
Stem Cell Biology and Regenerative Medicine

Badrul Hisham Yahaya   Editor

Organoid Technology 
for Disease Modelling 
and Personalized 
Treatment



Stem Cell Biology and Regenerative Medicine

Volume 71

Series Editor

Kursad Turksen, Ottawa Hospital Research Institute, Ottawa, ON, Canada



Our understanding of stem cells has grown rapidly over the last decade. While the
apparently tremendous therapeutic potential of stem cells has not yet been real-
ized, their routine use in regeneration and restoration of tissue and organ function is
greatly anticipated. To this end, many investigators continue to push the boundaries
in areas such as the reprogramming, the stem cell niche, nanotechnology,
biomimetics and 3D bioprinting, to name just a few. The objective of the volumes in
the StemCell Biology andRegenerativeMedicine series is to capture and consolidate
these developments in a timely way. Each volume is thought-provoking in identi-
fying problems, offering solutions, and providing ideas to excite further innovation
in the stem cell and regenerative medicine fields.

Series Editor
Kursad Turksen, Ottawa Hospital Research Institute, Canada

Editorial Board
Pura Muñoz Canoves, Pompeu Fabra University, Spain
Lutolf Matthias, Swiss Federal Institute of Technology, Switzerland
Amy L Ryan, University of Southern California, USA
Zhenguo Wu, Hong Kong University of Science & Technology, Hong Kong
Ophir Klein, University of California SF, USA
Mark Kotter, University of Cambridge, UK
Anthony Atala, Wake Forest Institute for Regenerative Medicine, USA
Tamer Önder, Koç University, Turkey
Jacob H Hanna, Weizmann Institute of Science, Israel
Elvira Mass, University of Bonn, Germany

More information about this series at https://link.springer.com/bookseries/7896

https://springerlink.bibliotecabuap.elogim.com/bookseries/7896


Badrul Hisham Yahaya
Editor

Organoid Technology
for Disease Modelling
and Personalized Treatment



Editor
Badrul Hisham Yahaya
Lung Stem Cell and Gene Therapy Group
Advanced Medical and Dental Institute
(IPPT)
Universiti Sains Malaysia
Kepala Batas, Malaysia

ISSN 2196-8985 ISSN 2196-8993 (electronic)
Stem Cell Biology and Regenerative Medicine
ISBN 978-3-030-93055-4 ISBN 978-3-030-93056-1 (eBook)
https://doi.org/10.1007/978-3-030-93056-1

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Switzerland AG 2022
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Humana imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-3295-9676
https://doi.org/10.1007/978-3-030-93056-1


Contents

1 The Organoids: Derivations and Applications . . . . . . . . . . . . . . . . . . . . 1
Ahmad Faried, Yulius Hermanto, Putri R. Amalia,
and Hendrikus M. B. Bolly

2 Lung Organoids: A New Pathway into Lung Regeneration
and Repair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Lu Tian, Chennan Carrie Zhang, Martha G. Rea, and Ya-Wen Chen

3 Lung Organoid: Innovative Technology for Respiratory
Disease Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Nur Shuhaidatul Sarmiza Abdul Halim,
Syahidatul Amali Che Shaffie, Mohd Nor Azim Ab Patar,
and Badrul Hisham Yahaya

4 Recent Advances in Brains Organoids: Opportunities
and Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Jing Yit Pua, Izzah Madihah Rosli, Mei Xuan Ooi,
and Mohd Nor Azim Ab Patar

5 Toward Understanding Neurodegeneration Using Brain
Organoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Patompon Wongtrakoongate, Chatbenja Pakiranay,
and Narisorn Kitiyanant

6 Organoids in the Human Reproductive System . . . . . . . . . . . . . . . . . . . 109
Pongsatorn Horcharoensuk, Sunantha Yang-en,
and Ruttachuk Rungsiwiwut

7 Production and Application of Mesenchymal Stem Cell
Spheroids for Cartilage and Bone Regeneration . . . . . . . . . . . . . . . . . . 137
Ngoc Bich Vu and Phuc Van Pham

8 Biomaterials in Organoid Development . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Asmak Abdul Samat and Badrul Hisham Yahaya

v



vi Contents

9 Genome Editing in Organoid to Improve Understanding
of Human Disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Binhui Zhou and Yinming Liang

10 Ethical Implications on Organoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Badrul Hisham Yahaya, Syahidatul Amali Che Shaffie,
and Teguh Haryo Sasongko



Chapter 1
The Organoids: Derivations
and Applications

Ahmad Faried, Yulius Hermanto, Putri R. Amalia,
and Hendrikus M. B. Bolly

Abstract Because of sample availability and ethical considerations, the biology
of human tissues and organs is challenging to research. However, advancements in
stem cell culture make it feasible to generate in vitro three-dimension (3D) tissue that
exhibits some of the genuine organoids’ main multicellular, anatomical, and even
functional properties. Organoids offer a wide range of uses in fundamental research,
drug discovery, and regenerative medicine since they may simulate organ develop-
ment and illness. Although organoids have some shortcomings in their application,
they hold great potential in the future for clinical applications. Methods: For the
selection of literature cited, we used the Pubmed database. The keywords used in
theMEDLINE research were: organoid, stem cells, disease modelling, 3D culturing.
Results: Pluripotent stem cells [(embryonic stem cells (ESCs) or induced pluripotent
stem cells (iPSCs)], neonatal or adult stem/progenitor cells produced in vitro can be
used to make organoids. Organoids can be used to stimulate development, home-
ostasis, regeneration, disease modelling, drug screening and testing, personalised
medicine, and regenerative medicine, among other things. Conclusion: Organoids
are 3D in vitro tissues with some of the major multicellular, anatomical, and even
functional features of real organs, and because of these characteristics, they have been
applied in various fields. Despite some drawbacks, organoids hold great potential in
the future for further clinical applications.
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Introduction

Initially, the theory of human organs’ development and function was mostly specula-
tion because most human tissues were inaccessible for research. This understanding
of the development and function of human organs has only improved significantly
in the last century [1]. This improvement is mainly due to discovering research
subjects ranging from Drosophila fruit flies, C. elegans worms to research models
of vertebrates such as mice and zebrafish [2]. Although these research models have
brought about significant improvements, there are differences between animals and
humans that cause studies’ failure to develop effective therapies. Over the decades,
developing ex vivo human models has been extremely difficult to deal with due to
the accessibility of tissue samples and related ethical issues [2, 3]. Breakthroughs in
stem cell culture have enabled the creation of in vitro 3D tissues known as organoids,
which have many of the main multicellular, anatomical, and even functional charac-
teristics of true organs [3]. As the name suggests, an organoid means a structure that
resembles an organ. Organoids are composed of several organ-specific cell types, can
recapitulate several organ-specific functions (e.g. excretion, filtration, neural activity,
contraction), and are grouped and arranged spatially organised similar to an organ
[4]. The term ‘organoid’ has a broad definition. It has been used to describe many
forms of in vitro cultures, ranging from tissue explants to organ-on-chip systems
[3]. Here, organoids are defined as 3D structures derived from pluripotent stem cells
[(embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs], neonatal or
adult stem/progenitor cells grown in vitro, in which the cell spontaneously organised
itself into a properly differentiated functional cell type and recapitulates at least some
organ function [2, 5, 6].

Deriving Organoids

The key aspects of organoid formation are self-assembly and differentiation [2]. It
usually entails the self-organisation of a somewhat homogenous cell population [3].
Even in the presence of a homogeneous signalling environment, a cellular system
that lacks an ordered structure can be spatially reorganised by system-autonomous
mechanisms. Self-organisation is the process responsible for this. Conceptually,
the process of self-organisation may be split into two parts: self-patterning events
and morphogenetic rearrangements [7]. Self-patterning is described as the devel-
opment of cell differentiation patterns in an originally homogenous system due to
system-autonomous processes and intracellular communication [7, 8]. The interplay
between several different mechanisms has been proposed, and it includes reaction-
diffusion mechanisms [9], bistabilities of regulatory networks [10], and asymmetric
cell division [7].

On the other hand, Morphogenetic rearrangement is the sorting of various cell
types within tissue and the higher-level reorganisation of the system’s architecture.
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Differences in cell adhesion, cortical tension and/or contractility, and cell motility,
which facilitates cell sorting, all play a role in the physical contact between various
cell types [7, 11]. The system-intrinsic mechanics caused by cell shape changes,
cell contraction, cell movement, or differential tissue expansion keeps architectural
rearrangements in place [7]. The recapitulation of this process influenced the success
in organoid derivation. Besides, it is also influenced by the physical characteristics
of the cultural environment; requirements for system autonomous (i.e., endogenous)
and/or exogenous signals; and initial cell types and system conditions, which will be
explained in further following paragraphs.

Physical Properties of the Culture Environment

To promote the 3D characteristics of organoids, the solid extracellular matrix (ECM)
that support cell growth and cell adherence can be used. Themost widely usedmatrix
for 3D organoid derivation is Matrigel, a natural ECM purified from Engelbreth-
Holm-Swarm rat sarcoma [3]. Some examples of organoids that have been success-
fully made using Matrigel or similar animal-derived hydrogels that mimic the base-
ment membrane include intestinal, cerebral [12], gastric [13], and mammary gland
organoids [3]. Although rare, organoids derivation of the mammary glands and
intestines can use a type I collagen matrix [14, 15]. This natural matrix’s unique
combination of ECM components and growth factors promotes effective cell devel-
opment and differentiation. However, the diversity and complexity of these composi-
tions makes controlling the cultural milieu challenging and reduces repeatability. To
address this, a hydrogel was recently created to sustain intestinal and brain organoid
cultures, allowing the metabolic and environmental processes of the culture to be
regulated [16, 17]. But they are inherently less bioactive and need to be adapted to
the specific requirements of different organoids.

One strategy used to generate optic cup [18], cerebral, cerebellar [19], and
hippocampal organoids are the culture of 3D cell aggregates in suspension [20].
The suspension culture method does not employ solid scaffolding for cell embed-
ding to encourage the development of polarised epithelial structures. Low quantities
of Matrigel may be applied in some situations [3, 18].

Renal organoids may be created utilising the air-liquid interface technique, which
involves the growth of cells in the form of pellets on a thin porous membrane with
the cell culture medium only on the basal side of the membrane [21, 22]. The cell
pellets then self-organise into amultilayered structure similar to the original kidney’s
microarchitecture.

The utilisation of particular organoid derivation techniques is currently mostly
empirical. There is a dearth of systematic comparison of different procedures for
obtaining certain organoids, making it impossible to understand each technique’s
relative strengths, limitations, and uses [3].
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Endogenous and Exogenous Signals

Organoids are generated due to the appropriate developmental signalling pathway
being activated and are mostly derived from an initial cell population exposed to
certainmorphogens at a specificmoment in time. If all of the required components are
present in the system, these signals can cause self-organisation. Exogenous provision
of missing components is required [3].

Some organoids rely nearly completely on endogenous cues to develop. Mouse
optic cup organoids generated from mouse PSCs, for example, were collected and
grown in a serum-free medium with low growth factor levels. These circumstances
promote the development of homogenous neuroepithelium (NE), after which a self-
patterning mechanism determines the spatially distinct domains of the neural retina
(NR) and retinal pigmented epithelium (RPE). Then, even if no external signal is
supplied, morphogenesis can proceed since the starting cell population already has
all the components required to arrange itself into an optic cup.

Although the mouse optic cup organoid is nearly entirely reliant on endoge-
nous signalling, most organoid derivation procedures need the addition of particular
exogenous signals since the original cellular system lacks all of the necessary compo-
nents for the intended self-organisation process. In other situations, the exogenous
signal is only necessary for the initial cell type to be induced and the remaining self-
organising processes to be carried out using the system’s autonomous signal. Human
PSCs (hPSCs), for example, must be exogenously activated with particular growth
factors to generate a mixed population of ureteric epithelial cells and metanephric
mesenchyme. The cell populationwill then arrange themselves into kidney organoids
without adding any additional substances to the medium [3, 21, 23].

Many organoid cellular systems, such as stomach organoids generated fromhPSC,
require stimulation by an appropriate and particular exogenous signal during the
derivation process. An exogenously provided factor is necessary to drive definitive
hPSC-derived endoderm cells to the posterior foregut destiny [13]. Exogenous stim-
ulation is necessary to control the development, morphogenesis, and differentiation
of the cells into functional gastric cell types and to guide them to form the antral or
fundic gastric epithelium [13, 24].

Cell Sources, Starting Cell Type, and Initial Culture Condition

The cell source for organoid formation (Fig. 1.1) can be derived from primary tissue
or differentiated from pluripotent stem cells, such as embryonic stem cells (ESC)
or induced pluripotent stem cells (iPSCs) [3, 25]. iPSCs are easy to obtain and
individual-specific. ESC and iPSC can differentiate into almost any type of body
tissue [25]. When trying to mimic the complexity of native tissue, the heterogeneity
of cell types produced in organoid cultures derived from pluripotent stem cells can
be an advantage [24, 26, 27]. However, the unintended heterogeneity of the culture
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Fig. 1.1 The cell source for organoid derivations

of pluripotent stem cell strains and incomplete knowledge of specific differentia-
tion signals can have unintended consequences for the resulting organoid [25]. This
is shown in single-cell transcriptomic studies that iPSC-derived and ESC-derived
kidney organoids comprise 10–20% of non-kidney cells, such as brain and muscle
cells [28]. Also, organoids derived from pluripotent stem cells may exhibit a gene
expression pattern more reminiscent of fetal tissue than from their adult counterparts
[13, 29, 30].

In terms of the starting condition of the cell population, the methods utilised in
the generation of distinct organoids differ. Depending on the starting circumstances
of the cell population, some cells go through all of the self-organisation processes,
while others just go through a subset of them. Self-organisation of the cell popu-
lation requires symmetry-breaking and subsequent patterning to generate spatially
distinct domains of themultiple cell types in organoids derived from a single cell type
(such as the optic cup or small intestine organoids). The patterned structure is then
morphogenetically rearranged to produce the final organoid architecture. In general,
beginning from a single cell, organoid derivation methods need an initial stage of cell
growth before self-organisation can occur [3]. Some methods call for co-culturing of
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cell types that have been pre-differentiated independently (for example, PSC-derived
liver organoids) [31]. This protocol has mainly established several cell identities. As
a result, self-organisation mostly includes cell sorting and subsequent architectural
rearrangements.

In addition, the starting circumstances of the cell populationwill have an impact on
the use of organoids as a biological model system. Organoids created by co-culture of
individually specified cell types, for example, are less instructive for understanding
organogenesis than models in which diverse cell types are grown concurrently. As a
result, it ismore appropriate to examine the transitory developmental interactions that
might occur between distinct progenitors during organoid creation [3]. The starting
cell type also influences the characteristics of the final organoid produced. Organoids
can be cultured from ASCs (either as isolated cells or from dissected tissue frag-
ments), PSCs [12, 13], or fetal progenitor cells [32, 33]. Neuroectodermal organoids,
such as the optic cup and cerebral organoids, and mesodermal renal organoids have
been derived only from the PSC [3]. In contrast, organoids from surface ectoderm
lineages (especially glandular tissue) are predominantly derived fromASCs or disso-
ciated adult tissue [14, 34, 35]. Most of the endodermal lineage organoids originate
from PSCs and ASCs [3].

Different cell types emerge at distinct phases of development and take different
paths. As a result, while investigating the factors behind organoid development,
choosing the starting cell population is critical. ASCs or adult tissue fragments
cultured are thought to create organoids that replicate their original tissue’s homeo-
static or regenerative circumstances. Thus, stem cells derived from organswith a high
renewal rate, such as the epithelium of the small intestine, colon [36] or stomach [37],
generate organoids that mimic the homeostatic role of these cells in vivo. Organoids
produced from slow turnover tissue, such as the pancreas or liver, in which endoge-
nous stem cells and/or progenitors may play a role only the following damage, on
the other hand, are regarded as genuine regeneration models [38, 39].

As previously stated, ASC-derived organoids can help researchers address
concerns regarding the biology of adult tissues. PSC-derived organoids are primarily
utilised to researchorganogenesis and tissue development [3]. PSC-derivedorganoids
seldom reach the mature tissue stage in vitro. They usually resemble foetal tissue
[13]. The restricted development of PSC-derived organoids is most likely owing to
progression to more mature cell types, which necessitate continuous culture for a
period of time that typically surpasses the capability of the actual culture methods
[40]. The several organoids that may be produced from PSCs and the developmental
signals [41] are shown in Fig. 1.2.

Next is the embryonic organoid system, which is also called ‘embryoids’ or
‘gastruloids’. These organoids mimic in a very simple way pre-implantation [42]
and early post-implantation embryo development [43–45], body axis formation [46,
47], gastrulation [46–52], and neural tube development [53, 54]. Unlike classical
organoids, which usually consist of a limited subset of cell types from one germ
layer, embryonic organoids contain cells from several germ layers, as in real embryos.
These organoids can be used to build a complete development model in vitro and
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Fig. 1.2 Various organoids that can be grown from PSCs and the developmental signals that are
used (Reproduced from [41])

to study the complex interactions between different cell types in the development
process [3].

Finally, organoids start directly from the fetal tissue (between the ASC and
PSC stages), fetal progenitor-derived organoids [32, 33]. Compared to PSC-derived
organoids, fetal organoids can be used to study advanced organogenesis, for example,
as has been done to study the enterosphere maturation of fetal intestinal progenitors
[32].

Applications of Organoids

The Use of Organoids as Models for Development,
Homeostasis, and Regeneration

In fundamental research, organoids can be utilised to better understand development,
homeostasis, and regeneration principles. As simplified and conveniently accessible’
minimal systems,’ Organoids can recreate in vitro some organ biology principles and
differentiate the relative contributions of distinct tissue components to complicated
morphogenetic processes [3]. Organoids have helped to better understand organo-
genesis, human development, and adult organ biology due to their ease of access.
Organoid cultures can be used to investigate the similarities and differences in the
development of humans and other animals. This is critical for understanding human
brain development and congenital disorders [2].
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The Use of Organoids for Disease Modelling

One of the great potential applications of the organoid model is to analyse human-
specific disease mechanisms [2]. Compared to the traditional cell culture of the
single-cell type, organoid culture as a disease model can mimic pathology at the
organ level [3]. Organoids have been used for modelling various diseases such as
genetic diseases [12, 55, 56], diseases involving host-pathogen interactions, and even
cancer. This proves that organoids are capable of reproducing certain well-known
pathological features. For example, microinjection of the bacterium Helicobacter
pylori into human gastric organoids reproduces the typical signs of this bacterial
infection [13, 37]. This model is particularly relevant because species-specific gastric
characteristics make animal models unsuitable for studying the pathology of the
human stomach. H. pylori infection in mice does not develop into ulceration and
cancer as in humans [37]. In essence, organoids have been used to study congenital
and acquired diseases. The following are some of the diseases that have been studied
using organoids.

Congenital Diseases

The first human disease to be mimicked using organoids was cystic fibrosis (CF).
Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) chlo-
ride channel, usually expressed on the epithelium of numerous organs, cause this
disease [57]. Surface expression of CFTRwasmissing in iPS-derived lung organoids
fromCF patients to replicate the in vivo condition in CF [58]. Dekkers and colleagues
developed intestinal organoids from CF patients that may imitate the disease in vitro.
They developed a swelling experiment in which wild-type organoids respond to
cAMP stimulation by importing fluid into the lumen and swelling, but CF organoids
do not [55]. This technique is effective for detecting responders to CFTR modula-
tors and has a high predictive value. The Verma lab generated iPS cells from CF
patients and utilised CRISPR/Cas9 to repair the mutation. The repaired iPS cells
were subsequently converted into mature airway epithelial cells, exhibiting normal
CFTR function [59].

Primary microcephaly, a genetic disorder induced by CDK5RAP2 mutations, is
another congenital ailment investigated with organoids [12]. The brain organoids
derived from patient-derived iPSCs were much smaller and the individual cortical
regions were primarily hypoplastic. A series of observations and specific examina-
tions of the orientation of the mitotic spindle during progenitor division revealed that
the patient’s neural stem cells began to divide asymmetrically and generate neurons
prematurely, leading to depletion of the progenitor pool ultimately the decline of
overall neurons. Because mice could not properly reproduce the amount of brain
shrinkage found in humans, the organoids showed morphological abnormalities that
could only be detected in this human-specific model system [57]. Organoids can also
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be used to simulate idiopathic autism spectrum disease (ASD). Mariani et al. gener-
ated iPSC lines from four autistic individuals and four unaffected controls. These
were produced first as 3D aggregates, then rosettes were plated. The rosettes were
then separated and regrown as 3D aggregates to produce forebrain organoids [60, 61].
Although probands and controls were usually fairly comparable, the ASD organoids
had more inhibitory interneurons due to elevated FoxG1, an essential component in
forebrain patterning [57].

Acquired Diseases

Apart from modelling the inherited conditions of patient stem cells carrying genetic
mutations, organoids can also be used to model acquired diseases such as acquired
mutations as in the case of cancer and diseases caused by infectious agents.Organoids
can be used to model lung [62], stomach [37, 63, 64], liver [65, 66], pancreatic [66–
68], colon [36, 63], Van [69], prostate [70], endometrial [71], breast [72], bladder
[73, 74], esophageal [36, 75], and brain cancers [76]. These organoids come from
tissue resection, biopsy or even circulating tumor cells. Cancer-derived organoids
are more likely to retain the genetic and phenotypic features of the original tumor.
In this respect, they resemble patient-derived xenografts, but have the advantages
of a higher success rate, can be easily expanded in vitro, and can be used for drug
screening [77, 78].

Organoids have shown to be a useful model for investigating infectious illnesses
and the processes underlying human-specific infectious agents [57]. Models of Heli-
cobacter pylori infection have been developed using gastric organoids [13, 37],
whereas influenza virus infection has been mimicked in vitro using pulmonary
organoids [79]. Human intestinal organoids can be used to spread coronaviruses
in vitro and have enabled the identification of the small intestine as an alternative
infection pathway for Middle East respiratory syndrome (MERS) coronaviruses,
which cause severe human respiratory infections [80]. With the recent outbreak of
the COVID-19 pandemic, substantial efforts have been undertaken to simulate and
understand the biology and pathophysiology of severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) infection [81]. Several investigations utilising organoid
models generated from ASCs found that SARS-Cov-2 may infect enterocytes [82],
and they revealed that viral replication in enterocytes resulted in viral response gene
upregulation and the production of infectious viral particles. In human small intestine
enteroids, twomucosa-specific serine proteases, TMPRSS2 andTMPRSS4, facilitate
viral entrance and infection of enterocytes [83].
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The Use of Organoids in Drug Discovery and Personalised
Medicine

Disease-specific organoids are useful in identifying new biomarkers, personalise
drug testing, drug screening [3], or toxicology studies, and thus organoids will turn
personalised medicine into reality [2]. One of the uses of organoids for drug testing
that has been carried out is drug screening for the therapy of Zika virus infection
using cortical nerve progenitor cells derived from hPSC and validated parallel in
organoid and mouse models [84]. Organoids have also been used in testing drugs for
cystic fibrosis (CF), a genetic disease caused by defects in the CFTR gene. Intestinal
organoids derived from cystic fibrosis patients who carry CFTR mutations are an
example of organoids in personalised medicine [3, 85]. To find out whether existing
CF drugs can give a good response, screening is carried out using organoids from
patients with CFTR mutations to get the appropriate treatment [86].

Personalised medicine using organoids can also be applied in drug testing
for cancer. Organoids derived from various human tumours have demonstrated a
response spectrum of conventional and investigational drugs to date [87]. Based on
a retrospective cohort study, the patient-derived organoid (PDO) response to tested
therapy largely mimicked the initial response of these patients to the same agent
[73, 77, 88], [89] [90]. PDO also provides a model for drug development without
innate or acquired resistance, and it is particularly relevant in ovarian cancer PDOs
in the assessment of DNA repair pathways and the stability of the replication fork
[88]. Besides, PDO may also reflect a patient’s clinical response to a cytotoxic drug
having a narrow therapeutic index in vivo compared to many targeted agents by
demonstrating a relative sensitivity response to the cytotoxic drug [77] [89] [90].

Moreover, the creation of organoid biobanks for various pathologies is also very
promising. The organoid biobanks will facilitate a robust screening platform that
covers a wide variety of population genetics worldwide. With this organoid biobank,
most of the spectrum of CFTR mutations in cystic fibrosis and other diseases can
be covered [3]. Especially for cancer, a disease with a virtually unlimited number of
mutations, making this organoid biobank can be very useful [69, 91]. The creation of
cancer organoids can use neoplastic tissue directly or by using normal tissue, which
is then genetically modified [87]. Early attempts to create a tumouroid biobank have
beenmade for colon cancer, a very common cancer in humans [69, 91]. In the end, the
use of organoids can reduce the experimental animal for research which is following
the 3R principle.

The Use of Organoids in Regenerative Medicine

Organoids are a promising alternative in regenerative medicine [3]. Organoids that
have the potential to produce human 3D cultures that resemble specific organs have
opened up the possibility of using organoids as a source of cell therapy and as an
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alternative to whole organ transplants [2]. This concept has been proven through
experiments in animal models. An example is the transplantation of retinal sheets
derived from mouse embryonic stem cells (ESCs) or mouse iPSCs using a modified
optical cup organoid protocol in mice with retinal degeneration. The transplanted
tissue can give rise to mature photoreceptors and, in some cases, capable of forging
synaptic relationships with host cells [92] and restoring light responses [93]. The
samewas observed in the retinal tissue produced fromorganoids cultured fromhuman
ESCs. When transplanted into mouse and monkey models with retinal degeneration,
the resultant tissue can survive, develop, and integrate with the host tissue to some
extent [94]. Intestinal organoids derived from dissociated mouse colon epithelium
or single stem cells implanted into mice, for example, can repair colonic mucosal
damage to various degrees [95]. Animal models have also been used for liver [39,
56] and kidney [96] organoids transplant studies.

Also, organoids can be combined with novel genome-editing tools such as
CRISPR/Cas9 to correct affected genes and select appropriate clones before autolo-
gous transplantation [2, 3]. CRISPR-Cas9-mediated gene editing was used to correct
the most common CFTR mutation in CF. Phenylalanine removal at position 508 on
the ISC derived from the patient was then used to produce functional organoids [97].
Although autologous cell therapy transplantation is very promising in the field of
organoids, its efficacy, safety, and immunogenicity are still being evaluated [2].

Challenges, Limitations in the Application of Organoids,
and Bioengineering Approach to Overcome Limitations

The previously described organoids application is based on creating repeatable
organoids that are structurally and functionally comparable to actual organs and may
be utilised as appropriate replacements for in vivo research. The primary issue over
the next fewdecadeswill be bridging the gapwith native organs.A frequent drawback
is the considerable phenotypic heterogeneity that can occur from all organoid genera-
tion procedures. The constraint inmany applications is organoid-to-organoid repeata-
bility. This is especially true for translational investigations, such as drug screening,
where significant inherent variability may obscure treatment impact. Furthermore,
the cellular and architectural intricacy of each organ was reproduced with varying
degrees of precision. This is referred to as the organoid capacity to generate all sorts
of cells in a certain tissue as well as multiple organ tissues [3]. Intestinal organoids
produced from ASCs, for example, are entirely comprised of the intestinal epithe-
lium; nevertheless, intestinal mesenchyme can also emerge from the derivation of
intestinal organoids utilising PSCs [30]. Another important limitation is the low level
of maturity, especially for PSC-derived organoids, thus hindering their application
as a model for adult tissue biology [3]. Other disciplines can help overcome these
limitations and will be discussed in the following paragraphs.
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Approaches to Improve Organoid Maturity

The limited maturation of cells is the major drawback of PSC-derived organoids.
Usually, this type of organoid resembles fetal tissue more than adult tissue [13].
The limited lifespan of organoids can be one reason limiting their ability to reach
the next stage of development [3]. The limited lifespan of the organoids can be
caused because diffusion cannot supply all cells with sufficient nutrients to support
their continued development once a certain size is reached [98]. The use of biore-
actors that increase nutrient supply through constant culture spinning is a possible
solution to this problem. In tissue engineering, bioreactors are widely used to intro-
duce controlled change in culture conditions, standardisation, and enhancement of
tissue production for regenerative medicine [99]. Such bioreactors have successfully
extended the duration of brain organoid cultures from several months to 1 year and
produce structures more similar to those of the developing human brain [6].

Furthermore, to increase the lifespan of organoids, artificial vascular tissue can
also be used. Organoid vascularisation can distribute nutrients via capillaries, as
occurs in vivo [3]. Bioengineering approaches have been developed to produce
vascular tissue-like structures, namely sacrificial molds [100–102] and laser abla-
tion [103], which allow for creating channels in culture scaffolds that can accom-
modate endothelial cells and form vascular units that can be perfused. An alterna-
tive bioprinting method can be used to control the position of endothelial cells in
a 3D printed structure [104, 105]. Another technique used to improve the vascu-
larity of developing tissue is to incorporate endothelial cells or their progenitors
during organoid development. This method has been used effectively with liver
organoids. Human endothelial cells are grown with human mesenchymal stem cells
and liver endoderm cells generated from human iPSCs in this technique to form
self-organising liver buds with a microvascular network linked to host circulation
soon after transplantation into mice [31].

Another possibility of limited organoid maturation is the lack of specific factors
in the in vitro environment, so it cannot reach the expected maturation level [3]. For
example, sensory stimulation of brain organoids is needed for further maturation
to occur. This sensory stimulation contributes to the formation of neural circuits
in vivo. For human organoids, a longer culture time is required because it takes
longer to mature than mouse organoids at the same stage [18, 106].

Approaches to Improve Organoid Architecture

The organoid 3D microanatomy produced through self-organisation does resemble
an in vivo organ, but the overall architecture is different from the actual organ. A stem
cell culture scaffold with tissue-appropriate topography can be used to overcome this
so that the organoid architecture can be improved and the size can be increased [3].
Micro-collagen gels, for example, that replicate the unique crypt structure of the
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colonic epithelium have been utilised to cultivate a single layer of self-renewing
human colonic cells [107]. Organoid topology can be improved at the microscale
by precisely controlling the stem cell interactions and the surrounding ECM [3].
Matrigel, a naturally generated hydrogel matrix, is employed in the majority of
the matrices. Because they are ill-defined, have lot-to-lot variability, and do not
enable controlled alteration, these matrices are ineffective for directing organoid
morphogenesis, despite being very successful at stimulating cell proliferation and
self-organisation. This matrix also includes animal-derived goods, which are unsuit-
able for clinical usage due to the danger of transmitting immunogens and infections
[3]. Several synthetic and chemical hydrogels for 3D cell growth have been created
to address these constraints, with chemical and physical characteristics that may be
manipulated and tuned for specific uses [108, 109]. Cerebral organoids, for example,
have been implanted effectively in hyaluronan-based hydrogels [17], and neural
tube cysts have been produced in poly (ethylene glycol) (PEG)-based hydrogels [53,
54]. Recently, new hydrogel formulations with spatially and temporally modulable
biochemical and biophysical characteristics have been created [16, 110]. Controlling
how cells combine might potentially be used to expand control over the organoid’s
self-organisation. Positioning distinct cell types in conformations that skew cell-
type-specific spatial interactions, for example. Furthermore, by controlling diffuse
signalling molecules’ geographical and temporal distribution, organoid development
may be accelerated [3].

Approaches to Improve Disease Modelling

Theprimarydrawbackof organoids in diseasemodelling applications is their inability
to simulate multi-organ diseases. A co-culture approach can help to alleviate some
of this [3]. Intestinal organoids and hPSC-derived enteric neurons were used in early
attempts in this approach [111]. Furthermore, the present drug testing platform may
be improved by merging organoid cultures with organ-on-chip technology to build a
3D system that mimics the interaction between multiple organs. With this technique,
the advantages of both systems (the conventional basic organ-on-chip technology
and the high in vivo fidelity and functionality of organoids) may be merged [3].

Conclusion

Organoids are 3D in vitro tissues that exhibit some of the key multicellular, anatom-
ical, and even functional properties of actual organs, and they have been used in a
variety of disciplines due to these qualities. Despite certain limitations, organoids
have much potential for future therapeutic uses.
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Chapter 2
Lung Organoids: A New Pathway
into Lung Regeneration and Repair

Lu Tian, Chennan Carrie Zhang, Martha G. Rea, and Ya-Wen Chen

Abstract Introduction: The lung is an important and complicated organ that has
profound impacts on the entire body when impacted by disease or illness. Due to
its complexity, the human lung is difficult to study; lung models that can mimic this
organ are key to better understanding and treating lung diseases. Various lungmodels
have been developed over the years, but one important and recent model is the lung
organoid model. Here we review human lung organoid models, including the main
characteristics and potentials and their current and future applications for modelling
lung development and diseases. Method: For the selection of literature cited, we
used MEDLINE/Pubmed database. The keywords used in the MEDLINE research
were: human lung development, lung organoids, lung stem cells, lung disease and
repair, bioengineering lung. Results: Lung organoids, in layman’s terms referred
to as “mini lungs in a dish”, are 3D tissues that recapitulate the endogenous func-
tions of the lungs. Lung organoids currently represent the closest model to the human
pulmonary system. Human-derived three-dimensional (3D)models have been gener-
ated, allowing for a deeper understanding of cell-to-cell communication. They have
also allowed researchers to better understand how diseases affect the lungs and deter-
mine potential treatment methods.Conclusions: Although the area of research using
lung organoids is still relatively new, much has been learned from this model, and
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much more will continue to be learned. There is an urgent need to develop more
complex organoid models containing mesenchymal tissues and vasculature to better
understand lung diseases.

Keywords Lung · Organoid · Stem cell · Repair and regeneration · Lung diseases

Abbreviations

PNECs Pulmonary neuroendocrine cells
AT1 Alveolar epithelial type 1
AT2 Alveolar epithelial type 2
AT2-s AT2 signaling
PAECs Pulmonary artery endothelial cells
PVECs Pulmonary vein endothelial cells
aCap Aerocyte capillary
gCap General capillary
BAECs Bronchial artery endothelial cells
BMVECs Bronchial microvascular endothelial cells
ARDS Acute respiratory distress syndrome
ALI Acute lung injury
E Embryonic
P Postnatal day
pcw Post-conception weeks
SMCs Smooth muscle cells
hPSCs Human pluripotent stem cells
BME Basement membrane extract
h3AC Human 3D alveolar type 2 cell culture
hAT2 Human AT2
ESCs Embryonic stem cells
iPSCs Induced pluripotent stem cells
DE Definitive endoderm
AFE Anterior foregut endoderm
BMP Blocking bone morphogenetic protein
TGFβ Transforming growth factor beta
FGF Fibroblast growth factor
RA Retinoic acid
HH Hedgehog
LBOs Lung bud organoids
iAT2s Isolated alveolar epithelial type 2 cells
SFTPC Surfactant protein C
pro-SFTPC Pro-surfactant protein C
HLOs Human lung organoids
ASCsyy Adult stem cells
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CF Cystic fibrosis
IPF Idiopathic pulmonary fibrosis
CFTR Cystic fibrosis transmembrane regulator
HPS Hermansky-Pudlak syndrome
HPSIP HPS-associated interstitial pneumonia
GRHL2 Grainyhead-like 2
Lgr Leucine-rich repeat-containing G protein-coupled receptor
DATPs Damage-associated transient progenitors
ILDs Interstitial lung diseases
COPD Chronic obstructive pulmonary disease
GCM Goblet cell metaplasia
RSV Respiratory syncytial virus
HPIV3 Human parainfluenza virus type 3
SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2
ECM Extracellular matrix
PEGDA Poly (ethylene glycol) diacrylate
LADC Lung adenocarcinoma
CDH Congenital diaphragmatic hernia
PCD Primary ciliary dyskinesia
SB SB-431542
CHIR CHIR99021
GSK Glycogen synthase kinase
SAG Smoothened agonist
SU SU5402
MCC Mucociliary clearance
SARS Severe acute respiratory syndrome
MERS Middle East respiratory syndrome

Lung Development, Homeostasis and Regeneration

Different Cell Populations in Human Lungs and their Role in Lung Development

Introduction

The lung contains a wide variety of cell types, many of which are still poorly under-
stood or yet to be discovered. Various lung researchers distinguish these cells differ-
ently, and there is no universal method of cell distinction, but this chapter will focus
on the current research confirming 58 cell types in the human lung. These cell types
are placed into four different categories: epithelial, endothelial, stromal, and immune
cells [1, 2].
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Epithelial Cells

Epithelial cells make upmost of the body tissues, which line the internal and external
surfaces of the body [3]. There are 15 known epithelial cells in the lung. Twelve of
these cells reside in the airway, and three reside in the alveoli. The major epithelial
airway cell types are ciliated, undifferentiated columnar, basal, and secretory cells
[2, 4, 5]. The airway epithelium plays a pivotal role in the first line of defence
against unwanted particulates and pathogens. It also plays a role in the maintenance
of funnelling air into the airways to facilitate gas exchange [4, 6].

Within the 12 airway epithelial cell types, there are morphologically distinct types
with different functions [6]. Columnar ciliated epithelial cells possess cilia, which
aids in transporting mucus away from the lung into the throat [7]. Mucus cells, also
known as goblet cells, secrete mucin and create a mucus layer necessary for trapping
harmful substances in the airway lumen for secretion out of the lungs [8]. Serous
cells, also known as secretory cells, perform various functions with the secretions
they produce. These secretions keep the mucosa lining moist, humidify inhaled air,
and clean the inhaled air from unwanted particulates and organisms [9]. Basal cells
are stem cells capable of differentiating into themucus and ciliated epithelial cells [6].
They help the attachment of columnar epithelium to the basal lamina by providing
an area for cell-to-cell attachment [10]. Club cells are similar to basal cells in that
they also stem cells and can give rise to ciliated and secretory cells [6]. Club cells
produce surfactant proteins A, B, and D as well as metabolize xenobiotic compounds
[11]. Pulmonary neuroendocrine cells (PNECs) are a rare type of epithelial cell that
secrete biogenic amines and peptides, which play a major role in lung development
and airway function [6]. Another group of rare cells in the human lung are known
as ionocytes; these cells have a high expression of FoxI1 and the cystic fibrosis
transmembrane regulator (CFTR), which may play a role in respiratory diseases
such as cystic fibrosis (CF) [12].

The alveolus is where gas exchange occurs and contains epithelial cells that aid in
maintaining lung homeostasis [13]. These cells are alveolar epithelial type 1 (AT1),
alveolar epithelial type 2 (AT2), and AT2 signalling (AT2-s) cells [2]. AT1 cells
occupy 96% of the surface of the alveoli and, although take up a huge portion of
the surface, are extremely thin in order to allow passive gas diffusion [14−16]. AT2
cells synthesize surfactants to prevent the lungs from collapsing and differentiate
into AT1 cells to facilitate lung repair and maintain homeostasis [16, 17].

Endothelial Cells

Endothelial cells are key regulators of vascular homeostasis via the inhibition of
coagulation of the blood and accommodate blood flow levels within the lung [18].
These cells also enable efficient gas exchange in the lung by ventilation-perfusion
matching [19]. The human lung contains nine endothelial cells and is placed into five
different categories: artery, vein, capillary, bronchial vessel, and lymphatic cell [2].

Pulmonary artery endothelial cells (PAECs) and pulmonary vein endothelial cells
(PVECs) have similar functions but are twodistinct cells [20].Both cells have calcium
entry pathways and respond to inflammatory stimuli but at different rates [20]. There



2 Lung Organoids: A New Pathway into Lung Regeneration and Repair 25

are three types of capillary cells within the human lung: aerocyte (aCap), interme-
diate, and general capillary (gCap) cells [2, 21]. The main function of all capillary
cells of the lung is to perform leukocyte trafficking but each type of capillary cell
expresses different genes that regulate this process [21]. Capillary cells have roles
in hemostasis and lipid metabolism due to their production of pro-/anti-coagulants
as well as fatty acids, respectively [21]. Bronchial artery endothelial cells (BAECs)
and bronchial microvascular endothelial cells (BMVECs) play key roles in protein
transudation [22]. Lymphatic cells contribute to alveolar clearance for greater effi-
ciency in respiration [23]. These cells achieve this due to their close proximity to
major airways and blood vessels involved in the process of respiration.

Stromal Cells

The lung contains nine different types of stromal cells [2]. Stromal cells are non-
specific stemcellswith the ability to becomedifferent cell types such as chondrocytes,
osteoblasts, and adipocytes in order to replace old cells and aid in repair [24, 25].
Stromal cells also play a role in inflammation control and have been found in prema-
ture infants with lung issues such as acute respiratory distress syndrome (ARDS)
[26]. Their prevalence suggests that these cells take part in lung regeneration, repair,
and development.

Immune Cells

In the lung, there are 25 immune cell populations with various functions [2]. All
of these cells are important for healthy lungs but some of the most important are
neutrophils, macrophages, and lymphocytes which protect the lung by eliciting an
immune response geared to remove and destroy unwanted pathogens [27].

Neutrophils, also known as polymorphonuclear leukocytes, are producers of
highly reactive oxygen radicals that have been found to be involved in lung diseases
such as ARDS and acute lung injury (ALI) [28, 29]. They are some of the first leuko-
cytes to be activated by lung infection [29, 30]. Activated neutrophils phagocytose
pathogens, resolve inflammation, clear damaged neutrophils, and modulate immune
responses via cytokine release [28−30]. Macrophages work alongside neutrophils
by clearing the dead or dying neutrophils as well as pathogens [30, 31]. They also
release a wave of cytokines and chemokines to induce a rapid immune response by
recruiting other cells [30, 31].

There are various subpopulations of lymphocytes, each with their own specialized
functions, but their shared characteristics are their recruitment into the lung during
infection, their involvement in the immune response via inhibition or recruitment of
other cell types, and their production of anti-inflammatory signals [32, 33].

Cell Population Roles in Lung Development

Lung development is divided into five stages: embryonic, pseudoglandular, canalic-
ular, saccular, and alveolarization [34]. A general overview of lung development is
illustrated in Fig. 2.1. Within each stage, cells within the lung have specific functions
that help progress lung development. Most research on lung development has been
through studying mice; therefore, the following sections will briefly discuss mouse
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Fig. 2.1 Overviewof lung development. E= embryonic; P= postnatal day; pcw= post-conception
weeks. The developmental periods are placed in order of mouse lung development; human lung
development. Classical alveolarization illustrates how the primary septae contain a double capillary
network.

lung development and how it contrasts human lung development. The developmental
periods beginning with embryonic (E) or postnatal day (P) will refer to mouse lung
development stages and the developmental periods ending in post-conception weeks
(pcw) will refer to human lung development.

Embryonic: E9-E12; 4–7 pcw

Thedevelopment of the lungbegins in the anterior foregut endoderm,whichgenerates
the respiratory endoderm [35]. The respiratory endoderm is what generates progen-
itor cells within the lung and begins on embryonic day 9.0 [34]. These progenitor
cells, which are detected by the expression of Nkx2.1, then form the basic structure
of the trachea and two lung buds that will form the left and right lobes of the lung
[36]. The beginning of elongation of these lung buds into the mesenchyme is known
as branching morphogenesis [5, 34]. The proximal progenitors generate PNECs,
secretory cells, and goblet cells, whereas the distal progenitors produce AT1 and
AT2 cells [34].

Pseudoglandular: E12-E15; 5–17 pcw

This stage begins when the bronchial tree is in the shape of a tubular gland and
the epithelial tubules continue branching morphogenesis [5]. This is where maximal
branching occurs [37]. The first 20 generations of the airway form by the end of this
stage with primitive alveolar ducts [5, 38]. Columnar epithelial cells are found in
the proximal airway and cuboidal epithelial cells are found in the distal airway [39].
The cells in the proximal airway differentiate into ciliated, non-ciliated, goblet, and
basal cells. By the end of this stage, club cells are found in the trachea. Cells in the
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distal airway remain undifferentiated until branching morphogenesis is complete,
occurring as late as the saccular stage in the human lung [39]. Undifferentiated
Sox2/Sox9 double-positive cells are found in the distal epithelial tips in the human
lung. The surrounding smooth muscle cells (SMCs) in the distal lung appear to
play a role in branching morphogenesis due to recent studies showing a decrease in
Sox2+/Sox9+ cells coincidingwith decreased branching in fetal lung explants treated
with a toxin [37]. This does not occur in mouse lung development since the proximal
and distal lung cells are already expressing different Sox transcription factors in the
pseudoglandular stage [37].

Canalicular: E16-E26; 16–26 pcw

The canalicular stage is the beginning of the development of alveolar sacs [5, 38].
In this stage, the Sox2+/Sox9+ cells are no longer present in human lungs due to
the surrounding SMCs suppressing the Sox9+ cell population in the proximal region
[37]. At this stage, human lung development mirrors mouse pseudo glandular lung
development in that the proximal progenitors express Sox2+ cells and distal progen-
itors express Sox9+ cells [37]. The cuboidal epithelial cells differentiate into AT1
and AT2 cells [5]. The air-blood barrier forms with the help of the endothelium of
the capillaries coming into contact with AT1 cells [5]. AT2 cells begin to produce
surfactant as well as differentiate into AT1 cells [5, 36].

Saccular: E17-birth; 27–36 pcw

Branching morphogenesis stops in this stage and is the transitional stage into alveo-
larization [5]. This intermediate stage is when the distal branches narrow and form
small saccules (primary septae), which become alveoli (secondary septae) in the
alveolarization stage [5, 34]. The alveoli begin to grow, widen, and form [5]. The
primary septa is covered by predominantly AT1 cells with some AT2 cells filling
in the space. Smooth muscle cells begin to form a network of elastic fibres and
collagen fibrils. This network allows for the development of the alveoli by providing
a scaffold for continued lung maturation [5]. Mice are born during the saccular
stage and their lungs continue into the alveolarization stage after birth [37]. This
differs from humans: humans are born in the alveolarization stage. Both mouse and
human lung development continue after birth with the maturation of alveoli and the
alveolarization stage for both species are similar [37]. The following explanation
of alveolarization focuses on human lung development, but the main processes that
occur during these stages are nearly identical inmouse and human lung development.

Alveolarization: P4-P36; human birth- ~3–15 years

Alveolarization is the process by which primary septae become secondary septae [5,
40]. Alveolarization is separated into two stages: classical and continued alveolar-
ization [5]. Human classical alveolarization ranges from birth to about three years
and human continued alveolarization ranges from around two years of age to young
adulthood, estimated to be between 15 and 21 years [5]. Previous research believed
that human lung development concluded at around 8 years of age [41] but new studies
have shown that the number of alveoli continues to develop around 15 years of age,
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with some subjects showing alveoli development into young adulthood (21 years)
[42].

Classical Alveolarization: P4-P21; human birth-3 years.

The primary septae contain a double capillary network which is immature and inef-
ficient for gas exchange. This stage is where the secondary septa are formed by the
upfolding of one of the double capillary networks, resulting in secondary septae
with a single capillary layer [5, 34]. This single layer formation, a process known as
microvascular maturation, allows for the formation of alveoli [43, 44].

Continued Alveolarization: P14-P36; 3–21 years.

In continued alveolarization, microvascular maturation as well as classical alveolar-
ization persist within the secondary septae, a process known as angiogenesis [5, 34,
43, 45]. This process moves distally over time and the alveoli mature as the child
continues to grow. As the child gets older, alveolarization slows down.

The Challenge of Lung Modelling

The Complexity of the Human Lung

The lung is an extremely complex organ. Even with decades of research, researchers
are still uncovering new knowledge about how the human lung functions.

Lack of Lung Tissue

There is limited access to lung tissue, especially fetal tissue, which is crucial to better
understanding lung development. Most countries do not allow the use of human fetal
tissue beyond 20 pcws, limiting the research on later lung development [46]. Later
stages are typically studied using animal models, but various differences between
animal and human lungs limits what researchers can learn about the human lung.

Differences Between Animal Models and the Human Lung

The types of animals used as a substitute for human tissues are rats, rabbits, mice,
and rhesus monkeys [47−50]. There are various and significant differences between
these animal models mentioned and human lungs. This is not meant to discredit
the research performed on these animal models, but it is important to recognize that
these studies have their limitations. Scientists have looked for other options for better
understanding the human lung. The creation and use of lung organoids have become
a practical option for researchers to study the human lung. Lung organoids remove
two key issues in this field of research: the difficulty in obtaining human fetal lung
tissue as well as the contrasting lung organization and cellular composition with the
use of animal models.
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Origin of Lung Organoid Cultures

Several groups have attempted to generate human lung organoids that can reca-
pitulate essential features of human lungs in vitro. Generation of lung organoids
usually includes endoderm induction, anterior-posterior patterning, lung specifica-
tion, lung budding, branching morphogenesis, and maturation [51]. Currently, most
lung organoids are developed either from human pluripotent stem cells (hPSCs) or
stem cells isolated from primary tissues (Fig. 2.2). The resulting 3D human lung
organoids are able to recapitulate various cell types, structures and some functions
of mammalian lungs.

Fig. 2.2 Overview of the generation of primary stem cell- and hPSC-derived lung organoids.
Primary stem cells used for the generation of lung organoids are obtained from normal or diseased
lung biopsies. Tissues are processed into a single cell suspension and then cultured in Matrigel
to expand and form 3D organoid structures. hPSC-derived organoids are differentiated and devel-
oped from either ESCs or iPSCs. After differentiating into definitive endoderm and forming ante-
rior foregut spheroids by modulating various signalling pathways, the cells can be embedded into
Matrigel to further branch and form 3D lung organoids.
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Lung Organoids Generated from Primary Stem Cells

Several groups have made great efforts to generate human lung organoids from adult
stem cells or fetal stem cells. These primary stem cells have the capability of self-
renewal and differentiation into multiple cell lineages, which have great potential
in forming 3D lung organoids. 3D spheroid/organoid structures can be formed from
lung progenitors including basal cells [52] and AT2 cells [17].

Hild and Jaffe described a method to generate 3D airway organoids from primary
human airway basal cells [53]. Commercially available human bronchial epithelial
cells are used as basal cells and made into a suspension in 5% Matrigel. The cell
density is made to be 30,000 cells/mL and 20 μl are seeded onto each well of a
Matrigel-coated 384-well plate to have 600 cells/well. Matrigel is added to each well
on day 2 (48 h after incubation) and again on day 8. Lumen are observed after a
week and the spheres begin to show differentiation after two weeks. These organoids
give rise to basal cells, goblet cells, and multiciliated cells. Cultured bronchospheres
can be used as a great model to study human airway epithelium growth, repair, and
differentiation. Their ability to differentiate in as little as 14 days could be useful
for quickly making these organoids for experiments. The capability of culturing 3D
airway organoids in 384-well plates can also be applied to a high-throughput system
for drug screening.

Sachs et al. reported an alternative approach for long-term culturing of human
airway organoids from bronchoalveolar resections or lavage fluids [53]. Isolated
epithelial cells collected either from solid lung tissues or broncho-alveolar lavage
fluid are embedded in basement membrane extract (BME). A 3D airway organoid
with a polarized, pseudostratified airway epithelium containing basal, secretory, and
multi-ciliated cells are formed within several days. This relatively simple protocol
of generating airway organoids from a small amount of routinely obtained patient
samples (lavages, resections) provides a great model for drug screening and person-
alized treatment of lung diseases [53]. These organoids were stable for up to several
months and most retained the diseases, mutations, and tumours that the patients had.
This model showed that personalized medicine for lung disease could be made a
possibility with lung organoids.

Another adult stemcell-derivedhuman lungorganoidmodel is presented byTindle
et al. in which the generated lung organoids contain both proximal and distal airway
epithelial structures [54].Deep lungbiopsy samples frompatients are used to generate
a single cell suspension followed by 3D lung organoid formation in Matrigel. An
advantage of this human lung organoid model is that it recapitulates the proximal
and distal airways, including all 6 major lung epithelial cells: AT1, AT2, basal cells,
goblet cells, ciliated cells, and club cells. Besides culturing and maintaining in 3D
culture, these lung organoids can also be dissociated and cultured as a 2Dmonolayer
for viral infection studies. The 2D monolayer favoured differentiation from AT2 to
AT1 cells, making this a great model to studying this process or for studying AT1
cells.

Recent advancements made by Salahudeen et al. have described a method for the
development of long-term culture of human distal lung airway and alveolar organoids
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[55]. They developed a feeder-free, chemically defined strategy to culture two types
of human lung organoids derived clonally from single adult human AT2 cells or
KRT5+ basal cells. The generated alveolar organoids are composed of homogenous
AT2cells capable of differentiating intoAT1cellswhile airwayorganoids contain two
molecularly distinct distal airway basal cell subpopulations. Basal 1 cell population
was characterized with proliferation and developmental programming. Basal 2 cell
population was found to be enriched for structural, cytoskeletal, and calcium-binding
protein genes. Both types of organoids were found to be stable for at least six months.
The distal lung organoids were used to model COVID-19-associated pneumonia and
since they were found to be useful in recapitulating disease, could be helpful for
other lung diseases.

Youk et al. also described a long-term, feeder-free human 3D alveolar type 2 cell
culture (h3AC) model derived from primary human lung tissue, which has a great
potential in investigating the pathogenesis of SARS-CoV-2 and modelling other
respiratory diseases [56]. After dissociating human AT2 (hAT2) cells obtained from
distal parenchymal regions of healthy donor lungs and isolating through FACS using
AT2 cell surface markers, sorted hAT2 single cells were embedded into Matrigel
supplemented with growth factors that are essential in lung development to self-
organize into an alveolar-like 3D structure. It was found that the differentiation from
AT2 to AT1 cells was favoured in 2D culture. After six months, this 3D culture
maintained normal karyotypes, but eight-month cultures lost some of their ability to
form colonies as well as important markers such as the expression of pro-surfactant
protein C (pro-SFTPC). Over several passages, h3ACs could still maintain func-
tional mature hAT2 cells and were capable of AT1 cell differentiation when placed
into 2D culture. Established h3ACs show a substantial SARS-CoV-2 infection with
remarkable cellular and transcriptional changes post-infection compared to human
3D bronchial cultures generated previously by Sachs et al. and other 2D cell lines
models [53, 57]. This 3D hAT2 cell culture serves as a great platform for viral infec-
tion studies to help better understand virus-host interaction and subsequent immune
response in alveolar stem cells.

Lung Organoids Generated from Human Pluripotent Stem Cells (hPSCs)

Human lung organoids can also be generated from human pluripotent stem cells
(hPSCs), including embryonic stem cells (ESCs), and induced pluripotent stem
cells (iPSCs). Generation of lung organoids from hPSCs usually requires a series
of differentiation following developmental steps. In general, hPSCs are first speci-
fied to definitive endoderm (DE), followed by patterning to anterior foregut endoderm
(AFE) and finally induced to lung lineage specification andmaturation. These hPSC-
derived lung organoids have great potential in providing models for studying human
lung development, drug screening, and personalized medicine of various pulmonary
diseases.

The first successful generation of AFE from hPSCs was achieved by Green et al.
[58]. DE is induced from hPSCs with a high concentration of Activin A for four days
and is confirmed with expression of DE markers CXCR4, c-KIT, and EPCAM [59].
To obtain an enriched culture of AFE cells after DE induction, Green et al. blocked
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bone morphogenetic protein (BMP) and transforming growth factor beta (TGFβ)
signalling using NOGGIN and SB-431542 (SB), respectively. This group found that
the removal of Activin A allowed for an increase in SOX2 and CDX2 expression,
markers for anterior and posterior endoderm, respectively. They attempted to further
differentiate the AFE cells by replacing NOGGIN/SB-431542 with WNT family
member 3a (WNT3a), keratinocyte growth factor (KGF), fibroblast growth factor
10 (FGF10), BMP4, and epidermal growth factor (EGF). This led to the increase
of markers P63, NKX2.1, NKX2.5, PAX1, and a decrease in SOX2. The addition
of retinoic acid (RA) increased lung fate markers GATA6, FOXJ1, NKX2.1, and
FOXP2. This study was important for future researchers to continue the process of
developing lung organoids, as a majority of groups furthering the development of
lung organoids used these growth factors and markers to advance the maturation
of lung organoids. Huang et al. followed shortly by differentiating AFE cells into
lung and airway progenitors and was able to achieve a higher progenitor yield. The
differentiated lung and airway cells could further differentiate into basal, goblet, club,
ciliated, AT1, and AT2 cells in vivo and in vitro [60, 61]. They used the protocols
discussed by Green et al. to generate DE but used dorsomorphin (DSM) instead of
NOGGIN and added IWP2, a WNT inhibitor. Huang et al. optimized the protocol
inducing lung progenitors fromAFE by exposing the cells to the same growth factors
and the addition of CHIR99021 (CHIR), a glycogen synthase kinase (GSK) inhibitor.
This increased the amount of NKX2.1+ FOXA2+ cells by almost 20% [60]. The cells
were plated on fibronectin-coated plates and cultured with the previously mentioned
growth factors to induce the lung progenitors tomature. The concentration of RAwas
changed alongwith the culturing timewhich increasedFOXA2+NKX2.1+ cells from
less than 40% to over 80%. This continuation of Green et al.’s research significantly
improved the maturation of cells into AFE, allowing for the differentiation into lung
and airway cells.

Dye et al. reported a protocol to generate 3D lung organoids with a proximal
airway-like structure along with distal alveolar-like epithelial structure composed of
the basal, ciliated, club and alveolar cells [62]. Cells were treated with Activin A,
followed by NOGGIN/SB, and then the addition of CHIR, FGF4, SB, and NOGGIN
to generate AFE. These AFE cells were then stimulated with a hedgehog (HH) while
inhibiting FGF using Smoothened agonist (SAG) and SU5402 (SU), respectively
[62]. This resulted in spheroids that were NKX2.1+ FOXA2+ which were placed in
Matrigel. These spheres were added to decellularized human lungmatrices, allowing
for multiciliated structures. They called these human lung organoids (HLOs) and
HLOs to contain a small population of AT1 and AT2 cells and alveolar progenitor
cells. Human lung organoids resemble human fetal lungs based on their global tran-
scriptional profiles, making them a great model system for human lung development
[62].

Chen et al. described a different strategy to generate lung bud organoids (LBOs)
that can form airway and early alveolar structures to recapitulate human fetal lung
development [63]. hPSCs were differentiated into DE and AFE in the same manner
as shown by their previous work [60]. When adherent AFE cells were induced to
ventral AFE, cell clumps spontaneously formed LBOs and expanded further when
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treated with FGF10, FGF7, BMP4, RA, and CHIR. These LBOs were cultured in
suspension until day 20–25 followed by embedded in Matrigel for further genera-
tion of branching morphogenesis and maturation to lung and airway epithelial cells.
LBOs can be cultured for an extended period of time, with maintenance capabilities
in culture of more than 6 months. Both structural and transcriptomic data indicate
that day 40 LBOs had reached the late second trimester of human gestation [64,
65]. LBOs were also transplanted under the kidney capsule of immunodeficient
mice to determine if they could recapitulate lung development in vivo. This led to
exhibited significant growth of airway structures undergoing branching morphogen-
esis showing proximodistal specification with evidence of early alveolar structures
demonstrated by AT1 and AT2 cell markers [63].

McCauley et al. established a protocol to generate functional and expand-
able airway epithelial organoids [66]. Similar to other lung organoid generation
approaches, hPSCs are first differentiated to DE, AFE, and then induced specifi-
cally to NKX2.1+ lung epithelial progenitors. These lung progenitors are then puri-
fied through FACS using cell surface markers CD47 and CD26 to sort out a high
expression of CD47 and low or no expression of CD26. This is because cells that
are CD47highCD26low have a high-level NKX2.1+ cells. The isolated progenitors
can then be re-plated in Matrigel with FGF2, FGF10, corticosteroids, and cyclic-
AMP to form 3D airway epithelial organoids. These organoids express secretory
lineage markers and airway basal cell markers. In addition, Kotton’s group also
developed a strategy to generate isolated hPSC-derived alveolar epithelial type 2
cells (iAT2s), which can form 3D alveolospheres [67]. Using surfactant protein C
(SFTPC) as a specific AT2 cell marker and NKX2.1 as a lung progenitor marker
to establish SFTPC/NKX2.1 multifluorescent reporter hPSC lines, Jacob et al. puri-
fied SFTPC+ iAT2s differentiated from NKX2.1+ progenitors. This confirmed that
SFTPC+ cells derive from NKX2.1+ cells. iAT2s were shown able to self-renew
and proliferate to form 3D alveolospheres with mature AT2 functions, including the
formation of lamellar bodies and the secretion of surfactants. This was in contrast to
primary AT2 cells, which required mesenchymal feeders in order to form spheres.
This was an important discovery because primary AT2 cells are difficult to maintain
undifferentiated [68], allowing for alternative methods for studying AT2 cells.

Miller et al. designed a protocol to generate lung organoids from feeder-free
hPSCs, specifically hESC cell lines H1 and H9 along with hiPSC cell lines UM63-1
and UM77-1 [51]. This protocol is capable of forming bud tip organoids as early
as day 22 and HLOs after 50 days. Briefly, to generate both organoids, hPSCs are
directed to the endoderm followed by foregut spheroids. These spheroids float into
the media, are placed into Matrigel, and cultured for two more weeks to generate
bud tip progenitor organoids. If the bud tip progenitor organoids are not passaged
and allowed to continue growing in Matrigel, they become budded structures. Those
that are passaged form bud tip progenitors. The budded structures can become bud
tip progenitors if passaged as well. The bud tip progenitor organoids are useful for
research involving undifferentiated cells, as they are similar to the human fetal lung
progenitors found on the branching buds [51]. Human lung organoids, found to be
similar to the human fetal lung, containedmatured alveolar cell types such asAT1 and
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AT2 cells as well as mesenchymal cells. After being in culture for over 65 days, they
will also be positive for basal stem cell marker P63+. Bud tip progenitor organoids
are positive for SOX2 and NKX2.1 and, if passaged, will be SOX2+ SOX9+ [51].
Budded structures of these progenitor organoids undergo bifurcation and are positive
for club cells, goblet cells, and pro-surfactant protein C.

Recently, a different protocol was described by Carvalho et al. to direct hPSC
differentiation into mature lung and airway epithelial cells [69, 70]. By generating
NKX2-1+ lung progenitors first in 2D cultures followed by embedding cells in
collagen I without inhibiting glycogen synthase kinase 3, they could generate a
more mature multilineage of alveolar and airway cells including AT1 and AT2 cells
as well as basal, ciliated, club and neuroendocrine cells [69, 70]. Notably, KRT14+
NGFR+ (a mature basal cell marker) basal cells are formed following this protocol,
which could also be easily isolated and expanded for subsequent basal cell culture.
This protocol was built off of their previous work [61]. They used collagen I in place
of Matrigel due to the fact that it could allow for a broader range of lung lineages but
found that it produced similar lineages to protocols that use Matrigel. They found
that NOTCH signalling induced a distal cell fate whereas WNT signalling induced
a proximal cell fate. When cells that were placed in collagen I did not have GSK3
in culture, the cells matured into AT1 and AT2 cells. Better understanding signalling
pathways involved in lung maturation has been crucial to better understanding lung
development and the specification of different lung areas for experimentation.

Comparison Between hPSC- and Primary Stem Cell-Derived Lung Organoid
Models

Several protocols have been developed using either primary stem cells, including
adult stem cells (ASCs) and fetal stem cells or hPSCs to generate 3D lung organoids
that can mimic the morphological and functional features of the human lung in vitro.
Both organoid generation systems have their own advantages and limitations.

Human primary stem cell-derived lung organoids are usually generated frombiop-
sies directly isolated from healthy or diseased patients’ lungs. These organoids are
often limited by the shortage of primary tissues and difficulty in accessing them.
Heterogeneity among donors and unclear information of prior culture/preservation
conditions of primary tissue present as limiting factors in primary stem cell-derived
organoids. An advantage of using lung organoids from primary human tissues is that
they are valuable for rare diseases such as CF to allow for drug modelling and better
understand how the CFTRmutation will affect a particular patient [71]. On the other
hand, hPSC-derived organoids can be used continuously to generate different models
once a protocol is established. There is no concern as towhere to obtain samples since
they are derived from cells that can be purchased commercially. These organoids can
be useful for a wide variety of diseases and have been found to recapitulate diseases
successfully.

Another difference between primary stem cell- and hPSC-derived organoids is
that primary stem cell-derived organoids are preserved to differentiate towards a
certain lineage, such as proximal/airway or distal/alveolar lineage, and cannot trans-
differentiate into others by just changing the culture environment. In contrast, the
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lineage determination of hPSC-derived organoids largely depends on the external
manipulation of signalling pathways and components in the culture medium. There-
fore, hPSC-derived lung organoids usually contain a mixture of proximal and distal
cells with a greater cellular heterogeneity, while ASC-derived lung organoids are
limited to certain lineages depending on the primary tissue used. Nevertheless, the
flexibility and uncertainty in hPSC differentiation can raise issues of certain lineage
specification and inclusion of unwanted cell types in the culture. Both methods are
complementary and can be used depending on the end goal of the experiments. ASC-
derived lung organoids are useful to study specific cell types impacted by a particular
lung disease. hPSC-derived organoids offer a more versatile approach to studying
a wide range of cells and how a wide variety of diseases impacts the proximal and
distal cell types.

An important advantage regarding the use of hPSCs is their ability to be easily
genetically modified: isogenic cell lines with specific mutations can be generated
using CRISPR-Cas9 and these genetically modified hPSC-derived organoids can
then be used to model multiple respiratory diseases such as CF [72] and idiopathic
pulmonary fibrosis (IPF) [65]. CF is known to be caused by mutations in the CFTR
[73]. A study using a CRISPR-mediated gene editing approach successfully targeted
and corrected the endogenous CFTR locus in CF iPSCs [72]. The gene-corrected
iPSCs could later be differentiated into mature airway epithelial cells with normal
CFTR expression and function [72]. Using this method of genetically modifying
hPSC-derived lung organoids,more studies of lung diseases can be done.An example
of a potential disease to study could be Hermansky-Pudlak syndrome (HPS), a rare
autosomal disorder. patients withmutations inHPS genes have been found to develop
HPS, specifically those with a mutation in the gene HPS1 [74]. They found that
the mutation in HPS1 showed a high incidence of developing pulmonary fibrosis
[74]. Mutations in some HPS associated genes can cause HPS-associated interstitial
pneumonia (HPSIP), which resembles IPF [74]. HPS-associated mutations could
be introduced into hPSC-derived 3D lung organoids using CRISPR-Cas9 to study
the potential pathogenesis of IPF caused by HPS mutations [65]. It would be more
difficult to obtain primary tissue from patients with HPS, but if possible, the research
could also be performed on primary tissue to better understand how this mutation
impacts the lungs.

Currently, thematuration of hPSC-derived lungorganoids to adult stages remains a
challenge. Most organoids show a transcriptome profile similar to embryonic devel-
opmental stages. Adult airway-like structures can only be generated after in vivo
xenotransplantation, and most in vitro hPSC-derived lung organoids cannot mature
beyond the second trimester of human gestation.While hPSC-derived lung organoids
are closer to the human fetal lung, primary stem cell-derived lung organoids recapit-
ulate features of adult lungs better in terms of maturity. A combination of primary
stem cell- and hPSC-derived organoid systems would provide a more comprehensive
understanding in human lung development and regeneration. Both primary tissue and
hPSC-derived lungorganoids have their advantages anddisadvantages, but ultimately
both are crucial to the advancement of lung research.
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Mouse and Human Lung Difference

Animal models, especially mouse models, have greatly improved our understanding
in lung development and disease. Mouse genetic gain- and loss-of-function studies
enable us to learn more about lung development and signalling pathways control-
ling morphogenesis [40]. Mice lung injury models can reproduce some key features
in complex human pulmonary diseases such as ALI and pulmonary fibrosis [75].
Although mice have been widely used for studying human lung development, func-
tion, and various respiratory diseases, it is worth noting that there are significant
interspecies differences between mouse and human lungs. Given the significant
differences, mouse models cannot fully recapitulate human lung physiology nor be
applied to human lung development and disease studies. Some promising findings
from mouse models fail to translate into effective therapeutic targets in subsequent
human studies [76].

Cellular Composition

In both mouse and human lungs, the trachea and proximal conducting airways are
lined by pseudostratified columnar epithelium, and the peripheral conducting airways
are lined by cuboidal epithelium. Despite the similar structure in airway epithelia,
the relative proportions of different types of cells along this proximal-distal axis of
the airway vary between human and mouse lungs. In addition, this complex pseu-
dostratified epithelium structure extends to terminal bronchioles in humans, whereas
this structure is limited to the trachea and more proximal airways in mice. In human
lungs, the more proximal intrapulmonary airways are lined by tall, pseudostratified,
columnar epithelium composed of basal, ciliated, club, serous, mucus, intermediate,
and neuroendocrine cells. These airways also exhibit abundant submucosal glands.
In mouse lungs, however, the more proximal intrapulmonary conducting airways
are lined by low columnar epithelium composed mainly of ciliated and club cells
with some clusters of neuroendocrine cells. No basal cells and only a few mucus
cells are found in the mouse airways [77]. Basal cells marked by the expression of
transcription factor TP63 are only found in the mouse trachea, while the distribution
of these cells extends to the bronchi in human lungs [52].

Architectural Organization

Both human and mouse lungs consist of multiple lobes but vary in numbers and
organization. Mouse lungs have one lobe on the left and four on the right, while
human lungs have two lobes on the left and three on the right [78]. For each lobe in
the human lung, extensive interlobular and segmental connective tissues are sepa-
rated into individual lobules or segments, while no such subunits exist in the mouse
lung [79]. The alveoli and blood-air barrier are smaller and thinner in mouse lungs
compared to that of humans [80].
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Molecular Characteristics

Differences in the expression of several marker genes have been observed during
human and mouse lung development. SOX2 and SOX9 are two essential transcrip-
tion factors in lung development. During the pseudoglandular stage in developing
mouse lungs, there is a clear separation between Sox9+ tip and Sox2+ stalk cells.
These cells are formed and regulated through multiple signalling mechanisms [81].
This tip-stalk demarcation can also be seen in human fetal lungs; however, some
levels of SOX2 are also found to be expressed with SOX9 in human embryonic lung
distal tip epithelium. This co-expression pattern is never found in mice while the
SOX2+ SOX9+ progenitor population persists during the pseudoglandular stage up
to 16 weeks’ gestation during human lung development [82]. The maintenance of
this SOX2+ SOX9+ progenitor population is also proposed for proper branching
morphogenesis in the human lung [37].

Lung Organoids: Potential Applications in Lung Repair
and Regeneration

Lung disease is a major cause of morbidity and mortality worldwide. For many
patients with end-stage lung diseases, lung transplantation remains the only available
therapy. However, the number of patients listed for lung transplantation surpasses the
number of suitable organ donors. Understanding the cellular and molecular mecha-
nisms driving lung regeneration and repair is crucial for the development of novel
therapeutic approaches, with the ultimate goal to repair the damaged lung in situ
or regenerate the damaged lung for transplantation. The lung is a highly quiescent
organ, previously thought to have a relatively limited reparative and regenerative
capacity [83]. It is now known that following injury, the lung has a robust ability
to repair and regenerate through distinct cell types. The ability to replace defective
cells with cells that can engraft, integrate, and restore lung functions could be the
potential cure of a number of lung diseases (Fig. 2.3).

1. Proximal airway repair and regeneration

The proximal airways serve as the first line of defence in the respiratory system
as they are exposed to frequent insults from the environment. They consist of the
trachea: a pair of primary bronchi and many bronchioles of various sizes generated
through the branching morphogenesis process [84]. The proximal airways are lined
by a pseudostratified columnar epithelium consisting primarily of three types of
epithelial cells, (basal cells, club cells and ciliated cells) that play crucial roles in
tissue repair, mucociliary clearance (MCC), and host defence. They also contain a
small number of neuroendocrine cells, goblet cells, ionocytes, and tuft cells [12, 85–
88]. The primary method of defense against the external environment is mucociliary
clearance which requires the cells involved to be working properly [89]. If MCC
in the lungs is nonfunctional or damaged, the lungs become vulnerable to other
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Fig. 2.3 Lung organoids: potential applications. Asmentioned earlier, lung organoids can be estab-
lished directly from patients via fresh biopsies and resected lung tissues, blood samples, and skin
samples. Lung biopsies and resections contain adult stem cells (ASCs), whereas blood and skin
samples contain induced pluripotent stem cells (iPSCs), which can be reprogrammed into the
desired cell type. Regardless of the type of sample obtained, all can be differentiated towards the
desired lineage. Lung organoids can also be derived from embryonic stem cells (ESCs). Lung
organoids provide unique opportunities for (1) basic research: including studies of lung devel-
opmental processes, responses to external stimuli and stress signals, cell-to-cell interactions and
mechanisms of stem cell homeostasis; (2) drug screening: in which patient-derived organoids can
be used to predict how patients will respond to drugs; (3) disease modelling: to understand the
mechanisms of lung diseases such as infectious diseases, inheritable genetic disorders, and cancer;
(4) regenerative medicine: their capacity to engraft and survive in vivo; their ability to self-organize
to complex structures resembling mini-organs ex vivo; and their potential to generate bioengineered
tissue makes them optimally suited for regenerative medicine.

infections, making treatment even more challenging. An example of the MCC in the
lungs not functioning properly since birth is in primary ciliary dyskinesia (PCD), a
genetic disorder that causes motile cilia dysfunction crucial for MCC [89, 90]. These
patients are more likely to get respiratory infections and are at risk for severe lung
damage to the point of needing a lung transplant [91]. Examples of illnesses that
cause damage to the lungs are the previous outbreaks of severe acute respiratory
syndrome (SARS) and Middle East respiratory syndrome (MERS) that have shown
to have long-term consequences on patients [92−94]. This raises concerns for the
current SARS-CoV-2 pandemic since there is no way to obtain evidence for long-
term consequences for patients at the moment. This concern supports the idea of
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utilizing all possible ways of studying lung disease and repair; lung organoids can
be pivotal in helping the lung field answer important questions.

The mouse trachea closely resembles the structure of human proximal airways,
providing a valuable tool to study airway regeneration. Pioneering studies fromRock
et al. [52], have shown that basal cells function as proximal airway epithelial stem
cells. During physiological cell turnover or after injury, basal cells can self-renew and
differentiate into various airway epithelial cell types for maintaining the epithelial
integrity of proximal airways [52, 95]. Basal cells in the proximal airways are the
major stem cell population that self-renew and, when necessary, give rise to multiple
cell types such as secretory, goblet, and multi-ciliated cells [52, 95–97]. However,
striking differences are also found between mouse and human lungs, as we discussed
in the previous section, with the most relevant being the presence of basal cells [98].
In mice, basal cells reside in the main trachea, whereas, in humans, this population
extends for several airway generations. Unlike human lungs, the intrapulmonary
airways of mouse lungs are not pseudostratified and lack basal cells, highlighting the
interspecies difference [76]. Organoids derived from human cells could provide an
in vitro model for regenerating the mucociliary epithelium from basal cells. Using
human lung organoids would provide a better model and give researchers more
confidence to translate their results to patient care.

To model proximal airway functions, lung organoids have been derived from
human and mouse basal cells. Depending on their origins, basal organoids derived
from tracheal cells are known as tracheosphere while those from from large airway
cells are called brochospheres in humans [52, 99–101]. These organoids have been
used to test regenerative mechanisms proposed from in vivo studies. They can also be
used to screen for drugs, small molecules, and molecular pathways participating in
pulmonary cellular plasticity and lineage outcomes, and regulating crucial epithelial
cell functions. For instance, Gao et al., used human basal cells derived organoids
to identify a central role for the transcription factor grainyhead-like 2 (GRHL2)
in coordinating barrier function and differentiation. Using CRISPR/Cas9 genome
editing, they further revealed the transcription factor ZNF750 as a new component
of the ciliogenesis pathway in the human lung [102]. If more lung organoids are used
to study human disease, they will be the main method to fill the gaps of knowledge
that hold research back from finding cures to lung diseases.

While studies have shown that basal cells are essential in repairing the damaged
airway epithelium, other epithelial cells also participate in tissue repair as faculta-
tive stem/progenitor cells. Studies in mice have shown that club cells that reside
throughout the airway epithelium are facultative progenitor cells [103]. Studies have
shown that club cells can directly differentiate into mucus-secreting goblet cells by
IL13 stimulation in both mice and humans, especially in more proximal lung regions
[104]. Another example is PNECs which are neurosensory cells that spread sparsely
throughout the bronchial epithelium and studies have shown that PNECs can self-
renew and differentiate into club cells and ciliated cells following lung injury [105,
106]. Lung organoid technology can be applied to investigate the functions of these
cells. For instance, using a 3D co-culture organoid system, Lee et al., demonstrated
that Lgr5 and Lgr6 are markers of mesenchymal cells in the adult lung. Moreover,
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these cells play important roles in direct airway differentiation of Scgb1a1+ progen-
itors and alveolar regeneration [107]. Organoid culture provides a model system for
studying different airway epithelial stem/progenitor cells during repair, testing the
effect of individual cytokines and growth factors on the proliferation and differentia-
tion of secretory cells under pathological conditions, and identifying subpopulations
of cells with enhanced regenerative potential.

2. Alveolar repair and regeneration

The alveolar epithelium of the lung is composed of two distinct epithelial cell types.
AT1 cells cover 95% of the surface area of the alveoli and perform the function
of gas exchange [108]. AT2 cells are characterized by the production of pulmonary
surfactant proteins,which are essential for reducing the surface tension of the alveolar
surface area to prevent the lungs from collapsing upon every breath [23, 108–110].
The alveolar compartment remains largely quiescent in the uninjured lung, and most
cells within this niche exhibit a relatively slow turnover [88]. After lung injury,
multiple alveolar cell types are able to proliferate and, when the repair is effective,
alveolar structure and function are both restored [88]. Although the function of AT2
cells involves repair, this may not be enough to treat certain lung diseases where
the cells no longer perform their standard roles. This is why research is still being
done to unlock how these cells fulfill their many duties as the progenitors of the lung
and recent studies have determined that this mechanism may be due to verying cell
populations.

AT2 cells are the alveolar epithelial stem cells: they can react to injury involving
both activations of self-renewal and differentiation into more mature cell lineages
[109]. AT2 cells can form alveolospheres and differentiate into organoid structures
that contain both AT2 and AT1 cells [17]. Within the population of AT2 cells, there
are subpopulations that play certain roles both in the human lung and organoids. A
subset of AT2 cells that express the transcriptional target of Wnt signalling, Axin2,
were identified by Zacharias et al. in the human lung and were found to be respon-
sible for generating the majority of AT2 cell growth in human alveolar organoids
[111]. Another group identified a population of adult distal lung epithelial progen-
itor cells with low Wnt/β-catenin activity with strong organoid-forming capacity,
suggesting their role in the alveolar epithelial repair [112]. A recent study identi-
fied the damage-associated transient progenitors (DATPs) via lung organoid models
[113]. TheDATPs are distinctAT2-lineage populations that are required forAT2 cells
to differentiate to mature AT1 cells [113]. Alveolar organoids have also been used to
study trophic interactions between different cell populations in the distal airways. For
instance, alveolar organoids have been recently used to provide functional evidence
that multiple signalling pathways originate in Pdgfra+ lipofibroblasts to influence
AT2 cell self-renewal and differentiation into AT1 cells through mediating multiple
signalling, including BMP, FGF, and WNT signaling [114−116]. These discoveries
are pivotal to better understanding how AT2 cells perform their endogenous func-
tions. Once fully understood, these subpopulation roles could bemanipulated in such
a manner that could aid in repair and regeneration.
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The contribution of AT1 cells to alveolar epithelial repair has not been studied
extensively. A small subgroup of Hopx+AT1 cells can dedifferentiate into AT2 cells
and thus participate in alveolar repair [117, 118]. Further in-depth characterization
of these AT1 cells is needed to better understand the regulatory mechanisms guiding
AT1 to AT2 transdifferentiation. Lung organoids can provide a useful model for
identifying the cell types to increase insights into alveolar epithelial stem/progenitor
cells during a repair. It is known now that cell populations such as immune cells are
activated or recruited to the alveolar niche following lung injury. More complex lung
organoid cultures incorporating immune cells will allow us to study the contribution
of these niche cells that drive alveolar repair.

3. Recapitulating lung damage, repair, and fibrosis with lung organoids

While lung organoids are still in the early stage of development compared to animal
models or conventional cell lines, recent studies using lung organoid models have
largely advancedour understandingof the underlyingpathogenesis of distinct chronic
lung diseases [119].

4. Idiopathic pulmonary fibrosis

IPF is themost commonand lethal formamong interstitial lung diseases (ILDs) [120].
IPF is characterized by progressive fibrotic scarring in the lung tissue surrounding
the air sacs, which ultimately leads to dyspnea. The etiology and pathogenesis of this
disease are unclear [121, 122] and existing drugs can only slow disease progression
[123, 124]. Lung transplantation is an option for IPF patients and has been found to
extend their life but lung donors are limited, leading to extensivewait timeswhich can
cost the life of the patient [125, 126]. These limitations have motivated researchers to
establish in vivo models to help mimic IPF in hopes of gaining insight to how to treat
it. Models such as the bleomycin-induced mouse model and others have some gross
similarities to human IPF but they fail to faithfully reproduce the pathophysiology
of the disease [127]. Therefore, understanding the common pathways and patho-
genetic mechanisms of lung fibrogenesis using representative models is critical for
developing efficacious therapies [121].

Human pluripotent stem cells (hPSCs) have been shown to generate functional
alveolar epithelial cells [67]. CRISPRgenome editing has been used to introduce IPF-
related genes in hPSC-derived lung organoid cultures which lead to the formation of
abnormal cellular and morphological structures, including enhanced accumulation
of mesenchymal cells and collagen, recapitulating important features of IPF [63,
65]. This provided a platform to identify pathogenic mechanisms of IPF that are
likely clinically relevant in vitro. Using 3D pulmospheres from patients with IPF,
Surolia et al. revealed the role of vimentin intermediate filaments in restricting the
invasiveness of IPF fibroblasts [128]. The development of 3D organoidmodels can be
adopted tomodel some forms of lungfibrosis, humandistal lung structures, functions,
and cell and matrix interactions opening the possibilities for high-throughput in vitro
drug efficacy and toxicity screening assays.
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5. Chronic Obstructive Pulmonary Disease

Chronic obstructive pulmonary disease (COPD) is a leading cause of morbidity
and mortality worldwide. The pathogenesis of COPD has been linked to cigarette
smoking and, more generally to environmental exposures, i.e. air pollution and toxi-
cants.Agenetic component, autoimmunity, and accelerated cell senescence are partly
involved in the pathogenesis of COPD. COPD is a complex disease that can present
with emphysema, chronic bronchitis, or both. In particular, the presence of mucus
plugging associated with goblet cell metaplasia (GCM) contributes to cough, sputum
production, and airway obstruction [129]. Most of the animal models employed for
the study of COPD develop emphysema but not bronchitis and the knowledge we
have on the mechanisms involved specifically in the origin of the overproduction of
mucus is still limited.

Despite advances in the field, there is still much to be learned about cellular
and molecular mediators uniquely involved in the onset of GCM in COPD, and the
identity of stem/progenitor cells in the human lung and how deficient repair may
contribute to COPD. Recent data suggests a significant amount of plasticity in the
lung, and the source of cells contributing to the increased numbers of goblet cells
in COPD is currently not clear. Lung organoids may be a useful model to explore
these questions. For instance, bronchospheres have been used to show that NOTCH
inhibition limits goblet cell metaplasia in vitro [101]. Using lung organoid cultures,
a previous study showed that upregulated noncanonical WNT signalling, through
increased WNT-5a and -5b contributes to emphysema by negatively regulating alve-
olar repair [130]. Using alveolar organoids, Jacob et al. demonstrated that temporal
regulation ofWnt activity could promote maturation of iPSC-derived AT2 cells [67].
These studies provide evidence supporting the use of alveolar organoids to explore
the regulation of Wnt signalling in alveolar epithelial progenitor cells of COPD
patients and to discover new treatment strategies.

6. Lung infection

Viral infections in the distal lung have been implicated in the progression of pneu-
monia to ARDS [131]. Respiratory viruses, including SARS-CoV-2, target lung
epithelial cells, including AT2 cells [132]. Influenza viruses target AT2 and AT1 cells
after intratracheal infection in mouse models [133]. However, there are currently no
reliable models that recapitulate the phenotypes of lung infections in vitro. Lung
organoids derived from hPSCs offer remarkable models to study the impact of
different viruses including measles virus, respiratory syncytial virus (RSV), and
the human parainfluenza virus type 3 (HPIV3) infections [63, 64]. RSV mainly
causes respiratory tract infection in infants, and no vaccine or effective drugs have
been developed yet [134]. RSV-infected hPSC-derived lung organoid cells led to
detachment and shedding of infected cells into the lung organoid lumens recapitu-
lating important features of the RSV-infected human infant lung [63, 64]. HPIV3
is a prevalent cause of lower respiratory tract disease in children. Consistent with
clinical observations, HPIV3-infected lung organoids showed no detectable change
in tissue integrity nor shedding of infected cells into the lumen [64]. Importantly,
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whole-genome sequencing of HPIV3 in the lung organoids was found to be identical
to the virus isolated in the clinical settings, suggesting that no selective pressure
exists on the virus in the organoids [64]. The virus behaved similarly in the organoid
models as it normally does in human infant lungs, indicating that the organoids are an
optimal model for this particular infection. Lung organoids may be the key to gener-
ating a vaccine or treatment for HPIV3which would be a significant accomplishment
in the lung research field. Other viruses have been studied with lung organoids and
are found to be as successful as well.

Influenza virus infection represents a major threat to public health worldwide.
Zhou et al., developed human ASC-derived airway organoids (AOs) which can
morphologically and functionally simulate humanairway epithelium.These organoid
cultures provide a reliable model to predict the infectivity of different human
influenza virus can potentially provide a universal platform for studying the biology
and pathology of the human airway [135].

Finally, the current COVID-19 pandemic caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) targets lung epithelial cells, including AT2
cells [132, 136]. Lungorganoids aswell as alveolar and airway spheroids that strongly
recapitulate the lung structure and cellular environment have been used to uncover the
pathogenesis and screen efficient therapeutic agents for COVID-19 [55, 137–139].
These studies suggest lung organoids may serve as an authentic model for respira-
tory viral pathogenesis, providing a valuable tool to study host-pathogen interaction,
infection in the lung, and mechanisms of how viruses spread in the lung.

7. Eyes to the future: Bioengineering of the whole lung

To date, the only available treatment for patients with a variety of end-stage lung
disease remains lung transplantation. Approximately 5,000 lung transplants are
performed annuallyworldwide, with equal numbers of patients onwaiting lists [140].
However, there are not enough donor lungs to meet current or anticipated future
needs. To meet the growing demand for transplants, a promising area of research is
the regeneration of pulmonary tissue using ex vivo bioengineering methods.

Bioengineering of thewhole lung ex vivo for transplantation is extremely complex
due to the complexity of the lung. With the progress of regenerative medicine and
stem cell biology, decellularized lungs have been used as native scaffolds for seeding
cells to regenerate the lung. Early studies were mainly performed using mouse lungs
and several methods were later developed to decellularize the lungs of rats, pigs, non-
human primates, and humans to subsequently recellularize this scaffolds [141−146].
However, most of these strategies focus on epithelial cells without the endothelializa-
tion of decellularized lungs [147]. Thus, one of the major challenges in whole lung
bioengineering remains the generation of functional pulmonary vasculature. More-
over, given the limit access of biological materials as scaffolds, an emerging idea is to
create a hybrid lung scaffold that combines extracellular matrix (ECM) components
with synthetic scaffolds. Finally, lung organoids combinedwith bioengineering could
generate more complex and mature organoids that can be applied to developmental
biology, personalized medicine and lung regeneration.Wewill discuss in more detail
in the following section.
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Lung Organoids and Personalized Repair

Lung diseases impose a great socioeconomic burden due to their high morbidity
and mortality rate worldwide. With the limited effective treatments available in the
last decade, developing novel therapies for pulmonary diseases is pressing. Lung
organoids serve as one of the most promising modelling approaches to study patient-
specific therapy and personalized medicine.

Bioengineered Lung

A growing number of tissue engineering techniques widens the potential of estab-
lishing more physiological relevant and functional human lungs ex vivo for trans-
plantation. A common method to manufacture whole lung tissue ex vivo is to first
derive decellularized 3D lung scaffolds from various species such as humans, pigs
and rodents, and then reseed the scaffolds with patient-derived stem cells or primary
lung progenitor cells [147]. The use of 3D scaffolds is beneficial as the native archi-
tecture of the lung ismostly retained following decellularization compared to de novo
lung bioengineering [147]. A study done by Ghaedi et al. had shown the potential
in human lung regeneration and lung transplantation via repopulated decellularized
human and rat lungs with iPSC-derived epithelial progenitor cells [148]. The epithe-
lial progenitor cells were found to perfuse in both airway and alveolar compartments
of decellularized lung scaffolds to form a bioengineered ex vivo lung [148]. This lung
regeneration approach could be applied in clinics by combining a native matrix scaf-
foldwith patient-derived cells to generate a personalized lung for lung transplantation
therapies.

Wilkinson et al. developed another scaffold-based approach to generate self-
assembled human lung organoids with the use of functionalized alginate beads under
rotation in a bioreactor [149]. The engineered 3D lung organoids contained multiple
cell types including pulmonary fibroblasts, small airway epithelial cells, and human
umbilical vein endothelial cells [149]. By scaffolding mesenchymal cells into the
interstitial space between hydrogel beads, this engineered lung organoid could reca-
pitulate the anatomy of distal lung alveolar sacs [149]. They also showed the capa-
bility of this scalable iPSC-derivedmesenchymal organoid culture approach tomodel
IPF. Having the advantage of assembling organoids through different combinations
of various types of cell-coated scaffold units, this organoid generation system could
be personalized for patient-specific disease modelling and drug discovery [149].

3D-Printing Facilitated Precision Tissue Engineering

With the development of 3D printing technology, artificial organs with patient-
specific spatial architecture have emerged as an attractive alternative for precision
medicine. Customized implants with patient-specific size and shape can be accu-
rately manufactured by 3D printing. These customized implants can perfectly fit
the defect sites of patients to significantly reduce surgical operation time [150].
Grigoryan et al. have developed a bioinspired alveolar model using poly (ethylene
glycol) diacrylate (PEGDA) and a stereolithographic printer, which contains regions
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reminiscent of native alveolar air sacs and alveolar buds [151]. This distal lung
model contains functional intravascular oxygen transport through measuring blood
oxygenation entering and leaving the model [151]. Another research group gener-
ated a bio-3D-printed artificial trachea using a Regenova bio-3D printer to create
a scaffold-free tubular tissue from multicellular spheroids [152]. After generating
multicellular spheroids from the mixture of rat chondrocytes, endothelial cells, and
mesenchymal stem cells, the aggregated spheroids are then assembled into trachea
constructs in a needle array, and the artificial trachea can become mature in terms of
chondrogenesis and vasculogenesis in a bioreactor. Taniguchi et al. showed that the
scaffold-free artificial tracheas remain functional with sufficient mechanical strength
after transplantation into an isogenic rat for several weeks [152].

Lung Cancer Organoid Models

Many researchers work hard on generating patient-derived 3D lung tumour models,
including spheroids and organoids, to study personalized medicine. Li et al. have
established 12 patient-derived organoid lines from lung adenocarcinoma (LADC),
which recapitulate the 3D structure and retain the genetic mutations of parental
tumors [153]. Li et al. established theseLADCorganoids throughdissociating tumour
cells isolated from LADC samples and cultured them in Matrigel. These patient-
derived organoid lines can be used for tumour biomarker identification and high-
throughput drug screening. Together, this LADC organoid biobank serves as a good
model to generate personalized therapy.

There is still much more to be learned about lung organoids, but their potential
applications in personalized medicine is in the near future. As of late, there is no
research involving the direct use of lungorganoids onhumans, butmultiple studies are
using them to advancehumanhealth.Researchers haveused lungorganoids generated
from fetus and infant tissues diagnosed with Bochdalek congenital diaphragmatic
hernia (CDH) to better understand the disease [154]. This study showed that the lung
organoids could model CHD ex vivo and provide better ways of studying human
diseases without using deceased human tissues. Other researchers have been able to
model lung cancer using tumor tissues ex vivo and study potential patient-specific
drug responses by comparing the lung organoid responses to patient responses [155].
Hu et al. determined the potential of a 1-week on-chip drug sensitivity test to predict
patient responses to anti-lung cancer drugs [155]. Although this study found that the
patient responses correlated 100% with only 11 of the 21 organoid samples, it gives
hope to the idea of personalized medicine using lung organoid models.

Although many challenges need to be addressed before realising precision
medicine treatment for lung diseases, such as the lack of a vascular system in most
lung organoid models, the future of engineering functional lung and transplanting
engineered lungs to patients is very promising.
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Abstract Introduction: The lungs are a complex organ with various cell types.
Many factors can contribute to the damage of the lung epithelial cells, including expo-
sure to air pollutants, cigarette smoke and pathogen. Thus, it is critical to developing
suitable human disease models to understand tissue homeostasis mechanisms and
pathological alterations in the airways. Three-dimensional organoidsmade from stem
cells have emerged as a newmethod tomodel respiratory disorders in vitro. On-going
studies show that lung organoids generated from adult lung stem cells and induced
pluripotent stem cells provide an excellent platform for model lung diseases and
drug screening that alleviates respiratory diseases.Method:MEDLINE/PubMed and
Google databases were used for the selection of literature. The keywords used were
lung organoids, respiratory disease models, stem/progenitor cells, induced pluripo-
tent stem cells. Results: Lung organoids can be derived from human pluripotent
stem cells and adult stem cells. The microenvironment for culture and starting cell
types are essential in generating lung organoids. For creating 3D lung organoids, an
extracellular matrix component such as matrigel, feeder cells, and lung fibroblast
is essential to provide a cocktail of growth factors that significantly contribute to
the development of lung organoid culture. Conclusion: From this perspective, we
summarise the recent technology of cultivating lung organoids and their potential
applications to study respiratory diseases, including idiopathic pulmonary fibrosis,
cystic fibrosis, tuberculosis infection, and respiratory virus infection.We also discuss
challenges that need to be overcome to apply lung organoids as respiratory disease
models.
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Abbreviations

COPD Chronic obstructive pulmonary disease
IPF Idiopathic pulmonary fibrosis
ARDS Acute respiratory distress syndrome
3D Three-dimensional
CF Cystic fibrosis
PSCs Pluripotent stem cells
ASCs Adult stem cell
iPSCs Induced pluripotent stem cells
ESCs Embryonic stem cells
AEC I Alveolar type I cells
AEC II Alveolar type II cells
ECM Extracellular matrix
ALI Air-liquid interface
MCACs Multi-ciliated airway cells
MTB Mycobacterium tuberculosis
CFTR Cystic fibrosis transmembrane conductance regulator
SFTP Surfactant protein gene mutations in the family

Background

The lung is a complex organ composed of a variety of cell types. Approximately 40
distinct cell typesmake up the human lung,which allows it to perform its fundamental
function of efficient gas exchange [1]. These cells,which originate fromall three germ
layers, comprise epithelial cells, neuron cells, hormone-producing cells, interstitial
connective cells, and blood cells. These cells combine to construct the intricate lung
tissue architecture, ranging from blood vessels to branching alveolar structures [2].

In the lung, exposure to air pollutants, cigarette smoke, bacteria, viruses andmany
others may cause injury to the epithelial cells that lined the conducting airways and
alveoli. Repetitive exposure to these insults may result in an inflammatory storm that
contributes to the disease progression and respiratory failure. Chronic obstructive
pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), bronchial asthma,
and respiratory infections like the current coronavirus COVID-19 pandemic and
others are among the respiratory illnesses [3, 4] that cause severe damage to the lungs
and leads to an increase in mortality rate. Therefore, establishing suitable models
to study human diseases, particularly respiratory diseases, is critically important
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in advancing our understanding of tissue homeostasis mechanisms and patholog-
ical changes in the airways. For decades, conventional two-dimensional monolayer
cultures of immortalised pulmonary cell lines, primary cells, and numerous animal
models have been employed to investigate lung malfunctions associated with respi-
ratory diseases. These studies have been conducted to gain a better knowledge of
normal lung development and disease-related lung dysfunction. However, they are
restricted by the lack of total cellular variety in 2D culture formats and intrinsic
variations in animal physiology in animal models. To overcome the constraints of
monolayer cultures for modelling in vivo lung tissues, recent breakthroughs in stem
cell biology have resulted in the in vitro establishment ofminiature three-dimensional
(3D) structures produced from stem cells known as ’organoid’ structures.

Organoids are 3D tissue constructs generated from stem/progenitor cells that
contain multiple differentiated cell types observed inside the original organ in an
organised way. Their organ-like organisation is remarkably similar to that of native
organs such as the prostate [5], liver [6], tongue [7], pancreas [8], stomach [9],
and lung [10]. In respiratory diseases, lung organoids have significant potential
as disease models that can develop new treatments for conditions such as asthma,
cystic fibrosis (CF), and many others because organoids exhibit similar fundamental
inherent patterning events as the original organ [11]. Furthermore, lung organoids
can be generated from small patient tissues to create living biobanks that aid in
personalised biomedical research. [12]. This article discusses the new technology of
lung organoids and its use in modelling various respiratory illnesses, the problems
and roadblocks that have been encountered and future possibilities for improving
and expanding the technology uses.

Lung Injury and Repair

Lung injury can impair the vital physiological functions of the lung, which is
commonly caused by several human respiratory disorders. Smoking reduces the
airway epithelium’s integrity and causes significant epithelial remodelling, linked to
COPD and lung cancer [3]. Pathogen such as the recently discovered coronavirus
COVID-19 causes an inflammatory storm that leads to the destruction of airway
epithelium, resulting in acute respiratory distress syndrome (ARDS) [4]. Impaired
epithelium following infection may diminish the airway’s ability to combat infection
by other pathogens, contributing to severe lung damage and prolonging the disease.
Post-injury, the lung has a robust capability to repair and regenerate itself via various
mechanisms, including the interaction of multiple cell types [13]. Thus, researching
the response of damaged lung epithelial layers, such as cell-cell interaction during
the repair process following injury and the regulatory mechanisms governing the
different signalling pathways, may help us better understand respiratory diseases
and their treatment.

Current models to investigate respiratory diseases or drug screening applications
are limited in recapitulating the injured lung tissues. Adult lungs function as a result
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of the synergistic interaction of diverse cell types in a 3D architecture. [14]. However,
the majority of in vitro techniques currently use 2D monolayers. Although conven-
tional monolayer cell cultures were commonly used in the past, their lack of tissue
architecture and complexity rendered them incapable of reproducing in vivo cellular
heterogeneity, structure, functions, and biological processes [15]. It has long been
documented that removing cells from their natural environment and architecture and
placing them in 2D environments causes them to lose their tissue-specific functions
[16]. Furthermore, prior research has indicated the importance of architectural signals
in the establishment and progression of cancer. As a result, a representative in vitro
model systems must replicate the 3D architecture.

Animal models, such as mice, rats, rabbits, and large animals, offer intriguing
opportunities for developing diverse lung injury models that bridge that gap between
human and animal lungs.Researchers can use animalmodels to investigate themolec-
ular mechanisms that control lung function in the healthy state and malfunction in
the disease state, allowing for a comprehensive understanding of the genesis and
pathophysiology of disease and the development of innovative treatments. Addition-
ally, the animal model has been used to evaluate the safety and efficacy of therapies
in the complex environment of a live animal’s lung. There are currently numerous
induced animal models of human respiratory illness accessible for research. These
models mirror some, but not all, of the characteristics of respiratory disorders such as
pneumonia, asthma, emphysema and pulmonary fibrosis [17]. Unfortunately, none of
the animal models is entirely accurate representations of human lungs and diseases.
Due to significant inter-species variances in the respiratory architecture system and
genetics, all animal models have restrictions in replicating intricate clinical condi-
tions. Mice, for example, lack a cough reflex, and their distal airway structure and
cellular composition are distinct from those of humans due to the absence of cytok-
eratin 5+ basal cells, which comprise a population of pulmonary stem cells within
the pseudostratified epithelium of terminal respiratory bronchioles [13]. As a result,
human and mouse cells engaged in the distal airway and alveoli repairs may have
different origins. Another important illustration of this concept is the inability to
generate CF lung disease in mice, where the absence of submucosal glands in the
CF animal may prevent the development of CF lung disease in the CF mouse [18].

While animal models of human respiratory disorders have been extensively
employed, their findings have not always translated into safe and effective treatments
in people, impeding clinical translation. Inter-species differences, such as genetics,
homeostatic physiology, respiratory tree architecture, and inter-species functional
variances, are a significant roadblock to overcomewhen looking for acceptable respi-
ratory illness models [3]. For financial reasons and a lack of understanding of mouse
genetics, the reliance onmurinemodels may be short-sighted, as mousemodels often
do not adequately reflect human conditions. As a result, establishing more relevant,
comparable, and valuable models that bridge the "laboratory bench to the bedside"
could be a more effective strategy to solve this issue, and lung organoids might be a
good fit.
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Lung Organoid as an Alternative Approach Over Animal
Model to Study Lung Diseases

Organoids are three-dimensional self-organising multicellular constructions derived
from stem cells that simulate the architecture and function of actual organs in vivo
[19], which can be generated using pluripotent and adult stem cells, respectively.
Organoids derived from adult stem cells take advantage of the tissue regeneration
process initiated by these cells. In addition, organoids can be cultivated directly from
the epithelium of several organs, whether healthy or diseased and can be evalu-
ated in the same way that cell lines are. Experimental biology applications include
modelling tissue physiology and disease, including malignant, hereditary, and infec-
tious illnesses [20]. Lung organoids, like other organoids, can be created by a self-
organisation process from stem cells or lung progenitor cells. When compared to
standard cell culture, the culture method of lung organoids in vitro is distinctive.

The lung organoids, which can be classified as proximal or distal, mimic the lung
developmental process and strongly resemble the 3D organisation of the lung (alve-
olars, airways, and lung buds) and lung functions in vitro [21]. These organoids can
be classified into two categories according to the type of stem cell used [(pluripo-
tent stem cells (PSCs) vs adult stem cells (ASCs)] and the growth factor regimen
used. To begin, pluripotent stem cells (PSCs) encompass both induced pluripotent
stem cells (iPSCs) and embryonic stem cells (ESCs) [21]. These cells represent
embryonic development’s early phases. The second type of ASC is lung-specific,
including alveolar type II cells (AEC II) and club cells. These stem cells are respon-
sible for maintaining tissues and organs throughout a person’s life. Their activity is
limited to alveolar type I (AEC I) cell formation. However, they all share a common
goal: to generate a model system that replicates vital morphological and functional
characteristics of the in vivo pulmonary epithelium.

Current Technologies in Generating Lung Organoid

Lung organoids are produced using a flexible and regulated process regarding the
starting cell types and microenvironments for culture, like culture media and culture
systems. The essential component in forming lung organoids is the initial cell types,
which define their final use. The culture microenvironments are also crucial in the
formation of lung organoids. For creating 3D lung organoids, matrigel, a complex
extracellular matrix (ECM), is required to provide cells with a support structure
(similar to that of an organ) in vivo and enhance cell proliferation and differentiation
in the culture environment. Matrigel is a natural basement membrane originally
isolated from Engelbreth–Holm–Swarm mouse sarcoma cells and utilised in early
lung organoid culturing [22].

Cultivation microenvironments for the generation of lung organoids are varies
depending on the research strategies. The establishment of a 3D co-culture system
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with primary PDGFRα+ lung fibroblasts by Barkauskas and co-workers found that
the trophic effect of fibroblasts resulted in the rapid formation of more and rounder
alveolospheres [23]. Jacob and colleagues generated monolayered alveolospheres in
3Dcultureswithout the support of stromal cells [24]. The omission of supporting cells
in the culture system did not affect the ability of the iPSC-derived AT2 cells to prolif-
erate and differentiate. Air–liquid interface (ALI) is another culture system closely
connected to respiratory physiology, resembling the pseudostratified mucociliary
epithelial structure of airways [25]. The "3D-ALI" method, which combines ALI
with Matrigel, produces lung organoids with realistic structure and function. Multi-
ciliated airway cells (MCACs) function better in lung organoids generated from
hPSCs using the 3D-ALI method than MCACs in a 3D culture [26]. However, this
ALI system confines the spatial structure of the trachea only.

Lung Organoids Derived from Human Pluripotent Stem
Cells

Human pluripotent stem cells are cells that can differentiate into any cell in the
body. They include human embryonic stem cells and induced pluripotent stem cells
(iPSCs), somatic cells that have been reprogrammed to become pluripotent [27, 28].
The endodermal germ layer is essential for the formation of the lung. In order to
differentiate organoid lung tissues in vitro, pluripotent stem cells must be directed
into the endodermal lineage by activating TGF-beta signalling using Activin A,
which replicates the Nodal signalling that is necessary for mesendoderm determi-
nation in the embryo [29]. When WNT3A and FGF4 are added to a DE monolayer
in vitro, cells take on a hindgut destiny and form spheroids separate from the adherent
monolayer and float above it. These spheroids can be placed in an extracellular
matrix-like matrigel, where they grow and develop in three dimensions, giving rise to
larger organ-like structures known as lung organoids. [30]. Concurrent stimulation of
DE cultures with spheroid-inducing factors (WNT3A/FGF4) and foregut patterning
factors (NOG/TGF-inhibitors) resulted in the formation of foregut spheroids, which
then expanded into larger lung-organoid structures. The expansion of hPSC-derived
lung organoids was driven by data from animal development and work showing how
to culture primary lung tissue in vitro. [31]. The ability of hPSC-derived tissues to
self-assemble in vitro is an astounding but underappreciated mechanism, especially
considering that in vitro systems frequently lack growth factor gradients considered
crucial for tissue organisation in the developing embryo.

The use of human ESC and iPSC lines to generate organoids avoids the scarcity
of high-quality human basic components while also necessitating a thorough under-
standing of the mechanisms in germ layer formation and subsequent lineage spec-
ification to carry out guided differentiation. When opposed to ESCs, using iPSC
lines involves an extra step, as somatic cells must first be transformed into iPSCs by
expressing transcriptional factors such as OCT4, KLF4, SOX2, andMYC. Following
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that, ESCs and iPSCs are subjected to germ layer and tissue-specific patterning
factors, followed by embedding in matrigel to aid 3D architecture advancement and
treatment with differentiation factors to create the desired organoids. TGF signalling
is activated in ESCs and iPSCs to generate definitive endoderm, differentiating into
the appropriate embryonic gut segment depending on cultural circumstances [32].
Human ESC-derived endodermwas supplementedwith aHedgehog pathway agonist
to promote the progressive devotion towards foregut endodermand, eventually, spher-
ical epithelial organoids expressing both proximal and distal lung markers observed
during branching morphogenesis in vivo. Unlike those produced from raw foetal
tissue, organoid cultures did not show any branching [33–35].

Rossant and colleagues were the first to produce lung organoids from human iPS
cells, and they included the use of CFTR-mutant iPS cells as a proof of concept for
modelling cystic fibrosis (CF) [36]. Snoeck and co-workers later generated lung bud
organoids from human iPS cells that mimic fetal lung development [37]. Because
hPSC tissues generated through directed differentiation are immature, they can be
used to study human diseases that are immature or premature. Premature babies’
respiratory and digestive systems attain further investigation using human model
systems such as hPSC-derived human lung and intestine organoids [38]. Pluripotent
stem cells have therefore been successfully used to develop organoids from non-
epithelial tissues. Because iPS-derived organoids do not generate the mature cell
types observed in adult tissues, theymaynot accurately replicate adult disease presen-
tations in many cases [11]. This is especially true in lung cancer, where it looks to be
a waste of effort to generate iPS cells from the tumour rather than directly produce
cancer organoids. Organoids produced from ASCs mimic the more advanced stages
of the human lung and may be made from a single patient’s bronchoalveolar lavage
material [3].

Lung Organoids Derived from Adult Stem Cell

Organoids generated from the adult stem and progenitor cells, in contrast to iPSC,
reliably preserve their in vivo regeneration activity in vitro, allowing for comprehen-
sive pictures of tissue repair following damage. These organoids made from adult
stem cells preserve their organ identity and are genetically stable throughout time
[39].Organdevelopment, tissuehomeostasis, and illnessesmayall be studiedbecause
of the capacity to generate organoids from patient-derived healthy and sick tissue.
When lungfibroblast cells overgrow, their capacity to sustain lung stem/progenitors is
diminished. These findings show that supporting fibroblasts’ secretory characteristics
are essential for such effective organoid culture of endogenous lung stem/progenitor
cells. Previous research has found that a culture protocol for lung stem/progenitor
cells that includes matrigel, feeder cells, and lung fibroblast to provide a cocktail of
growth factors that contribute significantly in lung organoid culture harvested from
fibroblast cultures is less supportive for distal lung stem/progenitor cell organoid
culture, most likely due to insufficient concentrations of essential growth factors.
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[23]. When stromal cells are replaced with large amounts of FGF10 and hepatocyte
growth factor, lung stem/progenitor cells formorganoidswith limited colony-forming
capacity, implying that additional growth factors are required for alveolar organoid
formation [39]. Randomly seeded mixed cell populations of human adult primary
bronchial epithelial cells, lung fibroblasts, and lung microvascular endothelial cells
generate airway organoids self-organised into discrete epithelial and endothelial
structures stable up to 4 weeks culture, according to a previous study [11, 40]. This
discovery showed that a cocktail of growth factors given by supporting cells is critical
for the rapid and robust generation of lung organoids.

Organoids in Respiratory Diseases Modelling
and Personalised Medicine

Lung organoids are a powerful new technique because they reliably replicate primary
tumours, faithfully recapitulate treatment responses, and even help optimise ther-
apeutic methods for each patient as near-physiological structures. Furthermore,
healthy organoids can be used to evaluate medication toxicity, including hepato-
toxicity, cardiotoxicity, and nephrotoxicity. Lung organoids have been widely used
in various applications, including drug discovery and disease modelling, precision
medicine, and regenerative medicine. This chapter focuses on organoids in the
modelling of viral illnesses, hereditary disorders, and lung cancer.

Infectious Disease

Organoids generated from adult stem cells have been employed in several studies
to investigate host-pathogen interactions [41]. Most pathogens enter organs through
the lumen and touch the epithelium’s apical surface, where differentiated cells dwell.
One of the essential advantages of utilising organoids to investigate host-pathogen
interactions is that they are made up of or developed into almost all of the various
cell types seen in a given organ. They are thus preferable to immortalised cell lines
that have previously been frequently used to simulate host-pathogen interactions
because they closely resemble the in vivo environment [42]. For example, animal
models used to study tuberculosis pathologies and drug screening have numerous
limitations in Mycobacterium tuberculosis (MTB) infection. Since the animals are
not natural hosts for MTB, they can only mimic the clinical symptoms, patholog-
ical abnormalities (granuloma formation and lung cavitation), and immunological
indications of tuberculosis to a limited extent [41].

As a result, lung organoids are gaining popularity as a tool for studying the inter-
action of host-MTB in a dish. The spatial organisation of human lung organoids and
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the variety of their cellular components provide a significant advantage. MTB infec-
tions of alveolar organoids enable the inclusion of early-stage MTB infection that is
difficult to track in animal models while also overcoming species differences [43].
Human alveolar organoids can be used to evaluate the direct interactions between
MTB and the lung epithelium in this condition by injecting MTB into produced
organoids [44]. Additionally, immune cells, including macrophages, can be incorpo-
rated into the organoid architecture to imitate the complexity of the immune response
in vivo.

With the organoid-bacteria co-cultures mentioned previously, adult stem cell-
derived organoids have been utilised to model viral infections [45]. Virus infections
in the distal lung have been associated with pneumonia’s acute respiratory distress
syndrome (ARDS) progression. Lung epithelial cells, particularly alveolar type II
cells (ATII), are targeted by respiratory viruses, including the recent SARS-CoV-2
[44, 45]. In animal studies, influenza viruses specifically target AT2 and alveolar
type I (AT1) cells subsequent intratracheal infection [46]. The absence of functional
models that match in vivo physiology and pathology has hampered research into
human respiratory infections. In vitro organoid cultures are unique model systems
for studying disease aetiology and host-virus interactions. Han et al. [44] previously
developed a lung organoid model that is tolerant to SARS-CoV-2 infection using
human pluripotent stem cells (hPSC-Los) and has shown intense chemokine stimu-
lation of SARS-CoV-2 infection, akin to what is observed in patients with COVID-19
[47].

According to another study, SARS-CoV-2 invaded and propagated in lung
organoids derived from human embryonic stem cells (hESCs), both airway and alve-
olar organoids. They also conducted pharmacological screening, identifying SARS-
CoV-2 entry inhibitors such as mycophenolic acid, imatinib and quinacrine dihy-
drochloride. When these medications were administered at physiologically accept-
able levels, the scientists found that they significantly reducedSARS-CoV-2 infection
in organoids [47]. They also discovered that suppressing SARS-CoV-2 propagation
in lung organoids was successful using camostat, a nucleotide analogue prodrug
similar to Remdesivir [48]. Thus, these findings suggest that human lung organoids
could be used as disease models to study SARS-CoV-2 infection and are a valuable
resource for drug development and screening to discover a COVID-19 treatment
option.

Previous research revealed that the human parainfluenza virus 3 (HPIV3) infected
AT2 cells in lung organoids produced from human pluripotent stem cells (hPSCs)
[49]. In line with clinical evidence for HPIV3 infection, no alterations in tissue
integrity or shedding of infected cells into the organoid’s lumen were seen [49]. A
histological examination of respiratory syncytial virus (RSV)-infected human lung
organoids generated from hPSCs revealed considerable epithelial alterations that
mimicked in vivo pathologies, such as apical protrusion of infected cells cytoskeletal
rearrangement and formation of syncytia [37]. Palivizumab, an antibody that inhibits
RSV entry into the airway, and other antiviral agents may also be assessed for
their antiviral ability in alveolar organoids. Similar organoids have been produced
to rapidly assess the human pathogenicity of new influenza viruses [50]. Thus,



64 N. S. S. Abdul Halim et al.

such organoids can be used to investigate host-pathogen interactions in a range of
lung infections and provide a pathophysiological model for pathogen infection and
treatment discovery.

Genetic Disease

Organoids can be used as a one-of-a-kind platform for studying the biology of hered-
itary lung disorders. For example, organoids from cystic fibrosis patients have been
successfully created to investigate possible treatment methods [11]. According to
a compound screen using an organoid as a platform, two types of small-molecule
compounds, including cystic fibrosis transmembrane conductance regulator (CFTR)
correctors for improving cellular processing and CFTR potentiators for enhancing
the performance of the CFTR protein’s gating function, effectively rescued the CF
phenotype [11]. It was also shown that CFTR function was restored in organoids
by adding chemically modified mRNA to the CFTR gene. As a result, the newly
developed culture system provides a unique method for genetic disease medication
screening.

Lungorganoidsmay aid in the understandingof thefibrotic lungdisease associated
with familial genetic defects [39, 51, 52]. The most common type of interstitial lung
disease (ILD) is idiopathic pulmonary fibrosis (IPF). IPF is characterised by scarring
of the lung alveoli, which, if left untreated, would result in alveolar stiffness and
respiratory failure [51, 52].Although the aetiology of this disease is unknown, genetic
susceptibility is one of the risk factors for alveoli collapse. Surfactant protein gene
mutations in the family (SFTP) [51, 52] and mutation in human reverse transcriptase
(hTERT) and its RNA component (HTERC) of telomerase can be captured using
lung organoid modelling of alveoli from the IPF patients [51]. The association of IPF
pathogenesis and mutated genes of telomerase activity will suggest the role of type
II alveolar cells to function. In 2019, Strikoudis et al. modelled pulmonary fibrosis
using lung organoids derived from embryonic stem cells carryingHermansky-Pudlak
syndrome mutations (HPS) [51]. A recessive mutation in several genes associated
with this condition results in aberrant lysosome-related organelle biosynthesis and
trafficking [24].

Additionally, HPS-associated interstitial pneumonia presented clinically simi-
larly to IPF [51]. The introduction of all these HPS mutations to the lung organoids
promotes fibrotic changes, and thesemodifications indicated that interleukin-11 plays
a critical function in the fibrotic process [51]. Using lung organoids as an alternate
approach to recreate the chronic progressive damage found in humans with IPF,
which animal models do not duplicate. To show genuine development in the IPF
disease paradigm, the bleomycin-induced mice model requires continuous infusion
and long periods [53, 54].

Some forms of surfactant disorders, like adult ARDS, desquamative interstitial
pneumonitis (DIP), and diffuse lung disease, are caused by mutations in genes
affecting surfactant homeostasis, notably SFTPA, SFTPB, SFTPC, ABCA3, and
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CSF2RA (DLD) [55]. This condition results from the failure of the surface tension
control system to keep lung volumes constant at the end of expiration [51, 55, 56].
The ability to control surface tension is vital to the type II alveoli cells inflating during
inhalation and preventing lung collapse [51]. Current findings suggest that footprint-
free CRISPR-based gene repair of iPSCs originating from patients with homozygous
surfactant mutations (SFTPB) recovers surfactant processing in type II alveolar cells.
The creation of structurally specialised lung organoids, such as alveolar organoids,
can assist researchers in better understand the role of pulmonary surfactant failure
in ILD patients’ genetic mutations caused by type II alveoli cells [24, 39, 52]. Jacob
et al. using epithelial alveolosphere in 3D cultures to model the defective gene in
type II alveoli from the neonatal respiratory distress syndrome who are homozygous
for the SFTPB mutation [39]. Taken together, the ability of alveolar organoids to
simulate human alveolar disease in vitro may provide a valuable platform for further
investigation of the impact of genetic and environmental insults on type II alveolar
biology.

Cancer

Lung cancer is the leading cause of cancer deathworldwide. Because other lower-risk
conditions might conceal its symptoms, this pathology’s high death rate is directly
proportional to its late identification. Although many studies on this topic have
expanded in recent years, the molecular pathways that cause this disease are still
unknown. As a result, experimental models are critical for understanding disease
development, progression, and response to therapy. Immortalised cell lines come
with their own set of drawbacks. Explanted tumoral cells obtained during transtho-
racic needle biopsy could be a source of human lung tumour cells for primary culture.
As a result, cancer organoids derived from human cancer tissues have been suggested
as an alternative in vitro model that retains the features of the original tumours.
These cancer organoids may serve as a model for selecting anticancer therapy and
biobanking for individual patients.

Through precision medicine, the organoid platform enables us to investigate the
interactions between tumour cells and the controlled surrounding ECM, thereby
improving our understanding of the underlying processes of drug resistance [57].
We may potentially use the organoid culture technique to anticipate in vivo tumour
responses to anticancer reagents and test the most effective medicines in customised
cancer treatment [58]. It is critical to use approaches that allow for the examination
of lung function in both normal and pathological stages while utilising the entire
lung architecture to understand these processes thoroughly. Organoids derived from
airway cells that can imitate the form and function of the lung ex vivo while allowing
for experimental manipulation have given a new and intriguing model system for
lung biology research [59].

Organoids demonstrate genetically identical profiles, molecular characteristics,
and morphological features to the relevant patient tumour tissue during and after
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long-term growth. Using organoids as lung cancer patient avatar models would be
excellent for investigating the processes causing tumour recurrence after therapy and,
as a result, assisting in the development of tailored medicine [60].

In vitro tissue culture or tumour spheroid culture using a three-dimensional culture
system have been investigated as individualised models for lung cancer to predict
response to anticancer therapy. However, they have limited growth and replication of
the original tumour architecture. Lung cancer organoids (LCOs) have been cultured
recently using the airway organoid method, which consistently retains their parental
tissues’morphological and genetic characteristics. This LCOsmaybe used in patient-
specific pharmacological trials and proof-of-concept studies on targeted therapy
and resistance mechanisms [61]. The cancer organoid was also preserved tumori-
genicity, as indicated by cytologic characteristics of malignancy, xenograft develop-
ment, retention of mutations, copy number aberrations, and gene expression patterns
by whole-exome and RNA sequencing between the organoid and matched parental
tumour tissue. The establishment rate did not change significantly according to the
tumour stage, location, or whether the material was acquired by biopsy or surgical
excision [56].

Current Limitations and Future Directions

Organoids continue to be an imprecise approximation of real-life tissues. Organoids
generated fromASCs contain various lung epithelial cell types, but organoids derived
fromPSCs containmesenchymal cells [62]. Organoids in their current state, however,
lack non-epithelial components. Apart from a fixed amount of mesenchyme-derived
signalling molecules and extracellular matrix, functional connections between the
epithelium and surrounding stromal cells are not reproduced. The interactions
between the epithelium and non-epithelial parts are essential for controlling develop-
mental processes and determining respiratory disease characteristics. Non-epithelial
cells, including endothelium, smoothmuscle, and immune cells,will eventually repli-
cate the function of the actual organ [3]. Indeed, it has been demonstrated that adding
mesenchymal cells into the culture improves the culture of alveolospheres [11].

Different organoids can be obtained from the same cell by altering the culture
microenvironment [63]. This technique enables the development of organoids
tailored to the research objective; however, it may affect the reproducibility of the
organoids, resulting in skewed research results. The use of a stable ECMmay provide
a solution to this issue. Lung organoids are generally spherical and do not entirely
replicate the lung’s morphological structure. For instance, the branching airway is
an essential component for lung air conduction. Thus more nutritional support opti-
mised medium formulations for organoids in culture systems and extended culture
periods may be required to overcome this issue [3]. Organoid morphogenesis may be
used with bioengineering techniques such as 3D bioprinting or biomaterial scaffolds
to construct architecturally complete organoids rapidly [64, 65].
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In addition, more research is required to validate the interplay of many signalling
pathways during an epithelial repair. Aside from the epithelium, this is a compli-
cated interaction involving several cell types. The interaction of these cell types
has yet to be comprehensively studied using lung organoids. Incorporating immune
cells or vascular endothelial cells into lung organoids and co-culturing them to repli-
cate in vitro microenvironment of epithelial regeneration could be used to better
understand the link between cells and the ECM during epithelial regeneration [3].

Since SARS-CoV-2 infection is increasing globally, it is critical to developing
new models utilising human disease-relevant cells to understand SARS-CoV-2
biology better and facilitate drug screening. The multi-tissue organ-on-a-chip plat-
form (which incorporates various human-derived organoids) and lung organoidsmay
be used to demonstrate the degenerative process of organs following SARS-CoV-2
infection, screen prospective medications, and develop and test vaccines for safety
and efficacy [66–69]. The organoids are being utilised to study the novel virus and to
imitate the symptoms of SARS-CoV-2 infection in humans (47. In conclusion, lung
organoids coupled with various technologies may aid researchers in better under-
standing lung epithelial regeneration and improving therapeutic strategies to treat
respiratory diseases.
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Chapter 4
Recent Advances in Brains Organoids:
Opportunities and Challenges
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Abstract Introduction: Recent development in brain organoids has heightened
the need for generating specific brain region-organoids. The directed and undi-
rected neural fate of stem cells to generate brain-specific organoids are discussed,
and here we summarised the leverage of the brain organoids over the animal
models of neuroscience-related diseases. This chapter also discussed the current
studies and their applications in autism spectrum disorders, epilepsy, Parkinson, and
Alzheimer’s disease paradigm to address the good use of brain organoids. The last
part of the chapter summarised the challenges of using brain organoids in bioeth-
ical issues and the bio-plausibility context of brain organoid technology. Methods:
The MEDLINE/PubMed database was used as a platform to search literature. The
keywords used in theMEDLINE researchwere brain organoids, neurodevelopmental
disorders, bioethics, biopausibility. In total, we found 64 articles that were recently
published within 6 years interim up to August 2021 that focus on recent development
in brain organoids, opportunities, and major challenges framework. Results: Rapid
advances of brain organoids include the derivation to cortical-, cerebral-, midbrain-,
forebrain-specific organoids and these brain regions are essential in better under-
standing the spectrum of neurodevelopment and neurodegenerative diseases. It is an
attractive approach to overcome the limitation demonstrated in the current conven-
tional model described in two-dimensional culture and animal models. Conclusion:
The success protocol of derivation to generating specific regions of brain develop-
ment may provide cues to rapid advances to understand neurodevelopmental disor-
ders or psychiatric diseases. However, these advancements could eventually push the
boundaries, and one should consider ethical issues and the limitation of using brain
organoids as alternative methods to study brain development.
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Abbreviations

iPSCs Human pluripotent stem cells
NPCs Neural progenitor cells
bFGF Basic fibroblast growth factor
FGF Fibroblast growth factor
SHH Sonic hedgehog
RA Retinoic acid
Wnt Wingless/integrated
SMAD SMA-decapentaplegic
FGF9 Fibroblast growth factor-9
FGF2 Fibroblast growth factor-2
CNTF Ciliary neurotrophic factor
SDF1 Stromal cell derived factor-1
ROCK Rho associated protein kinase
2D Two dimensional
3D Three dimensional
NDD Neurodevelopmental disorder
ASD Autism spectrum disorder
FOXG1 Forkhead box protein G1
CRISPR/Cas9 Clustered regularly interspaced short palindromic repeats/caspase-

9
TSC1 Tuberous sclerosis complex-1
TSC2 Tuberous sclerosis complex-2
PD Parkinson disease
AD Alzheimer disease
hMO Human midbrain organoids
mDAN Midbrain-specific dopaminergic neurons
AADC 1-Amino acid decarboxylase
TH Tyrosine hydroxylase
DAT Dopamine transporter
SMA Spinal muscular atrophy

The Origin of Brain Organoids

The ideas of organoids development were branched out from the discovery of Taka-
hashi and Yamanaka on the induced pluripotent stem cells (iPSC) in 2006. These
cells can differentiate with the help of external and intrinsic factors introduced in
the culture system. The advancement of this technology is leveraged into the devel-
opment of a more sophisticated disease model. The generation of three-dimensional
(3D) organoids and cocktails of differentiation factors make an alternative model
much more dynamic and interesting. One of the most important events of 2009
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was the first organoid developed for the small intestine by Sato et al. [1] and more
subsequent organoids were developed after that, including the brain organoid model
[2]. A considerable amount of literature has been published on the development of
brain organoids. These studies include discoveries in neurodevelopment andneurode-
generative disease treatment strategies and glioblastoma using brain organoids as a
platform for animal models. The development of brain organoids started from the
cerebral organoids developed in 2013 [2]. Following that year, more protocols on
the development of other brain organoids have been generated, such as to model
related to the blood-brain barrier (BBB) [3], midbrain [4], hippocampus [5], cere-
brum, cerebellum and forebrain [6] organoids have been successfully developed.
Recent developments in brain organoids have heightened the need for generating
specific brain region-organoids. The surge of this development has seen increasingly
rapid advances to understand psychiatric disease [7], neurodevelopmental [8–10] and
neurodegenerative [11, 12] disorders. These models become an attractive approach
to overcome the limitation demonstrated in the current conventional model described
in 2-dimensional culture (2D) and animal models.

Neural Fate

Two different approaches can guide the neural fate and generate brain organoids,
(i) directed neural fate differentiation and (ii) undirected neural fate differentiation.
Directed neural fate differentiation referring to the approach where the supplemen-
tation of gradient external morphogens is required to induce human pluripotent stem
cells (iPSCs) to differentiate towards desired lineages in neurogenesis. Undirected
neural fate differentiation relies fully on the intrinsic differentiation capabilities of
the neural progenitor cells to differentiate towards its lineages naturally without
external patterning factors being introduced. This section discussed the differenti-
ation protocols reported in published studies the significance of morphogens until
now.

iPSC research was pioneered by Professor Shinya Yamanaka and his doctoral
student, Masayo Takahashi [13]. The iPSCs technology holds great promise and
enabled unprecedented opportunities to study the most complex organs in the human
body. Human iPSCs are pluripotent stem cells generated directly from a somatic cell,
including the neural progenitor cells (NPCs).Neural rosette is the term that describing
a group of polarised NPCs generated by the adherent culture of the embryoid body.
Neural rosette generated in vitro resembles the early neural tube when spreading
onto an adhesive substrate in the presence of a basic fibroblast growth factor (bFGF).
Their morphology from tightly packed epithelial cells changed into elongate neural
stem cells. The establishment of a neural tube radially organised around a lumen
leads to the dishing out of the human mini-brain, called brain organoids [2]. With
the knowledge of developmental biology, the forebrain gives rise to the neocortex,
hippocampus and ventral telencephalic (amygdala and hypothalamus); midbrain



74 J. Y. Pua et al.

gives rise to tectum; hindbrain gives rise to the cerebellum, pons, medulla, and brain-
stem [2, 6, 8, 14]. It holds a major milestone of human brain development in vitro.
This technology can mimic neurogenesis in vivo, such as forming regional neuronal
circuitry by integrating glial cells into brain organoids and forming a neural network
as in the human brain.

The humanbrain organoids protocolwas established byLancaster et al. and further
modified by Steven A Sloan in 2018 [8, 15] to produce brain organoids that resemble
human brain regions. The growth of human cerebral organoids can be achieved by
implanting an embryoid body in a Matrigel matrix to anchor the cells on a surface,
assist tissue formation, and use a spinning mini-bioreactor method to increase the
gaseous exchange and nutrient distribution to the organoids. The current protocol
can well-maintain the apical-basal polarity, interkinetic nuclear migration, division
modes of neural stem cells, and the pattern of neuronal migration [8, 15].

Early organoid differentiation protocols largely depend on the intrinsic signalling
and self-assembly of stem cells, termed undirected neural fate differentiation. During
neurogenesis, stem cells switch from symmetric divisions that aim to increase their
numbers to asymmetric division to give rise to the NPCs capable of self-renewing
and more differentiated lineage-specific cell types such as neurons and intermediate
progenitors [2]. These cells then migrate outward and self-organised into strati-
fied structures such as the three layers of the medulla, the seven layers of optic
tectum and the six layers of the cerebral cortex. The neural cells can self-organise
into neural tissue from the pluripotent stem cells. Koo suggested that the adhe-
sion proteins on a cell surface play an important role in driving the autonomous
cell sorting of the specific cell, which leads to the clustering and layering of
the cells [16]. Besides, a study suggested that cell fate will decide the spatial
restriction of its offspring cells from the progenitor; this may contribute to self-
organisation [2]. The self-organisation of organoids is explained by the adhesion
proteins, spatially restricted cell-fate, and the contractile cytoskeleton. The contrac-
tile cytoskeleton works together with cells to generate intrinsic tissue-scene, tissue
shape, and organisation processes [17].

However, region-specific differentiation factors or morphogens can induce the
growth of neural stem cells to desired lineages in vitro (summarised in Fig. 4.1).
Axes are established through the concentration gradient of the morphogen intro-
duced, such as sonic hedgehog-wingless/integrated-bone morphogenetic protein
(SHH-WNT-BMP) axis contribute to the dorsal-ventral axis (roof, alar, basal and
floor plate) and the rostral-caudal axis (tel-, di-, mes- and rhomb- encephalon and
spinal cord) influenced by the differentiation factors such as retinoic acid (RA) and
fibroblast growth factor (FGF). Further, WNT signalling is stage-specific and plays
an important role in body axis determination and cell fate patterning [18]. Inhibition
of WNT signalling promotes neuronal induction and neuroectodermal differentia-
tion during the early stage embryoid body, whereas activation of WNT signalling
promotes the mesoderm differentiation [6]. The WNT signalling has therefore been
used in combination with SMAD inhibition (or dual-SMAD inhibition) to promote
the production of neuroepithelial-like organoids [19, 20] and also found to reduce
cell death significantly [6].
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Fig. 4.1 Neural fate and its region-specific morphogen

Collectively, hypothalamic-like organoids could generate by SMAD inhibition
followed by the addition of WNT-3A, SHH during day 3 to day 7 and FGF-2 and
CNTF after day 7 [6].Muguruma and colleagues generatedCerebellar-like organoids
by cocktails of SMAD inhibition and ROCK inhibitor and sequential addition of
FGF9 and SDF1 in neurobasal medium [21, 22]. The region-specific organoids
generated in vitro could recapitulate the molecular, cellular, and cytoarchitecture
of the human brain regions. In brief, inhibition of the SMAD signalling pathway is
commonly used to inhibit mesoderm formation and endoderm, followed by using
specific morphogens at the early differentiation stage to act as neural fate-specifying
molecules to induce into desired neural linages with minimal heterogeneity. These
morphogens are removed or minimised after successful patterning, and subsequent
differentiation follows intrinsically programmed cell fate. The neural fate differen-
tiation can sometimes generate brain miniatures with relatively consistent cell types
[1] and exhibit less variation across batches [23].

To address the possibility of the biological and functional of directed neural fate
differentiated organoids, Steven and his colleagues resembled the human cerebrum
by inducing pallium-like organoid and subpallium-like organoid, then fused them
to form an assembloid, a combination of organoids resembling distinct areas of the
brain as one compartment that can model aspects of interactions that occur between
regions in the human brain [15]. From the study, Sloan et al. found that fluorescence-
labelled inhibitory neurons successfully migrated from the subpallium-like part of
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the assembloid to the pallium-like part of the assembloid, consistent as interneu-
rons generated from the ventral domain will migrate towards the dorsal domain
in vivo [15, 23]. Amore substantial approach to characterise differentiated organoids,
Birey’s research group performed electrophysiological characterisation of the fore-
brain assembloid revealed thatmicrocircuits formed between the synaptic connection
of interneurons and local excitatory neurons were well-function [24]. Furthermore,
the functional astrocytes present in cortical-like spheroids [23] and oligodendrocytes
in oligocortical spheroids [25] were also workable to generate brain organoid tech-
nology. Overall, these findings hold the major milestones to decipher the secret of
the human brain in the future.

Brain Organoids Derived from Human and Animal Models

In this section, the comparison between brain organoids derived from human and
animal models, as a model for biomedical research, and to what extend both models
have interconnected each other, the strength and weaknesses of the model are
discussed. It has been shown that interspecies comparison at the cellular and molec-
ular level of cerebral organoids derived from human, chimpanzees and orangutan
iPSCs, revealed that the cytoarchitecture, cell-type composition and neurogenic gene
expressionof humans and chimpanzees are remarkably similar to eachother, although
there is a significant difference between human and orangutan [26]. Mora-Bermudez
et al. demonstrated that the human organoids showed lengthening of progenitor
replication during prometaphase-metaphase that may have consequences for human
neocortex evolution [26]. Mora concluded that the human brain could be viewed as
a triple scaled-up primate brain, chimpanzee’s brain, our closest relative [26].

Several comparative analyses were demonstrated at the transcriptome level [27],
epigenetic level [28] and epitranscriptomic level [29]. These studies showed high
similarities between human brain organoids and the human brain at a different level
of analysis. Along the same lines, Behjati et al. revealed that brain organoids showed
genetically and morphologically stability over long-term culture[30]. Camp et al.
also found that the protein expression and cellular diversity in the organoids and
brain samples are highly similar, although several differences are observed [27].
Pollen performed single-cell RNA-sequencing, and gene-network analysis revealed
upregulated gene expression in the human brain compared to macaque. Following
this, theywere also found that those geneswere upregulated in humanbrain organoids
compared to chimpanzee organoids [31]. These data suggest that brain organoids
derived from humans are significantly different compared to animal models but
highly similar to the human brain at the genetic level; hence, the brain organoid
model might be an ideal study model as the alternative for animal models.

Looking at the cellular level, the division of neural stemcells’ patterns are different
from human and mice. Most of the radial glial cells were inhabited in the ventric-
ular zone of the mouse developing neocortex, but in humans, ventricular radial glial
cells and outer radial glial cells were found in the enlarged outer subventricular
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zone neocortex. Thus, this explains why the division of patterns of neural stem cells
exhibit major differences between mice and humans [32]. Kelava and Lancaster
argued that stem cell models take five days in murine and twenty days in humans
for neuronal differentiation, suggesting that organoids are species-specific. Thus,
the generation of brain organoids has species-specific intrinsic timing [33]. The use
of immunodeficient rodent models poorly represents the biological and functional
microenvironment of human cancer. Thus, organoid technologymight be the alterna-
tive for its representative. Unlike nearly all the animal models, most of them failed to
recapitulate the three-dimensional (3D) biological structures in humans, especially
in the tumour microenvironment. In short, animal brain models are different at the
genetic level and cellular levels.

Recently, considerable evidence has accumulated that brain organoids are safe and
gain functionality after transplantation to host animals. Hans Clevers presented the
data that brain organoids generated in their laboratory survive after transplanted to
mice,whereas cells derived fromgrown cultures show indications of inducing tumour
formation [34]. Mansour and his colleagues further supported Clevers’s notion
by transplanting whole-brain organoids into an adult mouse. The study reported
successful transplantation, showing brain organoids’ anatomic and functional inte-
grationwith the host environment [35].Much of the literature concerns the feasibility
of long-term culture of the brain organoid. Investigation of Qian and his research
team corroborates the idea of putting the brain organoids in long-term culture and
successfully generating all six cortical layers using an improved spinning mini biore-
actor [6]. This study has further improved our knowledge and technology in brain
organoids. Indeed, organoids technology own the advantage over animal models as
it uses human tissues as the source. Studies demonstrated that animal models failed
to provide conclusive results due to physiologically differences when compared to
humans. For instance, a meta-analysis study illustrated that the percentage of the
failures of drugs toxicity articulated from animal models had been failed to predict
the drug toxicity in humans in pre-clinical and clinical trials was 88% and 88.3%,
respectively [36].

The brain organoids model still has several limitations. For instance, the current
brain organoids lack the immune system, although this might be overcome by estab-
lishing a co-culture of brain organoids and immune cells. The co-culture protocols
are maybe unlikely to recapitulate the detailed immune responses underlying the
animal models. Therefore, it seems that animal models and organoid approaches
should be interdependent rather than in opposition. Much of the available litera-
ture on brain organoids deals with the lack of a vascular system. However, Mansour
et al., in 2018, successfully developed a vascularised brain organoid by experimenting
with transplanting the human brain organoids directly into adult mouse brains [35].
The graft functionality was assessed using several confirmatory methods, including
immunofluorescent imaging, electrophysiology, optogenetic stimulation and Barnes
maze behavioural test. The integration and function of blood vessels with the host
brain were demonstrated after transplantation [35]. Later in the following year, in
2019, Wimmer et al. developed human blood vessels organoids to model diabetic
vasculopathy, and it did recapitulate the structure and function of humanbloodvessels
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and proposed an amenable system for modelling [37]. Although it is not directly
involved in brain organoids, it sheds light on more research to make a dynamic
vascularised brain organoid soon.

The Opportunities of Using Brain Organoids

Brain organoids are self-organised, 3D-aggregates derived fromhPSCor iPSC,which
comprises cell types and cytoarchitectures resembling the human embryonic brain
[14, 38]. Brain organoids were proposed to understand the pathogenetic mecha-
nism of disease associated with monogenic and polygenic genomic alteration due
to their ability to preserve the human genomic context. Brain organoids also help
capture complex phenotypes on different neuronal networks, organ morphogenesis,
and tissue architecture. Meanwhile, species-specific developmental events can be
embodied in vitro. For example, the duration of the neurogenic period, rate and
pattern of cell migration and cell cycle dynamic events can be recapitulated using
brain organoids [38]. There are two types of brain organoids: -the cerebral organoids
(also known as the whole-brain organoids) and the directed regional brain organoids.
Cerebral organoids can be formed from the ability of the pluripotent stem cells to
self-organise and self-pattern. Here in this section, we discussed the application of
brain organoids in neurodevelopmental disorders, i.e., epilepsy and autism spectrum
disorder and some neurological diseases such asAlzheimer’s disease and Parkinson’s
disease.

Neurodevelopmental Diseases

Brain organoids can be used as a model system for neurodevelopmental disorders
(NDD) such as autism spectrum disorders (ASD) and epilepsy. Patients with ASD
are associated with difficulty in social interaction and communication, restricted
and repetitive patterns of behaviour activities or interests. Genetic defect at the
early stage of embryonic or foetal affected neurogenesis and cortical lamination,
which have been one point of convergence for ASD. Due to the lack of material
and ethical constraints on using human embryos for research, brain organoids will
be an alternative option to study prenatal brain development. Brain organoids give
a high resemblance to embryonic brain tissue. Most of the cell types present in
the embryonic brains can be found in brain organoids in an orientation that can
be found similar in vivo with the exhibition of similar-like behaviours [39]. It has
been demonstrated that increased over-expression of a transcription factor, FOXG1
in cerebral organoids, results in markedly increased production of inhibitory neurons
and serves as a therapeutic target for idiopathic ASD. Excessive GABAergic neurons
are believed to become important mechanisms involved in ASD [8, 40]. A further
imbalance between excitatory and inhibitory ratios in ASD could contribute to its
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pathogenesis [41]. Subsequent years later, FOXG1 is a potential molecular signature
for idiopathic ASD [39].

Like the ASD paradigm approach, epilepsy also can benefit from using brain
organoids to examine the genetic defects during its development. Epilepsy is a chronic
neurological condition of unprovoked and recurrent seizures caused by neuronal
hyperactivity [42]. Few other syndromes related to the brain neurodevelopment
disorder of epilepsy such as tuberous sclerosis, Rett, Timothy syndromes. These
complex interactions between epilepsy and subsequently associated syndromes can
be established using brain organoids. To further extrapolate the dynamic of brain
organoids with the CRISPR/Cas9 gene-editing method, ‘two-hit’ hypotheses’ exper-
imental design of rare and multi-systemic genetic diseases can be addressed. For
instance, tuberous sclerosis presented with homozygous loss of tuberous sclerosis
complex 1 (TSC1) and 2 (TSC2) in cortical development, which leads to the disrup-
tion of the development suppression of mechanistic target of rapamycin complex 1
(mTORC1) signalling [43, 44]. The mutation in the TSC1 or TSC2 genes and its
role in regulating tuberous sclerosis disease’s pathology can be explored. Evidence
suggests that the mutation in the CACNA1C gene is one of the hallmarks of Timothy
syndrome,which is described as a rare genetic disorder that primarily affects the heart
and affected brain development and other organs. The CACNA1C gene encodes
for the L-type calcium channel Cav1.2 α subunit, and this gene mutation led to
the production of abnormal inhibitory neurons [45]. The imbalance of excitation
and inhibition ratio affected the flow of brain regulation [46]. A significant study
conducted by Birey et al. showed that fused organoids as an approach for modelling
neuronal circuits with distinct brain regions using in vitro methods [38].

Alzheimer’s Disease (AD)

Due to the limitation in the 2D cell culture model system, brain organoids modelling
has attracted considerable interest to model AD. AD is a neurodegenerative disease
that is advanced age-related, characterised by psychiatric and cognitive symptoms
like behavioural abnormalities, circadian rhythms, memory, cognitive impairments,
and sensory disturbances. AD causes dementia in the elderly and has affected over
50 million people worldwide [46, 47]. The 3D system in vitro of AD derived
brain organoids are established and successfully use as platform strategies for drug
screening treatment. The pathophysiological AD-like features such as endosome
abnormalities, tau hyper-phosphorylation and amyloid abnormalities can be exhib-
ited through organoids derived from the human pluripotent stem cells of familiar
AD patients [47]. Brain organoids also help in the in vitro replication of Alzheimer’s
disease’s molecular determinants like tau pathology, Aβ and synapses dysfunction.
The production of toxic Aβ can also be inhibited partially through the treatment with
G-secretase or β-secretase inhibitor compounds and suggests theAβ-driven tauopathy
theory and reduce the hyper-phosphorylation of tau proteins [46].
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Parkinson’s Disease (PD)

A growing body of published work provides evidence of the success of brain
organoids to model the PD paradigm. PD possesses motor symptoms such as tremor,
rigidity and psychiatric symptoms like depression, apathy and executive dysfunc-
tion [48]. The midbrain-specific organoids play an important role to illustrate human
brain development associated with PD pathophysiology and the disease modelling
as implied by Smits et al. and Kim et al. Owing to model human midbrain organoid
(hMO), Smits et al. observed the presence of PD relevant phenotypes that have been
shown significant reduction the number of midbrain-specific dopaminergic neurons
(mDAN) in the disease-associated G2019S mutation of the LRRK2 gene. This
striking reduction was reported being found in both genetically modified and hMO.
To further explain the dynamic of hMO, the dopaminergic network complexity in
patient-derivedTH-positive neuronswere found significantly reduced.This reduction
is explained by evaluating the number of branching and dendrite bifurcation points of
themDANs [49]. Kim et al. also found out that the neurite length of themDANs in the
mutated LRRK2-G2019S organoids decreased compared to mDANs of the control
organoids [12]. The expression level of mDANs-specific markers such as aromatic
l-amino acid decarboxylase (AADC), TH and dopamine transporter (DAT) can also
be captured by these human midbrain organoids [49]. Taken together, these findings
of PD associated events in hMO indicated that brain organoids could be used as
the therapeutic strategies for treating Parkinson’s disease. Table 4.1 summarises the
type of brain organoid used in current literature associated with neurodevelopmental
syndromes and neurological diseases.

The Challenges of Using Brain Organoids

Bioethics

Organoids technology has helped biomedical research take a step forward in person-
alised medicine, and later, the main goal is to progress in transplantation medicine.
However, some ethical issues have arisen concerning the origin of the cells used to
produce organoids (e.g., human embryos) and their properties. For example, brain
organoids have been created to overlook ethical issues to neuroscientists, stem-cell
biologists, ethicists, and philosophers, since Lancaster and Knoblich started using
induced pluripotent stem cells from human adult skin cells to create in-dish mini-
brain to the model of microcephaly [2]. The brain organoids also exhibit neural
connections and electrical activity [55–57] like a human brain, although the neural
connections and electrical activity seen in the brain organoids models may not repre-
sent consciousness. However, this has alarmed ethicists about its ethicality, whether
the well-developed organoids could generate consciousness, latter, could store and
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Table 4.1 Type of brain organoids models and its association with neurodevelopment and
neurological diseases

Type of brain
organoids

Type of disease Description Author (s)

Cortical
organoids

Aicardi-Goutières
syndrome (AGS)

Three prime repair exonuclease
1 (TREX1)-deficient cortical
organoid was developed to
assess if the syndrome is
associated with the
microcephalic-like
characteristics. This specific
organoid was developed as
AGS was highly associated
with the deficiency of TREX1,
as reported in microcephaly
previously

Thomas et al. [50]

Autism spectrum
disorder (ASD)

Organoids derived from iPSC
got from the patients and their
parents to see the association of
FOXG1 in increasing
GABAergic neurons that leads
to the disease

Mariani et al. [40]

Cerebral
organoids

Microcephaly They investigated the tendency
of the Zika virus to cause
microcephaly in the organoid
model they developed

Cugola et al. [51]

The organoids developed have
had some aspect in
microcephaly to figure out if it
is an appropriate model to
replace human cells and animal
models

Lancaster et al. [8]

‘Alzheimer’s disease
(AD)

Organoids developed have been
used to study the
electrophysiological activity
following AD. From the
findings, they claimed that their
model is reliable to understand
the mechanism of AD instead
of using in vitro and transgenic
AD mouse models

Ghatak et al. [11]

Autism spectrum
disorder (ASD)

The organoids developed from
iPSCs got from the patients to
investigate the transcriptome
analysis of ASD-related gene,
CDH8, in various brain-related
diseases

Wang et al. [52]

(continued)
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Table 4.1 (continued)

Type of brain
organoids

Type of disease Description Author (s)

Miller-Dieker
syndrome (MDS)

The organoid has been
developed to study the
mechanism associated with
MDS, including lissencephaly,
which the environment is
difficult to develop in an animal
model

Bershteyn et al. [9]

Sandhoff disease The authors modified the
previous protocol of cerebral
organoids development to fit
the characteristics of the
disease they were interested in

Allende et al. [53]

Midbrain
organoids

‘Parkinson’s disease
(PD)

The pair of isogenic midbrain
organoids developed, which
differ at LRRK2 locus,
associated with the formation
of PD, have shown a promising
representative to study the
behaviour of the gene and its
effect on the pathophysiology
of PD

Kim et al. [12]

Forebrain
organoids

Miller-Dieker
syndrome (MDS)

The organoids were used to
study the effect of alteration of
microtubule network of
ventricular radial glia cells
(vRGCs) on the
N-cadherin/β-cadherin/Wnt
signalling following the
disorder

Iefremova et al.
[10]

Spinal organoids Spinal muscular
atrophy (SMA)

Hor et al. [54]

retrieve a memory.Theoretically, brain organoids have only about one hundred thou-
sand neurons compared to the 86 billion in a full-sized brain [58]. Owing to this
constraint, the possibility of brain organoids gaining consciousness or a higher-order
property, at least in the current stage, seems highly remoted. The closer the human
capability to gets to a functioning human brain, the more the ethical problems it
becomes, such as how the consent should be performed, stewardship of the gener-
ated brain organoids, who should deserve the ownership of the brain organoids, the
data ownership that could reveal sensitive information such as individual memories
or personalised genetic status, and post-research handling of the brain organoids.

Research in interspecies chimaeras has shown that they could produce rat-mice
chimaeras by injecting rat pluripotent stem cells into mouse embryos [59]. The same
approach could likely produce human-animal chimaeras.With these chimaeras being
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produced, these consequences might lead to catastrophic ethical issues pertaining to
human-animal chimaeras. At that time point of time, howdowe define the boundaries
of human identity and animals? Another striking question that might be raised in
producing a human organ such as the heart or pancreas in a pig’s body is acceptable,
for instance, but not the growing neural tissue in animals from human cells? A more
comprehensive study would include all the possibilities if we are keen to venture into
this futuristic transplantation medicine.

Other than bioethics, philosophical issues also need to be considered, such as the
death-life issue. Advancing brain organoid models might challenge our pre-existing
understanding of life and death and the legal definitions of death. In the early 1960s,
a completely and irreversibly ceased brain, so-called brain death, could be declared
dead, even if their heart is still beating. Therefore, we sought to understand the
implications of what if the ceased brain function might no longer be permanent and
irreversible, or even brain transplantation could be performed, and we might need
to rethink and redefine the death of a human being. As a result, religious fanaticism
is likely to disapprove of this research. Like what has happened during introducing
gene-editing technique, CRISPR, all these for them, seems to be “playing God” and
should be halted even before it starts.

Julian Koplin and Julian Savulescu [60], the research fellow with the Biomedical
Ethics Research Group at the University of Melbourne and Uehiro chair in practical
ethics at the University of Oxford, should introduce some moral limits to research
with brain organoids. Both of them proposed that brain organoids search should
proceed only if (i) the aim of the research is outweighed the expected costs (including
harms), (ii) the research cannot be conducted using non-conscious or non-sentient
organoids, (iii) research only use the minimum number of organoids to answer the
research questions, (iv) the organoids used do not have a higher potential capacity
of harm than is necessary to achieve the research objectives, (v) the research should
minimise possible harm and (vi) the research would not inflict severe long-term
suffering, to achieve some critically important purpose. The research restrictions of
using brain organoids have been summarised in Table 4.2.

Although brain organoids could raise many ethical and philosophical concerns,
these conundrums should not be a barrier and hold back brain research. If brain
organoids show any sentience one day, an ethical discussion on their clinical and
research use and practice would be necessary. Regarding human brain research,
we still cannot decode the mysteries about psychiatric and neurological diseases,
which have long remained elusive. Brain organoids can be considered a more ethical
research methodology, supported 3Rs (Replacement, Reduction and Refinement)
method. In fact, no living life is being destroyed, damaged, or put at risk in the
research involving organoid models.
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Table 4.2 Brain organoids models and its potential research restrictions

Brain organoids models Research restrictions

Non-conscious 1. Research should be aligned to the current existing
guidelines framework as stated by the International Society
for Stem Cell Research (ISSCR) and International Society for
Biological and Environmental Repositories (ISBER)

Conscious/potentially conscious 2. Besides the above, Julian Koplin and Julian Savulescu
suggest that brain organoids should be subject to the
following restrictions:
1. The research aims to outweigh the expected costs
(including harms)
2. The research cannot be conducted using non-conscious or
non-sentient organoids
3. The research only uses the minimum number of organoids
to answer the research questions
4. The organoids used do not have a higher potential capacity
of harm than is necessary to achieve the research objectives
5. The research should minimise possible harm
6. The research would not inflict severe long-term suffering,
to achieve some critically important purpose

Biopausibility

To further advance brain organoid technology, extra-cerebral origin cells such as
microglia are required. It may have a key developmental role in the brain, particu-
larly in synaptic pruning that occurs between early childhood and adulthood. Abud
and his colleagues hadmade thisworkable as they have demonstrated the introduction
of microglial derived from iPSCs into the brain model [61]. This approach allowed,
for the first time in human history, to study the pruning of human synapses in vitro,
and this system might have a great promise for the human to study more complex
phenomena such as neurodegenerative, neuropsychiatric, neuronal cell-cell interac-
tions, neuroplasticity, neural network, neuro-electrophysiological circuits, so on and
so forth. Paola Arlotta suggested that even though’s human organoids technologies
can generate active neurons and functional neuronal circuits, none of them can reca-
pitulate the anatomical organisation, electrophysiological functions, and connectivity
patterns of the endogenous brain [62].

The advancement of brain organoids has experienced unprecedented growth over
the past few years and could eventually push these boundaries—for example, by
wiring brain organoids to muscle tissue [63], by connecting brain organoids to
controllable robotic “bodies” or by implanting human brain organoids into non-
human ‘animals’ brains [35]. Recent development in brain organoids created “pho-
tosensitive” brain organoids, which feature rudimentary eyes and display neural
activity when light is triggered [64] form of brain organoids expressing biological
markers found in all six cortical layers has been demonstrated in recent studies [6].
None of them forms the six distinct layers seen in the human cortex. The brain cells
were endowed with regenerative capabilities, in which the cells did not grow and
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expand in the dish easily. Indeed, the elementary level to understand how the human
brain develops and functions, as the brain is formed largely in utero, is still lacking.
There are obvious ethical considerations that are limiting access to the human brain
for research. These difficulties have hampered human efforts to decipher the secrets
of the human brain.

Due to inaccessibility to live human brain tissues, animal model organisms, espe-
cially mice, have been an option to examine the brain. Unfortunately, there are huge
differences between the development of the rat’s brain and that human’s brain, as we
mentioned earlier.Collectively, current limitations of brain organoids are restrictedby
(i) survival, (ii) oxygen and nutrients distribution, (iii) inter-batch heterogeneity, (iv)
tissue architecture, (v) gliogenesis and (vi) neuronal activity. Table 4.3 summarises
the current limitations of brain organoids.

Table 4.3 The current limitations of brain organoids

Current limitations of brain organoids model Comments

Survival Brain organoid models can now survive for
long-whole culture up to 1 year. However, there
is a need to further long-term maintenance of
brain organoids over one year to study the later
stage of its maturation. Even ‘today’s brain
organoids have been transplanted into an adult
mouse, found that it promotes cell maturation,
survival, and vascularisation of the brain
organoids

Oxygen and nutrients distribution Although several techniques developed such as
agitation in an orbital shaker, spinning
bioreactor, gas permeable dishes, on-chip
method, hyperoxia culture environment, and
organoid slicing method help provide nutrients
and oxygenation to the brain organoids have
resulted in prolonged survival and prevent the
necrotic core formation. However, no functional
vascularisation was demonstrated in vitro

Inter-batch heterogeneity Reproducibility of brain organoids has been
reported as “batch-effect”, which is more
pronounced in directed neural fate differentiation
over the undirected neural fate differentiation.
Thus, initial key patterning events need to be
identified to control the homogeneity between
batches of culture

(continued)
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Table 4.3 (continued)

Current limitations of brain organoids model Comments

Tissue architecture Current brain organoids succeed to establish the
deep layer and the upper layer of neurons, but
the reassembly of the in vivo fully organised
six-layer cerebral cortex cytoarchitecture
remains rudimentary. Also, current organoid
protocols have limiting organoid size and
complexity, lack of endothelial cells, immune
cells that contribute to the microenvironment of
the brain

Gliogenesis The complex structure comprises glial
subpopulations all in the same brain organoid
model to understand the functionality of
neuron-glial interaction. Besides, gyrification,
forming the characteristic folds of the cerebral
cortex, and the formation of white matter tracts
are missing in the current brain organoids

Neuronal activity Multi-electrode arrays have demonstrated
synchronised oscillatory network events in the
brain organoid model. Hence further maturation
of brain organoids might generate
well-established connectome and network-based
activity models. Besides, innervating of the
peripheral nervous system is missing in current
brain organoid models

Conclusion

Brain organoids are widely used in the application for neurodevelopmental disorders
or neurodegenerative disorders. The advancement of brain region-specific organoids
could help us study brain development andmodel human neurological disorders from
better perspectives. However, one should consider ethical issues and abide by the law
when conducting such advanced experiments. Unlike the brain, not much application
of spinal cord organoids has been reported until now. However, the effort towards that
has been seen recently. One of the earlier spinal cord organoids applications can be
seen in the study conducted by Hor et al. to investigate the behaviour of motoneurons
following spinal muscular atrophy (SMA) [54].
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Chapter 5
Toward Understanding
Neurodegeneration Using Brain
Organoids

Patompon Wongtrakoongate, Chatbenja Pakiranay,
and Narisorn Kitiyanant

Abstract Introduction: With the advancement of pluripotent stem cells (PSCs),
several brain regions have been modelled through brain organoids that resemble
their in vivo counterparts of the human brain in terms of cellular heterogeneity
and gene expression. The models can be used for molecular pathogenesis studies
of neurodegenerative diseases and can be combined with many recent technologies
such as optogenetics, CRISPR/cas9, patch-clamp, or on-a-chip system to createmore
precisemodels of brain development and diseases.Moreover, personalised organoids
derived from patient-specific induced pluripotent stem cells (iPSCs) can also be used
to develop personalised treatment. This chapter introduces the principles of brain
organoid formation and the potential uses of brain organoids for modelling neurode-
generative diseases, drug development, and personalised medicine. Methods: We
performed a literature review in PubMed (https://www.pubmed.ncbi.nlm.nih.gov)
using the keywords brain organoids; neural differentiation; neurodegeneration;
personalised medicine. Conclusions: Personalised brain organoids, which can be
derived by several approaches and coupled with genome editing such as CRISPR-
Cas9, have proved to be powerful tools for in vitro studies of early human brain devel-
opment and pathogenesis. Future treatment of incurable neurodegenerative disorders
should ideally be tailored to individual patients to obtain optimal efficacy. To this
end, using in vitro patient-specific models of neuroectodermal tissues will allow for
such customised treatment personalised medicine.
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Abbreviations

2D 2 Dimensions
3D 3 Dimensions
AD Alzheimer’s disease
ALS Amyotrophic lateral sclerosis
APP Amyloid precursor protein
Aβ Amyloid β

COVID-19 Coronavirus disease of 2019
CRISPR Clustered regularly interspaced short palindromic repeats
EGF Epidermal growth factor
ESCs Embryonic stem cells
FAD Familial Alzheimer’s disease
FGF-2 Fibroblast growth factor-2
HSV-1 Herpes simplex virus type 1
iPSCs Induced pluripotent stem cells
LRRK2 Leucine-rich repeat kinase 2
mDAns Midbrain dopaminergic neurons
PD Parkinson’s disease
PLGA Poly(lactide-co-glycolide) copolymer
PSCs Pluripotent stem cells
PSEN1 Presenilin-1
PSEN2 Preselinlin-2
PTEN Phosphatase and tensin homolog
SFEBq Serum-free culture of embryoid body-like quick-aggregation
SMAD Mothers against decapentaplegic
SNO Sliced neocortical organoid
SOD1 Superoxide dismutase type 1
TNF-α Tumor necrosis factor-α
WNT Wingless and Int-1

Introduction

The neocortex of the human brain is populated by a great diversity of neuronal cell
types. It is responsible for the higher cognitive functionswhich cannot be found in any
other species. Understanding human brain development under normal and disease
conditions is a major goal to discover new therapeutic approaches for the nervous
system. The use of animal cells/models for neurobiology research is a longstanding
practice. However, animal cells/models do not reflect but only share some features of
human diseases. Accessibility to human brain tissue is limited due to ethical concerns
associated with their origin. The establishment of in vitro cultures of neuronal and
immortalised neuroblastoma cells overcomes this limitation. Although both neuronal
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cell culture systems are regularly used in neurobiology research, the conventional
2D culture systems do not recapitulate the brain microenvironment, complexity of
neural tissue, and disease phenotypes such as abnormal protein aggregation. Another
limitation is that they contain only one cell type and do not have cell-cell interaction
between cell types.

In the pre-organoid era, the ex vivo brain tissue slice culture, known as an organ-
otypic culture, has been used in neurobiology research (Fig. 5.1). Many different
brain regions can be sliced and cultured for weeks to months. They have been used
as a model to study the brain microenvironment, which resembles in vivo condi-
tions of the precision area of the brain [1]. Unlike neuronal cell culture, organotypic
culture maintains cytoarchitecture and themicroenvironment of the brain. Therefore,
organotypic culture is a functional tool for neurobiology research and drug screening.

On the other hand, neural precursor cells were isolated from various human
brain regions, cultured in vitro, and formed free-floating hollow clusters of neural
stem/progenitor cells called “neurospheres” [2, 3]. Neurospheres are heterogeneous

Fig. 5.1 Conventional culturemethodologies for brain cells and tissues include ex vivo organotypic
culture (top) and neurosphere culture (bottom). For organotypic culture, brain slices at the thickness
of 100–500 μm can be prepared from relevant brain tissues using a vibratome and placed in an
insert with 0.4-μm semipermeable pores. For neurosphere culture, different brain areas, such as
the dentate gyrus and subventricular zone, can be isolated to derive neural progenitor cells. Upon
expanding neural progenitor cells, they can further self-renew to give rise to identical progenitors
or differentiate to produce neurons and glial cells. Expansion of neurospheres can be performed by
dissociation and re-aggregation of the neurospheres (Made in ©BioRender—https://www.bioren
der.com)

https://www.biorender.com
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and comprise several hundred astrocytes, neurons, and neural stem/progenitor cells
with specific characteristics based on their region of origin [4]. Neurospheres can
be propagated by mechanical chopping or dissociation, overcoming the limitation
of organotypic culture. Although neurospheres have been known as a tool to study
neurogenesis and model for the early development of the human brain, it has lower
complexity and less structural organisation than organoids.

The advanced development of human pluripotent stem cells (PSCs), both embry-
onic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), have provided a
platform of model systems for understanding human biology, physiology, develop-
ment, and diseases. Treatment with essential growth factors promotes human PSCs
differentiation into specific cell lineage. Many groups have developed neural induc-
tion protocols to drive hPSCs to become neural cell types in 2D and 3D cultures.
A very early method to generate pre-rosette neural stem cells in neurospheres
(termed EZ spheres) has been developed by lifting hPSCs colonies and cultured
in a neural stem cell medium with a high concentration of EGF and FGF-2 [5]. The
EZ spheres can form neural rosettes and further differentiate into several types of
neural lineages. Chandrasekaran and colleagues compared the efficiency to generate
neural stem/progenitor cells from hPSCs between 2D induction and 3D induction
methods. A higher number of neurons with longer neurites were observed in 3D
neural induction, suggesting a superior way to generate forebrain cortical neurons
from hPSCs [6].

An organoid refers to 3D suspension culture techniques to generate an organ-
ised organ/tissue resembling various in vivo-like cellular architecture features in a
dish. Fatehulla and colleagues defined organoid as “an in vitro 3D cellular cluster
derived exclusively from primary tissue, embryonic stem cells, or induced pluripo-
tent stem cells, capable of self-renewal and self-organisation, and exhibiting similar
organ functionality as the tissue of origin” [7]. Therefore, an organoid is techni-
cally different from a neurosphere, which refers to an aggregate of neural derivatives
without any cytoarchitecture and morphogenesis found in the brain. By combining
PSCs technology and differentiating iPSCs into neuronal cells, an innovational study
by Lancaster and colleagues has shown a culture system to generate cerebral cortex-
like organoids from human PSCs derived from a patient withmicrocephaly [8]. Brain
organoid or cerebral organoid composed of progenitor, neuronal and glial cells and
resemble the human fetal brain [8–10]. Since then, effective protocols for brain
organoids cultures have been established. Exogenous cues such as Wingless and
Int-1 (WNT) inhibitor and Mothers against decapentaplegic (SMAD) inhibitor were
used to mimic the endogenous developing pattern and direct neural induction in a
high consistency of brain organoid generation. Although the short-term culture brain
organoids reflect the immature state of the brain, neurons in brain organoids begin
to mature after 60 days in culture and show spontaneous excitatory post-synaptic
currents after 120 days in culture [11, 12].

To date, several brain regions, e.g., thalamus [13], midbrain [9, 14, 15], pitu-
itary gland [16], cerebellum [17, 18], and brainstem [19], have been modelled using
brain organoids. As the brain organoids have somemain features of the human brain,
e.g., cellular distribution and organisation, electrophysiological functions, and neural
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Fig. 5.2 Brain organoids have revolutionised research in neuroscience, regenerative medicine,
infectious diseases, and tumorigenesis, as they provide a tool to study brain health and pathogen-
esis. In addition, brain organoid technology can be coupled with other technological advancements
such as electrophysiology using a patch-clamp technique, optogenetics, genetic engineering, drug
screening, and organoid-on-a-chip (Made in ©BioRender—https://www.biorender.com)

circuits, they have become a promising tool to explore the mechanisms of nervous
system diseases (Fig. 5.2). Brain organoids have been used to model neurodegener-
ative diseases such as Alzheimer’s disease [20, 21] and Parkinson’s disease [9, 14,
22], brain tumorigenesis, Zika virus infection to the brain [12, 23] and neurological
COVID-19 [24].

Technical Principles of Brain Organoid Formation

As mentioned above, a hallmark of brain organoids that makes them different
from neurospheres is forming cytoarchitectures and tissue morphogenesis of the
former [25]. This property allows brain organoids to recapitulate region-specific
brain architectures. Following a paradigm of directed differentiation, an original
approach toward organoid culture was developed by Yoshiki Sasai to derive cortical

https://www.biorender.com


96 P. Wongtrakoongate et al.

layers from human PSCs using a three-dimensional system termed the serum-free
culture of embryoid body-like quick-aggregation (SFEBq) [26]. Since then, various
approaches have been devised to generate brain organoids from PSCs. Fundamen-
tally, we will summarise four technical principles employed for the derivation of
brain organoids, including (1) factor-primed, (2) self-patterned, (3) fusion, and (4)
co-culture approaches (Fig. 5.3).

Fig. 5.3 Brain organoids can be derived from human iPSCs and ESCs through the aggregation of
EBs using four different methods. The factor-primed approach offers a consistent and reproducible
method. The self-patterned approach can deliver diverse cell heterogeneity and extensive morpho-
genesis. The fusion approach is suitable for the derivation of at least two distinct interconnected yet
defined compartments, for example, dorsal and ventral forebrain regions. The co-culture approach
gives rise to a brain organoid harbouring not practical cells derived from neural differentiation such
as microglia or brain tumour cells (Made in ©BioRender—https://www.biorender.com)

https://www.biorender.com
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Factor-Primed Approach

Brain organoids can be derived by defined factors. To this end, a factor-primed
approach, by which defined extrinsic and trophic factors are added into the culture
medium, can be adopted to prime human PSCs to differentiate along neuroecto-
dermal lineages. Scaffolds can also be included in the system to instruct cytoar-
chitectures and morphogenesis. A well-established protocol of the factor-primed
approach is serum-free culture of embryoid bodies (SFEBq), which has been utilised
to generate forebrain [27–29], midbrain [9], cerebral cortex [30], cerebellum [31,
32], hippocampus [33], neocortex [34] and pituitary [16]. Moreover, this approach
has led to a recapitulation of rostral-caudal organogenesis [35]. A key advantage
of using the factor-primed approach is relatively more consistent in cellular hetero-
geneity and a higher degree of differentiation than the self-patterned approach (see
below). However, less advanced-stage morphogenesis is a drawback of this approach
as opposed to the other methods.

To avoid limited morphogenesis, step-wise protocols for priming PSCs and their
progenies with guiding factors have been established, in which a transient induction
by extrinsic and trophic factors is employed to derive radial organisation of the cere-
bral cortex midbrain organoids and hypothalamic organoids [12, 36]. This temporal
manipulation of cell signalling allows brain organoids to be further self-instructed
upon removing or diluting the signals. Moreover, the biomaterial poly(lactide-co-
glycolide) copolymer (PLGA) can be successfully applied for priming cell attach-
ment and hence facilitatingmorphogenesis of the organoids around the scaffolds [36].
One study has compared PLGA with carbon fibres for the generation of midbrain
organoids and found an increase in expression levels of genes specific to dopamin-
ergic neurons from carbon fibre-primed cultures, structurally more stable than PLGA
and does not alter the pH of culture environments [37]. In addition, micropat-
terned arrays made from the organosilicon polydimethylsiloxane have been shown
to improve the derivation of forebrain organoids with homogeneous and singular
neural rosettes [38].

Self-Patterned Approach

In contrast to the aforementioned factor-primed approaches, self-patterned
approaches are organoid derivation techniques utilising the ability of spontaneous
differentiation and subsequently spontaneous morphogenesis of PSC aggregates [39,
40]. Hans Clevers pioneered this protocol for the development of intestinal organoids
[41]. Later on, cerebral organoidswere successfully derived frommatrigel-embedded
embryoid bodies. A key success of this method came from using a spinning biore-
actor to enhance absorption of nutrients and trophic factors and allow the aggregates
to develop self-patterned morphogenesis in a free-floating format [8]. Importantly,
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this technique led to a generation of various cell lineages belonging to the fore-
brain, midbrain and hindbrain in single organoids, indicating a potential of the self-
patterned approach to model diseases of the human brain, which might require a
crosstalk mechanism among different brain regions.

Nonetheless, in contrast to the signal-primed approach, two drawbacks of this
method are a massive cell death inside the organoids and an inconsistency of cellular
heterogeneity in the organoids. To increase nutrient absorption and oxygen diffu-
sion and reduce cell death, a multi-well spinning bioreactor system has been engi-
neered for simultaneous expansion of brain organoids, improving the growth of brain
organoids and increasing the efficiency of organoid derivation [12]. Furthermore, to
overcome a limited expansion of self-patterned brain organoids, genetic deletion
of phosphatase and tensin homolog (PTEN) led to enhanced cell proliferation of
ventricular and outer neural progenitors, in agreement with expansion and folding
of human cortical organoids [42]. Moreover, Ming and colleagues have recently
developed the self-patterned approach by combining the sliced neocortical organoid
(SNO) technique to increase the diffusion of nutrients and trophic factors into SNO,
leading to higher cell viability and more expansion of the organoids [43].

Fusion Approach

For factor-primed approach and self-patterned approaches, key drawbacks are limited
heterogeneity and uncontrolled cellular diversity, respectively. The latter also usually
comes with the irreproducibility of tissue morphogenesis. Specifically, an uncon-
trolled size of brain regions and tissue organisation are hurdles of this approach.
Hence, a novel method has been devised to improve brain organoids’ quality in
heterogeneity and reproducibility. This is a fusion approachwherebydifferent regions
of brain organoids can be fused from individual region-specific brain organoids.
Organoids of different brain regions can be fused to generate an expanded archi-
tecture, so-called “assembloids”. This approach connects multiple brain regions
in vitro for long-range and multi-synaptic interconnection. The fusion approach has
been used to study the migration of human GABAergic interneurons and to inte-
grate cortical circuits between neurons from the ventral to the dorsal forebrain [44].
This circuit integration comes from interneurons and glutamatergic neurons, which
can be found in a microphysiological niche. The authors also utilised the model to
studyTimothy syndrome and observed a defective neuronalmigration. Themigration
of GABAergic interneurons from ventral to dorsal forebrain is CXCR4-dependent
[45]. A similar study has modelled the development of human medial ganglionic
eminence of the ventral brain, which hosts neurogenesis of cortical interneurons.
Two different region-specific organoids, medial ganglionic eminence organoids and
cortical organoids, were fused to observe the migration and integration of interneu-
rons produced by the former [46]. In addition, a method aiming at the generation
of thalamus-cortex assembloids by fusing thalamus-like brain organoids to cortical
organoids has also been established. Remarkably, the reciprocal thalamocortical
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projections between the thalamus and cortex were observed in the fused assembloids
[13]. Using the fusion approach, a human multi-synaptic circuit has been recently
demonstrated by generating the cerebral cortex or the hindbrain/spinal cord assem-
bled with human skeletal muscle spheroids to generate 3D cortico-motor assem-
bloids [47]. A novel method has been invented for which the midbrain-to-forebrain
mesocortical pathway was modelled. This method utilises a hexagonal acoustoflu-
idic device to generate dynamic acoustic fields that can move and fuse one organoid
with another in a contact- and label-free manner [48]. Nonetheless, even though the
fusion approach offers a path to engineer and expand multi-regional brain organoids
with high reproducibility, not all aspects of brain physiology can be implemented,
for example, brain-microglia interaction and blood-brain barrier.

Co-culture Approach

A common key limitation in factor-primed, self-patterned, and fusion approaches is
that not all cell types present in brain tissues can be obtained from these methods,
especially cells belonging to other germ layers such as microglia and endothelial
cells. Thus, co-culture protocols have been developed to obtain a complete niche or
systems by adding particular cell types into or onto brain organoids.

In order to incorporate microglia into brain organoids, microglia were differen-
tiated from human iPSCs and were tested for their interaction with brain cortical
organoids lacking microglia. Upon addition of microglia, by day 3, the cells had
migrated into the organoids. The formation of activated microglial clusters was
observed when the injury was applied to the organoids [49]. A similar study investi-
gated the role ofmicroglial co-culture inAlzheimer’s pathologyusingbrain organoids
with Aβ aggregation. The authors found that integrating microglial co-culture can
attenuate the accumulation of Aβ plaques [50]. Microglia migrated faster into dorsal
organoids than ventral organoids in a comparative study between dorsal and ventral
organoids. Immune response upon microglial incorporation was also altered. Specif-
ically, microglia-incorporated dorsal organoids possess higher anti-inflammatory
cytokine secretion than ventral organoids, whereas microglia-incorporated ventral
organoids express higher TNF-α upon treatment of Aβ42 oligomers [51]. Further,
to closely mimic brain microenvironments, Gage and colleagues have successfully
transplanted cerebral organoids into adult mouse brains and have established that the
engraftment can lead to extensive neuronal differentiation and maturation, gliogen-
esis, axonal outgrowth, integration of microglia, and vascularisation of endothelial
cells [52].

The co-culture approach can benefit from studying the normal physiology and
neurological diseases and elucidating tumorigenesis. In one study, cerebral organoids
were formed to model gliomagenesis [53]. The cancer cells can infiltrate into and
proliferate in the organoids after co-culturing with patient-derived glioma stem cells.
Moreover, gap junction mediated-interconnecting microtubes can be observed using
two-photon microscopy, facilitating the tumour invasion. In addition, co-culture
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approaches can offer a means to serially expand brain tumours into subsequent
organoids [63] and understand tumour heterogeneity [54].

With all these four techniques for derivation brain organoids, including factor-
primed, self-patterned, fusion, and co-culture approaches, fruitful information has
been made regarding fundamental neuroscience, developmental biology, tumori-
genesis and drug discovery. Hypotheses for specific research purposes will guide
which technique should be employed for the generation of brain organoids. Future
approaches may combine several of these techniques to better recapitulate the brain’s
anatomy and physiology.

Brain Organoid and Neurodegeneration

Neurodegenerative diseases, including Alzheimer’s diseases (AD), Parkinson’s
diseases (PD), Amyotrophic lateral sclerosis (ALS), and Huntington’s disease, are
prevalent in the elderly worldwide. Previously, studies with human brain tissue,
cell cultures, and animal models have been used to study the mechanisms of
diseases. Human cerebral organoids and several 3D culture systems exhibit key
neuropathological features of the diseases and can be used as disease models.

Alzheimer’s Disease

Alzheimer’s disease is the most common age-related, irreversible, and progressive
disease that slowly destroys the brain. Individuals with early AD develop brain
grey matter volume loss in many brain regions such as the hippocampus and the
basal forebrain. The disease is clinically characterised by cognitive decline, severe
memory impairment, and severe enough life-altering. AD. is characterised by the
presence of extracellular amyloid beta-protein deposition, so-called amyloid plaque,
and intracellular neurofibrillary tangles. Familial AD. (FAD) is caused by vari-
ants in the amyloid precursor protein (APP), presenilin-1 (PSEN1), or presenilin-2
(PSEN2). Sequential cleavage of APP by β and γ-secretase results in a production
of Aβ peptide, which aggregates into insoluble amyloid plaques. The deposition of
amyloid-beta and hyperphosphorylation of tau could be observed in a 3D culture
system of human neural stem cells with amyloid precursor protein (APP) and prese-
nilin1 (PSEN1)mutation [20].Moreover, brain organoids derived frommultiple FAD
patients induced pluripotent stem cells to develop continuous amyloid deposition and
tau hyperphosphorylation in an age-dependent manner [21].

Recently, Cairns and colleagues described a new model of AD. Using HSV-
1 infection to a 3D brain model. This model can develop amyloid plaque-like
formations, gliosis, neuroinflammation, and decreased functionality [55].
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Parkinson’s Disease

Parkinson’s disease (PD) is the second most common neurogenerative disease after
AD.PD is characterisedby resting tremor, bradykinesia, rigidity, andpostural balance
instability. The major cause of clinical symptoms is the degeneration of midbrain
dopaminergic neurons. Tomodel PD in brain organoids, midbrain-specific organoids
were developed [9, 14]. The midbrain-specific organoids contained functional tyro-
sine hydroxylase-positive midbrain dopamine neurons (mDAns) after 2 months in
culture. ThesemDAns expressmidbrainmarkers, such as FOXA2 or dopamine trans-
porter, and show cytoplasmic neuromelanin accumulation. Patient-specific iPS cells
from PD patients could be used to model PD with midbrain-specific organoids. The
early reports of PDmodelling inmidbrain-specific organoids focused on the effects of
the LRRK2-G2019S variants. CRISPR-Cas9 has been used to introduce themutation
in control human pluripotent stem cell lines [56] or create isogenicmutation corrected
lines from patient-specific cells [22]. Kim and colleagues observed no difference
in size between LRRK2-G2019S midbrain-specific organoids compared to control.
However, less neurite length ofmDAns and lower expression of dopaminergic neuron
marker were noted [56]. On the other hand, a smaller number of mDAns and lower
complexity of their neurites were observed in the midbrain-specific organoid derived
fromLRRK2-G2019Smutatedpatient iPS [22].Midbrain organoidsmayalso beused
to study sporadic forms of PD by exposing the organoids to exogenous stressors, such
as MPTP.

Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis (ALS) is a devastating neurogenerative disorder caused
by the loss of motor neurons. The most common cause of familial ALS is superoxide
dismutase type-1 (SOD1) mutations, resulting in increasing aggregated and soluble
misfolded forms of SOD1, leading to the death of motor neurons [57]. Seminary
and colleagues generated motor neuron cultures from human iPSC lines carrying
mutations in SOD1. Accumulation of insoluble SOD1 can be observed in ALS
iPSC-derived motor neurons. However, the heat shock response or stress granule
formation in response to protein accumulation cannot be observed [58]. To date,
there is no publication using organoids to model ALS. This might be because the
motor neurons can be divided into upper motor neurons and lower motor neurons.
The upper motor neurons are in the motor cortex, and the lower motor neurons are
in the ventral horn of the spinal cord. Therefore, brain organoids cannot mimic the
lower motor neurons physiology and environment. Kawada and colleagues devel-
oped a protocol to generate amotor nerve organoid fromhuman pluripotent stem cells
using a microdevice equipped with a narrow channel to provide a microenvironment
for axonal growth. The generated motor nerve organoid mimics the development
and dysfunction of a human motor nerve [59]. Later, a protocol to generate a 3D
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spinal cord organoid from human induced pluripotent was established [60]. Different
spinal cell types were observed with this protocol in the spinal cord organoids and
patterned along the rostro-caudal axis, mimicking the ventral spinal cord. Fusing the
motor cortex brain organoid to the motor nerve organoid or spinal organoid could be
a possible model for further ALS study.

Other Applications

Besides, brain organoids and assembloids could serve as an innovative tool to model
pathology and study disease mechanisms from a healthy individual and patient
nervous system. Brain organoids and assembloids can be combinedwithmany recent
technologies such as optogenetics to use light to control neurons, CRISPR/cas9
for genome editing, patch-clamp for electrophysiology study, and on-a-chip system
to control continuous perfused cultures to create more precise models of brain
development and diseases.

Brain Organoid for Drug Development and Personalised
Medicine

For clinical translation, brain organoids can be used to model patient-specific molec-
ular and cellular pathogenesis, thus guiding themost effective treatment for individual
patients, a process called personalised medicine. Personalised organoids can be
derived from a specific patient. Briefly, the cells would be obtained from the patient,
reprogrammed into iPScells, andgrownbrain organoids on a large scale. Personalised
brain organoids can be used to test the effectiveness of a compound library (new drug
development) to find the ones most appropriate for the patient. Recently, Park and
colleagues used 1300 cerebral organoids, including CRISPR/Cas9-edited isogenic
lines, from 11 AD patients to assess blood-brain barrier-permeable FDA-approved
drugs and purposed a strategy for precision medicine by integrating those cerebral
organoids and mathematical modelling. Their results demonstrated the possibilities
of drug repositioning and simplified the drug approval process in preparation for
precision medicine [61]. In addition, since autism spectrum disorder is a polygenic
disease, it is difficult to precisely develop a curable treatment for the patients. To over-
come this multi-genetic barrier, cerebral organoids made from the patients via iPS
reprogramming have been proposed for personalised drug discovery [62]. However,
the production scale of the cerebral organoids is a challenge for the high-throughput
drug screening. Specifically, most of the established protocols have been developed
using 96-well plates. Therefore, the automation system is required to produce cere-
bral organoids on a large scale, which will eventually accelerate the development of
novel personalised therapeutic strategies for brain disorders.
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Conclusion

Brain organoid technology is a powerful tool for researchers to study early human
brain development and diseases. Four approaches can be considered for generating
brain organoids: (1) factor-primed; (2) self-patterned; (3) fusion; (4) co-culture
approaches. Pathogenesis of Alzheimer’s, Parkinson’s, and ALS diseases, among
others, have been successfully modelled using brain organoids. When coupled with
genome editing tools such as CRISPR/Cas9, patient-specific brain organoids are key
for personalised and precision medicine.
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Chapter 6
Organoids in the Human Reproductive
System

Pongsatorn Horcharoensuk, Sunantha Yang-en,
and Ruttachuk Rungsiwiwut

Abstract Introduction: The limitation of using the animal as themodel for studying
human reproductive diseases is that the biological background of the animal may not
recapitulate the pathology of human diseases. Therefore, human cell culture tech-
nology is progressively developed to replace the use of animal models. Adherent
cell culture or two-dimension (2D) culture condition has long been widely applied
for a culture of several primary or pathological reproductive cell lines, including
Hela cells, an immortal endometrial cell line. However, the data obtained from
2D culture conditions may not always be translated or recapitulated in vivo, espe-
cially in the disease mechanisms. Here we review the organoid technology currently
applied for the female and male reproductive system, focusing on the progress of
technologies used in different reproductive organs and future applications, espe-
cially for regenerative medicine. Methods: In this chapter, MEDLINE/Pubmed and
Scopus databases were used for a survey of the literature. The keywords used for
searching were; 3D culture, organoids, male reproductive organs, female reproduc-
tive organs, diseasemodelling, stemcells, personalisedmedicine.Results: Reproduc-
tive organoids can be generated from adult stem cells, which are established directly
from the healthy or pathogenic tissue of reproductive organs, or pluripotent stem
cells, which latter are being differentiated into the reproductive cells. Specific 3D-
culture conditions such as extracellularmatrices, signalling pathways, or cross-talked
between different cell types in the organoid have to be manipulated to successfully
maintain the reproductive organoids in the in vitro system. Moreover, the patient-
derived reproductive organoids are feasible for developing drug screening tests for
individual cancer patients. Conclusions: Interestingly, patient-derived reproductive
cancer organoids are currently developed for biobanking. The advantages of applying
the organoids in modelling human infectious diseases, genetic disorders, and cancers
that cause reproductive organ problems. The organoid biobanking will further assist
drug development platforms, personalised medicine.
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Abbreviations

2D Two-dimension
3D Three-dimension
3-LGS Three-Layer Gradient System
AKT Protein kinase B
ALDH Aldehyde dehydrogenases
ARM4 Armadillo repeat containing 4
ASCs Adult stem cells
bFGF Basic fibroblast growth factor
BMP4 Bone morphogenetic protein 4
BPH Benign prostatic hyperplasia
cAMP Cyclic adenosine monophosphate
cCCC Cervical clear cancer cell carcinoma
CD Cluster of differentiation
CHD1 Chromodomain Helicase DNA Binding Protein 1
CHIR99021 GSK3 inhibitor
COL4 Collagen type IV
CTNNB1 Catenin Beta 1
CZ Central zone
DMEM Dulbecco’s Modified Eagle Medium
DNAI1 Dynein Axonemal Intermediate Chain 1
EBs Embryoid bodies
ECAD E-cadherin
ECM Extracellular matrices
EGF Epidermal growth factor
ERG Erythroblast transformation-specific (ETS) related gene
EZH2 Enhancer of zeste 2
FBS Fetal bovine serum
FGF2 Fibroblast growth factor 2
FGF10 Fibroblast growth factor 10
FOXJ1 Forkhead Box J1
FT Fallopian tube
FTEC Fallopian tube epithelial cells
FTMSC Fallopian tube mesenchymal stromal cells
GSK3B Glycogen Synthase Kinase 3 Beta
hESCs Human embryonic stem cells
HGF Hepatocyte growth factor
HGSCs High-grade serous carcinoma
hiPSCs Human induced pluripotent stem cells
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HLA Human leukocyte antigen
HOX Human Homeobox
hPSCs Human pluripotent stem cells
HPV Herpes virus
HUVEC Human umbilical endothelial vein
ICM Inner cell mass
IFIT1 Interferon Induced Protein With Tetratricopeptide Repeats 1
IFN- β Interferon beta
IGF1 Insulin-like growth factor 1
IL-6 Interleukin-6
KRT5 Keratin 5
KRT7 Keratin 7
LC Langerhans cells
LGR5 Leucine-rich repeat-containing G-protein coupled receptor 5
LRRC6 Leucine-Rich Repeat-Containing Protein 6
MEHP Mono (2-ethylhexyl) phthalate
MUC1 Mucin 1
OSE Ovarian surface epithelium
PC Prostate cancer
PCOS Polycystic ovarian syndrome
PDGF-BB Platelet-derived growth factor two B subunits
PDXs Patients-derived xenograft
PGE2 Prostaglandin E2
PI3K Phosphoinositide 3-kinases
PID Pelvic inflammatory disease
POI Premature ovarian insufficiency
PZ Peripheral zone
ROCK Rho kinase
ROR1 Receptor Tyrosine Kinase Like Orphan Receptor 1
RSPO1 R-Spondin 1
SCJ Squamocolumnar junction
SCT Syncytiotrophoblast
SOX17 SRY-Box Transcription Factor 17
SPINK1 Serine Peptidase Inhibitor Kazal Type 1
SPOP Speckle Type BTB/POZ Protein
SSEA3 Stage-specific mouse embryonic antigen 3
SSEA4 Stage-specific mouse embryonic antigen 4
STAT3 Signal transducer and activator of transcription 3
TE Trophectoderm
TGFβ Transforming growth factor β

TMPRSS2 Transmembrane Serine Protease 2
TP63 Tumor Protein P63
TZ Transformation zone (Cervical organoid)



112 P. Horcharoensuk et al.

TZ Transitional zone (Prostate organoids)
WNT Wingless-related integration site
Y-27632 ROCK inhibitor

Introduction

The human reproductive system consists of reproductive organs and related struc-
tures. Both female and male reproductive systems generally have primary and
secondary organs or structures based on their rules. The primary reproductive organs
can be called “gonads”, which are the ovary in females or testis in males. The major
functions of the gonad are producing the gametes, oocyte or sperm and hormones.
While the secondary reproductive organs such as the fallopian tube or uterus in
females and epididymis or prostate gland in a male are responsible for the matu-
ration of the gametes as well as the growth of the embryo [1], the in vitro culture
of the cells derived from the reproductive organs is widely applied to understand
cell morphology, physiology, and the mechanisms underlying specific diseases of
human reproductive organs. To date, the researchers have developed several effec-
tive protocols for culturing cells or tissue from different reproductive organs. The
in vitro culture can be conventionally carried out under adherent conditions, whereas
the cell attaches to the surface of the treated culture dish so-called two-dimension
(2D) culture. The 2D culture of primary or tumour cells derived from the repro-
ductive organs demonstrated numerous insights into the physiology and biology
of their organ origins. Although 2D culture conditions represent many advantages,
such as being easy to manipulate, the cell structures can be clearly defined under
the microscope. However, the 2D culture condition is proved that this condition is
non-physiological and, therefore, does not represent a complex microenvironment
of reproductive tissues or organs [2, 3]. Reproductive cells that grow under the 2D
conditions lack body microenvironments, including cell-cell interaction and extra-
cellular matrices (ECM). Most primary or tumour cells derived from reproductive
organs display a homogenous phenotype.

Alternatively, three-dimensional (3D) culture is a culture condition that allows
the cells to grow and communicate with the neighbouring cells or surrounding extra-
cellular matrices networks. Moreover, the genetic alteration and rapid loss of their
phenotype after prolonged culture under 2D conditionmake themunsuitable for reca-
pitulating themicroenvironment of the in vivo condition. Therefore, the data obtained
from 2D conditions may be inadequate for being translated to the function of repro-
ductive organs [2, 3]. An organoid is one of the most advanced 3D culture conditions.
Therefore, this chapter summarises the recent advance of organoids in female and
male reproductive organs, including the principle of cell interaction, signalling path-
ways that mimic the organoids, type of organoid of reproductive organs, and the
disease modelling of reproductive organoids.
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Cell Sources for Derivation of Reproductive Organoids

Typically, human reproductive organoids are derived from the adult stem cells
(ADCs), such as human ovarian epithelial cells isolated from follicular fluid
(Fig. 6.1a) or human pluripotent stem cells (hPSCs; Fig. 6.1b). Due to the differ-
ences in the cellular and molecular biology of the ADCs and PSCs, care must be
considered to develop derivation and culture protocols. For instance, ADC-derived
reproductive organoids contain tissue-specific stem cells, losing their stemness after
prolonged culture can occur. Therefore, manipulating the culture medium by supple-
mentation with tissue-specific cocktails of cytokines or growth factors can main-
tain their stem cell niche and physiological environment [4]. On the other hand,
more complexities of differentiation PSCs into specific reproductive cells due to the
differentiation processes involve several signalling pathways, transcription factors
or extracellular matrices [5]. Thus far, using PSCs as the starting cell type could
hurdle the successfulness of reproductive organoid derivation. However, one of the
most challenging of using PSCs to derive the reproductive organoids is that cells
from patient-specific diseases can be harvested and reprogrammed to human PSCs
and the subsequent generation of the specific disease organoids. The hiPSC, together
with organoid technologies, support the simulation and investigation of pathological
diseases in vitro.Besides, the advancement ofCRISPR/Cas9, a powerful gene-editing
technology, allows researchers to precisely create or repair specific gene mutations.
Furthermore, applying iPSC and gene editing technologies such as correcting gene
mutations that cause the disease can achieve a more effective therapy [6].

Fig. 6.1 Cell sources for generation of human reproductive organoids. The reproductive organoids
can be established using somatic cells isolated from the reproductive organs or reprogramming
of somatic cells to human pluripotent stem cells (hPSCs). For instance, ovarian epithelial cells
obtained from human ovarian follicular fluids during ultrasound-guided oocyte retrieval (a) and
hPSCs generated from reprogramming of dermal skin fibroblast cells (b). Magnification 100 X
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Organoids as a Model for Female Reproductive Diseases

The researchers have demonstrated the major advantages of using the reproduc-
tive organoid as a disease model, including displaying the pathological processes of
some diseases such as ovarian cancers or endometriosis [7, 8]. The disease-specific
organoid models assist the understanding of how the diseases develop and progress.
Moreover, the organoid disease models are very useful for developing potential
diagnoses and treatments.

Ovarian Organoids

The ovaries are the gonadal organs that are located near the uterus, in the abdomen.
The ovary produces the female gamete, oocyte and hormones such as estrogen,
progesterone and inhibin [9]. The physiology of the ovary is complex due to its works
closely under the control of pituitary–gonadal and ovarian hormones. Anatomically,
the ovary comprises the outer layer of epithelial cells, which suggests that it is related
to neogenesis and cancer [10]. The ovarian surface epithelium (OSE) superficially
covers the dense connective tissue, tunica albuginea which is sometimes related to
polycystic ovarian syndrome (PCOS), a syndrome that involves the difficulty of the
mature follicle to ovulate [11]. Two major portions of the ovary are the cortex and
medulla. The ovarian cortex is composed of a framework of ovarian follicles and
stromal cells. The oocyte develops inside the follicles under the closed control by the
hormones. The growth of the follicles is dynamic and complex. The differentiation of
stromal cells into theca interna and theca externa plays an important role in follicular
development. Therefore, the cells’ complexity and dynamic inside the ovary must be
understood before generating ovarian organoids. Due to the ovarian cancers primarily
emerging from theOSE,much research focuses on deriving ovarian cancer organoids
using the ovarian surface epithelium derived from cancer patients. Physiologically,
OSE is closely related to ovulation and transformation of the normal epithelial cells
and cancer progression. In the normal condition, after the ovulation, the repairing
process of OSE begins with proliferation, migration, and finally regeneration of the
ovarian surface by coordinating the secretion of the new extracellular matrices and
proteolytic enzymes [12]. These dynamicprocesses canbe explored throughorganoid
technology using 3D culture and plating the organoid onto a combination of extracel-
lular matrices, collagen, and OSE-derived extracellular matrix [12]. Ovarian cancer
is one of the highest fatality rate cancers in females [13]. Ovarian cancer organoids
have been proved to be a very useful model in pre-clinical research. The researchers
could discover the cancer mechanisms such as progression and recurrent cancer and
resistance to the chemotherapy. Therefore, the new diagnostic, therapeutic or preven-
tive platforms using ovarian organoids are progressively improved. Technically, to
derive the ovarian cancer organoids, the ovarian tumour biopsies must be dissoci-
ated into fragments, embedded in a scaffold and cultured in a cocktail of culture
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medium containing signalling factors, cytokines, and growth factors to be optimised
for only ovarian cell type. Using the culture medium of the other types of cancer
organoid for culturing the ovarian cancer organoid may limit the growth and devel-
opment of ovarian cancer organoids [14]. Maenhoudt et al. [14] demonstrated the
low efficiency of ovarian organoid formation after cultured in the culture medium for
endometrial and endometrium cancer. Moreover, the concentration of growth factors
such as basic fibroblast growth factor (bFGF), FGF10, transforming growth factor
β (TGFβ) pathway inhibitor A83-01, addition of hepatocyte growth factor (HGF)
or insulin-like growth factor 1 (IGF1), relatively influenced the stage of ovarian
organoid development.

Despite using tumour biopsies as the starting material, the OSE can be surgically
scratched with the cytological brush and cultured in the medium supplemented with
fetal bovine serum (FBS) under 2D culture conditions [15]. Subsequently, 3D condi-
tion usingMatrigel-coated culture dish, together with the culture medium containing
2% Matrigel, can be applied to grow OSE organoids. The presence of laminin,
fibronectin, and gelatin in Matrigel provides a suitable extracellular matrix for the
OSE to form the 3D structure, presenting a single epithelial lining with the hollow
lumen within 48 h [15]. Besides, the OSE organoids can develop and grow according
to the duration of in vitro culture. E-cadherin (ECAD) expression, which involves
cell-cell junction, can be detected within a few days after forming the organoid
structure.

In comparison, collagen type IV (COL4) expression, a basement membrane
component, was detected at the basal membrane around one week onward after
forming the organoid [15]. The ovarian cancer organoid recapitulates the patho-
physiology of cancer. Therefore, optimising the culture medium for ovarian cancer
organoids is important for achieving their most effective growth and development.
It is generally accepted that the cancer organoid models have a strong potential for
in vitro and pre-clinical research. The pre-clinical results obtained from ovarian
cancer organoids provide personalised therapeutic options and assist in clinical
decision making [2].

Besides cancer models, up to date, there is a lack of reports about generating
the ovarian organoid from other diseases, for instance, polycystic ovarian syndrome
(PCOS) or premature ovarian insufficiency (POI), which is associated with not only
the number of mature oocytes but also metabolic and endocrine complications [16].
Having the POI or PCOSorganoidswould support and provide information regarding
the disease mechanism and the development of the new treatment.

Fallopian Tube Organoid

The fallopian tube (FT) is the bilateral organ that connects the ovaries to the uterus.
The fallopian tubes play an important role in the female reproductive system,
including maturation of the oocyte, gametes and embryo transportation, fertili-
sation, and embryo development [17]. Fallopian tubes can be divided into three
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parts: infundibulum, ampulla, and isthmus [18]. The epithelium of the fallopian
tube contains ciliated and secretory cells. After ovulation, the oocyte is released and
captured by the cilia of the fallopian tube. The oocyte is guided into the ampullary-
isthmus junction, where fertilisation occurs. Later, the fertilised zygote would travel
to the uterus through the movement of the cilia. The secretory cells secrets some
essential secretion to support the motility of the oocyte or zygote [18]. Anatomical
or functional abnormalities of the fallopian tube cause several clinical diseases, for
example, high-grade serous ovarian cancer [19] or infertility [20]. The major limita-
tions of accessing the FT are technically invasive, and continuing long-term follow-
up is almost impossible. Hence, the FT organoid may provide ease and recapitulates
the in vivo environment of the FT. In 2015, Eddie and colleagues [21] reported the
success of the generation of 3D human fallopian fimbriae using an alginate matrix
to support the growth of human fallopian fimbriae ex vivo.

Subsequently, Chang et al. [22] isolated the primary fallopian tube epithelial
cells (FTEC), cultured under 2D culture condition and followed by suspension
3D culture condition. These conditions allow the cells to multiply while main-
taining their stemness, as confirmed by the expression of normal stem cell markers,
including LGR5, SSEA3 and SSEA4. Moreover, FTEC expresses CD24, CD44,
CD117, ROR1, CD133 and ALDH—cancer stem cell markers. Later, the authors
generated the organoid by mixing FTEC with fallopian tube mesenchymal stromal
cells (FTMSC) and human umbilical endothelial vein (HUVEC) and cultured under
3D condition. Their culture medium consists of DMEM supplemented with Wnt3a,
RSPO1, FGF10, EGF, noggin, a ROCK inhibitor, nicotinamide, and TGF-βR kinase
inhibitor IV the presence of Matrigel for 21 days. Both ciliated and secretory cells
in the 3D human fallopian fimbriae maintain their normal architecture for up to
7 days, demonstrating the feasibility of generating FT organoids. The established FT
organoids in this study consisted of two important cell types of the fallopian tube,
secretory and ciliated cells.

Despite the generation of the FT organoid from the primary cells, human iPSCs
can be used as the starting cells, as reported byYucer et al. [23]. The process of differ-
entiation of human iPSCs to fallopian tube epithelial cells is very complex. Human
iPSCs have to be first induced to mesodermal lineage, followed by the formation of
theMullerian duct, as the reproductive system is closely related to the urinary system
[24]. Yucer et al. [23] demonstrated cell fate decisions during differentiation of iPSCs
to fallopian tube epithelial cells controlled by the proteins and growth factors. Meso-
derm development can be induced by Activin A and CHIR99021, regulating the
intermediate mesoderm fate by stepwise addition of BMP4, followed by Wnt4 and
follistatin to replicate the Mullerian duct. Therefore, the addition of cytokines or
growth factors in the culture medium in each step and determining the localisation
and expression of the FT markers are extremely important. Besides the cytokines or
growth factors, a scaffold such as Matrigel is necessary for FT development. Thus
far, Yucer et al. [23] demonstrated that the iPSC-derived FT organoid exhibits the
anatomy and physiology of human FT as confirmed by estrogen and progesterone
responses.
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Moreover, the cilia and secretory cells and the folding epithelium are identified
in the FT organoid. At the molecular level, it has been found that the stem cell in
the FT organoid maintains its stem cell through the activation of WNT and NOTCH
signalling. Inhibition of NOTCH signalling leads to upregulation of ciliogenesis
genes such as ARMC4, DNAI1, FOXJ1, and LRRC6, increasing ciliate cells in the
FT organoid [25].

The diseases of FT are generally the infections that cause damage and scar forma-
tion of the tubes, for instance, pelvic inflammatory disease (PID), which is primarily
caused by bacterial infection. Understanding the disease’s initiation and progres-
sion is necessary to develop the new diagnostic and therapeutic tools for effective
treatment outcomes. One promising FT organoid-disease model is high-grade serous
carcinoma (HGSCs), which mostly arise from the secretory cells of the FTE [26, 27].
As mentioned earlier, Notch signalling involves initiation, progression and metas-
tasis of HGSCs [25]. Importantly, the differentiation of the secretory cells of the
FTE can be blocked and controlled by adding a Notch γ-secretase inhibitor into
the FT organoid culture condition. Therefore, the information regarding controlling
NOTCH signalling can be further investigated by using HGSCs fallopian organoid.
This may provide a novel and effective treatment for HGSC patients [28].

Endometrial Organoids

The human uterus consists of three layers that lining from the luminal to the serosal
parts, including endometrium, myometrium, and perimetrium. The endometrium
is a highly dynamic tissue that cyclically responds to the steroid hormones and
proteins for menstruation and embryo implantation [29]. Many gynecologic diseases
are involved with the endometrium, including endometriosis, dysmenorrhea, infer-
tility and cancer. Among these, endometrial cancer is commonly found in the female
reproductive system [30].

Endometrial organoids can be derived from normal endometrial or pathogenic
endometrial tissue [8]. The primary endometrial cells were first dissociated and then
embedded in the Matrigel droplet [8, 31]. Unlike the ovarian organoid, Turco et al.
[8] demonstrated that the composition of the culture medium of the endometrial
organoid could be the same as the one commonly used for culture other organoids.
Like mouse endometrial organoid [31], human organoid exhibits glandular organ-
isation, apicobasal polarity, mucus production, and response to sex hormones [8,
31]. Thus far, the established endometrial organoids have recapitulated the anatomy
and physiology of the in vivo endometrium. Despite the generation of endometrial
organoids from the endometrial tissue, recently, for the first time, human iPSC-
derived endometrial organoids can be successfully established under the stepwise
protocol [32]. The differentiation processes involve inducing human iPSC to form the
embryoid bodies (EBs), followed by culturing and treating the EBs with the sequen-
tial cocktails of cytokines and growth factors including, CHIR99021, a GSK3B
inhibitor/CTNNB1 pathway agonist, fibroblast growth factor 2 and 9, retinoic acid,
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NOGGIN, 17b-estradiol, and PDGF-BB for over 14 days, resulting in the primitive
streak, coelomic epithelium and finally endometrial stromal fibroblasts, respectively.
Furthermore, decidualisation of the human iPSC-derived endometrial stromal fibrob-
lasts was confirmed by treatment with estradiol, medroxyprogesterone acetate, and
8-bromoadenosine 3′–5′-cyclic monophosphate [32, 33].

In order to recapitulate the pathophysiology of cancer, Turco et al. [8] derived
the endometrial organoid by using the endometrial adenocarcinomas from post-
menopausal women and demonstrated that this cancer-derived endometrial organoid
has a glandular origin, as confirms by the expression of glandular markers including
MUC1 and SOX17. Although several pathogenic characteristics in these endometrial
adenocarcinomaorganoidswere observed, such as pleomorphic cellswith hyperchro-
matic nuclei, disorganised endometrial epithelium, basement membrane detaching
and cell invasion, into the Matrigel, they maintain their chromosomal integrity after
prolonged culture [8]. Moreover, these patient-derived endometrial organoids can
survive and grow after freeze-thaw cycles, making them a valuable tool for the
biobank of patient-derived organoids. Patient-organoid biobanking may assist new
endometrial cancer treatment strategies.

In order to improve the microenvironment of the endometrial organoid, the
endometrial epithelium can be co-cultured with the stromal cells [34–36]. In the
normal endometrium, there is a cross-talk between the stromal and endometrial
epithelial cells. The stromal cells are responsible for the endometrial epithelium’s
proliferation, differentiation, and decidualisation [37]. Besides supporting the growth
of endometrial epithelium, stromal cells may cause some pathogenic conditions like
endometrial carcinoma [34–36] and endometriosis. The recent finding of Esfandiari
et al. [38] emphasised the important role of stroma cells in human endometriosis using
endometriosis organoids. The results demonstrated the similar methylation alter-
ations patterns of the Human Homeobox (HOX) cluster, A-D and HOX cofactors in
ectopic/eutopic endometrium tissues and ectopic/eutopic endometriosis organoids
compared with normal endometrium. In addition, the endometriosis organoids in
their study maintain epigenetic changes as confirmed by the conserved pattern of
methylation alterations in the endometriosis organoids and tissue.

Therefore, the complex organisation of endometrial epithelium and stromal cells
provides a model for studying the epithelium-stroma interactions in vivo. Moreover,
endometriosis organoids represent a novel disease model to determine the genetic
and epigenetic mechanisms that underlie human endometriosis, which can be useful
to the development of new therapeutic platforms.

Cervical Organoid

The cervix connects the uterus to the upper part of the vagina. Anatomically, the
cervix can be divided into three parts; endocervix, the squamocolumnar junction
(SCJ) and ectocervix. There are two different epithelial linings in the cervix, the
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columnar epithelium at the endocervix, whereas the squamous epithelium with non-
keratinocyte at the ectocervix. Importantly, the transformation zone (TZ), the tran-
sition area between the two epithelial lineages, has been found at the SCJ. The SCJ
undergoes remodelling in response to the steroid hormones during puberty, preg-
nancy and menopause during normal physiological conditions [39]. Importantly,
the SCJ region of the cervix is widely known to be the area where cervical cancer
emerges after the HPV infection to the cervix. Therefore, creating the cervical or
SCJ organoids will assist the researchers to better understand the disease mechanism
and develop a new and effective treatment.

With the limitation of accessing human cervical tissue, Jackson et al. [40] alterna-
tively developed a human cervical organoid by a culture of the commercial cervical
keratinocytes, fibroblast and myeloid cell line followed by maturation and purifi-
cation into Langerhans cells. The authors focused on LC cells because it is rela-
tively scarce in the cervical mucosa and that HPV infection can be found. Although
this human cervical organoid supports a better understanding of the HPV-infection
microenvironment, it is not directly derived from the patients.Maru et al. [41] demon-
strated that the normal SCJ samples could give rise to the organoid for the first time.
Under the suitable 3D culture condition, the organoid exhibits the cuboidal SCJ cells,
express SCJ markers and, more importantly, consists of squamous cells resembling
transformation zones. Interestingly, the organoid culture condition reported in their
study can be prolonged-cultured without any genetic modification.

It is very important to distinguish the markers specifically related to the specific
epithelial cells of the endocervix and ectocervix. Endocervical organoids express
KRT7, while the ectocervical organoids express KRT5 and TP63, the basal markers.
Besides, the in vitro growth of cervical SCJ organoids depends on supplementation
of EGF, Noggin, Y-27632, RSPO1, and Jagged-1 in the culture medium [41].

The organoid of a cervical clear cancer cell carcinoma (cCCC), a rare subtype of
cervical cancer, has been successfully generated byMaru et al. [41]. cCCC organoids
were grown under the double layers of Matrigel. By using genomic analysis, the
authors detected mutations in both cCCC organoids and CCC compartments. Inter-
estingly, these cCCC organoids showed sensitivity to anti-cancer drugs, including
paclitaxel, cisplatin, and gemcitabine. These results indicated that cCCC organoids
might assist the therapeutic finding for cCCC patients.

Trophoblast Organoids

Two types of cells emerge dominantly inside the embryo at the blastocyst stage, the
inner cell mass (ICM) and trophectoderm (TE). The ICM differentiates further into
the body, whereas the TE gives rise to trophoblasts which play a crucial role in fetal
placenta formation.

Trophoblasts are considered as the stem cells that differentiate into villous and
extravillous pathways. In the villous pathway, cytotrophoblast cells formmultinucle-
ated syncytiotrophoblasts (SCT). In the extravillous pathway, cytotrophoblast cells
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acquire an invasive phenotype and differentiate into either (i) interstitial extravillous
trophoblasts, which invade the decidua, or (ii) endovascular extravillous trophoblasts,
which involvesmaternal vascularisation [42]. Trophoblast function deficiency causes
many complications such as miscarriage, recurrent abortion, preeclampsia and
preterm abortion [43, 44].

Immortal human placental cell lines have been isolated and developed from the
choriocarcinoma tissue such as BeWo, JEG-3 and JAR [45]. Although these cell
lines have several advantages like ease of access, less complication in manipulating
their genes, or lack of ethical concerns, the immortal characteristics, especially their
malignant transformations, may not represent the in vivo conditions. Genetic modifi-
cation of primary trophoblast cells by using genes encoded for simian virus 40 large
T antigen results in the immortal trophoblast cell lines [46] overcome the limitation
of using trophoblast cell lines derived from carcinoma tissue.

Alternatively, trophoblast cells can be differentiated from human embryonic stem
cells (hESCs) by treatment with bone morphogenetic protein 4 (BMP4), resulting
in morphological and functionally similar to trophoblast cells [47, 48]. In addition,
our previous study demonstrated that BMP4 could induce both normal and abnormal
karyotypic hESC lines into trophoblast-like cells [49]. Unfortunately, some hESC-
derived trophoblast cells differently displayed trophoblast-specific markers, global
gene expression profiles, and HLA status to those primary trophoblast populations
[50].

The recent reports demonstrate the advancement of basic and clinical research
relating to placenta development using trophoblast organoid models. Sheridan et al.
[51] successfully establish and differentiate the trophoblast organoid from the first-
trimester human placenta within 3 weeks. Interestingly, the trophoblast organoid can
be prolonged cultures under their 3D culture condition for more than one year. The
optimal composition of the culture medium for growing the trophoblast organoids
is very important. Supplementation of cocktails including FGF2, HGF, EGF, and
CHIR99021 and R-spondin-1 (WNT activators), Y-27632, PGE2 (cAMP/AKT acti-
vator) and aTGFβ inhibitor influenced the success of trophoblast organoid generation
[51]. Not only the villous-like organoid containing syncytiotrophoblasts and villous
cytotrophoblast can be generated, but also it can be prolonged culture. Besides,
applying enzymatic dissociation of trophoblast organoids with Accutase enhances
expansion and propagation of the trophoblast organoid [51]. Although there are a
few reports regarding disease-specific trophoblast organoids, the mechanism of how
the Zika virus impairs the fetal-maternal interface can be explored using the human
trophoblast organoid [52].
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Organoids as a Model for Male Reproductive Diseases

The male reproductive system consists of the external structures: penis and scrotum,
the internal structures: testes, epididymis, ductus deferens and accessory gland
including seminal vesicles, prostate gland and Cowper’s glands. The major func-
tions of male reproductive organs are producing, maintaining and transporting the
sperm. The testis also produces and secret male sex hormones such as testosterone
to maintain the male reproductive system.

Testicular Organoid

The testicular microenvironment can be recreated in vitro by testicular organoid
technology, allowing several applications such as microanatomy, physiology, drug
toxicity test, and disease modelling.

Similar to female reproductive organoids, cell to cell interaction and ECM plays
an important role in the testicular organoid generation. Baert et al. [53] demon-
strated that the growth of testicular cells on the decellularised adult testicular ECM
resulted in spheroidal structures. Although the morphology of these structures does
not resemble the human testis, the expression of tight junction proteins in the Sertoli
cells and the production of testosterone and inhibin B indicate their organoid charac-
teristics. Alves-Lopes et al. [54] developed a system to generate testicular organoids
by applying Three-Layer Gradient System (3-LGS). These three layers consist of a
drop ofMatrigel on the surface of the culture plate as the first layer. Then, the rat inter-
stitial and tubular fraction combined with Matrigel was placed as the second layer.
Finally, the Matrigel covers the two layers. Three-Layer Gradient System allows the
cellular reorganisation of testicular organoid and spherical-tubular structures that
recapitulate the testicular niche.

Sakib et al. [55] successfully generated human testicular organoids using
microwell aggregation. The testicular organoids recapitulate the testicular niche due
to the interaction of cells residing in the organoids, including germ cells, Sertoli
cells, myoid cells and Leydig cells. Claudin 11 and occluding, the tight junction
proteins were expressed by Sertoli cells in the organoids. Moreover, after treatment
with mono (2-ethylhexyl) phthalate (MEHP), the increase of germ cell autophagy
was determined. These results convinced that testicular organoids could be used for
drug screening tests which can be beneficial for the development of personalised
medicine.

Testicular infection caused by microorganisms, including viruses, leads to the
testicular tissue’s inflammation and impairs sperm and hormonal production. It has
been shown that Zika virus infection caused declining sperm number and testos-
terone levels, indicating that Zika virus infection may affect male infertility [56]. To
explore the effect and mechanism of Zika virus infection on the testicular function,
Strange et al. [57] generated the testicular organoid using a combination of 2D and
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3D conditions. Firstly, adult primary LC, SC, peritubular cells and spermatogonia
were propagated and cultured under 2D conditions. Later, cells were harvested and
allowed to aggregate in the enriched medium containing testis ECM under 3D condi-
tions using ultra-low culture dishes. The established testicular organoid was further
infected with the Zika virus, and the results confirm that Zika virus efficiency infects
their testicular organoid.

Moreover, Zika virus infection increases the expression of antiviral genes,
including IL-6, IFN- β and IFIT1 [57]. Currently, data demonstrated that SARS-
CoV-2, which causes COVID-19, can invade and damage the human testis as the
viral particles can be detected in the semen and testicular tissue of the COVID-19
infected patients [58, 59]. Therefore, testicular organoid can be applied to study both
short- and long-term implications of SARS-CoV-2 infection.

Prostate Organoids

The prostate is the largest male accessory gland surrounding the proximal urethra. It
is located beneath the urinary bladder and above the rectum. It comprises five lobes,
anterior and posterior lobes, two lateral lobes, and one median lobe. On the other
hand, according to the embryonic origin, it can be divided into three glandular regions
including, central zone (CZ), peripheral zone (PZ), and transitional zone (TZ) [60].
Moreover, there is an anterior fibromuscular stroma located at the anterior part of
the prostate gland. These zones help clinicians to identify histological structures and
pathological disorders. Microscopically, the prostate gland has two main cell types:
luminal secretory and basal cells, which form a layer arrangement. The third cell
type rare is the neuroendocrine cell [61]. The prostate produces prostatic fluid, a
part of semen and provides prostatic acid phosphatase, proteolytic enzymes, zinc,
fibrinolysin, and prostate-specific antigen for sperm viability [62].

Benignprostatic hyperplasia (BPH) andprostate cancer (PC) are commondiseases
found in the elderly. Particularly, PC is the second most worldwide deadliest cancer
malignancy [63]. The incidence rate varies among ages and rises when patients
get older. The incidence rate is nearly 60% when the ages over 65 years old. The
mortality rate varies worldwide, but it rises with age, and almost 55% of all deaths
occur >65 years old [64]. The aetiology of this disease remains unclear, but there was
a report that said hormone (estrogen and androgen) and hormone receptors (androgen
and estradiol receptor) involve the pathogenesis and progression of the PC [65]. In
the past, animal models were a conventional way to study the pathophysiology of
prostatic cancer. Themouse can apply in the study such as xenograftmice, nudemice,
SCID mice, and transgenic mice (e.g. LADY and TRAMP) [66]. Researchers have
an alternative way to study prostate cancer, including PC cell line (2D), PC spheroid
(3D), and PC organoids (3D). To date, the most resembling method compared to
in vivo study is prostate organoids.

Human prostate organoids can be derived from benign prostate tissue, PC tissue
(primary, advanced or castration-resistant PC tissues), patients-derived xenograft
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(PDXs) models, circulating tumour cells, embryonic stem cells, and iPSCs [58, 67,
68]. Drost and colleagues (2016) [69] demonstrated the successful cultivation, which
composes of five main steps, including (1) dissecting tissue into small pieces (<1
mm3), (2) tissue digestion by using enzyme (e.g. collagenase, trypsin), (3) resuspend
the cell in the Matrigel, seeding the cell (40 ul/well), and wait 15 min to solidify
Matrigel, (4) add the culture medium that specific for culturing prostate organoids
as shown in Table 6.1, and (5) change the culture medium for 7–14 days or until the
organoid is ready for being propagated. However, undefined and lot-lot variations of
fetal bovine serum (FBS) may impact the experimental consistency and outcomes
[70].

Current applications of prostate organoids for disease modelling and personalised
medicine include identification of prostate cancer origins, genemutation analysis and
drug screening. The researchers demonstrated the genetic and signalling pathway
manipulation on different prostate cancer origins resulting in different severity. The
combination of c-Myc overexpression and PI3K/AKT activation cause high-grade
prostate adenocarcinoma in basal cell-derived tumours, whereas it causes low-grade
prostate adenocarcinoma in the luminal cell-derived tumours [74]. In Gao et al. [73])
study, they found that seven advanced PC organoid lines showed a similar pattern of
genetic mutation, including SPOP mutation, TMPRSS2-ERG fusion, SPINK1 over-
expression and CHD1 loss. Moreover, overexpression of histone methyltransferase
enhancer of zeste2 (EZH2), an epigenetic modifier resulting in increased prolifera-
tion of prostate cancer [75]. These findings indicate how gene and signalling pathway
activation is important for prostate cancer biology and may be useful for controlling
the growth and progression of prostate cancer.

Although prostate organoids have several advantages, as mentioned, some limita-
tions need to be improved. The stages of prostate cancer, including benign, advanced,
or drug-resistance prostate cancer and the suitable culture conditions, directly affect
the long-term culture of prostate organoids [69, 73].

Application of Reproductive Organoids in Personalised
Medicine

Personalised medicine is a tailor-made or individualised treatment that promises to
improve therapeutic approaches. Recently, researchers faced challenges in cancer
treatment such as non-effective treatment and drug resistance. Therefore, using
patient-derived organoids as a tool for drug screening has been progressively devel-
oped for providing specific and effective cancer treatment. Beltran et al. [76] demon-
strated the promising clinical trial of alisertib, the aurora kinase A inhibitor, using a
patient-derived prostate cancer organoid. The authors found that the cancer organoid
responses to alisertib and showed the complex disturbance of aurora kinase A
[76]. Besides, Girda et al. [77] demonstrated that the responsibility of endometrial
organoids to the specific drug is dependent on the genetics of the patients. The author
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discovered in their study that Napabucasin, the STAT3 transcription factor inhibitor,
strongly inhibits the growth of all cultures of patient-derived endometrial organoids.
Meanwhile, fluvestrant, a selective estrogen receptor degrader affects only some
cultures of patient-derived endometrial organoids.

These examples demonstrated that the patient-derived reproductive organoids are
feasible for developing drug screening tests for individual cancer patients. Moreover,
the organoid model is necessary for clinical trial evaluation and decision making.

Conclusion

Reproductive organoids can be generated from adult stem cells, which is estab-
lished directly from the healthy or pathogenic tissue of reproductive organs or
pluripotent stem cells, which latter is being differentiated into the reproductive cells.
The information regarding human reproductive organoids discussed in this chapter
emphasised the advantages of applying the organoids in modelling human infectious
diseases, genetic disorders, and cancers that cause reproductive organ problems, as
summarised in Table 6.1. Moreover, patient-derived reproductive cancer organoids
are currently developed for biobanking. The organoid biobanking will further assist
drug development platforms and personalised medicine.
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Chapter 7
Production and Application
of Mesenchymal Stem Cell Spheroids
for Cartilage and Bone Regeneration

Ngoc Bich Vu and Phuc Van Pham

Abstract Introduction: Cartilage and bone tissues are widely utilized in regenera-
tive medicine, especially in treating injured cartilage and bone. Some attempts were
made to produce these tissues from stem cells and scaffolds for a long time, combined
with some growth factors and inducible factors. However, owing to the complexity
of cartilage and bone tissues, these efforts generated limited results. This chapter
explores the production and usage of mesenchymal stem cell (MSC) spheroids in
cartilage and bone regeneration.Methods: The data regarding production and appli-
cations of mesenchymal stem cell spheroids for cartilage and bone regeneration
were searched in the PubMed, Web of Science, and Google scholar databases with
the keywords “derived mesenchymal stem cell spheroids”, “cartilage regeneration”,
and “bone regeneration”. Results: The formation of cartilage or bone tissue through
the use ofMSC spheroidsmimics the formation of cartilage and bone during embryo-
genesis. These microtissues can be directly used as materials for transplantation or
building blocks to generate the cartilage and bone macrotissues. Conclusion: Based
on our studies and recent publications, we support the production and application
of microtissues of cartilage and bone from mesenchymal stem cell spheroids for
cartilage and bone regeneration.
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ECM Extracellular matrix
MSC Mesenchymal stem cell

Introduction

Bone and cartilage defects are common clinical diseases that can significantly affect
patients’ quality of life. Numerous efforts have been made to treat these defects
in the long term. Owing to the progress of stem cell research, some new therapies
based on stem cells have been developed for 20 decades. Some reports showed that
the transplantation of stem cells (as cell suspension) generated promising results
for cartilage [1–5] and bone regeneration [6, 7]. Some stem cell-based products
were developed and commercialized to treat cartilage injury [8, 9]. However, the
current therapies still contain some issues that need resolution. Indeed, the treatment
efficacy is limited in the case of large and deep damages. In order to overcome these
limitations, there have been some novel efforts, such as the transplantation of stem
cells in the form of spheroids [10–12], in the form of sheets [13, 14], or combination
with biomaterials [15, 16].

The stemcells in spheroids also referred to as 3Dcultures of stemcells, are cultured
in nonadherent conditions to connect and form cellular aggregates. In 3D conditions,
stem cells mimic their natural state in the human body to display characteristics
different from those seen in the 2D culture. This chapter aims to introduce the state-
of-the-art technologies used to culture MSC spheroids and highlight some of their
applications in bone and cartilage regeneration.

Mesenchymal Stem Cell Spheroids

Mesenchymal Stem Cells

Mesenchymal stem cells are adult stem cells found in almost all vascular tissues in
human beings. They were discovered more than 40 years ago by Friedenstein [17].
For the first time, Friedenstein cultured the bone-forming cells from a guinea pig
[17]. In 1988, Owen et al. re-created this experiment on rats [18]. Following that,
in 1992, MSCs from human bone marrow were first isolated and cultured [19]. The
first clinical application of MSCs was carried out in 1993 (and reported in 1995).
In this clinical study, Lazarus et al. obtained bone marrow samples from 23 patients
with hematologic malignancies. MSCs were successfully cultured in 15 out of the
23 bone marrow samples for 4–7 weeks. These MSCs were autologously infused to
patients. No adverse reactions were observed in any of the transplantations [20].

MSCs can be detected and isolated in various human body tissues, such as bone
marrow, adipose tissue, peripheral blood, menstrual blood, umbilical cord, umbilical
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cord blood, placenta, and milk. Although the MSCs from different tissues display
some differences in their biological characteristics, they also are defined as MSCs
as per the criteria suggested by Dominici et al. and the International Society of Cell
and Gene Therapy (2006). These criteria included that they (1) adhere to the culture
vessel surface in the standard culture condition, (2) express the CD73, CD90, and
CD105 and lack expression of CD11b or CD14, CD34, CD45, CD79-alpha or CD19,
and HLA-DR, (3) be induced into adipocytes, osteoblasts, and chondroblast in vitro
[21].

The therapeutic potential of MSCs relates to their capacity to perform differentia-
tion to produce mesoderm-derived cells and bring about transdifferentiation in some
kinds of ectoderm- or endoderm-derived cells.MSCsown strong immunemodulation
and angiogenesis. It appears that utilizing immune modulation, MSCs were rapidly
enrolled in the biotechnological industry with some MSCs-based stem cell drugs.
The first stem cell drug (Prochymal) was approved in Canada in 2012 based on the
aforestated characteristic as a mechanism to treat graft versus host disease (GVHD)
[22]. Some recent studies have shown that MSCs may join in angiogenesis through
different ways, significantly secreted factors [23–26]. Due to this potency, MSCs
transplantation was used to treat more than 100 diseases and health conditions, some
extremely serious (according to https://www.clinicaltrials.gov and review reports)
[27, 28]. Even more, biological characteristics have been discovered, which guide
the tissue engineering and regenerative medicine applications. MSC transplantation
is becoming one of the most popular kinds of stem cell transplantation. Moreover,
MSCs-based drugs have been developed, which stimulated and boosted the clinical
usage of MSCs [29].

Besides applying MSCs in stem cell therapy, MSCs also constitute the basic
materials for tissue engineering, especially in engineered cartilage and bone tissues.
MSCs are one of three essential materials of tissue engineering. They can produce
some engineered tissues such as cartilage and bone combined with other materials
and signalling factors. However, MSCs used in this engineering are complex with
some different strategies thatMSCs can load in the scaffold as single cells, spheroids,
or pellets.

Mesenchymal Stem Cell Spheroids

MSC spheroids are cellular structures in the form of cell aggregates that have phys-
iological links between cells inside the frames. Owing to their differences from cell
pellets or cell clumps that link cells together by mechanical forces or spontaneously,
MSCs in spheroids are linked together by extracellular matrix proteins after a certain
period to form three zones within the spheroid. Therefore, MSC spheroids or cell
spheroids only can be formed by organogenesis cultures. It seems that the defini-
tion of spheroids was used from a procedure explained in oncology where cancer
cells can formcertain structures named tumorspheres or spheroids. Structurally,MSC
spheroids contain two or three zones depending on the culture conditions (outer zone,

https://www.clinicaltrials.gov
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middle zone, and necrotic core). Experimentally,MSC spheroids usually include two
zones: outer zone and inner zone. MSCs in the inner zone deal with more hypoxic
and have fewer nutrients than those in the outer zone. Moreover, the MSCs in the
inner zone is surrounded by other MSCs, whereas those in the outer zone are partly
covered with ECM and other cells (Fig. 7.1).

Some studies have shown that there are many differences in the biology of MSCs
cultured as a monolayer (2D) and the ones cultured as spheroids (3D). First, the size
of MSCs is reduced compared to the monolayer culture; some reports showed that
the size of MSC reduced up to 75% [30–32]. The cell properties of MSCs inside
spheroids are also affected by the mechano-physical differences between the 2D and
3D cultures. In the 2D platform, MSCs will adhere to the surface of culture vessels

Fig. 7.1 The formation and structure of MSC spheroids. Through the 3-step process MSC
spheroids were formedwith inner zone and outer zone. In the form of spheroids,MSCs up-regulated
the production of some anti-inflammation cytokines (PGE2, TGF-beta 1, IL-6 and TSG-6), angi-
genic factors (HGF, FGF2, ANG, andANGPT2), and differentiation potential toward chondroblasts
and osetoblasts
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and expose the remaining parts to the culture medium. However, in the 3D platform,
MSCs are stuck in ECMand the cells around it. Indeed, Young’s elasticitymodulus of
the materials surrounding the cells causes some differences in cell physiology prop-
erties, especially cell differentiation [33, 34]. The plasticity modulus was recorded
as a massive point of differentiation between 2 and 3D cultures; in the 2D culture,
the plasticity modulus reaches some gigapascals (Gpa), which is less than 0.1 kPa in
3D culture [32]. These differences alter the epigenetics of MSCs in spheroids.

Potapova et al. showed that MSCs in 3D cultures upregulated 1731 genes and
down-regulated 1387 genes compared to 2D cultures [35]. Almost all the upregulated
genes in MSCs in 3D cultures were related to hypoxia, angiogenesis, and inflamma-
tion [35]. In the 3D platform,MSCs also saw an increase in their immunemodulation
potential. Bartosh et al. observed that MSCs upregulated the TNAIP6/TSG6 in the
form of spheroids [31]. The angiogenic potential is also enhanced inMSC spheroids.
The angiogenesis-related genes such as angiogenin, FGF2, HGF, and VEGF are
upregulated in MSCs in the form of MSC spheroids [35–37].

Interestingly, the chondrogenic differentiation potential of MSCs is enhanced in
the MSC spheroids. In their observation, Johnstone et al. discovered that under the
same inducible conditions, MSC spheroids could be more efficaciously induced to
chondrocytes by bringing about an increase in the alkaline phosphatase activity, both
in type IIA and IIB collagen (at mRNA level) [38]. Similarly, Yoo et al. also noted the
same in bone marrow-derived MSC spheroids with regard to the expression of type
I, type II, and type X collagen in MSC spheroids. Significantly, these authors also
found that aggrecan and link proteins are expressed in the extracts of cell spheroids
[39]. Numerous recent studies have confirmed this [40–42].

Moreover, MSC spheroids also significantly increased markers of osteogenic
differentiation [34, 43–45]. This was observed by Yamaguchi et al. in rat MSC
spheroids for osteogenesis in vitro and in vivo. In vitro, in the same condition of
osteogenesis, the calcium deposition is better in MSC spheroids than in the mono-
layer. In vivo, the results showed that MSC spheroids could participate in bone
regeneration better than the MSC monolayer in rat calvarial defect models [43]. In a
recent study, Kim and Adachi showed that in the inducible medium, MSC spheroids
could form the osteocyte likeness only within two days after being induced compared
to the conventional 2D culture. The study suggested that the cell-condensed condition
of spheroids decided the differentiation fate of MSCs toward osteocytes [45].

Methods for Mesenchymal Stem Cell Spheroid Production

Some methods can be used to formMSC spheroids fromMSCs. It appears that there
is an absence of a special medium to produce MSC spheroids. Indeed, in almost all
the methods, MSC spheroids can be produced in the 2D culture in the case of serum-
based media. However, the effects of culture media on MSC spheroid formation
were also investigated. Owing to the fact that in almost all studies, MSC spheroids
were produced in fetal bovine serum-based media, there were certain safety issues
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such as prion exposure risk, toxicological risk, and immunological risk when the
obtained spheroids were used in clinical applications [46, 47]. Therefore, xeno-
free media, as well as chemically defined media, are developed to expand MSCs.
Ylostalo et al. showed that some commercial media could not support the compact
spheroid formation, while the medium supplemented with human albumin serum
could facilitate the formation [48].

In contrast, Domnina et al. produced MSC spheroids from endometrial MSCs
using the serum medium [49]. In another effort to use serum-free media to produce
MSC spheroids, Zhao et al. attempted to use the TeSR-E8 medium (a chemically
defined serum-free medium for pluripotent stem cells) to make MSC spheroids. The
results showed that MSC spheroids could form in the medium following three to five
days of culture [50].

MSCs from some different sources were used to produce MSC spheroids. MSCs
from bone marrow [51, 52], adipose tissue [53, 54], gingiva tissue [55], endometrial
tissue [49], umbilical cord tissue [56], and dental pulp tissue [57] can form spheroids
in suitable conditions. The differences in spheroid formation capacity between the
different kinds of MSCs are not yet thoroughly studied. Fennama et al. compared the
MSC spheroid formation from bonemarrow tissue with theMSC spheroid formation
from adipose tissues and SVF. It was found that BM-MSCs can form the compact
spheroids as can ADSCs, to are a lesser extent, while SVF showed poor spheroid
formation [58].

The spheroids from MSCs can be formed through a three-step process. This
included (1) the loose contact and interaction between cell-cells by integrin and ECM
to form the loose cellular aggregates; (2) enhancement of cadherin expression by cells
inside aggregates to make them into more compact and condensed aggregates; (3)
formation of compact spheroids by the tight junctions of cadherin-cadherin between
MSCs [59] (Fig. 7.1). In addition, Robinson et al. (2003) demonstrated that the
expression of cadherin and integrin play significant roles during spheroid formation
[60].

As stated, the first step in the spheroid formation process is highly crucial for
the initiation of spheroids. All the present methods appear to introduce ways to help
MSCs contact and interact using their integrins in cell surfaces before triggering
the overexpression of cadherin in the next step. Some developed techniques to form
spheroids include the hanging drop, nonadherent surface, spinning flask, rotating
culture vessels, external force-assisted, and matrix-embedded methods (Fig. 7.2).
These methods have their own advantages and disadvantages. Hanging drop is the
most popular method to produce standard spheroids by the natural cells-cells link
inside spheroids. However, this method is so costly, and it is so difficult to scale up.

Hanging Drop

The hanging drop technique has beenwell-established for a long time. This technique
was developed and used in microbiology to produce media that can be maintained
for drops with minimal evaporation without spreading. Subsequently, this technique
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Fig. 7.2 Some current methods used to produce MSC spheroids. a hanging drop, b using non-
adherent surfaces, c using rotating or stirring bottle, d centrifugation based spheroid formation, and
e MSC spheroids based on scaffolds

was used in animal and human cells in neural tissue culture during the twentieth
century [61, 62]. Moreover, this technique is now employed to culture stem cells
[63–65] and form embryoid bodies from embryonic stem cells or pluripotent stem
cells. The principle of this technique is simple: a cell suspension with 300–3000
cells per 15–40 uL of medium is deposited onto the underside of the lid of the
tissue culture dish/plate. Then, the lids are inverted, and drops are held on the lid
by surface tension. Affected by gravity, free cells in the drops can concentrate and
facilitate the making of the loose aggregates. This technique permits controlling the
size of spheroids as well as cell numbers. This technique can be easily applied by
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special plates such as Perfecta3D 96-well hanging drop plates and crystallization
plates. These consumables help make the hanging drop technique more accessible
and reproducible.

Nonadherent Surface

This technique appears to be the simplest as it does not require additional equip-
ment. MSC spheroids can be easily produced by using the plate or petri dish. Some
commercial non- or low-adhesive plates or dishes are developed and commercialized,
or simply, the culture plates can be coated with an agarose thin film, hydrophobic
polymers, or lactonamide. In general, the MSC spheroids obtained from this tech-
nique are uniform in spheroid size and shape. In some cases, spheroids do not display
a sphere-like shape.

Recently, to improve the shape and structure of MSC spheroids, some novel
technologies have been applied to produce nonadherent microwells. Using this tech-
nology, the size and shape of spheroids can be controlled by the size of microwells.
The microwells can be fabricated using microscale techniques by micro-moulding
cell-nonadhesive inert materials such as agarose or polyethylene glycol (PEG). The
MSC suspension would be loaded into the fabricated device, and the cells would be
automatically assembled to make the spheroids.

Rotating Bioreactors

Spinner flasks or roller bottles can be used in this technique. The diameter of the
spheroids can be controlled based on the cell density, medium composition, spinning
rate, and culture time. Unlike the hanging drop method or the nonadherent surface
where the cells are cultured in the static condition,MSCs exist in a dynamic condition.
Therefore, in this platform, MSCs will face a strong shear force that can affect their
physiology.

Formation of Spheroids Using External Force-Assisted Methods

This strategy uses some external forces to make cellular aggregates from the cell
suspension. The simple way is low-speed centrifugation. Other methods such as
dielectrophoresis, magnetic fields, and ultrasound standing wave traps also are
utilized to produce spheroids. These strategies aim to enhance the first step of the
spheroid formation process. Aftermaking the cell aggregates through external forces,
the cell aggregates are cultured in suitable conditions to boost the second and third
steps that make the compact spheroids.
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Producing MSC Spheroids Based on Scaffolds

This technique uses a specific type of material andMSCs to produceMSC spheroids.
Hydrogels and inert matrices are popularly used in this technique. The hydrogels
contain a network of cross-linked polymer chains that can absorb and retain water.
In addition, the inert matrices include sponge-likemembranesmade of polystyrene to
create pores that permitMSCs to bind and increase inside.Using hydrogels (Matrigel,
alginate, and Qgel Matrix), MSCs should be mixed with hydrogels, and then these
complexes should be seeded on suitable surfaces to leave the spheroid formation.

Productions of Bone and Cartilage Microtissues
from Mesenchymal Stem Cell Spheroids

Production of Cartilage Tissues from MSC Spheroids

The first report on employing MSC spheroids to make engineered cartilage was
written by Anderer and Libera in 2002. To date, many publications have used this
strategy to produce cartilage tissue. It seems that all approaches to make MSC
spheroids can be utilized to make cartilage microtissue. In the first report, Anderer
and Libera used the nonadherent surface to enhance the aggregate formation. In
this study, wells of plates were coated with agarose 2% to inhibit the attachment of
cells to the well surface to facilitate the aggregates via the integrin interaction [66].
Markway et al. successfully produced cartilage tissues from MSC spheroids. In this
study, the centrifuge was used to condense 2 × 105 cells into cell pellets. Then, the
cell pellets were induced into the cartilage using the chondrogenesis medium [67].
In a recent publication, Vu and Nguyen et al. developed an easy and scalable method
of producing MSC spheroids for cartilage and bone tissue engineering [68]. The
method used the V-bottom 96-well plates to facilitate the formation of cell aggre-
gates. In another report, Tu et al. used the hanging drop method to produce MSC
spheroids and then induced them to cartilage. The MSC spheroids were induced for
21 days, and they strongly expressed the cartilage phenotype, including aggrecan,
glycosaminoglycan, and type II collagen. They also expressed some chondrogenic
genes at the mRNA level, including Sox9, Col2, Col1, and Acan [69].

In order to create cartilaginous macrotissues, Le et al. loaded MSC spheroids
produced from the hanging drop method onto the porous scaffold. The complexes
of MSC spheroids and scaffold expressed the cartilage phenotype after induced
chondrogenesis for 21 days [56]. In addition, these structures were positive with
Safranin O staining, alcian blue staining, and collagen 2, with significant expres-
sion of Sox9, Col2, and aggrecan at mRNA levels [56]. More interestingly, these
complexes could become mature cartilage after their transplantation into animals
[56]. In another report, De Moor et al. successfully produced engineered carti-
lage from MSC spheroids. In the first step, the MSC spheroids were created using
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microwells; then, these spheroids were induced in the chondrogenesis medium for
42 days at 5% oxygen. Chondrogenic spheroids were subsequently used to produce
the macrotissue using bioprinting [70].

Production of Bone Tissues from MSC Spheroids

In an early study, Cerwinka et al. produced MSC spheroids from BM-MSCs with
a porous gelatin scaffold [71]. Then, these MSC spheroids were induced toward
osteogenesis using the osteogenic medium for 10 days. After 10 days, the spheroids
exhibited the bone phenotype with strong calcification, alkaline phosphatase expres-
sion, and the presence of vitamin D receptor [71]. Similarly, Laschke et al. produced
MSC spheroids fromADSCs in polyurethane scaffolds; then, they were successfully
induced into bone microtissues that were strongly positive with Kossa staining [72].

In 2017, Lee et al. investigated the osteogenic potential of spheroids that were
made from gingiva-derived MSCs and osteo-precursor cells using the concave
microwell technique [55]. These spheroids expressed the bone tissue phenotype
after Day 5 of culture. Indeed, they were positive with alkaline phosphatase,
deposited mineralized extracellular matrix, and positive with Alizarin red staining
[55]. Fennema et al. compared the osteogenic potential of MSC spheroids made
from ADSCs and those made from BM-MSCs in mice. The authors showed that
both (spheroids from BM-MSCs and ADSCs) could form ectopic bones in mice
[58].

In 2018, Tae et al. investigated the osteogenic potential of MSC spheroids made
from a mixture of two kinds of MSCs (gingiva and bone marrow-derived MSCs).
The authors mixed gingival MSCs and BM-MSCs at specific ratios and produced
spheroids using the concave microwell technique. The in vitro analysis showed that
the spheroids enhanced the expression of alkaline phosphatase and increased the
expression of Runx2 and osteocalcin in mRNA [73]. Recently, Aguilar et al. success-
fully produced themicrotissue of bone usingMSCspheroids [74]. In their study,MSC
spheroids were produced to make the aggregates by using a low-speed centrifuge.
Then, they were differentiated into bone microtissue by incubation in the osteogenic
medium for 28 days. Following induction, the cells inside the spheroids exhibited a
robust osteogenic response to the differentiation medium, including a higher mRNA
of alkaline phosphatase, collagen type I, and osteocalcin compared to the levels noted
before differentiation. The authors suggested that the centrifugation method is more
effective than gravity for producing MSC spheroids [74].
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In an effort to make larger constructs, spheroids were used as building blocks.
Ahmad et al. successfully made large bone constructs using MSC spheroids. In the
first step,MSC spheroidsweremade fromADSCs and poly(L-lactic acid) nanofibers.
The interaction of MSCs with nanofibers that triggered ADSC osteogenesis could be
detected by expressing osteocyte markers after being cultured in a medium without
osteogenic factors for seven days. The large bone constructs were created using these
spheroids as building blocks [75]. Heo et al. produced the bone tissue by utilizing
this approach. They produced spheroids from both MSCs and human umbilical vein
endothelial cells. These spheroids were then induced for 10 days to create microtis-
sues of bone before they were used to produce large bone constructs using aspiration-
assisted bioprinting in combination with hydrogel. These bio-printed bone tissues
exhibited interconnectivity with the actin-filament formation and a high expression
of genes related to osteocytes and endothelial cells [76].

Applications of MSC Spheroids and MSC Spheroid-Derived
Cartilage in Bone Regeneration

To date, published studies have shown that both MSC spheroids and cartilages from
MSC spheroids are used in animal models to treat cartilage and bone injury. Sekiya
et al. produced osteochondral defects in rabbit models and treated defects through the
use of synovium-derived MSC spheroids [77]. After 12 weeks, MSC spheroids were
found to have attached to the osteochondral defects and were strongly positive with
Le et al. produced MSC spheroids from ADSCs using the hanging drop technique.
These MSC spheroids were loaded into the porous scaffolds by employing low-
speed centrifugation. The complexes ofMSCspheroids-scaffoldswere induced using
chondrogenesis by an inducible medium before they were used to treat cartilage
damage on the hindlimb knee in rats [56]. After 12 weeks, the results showed that
the cartilage that was formed at the defects was strongly positive with Safranin O
staining [56]. Zhang et al. used the functionalized scaffold for in situ TGF-beta 1
transfection to produce MSC spheroids, these spheroids became mature cartilage
after 8 weeks of transplantation in animals [78].

In the rat calvarial defect model, Yamaguchi et al. showed that the transplantation
of MSC spheroids could enhance bone regeneration, recorded by micro-computed
tomography and histological analysis [43]. Suenaga et al. treated the calvarial defects
in rats using MSC spheroids [10]. The authors compared the treatment efficacy of
transplantation of MSC spheroids, beta-tricalcium phosphate, and a combination of
beta-tricalciumphosphatewithMSC spheroids. The results confirmed that onlyMSC
spheroids could support bone regeneration in the defects [10]. Murata et al. treated
osteochondral defects in pigs using MSC spheroids from ADSCs in the big animal
models. In this trial, MSC spheroids were created on a nonadherent surface using
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the 96-well plates. Each MSC spheroid contained 5× 104 cells. Following this, 760
spheroids were placed in a cylindrical mould to develop macrostructures that would
fit the pigs’ defects. The macrostructures were cultured for seven days to create links
between spheroids before they were transplanted into the pigs. After 12 months,
the osteochondral defects were regenerated into the original structure of cartilage
and subchondral bone [79]. Murata’s group repeated this study with more pigs [12].
The results confirmed that the transplantation of scaffold-free MSC spheroids from
ADSCs successfully induced regeneration of hyaline cartilage and subchondral bone
structures over 12 months [12].

Yanagihara et al. used genetically modified MSCs to create MSC spheroids [11].
In this study, MSCs enhanced the expression of Runx2 to stimulate osteogenesis;
then, they were transplanted into bone defects on fat femurs. The results showed
that MSC spheroids boost bone regeneration more significantly than MSCs from the
monolayer culture [11]. Similarly, Moritani et al. found the same results when the
effects of periodontal ligament-derived MSCs and MSC spheroids in the treatment
of murine calvarial defect models [80] were compared. MSCs in the form of MSC
spheroids also function better in bone regeneration than MSCs in the form of cell
suspension.

In a recent study, Findeisen et al. used MSC spheroids to treat critical-sized bone
defects in nude mice. The micro-CT analysis showed that the bone material density
is significantly higher in the group with MSC spheroid transplantation than in MSCs
[81].

Cartilage organoid for personalized treatment.

Conclusion

Bone and especially cartilage damages are popular injuries with low self-
regeneration. For a few decades, stem cell transplantation has been used as a
novel approach to stimulate cartilage and bone regeneration with promising results.
However, a recent publication showed that the application of stem cell transplantation
showcased low efficacy in case of large and severe damages.

This chapter summarizes some methods to produce spheroids as well as the usage
of these spheroids in bone and cartilage regeneration. Although there has been no
clinical usage of MSC spheroids in cartilage and bone regeneration, the in vitro
and preclinical data from animals suggests that MSC spheroids, with or without
differentiation, are promising building blocks that can be used, directly or via the
production of macrotissues, for bone and cartilage regeneration.
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Chapter 8
Biomaterials in Organoid Development

Asmak Abdul Samat and Badrul Hisham Yahaya

Abstract Introduction: The animal model and the traditional two-dimensional
(2D) cell culture have long been used to understand the biology and pathology of
cell behaviour. However, neither technique captures precise cell behaviours, such as
the in vivo cell-cell and cell-extracellular matrix (ECM) interactions and intra- and
interorgan interactions. Organoids are three-dimensional cell culture systems known
to simulate many of the structural and functional features of the organ. The microen-
vironment and signals within the body profoundly affect the development of stem
cells in vitro and in vivo. Organoid culture matrices range from naturally derived
to synthetic biomaterials with varying biophysical properties. This chapter focuses
on the regulation of cell-matrix interactions that direct the decision of stem cells,
including the various types of biomaterials used for the reproducible generation and
control of organoid cultures. Methods: A few databases, such as Google Scholar,
PubMed, and Scopus, were used to select literature with keywords organoids; extra-
cellular matrix; cell interaction and regulation; biomaterials; natural and synthetic
matrices. Results: Organoids provide a reliable tool for a wide range of disease
modelling and a potential drug screening and toxicity testing strategy. However,
it is difficult to control stem cell fate to promote proliferation and differentiation
into specific cell types. The stem cell fate is determined by many factors, particu-
larly the appropriate matrices required for multiple stages of organoid development
and subsequent in vivo propagation. Conclusion: Organoids can be used to inves-
tigate human physiology in vitro, but their maturation depends on the stem cells’
capacity to form highly organised structures. Stem cell development and essential
design parameters for organoid matrices are affected by various material features,
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including the presentation of cell-binding ligands, matrix dynamics, structural geom-
etry, and degradability. Three-dimensional (3D) ECMs can be tailored to optimise
the numerous structural and metabolic characteristics that influence cell fate.

Keywords Organoids · Biomaterials · Extracellular matrix ·Matrices

Abbreviations

2D Two-dimensional
ECM Extracellular matrix
3D Three-dimensional
EGF Epidermal growth factor
EHS Engelbreth-Holm-Swarm
PEG Poly(ethylene glycol)
PCL Polycaprolactone
FDA Food and Drugs Administration
EMA European Medicine Agency
GMP Good manufacturing practices
PLGA Poly(lactide-co-glycolide) or poly(lactic-co-glycolic acid)
LA Lactic acid
GA Glycolic acid
HA Hyaluronic acid
hPSC Human pluripotent stem cell
ADSC Adipose-derived stem cells
HLO Human lung organoids

Introduction

Human disease and treatment have relied mainly on in vitro cultures and animal
models. Traditional in vitro models, cultured on two-dimensional (2D) plastic
surfaces, have advanced the understanding of biology and pathology. However, the
cell behaviour differs significantly from their in vivo counterparts, and the models
do not capture in vivo cell-cell and cell-extracellular matrix (ECM) interactions
and intra- and interorgan interactions. On the other hand, animal models allow for
testing in a living system, but they are costly and time-consuming. Human organs
are complex networks with physical (matrix microstructures and stiffness), mechan-
ical (fluidic forces and mechanical strain), and biochemical (growth factors and
cytokines) properties. These structural and physiological features have a significant
impact on organ development and function. Organoids are spherical aggregates of
cells that form as a result of spontaneous differentiation of adult or pluripotent stem
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cells in vitro in a three-dimensional (3D) space. Organoids imitate the corresponding
organ in normal, developmental or disease model systems, providing a foundation
for in vitro modelling of organ and tissue properties [1, 2].

In contrast to 2D cell culture systems, the organoid cultures offer the possibility
to learn the features of organs and tissues in 3D models that closely resemble human
physiology and capture tissue diversity while providing a high level of accessibility
and tractability, which are impossible to achieve in vivo [3]. Multiple methods for
organoid developments have been described. However, the typical pattern includes
proliferation, differentiation, cell sorting, lineage commitment and morphogenesis
[4, 5]. Stem cells have the capability of differentiating and organising to occupy the
organ-specific niche. Studies have shown that organoids tend to develop in specialised
macro- and microenvironments located within each tissue where stem cells reside,
known as niches [6–8]. These niches are involved in the modulation and facilitate the
regulation of complex signalling pathways that guide the fate of the cells [9]. Even
though the origin of the stem cell is not from the surrounding tissue or organ, it finally
differentiates according to the nicheswhere it is cultured. For instance, a single neural
and dental epithelial cell can be reprogrammed into mammary epithelial cells that
can regenerate the mammary epithelial tree when transplanted into the mammary
gland microenvironment [10, 11]. Depending on the tissue, the niche components
can be derived from the cells or exogenously incorporated into the system from the
ECM substrates, small signalling molecules, growth factors, and mechanical forces
such as tension, rigidity, and even fluid flow [7, 12]. The complex interplay of all the
components creates a spatially and temporally organised dynamic environment in a
structure and function that facilitates the self-renewal/differentiation of stem cells.
The self-assembly of cells in organoids nurtures and maintains tissue homeostasis,
which has crucial effects on stem cell functions. The interactions between cells and
ECM are important because it has been demonstrated that phenotypes can supersede
genotypes by these interactions [13, 14]. Any changes in the ECM are identified by
cell receptors that provide cues that eventually determine gene expressions [15–17].

The biomaterials with specified mechanical and/or biochemical properties to
support cell adhesion and development are gaining attention to substitute the conven-
tional organoid culture scaffolds which utilise natural ECM [18]. The properties
of biomaterials have been shown to guide the lineage of mesenchymal stem cells
[19, 20]. The mechanical microenvironment influences key cell structure and func-
tion aspects, causing cells to change their morphology, motility, proliferation, and
differentiation state [21]. This chapter discusses the regulation of cell behaviours
through various ways and different types of biomaterials used asmatrices in organoid
development.

Extracellular Matrix and Organoids

Multiple methods are used in organoid development, including embedding cells in
extracellular matrix components or hydrogels [22, 23], cultivation in the spinning
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bioreactor, 3D bioprinting, and microfluidic techniques [24]. In all approaches, the
initial step is selecting the type of cells to be expanded, followed by cultivating
the cells in a homogeneous medium with or without differentiation cues for further
development [25]. Generally, the key signalling pathways to regulate developmental
patterning are activated or inhibited using commercially available morphogens and
signalling inhibitors. Cultures are developed in a way that enables them to expand
in three dimensions, either by aggregating cells into 3D structures or by integrating
cultures into a 3D matrix [26]. The patterns in stem cell activities are influenced
by the external signals obtained from its local niche. These signals include soluble
growth factors and hormones, cell-cell interactions, and local cues from the ECM
[27, 28]. Collectively, all these variables function in tandem. As a result, the stem
cells retain their conditions and perform effective regenerative activities for long-
term functionality and maintenance of the cells throughout their lifetime. The most
common way to encourage the 3D characteristic of organoids is to use solid ECMs
that promote cell adhesion and growth.

Cell growth and differentiation are highly dependent on physical and biochemical
stimuli [29, 30], enabling self-organisation in organoid culture [31].When cultured in
a 3D environment, cells are characterised by various interactions with other cells and
the ECM components. The cell-matrix interaction is reciprocal signalling cascades
that influence cell development. Multiple functions of ECM include its continuous
interaction with cells by acting as ligands for cell receptors such as integrins, the
release of growth factors such as epidermal growth factor (EGF), fibroblast growth
factor (FGF), and other signalling molecules locally. The ECM components released
from ECM cleavage also influences its architecture and cell behaviour [32]. The
cells secrete ECM components that dynamically remodel the ECM, whilst both
physical and biochemical properties of the ECM modulate several adhesion-related
cell functions and influence the cell fate through interactions with cell-surface recep-
tors, respectively [33, 34]. These complex processes initiate regulation of the cell
behaviour, facilitate cell survival, shape, migration, proliferation, and differentiation,
lead to the morphology and physiology that occur in vivo [35]. Any changes in ECM
components are expected to significantly influence the biomechanical and physical
properties of the ECM, leading to a disordered network and eventually a loss of organ
homeostasis and function [36]. In essence, all these properties are closely interrelated
and can affect each other.

The natural ECM is a complex set of proteins and proteoglycans that encompasses
the cells, provide stability and regulates the signalling of the growth factor in cells [9,
37–40]. The ECMwas regarded only for its structural function, stability, and support
for the surrounding cells in the past. However, it is clear that it also has fundamental
functions by discovering specific receptors for matrix glycoproteins, particularly by
generating various complex signals that could influence cellular events at the molec-
ular level [41]. Another main component in ECM is non-collagenous glycoproteins,
which are adhesive glycoproteins consisting of various macromolecules from the
ECM family that attach to cell surfaces, with several binding areas that can interact
with collagens and proteoglycans [42, 43]. Fibronectin, laminin, vitronectin, throm-
bospondins, and tenascin are among them. In addition, some interact with integrins
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and other receptors expressed on the cell surface and collagen or other ECM compo-
nents [44]. Their function and differential expression encompass a broader spectrum
of tissues and different cell populations in pathological and healthy environments,
which are still not fully understood.

Despite the difficulties in comprehending the specifics of the cell microenviron-
ment, biomaterials imitating the bulk ECM macroenvironment have become widely
available and have been successfully employed to promote the growth of cells and
organoids in vitro and in vivo. These are primarily composed of 3D polymer scaffolds
and hydrogels supporting cellular adhesion and enabling nutrition delivery, biocom-
patibility, structural similarity to native bulk ECM, and customisable biochemical
and biophysical characteristics discussed later.

The matrix microenvironment regulates cell behaviour through various ways,
including cell-matrix relationships formed by cell-adhesive ligands attached to cell-
surface receptors, mechanical properties such as stiffness, stress relaxation, stress
stiffening, geometry, and matrix degradability, as described below.

Cell-Adhesive Ligands

The natural ECM comprises many cell-adhesive ligands, which provide sites for
cell adhesion [45, 46]. The actions of cell-adhesive ligand binding cause changes in
the cellular cytoskeleton leading to cell spreading [47] and migration [48]. While
the active pulling actions on their surrounding environment lead to rearrangement
of the ECM and clustering of cell-surface receptors, intracellular signalling sites
often initiate changes in gene expression [44, 49]. All actions influence the cell
behaviours such as cellmotility [50], spreading [51], differentiation and angiogenesis
[52]. The integration of naturally derived proteins such as fibronectin-, laminin-
and collagen-derived peptides into the engineered scaffolds provides cell adhesive
ligands, enhancing cell phenotype [9].

Mechanical Properties

In addition to biochemical stimuli, themechanical properties of tissues play an impor-
tant role in directing cellular behaviours [53, 54]. Different tissues comprise different
ECM components and cells, with a regulated organisation that makes each organ
different in response to mechanical stimuli. Based on these, organs have stiffness
values that suit their biological roles.

The stiffness of ECM plays a crucial role in tissue development and patholo-
gies because it affects multiple cellular properties, such as cell adhesion, spreading,
proliferation, differentiation, and apoptosis [9, 55]. The stiffness of the tissue is trans-
duced into biochemical signals by the cell surface receptors, which precisely interact
with the same type of molecules on the neighbouring cells, such as cadherins, or
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with integrins in the ECM [56]. The stiffness of tissue microenvironments in the
body varies from compliant, such as in the brain and lungs, to more rigid cartilage
and bones. Injuries affect the tissues’ homeostatic stability, structure, and function
[151, 152]. If the microenvironment is abnormally rigid, mechanical control can
result in cell dysfunction. Excess ECM components accumulate in injured tissue,
making it stiffer and more rigid than normal tissue, resulting in tissue dysfunction as
seen in fibrotic disease, tumours, and chronic inflammation [153]. Following a heart
attack, rigid scar tissue grows, resulting in an abnormally low rate of MSC differ-
entiation following a heart transplant [154]. MSCs and other forms of stem cells
proliferate, migrate to the injured area, and differentiate in response to the stiffness
of the surrounding matrix [19, 155]. The stiffness of the ECM can be tailored to
mimic the tissues to be reproduced, and it is highly dependent on the concentration
of the main component from different polymers (both natural and synthetic) and the
level of the crosslinker without affecting the cell viability [15]. Depending on the
scaffold fabrication methods, the stimuli can be directly applied to the biomaterial
to prompt a response that can be regulated both temporally and spatially, allowing
precise control over the cellular response as needed.

Viscoelasticity of the natural ECM allows the energy of the applied stress to be
dissipated through time-dependent processes, known as stress relaxation, resulting
in reorganising the matrix. By comparison, in the elastic material, the energy can be
‘stored’, and ‘recovered’ during each cycle, and, hence, the stress remains constant
over time [57]. It is reported that MSCs cultivated in 3D cultures are sensitive to
stress relaxation rates, which demonstrated increased distribution, proliferation and
osteogenic differentiation in fast-relaxing 3D hydrogels relative to slower relaxing
matrices, irrespective of material stiffness [51, 58].

Stress stiffening is another important parameter that governs stem cell fate in
a 3D microenvironment [59]. The natural fibrous ECM exhibit a stress-stiffening
behaviour, which means that they become stiffer if the stress added reaches the crit-
ical stress value. The matrix cannot undergo further structural rearrangement at the
critical stress value, and the extra stress is dispersed within the fibrous matrix [25].
Even though most synthetic hydrogels are not stress-stiffened in nature, stress stiff-
ening matrix can be reconstructed with specific stiffness and bundling characteristics
such as in helical oligo(ethylene)glycol polyisocyanopeptide hydrogels [60–62]. In
addition, synthetic 3D matrices can precisely redirect the cell fate of human MSCs
from adipogenesis to osteogenesis simply by altering the polymer chain lengthwhilst
maintaining the matrix stiffness and ligand density [59]

Matrix Geometry

The porosity, pore sizes, and interconnectivity affect the functionality of the matrix.
High porosity, open and interconnected pores, which also are directly influenced by
the pore size, are necessary to enable cell infiltration or proliferation [63]. In addition,
tissue vascularisation and new tissue development can be significantly faster [64].
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The native ECM consists of a fibrous network with pore sizes approximately equal
to the size of cells, allowing nutrient transport and cell migration and growth [9]. The
architecture can be built and manufactured in organoid development, using physical
and chemical cross-link techniques to obtain the most appropriate biomaterials for
a particular tissue formation [65]. Different forms of 3D cell culture matrices can
be classified according to their geometric design. Naturally derived fibrous matrices,
such as ECM and hydrogels, are made up of fibrous proteins, with pores sizes almost
equal to the size of a cell. The distance between cross-linked matrix determines
the mesh size and creates empty volumes that are usually much smaller than cells,
present in many cross-linked hydrogels with a mesh-like structure [25]. This tight
mesh will prohibit cell proliferation and movement in the absence of degradation or
other types of material remodelling [66].

The orientation and diameter of the fibres within the material determines the
behaviour of the cells. For example, fibre alignment facilitates the selection of fate in
human tendon stem cells compared to randomly aligned fibres [67]. However, MSCs
are oriented more strongly towards the fate of the tendon cells in fibre-diameter
relative to fibre alignment than tendon stem cells [68]. However, these variations
may also be caused by differences in cell type or material chemistry.

Matrix Degradation and Remodelling

The constant remodelling of natural ECM is regulated by the cell-mediated processes
of degradation and production of ECM components. The degradation rates of the
biomaterial have a major effect on cell activity. In general, biomaterial degradation
can be either cell-mediated or cell-independent [25]. Cell-mediated degradation is
facilitated through enzymes, such as proteolytic enzymes, which degrade the matrix
by cleaving specific amino acid sequences. In contrast, cell-independent material
degradation is caused by hydrolysis of chemical bonds and disruption of physical
cross-links within and between the material, respectively. For instance, the alginate
biopolymer is ionically cross-linked by calcium ions, and by removing the calcium,
the alginate matrix can be disrupted and degraded [69, 70]. The ECM-digesting
enzymes produced by the cells facilitate the rearrangement of the microenviron-
ment by expressing new polymers [71]. Biomaterials can be designed to provide
a matrix that allows degradation and remodelling at a rate desirable for embedded
cells. Table 8.1 summarises the various ways of matrix microenvironment regulates
cell behaviours.

Biomaterials as Matrices in Organoid Development

The discovery that natural ECM can be transformed into hydrogels significantly
improved their in vitro and in vivo applications. Hydrogels are highly hydrated
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Table 8.1 Summary regulation of cell behaviours through matrix microenvironment

Characteristic of matrix Effects on cells

Cell surface ligands – Change the cellular cytoskeleton leading to cell spreading and
migration

– Active pulling actions on their surrounding environment lead to
rearrangement of the ECM and clustering of cell-surface receptors,
initiate changes in gene expression in the nucleus

Stiffness – Stiffness of the tissue is transduced into biochemical signals by the
cell surface receptors

– Affects multiple cellular properties, such as cell adhesion,
spreading, proliferation, differentiation, and apoptosis

Stress relaxation – Allows the energy of the applied stress to be dissipated through
time-dependent processes resulting in the reorganisation of the
matrix

Stress stiffening – Fibrous ECM becomes stiffer when additional stress reaches the
critical stress value, restraining the matrix from undergoing further
structural rearrangement at the critical stress value

– Can precisely redirect the cell fate

Geometry – Porosity, open and interconnected pores, directly influenced by the
pore size, allows cell infiltration or proliferation

– The orientation and diameter of the fibres within the material
determines the behaviour of the cells

Matrix degradation – Cell-mediated degradation is facilitated through enzymes, such as
proteolytic enzymes, which degrade the matrix by cleaving specific
amino acid sequences

– The cell-independent material degradation is caused by hydrolysis
of chemical bonds and disruption of physical cross-links

polymer materials that contain more than 30% water by weight and maintain struc-
tural integrity through physical and chemical cross-linking of polymer chains [23].
These polymer chains are biomaterials that are extensively investigated as extracel-
lular matrices to mimic the natural complex and functional microenvironment of
native stem-cell niches, which can be classified into naturally derived, synthetic or
hybrid composites of both [72]. Furthermore, the ability to customise the biochem-
ical and physical parameters such as mechanical properties or permeability in the
microenvironment of the cells is a significant benefit of using synthetic biomaterials
in tissue engineering [73]. Some biomaterials which are commonly used in organoid
development are listed below.
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Natural ECM

a. Decellularized ECM and hydrogels

Decellularisation is the process of physical, chemical, and enzymatic removal of
cellular components and antigenswhilemaintaining the essential structural and func-
tional ECM proteins and the natural structure of glycosaminoglycans. As a result,
a natural, biocompatible structure is free of the possibility of adverse effects at the
graft site, such as inflammatory reaction and immunological rejection. However, the
process can damage ECM proteins, demanding a balance between sufficient cell
removal and ECM integrity preservation. The ECM can be processed into hydro-
gels in a variety of ways once it has been decellularised. The solubilisation of
ECM proteins with acids and enzymes is the core concept of hydrogel formation.
Pepsin is widely applied for this, as it cleaves the nonhelical protein regions outside
of collagen’s triple helix protein structure, which is responsible for intramolecular
connections between collagen fibrils, producing monomeric components. Pepsin is
inactivated to physiological pH following neutralisation, and the hydrogel is formed
via a collagen-based self-assembly technique at 37 °C or below [74, 75].

Evidence from preclinical studies and experimental human transplantation has
demonstrated effective in vivo tissue regeneration, suggesting that decellularised
ECM provides not only structural support but also biochemical signals that are
necessary for tissue regeneration, including ECM tissue-specific proteins, as well
as soluble factors absorbed inside the ECM protein network [74–79].

Matrigel, a natural-derived ECM purified from Engelbreth-Holm-Swarm (EHS),
is a reconstituted basement membrane harvested frommouse sarcoma is the predom-
inantly used matrices to develop organoid [31]. The EHS matrix is incorporated
with many different components of the natural ECM, such as laminin, collagen
IV, and entactin [80, 81]. In addition, biological factors including basic fibroblast
growth factor, epidermal growth factor (EGF), insulin-like growth factor 1, trans-
forming growth factor-beta, platelet-derived growth factor, and nerve growth factor
are also added, which give a dynamic environment for embedded cells to facilitate
cell attachment and can be degraded and remodelled by organoid enzymes [82]. A
few successful examples of organoid development include intestinal [83], cerebral
[84, 85], liver [86] and mammary gland organoids. Nevertheless, the use of Matrigel
has been reported to have several drawbacks. Compared to normal tissues, which
typically have a stiffness of ~100–100,000 Pa, EHS matrices are soft materials with
stiffnesses of ~20–450 Pa [87, 88], and the physical properties cannot be modified.
Furthermore, the composition of EHS are poorly defined, incompatible with good
manufacturing practices (GMP), and display batch-to-batch heterogeneity, which
hinders the production of robust processes [31, 72]. Furthermore, the translational
potential of organoid cultured in EHS-matrix into clinical applications are limited
due to the mouse tumour origin of the EHS [89].
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b. Other naturally derived biomaterials

Other proteins and polysaccharides were studied to produce new functional tissues
and even more efficient models for organoid cultures among natural biomaterials.
The single-component protein-based hydrogel matrices such as collagen Type 1were
compared with Matrigel in intestinal organoid development. According to Jabaji
et al. [90], Type I collagen hydrogel generated from healthy intestinal crypts can
serve as a well-defined extracellular matrix for repeatable and long-term in vitro
maintenance and expansion of fully elaborated human intestinal epithelium. Further-
more, the collagen-based matrices produced both classic in vitro epithelial structures
(known as enteroids) and a new sheet-like growth pattern that was not observed in
Matrigel. In another studyby Jee et al. [148] using type1 collagen,Ham’sF12nutrient
mixture, and bicarbonate showed that mouse small intestine–derived organoids,
stomach-derived organoids, and human colon–derived organoids were successfully
grown in the collagen-based matrix and had similar properties compared to those
cultured in Matrigel. Among other proteins, the fibrin-based hydrogel has also been
investigated as matrices for organoid development with collagen IV, heparin, and
laminin supplementation. Apart from physical support, the naturally occurring Arg-
Gly-Asp (RGD) adhesion domains on the scaffold, supplementation with laminin,
are key parameters required for murine and human epithelial organoids formation
and expansion [91].

Gelatin, derived from collagen hydrolysis, provides suitable chemical and biolog-
ical cues for hosting various cells [92]. Due to its chemical similarities to the
ECM in native tissues, the biocompatibility, biodegradability, low antigenicity, cost-
effectiveness, abundance, and available functional groups that allow chemical modi-
fications with other biomaterials or biomolecules, gelatin is a promising material as a
scaffoldwith therapeutic and regenerative properties [93]. However, gelatin is limited
by its poor mechanical properties, fast enzymatic degradation, and low solubility in
concentrated aqueous media [94, 95]. Therefore, gelatin is commonly cross-linked
with other natural or synthetic biomaterials to enhance its properties. For example,
gelatin methacryloyl (GelMA), a commercially available hybrid hydrogel matrix,
undergoes photoinitiated radical polymerisation and contains most methacrylamide
groups and a minority of methacrylate groups [96, 97]. Finely tuned mechanical
properties of GelMa can be generated by adjusting the proportion of methacryloyl
substitution, providing its application in organoids and as bioink in 3D bioprinting
technology [98–100]. In addition, gelatin has been combined with other biomaterials
such as polysaccharides or synthetic polymers such as polycaprolactone (PCL) [101],
poly(lactic-co-glycolic acid) (PLGA) [102], and poly(L-lactic acid) (PLLA) [103] to
enhance complex hybrid polymeric frameworks [93]. It was observed that fibroblasts
were encapsulated in gelatin hydrogels for over 28 days, resulting in substantial cyto-
plasmic spreading and the development of cellular networks. When gelatin hydro-
gels were cross-linked with other polymers such as poly(ethylene glycol) diacrylate
(PEGdA), the encapsulated fibroblast showed more extensive cytoplasmic spreading
and the formation of cellular networks over 28 days [104].



8 Biomaterials in Organoid Development 165

Polysaccharide-based materials include chitosan and hyaluronic acid (HA) [105]
and alginate [106, 107], which are derived either from animals, plants, ormicroorgan-
isms. The composition of these natural materials allows manymolecular interactions
between receptors expressed on the cell surface and their neighbouring counterparts
and the ECM, which results in cell adhesion, proliferation, and subsequent differen-
tiation [32, 43, 108, 109]. The complex interactions play essential roles to provide
an adhesive and structural substrate to which integrins and other adhesive cell recep-
tors can bind, subsequently involved in the activation and regulation of pro-survival
signalling cascades. In addition, some bioresponsive molecules may provide signals
that modulate cell adhesion and cell differentiation and cell growth by cell-cell and
cell-ECM interactions, either tethered or insoluble form [110].

Chitosan is a linear polysaccharide derived from partial deacetylation of chitins
of crustaceans which has several distinct physical and chemical properties from its
amino and hydroxyl groups. These reactive groups contribute to the flexibility and
ease of functionalisation [111]. The structural and functional similarities of chitosan
with glycosaminoglycans (GAGs) are present in native ECM. Thus, chitosan is
biocompatible and used predominantly in cartilage engineering [112, 113]. Chitosan
hydrogel has proven to be an attractive biomaterial in tissue engineering and regener-
ative medicine due to its injectability, enzymatic degradability, and high biocompati-
bility [114, 115]. Apart from promoting adipose-derived stem cells (ADSC) engraft-
ment, survival, and homing by mediating chemokine recruitment and ROS scav-
enging, the hydrogel also promotes cardiac differentiation of brown adipose-derived
stem cells (BADSCs) by enhancing collagen production [116].

Hyaluronic acid (HA), commonly referred to as hyaluronan, is a linear polysac-
charide composed of alternating α-1,4-D-glucuronic acid and β-1,3-N-acetyl-D-
glucosamine disaccharides, connected by β(13) bonds [117]. Structurally, HA carries
a negative charge, and it is a significant macromolecular part of the intercellular
matrix of most connective tissues, such as cartilage, human eye vitreous, umbilical
cord and synovial fluid [118]. Because of its abundant hydrophilic groups, such as
hydroxyl, carboxyl, and acetamido groups, HA can be readily formed into hydrogels
by forming hydrogen bonds. By inserting methacrylate groups into the HA back-
bone via the hydroxyl groups, a photocross-linkable methacrylated HA (MeHA)
hydrogel can be produced. HA can promote cell differentiation, proliferation, and
matrix secretion [119] and has been documented to provide an effective niche for
stem cells to differentiate into chondrogenic lineages [120–123]. It was reported
that MSCs derived from human adipose tissue and placenta formed 3D spheroids on
the chitosan membrane. When the chitosan-HA membrane was used, the spheroid
formation was faster and larger than chitosan alone [105].

Alginate is an anionic polymer from the family of naturally occurring polysac-
charides extracted from brown seaweeds. Although it has no inherent instructive cell
properties, alginate promotes human intestinal organoids growth and leads to epithe-
lial differentiation that is virtually indistinguishable fromMatrigel. Moreover, when
transplanted in vivo, alginate-grown HIOs mature to a similar degree as Matrigel-
grownorganoids, both ofwhich resemble human foetal intestines. The alginatematrix
can support in vitro development of human iPSC-derived intestinal organoids for at
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least 90 days, suggesting that mechanical support is sufficient for such organoid
cultures in the absence of other ECM signals. This is possible because organoids
create their niche within the culture [106].

Furthermore, alginate can be functionalised with an RGD (Arg-Gly-Asp) peptide
sequence present in major ECM proteins, such as fibronectin, through its functional
amino acid and surface charge to enable ECM interactions and signalling [18]. Func-
tionalisation of alginate beads with collagen type 1 and transforming growth factor-
β1, cultured with human lung fibroblast and iPSC-based mesenchymal cells in a
rotating bioreactor, has resulted in the formation of a close-packed structure which
restricts cellular attachment and proliferation to the interstitial space between the
beads. Alternatively, it causes the formation of acellular regions within the culture,
mimicking the alveolar architecture of lungs used to model idiopathic pulmonary
fibrosis [124].

Engineered matrices are a promising alternative to conventional organoid culture
scaffolds because they provide a great tunability, are fully chemically defined, and
can be easily manufactured using standard techniques, which can mimic key features
of natural ECMs.

Synthetic Matrices

Due to the limitations encountered by the natural matrices, efforts have also been
demonstrated to construct artificial matrices that can solve these challenges in clin-
ical translation, such as in mouse [125] and human [126] organoids. Furthermore,
synthetic matrices can be designed and modified by covalently cross-linked with
other biomaterials to form a chain polymerisation of macromers to optimise their
physical and biological properties.

Poly(ethylene glycol) (PEG) is one of themost widely used synthetic biomaterials
in organoid development. PEG has a high solubility in aqueous media, biocompati-
bility and strong resistance, and tunable mechanical and chemical properties, partic-
ularly biomedical applications [127]. In addition, PEG-conjugated medications have
been licensed for safe use in humans by the U.S. Food and Drugs Administration
(FDA) [128–131]. The PEG macromer’s end hydroxyl groups can be functionalised
with reactive end groups to allow for a range of cross-linking chemistries such as
vinyl sulfone, acrylate, amine, and maleimide end groups [132, 133]. Additionally,
biological features such as integrin-binding peptides can be added to PEGmacromers
to produce a microenvironment that encourages cell adhesion [132]. Biodegradable
PEG hydrogels can also be produced by copolymerisation with other polymers such
as PLA, PLGA, poly (propylene fumarate), and other naturally occurring biomate-
rials hyaluronic acid, fibrinogen and chitosan. PEG-macromers functionalised with
several types of binding peptides were reported to support the human intestinal
enteroids and endometrial organoids [134], and the engraftment of human pluripo-
tent stemcell (hPSC)-derived organoids (HOs) and further accelerated colonicwound
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repair [135].A cross-linked transglutaminase (TG-PEG/HA) hybrid hydrogels devel-
oped by [136] could maintain, expand, or differentiate human bone marrow-derived
stromal cells and human hematopoietic stem and progenitor cells h which had supe-
rior properties concerning material handling, structural stability and reducing in vivo
macrophage penetration relative to pure PEG or pure HA.

Poly(lactide-co-glycolide) or poly(lactic-co-glycolic acid) (PLGA) is a linear
aliphatic copolymer synthesised at different proportions between its constituent
monomers, lactic acid (LA) and glycolic acid (GA). PLGA can be hydrolytically
degraded in the body to produce both endogenous monomers and physiologically
metabolised through the Krebs cycle. Its hydrophobic polymer can be identified by
the reticuloendothelial system and eliminated by the liver or spleen through phago-
cytosis [137–139]. The use of PLGA is consistent with low toxicity. Therefore it
has become one of the most desirable biomaterials used as a drug delivery carrier,
sutures, and other tissue engineering applications in humans and licensed by the U.S.
FDA and European Medicine Agency (EMA) [140, 141].

Meanwhile, polycaprolactone (PCL) is an aliphatic polyester polymer consisting
of hexanoate repeat units. Due to the low melting temperature, exceptional blending
compatibility, hydrophobicity, and easily handled, it becomes a chosen polymer
mainly for biomedical applications [142]. For example, PCL was used to prepare
long-term implants due to its substantially slow degradation rate. In addition, its
scaffold canmimic the extracellular matrix of natural substances, thus supporting the
three-dimensional (3D) cell culture in tissue engineering and regenerative medicine
[143].

PLGAfibremicrofilaments have been used in brain organoid and showed enhance-
ment of neuroectoderm formation and improved cortical growth [144]. In addition,
transplanted microporous PLGA scaffold seeded with human lung organoids (HLO)
indicated enhanced epithelial structure and organisation cellular similar to the native
adult human lung [145].

Three microporous polymer scaffolds, PLGA, PEG, and PCL, were used to study
the various stages of HLO development in immunocompromised mice. Both PLGA-
and PCL-transplanted HLO exhibited more immature lung progenitors, while PEG
scaffolds demonstrated slowed development andmaturation [146]. In addition, when
compared to the conventional soluble group, hybrid PLGA scaffolds seeded with
human pluripotent stem cell-derived hepatocyte-like cells with additional growth
factors showed similar expression levels of hepatocytic markers, ultrastructure, and
functional characteristics [147]. Table 8.2 summarises the type of matrices used in
organoid development.

The inability of synthetic polymers to provide the biochemical signals required to
“communicate” with the cell is the key drawback of using them as building blocks
for ECM mimics. However, by incorporating signalling biomolecules, synthetic
polymers can be functionalised to resolve this limitation (Fig. 8.1).
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Table 8.2 Types of matrices used in organoid development

Cells sources Matrix Nature of matrix References

Porcine
decellularised small
intestine submucosa

Decellularized ECM Natural Hirota et al. [74]

Porcine
decellularised small
intestine
mucosa/submucosa

Decellularized ECM Natural Giobbe et al. [23]

Gastrointestinal Collagen type 1 Natural Jee et al. [148]

Porcine
gastrointestinal

Collagen type 1 Natural Jabaji et al. [90]

Human adipose and
placenta stem cells

Chitosan and
chitosan-hyaluronan

Natural Huang et al. [105]

Intestinal Alginate Natural Gjorevski et al. [125]

Intestinal Alginate Natural Capeling et al. [106]

Epithelial organoids Fibrin/laminin Natural Broguiere et al. [91]

Bone marrow TG-PEG/HA Hybrid Vallmajo-Martin
et al. [136]

Human lung PLGA Hybrid Dye et al. [145]

Porcine hepatic islet PLGA microspheres Hybrid Gibly et al. [149]

Brain PLGA Synthetic Lancaster et al. [144]

Human intestinal and
endometrial

PEG—8 arms Synthetic Hernandez-Gordillo
et al. [134]

Pancreatic
progenitor cells

Matrigel Synthetic/semi-synthetic Greggio et al. [150]

Intestinal PEG 4 arm Synthetic/semi-synthetic Cruz-Acuña et al.
[135]

Recommendations and Suggestions

Organoids derived from human pluripotent stem cells provide a reliable tool for a
wide range of disease modelling and a potential drug screening and toxicity testing
strategy. Controlling stem cell fate to promote proliferation and differentiation into
specific cell types, on the other hand, remains a challenge. The stem cell fate is
determined by the source of the cells or tissues, the protocol, growth factors and
morphogens used, the media composition used to maintain the intended organ’s
structure and functional characteristics, and finally, the appropriate matrices required
for multiple stages of organoid development and subsequent in vivo propagation.
One of the most difficult aspects is designing a scaffold that accurately replicates
the spatial presentation of signals to cells. Conventional 3D cultures are flooded
with biochemical signals with no spatiotemporal control, resulting in significant
discrepancies in organogenesis in vivo and in vitro. Therefore, it is critical to integrate
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Fig. 8.1 Regulation of cell behaviours through matrix microenvironment and types of matrices
used in organoid development

niche components for in vitro culture that drive organoid formation into a 3D culture
scaffold capable of simulating in vivo cell-ECM interactions, as a single type of
matrix would be incapable of supporting organoid development over an extended
period of time.Alternatively, a niche-specificmatrix can be created by decellularising
patient-derived tissues or cells to match the unique design of the respective organ. It
can be further cross-linked with customisable synthetic matrix structures to enhance
the characteristics and facilitate organoid development when transplanted in vivo.
Indeed, extensive studies have been undertaken throughout theworld to address these
limitations.

Conclusion

Organoids offer the potential to study human physiology in vitro, but the maturation
of organoid cultures depends on the ability of the stem cells to create highly ordered
structures. Numerous material properties, including the presentation of cell-binding
ligands, matrix dynamics, structural geometry, and degradability, influence stem cell
development and key design parameters for organoid matrices. 3D ECMs can be
designed tofine-tune the various structural andbiochemical parameters that affect cell
fate. Good comprehension of the presence of ECMs in various tissues, pathologies,
and even different individuals, together with the ability to manufacture extremely
complex 3D biomaterials, can enhance the development of artificial organs and the
possibility to exclude the use of animal models.
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Chapter 9
Genome Editing in Organoid to Improve
Understanding of Human Disease

Binhui Zhou and Yinming Liang

Abstract Introduction: TheCRISPR/Cas9 system has beenwidely used in genome
editing. In terms of application, CRISPR-based genome editing exhibits more advan-
tages than ZFN and TALEN. Although delivering the CRISPR/Cas9 system is still
a huge challenge, genome editing is feasible in both cell lines and organoids. The
CRISPR/Cas9 system is a useful and effective tool for studying the mechanisms of
single-gene or multi-gene diseases and developing genetic models to find new ther-
apeutic targets. In this chapter, we focus on the application of the CRISPR/Cas9
system in various types of organoids and outline the effects of using this tech-
nology. Methods: The databases PubMed and Google were used to select literature
with keywords genome editing, CRISPR/Cas9 system and neurosphere organoids.
Results: Organoids provide a reliable tool for extensive disease modelling and ther-
apeutic effect evaluation after CRISPR-based gene editing. After the CRISPR/Cas9
system performed gene editing on organoids of many diseases, the unhealthy pheno-
type of organoids has been greatly improved. However, the off-target effect of Cas9
and the method of delivering sgRNA to target cells are problems to be solved
urgently. Conclusion: The CRISPR/Cas9 system has exhibited unparalleled gene
editing effects. It performs gene editing on mutated, deleted or overactivated genes
in organoids of various disease types, showing a very promising clinical treatment
prospect. As long as the off-target effect of Cas9 can be controlled and an effective
delivery method can be developed, CRISPR/Cas9 system will play a huge role in the
clinical treatment of various diseases.
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Abbreviations

CRISPR Clustered regularly interspaced short palindromic repeats
sgRNA Small guide RNA
HSPC Hematopoietic stem and progenitor cells
DNA Deoxyribonucleic acid
mTORC1 Mammalian target of rapamycin complex 1
NFAT1 Nuclear factor of activated T cells
NRF2 Nuclear factor erythroid 2-related factor 2
HIV Human immuno-deficiency virus
CAR-T Chimeric antigen receptor T-cell
RPE Retinal pigment epithelium
ssODN Single-stranded donor oligonucleotides
CCR5 C-C chemokine receptor type 5
XLRP X-linked retinitis pigmentosa
ONL Outer nuclear layer
WT Wild type
VEGF-A Vascular endothelial growth factor A
Hif-1α Hypoxia-inducible factor-1 alpha
RNP Ribonucleoprotein
LDL-C Low-density lipoprotein cholesterol
bp Base pair
LQTS Long QT syndrome
EGFR Epidermal growth factor receptor
NSCLC Non-small cell lung cancer
EMT Epithelial-to-mesenchymal transition

CRISPR/Cas9 Technology Used in Neurosphere Organoids

Neural stem cells are central primordial cells that can self-renew and differentiate in
multiple directions [1]. Adult animals’ embryonic tissues and subventricular zone, as
well as the hippocampus dentate gyrus, are the most common sources [2]. A neuro-
sphere is a type of neural stem cell grown in vitro in a mitogen-containing tissue
culturemedia. The cells in the suspended spherical cell cluster are thought tomaintain
neural stem cells’ basic proliferation and differentiation capabilities. After removing
the mitogen, the created primary neurospheres can be distributed and passed many
times, and the most essential thing is that they can differentiate into neurons and
glial cells [1]. Reynolds et al. published the first method for producing and culturing
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neurospheres using mouse striatal neural stem cells in 1992 [3]. Because of the
bidirectional advantages of numerous passages and inducible differentiation, this
approach is commonly utilized in the in vitro cultivation of neural stem cells. Neuro-
spheres are also utilized as organoids to research neuropsychiatric illnesses, such as
epilepsy [4, 5], medulloblastoma [6], primary microcephaly [7], neuroblastoma [8]
and especially glioblastoma [9], [10–14].

Unprovoked seizures are a symptom of epilepsy, a spectrum of neurological
illnesses. Among them, focal epilepsy caused by environmental and genetic factors
is the most frequent kind of epilepsy. Dibbens et al. showed that DEPDC5 (DEP
domain-containing 5 protein) gene defect promotes autosomal dominant focal epilep-
sies, with insufficient penetrance and varied expressivity [4]. And Hughes et al.
discovered mTORC1 hyperactivation in fetal brain lysates, nutrient-depleted neuro-
spheres, and mouse embryonic fibroblasts [5]. Therefore, using CRISPR/Cas9 tech-
nology to restore mTORC1 to its normal activity level in the heterozygous DEPDC5
mutant may be a treatment for epilepsy.

Medulloblastoma is the most frequent malignant juvenile brain tumor that
develops from the cerebellum. Sonic Hedgehog, Wingless, Group 3 and 4 are the
four major molecular subgroups of medulloblastoma [6]. High MYC expression due
to its amplification in approximately 15–20% of cases characterizes the Group 3
subgroup, which accounts for around 25% of all medulloblastoma cases [15]. Vo
BHT et al. created CRISPR-Myc, a Group 3 medulloblastoma cell model, by using
CRISPR/dCas9 system with combinatorial sgRNAs to impose the expression of
Myc in Trp53-null neurosphere cells that transplanted into naive mice brain, and
discovered that JQ1, a BET inhibitor, reduced the development of neurospheres in
CRISPR-Myc cells by suppressing MYC expression [6].

Primarymicrocephaly is a congenital brain disorder marked by a head size signifi-
cantly smaller than standard deviations below the age and sexmean, resulting in mild
to severe mental deficits and a shorter lifespan. Using exome sequencing, DiStasio
et al. discovered amutation that is autosomal recessive causing an amino acid change
in theWD40 domain of COPB2 in two infants with primarymicrocephaly. They used
CRISPR/Cas9 technology to create an allelic sequence in the mouse to better investi-
gate the significance of Copb2 in brain development. Copb2 is required for the early
phases of embryogenesis, according to two independent null alleles. The phenotype
of mice homozygous mutation (Copb2R254C/R254C) appears to be identical to that of
humans, owing to changes in corticogenesis. Mice exhibiting a severe phenotype,
such as low birth weight, augmented brain apoptosis, and death during the first seven
days of life. Immunohistochemistry of the Copb2R254C/Zfn brain indicated a decrease
in layerV (CTIP2+) neurons, despite the cortex’s overall cell density remaining intact.
Furthermore, neurospheres produced from animals with Copb2 mutations expanded
at a slower rate than control neurospheres [7].

One of the most dangerous solid malignancies of childhood is neuroblastoma
(NB), which develops from neural crest-derived sympathoadrenal progenitors [16,
17]. Flahaut et al. found that ALDH1A3 (acetaldehyde dehydrogenase family 1
member A3) was widely expressed in NB cell lines and correlatedwith poor survival
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and high-risk prognostic factors, and specific knockout of ALDH1A3 decreased
neuroblastoma cell clonogenicity and tumour-initiating cell [8].

In the adult central nervous system, the most frequent malignant neuroepithe-
lial tumor is glioblastoma multiforme (GBM) [18]. Patients with this tumor have a
survival duration of no more than 12 months due to its aggressive growth and great
heterogeneity [19]. Researchers have discovered that a variety of protein molecules
are involved in the progression of GBM. For example, Ranjan and Srivastava discov-
ered that utilizing CRISPR/Cas9 to block the GLI Family Zinc Finger 1 (GLI1)
gene resulted in improved GBM cell growth-suppressive effects of penfluridol, an
antipsychotic medication [9]. Furthermore, Han et al. discovered that knocking down
the Quaking homolog (QKI) boosted GLI1 mRNA levels, resulting in the mainte-
nance of glioblastoma stem cell stemness and an increase in GBM cell invasiveness
[10]. Furthermore, Ali et al. showed that knocking out Ataxia-telangiectasia mutated
(ATM) in glioblastoma cell lines (LN18 andLN229) in the absence of p85α hampered
cancer cell motility and invasion, inhibited three-dimensional-neurosphere forma-
tion, and enhanced chemotherapeutic toxicity to cisplatin [13]. Similarly, Thakur
et al. discovered that knockout of SAT1 in primary glioblastoma lines by using the
CRISPR/Cas9 system resulted in a substantial inhibition of neurosphere formation
[14], and Jiang et al. found that NFAT1 suppression via CRISPR/Cas9 reduced the
survival, invasion, and self-renewal of glioma stem-like cells in vitro and prevented
tumorigenesis in vivo [11]. Furthermore, Godoy et al. discovered that knocking down
the NRF2 gene with CRISPR/Cas9 in U87MG cells lead to reduced neurosphere
self-renewal, increased differentiated cells, and inhibited proliferative potential after
gamma ray irradiation [12].

CRISPR/Cas9 Approach Used in the Hematopoietic System

The hematopoietic system contains the blood’s produced components, as well as
the lymph nodes, spleen, bone marrow, and reticuloendothelial tissue, all of which
are specifically designed to supply the body with a large potential for cell regener-
ation. Hundreds of millions of people worldwide suffer from hematologic diseases,
including blood and blood-forming organ problems. In addition to blood cell malig-
nancies, hematologic diseases include rare genetic abnormalities, anemia, thrombo-
cytopenia, HIV-related ailments, sickle cell disease, chronic granulomatous disease,
X-Linked agammaglobulinemia, etc. The majority of these diseases are genetic
conditions caused by a single gene. In recent years, CRISPR/Cas9 has been reported
to be widely utilized in the clinical treatment of hematopoietic illnesses as a result
of numerous studies showing its great efficiency in single gene editing.

Acutemyeloid leukemia (AML) is a life-threatening bloodmalignancy. CD33 has
long been a focus for AML immunotherapy. However, CD33 expression on normal
hematopoietic cells has been shown to cause “on-target, off-leukaemia” toxicity,
resulting in substantial morbidity/mortality from deep cytopenia, restricting the use
of CD33-directed immunotherapies. As a result, eliminating CD33 from resting
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HSPC will be an excellent way to create a hematopoietic system that is resistant to
CD33-targeted treatment and will allow CAR-T cells to be used to selectively target
AML. For this reason, MiriamYKim et al. created CD33 knockout human HSPC by
using the CRISPR/Cas9 method, and found that the CD33−/− HSPC cells exhibited
normal myeloid activity in autologous transplanted rhesus macaques. Most crucially,
CD33−/− cells were unaffected by CAR-T cells that targeted CD33, allowing for
effective leukemia therapy and without the risk of toxicity [20].

Beta thalassemia is a genetic illness marked by a lack of β-chain synthesis. When
β-globin synthesis is impaired, the α-/β-chain ratio becomes imbalanced, which in
turn leads to red blood cell (RBC) lysis. SOX6 is a transcription factor that plays
a gene switch role in regulating γ- to β-globin. Laleh Shariati et al. discovered that
using CRISPR/Cas9 system to mutate SOX6 gene binding region results in γ-globin
reactivation in K562 cells [21]. In HbE/β-thalassemia, β0 allele causes no β-globin
chain to form, while βE allele generate a HbE globin chain due to a nucleotide change
of GAG to AAG. Based on this, researchers employed the CRISPR/Cas9 technique
to successfully correct the mutation in iPSCs produced from a HbE/β-thalassemia
patient, resulting in corrected iPSCs that are a β-thalassemia heterozygote. In the
future, the corrected iPSCs can be artificially induced into hematopoietic stem cells
and used in patient autologous transplantation to treat thalassemia [22].

The HIV causes AIDS, which is a chronic, potentially fatal illness. To date, there
were approximately 40 million people across the globe with HIV/AIDS in 2021.
Vaccines and drugs currently used to treat AIDSmainly target viral proteins or block
the interaction between the host and the virus. However, HIV can integrate its genome
into the immune cells to establish latent infection, posing a daunting challenge in the
development of vaccines. Based on this, Liao et al. revised their approach to devel-
oping AIDS medicines. They modified the CRISPR/Cas9 system for intracellular
defense against viruses and foreign DNA in human cells. As a result, the integrated
viral genomes were destroyed in human cells, then provides long-term adaptive
resistance against newly infected viruses, their expression, and replication. Further-
more, HIV-targeted CRISPR/Cas9-expressing human induced pluripotent stem cells
can be induced into HIV reservoir cells and maintain resistance to HIV-1 infec-
tion [23]. Other studies have shown that the chemokine receptor CCR5 plays a key
role in HIV entering human hematopoietic cells, and homozygous CCR5 mutation
greatly enhances HIV-1 resistance [24, 25]. In this case, Xu et al. found that the
CCR5 knockout efficiency was sustained in transplanted hematopoietic cells using
CRISPR/Cas9 method. More crucially, the considerable decrease in virus concentra-
tion and increase in the number of CD4+ T cells revealed an HIV-1 tolerance effect
[26].

X-linked chronic granulomatous disease (X-CGD) is a primary immunodeficiency
disorder caused by the inability of phagocytes to clear invading fungi and bacteria.
Mutations in theCYBBgene can causeX-CGD. TheCYBBgene encodes gp91phox,
which is the catalytic center of NADPH oxidase 2 (NOX2). NOX2 is a phagocytic
protein that can promote the production of superoxide anions, and play a role in
immunoregulatory and microbicidal [27]. Patients with X-CGD are at risk of devel-
oping life-threatening infections and require antibiotic medication as a preventative
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measure. The proportion of NOX2 activity in X-CGD patients’ neutrophils predicts
patient survival, implying that minor changes in NOX2 function could have clinical
implications [27]. By using CRISPR/Cas9 technique, De Ravin et al. corrected the
CYBB gene mutation of CD34+ HSPCs from X-CGD patients. Interestingly, trans-
planting gene-edited cells into NOD SCID gc−/− mice can successfully generate
functionally mature human lymphoid and myeloid cells. Furthermore, after gene
correction, whole-exome sequencing revealed that only CYBBwas gene-edited [28].

CRISPR/Cas9 Technology Used in Retinal Disorders

There are approximately 285 million visually impaired people worldwide, with 39
million of them being blind. In the developing world, photoreceptor malfunction
and/or loss accounts for more than half of all cases of visual impairment. Photore-
ceptor is a kind of neuron with special function which plays a key role in the initial
process of converting light into vision. The most prevalent kinds of retinal degener-
ation include inherited retinal illnesses like Leber congenital amaurosis (LCA) and
retinitis pigmentosa (RP), as well as more complicated and heterogeneous retinal
disorders like age-related macular degeneration (AMD) [29].

The CRISPR/Cas9 technology has been widely used in the treatment of retinal
diseases in previous studies. RP is a hereditary retinopathy that is irreversible. Muta-
tions in RPGR (also known as XLRP3) have the highest probability of causing
this disease, notwithstanding its genetic heterogeneity. Deng et al. employed the
CRISPR/Cas9 technology to correct the RPGR mutation, which repaired photore-
ceptor structure and electrophysiological characteristics, rectified ciliopathy, and
restored gene expression to a level that was under control [30].

On the other hand, Arno et al. observed biallelic mutations in REEP6 in human
with autosomal-recessive RP. Reep6 variant knock-in mice models created using
CRISPR-Cas9 gene editing displayed clinical symptoms similar to RP, including
progressive photoreceptor degradation and rod photoreceptor malfunction [31]. RP2
mutations have also been related to a severe type of XLRP [32]. The RP2 XLRP
animal models, on the other hand, do not replicate this severe phenotype. As a
human retinal illness model, Lane et al. developed 3D retinal organoids using
gene-edited isogenic RP2−/− iPSCs and RP2 patient-derived iPSCs. Rod photore-
ceptor cells loss peaked at day 150 in both the RP2−/− and RP2 patient-derived
organoids, followed by a weakening of the organoid outer nuclear layer by day 180.
Using CRISPR/Cas9 technology to express RP2 in RP2−/− organoids can reverse its
degenerative phenotype [33].

Autosomal recessive mutations in a variety of genes, such as RPE65, can cause
LCA, which is a frequent cause of childhood-onset blindness. There is a mouse
model of human LCA called Rd12, Jo et al. repaired a disease-associated nonsense
mutation in Rpe65 by using CRISPR/Cas9. They discovered that when exposed to
bright stimuli, the a and b waves of the electroretinograms can be restored to the level
of approximately 21 and 40% of theWTmice after 7 months of dark adaptation [34].
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In persons 50 years of age and older, the major cause of permanent blindness
is AMD. Choroidal neovascularization (CNV) is a prominent hallmark of wet-
AMD, and it is predominantly induced by angiogenic cytokines including VEGF-A,
leading to further damage to the function and structure of retinal. In an AMDmouse
model, Kim et al. suppressed the expression level of Vegf-A and Hif-1α by using
CRISPR/Cas9 approach, and observed the region of laser-induced CNV was signifi-
cantly reduced. These findings demonstrated that genome editing that employs Cas9
RNPs to inactivate disease-causing WT genes has the potential for local targeted
treatment of non-hereditary degenerative disorders [35].

CRISPR/Cas9 Technology Used in Cardiovascular Disease

Previously studies have shown that CRISPR/Cas9 was widely applied to
treat cardiovascular diseases include coronary artery disorder, Wolff-Parkinson-
White syndrome, hypertrophic cardiomyopathy, and calmodulinopathic Long-QT
syndrome. LDL-C has been identified as a main cause of death from cardiovas-
cular disease worldwide. Statin medications have been shown to control the risk of
coronary artery disorder by suppressing LDL-C levels, but they come with a slew
of adverse effects that typically lead to poor adherence. LDL receptors that are in
good working order lower cholesterol levels. PCSK9 is an LDL receptor antago-
nist expressed in the liver, has become a popular genome-surgery target. Gain-of-
function mutations in the gene have been linked to greater LDL-C levels, as well as
an increased risk of hypercholesterolemia and coronary heart disease [36]. Previous
studies reported that the loss-of-function mutation of the PCSK9 gene did not show
adverse clinical consequences, but it reduced the LDL-C content and the risk of coro-
nary artery disease [37]. This leads scientists to suspect that PCSK9 gene therapy
could reduce the risk of cardiovascular disease.

Based on this, Ding et al. employed CRISPR/Cas9 system to knockout PCSK9
in mouse liver. They edited almost half of the PCSK9 alleles with no substantial off-
target consequences. Furthermore, they found that the PCSK9 levels in the plasma
of the edited mice was reduced by nearly 90%, while the total cholesterol levels
in the plasma was decreased by 35–40% [38]. Similarly, Ran et al. used an AAV
vector, which is more appropriate for human therapeutics, to target PCSK9 in mouse
liver and found an effective knockout via NHEJ. This procedure reduced the PCSK9
content in the blood by 95%, while the blood cholesterol level also decreased by
40% [39]. Taken together, these and other studies indicated that employing somatic
gene editing to lower blood/plasma cholesterol levels can help patients reduce their
risk of cardiovascular disease.

Late-onset adult diseases can be caused by an autosomal dominant mutations in a
single gene. Among them, MYBPC3 gene mutation leads to hypertrophic cardiomy-
opathy.Aberrantmyocardial relaxation andventricular hypertrophy are the character-
istics of the disease, which ultimately leads to diastolic heart failure and arrhythmias
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[40, 41]. Using the CRISPR-Cas9 technology, Ma et al. successfully repaired the
MYBCP3 gene with a 4-bp deletion [42].

PRKAG2 cardiac syndrome (PS) is a rare autosomal dominant genetic disease
caused by PRKAG2mutations. Its main characteristics include myocardial glycogen
storage, myocardial hypertrophy, ventricular pre-excitation, and patients have a
higher risk of arrhythmia and sudden cardiac death. In patients with familial Wolfe-
Parkinson-White syndrome, Xie et al. discovered that the histidine at position 530 of
the PRKAG2wasmutated to arginine and constructed amousemodel with this muta-
tion. The abnormal hypertrophy of the heart and increased glycogen storage in this
model mouse indicates that the mutation is causally related to PRKAG2 syndrome.
Subsequently, they used CRISPR/Cas9 system combined with AAV-9 to repair the
mutated PRAKG2 allele and restore normal heart shape and function [43].

Calmodulin is a key Ca2+ sensor for cardiac function, its missense mutations
caused calmodulinopathies. These patients are accompanied by life-threatening
symptomatic arrhythmias associated with LQTS, including ventricular fibrillation
and ventricular tachycardia. The mutation results in a significant overexpression of
the protein, which causes the action potential to be prolonged. Therefore, Limpitikul’
team employed CRISPR interference to reduce the expression levels of calmodulin,
thereby shortening the duration of the action potential and lowering the effect of
LQTS [44].

Application of CRISPR/Cas9 on Lung Cancer Therapies

Lung cancer is the most frequent cancer on the planet. Multiple genes and signaling
pathways play an important role in the formation of lung cancer [45], and clin-
ical treatment of lung cancer has been extensively studied. The term “cancer gene
therapy” refers to a type of treatment that involves active gene alterations [46]. Lung
cancer genome repair and suppressing the expression of certain proteins have become
attractive ways for studying and treating the disease. In recent years, CRISPR/Cas9
technology has received widespread attention and has been used in the research of
lung cancer.

Knockout overactivated, overexpressed, ormutant target oncogenes has the poten-
tial to be cancer therapeutic. Oncogenes such as CTNND2, FAK, RSF1, EGFR, and
NESTIN have recently been investigated in the context of CRISPR/Cas9 gene editing
for lung cancer treatment [47–53], [54]. These oncogenes can promote the occur-
rence and development of lung cancer, and enhance the ability of lung cancer cells
to invade or metastasize.

Knockout mutant EGFR allele by using CRISPR/Cas9 system suppressed the
growth and proliferation of lung cancer cells [47, 49], and reduced tumour sizes in
xenograft mice implanted with lung cancer cells [47]. Using CRISPR/Cas9 system
to knockout the FAK gene in KRAS mutant NSCLC cells leads to persistent DNA
damage and radiation sensitization [50]. In lung cancer cells, knockout of NESTIN
gene facilitate cell apoptosis, inhibit cell proliferation and invasion by suppress EMT
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[54]. RSF1 deletion causes G1 cell-cycle arrest and promotes cell apoptosis, simul-
taneously inhibited cell proliferation and migration in lung cancer cells [51]. In lung
adenocarcinoma, oncogene δ-catenin facilitates tumorigenesis. Using CRISPR/Cas9
to knockout the CTNND2 gene in lung cancer cells to deplete δ-catenin, leading to
the inhibition of theWnt signaling pathway, thereby eliminating the tumorigenic and
metastatic ability of cancer cells in vivo [53]. In general, current study suggests that
the CRISPR/Cas9 system for oncogene editing has the potential to become a lung
cancer therapy.

Inactivation of tumor-suppressor genes, on the other hand, is also critical during
carcinogenesis [55, 56]. Tumor-suppressor gene expression products can impede cell
proliferation, enhance cell differentiation, suppress cell migration, and inhibit cancer
development [57], [58]. The activation of oncogenes is caused by the mutation, loss
of function, or knockout of tumor-suppressor genes, which leads to carcinogenesis.
Many cancer types have certain tumor-suppressor genes that are altered and expressed
at low levels, and these tumor-suppressor genes are key candidates for gene editing
therapy using CRISPR/Cas9 system [26]. Tumor-suppressor genes can be repaired
by employing the CRISPR/Cas9 technology, and their function and activity can be
restored to prevent cancer. Targeted correction of inactivated tumor-suppressor genes
using CRISPR/Cas9 system could also be useful in treating lung cancer. In a Kras-
driven animal model of lung cancer, a CRISPR/Cas9 deletion of Keap1 resulted in
overexpression of Nrf2 and promoted tumor growth and survival [59]. Xu et al. found
that upregulating the mTORC2/Akt pathway facilitated cell survival, enhanced cell
viability, and increased cell proliferation, metastasis and invasion in the lung cancer
cells by genetic deletion of the tumor-suppressor gene mitofusin 2 (MFN2) [26]. The
tumor suppressor miR-1304 can be genetically knocked out, which increases heme
oxygenase-1 (HO-1) production and promotes cell survival and expansion [60]. Few
researches have used the CRISPR/Cas9 gene-editing technique to investigate tumor-
suppressor genes in lung cancer, which should be regarded an essential direction for
future study.Theuse ofCRISPR/Cas9 technology to repair and activate dysfunctional
tumor suppressors could provide much-needed hope for cancer therapy.

CRISPR/Cas9 System Used in Duchenne Muscular
Dystrophy

Duchenne muscular dystrophy (DMD) is a type of degenerative muscle disorder
causedbygenetic abnormalities that cause dystrophin inmusclefibers to bedisrupted.
This deadly illness has no cure. CRISPR/Cas9 technology has shown to be an effec-
tive tool for genetic modification and potential treatment. By using CRISPR/Cas9
system, Long et al. modified dystrophin gene (Dmd) mutation in DMDmodel mice.
And they discovered that genome surgery lead to geneticallymodifiedmicewithDmd
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gene corrections ranging from 2 to 100%. Furthermore, the degree of muscle pheno-
typic rescue outperformed the effectiveness of gene repair, indicating that corrected
cells have an advantage and contribute to muscle regeneration [61].

By using CRISPR/Cas9 technology in DMD model, another work showed
that a 23-kb genome fragment covering the mutant exon 23 was successfully
deleted, restoring dystrophin production and the dystrophin-glycoprotein complex
in mdx animals [62]. In dystrophic mdx4cv mice, Bengtsson et al. performed the
CRISPR/Cas9 gene-editing assay to totally repair the dystrophin mutation. They
found that approximately 70% of the treated muscles expressed dystrophin and
increased strength generation after intramuscular injection. Additionally, systemic
delivery of the CRISPR/Cas9 system causes broad dystrophin expression in both
cardiac and skeletal muscles [63].

On the other hand, recent research reports that the biogenesis processing region
in pre-miR-29b can be effectively targeted by CRISPR/Cas9 plasmids though local
injection of into the tibialis anterior muscle or gastrocnemius muscles. In mice,
stimulation of theAKT-FOXO3A-mTORsignaling pathway reducedmuscle atrophy,
immobility, and denervation induced by angiotensin II (AngII), as well as AngII-
induced myocyte apoptosis, resulting in considerably enhanced exercise capacity
[64]. The CRISPR/Cas9 gene-editing technology has been widely employed to cure
a variety of diseases and to learn more about human disease.

The CRISPR/Cas9 Technology in Organoid for Future
Personalized Treatment

Humans suffer from around 18,000 different diseases, including single-gene and
multi-gene diseases. Even if it is the same disease, the multiple mutations of multi-
genic diseases offer them a unique heterogeneity ability that may exist differences in
different patients. However, this one-of-a-kind feature of variability posed a signifi-
cant difficulty for therapeutic rehabilitation. The CRISPR/Cas9 system with simple,
accurate and precise genome editing capabilities has aroused the interest of scien-
tists all over the world. Mutations, deletions, malfunction, or overexpression of func-
tioninggenes are responsible for awide rangeof disorders. Therefore, by repairing the
sequence of the mutant gene to restore its normal function or reducing the expression
of the target gene to restore it to a normal level in the future, individualized treatment
of patients with CRISPR/Cas9 gene editing technology may be effective in curing a
variety of diseases.
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Conclusion

In summary,we described the potential ofCRISPR/Cas9 editing organoid technology
in disease model construction and disease treatment. The application of gene editing
in organoids is expected to expand in the future. However, several problems remain
linked to the performance of CRISPR/Cas9 technology, such as decreasing Cas9’s
off-target effects and methods of delivering sgRNA to target cells. As a result, it’s
critical to enhance Cas9 optimization and reduce off-target effects.
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Chapter 10
Ethical Implications on Organoid

Badrul Hisham Yahaya, Syahidatul Amali Che Shaffie,
and Teguh Haryo Sasongko

Abstract Introduction: Over the last decade, the number and exposure of studies
creating and implementing organoid technology have skyrocketed. Despite its poten-
tial in science, organoid technology poses complex ethical challenges thatmay hinder
future translational benefits for patients. To encourage ethically acceptable innovation
for the benefit of patients, the interdisciplinary conversation between diverse stake-
holders in organoid research and its translational advantages is necessary. Organoid
technology poses numerous major ethical concerns, including cell source, informed
permission of cell donors, the legal status of organoids, human “chimaera,” gene
editing, organoid transplantation, commercialisation, potential abuse, and long-term
preservation in biobanking will be the central focus in this chapter. Methods: For
the selection of literature, the MEDLINE/Pubmed database was used, particularly
the MESH vocabulary. The keywords used in the MEDLINE research were: ethics
in organoid; the ethical implication of organoid; ethics in biobanking; consent for
organoid; gene editing in organoids; organoid transplant; legal status of the organoid.
Results: Organoid technology has had a significant influence on biomedical research.
The most significant impact comes from debates about ethical issues such as animal
experimentation, the use of embryo cells, organoid transplantation, drug discovery,
storage and biobanking, organoid accessibility, laws governing and curbing organoid
misuse, and control over the genetic information of patients who donate cells for
disease modelling purposes. However, organoid research poses additional ethical
concerns that necessitate rethinking and maybe recalibrating ethical and legal laws.
Conclusions: Progress in creating different organoids has revealed a slew of ethical
concerns that necessitate moral and regulatory considerations. Moral arguments will
revolve around the concerns of artificial life, animal humanisation, and the moral
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position of brain organoids and gastruloids. Regulatory issues highlight the need to
agree on a set of rules governing clinical uses of organoids, biobanking, and consent.

Keywords Organoids · Ethical issues · Biobanking · Consent · Precision medicine

Abbreviations

3D Three-dimensional
ECM Extracellular matrix
ASCs Adult stem cells
PSCs Pluripotent stem cell
iPSCs Induced-pluripotent stem cells
IRB Internal Review Board
IEC Internal Ethics Committee
CFTR Cystic fibrosis transmembrane conductance regulator
HTS High-throughput screening
CRISPR Clustered regularly interspaced short palindromic repeats
ESCs Embryonic stem cells

Introduction

An organoid is a three-dimensional (3D) multicellular in vitro tissue construct that
closely resembles its corresponding in vivo organ, allowing researchers to examine
features of that organ in a tissue culture dish. Today, the term organoid is most often
used to describe constructions made from stem cells, which can be pluripotent or
adult stem cells from diverse organs. The mechanisms that produce these tissues
in vitro are similar to natural tissue formation or maintenance. The complexity of
the organoid will be determined by the developmental capacity of the initial stem
cells. Some approaches for making pluripotent stem cell-derived organoids leave the
cells alone, allowing intrinsic self-organisation and presumably stochastic processes
to design the tissue. Self-organisation occurs inside the organoid by spatially limited
lineage commitment and cell sorting, necessitating activating different signalling
pathways mediated by intrinsic cellular components or external environments like
the extracellular matrix (ECM) and media.

Sato et al. demonstrated that adult intestinal stem cells expressing single leucine-
rich repeat-containing G protein-coupled receptor 5 (Lgr5) might generate 3D
intestinal organoidswithout amesenchymal nicheMatrigel self-organise and develop
into crypt-villus structures [1]. This was the first time a single adult stem cell (ASC)
was used to make a 3D organoid culture. Adult epithelial stem cells expressing the
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general Lgr5 marker may be grown under tissue-repair conditions to produce epithe-
lial organoids directly from healthy and damaged organs such as the stomach, liver,
lung, and pancreas [2]. Organoids produced from adult stem cells take advantage of
the tissue regeneration process that these cells drive, and they may be grown directly
from the epithelium of numerous organs, whether healthy or sick. Organoids can be
tested using any method that has been established for cell lines.

History of Organoid

Organoids are cells that grow in vitro in a predetermined 3D environment to produce
mini clusters of cells that self-organise and differentiate into functional cell types,
mimicking the shape and function of an organ in vivo. Organoids cultures are derived
from stem cells and can be crafted to replicate much of an organ’s complexity or
express selected aspects of it, like producing only certain types of cells [3–6]. Henry
Van Peters Wilson demonstrated the first in vitro organism regeneration trial by
showing that dissociated sponge cells could self-organise and regenerate into a whole
organism [7]. In 1960, Paul Weiss and A.C Tayler experimented with reconstitution
of complete organs from a single-cell suspension of chick embryos in advanced
stages of differentiation. Their study demonstrated that the single-cell suspensions
prepared from organs like kidney, liver or skin of 8–14 days chick embryos were able
to give the remarkably complete andmorphologically well-organised organs with the
various tissue components. The results re-emphasise internal ‘self-organisation’ as
one of themost basic problems in the study developments [8].Move forward to 1981,
and stem cell research began when the pluripotent stem cells were first isolated and
established from mouse embryos [9, 10]. After the isolation and establishment of
pluripotent stem cells, induced pluripotent stem cells (iPSCs) were established by
reprogramming mouse and human fibroblast, which greatly impacted stem cells and
organoid research [11, 12]. Cell culture conditions were improved by stimulating
the in vivo microenvironment and demonstrated that the Engelbreth-Holm-Swarm
tumour (EHS) ECM extract and the presence of ECM matrix were important cell-
matrix interactions in tissue maintenance and differentiation [13, 14]. Shifting from
2 to 3D organoids cultures was done by generating cerebral cortex tissue from ESCs
using the 3D aggregation culture method and showed that some proteins expressed
in adult intestinal stem cells could form a 3D intestinal culture in an ECM matrix
self-organised and differentiate [15]. Many organoid cultures were done on other
systems, including stomach, liver, pancreas, lung, kidney, brain and retina, and they
used either ASCs or pluripotent stem cells (PSCs). The population of stem cells in
the small intestine was discovered, and the tissue host of stem cells was separated,
allowing them to construct 3D gut organoids. The organoids culture contained all
cell types found in vivo, and it can be maintained and grown in vitro with the help of
growth hormones [1]. Using the same principles, more systems such as the stomach,
liver, pancreas and others can be generated by ASCs derived organoids [15–19].
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Application of Organoids

Organoids are one of the great tools in cell culture techniques in many biomed-
ical studies. Various applications of organoids in many areas, including devel-
opmental biology, disease modelling, drug precision, regenerative medicine, drug
discovery medicine, and toxicology [20–26]. The 3D organoid construct has also
been employed to investigate the relationship between infectious pathogens and
corresponding cancers [27]. Organoids derived from different mouse or human
tumours that are being widely used to study cancer types. Previous studies were
done by derived human liver cancer organoids from patients by extensive refinement
of medium conditions to expand three common subtypes: hepatocellular carcinoma,
cholangiocarcinoma, and a combination of hepatocellular cholangiocarcinoma [28].
Other than that, organoids have opened the possibilities for biobanking, and these
represent a valuable resource for clinical application such as analysis for cancer strat-
ification and drug screening for precision medicine [29, 30]. Tumour heterogeneity
and clonal dynamic were preserved after the serial passage of organoids, indicating
that these tiny or mini tumours are genetically stable with various clinical applica-
tions [31]. The potential organoids in precision medicine and regenerative medicine
are promising, and it is important to mention and highlight the safety, ethical and
legal concerns before moving to clinical application. Organoid technology’s ethical
difficulties have been examined, and specific ethical and regulatory control proposals
have been made.

What Are the Ethical Issues?

Ethical issues on the development and usage of organoids are largely attributed to how
such organoids attain functional and structural similarity to real human organs and
thus represent existing ethical discourse for that real organ in a human. Such discus-
sions revolve around the philosophical grounds, benefits towards animal exploita-
tion, precision medicine, consent models, and moral status of brain organoids and
gastruloids.

Philosophical Grounds

In our traditional philosophical construct, organs have always been part of organ-
isms, both biologically and existentially. In organ transplantation, the idea of having
somebody’s organ transplanted into another has sometimes been perceived as the
movement of existential personhood rather than a mere technical movement of a
mechanic organ, which has delineated the moral argument against commercial organ
transplantation [32].
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Organoids presented an idea that an organ can be 3D-printed or developed into
its functional 3D structure from cells outside of the human body, using artificial
biomedical techniques, and then used for research and, potentially, clinical applica-
tions. This would present a deconstructive force towards the traditional idea of organ
development through natural embryological processes. In such a way, the artificial
creation of organoids through 3D printing may present the notion of artificialisation
of the living [33]. On the other hand, the creation of organoids itself would present
the notion of the creation of life, especially when it comes to organs associated with
personhood and individuality, such as brain organoids and gastruloids. The notion
of life inherent in the development of cerebroids and gastruloids will be presented
as the moral status of these two special organoids is discussed. Further on this, the
application of organoids in research whereby human organoids are transplanted into
animals to study their biological characteristics or responses to drugs might spark
the idea of humanising animals, especially when it involves cerebroids, such as in
the case of Alzheimer’s study [34].

Organoids have the potential to impact the ethical elements of biomedical research
throughout the whole innovation cycle. These ethical concerns are comparable to
those faced by regenerative medicine, which attempts to restore damaged function
through the cell, tissue, organ repair, replacement, or regeneration [35, 36]. Animal
experimentation is frequently used as a proxy for studying human tissue develop-
ment, injury, repair, and the pathophysiology of human diseases, including drug
testing. In this vein, the creation of animal models is a typical part of disease-based
research techniques. By considering the 3R principles (replacement, reduction and
refinement), which have achieved international recognition as a public policy in
animal testing, a compromise may be struck between allowing animal experimen-
tation and respecting animals [37]. Organoids are viewed as a replacement for the
R-component of the 3R concept, which replaces animals with other techniques,
however, they lack immune cells and do not represent immune system interactions.
Organoid researchers must continue to stress that basic discoveries and therapeutic
therapies cannot be produced without animals [35].

Organoids can imitate certain elements of the 3D design, cell-type composition,
and functionality of genuine organswhile retaining the benefits of simpler and conve-
niently accessible cell culturemodels. As a result, they havemuch potential in biolog-
ical and medicinal applications. Regulating self-organisation generates organoids
that develop deterministically, robustly, and physiologically relevant shapes and
sizes, extending organoid lifespan to create mature, functional tissues that reach
homeostasis; and replicating multi-factorial pathologies by incorporating additional
key tissue compartments of native organs are all major challenges [38]. Overcoming
these obstacles will need a multidisciplinary approach, with bioengineering lessons
likely to be particularly useful.

Human organoids and gastruloids research raise ethical concerns about their
origins and their current and future applications. Unique concerns such as the amount
of maturation that may be accomplished in vitro or through chimaera research, as
well as basic ethical questions like the provenance of human biomaterials and the
use of gene-editing technologies, are among them [39]. Human gastruloids present
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possible philosophical and ethical problems about the production of early human life
due to their resemblance to embryos [39, 40]. Suppose human gastruloids are consid-
ered to be functionally equivalent to human embryos. In that case, a slew of ethical
and regulatory questions arises, including whether it is appropriate to create these
PSC-derived constructs in jurisdictions that prohibit the generation and destruction
of research embryos, as well as the limits on how far human gastruloids can mature.

Althoughvarious formsof chimaera research, such as the transplantation of human
cancer cells into mice or functional engraftment of cells derived from human PSCs,
have been carried out without much controversy for decades, ethical concerns may
arise when cells and complex in vitro structures of human origin are introduced
into the brains or reproductive systems of animals. Concerns regarding unintentional
cross-species fertilisation involving human and non-human gametes may arise due
to the introduction of human gonad-like organoids into animal models. If integration
into reproductive systems is possible, it will be critical to take steps to ensure that
such chimeric creatures cannot reproduce [39, 41].

Human biomaterials must be obtained with explicit and voluntary informed
permission commensurate with the planned use of the biomaterials and following
local norms and laws. The federal research regulations in the United States currently
allow research involving pathological or diagnostic specimens if these sources are
publicly available or if the information is recorded so that subjects cannot be iden-
tified, either directly or through identifiers linked to the subjects’ identities [42].
Tissue discarded during clinical procedures can be used for research without the
patient’s explicit consent, as long as the tissues are anonymised and the patient’s
admission form or consent for diagnostic or surgical procedures states that biomate-
rials collected during treatment can be used for “education and research” [42]. In the
context of the Malaysian situation, researchers must obtain informed consent from
patients, including biobanking, before collecting biological samples prospectively
from patients undergoing regular examination or treatment. It is also worth noting
that, while patients’ agreement has been acquired for the use of the tissue in future
research, any subsequent study must first receive clearance from the Internal Review
Board (IRB) or Internal Ethics Committee (IEC) [43].

The Benefit Towards Animal Exploitation as Disease
Modelling

Baertschi et al. [33] listed at least two ways how organoids may benefit in a way
where pre-clinical studies could use fewer animals. First, organoids may provide
an alternative (or even better) means and methods that could bypass the need for
animal research, for example, toxicology study or efficacy testing of new drugs.
Second, xenotransplantation may be abandoned because such an effort to breed
genetically modified animals for the sole purpose of developing organs for human
transplantations can be replaced by the development of clinically viable organoids.
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However, the second benefit might still be hypothetical due to the essential lack
of vascularisation and innervation in organoid development. Organoids have shown
that cells can rearrange into sophisticated tissue-specific structures in the presence
of modest inductive stimuli. However, the absence of hierarchical organisation and
acceptable tissue size has been a key stumbling block in obtaining fully in vivo-like
functioning [44]. A complex vasculature network interpenetrates and interacts with
growing tissues in vivo, allowing for oxygen, nutrition, waste exchange and inductive
biochemical exchange and a structural template for growth [44].

Organoid cultures for disease modelling benefit from simulating diseases at the
organ level instead of conventional cell cultures of a single cell type. Furthermore,
organoids generated from human ASCs or iPSCs might serve as models for human
illnesses by recapitulating unique human characteristics important for translational
research. The concept has opened up the possibility of drug testing and screening
applications that organoids can simulate human diseases. Recently, drugs to treat
Zika virus infections were tested in hPSC-derived cortical neural progenitor cells and
validated in organoids and animalmodels [45]. This proves that organoids are a viable
alternative for evaluating medicines against this disease. Organoids generated from
a single patient with a highly uncommon cystic fibrosis transmembrane conductance
regulator (CFTR) mutation for whom no therapy exists were used to evaluate current
CF medicines. They responded to a medication previously used to treat other CF
mutations, allowing the patient to get effective treatment [46].

Moral values should be valued and respected by only using them in studies
conducted with morally viable techniques. Karpowicz et al. has outlined that the
ethical viability of neural chimaeras should be permitted if the following rules are
followed: [1] To achieve credible scientific results, researchers should be obliged to
employ a minimal amount of stem cells from the human brain; [2] the host animal
should not be too morphologically or functionally comparable to humans (to miti-
gate the risk of developing human-like neurological networks), and [3] to avoid the
appearance of human traits in the specimen, such as dignity, only dissociated human
stem cells should be utilised [47]. Boers et al. suggest that organoids be recog-
nised as hybrids with unclear relationships to people, objects, bodies, technology,
nature, and commodities. The technical transformation of human biological mate-
rial into organoids gives rise to new intrinsic, relational, instrumental, and economic
value. When organoids are swapped, this hybridity should be continually recog-
nised [48]. Novel insights into the biochemical and genetic processes of compli-
cated human neurological diseases such as microcephaly, autism, and Alzheimer’s
disease have already been discovered utilising patient-derived brain organoids. Novel
insights into themolecular and genetic processes of complicated human neurological
diseases, includingmicrocephaly, autism, andAlzheimer’s disease, have alreadybeen
discovered utilising patient-derived brain organoids. The use of hiPSC technology in
conjunction with small-molecule high-throughput screening (HTS) makes it easier
to create new pharmacotherapeutic methods, while transcriptome sequencing allows
for transcriptional profiling of patient-derived brain organoids. Utilising the advent
of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 genome
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editing, customised cell replacement treatmentwith genetically corrected hiPSCs has
never been more promising [49].

Rapid advances in human organoids research, particularly in human cerebral
organoids, have resulted in the development of so-calledmini-brains in the lab, which
havemost of the characteristics and functions of a fully-formed human brain. Human
brain organoids may acquire a primitive form of sentience, defined as the simplest
type of awareness connected to fundamental pleasure and suffering experiences
shared by many animal species [50].

The ability to assemble various organoids into multi-organoid complexes has
previously been shown using organ-on-a-chip technology and microfluidics. For
example, combining organoid and organ-on-a-chip technologies resulted in sophisti-
cated multi-layer tissue models [51]. Even though multi-organoid complexes expand
the possibilities for drug testing, drug discovery, and customised therapy, these
humanised models bring new issues and need moral attention [52]. The ability of
such human organoid complexes to absorb and respond to stimuli or display some
form of autonomous activity may elicit strong feelings about their human-like moral
standing, necessitating further safeguards against damage.

Source of Stem or Progenitor Cells

Organoids aremade from foetal or adult tissues and embryonic stem cells (ESCs) and
iPSCs. ESCs are pluripotent stem cells (PSCs) with a nearly limitless capacity for
self-renewal and the ability to differentiate into any cell type in the human body. This
feature enables ESC-derived organoids to be excellent in vitro developmental biology
models. The inner cell mass of in vitro fertilised blastocysts is used to isolate ESCs.
The use of ESCs in organoid technology raises significant ethical questions about the
worth of human life and human dignity. Depending on the embryo’s developmental
stage, research on human embryos and subsequent use of ESCs in organoids can
be morally permissible, but only under rigorous conditions of informed consent and
adequate authorisation.

The creation of iPSCs provides a ground-breaking alternative to using ESCs.
iPSCs are adult somatic cells that have been reprogrammed to have pluripotency
similar to ESCs [11]. Adult stem cells may be reproduced in different organoids to
resemble actual organs, according to subsequent investigations. While iPSCs may
not be a perfect replacement for ESCs in organoid technology, they can surely help
avoid the significant ethical and legal issues ESC usage brings. iPSCs can avoid
the destruction of embryos while also addressing the serious problems of potential
health hazards and recompense for egg donors. Although iPSCs are a valuable tool
for stem cell treatment, they also raise ethical problems. It is possible that aberrant
reprogramming occurs during the generation of human-induced pluripotent stem
cells, and the stem cells become malignancies during stem cell treatment [53]. The
unlimited differentiation potential of iPSCs,which canbe used in human reproductive
cloning, is amajor ethical issue, as it poses a risk of generating genetically engineered
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human embryos and human-animal chimaeras, while unwanted differentiation and
malignant transformation are major safety concerns [54].

Consent Models

The application and development of organoids involve procuring and storing human
biological materials. As in biobanking, future use of these materials is often unavoid-
able. Individual consent before material sampling is a requirement, be it for research
or clinical diagnostic purpose. A tiny amount of biological material might have
considerable research value as it can be used for multiple studies and sustain long-
term storage. In this regard, a one-off study-specific consent would not serve such a
scenario, nor a blanket consent that provides limitless freedom to future use. There
have been debates on various consent models, namely broad consent and dynamic
consent.

In broad consent, sample donors provide a one-off consent to an array of broad
research purposes and a governance model on the regulatory pathways of how the
samples will be managed [55]. Although this consent model is currently deemed
the most practical and widely used in biobanking practices, it has weaknesses. Such
broad consent presented paternalistic governance on the future usage of the sample
and provided little to no room for donor’s autonomy and participation in decision
making. An alternative method that employs continuous and real-time participation
of donors was presented, a dynamic consent model. Dynamic consent is an online
platform to facilitate personalised consent and two-way communication between
researchers and research participants (sample donors). In dynamic consent, an initial
broad consent might be obtained at the time of sampling, and donors may provide
fresh consent to new research activities that were not foreseen before [56]. Given
the nature of the model, such a platform would limit participation into those that can
accommodate the online platform, and this will be difficult in low andmiddle-income
countries setting. Such a model has also been deemed impractical and burdening
researchers as well as research participants [57]. Indeed, donor surveys indicated
that only a few demanded recurrent, project-specific consent and wished to place
limits on the uses to which their tissue could be put [58].

Genetics Modifications and Precision Medicine

Although this is still largely hypothetical, progress in developing organoids from
autologous cells provided an insight that clinical translation is a possible future.
The development of Patient-derived tumour organoids (PDOs) [59] and intestinal
organoids to model cystic fibrosis [60] opened up pathways for the application of
precision medicine through organoids. Such applications would allow testing of
candidate drugs to ensure benefit before being administered to a particular patient.
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When using this approach, it is critical to maintain linkages between the patient
and the organoids, which obviously can compromise measures to protect privacy. In
addition, organoids will provide a new form of evidence to support the effectiveness
of drugs for individual patients, challenging existing models of obtaining clinical
evidence and reimbursement [61].

Human organoids can be used with the genome (or gene) editing technologies
to investigate diseases and create new treatments. Gene editing methods may be
used to change the expression of genes in ESCs, iPSCs, germ cells, somatic cells,
and even human embryos, and they have much therapeutic promise. Furthermore,
genome editing technologies can help represent uncommon genotypes in organoid
development. Donorswith unusual or uncommon genotypesmay be highly important
in organoid technology, but this puts them under ethical pressure to contribute to their
cells. Off-target effects can cause unintended mutations at many loci, raising worries
about the safety of this genome editing method, which has the potential to cause
cancer. This is especially true when organoids or cells generated from organoids are
intended for in vivo therapeutic applications, when genomic integrity is jeopardised,
posing severe ethical issues [52].

Organoids have swiftly gained popularity as a model for bridging the gap between
in vivo animal models, which are time-consuming and expensive to maintain, and
in vitro two-dimensional cell culture methods, which lack 3D tissue structure and
frequently include cancer-related genetic changes. They may also be utilised for
disease modelling and treatment development, for example, by forming organoids
from cancer and diseased tissues [62–67]. Organoids have been subjected to various
genetic engineering techniques, resulting in a new field known as organoid genetics.
These techniques allow for precise changes to the genomic DNA sequence. If the
changes are made to a coding sequence, they can cause a specific change in the target
protein, revealing information about the biological function of a particular residue
or the protein as a whole. Two key factors must be considered in this process: the
genetic tools and how to deliver them to the target cells. It would be useful to check
the factors to consider when selecting the delivery method and genetic engineering
tools. The sort of organoid system to be utilised and the type and purpose of editing
should all be considered [68]. Adult stem-cell-based organoid cultures are emerging
for growing primary normal and diseased tissue in vitro for lengthy periods. This
3D organoid culture, when combined with genome editing techniques, has much
potential for studying human liver and pancreatic biology, as well as the molecular
processes behind disease onset and development [69]. The ability tomanipulate adult
stemcells in vitro throughgenetic alteration of these organoidsmight help researchers
better understand human biology and provide gene repair for regenerative medicine.

Arteginani B and colleagues have reported that CRISPR-HOT stands forCRISPR-
Cas9-mediated homology-independent organoid transgenesis, allowing for the rapid
creation of knock-in human organoids representing various tissues. CRISPR-HOT
eliminates laborious cloning and surpasses homology-directed repair (HDR), which
was previously utilised to boost HDR-mediated knock-in in obtaining accurate inte-
gration of foreign DNA sequences into targeted loci [70]. Organoids made from
ASCs can be utilised to simulate genetic illnesses like cystic fibrosis and cancer.



10 Ethical Implications on Organoid 203

Using CRISPR/Cas9, a bacterial defensive mechanism, Genome editing has recently
emerged as a simple and reliable laboratory technique. Organoids and CRISPR/Cas9
work together to open new ways to research organ development and human illness
in vitro [71].

Organoid Biobanking

The development of organoid biobanks for various diseases is an emerging use for
organoids. Such biobanks will eventually aid in developing sophisticated screening
platforms that cover awide spectrumof genetic variation in the global population. The
creation of biobanks maybe even more critical in cancer, a disease characterised by
an almost infinite number of mutations. A biobank of primary colon cancer organoid
lines from 20 individuals was created in one research, with the original tumours’
histological and major genetic characteristics maintained [63]. In addition, a proof-
of-concept drug screening revealed that the pharmacological responses of organoids
with various mutations matched previous clinical findings. A biobank of 55 distinct
colorectal tumoroids covering various histological subtypes and clinical stages was
created [72]. The number of tumour biobanks is growing rapidly: A biobank of
gastrointestinal cancer organoids was recently utilised to evaluate patients’ in vitro
and clinical treatment responses.

Organoids are an intriguing and cutting-edge tool for drug research and preci-
sion medicine, and biotech and pharmaceutical firms are highly interested in them.
Off-the-shelf organoids will be required if organoid transplantation progresses to the
clinical stage. Organoids are complex entities connected with many types of biolog-
ical material (such as tissue samples, cell lines, and whole organs), and they have a
genetic and functional relationship to the donor. The moral position of organoids and
how organoids are connected to or allude to donors is essential since they can impact
the ethical assessment of the amount of commercialisation of organoid biobanking.
Patients’ agreement is necessary for collecting biological materials, and others argue
that using these tissues for research is unethical. As a result, consent is typically
unnecessary if the tissue is deidentified because the risks are unlikely to be realised.
However, whether deidentification justifies and guarantees research on human tissue
is a point of contention. These consent issues are addressed by organoid biobanking,
which is a confluence of these technological advancements. Organoid biobanking is a
promising and exciting new subject with much promise in scientific research, preci-
sion medicine, and regenerative medicine. It is critical to include all stakeholders
in the discussion about developing adaptable governance systems. This includes
donors’ active and significant engagement [73].

Brain organoids and Gastruloids presented unique challenges in terms of their
moral status. The moral status of brain organoids largely depends on their functional
similarities with the real human brain, while the moral status of gastruloids depends
on their extent ofmaturation to the level where all three embryological layers, namely
the ectoderm, mesoderm and endoderm, are ready for differentiation. Although the
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near-human complexity of complete brain organoids is still hypothetical, current
progress with the development of various brain regions showed that this is a possible
future [25].

Conclusion and Future Direction

Progress in the development of various organoids has pointed towards a plethora of
ethical issues that warrant debates on moral and regulatory grounds. Moral debates
will centre around the issues of artificialisation of the living, humanising animal, and
moral status of brain organoids and gastruloids. Regulatory concerns delineate the
need to agree on a set of regulations on clinical applications of organoids, biobanking,
and consent.
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