped or uncapped islands (QDs) or NWs. One such
a model considered a misfit CPDL around a subsurface cylindrical QD [87]. Such a
QD represented an inclusion in the form of a finite-height cylinder situated in a film
on a semi-infinite substrate. The flat facet of the QD was supposed to enter a surface
of a semi-infinite matrix. To calculate the conditions for the CPDL formation, the
authors used the well-known strain energy of the CPDL near a flat free surface and
its stress fields [88] for finding the energy of elastic interaction of the CPDL and
the QD. Their theoretical analysis [87] demonstrated that the formation of a CPDL
around a subsurface cylindrical QD of a specified height is easiest if the diameter
of this QD is approximately equal to its height and becomes more difficult with an
increase of the absolute difference between the QD diameter and its height.

In the work [20], Kolesnikova and Romanov presented elastic fields of CPDL
located parallel to the free surfaces of a flat plate. This solution was found using
MVSD, in which two types of circular loops were chosen as virtual defects: CPDLs
and the radial Somigliana dislocation ring loops [18–20].

Kolesnikova et al. [89] solved the boundary-value problem for an axially sym-
metric CPDL in an elastic hollow sphere. They calculated the stress fields and the
strain energy of the CPDL and showed that the CPDL stress and dilatation fields are
strongly screened and distorted by the free surfaces of the sphere as compared with
the case of a CPDL in an infinite medium. Moreover, they revealed some interest-
ing qualitative peculiarities in the distribution of the elastic fields, which would be
impossible to predict based on the infinite-medium solution. This mainly concerns
the CPDL dilatation which can change its sign in the subsurface layers of the particle,
near the cavity and in the shell. In the case of an interstitial CPDL, some regions of
3D stretching appear near the free surfaces where the conditions favorable for sur-
face nucleation of vacancies are formed. These vacancies are stimulated to migrate
to the interstitial CPDL, accommodate the compression near it and annihilate with
the interstitials forming the CPDL. As a result, the CPDL can be kinetically unstable
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in the systems under discussion. On the other hand, the interstitials and impurities
having the atomic size larger than that of the parent atoms, are stimulated to migrate
to the stretched regions and form their surface segregations or even second phases.
The strain energies of CPDLs were shown to strongly depend on their radii and
positions in particles and shells, or near cavities. In particles and shells, the strain
energy reaches its maximum when a CPDL lies in the equatorial planes and has the
radius of roughly 0.8 of the particle radius or outer radius of the shell, if the latter is
several times larger than the inner radius of the shell. For a cavity, the strain energy
of a CPDL increases with its radius and its shift from the equatorial plane.

The solution [89] was extensively used in recent years for theoretical modeling of
stress relaxation in bulk [90, 91] and hollow [91, 92] core-shell NPs, icosahedral [93]
and decahedral [94] small particles, decahedral core-shell NPs [95] and core-shell
nanoparticles with truncated spherical cores [96]. Moreover, Krasnitckii et al. [97]
utilized this solution to calculate the energy of elastic interaction of two coaxial
CPDLs in an elastic hollow sphere. They showed that the interaction energy of
CPDLs is strongly screened by free spherical surfaces when at least one of the
CPDLs is localized near the surface. The outer free surface makes a greater effect
on the interaction energy than the inner free surface. In particular, there is a region
near the equator and the outer free surface, where the interaction energy changes its
sign. The inner free surface does not give such effect.

Besides theCPDLs, the rectangular prismatic dislocation loops (RPDLs) have also
been in the focus of research in our lab. For example, Gutkin et al. [98] analyzed the
critical conditions for the formation of various misfit defects at the interface between
subsurface NWs of rectangular cross section, which were parallel to a free surface,
and surrounding semi-infinite matrix. It was supposed that the accommodation of
the misfit stresses in such a system might occur through the generation of either
RPDLs, or dislocation semi-loops, or dipoles of straight MDs. The defects were
supposed to form if their generation was energetically favorable. For the calculation
of the strain energy of the RPDL, the authors applied the Green functionmethod. The
calculations [98] demonstrated that taking into account of the NW shape anisotropy
and the presence of a free surface nearby significantly alters the critical conditions
for defect formation in a NW. In contrast to cylindrical NWs and spherical QDs
in an infinite medium, an increase of one of the sizes of a subsurface rectangular
NW does not always reduce the critical misfit for the formation of RPDLs, although
it decreases the critical misfit for the formation of MD dipoles at the NW-matrix
interface. The presence of a matrix free surface may either increase or decrease the
critical misfits for the nucleation of RPDLs and MD dipoles.

The strain energy of a RPDL placed normally to a close flat free surface, found
in [98], were recently used in theoretical models of initial stages of misfit stress
relaxation in various composite nanostructures of spherical (bulk [91, 99, 101] and
hollow [91, 100, 101] core-shell NPs), cylindrical (bulk [100–104] and hollow [100,
101] core-shell NWs) and flat (bi- and tri-nanolayers [100, 101]) geometry. Based
on the strained states in the misfitting nanostructures, the authors quantitatively esti-
mated changes in their energies, which accompany the generation of RPDLs in
them, revealed places of the energetically more favorable generation of the RPDLs
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in these nanostructures and determined optimum shape of the RPDLs. By comparing
the critical conditions for appearance of the most energetically favorable RPDLs in
the different composite nanostructures, Gutkin and Smirnov [100, 101] ranged the
relative stabilities of these nanostructures against generation of RPDLs. In partic-
ular, they showed that the hollow nanostructures are always more stable than their
bulk counterparts, the cylindrical nanostructures are more stable than the symmetric
flat tri-nanolayers, the spherical nanostructures are more stable than the cylindrical
ones, and the flat bi-nanolayers are the most stable composites among those under
investigation.

14.4 Disclinations

For disclinations, quite a limited number of boundary-value solutions have been
found in our lab, although some earlier solutions were used in theoretical modeling.
In particular, in parallel with MDs, other misfit defects can nucleate in core-shell
NWs. An example is wedge disclinations (WDs) that can form at the junctions of
twin or grain boundaries in poly- and nanocrystalline solids [9, 28, 105]. The elastic
solutions, found by Romanov [42] for WDs in elastic cylinder, were applied by
Sheinerman and Gutkin [106] to examine the critical conditions of the formation of
individual misfit WDs, their dipoles, and arrays in core-shell NWs. In considering
individual misfit WDs, the authors showed that their appearance at the core-shell
interface is energetically favored if their strength is smaller than a critical strength.
In contrast, the formation of a WD dipole, with one WD at the core-shell interface
and another inside the shell, is beneficial if the disclination strength exceeds another
critical strength. Similar to individual misfit WDs, the formation of a periodic array
of misfit WDs at the core-shell interface is favorable if the disclination strength is
below some critical strength that depends on the core to NW radii ratio, misfit, and
the number of misfit WDs in the array.

Another example is the solution for a bi-axial dipole of WDs in a thin elastic
layer [16], which was used by Dynkin and Gutkin in their models of stress-coupled
migration of grain boundaries in ultra-thin nanocrystalline films under tension [107,
108].

New solutions were found by Shodja et al. [109] for a bi-axial dipole of WDs in
an embedded NW and by Rezazadeh-Kalehbasti et al. [110] for a bi-axial dipole of
WDs and an individual WD in the shell of a free-standing core-shell NW. In both the
cases, the surface/interface elasticity was used. Shodja et al. [109] showed that the
positive interface modulus leads to increased strain energy and extra repulsive forces
on the WD dipole. The noticeable effect of the negative interface modulus is the
non-classical oscillations in the stress field of the WD dipole and an extra attractive
image force on it. Rezazadeh-Kalehbasti et al. [110] demonstrated that the stresses
are rather inhomogeneous across the NW cross section, change their signs and reach
local maxima and minima far from the WD lines in the bulk or on the surface of the
NW. For negative values of the surface/interface modulus and relatively small values
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of the ratio of the shell and core shear moduli, the surface/interface effect manifests
itself through non-classical stress oscillations along the shell free surface in the case
of a WD dipole and core-shell interface in both the cases of a WD dipole and an
individual WD. The non-classical solution for the strain energy deviates from the
classical solution with different effects caused by the surface/interface moduli on the
WD dipole and an individual WD. When the core is softer than the shell, the dipole
with radial orientation of its arm has an unstable equilibrium position in the shell. In
general, if the surface/interface modulus is positive, the surface/interface effects are
rather weak; however, if it is negative, the effect can be very strong, especially near
the shell surface.

Solution for the dipole of WDs whose lines are perpendicular to the free surfaces
of the flat plate of finite thickness is given in the works [18, 19].

Within the classical theory of elasticity, Kolesnikova et al. [111] solved a new
boundary-value problem for a WD axially piercing a hollow sphere. The displace-
ments, the stresses, and the dilatation of the WD were represented in the form of
series with Legendre polynomials and analyzed in detail. The related problems of
WDs axially piercing a bulk elastic sphere and a spherical pore in an elastic medium
were addressed as well. The authors concluded that the divergence of the WD elas-
tic fields was eliminated everywhere in the elastic bodies with the exception of the
WD line. The hollow and bulk spheres are the most screening systems for the WD
in comparison with the flat layer [16] and the infinite cylinder [42] considered ear-
lier. The distribution and the magnitude of the WD elastic fields in spherical bodies
strongly depend on the presence and the size of the inner cavity. Nevertheless, the
regions adjacent to the lines of positive (negative) WDs are always hydrostatically
compressed (stretched), while the regions distant from these lines are always hydro-
statically stretched (compressed). The formal solution for a WD axially piercing a
spherical pore in an infinite elastic medium is inapplicable for analyzing the elastic
fields of the WD. To get their realistic description, it is necessary to strictly take into
account the boundary conditions on remote external boundaries of the body contain-
ing the WD. For example, the solution of the problem of a WD, axially piercing a
sufficiently thick spherical layer, is suitable for analyzing the case of a spherical pore
on the WD line.

The elastic fields found by Kolesnikova et al. [111] were used in theoretical mod-
els which described the fracture of hollow decahedral particles under chemical etch-
ing [112], the elastic strains in homogeneous [94] and core-shell [95] decahedral NPs
and their relaxation through generation of CPDLs. In these models, the positive par-
tial WD of strength +7◦20′ lies along the axis of five-fold symmetry in a decahedral
particle, which axis coincides with the line of junction of five twin domains [113].
The solution by Kolesnikova et al. [111] allowed to consider the decahedral particle
as an elastic sphere (either hollow [112], or bulk [94], or composite [95]) axially
pierced by the WD and to calculate the initial (unrelaxed) strain–stress states within
these models.

We also mention a number of boundary-value problems solved for a circular twist
disclination loop, the Frank vector of which is perpendicular to the plane of the loop.
Solutions for elastic fields and energy of the twist loop in a finite thickness flat plate,



14 Boundary-Value Problems for Defects in Nanoscale and Nanocomposite Solids 281

near a free surface and an interface are given in the Refs. [18, 19]. In the cylinder,
solid sphere and for the loop circling the spherical hole, the solutions for the twist
loops can be found in the Refs. [20, 114] and [27], respectively.

14.5 Inclusions

The boundary-value problems for inclusions have been solved in our lab with the
aim to use these solutions mainly for studying the misfit stress distribution in various
composite nanostructures. Some of these results were found from more general
solutions by simple limiting transitions. For example, Malyshev et al. [115] solved
the problem for a dilatational inclusion in the shape of a long prism of rectangular
cross-sectional (rectangular inclusion) embedded to a thin elastic layer in such a way
that the edges of the inclusion and two its faceswere parallel to the layer free surfaces.
Mikaelyan et al. [41] reproduced this solution and used it to analyze the model of
dislocation emission from the edge of such an inclusion embedded in a free-standing
nanolayer. With a limiting transition from the nanolayer to a semi-infinite medium,
Gutkin et al. [98] found an explicit analytical solution for a similar inclusion in an
elastic half-space and applied it to modeling the misfit stress relaxation in misfitting
NWs embedded to a half-space (see also Sect. 14.3.2).

Gutkin et al. [116–118] considered a similar rectangular inclusion with antiplane
eigenstrain as a model for polytype inclusions in growing crystals of silicon carbide.
With using this model, they gave a theoretical description for the elastic interaction of
these inclusions withMPs (see Sect. 14.3.1.2) and showed thatMPsmust be attracted
to the boundaries of the inclusion and agglomerate there with formation of elongated
pores, as was revealed by their own direct experimental observations. In doing so,
they solved a boundary-value problem for the rectangular inclusion interacting with
the free cylindrical surface of an MP [117] and demonstrated that the equilibrium
positions of MPs lie at the inclusion boundaries. Moreover, Gutkin et al. [118] found
the solution for the stress field of a similar inclusion containing an elliptic pore on
its boundary. The analysis of the forces exerted on MPs by the inclusion and elliptic
pore showed that the pore attracts MPs until their number reaches a critical value.
After that, the MPs absorbed by the pore produce a repulsion zone for newMPs, and
pore growth stops. The critical pore size is determined by the values of inclusion
plastic distortions. At their small values, isolated MPs form at the inclusion/matrix
interface; at medium values MPs coalesce to form a pore of a certain size; at large
values the pore occupies the whole inclusion boundary.

The spherical dilatational inclusion embedded in the flat finite thickness plate
was considered in [20], and the related boundary-value problem was solved using
MVSD.

A number of boundary-value problems have been solved for the inclusions that
play the role of cores in core-shell NWs and NPs. First, infinite cylindrical inclusions
with 3D dilatational eigenstrains were considered as cores in elastically homoge-
neous [43, 119, 120] and inhomogeneous [84] cylindrical core-shell NWs. Enze-
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vaee et al. [56] solved a similar elastically inhomogeneous problem within the sur-
face/interface elasticity.

Gutkin et al. [121] constructed the model of a cylindrical core with axial 1D
dilatational eigenstrain and finite length in a cylindrical NW. The stress fields of this
finite-length core were found through continuous distribution of virtual CPDLs with
infinitesimal Burgers vectors over the side boundary of the core and integration of
stress fields of these virtual CPDLs over the core length. The authors analyzed two
possible ways of stress relaxation in such a composite NW – by misfit CPDLs and
by mode I penny-shaped cracks. It was shown that the first way is more preferable
than the second one for almost all possible real cases. The elastic solution of Gutkin
et al. [121] was then used by Gutkin and Panpurin [122, 123] to study the sponta-
neous formation and equilibrium distribution of axial cylindrical QDs in atomically
inhomogeneous pentagonal NWs.

Krasnitckii et al. solved a number of boundary-value problems for faceting cores
in core-shell NWs, including the cases of axial prismatic cores of square [104, 124,
125], triangle [104, 125] and hexagonal [103, 104, 125] cross sections, and eccen-
tric prismatic cores of rectangular [126] and trapezoidal [125] cross sections. They
used these solutions for comparative analysis of critical conditions for nucleation
of RPDLs (see Sect. 14.3.2) at the initial stages of misfit stress relaxation in such
NWs [102–104, 125]. For example, Krasnitckii et al. [104] considered different sites
of RPDL nucleation in the NWs with hexagonal, square and triangular shapes of the
core cross section. The energy change caused by the RPDL nucleation was calcu-
lated for every case under the assumption that the shell thickness is much smaller
than the core size. The corresponding critical values of the misfit parameter for the
RPDL nucleation were determined and compared with each other. According to this
comparison, the most favorable sites in the core-shell NWs and the optimal shapes of
the RPDLs were defined. NWs with round, hexagonal, square, and triangle shapes of
the core cross section were ranged with respect to their stability to RPDL nucleation.

The inclusion problem for bulk spherical cores in spherical core-shell NPs was
solved many years ago [127, 128] and extensively used in theoretical modeling of
mechanisms of misfit stress relaxation in these systems [90, 91, 95, 129]. Gutkin
et al. [92] considered the case of hollow spherical cores in spherical core-shell NPs
and applied its solution to modeling of misfit CPDL generation in such NPs [91,
92]. Kolesnikova et al. [130] suggested the elastic models for finite cylindrical and
truncated spherical inclusions in an infinite medium as well as for a truncated spher-
ical inclusion in an elastic sphere [131]. As a limiting case of the latter problem, a
spherical Janus particle (composed of two semispheres of different materials) was
considered as well [131]. The solution for a truncated spherical dilatational inclusion
in an elastic sphere [131] was also used in studying the critical conditions for the
formation of misfit CPDLs in core-shell NPs with truncated spherical cores [96].

In addition, spherical two-phase inclusion in the infinite matrix as a model of the
core-rim structured carbide grain in the cermet, was considered in Ref. [132].

Romanov et al. [133, 134] considered a number of boundary-value problems for
flat sharp and diffusive interfaces in axially inhomogeneous NWs. These interfaces
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were normal to the NW axes and separated the NWs onto cylindrical segments of
different misfitting materials.

The authors presented a general solution of the isotropic elasticity problem for the
sandwiched inclusion in an elastic cylinder and having axially varying eigenstrain.
The technique of the solution and the results for the elastic fields and energies of
dilatational inclusions with different distribution of eigenstrain, namely, constant,
trapezoidal, and diffusion-like, along the axis of the cylinder, were given in full
details. The technique explored the axial superpositions of infinitely thin dilatation
disks inserted in the cylinder, the elastic fields ofwhichwere found in analytical form.
In addition, the energies of interfaces separated domains with constant eigenstrains
in the cylinder were given. It was demonstrated that the blurring of the eigenstrain
in the transition region leads to a decrease in interface energy.

In the works [135, 136], a finite element method was used to calculate the elastic
fields and total displacements in a surface QD and an adjusted region of the substrate.
The effects of QD form factor and aspect ratio δ on QD elastic properties were
analyzed. A quasilinear dependence of radial displacements on radial coordinate for
spherical, elliptical, and truncated sphericalQDswas demonstrated. It has been found
that the displacement field does not depend on the shape and aspect ratio for QDs
with δ > δc1, and the upper part of a QD remains practically undistorted for QDs
with δ ≥ δc2. For InSb/InAs heterosystem these critical values are δc1 ∼ 0.13 and
δc2 ∼ 0.33. The total displacements were used for computation of TEM diffraction
contrast associated with QDs [135, 136].

Along with solutions of the boundary-value problems for defects that are internal
sources of elastic fields, the complete analytical solution for the plane elasticity prob-
lem of a concentrated force acting on a half-space weakened by a circular hole was
found [137, 138]. The solution is based on the algorithm proposed by Jeffery [139]
for elasticity problems and treated in detail by Uflyand [12] using bipolar coordi-
nates to characterize the geometry of the problem. Earlier, this problem was solved
correctly by applying numerical methods and extended to the case with an ellipti-
cal hole (see, e.g., Ref. [140]. We found the biharmonic stress function describing
stresses and strains in the half-space and the associated biharmonic function that
allows determining the displacement field. Both functions were given in the form of
Fourier series with quite compact coefficients. The stresses were written and plotted.
Particular attention was paid to the displacements at the surface of the half-space.
It was speculated how these displacements could be used in an inverse procedure
for the identification of a circular hole diameter and position in the solid by the
measurements of surface displacements induced by a concentrated force.

14.6 Conclusions

Thus, we have given a brief review of boundary-value problems in the theory of
elasticity, which have been solved for various defects (dislocations, disclinations,
and inclusions) in our lab during the last three decades. We have also touched some
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relevant works dealingwith application of the solutions found to our theoretical mod-
els describing the nucleation and development of different defect structures in the
process of crystal growth and misfit stress relaxation in advanced composite nanos-
tructures which are highly promising for use in modern electronics, optoelectronics,
photonics, etc.

Based on these studies, we can conclude that theoretical description of elastic
behavior of defects near inner and outer boundaries of solids within the classical
theory of elasticity gives rather reliable results that in a set of cases are in good
accordance with available experimental data. Although the use of more extended
versions of the elasticity theory (as, for example, the strain/stress gradient elasticity
and the surface/interface elasticity) looks much more attractive when dealing with
nanostructures, it was demonstrated that in reality they give new important results in
close vicinity (not farer than ~1 nm) of surfaces/interfaces and lines of defects.

Among the problems that seem to be of special interest in the nearest future, we
can notice the following areas of research:

• boundary-value problems for defects in faceted core-shell NWs and NPs;
• boundary-value problems for inhomogeneous nanostructures with diffuse inter-
faces;

• theoretical models describing the elastic behavior of defects in inhomogeneous
nanostructures with diffuse interfaces.

The statement and solution of the above problems will allow to get new results which
are expected to better reflect the behavior of defects and related phenomena in real
device nanostructures.
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Chapter 15
On Imbedded Alternating Renewal
Process for a Diffusion Semi-Markov
Process on Interval with Unattainable
Boundaries

Boris P. Harlamov

Abstract A diffusion semi-Markov process on a bounded interval range of values
with unattainable boundaries is considered. It is supposed that the process does
not have any infinite-value interval of stop. So unattainability of the boundaries is
provided only because of changing the coefficient of shift. A limit theorem of the
alternating renewal process is used to derive a limit distribution of this diffusion
semi-Markov process.

Keywords Regeneration time · Continuous semi-Markov process · Diffusion
semi-Markov process · Regular and unattainable boundaries · Alternating renewal
process

15.1 Continuous Semi-Markov Processes

A one-dimension diffusion semi-Markov process (see, for example, [1], p. 137) is
the main objective of this investigation. Sample trajectories of such a process (unlike
a diffusion Markov process) may contain finite intervals of constancy, which, in
some applications, have quite pithy interpretations. For example, such a time is
that of chromatographic particles location in absorbed position (see [2]), or time of
unexpected trading discontinuances on a stock, and so on.We think that the existence
of random intervals of constancy can be explained for any applications of random
processes.

Statistical consideration of such a property leads to constructing a model of con-
tinuous semi-Markov processes [1] as a generalization of Markov processes. Appli-
cations of Markov processes are well known in physics, chemistry, biology, geology,
sociology and so on. Continuous semi-Markov models could supplement the list of
these applications taking into account more real process properties than the tradi-
tional Markov model.
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Along with an extended region of applications, the continuous semi-Markov pro-
cesses have some lacks comparatively with Markov processes. For example, the
formers do not have distribution formulae for fixed time moments. In this article,
it is shown how one can do without these formulae deriving limit distributions of
one-dimensional diffusion semi-Markov processes on an interval with unattainable
boundaries.

15.1.1 Space of Continuous Functions

We will consider a one-dimensional continuous random process X on the interval
[0,∞). A mathematical description of the process begins from that of corresponding
measurable space with a probability measure.

Let C be the standard metric space of continuous functions ξ, determining on the
interval [0,∞)with values fromR (sample trajectories of the process),F be a subset
sigma-algebra of C and P be a probability measure on F . This triple characterizes
completely the continuous random process of general view. Sometimes, it is more
convenient to consider a coordinated family of probability measures than one that.

Further, we use some attributes of the measurable space (C,F).
Let Xt (t ≥ 0) be a function with a parameter t on C, determined by the equality

Xt (ξ) = ξ(t) (one-coordinate projection), and θt be the shift operator on C, where
θt (ξ) ∈ C and Xs(θt (ξ)) = ξ(t + s) holds for any s ≥ 0.

We will use also a class T of measurable maps τ , where 0 ≤ τ (ξ) ≤ ∞ holds
for any ξ (random times admitting infinite means). On the set {ξ : τ (ξ) < ∞}, we
determine a functional Xτ and an operator θτ with the random parameter, where

Xτ (ξ) ≡ Xτ (ξ)(ξ), θτ (ξ) ≡ θτ (ξ)(ξ).

As a rule, a set S ⊂ C is given by some description for its element properties. For
example, S = {ξ ∈ C : τ (ξ) < ∞}. Further instead of the full description of a set, we
will write only description itself omitting argument ξ. In this example, S = {τ < ∞},
and E( f ; τ < ∞) for expectation of a function f on the set S, corresponding to a
measure P .

Let us denote f2 ◦ f1 ≡ f2( f1) (superposition of two functions). Note that sub-
stitution of an argument ξ into this construction must be done from the right to the
left.

Using these denotations on set

{τ1 < ∞, τ2 ◦ θτ1 < ∞} ≡ {τ1 < ∞} ∩ {τ2 ◦ θτ1 < ∞}

one can write
Xτ2 ◦ θτ1 ≡ Xτ2(θτ1) = Xτ3 , (15.1)
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and also
θτ2 ◦ θτ1 ≡ θτ2(θτ1) = θτ3 , (15.2)

where τ3 ≡ τ1 + τ2 ◦ θτ1 < ∞ and it is so called addition with shift. Further, we will
denote

τ1 + τ2 ◦ θτ1 ≡ τ1+̇τ2,

which is the map, determined on the set τ1 < ∞. Note that the operation +̇ is asso-
ciative but not commutative.

So we have
Xτ1+̇τ2 = Xτ2 ◦ θτ1,

θτ1+̇τ2 = θτ2 ◦ θτ1 .

From the last expression, it follows

θτ1+̇···+̇τn = θτn ◦ · · · ◦ θτ1 . (15.3)

15.1.2 Regeneration Times for a Family of Measures (Px)

LetFt be standard sigma-algebra of events (subsets), “preceding” to time t ≥ 0, and
τ be standard Markov time relating to (Ft )t≥0 (which call to be natural filtration).
Let Fτ be standardly defined sigma-algebra of events presiding to the Markov time
τ . It lets us to investigate regeneration times.

We will denote Px a probability measure on the measurable space (C,F)with the
property Px (X0 = x) = 1. Also, we assume (without discussing details), what for
any measurable set S the function Px (S) as a function of x is measurable on R.

Markov time τ1 is called to be regeneration time for the family of measures (Px )
(x ∈ R), if for any x ,Fτ1 -measurable function f1, andF-measurable function f2 the
equality

Ex ( f1 · ( f2 ◦ θτ1); τ1 < ∞, τ2 ◦ θτ1 < ∞) = Ex ( f1 · EX (τ1)( f2; τ2 < ∞); τ1 < ∞)

holds. Here, Ex (g ; S) is integral of a function g corresponding to measure Px on set
S.

Further, we call a family of measures (Px ) to be coordinated if it has even one
nontrivial regeneration time.

For to write formulae more compact, we will sometimes write a subscript (param-
eter) of the function Xt as an argument (in parentheses); for example, XσΔ

≡ X (σΔ).
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15.1.3 Semi-Markov Transition Generating Functions

Let us denote σΔ the time of the first exit of trajectory from interval Δ:

σΔ(ξ) = inf(t ≥ 0 : ξ(t) /∈ Δ)

assuming σΔξ = 0, if ξ(0) /∈ Δ, and also σΔξ = ∞, if ξ(t) ∈ Δ for any t ≥ 0. It is
known (see [5], c. 194), what σΔ is a Markov time relative to the natural filtration.
Evidently that from condition Δ1 ⊂ Δ2, it follows σΔ1 ≤ σΔ2 .

The random process X is determined by a coordinated family of probability
measures (Px ) is called to be continuous semi-Markov process, if for any interval
Δ the Markov time σΔ is regeneration time of this family.

The boundary a of an interval (a, b) is called to be regular for a continuous
semi-Markov process if

Px (σ(a,b) < ∞, X (σ(a,b)) = a) > 0

for any x ∈ (a, b). The boundary a of the interval (a, b) is called to be unattainable
for a continuous semi-Markov process if

Px (σ(a,b) < ∞, X (σ(a,b)) = a) = 0

for any x ∈ (a, b).
Regularity and unattainability of the right boundary of interval (a, b) are deter-

mined analogously.
From here, it follows the determination: both boundaries of the interval (a, b) are

unattainable for a continuous semi-Markov process if

Px (σ(a,b) < ∞) = 0

for any x ∈ (a, b).
Let x ∈ (a, b) be a starting point of a continuous semi-Markov process X , and

boundaries of (a, b) are regular points for this process.
Let us consider functions

g(a,b)(λ, x) ≡ Ex (exp(−λσ(a,b)); σ(a,b) < ∞, Xσ(a,b) = a)), (15.4)

h(a,b)(λ, x) ≡ Ex (exp(−λσ(a,b)); σ(a,b) < ∞, Xσ(a,b) = b), (15.5)

where λ ≥ 0. We call these functions as semi-Markov transition generating func-
tions of the process. They determine the semi-Markov process completely (to within
distribution of its starting point).

Note that for a semi-Markov process usual Markov transition functions like
Px (Xt ∈ S), where S is a measurable subset of R are determined too. However,
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these functions are useless because fixed (non-random) times are not regeneration
times for continuous semi-Markov processes (unlike that of Markov processes).

From the definition of semi-Markov transition generating functions, it follows that
the most simple continuous semi-Markov process is monotone one. For to construct
a non-decreasing process, it is sufficient to consider a homogeneous process with
independent positive increments Y which has the Levy presentation (see [6], p. 49)
without a linear component (for example, gamma process), and to construct X with
property (σ(0,t))t>0 ≡ (Yt )t>0, where (Yt )t>0 is a family of one-coordinate maps of
the processY relative to its coordinated family of probabilitymeasures. It is so-called
inverse process with independent positive increments. Evidently that such a process
has continuous non-decreasing trajectories. For this process, the functions defined
above are such that

g(a,b)(0, x) = 0

for any (a, b), and x ∈ (a, b). A continuous semi-Markov process with non-
increasing trajectories is constructed analogously. For such a process

h(a,b)(0, x) = 0

for any (a, b), and x ∈ (a, b).
Sample trajectories of these processes have exotic view like the famous Cantor

curve. In commoncase, trajectories of such aprocess consist of randomfinite intervals
of constancy positioned like a “ladder”.

15.2 Diffusion Semi-Markov Processes

It is interesting to consider a class of processes with the property: for any x ∈ (a, b)
boundaries of the interval (a, b) are regular, and both values g(a,b)(0, x) and
h(a,b)(0, x) are positive.

Let Δr ≡ (x − r, x + r), Δr ⊂ (a, b), where r > 0, and x ∈ (a, b) be a starting
point of a continuous semi-Markov process X , and both boundaries of the interval
(a, b) be regular for this process.

Let us consider a decomposition by powers of r → 0 for functions gΔr (λ, x) and
hΔr (λ, x).

gΔr (λ, x) = C1(λ, x) + A1(λ, x) r + B1(λ, x) r2 + o(r2),

hΔr (λ, x) = C2(λ, x) + A2(λ, x) r + B2(λ, x) r2 + o(r2),

where Ai are continuously differentiable, Bi and Ci are continuous functions, and
Ci > 0.
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Let this asymptotic be homogeneous with respect to x on every finite interval.
Due to properties of Laplace transformation in the book [1], pp. 141–149 it is proved
that

A1(λ, x) + A1(λ, x) = 0, Ai do not depend on λ,

B1(λ, x) = B2(λ, x) < 0,

C1(λ, x) = C2(λ, x) = 1

2
.

Further, we will denote A1(x) ≡ − 1
2 A(x) and B1(λ, x) = B2(λ, x) ≡ − 1

2 B(λ, x).
From here if r → 0:

gΔr (λ, x) = 1

2
(1 − A(λ, x) r − B(λ, x) r2) + o(r2), (15.6)

hΔr (λ, x) = 1

2
(1 + A(λ, x) r − B(λ, x) r2) + o(r2). (15.7)

Note that the process does not have an infinite interval of constancy. From here,
it follows that B(0, x) = 0. Besides from Laplace transformation property to be
decreasing with respect to λ > 0, it follows that B ′

λ(0, x) ≥ 0. These properties of
the coefficient B(λ, x) will be used below while evaluating the expectations of the
first exits.

Further from the definition of the continuous semi-Markov process (for which
σΔr is a regeneration time), it follows equations:

gΔ(λ, x) = gΔr (λ, x)gΔ(λ, x − r) + hΔr (λ, x)gΔ(λ, x + r), (15.8)

gΔ(λ, x) = gΔr (λ, x)hΔ(λ, x − r) + hΔr (λ, x)hΔ(λ, x + r). (15.9)

Substituting into these equations, the above asymptotical decompositions (15.6) and
(15.7) we obtain both functions gΔ(λ, x) and hΔ(λ, x) satisfying on Δ the same
differential equation

1

2
u′′ + A(x)u′ − B(λ, x)u = 0. (15.10)

But boundary conditions of these two solutions are different:

gΔ(λ, a) = hΔ(λ, b) = 1, gΔ(λ, b) = hΔ(λ, a) = 0,

if Δ ≡ (a, b).
Continuous semi-Markov process is called to be diffusion one on the interval

(a, b), if its semi-Markov transition generating functions satisfy the differential
Eq. (15.10) with above boundary conditions.
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Note that with λ = 0, Eq. (15.10) turns to the equation

1

2
u′′ + A(x)u′ − B(0, x)u = 0,

where solutions do not depend onλ. It is well known (see, for example, [4], p. 15) that
the case B(0, x) ≡ 0 corresponds to Markov diffusion process without break. This
property holds for the semi-Markov diffusion diffusion process without an infinite
interval of constancy (it means without “forever”).

We are interested in the diffusion semi-Markov process with interval region
(a0, b0) for which both boundaries are unattainable.

In work [3], conditions of unattainability in terms of coefficients A(x)were inves-
tigated for a diffusion semi-Markov process corresponding to the Eq. (15.10) without
the member B(λ, x)u. Necessary and sufficient conditions for boundaries unattain-
abilitywere proved. In this work, we study the limit distribution of the diffusion semi-
Markov process without stopping forever given on a finite interval with unattainable
boundaries.

15.2.1 Alternating Renewal Process

For to find the limit distribution, we use the results of the renewal theory.
The renewal process is called to be a random piecewise constant process Z with

non-decreasing trajectories such that interval lengths between jumps are independent
positive random values (independence is supposed to be relative to some probability
measure).

Alternating renewal process Z is called to be a renewal process for which all
odd intervals between jumps have the same distribution function F1, and all even
intervals between jumps have the same distribution function F2, where in common
case F1 �= F2 (terms odd and even correspond to the jump sequence of Z). See, for
example, [7].

Let a0 < a < b < b0, and (Δn)
∞
n=1 be a sequence of intervals, where Δn ⊂

(a0, b0). This sequence generates a set of non-decreasing sequences (T n
k )∞n=1, (1 ≤

k ≤ n) points on time axis where

T 1
1 = σΔ1, T n+1

k = T n
k +̇σΔn+1 .

From here:
T n
k = σΔk +̇σΔk+1+̇ · · · +̇σΔn .

Also we determine T k−1
k = 0.

Let (tn)be an arbitrary sequence of numbers (tn ∈ R). Let us consider the sequence
of random values (Snk )

n
k=1, where
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Snk = tkσΔk + Snk+1 ◦ θσΔk
.

Also we determine Snn+1 = 0. From here, we obtain

Snk =
n∑

m=k

tm σΔm ◦ θTm−1
k

,

hence

Sn1 = t1σΔ1 +
n∑

k=2

tk σΔk ◦ θT k−1
1

.

Let Δn = (a0, b) if n odd, and Δn = (a, b0) if n even.

Condition A. Px (σ(a0,b0) < ∞) = 0, and Px (σΔ < ∞) = 1 for any interval Δ,
where Δ ⊂ (a0, b0) and Δ �= (a0, b0), and x ∈ Δ.

From this condition and definition of unattainability of boundaries, it follows that
with Pa-probability one XTn

1
= b if n odd, and XTn

1
= a if n even.

Besides from condition A, it follows that Px (T n
k < ∞) = 1 and also Ex ( f ; T n

k <

∞) = Ex ( f ) for any n ≥ 1 and 1 ≤ k ≤ n.

Lemma 15.1 Let a be the starting point of the process X on the interval (a0, b0)
with unattainable boundaries. If Condition A is fulfilled then for any n ≥ 2 random
values T 1

1 , T 2
1 − T 1

1 , . . . T n
1 − T n−1

1 are mutually independent random values with
respect to the measure Pa.

Proof Until the end of the proof to simplify notation, we will denote

τk ≡ σΔk ; βk ≡ θτk ; φk ≡ tkτk,

and also we will omit the symbol “◦” between operators where it does not induce
doubt.

In these denotations
Snk = φk + Snk+1βk,

where T 1
1 = τ1, T 0

1 = 0, and also θ0 is the identify mapping (i.e. θ0(ξ) = ξ).
By the method of inverse mathematical induction we obtain

Snk =
n∑

m=k

φmθTm−1
k

. (15.11)

From Condition A, it follows that

Ea(exp(i S
n
1 ) ; T n−1

1 < ∞) = Ea(exp(i S
n
1 )),

where i ≡ √−1 (imaginary one).
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Due to the semi-Markov property, we obtain

Ea(exp(i S
n
1 )) = Ea(exp(iφ1))Eb(exp(i S

n
2 )).

Because of measurability of a constant function (for example f ≡ 1) relative to any
sigma-algebra, we have

Eb(exp(i S
n
2 )) = Ea(exp(i S

n
2β1)).

Consequently

Ea(exp(i S
n
1 )) = Ea(exp(iφ1))Ea(exp(i S

n
2β1)) =

= Ea(exp(iφ1))Ea(exp(iφ2β1))Ea(exp(iφ3β2β1) . . . Ea(exp(iφnβn−1 . . . β1)) =

= Ea(exp(iφ1))Ea(exp(iφ2θT 1
1
)Ea(exp(iφ

n
3θT 2

1
) . . . Ea(exp(iφnθT n−1

1
)) =

= Ea(exp(i t1τ1))Ea(exp(i t2τ2θT 1
1
)Ea(exp(i t3τ3θT 2

1
) . . . Ea(exp(i tnτnθT n−1

1
)).

On the other hand

Sn1 = t1τ1 + t2τ2θT 1
1

+ t3τ3θT 2
1

+ · · · + tnτnθT n−1
1

.

From here and fromwell-known theorem about multi-dimension characteristic func-
tions (see, for example, [8], p. 304), it follows that random values

τ1, τ2θT 1
1
, τ3θT 2

1
, . . . τnθT n−1

1

are mutually independent random values respectively to measure Pa .
From definition of T n

1 and from the associative property of the operation +̇, it
follows that T n

1 − T n−1
1 = τnθT n−1

1
where n ≥ 1.

Lemma is proved.

From Lemma15.1, it follows that a point process Z ≡ Z(a, b), determined by the
sequence of time points T n

1 , is an alternating process with distribution functions
F1(t) ≡ Pa(σ(a0,b) < t) for odd intervals, and F2(t) ≡ Pb(σ(a,b0) < t) for even inter-
vals.

Let us determine Nt (a, b) an event that at time t the random value Xt belongs to
some odd (“left”) interval of the process Z(a, b) (alternating process corresponding
to the pare of points {a, b}). And let Mt (a, b) be corresponding denotation for even
(“right”) intervals.

Then corresponding to [7], p. 98
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lim
t→∞ Pa(Nt (a, b)) = m(a0,b)(a)

m(a0,b)(a) + l(a,b0)(b)
,

lim
t→∞ Pb(Mt (a, b)) = l(a,b0)(b)

m(a0,b)(a) + l(a,b0)(b)
,

where
m(a,b)(x) ≡ Ex (σ(a,b); σ(a,b)) < ∞, X (σ(a,b)) = b),

l(a,b)(x) ≡ Ex (σ(a,b); σ(a,b) < ∞, X (σ(a,b)) = a),

hence
m(a0,b)(x) ≡ Ex (σ(a0,b)),

l(a,b0)(x) ≡ Ex (σ(a,b0)).

Evidently that event Nt (a, b) equals to event {Xt ∈ (a0, b)} which implies

lim
t→∞ Pa(Xt ∈ (a0, b)) = m(a0,b)(a)

m(a0,b)(a) + l(a,b0)(b)
.

The same fulfils for event Mt (a, b), which equals to event {Xt ∈ (a, b0)}. Hence

lim
t→∞ Pb(Xt ∈ (a, b0)) = l(a,b0)(b)

m(a0,b)(a) + l(a,b0)(b)
.

We see that the first limit represents the value of some distribution function Ka

with parameter a at the point b ∈ (a, b0) relative to probability measure Pa . The
second limit represents the value of some function pb with parameter b at the point
a ∈ (a0, b).

It is possible to extend the domain of definition for the distribution function Ka at
the expense of choice another parameter nearer to the boundary a0. But in this case,
the measure Pa has another meaning. It does not correspond to our aim to express
the limit distribution function of the process X as t → ∞ in terms of the initial
probability measure Pa where a is the starting point of the process.

To obtain the corresponding left part of definition domain for the distribution
function Ka , we consider an auxiliary point process Z(c, d) with the starting point
d, where a0 < c < d < b0. Corresponding sequence of time intervals begins from
interval (0,σ(c,b0)) (the first odd interval). Event Mt (c, d) that point t belongs to
some odd interval of this sequence has probability Pd(Mt (c, d)) = Pd(Xt ∈ (c, b0)),
which tends to the limit

lim
t→∞ Pd(Mt (c, d)) = l(c,b0)(d)

m(a0,d)(c) + l(c,b0)(d)
.
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Now let d=a. Then c < a and

lim Pa(Mt (c, a)) = l(c,b0)(a)

m(a0,a)(c) + l(c,b0)(a)
.

This is the meaning of the function pb ≡ 1 − Ka on interval (a0, a). Hence

Ka(c) = 1 − l(c,b0)(a)

m(a0,a)(c) + l(c,b0)(a)
= m(a0,a)(c)

m(a0,a)(c) + l(c,b0)(a)
.

So we prove the next theorem

Theorem 15.1 The limit distribution function of the diffusion semi-Markov process
X (t) with probability measure Pa on a finite interval range (a0, b0) as t → ∞ is the
function

Ka(x) =

⎧
⎪⎪⎨

⎪⎪⎩

m(a0,x)(a)

m(a0,x)(a) + l(a,b0)(x)
, x ∈ (a, b0),

m(a0,a)(x)

m(a0,a)(x) + l(x,b0)(a)
, x ∈ (a0, a).
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Chapter 16
On Dynamic Fracture
of One-Dimensional Elastic Chain

Nikita A. Kazarinov, Yuri V. Petrov, and Aleksey A. Gruzdkov

Abstract Dynamic fracture of a one-dimensional chain of identical linear oscilla-
tors (masses connected by springs) is regarded in the work. The considered system
consists of arbitrary but finite number of links and the first mass is supposed to be
fixed. Two types of load are discussed: free oscillations of the initially uniformly
stretched chain and loading the chain with a short deformation pulse. Both problems
are solved analytically for an arbitrary number of links. The obtained solutions are
investigated, and a dynamic fracture effect related to the discreetness of the system
is discussed: a deformation wave travelling through the chain is distorted and some
links may be subjected to critical deformation. The obtained solutions for the chain
are compared to the solutions of analogous problems stated for an elastic rod—a con-
tinuum counterpart of the considered discrete system. It is shown that the discussed
fracture effect is not observed in a continuous system.
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16.1 Introduction

Mass-springmodels are a common tool in mechanics due to their simplicity and abil-
ity to address rather complicated phenomena. For example, in work [1], the oscillator
model is coupled with finite element method to address the acoustic emission studies
of rocks.

Oscillator chains were considered in works by L. Slepyan and his co-workers
[2]; however, this approach considers infinite oscillator chains. Moreover, the chain
models are successfully used to study peculiar heat conduction effects in crystals.
Two-dimensional models have been also used to address the effects encountered in
dynamic crack propagation problems. For example, in work [3], the crack velocity
oscillations are explained using a lattice model, while in [4], a bi-material model is
studied in order to investigate various regimes of the interface crack propagation.
The chain models have been also used to address martensitic phase transformations
as seen from work [5].

Simple mass-spring models have been effectively applied to study rate sensitivity
of materials and inverse rate sensitivity in particular [6].

In this paper, dynamic fracture effects related to discreetness of the oscillator chain
system are discussed. First, an analytic solution for the system of differential equa-
tions governing the chain movement is obtained. This solution is then compared to
the solution of a one-dimensional wave equation, which describes wave propagation
in an elastic rod—a continuous analogue of the oscillator chain.

16.2 Static Preload with Abrupt Link Failure

16.2.1 Analytic Solution of the Chain Problem

Consider a uniformly deformed chain consisting of N + 1 equal linear oscillators
with both ends fixed.

If the masses are taken equal m, stiffnesses of the springs-c, the following system
of differential equations coupled with initial conditions describes the chain motion:

M Q̈ + C Q = 0
qi (t = 0) − qi−1 (t = 0) = lc

q̇i (t = 0) = 0
q0 (t) = 0

(16.1)

where Q = (q1, q2, . . . , qN ) is a vector containing relative mass displacements, M
is the mass matrix and C is a stiffness matrix and lc is critical link deformation.
Moreover, it is supposed that link with number N + 1 (dashed link in Fig. 16.1)
does not bear this load and breaks abruptly at t = 0 initiating a release wave. The
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Fig. 16.1 Uniformly deformed chain with an abruptly failing link

following fracture conditions are used: |qi − qi−1| > lc, i = 1 . . . N . Matrices M
and C read as (E is identity matrix):

M = mE;C = c

⎛
⎜⎜⎜⎜⎜⎝

2 −1 · · · 0 0
−1 2 −1 · · · 0

. . .
. . .

. . .

0 −1 2 −1
0 0 · · · −1 1

⎞
⎟⎟⎟⎟⎟⎠

= cK ′. (16.2)

One of the chain ends remains fixed, and therefore q0 (t) = 0 ∀t . The substi-
tution t ′ = t

√
c/m yields the dimensionless problem with the mass matrix equal-

ing identity matrix and the stiffness matrix K ′ = 1
cC from Eq.16.2. Additionally,

normalized deformations of the chain links are introduced according to equation
ui = qi − qi−1/lc, i = 1 . . . N resulting in amodified stiffness matrix K = SK ′S−1

with S being a matrix of coordinates transformation. The fracture condition has the
form: |ui (t)| > 1, i = 1 . . . N . This way, the following problem is solved if vector
U = (u1, u2, . . . , uN ) is introduced:

Ü + KU = 0
ui (t = 0) = 1
u̇i (t = 0) = 0
u0 (t) = 0

|ui (t)| > 1.

(16.3)

Solution of the system Eq.16.3 is sought in form

U (t) =
n∑
j=1

c j R jcos(ω j t) (16.4)

where ω j are the system eigenfrequencies, R j =
(
r ( j)
1 , r ( j)

2 , . . . , r ( j)
N

)T
are corre-

sponding eigenvectors and c j is the set constants evaluated using the initial condi-
tions.
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The eigenfrequencies are calculated from eigenvalues λ j of the system stiffness
matrix K : ω j = √

λ j . The eigenvalues of K are calculated from equation

Det (K − λE) = Det
(
K ′ − λE

) = 0. (16.5)

If we put α = 2 − λ, (5) can be rewritten explicitly in the following way:

∣∣∣∣∣∣∣∣∣∣∣

α −1 · · · 0 0
−1 α −1 · · · 0

. . .
. . .

. . .

0 −1 α −1
0 0 · · · −1 α − 1

∣∣∣∣∣∣∣∣∣∣∣

= DN = 0. (16.6)

In Eq.16.6, DN is determinant of order N . One may note that a recursive equation
can be composed for a determinant of order k:

Dk = αDk−1 − Dk−2 (16.7)

and the following relations hold: D0 = 1, D1 = α − 1. Equation16.7 is reduced to
a quadratic equation p2 − αp + 1 = 0 with roots p1,2 using substitution Dk = pk .
This way the following expression is obtained:

DN = b1 p
N
1 + b2 p

N
2 = 0 (16.8)

where b1 and b2 are constants to be evaluated using conditions D0 = 1, D1 = α − 1
and substitution α = 2cos(θ). Equation16.8 yields the following formula for eigen-
values of the stiffness matrix:

λk = 2 − 2cos

(
π (2k − 1)

2N + 1

)
, k = 1 . . . N (16.9)

and thus, we obtain the formula for eigenfrequencies of the studied system:

ωk = 2sin

(
π(2k − 1)

4N + 2

)
, k = 1 . . . N . (16.10)

For components of the eigenvectors of matrix K the following equation holds:

r j
i = Pi−1

(
x j

) − Pi−2
(
x j

)
(16.11)

where x j = (
2 − λ j

)
/2 and Pk(x) is a k-order Chebyshev polynomial of second

kind, which can be expressed in the following way:

Pk (y) = sin((k + 1)arccos (y))

sin(arccos (y))
. (16.12)
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Thus, the following expression can be obtained for the components of eigenvectors
R j :

r j
i =

cos
(

π(2i−1)(2 j−1)
4N+2

)

cos
(

π(2 j−1)
4N+2

) , i = 1 . . . N . (16.13)

In order to evaluate constants c j to satisfy the initial conditions the following system
should be solved accounting for Eq.16.11:

⎛
⎜⎜⎜⎝

P0 (x1) P0 (x2) · · · P0 (xN )

P1 (x1) − P0 (x1) P1 (x2) − P0 (x2) · · · P1 (xN ) − P0 (xN )

.

.

.
.
.
.

.

.

.
.
.
.

PN−1 (x1) − PN−2 (x1) PN−1 (x2) − PN−2 (x2) · · · PN−1 (xN ) − PN−2 (xN )

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

c1
c2
.
.
.

cN

⎞
⎟⎟⎟⎠ =

=

⎛
⎜⎜⎜⎝

1
1
.
.
.

1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

P0(1)
P1 (1) − P0 (1)

.

.

.

PN−1 (1) − PN−2 (1)

⎞
⎟⎟⎟⎠ .

(16.14)

If the second-order Chebyshev polynomials are explicitly written and elementary
matrix operations are performed, the system Eq.16.14 is reduced to the system with
a Vandermonde matrix:

⎛
⎜⎜⎜⎝

1 1 · · · 1
x1 x2 · · · xN
...

...
...

...

x1N−1 x2N−1 · · · xN N−1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

c1
c2
...

cN

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1
1
...

1

⎞
⎟⎟⎟⎠ . (16.15)

Constants c j can be evaluated from Eq.16.15 using Cramer rule and formula for
the determinant of the Vandemonde matrix:

c j = (1 − x1) · · · (1 − x j−1)(1 − x j+1) · · · (1 − xN )

(x j − x1) · · · (x j − x j−1)(x j − x j+1) · · · (x j − xN )
. (16.16)

Let’s put MN (x) = 2N
∏N

k=1 (x − xk). Then Eq.16.16 can be rewritten:

c j = MN (1)

MN
′(x j )(1 − x j )

. (16.17)

Considering the fact that MN (x) has zeros at points x j and multiplier 2N , one
may conclude that MN (x) = PN (x) − PN−1 (x) and thus one can deduce formula
for constants c j taking into account that MN (1) = 1:
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c j =
(−1) j+12sin

(
π(2 j−1)
2n+1

)
cos

(
π(2 j−1)
4n+2

)

(2n + 1)
(
1 − cos

(
π(2 j−1)
2n+1

)) . (16.18)

Now general solution of the problem Eq.16.3 is the following:

ui (t) = 2
(2N+1)

∑n
j=1

(−1) j+1sin(β j)cos
(

β j
2 (2i−1)

)

(1−cos(β j))
cos

(
ω j t

)

β j = π(2 j−1)
2N+1 .

(16.19)

In Eq.16.19, ui (t) stands for deformation of the chain link with number i .

16.2.2 Forced Chain Oscillations, Inhomogeneous System of
Equations

The following problem is considered: a chain of oscillators with N links and a fixed
end is loaded with an arbitrary force f (t) applied to the chain free end (Fig. 16.2).

The system of dimensionless equations describing deformation of the chain links
is the following:

Ü + KU = F (t) = (0, 0, . . . , f (t))T

ui (t = 0) = 0
u̇i (t = 0) = 0
u0 (t) = 0.

(16.20)

In Eq.16.20, U = (u1, u2, . . . , uN ) and i = 1 . . . N . In order to solve system
Eq.16.20, an auxiliary homogeneous system of differential equations with modified
initial conditions is introduced and solved following Duhamel’s method (system
inhomogeneity is transferred to the initial conditions [7]:

Ẅ + KW = 0
wi (t = 0) = 0
ẇi (t = 0) = 0

ẇN (t = 0) = f (p)
w0 (t) = 0.

(16.21)

Fig. 16.2 Chain loaded with an arbitrary force f (t)
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In Eq.16.21, W = (w1,w2, . . . , wN ) and i = 1 . . . N and p is an arbitrary real
number. Systems, Eqs. 16.20 and 16.21, share stiffness matrix K with the system
solved in the previous section. Solution of Eq.16.20 is further obtained using solution
of Eq.16.21.

Solution steps for Eq.16.21 are similar to those for Eq.16.3. The general solution
is sought in form

W (t) =
N∑
j=1

a j R j sin(ω j t) (16.22)

where eigenfrequencies and eigenvectors ω j and R j are evaluated according to for-
mulas Eqs. 16.10 and 16.13. In order to obtain the solution, constants a j should be
calculated satisfying the initial conditions. Let’s put b j = a jω j . Then the system for
b j reads as:

⎛
⎜⎜⎜⎝

P0(x1) P0(x2) · · · P0(xN )

P1 (x1) − P0(x1) P1 (x2) − P0(x2) · · · P1 (xN ) − P0(xN )
...

...
...

...

PN−1 (x1) − PN−2(x1) PN−1 (x2) − PN−2(x2) · · · PN−1 (xn) − PN−2(xN )

⎞
⎟⎟⎟⎠ ·

·

⎛
⎜⎜⎜⎝

b1
b2
...

bN

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0
0
...

f (p)

⎞
⎟⎟⎟⎠

(16.23)
In Eq.16.23 x j = (

2 − λ j
)
/2 and Pk(x) is a k-order Chebyshev polynomial of

second kind. As in the previous case, Eq.16.23 is reduced to a system with a Van-
dermonde matrix:

⎛
⎜⎜⎜⎝

1 1 · · · 1
x1 x2 · · · xN
...

...
...

...

x1N−1 x2N−1 · · · xN N−1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

b1
b2
...

bN

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0
0
...

f (p) /2N−1

⎞
⎟⎟⎟⎠ (16.24)

If the Cramer’s rule is applied and function MN (x) = 2N
∏N

k=1 (x − xk) is intro-
duced, the following formula holds:

b j = 2 f (t)

M ′
N

(
x j

) . (16.25)

Thus, if MN (x) is expressed using Pk(x), final formula for the constants a j can
be written:

b j =
(−1) j+14cos2

(
π(2 j−1)
4N+2

)
f (t)

(2N + 1)
. (16.26)



310 N. A. Kazarinov et al.

Fig. 16.3 Loading function: pulse with duration T

Since the auxiliary system is explicitly solved, solution to the initial system
Eq.16.20 can be written:

U (t) =
N∑
j=1

a j R j

∫ t

0
sin

(
ω j (t − s)

)
f (s) ds. (16.27)

The considered loading function f (t) is shown in Fig. 16.3.
Then Eq.16.27 is transformed into the following expression:

U (t) =
{ ∑N

j=1
a j R j

ω j

(
1 − cos

(
ω j t

))
, t < T∑N

j=1
a j R j

ω j

(
cos

(
ω j (t − T )

) − cos
(
ω j t

))
, t ≥ T

. (16.28)

Thus, Eq. 16.28 is a formula for the deformation of links of the chain subjected
to pulse load.
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16.3 Results. Comparison with Solutions for an Elastic Rod

In this section formulas, Eqs. 16.19 and 16.28 will be used to evaluate deformations
in particular chain links. Moreover, these solutions will be compared to deformations
of an elastic rod, subjected to similar loads. The rod can be regarded as a continuous
counterpart of the chain.

A prestressed elastic rod is a complete analogue of the chain problem considered
in 2.1. A release wave propagation in the homogeneously deformed elastic rod of
length l with model material parameters (elastic modulus and density equal 1) is
considered. If displacements of the rod points are described by functionU (x, t) and
deformations by ε(x, t) and sealing of the rod end x = 0 is supposed, the following
initial boundary value problem can be stated:

∂2U (x,t)
∂x2 = ∂2U (x,t)

∂t2

U (x, 0) = x ⇒ ε (x, t) = 1
∂U (x,t)

∂t

∣∣∣
t=0

= 0

U (0, t) = 0
∂U (x,t)

∂x

∣∣∣
x=l

= H(−t)

. (16.29)

Additionally, the following fracture condition is set: fracture takes place if
|ε (x, t)| > 1. Solution of Eq.16.29 can be obtained as a combination of travelling
and reflected waves. In Fig. 16.4, deformation of the first link and deformation of the
rod sealing are shown. It is clear that deformations of the elastic rod never exceed
the initial value 1 and thus fracture never takes place, while deformation of the first
link of the chain exceeds critical value by about 50% leading to the system failure.
This way, equal loading conditions result in fracture for the discrete system, while
its continuous analogue remains intact.

Now the rod is supposed to be loaded by a deformation pulse. Model material is
used and the rod is supposed to be sealed from one end. Thus, the initial boundary
value problem reads as:

∂2ε(x,t)
∂x2 = ∂2ε(x,t)

∂t2

ε (x, 0) = 0
∂ε(x,t)

∂t

∣∣∣
t=0

= 0

U (0, t) = 0
ε (l, t) = f (t) = H (t)−H (t−T )

. (16.30)
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Fig. 16.4 Deformation of the first chain link (solid line) and deformation of rod in a sealed point
(dashed line). Arrow indicates the link fracture. Results for 50 links and a rod with length l = 50
are shown

If d’Alembert method is applied, one can find that an undistorted deformation
pulse f (t) travels through the rod and no fracture occurs, since |ε (x, t)| > 1 fracture
condition is considered. On the contrary, solution for the chain shows distortion of
the pulse, which leads to failure of the link with number N . This phenomenon is
shown in Fig. 16.5 for a chain consisting of 100 links, pulse duration T = 10 and
rod with length l = 100.

This way pulse load applied to a discrete system may lead to failure, while the
continuous system remains intact for the identical load.
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Fig. 16.5 Deformation of the chain link with number N (solid line) and rod deformation at point x
= l (dashed line). Link fracture is indicated by an arrow. In this case number of links N = 100 and
rod length l = 100

16.4 Conclusion

Dynamic fracture of linear oscillator chains is considered in the work. In particu-
lar, the effect related to discreetness of the system is studied. Two load cases are
considered: abrupt release of a prestressed chain and pulse loading of an unde-
formed chain. For both cases, analytical solutions for the chain link deformations
are obtained. These solutions are compared to the results for a continuous analogue
of chain—elastic rod. It is demonstrated that the wave travelling through a chain
(resulting either from abrupt release or from deformation pulse applied) is distorted
comparing to an elastic rod, which can result in fracture. On the contrary, such effect
is not possible for the continuous system.

This effect can be accounted for when structures with explicit discreetness and
periodicity are designed and studied, e.g. construction facilities in civil engineering.
A railway train could serve as another example of possible application of the studied
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discrete problem. A railway train moving with a constant velocity can be modelled
by a statically uniformly deformed chain of oscillators. Thus, a sudden break of a
damaged or worn coupling device can potentially lead to the failure of normally
functioning coupling devices.
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Chapter 17
Vibrational Mechanics of Rotating
Mechanisms: Modification of
Low-Frequency Behaviour by
High-Frequency Excitations

Eugen B. Kremer

Abstract In the frame of the concept of vibrationalmechanics, a rotatingmulti-mass
mechanism with high-frequency periodic or stochastic excitation is considered, and
the general equation for the averaged motion of such mechanisms is obtained (the
equation of vibrational mechanics). The equation of vibrational mechanics has the
same structure as the original Lagrange equation without excitation, but has a mod-
ified inertial coefficient and dissipative function, depending on the intensity of the
excitation. As a result of this difference, the equilibrium position and eigenfrequency
depend on the intensity of high-frequency excitation. As an example of modifica-
tion of the global behaviour of a rotation mechanism, a centrifugal analogue of the
Stephenson–Kapitsa pendulum is considered. The theory is applied also to the analy-
sis of the centrifugal pendulum absorber with a complex kinematics. The sensitivity
of the pendulum order deviation from the nominal order due to high-frequency exci-
tation is studied. It is shown that the own rotation angle of the pendulum as a function
of its position has a significant impact on this sensitivity.

Keywords Vibrational mechanics · Rotating mechanisms · Stochastic excitation ·
Stephenson–Kapitsa pendulum · Centrifugal pendulum absorber

17.1 Introduction

In this paper, the approach of vibrationalmechanics is applied to rotatingmechanisms
whose low-frequency behaviour is affected by high-frequency periodic or stochastic
oscillations in the angular velocity of the carrier disc. These oscillations can be caused
by impacts in gearboxes, processed material, higher harmonics of engine torque, etc.
The effects connected with these excitations are especially important for technical
applications, where the frequency characteristics of the mechanism play a key role in
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its function. Among these mechanisms are torsional vibration dampers, centrifugal
regulators and absorbers, inertial vibrators, etc.

In this paper, the equations of vibrational mechanics for such mechanisms are
obtained in a general form. The effectiveness of these equations is demonstrated by
examples of their application to some rotating pendulum mechanisms.

17.1.1 Motivation

For many processes and systems with periodic or stochastic excitations, the most
interesting is the averaged motion, and the details of the high-frequency oscilla-
tions caused by these excitations are not important themselves. However, these high-
frequency oscillations cannot simply be neglected, although they have a zero mean
(Fig. 17.1).

The effect of these oscillations on the averaged motion is often significant and
can lead to qualitative differences from the situation without excitations.

Well-known practical important examples of such systems are: vibro-
transportation of materials, in which a periodic zero mean action causes one-
directional motion of particles [1, 2]; and the synchronisation of rotors, the effect
of high-frequency interaction of rotors through the supporting body on their slow
dynamics, which manifests itself in synchronising the averaged phases [3].

The effect of high-frequency oscillations on the low-frequency behaviour takes
place also for the case of stochastic excitation [4–11]. A known example is so-called
stochastic resonance—a resonance-like response of a system to the level of a random

Fig. 17.1 Schematic representation of the averaging problem
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excitation. This effect was originally discovered in climatology [6] and later applied
in many fields of natural sciences and engineering [7].

How should such processes and systems be analysed?

17.1.2 Direct Simulation is Not Always the Best Way

One of the possibilities is direct numerical simulations of the complete motion and
averaging of the results. In the case of stochastic excitation, it can be done on the
basis of the Monte Carlo method, which consists of many single simulations with
time averaging and subsequent averaging of the single results over the ensemble
of realisations. However, this is not very efficient for many practical applications,
because most of the information obtained in these simulations is just the details of
high-frequency oscillations which are no longer needed after the averaging. This
approach can be especially time-consuming if a parameter study or bifurcation anal-
ysis for the averaged solution is needed, not simply a single calculation (Figs. 17.2
and 17.3).

17.1.3 Concept of Vibrational Mechanics

Another, in most cases, much more effective approach for such systems is offered
by the concept of vibration mechanics. This concept was proposed by Professor
I. I. Blekhman [12–14] and developed by his collaborators in the Joint Laboratory

Fig. 17.2 Schematic representation of the solution with direct numerical simulations
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Fig. 17.3 Schematic representation of the approach of vibrational mechanics

of Vibrational Mechanics of IPME RAS and REC Mekhanobr-tekhnika, as well as
by his followers in many institutions and countries [15–21].

The approach of vibrational mechanics not only has theoretical value but also
provides engineers with very efficient calculation techniques. The application of this
approach has allowed the development of many essential new solutions in vibration
technology and the improvement of a number of processes and machines [22, 23].

In this approach of vibrational mechanics, an equivalent slow system instead of
the original system with fast motion is considered. The motion of this slow system is
equal to the average motion of the original system. It is provided by additional slow
forces instead of high-frequency interactions in the original system.

These forces are called vibrational forces [12] and are calculated with the method
of direct separation of motions originally developed by Professor I. I. Blekhman
[14]. In the further development of vibrational mechanics in relation to modulated
and stochastic systems, a modification of this method by using small parameters and
some elements of the multiple scales technique was proposed [18–21]. In relation to
stochastic system. In earlier works, stochastic resonance was considered as a purely
stochastic phenomenon and only for the systems with two-well potential. Further
development made it clear that this effect is relevant for a wider class of dynamical
systems and that it can be effectively considered within the frame of vibrational
mechanics.

17.2 Rotating Mechanism with Fast Excitations

A rotating mechanism with one degree of freedom ψ is considered, consisting of n
kinematically coupled solids performing a flat motion relative to the rotating disc.
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17.2.1 Kinematics of the Mechanism

The kinematics of the mechanism is illustrated in Fig. 17.4. Here, one of the bodies
of the mechanism with number j is depicted in two positions: the initial (ψ = 0) and
the current with the generalised coordinate ψ.

The disc rotates with an angular velocity �, which oscillates periodically or
stochastically with an average value �0. The frequencies of these oscillations are
assumed to be significantly higher than the rotation frequency. Thus, we use for the
angular velocity � the following representation:

� = �0(1 + ξ(t)). (17.1)

In the case of periodic excitation of the disc, the function ξ(t) can be described as

ξ(t) = λsin(q�0t) , (17.2)

which corresponds to a kinematic excitation with amplitude�0λ and frequency q�0.
In the case of stochastic excitation, the function ξ(t) represents a stochastic process
described by its canonical expansion [5, 6]:

ξ =
∫ ∞

ω0

(ξs (ω) sinωt +ξc (ω) cosωt) dω. (17.3)

Fig. 17.4 The kinematics of the rotating mechanism
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Here, ξs (ω) and ξc (ω) are mutually independent and stochastically orthogonal ran-
dom functions. They have the following properties:

E (ξs (ω)) = E (ξc (ω)) = 0 E (ξs (ω) ξc (ω)) = 0

E
(
ξs (ωi ) ξs

(
ω j

)) = E
(
ξc (ωi ) ξc

(
ω j

)) = S (ωi ) δ(ωi−ω j ). (17.4)

Here, E denotes the mathematical expectation, δ(ω) is the δ-function, and S(ω) is
the spectral density of the process. It is assumed that the spectrum of the random
process ξ does not contain frequencies lower thanω0 = �0q with q � 1. Therefore,
any realisation of this random process can be considered subsequently as a function
of only a fast time θ = ω0t .

17.2.2 Lagrange Equation

The kinetic energy of the system is calculated as

T = 1

2
Aψ̇2+Bψ̇Ω+1

2
CΩ2, (17.5)

where the point means differentiation by dimensionless time τ = �0t , and the values
A, B, and C are functions of the generalised coordinate ψ, which are calculated as
follows:

A =
n∑
j=1

(m j

(
r

′2
j +ϕ

′2
j r

2
j

)
+Jjγ

′2
j ),

B =
n∑
j=1

(m jϕ
′
j r j

2+Jjγ
′
j ),

C =
n∑
j=1

(m jr j
2+Jj ), (17.6)

where m j and Jj are masses and central moments of inertia, r j (ψ) and ϕ j (ψ) are
polar coordinates of the gravity centres of the bodies in the rotating reference system,
and γ j (ψ) is the rotation angle of the bodies relative to the rotating disc. The bar
denotes differentiation by the generalised coordinate ψ .

The potential energy (ψ) as a function of the generalised coordinate ψ and
the dissipative function �(ψ̇) are assumed to be predetermined, and the complete
motion of the system is described by the Lagrange equation
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Aψ̈+1

2
A

′
ψ̇2+BΩ0ξ̇−1

2
C

′
Ω2

0 (1+ξ)2+Π ′ (ψ)− ∂φ

∂ψ̇
= 0. (17.7)

In particular, in the case of periodic excitation in accordance with Eq. (17.2), this
equation takes the form

Aψ̈+1

2
A

′
ψ̇2+Bλqcos(qτ)) −1

2
C

′
(1+λsin (qτ) )2+ 1

�2
0

(
(ψ)− ∂φ

∂ψ̇

)
= 0.

(17.8)

17.3 Vibro-Mechanical Transformation to the Slow System

In this section, the equations of vibrational mechanics for a rotating mechanism with
periodic or stochastic excitation will be derived, which correspond to the original
Lagrange equations Eqs. (17.8) and (17.7), respectively.

17.3.1 Averaging

Assuming that q�1 and following the concept of vibration mechanics, we consider
the generalised coordinateψ as depending on slow time τ and fast time=qτ . Further,
it can be presented as ψ(τ, θ) = Ψ (τ)+ζ (τ, θ), where � is the result of averaging
ψ over the fast time θ , and ζ is the high-frequency part of ψ with a zero mean:

�(τ) = 〈ψ〉 = 1

2π

∫ 2π

0
ψ(τ,θ)dθ, 〈ζ 〉 = 1

2π

∫ 2π

0
ζ (τ,θ)dθ = 0. (17.9)

These expressions correspond to the usual definition of the averaging assumed in
vibrational mechanics and are valid in the case of periodic excitation.

Some modification of this definition for stochastic excitation was introduced in
[21]. The averaging, generalised to stochastic systems, is also denoted by 〈. . . 〉,
but it is understood that it means the successive application of the usual averaging
over the fast time θ = ω0t on a period equal to 2π and calculating the mathematical
expectation. Thus, for some function f is introduced

〈 f 〉 = 1

2π
E

(∫ 2π

0
f d (θ)

)
= 1

2π

∫ 2π

0
E ( f ) d (θ). (17.10)

In accordance with this definition, 〈ζ 〉 = 0.
The aim of the study is to obtain the equation for the averaged variable

Ψ (t) = 〈ψ〉.
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17.3.2 The Case of Periodical Excitation

The vibro-mechanical transformation of the original Eq. (17.8) to the equation for
slow motion in the case of periodic excitation is based on the method of direct sepa-
ration of motions by Professor I. I. Blekhman [12]. This method was modified in [20]
for modulated periodic excitation depending on the coordinate and velocity. It was
done by using small parameters and some elements of the multiple scales technique.
The results of this paper provide us with the ready-made analytical expressions for
the equation

ψ̈ = F(ψ, ψ̇) + Bc(ψ, ψ̇)cos(θ) + Bs(ψ, ψ̇)sin (θ) + B2c(ψ, ψ̇)cos(2θ)

(17.11)
with arbitrary analytical functions F, Bc, Bs and B2c. The vibrational transformed
equation corresponding to Eq. (17.11) has the form

�̈ = F(�, �̇) + V (�, �̇). (17.12)

This equation corresponds to the concept of vibrational mechanics. Here the first
term is the force in the absence of the high-frequency excitation. The second term is
a slow vibrational force, which replaces the terms with high-frequency excitation of
the original Eq. (17.11). In accordance with [20], the expression for V with an error
of the order of 1

q2 can be presented in the form

V = − 1

4q2

(
∂2F

∂ψ̇2

(
B2
s +B2

c+
1

4
B2
2c

)
−

(
B2
s +B2

c+
1

4
B2
2c

)
′
)

. (17.13)

For the considered Lagrange equation (17.8), we have

F = 1

A

(
−1

2
A

′
ψ̇2+1

2
C

′
(
1+1

2
λ2

)
− 1

�2
0

(
(ψ)− ∂φ

∂ψ̇

))

Bc = − Bqλ

A
, Bs = λC

′

A
, B2c = −λ2C

′

4A
. (17.14)

Substituting the functions F , Bc,Bs and B2c from (17.14) in (17.13), we obtain the
following concretisation of Eq. (17.12) for the rotating mechanism with periodic
high-frequency excitation:

A�̈+1

2
A

′
�̇2−1

2
C

′
e f f �

2
0+

′−∂φeff

∂ψ̇
= 0 (17.15)

with

Ce f f = C+λ2
(
CA−B2

)
2A

, �e f f = �+λ2�2
0
d2�

d�̇2
B2/(4A2). (17.16)
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17.3.3 The Case of Stochastic Excitation

The generalisation of the method of direct separation of motions for the stochastic
excitation was given in [21]. Instead of Eq. (17.11), the following equation was
considered:

ψ̈ = F(ψ, ψ̇)+B1(ψ, ψ̇)ξ1+B2(ψ, ψ̇)ξ2+B3(ψ, ψ̇)ξ3, (17.17)

where ξ1, ξ2 andξ3 are mutually independent and stochastically orthogonal random
functions. In this case, the vibro-mechanical transformed equation for the slow
motion has the same form of Eq. (17.12) as for the case of periodic excitation, but
with another expression for the vibrational force V :

V = 1

2

(
∂2F

∂ψ̇2

(
κ1B

2
1+κ2B

2
2+κ3B

2
3

) − (
κ1B

2
1+κ2B

2
2+κ3B

2
3

)′
)

. (17.18)

Here, the values κ j (j= 1, 2, 3) are integral characteristics of the stochastic processes
ξ1,ξ2, ξ3 which are calculated from their spectral density Sj as

κ j =
∫ ∞

ω0

Sj (k) k
−2dk. (17.19)

In accordance with the original Eq. (17.7) for the case of stochastic excitation, the
values F, B1, B2, B3, ξ 1, ξ2 and ξ3 have the following specification:

F = 1

A

(
−1

2
A

′
ψ̇2+1

2
C

′
Ω2

0

(
1+ 〈

ξ 2
〉) −i

′(ψ)+ ∂φ

∂ψ̇

)
,

ξ1 = ξ̇ , ξ2 = ξ, ξ3 = ξ 2− 〈
ξ 2

〉

B1 = − BΩ0

A
, B2 = Ω2

0C
′

A
, B3 = Ω2

0C
′

2A
. (17.20)

Substituting the functions F , B1, B2 and B3 fromEq. (17.20) in Eq. (17.18), we obtain
the following specification of Eq. (17.12) for the slow motion:

Ψ̈ = 1

A

(
−1

2
A

′
Ψ̇ 2+1

2
C

′
Ω2

0

(
1+ 〈

ξ 2
〉)−Π (Ψ )+ ∂φ

∂Ψ̇

)
+V (17.21)

with

V = Ω2
0

2A

(
H

∂3φ

∂Ψ̇ 3
−(AH)

′
)

, (17.22)

H = 1

A2

(
κ1B

2+Ω2
0 (κ2+κ3/4)C

′2)
. (17.23)
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Since q�1, it is possible to limit the expression (17.21) to the first member with
sufficient precision:

H≈κ1B2

A2
. (17.24)

The averaged Eqs. (17.19)–(17.21) can also be presented in the form of Eq. (17.15)
with

Ce f f = C
(
1+ 〈

ξ 2
〉) −AH , Φe f f = Φ+1

2
Ω2

0
d2Φ

dΨ̇ 2
H. (17.25)

17.3.4 Discussion

We see that the Eq. (17.15) of vibrational mechanics with the averaged coordinate �

is similar to the Eq. (17.7) of the complete motion with the original fast variableψ for
both periodic and stochastic high-frequency excitation. In both cases, the equation
of vibrational mechanics (17.15) differs from the original Eq. (17.7) by replacing
the oscillating angular velocity � with its mean value �0, and by introducing the
values Ce f f and �e f f instead of C and �. The effective characteristics of the slow
dynamics Ñe f f and �e f f are calculated with Eqs. (17.16) and (17.25) in the cases of
periodic and stochastic excitation, respectively, and differ from the original inertial
coefficient C and the dissipative function � by the terms, which consider the effect
of high-frequency excitation on the slow motion.

17.4 Low-Frequency Behaviour of Rotating Mechanisms

As a result of this difference, the equilibrium position, eigenfrequency, dissipation
and sometimes the global behaviour of the system depend on the intensity of the
high-frequency excitation.

These effects,whichwill be considered in this section, are of special interest for the
different pendulum-type systems used as vibration absorbers adapting to the rotation
speed [24, 25] because the operating performance of such mechanisms is sensitive
to misalignment in their eigenfrequency. Focusing on this class of applications, we
will further restrict ourselves to considering the case of the pure inertial rotating
mechanism (’ ≡ 0) without dissipation (� = 0).

17.4.1 Equilibrium Position of the Slow Motion

The position of the relative equilibrium in the absence of the high-frequency peri-
odic or stochastic excitation is assumed to correspond to ψ = 0. This can always
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be provided by the corresponding definition of this generalised coordinate. From
Eqs. (17.7) and (17.8), it follows with 

′ ≡ 0 that without excitation (ξ = 0)

C ′(0) = 0. (17.26)

The position of the relative equilibrium for the slow motion � = �0 is defined for
both periodic and stochastic excitation from Eq. (17.15):

C
′
e f f (�0) = 0 (17.27)

and can differ in general from 0. The value of �0 for small relative amplitude of the
angular velocity λ can be obtained approximately as

�0 = λ2 2B (0) B
′
(0) A (0) −B2 (0) A

′
(0)

2C
′′
(0) A

2
(0)

(17.28)

for periodic excitation and

Ψ0 = κ1
2B (0) B

′
(0) A (0) −B2 (0) A

′
(0)(

1+ 〈
ξ 2

〉)
C

′′
(0) A

2
(0)

(17.29)

for stochastic excitation.
These expressions are obtained from Eq. (17.27) after its linearisation by �0,

considering Eqs. (17.16) and (17.25), respectively.
This vibro-mechanical modification of the equilibrium position due to the high-

frequency excitation needs some asymmetry of the system relative to the pointψ = 0.
In other words, it needs that B

′
(0) 	= 0 or A′(0) 	= 0.

17.4.2 Eigenfrequency of the Slow Motion Near an
Equilibrium Position

Another effect is the shift of the eigenfrequency due to the high-frequency excitation.
This effect takes place also for the symmetric pendulum systems, for which B (ψ) =
B(−ψ), A (ψ) = A(−ψ), or, as is equivalent, if

B
′
(0) = 0, A′(0) = 0. (17.30)

Then �0 = 0. We consider the effect of the shift of the eigenfrequency just for this
case for two reasons. First, it is of most interest for the practice. Second, it gives
the most transparent and compact expression, which, nonetheless, matches the more
sophisticated result for a non-symmetrical system with an accuracy of the order of
magnitude λ2.
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The eigenfrequency ω is obtained from Eq. (17.15), which, after its linearisation,
has the form

�̈+ω2� = 0 (17.31)

with

ω = ω0

√
C

′′
e f f (0)

C ′′
(0)

. (17.32)

Here, ω0 is the eigenfrequency of the original system without high-frequency exci-
tation, which is calculated as

ω0 = �0

√
−C ′′(0)
2A(0)

. (17.33)

The expression (17.32) can also be presented in the form

ω = ω0

√
1−η (17.34)

with a dimensionless parameter η, which determines the effect of high-frequency
excitation on the eigenfrequency of the slow motion. The parameter η is calculated
as

η = λ2�
2
0

4ω2
0

(
C

′′
(0) A2 (0)−2B

′′
(0) B (0) A (0)+B2 (0) A

′′
(0)

)
A3 (0)

(17.35)

for periodic excitation and

η = (A
′′
(0)H(0)+H

′′
(0)A(0))/C

′′
(0)− 〈

ξ 2
〉

(17.36)

for stochastic excitation. The last expression can also be presented in the form

η = κ1B (0)

2Q2
0A

3
(0)

(A
′′

(0) B (0) −2B
′′
(0)A(0)) + 4Q2

0Ω
2
0 (κ2+κ3/4) − 〈

ξ 2
〉
.

(17.37)

17.4.3 Example of the Global Low-Frequency Behaviour
of a Rotating Mechanism

As an example in which the global behaviour of a rotating mechanism is modified by
the high-frequency excitation,we consider a system thatmay be called a Stephenson–
Kapitsa centrifugal pendulum. We will limit ourselves to studying the case of the
periodic excitation, but very similar results can be obtained for stochastic excitation.
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Fig. 17.5 Stephenson–Kapitsa centrifugal pendulum

The Stephenson–Kapitsa pendulum commonly refers to a pendulum with a ver-
tically oscillating suspension point [12]. We use the term Stephenson–Kapitsa cen-
trifugal pendulum for its centrifugal analogue, a pendulum hinged to a rotating disc,
the angular velocity of which makes high-frequency oscillations near some mean
value. This system is shown in Fig. 17.5.

Here, a pendulum with mass m and central moments of inertia J is pivotally
mounted at the point P located at a distance L from the centre of rotation O of the
carrier disc. The distance between the pivot and the centre of gravity of the pendulum
is l.

The angular velocity of the disc oscillates in accordance with Eq. (17.1). Thus,
there are variations in the centrifugal force, which here plays the same role as the
gravity force in the classic Stephenson–Kapitsa pendulum. This analogy suggests
that the behaviour of the Stephenson–Kapitsa centrifugal pendulum with increasing
excitation amplitude is similar to the behaviour of the classical pendulum with a
vertical vibrating pivot point. This means:

• the natural frequencyof oscillations near the initial equilibriumposition is expected
to increase;

• the bifurcation at some amplitude of excitation is expected to stabilise the inverted
equilibrium position without changing the stability of the initial equilibrium posi-
tion.

As we will see, the behaviour of the centrifugal pendulum differs from this scenario.
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To study the global low-frequency behaviour of the system, we concretise
Eq. (17.8) by taking the rotation angle γ as the generalised coordinate ψ and con-
sidering the following geometrical relationships for the polar coordinates r and ϕ of
the centre of gravity of the pendulum:

r =
√
L2+l2+2Llcosψ , tanϕ = lsinψ

L+lcosψ
. (17.38)

Thus, the functions A, B and C take the form

A = ml2+J , B = ml(l+Lcosψ)+J , C = m(l2+L2+2Llcosψ)+J (17.39)

and after some routine transformations, we have, in accordance with Eq. (17.16),

C
′
e f f = −2mLlsinψ+λ2

2

m2l2L2

ml2+J
sin2ψ . (17.40)

Correspondingly, Eq. (17.15) takes the form

�̈+ω2
0sin(�)

(
1−1

2

(
λω0

�0

)2

cos(�)

)
= 0. (17.41)

Here, in accordancewithEq. (17.33), the valueω2
0 is proportional to�2

0 and connected
with the parameters of the pendulum as follows:

ω2
0 = �2

0
mlL

ml2+J
. (17.42)

FromEq. (17.41), it is clear that the eigenfrequency near the equilibrium point� = 0
is equal to

ω2 = ω
2
0

(
1−1

2

(
λω0

�0

)2
)

. (17.43)

(The same result can be obtained directly from Eqs. (17.34) and (17.35) considering
Eq. (17.39).)

Expression (17.43) shows that the eigenfrequency of the low-frequency oscilla-
tions near the initial equilibrium point � = 0 does not increase with an increase in
the excitation amplitude λ, but decreases. This is the first difference from the classic
Stephenson–Kapitsa pendulum.

The second difference concerns the bifurcation which takes place with increasing

λ when 1− 1
2

(
λω0
�0

)2 = 0, i.e. at

λ = λcr = �0

ω0

√
2. (17.44)
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For the classic Stephenson–Kapitsa pendulum, a similar bifurcation leads to stability
of the upper equilibrium point � = π without changing the stability of the initial
equilibrium position � = 0. Unlike this, the initial equilibrium position of the cen-
trifugal Stephenson–Kapitsa pendulum � = 0 becomes unstable at λ > λcr while
the upper equilibrium point � = π remains ever unstable.

At the same time, the bifurcation at λ = λcr creates a doublet of stable equilibrium
positions:

�12 = ±arccos(λ2
cr/λ

2)

between the unstable upper (� = π) and lower (� = 0) equilibrium positions.

17.5 Application to the Centrifugal Pendulum Absorber

The obtained results can be applied to the centrifugal pendulum absorber with bifilar
hanging, which is described, for example, in Den Hartog’s classic textbook [24].
This absorber has been used effectively since the 1930s, first in aircraft and in recent
years in the automotive industry [25]. This type of absorber allows us to provide its
eigenfrequency proportional to the rotational speed and thus to keep it equal to the
frequency of the torque irregularity of a reciprocating engine, whose frequency also
increases linearly with engine speed with a factor which is called the excitation order.
The coefficient of proportionality between the engine speed and the eigenfrequency
of the absorber is known as the centrifugal pendulum order.

Thus, the pendulum should be so designed that its order is equal to the excitation
order as accurately as possible. One of the factors that lead to the violation of this
equality is high-frequency excitation. This problem was first addressed in [28] for
the case of stochastic excitation caused, for example, by impact in gearboxes. It was
shown that both stochastic resonance and stochastic anti-resonance are possible in
the centrifugal pendulum absorber. Now, we consider another aspect of the problem:
the case of periodic high-frequency excitation caused by higher engine orders.

The considered pendulum can have a rather complex kinematics, as shown in
Fig. 17.4. In the case of the centrifugal pendulum absorber, it can be achieved due
to a special design of the pendulum hanging even for a one-mass pendulum. The
goal of considering this is to understand how the kinematic characteristics affect the
sensitivity of the pendulum order to the high-frequency excitation.

In the case of the centrifugal pendulum absorber, one can take the angle of the
relative rotation γ as the generalised coordinate ψ . Then γ

′ = 1, and the following
formulae are valid for A(0), B(0), A

′′
(0), B

′′
(0) and C

′′
(0) in accordance with

Eq. (17.6):

A(0) = mϕ
′2
(0)r2(0)+J,

B(0) = mϕ
′
(0)r2(0)+J,
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A
′′
(0) = 2m

(
r

′′2(0)+r(0)r
′′
(0)ϕ

′2(0)+ϕ
′
(0)ϕ

′′′
(0)r2(0)

)

B
′′
(0) = 2mr(0)ϕ

′
(0) r

′′
(0) +mr2 (0) ϕ

′′′
(0)

C ′′(0) = 2mr(0)r ′′(0). (17.45)

Here, for the single mass, the index j in Eq. (17.6) is omitted. It is also taken into
account that Eq. (17.30) is equivalent here to the conditions

r
′
(0) = 0, ϕ

′ ′ (0) = 0. (17.46)

Now we are obtaining the coefficient η as a function of r (0) , ϕ
′
(0) and ϕ

′′′
(0).

From Eqs. (17.33) and (17.45), the second derivative of r can be presented as

r
′′
(0) = −r(0)

ω2
0

�2
0

(
ϕ

′2 (0) +Hp

)
(17.47)

with Hp = J
mr2(0) .

Substitution of A(0), B(0), A
′′
(0), B

′′
(0) and C

′′
(0) from Eq. (17.45) into

Eq. (17.35), while considering Formula (17.47) for r
′′
(0), gives the following expres-

sion for the coefficient η in Eq. (17.34), which characterises the sensitivity of the
eigenfrequency to the vibro-mechanical effect of the high-frequency excitation:
η = Kλ2

4 with

K = 2

(
ω2
0

�2
0

(
ϕ

′2 (0) +Hp

)2(
ϕ

′
(0) +Hp

)2−H 2
p

(
ϕ

′2 (0) +Hp

) (
1−ϕ

′
(0)

)2

+�2
0

ω2
0

H
p

(
ϕ

′
(0)−1

) (
ϕ

′
(0)+Hp

)
ϕ

′′′
(0)

)(
Hp+ϕ

′2 (0)
)−3

. (17.48)

Figures17.6 and 17.7 show the corresponding characteristic diagrams for K as a
function of Hp and ϕ

′
(0) at ω0

�0
equal to 2 and 3 correspondingly and ϕ

′′′
(0) = 0.

The diagrams show that positive values of the coefficient K prevail in the parame-
ter space. Thismeans that a reduction of the eigenfrequencyof the pendulum is typical
due to an additional high-frequency oscillation. Especially, the simple formulae for η
correspond to themost practically interesting cases. These are the classical pendulum
without relative rotation for which ϕ

′
(0) = ∞, and the pendulum with ϕ

′
(0) = 1,

which has some special design advantages [25]. For these two types of pendulum,

Eq. (17.24) gives correspondingly η = 2ω2
0

�2
0
and =2

(
1+Hp

)
. In both cases, η > 0.

It is worth noting that only in the second case, the coefficient K is maximal (see
Figs. 17.1 and 17.2).
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Fig. 17.6 Characteristic diagrams for the coefficient K as a function of ϕ
′
(0) at ω0

�0
= 2, ϕ

′′′
(0) =

0 and Hp equal to 0, 0.125, 0.25, 0.5, 1 and 1.5

Fig. 17.7 Characteristic diagrams for the coefficient K as a function of ϕ
′
(0) at ω0

�0
= 3, ϕ

′′′
(0) =

0 and Hp equal to 0, 0.125, 0.25, 0.5, 1 and 1.5
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We see that the own rotation angle of the pendulum as a function of its position
has a significant impact on this sensitivity. This kinematic characteristic determines
even the sign of the order deviation, which is caused by additional high-frequency
excitation. It can qualitatively affect the behaviour of the absorber, as follows from
the results presented in [26].

17.6 Conclusion

The main results of the work are as follows:

• In the frame of the concept of vibrational mechanics, a rotatingmulti-mass mecha-
nismwith high-frequency periodic or stochastic excitation was considered, and the
general equation for the averaged motion of such mechanisms has been obtained
(the equation of vibrational mechanics).

• The equation of vibrational mechanics has the same structure as the original
Lagrange equation without excitation, but has a modified inertial coefficient and
dissipative function, depending on the intensity of the excitation.

• As a result of this difference, the equilibrium position and eigenfrequency depend
on the intensity of high-frequency excitation. The corresponding calculation
expressions have been obtained, in general, for the cases of periodic and stochastic
excitation.

• As an example of modification of the global behaviour of a rotation mecha-
nism, a centrifugal analogue of the Stephenson–Kapitsa pendulum was consid-
ered. Unlike a classical pendulum with an oscillating point of suspension, the
centrifugal Stephenson–Kapitsa pendulum has the following peculiarities:

– Its natural frequency near the initial position of equilibrium drops with an
increase in the excitation amplitude and, at some value of this amplitude, loses
its stability.

– A pair of new stable equilibrium positions appears next to the original equilib-
rium position, and the inverted equilibrium position always remains unstable.

• The theory was applied to the analysis of the centrifugal pendulum absorber with a
complex kinematics provided by a special design of hanging. The sensitivity of the
pendulum order deviation from the nominal order due to high-frequency excitation
was studied. It has been shown that the own rotation angle of the pendulum as a
function of its position has a significant impact on this sensitivity. This kinematic
characteristic even determines the sign of the deviation, which can qualitatively
affect the behaviour of the absorber.
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Chapter 18
SiC/Si as a New Platform for Growth of
Wide-Bandgap Semiconductors

Sergey Kukushkin, Andrey Osipov, and Alexey Redkov

Abstract The review provides a short list of the latest scientific achievements of the
Laboratory of Structural and Phase Transformations in Condensed Matter, Institute
for Problems in Mechanical Engineering (IPME RAS). We present the results on
the developed growth method of thin silicon carbide films on silicon by coordinated
atomic substitution, the properties of the obtained SiC/Si layers, and the prospects
for their use as substrates for the growth of thin films of various materials. Special
attention is paid to the experimental results on the deposition on SiC/Si substrates
of various promising wide-bandgap semiconductors, such as aluminum nitride AlN,
gallium nitride GaN, and their solid solutions. Data on the growth of the AIIBVI

semiconductor compounds are presented. The possibility of using SiC/Si substrates
for deposition of nanocrystals is discussed. A number of theoretical results devoted
to the description of the growth mechanisms of these semiconductors are outlined.

Keywords Silicon carbide · Silicon · Atomic substitution · Wide-bandgap ·
Semiconductors · Electronics · Gallium nitride · Aluminum nitride LED

18.1 Introduction

Silicon is one of the key materials on the basis of which most modern electronic
devices, computers, communication facilities, sensors, transmitting and reproducing
equipment operate. This material has both a number of advantages and some signifi-
cant disadvantages. One of the important advantages of silicon is its availability: the
production of silicon wafers for chips and microcircuits, their polishing, cleaning,
and cutting are well mastered all over the world. Therefore, the devices based on sil-
icon wafers are relatively cheap. Despite this, silicon-based devices have a number
of limitations. So, with an increase in the ambient temperature, its semiconductor
properties deteriorate greatly, there is an instability in the operation of devices, mal-
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functions. Silicon cannot operate stably under high-radiation conditions, for example,
in space and in nuclear reactors. It also has a number of other fundamental defects.
In this regard, it has now become clear that for some applications it is necessary
to use other materials that are capable of replacing silicon at least partially if nor
completely. Such semiconductor materials include wide-bandgap semiconductors
[1]: silicon carbide (SiC), gallium nitride (GaN), aluminum nitride (AlN), their solid
solutions, and a number of other materials. In addition to the fact that these semi-
conductors have excellent electrical characteristics, they can ensure the operation of
modern electronic and optoelectronic devices under conditions of high temperatures
and high radioactive radiation.

To gradually replace silicon with wide-bandgap semiconductors, the production
cost of the latter must approach the cost of silicon production, which is unattainable
for the currently existing growth technologies. Since there are no native substrates
for homoepitaxy of these materials, at present, completely different approaches and
substrates are used for their growth, starting from specially grown substrates with a
given coefficient of thermal expansion [2], and ending with pendeo-epitaxy [3], the
ELOmethod [4] or growing a large number of intermediate layers. All thesemethods,
although they make it possible to grow sufficiently high-quality thin films, are too
complicated for mass production of products and devices based on wide-bandgap
semiconductors. Therefore, in industrial production, mainly sapphire, silicon car-
bide, or silicon substrates [5] are used. Each of these substrates has advantages
and disadvantages. Sapphire has insufficiently good thermal conductivity and is a
dielectric, which significantly limits the applicability of devices and complicates the
process of their production. Its lattice parameter and thermal expansion coefficient
differ significantly from the analogous parameters of III-nitrides, which causes diffi-
culties in the growth of high-quality dislocation-free thin films and heterostructures.
Silicon carbide, although much better suited in terms of its parameters for the growth
of GaN and AlN, is currently too expensive. In addition, silicon carbide plates of
large diameter (8–10 inches) are not commercially available. Silicon, although it
is the most accessible, cheap, and technologically advanced material, but, like sap-
phire, has lattice parameters different from III-nitrides, which causes a low quality
of growing heterostructures and a high dislocation density. Nevertheless, the growth
of wide-bandgap semiconductors on silicon substrates is of greatest interest in con-
nection with the prospect of integrating gallium nitride and silicon electronics, the
possibility of using large-diameter substrates, their low cost, and good electrical and
thermal conductivity. Currently, the largest electronic companies in the world are
dealing with this problem. However, a satisfactory solution to this problem has not
yet been found due to the huge difference in the lattice parameters of silicon and
gallium nitride (~17%).

A fundamentally new method of chemical substitution of atoms was developed at
the Laboratory of Structural and Phase Transformations of Institute of Problems of
Mechanical Engineering (IPMERAS),whichmakes it possible to grow thin SiCfilms
directly from silicon [6, 7]. The proposedmethod for the topochemical conversion of
the upper Si layer into an epitaxial SiC film as a result of the coordinated substitution
of half of the Si atoms by carbon C atoms makes it possible to almost completely
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Fig. 18.1 Possible application fields of SiC/Si films, as well as III-nitride semiconductor het-
erostructures grown on these substrates

eliminatemechanical stresses in the film. The term “coordinated”means that new Si–
C chemical bonds are formed simultaneously and consistently with the destruction of
old Si–Si bonds. In this case, the pores at the boundary of the film with the substrate
are formed by themselves as a result of natural processes of relaxation of the stress–
strain state, such as the process of reducing the volume of the initial Si layer into
a smaller volume of denser and harder SiC. This method, in contrast to traditional
epitaxy, can also be used to obtain hexagonal SiC polytypes, since the transformation
of Si into SiC passes through an intermediate metastable state saturated with point
defects in the crystal.

SiC/Si substrates obtained by this method combine the advantages of both materi-
als (SiC and Si) and eliminate the disadvantages, the cost of their production is close
to the cost of silicon wafers, while the SiC surface layer, mechanically detached from
silicon through a porous layer, provides a goodmatching of lattice parameters during
the growth of III-nitride heterostructures.

In connection with the fabrication of the new nano-SiC/ Si material, several large
fields of their application in the electronics industry have arisen and, as a conse-
quence, several independent research areas, which are currently being developed in
Laboratory of Structural and Phase Transformations of IPME RAS (see Fig. 18.1).

This review briefly lists the main results in all of the fields noted above, namely,
on the use of SiC/Si substrates for the growth of thin films and heterostructures of
wide-bandgap semiconductors and othermaterials; obtainingAlN,GaN,AlGaNbulk
layers (thickness more than 100 µm); growing whiskers of various semiconductors.
In addition, the review presents some of the theoretical approaches developed by
the authors to describe the growth and formation of pores in such multicomponent
systems.
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The review is organized as follows. The first part of the review is devoted to
the SiC growth on Si substrates by the method of coordinated atomic substitution,
its features, and a brief description of the resulting SiC layers. Then the structure
and properties of the porous layer under the SiC layer are discussed, and its role
in the subsequent growth of thin films of other materials. It also presents possible
applications of the method of coordinated atomic substitution for deposition of SiC
layers on other substrates (including graphite, sapphire, profiled silicon).

The next part of the review discusses the results on the growth of wide-gap semi-
conductors such as gallium nitride, aluminum nitride, and AlGaN solid solutions by
various methods, including chloride–hydride, molecular beam, and metal–organic
epitaxy. Data on the growth of both thin films and heterostructures and bulk layers of
these materials of different polarities are presented. The influence of the deposition
method and the substrate on the polarity of the growing film is discussed. It is shown
that the specific features of the porous buffer layer make it possible to separate the
grown heterostructures from the silicon substrate rather quickly and simply from the
technological point of view. A separate subsection is devoted to the growth of other
materials on SiC/Si substrates, such as ZnO, CdTe, CdSe, CdS, Ga2O3, etc.

The third part of the review presents the results on the growth ofwhisker nanocrys-
tals (NW) of various semiconductor compounds on SiC/Si substrates, includingGaN,
GaAs, InN, their solutions, as well as some phenomena that occur during the growth
of NWCs on SiC/Si substrates and their theoretical explanation.

The final section is devoted to various theoretical models developed by the authors
to describe the growth and evolution of crystals and pores in such complex crystalline
compounds as wide-gap semiconductors.

18.2 Formation of SiC by the Method of Coordinated
Substitution of Atoms

18.2.1 Growth Technique

The method of coordinated substitution of atoms [6, 7], theoretically predicted and
subsequently experimentally confirmed in the Laboratory of Structural and Phase
Transformations of IPME RAS, is based on the use of a chemical reaction:

2Si(cr) + CO(gas) → SiC(cr) + SiO(gas) ↑ (1) (18.1)

for self-consistent conversion of the near-surface layer of a silicon substrate into a thin
single-crystal silicon carbide layer. The term “coordinated”means that new chemical
bonds in SiC are formed simultaneously and consistently with the destruction of old
bonds inSi. Themethod is realized as follows.The initial prepared and cleaned silicon
plate is placed in a vacuum oven and kept in an atmosphere of carbon monoxide
with the addition of silane gas at temperatures of 900–1300 ◦C and a pressure of



18 SiC/Si as a New Platform for Growth of Wide-Bandgap Semiconductors 339

1–5 Torr. As a result, a thin single-crystal SiC layer with a thickness of several tens
to several hundred nanometers is formed on the surface, depending on the chosen
growth conditions. During synthesis, a porous layer is formed under the surface of
the SiC layer, which consists of a mixture of silicon carbide, voids, and a silicon
substrate. This layer has a thickness varying from several hundred nanometers to
several microns. A detailed description of the growth process of a SiC film is given in
reviews [6, 7], which also contain a description of both theoretical and experimental
results on growth process, and a detailed description of the setup in which the growth
of SiC is carried out. These works also describe a number of purely technological
methods necessary to fabricate SiC layerswith a high degree of crystalline perfection,
of various thicknesses and polytypes. The main properties of silicon carbide were
also discussed in detail there.

18.2.2 Main Properties of the Obtained SiC Layers

Since this review is mainly devoted to the growth of layers and thin films of various
semiconductors on a SiC substrate, the properties of the SiC buffer layer, which are
important in the context of the growth of subsequent layers: structure, type of crystal
lattice, defect content, elastic characteristics, ability to damp elastic stress, and hold
the main interest. In addition, the properties that affect various characteristics of the
resulting heterostructures are also of importance. This section briefly summarizes
studies of the properties of SiC films synthesized under various conditions.

18.2.2.1 Polytype Composition, Structure, Stoichiometry

Since a detailed description of the properties of the obtained SiC films is presented in
reviews [6, 7], we will restrict ourselves to only listing the main characteristics. So,
one of the key properties of the crystal structure of SiC is its polytype (3C, 2H, 4H, 6H,
and others). In [8], the properties of SiC/Si films grown by the method of coordinated
substitution of atoms on silicon substrates of various crystallographic orientations
were investigated by the method of ultraviolet ellipsometry. An ellipsometric model
was selected (see Fig. 18.2a) that best describes the film structure. The model is a
simple set of three layers on a substrate, in which the silicon concentration decreases
stepwise from the substrate to the surface. In thismodel, layer 3with silicon vacancies
is an effective medium, i.e., a mixture of SiC and equal volume fractions of voids
and crystalline carbon (pyrocarbon), since the removal of a Si atom from SiC leaves
excess carbon and leads to the formation of carbon-vacancy structures.Note that point
dilatation defects (vacancy Si–interstitial C) in an anisotropic SiC crystal strongly
interact with each other along certain crystallographic directions, and this leads to a
significant decrease in the total energy. Probably, this is the reason for the presence
of residual silicon vacancies in the upper SiC layer. Analysis of ellipsometric curves
showed that silicon carbide grown on Si (111) is predominantly cubic, while SiC
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Fig. 18.2 Ellipsometric model from [8], which best describes the structure of SiC/Si layers (a).
The Si concentration in the layers decreases in a stepwise way in the direction from the substrate to
the surface. Layer 3 is an anisotropic effective medium. b—model of the SiC/Si structure obtained
by X-ray reflectometry in [9]. Reprinted by permission from Springer Nature

on Si (110) is predominantly hexagonal (with an admixture of cubic polytype). SiC
grown on Si (100) has a mixed polytype composition.

Note that due to the peculiarities of growth by the method of coordinated sub-
stitution of atoms, SiC films of mixed polytypes are a “pie” in which one polytype
dominates in the near-surface region (for example, 3C), and other polytypes appear
when moving deeper in the sample.

Other possible factors influencing the violation of stoichiometry of the SiC upper
layer, in particular, the mechanochemical effect of Gorskii, were considered in [10].
As a result of this effect, larger Si atoms will be pushed onto the surface of the SiC
layer under the influence of the inevitably arising gradient of elastic stresses, forming
vacancies in the silicon sublattice. As a result, atoms are redistributed over the film
thickness. Si atoms released from the SiC film onto its surface will evaporate and
interactwithCOaccording to reaction (1), again forming SiC (however, it is no longer
so ordered). In the same work, a method was proposed for reducing the excess of
silicon vacancies by adding trichlorosilane gas to the gas mixture. Additional elastic
stress and the manifestation of the Gorsky effect are also possible upon cooling of
the SiC/Si wafer after growth.

Quantum-chemical calculations have shown that at temperatures above 1100 ◦C,
the carbon atom closest to the silicon vacancy jumps to the place of the missing
silicon atom, forming an almost flat cluster of four carbon atoms (see Fig. 18.3).
And the absence of a carbon atom in the right place leads to the appearance of two
new voids with a radius of 2.1 Å. As a result, instead of a simple silicon vacancy, a
carbon-vacancy structure is formed, which consists of an almost flat cluster of four
C atoms and two voids below it (Fig. 18.3). Studies have shown that these carbon-
vacancy structures largely determine the electrical and magnetic properties of SiC
obtained by the method of coordinated substitution of atoms, in particular, provide
n-type conductivity of SiC.
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Fig. 18.3 Carbon-vacancy structure formed from a silicon vacancy at temperatures above 1100 ◦C
(a); b—the same structure, top view. Yellow balls are Si atoms, black balls are C atoms, red spheres
are voids with a radius of 2.1 Å

In [9, 11], the structure of SiC/Si films grown by coordinated substitution of
atoms was studied by various methods, including X-ray reflectometry. As a result,
a SiC/Si structural model was proposed according to which the silicon carbide film
consists of a series of layers parallel to the substrate. The composition and thickness
of each layer included in the structure of the film were determined experimentally
(see Fig. 18.2b). The results obtained in [9], as well as the data from ellipsometry
[8], also confirmed the presence of stoichiometric carbon in the near-surface region
of the film and the presence of silicon vacancies. Note, however, that the structure
of carbon is significantly different for the samples synthesized at temperatures of
1250 and 1330 ◦C, respectively. In the first case, the film surface is saturated with
silicon vacancies and carbon in a structurally loose form, resembling pyrocarbon. In
SiC/Si films grown at 1330 ◦C, carbon has a dense structure with a density close to
diamond.

In [12], a study of SiC/Si films was carried out by infrared spectroscopy. The
band at 960 cm–1 was found both in the absorption and transmission spectra. Note
that, according to [12, 13], this band corresponds to the vibration energy of C–C
bonds in the carbon-vacancy structure (Fig. 18.3). This band is always present in SiC
films grown in an atmosphere of pure carbon monoxide (CO) or in a mixture of CO
with silane (SiH4) on Si substrates of different orientations, levels and types of con-
ductivity, which also confirms their invariable presence of dilatation dipoles during
the transformation of Si into SiC. Note, however, that the very type of conductivity
of the initial silicon also affects the growth of SiC. It was found in [14] that the
mechanism of atomic substitution is different in the case of n- and p-conductivity of
the Si substrate; this difference has been confirmed experimentally and its nature has
been theoretically examined. It is shown that the surface of a SiC film synthesized on
p-type Si (100) substrates, tilted by 4◦ toward <110>, consists of faces coated with
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the hexagonal SiC polytype. The planes of the hexagonal faces can have orientations
(1102), (2200), (2202), which can further ensure the growth of high-quality epitaxial
semipolar films of hexagonal AlN and GaN by the HVPE method. At the same time,
the surface of a SiC film synthesized on a similar n-type substrate does not contain
such faces and contains a cubic 3C–SiC polytype. Such a surface can serve as a good
buffer layer on Si for the growth of semiconductors crystallizing in a cubic crystal
symmetry.

Paper [15] is devoted to micro-mapping of the near-surface region of SiC/Si
films by confocal Raman spectroscopy. In this paper, the polytypic composition of
films growing under various conditions, mentioned in the previous sections, has
been confirmed. In addition, judging by the significant increase in the Raman signal
measured in the pores, it was concluded that the pore walls are also coated with
silicon carbide. The mapping of elastic stresses in the film and substrate, calculated
from the shifts of the Raman lines of silicon and SiC, respectively, indicates that
the pores in the substrate cause relaxation of the elastic stress caused by the lattice
mismatch between SiC and Si. A study of the properties of this porous layer and its
effect on the elastic properties of the SiC /Si structure is given in the next section.

18.2.2.2 Microporous Layer in the SiC/Si Structure, Damping Elastic
Stresses

Note that one of the key features of SiC/Si films grown by the atomic substitution
method is a microporous layer, which is inevitably formed as a result of volume
relaxation during the transformation of Si into SiC (the volumes of their crystal unit
cells differ by almost a factor of 2 [6]). The porous layer, depending on the growth
conditions and growth time, has a thickness varying from several tens of nanometers
to several micrometers [6, 16]. Figure18.4 shows SEM-images of thin and thick SiC
layers obtained under various processing conditions, in which the porous layer under
the SiC layer is clearly visible. It lies on the silicon like a “bridge on piles”.

The porous layer plays an important role in the growth of subsequent layers above
the silicon carbide surface. Due to the presence of pores, the effective contact area
between SiC and the initial silicon substrate is significantly reduced. As a result, the
difference in the thermal expansion coefficients and lattice parameters of the layers
growing above SiC and the original silicon substrate plays a much smaller role. Note
that the degree of damping strongly depends on the thickness of the porous layer, the
volume fraction of pores in it, their shape, and many other factors. Therefore, it is
important to understand the mechanisms of the layer formation. In [17], the temporal
evolution of the porous layer during the synthesis was experimentally investigated. It
was found that the formation of a porous layer includes several characteristic stages:
the appearance of single pores directly under the SiC surface, their growth with
the formation of dendrite-like structures, and subsequent merger into a continuous
layer. In [17], all stages are considered successively, and a model is constructed that
describes the dependence of the thickness of the porous layer on time. It is shown
that the average thickness h of the porous layer at the initial stages of growth is



18 SiC/Si as a New Platform for Growth of Wide-Bandgap Semiconductors 343

Fig. 18.4 SEM-images of a cleavage of SiC/Si films grown under various conditions: a a thin SiC
layer (~50 nm) practically without a porous layer; b a thick SiC layer (~700 nm) with a porous
sublayer ~5 µm thick

proportional to the cubic root of the time h (t) ∼ 3
√
t , but as the pores merge into a

single layer, this dependence turns into h (t) ∼ √
t .

In [18], the authors studied the effect of the size and volume fraction of pores
in a porous layer on the elastic and thermomechanical characteristics of the SiC/Si
substrate as a whole by means of numerical simulation by the finite element method.
It was shown that an increase in porosity leads to a gradual decrease in elastic moduli.
The results presented in [18] can be used to determine the elastic properties of SiC/Si
substrates of various orientations containing a porous layer. In particular, Young’s
modulus along the [111] direction changes according to the formula:

E[111] = 187.9 − 215.96ϕ (GPa)

where ϕ is the volume fraction of pores in the porous layer. Note that this result is
in good agreement with the values obtained experimentally by nanoindentation of
SiC/Si samples with different porosities in [19]. In this paper, the thickness of the
SiC layer, the thickness of the porous layer, and the mechanical characteristics of the
substrate were compared.

18.2.2.3 Electrical, Optical, Magnetic Properties

Since one of the main purposes of SiC/Si is the use of various types of sensors
in heterostructures for electronic and optoelectronic applications, it is important to
understand what properties the SiC/Si structure has in this respect. For example,
hexagonal polar polytypes of silicon carbide exhibit spontaneous polarization and
hence pyroelectric properties. In [20], the electrical response to light irradiation of
SiC nanostructures formed on Si substrates with different types of conductivity was
investigated. Irradiation was carried out in the visible and near-infrared spectral
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range (400–980 nm). Analysis of the photosensitivity showed that the activation
energy of radiation at all investigated wavelengths is less than the bandgap of silicon
carbide. In this case, photoconductivity in the SiC layer can arise only due to impurity
donor–acceptor levels located in the bandgap and localized near defects or pores.
Such defects can be carbon atoms, oxygen vacancies, etc. The energy of absorbed
photons of light is spent either on the transfer of electrons from donor levels to the
conduction band, or from the valence band to acceptor levels. It has been shown that
the electrical response is photovoltaic in nature. The mechanisms of its occurrence,
apparently, are associated with a barrier at the SiC/Si interface, the presence of
which confirms the jumps in the capacitance on the current–voltage characteristics.
Additional non-stationary responses were also found, indicating several mechanisms
for their occurrence, however, they need further study.

In [21, 22], the photoelectric properties and I–V characteristics of SiC/Si struc-
tures grown at different synthesis times (which, among other things, determines the
concentration of dilatation dipoles) and on substrates of different orientations, were
investigated. It was found that the higher the concentration of dilatation dipoles, the
higher the conversion efficiency of sunlight with Si/SiC heterojunctions. A one-to-
one correspondence has been established between the synthesis time of SiC films, the
maximum density of dipoles, and the efficiency of sunlight conversion into electrical
energy. It was also determined that the maximum conversion efficiency of sunlight
by a silicon–silicon carbide (silicon carbide–silicon) heterojunction is 5.4%. Also
in [21], a theory was proposed that explains the mechanism of the formation of an
electric barrier at the silicon–silicon carbide interface.

In the paper [23] devoted to the study of SiC/Si thin films of the cubic polytype by
UV ellipsometry, it was found that the dielectric constant of a thin intermediate layer
formed at the 3C–SiC (111)/Si (111) interface is more characteristic of a semimetal
than for a semiconductor. This result was confirmed by quantum-chemical modeling
of the properties of the 3C–SiC (111)/Si (111) heterointerface, which showed that
the conductivity of this intermediate layer is associated with the p-electrons of the
Si atoms most distant from the silicon substrate. The authors of [24] have performed
an analysis of the field dependences of the static magnetic susceptibility in SiC/Si
samples grown on silicon of various orientations: (100), (110), and (111). It was
found that in the SiC/Si (111) and SiC/Si (110) samples, two quantum effects are
observed inweakmagnetic fields at room temperature. Thefirst effect is the hysteresis
of the static magnetic susceptibility, and the second one is the generation of the
Aharonov–Bohm oscillations on its field dependences. The first effect is associated
with the Meissner–Ochsenfeld effect, while the manifestation of the second one is
caused by the presence of microdefects in the form of nanotubes and micropores
formed during the synthesis of structures in them under the SiC layer. In SiC/Si
(100) structures, these effects do not manifest themselves, which is associated with
a different mechanism of the formation of SiC on the Si (100) surface.
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18.2.3 Some Applications of the Method of Coordinated
Substitution of Atoms for the Formation of Coatings
on Various Materials (Porous Silicon, Al2O3,
Graphite)

Recent works [25, 26] have shown that the atomic substitution method can be suc-
cessfully applied to deposition of silicon carbide coatings not only on flat polished
silicon substrates. Due to the fact that SiC is formed in the near-surface region, and
is not deposited from above, as it happens in the usual gas-phase growth methods, it
becomes possible to use it when deposited on micro- and mesoporous or specially
profiled silicon substrates for pendeo-epitaxy or other applications. Also, using two-
stage techniques of silicon deposition with its subsequent transformation into SiC,
the method of substitution of atoms can be applied to SiC on other materials, for
example, a sapphire substrate, or even as a functional (protective) layer on a graphite
surface. This subsection provides information on the results obtained by the Labo-
ratory of Structural and Phase Transformations in Condensed Matter of the IPME
RAS in this direction.

18.2.3.1 SiC Coating Deposition on Microporous and Profiled Silicon

In [25, 26], studies were carried out on the formation of silicon carbide layers by the
method of atomic substitution on macro- and mesoporous silicon (100) substrates of
p- and n-type. To obtain porous silicon structures, the technique of photolithography
was used together with etching and subsequent anodizing. After the deposition of
a silicon carbide layer on the resulting structure, the samples were investigated by
variousmethods and it was revealed that in the presence ofmicropores on the surface,
silicon is completely transformed into silicon carbide to a depth corresponding to the
depth of the original pores. SEM images of the sample before and after the SiC/Si film
deposition are shown in Fig. 18.5. Raman and X-ray diffraction analyses confirm that
the entire surface layer to a depth corresponding to the pore depth consists of cubic
silicon carbide. Polycrystalline 3C–SiC films were formed on mesoporous Si (100)
substrates, in which the crystallite size, determined from X-ray diffraction patterns,
was 27.5 nm.

Note that this technique makes it possible to obtain surface nano- and microstruc-
tures from silicon carbide on silicon in a fairly simple way, using only equipment and
reagents designed for working with silicon. At the first stage, the required structure,
which is a workpiece, is applied to the surface of a silicon sample using photolithog-
raphy and etching methods. The sample is then processed in carbon monoxide using
the atomic substitution method. As a result, the initial workpiece, either in whole or
in part (depending on the processing conditions), is converted into silicon carbide.
Thus, a method of SiC layer deposition on a profiled Si surface, which completely
retains the initial morphology of the Si surface without geometric distortions, has
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Fig. 18.5 SEM images of the microporous silicon surface before (a) and after (b) deposition of
silicon carbide by atomic substitution. Reproduced from [26]

been realized in [27, 28]. In these works, a thin layer of silicon carbide was deposited
on a silicon surface, which is a system of pointed “hills” being emitters.

18.2.3.2 A New Method for the Synthesis of Epitaxial Silicon Carbide
Films on Other Materials

In [29, 30], a fundamentally new approach was proposed, which makes it possible to
deposit thin epitaxial silicon carbide layers not only on silicon but also on any other
high-temperature materials, including single-crystal sapphire substrates. To imple-
ment the method, a layer of epitaxial silicon with a thickness of up to 400 nm and
different orientations (100) and (111) was preliminarily deposited on a sapphire sub-
strate by the method of chemical vapor deposition. Then, the sample was processed
according to reaction (1) in order to transform the deposited epitaxial film into a
SiC film (see Fig. 18.6). As a result of the experiments, it was shown that, under
certain conditions, a high-quality layer of epitaxial SiC of various polytypes can be
formed on the sapphire surface. Note that the proposed approach to deposition of
silicon carbide coatings on high-temperature materials can find its application not
only in semiconductor technology but also for creating a new class of composite,
heat-resistant, and other hard coatings.

In [31], the atomic substitutionmethodwas used to deposit silicon carbide coatings
on graphite samples. To deposit the coating, the graphite surface was brought into
contact with a silicon melt in a CO gas atmosphere. The process consists of two
simultaneous reactions, one of which is reaction (1), which describes the interaction
of molten Si with carbon monoxide (CO), and the second one is the reaction of
gaseous silicon monoxide (SiO) with graphite. As a result, the entire surface region
of graphite, which has absorbed a silicon melt like a sponge, is transformed into
silicon carbide. The thickness of the coatings obtained was up to 1 mm. Note that the
deposition of the coating led to a significant hardening of the material: the hardness
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Fig. 18.6 SEM image of the cleaved Si/Al2O3 structure before (a) and after (b) the deposition of
the SiC layer. Reproduced from [29] by permission from De Gruyter

of the initial material (graphite) and the coatedmaterial measured by nanoindentation
differed by more than 250 times.

18.2.3.3 Two-Stage Transformation of Silicon into Nanostructured
Carbon by the Method of Coordinated Atomic Substitution

In [32], a fundamentally new two-stage method was developed for obtaining epi-
taxial layers of nanostructured carbon on silicon substrates. At the first stage of
conversion, the first half of silicon atoms are consistently replaced by carbon atoms
according to reaction (1), during which an epitaxial layer of cubic silicon carbide
SiC–3C is obtained. During the second stage, the principle of atomic substitution is
also activated, but now the SiC film itself reacts with a reagent gas, as a result of
which silicon atoms are replaced by carbon atoms while keeping the original lattice.
Tetrafluoromethane CF4 was used as a reagent gas in [32]. In such a reaction, depend-
ing on the initial orientation of silicon and growth conditions, carbon structures with
different properties appear on the SiC/Si substrate surface after the synthesis process,
such as nanodiamonds, carbon nanotubes, and other carbon nanostructures.

18.3 Growth of Thin Films and Heterostructures on SiC/Si
Substrates

Note that the atomic substitutionmethodmakes it possible to grow epitaxial nanolay-
ers of silicon carbide with a thickness of 60–100 nm, which is practically not subject
to elastic stress, on silicon substrates, despite the ~20% difference in their crystal lat-
tice parameters. The existence of a SiC buffer layer with a porous sublayer makes it
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possible to grow high-quality epitaxial layers of wide-bandgap semiconductors, gal-
lium nitrides (GaN), aluminum nitrides (AlN), and their solid solutions, on SiC/(111)
Si substrates. This is due to the fact that the lattice parameters of III-nitrides differ
by less than a few percent from the corresponding lattice parameters of SiC.

This section presents the latest results on the growth of thin and thick layers
and heterostructures of wide-bandgap semiconductors and some other semiconduc-
tor compounds on SiC/Si substrates by various methods, including molecular beam
epitaxy (MBE), metal–organic epitaxy (MOCVD), and chloride–hydride epitaxy
(MBE). Some effects caused by the presence of the SiC buffer layer and the possi-
bilities for the growth of semipolar layers of III-nitrides are discussed.

18.3.1 III-Nitrides (GaN, AlN, AlGaN)

18.3.1.1 Hydride Vapor Phase Epitaxy

One of the most promising methods for the growth of thick layers of III-nitrides, in
addition to the ammonothermal method [33], is hydride vapor phase epitaxy (HVPE)
[34], which allows the layers to be grown at a high speed, on the order of 60–
100 µm/h. In this regard, a significant part of the laboratory’s research was aimed
at studying the growth mechanisms of GaN and AlN by this method. For growth, a
horizontal HVPE setup with a quartz tube diameter of 76 mm and resistive heating
was used. For epitaxy, we used SiC/Si substrates grown by the method of atomic
substitution with different orientations: SiC/Si (111), SiC/Si (110), and SiC/Si (100).
During the deposition of AlN, AlGaN, and GaN, the temperature in the growth zone
was 1050 ◦C, and in the source zone, from 600 to 850 ◦C. The reagents were hydrogen
chloride (HCl) and ammonia (NH3). High-purity argon (Ar) was used as the transport
gas. Metallic gallium (Ga) and aluminum (Al) were used as sources of elements
that immediately participated in a chemical reaction. A series of experiments was
carried out on the growth of thin and thick layers under various conditions and the
mechanisms of growth of III-nitrides, the effect of the substrate on the growth process,
and also many properties of the layers obtained were investigated in detail.

Thus, in a series of works [35–37], methods were developed for the growth of
thin layers of gallium nitride, aluminum nitride, and AlGaN on the SiC/Si surface. In
[35], a three-layer heterostructure was grown, consisting of AlN, AlGaN, and GaN
layers (see Fig. 18.7), and the possibility of HVPE growth of AIIIBV semiconductor
compound films at a high rate was demonstrated (~66µm/h) without cracks and with
small residual elastic stresses (~160 MPa).

In [36, 37], a new method for the synthesis of semipolar layers of gallium nitride
and aluminumnitride on SiC/Si substrateswas proposed and implemented, and it was
shown that the use of SiC and AlN buffer layers makes it possible to form epitaxial
layers of semipolar gallium nitridewith a deviation from the polar axis c of the crystal
at an angle of 48–51◦. The samples obtained had the minimum X-ray diffraction
rocking curve half-width ω(θ ) ~24’. In [37], the authors showed that the formation
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Fig. 18.7 SEM image of the cleaved GaN/AlGaN/AlN/SiC/Si structure. Reproduced from [35] by
permission from Springer Nature

of a specially oriented SiC seed layer with subsequent epitaxy of the AlN layer by the
HVPEmethod and low rates ensures the growth of aluminum and gallium nitrides in
the semipolar direction. In [38], this technique was developed, and the possibility of
obtaining bulk semipolar AlN films on SiC/Si (001) was demonstrated. In the same
work, the authors compared the growth ofAlNonSi (100) andSiC/Si (100) substrates
and showed that an AlN layer grown on a Si substrate is stretched, while an AlN
layer grown on a hybrid SiC/Si substrate, on the contrary, experiences compressive
loads. The limiting (critical) thickness of the semipolar AlN layer on the Si (100)
substrate was determined to be ~7.5µm, after which cracking and delamination from
the substrate occurred. Note that it was possible to grow semipolar AlN films with a
thickness of more than 40 µm on SiC/Si substrates without cracking and exfoliation
from the substrate.

In [39], the main features of the growth of bulk AlN, AlGaN and GaN with a
thickness of 100 µm and more were outlined (see Fig. 18.8), and it was also shown
that in some cases their natural exfoliation from the substrate is possible in order to
transfer to others (for example, heat sink) substrates.Anumber of structural, physical,
and chemical features of the SiC/Si film are discussed in comparison with SiC layers
grown on Si by standard methods, and it is shown that these features provide the
possibility of growing thick AlN, AlGaN, and GaN layers with their subsequent
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Fig. 18.8 Bulk layers of III-nitrides grown on the SiC/Si surface and separated from the substrate.
a—AlN, b—AlGaN,—GaN. Reproduced from [39] by permission from Springer Nature

exfoliation from the substrate. As a result, the authors obtained and investigated
single-crystal AlN layers without cracks up to 300 µm thick, AlGaN layers up to
400 µm thick, GaN layers up to 200 µm thick, and semipolar (1124) GaN films with
thickness up to 30 µm.

Note that, the growth of AlxGa1−xN solid solutions was found to be accompanied
by the phenomenon of self-organized composition change in composition at different
depths. For example, it was found in [40] that the growth of AlxGa1−xN layers with
a low (about 11–24%) Al content gives rise to interlayers or domains consisting
of AlGaN of stoichiometric composition. In [40], this phenomenon was explained
by two processes: the first process is the competition of two chemical reactions for
the formation of GaN and AlN, proceeding at different rates; the second process,
closely related to the first one, is the appearance and relaxation of elastic stresses as
AlxGa1−xN films grow on SiC/Si (111). Both processes influence each other, which
leads to a complex pattern of aperiodic composition changes along the film layer
thickness.

Note that the mechanism of the formation of III-nitride thin films on the SiC sur-
face substantially depends on the SiC surface structure, which, in turn, is determined
by the type of doping (see Sect. 18.2.2.1). In this regard, the mechanisms of growth
and the structure of epitaxial layers of semipolar AlN and GaN grown on a SiC/Si
substrate with initial Si of various conductivity types (n- and p-type) were investi-
gated in [41]. The authors showed experimentally that the mechanisms of growth
of AlN and GaN layers on n- and p-type substrates are fundamentally different: an
epitaxial structure grows on a SiC/p-Si (100) substrate, whereas on a SiC/Si (100)
substrate, the nucleation of a polycrystal is more probable.

In [42], the authors investigated the growth mechanisms of GaN films on SiC/Si
at various levels of supersaturation. Growth regimes were found in which both spiral
and stepwise growth of this material is realized (see Fig. 18.9). The realization of
both regimes was considered theoretically (see Sect. 18.5), and the dependences of
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Fig. 18.9 Layer-by-layer growth and step-bunching (a) as well as helical growth (b) of a GaN
crystal during HVPE growth. Reproduced from [42]

the crystal growth rate on the growth conditions in these regimes were found. The
elastic stresses in a thin GaN film were also estimated using Raman spectroscopy,
which gave a value of the order of 100–200 MPa.

In a series of works [43–45], detailed studies of defects in GaN and AlN layers
were carried out by the method of high-resolution transmission electron microscopy.
In theseworks, thick semipolar GaN layers (up to 15µm) grown on SiC/Si (100) sub-
strates with a deviation from the basal plane by angles of 4◦ and 7◦ were investigated,
and it was revealed that defects in the semipolar layer are asymmetric. The authors
showed that the main type of defects in the GaN layer are stacking faults in the basal
plane and partial dislocations bounding them. The deviation of the c axis of the GaN
layer from the axis of the intermediate AlN layer (epitaxial tilt) was also found and
explained. In [44], the authors studied dislocation reactions in semipolar layers of
gallium nitride, in particular, the interaction of a + c and a-dislocations, and showed
that the propagation of an a-type dislocation half-loop with the Burgers vector b =
1/3

〈
1210

〉
at cooling can be blocked due to its reaction with an a+c dislocation with

the Burgers vector b = 1/3
〈
1213.

〉
resulting in formation of a dislocation segment of

the c-type with the Burgers vector b = <0001>. In [45], the authors investigated the
phenomenon of a change in the propagation direction of misfit dislocations during
the growth of a GaN layer on the surface of the AlN/SiC/Si (111) structure. This phe-
nomenon manifests itself when gallium nitride reaches a certain thickness of ~300
nm. In this case, the misfit dislocations oriented along the growth axis of the layer
stop and begin to propagate in the direction perpendicular to the growth axis. A the-
oretical model of the nucleation of AlN and GaN on the (111) SiC/Si face explaining
this effect was constructed. The effect of a change in the film growthmechanism from
the nucleation of islands for AlN on SiC/Si (111) to a layer-by-layer one for a GaN
layer growing on an AlN/SiC/Si surface was also theoretically predicted and exper-
imentally observed. Studies have shown that a SiC/Si substrate with an AlN buffer
layer makes it possible to grow low-defect unstressed GaN layers, and its structure
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resembles the foundation of a house built on soft soil or permafrost. This founda-
tion adapts to external conditions, while maintaining an almost unstressed, ordered
structure. Some of the stresses that remain in some cases can relax by various mech-
anisms. Thus, in [46], the stress relaxation and the conditions for the formation of
dislocations, cracks and bulges in the epitaxial AlN (0001)/SiC/Si (111) heterostruc-
ture were studied in detail. It also proposed a method for assessing the imperfection
and defect content in the grown thin films by measuring the temperature dependence
of the curvature of the substrate with the grown heterostructure, and calculated the
criteria for the formation and preferred orientation of defects (dislocations, cracks,
delamination, bulges) in AlN/SiC/Si films.

Note that to reduce elastic stresses during the growth of heterostructures, pendeo-
epitaxy [3] and growth on porous substrates are used, which makes it possible to
reduce the contact between the substrate and the growing film, and, as a consequence,
to reduce the propagation of dislocations initially present in the substrate into the film.
Similar studieswere carried out for SiC/Si substrates. Thus, in [47], a newapproach to
the pendeo-epitaxy of unstressed AlN films was developed. For the synthesis of AlN,
a SiC/Si substrate was used, on which a two-dimensional array of “wells” ~200 nm
in diameter, 400 nm period, and ~70 nm deep (smaller than the SiC layer thickness)
was formed. On this substrate, in one process of hydride-chloride epitaxy, an AlN
film was grown both in the area with “wells” and in the smooth areas. As a result of
studies of the grown film by various methods, including Raman spectroscopy, it was
shown that the part grown on the “wells” is subject to lower elastic stresses than the
part grown on the smooth region of the SiC/Si substrate. In turn, the mechanisms
of growth of GaN films on porous SiC/Si substrates were studied in [48]. In this
case, however, a slightly different approach to pore deposition was used. An array of
micro- and mesopores was initially formed in silicon (see Sect. 18.2.3). Then, SiC
was deposited on the surface of porous silicon by the method of atomic substitution,
and after that, an AlN buffer layer 500 nm thick was grown on the surface of the
obtained SiC/Si samples. The next step was the deposition of a 5µm thickGaN layer.
Studies have shown that the pores introduced into the initial silicon, although they
make a large contribution to the relaxation of mechanical stress in GaN films grown
on Si, are themselves a source of various defects, as a result of which dislocations
and etching pits are formed in GaN. The results obtained indicate that it is better
to form an ensemble of pores not on the initial Si surface, but on the surface of the
formed SiC layer, as was done in the AlN pendeo-epitaxy [47]. Thus, for additional
relaxation of elastic stresses during the growth of GaN and AlN films on SiC/Si, it
is preferable to form an array of shallow pores (that do not penetrate into the silicon
matrix) already on the formed SiC layer, rather than to form pores in the initial silicon
prior to SiC deposition.

Since aluminum nitride layers are of considerable interest in the field of infrared
technology and micromechanics (MEMS), a series of works [49–51] was carried out
to study their dielectric and pyro properties. For example, in [51], the results of pyro-
and piezoelectric studies of AlN films grown on SiC/Si substrates by both HVPE and
MBE are presented. It was found that the vertical component of the piezoresponse in
AlN films grown by the HVPE method is more spatially uniform than in AlN films
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grown by the MBE method. However, the signal from the AlN films synthesized by
theMBEmethod turned out to be stronger. It was found experimentally that the polar
axis in films grown by the MBE method is directed from the free surface of the film
to the Si substrate, while in HVPE films, the polarization vector, on the contrary, is
directed toward the free surface. Thus, polarization vector is highly dependent on
the deposition method.

In [49], a dynamic pyroelectric response of the AlN layer was found. The kinetics
of the pyroelectric current was analyzed in the frequency range 10–1000 Hz, and
the calculated pyroelectric coefficient was about 9 · 10–10 C/(cm2K). Note that this
value practically corresponds to the pyroelectric coefficient characteristic of textured
hexagonal AlN films grown directly on Si substrates. In [50], the effect of the initial
orientation of a silicon substrate on the properties of AlN films was studied. In the
experiments, we used SiC films grown on the surfaces of Si (100), (110), and (111)
substrates, as well as on vicinal surfaces (100), (110), and (111) deviated from these
basic orientations by 2◦. 10◦. The results of studying the polar properties by two
independent methods, i.e. dynamic pyroelectric effect and force microscopy of the
piezoresponse, show that the use of a SiC buffer layer significantly improves the polar
properties of a thin layer of aluminum nitride. In [52], the piezoelectric properties of
AlN crystals grown by sublimation andHVPE on SiC/Si substrates were investigated
and compared. The calculated piezoelectric coefficient for the AlN/SiC/Si d31 crystal
was determined to be of the order of 1.6 · 10−12 m/V.

In [53, 54],the structural and mechanical characteristics of GaN and AlN films
grown on SiC/Si substrates were studied. The Young’s modulus of the GaN and AlN
epitaxial layers on SiC/Si, determined using the nanoindentationmethod are 265GPa
and 223 GPa, respectively. Note that the AlN film, according to ellipsometry data,
contained 1.5% excess aluminum.

18.3.1.2 Organometallic Epitaxy

Organometallic epitaxy (MOCVD), due to the rather high growth rates, on the one
hand, and the possibility of more precise control of thickness and uniformity than
HVPE, is widely used for the growth of device heterostructures. This section presents
the results on the deposition of III-nitride films on SiC/Si substrates by the MOCVD
method. Note that although the SiC buffer layer was mainly referred to as a layer that
allows one to reduce elastic stress in growing films, it also plays another important
role. Namely, SiC acts as a chemical shield for the Si substrate. It prevents the silicon
of the substrate from interacting with gallium remaining in the reactor after previous
growth cycles on the walls. When growth is carried out on clean silicon substrates,
this phenomenon can lead to the appearance of additional defects in the growing
layers and the appearance of V-defects on the surface of the GaN films.

Another “chemical” problem that arises during growth on pure silicon is the
interaction of ammonia with Si, leading to the formation of an amorphous SiN layer
at the AlN/Si interface [55]. The most common way to avoid SiN formation is to use
Al pre-precipitation, but in some cases this is not sufficient and a reduction in the
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initial growth temperature is also necessary [56]. The use of SiC/Si films can help
overcome these problems at the initial stage of growth. The SiC layers are stable
under typical MOCVD conditions, therefore, no other chemical reactions can occur
at the interface besides the epitaxial growth of AlN.

To test this hypothesis, experiments on the growth of AlGaN heterostructures on
SiC/Si substrates were carried out in [57]. TEM study of the grown samples showed
clear crystalline interfaces with an epitaxial ratio between the SiC/Si and AlN/SiC
layers, without the presence of amorphous regions. Thus, it was confirmed that the
SiC layer also protects the Si surface from residual metal particles in the reactor
chamber at the initial stage of growth. It was found that the surface roughness of
SiC, which is mainly determined by the total pressure and the CO/SiH4 ratio in the
gas phase during SiC synthesis, strongly affects the density of pits (V-defects) in
the upper GaN layers. By optimizing the morphology and thickness of the AlN and
SiC seed layer, we determined the conditions under which GaN layers grow without
V-defects on the surface.

Note that as was found in [57], the doping degree of the initial silicon affects
the final density of V-defects. As a result the following conclusions were drawn: the
quality and structure of the SiC layer have a significant effect on the density of defects
and, first of all, on the density of dislocations in the GaN layers; the formation of
V-defects, as a rule, occurs at the grain boundaries, where a bundle of dislocations
is formed. Besides, a decrease in the thickness of the AlN layer leads to two effects:
a decrease in the dislocation density in the AlGaN layer and a sharp (up to complete
disappearance) decrease in the density of V-defects in the GaN layer. And finally,
a decrease in the dislocation density in the AlGaN layer does not affect the change
in the dislocation density in the bulk of the GaN layer. For all studied structures
on SiC/Si, a decrease in the dislocation density at the AlGaN/GaN interface was
observed in comparison with the samples grown on pure silicon.

One of the explanations for the latter fact may be that aluminum-containing layers
grow by the mechanism of three-dimensional growth (islands, columns), and the
growth of further structures is partially similar to the ELOG process (epitaxial lateral
growth), in which the dislocation density is often significantly lower; the creation
of a low-temperature AlN insert with a simultaneous decrease in the thickness of
the AlN layer to values no more than 50 nm makes it possible to almost completely
prevent the formation of V defects in the GaN layer. In this case, the density of screw
and mixed dislocations in the studied GaN layers was in the range from 5 · 109 to
1 · 1010 cm–2.

In [58], a method was proposed for the growth of semipolar gallium nitride by
the MOCVD method using a specially profiled silicon substrate with a character-
istic element size of about 100 nm. Figure18.10 schematically shows the growth
mechanisms of a GaN film on such a substrate.

The experiments showed that the deposition of 3C–SiC and AlN buffer layers
makes it possible to form a semipolar GaN layer (10–11), characterized by an X-
ray diffraction rocking curve with FWHM ω(θ ) ≈ 45’. To describe this process, a
model was proposed based on the anisotropic nucleation of the AlN buffer layer on
a profiled substrate.
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Fig. 18.10 Schematic mechanism of GaN growth on a profiled substrate with a SiC/Si layer: a
formation of thin SiC film on profiled Si; b formation of thin AlN layer; c growth of GaN ontop of
profiled AlN/SiC/S. Reproduced from [58] by permission from John Wiley and Sons

In [59], themechanical properties andmechanisms of cracking of a galliumnitride
thin film grown on SiC/Si were studied by the nanoindentation method. Using confo-
cal Raman microscopy, the authors constructed three-dimensional maps of residual
elastic stresses, mechanical stresses and crystal quality of both GaN and silicon near
the indentation for different indentation depths. The obtained values of the hardness
and Young’s modulus of GaNwere H= 21.1 GPa, E= 317 GPa, respectively, which
is close to the values for a high-quality GaN crystal. Note that the elasticity modulus
of MOCVD-GaN was found to be higher than that of HVPE-GaN (see the section
above). The fairly good quality of theGaNfilm is also confirmed by the small FWHM
(~10 arcmin) of the X-ray diffraction rocking curve and the FWHM (3.65 cm–1 ) of
the 568 cm–1 Raman line.

18.3.1.3 Molecular Beam Epitaxy

In a series of experiments on the growth of gallium nitride on SiC/Si substrates by the
MBE method with plasma activation of nitrogen (NPA-MBE), a number of features
were also found due to the presence of the SiC buffer layer. Thus, in [60, 61], gallium
nitride films were grown in a single growth process both on SiC/Si substrates and
on silicon substrates without buffer layers (see Fig. 18.11). Comparison of the GaN
samples showed that an N-polar film grows on the SiC/Si (111) substrate, while the
formation of a Ga-polar film is observed on Si. It was found that GaN films grown
on a SiC buffer layer have a higher crystal quality and a lower FWHM (36’) of the
X-ray rocking curve, while for the GaN/Si (111) sample this value was 53’. The
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Fig. 18.11 SEM image of a cleaved GaN/Si (111) (a) and GaN/SiC/Si (111) samples grown by the
PA-MBE method. Reproduced from [60] by permission from Elsevier

evaluation of the mechanical stress gave a tensile stress of 150 MPa in a GaN/Si
(111) sample and a compressive stress of 190 MPa in a GaN/SiC/Si (111) sample.
The formation of triangular-shaped GaN islands on the sample surface is revealed,
and it is shown that islands are formed on the Si substrate more actively than on the
SiC/Si substrate. Note that the goal of [60] was to show the phenomenon of a GaN
polarity reversal upon adding a SiC buffer layer, and the quality of the growing GaN
films could be much higher, and the mechanical stresses could be lower if we used an
additional AlN buffer layer deposited on SiC/Si, as shown in the previous sections.
Nevertheless, the experimental results obtained [60] indicate a positive effect of the
SiC buffer layer on the quality of GaN thin films grown using NPA-MBE.

Developing these results, the authors of [62] proposed a method for controlling
the polarity of gallium nitride layers during their epitaxial synthesis. The method
includes two stages: at the first stage, a transitional N-polar GaN layer is grown
on the SiC/Si (111) surface by MBE with plasma activation of nitrogen. At the
second stage, two layers are grown on the obtained N-polar GaN layer by HVPE: an
intermediate AlN layer, and then a GaN layer, which at this stage grows already in
a polar Ga-orientation.

In [63], the process of nitridation of the Si (111) and SiC/Si (111) surfaces was
studied. Photoelectron spectroscopy revealed that the film obtained by nitriding a
silicon substrate at a high temperature (840 ◦C) has a stoichiometry of Si3N4. It was
found that nitriding of the SiC surface also leads to the formation of a surface layer
of silicon nitride. However, the SiCN layer consists of both stoichiometric silicon
nitride (Si4+) and other subnitrides (at least Si3+).

In the experiments on GaN growth by the NPA-MBE method [60–63], the fol-
lowing results were obtained. First, the plasma activation of the surface of the SiC/Si
(111) and Si (111) samples makes it possible to remove parts of the defective sur-
face layer of SiC (111). In addition, the carbon-vacancy structures are also partially
removed. Second, it was shown that high-temperature nitridization of substrates with
subsequent growth of GaN in two stages makes it possible to obtain stoichiomet-
ric, continuous, and smooth GaN layers both on hybrid SiC/Si (111) and Si (111)
substrates. The conditions for such growth were also identified. In the first stage,



18 SiC/Si as a New Platform for Growth of Wide-Bandgap Semiconductors 357

the growth of the seed low-temperature GaN layer must be carried out at a substrate
temperature TS = 650 ◦C and flux densities FGa = FN = 0.1µm/h, and in the second
stage (at the GaN growth stage), it is necessary to maintain the substrate temperature
TS = 730 ◦C and the flux density FGa = 0.6 µm/h and FN = 0.1 µm/h. Third, exper-
iments have confirmed that the structural quality of the GaN layer grown on a SiC/Si
substrate ( 111), much higher than the GaN layer on the Si (111) substrate. Fourth, it
was found that the GaN-SiC interface is smoother than GaN-Si and contains a 10 nm
thick layer being a solid solution of SiC and GaN.

The experimental study and comparison of the photoelectric properties of GaN
layers on the Si (111) and SiC/Si (111) substrates mentioned above has been per-
formed in [64]. The authors have revealed a significant effect of carbon-vacancy
structures contained in the SiC layer on the subsequent growth of gallium nitride
and its properties. Measurements have shown that the GaN/SiC/Si (111) sample has
a higher photosensitivity than GaN/Si (111). In GaN/SiC/Si (111), the coexistence
of two oppositely directed p–n junctions was found, one of which is formed at the
SiC/Si interface, and the other at the GaN/SiC interface. In this sample, the effect
of inversion of the forward and reverse I–V characteristics is observed under illumi-
nation with light with a wavelength λ ≤ 350 nm. In the spectral range λ ≥ 380 nm,
the GaN layer does not absorb, and the photosensitivity is determined by the SiC/Si
(111) heterojunction. At λ ≤ 350 nm, the GaN/SiC heterojunction becomes active
and determines the photosensitivity of the sample. In turn, an analysis of the I–V
characteristics of the GaN/Si (111) heterostructure confirmed the absence of a p–n
junction in this sample.

In [64], the electronic and photoemission properties of GaN/SiC/Si (111) layers
were studied. The authors investigated the electronic structure of the GaN surface
and an ultrathin Li/GaN interface using various Li submonolayer coatings. Based
on the analysis of the evolution of the spectra of surface states and the spectra of
core levels, the activity of the N and Ga dangling bonds on the GaN surface was
discovered and investigated.

In a series of works [65, 66], the effect of a mesoporous layer introduced into the
initial silicon before the SiC growth on the properties of galliumnitride films obtained
by the NPA-MBE method was also studied. The authors found that the introduction
of a porous silicon layer Si into a SiC/Si substrate provides unambiguous advantages
over standard silicon substrates. In particular, this approach allows one to reduce
the stress level in the crystal lattice of the epitaxial GaN layer by about 90% and to
reduce the proportion of vertical dislocations in the GaN layer. It was found for the
first time that the use of a porous layer leads to the formation of a qualitatively more
uniform GaN layer without visible extended defects. It was found that the growth by
the NPA-MBE method makes it possible to obtain a GaN film of a higher structural
and optical quality at a lower growth temperature compared to the growth on porous
Si substrates, for example, by the HVPE method (see Sect. 18.3.1.1).
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18.3.2 Methods for Separating III-N Epitaxial
Heterostructures from a Silicon Substrate

Note that new-generation heterostructures and devices based on III-nitrides are capa-
ble of operating at significantly higher frequencies, currents, voltages, and temper-
atures than conventional silicon. This requires to dissipate large heat powers. One
of the advantages of SiC/Si substrates grown by the atomic substitution method is
the possibility of efficient separation of the grown III-nitride heterostructures from
the substrate by chemical etching without the use of complex methods (laser cut-
ting, etc.). This makes it possible to transfer the working heterostructure to other
substrates, in particular, for better heat dissipation.

To date, two separation technologies have been developed. The first of them is
described in papers [67, 68]. They present a chemical etching method for sepa-
rating GaN and AlN epitaxial heterostructures grown on SiC/Si. For this purpose,
GaN/AlN/SiC/Si and AlN/SiC samples 2.5 µm and 18 µm thick were subjected to
chemical etching in a solution containing a mixture of nitric and hydrofluoric acids
and water in a ratio of 4: 1: 5, respectively. This mixture effectively removes sili-
con. Etching was carried out for 15–20 min at a temperature of 20 ◦C, after which
the heterostructure was completely detached from the substrate without cracking or
other defects. This fast and efficient chemical etching is due to the pore system under
the SiC surface in the silicon substrate. Through this system of pores, the etchant
quickly penetrates under the entire area of the heterostructure and eliminates all
places of contact between the Si substrate and the heterostructure (see Figs. 18.12
and 18.13a). Note that, after removing the substrate, the mechanical stresses in the
free heterostructure decrease almost to zero, as confirmedby theRaman spectroscopy.

The second separation technology is presented in [62] and patent [69], and consists
in the effect of anisotropic etching of GaN layers of different polarity. For example,
in Sect. 18.3.1.3 we wrote that during the three-stage growth of GaN/ AlN/GaN on a
SiC/Si substrate by NPA-MBE (first layer) and HVPE (AlN layer and second GaN
layer), GaN polarity inversion occurs: the first layer has one polarity, and the other is
oriented in the opposite direction. If such a sample is etched in a KOH solution, then,
due to the anisotropy, KOH will etch only the first N-polar GaN layer, which will
eventually lead to its complete dissolution. At the same time, the Ga-polar layer does
not react with KOH. Thus, after etching, only the main Ga-polar layer will remain,
and GaN will completely separate from the SiC/Si (111) substrate (see Fig. 18.13b)

18.3.3 Growth of AIIBVI and Other Semiconductor
Compounds

Since not only III-nitrides are used inmodern electronics, but also some other promis-
ing semiconductor compounds, for example, gallium oxide Ga2O3, AIIBVI semicon-
ductors (ZnO, CdSe, CdTe, CdS) and others, a cycle of experiments on the growth of
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Fig. 18.12 Scheme of separation of the heterostructure from the substrate by chemical etching.
Reproduced from [67] by permission from Springer Nature

Fig. 18.13 SEM images of a cleavage of a columnar AlN/SiC/Si structure separated from the
Si substrate by etching in HNO3 and HF (a), and a GaN/AlN heterostructure separated from the
GaN/SiC/Si substrate as a result of two-stage growth (MBE + HVPE ) and a subsequent etching in
KOH. Figures are reproduced from [62, 67] by permission from Springer Nature

such materials on SiC/Si substrates was carried out in the Laboratory of Structural
and Phase Transformations. This section provides information about these studies.

18.3.3.1 Zinc Oxide ZnO

Zinc oxide ZnO is a direct gap semiconductor with a bandgap of 3.4 eV. In recent
years, the interest of researchers inZnOhas significantly increased due to the prospect
of its use in thin-film transistors, LEDs, lasers, photodetectors, and other devices. In
[70], ZnO films were grown for the first time on SiC/Si substrates by the atomic layer
deposition (ALD) method. The films were grown on Si (100) wafers at a temperature
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of T = 250 ◦C. The authors showed that the use of SiC as a buffer layer significantly
improves the quality of ZnO, providing stoichiometric and epitaxial growth. Ellipso-
metric analysis showed exceptional uniformity of the ZnO layer thickness, a direct
bandgap of ~3.4 eV, and almost complete absence of impurities that absorb light
at energies below the bandgap. Raman spectroscopy data and electron diffraction
analysis showed a high structural perfection of the ZnO layer. The absence of a
polycrystalline phase makes this method promising for the growth of ZnO layers on
silicon with an intermediate SiC layer. It was found in [71] that the mechanism of
formation of epitaxial ZnO textures depends on the substrate conductivity type (n-
or p-type). Consequently, a theoretical model was proposed to explain the effect of
texture formation and its dependence on the type of conductivity. The effect is asso-
ciated with the transformation of vicinal Si (100) surfaces into SiC surfaces during
its synthesis by atomic substitution. Significant differences were found between the
structure and growth mechanisms of ZnO layers on SiC/Si (111) and SiC/Si (100)
substrates. The experimental results on the zinc oxide growth by the method of ion-
plasma high-frequency magnetron sputtering are presented in [72]. This method also
made it possible to obtain epitaxial ZnO films of a sufficiently high crystal quality.
In [73], the optical constants of this layer were studied by the ellipsometry method,
and one of the main features of the obtained samples was discovered, namely the
light absorption in the range of 2.0–3.3 eV, which was explained by elastic stresses
in the zinc oxide layer.

18.3.3.2 Cadmium Selenides, Sulfides and Tellurides

Cadmium sulfide (CdS) is a direct bandgap semiconductorwith a bandgap of ~2.4 eV,
which is used inmanymicroelectronic applications including solar cells, photovoltaic
converters, lasers, and others. When cadmium sulfide grows on silicon, the problem
arises of the chemical interaction of CdS with Si accompanied by the amorphous
silicon sulfide (SiS) formation, which greatly worsen the semiconducting properties
of growing structures. In [74], the epitaxial growth of cadmium sulfide films in the
metastable cubic phase by the ALDmethod on SiC/Si substrates at a low temperature
(~180 ◦C) has been developed. In [75], another growth method was used, namely the
method of evaporation and condensation in a closed volume, which also made it
possible to obtain epitaxial CdS layers up to 300 nm thick.

Cadmium selenide (CdSe) has a slightly narrower bandgap (1.70 eV in cubic
CdSe and 1.73 eV in hexagonal CdSe and is also of interest in electronic applica-
tions being a direct bandgapmaterial. In [76], epitaxial cubic CdSe layers of ~350 nm
thick were grown for the first time on SiC/Si substrates by the method of evaporation
and condensation in a quasi-closed volume, mentioned above. It was found that in
this method the optimum substrate temperature is 590 ◦C, the evaporator temperature
is 660 ◦C, and the growth time is 2 s. Analysis of the thin film by various methods
showed a high structural perfection of the CdSe layer and the absence of a polycrys-
talline phase in it. In [77], a kinetic model of the growth of CdSe films on SiC/Si
substrates was constructed within the framework of the nucleation theory, and two
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growth mechanisms were considered: 2D growth (nucleation of disk-shaped nanois-
lands) and 3D growth (nucleation of hemispherical nanoislands). This model made
it possible to estimate the growth conditions (substrate and evaporator temperatures,
as well as partial pressures) which determine the dominating growth mechanism.

Cadmium telluride (CdTe) is also a direct bandgap (1.49 eV) semiconductor and
has applications in solar cells, ionizing radiation detectors, and photodetectors. In
[78, 79], epitaxial cadmium telluride films of 1–3 µm thick were grown on SiC/Si
substrates. It was found that the optimum substrate temperature is 500 ◦C at an evapo-
rator temperature of 580 ◦C, and the growth time is 4 s. Ellipsometric, Raman, X-ray
structural and electron diffraction analyzes have shown a high structural perfection
of the CdTe layer and the absence of a polycrystalline phase in it. We also performed
a theoretical study of the initial stages of nucleation of CdTe films on SiC/Si taking
into account the mechanical stresses caused by the lattice mismatch and the differ-
ence in the thermal expansion coefficients of the CdTe film and the substrate. The
influence of the growth conditions on the nucleation mechanism and the kinetics of
the initial stages of growth was estimated, and the optimal conditions were found.
Note that the elastic stresses in the CdTe/SiC/Si structure are approximately three
times lower than the elastic stresses in a CdTe film coherently grown on a Si substrate
without a SiC buffer layer. This leads to a large difference in the rate of nucleation
of CdTe films on the SiC/Si substrate and the Si substrate.

18.3.3.3 Gallium Oxide (Ga2O3)

Gallium oxide is a promising wide-bandgap semiconductor (Eg ≈ 4.9 eV) which is
currently poorly studied. This material has a number of physical properties that make
it quite competitive with silicon carbide and III-nitrides. First of all, it is transparent
in the ultraviolet spectrum region and has a high breakdown voltage (8 MV/ cm). In
addition, Ga2O3 is easily doped, which makes it possible to obtain highly conductive
layers of this material. In [80], well-textured gallium oxide (β-Ga2O3 ) layers with
a thickness of about 1 µm were grown on SiC/Si substrates by the HVPE method
(see Fig. 18.14). Studies have shown that the films have a texture close to epitaxial
and consist of pure β-phase Ga2O3 with orientation (2201). In [81, 82], the struc-
tural and mechanical properties of gallium oxide films grown on SiC/Si substrates
of various orientations (111), (100), (110) were studied experimentally and by simu-
lated numerically using quantum chemistrymethods. The following parameters were
established: tensile strength, hardness, elastic stiffness constants, elastic compliance
constants, Young’s modulus, linear compressibility, shear modulus, Poisson’s ratio
and a number of other characteristics of Ga2O3. It is shown that all these properties
of gallium oxide are substantially anisotropic. It was also found that a gallium oxide
crystal is an auxetic since Poisson’s ratio takes negative values for some stretching
directions.

The experimentally determined hardness values of Ga2O3 according to Vickers
and Young’s modulus turned out to be the following: for Ga2O3/SiC/Si (001), H =
11 ± 1 GPa, E = 215 ± 15 GPa; for Ga2O3/SiC/Si (011), H = 10 ± 2 GPa, E = 185
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Fig. 18.14 SEM image of a
cleaved Ga2O3/SiC/Si film.
Reproduced from [81] by
permission from Springer
Nature

± 25 GPa; for Ga2O3/SiC/ Si (111), H= 9± 2 GPa, E= 120±GPa. The calculated
values are in quantitative agreement with the experimental data. As follows from the
results, the orientation of the initial substrate significantly affects the orientation and
properties of the grown Ga2O3 film.

18.4 Growth of Whisker Semiconductor Nanocrystals on
SiC/Si Substrates

Whisker nanocrystals (NWCs) usually have a cross-sectional size of the order of
10–100 nm, and their length exceeds the diameter by an order of magnitude or more.
Semiconductor NWs are promising from the point of view of their application in
microelectronics and optoelectronics as well as in many other fields, for example, as
cantilevers of probemicroscopes, in gas analyzers, etc. On the basis of suchNWs, it is
possible to create field-effect transistors, photovoltaic cells, light-emitting elements,
and other functional nanodevices. This section presents the results on the growth
of whisker nanocrystals of various semiconductor compounds on SiC/Si substrates.
The main attention is paid to such semiconductor compounds as GaAs, InAs, GaN,
InN, InGaAs, AlGaAs.

18.4.1 Arsenides (GaAs, AlGaAs, InGaAs, InAs)

In [83–85], the principal possibility of growing GaAs, AlGaAs (see Fig. 18.15) and
InAs NWs on SiC/Si substrates was demonstrated for the first time. Studies have
shown that the diameter of NWs growing on SiC/Si is smaller than the diameter of
similar NWs grown on a silicon substrate. Thus, for InAs NWs, the minimum diam-
eter was less than 10 nm. In addition, based on photoluminescence measurements,
the authors suggested that for AlGaAs NWs grown on SiC/Si substrates a complex
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Fig. 18.15 SEM image of
AlGaAs/SiC/Si (111)
whiskers. Reproduced from
[84]

structure is formed due to the self-organized formation of AlGaAs quantum dots, in
which the proportion of aluminum differs from that in other sample regions. Note
that a similar self-organization phenomenon was also noted in growing AlGaN films
(see Sect. 18.3.1.1).

In [85], the growth features and physical properties of small GaAs segments in
AlGaAs NWs, growing both on SiC/Si and Si substrates by MBE using gold (Au)
droplets were also studied. The influence of the growth conditions of nanowires on
their structural and optical properties has been studied in detail. It is shown that, by
varying the growth parameters, it is possible to form quantum dot-type structures
emitting in a wide wavelength range. In [6, 86], such a combination of a quantum
dot and an NWC on a SiC/Si substrate was investigated by the photoluminescence
method and was shown that it can be used as single-photon sources.

In [87], InGaAsNWswith differentmolar fractions of indiumweregrownbyMBE
on SiC/Si substrates, and their structural properties depending on the composition
were studied. In [88], a new technique was proposed for preparing the substrate to
increase the number of vertical InAs NWs growing perpendicular to the substrate,
which made it possible to achieve a significantly larger proportion of such NWs in
comparison with previous works on the growth of NWs on SiC/Si. Typical length
and diameter of NWs were 2 µm and 15–20 nm, respectively, with a surface density
of 5 × 108 cm–2. It was shown theoretically that despite the low growth temperature
(~270 ◦C) it is possible to growNWs in the vapor-solid-solid (VSS)mode. In addition,
the authors were the first to establish that the presence of elastic stresses due to the
latticemismatch between the solid catalyst particle and theNWCmaterial also affects
its growth rate. This phenomenon was also investigated for GaAs NWs in [89, 90]
where it was theoretically shown that the intensity of nucleation of coherent islands
during the VSS growth can be higher than the intensity of nucleation in the case of
vapor-liquid-solid mode growth since in coherent solid-solid pairing the interfacial
surface energy can be less. In [91], a theoretical model was constructed to describe
the growth of GaAs NWs, which includes the kinetics of material transfer inside a
catalyst droplet. The model made it possible to describe the nucleation and growth
of 2D islands on the upper face of an NW and to obtain analytical expressions for the
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Fig. 18.16 SEM images of GaN a and InN b NWs grown on SiC/Si substrates. Reproduced from
[94]

growth rate of a GaAs disk island due to bulk diffusion of particles in a droplet and
for the rate of attachment of GaAs pairs to a critical island. Note that the simulation
results are in good agreement with the experimental data and the obtained equations
can be applied to simulate the growth of otherAIIIBV compounds on SiC/Si substrates
(and not only on these substrates) using a catalyst.

18.4.2 III-Nitrides (GaN, InN)

In a series of works [92–94], the fundamental possibility of growing GaN NWs
and InGaN nanostructures of branched morphology on SiC/Si substrates by MBE
method was demonstrated for the first time (see Fig. 18.16). The obtained NWC
samples were also compared with similar NWCs on pure silicon substrates, and it
was shown that the SiC/Si substrate provides better structural perfection of NWCs as
compared to silicon. It is found that the intensity of the photoluminescence spectrum
of GaN NWs on a SiC/Si (111) substrate is, as a whole, more than 2 times higher
than that of the best GaNNW structures without a silicon carbide buffer layer. InGaN
nanostructures turned out to be optically active at room temperature and have a wide
visible radiation range.

In [95], a new mechanism of embedding silicon in GaN NWs was discovered and
explained,which can provide silicon concentrations inNWshigher than the solubility
limit of Si in GaN. The mechanism takes place during growth on misoriented SiC/Si
substrates containing groups of steps. The study of the samples by various methods
confirmed the high concentration of silicon and even the possibility of the formation
of a Ga(Si)N solid solution. This phenomenon can be caused by ascending diffusion
due to the mechanochemical effect whereupon the energy-beneficial silicon atoms
move into the less stressed NWs.
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The authors of [96] investigated the properties of a solar cell based on an array
of GaN NWs grown on SiC/Si by MBE. A study of the spectral and current-voltage
characteristics of n-GaN/SiC/p-Si with different thicknesses of the SiC diffusion
buffer layer showed that buffer layers with a thickness of more than 100 nm provide
an increase in the open-circuit voltage and efficiency of the solar cell in comparison
with the n-GaN/p-Si heterostructure without a buffer layer.

18.5 Theoretical Approaches Developed to Describe the
Growth of Multicomponent Semiconductor
Compounds

When studying the growth of thin films of semiconductor compounds, such as GaN,
with the crystal unit cell consisting of two different types of atoms, one needs a
deep understanding of growth processes and mechanisms as well as phenomena
that are caused by the presence of more than one type of atoms. Thus, Fig. 18.9
shows a number of growth mechanisms by which GaN grows under different con-
ditions: layer-by-layer and spiral. To determine the dependence of the growth rate
of such a two-component crystal on the growth conditions, a number of problems
were solved. Thus, the growth theories, developed to describe the growth of one-
component systems by various mechanisms from their own vapors, were extended
to the multicomponent case. In particular, models were considered when various
types of atoms enter the crystal surface due to chemical reactions. In addition, the
mechanisms of the growth and porosity development in crystals under the influence
of elastic stresses occurring in films or, for example, in the near-surface region of
SiC/Si were studied in detail. This section summarizes the results obtained.

18.5.1 Growth Mechanisms of Multicomponent
Semiconductors

In a series of works [97–99] the classical Burton–Cabrera–Frank growth theory has
been successively extended to the growth of a single-component crystal due to a
chemical reaction [98]; multicomponent crystal from its own vapors [99]; multi-
component crystal due to a chemical reaction [97]. Expressions were found for the
movement speed of a single step, a group of equidistant steps, and a step formed
by a screw dislocation. It was shown that these processes can be described by the
same formulas as in the one-component case, if the averaged values determined
by the properties of individual crystal components and their surface concentrations
are used for the diffusion coefficient. Estimates are made for the averaged growth
rates of GaN. Some features of multicomponent systems with chemical reactions are
revealed, such as the dependence of the growth rate at a fixed supersaturation on the
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chemical reaction rate, as well as the dependence of the mean free path of adatoms
on the absolute pressure in the system. In [100], similar calculations were performed
for crystal growth according to the Chernov mechanism [101].

Papers [102, 103] are devoted to the study of the precipitation process of indi-
vidual component islands on the multicomponent crystal surface during its growth.
This phenomenon is often observed when GaN grows in an excess of gallium. In
this case, Ga islands are observed on the terraces. Expressions determining the con-
ditions, under which the nucleation of such islands is possible, are derived. The
interaction of an individual island and a step on the surface of a multicomponent
crystal is investigated, and a calculation is performed for the modes of interaction of
a gallium island with a step on the GaN surface. The phenomena considered in [103]
can be used for the formation of ordered nanostructures both in the bulk and on the
surface of the crystal, including for the self-organized formation of ordered arrays of
NWs. In a series of works [104, 105], the phenomenon of morphological instability
of a spherical particle or flat surface of GaN, growing in the system by chemical
reactions, was investigated. It was shown that the shape instability, i.e. spontaneous
self-increasing geometry distortion of the growing crystal can be caused by fluctu-
ations in elastic stresses. Criteria were found for the corresponding shape stability,
linking the affinity of a chemical reaction and elastic stresses, and the growth of GaN
films on sapphire was analyzed. Note that an analysis of the results in the context
of the growth of GaN films showed that growth in an excess of gallium leads to
the formation of smoother films, whereas in an excess of nitrogen a characteristic
roughness of the order of the free path of gallium atoms may appear.

18.5.2 Growth Mechanisms and Formation of Pores in
Multicomponent Crystals

In a series of papers [106–108], the results on the growth mechanisms and morpho-
logical instability of multicomponent crystals, using GaN as an example, described
in the previous section were extended to the case of vacancy growth of faceted pores
in a crystal. They developed the previously proposed approach [109], when a faceted
pore is regarded as a crystal of “void” growing due to the diffusion of excess vacan-
cies that arise in the crystal under the influence of elastic loads. In these studies,
formulas were found for the dependence of the pore growth rate on the applied load
or vacancy concentration. It is shown that in a certain range of small tensile loads,
the rate has a quadratic dependence on the load whereas at high loads it is linear. The
authors also showed that impurities introduced into the crystal can affect the kinetics
of pore growth by these mechanisms. In [108], all the results obtained are extended
to a multicomponent system, and the main differences of multicomponent systems
from single-component ones as well as from real crystals are given. The theory and
approaches proposed in [108] can be used to create porous crystals or crystalline
substrates with a given pore distribution, as well as to predict the material lifetime
before fracture if it is caused by the growth of faceted pores and their percolation.
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18.6 Conclusion

This review reflects the main results obtained after 2015 by the Laboratory of Struc-
tural and Phase Transformations using the technology of growing SiC on Si by the
method of coordinated substitution of atoms. The physicochemical properties of
SiC/Si structures are briefly described, as well as some applications of the atomic
substitution method for the deposition of thin films and coatings of SiC on other
materials, such as sapphire, graphite, or profiled silicon. Experimental results on the
growth of wide-bandgap III-N semiconductors (GaN, AlN, AlGaN) on SiC/Si sub-
strates needed in the fabrication of new-generation electronic devices are presented.
We present also the results on the growth and study of a number of other semicon-
ductor compounds on SiC/Si substrates, such as CdSe, CdTe, CdS, ZnO, Ga2O3. In
addition, the review describes experiments on the growth of nanocrystals of A3B5

group compounds (GaAs, InAs, GaN, InGaN, AlGaAs), and it is shown that in a
number of cases the use of SiC/Si substrates leads to an improvement in the charac-
teristics and the appearance of new effects due to the properties substrate. In the last
sections of the review, theoretical results obtained by the laboratory are presented for
describing the growth of crystalline multicomponent films (and in particular, GaN)
as well as pores in crystals.

Note that to date,working blue andwhiteLEDsbased on III-N/SiC/ Si heterostruc-
tures and various pyro- and piezoelectric sensors have already been manufactured,
and work has begun on the creation of transistors with high electron mobility. The
studies performed show that the proposed technology for growing SiC/Si substrates,
which has already been brought to a semi-industrial scale, is one of the possible
ways for the further integration of traditional silicon electronics with technologies
based on wide-gap semiconductors and can become a platform for new generations
of devices.

Acknowledgements A.V. Redkov expresses gratitude for the support of this work to the Council
on Grants of the President of the Russian Federation (Grant No. MK-201.2021.1.2). This work was
supported by theMinistry of Science andHigher Education in the framework of the state assignment
of the IPME RAS (FFNF-2021-0001). The research was carried out using the equipment of the
unique scientific installation “Physics, chemistry and mechanics of crystals and thin films” FSUE
IPME RAS (St. Petersburg).

References

1. Takahashi, K., Yoshikawa, A., Sandhu, A. (eds.):Wide Bandgap Semiconductors. Fundamen-
tal Properties. Springer, Berlin (2007)

2. Wang, W., Yan, T., Yang, W., Zhu, Y., Wang, H., Li, G., Ye, N.: Epitaxial growth of GaN films
on lattice-matched ScAlMgO4 substrates. Cryst. Eng. Commun. 18(25), 4688–4694 (2016)

3. Zheleva, T.S., Smith, S.A., Thomson, D.B., Linthicum, K.J., Rajagopal, P., Davis, R.F.:
Pendeo-epitaxy: a new approach for lateral growth of gallium nitride films. J. Electron. Mater.
28(4), L5–L8 (1999)



368 S. Kukushkin et al.

4. Beaumont, B., Vennéguès, P., Gibart, P.: Epitaxial lateral overgrowth of GaN. Physica Status
Solidi (b) 227(1), 1–43 (2001)

5. Kukushkin, S.A., Osipov, A.V., Bessolov, V.N., Medvedev, B.K., Nevolin, V.K., Tcarik, K.A.:
Substrates for epitaxy of gallium nitride: new materials and techniques. Rev. Adv. Mater. Sci.
17(1), 1–32 (2008)

6. Kukushkin, S.A., Osipov, A.V.: Theory and practice of SiC growth on Si and its applications
to wide-gap semiconductor films. J. Phys. D Appl. Phys. 47(31), 313001 (2014)

7. Kukushkin, S.A., Osipov, A.V., Feotistov, N.A.: Synthesis of epitaxial silicon carbide films
through the substitution of atoms in the silicon crystal lattice: a review. Phys. Solid State
56(8), 1507–1535 (2014)

8. Kukushkin, S.A., Osipov, A.V.: Determining polytype composition of silicon carbide films
by UV ellipsometry. Tech. Phys. Lett. 42(2), 175–178 (2016)

9. Kukushkin, S.A., Nussupov, K.K., Osipov, A.V., Beisenkhanov, N.B., Bakranova, D.I.: X-ray
reflectometry and simulation of the parameters of SiC epitaxial films on Si (111), grown by
the atomic substitution method. Phys. Solid State 59(5), 1014–1026 (2017)

10. Kukushkin, S.A., Osipov, A.V.: The Gorsky effect in the synthesis of silicon-carbide films
from silicon by topochemical substitution of atoms. Tech. Phys. Lett. 43(7), 631–634 (2017)

11. Kukushkin, S.A., Nussupov, K.K., Osipov, A.V., Beisenkhanov, N.B., Bakranova, D.I.: Struc-
tural properties and parameters of epitaxial silicon carbide films, grown by atomic substitution
on the high-resistance (111) oriented silicon. Superlattices Microstruct. 111, 899–911 (2017)

12. Grudinkin, S.A., Golubev, V.G., Osipov, A.V., Feoktistov, N.A., Kukushkin, S.A.: Infrared
spectroscopy of silicon carbide layers synthesized by the substitution of atoms on the surface
of single-crystal silicon. Phys. Solid State 57(12), 2543–2549 (2015)

13. Kukushkin, S.A., Osipov, A.V.: Mechanism of formation of carbon-vacancy structures in
silicon carbide during its growth by atomic substitution. Phys. Solid State 60(9), 1891–1896
(2018)

14. Kukushkin, S.A., Osipov, A.V., Soshnikov, I.P.: Growth of epitaxial SiC layer on Si (100)
surface of n-and p-type of conductivity by the atoms substitution method. Rev. Adv. Mater.
Sci. 52, 29–42 (2017)

15. Perova, T.S., Wasyluk, J., Kukushkin, S.A., Osipov, A.V., Feoktistov, N.A., Grudinkin, S.A.:
Micro-Raman mapping of 3C-SiC thin films grown by solid-gas phase epitaxy on Si (111).
Nanoscale Res. Lett. 5(9), 1507–1511 (2010)

16. Grashchenko A., Kukushkin S., Osipov A., Redkov A.: Vacancy growth of monocrystalline
SiC from Si by the method of self-consistent substitution of atoms. Catalysis Today. In press

17. Redkov, A.V., Grashchenko, A.S., Kukushkin, S.A., Osipov, A.V., Kotlyar, K.P., Likhachev,
A.I., Nashchekin, A.V., Soshnikov, I.P.: Studying evolution of the ensemble of micropores
in a SiC/Si structure during its growth by the method of atom substitution. Phys. Solid State
61(3), 299–306 (2019)

18. Koryakin, A.A., Eremeev, Y.A., Osipov, A.V., Kukushkin, S.A.: The influence of the porosity
of silicon layer on the elastic properties of hybrid SiC/Si substrates. Tech. Phys. Lett. 47(2),
126–129 (2021)

19. Grashchenko, A.S., Kukushkin, S.A., Osipov, A.V.: Study of elastic properties of SiC films
synthesized on Si substrates by the method of atomic substitution. Phys. Solid State 61(12),
2310–2312 (2019)

20. Sergeeva, O.N., Solnyshkin, A.V., Nekrasova, G.M., Senkevich, S.V., Pronin, I.P., Kukushkin,
S.A.:Microstructure and electrical response of thin SiCfilms on Si substrates of p-and n-types.
Ferroelectrics 542(1), 52–57 (2019)

21. Grashchenko, A.S., Feoktistov, N.A., Osipov, A.V., Kalinina, E.V., Kukushkin, S.A.: Photo-
electric characteristics of silicon carbide-silicon structures grown by the atomic substitution
method in a silicon crystal lattice. Semiconductors 51(5), 621–627 (2017)

22. Grashchenko, A.S., Kukushkin, S.A., Osipov, A.V., Feoktistov, N.A.: Dependencies of photo-
electric properties of SiC/Si structures grown by themethod of atoms substitution on synthesis
time. J. Phys: Conf. Ser. 872(1), 012030 (2017)



18 SiC/Si as a New Platform for Growth of Wide-Bandgap Semiconductors 369

23. Kukushkin, S.A., Osipov, A.V.: The optical properties, energy band structure, and interfacial
conductance of a 3C-SiC (111)/Si (111) heterostructure grown by the method of atomic
substitution. Tech. Phys. Lett. 46(11), 1103–1106 (2020)

24. Bagraev, N.T., Kukushkin, S.A., Osipov, A.V., Romanov, V.V., Klyachkin, L.E., Malyarenko,
A.M., Khromov, V.S.: Magnetic properties of thin epitaxial SiC layers grown by the atom-
substitutionmethod on single-crystal silicon surfaces. Semiconductors 55(2), 137–145 (2021)

25. Kidalov, V.V., Kukushkin, S.A., Osipov, A.V., Redkov, A.V., Grashchenko, A.S., Soshnikov,
I.P., Dyadenchuk, A.F.: Properties of SiC films obtained by the method of substitution of
atoms on porous silicon. ECS J. Solid State Sci. Technol. 7(4), 158 (2018)

26. Kidalov, V.V., Kukushkin, S.A., Osipov, A.V., Redkov, A.V., Grashchenko, A.S., Soshnikov,
I.P., Boiko, M.E., Sharkov, M.D., Diadenchuk, A.F.: Growth of SiC films by the method of
substitution of atoms on porous Si (100) and (111) substrates. Mater. Phys. Mech. 36, 39–52
(2018)

27. Grashchenko, A.S., Kukushkin, S.A., Osipov, A.V.: A new method for creating nanoprofiled
epitaxial silicon carbide surfaces on silicon. J. Phys: Conf. Ser. 1695(1), 012005 (2020)

28. Grashchenko, A.S., Kukushkin, S.A., Osipov, A.V.: Coating of a nanostructured profiled Si
surface with a SiC layer. Tech. Phys. Lett. 46(10), 1012–1015 (2020)

29. Kukushkin, S.A., Osipov, A.V., Redkov, A.V., Grashchenko, A.S., Feoktistov, N.A., Fedotov,
S.D., Statsenko, V.N., Sokolov, E.M., Timoshenkov, S.P.: A new Method for synthesis of
epitaxial films of silicon carbide on sapphire substrates (α − Al2O3). Rev. Adv. Mater. Sci.
57(1), 82–96 (2018)

30. Grashchenko,A.S., Kukushkin, S.A., Osipov,A.V., Lukjanov,A.V., Feoktistov,N.A., Redkov,
A.V., Svyatets, G.V., Fedotov, S.D., Patent No RU 2684128: “Article with silicon carbide
coating andmethod formanufacturing of articlewith silicon carbide coating” from06.04.2018

31. Grashchenko A.S., Kukushkin S.A., Osipov A.V., Redkov A.V., Feoktistov N.A., Patent No
RU 2695423: “Article from graphite with modified near-surface layer and method of modifi-
cation of article surface, having base from graphite” from 26.02.2018

32. Kukushkin, S.A., Osipov, A.V., Feoktistov, N.A.: Two-stage conversion of silicon to nanos-
tructured carbon by the method of coordinated atomic substitution. Phys. Solid State 61(3),
456–463 (2019)

33. Grabianska, K., Kucharski, R., Puchalski, A., Sochacki, T., Bockowski, M.: Recent progress
in basic ammonothermal GaN crystal growth. J. Cryst. Growth 547, 125804 (2020)

34. Bockowski, M., Iwinska, M., Amilusik, M., Fijalkowski, M., Lucznik, B., Sochacki, T.: Chal-
lenges and future perspectives in HVPE-GaN growth on ammonothermal GaN seeds. Semi-
cond. Sci. Technol. 31(9), 093002 (2016)

35. Sharofidinov, S.S., Kukushkin, S.A., Red’kov, A.V., Grashchenko, A.S., Osipov, A.V.: Grow-
ing III-V semiconductor heterostructures on SiC/Si substrates. Tech. Phys. Lett. 45(7), 711–
713 (2019)

36. Bessolov, V.N., Konenkova, E.V., Kukushkin, S.A., Myasoedov, A.V., Osipov, A.V., Rodin,
S.N., Shcheglov, M.P., Feoktistov, N.A.: Epitaxy of semipolar GaN on a Si (001) substrate
with a SiC buffer layer. Tech. Phys. Lett. 40(5), 386–388 (2014)

37. Bessolov, V., Kalmykov, A., Konenkova, E., Kukushkin, S., Myasoedov, A., Poletaev, N.,
Rodin, S.: Semipolar AlN and GaN on Si (100): HVPE technology and layer properties. J.
Cryst. Growth 457, 202–206 (2017)

38. Kukushkin, S.A., Osipov, A.V., Redkov, A.V., Sharofidinov, S.S.: Epitaxial Growth of Bulk
Semipolar AlN Films on Si (001) and Hybrid SiC/Si (001) Substrates. Tech. Phys. Lett. 46(6),
539–542 (2020)

39. Kukushkin, S.A., Sharofidinov, S.S.: A new method of growing AlN, GaN, and AlGaN bulk
crystals using hybrid SiC/Si substrates. Phys. Solid State 61(12), 2342–2347 (2019)

40. Kukushkin, S.A., Sharofidinov, S.S., Osipov, A.V., Grashchenko, A.S., Kandakov, A.V.,
Osipova, E.V., Kotlyar, K.P., Ubyivovk, E.V.: Self-organization of the composition of
AlxGa1 − xN films grown on hybrid SiC/Si substrates. Phys. Solid State 63(3), 442–448
(2021)



370 S. Kukushkin et al.

41. Bessolov, V.N., Grashchenko, A.S., Konenkova, E.V., Myasoedov, A.V., Osipov, A.V.,
Red’kov, A.V., Rodin, S.N., Rubetz, V.P., Kukushkin, S.A.: Effect of the n and p-type Si
(100) substrates with a SiC buffer layer on the growth mechanism and structure of epitaxial
layers of semipolar AlN and GaN. Phys. Solid State 57(10), 1966–1971 (2015)

42. Sharofidinov, S.S., Redkov, A.V., Osipov, A.V., Kukushkin, S.A.: GaN growth via HVPE on
SiC/Si substrates: growth mechanisms. J. Phys: Conf. Ser. 917(3), 032028 (2017)

43. Sorokin, L.M., Myasoedov, A.V., Kalmykov, A.E., Kirilenko, D.A., Bessolov, V.N.,
Kukushkin, S.A.: TEM investigation of semipolar GaN layers grown on Si (001) offcut sub-
strates. Semicond. Sci. Technol. 30(11), 114002 (2015)

44. Sorokin, L.M., Gutkin, M.Y., Myasoedov, A.V., Kalmykov, A.E., Bessolov, V.N., Kukushkin,
S.A.: Dislocation reactions in a semipolar gallium nitride layer grown on a vicinal Si (001)
substrate using aluminum nitride and 3C-SiC buffer layers. Phys. Solid State 61(12), 2316–
2320 (2019)

45. Kukushkin, S.A., Osipov, A.V., Bessolov, V.N., Konenkova, E.V., Panteleev, V.N.: Misfit
dislocation locking and rotation during gallium nitride growth on SiC/Si substrates. Phys.
Solid State 59(4), 674–681 (2017)

46. Telyatnik, R.S., Osipov, A.V., Kukushkin, S.A.: Pore-and delamination-induced mismatch
strain relaxation and conditions for the formation of dislocations, cracks, and buckles in the
epitaxial AlN (0001)/SiC/Si (111) heterostructure. Phys. Solid State 57(1), 162–172 (2015)

47. Bessolov, V.N., Karpov, D.V., Konenkova, E.V., Lipovskii, A.A., Osipov, A.V., Redkov, A.V.,
Soshnikov, I.P., Kukushkin, S.A.: Pendeo-epitaxy of stress-free AlN layer on a profiled SiC/Si
substrate. Thin Solid Films 606, 74–79 (2016)

48. Kukushkin, S.A., Sharofidinov, S.S., Osipov, A.V., Redkov, A.V., Kidalov, V.V., Grashchenko,
A.S., Soshnikov, I.P., Dydenchuk, A.F.: The mechanism of growth of GaN films by the HVPE
method on SiC synthesized by the substitution of atoms on porous Si substrates. ECS J. Solid
State Sci. Technol. 7(9), 480 (2018)

49. Sergeeva, O.N., Solnyshkin, A.V., Kukushkin, S.A., Osipov, A.V., Sharofidinov, S., Kaptelov,
EYu., Senkevich, S.V., Pronin, I.P.: New semipolar aluminum nitride thin films: growth mech-
anisms, structure, dielectric and pyroelectric properties. Ferroelectrics 544(1), 33–37 (2019)

50. Sergeeva, O.N., Solnyshkin, A.V., Kiselev, D.A., Il’ina, T.S., Kukushkin, S.A., Sharofidinov,
S.S., Kaptelov, EYu., Senkevich, S.V., Pronin, I.P.: Influence of orientation of a silicon sub-
strate with a buffer silicon carbide layer on dielectric and polar properties of aluminum nitride
films. Phys. Solid State 61(12), 2386–2391 (2019)

51. Kukushkin, S.A., Osipov, A.V., Sergeeva, O.N., Kiselev, D.A., Bogomolov, A.A., Solnyshkin,
A.V., Kaptelov, EYu., Senkevich, S.V., Pronin, I.P.: Pyroelectric and piezoelectric responses of
thin AlN films epitaxy-grown on a SiC/Si substrate. Phys. Solid State 58(5), 967–970 (2016)

52. Sergeeva, O.N., Solnyshkin, A.V., Kukushkin, S.A., Sharofidinov, S.S., Kazarova, O.P.,
Mohov, E.N., Kaptelov, EYu., Senkevich, S.V., Pronin, I.P.: Dielectric and polar properties of
aluminum nitride single crystals. Ferroelectrics 576(1), 55–61 (2021)

53. Grashchenko, A.S., Kukushkin, S.A., Osipov, A.V.: Elastic properties of GaN and AlN films
formed on SiC/Si hybrid substrate, a porous basis. Mech. Solids 55(2), 157–161 (2020)

54. Grashchenko, A.S., Kukushkin, S.A., Osipov, A.V.: Strength and structural properties of AlN
films grown on SiC/Si substrates synthesized by atomic substitution. J. Phys: Conf. Ser.
1410(1), 012003 (2019)

55. Radtke, G., Couillard, M., Botton, G.A., Zhu, D., Humphreys, C.J.: Appl. Phys. Lett. 100,
011910 (2012)

56. Lahreche, H., Vennegues, P., Tottereau, O., Laugt, M., Lorenzini, P., Leroux, M., Beaumont,
B., Gibart, P.: J. Cryst. Growth 217, 13 (2000)

57. Rozhavskaya, M.M., Kukushkin, S.A., Osipov, A.V., Myasoedov, A.V., Troshkov, S.I.,
Sorokin, L.M., Brunkov, P.N., Baklanov, A.V., Telyatnik, R.S., Juluri, R.R., Pedersen, K.,
Popok, V.N.: Metal organic vapor phase epitaxy growth of (Al) GaN heterostructures on
SiC/Si (111) templates synthesized by topochemical method of atoms substitution. Phys.
Status Solidi (a) 214(10), 1700190 (2017)



18 SiC/Si as a New Platform for Growth of Wide-Bandgap Semiconductors 371

58. Bessolov, V., Zubkova, A., Konenkova, E., Konenkov, S., Kukushkin, S., Orlova, T., Smirnov,
V.: SemipolarGaN(1011)EpitaxialLayerPreparedonNano-PatternedSiC/Si (100)Template.
Phys. Status Solidi (b) 256(2), 1800268 (2019)

59. Grashchenko, A.S., Kukushkin, S.A., Osipov, A.V., Redkov, A.V.: Nanoindentation of
GaN/SiC thin films on silicon substrate. J. Phys. Chem. Solids 102, 151–156 (2017)

60. Kukushkin, S.A., Mizerov, A.M., Osipov, A.V., Redkov, A.V., Timoshnev, S.N.: Plasma
assisted molecular beam epitaxy of thin GaN films on Si (111) and SiC/Si (111) substrates:
effect of SiC and polarity issues. Thin Solid Films 646, 158–162 (2018)

61. Kukushkin, S.A., Mizerov, A.M., Osipov, A.V., Redkov, A.V., Telyatnik, R.S., Timoshnev,
S.N.: Effect of SiC buffer layer on GaN growth on Si via PA-MBE. J. Phys: Conf. Ser. 917(3),
032038 (2017)

62. Mizerov, A.M., Kukushkin, S.A., Sharofidinov, S.S., Osipov, A.V., Timoshnev, S.N., Shubina,
K.Y., Berezovskaya, T.N., Mokhov, D.V., Buravlev, A.D.: Method for controlling the polarity
of gallium nitride layers in epitaxial synthesis of GaN/AlN heterostructures on hybrid SiC/Si
substrates. Phys. Solid State 61(12), 2277–2281 (2019)

63. Timoshnev, S.N.,Mizerov,A.M., Lapushkin,M.N., Kukushkin, S.A., Bouravleuv,A.D.: Elec-
tronic structure of SiN layers on Si (111) and SiC/Si (111) substrates. Semiconductors 53(14),
1935–1938 (2019)

64. Timoshnev, S.N., Mizerov, A.M., Benemanskaya, G.V., Kukushkin, S.A., Buravlev, A.D.:
Photoemission studies of the electronic structure of GaN grown by plasma assisted molecular
beam epitaxy. Phys. Solid State 61(12), 2282–2285 (2019)

65. Seredin, P.V., Goloshchapov, D.L., Zolotukhin, D.S., Lenshin, A.S., Khudyakov, Y.Y., Mize-
rov, A.M., Kukushkin, S.A.: Influence of a nanoporous silicon layer on the practical imple-
mentation and specific features of the epitaxial growth of GaN Layers on SiC/por-Si/c-Si
templates. Semiconductors 54, 596–608 (2020)

66. Seredin, P.V., Goloshchapov, D.L., Zolotukhin, D.S., Lenshin, A.S., Mizerov, A.M., Tim-
oshnev, S.N., Kukushkin, S.A.: Optical properties of GaN/SiC/por-Si/Si (111) hybrid het-
erostructures. Semiconductors 54, 417–425 (2020)

67. Kukushkin, S.A., Osipov, A.V., Red’kov, A.V.: Separation of III-N/SiC epitaxial heterostruc-
ture from a Si substrate and their transfer to other substrate types. Semiconductors 51(3),
396–401 (2017)

68. Redkov, A.V., Osipov, A.V.,Mukhin, I.S., Kukushkin, S.A.: Separation of stress-free AlN/SiC
thin films from Si substrate. J. Phys: Conf. Ser. 741(1), 012034 (2016)

69. Buravlev A.D., Kukushkin S.A, Osipov A.V., Lukyanov A.V., Mizerov A.M., Svyatets G.V.,
Sobolev M.S., Timoshnev S.N., Sharofidinov Sh. Sh., Patent No RU 2683103: “Method for
producing plates of gallium nitride monocrystal” from 06.06.2018

70. Kukushkin, S.A., Osipov, A.V., Romanychev, A.I.: Epitaxial growth of zinc oxide by the
method of atomic layer deposition on SiC/Si substrates. Phys. Solid State 58(7), 1448–1452
(2016)

71. Kukushkin, S.A.,Osipov,A.V.,Kasatkin, I.A.,Mikhailovskii,V.Y.,Romanychev,A.I.: Forma-
tion of ordered ZnO structures grown by the ALD method on hybrid SiC/Si (100) substrates.
Mater. Phys. Mech. 42(1), 30–39 (2019)

72. Osipov, A., Kukushkin, S.A., Feoktistov, N.A., Osipova, E., Venugopal, N., Verma, G.D.,
Gupta, B.K., Mitra, A.: Structural and optical properties of high quality ZnO thin film on Si
with SiC buffer layer. Thin Solid Films 520(23), 6836–6840 (2012)

73. Kukushkin, S.A., Osipov, A.V., Osipova, E.V., Razumov, S.V., Kandakov, A.V.: The optical
constants of zinc oxide epitaxial films grown on silicon with a buffer nanolayer of silicon
carbide. J. Opt. Technol. 78(7), 440–443 (2011)

74. Kukushkin, S.A., Osipov, A.V., Romanychev, A.I., Kasatkin, I.A., Loshachenko, A.S.: Low-
temperature growth of the CdS cubic phase by atomic-layer deposition on SiC/Si hybrid
substrates. Tech. Phys. Lett. 46(11), 1049–1052 (2020)

75. Antipov, V.V., Kukushkin, S.A., Osipov, A.V.: Epitaxial growth of cadmium sulfide films on
silicon. Phys. Solid State 58(3), 629–632 (2016)



372 S. Kukushkin et al.

76. Antipov, V.V., Kukushkin, S.A., Osipov, A.V., Rubets, V.P.: Epitaxial growth of cadmium
selenide films on silicon with a Silicon carbide buffer layer. Phys. Solid State 60(3), 504–509
(2018)

77. Koryakin, A.A., Kukushkin, S.A., Redkov, A.V.: Nucleation of CdSe thin films: the kinetic
model J. Phys.: Conf. Ser. 1124(2), 022044 (2018)

78. Antipov, V.V., Kukushkin, S.A., Osipov, A.V.: Epitaxial growth of cadmium telluride films
on silicon with a buffer silicon carbide layer. Phys. Solid State 59(2), 399–402 (2017)

79. Koryakin, A.A., Kukushkin, S.A., Redkov, A.V.: Nucleation and growth mechanisms of CdTe
thin films on silicon substrates with silicon carbide buffer layers. Mat. Phys. Mech. 32(3)
(2017)

80. Kukushkin, S.A., Nikolaev, V.I., Osipov, A.V., Osipova, E.V., Pechnikov, A.I., Feoktistov,
N.A.: Epitaxial gallium oxide on a SiC/Si substrate. Phys. Solid State 58(9), 1876–1881
(2016)

81. Osipov, A.V., Grashchenko, A.S., Kukushkin, S.A., Nikolaev, V.I., Osipo.a, E.V., Pechnikov,
A.I., Soshnikov, I.P.: Structural and elastoplastic properties of β − Ga2O3 films grown on
hybrid SiC/Si substrates. Continuum Mech. Thermodyn. 30(5), 1059–1068 (2018)

82. Grashchenko, A.S., Kukushkin, S.A., Nikolaev, V.I., Osipov, A.V., Osipova, E.V., Soshnikov,
I.P.: Study of the anisotropic elastoplastic properties of β − Ga2O3 films synthesized on
SiC/Si substrates. Phys. Solid State 60(5), 852–857 (2018)

83. Reznik, R.R., Kotlyar, K.P., Shtrom, I.V., Soshnikov, I.P., Kukushkin, S.A., Osipov, A.V.,
Cirlin, G.E.: MBE growth of ultrathin III-V nanowires on a highly mismatched SiC/Si (111)
substrate. Semiconductors 51(11), 1472–1476 (2017)

84. Reznik, R.R., Shtrom, I.V., Soshnikov, I.P., Kukushkin, S.A., Zeze, D.A., Cirlin, G.E.: MBE
growth of thin AlGaAs nanowires with a complex structure on strongly mismatched SiC/Si
(111) substrate. J. Phys: Conf. Ser. 1038(1), 012063 (2018)

85. Cirlin, G.E., Reznik, R.R., Shtrom, I.V., Khrebtov, A.I., Soshnikov, I.P., Kukushkin, S.A.,
Leandro, L., Kasama, T., Akopian, N.: AlGaAs and AlGaAs/GaAs/AlGaAs nanowires grown
by molecular beam epitaxy on silicon substrates. J. Phys. D: Appl. Phys. 50(48), 484003
(2017)

86. Cirlin, G.E., Reznik, R.R., Shtrom, I.V., Khrebtov, A.I., Samsonenko, Y.B., Kukushkin, S.A.,
Kasama, T., Akopian, N., Leonardo, L.: Hybrid GaAs/AlGaAs nanowire-quantum dot system
for single photon sources. Semiconductors 52(4), 462–464 (2018)

87. Reznik, R.R., Kotlyar, K.P., Soshnikov, I.P., Kukushkin, S.A., Osipov, A.V., Cirlin, G.E.:MBE
growth and structural properties of InAs and InGaAs nanowires with different mole fraction
of In on Si and strongly mismatched SiC/Si (111) substrates. Semiconductors 52(5), 651–653
(2018)

88. Koryakin, A.A., Kukushkin, S.A., Kotlyar, K.P., Ubyivovk, E.D., Reznik, R.R., Cirlin, G.E.:
A new insight into the mechanism of low-temperature Au-assisted growth of InAs nanowires.
Cryst. Eng. Commun. 21(32), 4707–4717 (2019)

89. Koryakin, A.A., Kukushkin, S.A., Sibirev, N.V.: On the mechanism of the vapor-solid-solid
growth of Au-catalyzed GaAs nanowires. Semiconductors 53(3), 350–360 (2019)

90. Koryakin, A.A., Kukushkin, S.A.: Influence of elastic stresses on the vapor-solid-solid growth
mechanism of Au-catalyzed GaAs nanowires. J. Phys: Conf. Ser. 1124(2), 022036 (2018)

91. Koryakin, A.A., Kukushkin, S.A. (2021). Self-consistent modeling of nucleation and growth
of 2D islands on the top facet of self-catalyzedGaAs nanowires. Phys. Status Solidi (b) 258(6)
2000604 (2021)

92. Reznik, R.R., Kotlyar, K.P., Khrebtov, A.I., Kukushkin, S.A., Kryzhanovskaya, N.V., Cirlin,
G.E.: MBE synthesis and properties of GaN NWs on SiC/Si substrate and InGaN nanostruc-
tures on Si substrate. J. Phys: Conf. Ser. 1537(1), 012003 (2020)

93. Reznik, R.R., Kotlyar, K.P., Ilkiv, I.V., Khrebtov, A.I., Soshnikov, I.P., Kukushkin, S.A.,
Osipov, A.V., Nikitina, E.V., Cirlin, G.E.: MBE growth and optical properties of GaN, InN,
and A3 B5 nanowires on SiC/Si (111) hybrid substrate. Adv. Cond. Matter Phys. 2018,
1040689 (2018)



18 SiC/Si as a New Platform for Growth of Wide-Bandgap Semiconductors 373

94. Reznik, R.R., Kotlyar, K.P., Il’kiv, I.V., Soshnikov, I.P., Kukushkin, S.A., Osipov, A.V.,
Nikitina, E.V., Cirlin, G.E.: Growth and optical properties of filamentary GaN nanocrys-
tals grown on a hybrid SiC/Si (111) substrate by molecular beam epitaxy. Phys. Solid State
58(10), 1952–1955 (2016)

95. Talalaev, V.G., Tomm, J.W., Kukushkin, S.A., Osipov, A.V., Shtrom, I.V., Kotlyar, K.P.,
Mahler, F., Schilling, J., Reznik, R.R., Cirlin, G.E.: Ascending Si diffusion into growing GaN
nanowires from the SiC/Si substrate: up to the solubility limit and beyond. Nanotechnology
31(29), 294003 (2020)

96. Shugurov, K.Y., Reznik, R.R., Mozharov, A.M., Kotlyar, K.P., Koval, O.Y., Osipov, A.V.,
Fedorov, V.V., Shtrom, I.V., Bolshakov, A.D., Kukushkin, S.A., Mukhin, I.S., Cirlin, G.E.:
Study of SiC buffer layer thickness influence on photovoltaic properties of n-GaNNWs/SiC/p-
Si heterostructure. Mat. Sci. Semicond. Proc. 90, 20–25 (2019)

97. Redkov, A.V., Kukushkin, S.A.: Development of Burton-Cabrera-Frank theory for the growth
of a Non-Kossel crystal via chemical reaction. Crystal Growth Des. 20(4), 2590–2601 (2020)

98. Redkov, A.V., Kukushkin, S.A., Osipov, A.V.: Spiral growth of a crystal due to chemical
reaction. J. Phys: Conf. Ser. 1124(2), 022006 (2018)

99. Redkov, A.V., Kukushkin, S.A., Osipov, A.V.: Spiral growth of a multicomponent crystal
from vapor of its components. J. Cryst. Growth 548, 125845 (2020)

100. Redkov, A.V., Kukushkin, S.A., Osipov, A.V.: Growth of a multicomponent crystal via Cher-
nov’s mechanism. J. Phys: Conf. Ser. 1410(1), 012039 (2019)

101. Chernov, A.A.: Modern Crystallography III: Crystal Growth, vol. 36. Springer, Berlin (1984)
102. Redkov,A.V.,Kukushkin, S.A.:Nucleation of nano-islands of pure components during growth

of a multicomponent crystal via step-flow mode. J. Phys.: Conf. Ser. 1695(1), 012003 (2020)
103. Redkov, A., Kukushkin, S.: Dynamic interaction of steps and nanoislands during growth

of a multicomponent crystal. Crystal Growth Des. (2021). https://doi.org/10.1021/acs.cgd.
1c00349

104. Redkov, A.V., Osipov, A.V., Kukushkin, S.A.: Stability of the surface of an elastically strained
multicomponent film in a system with chemical reactions. Phys. Solid State 57(12), 2524–
2531 (2015)

105. Kukushkin, S.A., Osipov, A.V., Redkov, A.V.:Morphological stability criterion for a spherical
crystallization front in a multicomponent system with chemical reactions. Phys. Solid State
56(12), 2530–2536 (2014)

106. Redkov, A.V., Kukushkin, S.A., Osipov, A.V.: Vacancy growth of a faceted pore in a crystal
via Chernov mechanism. Mech. Solids 55(1), 77–83 (2020)

107. Red’kov, A.V.: Growth of faceted pores in a crystal by the Burton-Cabrera-Frank mechanism.
Phys. Solid State 61(12), 2392–2396 (2019)

108. Redkov, A.V., Kukushkin, S.A., Osipov, A.V.: Growth of faceted pores in a multi-component
crystal by applying mechanical stress. Cryst. Eng. Commun. 22(32), 5280–5288 (2020)

109. Kukushkin, S.A.: Nucleation of pores in brittle solids under load. J. Appl. Phys. 98(3), 033503
(2005)

https://doi.org/10.1021/acs.cgd.1c00349
https://doi.org/10.1021/acs.cgd.1c00349


Chapter 19
Sloshing in a Vertical Cylinder in the
Presence of a Porous Layer

Nikolay G. Kuznetsov and Oleg V. Motygin

Abstract An eigenvalue problem for a pair of harmonic functions is considered;
it contains a spectral parameter in the Steklov condition on a part of the boundary.
This problem concerns eigenvalues of fluid’s free oscillations in a vertical, cylin-
drical container; its cross-section is arbitrary, whereas a porous medium occupies a
bottom-adjacent layer. Assuming the fluid to be inviscid, incompressible and heavy,
properties of its eigensolutions are investigated.

Keywords Sloshing problem · Fluid in a vertical-walled container ·
Bottom-adjacent porous layer · Time-periodic motion · Potential theory ·
Eigenvalues of fluid’s free oscillations · Dependence of spectrum on parameters ·
Damping

19.1 Introduction

Linear theory of water waves is a common tool for studies of sloshing in containers
occupied by a fluid of constant density. The corresponding problem involves the
homogeneous Neumann condition on the rigid part of container’s boundary and the
Steklov condition on the free surface of fluid, which contains a spectral parameter
depending on the frequency of fluid’s oscillations. This problem has been the subject
of a great number of papers over more than two centuries; a historical review can
be found, for example, in [1], and the classical results are described by Lamb [2].
During the past two decades, at least three books on this topic were published.
Two of them, [3, 4], are of interest primarily to engineers; the same concerns the
recent survey article [5] containing an extensive bibliography. On the other hand,
the comprehensive monograph [6] based on spectral theory of operators in Hilbert
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space is addressed to mathematicians, both pure and applied. Thus, many aspects of
sloshing are studied in great detail.

However, there remain some questions on which our understanding of this phe-
nomenon is still far from complete. According to [5] (especially, see Sect. 4), one of
the most important challenges is damping; the latter concerns such characteristics as
frequencies and amplitudes of oscillations. The list of references cited in [5] contains
a number of related items; also, the results obtained in [7] should be mentioned in
this connection. In the latter paper dating back to 1967, Miles investigated the damp-
ing of waves in closed basins by means of capillarity and various forms of viscous
dissipation. Nevertheless, the question of using a layer of porous material as a means
for the sloshing damping has received, to the authors’ best knowledge, no attention
at all. This looks strange because the propagation of gravity waves over a porous
bed accompanied by damping was considered in [8, 9] to mention just a couple of
papers.

Thus, the aim of the present paper is to fill in this gap at least partially by studying
the modified sloshing problem that involves two extra coupling conditions imposed
on the interface between fluid and porous medium. In our study of this problem,
we restrict ourselves to the following simple geometry: a vertical-walled cylinder of
constant depth and of arbitrary cross-section. This allows us to apply the approach
similar to that used in the recent paper [10], where sloshing in a two-layer fluid was
investigated under the following assumptions. In an open bounded container, the
upper fluid occupies a layer with the free surface on top, whereas below this layer
borders with a fluid of greater density. Despite the apparent similarity between these
two sloshing problems (both include a pair of coupling conditions on an interface),
there is an essential difference; indeed, the problem considered in [10] is self-adjoint,
unlike that to be studied here.

19.2 Statement of the Problem

Let W be a vertical, cylindrical container of constant depth with rigid walls and
bottom. We suppose that a layer of porous medium having a constant thickness is
adjacent to the bottom, whereas an inviscid, incompressible, heavy fluid, say water,
occupies the other part ofW as well as gaps in the porous medium. Let the Cartesian
coordinates (x1, x2, y) be chosen so that the origin lies in the mean free surface
of water and the y-axis is directed upwards. Without loss of generality, we use
dimensionless variables (the container’s depth serves for this purpose and also the
acceleration of gravity is taken equal to one), in which case

W = {x = (x1, x2) ∈ D, y ∈ (−1, 0)},

where D is a bounded, two-dimensional domain with a piecewise-smooth boundary
without cusps. Thus,
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Fig. 19.1 A sketch of
geometry and notation

S = ∂D × (−1, 0), B = {x ∈ D, y = −1} and F = {x ∈ D, y = 0}

are the vertical container’s side-wall, its horizontal bottom and the free surface of
water, respectively. Let I = {x ∈ D, y = −h}, h ∈ (0, 1), be the interface, separat-
ing

W1 = W ∩ {y ∈ (−h, 0)} and W2 = W ∩ {y ∈ (−1,−h)}

occupied by the water and the mixture of water and porous medium, respectively;
notation is shown in Fig. 19.1.

In the absence of porous medium, the sloshing is treated as an irrotational, time-
periodic motion of water in W with the angular frequency ω, whereas the corre-
sponding velocity field is given by the gradient of the velocity potential

�(x, y; t) = Re
{
φ(x, y) eiωt

}
,

where φ is harmonic in the water domain W , satisfies the Steklov spectral condition
on F and the homogeneous Neumann condition elsewhere on ∂W . In the case under
consideration, this remains valid for�(1) defined onW1 by the above formulawith the
superscript added; the only exception is the interface I , where the so-called coupling
conditions must hold.

In the porous medium, domain W2, the motion of water is also described by the
velocity potential�(2) of the same form as�(1), whichmust satisfy a pair of interface
conditions coupling these potentials. The latter conditions involve the characteristics
of the porous medium: the porosity ε, the linear friction factor f0 and the inertial
term s0; all of them are taken here to be non-negative constants. (The statement in
use originates from [11], later adopted in many investigations; see, e.g., [12, 13].)

So, summing up, we seek two velocity potentials
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�( j)(x, y; t) = Re
{
φ( j)(x, y) eiωt

}
, j = 1, 2, (19.1)

both belonging to C(IR; H 1(Wj )) (the Sobolev space H 1(Wj ) is relevant in view
of no energy influx). The complex-valued functions φ( j) must satisfy the coupled
boundary value problem:

φ( j)
x1x1 + φ( j)

x2x2 + φ( j)
yy = 0 in Wj , j = 1, 2, (19.2)

φ(1)
y = νφ(1) on F, (19.3)

φ(2)
y = 0 on B; (19.4)

∂u( j)/∂n = 0 on Sj = S ∩ ∂Wj , j = 1, 2, (19.5)

φ(1)
y = εφ(2)

y on I, (19.6)

φ(1) = (s0 − i f0) φ(2) on I. (19.7)

Here ν is the spectral parameter equal to ω2 and n is the unit normal to S. The condi-
tions (19.6) and (19.7) mean continuity of normal velocity and pressure, respectively.

By introducing φ̄(2)(x, y) = εφ(2)(x, y), we replace the conditions on the inter-
face I by the following ones:

φ(1)
y = φ̄(2)

y on I, (19.8)

φ(1) = (s − i f ) φ̄(2) on I, (19.9)

where we thus reduce the number of material parameters of the problem to two:

f = f0/ε, s = s0/ε.

Further, we will assume ε = 1 and use notation φ(2) for φ̄(2).
According to the first Green’s formula for the Laplacian, we have that

∫

∂Wk

∂φ(k)

∂n
dS = 0, k = 1, 2,

where dS is the area element on ∂Wk . Then (19.4), (19.5) (with j = 2) and (19.8)
yield that ∫

I
φ(2)
y dx = 0, and so

∫

I
φ(1)
y dx = 0

in view of (19.8). Now, the last equality, (19.5) with j = 1 and (19.3) imply that the
orthogonality condition ∫

F
φ(1) dx = 0 (19.10)
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must hold. Thus, we have problem (19.2)–(19.5), (19.8), (19.9), (19.10) for deter-
mining sequences of sloshing eigenvalues {νn} and eigenvectors

{(
φ(1)
n , φ(2)

n

)}
.

19.3 Separation of Variables

For a homogeneous fluid occupying W , the sloshing problem is equivalent to the
free membrane problem. Indeed, let us separate variables as follows:

φ(x, y) = υ(x) cosh k(y + 1).

Then problem (19.2)–(19.5) for φ complemented by the orthogonality condition
(19.10) reduces to the following spectral problem:

∇2
xυ + k2υ = 0 in D, ∂υ/∂nx = 0 on ∂D,

∫

D
υ dx = 0, (19.11)

where ∇x = (∂/∂x1, ∂/∂x2) and nx is the unit normal to ∂D in IR2. It is clear that
ν̊ is an eigenvalue of the problem for φ, if and only if k2 > 0 is an eigenvalue of
(19.11) and

ν̊ = k tanh k. (19.12)

It is well known that problem (19.11) has a sequence of positive eigenvalues
{
k2n

}∞
1 ,

usually arranged in the increasing order with each eigenvalue repeated according to
its multiplicity. The corresponding eigenfunctions {υn}∞1 form a complete system in
H 1(D). Furthermore, k2n → ∞, or more precisely, k2n = 4π |D|−1n + o(n) as n →
∞ (see, for example, [14], Chap. VI, Sect. 4). Here |D| is the Lebesgue measure of
D.

Let us apply the same reduction procedure in the case when W = W1 ∪ I ∪ W2

and W2 is occupied by porous medium. Putting

φ(1)
n (x, y) = υn(x) [An cosh kn y + Bn sinh kn y], (19.13)

φ(2)
n (x, y) = υn(x)Cn cosh kn(y + 1), (19.14)

where An, Bn,Cn ∈ IC and kn > 0 is defined by thenth eigenvalue of problem (19.11),
one reduces (19.2)–(19.5), (19.8), (19.9), (19.10) to a linear algebraic system for these
coefficients. Thus, νn is an eigenvalue of this sloshing problem if and only if νn is a
zero of the system’s determinant.

For the sake of brevity, we denote 
n = tanh knh and Vn = tanh kn(1 − h).
Straightforward calculation, following the outlined scheme, yields that

νn = kn
(s − i f )
n + Vn

s − i f + 
nVn
. (19.15)
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To obtain an eigenvector
{(

φ(1)
n , φ(2)

n

)}
corresponding to νn , one has to substitute the

following coefficients

An = c kn, Bn = c νn, Cn = c kn sech knh sech kn(1 − h)

s − i f + 
nVn

into (19.13) and (19.14); here c ∈ IC is arbitrary, but non-zero.

19.4 Properties of the Eigenvalues νn and ωn

We start noting some properties of the dependencies of Re νn and Im νn on the
parameters f and s. Using (19.15), we write

Re νn = kn
( f 2 + s2 + V2

n)
n + s(1 + 
2
n)Vn

f 2 + (s + 
nVn)2
, Im νn = kn

f (1 − 
2
n)Vn

f 2 + (s + 
nVn)2

and find

(Re{νn})′f = (Im{νn})′s = −2 f kn
Vn

(
1 − 
2

n

)(
s + 
nVn

)

[
f 2 + (s + 
nVn)2

]2 .

Hence, it is easy to note that the function Re{νn} (Im{νn}) decreases monotonically
in f (in s).

Analogously, we have

(Im{νn})′f = − (Re{νn})′s = kn
Vn

(
1 − 
2

n

) ([s + 
nVn]2 − f 2
)

[
f 2 + (s + 
nVn)2

]2 .

The only positive zero of (Im{νn})′f as a function of f is attained at

f = s + 
nVn.

Since Im{νn} = 0 when f = 0 and f → ∞, the latter displayed formula defines
maximum of Im{νn} as a function of f . We have

ν0
n := νn

∣∣
f =0 = kn
n + knVn

(
1 − 
2

n

)

s + 
nVn
, ν∞

n := νn
∣∣
f →∞ = kn
n. (19.16)

At the point of maximum

νn
∣∣
f =s+
nVn

= kn
n + (1 + i)knVn
(
1 − 
2

n

)

2[s + 
nVn] = 1 + i

2
ν0
n + 1 − i

2
ν∞
n .
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Despite of the similarity between the problem considered in [10] and problem
(19.2)–(19.5), (19.8), (19.9), (19.10), properties of spectra can be essentially different
(presumably, due to the problem in question being non-self-adjoint). In particular,
Proposition 1 in [10] proves that the fundamental frequency for a two-layer fluid in
a container is smaller than that for the same container filled in with homogeneous
fluid. At the same time, we can show that it is possible that

|νn|2 > ν̊2
n , n = 1, 2, . . . (19.17)

where ν̊n are the eigenvalues (19.12) for a homogeneous fluid occupying W .
In view of (19.15), we write

|νn|2
k2n

= 
2
n

(
f 2 + s2

) + 2s
nVn + V2
n

f 2 + (s + 
nVn)2
.

Equating the denominator and the numerator, we get the equation


2
n

(
f 2 + s2

) + V2
n = f 2 + s2 + 
2

nV
2
n,

which is reduced to V2
n = f 2 + s2. So, it is easy to note that the inequality

f 2 + s2 < V2
n (19.18)

guarantees that
|νn|2 > k2n > ν̊2

n ,

and so the inequality (19.17) is satisfied. It is important to note that the right-hand
side of (19.18) depends on the geometry of D (through the eigenvalue kn) and on the
depth 1 − h of the porous layer. It is also to note that since V1 ≤ V2 ≤ V3 ≤ · · · ,
the inequality f 2 + s2 < V2

1 guarantees that |νn|2 > ν̊2
n for all n = 1, 2, . . .

Consider another condition guaranteeing (19.17). In view of (19.16), it is easy
to note that ν∞

n < ν̊n . At the same time, the equation ν0
n = ν̊n is reduced to s =

1. (We also use the relationship tanh (kn) = (
n + Vn)/(1 + 
nVn).) So, due to
monotonicity of Re νn as a function of f , for s > 1 we have Re νn < ν̊n for any
f > 0. But for any s ∈ [0, 1) there exists a unique solution

f = f �
n (s) = √

1 − s
√
s + 
nVn

of Re νn = ν̊n , such that

Re νn < ν̊n for f ∈ ( f �
n ,+∞),

Re νn > ν̊n for f ∈ [0, f �
n ).
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Since Re νn ≤ |νn|, the condition (19.17) is satisfied for all n = 1, 2, . . . in the set of
parameters {( f, s) : s ∈ [0, 1), f ∈ [0,√1 − s

√
s + 
1V1)}.

Now, we present the expressions for ωn , corresponding to the eigenvalues νn ,
and find parameters maximizing damping for particular eigenmodes. We remind that
ωn = √

νn , where the branch is chosen so that Imωn ≥ 0. We find

Reωn = √
kn

√

�2 +
√

� 2
1 + � 2

2

√
2
√

f 2 + (s + 
nVn)
2
,

Imωn = √
kn

�1

√
2
√

f 2 + (s + 
nVn)
2 ·

√

�2 +
√

� 2
1 + � 2

2

,

(19.19)

where

�1 = f Vn
(
1 − 
2

n

)
, �2 = f 2
n + (s
n + Vn) (s + 
nVn) .

Turning to the anzatz (19.1), we observe the decay of the solution in time due to
the factor exp{−t Imω}. So, with the purpose to maximize damping of oscillations
in time for the eigenmode having the number n, we seek a maximum of Imωn ,
considered as a function of f . From (19.19), we have

(
Imωn

)′
f =

�1

(
� 2

1 �4 + 2�5

(
�2 +

√
� 2

1 + � 2
2

))

2
√
2 f �

3/2
3

√
� 2

1 + � 2
2

(
�2 +

√
� 2

1 + � 2
2

)3/2 , (19.20)

where

�3 = f 2 + (s + 
nVn)
2,

�4 = − f 2 + (s + 
nVn)
2,

�5 = − f 4
n + (s
n + Vn)(s + 
nVn)
3.

Define

f �
n = (s + 
nVn)

(
3Vn + 4s
n + 
2

nVn
)1/2

(
Vn + 4s
n + 3
2

nVn
)1/2 .

Substituting f = f �
n into (19.20), it is not difficult to check that

(
Imωn

)′
f = 0 for f = f �

n .

Besides, we have
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(
Imωn

)′′
f

∣∣∣
f = f �

n

= −Vn
(
1 − 
2

n

) (
4s
n + Vn

(
3 + 
2

n

)) (
4s
n + Vn

(
1 + 3
2

n

))3

32
√
2 (s + 
nVn)

5/2
(
2s
n + Vn

(
1 + 
2

n

))9/2 .

Since the latter expression for the secondderivative of Im ωn at f = f �
n is negative,

we have established that f = f �
n corresponds to a maximum of Imωn . We also note

that

Imωn

∣∣
f =0 = Imωn

∣∣
f →∞ = 0,

Imωn

∣∣
f = f �

n
= Vn

(
1 − 
2

n

)

2
√
2 (s + 
nVn)

1/2
(
2s
n + Vn

(
1 + 
2

n

))1/2 .

So, by this choice of the parameter f = f �
n , we can achieve rapid time-decaying of

the nth eigenmode.

19.5 Inverse Problems

In this section, we discuss a possibility to recover parameters of the problem from the
known spectral data. Assume that the eigenvalue ν1 of the problem (19.2)–(19.5),
(19.8), (19.9), (19.10) is found to be equal to �

ν1 (say, measured experimentally).
Then, using the formula (19.15), we find solutions of the equations Re ν1 = Re �

ν1,
Im ν1 = Im �

ν1 as follows:

s = 
1V1
(
k21 + | �

ν1|2
) + k1V1

(
1 + 
2

1

)
Re �

ν1


2
1k

2
1 − 2
1k1 Re

�
ν1 + | �

ν1|2 ,

f = k1V1
(
1 − 
2

1

)
Im �

ν1


2
1k

2
1 − 2
1k1 Re

�
ν1 + | �

ν1|2 .

Substituting these solutions to (19.15), we obtain the following expression for νn ,
n = 2, 3, . . ., in terms of �

ν1 instead of s and f :

Re νn = kn

(
ς1
nV2

1 + ς2
nV2
n − ς3V1Vn

(
1 + 
2

n

))

ς1V2
1 + ς2
2

nV
2
n − 2ς3V1Vn
n

,

Im νn = kn Im
�
ν1

k1V1Vn
(
1 − 
2

1

) (
1 − 
2

n

)

ς1V2
1 + ς2
2

nV2
n − 2ς3V1Vn
n

,

(19.21)

where
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ς1 = 
2
1| �

ν1|2 + k21 − 2
1k1 Re
�
ν1,

ς2 = | �
ν1|2 + 
2

1k
2
1 − 2
1k1 Re

�
ν1,

ς3 = 
1
(| �

ν1|2 + k21
) − k1

(
1 + 
2

n

)
Re �

ν1.

Assume that the eigenvalue ν2 of the problem (19.2)–(19.5), (19.8), (19.9), (19.10)
is also known and it is equal to �

ν2. We can use the relationship

ν̊n

kn
= tanh kn = 
n + Vn

1 + 
nVn
,

to write


n = Vnkn − ν̊n

Vn ν̊n − kn
.

Substituting the expressions of 
1 and 
2 and values Re ν2 = Re �
ν2, Im ν2 = Im �

ν2
into (19.21) for n = 2, we get two equations for finding V1 and V2. Further, from
the transcendental equation

h = 1 − arctanh V1

k1
,

we can find the depth h, where the interface between two layers is located.

19.6 Concluding Remarks

The sloshing problemhas been considered, inwhich a fluid occupies an open vertical-
walled cylinder of constant depth with a bottom-adjacent porous layer covered by
fluid having a free surface. The model under consideration is based on the theory
developed in [11], where the nonlinear drag in porous structures was linearized
by applying the Lorentz principle of virtual work. In the problem of fluid’s free
oscillations, they are described by two velocity potentials, which must satisfy a pair
of interface conditions, and a spectral parameter is contained in the Steklov condition
on free surface of the upper fluid.

The approach similar to that used in [10] for investigation of sloshing in a two-layer
fluid has been applied. The separation of variables allows us to obtain expressions for
the sequences arising in the spectral problem: eigenvalues and eigensolutions. The
elements of these sequences are expressed in terms of eigenvalues for the Neumann
Laplacian in the two-dimensional domain, which is a horizontal cross-section of the
container.

The behaviour of sloshing eigenvalues as functions of parameters of the problem
(the porosity, the linear friction factor and the inertial term) has been analyzed.
Inequalities between the eigenvalues for the case under consideration and for the
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problem of sloshing in the same container without the porous material are obtained.
In particular, these results show that, despite the obvious similarity between the
problem in question and the problem studied in [10], there is significant difference
in the properties of the spectra.

In the present study, the question of maximizing damping in time of the free
oscillations is of special interest; it can be achieved by choosing physical parameters
of the porous layer. Expressions for angular frequencies ωn , corresponding to the
eigenvalues are obtained. To ensure rapid decay in time of the nth eigenmode, the
expression for the optimal value of the linear friction factor is found; it guarantees
that the maximum of Imωn is attained.

Inverse sloshing problem is formulated as the problem of finding characteris-
tics of the porous layer and the depth of the interface from eigenvalues measured
by observing them at the free surface. It is demonstrated that for determining two
characteristics of the porous layer, one has to measure the smallest sloshing eigen-
frequency. Knowledge of the two smallest eigenfrequencies also allows us to find
the depth of the interface.
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Abstract In this chapter, the issues of global stability, bifurcations, and emergence
of nontrivial limiting dynamic regimes in systems described by differential equa-
tions with discontinuous right-hand sides are considered within the framework of
the theory of hidden oscillations. Such systems are important in the problems of
mechanics, engineering, and control, and arise both a priori and as a result of ide-
alization of some characteristics included in real physical systems. Determining the
boundaries of global stability, scenarios of its violation, as well as identifying all aris-
ing limiting oscillations are the key challenges in the design of real systems based on
mathematical modeling. While the self-excitation of oscillations can be effectively
investigated numerically, the identification of hidden oscillations requires special
analytical and numerical methods. The analysis of hidden oscillations is necessary
to determine the exact boundaries of global stability, to estimate the gap between the
necessary and sufficient conditions of global stability, and their convergence. This
work presents a number of theoretical results and engineering problems in which
hidden oscillations (their absence or presence and location) play an important role.
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20.1 Introduction

Development of the theory of differential inclusions and the theory of discontinuous
systems is connected to the studies of particular mechanical and engineering prob-
lems. One of the first such problems is associated with the law of dry friction that
was introduced by C.A. de Coulomb more than 200years ago [1]. In the 193x–194x,
the first steps toward the rigorous analysis of the mathematical peculiarities of dis-
continuous dynamical models were taken on the examples of mechanical models in
the works of J.D. Hartog, A.A. Andronov, N.N. Bautin, and M.V. Keldysh [2–4].
Further development of the theory is related to various studies by S.V. Emelyanov,
A.S. Poznyak, V.I. Utkin, and others [5–8]. That is to say, along with general con-
siderations and attempts to understand how the notion of derivative is introduced for
differential inclusions, there were other trends, related to particular needs of applied
problems. For instance, various electronic systems are described by mathematical
models with discontinuous nonlinearities (see, e.g., [9, 10]).

20.2 Global Stability

Consider a system of ordinary differential equations

ẋ = f (x), f : Rn → R
n (20.1)

and suppose that, for any initial state x0, there exists a unique solution x(t, x0) :
x(0, x0) = x0, defined on [0,+∞).

Now we consider system (20.1) where f is a piecewise-continuous function with
the set of discontinuity points of zero Lebesguemeasure. As it wasmentioned before,
discontinuous right-hand side of system (20.1) caused a problem of defining a solu-
tion of (20.1) at the discontinuity points. Thus, it was suggested to consider the
solutions as absolutely continuous functions satisfying the following differential
inclusion (see, e.g., [11–13]):

ẋ ∈ F(x). (20.2)

Here, a set F(x) equals to f (x) at continuity points of function f . At discontinuity
points F(x) is defined in a special way. In this chapter, we consider solutions of
differential inclusions in the Filippov sense [11].

Definition 20.1 ([11]) Vector function x(t) defined on an interval (t1, t2) is called a
solution of (20.2) if it is absolutely continuous and for almost all t ∈ (t1, t2) vector
ẋ(t) is within a minimal closed convex set, which contains all f (t, x ′), when x ′ is
within almost all δ-neighborhoods of the point x(t) ∈ R

n (for the fixed t), i.e.,

ẋ ∈
∏

δ>0

∏

μN=0

conv f (t,U (x(t), δ) − N ).
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Filippov’s approach proved to be convenient from a theoretical point of view as
it provided the necessary theorems for qualitative analysis of solutions, however,
from a computational point of view it is often more convenient to use different
approaches to define solutions of differential inclusions. One of the first popular ones
was Aizerman–Pyatnitsky approach [14], the popularity of which is due to the ability
to use various methods for numerical analysis of ODEs. Also, numerical modeling
approaches that incorporate Filippov’s definition of the solution of discontinuous
systems appeared (see, e.g., [15]).

The definition of the solution to equations with discontinuous right-hand side
proposed by M.A. Aizerman and E.S. Pyatnitsky makes it possible to use the ordi-
nary definition of derivative. We consider their approach in a special case when
f (t, x) is discontinuous on a surface �. Now consider a sequence of continuous
vector-functions fε(t, x) that coincides with f (t, x) outside of ε-neighborhood of
the surface �, and tends to f (t, x) as ε → 0 at every point that does not belong to
�. Let xε(t) be a solution of the system

ẋ = fε(t, x). (20.3)

Definition 20.2 ([14])A solution to system (20.3) in theAizerman–Pyatnitsky sense
is said to be the limit of any uniformly converging subsequence of solutions xε(t):

xε(t) ⇒ x(t).

In general, there may exist more than one such limit.

It is known that both Filippov and Aizerman–Pyatnitsky approaches coincide for
various classes of discontinuous systems (see, e.g., [13, 16, 17]).

If any trajectory of system (20.1) tends to the stationary set, then we call such
system globally stable [18].1 At first, global stability analysis of low-order discon-
tinuous systems was done via rigorous analysis of the phase space of a system [2,
19]. However, it turned out that even for systems of the third order this approach
required a lot of complex calculations and was quite cumbersome. For example,
rigorous analysis of the Watt governor model carried out by A.A. Andronov and
A.G. Mayer [20–22], took more than 40 pages. Therefore, it became apparent that
general methods for global stability analysis were required. The development of such
methods was connected to the generalization of the Lurie–Postnikov approach and
the Barbashin–Krasovsky theorem [23] on global stability via Lyapunov functions
for autonomous systems of ODEs.

Theorem 20.1 (see, e.g., [13, 18]) Let a continuous function V (x) defined in R
n

have the following properties:

1 We use the term “global stability” for simplicity of further presentation, while in the literature there
are used different terms like “globally asymptotically stable” [35, p. 137], [36, p. 144], “gradient-
like” [13, p. 56], [37, p. 2], “quasi-gradient-like” [13, p. 56], [37, p. 2], and others, reflecting the
features of the stationary set and the convergence of trajectories to it.
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1. V (x(t)) is nonincreasing in t for any solution x(t) of (20.2);
2. if the identity V (x(t)) = const is valid for all t ∈ R and for some solution x(t)

bounded when t ∈ R, then the solution x(t) is a stationary vector;
3. V (x) → +∞ as ||x || → +∞.

Then differential inclusion (20.2) is globally stable.

As it will be shown later, applying ideas of Theorem 20.1, it is also possible to use
discontinuous Lyapunov functions for global analysis [24] (see also [25, 26]).

In general, construction of such Lyapunov functions is a challenging task and
a number of constructive frequency theorems was introduced over the years. For
Lurie systems with smooth nonlinearities, an effective method to obtain sufficient
conditions of global stability was developed by V.M. Popov, V.A. Yakubovich and
R.E. Kalman (see [18, 27–32]) and was later generalized for discontinuous systems
by Gelig and Leonov [33, 34] in 196x–197x. These theorems provide sufficient
conditions of global stability, which in many cases give significantly conservative
estimates and are not efficient from a practical point of view. Therefore, it gives a rise
to the problem of analysis of the global stability boundaries, which are connected to
the onset of oscillations in the phase space of a system.

20.3 Oscillations

Within the framework of global stability study, it is natural to classify oscillations in
control systems as self-excited, either hidden [38–41]. Basin of attraction of a hidden
oscillation in the phase space does not intersect with a vicinity of any equilibria,
whereas a self-excited oscillation is excited from an unstable equilibrium. A self-
excited oscillation is a nontrivial one if it does not approach the stationary states
(i.e., ω-limit set of corresponding trajectory does not contain an equilibrium). The
loss of global stability may occur by appearance of either nontrivial self-excited
oscillation (see, e.g., [42]), or a hidden one. A nontrivial self-excited oscillations can
be visualized numerically by a trajectory starting from a point in a neighborhood of
unstable equilibrium. However, the revealing of hidden oscillations and obtaining
initial data for their computation are challenging problems. These problems are
studied in the theory of hidden oscillations [43–47], that represents the genesis of
the modern era of Andronov’s theory of oscillations.

The most important problem nowadays revolves around finding the exact bound-
ary of global stability in the parameter space of the system. An outer estimate of
the global stability boundary in the parameter space of the system and the birth of
self-exited oscillations in the phase space can be obtained by the linearization around
equilibria and the analysis of local bifurcations. An inner estimate of the global stabil-
ity boundary can be obtained by sufficient criteria of global stability for discontinuous
systems discussed above [18, 24]. In the gap between outer and inner estimates, the
exact boundary of global stability can be studied numerically. For some discontinu-
ous systems the global stability boundary may include both trivial and hidden parts.
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Trivial part of the boundary is defined by local bifurcations, however, hidden part
is not defined by local behavior in the vicinity of equilibria and its study requires
analysis of nonlocal bifurcations and the birth of hidden oscillations [39, 48]. Let us
also note that practical boundary of global stability (in dissipative systems) is defined
by the birth of nontrivial attractor, therefore, methods for localization of oscillations
can be used to refine the global stability boundary. One of the first examples of the
nontriviality of this problem was the Kapranov conjecture [49] on determining the
global stability boundary in the two-dimensional PLL model by self-excitation of
oscillations, whichwas later disproved in [50–53] by showing the existence of hidden
parts of the global stability boundary.

Among engineers, one of the most widely used methods for searching and ana-
lyzing oscillations in nonlinear control systems is the harmonic balance method
(HBM). It was developed in the 192x–193x in the works of van der Pol [54], Krylov
and Bogolyubov [55] (see also [56, 57]). It is known [40] that the harmonic balance
method is an approximate method for determining the existence of periodic solu-
tions. Later, different extensions of the harmonic balance method for Lurie systems
with relay nonlinearities were introduced, namely, the Tsypkin method [58] and the
locus of a perturbed relay systems approach (the LPRS method) [59]. They made it
possible inmany cases to refine the results, obtained by the harmonic balancemethod
(e.g., see [60]).

Consider the following Lurie system [61, 62]:

ẋ = Ax + Bϕ(σ), σ = Cx (20.4)

where x ∈ R
n is a state vector,σ ∈ R

1, A ∈ R
n×n , B ∈ R

n×1,C ∈ R
1×n arematrices,

all quantities are real. The linear part of system (20.4) can be represented by the
following transfer function:

W (s) = C(A − I s)−1B. (20.5)

The harmonic balance method is as follows: suppose there is a periodic solution
a cos(ω0t) of system (20.4), then frequency ω0 can be found from

ImW ( jω0) = 0 (20.6)

where W (s) is from (20.5) and j is an imaginary unit. Amplitude a can be found
from harmonic balance equation

2π
ω0∫

0

ϕ(a cos(ω0t)) cos(ω0t)dt = ak

2π
ω0∫

0

(cos(ω0t))
2dt, (20.7)

where k is a linearization coefficient:
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k = −(ReW ( jω0))
−1. (20.8)

For relay systems with nonlinearity ϕ(σ) = sign(σ ) this method allows to calcu-
late amplitude analytically:

a = 4

πk
. (20.9)

Although the classical harmonic balancemethod is approximate, its various devel-
opments have shown to be effective in localization of periodic as well as chaotic
oscillations2 (see, e.g., [40, 63]).

Now we consider two effective methods for finding periodic oscillations that are
applicable to an important class of systems in control theory, namely, discontinuous
systems with one scalar nonlinearity. In 1955, Ya. Z. Tsypkin published his famous
book [58], where he further developed the ideas of harmonic balance method for
design and analysis of relay control systems. Consider his approach on the example
of a relay system in Lurie form (20.4) with ϕ(σ) = sign(σ ) nonlinearity (i.e., an
ideal relay). For that, we have to construct a special function JTsyp(ω) which is as
follows:

JTsyp(ω) = 4

π

( ∞∑

l=1

ReW ( j (2l − 1)ω)

)
+

+ j
∞∑

l=1

1

2l − 1
ImW ( j (2l − 1)ω).

(20.10)

In case of ideal relay (no hysteresis, delay, or a dead zone), frequencies of periodic
oscillations can be found from the equations:

{
Im JTsyp(ω0) = 0,

Re JTsyp(ω0) < 0.
(20.11)

In 2008, the locus of a perturbed relay system (LPRS) method was introduced
in [59], which can be considered as a further development of Tsypkin’s ideas on
analysis of relay control systems. Consider this method on the example of its appli-
cation to a relay system in Lurie form (20.4) with ϕ(σ) = sign(σ ) nonlinearity. For
this system, following a matrix state-space description approach we construct LPRS
function JLPRS(ω) which is as follows3:

2 In some cases, the use of HBM makes it possible to accurately identify all periodic orbits in a
system. For example, for a system described by the equation ẍ + x − bẋ cos(x) = 0 (see, e.g., [64,
65]), this method predicts an infinite number of periodic orbits in the form xhbm(t)=ai0 sin(t),
where {ai0}∞i=1 are zeros of the Bessel function: J1(a

i
0)= 1

π

∫ π

0 cos(τ −ai0 sin τ)dτ =0.
3 Without limiting the generality of the foregoing, suppose that det A �= 0.
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JLPRS(ω) = −0.5C

[
A−1 + 2π

ω
(I − e

2π
ω

A
)−1e

π
ω
A
]
B+

+ j π
4C(I + e

π
ω
A
)−1(I − e

π
ω
A
)A−1B.

(20.12)

Supposewe have computed the LPRS of a given system. Then there is a finite number
of points of intersection of the LPRS and the horizontal axis. The following equation
defines frequencies ω0 of symmetric periodic solutions:

Im JLPRS(ω0) = 0. (20.13)

Therefore, an actual periodicmotion can be found only among these candidate points.
Note that formula (20.13) is a necessary condition for the existence of the frequency
of symmetric periodic motion in the system (the actual existence of a periodic motion
depends on a number of other factors (see, e.g., [60])).

20.4 Examples

20.4.1 Watt Governor Model

In 1877, I.A. Vyshnegradsky published his famous work on the Watt governor [66]
(see Fig. 20.1)) where he considered the following nonlinear dynamical model of the
governor:

ẍ + β ẋ + αx = y − 1

2
sign(ẋ), ẏ = −x, (20.14)

where α and β are positive parameters. System (20.14) can be rewritten in Lurie
form (20.4) with

A =
⎛

⎝
0 0 1

−1 0 0
−α 1 −β

⎞

⎠ , B =
⎛

⎝
0
0

−1

⎞

⎠ , C =
⎛

⎝
0
0
1

⎞

⎠
T

, ϕ(σ ) = 1

2
sign(σ ). (20.15)

Vyshnegradsky performed ‘linearization’ (by discarding sign nonlinearity) in a vicin-
ity of working regime, analyzed its local stability, and obtained the following condi-
tions:

α > 0, β > 0, αβ > 1. (20.16)

Vyshnegradsky conjectured that these conditions of local stability would also imply
the global stability.

However, nontrivial oscillating periodic working regimes (later called limit cycles
[67]) were discovered by Leaute in [68] in a similar regulation system with dry
friction. Later on, N.Ye. Zhukovsky criticized Vyshnegradsky approach and posed a



394 N. V. Kuznetsov et al.

Fig. 20.1 Scheme of the Watt governor

problem of rigorous justification of the conditions obtained by Vyshnegradsky [69].
In 1944, Andronov andMayer [20] applied the point-mappingmethod and solved the
Zhukovsky problem concernedwith rigorous proof of theVyshnegradsky conjecture.

The global analysis carried out by Andronov and Mayer involved rather difficult
and lengthy reasoning. However, recent developments of global stability theory for
discontinuous systems [13, 18, 24, 33] made it possible to analyze system (20.14)
by constructing a discontinuous Lyapunov function.

Theorem 20.2 System (20.14) is globally stable if α > 0, β > 0, αβ > 1.

Proof Let us consider the following discontinuous Lyapunov function:

V (x) = α

2

(
1

α
x1 + x3

)2

+ 1

2
(αx1 − x3 + ψ(x))2 + 1

α
x3ψ(x)−

− 1

α

∫ x3

0

(
αβ − 1

α
s + ϕ(s)

)
ds ≥ 0 (20.17)

where

ψ(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

αβ−1
α

x3 + ϕ(x3), if x3 �= 0,
1
2 , if x3 = 0, x2 − αx1 > 1

2 ,

− 1
2 , if x3 = 0, x2 − αx1 < − 1

2 ,

x2 − αx1, if x3 = 0, |x2 − αx1| ≤ 1
2 .

The corresponding discontinuity surface, sliding mode band, and a rest segment
take the form
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S = {(x1, x2, x3) ∈ R
3|x3 = 0}, (20.18)

D =
{
(x1, x2, x3) ∈ R

3|x3 = 0,−1

2
≤ x2 − αx1 ≤ 1

2

}
, (20.19)

 =
{
(x1, x2, x3) ∈ R

3|x1 = x3 = 0,−1

2
≤ x2 ≤ 1

2

}
. (20.20)

Outside of the discontinuity surface S, Lyapunov function (20.17) is smooth and
has the form

V (x) = α

2

(
1

α
x1 + x3

)2
+ 1

2

(
αx1 − x2 + αβ − 1

α
x3 + ϕ(x3)

)2
+ αβ − 1

2α2
x23 ≥ 0. (20.21)

Its derivative along the trajectories of system (20.14) is equal to

V̇ (x) = −
(

αβ − 1

α
+ ϕ′(x3)

)
(−αx1 + x2 − βx3 − ϕ(x3))

2 . (20.22)

The form of system (20.14) implies that V (x(t1)) < V (x(t2)) for all t ∈ (t1, t2) :
x3(t) �≡ const .

For the trajectories with initial data x0 = (x01, x02, 0) ∈ D, where D is the sliding
mode band (20.19), function V (x) has the form

V (x(t)) = α

2

( 1

α
x1(t)

)2 + 1

2
(αx1(t) − x2(t) + ψ(x))2 ≡ 1

2α
x201. (20.23)

In this case, if the trajectory leaves D after time t , continuity holds:

V (x(t)) ≡ 1

2α
x201 = lim

t+→t
V (x(t+)).

The crossing of the discontinuity surface S occurs for

x3 = 0, |x2 − αx1| >
1

2
= ϕ(0+).

At the moment of intersection t , for the vector field, we have

ẋ1(t) = 0,

ẋ2(t) = −x1(t),{
ẋ3(t) > 0, x2 − αx1 > ϕ(0+) ≥ 0,

ẋ3(t) < 0, x2 − αx1 < −ϕ(0+) ≤ 0.

Then for t ∈ (t−, t+), the following relations hold:
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x2(t) − αx1(t) > ϕ(0+) ≥ 0,

lim
t−→t

V (x(t−)) = α

2

( 1

α
x1(t)

)2 + 1

2
(αx1(t) − x2(t) + ϕ(0−))2 ≥

≥ α

2

( 1

α
x1(t)

)2 + 1

2
(αx1(t) − x2(t) + ϕ(0+))2 = lim

t+→t
V (x(t+));

x2 − αx1 < ϕ(0+) ≤ 0,

lim
t−→t

V (x(t−)) = α

2

( 1

α
x1(t)

)2 + 1

2
(αx1(t) − x2(t) + ϕ(0+))2 ≥

≥ α

2

( 1

α
x1(t)

)2 + 1

2
(αx1(t) − x2(t) + ϕ(0−))2 = lim

t+→t
V (x(t+)).

It follows from the above that the function V (x) possesses the properties:

1. For any trajectory x(t, y0), function V (x(t, y0)) is a nonincreasing function of
t ;

2. It follows from V (x(t, x0)) = const at t ≥ 0 that x(t, x0) ∈ D for t ≥ 0.

Following [33], let us take a trajectory x(t, y0) and let xω
0 be an arbitrary ω-limit

point x(t, y0). Suppose that xω
0 ∈ D. Then, taking advantage of the continuity of

function V (x) outside of D and property (1), we arrive at

lim
t→+∞ V (x(t, y0)) = V (xω

0 ). (20.24)

Point xω
0 is visited by a trajectory x(t, xω

0 ) that consists of the ω-limit points of the
trajectory x(t, y0). For each ω-limit point xω

0 , there exists a subsequence tk → +∞
such that x(tk, y0) → xω

0 . Hence, Eq. (20.24) implies the equality V (x(t, xω
0 )) ≡

V (xω
0 ). The above and property (2) imply that xω

0 ∈ D. Thus, all ω-limit points of
system (20.14) are situated in D and, therefore, are ω-limit points of the system

ẋ1 = 0, ẋ2 = −x1, ẋ3 = 0, (20.25)

describing the evolution of the trajectories in D. However, the set of ω-limit points
of (20.25) belonging to D coincides with the rest segment  of (20.14). Therefore,
for all initial points y0, we have

lim
t→∞min

u∈
||x(t, y0) − u|| = 0

and function V (x) have the following property:

3. V (x) = 0 for x ∈  and V (x) > 0 for x /∈ . �

In 194x, the only available general analytical method for the analysis of oscil-
lations in nonlinear systems with one scalar nonlinearity was the harmonic balance
method. Applying it to (20.14), we get the frequency of the periodic oscillation
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ω = √
α and the amplitude a = 4α

π(1−αβ)
. It is clear that for the amplitude to be

positive, conditions (20.16) must be met. Results of the application of the harmonic
balancemethod to (20.14) are in linewith the global analysis carried out byAndronov
andMayer: the periodic solutions are nonexistent under conditions (20.16). Similarly,
the application of the Tsypkin and LPRSmethods to system (20.14) with parameters
satisfying (20.16) coincides with global analysis. It is clear that, in case of sys-
tem (20.14), global stability conditions (20.16) provided by the Lyapunov function
(20.17) coincidewith the conditions of absence of oscillations. Even so, inmany cases
the global stability boundary estimate obtained through the Lyapunov function may
be significantly conservative, while the application of the harmonic balance method
leads to erroneous conclusions about stability or presence of oscillations. Both these
scenarios will be investigated on the example of two- and four-dimensional Keldysh
models.

The works by Vyshnegradsky [66], Andronov-Mayer [20], and Lurie–Postnikov
[61] led to the problem of describing a class of Lurie systems for which necessary
conditions of stability (i.e., stability of a linearized model) coincide with sufficient
ones (i.e., global stability of a nonlinear model). The history of attempts to solve
this problem is connected with the Aizerman [40] and Kalman [70] conjectures
on global stability of Lurie systems with nonlinearity satisfying generalized Routh–
Hurwitz criterion. It is known [71] that Kalman conjecture is valid for two- and three-
dimensional cases (while Aizerman conjecture is valid only for two-dimensional
case [72–74]) but it becomes incorrectwhen another dimension is added.4 This gives a
rise to certain difficulties connected to the theory of hidden oscillations and numerical
modeling. Such problems arise when studying more practical models includingWatt
governor, for example, Watt governor with servomotor that is obtained by adding
fourth equation to (20.15). Note that such problems still remain relevant for modern
turbine regulators, as shown by the recent accident at the Sayano–Shushenskaya
hydroelectric power station and an analysis of its possible causes [76–78]. However,
we will illustrate these difficulties with another classical example that is the four-
dimensional Keldysh model.

20.4.2 Keldysh Model with One Degree of Freedom

In 1944,M.V.Keldysh studied various flutter suppressionmodels for aircraft controls
including a dry friction hydraulic damper [4], and used the harmonic balance method
for analysis of oscillations and stability of the rest segment. Keldysh wrote: “we do
not give a rigorous mathematical proof ..., we construct a number of conclusions on
intuitive considerations ...”. Before studying the four-dimensional model, Keldysh
analyzed a simplified two-dimensional model, on the example of which he described
the main difficulties, before moving on to investigate the full model. Note that while

4 Further research in this field led to the onset of several conjectures on global stability of various
classes of nonlinear systems (see, e.g., [75]).
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Fig. 20.2 Numerical analysis of the Keldysh system (20.26) with one degree of freedom and
� = 3, κ = 1. a μ = −3.85792: outer trajectory attracts to the limit cycle around rest segment; b
μ = −3.6287: limit cycle ‘disappeared’

in control theory the problem of suppressing of all oscillations is often formulated,
Keldysh in his works admitted the operation of the regulation system in bounded
region of stability of the operating regime (and the possibility of coexistence of
undesirable limiting regimes, which turned out to be hidden attractors) due to the
design features of the regulator.

Using the models considered in Keldysh’s paper, we show the limitations of the
harmonic balance method. First, we consider the Keldysh model with one degree of
freedom in Lurie form (20.4), which is as follows:

A =
(

0 1
−1 −μ

)
, B =

(
0

−1

)
, C =

(
0
1

)T

,

ϕ(σ ) = (� + κσ 2) sign(σ ).

(20.26)

Using the harmonic balance method, Keldysh formulated the following result: if

− 2.08
√

�κ < μ, (20.27)

then all trajectories of (20.26) converge to the rest segment; if

μ < −2.08
√

�κ, (20.28)

then there are two periodic trajectories (limit cycles).
Figure20.2 shows the bifurcation of collision of the external limit cycle and the

stationary segment. In this numerical experiment, both limit cycles have disappeared,
while Keldysh’s estimate (20.28) holds.
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A rigorous study of the Keldysh model (20.26) was performed in [79, 80]. It was
shown that S = {x : x2 = 0} is a discontinuitymanifold, = {−�/k ≤ x1 ≤�/k,
x2 = 0} is a stationary segment. System (20.26)was re-written to study the following
differential inclusion:

ẋ ∈ Ax + Bψ(σ), σ = Cx, ψ(σ ) =
{

ϕ(σ), σ �= 0,

[−�,�], σ = 0.
(20.29)

Application of Lyapunov function V (x1, x2)= 1
2 (kx

2
1 + J−1x22 ) and Theorem 20.1

leads to the global stability condition:

λ − h > −2
√

�κ.

20.4.3 Keldysh Model with Two Degrees of Freedom

The opposite effect can be observed in the Keldysh system [4, Eq. (2), p. 34], [43,
79], of flutter suppression with two degrees of freedom:

A =

⎛

⎜⎜⎝

0 1 0 0
−(m2

1 + β2) −2β 0 −λ

0 0 0 1
0 1 −(m2

2 + β2) −2β

⎞

⎟⎟⎠ , B =

⎛

⎜⎜⎝

0
−1
0
0

⎞

⎟⎟⎠ , C =

⎛

⎜⎜⎝

0
0
0
1

⎞

⎟⎟⎠

T

,

ϕ(σ ) = sign(σ )

(20.30)
where λ is a linear parameter of a damper. Throughout this paper we will consider
the following values of the parameters m1, m2, β:

m1 = 0.9, m2 = 1.1, β = 0.01. (20.31)

Transfer function of the linear part of system (20.4), (20.30), (20.31) is

W (s) = s2

s4 + a3s3 + (a2 + λ)s2 + a1s + a0
(20.32)

wherea0 = (m2
1 + β2)(m2

2 + β2),a1 = 2β(m2
1 + m2

2 + 2β2),a2 = m2
1 + m2

2 + 6β2,
a3 = 4β and the rest segment is

 = {(x1, x2, x3, x4) ∈ R
4
∣∣ x2 = x3 = x4 = 0,− 1

a0
≤ x1 ≤ 1

a0
}. (20.33)

Applying the Routh-Hurwitz criterion to find a stability sector of system (20.30)
with nonlinearity ϕ(σ) = sign(σ ) we get
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Fig. 20.3 Two self-excited asymmetric periodic solutions of system (20.4), (20.30), (20.31) with
λ = −0.041 in subspace (x1, x3, x4). These solutions cannot be found by the harmonic balance
method

Fig. 20.4 The Tsypkin locus of system (20.4), (20.30), (20.31) with λ = −0.041 andω ∈ [0.1, 1.1]
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Fig. 20.5 The Tsypkin locus of system (20.4), (20.30), (20.31) with λ = −0.041 andω ∈ [0.5, 0.6]

(
− 4β2 − λ − (m2

1 − m2
2)

2

2(m2
1 + m2

2 + 2β2)
,+∞

)
. (20.34)

Firstly, consider system (20.4), (20.30), (20.31) with

λ = −0.041, (20.35)

then the sector of stability becomes (0.000999960,+∞).
According to the harmonic balance method, this system has only one unstable

periodic solution with frequency ωunst = 1.005037312 (see (20.6)). However, using
numerical integration [15] with initial data in the vicinity of rest segment (20.33),
we can localize two additional asymmetric periodic solutions (see Fig. 20.3), which
are self-excited with respect to the rest segment. According to the Tsypkin and
the LPRS methods, that are known to give more accurate results than the harmonic
balancemethod, system (20.30) with parameters (20.35) has two unstable symmetric
periodic solutions ωunst1 = 0.52533579 and ωunst2 = 1.005037302, which can be
seen by visualizing corresponding functions (20.10) and (20.12) (see Figs. 20.4,
20.5, 20.6).

Visualization of these periodic solutions is presented in Fig. 20.7. Now consider
system (20.4), (20.30), (20.31) with λ = 0.01. According to the harmonic balance
method this system has no periodic solutions (a < 0), but using the Tsypkin method
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Fig. 20.6 The Tsypkin locus of system (20.4), (20.30), (20.31) with β = 0.01 and λ = −0.041
and ω ∈ [1, 1.1]

Fig. 20.7 Two symmetric unstable periodic solutions of system (20.4), (20.30), (20.31) with λ =
−0.041 in subspace (x1, x3, x4) coexist with two stable hidden asymmetric periodic solutions
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Fig. 20.8 The Tsypkin locus of system (20.30) with β = 0.01 and λ = 0.01 and ω ∈ [0.1, 1.1]

Table 20.1 Initial data for visualization of two stable hidden asymmetric periodic solutions of
system (20.4), (20.30), (20.31) with λ = 0.01

x1 ±0.983749160399365

x2 ±3.665119741559401

x3 0.0

x4 ∓3.395816595914568

and the LPRS method it is possible to find a stable symmetric periodic solution with
two relay switches (see Figs. 20.8 and 20.9).

Using special approaches of localization of hidden oscillations (see, e.g., [40]),
it is possible to visualize two stable asymmetric periodic solutions (see initial data
in Table20.1) and one more stable symmetric periodic solution (see initial data in
Table20.2). Mutual disposition of these solutions can be seen in Fig. 20.10.

Finally, we consider system (20.30) with β = 0.01 and λ = 2. As in the pre-
vious case (λ = 0.01), there are no periodic solutions according to the harmonic
balance method. Using the Tsypkin method and the LPRS method, one can obtain
the frequency of a stable symmetric periodic solution with two relay switches (see
Fig. 20.11) with initial data given in Table20.3. Further numerical analysis of the
phase space of the system shows that there are at least two more solutions: a sta-
ble periodic solution with six relay switches (initial data given in Table20.4) and
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Fig. 20.9 The Tsypkin locus of system (20.30) with β = 0.01 and λ = 0.01 and ω ∈ [0.5, 0.6]

Fig. 20.10 Two stable hidden asymmetric periodic solutions of system (20.4), (20.30), (20.31)
with λ = 0.01 coexist with two stable (one self-excited and the other one is hidden) symmetric
periodic solutions in subspace (x1, x2, x3). None of these solutions can be found by the harmonic
balance method
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Table 20.2 Initial data for visualization of stable hidden symmetric periodic solution of sys-
tem (20.4), (20.30), (20.31) with λ = 0.01

x1 4.605660036110889

x2 5.921019580311663

x3 –2.298040698707351

x4 –6.019404471999593

Fig. 20.11 The Tsypkin locus of system (20.30) with β = 0.01 and λ = 2 and ω ∈ [0.4, 0.5]

Table 20.3 Initial data for visualization of symmetric periodic solution of sys-
tem (20.4), (20.30), (20.31) with λ = 2 with two relay switches

x1 –0.203592844886790

x2 1.863854848726598

x3 0.0

x4 –1.130138381086802

a chaotic solution (see Fig. 20.12). Note that chaotic solution could not be found
neither using the harmonic balance method (or its extensions on relay systems), nor
using point-mapping method [81]. Whereas further developments of Tsypkin and
LPRS methods may allow to find the solution with six relay switches.

Notice that if the Aizerman–Pyatnitsky approach to the numerical modeling by
smoothing the discontinuous nonlinearity is applied, a series of counterexamples to
the Kalman conjecture can be obtained.
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Fig. 20.12 Two stable hidden symmetric periodic solutions of system (20.4), (20.30), (20.31) with
λ = 2 coexist with a self-excited chaotic solution. None of these solutions can be found by harmonic
balance method

Table 20.4 Initial data for visualization of symmetric periodic solution of sys-
tem (20.4), (20.30), (20.31) with λ = 2 with six relay switches

x1 1.030891111160810

x2 –0.840369003270022

x3 –0.169868291721377

x4 0.232271927066882

The Kalman conjecture Consider Lurie system (20.4) where ϕ is a smooth scalar
function with ϕ(0) = 0 satisfying the condition

k1 < ϕ′(σ ) < k2, σ ∈ (−∞,+∞), (20.36)

where k1 is a number or −∞, and k2 is a number or +∞. If the linear system
ẋ = Ax + kBCx , with k ∈ (k1, k2) is asymptotically stable, then system (20.4) is
globally stable. �

Consider system (20.30) with smooth nonlinearity ϕ(σ) = tanh(100σ). The sec-
tor of linear stability (20.34) of system (20.4), (20.30), (20.31) with tanh non-
linearity is infinite for all of the considered values of parameters and ϕ′(σ ) lies
in the considered sector. Therefore, the Kalman conjecture conditions are met.
However, the attractors that were localized in system (20.4), (20.30), (20.31) with
sign nonlinearity and λ = 0.01 (see Fig. 20.10) retain in the phase space of sys-
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Fig. 20.13 Two stable hidden asymmetric periodic solutions of system (20.30) with β = 0.01 and
λ = 0.01 coexist with two stable hidden symmetric periodic solutions. None of these solutions can
be found by the harmonic balance method

tem (20.4), (20.30), (20.31) with tanh nonlinearity and λ = 0.01 (see Fig. 20.13),
while equilibrium point is stable. Hence, a new counterexample to the Kalman con-
jecture with hidden oscillations is obtained.

20.5 Conclusion

This chapter is devoted to the theory of hidden oscillations and its relevant applica-
tions, such as the Andronov–Vyshnegradsky problem on the nonlinear analysis of
the Watt governor, the Keldysh problem on the nonlinear analysis of flutter suppres-
sion systems and the Aizerman and Kalman conjectures on the global stability of
control systems. To conduct reliable mathematical modeling of technical systems, it
is important to pay special attention to the rigorous derivation of the mathematical
models used and the consideration of the limits of their applicability, the develop-
ment of effective analytical and numerical methods for studying dynamics, taking
into account the possibilities and limitations of the existing analytical methods for
studying the stability and the occurrence of oscillations.
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Chapter 21
Strain Behavior of Aluminum Alloys
Under Dynamic Compression and Tensile

Yuri I. Meshcheryakov, Grigory V. Konovalov, Natali I. Zhigacheva,
Alexander K. Divakov, and Alexey F. Nechunaev

Abstract Two kinds of aluminum alloy, 1561 and 1565 alloys, were tested within
impact velocity range of 241.9–744.8m/s in two schemes of shock loading: (i) under
uniaxial strain conditions and (ii) in high-velocity penetration. Combination of load
regimes allows a formation of multiscale structure to be retraced. Formation of
mesoscale-1 in form of micro-shears of 3–10 mkm is found to be identical for both
kinds of alloy. As for the mesoscale-2 (50–150 mkm), the formation of dynamic
structures for two kinds of alloy is of different nature. In 1565 alloy the transition
from mesoscale-1 to mesoscale-2 occurs in form of structural instability whereas in
1561 alloy this transition happens gradually. In 1561 alloy the mesoscale-2 structural
elements are elongated plaints and ellipsoids whereas in 1565 alloy the mesoscale-2
structures are the fault cells at the boundary of penetration cavern. Affect of transition
from mesoscale-1 to mesoscale-2 in both aluminum alloys turns out to opposite: in
1561 alloy the transition on to mesoscale-2 decreases the resistance to high-velocity
penetration whereas in 1565 alloy the formation of mesoscale-2 structures increases
the resistance to penetration. Numerical simulation of impact aluminum mm-size
projectile in same aluminum target with speeds ∼300m/s in the moment ∼240
nanoseconds after the beginning of interaction at mesoscale-2 shown turbulization
of particle motion of the environment at their movement in close proximity to tar-
get axis of gravity. Numerical researches demonstrated that transition of material to
the structural and unstable state has the local and kinetic nature of impact damage
material.

Keywords Aluminum alloys · Spallation · Penetration · Structure-unstable state

Y. I. Meshcheryakov (B) · G. V. Konovalov · N. I. Zhigacheva · A. K. Divakov · A. F. Nechunaev
Institute for Problems in Mechanical Engineering RAS, V.O., Bolshoy pr., 61, St. Petersburg
199178, Russia
e-mail: ym38@mail.ru

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
V. A. Polyanskiy and A. K. Belyaev (eds.), Mechanics and Control of Solids
and Structures, Advanced Structured Materials 164,
https://doi.org/10.1007/978-3-030-93076-9_21

413

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93076-9_21&domain=pdf
mailto:ym38@mail.ru
https://doi.org/10.1007/978-3-030-93076-9_21


414 Y. I. Meshcheryakov et al.

21.1 Introduction

Further developing of the mechanics of deformed solid supposes the incorporating
of multiscale mechanisms of deformation and fracture. The multiscale mechanics
implies a formation of intermediate scales between macroscale and microscale fol-
lowed by transient non-equilibrium processes. At least three scale levels of defor-
mation have been recognized for over several decades: dislocation scale, mesoscale,
and macroscale. The modern approaches to dynamic mesoscale assume a subdivid-
ing the mesoscale by two sublevels—the mesoscale-1 (1–10 mkm) and mesoscale-2
(50–500 mkm) [1–4]. Herewith, the elementary carriers of dynamic deformation at
the mesoscale-1 are found to be the short-living (150–200 ns) single-sign disloca-
tion groups [5–7]. The process of collectivization and motion of dislocations results
in particle velocity fluctuations, which is registered in the form of particle velocity
distribution at the mesoscale-1 [8, 9] (Fig. 21.1a).

In parallel, the shock-wave experiments under uniaxial strain conditions with
the LINE-VISAR registration reveal the velocity fluctuations at the mesoscale-2 for
tantalum [10], boron ceramics [11], and sugar [12] (Fig. 21.1b).

Specifically, experiments with tantalum revealed a direct coupling of the particle
velocity distribution at the mesoscale-2 with the mechanism of spallation [10].

Simulation of “wavy-wave” shock-wave propagation with taking into account
the particle velocity distribution at the mesoscale has been conducted in [13–15].
Evolution of the particle velocity distribution function as far as propagating of the
shock wave through the target is shown in Fig. 21.2.

The significant result of simulation of [14] is a discovery of threshold particle
velocity at what the material (polycrystalline copper) transits into structure-unstable
state whereas the mechanism of dynamic deformation changes from uniform to
turbulent.

In this paper, in order to identify the successive stages of developing the hierarchy
of multiscale mechanisms of dynamic deformation, the formation of mesostructure
is studied in combined experiments. A critical step in having an efficient picture of
multiscale processes is the parallel tests in two schemes of shock loading. The first
scheme is the test under uniaxial strain conditions whereas the second scheme is the
high-velocity penetration of elongated rigid rod. By using the combine technique
of shock loading, an attempt is made to visualize the processes of the multiscale
structure formation.

Two kinds of materials—1561 and 1565 aluminum alloys—were subjected to
dynamic tests in order to show different mechanisms of transition from one scale to
another depending on the chemical composition and initial morphology of material.
The first kind of alloy has previously been tested under identical loading conditions
without comparative analysis of results [16]. In present study, the results of tests for
both materials are provided in order to show the difference in coupling the multiscale
mechanisms of dynamic deformation and dynamic plasticity and strength ofmaterial.
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Fig. 21.1 a—Qualitative pattern of laser beam and free surface of target interaction at the
mesoscale-1 (after [1]), b—at the mesoscale-2 (after [1]); c—U-L velocity-space configurations
of shock front for different relations between velocity dispersions at mesoscale-1 and mesoscale-2
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Fig. 21.2 Evolution of the mesoparticle velocity distribution function as far as propagating through
the target (after [14])

21.2 Experimental Technique

Shock tests under uniaxial strain conditions were conducted with one-stage light
gas gun of 37mm barrel diameter. Functional scheme of equipment for tests under
uniaxial strain conditions and constructions of impactors for plane collision and for
penetration tests are presented in Fig. 21.3. Plane targets were the discs of 52mm
in diameter and 7mm thick. Data on dynamic strength and plasticity of material,
including dynamic yield limit, spall strength and threshold of structural instability
and particle velocity distribution are inferred from the temporal profiles of the free
surface velocity, ufs(t), registered with two-channel velocity interferometer.

Detailed analysis of the velocity interferometer is given in [17]. The coupling
between mean particle velocity u(t) and number of fringe signal beats, N(t), takes
the form:

u (t) = λ0

2τd
N (t) (21.1)

HereUint= λo/2τ d is the interferometer constant which is determined by thewave
length of laser radiation λo and τd is the time delay of laser radiation in delay shoulder
of interferometer. In [8, 9] the additional relationship which ties the contrast of fringe
signal K and particle velocity dispersion, D, is obtained for the case of the particle
velocity distribution:

K = exp

[
−1

2

π2D2

U2
int

]
(21.2)

The number of fringe signal beats is seen to be determined by the mean particle
velocity, u(t), (Eq. (21.1)) whereas the amplitude of fringe beats and accordingly,
interference contrast, K, are determined by the particle velocity dispersion D2, Eq.
(21.2). The current values of both characteristics can be registered during the single
action of shock loading.

Expressions formean particle velocity (21.1) and for the velocity dispersion (21.2)
have been verified with the set of targets manufactured from different materials such
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Fig. 21.3 a—functional scheme of facility for the shock tests under uniaxial strain conditions;
b—poly-vinyl-carbonate sabot and plane and rod projectiles
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Fig. 21.4 Fringe signal, deciphered free surface velocity profile, ufs, and velocity variance, D, for
steady wave in 5mm steel target loaded at the impact velocity of 150m/s

as aluminum and titanium alloys, steels, copper, and other materials. These materials
are of different degree of heterogeneity which creates the different particle velocity
distribution and, accordingly, different velocity dispersion. One of the examples of
interferogramm registered with interferometer for 5mm 28Cr3NiMoV steel target
is provided in Fig. 21.4. The number of fringe signal beats at the forehead front of
compressive pulse equal 1.5. If the interferometer constant equals Uint = 100m/s
per one beat, the maximum free surface velocity at the plateau of compressive pulse
equals 150m/s, which coincides with the velocity of projectile Upj= 150m/s. This
satisfies to well-known rule for the velocity redoubling when shock wave comes to
the free surface of target [18]:

ufs= 2up = Upj (21.3)

where ufs is the free surface velocity and up is the particle velocity inside the target;
Upj is the velocity of projectile.

It can be seen that amplitude of fringe signal decreases in the middle of forehead
front (line N’N) and again restored up to the maximum value to plateau of pulse.
This means that the velocity distribution is widen to the middle of plastic front and
then again narrowed at the plateau of pulse up to δ-function. The value of fringe
signal contrast in the middle of plastic front equals K = 0,727. In accordance with
Eq. (21.2), the velocity variance equals:

D = Uint

π

√−2lnK= 100

π

√−2lnK =100

π

√−2ln0.727 = 21, 2 m/s.

Here the velocity variance D corresponds to width of the velocity distribution
in the middle of plastic front. Presented in Fig. 21.4 example reflects the situation
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Fig. 21.5 Dependencies of the velocity variance, D, strain rate, dε/dt, and free surface velocity
profile for steady situation in 15mm D16 aluminum alloy target loaded at the impact velocity of
315m/s

when the velocity distribution is maximum in the middle of plastic front. In the
steady shock-wave velocity variance, maximum strain rate coincide with the middle
of shock front [19] (see Fig. 21.5)

If, however, the plastic front has no time to become steady, amplitude of fringe
signal continues to decrease up to plateau of pulse. It, in turn, means that the velocity
dispersion grows along the plasticwave.Typical example of change of the free surface
velocity for the non-steady plastic wave is presented in Fig. 21.6 where the fringe
signal, deciphered free surface profile and velocity variation are provided together
for shock loading of 5mm 30CrNi4Mo steel target loaded at the impact velocity of
320m/s. It is clearly seen that amplitude of fringe signal has no time to restore upto
maximum value during the plastic front. The contrast of fringe signal continues to
decrease so just before pulse plateau velocity variance equals 34m/s. This means
that shock wave has no time to come on the steady regime.

In our experiments, the laser beam of interferometer at the free surface of target is
focused up to 60–70 mkm, so the registered free surface profile corresponds to single
element of mesoscale-2 (50–500 mkm). In this situation, the registered mean particle
velocity concerns the motion of single element of mesoscale-2. At the same time,
within single structural element ofmesoscale-2 there are a lot of structural elements of
mesoscale-1 (1–10mkm) (see Fig. 21.1a), so the interferometer registers the velocity
distribution of the elementary carriers of deformation ofmesoscale-1 inside the single
structural element of mesoscale-2. To obtain the mean macroscopic free surface
response of target on impact, one has to average the mesoscale-2 responses over
target. The free surface velocity profile in 1565 aluminum alloy target shown in
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Fig. 21.6 Fringe signal, deciphered free surface velocity profiles, ufs, and velocity variance, D, for
unsteady wave in 5mm steel target loaded at the impact velocity of 320m/s

Fig. 21.7 Free surface velocity profile, ufs(t), and particle velocity variance profile, D(t), for steady
wave at the mesoscale-2 in 1565 aluminum alloy target at the impact velocity of 442.8m/s

Fig. 21.7 is a typical response of single structural element ofmesoscale-2. This profile
provides the information on mean free surface velocity, uavfsms2(t)at the mesoscale-2
and velocity variance, D(t) (square root of the particle velocity dispersion), at the
mesoscale-1 (1–10 mkm). This is the main distinction of our diagnostic approach as
compared to that based on VISAR instrumentation which registers only the mean
free surface velocity over the target [20].
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The velocity defect δUdef quantitatively characterizes the intensity of macro-
meso momentum exchange. In the case of shock-wave experiments, determination
of velocity defect is based on independent measuring the impact velocity Upj under
symmetrical collision of impactor and target and maximum free surface velocity
Ufsmax at the plateau of compressive. According to the free surface approximation,
in the case of symmetrical collision of projectile and target (ρpjCpj= ρ tagCtag), the
particle velocity equals to half of impact velocity, i.e., u p = 1

2Upj . On the other
hand, when the shock wave comes to the free surface of target, the mean velocity is
redoubled. In this case, the impact velocity equals to the free surface velocity, i.e.,
Upj= Ufs max. Specifically, in the case of shock loading of iron, this equality has been
experimentally studied in detail and confirmed in [21].

The specifics of used diagnostics is in focusing the laser beam of interferometer
up to 50–70 mkm. In this case, the mean particle velocity corresponds to motion of
single mesoscale-2 structural element whereas the velocity dispersion corresponds
to velocity distribution of mesoscale-1 structural elements inside the mesoscale-2
element. The timeof relaxation of the particle velocity distribution function fromnon-
equilibrium state to equilibrium that for different scales may differ by orders. This
means that particle velocity distribution function formesoscale-1may be equilibrium
whereas for mesoscale-2 it may be far from equilibrium. The situation shown in
Fig. 21.7 presents the steady shock front in 2.2mm 1565 aluminum alloy target.

In this investigation, the processes of dynamic deformation are considered from
the position of physical kinetics [4]. In the frame of this approach, the dynamic
deformation, instead of dislocation mechanisms of deformation, is considered to
be the motion of elementary carriers of deformation at the mesoscale (motion of
mesoparticles). In accordance with the mesomechanics, the mesoparticles are the
positive and negative dislocation groups which suffer two kinds of interaction: (i)
the long-range mutual interaction and (ii) interaction with the medium where they
move. From the position of physical kinetics, the motion of mesoparticles can be
characterized by the particle velocity distribution function f(r,v,t) and/or its statistical
moments. In the case of quasi-equilibriumsituation, themeanparticle velocity, u(x, t),
and particle velocity dispersion, D2(x, t), are the first and second statistical moments
of the particle velocity distribution function:

u(x, t) =
∫

v f (x, v, t)dv

D2(x, t) =
∫

(v − u)2 f (x, v, t)dv (21.4)

In this situation, the propagation of shock wave in heterogeneous mediummay be
presented as a superposition of twomodes—propagation of approximately rectilinear
front with mean particle velocity u(x, t), and random motions around mean velocity
as a result of fluctuative strain fields induced by the random internal stresses. It is
fortunate, the parameters of dynamic deformation can be registered with interference
technique of shockwaves diagnostics in real time. Principles ofmeasuring the particle
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velocity variation, D (square root of the particle velocity dispersion, D2) and mean
particle velocity, u(x, t), are in detail discussed everywhere [8, 9].

In the case of shock loading of heterogeneous solids, the equality Uimp= Ufs maxis
not accomplished. If the strain rate is higher the critical value of strain rate corre-
sponding to the threshold of structural instability, the velocity defect emerges, so
δUdef= (Uimp−Ufs max) �= 0 (Fig. 21.6). This phenomenon allows to reveal the prin-
cipally newmechanism of structural instability. As distinct from the heat mechanism
of [22, 23], the newmechanismof structural instability is found to beof kinetic nature.

Development of structural instability turns out to occur at the critical relation
between rate of change of the velocity dispersion at the mesoscale-1 and velocity
defect for the mesoscale-2. Scenario for developing the kinetic structural instability
includes the following stages.

1. Formation of totality of mesoscale-1 structural elements as collectives of single-
sign dislocations.

2. Chaotisation of mesoscale-1 structural elements.
3. Threshold transition into structural-unstable state and turbulization of meso-1

particles within meso-2 volume. Condition for transition into structural-unstable
state is the avalanche-like growth of the velocity dispersion at the mesoscale-1.

4. Decrease of mean velocity of meso-2 structural element and appearance of the
velocity defect at the meso-2 scale.

Above scenario is proper for the non-equilibrium processes at which the mesopar-
ticle velocity distribution function is not symmetrical. For the non-symmetrical parti-
cle velocity distribution function, the number of particles with the velocities smaller
the mean particle velocity is greater than number of particles with the velocities
greater the mean particle velocity. In this case, the so-called “Landau decay” takes
place [24, 25], which is registered as a decrease, or defect, of mean velocity. Exper-
iments show (i) the local values of the velocity defect can reach large values, up to
hundred meters per second, whereas the mean velocity defect over the target surface
can be very small or absent at all, (ii) as distinct from the dissipation, this kind of decay
(Landau decay) is reversible, it disappears when the mesosparticle velocity distribu-
tion function tends to equilibrium state. In the frame of physical kinetics approach,
dynamic deformation presents the motion of mesoparticles as self-sufficient objects,
which play a role of elementary carriers of deformation. The dislocations provide
only formation of mesoparticles at the initial stage of deformation process. In this
approach, dynamic deformation can be quantitatively characterized by two statisti-
cal moments of the mesoparticle velocity distribution function—mean mesoparticle
velocity, u(t), and mesoparticle velocity dispersion, D2(t) determined in accordance
with Eq. (21.4).

Three dynamic characteristics considered in our investigation are used in present
analysis. One of the basic characteristics of dynamic deformation which reflects a
transition of material into structure-unstable state and provides the quantitative data
on energy and momentum exchange between scales is the defect of particle velocity,
δUdef.
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In non-equilibrium stochastic systems, such as a dynamically deformed medium,
themean particle velocity, u(t), velocity defect, δUdef and particle velocity dispersion,
D2(t) are not independent. There is a following relationship between particle velocity
dispersion, velocity defect, and mean particle velocity [3, 4].

δudef(x, t) = u(x0, t) − u(x, t) = 1

2

d
(
D2

)
du

(21.5)

Here u(x, t) is a current value of the particle velocity and u(x0, t) is a referent
value of particle velocity. δudef(x, t) is the current value of the velocity defect which
determines a change of particle velocity resulting from the interscale momentum
exchange. Right-hand side of Eq. (21.5) characterizes the intensity of interscale
momentum exchange which equals to rate of change of the particle velocity disper-
sion in the velocity space. Physically, the right-hand side of Eq. (21.5) determines the
change ofmean particle velocity due to change of the intensity of velocity fluctuations
at the mesoscale.

The second important relationship which has previously been found in our exper-
iments ties the particle velocity variance, D, and strain rate [19]:

D = R
dε(t)

dt
(21.6)

Here D is the velocity variance which is the quantitative characteristic of the
intensity of the particle velocity chaotic pulsations in dynamically deformed solid,
dε
dt is the strain rate and R is the proportionality coefficient. An analogous relation-
ship is known to exist in turbulence where the intensity of turbulent pulsations is
proportional to particle acceleration [26]. Equations (21.5) and (21.6) determine
the character of coupling between macroscopic and mesoscopic scales of dynamic
straining. Multiplying the left- and right-hand sides of Eq. (21.6) by ρCp yields

ρCpD = ρCpR
dε

dt
(21.7)

The left-hand side of Eq. (21.7) is the spherical component of stress initiated by
random velocity pulsations at the mesoscale [5–7]. Quantitative characteristics of
the pulsations is the particle velocity dispersion D2 (in West scientific literature, the
variance of particle velocity at the mesoscale calls the “Granular temperature”). The
right-hand side of Eq. (21.7) is the viscous component of stress. In this equation, the
value ηms= ρCpR has a meaning of mesoscale viscosity. The interscale momentum
exchange law in the form of Eq. (21.5) has been found in experiments on shock
loading of copper [3]. It became possible owing to simultaneous registration of both
the mean particle velocity u(t) and particle velocity dispersion D2(t). If the particle
velocity is measured at the plateau of compressive pulse, the left-hand side of Eq.
(21.5) equals:
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δUdef= (Uimp−Ufs max) (21.8)

On the other hand, Eq. (21.5) can be written in the form:

δUdef= D
dD/dt

du/dt
(21.9)

When the rate of change of velocity variance equals to the rate of change of mean
particle velocity

dD

dt
= du

dt
(21.10)

the velocity defect equals to the particle velocity variance

δUdef= D (21.11)

In the case of uniaxial straining, Eq. (21.9) can be written in the terms of strain
and strain rate:

δUdef

C0
= D

C0

Ḋ/C0

u̇/C0
(21.12)

or

Δεmc = εD
ED

Emc
(21.13)

Here Δεmc is a part of macroscopic deformation resulted from the meso-macro
interscale momentum exchange, εD and ED are the strain and strain rate at the
mesoscale, εmc and Emc are the strain and strain rate at the macroscale. If the strain
rate at the mesoscale equals to the macroscopic strain rate

Emc = ED, (21.14)

the change of deformation at the macroscale resulted from interscale momentum
exchange is determined by the value of deformation at the mesoscale

Δεmc = εD (21.15)

where εD is the dynamic deformation at the mesoscale. In shock experiments, the
directly registered characteristics are the free surface velocity, ufs(t), velocity defect,
δUdef, and velocity variance, D.At the same time, physical meaning of the processes
may also be understood from the Eq. (21.14) which implies the equality of strain
rate at the mesoscale and macroscale.

Equation (21.5) reflects a current character of interscale momentum exchange.
However, a swinging of the velocity pulsations requires a time. Even so, one can
introduce an averaging of interscale momentum exchange in the form:
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∫ t

t−τ i

(
1

2

dD2

du

)
ds ≤ δUdefτi (21.16)

where τ i is the time of averaging which can be considered as “incubation time”
for interscale momentum exchange. Right-hand side is the displacement resulted
from the velocity pulsations for incubation time. In the case of equilibrium regime
of interscale momentum exchange, when condition (21.10) is fulfilled, the criterion
(21.16) is transformed into the form:

∫ t

t−τ i

(D(s)) ds ≤ δUdefτi (21.17)

where δUcr
def= D is the critical value of velocity defectwhich corresponds to displace-

ment δUcr
defτi. The multiplying of both sides of Eq. (21.16) by acoustic impedance

ρC0 yields

ρC0

∫ t

t−τms

D(s)ds ≤ στ i (21.18)

where right-hand side
στ i= ρC0δU

cr
defτi (21.19)

is the elementary momentum transferred from mesoscale to macroscale. Dynamic
plastic deformation is controlled in a complex way by both pre-existing non-
uniformity of material and dynamic effects although the velocity distribution behav-
ior at the modest strain levels may indicate that dynamic effects are dominant. This
means that the particle velocity variance is not determined only by the pre-existing
non-uniformity of material, but rather, by the dynamic non-linear features of mate-
rial. Equations (21.16) and (21.17) are the integral criteria for transition of solid into
structural-unstable state which is determined by the kinetics of elementary carriers
of deformation at the mesoscale.

The threshold of structural instability characterizes the beginning of shock-
induced structural heterogenization of material. Experimentally, this characteristic
can be obtained upon the series of the free surface velocity profiles registered under
uniaxial strain conditions over the impact velocity range. The method for determi-
nation of instability threshold is explained in Fig. 21.8 where the dependence of
maximum free surface velocity on the impact velocity is provided. In order to deter-
mine the instability threshold, a set of identical targets of 1565 aluminum alloy
targets were loaded within impact velocity range of 241.9–744.8m/s. The maxi-
mum free surface velocity Ufs max= f(Uimp) at what the velocity defect begins to
increase drastically is defined as the threshold of structural instability, Uinst, the
second strength-characteristic of dynamic deformation. Aluminum 1565 suffers two
thresholds of structural instability: (i) Uimp = 435m/s corresponds to the free sur-
face velocity of 370m/s and (ii) Uimp = 625.3m/s corresponds to maximum free
surface velocity of Uinst = 588.7m/s (indicated by symbols *). After transition into
structure-unstable state, beginning from Uimp = 625,5m/s, the free surface velocity
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Fig. 21.8 Maximum free surface Ufs max versus impact velocity for 1565 aluminum alloy

is constant. The dotted line corresponds to equality of maximum free surface velocity
and impact velocity: Ufs max = Uimp.

Lastly, the third dynamic strength-characteristic determined in tests under uniaxial
strain conditions is the spall strength [27]. In the form of the so-called “pull-back
velocity” the spall strength is defined as difference between maximum value of the
free surface velocity at the plateau of compressive pulse and first minimum of the
free surface velocity at the back front of pulse.

The high-velocity penetration tests were conducted by using the same facility
as for the tests under uniaxial strain conditions. To provide the perpendicularity
relatively plane target, the rod of 20mm in length and 5mm in diameter is mounted
into polyvinyl-carbonate sabot. The conditions for “rigid rod and target” [28] are
provided by using the high-strength 02Cr18Co9Mo5-VI maraging steel as a material
for rod. During the shock loading, sabot stopped just before the target whereas the
rod-impactor continues tomoveup to collisionwith the target. The typical penetration
cavern in 1561 aluminum alloy target is shown in Fig. 21.9.

The tests under uniaxial strain conditions provide an information on the character
of spall fracturewhereas the tests on penetration allow to tie the resistance penetration
with the evolution of microstructure depending on the impact velocity. In our exper-
iments, the post-shocked targets cut along the impact direction and after polishing,
etching in concentrated mixture of sulphuric and nitrogen asides were investigated
with optical microscope Axio-Observier Z-1m. The quasistatic mechanical charac-
teristics of materials are provided in Table21.1.
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Fig. 21.9 Penetration
cavern in 1561 aluminum
alloy at the impact velocity
of 577m/s

Table 21.1 Mechanical characteristics of 1565 and 1561 aluminum alloys

Alloy Target thickness,
mm

σb, MPa σ02, MPa δ, %

AL 1565 7 363 221 15.8

AL 1561 7 353–354 217–224 17.8–18.8

21.3 Experimental Results and Analysis

21.3.1 Structural Instability and Spall Strength

To reveal the influence of initial property of material on the threshold of structural
instability, a series of shocks under uniaxial strain conditions within impact velocity
range of 241.9–744.8m/s was performed for both alloys. In Fig. 21.10 the dependen-
cies of maximum free surface velocity, Ufs max, for 1561 and 1565 aluminum alloys
are plotted together as functions of impact velocity. In 1561 aluminum alloy depen-
dence of maximum free surface velocity presents a smooth curve without breaks,
which supposes the absence of transition into structure-unstable state. In 1565 alu-
minum alloy, the structural instability thresholds occur at the impact velocities of
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Fig. 21.10 Dependencies of maximum free surface velocity on impact velocity for 1565 aluminum
alloy and 1561 aluminum alloy

Upj = 435m/s (Uinst = 370m/s) and Upj = 625.5m/s (Uinst = 588.7m/s). Thus, the
dependence Ufs max = f(Uimp) turns out to be very sensitive characteristics defining
the shock-induced structural transitions in material (Fig. 21.10).

It is of interest to compare the plastic front velocity behavior for both alloys below
and beyond of instability threshold. The value of plastic front velocity is determined
from the free surface velocity profile as

Cp = ht /(ht/C1–Δt)

where ht is the target thickness, Cp is the velocity of plastic front, Ce is the longi-
tudinal elastic velocity, Δt is the delay of plastic front relatively elastic precursor.
In Fig. 21.11 the dependencies of plastic front velocities on impact velocity for both
alloys are plotted together. For both alloys the plastic front velocity stops to grow
just after transition of material into structure-unstable state.

In Fig. 21.12 the dependencies of maximum free surface velocity at the plateau
of compression pulse, Ufs max, and pull-back velocity (spall strength), W, on the
impact velocity for 1565 aluminum alloy are plotted together. While the threshold
of structural instability characterizes the dynamic strength of material under com-
pression, the spall strength is the tensile strength- characteristic. The breaks at both
curves happen at the identical impact velocities (dotted lines NN’ and MM’), which
means that the internal processes responsible for dynamic deformation and strength
for both deformation processes in 1565 aluminum alloy aremutual related. All region
of impact velocities is subdivided into three zones.
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Fig. 21.11 Dependencies of plastic front velocities on the impact velocity for 1565 and 1561
aluminum alloys

Fig. 21.12 Dependencies of maximum free surface velocity, Ufs max and pull-back velocity, W,
on the impact velocity for 1565 aluminum alloy
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Fig. 21.13 Maximum free surface velocity, Ufs max, and pull-back velocity, W, versus impact
velocity for 1561 Al alloy

Fig. 21.14 Fringe signals for 1565 a and 1561 alloy b loaded at the impact velocity of ∼650m/s

For the 1561 Al alloy, the dependence W = f(Uimp) could be built up to impact
velocity of 522.9m/s (Fig. 21.13). At higher impact velocities, the laser beam of
interferometer reflected from the free surface of target is deviated, so the fringe signal
disappears. In Fig. 21.14 the fringe signals for both kinds of alloys are provided.
According to working principle of the interferometer, irreversible displacement of
fringe signal to upper level of interference pattern means a loss of intensity of laser
beam reflected from the free surface of target.

The reason for loss of fringe signal for the 1561 aluminum alloy target becomes
clear after comparison of dependencies for pull-back velocity, W = f(Uimp), max-
imum free surface velocity (Fig. 21.13), fringe signal (Fig. 21.14), and data on
microstructural investigations of post-shocked specimens (Fig. 21.15). Point B’ in
Fig. 21.13 indicates the maximum impact velocity at what the pull-back velocity
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Fig. 21.15 Morphology of spall zone in 1561 a and 1565 b aluminum alloy targets

could be registered for 1561 alloy. In Fig. 21.15a the spall crack for 1561 alloy
demonstrates a rotation motion material, which results in deviation of laser beam
and loss of the fringe signal. As for the 1565 aluminum alloy, dynamic deforma-
tion flows in form of translational motion of structural elements of mesoscale-2
(Fig. 21.15b). In this case, the deviation of laser beam at the free surface of target
doesn’t occur and free surface velocity profile can be registered within overall range
of impact velocities. Such behavior of inner structure of 1565 alloy is related to
texture of material which prevents to rotational motion of structural elements.

21.3.2 Structural Instability and Penetration

Resistance to high-velocity penetration is characterized by the value of penetration
depth and by the slope of curve L= f(Uimp)—the smaller the slope of curve, the
higher the resistance to penetration. The penetration curve for 1561 aluminum alloy
does not suffer the brakes. One can see that resistance to penetration for 1561 alloy
gradually decreases (Figs. 21.16 and 21.17).

At the regions A’B’ and C’D’ the resistance to penetration turns out to be higher
than that in the region of B’C’—at upper region of impact velocities C’D’, the
dynamic strength of 1565 alloy increaseswhereas that value for 1561 alloy decreases.
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Fig. 21.16 Dependence of maximum free surface velocity, Ufs max, and penetration depth, L, on
the impact velocity for 1561 aluminum alloy

Fig. 21.17 Dependence of maximum free surface velocity, Ufs max, and penetration depth, L, on
the impact velocity for 1565 aluminum alloy

21.4 Spall Strength and Resistance to High Velocity
Penetration

It is thought to be very interesting to compare the resistance to spallation and
resistance to penetration in different regions of impact velocities for both alloys.
In Fig. 21.18 the penetration depth curve L = f(Uimp) for 1565 alloys is plotted
together with the dependence for pull-back velocity W = f(Uimp). Comparison of
curves shows the correlation between these processes. The curveW = f(Uimp) deter-
mined on the basis of tests under uniaxial strain conditions suffers two breaks: at the
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Fig. 21.18 Dependence of pull-back velocity, W, and penetration depth, L, on the impact velocity
for 1565 aluminum alloy

impact velocities of 440 and 625.5m/s. The dependence of penetration depth curve
L = f(Uimp) also suffers two breaks: at the impact velocities of 440 and 608m/s.
The critical changes of penetration dependence slope happen approximately at the
strain rates where the first break for dependence W = f(Uimp) occurs (dash lines in
Fig. 21.18). Such behavior of curves evidences the common mechanism of interac-
tion of impactor and structure of target both in tests under uniaxial strain conditions
and high-velocity penetration. The breaks at high region of impact velocities in both
loading schemes also happen at close impact velocities: 625.5m/s in plane tests and
608m/s in penetration tests. This means that both breaks are of the same nature—
strength behavior of that material under dynamic compression and dynamic tension
is identical.

Now let us consider in details a correlation between spall strength and resistance
to penetration for 1565 aluminum alloy. Within pieces A’B’ and B’C’ of penetration
depth of curve in Fig. 21.18, the first break at curve occurs in point B’: dLA′B′

dUimp
<

dLB′C′
dUimp

.
The resistance to penetration within impact velocity region A’B’ of curve is seen to
be higher as compared to that for piece B’C’. At the same time, the spall strength
of curve within the same impact velocity region shows the opposite trend. Within
the piece AB the pull-back velocity decreases from 137.8–117.3m/s. After point B,
within piece BC dWBC

dUimp
> dWAB

dUimp
, which means that pull-back velocity increases with

the impact velocity increasing. Thus, the critical changes in both curves happen
within impact velocity range of 430–440 m/s. Analogous situation is seen after the
second critical impact velocity of∼608m/s—within piece C’D’ of penetration curve
the slope of decreases: dLC′D′

dUimp
<

dLB′C′
dUimp

, i.e., the resistance to penetration within region
C’D’ increases. Thus, within impact velocity range of 241.9–744.8m/s the strength
behavior of 1565 aluminum alloy in two schemes of shock loading proves to be
opposite—when resistance to penetration increases, the spall strength decreases.

Dependencies L= f(Upj) andW= f(Upj) for 1561 alloy are presented in Fig. 21.19.
Within overall range of impact velocities, the resistance to penetration gradually
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Fig. 21.19 Dependencies of pull-back velocity,W, and penetration depth, L, on the impact velocity
for 1561 aluminum alloy

decreases. As for the pull-back velocity, within piece AB of curve it is practically
constant and after point B of curve, the pull-back velocity for the single structural
element ofmesoscale-2 cannot be determined since thematerial transits into unstable
statewhereas themesoscale-2 element begins to rotate. On the basis of above analysis
it may be concluded that behavior of spall strength and resistance to penetration for
1561 aluminum alloy turns out to be different as compared to that for 1565 aluminum
alloy.

21.5 Microstructural Investigations

21.5.1 1561 Aluminum Alloy

To understand the multiscale mechanisms of strength behavior of 1565 aluminum
alloy in different regions of impact velocities it thought to be appropriately to compare
the microstructural data for different regions of impact velocity with the dependence
of penetration The inner structure is seen to consist of equal-axis grains with the
seldom inclusions of intermetallides. In Fig. 21.20b the morphology of lateral region
of cavern in 1561 alloy target loaded at the impact velocity of 328m/s is shown. The
numerous micro-shears oriented along the direction of impact are clearly seen.

Formation of meso-shears is a typical dynamic effect [30, 31]. The micro-shears
are the result of the particle velocity distribution at the mesoscale-1. The interferom-
eter registers the velocity distribution in the form of the particle velocity variance at
the mesoscale-1 (1–10 mkm). According to [5–7], the random motions of structural
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Fig. 21.20 a—initial structural states of 1561 aluminum alloy; b—morphology of lateral region
of cavern at the impact velocity of 328m/s

elements initiate the short-living particle velocity pulsations, the living time for sim-
ilar pulsations equals approximately Δt = 150–200 ns. The maximum value of the
velocity variance at the plastic front in 1565 aluminum alloy equals D = 4.0 · 103 m/s
(see Fig. 21.7), from where the mean displacement caused by the pulsations equals:

L = D ·Δt = 4.0 · 103 · 2· 10−7= 8 · 10−4 cm = 8mkm

In vicinity of side wall of cavern, the distance between micro-shears decreases.
The thickness of region consisting of micro-shears increases with the increase of
impact velocity from ∼40 mkm at the impact velocities of 284—m/s to ∼100mkm
at the velocity of 667m/s (Fig. 21.21a, b).

With the increasing of impact velocity, the micro-shears are seen to unite into
large-scale formations in the formof elongated plaits and ellipsoids of (50 × 150)mm
in size. With the increasing of impact velocity, the region occupied by large-scale
formations increases from 328.65 to 580 mkm (Fig. 21.21a, b). Comparison of the
penetration depth curvewith the structural patterns allows to conclude: within overall
region of impact velocities the resistance to penetration decreases.

21.5.2 1565 Aluminum Alloy

In Fig. 21.23 three states of structure for different impact velocities for 1565 alu-
minum alloy are presented. The specific feature of post-shocked 1565 aluminum is
the presence of the regular fault-structures at the edge of cavern. Where observed,
the fault-structures are nucleated in regions AB and CD (Fig. 21.23).

Simultaneously, the resistance to penetration increases (see Fig. 21.18). At the
same time, the regular faults are absent within range of BC where the structure is
uniform whilst the resistance to penetration increases. From the point of view of
resistance to penetration, the 1565 aluminum alloy turns out to be more preferable
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Fig. 21.21 The structured regions in 1561 Al. alloy for different impact velocities: a Uimp =
284m/s; b–f Uimp = 677m/s
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Fig. 21.22 Initial structural states a and micro-shears b in 1565 aluminum alloy

Fig. 21.23 Three regions of lateral structure in 1565 aluminum alloy after penetration

at upper region of impact velocities as compared to 1561 alloy where the decrease
of resistance to penetration at high region of impact velocities is seen.

21.6 On the Resonance Excitation of Mesoscale

In the light of the above experimental results, three questions arise: (i) what is the
physical mechanism responsible for nucleation of fault-structures, (ii) what param-
eters of shock wave determine the dimensions of fault-structures, (iii) what is the
physical mechanism for transition from one scale to another. To answer the questions
we consider propagation of plane shock wave in a relaxing medium. In the case of
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a steady shock wave, two important relationships have previously been found. The
first of them ties the particle velocity variance, D, and strain rate [19].

In the case of one-dimensional propagation of shock wave, the balance equations
for momentum conservation and medium continuity take the form

ρut − σx = 0; (21.20)

ux − εt = 0. (21.21)

The constitutive equation for a relaxing medium introduced by Duvall [32] and
Taylor [33]:

σ − ρC2
l ε = −2με p (21.22)

or in differential form

σt − ρC2
l εt = −F. (21.23)

Here Cl is the longitudinal sound velocity, μ is the shear modulus, and the relax-
ation function

F = 2μ
∂ε p

∂t
(21.24)

is determined through the plastic strain ratewhich, in turn, is determined byOrowan’s
equation for density and velocity of dislocations dεp

dt = bNdVd. As distinct from
Duvall-Taylor approach, in the present investigation the stress relaxation in the
dynamically deformed medium is accepted to be realized only through the motion of
elementary carriers of deformation at the mesoscale. Dislocations and other carriers
of the deformation of atom-dislocation scale provide the formation and motion of
mesoparticles whereas the mesoparticles it selves play a role of self-consistent car-
riers of deformation. In this situation, the stress relaxation is determined only by the
velocity defect.

The advantage of such an approach is that the relaxationmodel doesn’t incorporate
the parameters of dislocations, such as density and velocity of dislocations which
cannot be controlled under conditions of dynamic straining. As distinct from the
dislocation structure, defect of particle velocity can be registered in real time. In this
case, the relaxation function takes the form:

F =2μ

Cl

d(udef)

dt
. (21.25)

The equation system can be reduced to second-order differential equation

ρεtt−σ xx= 0. (21.26)
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Substitution of into yields

dεp

dt
= (

R2
/
C2
l

) d2ε

dt2
. (21.27)

Then Eq. (21.26) is reduced to

εtt−ρC2
l εxx−2

(
μR2

/
ρC2

1

)
εxxtt= 0. (21.28)

For the case of the steady propagation of shock wave, the single variable
ζ = x − Cpt can be used. Equation (21.28) takes the form:

(C2
l −C2

p)εςς+2
(
μR2

/
ρC2

l

)
εςςςς= 0. (21.29)

Exchanging εςς = ψ leads to the equation for an oscillator:

(C2
l −C2

p)ψ + 2
(
μR2

/
ρC2

l

)
�ςς= 0 (21.30)

The frequency of oscillations equals

ω =1

2

ρC2
l (C

2
l −C2

p)

μR2 (21.31)

Physically, the oscillatory regime of shock-wave propagation is a sequence of
positive back coupling provided by united solution of the Eqs. (21.5) (21.6) (21.20)–
(21.21). The temporal resolution of experimental diagnostics (0.6–1.0 ns), allows
registering the fine structure of plastic wave including the high-frequency oscilla-
tions at the mesoscale-2. Where observed, the oscillations are excited at the top of
the plastic front. Figure21.24 demonstrates the velocity oscillations in 7mm 1565
aluminum alloy target loaded at the impact velocity of 636.5m/s. The oscillations are
seen at the impact velocity which are higher than the threshold of structure-unstable
transition, Uinst. The space period of oscillations equals ∼50 mkm, which coin-
cides with the mean size fault-structures (40–50 mkm). Thus, while the mesoscale-1
structures are nucleated owing to particle velocity pulsations, the fault-structures
of mesoscale-2 are initiated due to resonance interaction of mesoscale-1 structures
with the plastic front oscillations, which, in turn, result from positive back coupling
between mesoparticle velocity dispersion and velocity defect.

Although oscillations are initiated due to the interaction of stochastic features of
dynamically deformed structure in form of particle velocity pulsations, the transition
itself happens due to swinging the high-frequency oscillations of mesostructure.
Thus, it should be underlined that the meso-macro transition is not a direct transition
fromchaoticmotion of structural elements to translationmotion at the next scale level
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Fig. 21.24 Free surface velocity profiles, ufs, for 7mm 1565 aluminum alloy target loaded at the
impact velocity of 636.5m/s (the oscillations are indicated by symbol *)

as“noise-induced transition” [34]. This transition is thought to be realized through
the oscillation regime of straining at the mesoscale.

Below the dimensions of fault-structures are calculated for regions AB and CD.
The experimental free surface profiles are used for calculation of parameters of shock
waves.

Region AB

1. Impact velocity Uimp = 335m/s.
2. Velocity variance D = 22m/s.
3. Velocity of plastic front Cp = 5.478 · 105cm/s.
4. Longitudinal sound velocity Cl = 6.387 · 105cm/s.
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5. Strain rate dε
dt = 7.79 · 105c-1.

6. Shear modulus μ = 2.7 · 1011 dyn·cm
cek2 .

7. Density ρ = 2.7g/cm3.

From Eq. (21.6) R = D
dε/dt= 28 × 10−4 cm and from Eq. (21.31)

ω = 2.35 × 108s−1 or f = ω/2π = 0.374 × 108s−1 which corresponds to period
of oscillations:
T = 1

f = 2.672 × 10−8s. Then the space period of cell-structures in regionAB equals:
λ = T × Uimp= 2.672 × 10−8s × 3.35 × 104 cm/s = 8.95 × 10−4 cm.
The obtained value for space period of oscillations coincides with the dimensions of
fault-structures shown in Fig. 21.23a.

Region CD
1. Impact velocity Uimp = 653.7m/s.
2. Velocity variance D = 52m/s.
3. Velocity of plastic front Cp= 5.66 × 105cm/s.
4. Longitudinal sound velocity Cl= 6.387 × 105cm/s.
5. Strain rate dε

dt = 5 × 106s−1.
6. Shear modulus μ = 2.7 × 1011 dyn×cm

sec2 .
7. Density ρ =2.7g/cm3.

From Eq. (21.6) R = D
dε/dt= 10.36 × 10−4 cm and from Eq. (21.31)

ω = 1.84 × 108s−1 or f = ω/2π = 0.29 × 108s−1 which corresponds to the time
period of oscillations T = 1

f = 2.35 × 10−8s. Then the dimension of fault-structures
in region CD equals λ = T × Uimp= 2.35 × 10−8×6.637 × 104= 47 × 10−4 cm.

The obtained value for space period of oscillations coincides with the dimensions
of fault-structures for region CD shown in Fig. 21.23c.

21.7 Numerical Simulation

In this investigation the impact of aluminum cylinder providedAl2024 alloy and hav-
ing the characteristic sizes ∼1mm in the next cylinder provided the same material
and having the same characteristic sizeswasmodeled by numerical simulation.At the
solution of this problem the newhigh-allowing computingmethod inmechanics—the
method of smoothed particles was used (in English scientific literature in abbrevi-
ated form of SPH-Smoothed Particle Hydrodynamics). This method is intended for
numerical simulation not only at low impact velocities (100–1000 m/s), it is also
applied with great accuracy for hypervelocity impact [37]. The main equations on
which the specified method leans and also algorithms at calculation are considered
in [41, 42]. Well-known software LS-DYNA/ANSYS was used in this investigation.
When developing approaches to the solution of the task, the following methodol-
ogy was accepted: in order that the scale of numerical simulation corresponded with
experimental investigation of development of instability, the numerical experiment
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is made from the very beginning at the meso-2 with the elementary carriers of defor-
mation corresponding to meso-1. For this purpose in the macroscopic sample the
material volume corresponding to one building block meso-2 is chosen. Shock load-
ing of such building block is carried out by means of projectile which also have
the sizes of the building meso-2. The spatio-temporal trajectories of all particles of
large-scale level are traced meso-1 in limits it is large-scale meso-2.

The length of projectile and target was 1mm. Diameter of projectile and target
was 1mm too. Initial conditions: speed of interaction of projectile with the target
was 300m/s. Boundary conditions were set full of reflection of the wave from the
surface which the wave reaches. The size of 1 particle of SPH in the dimensional
equivalent was 10 µ. The gap between projectile and target was 0.1mm before start
numerical solver (Fig. 21.30).

The number of projectile’s SPH was 1061880. The number of SPH in target was
also 1061880. The total quantity of particles of SPH participating in the considered
task—2.12 million SPH about.

The Johnson-Cook constitutive relationship is intended to characterize material
response under various loading conditions using material model [35]. In this model,
vonMises flow stress is calculated as a function of strain, strain rate, and temperature
in the form:

σy = (A + Bεn)(1 + C ln ε̇∗)(1 − T∗m) (21.32)

where ε is the equivalent plastic strain, ε̇∗ is a dimensionless plastic strain rate, T ∗
is the homologous temperature, and the constants A, B, C, m and n are material
specific (Table21.2). These coefficients were taken from those presented by Johnson
andCook in 1983 [39].Apath dependent fracturemodel that canbeused in conjuction
with the stress model has also been developed to characterize material failure, taking
into account the effect of equivalent stress, pressure, strain rate, and temperature
[35]. Material damage is accumulated locally using a damage parameter, calculated:

D =
∑
t=0

Δε

ε
f
JC

(21.33)

where Δε is the incremental strain and ε
f
JC is the equivalent failure strain. The value

of ε
f
JC is recalculated using Eq. (21.34) each time step giving the damage parameter

its dependency.

ε
f
JC = [D1 + D2expD3σ

∗][1 + D4lnε̇∗][1 + D5T
∗] (21.34)

Here, σ ∗ = p/σ , where p is the pressure and σ is the vonMises equivalent stress.
Thematerial constants D1, D2, D3, D4, D5 with their presence, the collectivemotion
of the SPH-particles was observed in the opposite direction of the impact, is in the
Table21.1. These damage material coefficients were taken from [40].

In this numerical simulation was used ∗MAT_JOHNSON_COOK (∗MAT_015
model of material [36]) and ∗ EOS_GRUNEISEN for equation of state. The
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Table 21.2 Material constants and parameters

Parameter Unit Projectile
Al-2024

Target
Al-2024

Density ρ kg/m3 2710 2710

Modulus of shearing G Pa 25.9 ·109 25.9 ·109
Yield stress A Pa 2.65 ·108 2.65 ·108
Material hardening B Pa 4.26 ·108 4.26 ·108
Exponent n – 0.34 0.34

Johnson-Cook constant C 0.015 0.015

Thermodynamic parameter m 1.0 1.0

Testing temperature K 293 293

Melting temperature K 893 893

Testing strain rate 1/s 1 1

Specific heat capacity cp J/(kg · K) 910 910

Damage Johnson-Cook parameters

D1 0.13 0.13

D2 0.13 0.13

D3 –1.5 –1.5

D4 0.011 0.011

D5 0 0

Table 21.3 Mie-Gruneisen of state coefficients

C0, m/s S1 S2 S3 a E0 �0 V0

3935 1.578 0 0 0 0 1.69 1

Gruneisen equation of state with cubic shock-velocity as a function of particle veloc-
ity vs(vp) defines pressure for compressed material as

p = ρ0C2μ
[
1 + (

1 − γ0
2

)
μ − a

2μ
2
]

[
1 − (S1 − 1)μ − S2

μ2

μ+1 − S3
μ3

(μ+1)2

]2 + (γ0 + aμ)E (21.35)

and for expanded materials as

p = ρ0C
2μ + (γ0 + aμ)E (21.36)

In Eq. (21.36)C is the intercept of vs(vp) curve (in velocity units); S1, S2 and S3 are
the unitless coefficients of the slope of the vs(vp) curve;γ0 is the unitless Gruneisen
gamma; a is the unitless, first order volume correction to γ0; E is the internal energy,
which is increased according to an energy deposition rate as function of time curve.
The coefficient for Gruneisen equation of state is in Table21.3. These coefficients
were taken from [43]. The multiplier μ in Eqs. (21.35) and (21.36) is
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Fig. 21.25 Numerical simulation of impact aluminum 2024 alloy cylinder mm-size at the same
one. Initial problem

μ = ρ

ρ0
− 1 (21.37)

In Figs. 21.25, 21.26, 21.27, 21.28, 21.29, 21.30, 21.31, 21.32 and 21.33 shown
results of numerical simulation—the diagram of speeds of particles are reported
for several time moments. In scientific literature, there are group diagrams of the
velocities of the SPH, which are given by a series of lines [38], but besides the
group diagrams of the velocities of the SPH, generated in the form of particle array,
displayed on a color palette of velocities, are no less useful for consideration than the
above-mentioned ones. Figure21.34 shows the choice of the region A for detailed
studying of speed’s vectors of the same kind of SPH-particles.

The chart of vectors of joint speeds of particles (total components from Vx , Vy, Vz)
in the considered region is presented on Figs. 21.35 and 21.36. Figure21.35 shows
the total vectors of particle velocities, the distance between the particles is 10µm,
when the number of particles along the X-axis was taken from region A (Fig. 21.34).
Figure21.36 is an enlarged fragment of Fig. 21.35. The figure shows that the total
of the velocity vector of SPH-particles have both positive and negative directions
(vectors are shown in blue).

Numerical simulation shows that in the time moment about 250 ns (Fig. 21.33)
are observed rudiments of turbulence at the movement of particles in close proximity
to axis of impact. Origin of three-dimensional turbulence is observed at the initial
speed of blow of V = 300m/s.
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Fig. 21.26 The first moment of impact touch, t = 0.32 mks from numerical process start

Fig. 21.27 Moment of the time t = 0.6 mks from numerical process start
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Fig. 21.28 Moment of the time t = 1.0 mks from numerical process start

Fig. 21.29 The preparation of axial plane section
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Fig. 21.30 Axial plane section—projection on Y–Z plane. Start simulation view

21.8 Conclusion

–New kinetic criterion for the shock-induced structural instability and localization
of dynamic deformation is suggested. The transition into structure-unstable state
happens when rate of change of themesoparticle velocity dispersion at themesoscale
becomes higher than the rate of change of mean particle velocity.
–Shock tests of two kinds of aluminum alloy in two schemes of loading reveal
different mechanisms of mesostructure formation:

(1) Mechanisms of nucleation of mesoscale-1 formations in form of micro-shears
of (1–10mkm) for both alloy are identical—mesoscale-1 structures are nucleated due
to shock-induced velocity pulsations resulted from the collectivization of single-sign
dislocations.

(2) Mechanisms of nucleation of mesoscale-2 formations for both kinds of alloy
are different: (i) in 1561 aluminum alloy the formation of mesoscale-2 flows by
means of uniting themesoscale-1micro-shears into plaits and ellipsoids of (150× 50
mkm) elongated along the shock loading direction; (ii) in 1565 alloy the mesoscale-2
formations are the fault-structures at the banks of penetration cavern.
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Fig. 21.31 The first moment of impact touch, t = 0.31–0.32 mks

(3) The mesoscale-2 structures are nucleated due to resonance interaction of
mesoscale-1 structures with the plastic front oscillations, which, in turn, result from
positive back coupling betweenmesoparticle velocity dispersion and velocity defect.

(4) Affect of transition frommesoscale-1 to mesoscale-2 in both aluminum alloys
turns out to opposite: in 1561 alloy the transition on mesoscale-2 decreases the resis-
tance to high-velocity penetrationwhereas in 1565 alloy the formation ofmesoscale-2
structures increases the resistance to penetration.
–There is full correlation between response of material on impact at the mesoscale-2
andmicrostructural patterns of post-shocked samples: (i) in 1561 aluminum alloy the
gradual decreasing of resistance to penetration with the increasing of impact velocity
corresponds to gradual joining of micro-shears into elongated plaits and ellipsoids;
(ii) in 1565 aluminum alloy the greatest resistance to penetration corresponds to
formation of fault-structures at the bank of penetration cavern.
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Fig. 21.32 Moment of the time t = 0.41 mks

–Numerical simulation of impact aluminum mm-size projectile in same aluminum
target with speeds ∼300m/s in the moment ∼240 ns after the beginning of inter-
action at mesoscale-2 shown turbulization of particle motion of the environment at
their movement in close proximity to target axis of gravity. Numerical researches
demonstrated that the transition of material to the structural and unstable state has
the local and kinetic nature of impact damage material.
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Fig. 21.33 Moment of the time t = 0.55mks

Fig. 21.34 Numerical simulation of impact aluminum 2024 alloy cylinder mm-size at the same
one. Selection of region A of SPH-array
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Fig. 21.35 Numerical simulation of impact aluminum 2024 alloy cylinder mm-size at the same
one. Region A of SPH-array. Total velocity vector (blue color) of line SPH along X-axis (total of
X, Y, Z—velocity projections)

Fig. 21.36 Total velocity vector (blue color) of line SPH along X-axis (total of X, Y, Z—velocity
projections)
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Chapter 22
Equilibrium Structures and Flows of
Polar and Nonpolar Fluids in
Nanochannels

Leonid V. Mirantsev and Andrei K. Abramyan

Abstract Molecular dynamics (MD) simulations of equilibriumstructures andflows
of polar water, nonpolar argon and methane, and mixtures of water and methane con-
fined by single-walled carbon nanotubes (SWCNTs) with different cross sections
have been performed. The results of these simulations show that equilibrium struc-
tures and flows of all confined fluids significantly depend not only on the shape of the
SWCNT’s rectangular cross sections but also on the types of liquids inside SWCNTs.
The cross sections of equilibrium structures of all confined fluids resemble replicas
of cross sections of corresponding SWCNTs. In addition, the equilibrium structures
formed by nonpolar argon atoms are most spatially ordered whereas nonpolar water
molecules form the least spatially ordered equilibrium structures. It has been found
that, for nonpolar methane flows through SWCNTs with rectangular cross sections,
there are critical values fxc of the external driving force belowwhich an average flow
velocity is equal to nearly zero and above fxc methanemolecules can flow. It has been
also found that, for a sufficiently large value of the external driving force, the liquid
argon flow through SWCNT with rectangular cross section with the ratio between
its sides 1:4 demonstrates the ballistic frictionless regime. MD simulations of equi-
librium structures and Couette flows of polar water molecules and nonpolar argon
atoms between bounding carbon substrates disposed at the distance h = 1.5 nm from
each other have been also performed. Two symmetric configurations when both sub-
strates have similar, either graphene-like crystalline or amorphous structures, and one
asymmetric configuration consisted of one substrate with graphene-like crystalline
structure and another substratewith amorphous structure have been considered. It has
been found that, in all configurations under consideration, the Couette flow velocity
profiles depend strongly on polarity of fluid particles confined between bounding
substrates. In has been also found that, for substrates with different structures, the
Couette flows depend strongly on which of the substrate is moving and which is
fixed.
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22.1 Introduction

During last fewdecades, behavior of fluids inside nanochannels and carbonnanotubes
(CNTs) is a subject of intensive experimental and theoretical investigations. An
interest to this behavior is caused by its fundamental and technological importance for
chemistry, biology, material science, and nanoscience [1–7]. From the fundamental
point of view, behavior of fluids confined to nanochannels is of prime importance
because such fluids demonstrate properties strongly different from those of the bulk
liquid phase. In addition, nanochannel-liquid systems could have a wide scope of
application in nanofluidics, including sensors, filters, and gating devices. In addition,
carbon nanotubes also can be used as molecular transporters of various cargoes
across cellular membranes that could give rise to a new route for drug delivery
and, hence, to a novel mechanism for cancer therapy [8]. Therefore, an effective
design of nanofluidic devices is very important, and it requires a deep and complete
understanding of behaviors of equilibrium structures and flows of different fluids
inside nanochannels [9].

As said above, experimental investigations and computer simulations revealed
considerable differences between behaviors of different fluids inside nanochannels
and those in corresponding bulk phases [10–16]. For example, the pressure drop-
driven Poiseuille fluid flows through carbon nanotubes are much faster than the flows
predicted by the classic hydrodynamics [10, 11, 17–21]. In addition, the recent stud-
ies [22] revealed a significant enhancement of the axial and radial diffusion rates
of water molecules near the boundary walls. These remarkable phenomena were
explained on the basis of depletion of hydrogen bonds, weak carbon–water inter-
actions and water orientations near the bounding surface of CNTs. However, there
is a very strong variation in experimental data on flow rates obtained from differ-
ent experiments on the fluid flows through nanochannels. An interpretation of these
data based on the slip-modified Hagen–Poiseuille equation [23] gives values of slip
lengths which vary from several nanometers [24] to 54 µ [11]. This fact suggests
that there are several factors determining the fluid flow through nanochannels which
are not completely understood by now. One of this factors is a structure of bounding
walls. The interactions between fluid atoms (molecules) and boundary wall atoms
depend on positions of latter in the space. The randomly distributed boundary wall
atoms should give a contribution to the total interaction with fluid particles different
from that given by atoms located in the sites of a regular crystalline lattice. Thus,
behavior of fluids in nanochannels with amorphous bounding walls should differ
from that of the fluids in nanochannels with crystalline bounding walls. Another
factor that should influence the behavior of fluids in nanochannels is their polarity.
For polar fluids composed of molecules possessing permanent dipole moments, in
addition to short-range intermolecular interactions, such as van der Waals ones, the



22 Equilibrium Structures and Flows of Polar and Nonpolar Fluids in Nanochannels 457

long-range dipole–dipole interactions should be also considered. Since the strength
of these long-range interactions may be comparable or even stronger than that of
the short-range interactions, behavior of polar fluids in nanochannels can be signifi-
cantly different from the behavior of nonpolar ones. In addition to the Poiseuille flow
caused by an external pressure drop, there is the Couette flow in the space between
two parallel surfaces, one of which is moving relative to the other [25]. Using molec-
ular dynamic (MD) simulations, the Couette flows were investigated for various
nanochannels [27–33] with distances between bounding surfaces ranging from ∼16
to∼40 atomic (molecular) sizes. The fluid flow velocity profiles obtained from these
simulations recovered the flow behavior expected from continuum hydrodynam-
ics [26] with boundary conditions involving varying degrees of the slip. The slip
lengths Ls obtained in [26–32] depend on the strength of interaction between liquid
particles and bounding wall atoms and densities of the bounding walls. These lengths
varied from a few atomic molecular sizes σ to several tens of σ . However, recent
techniques, which were developed a few years ago [33, 34], allow to create artificial
flat channels with graphite substrates having heights down to an atomic (molecular)
size. It has been found in previous papers [34–36] that inside such channels fluid
atoms (molecules) form spatially ordered structures which could have a strong effect
on the Couette flow. In addition, the techniques developed in [33, 34] allow to create
artificial flat channels with top and bottom substrates having different structures. The
Couette flowbetween such different substrates has not yet been simulated at all. In the
present paper, using molecular dynamics (MD) simulations, we study equilibrium
structures and Poiseuille flows of polar and nonpolar fluids and theirmixtures through
single-walled CNTs (SWCNTs) with circular cross-sectional boundary walls hav-
ing the perfect graphene structure, SWCNTs with the same bounding wall but with
various rectangular cross sections, and SWCNTs with both circular and rectangular
cross sections but with amorphous bounding wall consisting of randomly distributed
carbon atoms. A possibility of existence of CNTs with rectangular cross sections
was discussed in [38], and it was reported in [39] that such carbon nanotubes can be
really formed. All these nanotubes have the same length and the cross-sectional area.
The polar fluid confined by the abovementioned SWCNTs is water, and the methane
and argon in their liquid phases are considered as nonpolar ones. It has been found
that equilibrium structures of all confined fluids depend strongly on the shape of the
cross section of SWCNT, whereas the structure of its bounding wall has a minor
influence on these structures. On contrary, the external pressure-driven fluid flows
through abovementioned SWCNTs depend significantly on both the shape of their
cross sections and the structure of their bounding walls. We also study equilibrium
structures and Couette flows of polar water molecules and nonpolar argon atoms
between two carbon substrates separated from each other by a distance h = 1.5 nm.
We consider two symmetric systems when both substrates have either graphene-like
crystalline or amorphous structures and one asymmetric system consisting of one
substrate with crystal graphene-like structure and another substrate with amorphous
structure. It has been found that, for two first systems, both the fluid velocity profiles
and the average flow velocities depend strongly on both the polarity of fluid particles



458 L. V. Mirantsev and A. K. Abramyan

and the structure of the boundary substrates. For the third asymmetric system, the
fluid flows depend also on which of the substrate is moving and which is at the rest.

22.2 Simulation Details

As said above, using MD simulations, we investigate static and dynamic behavior
of polar and nonpolar model fluids and their mixtures confined by carbon nanotubes
with circular and rectangular cross sections. As in our previous paper [40], we use
a very simple model of polar fluid in which molecules are assumed to be point-like
particles possessing a permanent dipole moment. These particles interact with each
other via the short-range Lennard-Jones (LJ) pairwise potential

ULJ (ri j ) = 4εi j�
(
σi j/ri j

)12 − (
σi j/ri j

)6�, (22.1)

where εi j and σi j are the strength and characteristic length, respectively, for the LJ
interaction between i-th and j-th molecules, and ri j is the distance between them,
and the dipole–dipole interaction potential

Udd(ri j ) = (di · d j )/r
3
i j − 3(di · ri j )(d j · ri j )/r5i j , (22.2)

where di is the dipole moment of the i-th molecule. Since the polar molecules are
considered as the water ones, the LJ interaction constants εi j and σi j in Eq. (22.1)
should be similar to those for the LJ interactions between oxygen atoms of the i th and
j thwatermolecules. These constants, εH2O andσH2O , are taken from thewell-known
model for water molecules [42, 43], and they are equal to εH2O = 1.083 × 10−14

erg and σH2O = 3.166Å, respectively. As in [41], an effective dipole moment of
the water molecule is set dw = 1.89 × 10−18 g1/2cm5/2s−1. An interaction between
water molecules and carbon atoms of SWCNTs is described by the LJ potential
similar to Eq. (22.1) in which the interaction constants εH2O and σH2O are replaced
by εCH2O and σCH2O , respectively. All these constants are taken from [42]. As for
nonpolar argon atoms andmethanemolecules, they are described in framework of the
united atom model of methane [21] and the well-known model of argon atoms [43].
According to this model, the argon atoms Ar and the methane molecules CH4 also
interact with each other and with carbon atoms of SWCNTs via the LJ potential (1).
The corresponding interaction constants for methane εCH4, σCH4, εCCH4, and σCCH4

are taken from [22], and the constants εAr ,σAr for argon atoms are taken from [43].As
for interactions between argon and carbons atoms, the corresponding constants εCAr

andσCAr are determined bymeans of theLorentz–Berthelot rules [44]. The total force
Fi and the total torque τ i acting on the i-th fluid molecule due to interactions with
other molecules, and equations of motion of this molecule are given by Eqs. (3)–(8)
in [36]. All simulations are performed in the NVT ensembles, and, at each time step,
the equations of motion of fluid molecules are solved numerically by the standard
method described in [44]. The temperatures of the systems under consideration are
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Fig. 22.1 The lateral projections and cross sections of SWCNTs with circular cross sections used
in our MD simulations. a—SWCNT with boundary wall having the perfect graphene structure;
b—SWCNT with amorphous bounding wall consisting of randomly distributed carbon atoms

kept constant (T = 300K for water and its mixture with methane, T = 108K for
liquid phase of methane, and T = 85K for liquid phase of argon) by employment of
the Berendsen thermostat [45].

As said above, we studied static and dynamic behavior of polar and nonpolar
model fluids and their mixtures confined by carbon nanotubes with circular and var-
ious rectangular cross sections. The lateral projection and cross section of SWCNT
with circular cross section and boundary wall having the perfect graphene struc-
ture are shown in Fig. 22.1a, whereas Fig. 22.1b demonstrates lateral projection and
cross section of analogous SWCNT but with amorphous bounding wall consisting
of randomly distributed carbon atoms. The lateral projections and cross sections
of SWCNT with square cross section, SWCNT with rectangular cross section and
with the ratio between its sides 1 : 2, SWCNT with rectangular cross section and
with the ratio between its sides 1 : 4 are shown in Fig. 22.2a, b, and c, respectively.
One can see that these tubes with rectangular cross sections have boundary walls
with the perfect graphene structure. We also studied behavior of polar and nonpolar
model fluids and their mixtures confined by analogous rectangular SWCNTs with
amorphous bounding walls.

All abovementioned carbon nanotubes have the same length L = 3.8 nm and
the cross-sectional area S = 1.77 nm2. Since the carbon atoms in these CNTs are
connected to each other with very strong covalent bonds [46] with the interaction
constants much larger than the LJ interaction constants εCH2O , εCAr , and εCCH4,
these atoms are considered to be fixed at their equilibrium sites. This approximation
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Fig. 22.2 The lateral projections and cross sections of SWCNTs with rectangular cross sections
used in our MD simulations. a—SWCNT with square cross section; b—SWCNT with rectangular
cross section and with the ratio between its sides 1:2; c–SWCNTwith rectangular cross section and
with the ratio between its sides 1:4

is also supported by estimations of thermal vibrations of SWCNTs performed in [47].
According to these estimations, average amplitudes of such vibrations are of the order
of ∼0.01 nm that is significantly smaller than typical molecular sizes.
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22.3 Results of Simulations and Discussion

22.3.1 Equilibrium Structures Inside Carbon Nanotubes

In order to obtain equilibrium static structures of the water, argon, methane, and the
mixture of thewater andmethanemolecules inside SWCNTsunder consideration,we
performed MD simulations of free (without an external pressure drop) permeations
of particles of all fluids into these SWCNTs. These simulations started from the
initial configuration schematically depicted in Fig. 22.3a. This configuration is made
as follows: initially, we have two reservoirs of fluid particles separated from each
other by the wall consisting of carbon atoms. Then, we make a channel in this wall
and insert the corresponding SWCNT into the channel. Now, this SWCNT connects
two reservoirs with each other and fluid atoms (molecules) can freely permeate into
the SWCNT without any external action. For the mixture of the water and methane
molecules, both reservoirs contain initially equal numbers of the water and methane
molecules. After running during about 100000 time steps (one time step was equal
to 0.001 ps), one can reach the equilibrium configuration schematically shown in
Fig. 22.3b.

During simulation processes, the system under consideration is placed within the
parallelepiped simulation box of 6.332 × 6.332 × 6.332 nm3 in size, and the periodic
boundary conditions [44] are imposed on the system in x-, y-, and z-directions.

Figures22.4 and 22.5 demonstrate cross sections of equilibrium configurations
of water and methane molecules inside SWCNTs with circular cross sections. If
we look at these figures, it is easily seen that, despite the strong difference in the
structures of their bounding walls, the equilibrium structures of polar water and

Fig. 22.3 The lateral projection of initial and final equilibrium configurations considered in our
MD simulations. a—initial configuration; b—final equilibrium configuration. Blue circles are fluid
atoms (molecules) and red ones are carbon atoms
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Fig. 22.4 Cross sections of equilibrium water and methane structures (left panels) and corre-
sponding density profiles (right panels) inside SWCNTs with circular cross sections and bounding
walls with regular graphene structure. a—water; b—methane. ρ0 is the density of number of water
(methane) molecules inside SWCNT

nonpolar methane inside SWCNTs with circular cross sections are very similar (see
left panels in Figs. 22.4a, b, 22.5a, b). From these figures, one can conclude that both
polar water and nonpolarmethanemolecules aremainly placed inside such SWCNTs
on two coaxial cylindrical surfaces. The corresponding density profiles (right panels
in these figures) demonstrate twomaxima disposed at similar distances equal to about
σOO and σCH4CH4, respectively. It can be easily understood because both polar water
and nonpolar methane molecules interact with each other via LJ potentials (22.1)
with characteristic interaction lengths σOO and σCH4CH4, respectively. The polar
water molecules also interact via Coulomb-like dipole–dipole potential (22.2), but
this long-range interaction does not possess any characteristic interaction length.
Thus, the characteristic lengths σOO and σCH4CH4, respectively, are the only lengths
which have an influence on the water and methane equilibrium structures inside the
abovementioned SWCNTs.

From these figures, one can conclude that both polar water and nonpolar methane
molecules are mainly placed inside such SWCNTs on two coaxial cylindrical sur-
faces. The corresponding density profiles (right panels in these figures) demonstrate
two maxima disposed at similar distances equal to about σOO and σCH4CH4, respec-
tively. It can be easily understood because both polar water and nonpolar methane
molecules interact with each other via LJ potentials (22.1) with characteristic interac-
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Fig. 22.5 Cross sections of equilibrium water and methane structures (left panels) and correspond-
ing density profiles (right panels) inside SWCNTs with circular cross sections and bounding walls
with amorphous structure. a—water; b—methane

tion lengths σOO and σCH4CH4, respectively. The polar water molecules also interact
via Coulomb-like dipole–dipole potential (22.2), but this long-range interaction does
not possess any characteristic interaction length. Thus, the characteristic lengths σOO

and σCH4CH4, respectively, are the only lengths which have an influence on the water
and methane equilibrium structures inside the abovementioned SWCNTs.

Figure22.6a–l demonstrates cross sections of equilibrium configurations of water
molecules (Fig. 22.6a–c), argon atoms (Fig. 22.6d–f),methanemolecules (Fig. 22.6g–
i), and mixture of water and methane molecules (Fig. 22.6j–l) inside SWCNTs with
the described above rectangular cross sections shown in Fig. 22.2a, b, and c.

The corresponding density profiles along z (vertical) and y (lateral) directions
perpendicular to the tube x-axes are shown in Figs. 22.7, 22.8, 22.9, and 22.10. If we
look at Fig. 22.6a–l, it is clearly seen that, for all types of liquid atoms (molecules),
the main features of the corresponding equilibrium structures are similar, and these
features are defined by the shapes of SWCNT cross sections. For example, all liquid
atoms (molecules) inside SWCNTs with square cross sections form structures with
square-like cross sections which are reduced replicas of the SWCNTs ones (see
Fig. 22.6a, d, g, j). All liquid atoms (molecules) inside SWCNTs with rectangular
cross sections having the ratio 1 : 2 between their sides form equilibrium structures
consisting of two planes parallel to the vertical bounding walls (see Fig. 22.6b, e,
h, k). Finally, all liquid atoms (molecules) inside SWCNTs with rectangular cross



464 L. V. Mirantsev and A. K. Abramyan

Fig. 22.6 Cross sections of equilibrium structures of water molecules (a–c), argon atoms (d–f),
methanemolecules (g–f), and themixture of thewater andmethanemolecules (j–l) inside SWCNTs
with rectangular cross sections depicted in Fig. 22.2a–c. In all figures, brown circles denote the
bounding wall carbon atoms. In a–i, blue circles denote liquid atoms (molecules). In j–l, blue and
red circles denote the water and methane molecules, respectively. The equilibrium ratios between
the water and methane molecules are 43 : 59, 52 : 49, and 43 : 46 for SWCNTs with rectangular
cross sections with ratios between their sides equal to 1 : 1, 1 : 2, and 1 : 4, respectively

sections having the ratios 1 : 4 between their sides form equilibrium 2D structures
in a form of the plane parallel to the vertical bounding walls (see Fig. 22.6c, f, i, l).
Thus, the shape of the rectangular SWCNT cross sections plays a dominant role in
the formation of equilibrium structures of liquid atoms (molecules) inside SWCNTs.

It is simultaneously seen that the equilibrium structures depicted in Fig. 22.6a–l
demonstrate certain additional features depending on characteristics of concrete liq-
uid atoms (molecules) under consideration. It is easily seen that, inside all SWCNTs,
liquid structures formed by argon atoms are most ordered. For example, argon atoms
inside SWCNT with square cross section form nine well-ordered chains parallel to
the tube axis (see Fig. 22.8d). One of these chains coincides with the tube axis, and
other eight chains are disposed on bounding surfaces of imaginable parallelepiped
inside this SWCNT. Simultaneously, methane molecules inside the same SWCNT
form similar structure but with more smeared chains (see Fig. 22.6g). This fact is
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Fig. 22.7 Equilibriumdensity profiles for thewater insideSWCNTswith different rectangular cross
sections. a—The density profile along z-axis for SWCNT with square cross section. For symmetry
reasons, the analogous profile along y-axis should be similar. ρ0 = 0.61745 is the average density
in the tube in reduced MD units. b—The analogous profile for SWCNT with rectangular cross
section having the ratio between its sides 1 : 2. c—The density profile along y-axis for the same
SWCNT. ρ0 = 0.5996. d—The density profile along z-axis for SWCNT with rectangular (cross
section having the ratio between its sides 1 : 4. e—The density profile along y-axis for the same
SWCNT. ρ0 = 0.44619
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Fig. 22.8 Equilibrium density profiles for argon atoms inside SWCNTs with different rectangular
cross sections. a—The density profile along z-axis for SWCNT with square cross section. ρ0 =
0.53368. b—The analogous profile for SWCNT with rectangular cross section having the ratio
between its sides 1 : 2. c—The density profile along y-axis for the same SWCNT. ρ0 = 0.52252.
d—The density profile along z-axis for SWCNT with rectangular cross section having the ratio
between its sides 1 : 4. e—The density profile along y-axis for the same SWCNT. ρ0 = 0.41445
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Fig. 22.9 Equilibrium density profiles for methane molecules inside SWCNTs with different rect-
angular cross sections. a—The density profile along z-axis for SWCNT with square cross section.
ρ0 = 0.51835.b—The analogous profile for SWCNTwith rectangular cross section having the ratio
between its sides 1 : 2. c—The density profile along y-axis for the same SWCNT. ρ0 = 0.38506.
d—The density profile along z-axis for SWCNT with rectangular cross section having the ratio
between its sides 1 : 4. e—The density profile along y-axis for the same SWCNT. ρ0 = 0.25177
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Fig. 22.10 Equilibrium density profiles for mixtures of water and methane molecules inside SWC-
NTswith different rectangular cross sections,1—thewater profiles, 2—themethane profiles.a—The
density profile along z-axis for SWCNTwith square cross section. ρ0 = 0.4597. b—The analogous
profile for SWCNT with rectangular cross section having the ratio between its sides 1 : 2. c—The
density profile along y-axis for the same SWCNT. ρ0 = 0.45357. d—The density profile along
z-axis for SWCNT with rectangular cross section having the ratio between its sides 1 : 4. e—The
density profile along y-axis for the same SWCNT. ρ0 = 0.40112
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also reflected in Fig. 22.8a and Fig. 22.9a, which demonstrate the density profiles
along z-axis for argon atoms and methane molecules inside the same SWCNT with
square cross section. One can see that the density profile for argon atoms exhibits
three peaks having almost the same height and width equal to about 0.6 σAr . The
analogous profile for methane molecules has also three peaks, but the central one is
noticeably lower than two others, and the width of these peaks is about 0.6 σCH4 that
is about 10% larger than that of the analogous peaks in the density profile for argon
atoms. If we look at Fig. 22.3a which exhibits the cross section of the equilibrium
water structure inside the SWCNT with the square cross section and at Fig. 22.4a
demonstrating the corresponding density profile along z-axis, then we find that this
structure is much more disordered relative to those depicted in Fig. 22.6d and g for
argon atoms and methane molecules, respectively. Perhaps, it is due to the Coulomb-
like dipole–dipole interactions between polar water molecules which do not occur in
ensembles of nonpolar argon atoms and methane molecules. According to the Earn-
shaw theorem [48], an ensemble of particles interacting via Coulomb-like forces
cannot be maintained in a stable stationary equilibrium configurations. Thus, the
well-ordered structures of water molecules inside SWCNTs cannot exist for suffi-
ciently long times. If we look at Fig. 22.6j, which demonstrates the cross section of
the equilibrium structure formed by the mixture of water and methane molecules
inside SWCNT with square cross section, we can find that this structure resembles
the abovementioned structure formed by the pure methane inside the same SWCNT.
This fact is also confirmed by the density profiles for methane and water molecules
depicted in Fig. 22.10a. The density profile for methane molecules (curve 2) exhibits
three well-developed peaks of almost similar height, whereas the analogous profile
for water molecules (curve 1) demonstrates two well-developed peaks at the edges
and the strongly smeared central one. This fact can be explained by that the inter-
action constants εCH4 and εCCH4 for interactions between methane molecules and
those between methane molecules and boundary wall carbon atoms, respectively, are
significantly larger than analogous interaction constants εH2O and εCH2O for water
molecules. So, if we look at Fig. 22.6b, c, e, f, h, i, k, l, which demonstrate equilib-
rium structures formed by water molecules, argon atoms, methane molecules, and
the mixture of water and methane molecules inside SWCNTs with rectangular cross
sections having the ratios between their sides 1 : 2 and 1 : 4, and at Fig. 22.7b–e,
Fig. 22.8b–e, Fig. 22.9b–e, Fig. 22.10b–e demonstrating the corresponding equilib-
rium density profiles, we can conclude that the said above for equilibrium structures
inside SWCNT with square cross section is valid for equilibrium structures in all
SWCNTs with rectangular cross sections. The most ordered structures are exhib-
ited by argon atoms, whereas water molecules form most disordered structures, and
the positional order of structures formed by methane molecules and the mixtures
H2O + CH4 has an intermediate positional order.

It should be also noted that the shape of the SWCNT’s cross section and the
interaction constants ε and σ play very important role not only in equilibrium struc-
tures and average liquid densities inside SWCNTs but also in a compositions of
the mixture of water and methane molecules inside different SWCNTs. For exam-
ple, inside SWCNT with square cross section, the ratio between numbers of water
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and methane molecules is equal to 43:59, whereas inside SWCNTs with rectangular
cross sections these molecules occur in almost equal proportions, namely, 52:49 for
SWCNT with ratio between its sides 1:2 and 43:46 for SWCNT with the side ratio
1:4. This result can be qualitatively explained as follows. In the case of SWCNT
with square cross section, the distance between bounding walls is large enough for
both water and methane molecules. Therefore, the strengths of interactions between
liquidmolecules and boundingwalls, εCH2O and εCCH4, play amain role in their pen-
etration into SWCNTs, and the effective sizes of these molecules, σH2O and σCH4,
play a minor role. Since the interaction constant εCCH4 for the interaction between
methane molecules and bounding wall carbon atoms is noticeably larger than the
analogous interaction constant εCH2O for the water molecules, then the number of
methane molecules penetrating into SWCNT with square cross section is larger than
that of water molecules. For SWCNTs with rectangular cross sections having ratios
between their sides equal to 1:2 and 1:4, respectively, the distances between lat-
eral bounding walls along y-direction become sufficiently small for larger methane
molecules and not so small for smaller water molecules (effective diameter σCH4

of the methane molecule is about 10% larger than the analogous diameter σH2O

of the water molecule). Thus, for these SWCNTs, a competition between interac-
tions of different liquid molecules with bounding wall atoms and their molecular
sizes occurs, and these competition equalizes concentrations of water and methane
molecules inside such SWCNTs.

22.3.2 Fluid Flows Inside Carbon Nanotubes

Now, let us turn to results of MD simulations of polar water and nonpolar methane
and argon Poiseuille flows through the abovementioned SWCNTs under action of
the external pressure drop across these nanotubes. To simulate these flows, in the
equilibrium configurations depicted in Fig. 22.3b, we removed the liquid reservoirs
and applied periodic boundary conditions to edges of SWCNTs. The external pres-
sure drop across nanotubes was mimicked by the external force fx0 = 0.2 (in MD
units [44]) acting on each liquid particle inside SWCNTs. The fluid flow velocity
profiles obtained from our simulations of fluid flows through SWCNTs with circular
cross sections are shown in Figs. 22.11 and 22.12 for the polar water and nonpolar
methane, respectively.

One can see that, for both the polar water and nonpolar methane (see Figs. 22.11a
and 22.12a), the fluid flow velocity profiles for SWCNTs with circular cross section
and bounding walls with regular graphene structures demonstrate two sufficiently
sharp maxima separated from each other by the gaps with widths equal to about σOO

and σCH4CH4, respectively. One can also see that, for both the water and methane,
these two maxima have similar heights. It means that, inside SWCNTs with circu-
lar cross sections and bounding walls with regular graphene structure, both polar
water and nonpolar methane molecules move along two coaxial cylindrical sur-
faces depicted in Fig. 22.4a and b with similar velocities. Figures22.11b and 22.12b
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Fig. 22.11 The water flow velocity profiles for SWCNTs with circular cross section and with
bounding walls having regular graphene and amorphous structures. a—velocity profile for SWCNT
with circular cross section and bounding wall with regular graphene structure; b—velocity profile
for SWCNT with circular cross section and bounding wall amorphous structure

Fig. 22.12 Themethane flowvelocity profiles for SWCNTswith circular and cross section andwith
bounding walls having regular graphene and amorphous structures. a—velocity profile for SWCNT
with circular cross section and bounding wall with regular graphene structure; b—velocity profile
for SWCNT with circular cross section and bounding wall amorphous structure

demonstrate analogous velocity profiles for the polar water and nonpolar methane
flows, respectively, through SWCNTs with circular cross section and bounding walls
with random (amorphous) distributions of carbon atoms. One can see that, for the
nonpolar methane, the fluid flow velocity profile (see Fig. 22.12b) also demonstrates
twomaxima separated from each other by the gapwithwidth equal to aboutσCH4CH4.
The analogous polar water flow velocity profile depicted in Fig. 22.11b also have two
maxima of similar height, but these maxima are much wider than those shown in
Fig. 22.12b and they are not separated from each other by the gap seen in Fig. 22.12b.
It means that, inside SWCNT with circular cross section and amorphous bounding
wall, nonpolar methane molecules move along coaxial cylindrical surfaces similar to
those in the case of SWCNTs with circular cross section and bounding wall with reg-
ular graphene structure of carbon atoms. As for the motion of polar water molecules
through similar SWCNT, one can conclude from the velocity profile in Fig. 22.11b
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that this motion is les regular than that through SWCNT with circular cross section
and bounding wall with regular graphene structure of carbon atoms. For both the
polar water and nonpolar methane, the fluid flows through SWCNTs with circular
cross section and bounding wall with regular graphene structure are noticeably more
intensive than those through analogous SWCNTs with bounding walls having amor-
phous distribution of carbon atoms. The ratios between corresponding intensities are
equal to about 3:1 for the polar water and about 1.3:1 for the nonpolar methane.
This fact can be qualitatively understood if we assume that, during the fluid flow
through SWCNTs with bounding walls having regular graphene structure of carbon
atoms, the fluid molecules can find more or less “easy” trajectories for their motion,
whereas, for SWCNTs with bounding walls with amorphous distribution of carbon
atoms, such “easy” trajectories are absent.

Now, let us turn to results ofMD simulations of Poiseuille flows of the polar water,
nonpolar methane and argon, and the mixture of the water and methane through
the abovementioned SWCNTs with rectangular cross sections under action of the
external pressure drops across these nanotubes. The external pressure drop across
such nanotubes is also mimicked by the external force fx0 acting on each liquid
particle inside SWCNTs. In order to calculate velocity profiles, we divide the space
inside these carbon nanotubes into very thin sublayers parallel to the top and bottom
bounding walls and calculate average molecular velocities inside these sublayers
as a function of z-coordinates of their centers. These fluid flow velocity profiles
obtained from our simulations are shown in Fig. 22.13a–c for the polar water, the
nonpolar argon, and the mixture of the water and methane, respectively. The profiles
for the water and argon flows are obtained for the external force equal to fx0 =
0.05 (in reduced MD units [44]), and for the flow of the mixture of the water and
methane fx0 = 0.1. The nonpolar methane flow through all rectangular SWCNTs
under consideration at these values of fx0 is absent. This case will be discussed
below.

One can see from Fig. 22.13a–c that fluid flows through SWCNTs with rectan-
gular cross sections depend strongly on both the type of the fluid inside the tube
and the shape of its cross section. For example, it is easily seen that, for the polar
water, the average flow velocity vaverx should have a maximum value for SWCNT
having rectangular cross section with the ratio between its side 1 : 4 (vaverx = 1.15
in MD units). The intermediate value vaverx = 0.97 corresponds to the water flow
through SWCNT having rectangular cross section with the ratio between its side 1:2,
and the minimum value vaverx = 0.28 exhibits the water flow through SWCNT with
square cross section. For nonpolar argon, the average fluid flow velocity has also the
minimum value vaverx = 0.08 in the case of SWCNT with square cross section but
the results for two SWCNTs with other rectangular cross sections change places:
the maximum average flow velocity vaverx = 1.2 corresponds to SWCNT with the
rectangular cross section with the ratio between sides 1:2, and the fluid flow through
other SWCNT with rectangular cross section has the intermediate average fluid flow
velocity vaverx = 0.7. Finally, for the mixture of polar water and nonpolar methane,
we have the maximum value vaverx = 0.8 in the case of SWCNT with the square
cross section, the minimum value vaverx = 0.03 for SWCNT having the rectangular



22 Equilibrium Structures and Flows of Polar and Nonpolar Fluids in Nanochannels 473

Fig. 22.13 The fluid flow velocity profiles for flows of polar water molecules, nonpolar argon
atoms, and mixtures of water and methane molecules through SWCNTs with different rectangular
cross sections. a—fluid flow velocity profiles for water molecules, b and c—analogous profiles for
argon atoms and mixtures of water and methane molecules, respectively. fx0 = 0.05 for 13a and
13b, and fx0 = 0.1 for 13c. Curves 1 in all figures correspond to SWCNTwith square cross section;
curves 2 and 3 correspond to SWCNTs with rectangular cross sections having the ratio between
their sides 1:2 and 1:4, respectively

cross section with the ratio between sides 1:2, and the intermediate average fluid flow
velocity vaverx = 0.4 corresponds SWCNT with other rectangular cross section. At
first glance, it is not easy to give a plausible explanation of these somewhat intricate
results. However, the following qualitative considerations can be made.

It is clear that the flow of liquid particles through SWCNTs is governed by the
external force fx0, which is a given constant, and by certain retarding forces due to
the interactions between liquid atoms (molecules) and bounding wall carbon atoms.
It is also clear that the stronger these interactions the stronger retarding forces, and,
hence, the slower the fluid flow. In our simulations, the interactions between liquid
atoms (molecules) and the bounding wall carbon atoms are modeled by means of the
LJ pairwise potentials which are characterized by the abovementioned interaction
constants εCH2O , εCCH4, εCAr , and characteristic lengths σCH2O , σCCH4, σCAr . It is
also well known that these LJ potentials have the minimum disposed at the distance
r∗ to a given carbon atom equal to r∗ = 21/6σ , and, at this minimum, the force acting
on the liquid particle is equal to zero. When the distance between the liquid particle
and the carbon atom is less than r∗ this force is repulsive, and for distances larger
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than r∗ it is attractive. When we study the flow of the same liquid particles through
different SWCNTs, the interaction constant ε for LJ interactions between liquid
particles and bounding wall carbon atoms is the same for all SWCNTs, and only
distances between wall atoms and liquid particles define a difference in their flows.
Let us consider the water flows through different rectangular SWCNTs. It is easy to
calculate average minimum distances daver

min from water molecules to the bounding
wall carbon atoms corresponding to equilibrium structures of water molecules inside
these SWCNTs depicted in Fig. 22.6a–c. These distances are equal to 1.0223σH2O

for SWCNTwith square cross section, 1.03σH2O for SWCNTwith rectangular cross
section with the ratio between its sides 1:2, and 1.064σH2O for SWCNT with other
rectangular cross section with analogous ratio equal to 1:4. The distance r∗ for LJ
interactions between water molecules and bounding wall carbon atoms is equal to
r∗ = 1.131σH2O . One can see that, for all these SWCNTs, daver

min is smaller than
r∗, and, therefore, inside these nanotubes, the forces acting on water molecules
from bounding wall carbon atoms are repulsive. In addition, the larger difference
between r∗ and daver

min the stronger these forces. Hence, these forces are strongest for
SWCNT with square cross section, they are weakest for SWCNT with rectangular
cross section having the ratio between its sides 1:4, and for other SWCNT with
rectangular cross section we have an intermediate value for the force between water
molecules and bounding wall carbon atoms. So, one can conclude that the water flow
through SWCNTwith rectangular cross section having the ratio between its sides 1:4
should be fastest, for water flow through SWCNT with square cross section should
be slowest, and the water flow through SWCNT with other rectangular cross section
should have intermediate average liquid flow velocity. These speculations are in a
qualitative agreement with the velocity profiles depicted in Fig. 22.8a. One can repeat
such qualitative analysis for the flow of argon atoms through the abovementioned
SWCNTs with rectangular cross sections. For equilibrium structures of argon atoms
inside these nanotubes depicted in Fig. 22.3d–f, we obtain the values of daver

min equal
to 0.96σAr , 0.98σAr , and 0.97σAr for SWCNTs having rectangular cross sections
with the ratios between their sides equal to 1:1, 1:2, and 1:4, respectively, and r∗ for
LJ interactions between argon and carbon atoms equal to r∗ = 1.089σAr . Therefore,
inside all these SWCNTs, argon atoms are subjected to repulsive forces from the
bounding wall carbon atoms, and these forces are strongest for SWCNT with square
cross section, weakest for SWCNT with rectangular cross section with the ratio
between its sides 1:2, and they have an intermediate value for other SWCNT with
rectangular cross section. Then, the argon flow should be fastest for SWCNT having
the rectangular cross section with the ratio between its sides 1:2, the average fluid
flow velocity should be lowest for SWCNT with square cross section, and the argon
flow through SWCNT having rectangular cross section with the ratio between its
sides 1:4 should have an intermediate value of the average fluid flow velocity. The
results of this analysis are also in a qualitative agreement with the fluid flow profiles
depicted in Fig. 22.13b.

As said above, for the external forces equal to fx0 = 0.05 and fx0 = 0.1, the flow
of methane molecules through all SWCNTs under consideration is absent. There-
fore, we increased little by little the external force fx0 and found that there are
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certain threshold or critical values of fx0, f cx0, above which methane molecules can
flow through SWCNTs with rectangular cross sections. These critical values, which
can be considered as certain strengths of breakaway, depend strongly on the shape of
SWCNT cross sections. We found that, for SWCNT with the square cross section,
f cx0 = 0.275 (in reduced MD units), for SWCNT with the rectangular cross section
with the ratio between its sides 1:2, f cx0 = 0.15, and, for SWCNT having the rect-
angular cross section with the ratio between its sides 1:4, f cx0 = 0.8. The following
questions arise: (i) why the liquid methane flows through SWCNTs with rectangular
cross sections demonstrate an existence of strengths of breakaway that is absolutely
not inherent to flows of ordinary liquids?; (ii) why we do not observe such strengths
of breakaway for the water and argon flows through the same SWCNTs?; and (iii)
how can we explain the abovementioned dependence of f cx0 on the shape of the
SWCNT cross sections?. The answer to the first question seems to be sufficiently
obvious. If we look at Fig. 22.6a–i, which exhibit equilibrium structures of argon
atoms and water and methane molecules inside SWCNTs under consideration, we
can see an occurrence of different types of positional order which is not inherent to
an ordinary liquid phase. Thus, fluid atoms (molecules) inside our SWCNTs form
solid-like structures, and, as is well known, the strength of breakaway is a typical
phenomenon for sliding a solid along a solid surface.

The answer to the second question is also simple enough. The interaction con-
stant εCCH4, which defines a strength of interaction between methane molecules and
bounding wall carbon atoms, is considerably larger than analogous constants εCH2O

and εCAr which define strengths of interactions between bounding wall carbon atoms
and water molecules and argon atoms, respectively. In addition, the effective size of
methane molecules, σCH4, is larger than effective sizes of argon atoms σAr and water
molecules σH2O . Therefore, the interaction between methane molecules and bound-
ing wall carbon atoms is significantly stronger than analogous interactions of water
molecules and argon atoms. Perhaps, their flows through SWCNTs under consider-
ation could also exhibit certain strengths of breakaway, but these strengths are much
lower than the force fx0 used to drive argon atoms and water molecules.

In order to answer to the third question, we should, as we made above, calcu-
late average minimum distances daver

min between methane molecules and bounding
wall carbon atoms for equilibrium structures formed by methane molecules inside
SWCNTs under consideration. Our calculations give daver

min = 0.94σCH4 for SWCNT
with square cross section, daver

min = 0.95σCH4 for SWCNT having rectangular cross
section with the ratio between its sides 1 : 2, and daver

min = 0.89σCH4 for SWCNT
with other rectangular cross section. We also obtain r∗ = 1.055σCH4 for LJ interac-
tions between methane molecules and bounding wall carbon atoms. Repeating the
above reasoning about relationship between difference r∗ − daver

min and the strength
of interactions between liquid particles and bounding wall carbon atoms, one can
conclude that such interaction between methane molecules and carbon atoms should
be strongest for SWCNT having rectangular cross section with the ratio between its
sides 1:4, weakest for SWCNTwith other rectangular cross section, and intermediate
for SWCNT with square cross section. Thus, one can explain why the strength of
breakaway should be highest for SWCNT with rectangular cross section with the
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ratio between its sides 1:4, lowest for SWCNT with other rectangular cross section,
and intermediate for SWCNT with square cross section.

The qualitative explanation of velocity profiles for the flows of the mixture
H2O + CH4 through SWCNTs with different rectangular cross sections depicted
in Fig. 22.13c can be obtained by means of similar analysis. Since in this mixture,
methane molecules are characterized by largest constant εCCH4 for LJ interactions
of these molecules with bounding wall carbon atoms, they are subjected to strongest
retarding forces fromboundingwalls. The stronger these forces the slower the fluid of
water and methane molecules through SWCNT and vice versa. Therefore, we should
calculatedaver

min formethanemolecules in equilibriumstructures formedby themixture
H2O+CH4 inside SWCNTswith different rectangular cross sections (see Fig. 22.3j–
l) and compare these values with r∗ for LJ interactions between methane molecules
and bounding wall carbon atoms. Such calculations give daver

min = 1.097σH2O for
SWCNTwith the square cross section, daver

min = 1.069σH2O for SWCNTwith the rect-
angular cross section with the ratio between its sides 1:2, and daver

min = 1.075σH2O

for SWCNT with other rectangular cross sections. r∗ for LJ interactions between
methane molecules and carbon atoms is equal to r∗ = 1.089σH2O . Then, one can
see that the value daver

min for SWCNT with the square cross section is closest to r∗,
daver
min for SWCNT with rectangular cross section with the ratio between sides is most
different from r∗, and daver

min for SWCNT with other rectangular cross section has an
intermediate value between two abovementioned ones. Then, one can conclude that
the flow of the mixture H2O + CH4 through SWCNT with the square cross section
should be fastest, the flow of this mixture through SWCNT with the rectangular
cross section with the ratio between its sides 1:2 should be slowest, and the flow of
such mixture through SWCNT with other rectangular cross section should have an
intermediate average flow velocity. It is easily seen that these conclusions are in a
qualitative agreement with the velocity profiles depicted in Fig. 22.13c.

By analogy with previous papers devoted to investigation of fluid flows through
carbon nanotubes [10, 49]we can calculate the so-called enhancement factor for fluid
flows through CNTs, i.e., the ratio between average fluid flow velocities obtained
from our MD simulations and those given by classic Hagen–Poiseuille equation for
flows of similar fluids through the round nanoporewith the same length and the cross-
sectional area [25]. If we remember that the reduced MD unit of the velocity is equal
to VMD = (ε/m)1/2, we can obtain for water molecules VMDH2O = 1.9 × 104 cm/s
and for argon atoms VMDAr = 1.57 × 104 cm/s. The expression for the MD unit of
the force fMD = ε/σ) gives fMDH2O = 3.42 × 10−7 dyn and fMDAr = 4.85 × 10−7

dyn. Then, taking into account that the pressure gradient along nanotube �P/�L
can be calculated as �P/�L = fx0ntube, where ntube is the average particle number
density inside nanotube, and that the macroscopic viscosities of water (at 300K)
and liquid argon (at 85K) are equal to 10−2 [43] and 2.78 × 10−3 g/cm s, respec-
tively, we can obtain the following enhancement factors Q for abovementioned
rectangular SWCNTs at fx0 = 0.05: QH2O(rect1 : 4) = 2850; QH2O(rect1 : 2) =
1990; QH2O(square) = 695; QAr (rect1 : 4) = 299; QAr (rect1 : 2) = 513; and
QAr (square) = 34. For a comparison, we also calculated the analogous enhance-
ment factors for SWCNTwith the same length and circular cross section. This calcu-
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lation gives QH2O(circular) = 922 and QAr (circular) = 269. From these results,
one can conclude that the enhancement factor for the polar water flows for all nan-
otubes under consideration is significantly larger than that for the nonpolar argon
flows. In addition, the enhancement factor for both polar and nonpolar liquid flows
through SWCNTswith rectangular cross sections is larger than that for SWCNTwith
circular cross section whereas the enhancement factor for flows through SWCNT
with square cross section is smaller than that through SWCNT with circular one.

As said above, for external driving force fx0 = 0.05, argon atoms and water
molecules flow through SWCNTs with different rectangular cross sections with
steady and finite average flow velocities vaverx . It means that, since the external force
fx0 is switched on, liquid particles begin to move along the tube axis with certain
accelerations until the average fluid flow velocity achieves the steady value vaverx .
This is a quite expected behavior of fluid flows through SWCNTs. However, when
the external driving force is two times larger, fx0 = 0.1, the situation changes radi-
cally, and one can observe two drastically different behaviors that depend on types
of fluid particles and the shapes of rectangular sections of SWCNTs. In the case of
the water flows through SWCNTs with different rectangular cross sections, one can
observe again the flows with steady average flow velocities vaverx , which are higher
than those for fx0 = 0.05, but remain finite. For argon atom flows through SWCNTs
with square cross section and rectangular cross section with the ratio between its
sides 1:2, one can observe the similar fluid flows with steady and finite flow veloci-
ties (see curves 1 and 2 in Fig. 22.14a). This figure exhibits time dependences of vaverx
averaged over subsequent time intervals with a duration equal to 100 MD time units
(symbols on these curves correspond to central points of such time intervals). One
can see that, for argon flows through SWCNTs with such rectangular cross sections,
the fluid flow velocities averaged over subsequent time intervals first grow with time
and then reach saturation at certain steady and finite values. However, for argon flow
through SWCNT with the rectangular cross section with the ratio between its sides
1:4, the fluid flow velocity averaged over abovementioned subsequent time intervals
exhibits an unlimited growth with no signs of saturation. Moreover, if we then switch
off the external force ( fx0 = 0, the average flow velocity remains constant with no
signs of decay (curve 4 in Fig. 22.14a).

In order to understand such extraordinary behavior of argon flows through SWC-
NTs with different rectangular cross sections, we must analyze a time dependence
of all forces acting on argon atoms during their flows through SWCNTs. Each atom
(molecule) inside SWCNT is subjected to two forces directed along the tube axis,
namely, the external driving force fx0 and retarding force fr x due to interactions
between a given atom (molecule) and bounding wall carbon atoms. The external
driving force fx0 is constant, and typical time dependence of instant value of fr x is
shown in Fig. 22.14b. It is easily seen that this time dependence has a stochastic-like
character, andwemust perform time averaging of this force over the abovementioned
subsequent time intervals. The results of such time averaging for argon flows through
SWCNTs with different rectangular cross sections are shown in Fig. 22.14c, which
exhibits time dependences of the ratio | fr x |/ fx0, where | fr x | is the absolute value of
the time-averaged retarding force fr x (if fx0 is positive fr x after time averaging is
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Fig. 22.14 Time dependences of average argon flow velocities vaverx through SWCNTs with dif-
ferent rectangular cross sections and analogous dependences for retarding forces acting on argon
atoms fromboundingwall carbon ones. a—time dependence of vaverx averaged over subsequent time
intervalswith duration equal to 100 reducedMDunits.b—typical time dependence of instant retard-
ing force fr x acting on argon atoms from bounding wall carbon atoms during argon flow through
SWCNT with rectangular cross section with the ratio between its sides 1 : 4. c—time dependences
of the ratios | fr x |/ fx0 averaged over above subsequent time intervals during the argon atom flows
through SWCNTs with different rectangular cross sections. In 8a and 8c curve 1 corresponds to
SWCNT with square cross section; curves 2 and 3 correspond to SWCNTs with rectangular cross
sections having the ratios between their sides 1:2 and 1:4, respectively. For all figures fx0 = 0.1

always negative) for argon flows through SWCNTs with different rectangular cross
sections. One can see from this figure that for argon flows through SWCNTs with
square cross section and rectangular cross section with the ratio between its sides 1
: 2, the ratios | fr x |/ fx0 first grow with time and then reach saturation at the steady
value equal to nearly 1 (curves 1 and 2). It means that the absolute value of the
time-averaged retarding force fr x becomes equal to the external driving force fx0,
but it has an opposite sign. As a result, the total force acting on carbon atoms during
their flows through SWCNTs vanishes, and they move with certain constant time-
averaged velocities. One can also see from this figure (curve 3) that, for argon flow
through SWCNT with rectangular cross section having the ratio between its sides
1:4, the ratio | fr x |/ fx0 decays with time to nearly zero, and argon atoms begin to
move along tube axis in a ballistic regime. This fact can explain the unlimited growth
of the average fluid velocity during argon flow through SWCNT with such rectan-
gular cross section under action of the external driving force fx0 = 0.1. It should be
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noted that qualitatively similar phenomenon, namely, ballistic frictionless gas flow
through two-dimensional channels made from graphene or boron nitride has been
experimentally observed [34].

At first glance, this phenomenon seems to be somewhat similar to the superfluidity
that occurs, for example, in helium-4 near the absolute zero [25]. However, there are
several principal differences between well-known regular classic superfluidity and
our results on argon flow through SWCNT with one of the abovementioned rectan-
gular cross sections. First of all, the regular classic superfluidity is the macroscopic
quantum phenomenon whereas our MD simulations are based on the usual classic
mechanics. Secondly, our “pseudo-superfluidity” depends on the shape of the cross
section of SWCNT, whereas the “true” superfluidity is independent of shapes of
channels. Thirdly, when the external driving force is equal to fx0 = 0.05, the aver-
age fluid argon flow velocity through our SWCNT is finite, whereas disappearance
of viscosity of helium-4 depends only on its temperature and does not depend on the
external driving forces. Thus, the results of our simulations on the liquid argon flows
through SWCNTs with rectangular cross sections have nothing to do with the clas-
sic superfluidity. Perhaps, these results are due to a combination of several factors,
namely, the equilibrium structure formed by argon atoms inside SWCNT with the
rectangular cross section with the ratio between its sides 1:4, and the time averaging
of retarding forces acting on argon atoms from bounding wall carbon atoms. May
be, the analysis of the time dependence of the instant retarding force fr x depicted in
Fig. 22.9b will allow us to elucidate this challenge.

22.3.3 Equilibrium Fluid Structures Between Different
Bounding Substrates

We also studied equilibrium static structures of the polar water molecules and non-
polar argon atoms between different carbon substrates mentioned in Introduction.
All these carbon substrates have the same length in x-direction Lx = 3.96 nm, the
width in y-direction Ly = 4.1 nm, and the distance between them in z-direction is
equal to h = 1.5 nm. Though some of these substrates have the graphene-like crys-
talline structure, and others are formed by randomly distributed carbon atoms, the
total numbers of carbon atoms inside these substrates are the same and equal to 1090.
As said above, carbon atoms in such bounding substrates are also connected to each
other with very strong covalent bonds with the interaction constants much larger than
the LJ interaction constants εCH2O and εCAr , and these atoms are considered to be
fixed at their equilibrium sites. In order to obtain equilibrium static structures formed
by the water molecules and argon atoms between the abovementioned substrates, we
also performed MD simulations of free permeations of water molecules and argon
atoms into the space between these substrates, and these simulations also started
from the initial configurations similar to those depicted in Fig. 22.3a in which two
reservoirs of water molecules or argon atoms are separated from each other by the
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Fig. 22.15 a, b, and c demonstrate the lateral (xz) projections of equilibrium structures formed
by water molecules between two similar substrates with graphene-like crystalline structures, two
similar amorphous substrates, and one top substrate with graphene-like crystalline structure and
another bottom substrate with amorphous structure. d, e, and f demonstrates the lateral projections
of equilibrium structures formed by argon atoms between the same substrates

wall consisting of carbon atoms and connected with a channel containing the cor-
responding substrates. After running during about 100000 time steps (one time step
was equal to 0.001 ps), one can reach the equilibrium configurations formed by the
water molecules and argon atoms between bounding substrates. During simulation
processes, the system under consideration is placed within the cubic simulation box
of 6.332 × 6.332 × 6.332 nm3 in size, and the periodic boundary conditions [44]
are imposed on the system in x-, y-, and z-directions.

Figure22.15a, b, c demonstrates the lateral (x, z) projections of equilibrium con-
figurations formed bywatermolecules between two carbon substrateswith graphene-
like crystalline structure, between two carbon substrates with amorphous structure,
and between one substrate with graphene-like crystalline structure and other sub-
strate with amorphous structure, respectively, and Fig. 22.16a, b, c demonstrates the
corresponding density profiles along z-axis. Figure22.15d, e, f demonstrates equi-
librium structures formed by argon atoms between abovementioned substrates, and
Fig. 22.17a, b, c demonstrates the corresponding density profiles. One can see that,
for all cases under consideration, argon atoms form very similar layered structures,
and the corresponding density profiles demonstrate three sufficiently sharp peaks.
At the same time, for all configurations under consideration, water molecules form
structures with more or less developed layers near substrates and spatially disor-
dered formations in the middle. The corresponding density profiles demonstrate two
peaks disposed near substrates and the bell-like dependencies between them. Thus,
one can conclude that water molecules disposed between bounding substrates form
structures spatially less ordered than analogous structures formed by argon atoms.
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Fig. 22.16 The density profiles corresponding to equilibrium structures depicted in
Fig. 22.15a, b, c

As said above, it may be due to the Coulomb-like interactions between polar water
molecules which do not occur in ensembles of nonpolar argon atoms. According
to the abovementioned Earnshaw theorem [48], an ensemble of particles interact-
ing via Coulomb-like forces cannot be maintained in a stable stationary equilibrium
configurations, and, hence, the well-ordered structures of water molecules between
bounding substrates cannot exist for sufficiently long times.

22.3.4 The Couette Flows of Polar Water Molecules and
Nonpolar Argon Atoms Between Different Bounding
Substrates

Now, let us turn to results of MD simulations of Couette flows of polar water
molecules and nonpolar argon atoms between abovementioned bounding substrates.
To simulate these flows, in the above equilibrium configurations, we remove the liq-
uid reservoirs and all particles outside the space confined by the bounding substrates.
Then we apply periodic boundary conditions to edges of these substrates and give
a constant velocity Vx0 along the x-axis to all carbon atoms of one of them. We
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Fig. 22.17 The density profiles corresponding to equilibrium structures depicted in
Fig. 22.15d, e, f

set Vx0 = 0.5 (in reduced MD units [44]). After running during about 100000 time
steps,we reach equilibriumCouette flows, and then during the next 500000 time steps
we calculate their equilibrium velocity profiles. In order to calculate these velocity
profiles, we divide the space between bounding substrates into very thin sublayers
parallel to the top and bottom substrates and calculate average atomic (molecular)
velocities inside these sublayers as a function of z-coordinates of their centers.

The fluid flow velocity profiles obtained from our simulations are shown in
Fig. 22.18 for the polar water, and in Fig. 22.19 for the nonpolar argon. One can see
that, for water molecules, the velocity profiles for similar substrates with graphene-
like crystalline structures and amorphous structures are qualitatively similar (curves
1 and 2, respectively). Both profiles exhibit moderate enough decay with approach-
ing the bottom fixed substrate. Nevertheless, the average flow velocity in the case of
substrates with graphene-like structure is about 18 percent higher than that for the
carbon substrates with amorphous structure. As for the case of two substrates with
different structures, the corresponding velocity profiles and average flow velocities
depend strongly on which of the substrates is moving and which is at the rest. When
the substrate with graphene-like crystalline structure is moving and the substrate
with amorphous structure is fixed, the resulting Couette flow is very weak (curve 3),
and the corresponding average flow velocity is more than ten times lower than the
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Fig. 22.18 The fluid velocity profiles for the Couette flows of water molecules between different
bounding substrates. 1—both substrates have graphene-like crystalline structures, 2—both sub-
strates have amorphous structures, 3—the top substrate with crystalline-like structure is moving
whereas the bottom substrate with amorphous structure is fixed, 4—the opposite case when the
bottom substrate with amorphous structure is moving whereas the top substrate with graphene-like
crystalline structure is fixed

Fig. 22.19 The Couette flow
velocity profiles for argon
atoms analogous to those
depicted in Fig. 22.18

velocity Vx0 of the moving top substrate with graphene-like crystalline structure. In
the opposite case, when the carbon substrate with amorphous structure is moving
(curve 4), the velocity profile exhibits a very weak decay with approaching the fixed
top substrate, and the average flow velocity is only about ten percent lower than Vx0.
In addition, in this case, the average flow velocity is significantly higher than those
for the Couette flows between similar top and bottom substrates.
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The results obtained could be qualitatively explained as follows. Themotion of the
substrate relative to fluid particles is equivalent to themotion of fluid particles relative
to the substrate in an opposite direction. In our previous paper [37], it was shown that
the time-averaged force acting on amoving fluid particle from the carbon surfacewith
graphene-like crystalline structure should be much weaker than the analogous force
from the carbon surface with amorphous structure. Therefore, when two bounding
substrates have similar structure, the driving and retarding forces acting on fluid
particles frommoving and fixed substrates, respectively, should be similar. When the
bounding substrates have different structures and themoving substrate has graphene-
like crystalline structure whereas the fixed substrate has amorphous structure, the
retarding force should be stronger than the driving one. On the contrary, when the
moving substrate has amorphous structure and the fixed substrate has graphene-like
crystalline structure, the driving force should be stronger than the retarding one. This
speculation could, in principle, explain at the qualitative levelwhy theCouette flowof
water molecules is strongest for the configuration with different bounding substrates
when the moving substrate has amorphous structure. The same speculation could
explainwhy theCouette flow isweakest for the configurationwith different bounding
substrates when the moving substrate has graphene-like crystalline structure.

The velocity profiles for the Couette flows of nonpolar argon atoms depicted in
Fig. 22.19 are strongly different from the abovementioned profiles for polar water
molecules. It is easily seen that these profiles have shapes of either sharp enough
(curve 4) or sufficiently smooth (curves 1 and 2) peaks due to the layered structures
formed by argon atoms between the bounding substrates (see Fig. 22.15a, b, c).
Nevertheless, as in the case of polar water molecules, the Couette flow velocities
for similar bounding substrates have sufficiently moderate values. The average flow
velocity for substrates with graphene-like crystalline structure is about 0.07, and, for
the substrates with amorphous structure, this velocity is about 0.1. For the Couette
flows between bounding substrates with different structures, one can see a drastic
difference between two abovementioned cases of flow (see curves 3 and 4). When
the top substrate with graphene-like structure is moving and the bottom substrate
with amorphous structure is fixed, the Couette flow is practically absent, whereas
in opposite case, when the bottom substrate is moving, the average flow velocity is
almost equal to the velocity Vx0 of the moving substrate. The explanation of this
fact is similar to the abovementioned explanation for the Couette flows of water
molecules between bounding substrates with different structures. It should be noted
that, for argon atom flows between such bounding substrates, the difference between
two cases of flow, i.e., when the top substrate is moving and the bottom substrate is
fixed and vice versa, is more pronounced than for the same flows of water molecules.
Perhaps, this is due to the fact that argon atoms form between bounding substrates
more spatially ordered structures than the water molecules.
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22.4 Conclusion

We performed MD simulations of equilibrium structures and flows of polar water,
nonpolar argon and methane, and mixtures of water and methane confined by SWC-
NTs with circular and different rectangular cross sections having the same area, and
bounding walls with regular graphene structure and random (amorphous) distribu-
tion of carbon atoms. The results of our simulations show that equilibrium structures
of all confined fluids depend mainly on the shape of the SWCNT’s cross sections,
namely, the cross sections of these structures resemble replicas of those of SWCNTs.
Nevertheless, the types of fluids confined by abovementioned SWCNTs also have
some influence on their equilibrium structures. For example, the results of performed
MD simulations revealed that nonpolar argon atoms form inside all SWCNTs the
most spatially ordered equilibrium structures, whereas polar water molecules form
the least spatially ordered ones. As for the external pressure-driven flows of all above-
mentioned fluids through SWCNTs with different cross sections, these flows depend
strongly on both the shapes of cross sections and the type of the confined fluids. Our
MD simulations revealed that, for nonpolar methane inside SWCNTs with different
rectangular cross sections, there are critical values fxc of the external driving force
below which the average flow velocity is nearly zero, and above which the liquid
methane flow occurs. Our simulations also revealed that these critical values depend
strongly on the shape of rectangular cross sections of our SWCNTs. Perhaps, this
phenomenon, which is absolutely not inherent to flows of ordinary fluids, is due to
a certain spatial order formed by argon and methane atoms inside SWCNTs with
rectangular cross sections. Another interesting phenomenon was revealed from our
MD simulations of the liquid argon flows through SWCNTs with rectangular cross
sections. It was found that, for a sufficiently large value of the external driving force,
the liquid argon flow through SWCNT with rectangular cross section with the ratio
between its sides 1 : 4 demonstrates the ballistic frictionless regime when the fluid
flow velocity-averaged over consecutive time intervals exhibit an unlimited growth
with no signs of saturation. Moreover, if we then switch off the external driving force
the average flow velocity remains constant with no signs of decay. Though this phe-
nomenon seems to be similar to the “classic” superfluidity that occurs, for example, in
helium-4 near the absolute zero, there are several principal differences between this
“true” superfluidity and our results on argon flow through SWCNT with the above-
mentioned rectangular cross section. The main difference is that the regular classic
superfluidity is the macroscopic quantum phenomenon whereas our MD simulations
are based on the usual classic mechanics. In addition, our “pseudo-superfluidity”
depends on the shape of the cross section of SWCNT and on the value of the external
driving force whereas the “true” superfluidity is independent of these parameters
and depends only on temperature. Thus, the abovementioned phenomenon found in
our simulations on the liquid argon flows through SWCNTs with rectangular cross
sections has nothing to do with the classic superfluidity. Perhaps, this phenomenon
is caused by a combination of several factors and its elucidation requires further
investigations.
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We also performed MD simulations of equilibrium structures and Couette flows
of polar water molecules and nonpolar argon atoms between bounding carbon sub-
strates disposed at the distance h = 1.5 nm from each other that is much shorter
than analogous distances considered in previous papers [35–37]. We considered two
symmetric configurations when both substrates have similar, either graphene-like
crystalline or amorphous structures, and one asymmetric configuration consisted
of one substrate with graphene-like crystalline structure and another substrate with
amorphous structure. It was found that, in all cases under consideration, the Cou-
ette flow velocity profiles depend strongly on polarity of fluid particles confined
between bounding substrates, and that these profiles are significantly different from
those found in previous papers [35–37] for larger distances between substrates. In
addition, it was found that, for the abovementioned asymmetric configuration, the
fluid flows depend strongly also on which of the substrate is moving and which
is fixed. When the substrate with graphene-like crystalline structure is moving, the
Couette flow of water molecules is very weak and the Couette flow of argon atoms
is practically absent. On the contrary, when the amorphous substrate is moving, the
Couette flows of both water molecules and argon atoms are sufficiently strong, and,
for argon atoms, the average flow velocity is very close to the velocity Vx0 of the
moving substrate. We suppose it would be interesting to test these simulation results
in an experiment.
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Chapter 23
Fatigue Assessment of
Structures—Problems in Current
Methodology

Sergei V. Petinov and Ruslan V. Guchinsky

Abstract Presently in rules for fatigue assessment of steel and steel welded struc-
tures in different technologies subjected to intensive alternating service loading, the
stress-life (S-N) criteria are recommended in several versions of approaches. The
criteria and approaches are addressed at assessment of fatigue properties of struc-
tures; however, the procedures are accompanied with a series of approximations and
uncertainties. The nature of drawbacks of the S-N criteria and approaches is com-
mented and feasible means of improvement of the fatigue criteria evaluation and
applications in fatigue assessment procedures are proposed.

Keywords Fatigue · Fracture · Crack ·Welded joint · FEA · S-N curve · Damage
accumulation · Strain-life criterion

23.1 Introduction

The stress-life (S-N) criteria are recommended presently in rules for fatigue assess-
ment of structures subjected to intensive alternating service loading in versions
(approaches) differing mostly by the procedure of considering effects of stress con-
centration in critical locations [1–3], etc. The approaches are supplemented with the
linear damage summation rule to consider random character of service loading in
fatigue analysis of structures. The criteria and approaches were derived aimed at a
non-complicated application in practical problems; however, a series of drawbacks
and inaccuracies of those was being noted.

S. V. Petinov
Institute for Problems in Mechanical Engineering RAS, V.O., Bolshoy pr., 61, St. Petersburg
199178, Russia

R. V. Guchinsky (B)
TMH Engineering Ltd, Institute for Problems in Mechanical Engineering RAS, V.O.,
Bolshoy pr., 61, St. Petersburg 199178, Russia
e-mail: ruslan239@mail.ru

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
V. A. Polyanskiy and A. K. Belyaev (eds.), Mechanics and Control of Solids
and Structures, Advanced Structured Materials 164,
https://doi.org/10.1007/978-3-030-93076-9_23

489

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93076-9_23&domain=pdf
mailto:ruslan239@mail.ru
https://doi.org/10.1007/978-3-030-93076-9_23


490 S. V. Petinov and R. V. Guchinsky

Firstly, the experimentally obtained database—S-N curves—providing evalua-
tion of fatigue properties of structures was collected by testing “classed” specimens
(including typified welded joints, as in the case of the nominal stress approach [2]
under cyclic loading terminated at almost complete failure (“separation in twoparts”).
This was leading to uncertainties in considering fatigue properties of materials in
welded joints, effects of residual welding stress, definition of the state of damage in
structural components, and crack size corresponding exhaustion of fatigue life. Fur-
ther, recommendations for testing specimens comprising typifiedwelded jointswhich
were aimed at considering effects of materials of the joint (weld material, material
of fusion zone, etc.), of residual welding stress, implemented in the database did not
provide identity of fatigue damage between specimens and structural details. Partly,
it was because of diversity of geometry of structural details comprising “typified”
joints, which was recognized decades ago.

Substantial uncertainty introduces into fatigue design of structural components
the current definition of expected service loading. Although the random nature of
service loading is well understood for long (Palmgren, 1924) and respective recom-
mendations are given in the rules, it depends on non-controllable factors (weather
changes, economic factors, etc.) resulting in rather conditional standardization of
loading (description and parameters of statistical and power spectra data) in differ-
ent technologies, e.g., [2, 3]. In the following by the mentioned reasons specifics of
the loading histories (programs) is not commented.

Development of the finite-element analysis (FEA) facilities allowed analyzing
the stress field in actual structural details, in particular, stress at critical locations.
These facilities [4] and experience of strain measurement in welded components [5]
were used to derive the hot-spot stress approach (HSS) [1, 2], etc. The approximate
estimation of the local stress caused by the particulars of the stress flow at the welded
joint in HSS, necessity to account for the effects of geometry of the weld itself,
resulted lately in development of the notch-stress approach [6], etc. Assessment of
local stress causing the damage process allowed reducing the range of the design
S-N curves to those presenting properties of the base and weld material only.

However, apart from solving the problemof effects of geometry of structural detail
on the damage process, the abovementioned disadvantages were not corrected.

The above criteria and approaches are commented in more detail in the below
focused on problems of practical application and certain remedial actions are pro-
posed.

23.2 Stress-Life Approaches

The current S-N (stress-life) approaches to fatigue analysis and design of structures,
e.g., [3], are based on assumption of elastic behavior of the structure material in
service loading conditions. Respectively, in the range of fatigue lives (the left-hand
side is related to the above statement, and the right-hand one corresponds to the
long-established practice of assessment of the fatigue limit stress in mechanical
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Fig. 23.1 IIW classed S-N curves for structural steels [3]

engineering) the S-N curve is usually approximated in logarithmic coordinates by
the straight line equation which is given by Basquin’s formula (1910):

N (S) = C/Sm, (23.1)

where S is the stress range, C and m are the “material constants”, and m is the S-N
curve “slope parameter”. The range of endurances of the design S-N curves is limited
from the left side, as said, by the number of cycles prior to failure equal to N = 104,
which approximately corresponds to the nominal stress amplitude around the yield
stress.

Presently in rules for fatigue design of steel structures (steels of 235–390 grades)
the S-N curves are indicated and obtained in air and in corrosive media, for parent
material and welded joints, in certain applications, fatigue rules (e.g., Fig. 23.1 [4])
ranged for different types of welded joints.

Damaging effects of stress amplitudes below the conventional fatigue limit stress
(attributed to N = 107 cycles) in service irregular loading histories are considered
by the “two-slope” shape of S-N curves and by introducing the “cut-off” fatigue limit
stress, substantially lower than the conventional one, Fig. 23.1.

The mechanics of fatigue damage of welded joint materials is implied (not def-
initely specified) as built into the design S-N curves based on analysis of results of
fatigue testing of specimens comprising the typified (classed) welded joints, e.g.,
Fig. 23.2.

The numbers in the right-hand column (Fig. 23.1) indicate so-called “FAT-
Classes” of the welded joint types (in this figure—in air environment). The base and
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Fig. 23.2 a—Crack in a ship structural detail identified as FAT63 (Courtesy B. Purtle, Lloyd’s
Register of Shipping, UK) b—Fractured specimen, FAT63 Class (Fig. 23.1)

weld material mechanical properties are not specified, and the S-N curves uniquely
represent fatigue properties of the indicated range of structural steels supporting the
so-called “Nominal stress approach”, as shown in Fig. 23.1. Whereas it is known that
fatigue strength of steels is approximately proportional to the ultimate strength [7],
although resistance of welded joints may depend substantially on the mechanical
properties of the electrode material. The scheme of evaluation of the nominal stress
in example of a bracket welded to the flange of stiffener in ship structure (Fig. 23.2)
is shown in Fig. 23.3.

Specific of the testing specimens procedure is automated termination of test when
initiated and growing fatigue crack notably affects the specimen compliance preced-
ing complete fracture in two parts. Therefore, the test result, the number of cycles by
the test completion includes a portion of life until the macroscopic crack origination
and a part when crack propagates from the origination site. It means that the stress
limits in the phase of crack origination remain unchanged, but in the crack growth
phase rapidly increase. If fatigue properties of the statically determinate structure
detail are to be assessed, the test results might be regarded appropriate; however, the
state of damage, corresponding a crack size, would occur uncertain what attracted

Fig. 23.3 Assessment of
characteristic stress for
fatigue analysis of structural
details
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attention of experts (e.g., [6, 8, 9]).What is important, fatigue tests of typifiedwelded
joins at cyclic loading were (and are) being carried up with positive load ratio (ratio
of the minimum to the maximum load in the cycle) to avoid buckling in the com-
pressive part of the load cycle. This means the design S-N curves are related to the
mentioned type of loading. Lately, attempts weremade to consider in fatigue analysis
of structural detail effects of different loading conditions [3]. Meanwhile, loading
asymmetry plays secondary role in the crack initiation phase which is controlled
almost completely by the stress ranges, excursions causing slip processes in mate-
rial microstructure [7, 10], etc. When the macroscopic crack is initiated its further
extensions substantially depend on the tensile part of alternating loading. In the load-
control testing, the nominal stress in the affected cross section of specimen increases
and does not fit the assumed test conditions. Respectively, since a substantial portion
of fatigue life of specimens represents the crack growth, it introduces as mentioned
above, additional uncertainty into the results of fatigue analysis of structural details.

When fatigue life of a non-redundant structure detail is analyzed by the means of
the finite-element modeling, application of the classed S-N data would be incorrect
by the mentioned specifics of the testing procedure. Moreover, if the detail is a part
of substantially redundant structure the testing of specimens should be carried out at
the displacement of the testing machine frame control (strain limits of the work part
of specimen).

The briefly mentioned in above disadvantages of the nominal stress approach
promoted development and application in practice of the hot-spot stress (HSS) [1,
2], etc., and later of the notch-stress approach (NS) [5, 6], etc. These approaches
are supported by respective stress-life criteria, addressed to avoiding ambiguity in
establishing the identity between classed welded joints and actual structural details,
and providing considering effects of stress concentration in structural details by the
means of finite-element detail modeling. With regard to the principles of the HSS
and the NS approaches the set of design S-N curves is reduced to those of the base
material and material of welded joint (butt-welded joint), completed with the design
curves for details in corrosive environment (e.g., [12]).

In HSS approach, the stress at a critical location, typically at the weld toe, shown
as arrows in Fig. 23.2, has to be found by extrapolating stress in element centroid
toward the weld toe, Fig. 23.3; by this the stress raise is assumed to be caused by
the shape of structural detail and the role of the weld bead geometry is related to
properties of the respective S-N curve (class D curve, butt-welded joint).

Substantially fine meshing of the welded detail model in the NS approach allows
obtaining local stress at the weld toe considering both effects of the detail and the
weld bead geometry, as schematically shown in Fig. 23.3; at the same time, it is
assumed that at the weld toe there is a smooth, radiused, transition from the parent
to the weld material [6]. Such assumption is based on physics of liquid metal contact
with the solid one where meniscus appears.

So far, effects of stress concentration in critical locations of structure in the HSS
and NS approaches are considered by multiplying the nominal stress range by the
respective stress concentration factors or calculation local stress using, as said, the
finite-element technique.
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Fig. 23.4 Examples of FEmeshes designed for application of theHSS (a) and theNS (b) approaches

Figure23.4 shows the types of meshing of the bracket ending in ship structure
(Fig. 23.2a) designed for application of the mentioned approaches. The mesh type in
Fig. 23.4a is attributed to the hot-spot stress approach; its design follows the principle
“t x t”, t is the flange thickness and the size of finite elements at the bracket ending
[13]. Another mesh, Fig. 23.4b, fits the requirements of the FE modeling when the
notch stress has to be applied; the element size at the weld toe is 0.2 of the assumed
weld toe radius [6].

It should be emphasized that assessment of the local stress in these approaches
is based on assumed linear elastic material behavior in critical locations. Referring
further the characteristic stress to the classed S-N curve makes rather an illusion of
proper assessment of damage.

In fact, it means evaluation of the damagewith uncertainty, although somewhat on
the conservative side. In the high-stress range of the service loading, the input of this
over-estimation of fatigue damage in the total sum might be regarded insignificant
due to stochastic properties of excitation and relatively infrequent intensive loading
of structures. Whereas at the moderate service loading, in the high-cycle regime,
which provides the predominant damage, the above approaches neglecting the effects
of material microplasticity at critical locations may substantially over-estimate the
damage.

Comparative analysis of fatigue properties of ship structural detail shown in
Fig. 23.2, “Post-Liberty” dry cargo ship, nonspecified wave climate, and upper deck
structure amidships [13], resulted in substantially differing values of fatigue dam-
age related to 20years of ship service. Application of the HSS approach indicated
the damage index D = 1.24, whereas the notch-stress approach use had shown
the damage index as D = 0.54, and the strain-life approach, where the inelastic
behavior of material was accounted for, resulted in D = 0.35.

The mentioned comparative study just illustrated the problem; perhaps, a com-
prehensive analysis might be needed.
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The feasible means of improvement the principles of assessment the fatigue prop-
erties of structural details might be as the following.

The reduction of the mentioned uncertainty effects in the current techniques of
fatigue assessment of steel welded structures based on application of the S-N criteria
might be achieved by a series of corrections.

As it concerns the hot-spot stress technique, the improvement of it is barely feasi-
ble, since the elastic-plastic properties of the joint materials, residual welding stress
effects, and the crack size cannot be considered.

The notch-stress approach application, as we see it, would need in correction of
the fatigue failure criteria implied, as briefly discussed in above:
–The procedure of evaluation of S-N criteria fatigue testing of specimens should be
carried out until the macroscopic crack origination. The methods and techniques of
the macroscopic crack identification are known, and the testing procedure should be,
respectively, changed.
–Inelastic cyclic straining of material at critical locations of a structure may be
approximately considered by applying the “notch factor” (Peterson [14]):

K f = 1 + (Kt − 1)/(1 + g/r), (23.2)

where Kt is the theoretical stress concentration factor (local stress accordingly the
approach is calculated assumed elastic ones), r is the notch root radius, g is “structural
parameter” of the material; according to [15] this parameter for structural steels of
the 235–390 grades may be approximated as g = 0.38(350/σu)

1.16, where σu is the
ultimate strength of steel (in the case the crack origination is expected in the weld
area, the proper value is necessary).
–Within themacroscopic crack origination phase in the “critical location” the residual
welding stress relaxation may be considered due to cyclic elastic-plastic straining of
material.

The notch-stress technique, in principle, addressed to assessment of the crack
initiation at the stress concentration may be complemented with the crack extension
calculation technique based on the damage accumulation approach, as shown in [16,
17], etc. Elements of the technique were suggested in [1], etc.

Concluding it may be stated that for fatigue analysis of the redundant steel welded
structures testing of specimens (standard IIW) should preferably be carried out at
the strain limits (displacements of the loading frame of a testing machine) and the
respective criteria be applied.

23.3 Strain-Life Criteria-Based Approach

The strain-life approach considered in the present rules as optional is being developed
since mid-60s of the last century. It may be regarded a more accurate than above
techniques for fatigue analysis and design of structures by the following reasons.
The current damage in load cycles is characterized by the cyclic plastic strain range
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in Coffin’s criterion [18], lately complemented with the elastic strain component as
proposed by Manson [19], in criterion:

�ε = �εp + �εe = CN−α + BN−β, (23.3)

where�ε is the total, plastic plus elastic, strain range,C , B, α and β are the empirical
constants, criterion parameters for a given material.

The parameters are obtained through the cyclic testing at the strain range control
conditions. This allows considering the loading specifics of the stress concentra-
tion areas at nominally elastic behavior of the structure. The criteria parameters are
defined for particular structural materials (e.g., [10, 11], etc.), and in the case of
welded structures, the base and weld material properties can also be obtained and
distinguished in failure criteria [15].

Fatigue testing of specimens is terminated when the ascending stress-strain dia-
gram branch (tensile part of the cycle) would be distorted due to the early crack
origination. This makes predictions of the fatigue life of structural details more real-
istic than by using the S-N criteria.

Application of a strain-life criterion in fatigue assessment of a structural detail
needs in evaluation of the local (elastic-plastic) strain at a notch root under applied
nominal stress. The local cyclic strain can be obtained bymeans of Neuber’s heuristic
formula [22], empirical relationships [15], or by applying the elastic-plastic cyclic
finite-element software, e.g., [15]. In order of considering effect of stress concentra-
tion in the high-cycle component of the criterion (23.3), it can be approximated as
[14]

�ε = �εp + �εe = CN−α + 2βσ f Kt/EK f , (23.4)

where σ f is the fatigue limit stress of the appropriate joint zone [23]; β ≤ 0.55 is
the correction for decreasing fatigue resistance under irregular loading [2]; Kt is the
theoretical (“elastic”) stress concentration factor (SCF); and K f is the fatigue notch
factor [14].

The above criteria (23.3), (23.4)with reasonably finemeshing in the finite-element
modeling of critical locations and expected crack extensions in structural details
allow carrying out analysis of fatigue process covering the very initiation of service
loading and the crack nucleation and growth until the onset of a critical state of a
structure, e.g., until the through crack in a tubular structure, Fig. 23.5 ([16], etc.). The
elements in the mesh at expected critical locations (“material elements”) should be
small enough to provide the necessary resolution of the stress field, but at the same
time fitting the format of continua mechanics.

In example (Fig. 23.5), it was assumed that at the inner surface of cylindrical
shell there is a chain of defects of material microstructure along the generating line.
Respectively, in criterion (23.4) for the finite elements of the above chain the second
term was assumed smaller than that for surrounding elements.

The procedure of analysis is as follows. At initiation of cyclic loading of themodel
in elements assumed affected the damage accumulation is estimated accordingly the
Palmgren-Miner rule. Initially, the cyclic strain-stress field is calculated in elements
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Fig. 23.5 FE model of a pipeline designed for the crack growth analysis [16]

located at the crack initiation and extensions. Then, applying criterion, e.g., (23.4),
respective life of affected (“i”) elements at the first procedure step, N 1

i , should be
found, and then the damage in elements at failure of the most stressed element:

dinitial,i = min{n1i }/N 1
i . (23.5)

Further, the sequential strain-stress field is calculated and the number of loading
cycles should be found in elements considering the damage accumulated by the
failure of the most affected element (elements). Criterion for failure of the following
elements, again, is found from the linear damage summation procedure:

d j
i = dinitial,i +

∑

j

min{n j
i }/N j

i , (23.6)

where min{n j
i } is the number of load cycles up to failure of the “weak-most” element

at the jth step of the crack extensions and N j
i is the number of load cycles until failure

of the ith element at the jth step of the crack growth found from the (6) criterion.
Figure23.6 [17] shows several steps in progress of the crack originated at the inner

surface toward the outer surface of the pipeline when the crack becomes the through-
the-shell (the instable failure of the shellwas not assumed; the limited extension of the
crack along the generating line of the shell depends in the example on the properties
of the FE mesh).

It should be noted that in this problem and in other, addressed to fatigue analy-
sis, the consecutive re-design of the mesh may be reasonable on condition that the
information on the accumulated damage would be retained in material as said in
above.
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Fig. 23.6 Modeling of the crack extensions toward the outer surface of the pipeline

Fig. 23.7 The crack front
evolution found by the
damage accumulation
technique [17]

Another example of application of the strain-life criterion and FE technique in
modeling fatigue crack initiation and extensions is shown in Fig. 23.7 [17]. Shown
is a steel plate with semi-circular notches subjected to cyclic tensile-compressive
loading, and crack initiated at the notch root.

When the fatigue process is analyzed in a welded joint, especially when the crack
origination is expected at the weld toe, the properties of the critical location, fusion
zone material, barely can be obtained by fatigue testing of standard (“strain-life”)
specimens—mechanical homogeneity of the joint may be assumed [15]. The residual
welding stress cannot be retained in standard test (hour-glass) specimens, but it may
be assumed the tensile stress part relaxation due to the cyclic plasticity of material
at a critical location accentuated by the stress concentration. Examples of the strain-
life approach application, infrequent though, show reasonable agreement of the life
estimated and experimentally obtained, e.g., [15, 17], etc.
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23.4 Conclusions

The stress-life (S-N) criteria applied in the nominal stress approach, hot-spot stress,
and notch-stress approach provide assessment of fatigue properties of structures
accompanied with a series of approximations and uncertainties. The most substantial
drawbacks of the S-N criteria-based techniques of fatigue analysis are seen when
the damage progress in details of redundant structures is assessed where loading
of critical locations is rather provided under the strain range control, uncertainty
of the crack size corresponding completion of estimated fatigue life of a structural
component, etc. Several means of improvement of the notch-stress approach and
respective S-N criteria are suggested proved by results of a series of studies. Specifics
of the strain-life application in problemsof crack initiation andpropagation are briefly
discussed and illustrated .
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Chapter 24
Discrete Thermomechanics: From
Thermal Echo to Ballistic Resonance
(A Review)

Ekaterina A. Podolskaya, Anton M. Krivtsov, and Vitaly A. Kuzkin

Abstract We present a review of the results in the field of discrete thermomechanics
that have been achieved in the Institute for Problems inMechanical Engineering RAS
over the past decade. The focus is set on the novel approach for analytical description
of non-equilibrium thermomechanical processes in crystalline solids. One, two, and
three-dimensional perfect crystals with arbitrary harmonic and weakly anharmonic
interactions are considered. The discussed topics cover threemajor areas: transition to
thermal equilibrium, ballistic heat transfer, and thermoelasticity. The analysis reveals
and elucidates such phenomena as thermal waves, heat flow from “cold” to “hot”,
the existence of several kinetic temperatures, thermal echo, and ballistic resonance.

Keywords Ballistic heat transport · Ballistic resonance · Transient processes ·
Thermal waves · Kinetic temperature

24.1 Introduction

One of the topical problems of solid mechanics is the calculation of thermoelastic
fields in materials and structures under various external influences. The continuum
linear thermoelasticity theory provides an adequate and consistent description of
the behavior of materials at the macro level. In particular, the problem of deter-
mining the temperature field causing thermoelastic stresses at the macro level is
usually successfully solved using the Fourier law. The law describes the diffusive
transfer of thermal energy, which is typical for macroscopic systems. However, the
recent experiments reported in the works of Zettl [14], Maznev and Huberman [41],
Nelson [49], Rogers [101], etc. indicate that at the micro- and nanoscale levels the

E. A. Podolskaya (B) · A. M. Krivtsov · V. A. Kuzkin
Institute for Problems in Mechanical Engineering RAS, V.O., Bolshoy pr., 61,
St. Petersburg 199178, Russia
e-mail: akrivtsov@bk.ru

Peter the Great St. Petersburg Polytechnic University, Polytekhnicheskaya, 29,
St. Petersburg 195259, Russia

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
V. A. Polyanskiy and A. K. Belyaev (eds.), Mechanics and Control of Solids
and Structures, Advanced Structured Materials 164,
https://doi.org/10.1007/978-3-030-93076-9_24

501

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93076-9_24&domain=pdf
mailto:akrivtsov@bk.ru
https://doi.org/10.1007/978-3-030-93076-9_24


502 E. A. Podolskaya et al.

thermal energy can spread in a wave manner. In particular, it is shown that in many
materials, including nanowires, carbon nanotubes, graphene, silicon membranes,
etc., significant deviations from the Fourier law are observed. Theoretical investiga-
tion of this issue is addressed worldwide by Chen [15], Dhar [18, 19, 50], Gendel-
man and Savin [26, 27, 104, 105], Hemmer [34], Kosevich [58], Lebowitz [12, 50,
78, 100], Lepri, Livi and Politi [81–83], Lukkarinen [33],Mielke [90], Slepyan [108],
Spohn [109], and many other authors. In such context, the development of mechan-
ical models describing the thermoelastic behavior of solids, taking into account the
ballistic transfer of thermal energy, becomes relevant. This goal is essential in con-
nection with the development of microprocessor technology and the problem of heat
removal from processors. In the Institute for Problems in Mechanical Engineering
of the Russian Academy of Sciences (IPME RAS), the comprehensive study in this
field was initiated by our research group in the works of Krivtsov [60, 61], followed
by a series of papers, for example, [8, 23–25, 62–66, 70–77, 80, 85, 86, 91, 96,
111–113].

Anomalous heat transfer is closely connected with more general problems of non-
equilibrium thermomechanical behavior of materials. This topic is considered in the
works of Allen [2], Belyaev and Indeitsev [43, 44], Dmitriev [103], Dudnikova [20],
Fortov [3, 45], Gavrilov [24, 25], Guzev [32], Ivanova [48], Krivtsov [60, 61, 64],
Kukushkin [68, 69], Kuzkin [73, 75], Lurie [87, 88], Muratikov [92], Müller [62,
111], Petrov [45], Prigogine [98], Vilchevskaya [112], etc. At thermal equilibrium,
the kinetic energy is usually equally distributed among the degrees of freedom. This
factmakes it possible to describe the thermal state of an elementary volume of amate-
rial using a single scalar parameter – kinetic temperature proportional to the energy of
chaotic thermal motion of atoms. Far from thermal equilibrium, the kinetic energies
corresponding to the different degrees of freedom can differ significantly. As a result,
it is necessary to introduce several temperatures. In particular, it is known that the
lattice and electron subsystem temperatures in laser exposed solids may vary [43].
Multiple temperatures are also found in molecular dynamics simulations of shock
waves [3, 35] and simulations of heat propagation in polyatomic crystal lattices [74].
It is often necessary to describe the process of energy equilibration, corresponding
to different degrees of freedom. To describe this transient process within multicom-
ponent continuum mechanics models, the construction of appropriate constitutive
equations is required.

Discrete models of solids can be effectively used to simulate the thermomechan-
ical behavior of materials at the micro- and nanoscale and construct continuum
constitutive equations, e.g., referred to in the papers by Abramian et al. [1], Belyaev
et al. [97], Dmitriev [7], Fortov [3, 45], Goldstein and Morozov [28], Golovneva
et al. [29, 30], Ivanova [46, 47], Korobeynikov [56], Krivtsov [59], Norman [67,
93], Psakhie [99], and other authors. In particular, different variations of the particle
method, such as the method of molecular dynamics [2] or the method of movable
cellular automata [99], have become widely used.

The main objective of the present work is to provide a review of methods for
analytical description of thermomechanical processes in crystalline solids that have
been developed at IPME RAS over the past few years. After a brief notation outline
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in Sect. 24.2, the paper is organized as follows. In Sect. 24.3, the so-called “fast”
processes, i.e., energy equilibration and redistribution among the degrees of freedom,
are considered. Next, Sect. 24.4 addresses the “slow” process (ballistic heat transfer).
The paper is concluded by Sect. 24.5, where the conversion of thermal energy into
mechanical energy and vice versa is considered.

24.2 Nomenclature

We use lower-case letters in boldface for vectors, either upper-case letters or Greek
letters in boldface for tensors, and italic for scalars. The following notation is used:

• d = 1, 2, 3 is the space dimension;
• m and C are the particle mass and bond stiffness; C1 is the substrate stiffness;
• ωe = √

C/m is the characteristic frequency, τe = 2π/ωe is the characteristic
period of oscillations, and c = ωea is the characteristic velocity;

• η is damping coefficient, ω̂e = 1/4
√
16ω2

e − η2 is the characteristic frequency for
non-conservative problems;

• r is the position vector of a particle (or a unit cell—see Sects. 24.3.1.3 and 24.4.2);
• aα is the vector connecting this particle (or unit cell—seeSects. 24.3.1.3 and24.4.2)
with neighboring particle/cell number α; aα ≡ |aα|, eα ≡ aα/aα;

• u(r) andv(r) are the displacement andvelocity of a particle (or columns, consisting
of components of displacements and velocities of particles from unit cell—see
Sects. 24.3.1.3 and 24.4.2);

• u0(r) and v0(r) are the initial displacement and velocity of a particle (or the
respective columns—see Sects. 24.3.1.3 and 24.4.2);

• ξ(ri , r j ) = 〈u(ri )u(r j )〉 and κ(ri , r j ) = 〈v(ri )v(r j )〉 are the tensor covariances
of displacements and velocities for a pair of particles i and j ; brackets 〈〉 denote
the mathematical expectation; u(ri )u(r j ) is the tensor product of the respective
displacements;

• D is the tensor difference operator, D is the respective scalar difference operator;
• K, �, and L are generalized (non-local) kinetic energy, potential energy, and
Lagrangian;

• T(r) is the tensor temperature, and T ≡ trT/d is the kinetic temperature;
• Jk(τ ) is the Bessel function of the first kind;
• k is the wave vector, ω(k) is the dispersion relation, and c = dω/dk is the group
velocity vector.

24.3 Transient Processes

The solution of problems of thermomechanics for materials in a highly non-
equilibrium state is one of the topical questions of solid mechanics. At thermal
equilibrium, the kinetic energy is conventionally accepted to be equally distributed
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among the degrees of freedom. This fact follows from the equipartition theorem [38,
119]. This theorem allows us to describe the thermal state of the system using a single
scalar parameter of kinetic temperature proportional to the energy of chaotic ther-
mal motion of the atoms. As mentioned above, the kinetic energies corresponding to
various degrees of freedom can differ significantly far from thermal equilibrium, so
in many works several temperatures are introduced [11, 31, 44, 45]. For example, in
papers [36, 37, 116] it is shown that the kinetic energies (temperatures) correspond-
ing to the motions of atoms along and across the direction of shock wave propagation
can differ almost by a factor of two near its front. In [50, 51] the heat propagation in
a diatomic one-dimensional harmonic chain placed between two thermal reservoirs
with different temperatures was considered. It was shown that the temperatures of
the sublattices in the non-equilibrium stationary state are different. A similar effect
observed for unsteady heat transfer is demonstrated in Sect. 24.3.1.1 [74].

In the absence of any external influences, the non-equilibrium system tends to
thermal equilibrium. The transition to thermal equilibrium is accompanied by several
processes:

• The velocity distribution function tends to Gaussian [20, 34, 52, 78, 109];
• The total energy is redistributed among kinetic and potential forms [2, 52, 108]
(also described below following [5, 60, 71]);

• The kinetic energy is redistributed among the degrees of freedom (addressed below
following [71, 73]);

• The energy is redistributed among the system’s eigenmodes [98].

These processes, except for the last one, occur both in linear (harmonic) and
nonlinear systems [2, 20, 52, 60, 71, 78, 109]. In harmonic crystals, the energies
of the eigenmodes are constant in time. However, the kinetic temperature field in
infinite harmonic crystals tends to become spatially homogeneous and constant in
time [34, 72, 109]. Therefore, the concept of thermal equilibrium has been widely
applied to harmonic crystals [10, 20, 42, 78, 109, 114].

The transition to thermal equilibrium is considered in many works, and such
aspects of this process as the existence of an equilibrium state [78], ergodicity [114],
the normalization of the distribution function [10, 20, 52], entropy evolution [42,
111], etc. have been investigated. The present section deals with the behavior of the
main experimentally observed value of the kinetic temperature(s), which is propor-
tional to the kinetic energy of chaotic particle motion.

There exist two different approaches to describe the behavior of statistical
characteristics in harmonic crystals. One of them is based on the exact solution of
the lattice dynamics equations to calculate the kinetic temperature as the mathemat-
ical expectation of the kinetic energy [32, 42, 52, 84]. In particular, the pioneering
work of Klein and Prigogine [52] considered the transition to thermal equilibrium in
an infinite harmonic chain with random initial conditions. Using the exact solution
obtained by Schrödinger [106], it was shown that the kinetic and potential energies
of the chain oscillate in time and tend to equal equilibrium values [52].

The present section focuses on the other approach, which uses covariances of
velocities and covariances of particle motions as the main variables (the covariance
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of two centered random variables is the mathematical expectation of their product).
In the case of a harmonic crystal, it is possible to obtain a closed system of equations
for the covariance in the stationary [50, 82, 100] and non-stationary [60, 83] cases.
The solution of this system describes, in particular, the change in kinetic temperature
over time. In Sects. 24.3.1.1–24.3.1.3 this idea is used to describe the transition to
equilibrium in infinite crystals with monoatomic and polyatomic lattice. In particu-
lar, one-dimensional chains [5, 60, 73] and two-dimensional triangular, square, and
hexagonal (graphene) lattices [70–73] are considered. Next, in Sects. 24.3.2–24.3.4
several generalizations are introduced, such as damping [23], weak interaction non-
linearity [71, 75], and account for the lattice finiteness [91]. The latter is concluded
by the effect of thermal echo.

24.3.1 Infinite Harmonic Crystal

We begin with the simplest mathematical model. Consider an infinite simple crystal
lattice in the space of dimension d, which consists of identical particles. The particles
positions are identified by the vectors in the undeformed state, and the nearest neigh-
bors interact via linearized, or harmonic, forces. The Born-von Karman periodic
boundary conditions [4] are used.

First, we formulate the stochastic problem. The equations of motion1 take the
form of the differential-difference equations, equivalent to the infinite2 system of
second-order ODEs [71]:

v̇(r) = D · u(r), D = ω2
e

∑

α

eαeα�2
α,

�2
αu(r) = u(r + aα) − 2u(r) + u(r − aα).

(24.1)

The initial conditions are written as

u(r)
∣∣∣
t=0

= u0(r), v(r)
∣∣∣
t=0

= v0(r), (24.2)

where u0(r) and v0(r) are uncorrelated random vectors with zero mean, i.e.,
〈u0(r)〉 = 0, 〈v0(r)〉 = 0.

The solution of the system (24.1)–(24.2) describes the crystal dynamics com-
pletely. Moreover, these equations can be solved analytically. However, the descrip-
tion of the thermal processes usually requires only the statistical characteristics, such
as covariances of velocities κ(ri , r j ) = 〈v(ri )v(r j )〉 and displacements ξ(ri , r j ) =
〈u(ri )u(r j )〉 of particles i and j . Following [71] and the references therein, we write
down the deterministic system of second-order tensor ODEs:

1 These equations are valid only for the simple, or monoatomic, lattices. The general formulae for
the polyatomic lattices can be found in, e.g., [73], and the results are addressed in Sect. 24.3.1.3.
2 For infinite crystals.
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ξ̈ = D · ξ + ξ · D + 2κ,

κ̈ = D · κ + κ · ξ + 2D · ξ · D.
(24.3)

The system (24.3) yields to a single fourth-order equation which is valid both for
ξ and κ:

....
κ − 2 (D · κ̈ + κ̈ · D) + D2 · κ − 2D · κ · D + κ · D2 = 0. (24.4)

The respective initial conditions will be discussed below for the particular exam-
ples. We note that Eq. (24.4) is also satisfied for harmonic crystals with arbitrary
polyatomic lattice [73].

Another useful yet not inevitable assumption is the uniform initial temperature
distribution. It can be demonstrated that at the time scale at which the transient
processes come out and decay, the change in spatial temperature distribution is neg-
ligible (see Sect. 24.4 and the references therein). Then, the covariances depend only
on the difference between the particles i and j position vectors. In this case, we can
introduce a new variable instead:

(
ri , r j

) −→ (
ri − r j

)
. (24.5)

This assumption leads to the simplification of Eq. (24.4).
Basing on the covariances, we introduce the generalized (or non-local) potential

and kinetic energies, and also the generalized Lagrangian [61, 70]

�(ri , r j ) = −m

4

(
D · ξ(ri , r j ) + ξ(ri , r j ) · D

)
,

K(ri , r j ) = m

2
κ(ri , r j ), L = K − �.

(24.6)

If i = j , the traces of tensors K,�, and L are equal to the respective conventional
energies per particle. Note that K, �, and L satisfy Eq. (24.4). As for the initial
conditions, the use of the conservation laws helps to eliminate the odd derivatives
(see, e.g., [71] for the details).

Next, we define the tensor temperature T(r) [36, 37] and kinetic temperature T
as

kB
2

T(r) = K(ri , r j )

∣∣∣
i= j

, T = 1

d
trT(r). (24.7)

Here kB is Boltzmann constant. The kinetic temperature is introduced in such a
way that at the equilibrium the equipartition theorem [38] is fulfilled, i.e., kinetic
energy per degree of freedom is equal to kBT/2.

In the following sections, we consider several generalizations, including the influ-
ence of interaction nonlinearity and finiteness of the system. But before that, let us
turn to the examples of harmonic crystals. It is noteworthy that in all examples the
numerical and analytical solutions demonstrate an excellent agreement.
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24.3.1.1 Hooke’s Crystal

Westart with the one-dimensional case (d = 1). Then all the vector and tensor quanti-
ties yield to their scalar equivalents. Consider one of the possible transient processes,
i.e., the evolution of the generalized Lagrangian [60]. Taking the aforementioned for-
mulae and also conservation laws into account, we get for the particle n

L̈n = 4ω2
e�

2
n Ln, �2

n Ln = Ln+1 − 2Ln + Ln−1, 0 < n < N . (24.8)

Here the parameter N � 1 characterizes the length of the period in Born-von
Karman boundary conditions. Assuming that the initial velocities of particles are
uncorrelated and the initial displacements are absent, the initial conditions yield to

Ln

∣∣∣
t=0

= Eδn, L̇n

∣∣∣
t=0

= 0, (24.9)

where E is the initial energy of the instantaneous thermal perturbation, δn = 1 for
n = 0; otherwise δn = 0. For N → ∞ the solution yields to

Ln(t) = E J2n(4ωet) ≈ (−1)n
E√

2πωet
cos

(
4ωet − π

4

)
+ O

(
t−3/2

)
. (24.10)

Recall, that if n = 0, Ln is equal to the conventional Lagrangian. Hence, the
Lagrangian, L , satisfies the differential Bessel equation:

L̈ + 1

t
L̇ + 16ω2

e L = 0. (24.11)

The oscillations occur with frequency 4ωe, and the amplitude decays as the square
root of time (see Fig. 24.1).

Fig. 24.1 Oscillations of the
Lagrangian for the Hooke’s
crystal [60]
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(a) (b)

Fig. 24.2 Oscillations of the Lagrangian for (a) the soft (ε = 0.1) and (b) the hard (ε = 24) elastic
foundations [5]. The dashed lines show the bounding functions

A similar yet essentially different result is obtained for the one-dimensional chain
on the elastic foundation [5]. The introduction of the additional stiffness parameter
C1 leads to the modification of Eq. (24.8)

L̈n = 4ω2
e (Ln+1 − 2(1 + ε)Ln + Ln−1) , ε = C1

C
(24.12)

with the same initial conditions (24.9).
If the elastic foundation is soft (ε < 1), the solution for the Lagrangian takes the

form, which is proved to be valid up to ε = 1

L = E
(
J0

(
2
√
4 + εωet

)
− 1

2

√
ε J1

(
2
√

εωet
))

. (24.13)

The second summand in formula (24.13) gives low-frequency oscillations on
which the first high-frequency summand is superimposed (see Fig. 24.2a).

For the hard elastic foundation (ε > 1) the solution may be approximately repre-
sented as

L ≈ E J0(
2t) cos(
1t), 
1,2 =
(√

4 + ε ± √
ε
)

ωe, (24.14)

which leads to the formations of beats: the low-frequency envelope J0(
2t) restricts
the wave packet with a high-frequency harmonic signal (see Fig. 24.2b).

24.3.1.2 Two- and Three-Dimensional Crystals

Let us pass over to two-dimensional space (d = 2). First, consider the so-called
scalar lattices [33, 90, 104]. In this case, a scalar function of a position vector u(r)
is used to describe the system motion (24.1), i.e., each particle has only one degree
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of freedom, and the temperature (24.7) is also scalar. Note that a one-dimensional
chain with nearest neighbor interaction (see Sect. 24.3.1.1) is also a scalar lattice.

The exact solution for the kinetic temperature is given by [72]

T = T0
2

[
1 +

∫

k
cos (2ω(k)t)dk

]
, (24.15)

where the integration is carried out with respect to components of the wave vector k;∫
k dk = 1. Here another important quantity is introduced: the dispersion relation

ω(k) which is obtained from lattice dynamics Eqs. (24.1).
In 2D, the first example to be considered is the out-of-plane vibrations of square

lattice [72]. In harmonic approximation, in-plane and out-of-plane vibrations of the
lattice are independent. The lattice is prestrained; otherwise the oscillations would
be essentially nonlinear. The kinetic energy oscillations decay, and the characteristic
time of this process is of the order of several characteristic periods τe. The rate of
decay is proportional to 1/t in contrast to the one-dimensional problem for which it
decays as 1/

√
t . The characteristic frequencies for both one-dimensional and two-

dimensional scalar lattices are calculated in [55].
The next step is to consider in-plane vibrations of the square and triangular lat-

tices. In this case, each particle has two degrees of freedom, and the temperature
tensor (24.7) has two eigenvalues. The analytical solution of the respective equa-
tions [70, 71] clearly demonstrates that, in general, T is not isotropic, and the veloc-
ity covariance for neighboring particles κ(ri , r j ) is not equal to zero, i.e., particles’
velocities are not statistically independent (see Fig. 24.3). Thus, we capture another
transient process: temperature redistribution among the degrees of freedom.3 The
characteristic frequencies for this problem are calculated in [113].

(a) (b)

Fig. 24.3 Two transient processes associated with triangular lattice in-plane motion: (a) tempera-
ture redistribution among spatial directions and (b) oscillations of the Lagrangian [70]

3 The rate of decay for triangular lattice is again proportional to 1/t , whereas for square lattice it
decreases as 1/

√
t . Moreover, the spatial redistribution effect doesn’t appear in the square lattice.
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The above derivations are valid not only for d = 2 but also for d = 3. The results
similar to those shown in Fig. 24.3 are obtained in [75] for the face-centered cubic
lattice.

24.3.1.3 Polyatomic Crystals

Next, we consider the effects observed only in polyatomic lattices [73].
The unit cells of polyatomic lattices are identified by their position vectors r,

and each unit cell has M degrees of freedom, corresponding to components of par-
ticles displacements. Hence, instead of tensor temperature (24.7), we introduce the
temperature matrix T(r) [73, 74]. Its components are given by

Tkn = 1

kB

√
mkmn〈vkvn〉, (24.16)

where mk and vk are the masses and velocities corresponding to the kth degree of
freedom. Temperature matrix is related to the kinetic temperature T as

T = 1

M

M∑

k=1

Tkk . (24.17)

The explicit problem statement and derivation of the formulae that describe the
time evolution of the temperature matrix are given in [73]. Here we restrict ourselves
by the graphic results for one-dimensional lattice with alternating masses and stiff-
nesses (Fig. 24.4) and for the out-of-plane vibrations of graphene (Fig. 24.5). The
transient processes associated with in-plane vibrations of graphene are considered
in [8].

Figure24.4a shows that in both cases the difference between temperatures tends to
the value 0.3(T 0

11 − T 0
22), but the shape of the curves differs. Therefore, the process

of redistribution of temperature between sublattices depends on difference in the
initial temperatures of the sublattices. Figure24.4b demonstrates that for any given
mass ratio, the difference between temperatures decreases with decreasing ratio of
stiffnesses and tends to a limiting value corresponding to the case when this ratio
tends to zero.

As for the graphene, Fig. 24.5 shows beats of difference between temperatures of
sublattices. The amplitude of beats decays in time as 1/t , so at large times, temper-
atures of sublattices in graphene equilibrate.

Finally, we note that the equilibrium values of kinetic temperatures in harmonic
polyatomic lattices are generally different and depend on the initial value of the
temperature matrix. In paper [73], the formula relating equilibrium values of kinetic
temperatures with initial conditions is derived. The formula is referred to as the non-
equipartition theorem. The theorem shows, in particular, that the kinetic temperatures
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(a) (b)

Fig. 24.4 (a) Difference between temperatures of sublattices for T 0
11 
= 0, T 0

22 = 0 (solid line) and
T 0
11 = 0, T 0

22 
= 0 (dotted line). (b) Difference between equilibrium temperatures of sublattices for
a diatomic chain with the ratio of stiffnesses equal to 1 (solid line), 1/2 (dotted line), 1/4 (short
dashed line), 1/8 (dashed line), 1/16 (dash-dotted line), and 1/32 (dash-double dotted line) [73]

Fig. 24.5 Redistribution of kinetic temperatures among sublattices in graphene [73]

are equal at thermal equilibrium if their initial values are also equal. If initially the
kinetic temperatures are different then they are usually different at equilibrium, except
for some lattices.

24.3.2 The Influence of Finiteness: Thermal Echo

The account for the finiteness of the one-dimensional harmonic crystal gives rise to
more phenomena and effects [91].

The infinite model predicts that the generalized energy oscillations are described
by Bessel functions (24.10), and only zero-order Bessel function describes the con-
ventional energies. In contrast, if the crystal consists of a finite number of particles, at
a certain time, the amplitude decay, prescribed by the Bessel function, is replaced by
a sharp short-term growth which reoccurs periodically. This phenomenon is referred
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Fig. 24.6 Oscillations of temperature T in the finite Hooke’s crystal [91]

to as thermal echo, and the sequence of its realizations is described by a series of the
Bessel functions of multiple orders. Moreover, a superposition of the temperature
oscillations generated by the sequential thermal echoes results in temperature beats
with each subsequent thermal echo complicating their shape (see callout in Fig. 24.6).

The solution for, e.g., temperature yields to

T = TE + δT

2
J0(4ωet) + δT

p=∞∑

p=1

J2pN (4ωet),

TE = �T

2

(
1 − 1

N − 1

)
, δT = �T

(
1 + 1

N − 1

)
.

(24.18)

Here TE is the so-called equilibrium temperature, �T is the temperature jump
proportional to the initial energy of the instantaneous thermal perturbation E , and N
is the number of particles.

Next, it can be shown that in the thermodynamic limit any thermal echo is
described by the Airy function; thus formula (24.18) can be rewritten as

T = TE + δT

2
J0(4ωet) + δT

p=∞∑

p=1

1
3
√
pN

Ai

(
2pN − 4ωet

3
√
pN

)
. (24.19)

So for sufficiently large N any thermal echo is shaped as an Airy function. Hence,
the time, when echo p occurs, its relative “height” and “width” are estimated by

tp � 1

4ωe

(
2pN + 3

√
pN

)
, h p � √

π A1
6
√
pN , wp ∼ 3

√
pN , (24.20)

where A1 ≈ 0.53 is the first local maximum of Airy function.
The analysis demonstrates that the maximum temperature increase caused by the

thermal echo decreases as 3
√
pN , and the duration of the thermal echo wp increases

with the same rate.Moreover, the amplitude of the temperature oscillations decreases
as 1/

√
t between any two echoes. What is more the larger the crystal is, the more
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noticeable become the temperature peaks h p in comparison with the residual oscil-
lations.

24.3.3 The Influence of Dissipation on the Transition to
Thermal Equilibrium

In this section,we consider the problemof thermal equilibration in a one-dimensional
damped harmonic crystal [23].

The problem statement remains almost the same as in Sect. 24.3.1.1. The
differential-difference operator, acting on, e.g., generalized Lagrangian, takes the
form

∂2

∂t2
+ 2η

∂

∂t
− 4ω2

e�
2
n, (24.21)

which yields to (24.8) if η = 0. The characteristic frequency for this equation is
ω̂e = 1/4

√
16ω2

e − η2. Unlike the conservative case, the solutions of this kind of
equations cannot be evaluated in closed form, so only the asymptotics are estimated.

Omitting a thorough analysis given in [23], we write out the asymptotics for
conventional Lagrangian L0, which would be determined by a waning cosine (24.10)
if there was no damping:

L = L(1) + O
(
t−7/2

) + L(2) + O

(
e−ηt

t

)
,

L(1) = E

(

− t−3/2

8
√
2πηωe

− t−5/2
(
3η2 + 12ω2

e

) √
2

512
√

πη3/2ω3
e

)

,

L(2) = E
e−ηt

2ωe

√
2π t

(
2
√

ω̂e cos
(
4ω̂et − π

4

)
− η

2
√

ω̂e
sin

(
4ω̂et − π

4

))
.

(24.22)
Similar representations can be obtained for the rest of generalized energies. In a

particular case of conservative system, the summands with superscript “(1)” disap-
pear, because the integration is carried out over the zero-length interval. In the case
of high damping η ≥ 4ωe the summands with superscript “(2)” vanish for the same
reason.

If η/ωe < 1 the transient process goes in two phases. Firstly, the kinetic and poten-
tial energies oscillate approaching the asymptote Ee−ηt/2, whereas the Lagrangian
oscillates tending to zero; their amplitudes decay as the square root of time multi-
plied by the respective exponent. Secondly, at very large times, the principal term
of the asymptotic expansion for the kinetic energy (and, consequently, temperature)
becomes proportional to t−5/2, whereas the rest of the energies decay as t−3/2. In the
limiting case of zero dissipation this surprising second phase disappears.
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(a) (b)

Fig. 24.7 The ratios of generalized energies to the initial value E versus dimensionless time ωet
for (a) η/ωe = 0.5 and (b) η/ωe = 0.02: analytical solutions (solid lines), numerical solutions
(crosses), asymptotic solutions (dotted lines), and approximate asymptotic solutions without power-
decaying terms (dashed lines; only on the right-hand side) [23]

Note that if the damping is small, i.e., η/ωe � 1 the asymptotic formulae give
wrong results at finite but not very large times (see Fig. 24.7b), so the valid approxi-
mation may be reached and the summands with superscript “(1)” are omitted.

24.3.4 The Influence of Nonlinearity on Transient Thermal
Processes

In this example we present the computational results of the influence of a weak
nonlinearity on the two transient thermal processes described above: (i) equilibration
of kinetic and potential energies and (ii) redistribution of the kinetic energy among
spatial directions. The account for the process (ii) is possible for both d = 2 [71] and
d = 3 [75].

Let the particles interact via the Lennard-Jones potential:

�(r) = ε

[(a
r

)12 − 2
(a
r

)6
]

, (24.23)

where ε is the bond energy, and a is the equilibrium distance. In order to quantify
the influence of nonlinearity, the dissociation velocity vd = √

2ε/m is introduced.
In the simulation the initial velocities are randomly distributed in a circle with radius
v0.

Figure24.8 shows the results for both transient processes in the triangular lattice.
The curve (1) corresponds to v0/vd = 0.05, (2) is v0/vd = 0.25, (3) is v0/vd = 0.5,
(4) is analytical solution for harmonic triangular lattice, and (5) is numerical solu-
tion of lattice dynamics equations. It is seen that nonlinearity increases the rate of
equilibration of the system.
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(a) (b)

Fig. 24.8 Two transient effects in triangular lattice with Lennard-Jones interaction: (a) redistribu-
tion of temperature among spatial directions and (b) oscillations of the Lagrangian [71]

The additional analysis for FCC lattice [75] has shown that the thermal equilibra-
tion has two distinct time scales: the period of atomic vibrations τe and anharmonic
τa , which depends on the initial temperature T0. These two scales are connected
empirically by

τe

τa
≈ kBT0

ε
+ 1.496

(
kBT0

ε

)2

− 0.469

(
kBT0

ε

)3

. (24.24)

At low temperatures T0 < 0.05ε/kB the second time scale τa is almost inversely
proportional to the initial temperature.

As far as the first time scale is concerned, the approach to equilibrium is accompa-
nied by decaying high-frequency oscillations of the temperatures at times or order of
several τe. These oscillations are caused by both transient processes, i.e., equilibra-
tion of kinetic and potential energies and redistribution of the kinetic energy among
spatial directions.

At time scale τa , the difference of the kinetic temperatures deviates from the
equilibrium value, predicted by the harmonic approximation, and monotonically
tends to zero (see Fig. 24.8).

Thus, in anharmonic crystals thermal equilibration at different temperatures dif-
fers only by a time scaling. These results suggest, in particular, that, in the weakly
anharmonic case, the characteristic time scales of relaxation and heat transfer may
be of the same order; therefore, there may be some mutual influence between these
processes.

24.4 Heat Transfer

There are several approaches to the description of heat transfer. In continuum theo-
ries, the constitutive equations are usually introduced as part of the phenomenological
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approach. In particular, one of the phenomenological equations describing the wave
properties of heat propagation is theMaxwell–Cattaneo–Vernotte equation [13, 115].
This equation, unlike the Fourier heat conduction equation, gives a finite speed of
heat propagation. However, it still relies on the concept of the thermal conductivity
coefficient, which is not a parameter of the material at the micro level. For example,
it has been shown that in many materials, including nanowires [39], nanotubes [14],
graphene [6, 118], silicone membranes [49], and others, the thermal conductivity
depends significantly on the length of the sample on which measurements were car-
ried out. In addition, the Maxwell–Cattaneo–Vernotte equation predicts an exponen-
tial decay of thermal perturbations, while in the ballistic regime these perturbations
decay according to the power law [61, 74].

Another approach to describing heat propagation at the nanoscale is to use the
kinetic Boltzmann equation [94]. This equation is usually simplified using a number
of approximations for the collision term, in particular, by introducing relaxation times
[9, 53]. This allows the Boltzmann equation to be solved numerically [40, 102], as
well as obtaining heat propagation equations [15, 54]. In both cases, additional
assumptions are often introduced [107]. In particular, the contribution of optical
oscillations to heat transport is often neglected. Comprehensive literature reviews on
the use of the Boltzmann equation to describe heat propagation can be found, for
example, in [81, 107]. The link between the descriptions based on lattice dynamics
and kinetic theory is discussed in [77, 110]. In the present section, the formulae for
the heat transfer are derived either from the covariance dynamics equations or from
the exact solution of the dynamics equations. This approach makes it possible to
take into account all the important features of a discrete system that affect the heat
propagation, in particular, to estimate the contribution of the different branches of
the dispersion relation.

The analysis of heat transfer in discrete systems is usually carried out in the so-
called stationary non-equilibrium state [81, 100]. In this case, the discrete system
is placed between two thermostats with different temperatures. The effective heat
transfer coefficient of the system is calculated for the known temperature difference,
the distance between the thermostats, and the estimated heat flux. This formulation
of the problem is widely used both in analytical studies [82, 100] and in computer
simulations [19, 50, 81] of heat propagation. A detailed review of the results obtained
in the stationary formulation is given, for example, in [18, 81]. Calculation of the
effective thermal conductivity coefficient as a function of the sample length makes it
possible to determine the conditions underwhich the ballistic, anomalous, or diffusive
mode of heat propagation is realized. In the first case, the heat transfer coefficient
increases linearly with length; in the second case it increases nonlinearly; and in the
third case it does not depend on length at all. However, the stationary formulation
does not allow determining the heat transfer law.Moreover, the results obtained in the
stationary formulation may significantly depend on the choice of the thermostat [50].
Therefore, in this paper, we consider the non-stationary formulation of the energy
transfer problem.

One of the problems in the study of non-stationary thermal energy transfer is to
determine how the initial field of kinetic energy changes in time and space. The
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initial field can be set, for example, by giving random initial velocities to particles.
In this case, the use of a thermostat is not required. In the literature, such problems
are usually solved numerically using, for example, the molecular dynamics method
[27, 58, 79, 95]. This method makes it possible to use realistic interaction potentials
and to consider the influence of nonlinearity, defects, interfaces, and other features
of the real system, which are difficult to take into account analytically. However, in
spite of the enormous possibilities of numerical methods, some questions are still
easier to address analytically. In particular, for crystals with several branches of the
dispersion relation, it is difficult to separate the contribution of different branches to
the heat transfer in numerical simulations.

In this section, we continue to use an infinite harmonic crystal as the main model
of a crystal. In this model, harmonic waves do not interact with each other, so the
heat transfer is purely ballistic. The influence of dissipation and energy supply is
regarded in Sect. 24.4.1.2. Once again, note that in all examples the numerical and
analytical solutions demonstrate an excellent agreement.

24.4.1 Scalar Lattices

Let us continue the analysis of Eq. (24.4). In contrast to the previous assump-
tion (24.5), here we carry out continualization with respect to spatial variable r [61,
72], where the following change of variables is employed:

(
ri , r j

) −→ (
r, ri − r j

)
, r = ri + r j

2
. (24.25)

Next, we assume that the covariances are slowly changing functions of r at dis-
tances of order of aα , then the difference operator can be approximated.Moreover, for
the considered type of lattices, all the covariances become scalars (see Sect. 24.3.1.2),
so Eq. (24.4) yields to [72]

...
κ − 4Dκ̈ + 4(R · ∇)2κ = 0, (24.26)

where ∇ is Del operator and the difference operators D and R are calculated basing
on the definition (24.1).

The initial conditions take the form

κ = kB
m

T0(r)δ(ri − r j ), κ̇ = 0, κ̈ = 2kB
m

T0(r)Dδ(ri − r j ),
...
κ = 0,

(24.27)
where δ(ri − r j ) is equal to 1 for i = j , and vanishes otherwise.

The use of discrete Fourier transform with respect to the wave vector k allows to
obtain the solution in the following form:
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T = TF + TS, (24.28)

where TF is determined by formula (24.15), and it is responsible for transient pro-
cesses (see Sect. 24.3.1.2). The second summand TS describes the large-time behav-
ior, and it is equal to

TS = 1

2

∫

k
T0

(
r + c(k)t

)
dk, (24.29)

where c(k) = dω/dk is the group velocity.
Thus, formulae (24.15), (24.28), (24.29) fully describe the behavior of the kinetic

temperature at both short and large times. They show, in particular, that at large
times the temperature field is represented as the superposition of waves traveling
with group velocities c(k).

24.4.1.1 Hooke’s Crystal

As discussed before in Sect. 24.3.1.2, one-dimensional lattice is a particular case of
scalar lattices, so the formula (24.29) is applicable for this case.

The solution for an infinite Hooke’s crystal is given by [61, 64]

T (t, x) = 1

π

1∫

−1

T0(x − cts)√
1 − s2

ds = 1

π

π∫

0

T0(x + ct cosϕ)dϕ. (24.30)

This solution is analyzed in [111] for two examples of the localized (−l ≤ x ≤
l) initial temperature distribution and compared with the classical heat conduction
results. The comparison for the rectangular initial perturbation is shown in Fig. 24.9.
The ballistic solution has two strongly pronounced peaks traveling in the positive
and negative directions with speed c, whereas the classical solution demonstrates the
exponential decay of the single peak in the center.

In [65] the asymptotics for the heat wave described by the ballistic heat transfer
Eq. (24.30) is analyzed for several examples of the initial temperature distribution
localized in space. The solution in the vicinity of wavefront takes the simple form

T

(
t,

x − ct

l

)
=

√
2l

π
√
ct

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
1−(x−ct)/ l∫

0

T0

(
x − ct

l
+ p2

)
dp, −l ≤ x − ct ≤ l

√
1−(x−ct)/ l∫

√−1−(x−ct)/ l

T0

(
x − ct

l
+ p2

)
dp, x − ct ≤ −l

(24.31)
This formula shows that the main part of the wave is located in a space region of

the same size as the initial localization zone. The thermal wave shrinks vertically as
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the square root of time, whereas in the horizontal direction its shape, characterized
by the integral, remains unchanged. In addition, it can be demonstrated that during
the wave evolution, the wavefront smoothes, e.g., for a power-law dependence, its
degree increases by 1/2.

24.4.1.2 Modifications of the One-Dimensional Crystal Model

The effect of the elastic foundation on the ballistic heat transfer is discussed in [66],
namely, it is shown that in this case the rate of heat transfer is lower than that in the
crystal without substrate.

The influence of damping and energy supply is taken into account in [24]. The
respective temperature profiles are obtained analytically and analyzed, e.g. it is shown
that the steady-state kinetic temperature distribution caused by a point source of
constant intensity is described by the Macdonald function of zero order.

Another modification is the account for the interaction with the second neigh-
bors on the crystal lattice [85, 86]. It is shown that the initial thermal perturbation
evolves into two consecutive thermal waves propagating with finite and essentially
different velocities (see Fig. 24.10a). The velocity of the first front corresponds to
the maximum group velocity of the discrete crystalline model. The velocity of the
second front is determined by the second group velocity extremum, which arises at
a certain ratio between the stiffnesses of the first and second neighbor interaction in
the lattice.

To conclude this section, we move away from the scalar lattices concept and
mention the generalization of formula (24.29) for the case of one-dimensional crystal
with alternating masses or stiffnesses [74, 86, 96] (an arbitrary polyatomic lattice in
considered in Sect. 24.4.2):

(a) (b)

Fig. 24.9 Evolution of the solutions for a rectangular initial perturbation: (a) ballistic and (b)
Fourier heat transfer [111]
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(a) (b)

Fig. 24.10 Evolution of the solutions for a rectangular initial perturbation: (a) with regard for
the second neighbor interaction [85] and (b) with alternating masses/stiffnesses [96] (for certain
parameters)

TS = 1

2M

M∑

j=1

∫

k
T0

(
x + c j (k)t

)
dk, (24.32)

whereM is the number of degrees of freedom in the unit cell, and c j are the respective
group velocities ( j = 1 . . . M). Formula (24.32) is valid for all one-dimensional
harmonic crystals with arbitrary M . In paper [86] it is applied to the diatomic chain.
An analytical approach, that allows to identify the thermal wavefront intensity, is
proposed. It is demonstrated that, for any ratios between the masses/stiffnesses, the
initial thermal perturbation propagates as two successive thermal fronts having finite
speeds and repeating the shape of the initial perturbation (see Fig. 24.10b). The speed
of the first front corresponds to the acoustic branch of the dispersion relation, and the
speed of the second front corresponds to the optical one. In the case when the particle
masses differ slightly, the intensity coefficient of the acoustic front is maximum, and
the optic front decays, continuing to move at non-zero speed.

24.4.1.3 Two-Dimensional Crystal

The analytical solution of the planar heat transport problem for the stretched square
lattice is given in [72].

Figure24.11a clearly shows two thermal waves traveling in the opposite direc-
tions. The peaks of the temperature distribution move with constant speed.
Figure24.11b demonstrates how the heat flows from “cold” (center) to “hot” (peaks).

The influence of the dissipation and heat supply is discussed in [25]. The
differential-difference equation describing non-stationary heat propagation in the
lattice and the analytical formula in the integral form describing the steady-state
kinetic temperature distribution in the lattice caused by a point heat source of a
constant intensity are derived.
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(a) (b)

Fig. 24.11 Scalar square lattice [72]: (a) evolution of rectangular initial temperature distribution
and (b) evolution of a circular initial temperature distribution (initial temperature is uniform inside
a circle with radius 20a, and the scale is normalized to the initial temperature value at the center)

24.4.2 Polyatomic Lattices

This section is concluded by the results on heat transfer in polyatomic lattices. The
explicit problem statement and respective derivation are given in [74]. We write out
the main result, i.e., the approximate formula for the temperature matrix:

T = TF + TS, TF ≈
∫

k
PT̃FP∗Tdk, TS ≈

∫

k
PT̃SP∗Tdk,

{
T̃F

}
i j = 1

2

{
P∗TT0(r)P

}

i j

[
cos

((
ωi + ω j

)
t
)+ (

1 − δi j
)
cos

((
ωi − ω j

)
t
)]

,

{
T̃S

}
i j = 1

4

{
P∗T

(
T0

(
r + c j t

) + T0
(
r − c j t

))
P
}

j j
δi j ,

(24.33)
Here P = P(k) is the polarization matrix which consists of normalized eigenvectors
of the lattice dynamic matrix, c j (k) is the group velocity vector which corresponds
to the j th branch of dispersion relation ω j (k), and T0(r) is the initial temperature
matrix of the unit cell.

The first term, TF , in formula (24.33) describes short-time behavior of the tem-
perature matrix (fast process). At short times, the temperature matrix oscillates. The
oscillations are caused by redistribution of energy among kinetic and potential forms
and redistribution of energy among degrees of freedom of the unit cell. These oscilla-
tions at different spatial points are independent. At large time scale TF tends to zero.
The second term, TS , in formula (24.33) describes the large time behavior of the
temperature matrix (slow process). At large time scale, changes in the temperature
profile are caused by ballistic heat transport. The temperature matrix is represented
as a superposition of waves traveling with group velocities. Shapes of the waves are
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Fig. 24.12 Contributions of acoustic (left) and optical (right) vibrations to temperature profile
in graphene at large time. The initial temperature is distributed inside a circle with a radius 10a.
Plus signs mean that the resulting temperature profile is equal to a sum of acoustic and optical
contributions. Color bars show the ratio between current and initial temperatures [74]

determined by initial temperature profile T0. Note that according to formula (24.33),
accurate description of ballistic heat transport requires knowledge of the dispersion
relation and corresponding group velocities. It is noteworthy that the local values
of temperatures, corresponding to the degrees of freedom of the unit cell, at large
times are generally neither equal to each other nor equal to their equilibrium val-
ues (temperature matrix is generally not isotropic). Therefore, the thermal state of
unit cells reached by thermal waves is strongly non-equilibrium. In [74] this fact is
demonstrated for the chain with alternating masses.

As in Sect. 24.3.1.3, we again restrict ourselves by the graphic results for one-
dimensional lattice with alternating masses and stiffnesses (Fig. 24.10) and for the
out-of-plane vibrations of graphene (Fig. 24.12).

Consider the evolution of circular initial temperature profile in graphene [74]. Cor-
responding temperature field at t = 20τe is shown in Fig. 24.12. The figure shows,
in particular, that the heat front is a circle as predicted by the derived formulae and
the Huygens principle. At the same time, the temperature field has a symmetry of



24 Discrete Thermomechanics: From Thermal Echo … 523

the lattice, i.e., the heat transport is strongly anisotropic. Moreover, the temperature
field has contributions from acoustic and optical branches of the dispersion relation.
Acoustic waves have larger group velocities than optical waves; therefore, the tem-
perature front on the left-hand side propagates faster than that on the right-hand side.
We note that the temperature has a local minimum at the center. Therefore, the heat
flows from “cold” to “hot”.

24.4.3 The Influence of Nonlinearity

Weconclude this section by investigating the effect of anharmonicity on heat transfer.
As an example, we consider equilibration of a sinusoidal modulation of temperature
in the β–Fermi–Pasta–Ulam–Tsingou (FPUT) chain [57]. In this system, the par-
ticles are connected to their nearest neighbors by the potential, which includes the
quadratic term with the harmonic constant C and the quartic term with the anhar-
monic constant β.

The results for different values of the anharmonicity parameter β and for different
wavelengths of temperature modulation were obtained numerically and compared to
the analytical solution available for the linear case, i.e., β = 0 (see formula 24.30).
Also, the applicability of the linear theory to a weakly nonlinear chain was assessed
for different wavelengths of temperature modulation. The initial conditions of two
types were used: (i) at t = 0, the energy of the system is in the form of kinetic energy
with zero potential energy and (ii) the other major part of the energy is initially shared
between kinetic and potential energies.

Firstly, for the linear chain (β = 0), the numerical results averaged over an increas-
ing number of realizations converged to the analytical solution. This solution predicts
that equilibration of a sinusoidal modulation of temperature demonstrates oscilla-
tions with a decrease in time amplitude, following the Bessel function of the first
kind. This was true for the initial conditions of both types, though convergence
with an increasing number of realizations was faster for the initial conditions with
nearly equal kinetic and potential energies. Convergence was also faster for a larger
wavelength of temperature modulation. The kinetics of temperature equilibration,
for increasing number of realizations, converges not only for the harmonic chain but
also for β > 0.

Secondly, with an increase in the degree of anharmonicity, the oscillatory equili-
bration of temperature gradually transforms into a monotonic one. For a given tem-
perature wavelength modulation, there exists a value of the anharmonicity parameter
when the temperature equilibration occurs most rapidly. For smaller values of β,
oscillations of temperature decay slowly, and for larger β, the monotonic decay is
slow (see Fig. 24.13).

Thirdly, the linear theory remains informative forweakly anharmonic chainswhen
β is smaller than a certain critical value, which decreases with increasing temper-
ature modulation wavelength. This means that temperature modulation with short
wavelength is less affected by the anharmonicity or, in other words, the linear theory
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Fig. 24.13 Normalized
difference between the
averaged temperatures of the
left and right halves of the
chain, δT , as a function of
normalized time for different
values of the nonlinearity
parameter β; the chain
consists of N = 32768
particles [57]

remains valid for larger values of β, as compared to the long-wavelength temperature
modulation.

Overall, these results have confirmed that (i) the continuum equation derived
in [61] accurately describes the temperature flow in linear chains, (ii) linear the-
ory remains informative for weakly anharmonic chains, and (iii) short-wavelength
modulations of temperature are less affected by the anharmonicity and linear theory
remains valid for larger values of β, as compared to the long-wavelengthmodulations
of temperature.

In this regard, the results presented in previous works, e.g., [27] have found
their explanation. Oscillations of the short-wavelength sinusoidal temperature mod-
ulation, observed by the authors of those works, can be well explained by the
linear theory [61]. The oscillations were not observed by the authors for long-
wavelength temperaturemodulation because, in this case, the effect of anharmonicity
is much stronger. The oscillations of long-wavelength temperature modulation can
be observed for smaller values of the anharmonicity parameter.

24.5 Thermoelasticity: Ballistic Resonance in FPUT Chain

The previous sections dealt mostly with crystalline solids with linear interactions
between the particles. The considered linearmodels allow an analytical description of
elasticity, transient thermal processes, and heat energy transfer (thermal conduction)
in crystalline solids.However, they are unsuitable for describing thermoelastic effects
such as thermal expansion or the conversion of mechanical energy into thermal
energy. In this section, we address some effects caused by nonlinearity of interatomic
interaction.
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In [63] one-dimensional chains with pair force interactions are considered. Using
the approach proposed in [59], the continualization of the dynamics and energy bal-
ance equations is carried out. As a result, the coupled thermoelasticity equations
for a chain are obtained. As an example, we consider the well-known α–Fermi–
Pasta–Ulam–Tsingou (FPUT) model [21], a one-dimensional chain with quadratic
nonlinearity. All of the aforementioned thermomechanical processes can be quali-
tatively described by this model. Despite the apparent simplicity of the model, the
analytical description of the macroscopic thermoelastic processes, thermal conduc-
tivity, and the transition of mechanical energy into thermal energy seems to be a very
difficult and yet unsolved problem. The FPUT chain demonstrates anomalous ther-
momechanical properties. It is shown in [16, 17, 27, 117] that the heat conduction
in the FPUT chain is represented neither by the Fourier law nor by the Maxwell–
Cattaneo equation. In the limiting case of large times and infinitely long chain, the
heat conduction is described by the equation with fractional derivatives [89]. How-
ever, this model does not capture the quasi-ballistic heat transfer typical for small
times and chains of finite length. Therefore, the results obtained in Sect. 24.4 are
used to describe the quasi-ballistic heat conduction regime.

An evenmore complicated problem is the description of the transition ofmechani-
cal energy into thermal energy. This process is in charge, in particular, of the damping
ofmacroscopicmechanical vibrations of the chain. The study of the decay ofmechan-
ical vibrations of the FPUT chain has a long history, beginning with the pioneering
work of Fermi, Past, and Ulam [21]. In [21], the initial conditions corresponding
to the excitation of the first eigenmode of the chain were considered. It was shown
numerically that the oscillations damping occurs non-monotonically: the decay and
growth of the energy of mechanical oscillations alternate. In the literature, this effect
is often referred to as Fermi–Pasta–Ulam–Tsingou recurrence paradox (see, for
example, [22] for the review of the works aimed at explaining this paradox). Note
that in the formulation proposed in the original paper [21], the oscillations were con-
sidered at zero initial temperature. In what follows, it is shown that the introduction
of a finite temperature (random particle velocities) allows us to provide a monotonic
damping of mechanical energy [76].

In this section, we describe thermomechanical phenomena observed in the α–
FPUT chain with a spatially sinusoidal profile of initial temperature [76]. Firstly,
it is shown analytically that temperature oscillations, caused by quasiballistic heat
transport, and thermal expansion give rise to mechanical vibrations with growing
amplitude. This new phenomenon is referred to as ballistic resonance [76]. Secondly,
it is demonstrated numerically that mechanical vibrations, excited by the ballistic
resonance, decay monotonically in time. Therefore at finite temperatures the FPUT
recurrence paradox is eliminated.

Consider the equations of motion of α−FPUT chain under periodic boundary
conditions

mün = C(un+1 − 2un + un−1) + α
(
(un+1 − un)

2 − (un − un−1)
2
)
, (24.34)
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where the parameter α characterizes nonlinearity. We consider initial conditions,
corresponding to spatially sinusoidal kinetic temperature profile, zero initial fluxes,
and no macroscopic mechanical motions

un = 0, u̇n = σn

√
2kB
m

(
Tb + �T sin

2πn

N

)
,

〈σn〉 = 0, 〈σ 2
n 〉 = 1,

(24.35)

where σn are uncorrelated random numbers with zero mean and unit variance; Tb is
the average (background) temperature;�T is an amplitude of the initial temperature
profile.

Next, we separate the motions [63]. Mechanical motion is associated with the
time evolution of the mathematical expectation of particle displacement, whereas
the thermal motion is defined as the difference between the total displacement and
the mechanical one. Note that, in contrast to mechanical displacements, the thermal
displacements are random.

We assume that the macroscopic mechanical motion of the chain is described
by the equation of linear thermoelasticity, as shown in [63], while the behavior of
temperature (heat transfer) is described by the ballistic heat Eq. (24.11) [61, 64].
Conversion of mechanical energy to thermal energy is neglected, then the macro-
scopic behavior of the chain in the continuum limit is described by the system of
equations

ü = c2S
(
u′′ − βT ′) , T̈ + 1

t
Ṫ = c2ST

′′, (24.36)

where cS is the speed of sound and β is the thermal expansion coefficient. Note
that both macroscopic equations are derived from the equations of motion (24.34).
Anharmonic effects are taken into account only in the equation for the displace-
ments, whereas the second one is derived using harmonic approximation, therefore
it corresponds to the purely ballistic heat transport regime.

Substituting the solution of the ballistic heat equation with initial conditions,
corresponding to sinusoidal initial perturbation [61], into the dynamics Eq. (24.36),
we obtain

ü = c2Su
′′ − λc2Sβ�T J0(ωt) cos λx, (24.37)

where λ = 2π/L , L is the the chain length, ω = λcS .
It can be seen that the temperature acts as an external force, exciting the first

normal mode of mechanical vibrations. From the properties of Bessel function it
follows that the external force oscillates with frequency ω and decays as 1/

√
t . Note

that the frequency coincides with the first eigenfrequency of mechanical vibrations.
The solution of (24.37) yields an exact expression for displacements

u(x, t) = z(t) cos λx, z(t) = −β�Tωt

λ
J1(ωt). (24.38)



24 Discrete Thermomechanics: From Thermal Echo … 527

(a) (b)

Fig. 24.14 a Growth of mechanical vibrations amplitude due to ballistic resonance: analytical
solution (solid line) and numerical results for αa/C = −0.25 (circles) and αa/C = −1 (squares);
b decay of mechanical vibrations amplitude for large times (numerical results, αa/C = −1) [76]

At large times, the amplitude of displacement grows as a square root of time

z(t) � −
√

2

π

β�T

λ

√
ωt cos

(
ωt − 3π

4

)
. (24.39)

The time dependence of the amplitude of mechanical vibrations z(t) is presented
in Fig. 24.14a. It can be seen that the amplitude grows in time, as described by the
analytical solution (24.38). Thus the coincidence of a frequency of temperature oscil-
lations with the first eigenfrequency of the chain leads to excitation of mechanical
vibrations with growing amplitude. This phenomenon is referred to as ballistic res-
onance [76]. Note that, in contrast to the conventional mechanical resonance, the
ballistic resonance occurs in the closed system without any external excitation. It is
caused by conversion of thermal energy to mechanical energy.

Numerical simulations show that mechanical vibrations, excited by the ballistic
resonance, decay in time (see Fig. 24.14b). The decay is caused by thermalization,
i.e., conversion of mechanical energy to thermal energy. This process is not covered
by our continuum model (24.36). The simulation results show that the mechanical
oscillations arising at resonance decay monotonically. Therefore, the classical FPUT
paradox is not observed at the finite temperature. In our calculations, the mechanical
energy of the system is significantly lower than the thermal energy. It seems that
this condition is necessary for monotonic decay. However, a rigorous proof of this
statement requires further investigations.
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24.6 Concluding Remarks

This paper summarizes the current status of research on discrete thermomechanics
carried out in the Institute for Problems in Mechanical Engineering of the Rus-
sian Academy of Sciences. The main achievement is an approach for the analytical
description of unsteady thermomechanical processes in perfect crystals in continuum
approximation. The approach allows to describe the transition to thermal equilibrium,
ballistic heat transfer, heat supply, propagation of thermoelasticwaves, and other non-
equilibrium processes in perfect crystals. One, two, and three-dimensional perfect
crystals with arbitrary harmonic and weakly anharmonic interactions are considered.
The approach predicts the existence of many peculiar thermomechanical phenom-
ena, including but not limited to thermal waves, heat flow from cold to hot, several
kinetic temperatures, thermal echo, and ballistic resonance. Still, we believe that
many phenomena are yet to be discovered.

However, despite the significant progress in describing and understanding ther-
momechanical processes, many questions remain open. Let us briefly mention some
aspects of the approach that require additional investigation.

• The relation between the kinetic temperature, defined above, and other definitions
of temperature available in the literature is not straightforward. Which of these
temperatures is the best parameter for the description of the thermal state of a
non-equilibrium system? This question requires a separate discussion.

• Some of the presented results (e.g., heat flowing from cold to hot) seem to contra-
dict the second law of thermodynamics. We refer to papers [62, 112] for further
discussion of this important issue.

• Many of the results have been obtained for one particular type of initial conditions,
namely random initial velocities and zero displacements. These initial conditions
are the simplest model of a heat impact on a system. How well does this model
describe the crystal heating, e.g., by a short laser pulse?

• The results have been mostly obtained in the harmonic approximation. What is
the range of applicability of this approximation for real materials? To what extent
can quantum effects be ignored inside this range?

• Kinetic theory is a powerful tool for the description of the thermomechanical
processes in discrete systems. In some cases, the kinetic approach can be derived
from the dynamical description [77]. However, in general, the establishment of
this link is still connected with a number of open questions.

We are planning to address these fundamental questions in our future work.
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Chapter 25
Behavior of Pipeline Steels in Gaseous
Hydrogen-Containing Mixtures

Vladimir A. Polyanskiy, Ksenia P. Frolova, Yulia S. Sedova,
Yuriy A. Yakovlev, and Alexander K. Belyaev

Abstract The chapter provides an overview of the results of studying the effect of
hydrogen in mixtures with gases on strength, ductility, fatigue crack growth rate,
and fracture morphology of the most commonly used pipeline steels X70, X80.
The main methods of testing susceptibility of pipeline steels to hydrogen following
the standards are briefly discussed. The results obtained by various authors show
that there is a strong influence of partial hydrogen in mixtures with gases. Fatigue
crack growth rate increases many times, the fracture morphology changes, and a
quasi-cleavage fracture mode is observed. At the same time, tensile strength and
yield strength of smooth tensile specimens made of the base metal practically do not
change. This, in turn, can lead to an incorrect interpretation of the results of testing.

Keywords Hydrogen in mixtures · Fatigue crack · Strength · Ductility · Fracture
morphology · Pipeline steels · Brittle zones · Quasi-cleavage planes

25.1 Introduction

The carbon-free energy concept is faced with the problem of the lack of efficient
batteries of electricity, capable of storing energy within one power plant or one
region when it is sunny and windy and giving it back otherwise. One has to reserve
carbon-free power generation from thermal power plants, making the whole concept
meaningless and resulting in a more expensive generation. Therefore, the creation
of a new energy system based on hydrogen obtained using electricity from wind and
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solar power plants is a promising direction for the development of modern industry
[4, 58]. The Joint Technology Initiative on Fuel Cells and Hydrogen and project
devoted to New Energy Externalities Development for Sustainability have been
started in Europe [28]. Canada implements the project to ensure the expected level of
safety in the use of hydrogen [51]. Great Britain, France, Germany, the Netherlands,
and Australia implement projects to add hydrogen to existing gas pipeline networks
in separate sections [10, 35]. Many other countries, as well as transnational oil and
gas corporations, participate in similar projects.

It is planned to obtain hydrogen for industry from natural gas and water using var-
ious technologies (reforming, pyrolysis, electrolysis). The cost of producing hydro-
gen is planned to be provided by excess energy from wind and solar stations. In
connection with the use of hydrogen, three main technical problems arise, namely,
transportation of hydrogen, accumulation and storage of hydrogen, and generation
of energy from hydrogen.

The transportation problem is proposed to be solved by injecting hydrogen into
the natural gas pipelines. The network of the last ones is used for the transportation
of natural gas. According to [68], it is possible to realize hydrogen injection that
maintains the current safety level of gas pipeline operation. At the same time, a
number of papers investigated the likely consequences of using the existing natural
gas pipeline network to transport both pure hydrogen and a mixture of natural gas
with hydrogen [13, 20, 32, 78, 84]. Technically, hydrogen can be added to natural
gas, but it can result in a decrease in safety level [18, 39, 72]. Thus, one of the
advanced problems in hydrogen power engineering is the assessment of the risks
associated with the transportation of a mixture of natural gas with hydrogen.

Hydrogen-induced degradation of pipelines steels is the main problem of the
addition of hydrogen to natural gas. The mechanism of destruction of pipeline walls
changes in a hydrogen-containing environment [9, 33, 43, 83]. Pipeline natural gas
contains not more than tenths of a percent of gaseous hydrogen.

Hydrogen degradation of metals usually results in a decrease in strength, ductility,
fracture toughness, and fatigue life. A huge number of papers devoted to studying
the effect of pure hydrogen on the properties of steels with different microstructures
have been published. Despite the interest of the oil and gas industry in the “hydrogen
problem,” a relatively small number of papers investigate the effect of a mixture of
natural gas with hydrogen on the properties of thewalls of gas pipelines. In particular,
the topical issue of the permissible concentrations of hydrogen under operating of
existing networks.

Other problems of transportation of hydrogen-containing natural gas include the
likelihood of hydrogen leakage [49, 80], the likelihood of ignition due to a decrease
in the minimum ignition energy with an increase in the volume fraction of hydrogen
in the mixture, and the inapplicability of the detectors developed for natural gas for
detecting hydrogen-initiated fires [43].

The methodological problem of material testing providing information about the
behavior ofmetals in gaseous environments is of quite importance. In particular, there
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are three fundamentally different zones in the pipelinewalls: basemetal,welded zone,
and heat-affected zone. The mechanism of interaction of these zones with hydrogen
is different, which must be taken into account.

25.2 Experimental Methods

The saturation of metals by hydrogen is the main method of studying the effect of
hydrogen on the mechanical properties of the material. Usually, the following four
main methods are used:

1. In gaseous hydrogen [37–86]
2. In acid solution [37, 40, 45]
3. Cathodic hydrogen charging [36, 37]
4. In electrolyte associatedwith near-neutral pHSCC, simulating sea or groundwater

or transported natural gas [21–82].

For instance, [40] provides the standard set of test conditions for consistent eval-
uation of pipeline and pressure vessel steels and comparison of the test results from
different laboratories on the results of absorption of hydrogen generated by corrosion
of steel in wet H2S.

All thesemethods or their varieties are standardized.However, the cathodic hydro-
gen charging is most often used because of the high degree of danger of experiments
on saturation by gaseous hydrogen. It should be noted that the standard cathodic
hydrogen charging method [36] allows one to saturate only flat samples that can be
clamped between the seals of two adjacent vessels with electrolyte. This method
involves monitoring the completeness of hydrogen saturation of samples according
to the time dependence of the electric current between the electrodes, each ofwhich is
placed in its own electrolyte volume. The sample plays the role of a proton-exchange
membrane between two separate electrolyte volumes.Most often, themethod ismod-
ified for the cylinder-shaped samples or rectangular parallelepipeds. In this case, the
specimen which must be quickly saturated with hydrogen acts as one of the elec-
trodes.

A large number of papers referring to saturation methods are published annually.
However, there are very few works devoted to the extremely important question
of the distribution of hydrogen concentration inside the metal due to the hydrogen
saturation, see [31–70]. As a rule, the degree of saturation and its uniformity are
not checked. The amount of absorbed hydrogen is believed to be proportional to the
charge passed through the electrolyte, and the average concentration of hydrogen is
proportional to the cathode current density for the same charging time [77].

Mathematical modeling is the main approach used to study the distribution of
hydrogen concentration [31, 67, 88].

There are only five papers [53, 70, 86, 87, 89], which present the results of direct
measurements of the hydrogen concentration in titanium, copper, and steel specimens
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obtained by using cathodic hydrogen charging and saturation by hydrogen in a neutral
solution.

The results of direct measurements described in [53, 70, 86, 87] show that these
methods do not result in the uniform hydrogen concentration under the reasonable
time of charging. The difference in concentration values reaches hundreds of times.
According to [53, 86], it is necessary to saturate a cylindrical steel sample with a
diameter of 7mm for 504h to obtain a uniform distribution of hydrogen concentra-
tions. This time is ten times greater than the average duration of cathodic hydrogen
charging which is from 2 up to 20h in the most reported experiments.

A uniform distribution of hydrogen in titanium alloys can be observed after satu-
ration in gaseous hydrogen under pressure at temperatures above 100 ◦C during 100h
[89].

Thus, the available methods of saturation by hydrogen result in fundamentally
different distributions of hydrogen concentrations in a metal, which depends on the
saturation time and themicrostructure of the alloy type. The published papers contain
only incomplete data on five types of alloys, amongwhich there are no pipeline steels.
Despite the common opinion about uniform saturation, the real nonuniformity of
concentrations can reach hundreds of times.

To the best of our knowledge, there are no data on the distribution of hydrogen in
the walls of gas pipelines after its operation. Therefore, the comparison of different
saturation methods and the choice of the most appropriate one is impossible. The
question arises about the applicability of the entire set of data on the effect of hydrogen
on the properties of steels to the specific problemof hydrogendegradationof pipelines
metals during the transportation of hydrogen-containing gas mixtures. Additional
experimental studies with specific steels under operating conditions close to real
ones, as well as the development of new methods testing the resistance to hydrogen-
containing mixtures under high pressure are required.

25.3 Influence of Hydrogen on the Mechanical Properties
of Gas Pipelines Metals

Studies of the effect of hydrogen in mixtures with natural gas on the mechanical
properties of steels aremultivariable. First, the concentration of hydrogen inmixtures,
pressure, exposure time, and rate of loading can take different values. Second, natural
gas is multicomponent. In particular, reactions of methane with carbon dioxide and
water accompanied by the release of aggressive hydrogen radicals are possible. Real
natural gas usually contains other impurities that affect the mechanical properties
of materials in hydrogen-containing environments [17, 63]. To minimize the effect
of other constituents and focus on the influence of hydrogen, the natural gas is
often simulated by nitrogen or pure methane in experiments. Various zones of a
gas pipeline, namely base metal, welded zone, and heat-affected zone have different
characteristics [2, 19, 48, 90]. A number of authors draw attention to the need to
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conduct experiments with specimens cut from different zones of the gas pipeline.
Mechanical properties are estimated on the base of tensile and fatigue tests [55, 81].

25.3.1 Tensile Tests

The tensile behavior of specimens made of steels X70 and X80 tested in the
gas/hydrogen mixtures was investigated in a number of works following the pro-
cedures of American Society for Testing and Materials (ASTM) [34, 56, 64, 66,
75].

Tensile tests evaluated such mechanical properties as tensile strength, yield
strength, elongation at the fracture

δ = lk − l0
l0

· 100% (25.1)

and reduction in the area

RA = Ak − Ak

A0
· 100%, (25.2)

where lk, Ak are the length of the specimen and cross-sectional area after testing,
l0, A0 are the initial length of the specimen and the cross-sectional area, respectively.

In addition, to quantify the influence of added hydrogen on the mechanical prop-
erties of the material, the following index was defined to describe the hydrogen
embrittlement (HE) susceptibility:

RRA = RAN − RAH

RAN
· 100%, (25.3)

where RAH and RAN are the reduction of area in hydrogen blends and in nitrogen
gas, respectively. With this definition, RRA = 0 means the absence of HE, whereas
RRA = 100% corresponds to the maximum HE. A similar relationship RRA =
RAH/RAN · 100% can be used instead of Eq. (25.3). In this case, RRA = 100%
means the absence of HE, and RRA = 0, vice versa corresponds to the maximum
HE.

The tensile behavior of smooth specimens is investigated using standard corset
cylindrical specimens with a 6mm gauge diameter and parallel part length of
28.6mm.

In [34, 56, 64, 75], tensile tests were carried out for smooth specimens cut from
the base metal of the gas pipeline.

In [56], tests were carried out for smooth specimens cut from X80 steel following
Chinese standard GB/T 971 in environment of gaseous nitrogen/hydrogen mixtures
containing 0, 5.0, 10.0, 20.0, and 50.0% H2 under a pressure of 12 MPa. Similar
tests were carried out in [34, 75] for specimens cut from X70 steel under a pressure
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Table 25.1 Characteristics of smooth steel specimens cut from the base material of a gas pipeline
under tension in a nitrogen/hydrogen mixture

Paper/Steel Vol. % H2 Ultimate
strength,
MPa

Yield
strength,
MPa

Elongation
at the
fracture, δ,
%

Reduction
in the area,
RA, %

HE suscep-
tibility
index,
RRA, %

Meng 0 656.4 523.9 26.9 77.8 0

5 666.0 518.6 24.6 75.1 3.4

2016/ 10 657.8 525.5 23.9 74.4 4.3

X80 20 656.1 524.8 22.2 65.4 15.9

50 661.5 523.7 21.9 64.7 16.8

Huang 0 621.8 548.9 25.4 84.9 0

2020/ 5 615.5 540.3 25.6 79.5 6.4

X70 10 613.2 539.7 25.5 78.9 7.1

of 10 MPa, the volume fraction of hydrogen was 0.5.0 and 10.0%. The stress–strain
curves corresponding to tests in different environments coincide. Thus, there is no
effect of hydrogen.

The same smooth specimens made of steel X70 were tested in an environment of
CH4/H2 mixture containing 1% of hydrogen under a pressure of 10 MPa in [64]. To
simulate the long-termoperation of the gas pipeline, the test sampleswere saturated in
the mixture for 720h. Comparison of the stress–strain curves obtained by saturation
of the specimens in five different media, namely, in ambient air, in helium, in CH4/H2

mixture containing 1% of hydrogen, in CH4/H2 mixture with 1%H2 for 720h, and in
pure hydrogen. According to the results, the added hydrogen does not significantly
affect the ultimate strength and yield strength of smooth samples. A twofold decrease
in the parameter δ is observed in pure hydrogen, but the values of the ultimate strength
and yield strength do not change.

The absence of the influence of hydrogen concentrations less than 100% on the
ultimate strength and yield strength was confirmed in [10, 12, 61, 73]. At the same
time, according to [34, 56, 75], injection of hydrogen leads to a decrease of the reduc-
tion in the area, which becomes significant when hydrogen concentrations exceed
10%. Elongation at the fracture also can be reduced (see Table25.1).

The addition of hydrogen increases the HE susceptibility since the value of the
index of RRA becomes non-zero and increases with an increase in the volume
fraction of hydrogen in the mixture.

The study of the effect of the added hydrogen on the mechanical properties of the
weld joint of steels X70 under tensionwas investigated in [34, 66, 75]. The tests were
carried out under a pressure of 10 MPa. A mixture of nitrogen with hydrogen was
investigated in [34, 75], amixture ofmethanewith hydrogenwas investigated at rapid
and long-term (for 720h) artificial saturation in [66]. According to the stress–strain
curves presented in [75], there is no influence of hydrogen. According to [34], the
addition of 5%of hydrogen results in decreasing of the elongation at the fracture from
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Table 25.2 Characteristics of smooth steel specimens cut from the weld joint of a gas pipeline
under tension in a nitrogen/hydrogen mixture

Paper/Steel Vol. % H2 Ultimate
strength,
MPa

Yield
strength,
MPa

Elongation
at the
fracture, δ,
%

Reduction
in the area,
RA, %

HE suscep-
tibility
index,
RRA, %

Huang 0 639.9 573.6 22.6 78.3 0

2020/ 5 659.8 570.1 20.5 69.2 11.6

X70 10 649.4 549.2 19.4 65.7 16.1

Fig. 25.1 Specimen
geometry of notch tension
specimen

76

M
14
х1

6

60o

22 to 17%, and addition of 10%of hydrogen results in a drop to 15%. The quantitative
characteristics of the samples investigated in [66] are given in Table25.2.

The added hydrogen affects themechanical properties of thewelded zone (see [34,
66] and Table25.2). This effect is significant in comparison with the results obtained
for the base metal. The ultimate strength of the welded zone slightly increases in
comparison with the ultimate strength of the material tested in pure nitrogen, which
indicates hydrogen strengthening. The susceptibility toHE increaseswith an increase
of hydrogen concentration.

Tensile tests on the notch specimenswere performed in [56, 64, 66, 75]. Geometry
of the notch specimen is shown in Fig. 25.1. The notch models defect caused by
rolling.

Notch specimenswith a notch root radius of 0.1mmmade of steel X80were tested
in an argon/hydrogen mixture containing 0, 5, 10, 20, and 50% of hydrogen under a
pressure of 12MPa in [56]. Similar experimentswere carriedout in [75] for specimens
with notch root radii Rn = 0.083 mm and Rn = 0.95 mm made of steel X70 placed
in an environment of argon/hydrogen mixture containing 0, 5, and 10% of hydrogen
under a pressure of 10 MPa. The values of notch root radii correspond to the values
of the ratio of the maximum stress at the stress concentration region to the average
applied stress at minimum cross-sectional area Kt = 5.1 and Kt = 2.4, respectively;
Kt = 1 for a smooth specimen. The experiments were carried out for samples cut
from the base metal of the gas pipeline and from the weld joint. Hydrogen was found
to reduce the ultimate strength and decrease reduction in the area. Increasing the
hydrogen concentration results in earlier destruction in all cases.

Comparison of the results with those obtained for smooth specimens allows con-
cluding that notch samples are more sensitive to hydrogen added in nitrogen gas.
Increasing the value of Kt results in increasing the effect of hydrogen on the tensile
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Fig. 25.2 Tensile properties of the notch specimens made of Base metal of steel X80, Rn = 0.1
mm [56], base metal and Weld zone of steel X70, Rn = 0.95 mm (Kt = 2.4), Base metal and Weld
zone of steel X70, Rn = 0.083 mm (Kt = 5.1) [75] (NTS a is an ultimate strength, RA b is a
reduction in the area)

properties of the metal. The corresponding quantitative characteristics of mechanical
properties are shown in Fig. 25.2.

The reduction in the area of the specimen drops faster than ultimate strength with
the increase of hydrogen content. In particular, the ultimate strength of the notch
specimen with Kt = 5.1 decreases by 2.4% with the addition of 10% of hydrogen
to argon, while the reduction in the area of the specimen decreases by 75.2% under
the same conditions. Thus, the results indicate that the effect of hydrogen and stress
concentration on the ultimate strength is not so great, while the effect on the plasticity
of the material is significant. According to [56], the coefficient of susceptibility of



25 Behavior of Pipeline Steels in Gaseous Hydrogen-Containing Mixtures 543

Fig. 25.3 Tensile characteristics of the notch specimens tested in pure gases and in a
methane/hydrogen mixture containing 1% of hydrogen: a Base metal of steel X70, Rn = 0.083
mm [64], b weld zone of steel X70, Rn = 0.083 mm [66] (MNS/UTS is an ultimate strength, RA
is a reduction in the area)

notch specimen with Rn = 0.1 mm to HE take values 0, 19.1, 20.5, 41.0, and 54.5%
at 0, 5.0, 10.0, 20.0, and 50.0% of hydrogen, respectively.

Notch specimens cut from the base metal of a gas pipeline made of steel X70
were tested in [64] in a methane/hydrogen mixture containing 1% of hydrogen under
a pressure of 10 MPa. The same tests were carried out in [66] for specimens cut
from the weld joint. The notch root radius was equal to 0.083mm. The main tensile
characteristics of the specimens are shown in Fig. 25.3.

The addition of 1% of hydrogen does not change the ultimate strength of the base
material, but significantly reduces the value of the reduction in the area (this effect
is not observed when testing smooth samples). The ultimate strength of the welded
zone slightly decreases with the increase of hydrogen concentration. As in the case
of base metal, there is a drop of the reduction in the area. The quantitative values of
this parameter are much lower for the weld zone than for the base metal.

Since behavior of smooth samples and notched samples is different, it is necessary
to take into account the results of studies of specimens of both types to ensure the
safe operation of gas pipelines.
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25.3.2 Fractography Analysis

Microstructural analysis of the fracture surface of tensile specimens is performed in
[34, 56, 64, 66, 75] using scanning electron microscopy (SEM).

According to [56], the fracture morphology of the smooth specimen made of
steel X80 tested in nitrogen presents ductile fracture with numerous dimples. In the
case of 20% hydrogen blend, surface cracks are found on the specimen side surface.
The crack initiates near the specimen surface and secondary cracks (delamination)
can occur on the fracture surface. Meng [56] suggested to relate it to the textured
microstructure caused by hot rolling. A quasi-cleavage fracture mode in 20% hydro-
gen mixture is observed.

Analysis of the microstructure of the fracture surface of specimens made of steel
X70 was carried out in a number of works [34, 64, 75]. The microstructure of the
fracture surface of the specimen tested in nitrogen is found to be similar to the fracture
surface observed for specimen tested in a mixture of nitrogen with 10.0% hydrogen.
Necking and a ductile fracture with numerous dimples are observed in both cases.
However, the dimples are smaller after the tests in the mixture. In addition, cracks
propagated along the direction perpendicular to the applied stress direction appear
in this case. Formation of these cracks is associated with HE.

Specimens tested in an environment of CH4/H2 gas mixture containing 1% H2

exposure undergo a completely ductile fracture with microvoids coalescence [64].
Analysis of the fracture surfaces of specimens cut from the weld zone of gas

pipeline made of steel X70 is presented in [34, 66].
The fracture behavior of these specimens tested in nitrogen and in 10.0%hydrogen

blend is characterized by necking. In contrast to the fracture morphology in nitrogen,
surface cracking can be observed around the circumference of the specimens tested
in 10.0% hydrogen mixture. The hydrogen cracks exhibit the quasi-cleavage brittle
fracture.

The fracture surface of specimens tested in the 1% H2 gas mixture after 720h
of exposure have ductile–brittle fracture features, which vary with distance from
the edge surface with a predominantly quasi-cleavage fracture at the brittle external
ring near the outer surface and fine dimples at the center (the dimples are finer than
after tests in pure methane). The brittle area covered about 35% of the entire fracture
surface. The side surface was covered by secondary surface cracks with two different
orientations crisscrossing each other.

The influence of added hydrogen on the microstructure of the fracture sur-
face of the notch specimens made of X70 and X80 steels was investigated in
[56, 64, 66, 75].

In the absence of hydrogen, cracks initiate in the vicinity of the notch root and a
shear lip is observed on the fracture surface. The ductile–dimple microscopic plastic-
ity feature dominates. The fracture surface of specimens tested in nitrogen/hydrogen
mixture reveals a quasi-cleavage fracture with brittle features. These results are con-
sistent with the analysis carried out in the study of the quantitative characteristics
of the samples under tension, namely, the ultimate strength and the value of the
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reduction in the area. At the same time, according to [56], a more ductile mode of
failure occurs toward the center of the specimen saturated in a hydrogen blend as
an exception, which probably can be observed when the surface cracks covered a
threshold area of the cross section.

The region close to the notch root of the specimen saturated in amethane/hydrogen
mixture was predominantly characterized by a quasi-cleavage mode, while the inner
region presented a typical ductile fracture (see [64, 66]).

The width of the brittle region is greater for specimens tested in pure hydrogen.
Some secondary surface cracks can also be observed at the interface between ductile
and brittle fracture zones of samples tested in a hydrogen-containing environment.
The number and average length of cracks increase significantly in samples tested in
pure hydrogen.

Thus, the microstructural analysis indicate that the addition of hydrogen leads
to brittle fracture characterized by quasi-cleavage, while the destruction in gaseous
nitrogen and pure methane are ductile.

25.3.3 Fatigue Crack Growth Test

The risk of hydrogen embrittlement of a gas pipeline depends not only on the prop-
erties of the material but also on the history of its operation, namely, the presence
of pressure drops [46]. Thus, the fatigue behavior of pipeline steels in a hydrogen-
containing environment must be evaluated. Fatigue tests are generally performed
on specimens with the geometry shown in Fig. 25.4 which conformed to American
Society for Testing and Materials (ASTM).

Kinetic diagrams representing the dependence of the fatigue crack growth per
cycle on the stress intensity factor range are widely used in fatigue crack growth
tests. This dependence is generally described by a power-law relationship

da

dN
= C�Km, (25.4)

Fig. 25.4 Specimen
geometry of compact tension
specimen
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Fig. 25.5 Kinetic diagram
for steel X80 [56]

where a is the length of fatigue crack, N is a number of cycles, �K is the stress
intensity factor range, C and m are the crack growth rate factors.

Fatigue crack growth tests were carried out in [8, 34, 56, 64, 76] in mixtures with
hydrogen. In [56], fatigue crack growth tests were carried out in amixture of nitrogen
with hydrogen with a frequency 1Hz and a load ratio (the ratio of the minimum load
to the maximum one) of 0.1. Kinetic diagrams obtained for steels X80 are shown
in Fig. 25.5. Fatigue crack growth rate increases by at least an order of magnitude
in hydrogen blends compared to nitrogen gas. In addition, fatigue crack growth rate
increases with increasing hydrogen concentration.

Similar results were obtained in [34] for steels X70, where fatigue tests were
carried out in mixtures of nitrogen with hydrogen with a frequency 5Hz and the
same stress factor (0.1). Kinetic diagrams obtained in [34] for the base metal, weld
zone, and heat-affected zone are shown in Fig. 25.6. In particular, it is shown that
for a �K value of 35 MPa·m1/2, the crack growth increment per cycle of base
metal is equal to 1.75·10−4 mm/cycle in nitrogen, 1.16·10−3 mm/cycle in 5.0%
hydrogenmixture, and 1.47·10−3mm/cycle in 10.0%hydrogenmixture. Thus, crack
growth rate in hydrogen-containing environment is over eight times higher than that
in nitrogen. With the stress intensity factor ranging from 35 to 100 MPa·m1/2, the
crack growth ratemeasured in 10%hydrogenmixture is 5–8 times of the crack growth
rate measured in nitrogen. Same as the base metal, crack growth rate of the welded
zone in 10.0% hydrogen mixture is approximately 5–10 times of that in nitrogen.
Crack growth rate of the heat-affected zone is approximately 7–22 times of that in
nitrogen.

Crack growth rate factors C and m corresponding to kinetic diagrams shown in
Figs. 25.5, 25.6 are given in Table25.3. These coefficients are generally determined
by means of the least squares method.

Huang et al. noted that the increases in crack growth rate seem to be related to the
lattice hydrogen concentration at�K equal to 35MPa·m1/2 [34]. They suggested that
there is a pressure threshold over which the crack growth rate becomes independent
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Fig. 25.6 Kinetic diagram for steel X70: a base metal, b weld zone, c heat-affected zone [34]

Table 25.3 Constant coefficients of kinetic fracture diagrams

Paper/Steel Vol. % H2 C m

Meng 0 2.25·10−8 2.59

5 2.57·10−7 2.58

2016/ 10 2.98·10−7 2.58

X80 20 3.51·10−7 2.57

50 9.93·10−7 2.39

Huang 2020/ 0 6.18·10−9 2.84

X70 5 1.37·10−7 2.60

Base metal 10 4.03·10−7 2.38

Huang 2020/ 0 2.63·10−9 3.03

X70 5 1.48·10−7 2.53

Weld zone 10 1.78·10−7 2.52

Huang 2020/ 0 3.31·10−10 3.56

X70 5 2.0·10−7 2.53

Heat-affected zone 10 2.0·10−7 2.60

on gas pressure, which is probably attributed to the critical hydrogen concentration
in the fatigue crack zone.

Fatigue crack growth tests on GB 20-grade steel were carried out in [76] in nat-
ural gas (88.53CH4–6.87C2H6–0.0014CO2–0.64O2–2.41N2-other gases)/hydrogen
mixtures under a pressure of 0.4 MPa. Tests were performed at a frequency 1Hz
and a stress ratio of 0.1. Kinetic diagrams are shown in Fig. 25.7. The presence of
hydrogen in natural gas increases the crack growth rate. On the one hand, there is
no difference between the results obtained in natural gas and in nitrogen in a given
range of stress intensity factor. On the other hand, the crack growth rate in a mix-
ture of natural gas with hydrogen significantly exceeds the corresponding value in
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Fig. 25.7 Kinetic diagram for steel X70 tested in natural gas/hydrogen mixture [76]

Fig. 25.8 CTOD: results for specimens made of steel X70 tested in pure gases and in
methane/hydrogen mixture [64]

hydrogen. Thus, simulation of natural gas by means of nitrogen is impractical in
fatigue crack growth tests. According to [76], this phenomenon can be explained by
interaction of CO2 and H2. It was also shown that the addition of hydrogen leads to
a brittle fracture.

The crack tip opening displacement (CTOD) was determined for specimens made
of pipeline steel X70 and X80 in [8, 64] (see Fig. 25.8). The fracture toughness of the
specimens tested in hydrogen-containing environments is remarkably reduced. The
toughness of the specimen tested in ambient air is reduced by 49% when tested in
1%H2 gas mixture. The exposure time in CH4/H2 mixture does not have a noticeable
effect. CTOD decreases even more in pure hydrogen. The fracture surfaces of the
cracking zone ahead of the fatigue pre-crack are quasi-cleavage [64].
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25.3.4 Fatigue Life

Tests with variable load allow determining the endurance limit of the material, i.e.,
the number of cycles at which the sample is destroyed. The effects of hydrogen on
the fatigue life of the natural gas pipeline can be estimated from two aspects, namely,
the residual fatigue life of pipelines with an initial flaw and the maximum allowable
initial flaw size for the required fatigue life. A calculation is generally carried out
in accordance with ASME Boiler and Pressure Vessel Code. The crack growth rate
is estimated on the base of the kinetic diagram of material fracture. Stress intensity
factor is determined in a standard way according to [69]. Fracture toughness data for
steels tested in a mixture of natural gas or nitrogen with hydrogen is not measured
in papers. It is assumed to be equal to which is measured in nitrogen (or in the air)
and in hydrogen under a certain pressure, respectively.

Fatigue life calculations were carried out in [34, 56, 75]. The corresponding
data are presented in Table25.4. The results indicate that added hydrogen decreases
fatigue life dramatically. The fatigue life of specimenswith a smaller notch root radius
(higher values of Kt ) is much lower when compared to specimens with a larger notch
root radius (lower values of Kt ). Thus, the presence of a stress concentrator increases
the negative effect of hydrogen on the fatigue life of the gas pipeline material.

The fatigue life of the pipeline with the initial flaw depth varied from 0.1 to 5mm
was calculated in [34]. The results are shown in Fig. 25.9. The fatigue life decreases
rapidly as the initial flow depth increases in mixtures of nitrogen with hydrogen.

Dependence of the ratio of maximum allowable initial flaw depth in nitrogen to
maximum allowable initial flaw depth in hydrogen mixtures on fatigue life is shown
in Fig. 25.10. This ratio increases significantly with the increase in required fatigue
life. Thus, the addition of hydrogen leads to a decrease in the allowable range of flow
depth values.

Table 25.4 Fatigue life of pipelines (cycles)

Paper/Steel Zone/Geometry of sample Vol. % H2

0 5 10 20 50

Meng/X80 Base metal/smooth
specimen

24431 2130 1850 1603 1073

Huang/X70 Base metal/smooth
specimen

34302 3457 2442 – –

Shang/X70 Base metal/notch specimen,
Kt = 2.4

10134 5926 4706 – –

Base metal/notch specimen,
Kt = 5.1

2547 305 75 – –

Weld joint/notch specimen,
Kt = 2.4

10990 7037 4592 – –

Weld joint/notch specimen,
Kt = 5.1

4273 399 98 – –
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Fig. 25.9 Dependence of the fatigue life of steel X70 on the initial flaw depths [34]

Fig. 25.10 Dependence of
the ratio of maximum
allowable initial flaw depth
in nitrogen to maximum
allowable initial flaw depth
in hydrogen mixtures on
fatigue life [34]

The microstructure of the fracture surface after low-cycle fatigue tests performed
on notched specimens made of steel X70 was analyzed in [75]. When testing speci-
mens with Kt = 2.4 in nitrogen, small cracks initiate at the surface of the notch tip
and then coalesce into several larger cracks propagate to the center of the specimens.
After propagating for a distance in the crack growth region, these cracks progress
into the fatigue rupture regions and then fracture instantaneously. The crack growth
region of the specimen with Kt = 5.1 tested in nitrogen is characterized by intense
plastic deformation, whereas the crack growth region of the same specimen tested
in nitrogen/hydrogen mixtures with 10% H2 exhibits quasi-cleavage. In addition,
the fracture in the crack growth region of the specimen with Kt = 2.4 tested in
nitrogen/hydrogen mixtures is mixed ductile–brittle.
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Thus, concentration of hydrogen and stress concentration can promote the propa-
gation of cracks in the specimen and shorten fatigue life. As a result, the fatigue life
of the specimen decreases significantly with the increase of Kt and the addition of
hydrogen [75].

25.3.5 Indentation Tests

An indentation test using small specimens is a promising method for monitoring and
assessing the state of the metal of oil and gas equipment elements [7, 26, 27, 52].
This method also allows for the investigation of elements of weld joints. During the
test process, the compressive load applied to the small specimens by a spherical or
cylindrical punch and the displacement of the specimen caused by the indentation is
measured.

A series of indentation tests were implemented in [65] to study the effect of a
mixture of methane and hydrogen on the mechanical properties of X70 pipeline
steel. The effect of 0.1, 0.5, 1, 3, and 5% of hydrogen was investigated under three
values of the pressure in the pipeline, namely, 5, 7, and 10 MPa. The degree of steel
susceptibility to HE was found to depend on hydrogen concentration and tends to
increasewith increasing concentration. As in the case of tensile tests, the composition
of the gas mixture does not significantly affect the yield strength and elastic behavior,
whereas the ultimate strength decreases significantly with increasing of hydrogen
concentration. The influence of hydrogen concentration on the metal susceptibility
to HE is more pronounced than the influence of the pressure of the gas mixture.

Investigation of the fracture surface after indentation tests under a gas mixture
pressure of 7 MPa (0.1% H2, 1% H2, 5% H2) and under a pressure of 10 MPa (100%
H2) shows that the fracture morphology changes under different environmental con-
ditions [65]. The fracture surface exhibits a dimpled fracture pattern at a low partial
pressure of hydrogen, which is the result of micro-void coalescence. When the par-
tial pressure of hydrogen increases to a moderate value, the fracture surface reveals
a mixed-mode fracture with some brittle features and micro-void coalescence. At
higher partial pressures of hydrogen, the fracture surface of the tested specimen is
characterized by quasi-cleavage planes.

25.4 Conclusions

Investigation of the problems associated with the various risks of adding hydrogen
to natural gas inevitably leads to different conclusions regarding the permissible
value of hydrogen concentration in the mixture. According to the published data,
the problem of hydrogen degradation of metals used in gas pipelines is the most
sensitive one to low hydrogen concentrations. In particular, the addition of 5–15%
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of hydrogen do not increase the risks of ignition of gas pipelines, while the addition
of even 5% can reduce the plasticity of material and lead to the appearance of brittle
zones.

The present review shows that hydrogen embrittlement of gas pipeline metals is
caused by several factors, namely, the volume concentration of hydrogen, the quality
of rolling of the gas pipeline, and the specificity of zones of the gas pipeline (base
metal, welded zone, heat-affected zone). The addition of hydrogen in mixtures with
gas does not change significantly the ultimate strength of the material but reduces
its plasticity. The negative effect is greater in the presence of defects on the walls
of the gas pipelines. In addition, the weld joint is more susceptible to the presence
of hydrogen in the mixture. Also, even a low concentration of hydrogen in mixtures
results in a multiple decreases in the fatigue life. Thus, the same hydrogen concen-
trations can either lead to irreversible consequences or not cause them. However, the
addition of relatively low hydrogen concentrations (about 1–5%) requires accurate
investigations.

Standard methods for testing metals for hydrogen embrittlement and hydrogen
cracking do not always give an unambiguous result in the case of gas/hydrogen
mixtures. Additional experiments are needed to identify the most adequate methods
for testing pipeline metals and to analyze the problem of adding hydrogen to the
existing gas pipeline network.
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Chapter 26
Dynamic Model of Reliability and
Survival in Big Data Analysis
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Abstract The actual problem of estimation the indicators of reliability, survival and
risk based on real operating data, characterized by different conditions and loads, is
considered. A new formulation of the physical principle of reliability is proposed,
and a dynamic model of reliability, analysis of survival, and risk taking into account
variable loads in the form of a system of differential equations is built. A load
is applied to the input of a dynamic system, and a function of the probability of
failure-free functioning of the system is formed at its output. The conditions for the
equivalence of dynamic models are investigated. In the presence of self-similarity
of damage accumulation processes, the general dynamic model is reduced to an
equivalent simplified basic dynamic model. Methods for estimating the parameters
of this model based on the operating time to failure at various loading histories have
been developed. To solve the problem, the maximum likelihood method was used.
The results of experimental verification of the dynamic model based on the results
of testing LEDs for reliability under constant and variable loading are presented.
The constructed model was used to calculate a test variable load and compared
with experimental data. The comparison results confirm the effectiveness of the
method of dynamic models of survival and reliability under variable loading and
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26.1 Introduction

Traditionally, assessments of reliability indicators are carried out using tests that
are expensive and time-consuming. On the other hand, monitoring the operation of
existing facilities allows you to collect a huge database of reliability indicators, in
particular, data on operating time to failure. The approaches and methods of working
with such huge databases constitute the content of the research area—big data [1–3].
Big data attributes are sometimes grouped together in a group called “7V”: Volume,
Velocity, Variety, Veracity, Variability, Visualization, and Value. It is the variety and
variability of big data that constitute the main problem of data analysis in the analysis
of survival and the theory of reliability and risk. It consists in the fact that the operation
of objects is characterized by various conditions and loads that change over time.

Survival analysis is a set of statistical methods for predicting the probability of an
event occurring and the time before it occurs. The task of analyzing the survival rate of
[4–6] is to assess the risks of disruption of this functioning using the vector of features
describing the conditions of the object’s functioning. Survival analysis methods are
used extensively in medicine, biology, insurance, and industry. For example, this is
the loan default time, the isotope lifetime, the life expectancy of cancer patients, the
failure-free operation of the technical system under the given loads.

Models of dependences of reliability indicators on loads are being developed
within the framework of accelerated test methods. A fairly complete overview of
modern accelerated testing methods is given in [7]. The most popular accelerated
test models are the proportional intensity model and the AFT (accelerated failure
time) model. An important result in the theory of accelerated tests is Sedyakin’s
physical principle [8]. This principle initiated the work of other [9] researchers. In
works [10] this approach is developed in relation to systems with variable loads.
However, Sedyakin’s principle and its generalizations have a narrow area of rigorous
application.

In this paper, a general physical principle of reliability is formulated, from which
follows a dynamic model that connects the probability function of the system’s
failure-free operation with the dynamics of changes in a certain measure of product
damage [11–13]. Simplemodels with scalar loading are considered in detail and their
properties are investigated. A general model with many variables is considered. The
application of the dynamic model to the analysis of the reliability and survival of sys-
tems with variable load has been substantiated. Statistical methods for constructing
dynamic models based on heterogeneous samples are considered.

26.2 Problem Statement

In the theory of survival, for a random variable T (the lifetime of something), the
distribution function F(t) = P{T < t} and the density f (t) = d/dt F(t) are con-
sidered. Instead of the distribution function and density, in the analysis of survival,
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the survival function S(t) = 1 − F(t) = P{T ≥ t} is usually used, which is equal
to the probability of surviving by the time t and the risk (hazard) h(t) = f (t)/S(t).
In reliability theory, the survival function is called the reliability function (the prob-
ability of no-failure) P(t), and the risk function is called the failure rate λ(t). In the
analysis of survival, mathematical models of the dependence of the survival and risk
functions on the given θ features are of decisive importance. These features are also
called covariates, loads, or stresses.

Accelerated test methods make it possible to decide on the reliability of systems
during their operation under standard conditions based on the results of experiments
carried out under conditions of increased loads in a shorter time. The complex of
influencing factors is represented as a vector function θ(t). The set of possible loads
is denoted by E , and by E1—is the set of loads, constant in time, E1 ⊂ E . Let θ0 be
the load vector corresponding to normal operating conditions; P0(t) = P (t; θ0) and
λ0(t) = λ (t; θ0)—reliability function and failure rate under normal load θ0; P (t; θ)

and λ (t; θ)—reliability functions and failure rate under arbitrary load. For a known
failure rate λ(t), the reliability function P(t) is a solution to the differential equation:

Ṗ = −Pλ(t), P(0) = 1. (26.1)

In accelerated test models, the main issue is to build a relationship between the
reliability function P(t; θ) and the reliability function P0(t)under constant loads: θ ∈
E1. There are two well-known accelerated test models on the set E1, called Lehmann
models [9]. We consider a positive function r(θ)—a communication function that
describes the total effect of the load influence on the duration of the system’s uptime.
According to the first Lehmann model:

P(t, θ) = Pr(θ)
0 (t), λ(t; θ) = r(θ)λ0(t). (26.2)

Models of this type include, for example, the Cox proportional intensity model
[14]. According to the second Lehmann model,

P(t, θ) = P0 (r(θ)t) , λ(t; θ) = r(θ)λ0 (r(θ)t) . (26.3)

The failure rate model in the form of (26.3) is usually called the AFT (accelerated
failure time) model on E1.

The problem of accelerated tests is to construct the coupling function r(θ). The
main problems of applying the above approaches are as follows. The stress vector
includes both loads and object state variables. However, the relationship between
loads and state variables is not used in this case. There are problems of using the
constructed models to account for variable loads.

Here we are talking about the next problem. Data on operating conditions and
associated lifetimes are collected from various sources. The problem of statistical
analysis of big heterogeneous data arises. Let N pairs of observations for objects of
the same type be given: the lifetime tk (time to failure) and the corresponding vector of
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covariats θk(t), describing the operating conditions and load. It is required to construct
a model that allows for an arbitrary vector θ(t) to obtain the reliability (survival)
function P(t; θ). Further presentationwill be carried out in terms of reliability theory.

26.3 The Dynamic Reliability Model

We consider a reliability model in which the operating load is described by the scalar
quantity θ(t). One reason for failure due to a certain degradation process (mechanical,
physical, chemical, etc.) is considered.We introduce a scalar value y that is ameasure
of damage accumulation. This parameter can have a physical meaning (for example,
crack length, amount of wear, flow rate of the operating fluid, degree of corrosion,
etc.) or be a generalized semi-empirical indicator [15]. A connection for the load and
damage measure is introduced through the differential equation:

ẏ = F(y, θ), y(0) = y0. (26.4)

In general the probability of no-failure operation P(t; θ) at time t depends on the
load values of θ = θ(t) over the entire time interval (0, t). This relationship can be
clarified using physical considerations. The Markov property of physical systems is
taken as a postulate.
The physical principle of reliability. There is a damage measure indicator y = y(t)
such that the failure probability on a short time interval [t, t + �t], provided that the
system is in good operating order at time t , is determined only by the current value
of y(t) and does not depend on the history.

As a substantiation of the physical principle formulated, we can consider the
procedure of technical diagnostics. In the process of diagnostics, it is the current
values of the diagnostic parameters (damage measures) that are measured, and a
conclusion about the object state and the possibility of its failure in the near future is
made only based on these values. The history of the change in the damage measure
is usually not considered. For example, the failure probability of a car’s brakes over
a short time interval depends only on the amount of brake pad wear y at the moment
considered and does not depend on the history of this wear.

On the other hand, the current value of the damage measure y(t) is an integral
characteristic of the entire loading history. It is determined by the differential equation
(26.4). The probability of failure, which is determined by the achieved value of the
damage measure, thus indirectly depends on the entire loading history.

The formulated physical principle is equivalent to the condition for the existence
of a non-negative coefficient D that depends only on the value of the damagemeasure
at time t : D = D (y(t)), and such that

P(t + �t; θ)

P(t; θ)
= 1 − D (y(t)) �t + o(�t). (26.5)
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The expression to the left of the equal sign is the probability of failure-free opera-
tion of the system on a short time interval [t, t + �t], provided that the system did not
fail on the interval [0, t]. The expression to the right is the value of this conditional
probability linearized with respect to �t that depends only on the current value y.
The function D(y) has the meaning of the hazard of failure when the damage mea-
sure reaches the value y. The transfer in expression (26.5) to the limit as �t tends to
zero gives the differential equation

Ṗ(t) = −P(t)D (y(t)) . (26.6)

Comparison of Eqs. (26.1) and (26.6) implies a relationship between the failure
rate and the failure danger function under load θ(t):

λ(t; θ) = D (y(t; θ)) . (26.7)

Combining Eqs. (26.4) and (26.6) gives a system of differential equations, i.e., a
dynamic reliability model:

{
ẏ = F(y, θ), y(0) = y0;
Ṗ = −PD(y), P(0) = 1.

(26.8)

The load θ = θ(t) is applied to the input of system (26.8), and the output is the
dependence y(t) of the damage measure on time and the reliability function P(t).

Below are examples of dynamic models. For clarity, the load is assumed to be
constant over time: θ(t) ∈ E1.

26.3.1 Example 1

Let in system F(y, θ) = −H(θ)(y − R(θ)), H(θ) > 0, R(θ) > 0, D(y) = λ0y.
The solution of the first equation of system (26.8) at θ(t) ∈ E1 has the form of
y(t) = R(θ) + (y0 − R(θ)) exp(−H(θ)t). The damage measure y(t) tends to R(θ)

with increasing time,while the hazard function D(y) tends to a constant value R(θ)λ0

of the faster, the larger H(θ). If we set y0 = R(θ), then this constant value is reached
immediately and the solution of the second equation of system (26.8) gives an expo-
nential distribution P = exp (−R(θ)λ0t). If y0 > R(θ), then the case of an increased
failure rate in the initial period of time (“infant mortality”) with a transition to a con-
stant rate is modeled. If y0 < R(θ), then there is the case of a reduced failure rate in
the initial period.
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26.3.2 Example 2

Let in system (26.8) F(y, θ) = y1−αR(θ), α �= 1, y0 = 0. At constant load θ ,
the solution to the first equation of system (26.8) is given by the expression:
y(t) = α (R(θ)t)

1
α . Let the failure hazard function have a power-law dependence

on the damage measure: D(y) = cyβ , c, β > 0. Then, the solution of the second
equation of system (26.8) gives a reliability function in the form of the Weibull
distribution. Let in this example another failure hazard function be given: D(y) =
exp

(− f 2(y)/2
)
/
(√

2πσ	 ( f (y))
)
, where f (y) = (α ln (y/α) − μ)/σ ; parame-

ters σ,μ > 0, and 	(x) is the Laplace function. Then, at θ(t) ∈ E1, system (26.8)
generates the lognormal distributions of the failure-free operation time.

26.3.3 Self-similarity Property

Let the hypothesis of self-similarity in accelerated tests be valid. Self-similarity is
based on an assumption about the similarity of damage accumulation processes under
various loads. As was shown in [6], if the hypothesis of self-similarity is valid, the
Eq. (26.4) for the damage measure y must be a differential equation with separable
variables; i.e., the following representation of the right-hand side must be performed:
F(y, θ) = S(y)R(θ). A dynamic model (26.8) in this case has the following form:

{
ẏ = S(y)R(θ), y(0) = y0;
Ṗ = −PD(y), P (0) = 1.

(26.9)

The problem of statistical analysis of big data within the framework of the model
(26.9) is reduced to the construction of functions S(y), R(θ) and D(y).

Remark 1 According to its physicalmeaning, the damagemeasure y under constant
load should changemonotonically. It follows that the function S(y) has constant sign.

26.3.4 Model Equivalence and the Basic Dynamic Reliability
Model

Let two different measures of damage y1 and y2 be considered to describe a failure
under load θ(t) ∈ E , and let two dynamic reliability models be constructed:

{
ẏ1 = F1 (y1, θ) , y1(0) = y10,
Ṗ1 = −P1D1 (y1) , P1(0) = 1; (26.10)
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{
ẏ2 = F2 (y2, θ) , y2(0) = y20,
Ṗ2 = −P2D2 (y2) , P2(0) = 1.

(26.11)

The conditions for the equivalence of these models are studied. Two dynamic
reliability models (26.10) and (26.11) are equivalent on a given set of loads E if the
identity P1(t; θ) ≡ P2(t; θ) is satisfied for each θ ∈ E .

Let the ratio of the functions F1 and F2 be a constant sign. Further, without
loss of generality, we can consider it positive. Let this ratio not depend on the
load: F1 (y1, θ)/F2 (y2, θ) = H

(
y1, y2

)
> 0. Dividing the first equation of system

(26.10) by the first equation of system (26.11), we obtain the differential equation
dy1/dy2 = H (y1, y2) with the initial condition y1 (y20) = y10. Let y1 = ϕ (y2) be
the solution to this equation. Since the function H (y1, y2) is positive, the function
ϕ(y2) increases monotonically. Let us define the system hazard function (26.11) as
D2 (y2) = D1 (ϕ (y2)). Then, for all t > 0 and loads θ , the equivalence condition is
satisfied:

P1(t) = exp

(
−

∫ t

0
D1 (y1(s)) ds

)
= exp

(
−

∫ t

0
D1 (ϕ (y2(s))) ds

)
=

= exp

(
−

∫ t

0
D2(y2(s))ds

)
= P2(t).

As a result, next Statement is proved.
Statement 1. If the ratio of functions F1 (y1, θ)/F2 (y2, θ) has of constant sign and
does not depend on the load, then by choosing a function D2(y2), dynamic model
(26.11) can be made equivalent to dynamic model (26.10). The equivalence property
allows substantiating the use of semi-empirical models: any damage measure even
if it does not have a definite physical meaning, as long as its value monotonically
depends on the amount of real damage, can be used.

Let the reliability models (26.10) and (26.11) are self-similarity (have the form of
(26.9)), i.e., F1 (y1, θ) = S1 (y1) R1 (θ) and F2 (y2, θ) = S2 (y2) R2 (θ). By virtue of
Statement 1, these models will be equivalent when the functions R1 and R2 coincide
up to a constant factor: R1 (θ) = aR2 (θ), a �= 0. In this case, the ratio H (y1, y2) =
aS1 (y1)/S2 (y2) does not depend on the load. This ratio has of constant sign by virtue
of Note 1.

An important conclusion follows from this: for the self-similar system (26.9)
there is an infinite set of equivalent systems. All of them are determined by the same
function R(θ) and any constant-sign function S(y). From the set of these equivalent
models, the model of the simplest form is distinguished at S(y) ≡ 1. Thus, for any
model of the form of (26.9), there is an equivalent dynamic model that we will call
the basic dynamic reliability model:

{
ẋ = R(θ), x(0) = x0;
Ṗ = −PD0(x), P(0) = 1.

(26.12)
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The new damage measure x is a nonlinear transformation of the initial measure y:
x = g(y), and D0(x) is the failure hazard function of the basic dynamicmodel.With-
out loss of generality, the function R(θ)) in this model can be considered positive.
The transfer from basic model (26.12) to model (26.9) with some function S(y) is
performedby the transformation D(y) = D0(g(y)), where g(y) = x0 + ∫ y

y0
dy/S(y)

is the solution to the equation dx/dy = 1/S(y), x (y0) = x0. A solution of system
(26.12) in the general form is

x (t) = x0 +
∫ t

0
R (θ (s)) ds, P (t) = exp

(
−

∫ t

0
D0 (x (s)) ds

)
. (26.13)

Consider the basic model (26.12) at constant loads. Then, x(t) = x0 + R(θ)t , and
the application of this equality to replace the integration variable in (26.13) gives

P(t) = exp

(
− 1

R(θ)

∫ x0+R(θ)t

x0

D0(x)dx

)
. (26.14)

26.4 Multidimensional Models

A set of covariates generally includes a set of system state parameters and a
set of external loads. It is convenient to divide the system state vector into two
vectors: z = (z1, z2, . . . , zn) and y = (y1, y2, . . . , ym). Vector z is auxiliary vari-
ables, vector y is a set of damage measure indicators. The vector function θ(t) =(
θ(1)(t), θ (2)(t), . . . θ (l)(t)

)
sets variable loads. The system of equations

⎧⎨
⎩
ż = G (z, θ) , z(0) = z0;
ẏ = F (y, z, θ) y(0) = y0;
Ṗ = −PD (y) . P(0) = 1

(26.15)

is a general dynamic model of reliability, describing the dynamics of accumulation
of damages and the occurrence of failure taking into account variable loads.

The first equation of the system (26.15) admits an independent solution z(t). Let’s
substitute it in the second equation as additional loads. As a result, we get a system of
the form (26.8).Wewrite down the well-known property of risk functions as follows.

Remark 2 Let there are some independent types of failures in a system and the
common failure of system occurs at approach at least one of particular failures. Let
for each particular failure the hazard function is built. Then common hazard function
of system is equal to the sum of particular hazard functions.

In this case it is possible to present the system failure schematically as the failure
of sequentially joint elements. At least in the first approximation it is possible to
consider that particular failures are independent when they have different physical
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nature or when they are linked with operation of different nodes or subsystems. Let
there are m types of independent failures and each one has its own damage measure
indicator. A hazard function for each failure is Di (yi ). Then the hazard function of
the system has the form D(y) = ∑m

i=1 Di (yi ) and the dynamic model is

{
ẏi = Fi (yi , θ), yi (0) = yi0; i = 1, . . . ,m
Ṗ = −P

∑m
i=1 Di (yi ), P(0) = 1.

(26.16)

Self-similar processes of damage accumulation are considered below. Then
Fi (yi , θ) = Si (yi ) Ri (θ). Arguing similarly to the case of a simple system, we arrive
at an equivalent basic dynamical model

{
ẋi = Ri (θ), xi (0) = x0i , i = 1, . . . ,m;
Ṗ = −PD0(x), P(0) = 1,

(26.17)

where D0(x) = ∑m
i=1 D0i (xi ). The newmeasure of damage xi is a nonlinear transfor-

mation of the original measure yi : xi = gi (yi ), functions D(y) and D0(x) are related
by dependency D (y1, y2, . . . , ym) = D0 (g1(y1), g2(y2), . . . , gm(ym)). Here

gi (yi ) = xi0 +
∫ yi

yi0

dyi
Si (yi )

. (26.18)

The non-negative function Ri (θ) specifies the dependence of the growth rate of
the generalized damage value xi on the current load.

The system (26.17) may be reduced to m systems with a scalar load:

{
ẋi = Ri (θ), xi (0) = x0i ;
Ṗi = −Pi D0i (xi ), Pk(0) = 1.

k = 1, . . . ,m. (26.19)

The probability of a failure-free operation of the system is equal to P = ∏m
i=1 Pi

26.4.1 Example. The Model of Failure of Electrical
Machines Owing to Heat Ageing of Insulation

We will consider model of failure electrical machines owing to a heat ageing of a
winding insulation of a rotor and a stator [11]. The external mechanical load on
an electrical machine is set by vector-functions θ(t). The temperature vector of the
machine nodes is denoted τ = (τ1, τ2, . . . , τn) where the first two components are
the temperatures of the rotor and stator. Rotor and stator failures are considered
independent. The dynamic model of reliability is
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⎧⎪⎪⎨
⎪⎪⎩

C τ̇ = �τ + θ;
ẏ1 = −R(τ1)y1;
ẏ2 = −R(τ2)y2;
Ṗ = −P (D1(y1) + D2(y2)) .

(26.20)

Here the first equation describes the change in the temperature of the machine
nodes under the action of the load vector θ [16], C is the diagonal matrix, � is a
square matrix of dimension [n × n]. The physical model of an ageing of insulation is
set by the equations of kinetics of chemical reactions [11]: ẏi = −R(τi )yi , where y1,
y2—are specific concentrations of the initial substance in the winding insulation of
the rotor and the stator. These variables are used as damage measure indicators. The
equation presents the decrease of concentration of initial substance, depending on
time and a temperature. The initial value of the concentration is equal 1. The hazard
of failure of winding insulation grows with diminution of the concentration of initial
substance. According to the Arrhenius equation the coefficient K = A exp

(− Ea
K τ

)
,

where Ea is the activation energy, K is the universal gas constant, τ is the Kelvin
temperature.

Let the solution of the first equation τ(t) be constructed. It is also possible to
consider the case where the rotor and stator temperatures are obtained from mea-
surements. Rename τ1(t), τ2(t) as new loads θ1(t), θ2(t). P1, P2 are probabilities of
no-failure of the rotor and the stator, P = P1P2. The system (26.20) has been reduced
to two simple self-similar systems of the form (26.9). Each of the two equations is
written as {

ẏ = −R(θ)y;
Ṗ = −PD(y).

(26.21)

26.5 Building a Dynamic Reliability Model Based on
Experimental Data

We consider the problem of constructing functions that define a dynamic model
(26.17), based on the operating time to failure under various loads. An object is
considered, the state of which is given by the generalized vector measure of damage
x(t), and the operational load is given by the vector function of time θ(t). The
reliability function P(t) specifies the probability of no-failure operation of the object
at the moment of time t . The (26.17) system has a general solution in integrals:

xi (t) = xi0 +
∫ t

0
Ri (θ(s)) ds, P(t) = exp

(
−

∫ t

0
D0 (x(s)) ds

)
. (26.22)

The probability density of failure f (t; θ) = −dP (t; θ)/dt is

f (t; θ) = P (t; θ) D0 (x (t; θ)) . (26.23)
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Remark 3 Let in the base model (26.17) the values of the function Ri (θ) are
specified up to the parameters of the scale ai : Ri (θ) = ai R∗

i (θ), and the func-
tion D0(x) is specified up to the parameters of the scale bi arguments: D0(x) =
D∗

0 (b1x1, . . . , bi xi , . . . , bmxm) . It is easy to make sure that the reliability indicators,
calculated by the (26.17) model will depend on the products aibi of the scale param-
eters. Two systems with the same meaning of these products will be equivalent. This
means that one of the scale parameters ai or bi can be set arbitrarily. Then the second
parameter is determined by the value of the product.

We consider the problem of constructing a dynamic reliability model of the form
(26.17), in which damage measure indicators x and loads θ are vectors. Let the
operating time to failure tk and the corresponding loads θk(t), k = 1, . . . , N , are
known for N products of the same type. Loads can be partially or completely different
from each other. Loads can be both constant and variable over time.

Parametric families of functions Ri (θ;αi ) and D0i (xi ;βi ) with vectors of

unknown parameters αi =
(
α

(1)
i , . . . , α

(pi )
i

)
and βi =

(
β

(1)
i , . . . , β

(qi )
i

)
. The prob-

lem of estimating these parameters from known observations tk, θk(t), k = 1, . . . , N
is posed.

The maximum likelihood method [17] is one of the most versatile methods for
estimating unknown parameters of the failure distribution directly from the available
time to failure tk sample. As an estimate of the parameters of the dynamic model,
the values that maximize the probability of the appearance of this sample are taken.
For this, a likelihood function is constructed—the product of the failure probability
densities calculated for each value of tk . Due to (26.22), (26.23), the logarithm of the
likelihood function in this case is:

L (α, β) =
N∑

k=1

[
−

m∑
i=1

∫ tk

0
D0i (xi (t; θk , αi ) ; βi ) dt + ln

m∑
i=1

D0i (xi (tk; θk , αi ) ;βi )

]
.

(26.24)

The maximum likelihood estimates α̂, β̂ are obtained by solving the problem of
unconstrained maximization of the function L (α, β).

The problemof constructing a basicmodel (26.17) in the case of constant values of
the loads θk is considered separately. Then the expression for xi (t) is a linear function
of time: xi (t) = xi0 + Ri (θk;α) t . These expressions are used to replace a variable in
each (26.24) integral. The designation is introduced:Gi (xi ;βi ) = ∫ x

0 D0i (u;βi ) du.
Then

L (α, β) =
N∑

k=1

[
−

m∑
i=1

Gi (xi0 + Ri (θk; α) tk; βi )

Ri (θk; α)
+ ln

m∑
i=1

D0i (xi0 + Ri (θk;α) tk;βi )

]
.

(26.25)

The solution to the problem of constructing a basic dynamic model at constant
loads is to maximize the nonlinear function (26.25).
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26.5.1 Example 3

Let the reliability model under the temperature load θ = θ(t) be given by the well-
known equation of the kinetics of chemical reactions (26.21). According to the
Arrhenius equation, the function R(θ) = exp (α1 − α2/θ), where θ is the absolute
temperature, α1, α2—parameters to be assessed. The risk of failure increases with
decreasing concentration y(t) of the original substance.

The damage accumulation equation satisfies the self-similarity condition, i.e., the
dynamic reliability model has the form (26.9). Here S (y) = −y. When passing to
the equivalent base model (26.12), the new damage measure x increases from zero,
x(0) = 0, the risk of failure growswith the growth of x . Let the failure hazard function
D0 (x) be constructed as a power function of the damage measure: D0(x) = β1xβ2 .
Let the test temperature loads θk , k = 1, . . . , N , be constant in time. The likelihood
function (26.25) takes the following form:

L (α, β) =
N∑

k=1

[
−β1 (exp (α1 − α2/θ) tk)

β2+1

(β2 + 1) exp (α1 − α2/θk)
+ ln β1 + β2 (α1 − α2/θk + ln tk)

]
.

(26.26)
By virtue of Remark 3, the number of independent variables of the likelihood

function (26.26) can be reduced and go to the problem with three unknowns. New
unknown parameters are introduced: z1 = ln β1 + α1β2, z2 = −α2β2, z3 = β2. The
designation is introduced fk (z1, z2, z3) = ln D0 (R (θk) tk) = z1 + z2/θk + z3 ln tk .
Then G (R (θk) tk)/R (θk) = tk exp (lk)/(z3 + 1). Substitution of these values into
the likelihood function (26.26) gives

L (z1, z2, z3) =
N∑

k=1

[−tk exp ( fk (z1, z2, z3))

(z3 + 1)
+ fk (z1, z2, z3)

]
.

Let be ẑ1, ẑ2 and ẑ3 deliver the maximum of the constructed likelihood function.
The transition to the initial parameters is carried out: β̂2 = ẑ3, α̂2 = −ẑ2/ẑ3. The
parameters α1 and β1 are related by the equality ẑ1 = ln β1 + α1β̂2. You can take any
positive value of α̂1, for example, for physical reasons, and calculate the parameter
β̂1 from it. For any such pair of values α̂1, β̂1, the solution of the (26.26) system gives
the same value of the required probability P (t) .

To return to the original dynamic model (26.21), the function D(y) is constructed
from the expression (26.18). Here x = g(y) = − ln y and D(y) = beta1 (− ln y)β2 .
As a result, a dynamic reliability model has been built:

{
ẏ = −y exp

(
α̂1 − α̂2

θ(t)

)
, y(0) = 1;

Ṗ = −Pβ̂1(− ln y)β̂2 , P(0) = 1,
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which can be used to calculate the probability of no-failure operation P(t) at any
temperature load θ(t).

26.6 Experimental Verification of the Dynamic Reliability
Model

This section analyzes the results of field tests for reliability and builds dynamic
reliability models. For the experimental study, real physical objects were selected—
green LEDs with a diameter of 5mm. LEDs are a rather complex technical object, in
which, during its operation, various physicochemical degradation processes occur,
leading to failure. The average operating time of an LED under normal load is
measured in years. In order to significantly reduce the duration of the experiment,
accelerated test methods are used. For this, tests are carried out at increased electrical
load.

It should be noted that the experiment was carried out in order to check the
adequacy of the proposed dynamic model and methods for its construction. Here,
the sampling of experimental data on the operating time of products under various
loads is of importance. The specific type of the tested product itself is not important
here, the specific LED model is not indicated. This work does not claim to be a
comprehensive study of the reliability of LEDs.

GreenLEDswith normal values of forward current I f = 19 − 20mAand forward
voltage U = 2.3 − 2.5V were selected as the test object. The test items are divided
into 5 groups with Nk = 31, 37, 65, 25, 28 items in each group. Each group has its own
load θk , k = 1, . . . , 5. Reliability tests were carried out under four constant voltage
and one variable load modes. The variable load was a step function with voltage val-
ues of 4.2V (time interval 0–140 h), 4.8V (140–260 h) and 6.6V (from 260h until the
time of the last element failure). As a result of the tests, rk = 31, 36, 63, 23, 28 val-
ues of theMTBF tki , k = 1, . . . , 5, i = 1, . . . , rk were obtained. Runtime values are
sorted in ascending order. Initial data and primary test results are shown in Table26.1.
Based on the test results, a basic dynamic model of the form (26.12) is built. For
its construction, test data with four constant loads θ1 = 6.6V, θ2 = 5.9V, θ3 = 5.4V
and θ4 = 5.0V are used. All functions included in the model are assumed to be expo-
nential: R(θ) = (θ/α1)

α2 , D0(x) = β1xβ2 ,G(x) = ∫ x
0 D0(u;β)du = β1 (β2 + 1)−1

xβ2+1. The parameter vectors α = (α1, α2), β = (β1, β2) were estimated using the
maximum likelihood method.

The following estimates are obtained for α̂, β̂. As shown above, the feature of
the (26.12) model allows one to reduce the dimension and one of the coefficients,
α1 or β1, can be set to an arbitrary value. Then the second of them is calculated
according to the experimental data. It is accepted here α̂1 = 8. The rest of the values
are obtained from minimizing the maximum likelihood function (26.26) and they
are equal: α̂2 = 22.89, β̂1 = 0.206, β̂2 = 0.564. The calculated reliability functions
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Table 26.1 Initial data and reliability test results of LEDs

No Load U, V Nk rk MTBF(h.), tki

1 6.6 31 31 4.6; 5.6; 5.8; 5.9; 6.4; 6.4; 6.9; 6.9; 7.1; 7.4; 7.7;
8.4; 8.8500; 9.6; 9.9; 11.1; 11.8; 13.3; 13.7; 15.2;
15.7; 16.7; 17.4; 17.8; 18.7; 22.7; 26.0; 29.2;
33.5; 34.6; 69.9

2 5.9 37 36 9.0; 9.9; 12.2; 14.2; 14.9; 17.6; 18.2; 20.2; 20.4;
21.6; 24.8; 25.0; 25.0; 25.0; 25.1; 28.7; 32.2;
34.0; 35.2; 36.1; 39.4; 40.1; 50.3; 50.6; 51.9;
57.1; 60.5; 61.1; 62.0; 63.3; 69.8; 70.7; 75.2;
82.5; 104.9; 129.7

3 5.4 65 63 45.9; 47.1; 50.6; 51.8; 53.5; 53.8; 54.0; 55.4;
56.2; 57.9; 61.8; 63.9; 64.0; 64.8; 65.2; 70.5;
79.9; 85.0; 85.2; 87.0; 87.3; 87.5; 90.9; 94.4;
96.3; 98.0; 101.8; 103.6; 109.8; 111.9; 113.2;
119.3; 121.0; 124.0; 125.1; 133.6; 144.8; 148.0;
150.1; 165.8; 188.0; 228.0; 250.7; 278.1

4 5.0 25 23 23.2; 41.6; 50.5; 70.8; 72.4; 76.3; 85.0; 112.0;
121.0; 136.0; 139.6; 146.0; 152.8; 164.0; 187.2;
193.2; 215.1; 263.0; 276.0; 297.7; 320.0; 340.0;
378.4

5 Variable
load

28 28 97; 122.0; 174.0; 198.0; 206.0; 231.0; 242.0;
261.0; 262.0; 262.5; 264.0; 264.0; 264.5; 265.0;
265.0; 265.0; 265.5; 266.5; 268.5; 271.0; 274.5;
275.0; 277.5; 286.0; 291.0; 310.0; 313.5; 428.0

under constant loading belong to the family ofWeibull distributionswith an exponent
of the form β̂2 + 1.

To check the adequacy and predictive ability of the constructed models, the calcu-
lated values of the reliability function according to the (26.12) model were compared
with its empirical values constructed from the results of tests for variable loading.
Note that the data from this experiment were not used to estimate the parameters of
the model. The coefficient of determination is R2 = 0.9238. This value is confirmed
by the adequacy of the model.

26.7 Conclusion

Adynamicmodel of reliability, analysis of survival and risk under arbitrary loadswas
built. The model is a system of ordinary differential equations, the input of which
is a load, and the output is a reliability function. In the case of self-similarity of
damage accumulationprocesses, the general dynamicmodel is reduced to a simplified
basic dynamic model. The model has direct application in cases where the loads are
specified as deterministic functions of time. First of all, such a situation arises when
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assessing the indicators of reliability and survival according to real operating data, as
well as during accelerated tests. Methods for estimating the parameters of a dynamic
model based on the operating time of objects to failure at various loading histories
have been developed. To solve the problem, the maximum likelihoodmethod is used.
Finally, the problem is reduced to the problems of finding an unconditional extremum
of nonlinear functions. The simplest case of evaluating the parameters of the dynamic
model of the reliability model occurs at constant test loads. Based on experimental
data obtained during accelerated tests of LEDs for reliability with various loads, the
adequacy of the simplest dynamic model of survival and reliability is confirmed.
After evaluating its parameters according to experimental data, this model can be
used to calculate reliability indicators for an arbitrary load.
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Chapter 27
Using the Wear Model of Polymer
Composites Based on
Polytetrafluoroethylene to Determine the
Filling Efficiency of Matrix

Elena B. Sedakova and Yuri P. Kozyrev

Abstract The structural parameter of composites with dispersed filler of nano- and
micro-dimensions is proposed. The derivation of the physical wear model from the
empirical wear formula is considered in order to predict the wear resistance of com-
posites at the stage of their design. The developed model allows to estimate wear
resistance of composites depending on filler concentration, size and peculiarities of
filler particles distribution. The validity of the wear model is shown by the results of
comparing the calculated results with the experimental curves.

Keywords Friction · Wear · Polymer · Filler · Wear model · Composite

27.1 Introduction

A characteristic feature of the development of modern mechanical engineering is the
variety of external conditions in which mechanisms operate. Increase of service life
ofmachines andmechanisms inmany respects depends on the solution of tribological
problems of their units. One of the perspective ways of the decision of a problem
of maintenance of required indicators of reliability of friction pairs is application
of self-lubricating polymeric materials and composites on their basis. It gives an
opportunity of replacement in friction pairs of antifriction metals and alloys that
provide possibility of almost silent work ofwear units in conditionswithout greasing,
inwater, in chemically active environment and in vacuum.Besides, such friction units
can work rather in a wide range of changing temperatures and loads. The available
wide range of application areas of polymeric materials in many respects is explained
by introduction in them of various types of fillers.

The principle of obtaining polymer composite materials is to create a predeter-
mined combination of two different phases (filler and matrix) using certain tech-
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nological methods. As a result of filling materials are obtained, the basic physical
and mechanical properties of which differ from the properties of the matrix. The
strengthening mechanism depends on both the type of filler and the properties of the
filler and matrix [1, 2].

Usually polymer composites are divided into three groups. Thefirst group includes
dispersion-strengthened composites. The second group includes composites rein-
forced by continuous fibers, fabrics of different weaves, and plates. The third group
includes composites based on polymer mixtures that are not capable of mutual dis-
solution of each other and are characterized by a certain distribution of the polymer
particles of one nature in the matrix of the other polymer.

In this work the questions connected with tribotechnical application of polymeric
composites with the disperse fillers of micro and nanosize in the form of powders in
various ratios with a matrix are considered. A special place among them is occupied
by composites on the basis of polytetrafluoroethylene (PTFE). Low friction coef-
ficient values, heat resistance, water, and chemical resistance higher than all other
polymers contribute to their wide application in light and medium loaded friction
units.

At present it is established [3–6] that three main factors influence the wear resis-
tance of composites with disperse filler:

– the structural organization of the material at the supramolecular level;
– supporting function of the filler;
– presence of layers separating the contacting surfaces and playing the role of a solid
lubricant.

The rational choice of polymer composition for obtaining the materials with the
required tribological characteristics is impossible without solving the issues of cre-
ating wear models, especially involving mathematical apparatus.

27.2 Structural Model of Polymer Composites Based on
Polytetrafluoroethylene

Preliminary mixing of polymer particles with disperse filler is typically used in
the production of composites based on polymers such as polytetrafluoroethylene
(PTFE), polyester ester ketone (PEEK), and polyphenylene sulfide [6, 7]. Given that
the polymer particles are larger than the filler particles, mixing is associated with
deposition of the filler particles on the polymer particles. Shaping under pressure and
at elevated temperatures (up to 380 ◦C) leads to the formation of a structure in which
each polymer particle is surrounded by filler particles [2]. If the filler particles are
microscopic, the composite formed at optimal filler concentrations for tribological
purposes (around 20–30 vol%) is characterized by a structure of laminar-lattice type.
This structure consists of a lattice of polymer particles intersecting with a single-
layer or multilayer lattice of filler particles. In terms of engineering modeling, the
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Fig. 27.1 The extraction of a unit element from the composite—composite cell. a: 1 is the filler
particle, 2 is the polymeric matrix; (x, y) a crosscut over the boundary of filler and polymer particles;
(other faces) a crosscut between filler particles and neighboring polymer particles; b: N is the total
load superposed onto the element; 2 is the polymeric matrix; 3 is the metallic counterbody; 4 is the
wall, formed by the filler particles

influence of the single-layer lattice of filler particles on the stress distribution within
the composite and, indirectly, on its frictional characteristics was first considered in
[7].

Figure27.1 a gives a composite cell—an accepted shape of a unit element of
a filled polymer with the spatial structure, where polymer particles (2) and filler
particles (1) are cube shaped, their sizes being rp and r f , respectively.

It is apparent that with the growth of the filler content, it is quite possible that
the surface of a PTFE particle will be filled with filler particles. One of the main
features of the structure is the presence of the threshold volume concentration of the
filler ϕ f 0, at which the entire surface of the polymer particle is covered by a layer of
filler particles. This layer affects the strength properties of the composite as a whole.
Consequently, to assess the tribological and physical-mechanical characteristics of
polymer composites, it is necessary to calculate the relations that allow calculating
the concentration of the filler on the faces of the polymer cube ϕSK for a given volume
concentration of fillers [8, 9].

In deriving the relation for calculating ϕSK , consider themodel of a single element
of the composite structure shown in Fig. 27.1a. If the volume concentration of the
filler is a ϕ f , then the number of particles of the filler can be found from the

n f V = ϕ f VC

r3f
. (27.1)

where VC is the composite volume.
Then, by analogy, let usfind thenumber of polymer particles in the samecomposite

volume:

npV = (1 − ϕ f )VC

r3p
. (27.2)
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To analyze one composite particle, let us assume that npV = 1. Then, fromEq. (27.2)
we find that

VC = r3p
1 − ϕ f

. (27.3)

Substituting Eq. (27.3) into Eq. (27.1) we find the number of filler particles on the
surface of one polymer particle

n f K = 1 − ϕ f r3p
(1 − ϕ)r3f

. (27.4)

Knowing the value of n f K , we proceed to the determination of ϕSK . Consider that
the total area of the polymer particle is equal to 6r2p, and one filler particle in this
model covers two polymer surfaces at once. Then the surface concentration of the
filler on the polymer cube faces [8]

ϕSK = n f K

1 − ϕ f r2f
3r2p

. (27.5)

Substituting Eq. (27.4) into Eq. (27.5), we finally find

ϕSK = ϕ f r f

3(1 − ϕ f )r f
. (27.6)

Thus, for powdered PTFE we can assume that rp = 50−100µm; for foundry coke
powder r f = 5−10µm [10]. We can determine the threshold concentrations of the
filler. If we denote it as ϕ f 0, it can be found based on the calculated relation [11]

ϕ f 0 = 3r f rp
r2p + 3rpr f

. (27.7)

The value of ϕ f 0 being known, Eq. (27.7) allows for the choosing of the size of
rp and r f

The results of calculation of ϕSK values by the Eq. (27.6) are given in Table27.1.
Table27.1 shows that at the same number of filler particles, the filler concentration

on the polymer cube faces is almost 4 times higher than the volume concentration of
the filler. So, for example, for ϕ f = 0.2, corresponding to concentration of industrial
material�4K15M5 (80 vol.%PTFE+15 vol.% coke+ 5 vol.%MoS2),ϕSK = 0.75.

The frictional contact surface of the composite consists of an alternation of matrix
and filler materials, as noted in [12, 13]. This is evident from scanning electron
microscopy of the frictional surfaces. Under the action of an external compressive
load N , the contact pressure is distributed between the matrix and the filler, while the
wear resistance of the composite depends on the mechanical and frictional properties
of those components. Let us examine the unit element of a polymeric composite,
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Table 27.1 Calculated values of the filler concentration on the polymer cube faces depending on
the volume concentration of the filler [9]

ϕ f n f K ϕSK

0.05 38 0.16

0.10 81 0.33

0.15 129 0.53

0.20 182 0.75

0.25 243 1.00

the spatial percent of the filling of which has a threshold value. When the element
touches the moving counterbody, after a while one side of the shell will wear. After
that, the face of the polymeric cube and the residual part of the shell consisting of
filler particles in the form of walls normal to the contact surface start to contact
the counterbody. Figure27.1b depicts the cross section of the model cell for this
case. The total load N normal to the contact surface between the composite and the
counterbody is superposed onto the unit element.

Then the pressure on the contact surface pC under the action N (Fig. 27.1b) will
be distributed between the matrix and the filler structure [14]

pC = pm(1 − ϕS) + p f ϕS, (27.8)

where ϕS is the surface concentration of the filler in any plane parallel to the friction
surface.

To determine ϕS , we first obtain, on the basis of Fig. 27.1b the relation for the
threshold concentration of the filler on the friction surface ϕS0 [8], corresponding to
ϕ f 0

ϕS0 = 2rpr f

r2p + 2rpr f
, (27.9)

where coefficient 2 reflects the fact that one filler particle overlaps two polymer
surfaces at once.

Then, at concentrations of filler on friction surface less than threshold, in Eq.
(27.9), it is necessary to enter ϕSK , determined by Eq. (27.6), which will change its
value from 0 to 1 in case of using of filler of micron sizes. Considering the above,
from Eq. (27.9) we obtain [8]

ϕS = 2rpr f ϕSK

r2p + 3rpr f
. (27.10)

By analogy with Eq. (27.10) let us introduce ϕSK into the Eq. (27.7). Then we
obtain the equation for determine ϕ f [8]
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ϕ f = 3r f rpϕSK

r2p + 3r f rp
. (27.11)

Let’s solve Eq. (27.8) taking into account equality of deformations of matrix εm
and filler ε f . under the action of N . Therefore, in determining the strength properties
of the spatial structure of a dispersed filler, it is necessary to introduce, instead
of the elastic modulus, a new characteristic of such a structure—the resistance to
deformation of the dispersed medium E f . The ϕSK value should influence the wall
modulus of the filler particles. Then, for the case of a single-layer arrangement of
dispersed filler particles of micron size [10, 15]

E f = E f 0ϕSK , (27.12)

where E f 0 is the resistance to deformation of the disperse medium when the filler
completely fills the layer contacting the surface of the polymer particle.

Let’s assume that elastic characteristics of matrix and filler are identical under
compression and tension. Then

p f = pmE f

Em
, (27.13)

where Em is the elastic modulus of the matrix material.
After substituting Eq. (27.13) into Eq. (27.8) we obtain

pC = pm(1 − ϕS) + pmE f

Em
ϕS. (27.14)

From Eq. (27.14) we find

pm = pC

(1 − ϕS) + E f

Em
ϕS

. (27.15)

Substituting Eq. (27.15) into Eq. (27.14) and using the designation χ = E f 0/Em ,
we finally find

pC = (1 − ϕS)pC
(1 − ϕS) + χϕSKϕS

+ χϕSKϕS PC
(1 − ϕS) + χϕSKϕS

. (27.16)

Let us introduce in Eq. (27.16) the designations

β = (1 − ϕS)

(1 − ϕS) + χϕSKϕS
; (1 − β) = χϕSKϕS

(1 − ϕ) + χϕSKϕS
(27.17)

Comparing Eq. (27.10) with Eq. (27.11) we find that ϕS ≈ 0.7ϕ f . Taking this into
account, let us rewrite Eq. (27.17) [15]
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β = (1 − 0, 7ϕ f )

(1 − 0, 7ϕ f ) + 0, 7χϕSKϕ f
;

(1 − β) = 0, 7χϕSKϕ f

(1 − 0, 7ϕ f ) + 0, 7χϕSKϕ f
. (27.18)

Taking into account Eq. (27.18) we write Eq. (27.16) in the form

pC = βpC + (1 − β)pC , (27.19)

where β is the loading of the composite matrix.
Obviously, when ϕ f = 0, β = 1, which corresponds to the case of complete

absence of filler, then PC = Pm . It is known [14] that the wear of materials strongly
depends on the contact pressure value. Thus, when the share of contact pressure
coming to the matrix decreases, the total wear of the composite will also decrease.

If we divide Eq. (27.19) onto the contact area between the composite and the
counterbody, it becomes possible to pass to the expression written for the distribution
of pressures, which takes place on the contact surface between thewall and polymeric
matrix. It is known [14] that thematerialwear greatly depends on the contact pressure.
That is why if we decrease the pressure applied to the matrix, we decrease the wear
of the composite material.

Let us examine of how the value of β varies under other volumetric concentrations
of the filler (less than the threshold value). This is important since under the threshold
concentration of the filler the strength properties can drop [16] since the cracks can
proliferate over a structure of filler particles. That iswhy if the requirements regarding
the strength and wear resistance are combined, the filler content in real composites
is close to the threshold value, but nevertheless it is slightly less.

Conversely, if we introduce the filler, the value of the modulus of elasticity
becomes higher and, thus, the elasticity decreases. This last phenomenon is impor-
tant if the composites are used as a material for sealing elements. In this case, the
filler content should be sufficiently small, but at the same time, it cannot be allowed
to sharply decrease the material wear resistance in general.

Figure27.2 a shows the relationships betweenβ,ϕs , andϕ f ,whichwere calculated
using Eqs. (27.18) and (27.10), respectively. From Fig. 27.2 a, it is seen that if ϕ f

is increased up to 25%, we can observe the decreasing of the matrix loading down
to β = 0.09, i.e., by approximately 10 times. At that, already at ϕ f = 1% the value
of β decreases to 0.76. Thereby, it is possible, in principal, to generate poorly filled
composites with ϕ f being equal to several parts of a percent [16]. Such materials
are more wear resistant and, at the same time, they are elastic. From Eq. (27.19),
it follows that if β is decreased, the filler loading increases simultaneously and its
value can increase up to 0.91 at ϕ f = 25%. In this case, the total load is taken by the
filler.

Figure27.2 a shows the relation between ϕ f s and ϕ f (curve 2). At that, at ϕs >

60% the percolation of the filler particles is seen, and as a result conducting channels
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Fig. 27.2 a: The calculation dependence of the values of β, ϕ f 0 on r f for the model
polytetrafluoroethylene—based composite with the foundry coke: 1—β, and 2—ϕs . b: The cal-
culation dependence of the values of β, ϕ f 0 on r f , for the model polytetrafluoroethylene—based
composite with the foundry coke: 1—β, and 2—ϕ f 0

are formed. Hereby, using the presented relationships it is possible to choose the
volumetric concentration ϕ f to insure the needed conductivity.

Let us examine how the value of β depends on ϕ f 0 if r f is varied. For this purpose,
using Eq. (27.8) we calculate the value of ϕ f 0 for different r f at rp = 63µm. Let
us examine the variant of the composite cell for the case when ϕ f 0 is obtained via
varying r f from 0.05 up to 10µm. Then, by using the obtained values of ϕ f 0 we
find the value of β with the help of Eq. (27.18). The results of the calculations are
presented in Fig. 27.2b. Let us examine how the value of β depends on ϕ f 0 if r f is
varied. For this purpose, using Eq. (27.7) we calculate the value of ϕ f 0 for different
r f at rp = 63µm. Let us examine the variant of the composite cell for the case when
ϕ f 0 is obtained via varying r f from 0.05 up to 10µm. Then, by using the obtained
values of ϕ f 0 we find the value of β with the help of Eq. (27.18). The results of the
calculations are presented in Fig. 27.2b in the form of dependencies.

From Fig. 27.2b, it is seen that if the value of r f is increased up to 10µm, the
value of β decreases continuously down to 0.07 (curve 1), since the ratio of Fc/Fm
increases. At that, the value of ϕ f 0 increases (Fig. 27.2 a, curve 2), since the thickness
of the wall formed by the filler particles increases. All of these effects should be taken
into account during the development of a composite.

Figure27.2b, it follows that for nanosized filler particles, thematrix loading is high
and the filler loading is insignificant. In this case, to increase thewear resistance of the
composite, i.e., to decrease the value of β, as the fillers it is necessary to use disperse
mediums whose modulus of elasticity is very high (in accordance with Eq. (27.18)).
They can be media of a ceramic nature, fullerenes, or different nanomaterials.

Let as examine the natural diamond powder (NDP) crushed by a planetary mill
down to r f values of from 10 to 100nm, which is used as a filler [18]. The Table27.2
depicts the values of β and ϕ f 0 of the model polytetrafluoroethylene-based compos-
ites filled by a natural diamond powder with E = 740 GPa and the respective value of
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Table 27.2 Calculated values ofβ byEq. (27.18),ϕ f 0 byEq. (27.7) andϕW for themodel composite
PTFE + NDP at rp = 63µm

r f β ϕ f 0, % ϕw0, %

10 0.63 0.05 0.03

30 0.38 0.14 0.09

50 0.27 0.24 0.15

70 0.21 0.33 0.20

100 0.16 0.47 0.30

χ = 1644. In practice, due to the technological peculiarities of the natural diamond
powder milling process, it is accepted to characterize such composites by the values
of the weight concentrations ϕw. In addition, Table 27.2 depicts the values of the
respective weight threshold concentrations ϕw0 by considering the densities of the
diamond and the composition, which are 3.5 and 2.2kg/m3, respectively.

From Table27.2, it follows that if the value of the filler modulus of elasticity
is increased in comparison with finely dispersed coke KL-1 by 7 times under r f
lying in the range of 10–100nm, the value of β is less than 0.49. It is shown that
the matrix loading decreases for such materials and verifies the correctness of the
performed analytical investigations. It is necessary to point out that if the values of
ϕw0 mentioned in the table are exceeded, the strength properties of the composite
drop and the wear rises.

Let us consider the features of the previously considered structural model of the
composite based on polytetrafluoroethylenewhen using disperse nanosize filler (NF).
Usually particles with sizes of 10–100nm fall into this one. NF have a number of
specific properties, such as, for example, high surface activity. This is determined
by the fact that the fraction of surface atoms with uncompensated bonds increases
sharply in the case of NF. For example, for particles sized 5nm, this fraction reaches
15% [19]. As a result, the ability to adsorb, ionic and atomic exchange, and contact
interactions of structural elements increases. Apparently, this allows NF to create
multilayered spatial structures around the polymer particle without significant loss
of composite strength [20, 21]. If the NF have dimensions of 100nm, then, as follows
from the data in Table27.2, already at concentrations of a few fractions of percent, the
number of filler particles becomes sufficient to create multilayer structures around
the polymer particles—multilayer wall.

When creating a model of the multilayer structure, we give the previously intro-
duced value ϕSK the additional status of the multilayer coefficient ζ f l . And ζ f l can
take values greater than 1, i.e., by the number of available layers of the filler com-
pletely or partially filled. Substituting in Eq. (27.4) the value ϕ f 0, we find the value
n f K0, characterizing the number of particles of the filler at the completely filled layer.
Then coefficient of multilayer wall around polymer particles [15, 22]

ζ f l = n f K

n f K0
= ϕ f (1 − ϕ f 0)

ϕ f 0(1 − ϕ f )
. (27.20)
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Equation (27.20) shows the dependence of ζ f l onϕ f . If the first layer is completely
filled, ζ f l = 1. If the first and second layers are filled, then ζ f l = 2. Moreover, with
the corresponding increments in ϕ f , ζ f l will take integer and intermediate values.
It is obvious that these conclusions may be extended to any number of layers. In
the case of nanoscale fillers, the value of ϕ f 0, is a sufficiently small value, so in
expanding the Eq. (27.20) we neglect the value of the product, including ϕ f 0. Given
this, the Eq. (27.20) will take the form

ζ f l = ϕ f

ϕ f 0
= ϕ f r p

3r f
. (27.21)

By multiplying Eq. (27.21) by rf we find the wall thickness of the multilayer filler
structure �w

�w = 1

3
rpϕ f . (27.22)

Equation (27.22) shows that the value of �w is proportional to the concentration
ϕ f for a polymer particle size rp. Equations (27.21) and (27.22) are obtained under
the assumption of compact packing of cubic non-fractal particles. On the other hand,
it is known that nanoscale particles at different types of interaction form structures of
fractal clusters (aggregates), density of which decreases with increasing of aggregate
size. However, real fractals have two natural length scales, above and belowwhich an
object is not a fractal [19]. The lower limit is related to the specific size of structural
elements, and the upper limit is related to the aspiration of fractal dimensionality to
its limit. Thus, if an aggregate consists of particles, it can form a non-fractal aggregate
of size �w with a density and, hence, a modulus of elasticity such as the particle
material. If the number of particles in the aggregate increases, it becomes a fractal
aggregate whose density and hence elastic modulus will decrease. By multiplying
Eq. (27.21) by r f we find the wall thickness of the multilayer filler structure �w

Now we assume that E f depends on the number of layers. With a small number
of layers, E f depends on the stability of the wall, which declines with decrease in
the number of layers. With a larger number of layers, E f may decline as a function
of the walls’ packing density. Thus, there must be a maximum in the dependence
of E f on ζ f l . This condition is satisfied by the theoretical expression for the elastic
modulus of the filler

E f l = 4
E f 0

�E

(
exp

[ − �w/tc
] − exp

[ − 2�w/tc
])

, (27.23)

where E f 0 is the maximum resistance to wall deformation; �E is the coefficient
depending on the filler particle size; tC is the wall thickness constant.

Let us determine the value of �E . In the proposed model, the wall can consist of
particles of different sizes. It is known that there is a scale effect of strength. Then
it is obvious that a wall composed of smaller elements will have higher strength and
stiffness than a wall made of larger elements. TheWeibull model [15] is most widely
used to analyze the scale effect. This model is based on the concept of the weakest
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link and treats the material structure as a chain whose strength is determined by its
weakest link. For different volumes of material, theWeibull equation relates the ratio
of their volumes to the ratio of strength. If we assume that the strength is proportional
to the modulus of elasticity E, then the Weibull equation will be

�E = E2

E1
=

(
V1

V2

) 1

mh , (27.24)

where E1, E2 are the moduli of elasticity of the material volume V1 and V2, respec-
tively; mh is the Weibull modulus.

Let’s choose the size of particles from the nanoscale zone from 20 to 100nm. Let’s
assume the value mh = 5 and determine the ratio of elastic moduli of particles with
dimensions from the extreme points of the range, namely, r f 1 = 100 nm and r f 2 =
20nm. Since V1 = r3f 1 and V2 = r3f 2. Substituting the volumes of these particles into
the Eq. (27.11) we find �E = 2.62. Thus, the modulus of elasticity of particles of
size 20nm is E times higher than themodulus of elasticity of particles of size 100nm.
Let’s assume that in Eq. (27.22) the value E f 0 will denote the reference modulus at
20nm, which will decrease by the value �E as the particle size increases.

The part of Eq. (27.23) in brackets is an extremum function. To find the position
of the maximum, we take the derivative of this expression and equate it to zero, then

(exp[−�w/tc] − exp[−2�W/tc])′ = 2 exp[−2�w/tc]
tc

− exp[−�W/tc]
tc

= 0.

(27.25)
After reducing Eq. (27.25) by tc, transferring the terms, and logarithmizing, we

obtain an expression for determining tc

tc = �w

ln2
. (27.26)

In Eq. (27.26), the value of �w represents a tightly packed wall. The thickness
of such a wall will depend on the size of nanoparticles. The minimum particle size
is assumed to be 20nm. Let’s take the wall thickness value at this particle size as a
reference size �WE , equal to 0.83µm. This wall is densely packed, and such a filler
structure provides the minimum wear of the composite at ϕ f = 0.025. Since the
elastic modulus of the particles decreases with increasing particle size, for particles
with a size of 100nm, for example, the tightly packed wall should be thicker to
provide the same stability parameters. The parameter �E can be used to estimate
the wall thickness at different particle sizes. Then Eq. (27.26) for particles from the
above-denoted nanoscale can be written as

tc = �WE�E

ln2
. (27.27)
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Let’s rewrite Eq. (27.18) for the multilayer filler

β = (1 − 0.7ϕ f )

(1 − 0.7ϕ f ) + 2.8
χ

�E

(
exp[−�w/tc] − exp[−2�w/tc]

)
ϕ f

1 − β = 0.7χϕ f

(1 − 0.7ϕ f ) + 2.8
χ

�E

(
exp[−�w/tc] − exp[−2�w/tc]

)
ϕ f

. (27.28)

Substituting ϕ f = 0 into Eq. (27.28), we find that β = 1. In that case, the whole load
will be applied to the polymer matrix. For all other values of ϕ f , we will find that
0 ≤ β < 1.With increase in E f and corresponding increase in χ , we will see decline
in β.

27.3 Composites Wear Model

When creating new polymer composites for frictional purposes it is required to
predict their wear resistance at the initial stage of development [24, 25]. We can use
the empirical wear law in terms of wear coefficient [26]

K = apνebpν + c(edpν − 1), (27.29)

where pν is the load (p is the contact pressure and ν is the slip velocity); a, b, c, and
d are dimensional coefficients specific to the material.

The empirical wear law is valid over a wide range of loads and may be used to
determine K for any pν within that range, as shown in [25]. In engineering, the
wear resistance of materials is often evaluated on the basis of the linear wear rate Ih .
Taking into account that Ih = Kp, we find from Eq. (27.29) that

Ih = ap2νe−bpν + cp(edpν − 1). (27.30)

However, Eq. (27.30) may only be used to estimate Ih for a finished material. To
predict the properties of composites that are being developed, we need a formula that
takes into account not only the wear characteristics of the components in the com-
posite but also their mutual influence. To find the empirical wear law for a composite,
it is insufficient to know the dimensional coefficients obtained individually for the
matrix and the filler, since their influence on the wear resistance is not additive. That
is confirmed by the significant difference in the dimensional coefficients, which is
associated with both the wear mechanism and the influence of the temperature on
the physicomechanical characteristics. We need to find an empirical wear law whose
coefficients take account of the distribution of the total load over the frictional sur-
faces of the matrix and the filler. Then from Eq. (27.30), taking account of β, we
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write the wear rate of the composite as the sum of the wear rates of the matrix and
of the filler

Ih = β2 p2νa1e
−b1 pν + βpc1(e

d1 pν − 1)+

(1 − β)2 p2νa2e
−b2 pν + (1 − β)pc2(e

d2 pν − 1) = (27.31)

p2ν(β2a1 + (1 − β)2a2)e
−b1 pv + p(βc1 + (1 − β)c2)(e

(βd1+(1−β)d2)pν − 1),

where a1, b1, c1, and d1 the dimensional coefficients characterizing Ih for the matrix;
a2, b2, c2, and d2 the dimensional coefficients characterizing Ih for the r the filler.

In deriving the overall empirical wear law for the matrix and the filler, we need
to take account of those coefficients. The coefficient b in the exponent of the first
term in Eq. (27.30) is associated with the formation of secondary structures, as
noted in [25]. Two diffusional processes associated with the formation of secondary
structures cannot occur simultaneously in the composite. In practice, the process
associated with the physicomechanical properties of the matrix will predominate.
Indeed, we see that b1 � b2. Thus, we may adopt b1 in the exponent of the first term
for the composite as a whole. The influence of the other coefficients of the matrix and
the filler on the coefficients for the composite as a whole will be determined by β. Let

ae = β2a1 + (1 − β)2a2; be = b1; ce=βc1 + (1 − β)c2; de = βc1 + (1 − β)d2;

Then
Ih = ae p

2νe−be pν + ce p(e
de pν − 1). (27.32)

We assume that thewear rate of the initial polymer corresponds to Eq. (27.30)with
the dimensional coefficients a1, b1, c1, and d1. Dividing Eq. (27.32) by Eq. (27.30),
we find the wear rate of the composite relative to the unfilled matrix

I mC = I Ch
I mh

. (27.33)

The value of I mC allows us to estimate the tribotechnical efficiency of composite
filling. Let us decompose the exponents in brackets in Eqs. (27.32) and (27.30) into a
Taylor series and take only the first two terms. As a result, we obtain for Eq. (27.32)

eβd1+(1−β)d2 pν) = 1 + [βd1 + (1 − β)d2]pν,

and for Eq. (27.30)

ed1 pν = 1 + d1 pν. (27.34)

Dividing Eq. (27.34) by Eqs. (27.32) and (27.30), and considering that be = b1, we
finaly find the linear wear rate of the composite relative to the unfilled matrix [26]
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Fig. 27.3 The calculation dependences of ImC on the filler volume concentration and pν for model
composites based on PTFE filled with AG-600 CO5: a—with micron-sized filler; b—with nanosize
filler

I mC = a−b1 pν
e + cede

a1e−b1 pν + c1d1
. (27.35)

If pv → 0 and ϕ f = 0, then I mC = 1, since all coefficients in Eq. (27.35) will be
equal. As it follows fromEq. (27.35), the value of I mC depends only on pv. Thismakes
it possible to build I mC dependences for different load modes: p = var , v = const ;
v = var, p = const .

To verify the proposed model, we plotted according to Eq. (27.35) the depen-
dences of I mC on the filler volume concentration and pv for model composites
based on PTFE (Fig. 27.3) filled with carbon material AG-600 CO5 with differ-
ent dispersity. In Fig. 27.3a the dependences are plotted for a model composite with
r f = 7µm. and rp = 63µm. In this case, the value of ϕ f 0 is 20 vol.% at ζ f l = 0.74
and �W = 7µm. In Fig. 27.3b for the nanoscale filler ϕ f 0 = 12 vol.% at ζ f l = 50.4
and �W = 2.52µm. The indicated concentrations are the limits, because when they
are exceeded, the strength characteristics of the composites decrease.

The concentration dependence Fig. 27.3a shows that I mC decreases by two orders
of magnitude when a micron-sized filler is introduced with concentration ϕ f = 20
vol.%, and in the case of application of nanosize filler (Fig. 27.3b). The same decrease
in I mC is achieved at ϕ f = 12 vol.%.

From Fig. 27.3 a shows that the I mC of the model composite based on PTFE with
a microsized filler at pν ≥ 0.6 MPa m/s has a noticeable dependence on pν. At the
same time, the value of I mC , decreases monotonically with increasing ϕ f and reaches
a minimum value at ϕ f = 20 vol.%. At pν ≤ 0.6 MPa, the decrease in I mC reaches 2
orders of magnitude. At the same time, when nanosize filler is used (Fig. 27.3b), the
dependenceof I mC on pν is less pronounced. FromFig. 27.2b follows that use nanosize
filler already at ϕ f = 12 vol.% leads to an increase in the wear resistance of the
composite bymore than 2 orders of magnitude. The obtained calculated dependences
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have good agreement with the experimental data published both by other researchers.
Thus, the proposed approach to modeling the wear resistance of polymer composites
makes it possible to determine by calculation the effective concentrations of dispersed
filler of micro- and nanoscale, as well as to evaluate the tribotechnical efficiency of
filling at the stage of designing friction units.
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Chapter 28
Hydrodynamic Mechanism
of Temperature Gradient Formation
in Microfluidic Nematic Devices

Izabela S̀liwa and Alex V. Zakharov

Abstract The purpose of this chapter is to show some routes in describing themech-
anism responsible for the formation of the temperature difference at the boundaries
of the microfluidic hybrid aligned nematic (HAN) channel, initially equal to zero,
if one sets up the stationary hydrodynamic flow or under the effect of an externally
applied shear stress (SS) to the bounding surfaces. Calculations based on the nonlin-
ear extension of the classical Ericksen–Leslie theory, supplemented by thermome-
chanical correction of the SS σzx and Rayleigh dissipation function, with accounting
the entropy balance equation, show that due to the coupling among the σzx , the
gradients of the temperature ∇T and the director n̂ fields in the HAN channel the
horizontal nematic flow v is excited. The direction and magnitude of v is influenced
by both the heat flux q across the HAN channel and the strength of the σzx .

Keywords Liquid crystals · Hydrodynamics of anisotropic systems ·
Thermomechanical force

28.1 Introduction

Consisting of anisotropic molecules, liquid crystal (LC) materials were called curi-
ous soft matter until their impressive impact on modern technology. The primary
technological revolution was brought by these LC materials in the field of displays.
With the development of the LC display market, the question arises about the follow-

Dedicated to the memory of Professor W. Jeżewski
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ing areas of application of LC materials. Perhaps there is no more suitable direction
for the application of LCmaterials than LC sensors (LCSs) and LC actuators (LCAs)
[1]. They have various advantages in comparison with other types of microsensors
and microactuators; simple structure, high shape adaptability, easy downsizing, and
low driving voltages. This is because LCmaterials are extremely sensitive to external
disturbances and can be used for the construction of stimuli-responsive devices, such
as LCSs or LCAs [1]. Nematic liquid crystal (NLC) channels or capillaries of appro-
priate size are microdevices, whose molecular orientations can be manipulated by
forces applied macroscopically, or can be generated locally within the microfluidic
nematic channel [2] or capillary [3]. A challenging problem in all such systems is
the precise handling of nematic microvolume, which in turn requires self-contained
micropumps of small package size exhibiting either a very small displacement vol-
ume (displacement pumps) or a continuous volume flow (dynamic pumps). One of
the pumping principles in themicrosized LC channel confined between two infinitely
long boundaries is based on the coupling between the tangential component of the
shear stress (SS) σzx and the director field n̂, together with accounting the effect of
the temperature gradient ∇T [4, 5].

It has been shown that the horizontal hybrid aligned nematic (HAN) microfluidic
channel, being initially in the rest, if heated both from below or above, due to the
temperature gradient ∇T , starts moving in the horizontal direction [6–8]. In the
case when the director n̂ is anchored homeotropically to the cooler (Tlw) lower,
and homogeneously to the hotter (Tup) upper boundaries, due to coupling between
∇T ∼ �T

d and ∇n̂, the hydrodynamic flow v = vx î [7] in the horizontal direction is
excited.Here,�T = Tup − Tlw is the temperature difference on theHANboundaries,
d is the thickness of the HAN channel, and î is the unit vector taken parallel to
the horizontal boundaries of the HAN channel (see Fig. 28.1). The magnitude of
the flow vx is proportional to ∼ d

η
σ tm
zx [6–8], where σ tm

zx ∼ ξ �T
d2 is the tangential

component of the thermomechanical stress tensor σ tm
i j , η is the viscosity, and ξ is

the thermomechanical constant [6]. The direction of the hydrodynamic flow v is
influenced by the character of the preferred anchoring of the average molecular
direction n̂ to the boundaries of the HAN channel and the heat flux q across the
bounding surface [7, 8]. Measurements of temperature′s induced flow have been
performed on the HAN cell [9], and the main result of that experimental study is the
estimation of the thermomechanical constant ξ ∼ 10−12 J/K m [9].

Despite the fact that the possibility of formation of hydrodynamic flows in
nematic channels under the influence of temperature gradients has been theoreti-
cally described since [6–8], only detailed numerical simulations performed within
the framework of the extended Ericksen–Leslie theory [10, 11] allowed us to recre-
ate the complete picture of the formation of flows in nematic microchannels and
capillaries. One of the aims of this chapter is to describe the various regimes of
hydrodynamic flow formation due to the interaction between the temperature and
director field gradients obtained by numerical modeling of these processes. This
review is devoted to the latest results describing the possibilities of computational
methods implemented in the framework of the nonlinear extension of the Ericksen–
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Fig. 28.1 The coordinate system used for theoretical analysis. The x-axis is taken as being parallel
to the director directions on the upper surface, θ(z, t) is the angle between the director n̂ and the
unit vector k̂, respectively. Both the heat flux q and the unit vector k̂ are directed normal to the
horizontal boundaries of the LC channel

Leslie theory, with accounting the entropy balance equation [12]. Another purpose
of our chapter is to show some routes in describing the mechanism responsible for
formation of the temperature difference �T on the boundaries of the HAN channel,
being initially equal to zero, if one sets up the stationary hydrodynamic flow or under
the effect of the externally applied shear stress to the bounding surfaces.

This is the first such review that describes in detail the role of thermomechan-
ical force in formation of the hydrodynamic flow in microsized nematic channels
and capillaries. It is based on the nonlinear extension of the Ericksen–Leslie the-
ory, supplemented by thermomechanical correction of the shear stress and Rayleigh
dissipation function, and also takes into account the entropy balance equation. The
fact that the main results were obtained by numerical methods indicates that exper-
imenters still have a lot of work to do in order to create a more complete picture of
formation of the hydrodynamic flows inmicrosized nematic channels and capillaries.

The layout of this chapter is as follows. In the next section, the system of hydrody-
namic equations describing both the directormotion and the fluid flow inmicrofluidic
HAN channel containing the temperature gradient, under the effect of the external
shear stress, is given. Numerical results for the number of hydrodynamic regimes,
caused by both the shear stress and the heat flux across the bounding surfaces of
the HAN channel, describing orientational relaxation of the director, velocity, and
temperature are given, in Sect. 28.3. The role of flow in a temperature gradient for-
mation across a hybrid aligned nematic channel is given in Sect. 28.4. Conclusions
are summarized in Sect. V.
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28.2 Shear-Driven Flow Regimes in Microfluidic Nematic
Devices: Tumbling and Laminar

In the case of the stationary shear stress flow, the director n̂ is oriented in the shear
xz plane, where the xz plane, defined by the liquid crystal flow v (the direction
x coincides with the unit vector î) and the velocity gradient ∇v in the z-direction
coinciding with the unit vector k̂; y is the vorticity axis coinciding with the unit
vector ĵ (see Fig. 28.1). So, one deals with a twofold result. First, the hydrodynamic
torque,

Tvis = γ1

2
(1 + γ21 cos 2θ) γ̇ ĵ = [(

α3 cos
2 θ − α2 sin

2 θ
)
γ̇
]
ĵ, (28.1)

exerted per unit LC volume in a shear flow, vanishes when the director n̂ aligns at a
stationary angle [13–15],

θst = 1

2
cos−1 (−γ1/γ2) = 1

2
cos−1

(
γ −1
21

) = tan−1
(√

α3/α2

)
, (28.2)

with respect to the direction of the flow velocity v = γ̇ y î. Second, the director n̂
continuously rotates in the shear plane. Here γ21 = −γ2/γ1, γ1 = α3 − α2 and γ2 =
α3 + α2 are the rotational viscosity coefficients (RVC′s), α2, and α3 are the Leslie
coefficients, and γ̇ = ∂vx/∂z is the shear rate. It is clear from this equation that
if |γ1| > |γ2| or α3 > 0 (because, in practice, α2 < 0), than no real solution for θst
exists. Physically, this means that in this case the director will tumble under the shear
flow of the nematic.

In turn, in the case of the HANmicrofluidic channel, when there is only a tempera-
ture difference�T = Tup − Tlw on the HAN boundaries, and where the director n̂ is
anchored homeotropically to the lower, and homogeneously to the upper boundaries,
due to the coupling between ∇T and ∇n̂, the hydrodynamic flow v = vx î [6–8] is
excited. The magnitude of the flow vx is proportional to ∼ d

η
σ tm
zx , and the direction

of the hydrodynamic flow v is influenced by the character of the preferred anchoring
of the average molecular direction n̂ to the boundaries of the HAN channel and the
heat flux q across the bounding surface [7, 8]. Among many questions that arise in
this connection, we will be interested in two ones.

First, how the viscous torque Tvis = γ1
2 (1 + γ21 cos 2θ) γ̇ ĵ effects the character

of director field n̂ (or the polar angle θ ) evolution to its stationary orientation n̂st

with respect to the nematic flow v, under the influence of the tangential component
of the shear stress σzx together with accounting the temperature gradient ∇T ? It
will be investigated for two types of the nematic phases; first, for the “laminar” case
of nematic phase, when γ21 > 1, and, second, for the “tumbling” case of nematic
phase,when γ21 < 1 [13–15], respectively. For instance, to the laminar nematic phase
belongs the liquid crystal composed of 4 − cyano − 4′ − pentylbiphenyl (5CB)

molecules, whereas to the tumbling nematic phase belongs the liquid crystal com-
posed of 4 − cyano − 4′ − octylbiphenyl (8CB)molecules [16], respectively. Sec-
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ond, is it possible to form a temperature difference �T across the HANmicrofluidic
channel, initially being equal to zero, under the action of the tangential component
of the shear stress σzx applied to the boundary of the LC channel?

The answers to these questions will be given within the framework of nonlinear
extension of the classical Ericksen–Leslie theory [10, 11], supplemented by ther-
momechanical correction of the shear stress and Rayleigh dissipation function, as
well as taking into account the entropy balance equation [12]. It has recently been
shown, both experimentally [17] and numerically [18], that only stationary flow vst
with a triangular sharp profile and position of the maximum in the vicinity of the
restricted boundaries may built the highest temperature difference �T = Tup − Tlw
in the HAN microfluidic channel of few degrees. By means of other hydrodynamic
flowwith profiles, which can not demonstrate the sharp growth of vst across the HAN
channel, one can achieve the same result only by using of the “high-speed” hydro-
dynamic flow ∼0.1 µm/s [17]. But taking into account that some LC systems driven
by external SS exhibit such non-equilibrium phenomena as tumbling behavior [7, 8,
18], the mechanical description can shed some light on the problem of temperature
gradient formation, when under certain conditions the thermomechanical force can
overcome elastic, viscous, and anchor forces and cause a temperature gradient across
the HAN channel.

28.2.1 Formulation of the Balance of the Linear Momentum,
Torque, and Conductivity Equations for Microsized
Nematic Fluids

We are primarily concerned with the description of the physical mechanism respon-
sible for the shear-driven nematic flow inmicrofluidic hybrid aligned nematic (HAN)
channels, under the effect of the external shear stress

(σzx (z))z=d = σ 0
zx , (28.3)

applied to the upper boundary of this channel (see Fig. 28.1). We consider a hybrid
aligned channel composed of both the laminar and tumbling types of nematics, which
is delimited by two horizontal bounding surfaces at distance d on a scale in the order
of tens micrometers. According to this geometry the director is maintained within
the xz-plane (or in the yz-plane), defined by the heat flux q = Q0k̂ directed normal
to the horizontal boundaries of the LC channel. Because we are dealing with the
HAN channel under the influence of both the SS σ 0

zx and the heat flux q directed
perpendicular to the HAN channel, and taking into account that the length of the
channel L is much bigger than the thickness d, we can suppose that the component
of the director n̂ = nx î + nz k̂ = sin θ(z, t)î + cos θ(z, t)k̂, as well as the rest of the
physical quantities, also depend only on the z-coordinate and time t . Here, θ denotes
the angle between the director and the unit vector k̂ (see Fig. 28.1). In order to
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understand how the viscous Tvis , elastic Tel , thermomechanical Ttm , and anchoring
Tan torques, as well as the tangential component of the shear stress σzx , effect the
character of the director field n̂ evolution to its stationary orientation with respect to
the nematic flow v, we must formulate the boundary conditions for the temperature
T (z, t), velocity v and the director n̂ fields.

We consider a hydrodynamic regime where the HAN channel is subjected to
uniform heating from above, for instance by the laser irradiation [19], and the director
n̂ is strongly anchored to both solid surfaces, homeotropically to the lower cooler
(T1) and homogeneously to the upper bounding surfaces, where

θ(z)z=d = π

2
, θ(z)z=0 = 0, (28.4)

whereas the boundary conditions for the temperature field are

(
∂T

∂z

)

z=d

= −Q0/λ⊥ = q0,

T (z)z=0 = T1, (28.5)

respectively.Here,λ⊥ is the heat conductivity coefficient perpendicular to the director
n̂, whereas Q0 is the heat flux across the upper boundary, respectively. As a result,
we obtain a picture where there is a balance between the heat flux q, SS σ 0

zx , viscous,
elastic and anchoring forces, and, in general, the LC fluid settles down to a stationary
flow regime in the horizontal direction [7, 8]. Upon assuming an incompressible
fluid, the hydrodynamic equations describing the orientational dynamics induced
both by SS σ 0

zx and q can be derived from the torque, linear momentum and the
entropy balance equations for such LC system.

Taking into account the micro-size of the HAN channel, one can assume the
mass density ρ to be constant over the LC volume, and thus we are dealing with an
incompressible fluid. The incompressibility condition ∇ · v = 0 assumes that only
one nonzero component of the vector v exists, viz. v(z, t) = u(z, t)î.

If the director is disturbed by both the shear stress σ 0
zx and the heat flux q, gener-

ated by the uniform heating from above, the relaxation of n̂(z, t) to its equilibrium
orientation n̂eq(z) in the HAN channel is governed by elastic Telast = δW F

δn̂ × n̂,

viscous Tvis = δRvis

δn̂,t
× n̂, and thermomechanical Ttm = δRtm

δn̂,t
× n̂ torques exerted

per unit LC′s volume. Here, Rvis = 1
2h(θ)u2,z − γ1A(θ)θ,t u,z + 1

2γ1θ
2
,t is the vis-

cous, Rtm = ξθ,tθ,zT,z
(
1
2 + sin2 θ

) − ξT,zu,zθ,z sin2 θ
(
1 + 1

2 sin
2 θ

)
is the thermo-

mechanical, andRth = 1
2 T

(
λ‖ cos2 θ + λ⊥ sin2 θ

)
T 2

,z is the thermal contributions to
the full Rayleigh dissipation functionR = Rvis + Rtm + Rth [7, 8]. The set of func-
tions h(θ) = α1 sin2 θ cos2 θ − γ1A(θ) + 1

2α4 + g(θ), A(θ) = 1
2 (1 + γ21 cos 2θ),

g(θ) = 1
2

(
α6 sin2 θ + α5 cos2 θ

)
are the hydrodynamic functions, u,z = ∂u(z, t)/∂z,

θ,z = ∂θ(z, t)/∂z, θ,t = ∂θ(z, t)/∂t , and T,z = ∂T (z, t)/∂z, whereas
αi (i = 1, . . . , 6) are six Leslie coefficients, λ‖ and λ⊥ are the heat conduc-
tivity coefficients parallel and perpendicular to the director n̂. In turn, WF =
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1
2

[
K1

(∇ · n̂)2 + K3
(
n̂ × ∇ × n̂

)2]
denotes the elastic energy density, K1 and K3

are splay and bend elastic coefficients, and n̂,t = dn̂
dt is the material derivative of the

director n̂, respectively.
The hydrodynamic equations describing the reorientation of the LC phase in

our case, when there exists the heat flux q across the upper boundary of the HAN
microfluidic channel and under the effect of the SS σ 0

zx , can be derived from the
torque balance equation [7, 8] Telast + Tvis + Ttm = 0, which has the form

[
δWF

δn̂
+ δRvis

δn̂,t
+ δRtm

δn̂,t

]
× n̂ = 0. (28.6)

The linear momentum equation for the velocity field v can be written as [7, 8]

ρ
dv
dt

= ∇ · σ, (28.7)

where ρ is the mass density of the nematic system, σ = σ elast + σvis + σ tm − PI
is the full stress tensor (ST), and σ elast = − ∂WF

∂∇n̂ · (∇n̂
)T
, σvis = δRvis

δ∇v , and σ tm =
δRtm

δ∇v are the ST components corresponding to the elastic, viscous, and thermome-
chanical forces, respectively. Here, P is the hydrostatic pressure in the HAN system
and I is the unit tensor, respectively.

When the gradient of temperature∇T is set up across theHANchannel, we expect
that the temperature field T (z, t) satisfies the heat conduction equation [7, 8, 12]

ρCP
dT

dt
= −∇ · Q, (28.8)

whereQ = −T δR
δ∇T is the heat flux in the nematic phase, and CP is the heat capacity

of the LC system.
To be able to observe the evolution of the director field n̂ (or the polar angle

θ(z, t)) to its equilibrium orientation n̂eq(z), and exciting the velocity field v(z, t)
caused both by the heat flux q and the external SS σ 0

zx , we consider the dimensionless
analog of the torque and linear momentum balance equations, as well as the entropy
balance equation.

The dimensionless torque balance equation describing the reorientation of the LC
phase can be written as [7, 8]

γ 1(χ)θ,τ = A(θ)u,z + (G(θ)θ,z
)
,z − 1

2
G,θ (θ)θ2,z − δ1χ,zθ,z

(
1

2
+ sin2 θ

)
, (28.9)

where G(θ) = sin2 θ + K31 cos2 θ , G,θ (θ) is the derivative of G(θ) with respect to
θ , χ(z, τ ) = T (z, τ )/TN I is the dimensionless temperature, TN I is the nematic–
isotropic transition temperature, θ,z = ∂θ(z, τ )/∂z, χ,z = ∂χ(z, τ )/∂z, K31 =
K3/K1, K1, and K3 are the splay and bend elastic constants of the LC phase,
τ = (K10/γ10d2)t is the dimensionless time, z = z/d is the dimensionless dis-
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tance away from the lower solid surface, u =
(

γ10d
K10

)
u is the dimensionless velocity,

γ 1(χ) = γ1/γ10 is the dimensionless RVC γ1, δ1 = ξTN I /K10 is the parameter of the
nematic system, and ξ ∼ 10−12 J/mK is the thermomechanical constant [9]. Notice
that the overbars in the space variable z and velocity u have been eliminated and
γ10 and K10 are the highest values of the RVC γ1(χ) and the splay constant K1(χ)

in the temperature interval [χ1, χ2] belonging to the nematic phase. In the case of
incompressible fluid, the dimensionless Navier–Stokes equation reduces to [7, 8]

δ2u,τ (z, τ ) = σzx,z =
[
h(θ)u,z − A(θ)θ,τ − δ1χ,zθ, z sin2 θ

(
1 + 1

2
sin2 θ

)]

,z
, (28.10)

P ,z(z, τ ) + ∂R(z, τ )

∂θ,τ

θ,z = 0, (28.11)

where h(θ) = h(θ)/γ10 and A(θ) = A(θ)/γ10, respectively, and R(z, τ ) =
γ10d4

K 2
10
R(z, t) is the full dimensionless Rayleigh dissipation function, P(z, τ ) =

d2

K10
R(z, t) is the dimensionless hydrostatic pressure in the HAN channel, whereas

δ2 = ρK10/γ
2
10 is an extra one parameter of the nematic system. The stress tensor

component σzx is given by [9] σzx (z, τ ) = δR(z,τ )

δu,z
= h(θ)u,z − A(θ)θ,τ − δ1χ,zθ,z

sin2 θ
(
1 + 1

2 sin
2 θ

)
.

When the temperature gradient ∇χ is set up across the HAN channel, we expect
that the temperature fieldχ(z, τ ) satisfies the dimensionless heat conduction equation
[7, 8]

δ3χ,τ (z, τ ) = [
χ,z

(
λ cos2 θ + sin2 θ

)]
,z +

δ4

[
χθ,z

(
θ,τ

(
1

2
+ sin2 θ

)
− u,z sin

2 θ

(
1 + 1

2
sin2 θ

))]

,z

, (28.12)

where λ = λ‖/λ⊥, and δ3 = ρCpK10

λ⊥γ10
and δ4 = ξ K10

d2γ10λ⊥ are extra two parameters of
the nematic system. Note that the overbars in the space variable z, in the last four
Eqs. (28.9), (28.10), (28.11), and (28.12) have also been eliminated.

In order to elucidate the role of both the heat flux q = q0k̂ and the external
SS σ 0

zx on the reorientation process in the microsized HAN channel, we consider the
hydrodynamic regimewhen the director n̂ is strongly anchored to both solid surfaces,
homeotropically to the lower cooler (χ1), whereas on the upper boundary it assumes
that the heat flux is vanished or restricted. In this case, the boundary conditions must
satisfy the following equations:

θ(z)z=0 = 0, θ(z)z=1 = π

2
,

χ(z)z=0 = χ1, χ,z(z)z=1 = q0, (28.13)
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where q0 = − Q0d
TN I λ⊥ is the dimensionless heat flux across the upper boundary of the

HAN channel.
The velocity on the lower boundary must satisfy the no-slip boundary condition

u(z)z=0 = 0, (28.14)

whereas on the upper boundary the SS is applied as

(σzx (z))z=1 = σ 0
zx . (28.15)

Now the reorientation of the director in the microsized HAN channel confined
between two solid surfaces, when the relaxation regime is governed by the vis-
cous, elastic, thermomechanical forces, and the SS σ 0

zx with accounting the heat flux
q = q0k̂, can be obtained by solving the system of the nonlinear partial differential
Eqs. (28.9), (28.10), and (28.12), with the appropriate boundary conditions both for
the polar angle θ(z, τ ), temperature χ(z, τ ) (Eq. (28.13)) and the velocity u(z, τ )

(Eqs. 28.14–28.15), as well as with the initial condition

θ(z, τ = 0) = π

2
. (28.16)

28.2.2 Numerical Results for the Relaxation Regimes in
HAN Channel

First of all, we focus on the problem howmuch the viscous torqueTvis = γ 1(χ)θ,τ −
A(θ)u,z = γ 1(χ)θ,τ − 1

2 (1 + γ21 cos 2θ) u,z influences the character of director
field n̂(z, τ ) (or the polar angle θ(z, τ )) evolution to its stationary n̂st (z) distribution
across the microfluidic HAN channel with the temperature gradient. In our case the
∇χ is produced by the heat flux q (see Eq. (28.13)), directed across the microfluidic
HAN channel.

Calculations of the temperature dependence of γ21 = −γ2/γ1, as well as a com-
parisons of the values of the RVCs γ1 and γ2, both for 5CB and 8CB, at temperature
corresponding to nematic phase, are given in Table28.1. The rest material parameters
of these 5CB and 8CBnematic crystals are: themass density∼ 103 kg/m3, the exper-
imental data for elastic constants [20] K1(T ) and K3(T ) vary between 6 and 13 pN ,
and 7 and 14 pN , respectively. So, the highest values are K10 ∼ 13 pN , K30 ∼
14 pN , and γ10(5CB) ∼ 0.968 Pa s and γ10(8CB) ∼ 0.86 Pa s, respectively. In the
following, we use themeasured values, obtained by the adiabatic screening calorime-
try and photopyroelectric techniques, both for the specific heatCp ∼ 103 J/kgK [21],
and the thermal conductivity coefficients λ‖ ∼ 0.24 and λ⊥ ∼ 0.13W/mK [22], the
calculated value of the thermomechanical constant ξ ∼ 10−12 J/mK [9], and mea-
sured values of the Leslie coefficients α(T ) (i = 1, . . . , 6) [16], respectively.



598 I. S̀liwa and A. V. Zakharov

Table 28.1 The values of the RVCs γ1 and γ2 and their ratio γ21 = −γ2/γ1 for 5CB and 8CB
nematic liquid crystals. The values of the nematic–isotropic (NI) phase transition temperatures are
TN I ∼ 307 K and ∼ 313 K , for 5CB and 8CB, respectively. All data for RVCs are given in Pa s
[16]

T/TN I 0.964 0.974 0.98 0.984 0.99 0.993

γ1(5CB) 0.968 0.78 0.61 0.45

−γ2(5CB) 1.01 0.80 0.67 0.56

γ21(5CB) 1.04 1.03 1.1 1.24

γ1(8CB) 0.86 0.73

−γ2(8CB) 0.52 0.47

γ21(8CB) 0.60 0.64

The set of parameters values, which are involved in Eqs. (28.9), (28.10), and
(28.12), are thus δ1 ∼ 24, δ2 ∼ 2 × 10−6, δ3 ∼ 6 × 10−4, and δ4 ∼ 10−10. Using the
fact that δ2 � 1, the Navier– Stokes equation (28.10) can be considerably simplified
as velocity follows adiabatically the motion of the director. Thus, the whole left-hand
side of Eq. (28.10) can be neglected, reducing it to

σzx = h(θ)uz − A(θ)θτ − δ1χzθz sin
2 θ

(
1 + 1

2
sin2 θ

)
= σ 0

zx , (28.17)

whereas the Eq. (28.12) also can be considerably simplified, because both parameters
δ3 and δ4 � 1, and thewhole left-hand side of Eq. (28.12), as well as the second term,
can be neglected, so that Eq. (28.12) takes the form

[
χ,z

(
λ cos2 θ + sin2 θ

)]
,z

= 0. (28.18)

The last equation has a solution

χ,z(z, τ ) = q0
λ cos2 θ + sin2 θ

. (28.19)

Physically, this means that the temperature field χ(z, τ ) across the HAN cell, under
above-mentioned conditions, is proportional to the heat flowq0 on the upper restricted
surface, when the temperature on the lower surface is kept constant.

In the case when the SS σ 0
zx is equal to 10 (∼ 5 Pa) and there is the heat flux

q0 = 0.02 (Q0 ∼ 200 nW/µm2) directed to the bulk of the nematic channel, the
evolution of the director field n̂ to its stationary orientation n̂st in themicrosizedHAN
channel,which is describedby the polar angle θ(z, τk), for different times started from
τ1 = 0.001 (curve 1) to τR = τ7 = 0.4 (∼ 0.07 s) (curve 7), for both cases 5CB (see
Fig. 28.2a) and 8CB (Fig. 28.2b), is shown in Fig. 28.2. In the calculations, by means
of the numerical relaxationmethod [23], the relaxation criterion ε = |(θ(m+1)(z, τ ) −
θ(m)(z, τ ))/θ(m)(z, τ )| was chosen to be equal to 10−4, and the numerical procedure



28 Hydrodynamic Mechanism of Temperature … 599

Fig. 28.2 a Evolution of the polar angle θ(z, τk)(5CB) [in rad.] to its stationary distribution
across the dimensionless (scaled by d) HAN microfluidic channel, under the effect of the SS
σ 0
zx = 10 (∼ 5Pa), for different times started from τ1 = 0.001 (curve 1) to τR = τ7 = 0.4 (∼ 0.07 s)

(curve 7), respectively. b The same as in a, but the evolution of the polar angle θ(z, τk)(8CB) [in
rad.] to its stationary distribution across the dimensionless (scaled by d) HANmicrofluidic channel.
Here q0 is equal to 0.02

was then carried out until a prescribed accuracy was achieved. Here, m is the iteration
number.

In turn, the evolution of the velocity field u(z, τk) to its stationary distribu-
tion across the HAN microfluidic channel, under the effect of the same SS σ 0

zx =
10 (∼ 5 Pa), for different times started from τ1 = 0.001 (curve 1) to τR = τ7 =
0.4 (∼ 0.07 s) (curve 7), respectively, both for 5CB (see Fig. 28.3a) and 8CB (see
Fig. 28.3b) nematics, is shown in Fig. 28.3. First of all, the effect of the viscous torque
Tvis , or γ21 = −γ2/γ1, on the evolution of the velocity field u(z, τ ) is manifested
in the qualitative difference in the velocity profiles for 5CB and 8CB nematics. In
the case of 5CB, we have concave profiles (see Fig. 28.3a), while in the case of
8CB, these profiles represent, at the final stage of evolution, almost linear depen-
dencies, where the velocity u(z, τk) increases from zero (u(z = 0, τk) = 0), at the
lower boundary of the channel, to the value u(z = 1, τk) ∼ 22 (∼ 0.7 mm/s), at the
upper boundary. In the case of 5CB, the value of velocity u(z = 1, τk)(5CB) at the
upper boundary is equal to ∼ 23 (∼ 0.73 mm/s). Second, the main effect of the
viscous torque Tvis , or γ21 = −γ2/γ1, is manifested in the character of evolution of
the director field n̂ to its stationary orientation n̂st in the microsized HAN channel,
which is described by the polar angle θ(z, τk). Indeed, in the case of 5CB, the polar
angle θ(z, τk)(5CB) increases monotonically from 0 to ∼ 1.57 (π/2), whereas in
the case of 8CB, the polar angle θ(z, τk)(8CB) increases monotonically from 0 to
θ(z = 0.64, τk)(8CB) ∼ 2.48, in the vicinity of the centrum of the HAN channel,
with a subsequent decrease to the value of ∼ 1.57 (π/2) at the upper boundary of
the HAN channel. Thus, the main effect of γ21 = −γ2/γ1 affects the nature of the
reorientation of the director field n̂ to its stationary orientation n̂st in the micro-
sized HAN channel, which is described by the polar angle θ(z, τk). In the case of
the tumbling-type nematic phase, composed of 8CB molecules, when |γ1| > |γ2|,
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Fig. 28.3 a Evolution of the dimensionless velocity field u(z, τk)(5CB) (scaled by K10/γ10d)
to its stationary distribution across the dimensionless (scaled by d) HAN microfluidic channel,
under the effect of the SS σ 0

zx = 10 (∼ 5 Pa), for different times started from τ1 = 0.001 (curve
1) to τR = τ7 = 0.4 (∼ 0.07 s) (curve 7), respectively. b The same as in a, but the evolution of
the dimensionless velocity field u(z, τk)(8CB) (scaled by K10/γ10d) to its stationary distribution
across the dimensionless (scaled by d) HAN microfluidic channel. Here, q0 is equal to 0.02

Fig. 28.4 a Evolution of the polar angle θ(z, τk) [in rad.] to its stationary distribution across the
dimensionless (scaled by d) HAN microfluidic channel, in the case of the tumbling-type nematic
phase, composed of 8CB molecules, and under the effect of the SS σ 0

zx = 20 (∼ 10 Pa), for different
times started from τ1 = 0.001 (curve 1) to τR = τ7 = 0.4 (∼ 0.07 s) (curve 7), respectively. b The
same as in a, but σ 0

zx = 30 (∼ 15 Pa) and τR = τ7 = 0.6 (∼ 0.1 s), respectively. Here, q0 is equal
to 0.02

the director will tumble under shear flow of the nematic, whereas in the case of
the laminar-type nematic phase, composed of 5CB molecules, when |γ1| < |γ2|, the
dynamics of nematic liquid crystals produces the alignment regime.

In turn, when the SS σ 0
zx is increased and equal to 20 (∼ 10 Pa) (see Fig. 28.4a) and

30 (∼ 15 Pa) (see Fig. 28.4b) and there is the heat flux 0.02 (Q0 ∼ 200 nW/µm2),
in the case of the tumbling type nematic phase, composed of 8CB molecules, when
|γ1| > |γ2|, the evolution of the director′s field n̂ to its stationary orientation n̂st , in
the vicinity of the centrum of the HAN channel, is undergoing a qualitative change.
According to our calculations, the shear stress σ 0

zx produces the velocity field u(z, τ )



28 Hydrodynamic Mechanism of Temperature … 601

Fig. 28.5 a Evolution of the dimensionless velocity field u(z, τk) (scaled by K10/γ10d) to its
stationary distribution across the dimensionless (scaled by d) HAN microfluidic channel, in the
case of the tumbling-type nematic phase, composed of 8CB molecules, and under the effect
of the SS σ 0

zx = 20 (∼ 10 Pa), for different times started from τ1 = 0.001 (curve 1) to τR =
τ7 = 0.4 (∼ 0.07 s) (curve 7), respectively. b The same as in a, but SS σ 0

zx = 30 (∼ 15 Pa) and
τR = τ7 = 0.6 (∼ 0.1 s), respectively. Here, q0 is equal to 0.02

directed in the positive direction (see Fig. 28.5), and its effects on the director distri-
bution across the HANmicrofluidic channel is so strong, that in themiddle part of the
nematic channel the biggest value of the polar angle θ(z, τ ) is equal to 5.5 (∼ 315◦),
at σ 0

zx = 30 (∼ 15 Pa), and the director executes, practically, a full cycle of rotation
(see Fig. 28.4b). That influence decreases with further decreasing of σ 0

zx . But taking
into account that the director field is strongly anchored to both boundaries of the
HAN channel, homeotropically to the lower and homogeneously to the upper, the
balance of the viscous, elastic, thermomechanical, anchoring forces and the SS σzx ,
applied to the upper restricted surface, leads to rotation of the director field mainly
in the middle part of the HAN microfluidic channel.

The maximum of the absolute magnitude of the dimensionless velocity ust (z) =
γ10d
K10

vst
x in the microsized HAN channel, at the final stage of the relaxation pro-

cess is equal to ∼ 75 (2.266 mm/s), at σ 0
zx = 20 (∼ 10 Pa) (see Fig. 28.5a),

and ∼ 95 (2.871 mm/s) at σ 0
zx = 30 (∼ 15 Pa) (see Fig. 28.5b), respectively.

In the case when the heat flux q0 = 0.02 (Q0 ∼ 200 nW/µm2) across the upper
boundary is directed to the bulk of the tumbling type nematic phase, composed of
8CB molecules, whereas the SS σzx is applied to the upper restricted surface, the
evolution of the temperature field χ(z, τ ) to its stationary distribution χst (z) across
the HAN channel is characterized practically by linear dependence of χ(z, τ ), from
the temperature on the lower boundary χz=0 = 0.98 (∼ 307 K ) to the temperature
on the upper one χz=1 = χup (see Fig. 28.6). Calculations show that under the effect
of the lower SS σ 0

zx = 10 (see Fig. 28.6 (curve 1)) and higher σ 0
zx = 30 (see Fig. 28.6

(curve 3)), the heating of the upper boundary is characterized practically same ofχ st
up:

χ st
up(σ

0
zx = 10) ∼ 0.995 (∼ 311.5 K ) and χ st

up(σ
0
zx = 30) ∼ 0.9946 (∼ 311.3 K ),

respectively, whereas in the case of χ st
up(σ

0
zx = 20) ∼ 0.9924 (∼ 310.6 K ). Note

that in all these cases the dimensionless temperature on the lower boundary is kept
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Fig. 28.6 Evolution of the dimensionless temperature on the upper boundary of the tumbling-type
nematic phase χup(τ ) (scaled by TN I ) to its stationary value χ st

up , for three values of the dimen-

sionless SS (scaled by K10/d2): σ 0
zx = 10 (curve 1), 20 (curve 2), and 30 (curve 3), respectively.

The curves correspond to the heat flux q0 = 0.02 (Q0 ∼ 200 nW/µm2), directed across the upper
boundary

constant χ st
lw ∼ 0.98 (∼ 307 K ), and across the HAN microfluidic channel the ver-

tical temperature gradient ∇χ directed to the warmer upper boundary is built up.
So, the highest temperature difference �χ = χ st

up − χ st
lw = 0.015 (∼ 4.5 K ), which

initially was equal to 0, is built up in the HAN microfluidic channel under the effect
of the lower SS σ 0

zx = 10, and after time τR ∼ 0.4 (∼ 0.07 s).
The effects of the SS σ 0

zx , directed in the negative direction, both on the evolution
of director field n̂ to its stationary orientation n̂st in the microsized HAN channel,
composed of 8CB molecules, which is described by the polar angle θ(z, τk) (see
Fig. 28.7), and the velocity field u(z, τk) (see Fig. 28.8), for different times started
from τ1 = 0.001 (curve 1) to τR = τ7 = 0.4 (∼ 0.07 s) (curve 7), are shown in
Figs. 28.7 and 28.8, respectively. According to our calculations, the SS σ 0

zx produces
the velocity field u(z, τ ) directed in the negative direction, and its effect on the direc-
tor distribution across the HAN microfluidic channel is so strong, that in the middle
part of the nematic channel the director field n̂ is directed, practically, orthogonal
to both boundaries (the biggest value of the polar angle is equal to 3.14 (∼ 180◦)
(see, Fig. 28.7b). The relaxation process of the velocity field is characterized by the
growth of |u(z, τ )| upon increasing τ , before getting to the stationary distribution
ust (z) = u(z, τ = τ7 = τR) across the microsized HAN channel. This distribution
is characterized by the maximum value of ust (z = 1) on the upper bounding surface
(z = 1), and the hydrodynamic flow ust (z = 1) is directed parallel to both bound-
ing surfaces in the negative direction. The maximum value of the dimensionless
velocity |ust (z = 1)| = γ10d

K10
|vst

z (z = 1)| in the HAN channel, on the upper bounding
surface, at the final stage of the evolution process is equal to∼ 60.4 (∼ 1.9mm/s), at
σ 0
zx = −20 (∼ 10 Pa) (see Fig. 28.8a), and ∼ 102 (∼ 3.14 mm/s), at σ 0

zx = −30 (∼
15 Pa) (see Fig. 28.8b), respectively. In the case when the heat flux across the upper
surface is restricted (q0 = 0.02 (Q0 ∼ 200 nW/µm2)), one also deals with a prac-
tically linear increase of χ(z, τ ) across the HAN channel from the temperature on
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Fig. 28.7 a Evolution of the polar angle θ(z, τk) [in rad.] to its stationary distribution across the
dimensionless (scaled by d) HAN microfluidic channel, composed of 8CB molecules, and under
the effect of the SS σ 0

zx = −20 (∼ 10 Pa), for different times started from τ1 = 0.001 (curve 1) to
τR = τ7 = 0.47 (∼ 0.08 s) (curve 7), respectively. b he same as in a, but SS σ 0

zx = −30 (∼ 15 Pa)
and τR = τ7 = 0.48 (∼ 0.08 s), respectively. Here q0 is equal to 0.02

the lower (χz=0 = 0.98 (∼ 307 K )) to the value on the upper boundary χ(z = 1).
The evolution of the dimensionless temperature on the upper boundary of the HAN
microfluidic channel χz=1(τ ), composed of 8CB molecules, to its stationary value
χ st
z=1, for three values of the SS σ 0

zx = −10 (curve 1),−20 (curve 2), and −30 (curve
3), is shown in Fig. 28.9. Calculations show that the relaxation process of χz=1(τ ) to
its stationary value χ st

z=1, at both lower values of the SS σ 0
zx = −20 (∼ −10 Pa) and

−30 (∼ −15 Pa), is characterized by oscillating behaviour of χz=1(τ ), before get-
ting to χ st

z=1(σ
0
zx = −20) = 0.9945 (∼ 311.3 K ) and χ st

z=1(σ
0
zx = −30) = 0.993 (∼

310.8 K ), respectively, whereas χ st
z=1(σ

0
zx = −10) is equal to ∼ 0.992 (∼ 310.4 K ).

So, the highest temperature difference �χ = 0.0145 (∼ 4.3 K ), which initially
was equal to zero, is built up in the HAN channel, under the influence of the SS
σ 0
zx = −20 (∼ −10 Pa). Note that in all these cases the dimensionless temperature

on the lower boundary is kept constant χz=0 = 0.98 (∼ 307 K ), and across the HAN
channel the vertical temperature gradient∇χ directed to the warmer upper boundary
is built up.

The effect of shear stress σ 0
zx applied in both positive 10 (∼ 5 Pa) (see Fig. 28.10a)

(case I) and negative −10 (∼ −5 Pa) (see Fig. 28.10b) (case II) directions on the
evolution of the director field n̂ to its stationary orientation n̂st in the microsized
HAN channel, composed of laminar-type nematic (5CB), is shown in Fig. 28.10.
This evolution is described by the polar angle θ(z, τk), and calculations are given for
different times started from τ1 = 0.001 (curve 1) to τR = τ7 = 0.4 (∼ 0.07 s) (curve
7), respectively. First of all, the effect of shear stress on the evolution of the director
field n̂ is manifested in the qualitative difference in the polar angle profiles for the
cases I (see Fig. 28.10a) and II (see Fig. 28.10b), respectively. In the case I, we have
convex profiles, when the polar angle θ(z, τk)(5CB) increases monotonically from
0 to ∼ 1.57 (π/2), whereas in the case II, the polar angle θ(z, τk)(5CB) decreases
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Fig. 28.8 a Evolution of the dimensionless velocity field u(z, τk) (scaled by K10/γ10d) to its
stationary distribution across the dimensionless (scaled by d) HANmicrofluidic channel, composed
of 8CB molecules, and under the effect of the SS σ 0

zx = −20 (∼ 10 Pa), for different times started
from τ1 = 0.001 (curve 1) to τR = τ7 = 0.32 (∼ 0.053 s) (curve 7), respectively. b The same as in
a, but SS σ 0

zx = −30 (∼ 15 Pa) and τR = τ7 = 0.6 (∼ 0.1 s), respectively. Here q0 is equal to 0.02

Fig. 28.9 Evolution of the dimensionless temperature on the upper boundary of the HANmicroflu-
idic channel χup(τ ) (scaled by TN I ) to its stationary value χ st

up , for three values of the dimensionless

SS (scaled by K10/d2) σ 0
zx = −10 (curve 1), −20 (curve 2), and −30 (curve 3), respectively. The

curves correspond to the heat flux q0 = 0.02 (Q0 ∼ 200 nW/µm2), directed across the upper
boundary

monotonically from 0 to θ(z = 0.3, τk)(5CB) ∼ −0.28, with a subsequent increase
to the value of ∼ 1.57 (π/2) at the upper boundary of the HAN channel.

Second, the effect of shear stress applied in both the positive (case I) and neg-
ative (case II) directions on the evolution of the velocity field u(z, τ ) is mainly
quantitative (see Fig. 28.11a, b), where the velocity u(z, τk) increases from zero
(u(z = 0, τk) = 0), at the lower boundary of the channel, to the value u(z =
1, τk) ∼ 22 (∼ 0.7 mm/s), at the upper boundary, in the case I, and from zero
(u(z = 0, τk) = 0), at the lower boundary of the channel, to the value u(z = 1, τk) ∼
−10 (∼ −0.32 mm/s), at the upper boundary, in the case II, respectively.
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Fig. 28.10 a Evolution of the polar angle θ(z, τk) [in rad.] to its stationary distribution across
the dimensionless (scaled by d) HAN microfluidic channel, composed of 5CB molecules, and
under the effect of two values of the SS σ 0

zx : a first is equal to 10 (∼ 5 Pa), whereas b second is
equal to −10 (∼ −5 Pa), respectively. The different times started from τ1 = 0.001 (curve 1) to
τR = τ7 = 0.47 (∼ 0.08 s) (curve 7), respectively, whereas q0 is equal to 0.02

Fig. 28.11 a Same as in Fig. 28.10, but the curves correspond to the evolution of the dimensionless
velocity field u(z, τk) (scaled by K10/γ10d) to its stationary distribution across the dimensionless
(scaled by d) HAN microfluidic channel

28.3 A Role of a Flow in a Temperature Gradient
Formation Across a HAN Channel

The purpose of this paragraph is to show, in the framework of the classical Ericksen–
Leslie theory [10, 11], together with accounting the thermoconductivity equation
for the temperature field [12], the simple way how the temperature gradient can
be built up across the HAN channel under the action of the hydrodynamic flow. We
consider the heat conduction regimewhich assumes that the temperature on the lower
boundary is kept constant, whereas on the upper one, where it has been assumed that
the heat flux is vanished, it must satisfy the boundary conditions

χ(z)z=0 = χ1,
(
χ,z(z)

)
z=1 = 0. (28.20)
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As a result, the temperature difference, being initially equal to zero, growths up to
the maximum possible value �χ = χup − χlw, corresponding to the nematic phase.
The answer to the question of which restricted surfaces are cooler or warmer depends
on the direction of the hydrodynamic flow veq .

We consider a nematic system composed of asymmetric polar molecules, such
as cyanobiphenyl, which are confined between two solid surfaces that impose a
preferred orientation of the average molecular direction n̂ on the restricted surfaces,
one, for instance, homeotropic on the lower, and, other, planar, on the upper bounding
surfaces. So,wewill describe theHANchannel under the influence of the temperature
gradient ∇χ directed parallel to the unit vector k̂. Here k̂ is a unit vector directed
away from the lower substrate to the upper one (see Fig. 28.1).

The coordinate system defined by this task assumes that the director n̂(t, r) lies
in the xz plane (or in the yz plane) (see Fig. 28.1). Assuming that the temperature
gradient∇χ , due to the growth of the temperature difference on theHANboundaries,
under the action of the hydrodynamic flow, varies only in the z direction, ∇χ =
∂χ(z,τ )

∂z k̂, we can suppose that the components of the director n̂ = sin θ(z, τ )î +
cos θ(z, τ )k̂, as well as the rest of the physical quantities also depend only on the z
coordinate. Here θ denotes the polar angle, i.e., the angle between the direction of the
director n̂ and the normal k̂ to the bounding surfaces. An assuming of incompressible
fluid, the dimensionless hydrodynamic equations corresponding to the torque balance
(see Eq. (28.9)) and the linear moment balance (see Eq. (28.10)) equations, as well
as the entropy balance equation (see Eq. (28.12)) take the form [18]

θ,τ = A(θ)u,z + G(θ)θ,zz + 1

2
G,θ (θ)θ2

,z − δ6χ,zθ,z

(
1

2
+ sin2 θ

)
, (28.21)

δ7u,τ (τ, z) = (σzx ),z , (28.22)

δ8χ,τ (τ, z) = [
χ,z

(
λ cos2 θ + sin2 θ

)]
,z +

δ9

[
χθ,z

(
θ,τ

(
1

2
+ sin2 θ

)
− u,z sin

2 θ

(
1 + 1

2
sin2 θ

))]

,z

, (28.23)

where A(θ) = 1
2 (1 − γ21 cos 2θ) and G(θ) = sin2 θ + K31 cos2 θ are the hydrody-

namic and elastic functions, respectively, σzx = δR
δuz

is the stress tensor component,
the set of the LC parameters δi (i = 6, 7, 8, 9) is the same as in the section III,
τ = K1

γ1d2 t is the dimensionless time, and z = z/d is the dimensionless distance away
from the lower boundary of the HAN channel. Notes that the overbars in the space
variable z, in the last three Eqs. (28.21)–(28.23) have been eliminated.

Consider now the HAN system confined between two solid surfaces when the
director n̂ is strongly anchored to these boundaries, homeotropically to the lower
and homogeneously to the upper boundaries

θ(z)z=0 = 0, θ(z)z=1 = π

2
, (28.24)
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whereas the velocity on these boundariesmust satisfy the no-slip boundary condition

u(z)z=0 = 0, u(z)z=1 = 0. (28.25)

Now the temperature field χ(τ, z) in the HAN channel confined between two solid
boundaries, when the temperature on the lower boundary is kept constant, whereas
on the upper one, where it has been assumed that the heat flux is vanished, must
satisfy the boundary conditions [17]

χ(z)z=0 = χ1,
(
χ,z(z)

)
z=1 = 0. (28.26)

The set of parameters, which are involved in Eqs. (28.21)–(28.23), are equal to
δ6 ∼ 24, δ7 ∼ 2 × 10−6, δ8 ∼ 6 × 10−4, and δ9 ∼ 2 × 10−9. Using the fact that δ7,
δ8 and δ9 � 1, the Navier–Stokes (28.22) and the heat conduction (28.23) equations
can be considerably simplified. Thus, the whole left-hand side of Eqs. (28.22) and
(28.23) can be neglected and these equations take the form

σzx = h(θ)u,z − A(θ)θ,τ −
δ6χ,zθ,z sin

2 θ

(
1 + 1

2
sin2 θ

)
= C(τ ), (28.27)

where γ1h(θ) = α1 sin2 θ cos2 θ − A(θ)θ,τu,z + 1
2α4 + g(θ), g(θ) =

1
2

(
α6 sin2 θ + α5 cos2 θ

)
, C(τ ) is the function that does not depend on z and will

be fixed by the boundary conditions, and

[
χ,z

(
λ cos2 θ + sin2 θ

)]
,z = 0. (28.28)

To be able to observe the formation of the temperature difference across the HAN
channel under the effect of the stationary hydrodynamic flow, it was considered the
stationary analog of the Eq. (28.21), when θ,τ = 0. In this case the dimensionless
temperature across the hybrid aligned nematic channel is given by [18]

χ(z) =
∫ z

0

[
H(θ, u,z) − (H(θ, u,z)

)
z=1

]
/I (θ, z)dz + χ1, (28.29)

where H(θ, u,z) = h(θ)u,z − A(θ)θ,τ , I (θ, z) = δ6θ,z sin2 θ
(
1 + 1

2 sin
2 θ

)
, and

χ1 = T1/TN I . The formation of the temperature difference across the HAN channel
under the influence of the stationary flow with a triangular sharp profile

u(z, ζ ) =
{ αz

ζ
, (0 ≤ z < ζ),

α
1−ζ

(1 − z), (ζ ≤ z < 1),

have been investigated by standard numerical relaxation method [23], and the results
are shown in Fig. 28.12a and b, respectively. The relaxation criterion ε = |(θ(τR) −
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Fig. 28.12 a The dimensionless distance z (scaled by d) dependence of the dimensionless temper-
ature χ(z) (scaled by TN I ) across the HAN channel under the effect of the stationary dimensionless
flow v = u(z, ζ )î (scaled by K10/γ10d), with a triangular profile, for a number of values of α [18]:
0.0009 (curve 1), 0.0007 (curve 2), and 0.0005 (curve 3), respectively. In this case, the vector v
is directed in the positive verse. b The same as in Fig. 28.12a, but v = −u(z, ζ )î is directed in the
negative verse

θeq)/θeq | for calculating procedure was chosen to be equal to 10−4, and the numerical
procedure was then carried out until a prescribed accuracy was achieved.

When the stationary hydrodynamic flow v = u(z, ζ )î is directed in the positive
direction (see, Fig. 28.12a), the temperature on the lower boundary of the HAN
channel keeps a constant value χz=0 = χ1 = 0.97 (∼ 298K ), and across the nematic
sample the vertical temperature gradient∇χ directed to thewarmer upper boundary is
built up. The highest temperature difference χmax (ζ ) ≡ �χ = χup − χlw = 0.03 (∼
9 K ), which initially was equal to zero, is built up in the HAN channel, under the
influence of the hydrodynamic flow u(z, ζ ), where the magnitude of the factor α is
equal to 0.0009 (∼ 1.2 nm/s) (see Fig. 28.12a, curve (1)). The rest curves (2) and
(3) correspond to α = 0.0007 (∼ 1 nm/s), and 0.0005 (∼ 0.7 nm/s), respectively.
In the case of inverse direction of v = −u(z, ζ )î (see, Fig. 28.12b), the temperature
on the upper restricted surface keeps a constant value χz=1 = χ1 = 0.99 (∼ 304 K ),
whereas the lower surface is cooled down up to 0.96 (∼ 295 K ), close to the nematic-
solid phase transition temperature, at the value of α = 0.0009 (curve (1)). In all these
cases, ζ (∼ 0.98) is located close to the upper boundary of the HAN channel. The
magnitude ofχmax (ζ ) has a huge influence on the location of themaximumof u(z, ζ ).
In the case when ζ is placed in the middle part of the nematic channel ζ = 0.5 (see,
Fig. 28.13a), the temperature difference, which initially was equal to zero, growths
up to�χ ∼ 0.0008 (∼ 0.3 K ), at the value of α = 0.0009, and only with the growth
of α up to a two order of the magnitude, from 0.0009 up to 0.09 (∼0.1µm/s), that
difference growths up to a few degrees�χ ∼ 0.02 (∼ 6 K ). The effect of position of
ζ on the magnitude of the highest temperature difference χmax (ζ ), when on the lower
boundary a constant temperature is kept χz=0 = χ1 = 0.97 (∼ 298 K ), for a number
of values of the hydrodynamic velocity u(z, ζ ), is shown in Fig. 28.13b. Notes that
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Fig. 28.13 a The dimensionless distance z (scaled by d) dependence of the dimensionless temper-
ature χ(z) (scaled by TN I ), for the stationary dimensionless flow v = −u(z, ζ = 0.5)î (scaled by
K10/γ10d) directed in the negative verse and calculated for a number of α [18]: 0.0009 (curve 1),
0.009 (curve 2), and 0.09 (curve 3), respectively. bDependence of χmax (ζ ) versus position of ζ for
a number of α: 0.0011 (curve 1), 0.0009 (curve 2), and 0.0007 (curve 3), respectively

the velocity u(z, ζ ) and temperature χ(z) on the restricted boundaries have to satisfy
the boundary conditions Eqs. (28.24) and (28.25), respectively.

We have found that the quantity χmax (ζ ) is sensitive to position of ζ , and demon-
strates increasing of the magnitude of the highest temperature difference when ζ is
close to both boundaries of the HAN channel. Such behavior of χmax (ζ ) is dictated
by Eq. (28.29). Indeed, in the case of stationary flow, the value of the shear rate
shift �u,z = u+

,z − u−
,z ∼ 1

ζ(1−ζ )
increases to infinity in the vicinity of the bounding

surfaces, when the position of ζ → 0 or 1. Physically, this means that only stationary
flowwith a triangular sharp profile and position of the maximum in the vicinity of the
restricted boundaries may built up the highest temperature difference in the hybrid
aligned nematic channel in a few degrees. By means of other hydrodynamic flow
with profiles, which can not demonstrate the sharp growth of uz(z), one can achieve
the same result only by using the “high-speed” hydrodynamic flow ∼0.1µm/s.

It was shown by the Brewster angle spectroscopy (BAS) technique that the hydro-
dynamic flow of arachidic (eicosanoic) acid through the narrow channel with the
width in ∼0.1 µm, and with the triangular velocity profile at shear rate greater than
0.2 s−1 for various values of surface pressure might be achieved [17]. It has also been
shown that as the flow rate increases, the velocity profile gradually becomes sharper,
eventually becoming triangular. In a typical fluid, such a profile would indicate shear
thickening. If so, we do not exclude a possible extension of the BAS technique to
the case of above-mentioned nematic system.
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28.4 Conclusion

This chapter discusses some recent numerical advances in predicting the structural
and hydrodynamic behavior of thermally excited flow in microfluidic hybrid aligned
nematic (HAN) channels. Despite the fact that certain quantitative and qualitative
advances have been made in the hydrodynamic description of relaxation processes
in microsized nematic channels under the effect of a temperature field, there are still
a number of questions concerning the temperature gradient formation across these
channels.

It has been shown that, owing to the action of a temperature gradient, a horizontal
nematic layer, initially at the rest, when heated both below and above, starts moving
in the horizontal direction. In the case of strong homeotropic and planar anchorings
on the boundaries, the equilibrium distribution of the velocity field veq(z) across the
HAN channel is characterized by a sharp increase of the absolutemagnitude of veq(z)
in the vicinity of the boundary with the planar anchoring [7]. This result, in turn,
suggests a number of questions. Is it possible the produce the onset of a temperature
difference �T between the two boundaries of the HAN microfluidic channel as a
result of a stationary hydrodynamic flow distribution veq(z) across the channel or by
application of the shear stress (SS) σzx to the boundaries of this channel? Or, in more
general terms, how does �T depend on veq(z) or σzx?

The above-mentioned numerical results demonstrate that both the stationary flow
with a triangular velocity profile veq(z) and the SS σzx , applied to the boundaries
of the HAN channel may, under certain conditions, overcome the viscous, elastic,
thermomechanical, and anchoring forces and cause a temperature gradient across
this channel, with the maximum absolute value of the temperature difference ranging
up to a few degrees.

Acknowledgements The reported study was funded by RFBR and DFG, project number 20-52-
12040.
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Chapter 29
Signatures of Transient Purely Ballistic
Heat Conduction: Theory and
Experimental Investigation

Aleksei A. Sokolov, Wolfgang H. Müller, Anton M. Krivtsov,
and Alexey V. Porubov

Abstract In this paper, we propose an approach to define thermal conductivity for
a purely ballistic transient heat conduction and study its size dependence for two-
dimensional structures in circular geometry in order to use this dependence as a
purely ballistic regime signature. Then, a review of various experimental techniques
by which the thermal conductivity is measured is presented. Finally, the thermal con-
ductivity of graphene in purely diffusive regime is measured for one fixed sample
size using Raman thermometry. The result of the proposed theoretical approach is a
linear dependence on the sample size in the case of purely ballistic thermal conduc-
tivity. An outcome of an experimental study of graphene in a purely diffusive regime
and the presented review of experimental methods are the basis for an extension of
further experimental studies to the anomalous heat conduction regimes.

Keywords Ballistic heat transport · Ballistic limit · Harmonic crystal ·
Graphene · Raman · Transient processes · Anomalous heat transport

29.1 Introduction

In recent years, the study of anomalous thermal conductivity, i.e., processes that
deviate from the classical Fourier equation, has been actively developing in the
scientific community. A number of experimental studies of this anomaly in solid
crystals can be found in [10, 11, 26]. A theoretical description of this phenomenon is
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possible by using the kinetic approach (Boltzmann equation), the Maxwell-Cattaneo
model [15], the Guyer-Krumhansl model [19], lattice dynamics [20], and some other
methods.

The difficulty in connecting the proposed models with processes in real materi-
als lies in the fact that such transient processes occur at very high speeds (speed of
sound in crystals, e.g., >10km/s for graphene [7]). Moreover, since the process is
fundamentally different from Fourier’s law, it lacks the thermal conductivity coef-
ficient as a material parameter. However, even when Fourier’s law does not hold,
in an experimental setting and molecular dynamic simulations when a steady non-
equilibrium temperature gradient is applied to the specimen, it turns out that it is
convenient to use the mathematical formulation of Fourier’s law and to observe the
size dependence of thermal conductivity as a signature of anomalous regimes [6,
20, 28, 29]. Thus, experimental methods, which have now already become a stan-
dard, have been developed to determine the thermal conductivity coefficient from
Fourier’s law [30]. As an alternative, for example, the thermal grating method deals
directly with a non-stationary formulation [11]. However, it has some open questions
to consider. For example, the measurement of the thermal process occurs indirectly,
through the accompanying thermoelastic process, which, despite the fact that it does
not have a significant effect in the classical regime, can become more pronounced in
the ballistic regime (see so-called ballistic resonance [18]).

In the classical regime of heat conduction, the heat flux is proportional to the gradi-
ent of temperature. Accordingly, the coefficient of proportionality (heat conductivity
κ) is a material parameter and does not depend on the system size, L . In anomalous
heat conduction, the process deviates from the classical Fourier law. A number of
theoretical results have shown a power divergence of heat conductivity κ ∼ Lα for
1D systems [20]. This result was confirmed also experimentally [27].

Recently in the laboratory “Discrete Models in Mechanics” IPME RAS under the
supervision of A.M. Krivtsov, a ballistic heat conductionmodel based on the analysis
of crystal dynamics was developed [16, 17]. The proposed model has a number of
obvious advantages (analytical description, lack of phenomenological assumptions).
Despite the fact that there are also some shortcomings (harmonic approximation,
lack of quantum effects description) it is undoubtedly promising for the description
of ballistic heat propagation from the point of view of continuummechanics and con-
stitutive theory. For an experimental study of the limits of applicability of this theory
and its correspondence to real materials, a joint project with W.H. Müller, Chair
of Continuum Mechanics and Constitutive theory of TU Berlin was initiated. The
group has extensive experience in experimental work on a micro-level and expertise
in continuum mechanics [1, 21, 22].

In order to connect the two descriptions, non-stationary ballistic model and the
classical Fourier thermal conductivity coefficient, a theoretical method is proposed
in this work, based on a definition of thermal conductivity for transient ballistic
processes originally suggested in [17]. Furthermore, experimental studies using the
methods available in the laboratory of TU Berlin and a review of works on this
topic are presented. Last, an experimental measurement of the thermal conductivity
of graphene is performed. Graphene was chosen as the material of investigation
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Fig. 29.1 Dependence of thermal conductivity on length of the structure at different temperatures,
a logarithmic scale, b linear scale. The data for each curve is normalized to its value at L = 20µm.
Graphs are plotted using data from [29]

because, first, it has great potential for technological applications in microelectronic
devices. Second, its greatest importance is that it is cheap to manufacture and it is
possible to produce ultrapure defect-free monocrystalline samples (grain size up to
20µm). Thus, graphene appears to be a very convenient playground for experimental
verification of the abovementioned theoretical predictions.

Theoretical results presented in [20] for 2D anharmonic systems show a logarith-
mic divergence of thermal conductivity κ ∼ log(L). This is confirmed by experi-
mental results with graphene for a quadrilateral over a large temperature range [32]
and for circular geometries at room temperature (RT) [8, 12], and also by numer-
ical simulation at RT for circular geometry [4]. Numerical simulations of 2D FPU
systems1 in [31] showed a logarithmic divergence for αβ-FPU and purely quartic
models, and a power divergence forβ-FPU systems. In [29], a kinetic theorywas used
and third-order terms in the Hamiltonian were taken into account. The results [29]
indicate a logarithmic divergence for temperatures approximately above liquid nitro-
gen temperatures and a power divergence below (see Fig. 29.1). These findings for
2D materials showing power divergence are of special interest, since at very low
temperatures the influence of anharmonicity decreases and a purely ballistic heat
conduction regime is achievable.

The rest of this paper is structured as follows. In Sect. 29.2, thermal conductivity
is defined for the equations of ballistic heat conduction and its size dependence is
investigated. In Sect. 29.3, a review of experimental techniques and results of mea-
surements performed at TU Berlin are presented. The size dependence of thermal
conductivity obtained theoretically from ballistic model in previous section is com-
pared with available experimental data. Section29.4 closes with a conclusion.

1 FPU = Fermi-Pasta-Ulam.
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Fig. 29.2 Schematic
representation of the
considered anomalous heat
conduction process

29.2 Divergence of Heat Conductivity for Transient Purely
Ballistic Heat Conduction

An engineering approach to the definition of thermal conductivity stems from the
problem of two regions with temperatures Thot and Tcold, separated at a distance L
with a medium with thermal conductivity κ. In a classical diffusive heat conduction
regime, a linear temperature profile results with uniform heat flux q. In this case,
heat conductivity is defined as

κ = qL

�T
, �T = Thot − Tcold. (29.1)

When studying anomalous heat conduction, the heat flux is not uniform. This
was observed, for example, in one-dimensional discrete systems [20]. For a one-
dimensional system of N particles between hot and cold reservoirs separated by a
length L , an averaged heat flux is defined as 〈q〉 = ∑

n qn/N , where qn is a local
per particle heat flux and a definition for the thermal conductivity similar to (29.1)
results, κ = 〈q〉L/�T . The same approach is possible for bulk systems [28] where
a spatial average over the volume between the reservoirs is used.

Let us consider the anomalous heat flux in two-dimensional materials. It was
shown in [16] that a fundamental solution for the kinetic temperature field for a purely
ballistic heat conduction regime is a self-similar function, which can be represented
as

T = 1

t2
f
(r

t
sinϕ,

r

t
cosϕ

)
, r < R, (29.2)

where r , ϕ are polar (radial and angular, respectively) coordinates, R = ct , and c is
the fastest group velocity in the system. For r > R, the temperature field remains
zero (we assume a background temperature of zero).

The process described by this fundamental solution has the following features.
Initially, a point perturbation is applied at the point of origin. Then the heat flows
from the center radially away forming a growing circle with a radius increasing at a
constant speed. Outside of this circle the temperature remains zero, see Fig. 29.2.
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Applying the approach subsumed in formula (29.1), the thermal conductivity
can be defined as follows. Heuristically we fix the moment of observation time and
restrict the considered space to the circle inside which by the moment of observation
the energy has spread radially. Then the average heat flux, which is to be substituted
in (29.1) and which causes the energy spread from the heated center to the colder
boundary, is the average of a radial component of flux over the whole area of this
circle,

〈q〉 =
∫

S
q · r̂ dS
S

=

2π∫

0

R∫

0
qr (r,ϕ)r dr dϕ

πR2
, (29.3)

where r̂ is the radial vector and S is the area of the circle.
The temperature difference in the denominator of (29.1) between hotter and colder

regions will be in this axisymmetric case given by the difference between the tem-
perature in the center, from which the heat flows radially away, and the temperature
of the background toward which the heat flows. Since the background temperature
is zero the temperature difference is �T = T (0).

As an approximation, we assume that the temperature profile can be factorized
into radial and angular components,

T (r,ϕ) = 1

t2
f
(r

t
sinϕ,

r

t
cosϕ

)
≈ 1

t2
�

(r

t

)
�(ϕ) . (29.4)

Although this may be not strictly true, the author believes that the main factor
which contributes to the thermal conductivity within this framework is the flux in
the direction of the radial component along which the heat transfers from the hotter
(center) to the colder (boundary) region. The heat flux is also factorized as

qr ≈ q̂r (r, t)� (ϕ) . (29.5)

A more precise form of heat flux function will be presented later.
Substituting the averaged heat flux (29.3) into the thermal conductivity (29.1) and

taking for the length of the system the radius of the circle, L = R, yield

κ = 〈q〉R
�T

=
2π∫

0

�(ϕ) dϕ

R∫

0
q̂r (r, t)r dr

πRT (0)
. (29.6)

We are interested in the proportionality dependence of the thermal conductivity but
not in its absolute value. Therefore, by recalling R = ct and by omitting the constant
arising from integration of angular component and other constants, one obtains the
following proportionality:
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κ ∼

R∫

0
q̂r (r, t)r dr

tT (0)
∼ t

R∫

0

q̂r (r, t)r dr, (29.7)

where the last proportionality arises, because it can be seen from (29.2) that T (0) ∼
1/t2.

Let us consider the local energy balance equation,

ρu̇ = −∇ · q, (29.8)

and integrate it over the surface of a circle D : |x| ≤ r ,

∫

S∈D
ρu̇ dS = −

∫

S∈D
∇ · q dS. (29.9)

According to divergence theorem, the right-hand side of this equation transforms
into

∫

S∈D
∇ · q dS =

∫

l∈∂D
q · n dl =

2π∫

0

q̂r (r, t)�(ϕ)r dϕ = r q̂r (r, t)

2π∫

0

�(ϕ) dϕ

=C1r q̂r (r, t),
(29.10)

where ∂D is the circle boundary, normal to which is a radial unit vector n = r̂,
dl = r dϕ.C1 is the constant arising from integration of the angular part of heat flux.
The left-hand side together with u = cV T , where cV is the specific heat capacity at
constant volume, gives

∫

S∈D
ρu̇ dS = ρcV

∫

S∈D
Ṫ dS =

2π∫

0

�(ϕ) dϕ

r∫

0

∂

∂t

[
1

t2
�

(
r̃

t

)]

r̃ dr̃ =

= C2

r∫

0

∂

∂t

[
1

t2
�

(
r̃

t

)]

r̃ dr̃ .

(29.11)

Expanding time derivative in the last equality yields

∂

∂t

[
1

t2
�

(
r̃

t

)]

= − 2

t3
�

(
r̃

t

)

− r̃

t4
�′

(
r̃

t

)

, (29.12)

where the dash (...)′ denotes differentiationwith respect to the argument. Substituting
it back to (29.11) leads to
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∫

S∈D
ρu̇ dS = −C2

t

∫ r/t

0

[

2�

(
r̃

t

)

+ r̃

t
�

(
r̃

t

)]
r̃

t
d
r̃

t
= −C2

t
ζ

(r

t

)
. (29.13)

A combination of (29.10) and (29.13) yields an expression for the radial compo-
nent of the heat flux,

q̂r (r, t) = C3

r t
ζ

(r

t

)
, C3 = C2/C1. (29.14)

Substitution of (29.14) into the integral in (29.7) gives

R∫

0

q̂r (r, t)r dr =
ct∫

0

C3

t
ζ

(r

t

)
dr =

c∫

0

C3ζ
(r

t

)
d
r

t
= const. (29.15)

Thus, from (29.15) and (29.7) it follows that

κ ∼ t. (29.16)

It is also seen from (29.15) that the average heat flux in this process is constant,
〈q〉 = const. Therefore, proportionality of thermal conductivity is determined by the
ratio R/T (0). Recalling that R = ct , and T (0) ∼ 1/t2 this result is directly obtained.

By using the result (29.16) and t = R/c it also follows that

κ ∼ R. (29.17)

Formula (29.17) shows that the thermal conductivity diverges linearly with the disk
radius R. Note that mostly in anharmonic systems the dependence is not of the power
type but logarithmic. One of the publications [31] shows a power (but not a linear)
dependence for β-FPU system.

29.3 Experimental Techniques

A conventional experimental technique for measuring a coefficient of heat conduc-
tivity κ is to apply a temperature difference on the boundaries of the system and to
measure a steady heat flux. Heat conductivity is then calculated from Fourier’s law.
For a circular symmetry, the heating is usually applied to the center of the system
under observation so that a temperature difference is established between the center
and the boundary of the examined disk. We consider the following mathematical
formulation of the problem. A graphene disk with radius R is heated in the center
by a laser. The boundary is held at ambient temperature. The heat production q(r)
is assumed to be Gaussian within the plane:
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Fig. 29.3 Heat production
of the Gaussian type in a
circular membrane

q(r) = P

πdr20
e

r2

r20 , (29.18)

where d is the thickness of graphene, r0 is the theoretical Gaussian spot size.
The situation is presented in Fig. 29.3. In order to describe a steady temperature

profile, let us consider the diffusive Fourier equation in cylindrical coordinates with
a production term q(r):

κ
1

r

d

dr

(

r
dT

dr

)

+ q(r) = 0. (29.19)

We introduce the dimensionless variable r̃ = r/r0. By integrating Eq. (29.19), we
get the solution as follows:

T (r̃) − T (0) = 1

2

P

πdκ

∫ r̃

0

1 − e−x2

x
dx =

1

2

P

πdκ

(

ln r̃ − 1

2
Ei(−r̃2) + γ

2

)

≈ 1

2

P

πdκ

(
ln r̃ + γ

2

)
,

(29.20)

where Ei is the exponential integral function, γ is the Euler’s constant. Then if the
drop of the temperature between temperature in the center Tc and the boundary Tb
is known one can express the heat conductivity by the formula:

κ = 1

2

P

πd (Tc − Tb)

(

ln
R

r0
+ γ

2

)

. (29.21)

29.3.1 Raman Thermometry

Introductory Remarks

Raman thermometry was introduced in the work of Balandin and colleagues [3, 5].
The laser beam is used as a heating source in the center of a membrane and at the
same time as a probe. In order to apply this technique successfully, the graphene
membrane must be attached to an efficient heat sink. The temperature of a boundary
can then be assumed to have ambient temperature. By knowing the laser power and a
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Fig. 29.4 a Room-
temperature Raman
spectrum from single-layer
suspended graphene b
optical microscope image of
the sample. The scale bar is
5µm

Fig. 29.5 Temperature
dependence of G-peak
position of a single-layer
graphene (black dots) and
linear fit (red dashed line).
The graph is plotted using
data from [3]

coefficient of absorption, and by combining it with measured temperature difference
the coefficient of heat conductivity is calculated by using formula (29.21).

The spectrum of a suspended single-layer graphene at room temperature is
presented in Fig. 29.4. Characteristic features are the G-peak located around ca.
1580cm−1 and the D-peak located around ca. 1380cm−1. It was observed in [3] that
an increase of temperature leads to a red shift of the G-peak. The dependence of
the G-peak position on the temperature of a graphene on a substrate is presented in
Fig. 29.5 (data taken from [3]).

The temperature dependence of a G mode can be described by the following
equation (after [3]):

ω = ω0 + χT, (29.22)
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Table 29.1 Temperature coefficient of single-layer graphene

Substrate χ (cm−1/K) Method Comment Ref.

SiO2 −0.015 External heating – [3]

SiO2 −0.03 External heating – [25]

Suspended −0.0405 External heating – [2]

– −0.03 MD AIREBO,
quasilinear

[14]

– −0.06 MD LCBOP,
quasilinear

[14]

– −0.0517 MD Tersoff-2010 [14]

Table 29.2 Coefficient of optical absorption of single-layer graphene

Optical absorption coefficient
α

Wavelength nm Ref.

3.4 ± 0.7% 532 [2]

2.3 ± 0.1% 500–740 [24]

2.3 ± 0.2% 1033–2479 [23]

2.9 ± 0.2% 532 [5]

where ω0 is the frequency of the G mode when the temperature is extrapolated to
0K, χ is the temperature coefficient, calculated from a slope of linear fit.

Temperature coefficients calculated in a number of publications are presented
in Table29.1. In numerical calculations [14], several interatomic potentials were
considered. Only the Tersoff-2010 potential was able to reproduce the linear G-
peak shift observed in the experiments, while LCBOP and AIREBO potentials show
a nonlinear, non-monotonic behavior at low temperatures, which deviates from the
experimental results. At higher temperatures, these two potentials show a quasilinear
behavior with temperature coefficients presented in Table29.1.

By applying this technique one can use the reflected laser light as a thermometer
and determine the temperature difference in (29.21). When knowing the coefficient
of optical absorption of graphene α and the power of incident laser PI the absorbed
power P is calculated P = αPI . Then κ is calculated from (29.21). The coefficients
of optical absorption obtained in recent publications are presented in Table29.2. A
conventional method to measure the absorption is to measure the difference between
the laser power with a power meter, first through an empty hole and then through a
suspended graphene membrane [2, 5].

Coefficients of thermal conductivity from various references are presented in
Table29.6. The disadvantage of this method is that the spatial resolution is limited
by the diffraction limit ∼1µm. Therefore, systems bigger than 1µm do not allow
to investigate ballistic transport at RT with this method since ballistic transport is
observed at RT only at smaller scales. Thus, in Table29.6, the values of heat con-
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Table 29.3 Laser power in % of maximum power of source and absorbed power

% Max
power

0.1 0.5 1 5 10 50

Incident
power mW

39e-3 196e-3 0.36 2.69 4.91 27.46

Absorbed
power mW

9e-4 4.5e-3 0.008 0.06 0.11 0.63

duction that correspond to a diffusive regime when κ is a material parameter are
presented.

We assume temperature coefficient for G-peak to be equalχ = −0.04 cm−1/K [2]
and an optical absorption of graphene 2.3% [24]. The power of laser can be changed
with the steps of ..., 0.1%, 0.5%, 1%, 5%, 10%, 50%, 100% of themaximumworking
power. It gives us the following correspondence with absorbed laser power complied
in Table29.3.

The beam power was measured by using an Edmund Optics Touchscreen Laser
Power Meter with beam spread on the aperture of the sensor with a 5x magnification
objective. We performed the experiments with different powers of laser excitation
in order to obtain the G-peak shift as a function of absorbed laser power. By using
the temperature coefficient and the relations (29.22) the corresponding temperature
difference is calculated. The powers 0.1%, 0.5%, 1%donot cause any noticeable peak
shift and correspond to the ambient temperature peak position. The power of 50%
was excluded from the investigation because it was visually seen that illumination of
the substrate occurred at this power, which could cause additional power generation
at the boundary. Thus, the peak shift is calculated as difference of peak positions at
powers 0.5% and 10%. �ω = ω0.5% − ω10%.

Materials and Measurement

In the experiment, TEMgridsmade of gold are used as a support for the substrate. The
Au grid is 300 mesh with size between the bars 63µm. The grid is covered with the
amorphous carbon film. The thickness of the carbon film is about 12nm and it has 2
micron holes, see Fig. 29.4b. Monoatomic graphene layer grown by chemical vapor
deposition is transferred over carbon layer (covering the holes), d = 305nm. For
Raman measurements λ = 532 nm laser source with a 100x objective and numerical
aperture NA = 0.85 is used, which gives theoretical Gaussian spot size used in
Eq. (29.18) r0 = λ/πNA = 0.19µm.

In order to ensure reproducibility, we performed ten measurements of a peak shift
�ω with ten different graphene disks, where the presence of graphene was confirmed
by obtaining the Raman spectrum of graphene. The measurements were conducted
as follows. First the Raman G-peak was measured by acquisition at 0.5% for 120s.
Then spectral acquisition was done at 10% power for 120s. This time length of
spectral acquisition was chosen in order to ensure a steady state to be established in
the graphene sheet, and to acquire enough intensity at low power.
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Table 29.4 Peak positions at 0.5% and 10% incident beam powers and frequency shift �ω (cm
−1) measured at ten different membranes

No. ω0.5% ω10% �ω

1 1583.55 1580.95 2.6

2 1581.82 1578.94 2.88

3 1587.35 1584.25 3.1

4 1585.15 1581.89 3.26

5 1586.38 1582.24 4.14

6 1584.17 1580.84 3.33

7 1583.55 1580.35 3.2

8 1584.56 1581.9 2.66

9 1585.57 1581.96 3.61

10 1584.81 1581.26 3.55

Table 29.5 Heat conductivity κ at 10% incident beam powermeasured for ten different membranes

No. κ (W/mK) No. κ (W/mK)

1 2292 6 2069

2 1922 7 1828

3 1439 8 1789

4 1862 9 2240

5 1651 10 1678

Table 29.6 RT heat conductivity of graphenemeasured using Raman thermometry and comparison
with the theoretical works

κ (W/mK) Comment Ref

4419 0.01% 13C [5]

2792 1.1% 13C [5]

2197 50% 13C [5]

2826 99.2% 13C [5]

600 – [9]

1877 – This work

2622 Kinetic theory [29]

1910 Theory, in plane graphite [13]

The measured peak shift and the heat conductivity are presented in Tables29.4
and 29.5, respectively. The obtained values lead to a mean value of 1877W/mKwith
standard error σstd/

√
N = 252 W/mK, where σstd2 is the dispersion and N = 10 is

the number of measurements.
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Fig. 29.6 Dependence of
heat conduction coefficient
of size of graphene disks at
near-RT’s. The graph is
plotted using data from [2]

From [2] (see Fig. 29.6), it is difficult to say anything about size dependence of
heat conductivity at room temperature due to the large error. It is concluded [2] that
the effect of size dependence is not observed due to high uncertainty, defects, and
other impurities of membranes.

29.3.2 Scanning Thermal Microscopy

Another technique to study heat conduction in materials is Scanning Thermal
Microscopy (SThM), which is based on Atomic Force Microscopy (AFM). The
temperature scan is achieved by measuring the changing resistance in a wire running
through an AFM probe. A conventional design of the device is given as follows. A
wire made of material with known thermal coefficient (e.g., platinum) is passed thor-
ough the AFM cantilever tip and acts as a nano-thermometer (see Fig. 29.7c, d). The
device consists of voltage source (1.), variable resistor (2.) with electrical resistance
R, platinum sensor (3.) with electrical resistance r, digital voltmeter, which is read
by a computer software, and the ammeter (5.) (see Fig. 29.7a) the output of which
can be seen at the digital readout on the thermoresistor signal amplifier, Fig. 29.7b.
Photos, Fig. 29.7b, c, were taken in TU Berlin, Chair of Continuum Mechanics and
Constitutive Theory.

Let us consider the working principle in more detail. The goal is to measure the
resistance of the platinum wire r. A voltage source provides a constant voltage Uin.
By using the knob (2.) the resistanceR in the circuit can be changed. Then the current
in the system is calculated using the following formula:

I = Uin

r+ R . (29.23)
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Fig. 29.7 Thermoresistor measurement system layout
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If R >> r the changes of thermometer resistance r (3.) do not affect the current
I significantly. Thus by changingR it is possible to control the value of the current.
The voltage source (1.) and the resistance (2.) connected in series can be considered
as a constant current source if the auxiliary resistance connected to the system is
relatively small compared to R. Thus the current in the system can be calculated
using the following relation and the ammeter (5.):

I ∼ Uin

R . (29.24)

The desired resistance r at the tip (3.) is defined by the voltage drop measured by
the digital voltmeter (4.) The advantage of the scheme is that any voltage dropped
across the main current-carrying wires will not be measured by the voltmeter, and
so do not enter into the resistance calculation at all. The sought resistance is then
measured as follows:

R = Voltmeter indication

Ammeter indication
. (29.25)

One can set the current constant and monitored directly from ammeter, and map
only the change of the voltage as a function of position of cantilever (x, y). Let us
indicate the voltmeter indication by U (x, y) and the ammeter indication simply by
I . Then the electrical resistance map across the surface is R(x, y) = U (x, y)/I .
However, one is interested in the temperature map. The temperature of the tip can
be found by using the formula

R = R0(1 + αT ), T (x, y) = r(x, y)/R0 − 1

α
= U (x, y)/IR0 − 1

α
, (29.26)

whereR0 is the resistance at 0 C◦, and α = 0.0038C−1 is the thermal coefficient of
Platinum.

If the applied current is lowanddoes not cause Joule heating the device is operating
in a passivemode and if tip and the surface are in thermal equilibrium the temperature
of the surface is measured.

If the applied current is higher the device acts as a heat source and the heat is
absorbed by the surface. Such a regime is called active. By knowing the supplied
power, the theoretical model of absorption, and the read temperature of the tip, one
can calculate coefficient of heat conductivity. This measurement is based on the
equation

Rth Q̇ = �T = Tp − Tamb, (29.27)

where Rth[K/W ] is thermal resistivity,�T is the temperature difference between the
point of power generation Tp and the heat sink, and Q̇ is the heat transfer rate or the
power of heat generation. Conventionally, it is the difference between temperature of
the tip, which is measured from (29.26) and the substrate, which is held at ambient
temperature Tamb. Two techniques are used tomeasure Rth: (a) a feedback loop is used
to keep Tp constant by applying different heating power Q̇, and then the resistance is
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inversely proportional to measured power Rth = const/�T and (b) using a constant
heating power and measure temperature Tp of the probe, and then the resistance is
proportional to the measured temperature difference Rth = const �T .

The power of heat generation Q̇ is caused by Joule’s heating of the tip and can be
calculated directly from measurements Q̇ = IU :

Q̇ = Voltmeter indication × Ammeter indication. (29.28)

The measured thermal resistance usually combines contributions from several
elements. For example [8], it can be

Rth = Rt + Rc + Rspr, (29.29)

where Rt is thermal resistance of probe tip, Rc is the contact resistance between tip
and sample, and Rspr is the thermal spreading resistance into the specimen. We are
usually interested in Rspr. Difficulties can occur during the determination of Rc and
Rt when the heat conduction is anomalous. The advantage of this technique is a high
spatial resolution (up to 17nm as reported in [8], 20nm in [12]).

A correlation between thermal resistance and heat conductivity in central symme-
try can be obtained from the solution of the heat conduction problem in cylindrical
coordinates as a function of radial coordinate r . A thick-walled cylinder is held at
temperature Tc at the inner surface, T |r=r0 with a heat flux q, ∂T/∂r = −q/κ. The
solution of a homogeneous Laplace equation in cylindrical coordinates

1

r

∂

∂r

(

r
∂T

∂r

)

= 0 (29.30)

is
T (r) = −qr0

κ
ln

r

r0
+ Tc. (29.31)

Let us denote the temperature of the outer boundary r = R by Tb, �T = Tc − Tb.
Then from (29.31) the following relation holds:

q = κ

r0 ln(R/r0)
�T . (29.32)

The heat transfer rate is then calculated as the product of the heat flux and the area
of inner surface S = 2πr0d. This leads to

Q̇ = 2πdκ

ln R/r0
�T = 1

Rth
�T ⇒ κ = ln R/r0

2πdRth
. (29.33)

In [8, 12], SThM was applied to measure heat conduction phenomena on a sub-
micron scale, see Figs. 29.8 and 29.9. The presence of ballistic heat conduction
was observed in both references. Both show a logarithmic trend of heat conduc-
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Fig. 29.8 Dependence of
thermal conductivity on
radius of graphene disk
at RT. Graphs are plotted
using data from [4, 12].
Dashed lines were added for
convenience

Fig. 29.9 Dependence of
thermal conductivity
graphene disk + probe tip
at RT. Values are calculated
with Eq.29.33 with thermal
resistances taken from [8]. A
dashed line was added for
convenience

tion divergence on scales <∼ 800 nm. In both papers, an interesting decrease of
heat conductivity was observed at larger scales. This effect may be attributed to the
very small size of the heat source. Figure29.9 shows the values of heat conduction
obtained by Eq. (29.33) with thermal resistances including all contributions as shown
in Eq. (29.29) taken from [8]. It was shown in [8] that the thermal resistance of the
substrate is several magnitudes lower than the measured full resistance. Thus it can
be neglected. It was shown that the value of the tip-sample contact remains constant.
Thus it does not influence the size dependence. Yet no absolute values were given.
This explains the extremely low values obtained of heat conduction (with respect to
what presented in literature for graphene) in Fig. 29.9, since it reflects the conduction
of graphenemembrane + tip-sample contact. The absolute values reported by [12] are
about 600W/mK, which is relatively low when compared to most results obtained
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with optothermal techniques, but it corresponds to the result in [9]. A numerical
study [4] confirms the logarithmic trend observed in experimental investigations [8,
12] but does not represent non-monotonic behavior since only systems smaller than
800 nm were studied. Absolute values of thermal conductivity [4] (∼300 W/mK
the largest value corresponding to largest investigated sample size) are larger than
reported in [8, 12] and closer to values predicted by theory [13] and optothermal
technique (see Table29.6).

29.4 Conclusions

A scientific group from the Technical University of Berlin assessed the possibility
of experimental measurement of the thermal conductivity in the case of anoma-
lous heat transfer corresponding to the theoretical estimates of scientists from the
laboratory “Discrete Models of Mechanics” IPME RAS within the framework of
the international cooperation RSF-DFG. A theoretical approach which allows to
define thermal conductivity in transient ballistic case and compares it with steady
state measurements was proposed. The results showed that the heat conductivity is
power dependent on size (in this particular case, the dependence is linear), such that
κ ∼ R, Eq. 29.17. This contradicts to a logarithmic dependence reported in a number
of experimental and theoretical studies for anomalous heat transport. On the other
hand, some studies [29, 31] also predict a power dependence of heat conductivity in
2D structures at very low temperatures and spatial scales. This raises the question as
to whether a logarithmic dependence corresponds to ballistic or some intermediate
(between ballistic and diffusive) quasi-ballistic regime of heat conduction. This, in
principle, gives rise to further theoretical and experimental challenges.

Experimental techniques that can be used for investigation of the size dependence
were also considered in this paper. Raman thermometry is a promising candidate for
such studies. However, the effect of power size dependence or any size dependence
was not yet observed in the reviewed literature. The difficulty lies in the relatively
large minimum size of the laser spot limited by optical diffraction, which is com-
parable to the phonon mean free path in graphene at RT and in the low-temperature
resolution, which causes high uncertainty. A value of∼1900W/mKwas obtained by
using this method in the current work.

Scanning thermal microscopy is another suitable method. Its main advantage is
high spatial and temperature resolution. Complications arise in determining addi-
tional thermal resistances contributions, along with the sought thermal resistance of
the specimen, to the measured value. By using this technique a logarithmic depen-
dence of the heat conduction coefficient on size was observed at the sub-micron
scale.

The goal of further research is to measure the size dependence of heat conduction
in circular graphene disks using the aforementioned methods and to compare it with
the theoretical predictions presented in the current work.
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Chapter 30
A Randomized Approach to Estimate
Acoustic Strength of Water

Grigory A. Volkov, Aleksey A. Gruzdkov, and Yuri V. Petrov

Abstract The problem of pulse-induced and acoustic cavitation of degassed water
is considered within the framework of the incubation time approach. The analytical
model to describe a dependency of the cavitation threshold on the pulse duration
is developed and applied to experimental data in order to evaluate the main model
parameter as the incubation time. The Sign-Perturbed Sums (SPS) method is used to
get its estimation in the formof a confident interval. Obtained values of the incubation
time are used to describe the dependency of the acoustic cavitation threshold on the
ultrasonic frequency.

Keywords Pulse induced cavitation · Ultrasonic cavitation · Incubation time ·
Sign-perturbed sums

30.1 Introduction

The cavitation phenomenon is related to the discontinuity of liquidwhere small vapor
bubbles grow and collapse under negative pressure. The volatile nature of liquids
makes the estimation problem of cavitation limit properties difficult and stipulates
the existence of a relatively wide range of strength parameters values.

The analytical approaches to estimate cavitation threshold are very useful in many
practical applications where the knowledge of admissible values of ultrasound is
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necessary. For example, the onset of the process leads to the distortion and failure of
acoustic signals if the frequency or the magnitude exceeds some critical values [1].
The acoustic cavitation is also applied to various medical and biological problems
and it can lead to unnecessary damage of the tissue and blood cells [2]. The huge
pressure caused by bubble collapses can lead to a new substance nucleation [3,
4]. These pressures also initiate damage of some solids and the wear rate depends
on the type of loading, for example, pulse-induced and acoustic cavitation provide
different surface loss for the same time [5]. The previous study demonstrated that
the incubation time approach permits the prediction of the cavitation threshold for
any frequency of the acoustic wave and for different types of pulse load [6–9]. The
developed model allowed us to describe the dependency of the ultrasonic cavitation
threshold on the frequency for degassed water and seawater. It also provided good
results for pulsed-induced cavitation of distilled water. It should be noted that the
corresponding values of incubation time were adjusted manually by fitting the model
curve to experimental data. The present research is aimed to develop a standardwayof
data analysis to determine the model parameter values confidently. For this purpose,
the randomized method of Sign-Perturbed Sums is used with the incubation time
approach to have the result in the form of confident intervals involving true parameter
value with a given probability [10]. This approach was successfully applied to the
problem of dynamic fracture of brittle materials under constant rate of loading [11,
12].

30.2 Pulse-Induced Cavitation

The pulse-induced cavitation basically occurs under compression pulse reflection
from the free surface as a tensile one.

To simplify the analysis, one of the simplest time profiles of the load is considered
in the form of a triangular linearly fading pulse

P(t) = A

(
1 − t

T

)
[H(t) − H(t − T )] , (30.1)

where A is the amplitude of the pulse, T is its duration, and H(t) is the Heaviside
function. The time-profile of the load at some distance x from the free surface is the
sum of initial and reflected pulses

P(x, t) = A

(
1 − t

T
− x

cT

) [
H

(
t + x

c

)
− H(t) + H

(
t + x

c
− T

)]

− A

(
1 − t

T
+ x

cT

) [
H

(
t − x

c

)
− H

(
t − x

c
− T

)]
= A f (x, t),

(30.2)

where c is the sound velocity in the liquid. The lowest value of the magnitude A
which leads to bubble growth and collapse at the nearest distance to the free surface
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and at any time is called the cavitation threshold and notated as A∗. The next point
is aimed to calculate the dependence of the threshold A∗ on load pulse duration T .

30.2.1 Incubation Time Criterion

Short pulses and high frequencies of ultrasonic waves imply extremely high rates
of loading, therefore, the incubation time criterion is applied as a condition of the
cavitation onset. This criterion allows taking into account correctly both low quasi-
static load and dynamic impacts under solving various problems of fracture.

The general form of the criterion is

1

τ

∫ t

t−τ

sign(P(t ′))
∣∣∣∣ P(t ′)

Ps

∣∣∣∣
α

dt ′ ≥ 1 , (30.3)

where P(t) is the load, Ps is the static threshold of cavitation that corresponds
to the limit of negative pressure in equilibrium, τ is the incubation time and α is
the dimensionless parameter characterizing the material sensitivity to the loading
history. The substitution of the load profile (30.2) into the criterion (30.3) leads to
the expression of the relative value of the threshold

A∗

Ps
=

(
τ

Imax

) 1
α

, (30.4)

where Imax = maxt
∫ t
t−τ

sign( f (x, t ′))
∣∣ f (x, t ′)∣∣α dt ′. It should be noted that the

maximum of I is achieved at first in different cross sections x which determined by
the ratio of the pulse duration and the incubation time.

If the load duration is greater than the incubation time, T ≥ τ , then it means that
pulse is sufficiently long and themaximum of I for the first time is achieved when the
reflected pulse does not intersect to the initial one. It happens in the section x = cT

2
at time t = T

2 and the only one Heaviside function H(t − x
c − T ) is equal to zero in

formula (30.2) this case. Thus, the maximum I can be calculated as follows:

Imax =
∫ T

2 +τ

T
2

(
3

2
− t ′

T

)α

dt ′ = T

α + 1

(
1 −

(
1 − τ

T

)α+1
)

. (30.5)

In the case of relatively short pulses, when T < τ , the effect of the compressive
pulse on the integral value has been holding on much longer than the pulse duration.
Thus, the nearest cross-section where I becomes maximum is x = cτ

2 at the tome
moment t = τ

2 .

Imax =
∫ τ

2 +T

τ
2

(
1 − t ′

T
+ τ

2T

)α

dt ′ = T

α + 1
. (30.6)
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The substitution of formulas (30.5), (30.6) into (30.4) leads to the analytical
expression of the threshold amplitude versus pulse duration

(
A∗

Ps

)α

=
{

(α + 1) τ
T , T < τ,

(α + 1) τ
T

(
1 − (

1 − τ
T

)α+1
)−1

, T ≥ τ.
(30.7)

30.2.2 Sign-Perturbed Sums Method

The SPSmethod is applied to an analysis of the experimental data obtained by Besov
et al. [13] in order to estimate the value of the incubation time.

The previous study showed that the SPS-procedure provides the mathematically
approved result for growing monotonically model functions. To get this property, the
new dimensionless variable ξ = τ

T is substituted into (30.7)

(
A∗

Ps

)α

= ϕ(ξ) =
{

(α+1)ξ
1−(1−ξ)α+1 , ξ ≤ 1,
(α + 1)ξ, ξ > 1.

(30.8)

This variable ξ can be understood as an average rate of load pulse and the ϕ(ξ) is a
monotonically increasing function. Thus, the following observation model is treated
by SPS-procedure

yi = ϕ (ξ (Ti , τ )) + vi , i = 1..N , (30.9)

where yi =
(

A∗
Ps

)α

i
is a measured value in test, Ti is a value of the control input

parameter, vi is random noise, i is a test number and τ is the system parameter to be
estimated.

The main steps of the Sign-Perturbed Sums algorithm were discussed in details
in [11, 12]. It is obtained that τ ∈ [15.5; 16.8]µs under following values of static
threshold Ps = 1.0 bar and α = 1

2 . The calculation results of the cavitation threshold
on the frequency are demonstrated in Fig. 30.1 while Fig. 30.2 shows its dependence
on the pulse duration.

All data points are in good coincidence to theoretical curves. It should also be
noted that all tests in the work [13] have been performed for short load pulses with
a duration less than the incubation time. It means that the exact shape of the time
profile of the load pulse does not influence much the value of threshold amplitude.
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Fig. 30.1 Dependence of
the threshold amplitude on
the average load rate for
distilled water. Comparison
of theoretical curves to
experimental data [13]

Fig. 30.2 Dependence of
the threshold amplitude on
the pulse duration for
distilled water. Comparison
of theoretical curves to
experimental data [13]

30.3 Ultrasonic Acoustic Cavitation

The cavitation can also be induced by an intensive acoustic field and this part is
aimed to check how the incubation time estimation obtained above corresponds to
experiments on ultrasonic cavitation.

The ultrasonic wave loading can be described as follows:

P(t) = A sin(ωt) , (30.10)

where ω = 2π
T is the ultrasonic frequency and A is the wave magnitude. The incu-

bation time criterion allows calculating the threshold amplitude A∗ by

(
A∗

Ps

)α

= min
τ∈[τmin;τmax ]

(
ωτ
2∫ ωτ

2
0 ψ(z) dz

)
, (30.11)
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Fig. 30.3 Dependence of
the threshold amplitude on
the frequency in comparison
to experimental data for
degassed water [14]. Model
parameters are
τ ∈ [15.5; 16.8]µs,
Ps = 0.15 bar, α = 1

2

where ψ(z) = sign(cos z)| cos z|α . The precise analysis of the formula (30.11)
derivation is provided in [7]. It is evident that if τ = k 4π

ω
, where k is a whole number,

then the integral of the numerator in (30.11) is equal to zero and the threshold tends
to infinity. It is assumed that the incubation time can be any value from the confident
interval obtained above in the Sect. 30.2 and the threshold amplitude for the certain
frequency is aminimal one among all values calculated for every τ ∈ [15.5; 16.8]µs.
The result of modeling is compared to experimental curves by Eshce and other data
points from [14] and demonstrated in Fig. 30.3. The value of the static threshold is
set as Ps = 0.15 bar since the bottom Eshce’s curve corresponds to the value much
lower than 1.0 bar. The non-monotonic behavior of the analytical curve qualitatively
corresponds to the band of Eshce’s curves and also describes data points of other
researchers. Figure30.4 is plotted in an attempt to describe the first group of points by
Strasberg and Galloway by adjusting the value of the incubation time scatter. Good

Fig. 30.4 Dependence of
the threshold amplitude on
the frequency in comparison
to experimental data for
degassed water [14]. Model
parameters are
τ ∈ [32.0; 34.0]µs,
Ps = 0.15 bar, α = 1

2
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coincidence for this group is achieved for τ ∈ [32.0; 34.0]µs. A probable explana-
tion is that the distilled water contained more vapor bubbles than the degassed one
and its strength was lower.

30.4 Conclusions

The problemof pulse-induced and ultrasonic cavitationwas studiedwithin the frame-
workof the incubation time approach.TheSign-PerturbedSumsmethodwas success-
fully applied to estimate the incubation time value in the form of a confident interval.
Taking into account the volatile structure of liquids and their non-homogeneity, the
interval form of possible values of the incubation time looks more applicable to
engineering practice. It was demonstrated that the obtained values for pulse-induced
cavitation tests can be used in modeling ultrasonic cavitation. Comparison of ana-
lytical results with the experimental data demonstrated that the developed model is
able to explain both a wide band of the cavitation threshold and its growth with the
frequency increase. This model also explains qualitatively the data outliers which
are not included in Eshce’s band.
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