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Abstract. In this paper, an improved intelligence algorithm is proposed
for path planning problem. The algorithm is based on Sparrow Search
Algorithm and is combined with Random Opposition-based Learning
and linear decreasing strategy, named ROSSA. The mobile robot path
planning problem can be mathematically transformed into an optimiza-
tion problem, which can be solved by intelligent optimization algo-
rithms. With this consideration, an SSA-based optimization algorithm
is proposed. Random opposition-based learning increases the diversity
of the population and enhances the exploration ability of the algorithm;
the linear decreasing strategy balances the ability of the algorithm to
explore globally and exploit locally by adjusting the algorithm param-
eters. Meanwhile, the Bezier curve satisfies the requirement of path
smoothness for the robot path planning problem. The superiority of
the proposed algorithm is verified by conducting experiments with three
standard algorithms for 11 benchmark test functions, and some compar-
ison experiments on the path planning problem with PSO and SSA to
confirm that the proposed algorithm can find a safe and optimal path in
the mobile robot path planning problem.

Keywords: Path planning · Sparrow search algorithm ·
Opposition-based learning · Bezier curve

1 Introduction

Robot path planning is a very important part in the field of robotics, because
it gives robots the ability to move, so that it can handle a variety of tasks that
need to move between two points [1].

Given the start and goal position for robot in a 2D environment with static
obstacles, the goal of path planning is to search for an optimal or suboptimal
collision-free path so that robots can move from the start point to the target point
without collision with obstacles [2]. Based on the mastery of the environment,
path planning can be divided into global path planning and local path planning.

There has been lots of research on motion planning since the pioneering work
presented by N. J. Nilsson in late 1960 s [3]. Thus far, various motion planning
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algorithms have been presented such as Probabilistic Roadmaps [4,5], Rapidly
Exploring Random Trees [6,7], and Potential Fields [8,9], etc. These algorithms
can be divided into deterministic and undeterministic algorithms. Deterministic
algorithms must find the optimal solution when the problem has an optimal
solution, otherwise they return information that there is no optimal solution.
However, as the size of the problem becomes more complex, the complexity of
modeling the problem and the amount of computation required by the algorithm
grows exponentially. Besides, since practical engineering problems usually have
many locally optimal solutions, it is difficult for these deterministic algorithms to
cope with increasingly difficult problems. Unlike deterministic algorithms, meta-
heuristic algorithms can find an approximate solution in case the exact solution
cannot be found. This can significantly reduce the amount of computation. Also,
meta-heuristic algorithms introduce stochasticity, which gives it the ability to get
rid of the local optimum problem. These advantages provide important implica-
tions for metaheuristic algorithms to solve global optimization problems. In the
past decades, researchers have proposed various Swarm intelligence algorithms,
including: Particle Swarm Optimization Algorithm [10], Krill Herd Optimization
Algorithm [11], Beetle Antenna Search Algorithm [12], etc. The sparrow search
algorithm [13] is a novel metaheuristic optimization algorithm recently proposed
with faster convergence, fewer control parameters, and simpler computation, but
like other swarm intelligence algorithms, it tends to converge early when solving
complex optimization problems, thus falling into the local optima.

In this paper, a novel SSA-based path planning algorithm is proposed. The
algorithm incorporates random opposition-based learning strategy and linear
decreasing mechanism and is utilized to optimize the control points of Bezier
curve, which is used to generate an optimal feasible path. The Bezier curve
requires only a few control points to generate a smooth curve, which makes
the dimension of the path planning problem not increase exponentially with
the complexity of the environment and greatly reduces the complexity of the
path planning problem. The superiority of the proposed algorithm is verified by
benchmark function experiments, and the smooth optimal path of the robot is
designed more stably in the contrast experiments of the path planning problem.

The remaining of the article is arranged as follows: Sect. 2 explains basic SSA
algorithm. Section 3 presents the proposed algorithm ROSSA. The description
of robot path planning problem and Bezier curve are discussed and contrast
experiments with PSO and SSA are conducted in Sect. 4. Finally, Sect. 5 gives
the conclusion.

2 Sparrow Search Algorithm(SSA)

SSA is a novel swarm intelligence-based optimization algorithm inspired by the
foraging and anti-predatory behaviors of a sparrow population. It has three
phases: producer phase, scrounger phase and scouter phase. The key steps of
the SSA algorithm are following:
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Initialization: First of all, SSA initializes all the parameters and random
population of sparrow as follows:

Xi,j = rand × (UBj − LBj) (1)

where i = 1, 2, ..., pop, j = 1, 2, ..., dim. LBj and UBj are lower and upper
bounds of search spaceseparately. rand ∈ (0, 1) is a random number.

Producer phase: After initialization, sparrows in the top 10%–20% fitness
values (producers) start to search for a better solution in the search space. In
this phase, the location of the sparrow is updated by

Xt+1
i,j =

{
Xt

i,j · exp
( −i

α·T
)

ifR2 ≤ ST
Xt

i,j + Q · L ifR2 ≥ ST
(2)

where t represents the current iteration. α is a random number in the range (0, 1).
T is the max iteration. Q obeys normal distribution. R2 ∈ [0, 1], ST ∈ [0.5, 1]
are the alarm value and the safety threshold respectively.

Scrounger phase: The rest of population are called scroungers. The movement
of scrounger individuals can be defined as:

Xt+1
i,j =

{
Q · exp

(
xt
worst−Xt

i,j

i2

)
i > n/2

Xt
p +

∣∣Xt
ij − Xt

p

∣∣ · A+ · L otherwise
(3)

where Xp is the best position occupied by the producer. Xworst denotes the
current global worst location. A represents a matrix of 1 × d for which each
element inside is randomly assigned 1 or –1, and A+ = AT

(
AAT

)−1.
Scout phase: Randomly select 10%–20% of population as scout. The update

formula of scout is described as follows:

Xt+1
i,j =

{
Xt

best + β · ∣∣Xt
i,j − Xt

best

∣∣ fi > fg

Xt
i,j + K ·

( |xt
l,j−Xt

worst

(fi−fworst)+ε

)
fi = fg

(4)

where Xbest is the current global optimal location. b is the step control parameter
that obeys a normal distribution. K ∈ [−1, 1] is a random number. fi represents
the fitness value of sparrow i. fg and fw denote the current global best and
worst fitness values, respectively. ε is a constant used to avoid the denominator
being 0.

3 Improvement

3.1 Opposition-based Learning(OBL)

OBL was first proposed by Tizhoosh [14], and a large amount of variants of
opposition-based learning were proposed, such as quasi-opposition [15], quasi-
reflection [16], comprehensive opposition [17], etc. Studies showed that consider-
ing both random outcomes and their opposite results is more advantageous than
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considering only random results [18]. The concept of opposition-based learning
is based on opposite numbers. It is expressed as follows: Let x ∈ [a, b] be a real
number. Then its opposite number, x̆, is given by following equation:

x̆ = a + b − x (5)

In higher dimensional space, the extended definition is defined as follows:
Let x (x1, . . . , xd) be a point in d-dimensional space and xi ∈ [ai, bi], i =

1, 2, . . . , d. The opposite point of x, x̆ (x̆1, . . . , x̆d), can be expressed as:

x̆i = ai + bi − xi (6)

Different from basic opposite point, this paper uses a variant strategy called
random opposite point [19], which is defined by:

x̆i =
{

ai + bi − xi rand ≥ R
xi otherwise

(7)

It is reported that by this reverse strategy there are more possible positions than
the base reverse strategy, further increasing the diversity of the population.

3.2 Random Opposition-based Sparrow Search Algorithm(ROSSA)

SSA has the disadvantage that when the search is close to the global optimum,
the population diversity decreases and it is easy to fall into the local optimum
solution [20]. This paper uses random opposition-based strategy to improve SSA.
First, a random OBL strategy is used to generate the opposite initial solution
when initializing the population, and an elite strategy is used to select better
individuals from the initial population and the opposite initial population to
form the final initial population. This gives the algorithm an advantage at the
beginning. Meanwhile, the producers in SSA searches the whole search space,
and random opposition-based strategy can effectively increase the population
diversity and optimize the global search ability.

Both producers and scouters in SSA can enhance the global exploration abil-
ity of the algorithm, but their proportion is fixed, which does not balance well
between global exploration and local exploitation in the first and second stages
of SSA algorithm. Therefore, this paper adopts a linear decreasing strategy to
control the number of both producers and scouters, which is beneficial to the
convergence of the algorithm. The decreasing formula is as follows.

p = pmax − (pmax − pmin) · t

T
(8)

where p is the proportion of producers and scouters, pmax and pmin denote the
maximum and minimum number of p. In this paper, the maximum and minimum
values of both are taken as 0.4 and 0.1, respectively.

The main flow of ROSSA is shown in Algorithm 1.
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Algorithm 1: Framework of ROSSA
input : T : the maximum iterations,

pop: the size of population,
nump: the number of producers,
nums: the number of scouters,
ST : the threshold of alert value

output: Xbest, fbest

1 Initialize the population and opposition population;
2 Sort the population by fitness and retain the pop individuals with better

fitness values;
3 while t < T do
4 Calculate nump with equation 8;
5 for i = 1 : nump do
6 update the producers’ location with Equation 7;
7 end
8 for i = (nump + 1) : pop do
9 update the scroungers’ location with Equation 3;

10 end
11 Calculate nums with equation 8;
12 for i = 1 : nums do
13 update the scouters’ location with Equation 4;
14 end
15 t=t+1;
16 end
17 return Xbest, fbest;

3.3 Benchmark Test

To verify the advancedness of the proposed algorithm, PSO, KH, SSA and
ROSSA are used to solve these test functions, which are shown in Table 1. In
the tests, the population size is set to 30, the total number of iterations is set
to 500, and the dimension of each test function are 30. The other properties of
the functions are shown in the following table. 30 simulation experiments were
conducted for each test function separately, and the mean and variance obtained
from 30 experiments were counted as shown in Table 2.

Among them, F1–F6 are unimodal test functions, which are mainly used to
test the exploitation ability of the algorithm. The results of these 6 unimodal
functions show that ROSSA has the best effect of finding the best solution for
unimodal functions, and can obtain the global optimal solution to all of these 6
functions, and the stability of ROSSA is better than other 3 algorithms.

F7–F11 are multimodal test functions, which have multiple local optimal
solutions, and the intelligent optimization algorithm is easy to fall into the local
optimum when solving, so the multimodal test functions are mainly used to test
the exploration ability of the algorithm. In solving F7, all four algorithms have
unsatisfactory results for this function on average, but SSA and ROSSA can



A Random Opposition-Based Sparrow Search Algorithm 413

Table 1. benchmark functions

Unimodal functions Range fmin

Sphere [–100,100] 0

Schwefel 2.22 [–10,10] 0

Schwefel 1.2 [–100,100] 0

Schwefel 2.21 [–100,100] 0

Rosenbrock [–30,30] 0

Step [–100,100] 0

Multimodal functions Range fmin

Schwefel 2.26 [–500,500] 0

Rastrigin [–5.12,5.12] 0

Ackley [–32,32] 0

Griewank [–600,600] 0

Penalty [–50,50] 0

Table 2. Test results

Function Values PSO KH SSA ROSSA

Sphere Ave 1.139900e+03 1.834809e+03 6.655620e-66 0

Best 7.770424e+01 1.366952e+03 0 0

Var 6.449311e+06 7.730924e+04 7.504269e-130 0

Schwefel 2.22 Ave 6.683219e+01 1.610389e+10 4.019652e-38 0

Best 3.229506e+01 7.338242e+06 0 0

Var 4.282651e+02 2.609927e+21 4.826645e-74 0

Schwefel 1.2 Ave 1.989746e+04 5.264767e+03 3.469262e-41 0

Best 9.569614e+03 2.534085e+03 0 0

Var 2.610611e+07 2.632828e+06 3.610733e-80 0

Schwefel 2.21 Ave 2.519220e+01 1.506538e+00 2.556319e-27 0

Best 1.836057e+01 1.066817e+00 0 0

Var 1.893842e+01 8.679998e-02 1.960410e-52 0

Rosenbrock Ave 9.918774e+03 5.557089e+05 1.722730e-05 1.349896e-09

Best 2.237782e+02 2.341405e+05 0 0

Var 6.563432e+08 6.284255e+10 4.127078e-09 5.466655e-17

Step Ave 1.876022e+00 4.683979e+02 7.875731e-08 2.208193e-11

Best 3.994384e-01 3.481912e+02 0 0

Var 4.533699e+00 3.435012e+03 3.706890e-14 1.462835e-20

Schwefel 2.26 Ave 2.143348e+03 4.225624e+03 3.038711e+03 1.908453e+03

Best 9.521574e+02 2.625807e+03 3.818270e-04 3.818270e-04

Var 3.464213e+05 6.830527e+05 9.286784e+06 3.112237e+06

Rastrigin Ave 1.185528e+02 3.808714e+01 0 0

Best 6.077383e+01 2.178187e+01 0 0

Var 1.086724e+03 1.342092e+02 0 0

Ackley Ave 1.406729e+00 1.891097e+00 8.881784e-16 8.881784e-16

Best 2.128831e-01 1.439818e+00 8.881784e-16 8.881784e-16

Var 5.047473e-01 4.622237e-02 0 0

Griewank Ave 8.646091e-01 5.004274e+00 0 0

Best 3.867774e-01 3.705478e+00 0 0

Var 4.332038e-02 5.003298e-01 0 0

Penalty Ave 5.049397e+00 5.059365e+04 3.214013e-09 6.214156e-10

Best 1.200169e+00 2.353369e+03 1.570545e-32 1.570545e-32

Var 7.984803e+00 3.192327e+09 7.707496e-17 1.124535e-17
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explore better positions; in solving F8, F9 and F10, SSA and ROSSA outper-
form the other two algorithms; in solving F11, both SSA and ROSSA have the
ability to find excellent solutions, but ROSSA has a slight advantage. In sum-
mary, ROSSA performs better than the other three algorithms in the benchmark
function experiments.

Figure 1 shows the convergence curves of the partial functions of each algo-
rithm. The horizontal axis represents the number of update generations and the
vertical axis represents the log of the fitness value. It can be seen that, ROSSA
has better convergence speed, accuracy and stability.
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Fig. 1. Convergence curves of partial functions: (a) F1, (b) F8, (c) F11.

4 ROSSA for Path Planning Problems

4.1 Problem Description

In this paper, ROSSA is used to solve the robot path planning problem.
The target environment is a two-dimensional plane with static obstacles.
Each individual in the algorithm denotes a path, represented by N con-
trol points as p[p1, p2, . . . , pN ], where p1 is the starting point and pN is the
end point. In the implementation, the SSA individuals are represented as
[x2, y2, x3, y3, . . . , x(N−1), y(N−1)] for coding. In the actual environment, obsta-
cles have various shapes. In this paper, for the simplification of the environment
model, the circumcircle of the obstacle is used to simplify modeling.

4.2 Bezier Curve

Bezier curve was first proposed by engineer P.E. Bezier [21] and is widely used
in practices such as computer graphics and mechanical design [22]. Bezier curve
is generated by a series of control points and these points are not on the curve
except for the start and end points. Given a set of control points P0, ..., Pn, the
corresponding Bezier curve can be expressed as

P (t) =
n∑

i=0

PiBi,n(t), t ∈ [0, 1] (9)
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where t is the normalized time variable, Bi,n is the Bernstein basis polynomials,
which represents the base function in the expression of a Bezier curve:

Bi,n(t) = Ci
nti(1 − t)n−i i = 0, 1, . . . n (10)

In this way, a smooth curve can be created with only a small number of control
points.

4.3 Fitness Function

The purpose of this paper is to find an optimal path for the robot that satisfies
the constraints, where the constraints include (1) feasibility, (2) optimality, and
(3) safety.

1. Feasibility

Feasibility is the most important goal of path planning. If the path collides
with an obstacle, the fitness should be large, which is set here to 10000:

ffeasible =
{

0 if feasible
10000 otherwise

(11)

2. Shortest distance

The second target is to minimize the length of the solution generated by the
algorithm. For simplicity, we choose 100 points on the path and calculate the
Euclidean distance between two adjacent points:

flength =
n−1∑
i=1

‖pi+1 − pi‖ (12)

3. Safety
An excellent path should be as far away from obstacles as possible. If the
distance between the path and the obstacle is less than the safe distance,
dsafe, it will be penalized:

fsafe (oj) =

{(
1 − dmin(oj)

dsafe(oj)

)2

if dmin (oj) ≤ dsafe (oj)
0 otherwise

(13)

frisk = max (fsafe) (14)

where dmin(oj) means the minimum distance of the path from the obstacle
j. dsafe(oj) can be expressed as follow:

dsafe (oj) = kroj
(15)

where k indicates the scale factor and roj
denotes the radius of obstacle j.

Considering the above factors, the fitness function of the robot path planning
problem can be expressed as:

f = ffeasible + w1 ∗ flength + w2 ∗ frisk (16)
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4.4 Comparision

The parameters of the path planning model are set as follows: the map is 500 ×
500, as shown in Fig. 2. The number of control points is 5, the robot moves from
(10,10) to (490,490).

(a) Environment 1. (b) Environment 2. (c) Environment 3.

Fig. 2. Environments.

The objective function of this path planning model is solved using PSO, SSA
and ROSSA respectively to obtain the desired paths. The population size is set
to 30, each individual is a path, the maximum number of iterations is 500, and
30 simulation experiments are conducted. Figure 3 shows the convergence curves
of the three algorithms and related data are shown in Table 3.
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Fig. 3. Convergence curve of each environment.

The comparison in Fig. 3 and Table 3 show that the ROSSA algorithm out-
performs the PSO and SSA algorithms for the path planning problem. As can
be seen from Fig. 3, due to the opposition-based initialization of ROSSA, the
initial solution of ROSSA is in a more optimal position. Meanwhile, the rapid
convergence to the better position and the continuous approximation to the
optimum can stabilize the convergence to the optimal value. Table 3 shows that
the average and minimum fitness values obtained by the ROSSA algorithm are
lower than those of the PSO and SSA algorithms, and that it is able to solve the
path planning problem stably, resulting in a safe and feasible trajectory that is
optimal and satisfies the constraints.
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Table 3. Performance comparison of three algorithms

(a) Environment 1.

Algorithm Ave Best Var Success rate

PSO 7.679612e+02 7.160134e+02 7.450565e+03 90%

SSA 8.636940e+02 7.040057e+02 2.140079e+04 50%

ROSSA 7.145130e+02 7.023720e+02 9.443526e+01 100%

(b) Environment 2.

Algorithm Ave Best Var Success rate

PSO 8.929376e+02 7.090549e+02 1.959787e+04 40%

SSA 9.395579e+02 6.977466e+02 1.623664e+04 30%

ROSSA 8.003072e+02 7.034846e+02 2.640106e+03 100%

(c) Environment 3.

Algorithm Ave Best Var Success rate

PSO INF INF 0 0%

SSA 9.714638e+02 9.146378e+02 8.143158e+03 10%

ROSSA 8.216849e+02 8.152322e+02 5.115674e+01 100%

5 Conclusions

In this paper, an improved SSA is used to solve the path planning problem.
The random OBL strategy and a linear decreasing strategy are introduced into
the basic SSA. These strategies are used to increase the population diversity,
balance the local exploitation and global exploration ability of the algorithm, and
avoid the algorithm from falling into local optimum. The results of benchmark
function test show that the proposed algorithm has a significant improvement in
the performance of convergence speed, accuracy and stability. The path planning
simulation results show that the path planning based on ROSSA can effectively
find the optimal path and steadily plan a feasible and efficient path.
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