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Preface

The present book includes extended and revised versions of papers selected from the
1st CAAI International Conference on Artificial Intelligence (CICAI 2021), held in
Hangzhou, China, on June 6, 2021.

CICAI is a summit forum in the field of artificial intelligence and the 2021 forum
was hosted by Chinese Association for Artificial Intelligence (CAAI). CICAI aims to
establish a global platform for international academic exchange, promote advanced
research in AI and its affiliated disciplines, and promote scientific exchanges among
researchers, practitioners, scientists, students, and engineers in AI and its affiliated
disciplines in order to provide interdisciplinary and regional opportunities for researchers
around the world, enhance the depth and breadth of academic and industrial exchanges,
inspire new ideas, cultivate new forces, implement new ideas, integrate into the new
landscape, and join the new era.

The conference program included invited talks delivered by two distinguished
speakers, Harry Shum and Song-Chun Zhu, as well as a panel discussion, followed
by an oral session of 15 papers and a poster session of 90 papers. Those papers were
selected from 307 submissions using a double-blind review process, and on average
each submission received 3.2 reviews. The topics covered by these selected high-quality
papers span the fields ofmachine learning, computer vision, natural language processing,
and data mining, amongst others.

This book contains 101 papers selected and revised from the proceedings of CICAI
2021. We would like to thank the authors for contributing their novel ideas and visions
that are recorded in this book.

June 2021 Lu Fang
Yiran Chen

Guangtao Zhai
Jane Wang

Ruiping Wang
Weisheng Dong
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Abstract. At present, deep neural networks are widely used on a vari-
ety of tasks in computer vision, machine translation, speech recognition,
etc. Unfortunately, this inexplicable black-box structure lacks robustness.
In previous work, adversarial examples are proposed to describe the phe-
nomenon that neural networks are vulnerable to be attacked. Interestingly,
in addition to the widely accepted “noise” or “bugs”, recent research has
shown that the adversarial examples are “non-robust features”, because
the classifier trained on adversarial examples retains the ability to gener-
alize to the original test set. In this paper, we link the relationship between
large margin methods and the capabilities to defend against adversar-
ial attacks, and further link the relationship to non-robust features. We
compare the defense capabilities of the models trained by large margin
loss function and general cross-entropy loss function against Fast Gradi-
ent Sign Method (FGSM) attack and Project Gradient Descent (PGD)
attack and evaluate non-robust features extracted by the trained mod-
els. It is proved that the model trained with large margin loss function is
more resistant to adversarial perturbation and it gets fewer non-robust fea-
tures. This further indicates a direction for training robust networks: to
balance model test accuracy and defense capabilities. Based on the margin
method, we combined thickness to strengthen the description of the deci-
sion boundary. Through the feature space visualization, the effect of the
boundary methods on the robustness of the model is intuitively illustrated.

Keywords: Large margin loss · Adversarial examples · Non-robust
features · Boundary thickness · Feature clustering

1 Introduction

Deep neural network (DNN) [3] and its related research, especially convolutional
neural network (CNN) [16], have been closely followed by many scholars. How-
ever, humans still have difficulty in understanding neural networks and can not
give convincing explanations. Unfortunately, this black-box structure which is
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difficult to explain is severely non-robust. Neural networks are extremely sen-
sitive to input data, and small perturbation can completely interfere with the
correctness of the model. Research [19] proposes adversarial examples for the
first time, i.e. minimal perturbation can fool models. Even modifying very few
pixels can mislead models in the classification task [18].

Although people have proposed many methods for model defense, trying to
resist malicious attacks, enhance the generalization ability and robustness of
the model, humans have very little understanding of adversarial examples. More
people believe that adversarial examples are “bugs” just like random noise for
boundary smoothness exhibits certain defensive performance. Recent research
[6] has expressed a novel point of view: the adversarial examples are intrinsic
features. Unlike ordinary features, they may be the features of target labels in
the dataset (not the label of this sample). They are called non-robust features.
If the generation of adversarial examples is not omnidirectional in the high-
dimensional input space, it may not be reasonable to treat adversarial examples
as “bugs” or “noise”. This is a new perspective for model defense. Perhaps we
have to evaluate non-robust features in advance.

The large margin methods are widely used in traditional machine learning
e.g. support vector machine. In this kind of method, the classifier is trained by
maximizing the margin between samples. This suggests that large margin meth-
ods will affect the model’s defense capabilities. In this case, greater perturbation
is required to invalidate the model. In this work, we will combine the method of
maximizing the margin for model training and verify that this will defend against
adversarial attacks. Intuitively, large margin methods will optimize the decision
boundary and extract features that are more relevant to its label, which will
significantly reduce non-robust features. Boundary thickness [21] supplements
the boundary margin, and we can get thick boundary by data augmentation
method—mixup (a sufficient condition proved in [21]). It is a way to train more
robust classifiers.

In this paper, we will compute the test accuracy of the model trained by large
margin loss against FGSM [4] and PGD [13] attack to represent the defense capa-
bilities. Next, we measure the non-robust feature scores according to the protocol
in [6]. At the same time, observe the effect of different boundary methods in the
training process, i.e. the discriminative feature distribution in the feature space.
The main contributions of this paper are as follows:

1. Use the large margin loss function to train classification models, compare
non-robust feature scores extracted by the model trained by cross-entropy
loss and models’ defense ability against perturbation.

2. Verify the effect of large margin loss on datasets [7,8].
3. We introduce boundary thickness, compare the effects of the large margin

method, thick boundary method, and joint method on feature distribution.
Then we intuitively illustrate the effect of boundary methods on model robust-
ness through feature space visualization.
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2 Related Works

Research [4,19] shows that conventional deep learning methods lack robustness.
Szegedy et al. [19] proposed adversarial examples for the first time. Immediately
after, Goodfellow et al. [4] showed that the adversarial examples come from the
linear factor of the neural network, i.e. ReLU. This activation function is locally
linear. Then iterative methods were developed, such as PGD [13]. Even in extreme
cases, only the change of one-pixel value can attack successfully [18]. But these
attack methods do not indicate exactly what the adversarial examples are.

In NeurIPS competition on defense against adversarial attacks, Liao et al. [9]
propose High-Level Representation Guided Denoiser to defend against perturba-
tion. They agree that adversarial perturbation is random noise. Ilyas et al. [6] show
a completely different point of view. They say that the adversarial examples are
features. This indicates that the original sample in the dataset has enhanced corre-
lation with target labels, and then adversarial examples are generated. Although
this does not conform to our intuitive understanding, it is reasonable because fea-
ture squeezing [20] and model distillation [15] have been used for model defense.
These methods adjust the features extracted by the deep models.

How to optimize the feature extraction? Geometrically, the robustness of
the neural network is related to its decision boundary. Yousefzadeh et al. [22]
refers to a regularization method called mixup [24], and observes the softmax
output scores predicted by the points on the connecting segments of two samples
with different labels (these points cross the decision boundary at least once),
i.e. they investigate the paths between inputs and flip points. Besides, there is
also a work that compares the SVM and classifiers trained by deep learning
which indicates that cross-entropy loss leads to poor boundary and margin.
Therefore, we decide to verify the relationship between large margin methods,
the robustness of models, and non-robust feature scores in this paper.

There are many perfect methods for the processing of large margin methods.
On the one hand, the geometric relationship can be directly considered for math-
ematical derivation [2], e.g. SVM. Or through indirect processing, i.e. reducing
the loss values of samples with low confidence (softmax prediction scores), Focal
Loss [10] is a successful work. In addition, the calculation of the loss function
can also be converted from the distance space to the angular space [25]. But how
to deal with large margin methods is not the focus of attention in our work, we
only consider the geometric margin methods.

The methods of training and optimization (e.g. regularization, etc. ) will
directly affect the distribution of decision boundary [23]. There are various
descriptions of the boundary. Thickness [21] is an enhanced description of bound-
ary margin. The main boundary methods considered in this paper are only
boundary margin and boundary thickness.

3 Boundary Margin

The geometrical large margin methods can regularize the model. The larger the
distance of each sample to the decision boundary, the larger the perturbations
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for successful attacks. Now we need to convert the large margin methods into
an optimization problem, i.e. the loss function.

3.1 Large Margin Methods

Consider a n classification problem. (xi, yi)i=1,··· ,N are samples in the dataset D,
where xi ∈ X , i = 1, · · · , N . We train a classifier f(·; θ) which satisfy f : X → R.
Its input is the sample xi , and the output is the predicted class.

More specifically, f = (f1, f2, · · · , fn), here fi : X → R, for i = 1, . . . , n
which represents the softmax predicted score. Then, the output of f(·; θ) is the
index of the maximum prediction score. i.e. f(x; θ) = arg maxi fi(x; θ).

Then, we expect to describe the decision boundary. The decision boundary
between the two classes {i, j} is where the prediction score of i equals the one
of j, i.e.

Ωi,j = {x | fi(x; θ) = fj(x; θ)} (1)

Based on this, the distance from the sample x to the decision boundary Ωi,j

is the minimum perturbation that makes the two output scores of {i, j} the
same. i.e.

dx,{i,j} = min
δ

‖δ‖p

s.t. fi(x + δ; θ) = fj(x + δ; θ)
(2)

For δ is the perturbation added to the sample x. ‖.‖p is lp norm, including
but not limited to l1, l2, l∞ norm. We will use the l2 norm more in this paper.
According to the mathematical derivation in [2], we can have the following solu-
tion, i.e. the large margin loss function.

θ̂ = arg min
θ

N∑

k=1

Ai�=yk
max{0, γ +

fi(xk; θ) − fyk
(xk; θ)

‖∇xfi(xk; θ) − ∇xfyk
(xk; θ)‖q

} (3)

Here, ‖.‖q is the dual norm of ‖.‖p (q = p
p−1 ). A is only an aggregation

operator. γ is a slack-variable (hyperparameter) to balance for the irregular
distribution of data. If interested, see more details in [2].

We will use the Eq. 3 for model training. This equation has little to do with
the network structure and input data format, and it can be used with other
regularization methods [5,14]. For comparison, we will use the cross-entropy loss
function for baseline model training.

3.2 Informal Definition of Non-robust Features

Ilyas et al. [6] found that the adversarial examples contain the features. The more
acceptable explanation before it is “noise” or “bugs” because we believe that the
direction of adversarial perturbation is omnidirectional, and its correlation with
target labels are similar, without bias, just like random noise in signal processing.



Reducing Adversarial Examples Through Boundary Methods 7

The point of view in [6] is that adversarial perturbation is biased, and it has
different connections with different labels, i.e. the features extracted by the deep
network include not only the features of the correct label but also the features
of other labels. The protocol is shown in Fig. 1, i.e. models can have a good
generalization even training on the dataset generated by adversarial examples
(attacked and relabeled), e.g. the test accuracy is more than 60% on CIFAR10
described in [6] (this value is not low, because CIFAR10 has 10 classes).

Fig. 1. Illustration of non-robust features: The model trained on the attacked
and relabeled dataset generalize well on the original test set.

We further explain the process described in Fig. 1. Split the original dataset
D = {(xi , yi)}N

i=1 into the training set Dtrain and the testing set Dtest. In order
to perform a white box attack on Dtrain and generate a new dataset D′, we
need to train a classifier f(·; θ) in advance. Generally, Acc is not low, and the
explanation in [6] is that adversarial examples contain “‘non-robust features” of
target labels, which is helpful for generalization. The accuracy (Acc) can be a
good measure of non-robust features. Therefore, we can briefly give the definition
of non-robust feature score:

Definition 1 (Non-Robust Feature Score). The new network model fadv

trained on the new dataset D′ which is attacked and relabeled, test on the original
clean test set Dtest and get the test accuracy Acc. The generalization accuracy
Acc is called Non-Robust Feature Score1.

In the experimental part, we will compute the test accuracy in this way to
measure non-robust features. Similar methods were used in recent works [21]. We
intuitively get the less non-robust features extracted by a more ideal classifier,
because these features reflect more information of target labels than the labels
of the sample itself.

3.3 Experiments on MNIST and CIFAR10

As described in Sect. 3.1 and Sect. 3.2, the defense capability against adversarial
attacks and non-robust feature scores are two important indicators for evaluating
the decision boundary. In the experimental setup, we will use different adversarial

1 The definition is not formal, it is limited to the research described in this paper.
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perturbations for model attacks. After that, the non-robust feature scores of the
two methods are calculated for model comparison. Baseline models are trained
by the cross-entropy loss function. We experiment on dataset [7,8], see Fig. 2.

We use Fast Gradient Sign Method (FGSM) and Project Gradient
Descent(PGD) as attack methods, the number of iterations t in the PGD attack
is 10. If the maximum visual change accepted by humans is 32 pixels, then the
maximum value in x-axis is roughly 32/255 ≈ 0.125.

Fig. 2. Comparison of the test accuracy of models against attack with dif-
ferent ε: Left is the curve for MNIST, right is the curve for CIFAR10. For the attacks
of different amplitudes represented by the value in x-axis, the pixel value is normalized
to [0, 1], 0 means pixel value is 0, and 1 means pixel value is 255.

Results: the test accuracy will be reduced to a certain extent after being
attacked. But FGSM attack and PGD attack show big differences. Compared
with FGSM, PGD is stronger and can reduce the test accuracy to the greatest
extent within a smaller ε. The large margin loss can improve defensive perfor-
mance. Under the basic FGSM attack, the large margin loss and cross-entropy
loss show a significant difference with small ε. And when ε = 0.1, the difference
of test accuracy exceeds 30%. Under the PGD attack, both of them did not
perform well, and even the accuracy drop faster. With the increase of the attack
amplitude, it can still show that the large margin loss has the greater ability.

Remark 1. In Fig. 2, the test accuracy tends to be stable during large attacks
for the pixel value will be limited in the experiments. These are more like wrong
samples or “noisy labels”. Such values are meaningless.

Next, we evaluate the non-robust features as described in Sect. 3.2. Use the
test accuracy to represent the non-robust feature score as shown in Fig. 3 during
the training process of the new deep network fadv .

Although each time Acc will stabilize at different values, e.g. MNIST once
stabilized at 40%, once stabilized at 45%, the trend of Acc and the difference
between the two types of loss are obvious. In Fig. 3, the curves corresponding to
the two models trained by different loss intuitively prove this.

Results: Models trained with large margin loss can have smaller non-robust
feature scores, it is extremely impressive. This shows that a robust classifier tends
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Fig. 3. Non-robust feature scores: Left are scores of MNIST which is stable at 90%
and 60% for two loss functions, right are scores of CIFAR10 which is stable at 40%
and 20%. In the early epochs, Acc increased significantly. Non-robust feature scores
tend to stabilize at larger epochs. Models trained by large margin loss can have less
non-robust features.

to be more geometrically ordered, and the large margin method has larger space
to defense, which is consistent with the fact that we recognize during network
training:to balance model test accuracy and defense capabilities. Research [23]
shows a similar view. We are more inclined to reduce the proportion of non-
robust features.

Remark 2. On the one hand, this part of the experiment needs to be observed
repeatedly many times, because our scores are measured by the test accuracy(in
the original test set) of the model fadv, the skills of training (e.g. data aug-
mentation, learning rate, weight decay, regularization, etc. ) will interfere with
this evaluation result. On the other hand, we remove some points when drawing
Fig. 3, this part of the scores more reflect the abnormality of the model during
training in a single period.

Besides, MNIST and CIFAR10 show differences. More “easy” datasets have
more non-robust features in the case of the same 10 classes, and its training
is also easier. It shows that the difficulty of model training is related to the
robustness of models.

4 Boundary Thickness

For the large margin methods, the decision boundary is just a set of thin spatial
surfaces. e.g. the decision boundary is usually a subset that satisfies f0(x) =
f1(x) = 0.5 in the binary classification problem. When crossing the boundary, the
sample changes from x1 to x2, its confidence changes in various ways, and margin
boundaries are not enough to describe. Here, we will discuss a new viewpoint of
decision boundary: thickness [21]. It is equivalent to reducing a single subset of
the boundary to a set of subsets that can better describe networks.

For a classifier f(·; θ) = (f1, f2, · · · , fn), We pay attention to its maxi-
mum probability output f(x; θ) = arg maxi fi(x; θ), and use the difference of
confidence to define boundary thickness. For the connection segment of two
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random samples (xi, yi), (xj , yj) with different labels (yi �= yj), e.g. mixup.
Then the confidence difference of the softmax output is easy to compute, i.e.
gij(x) = fyi

(x) − fyj
(x), where x is on the segment of pairs (xi, xj), i.e.

x(t) = txi + (1 − t)xj , t ∈ [0, 1]. The boundary thickness is the length of the
confidence difference on the segment within a certain range, which is specifically
defined as:

Definition 2 (Boundary Thickness). For pairs (α, β) ∈ (−1, 1)(α < β),
a series of sample pairs (xi, yi), (xj , yj) of different classes in the dataset D.
Boundary thickness of the classifier f(·; θ) is:

Θ(f, α, β) = E(xi,xj)∼D

[∫

t∈[0,1]

I{α < gij(x(t)) < β}dx(t)

]
(4)

where gij(x) = fyi
(x) − fyj

(x), x(t) = txi + (1 − t)xj , t ∈ [0, 1]. I(·) output is 1
when the input is True.

Intuitively, boundary thickness is related to robustness. The “thin” boundary
fits the narrow space but is easy to attack between two different classes. On the
contrary, a thicker boundary is difficult to fit the data, but it will be more robust,
and it needs larger ε to successfully attacks. Therefore, boundary thickness leads
to the following conjectures for general neural networks: we need to maximize
boundary margin and increase boundary thickness to achieve robustness.

4.1 Comparison of Boundary Thickness and Margin

Here, we discuss the difference between boundary thickness and margin. The
margin of x is the minimum distance from x to fi(x) = fj(x), where i, j repre-
sent the two classes in the multi-classification problem. The thickness is related
to the confidence corresponding to the sample space under different α, β. e.g.
consider the one-dimensional two-classification problem on the x axis, where the
true label is sign(x). Then the two prediction functions f1(x) = arctan(x) and
f2(x) = arctan(100x) have the same margins for any x, but different boundary
thicknesses. See Fig. 4 for the difference.

Fig. 4. Boundary margin vs. boundary thickness
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The boundary thickness shown in Fig. 4 is consistent with our definition, but
the margin is not completely correct. Most of the pairs (xi, xj) are not orthogonal
to the decision boundary. However, such an informal illustration can give an
intuitive contrast. Generally, the boundary thickness is less than the margin
if two margins (the distance of xi to the boundary add xj to the boundary)
are considered together, i.e. the thickness is an enhanced version of the margin
in Sect. 3.1. When α = fyi

(xj) − fyj
(xj) and β = fyi

(xi) − fyj
(xi), boundary

thickness degenerates to boundary margin.

4.2 Mixup and Boundary Thickness

Experiments prove that mixup will thicken the decision boundary, and it is a
sufficient and unnecessary condition to maximize the boundary thickness [21].
The main idea of mixup is linear sampling, i.e.

fmixup(λxi + (1 − λ)xj) = λyi + (1 − λ)yj (5)

Train networks to maximize thickness:

fthick(x) = arg max
f(x)

min
(α,β)

Θ(f, α, β) (6)

Theorem 1. In the binary classification problem, linear function flin(txi +(1−
t)xj) = [t, 1− t] is a sufficient and unnecessary condition to maximize Θ(f), i.e.

flin(x) = arg max
f(x)

min
(α,β)

Θ(f, α, β) (7)

where (xi, xj) are sample pairs, and (α, β) ∈ (−1, 1) are parameter pairs.

Research [21] gives proof of the Theorem 1 . If interested, see more details
in their work. With the support of the Theorem1, we can indirectly train a
classifier with thicker boundaries by mixup.

5 Boundary Methods and Feature Space

We have previously described the relationship between boundary margin, bound-
ary thickness, and the robustness of models. In the process of increasing the mar-
gin and the thickness, the proportion of adversarial examples caused by bound-
ary will change, and non-robust features will reduce. In essence, the change of
boundary margin and thickness is a tighter clustering in the high-dimensional
sample/feature space, which is similar to the effect of the angle margin [25].
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To observe the role of different boundary methods during training (i.e. the
more discriminative feature distribution in the feature space), we use the large
margin loss, data augmentation method mixup, and both of them to train dif-
ferent models.

It is difficult to visualize the distribution of high-dimensional features. It can
be processed by some classic data dimensionality reduction methods, e.g. PCA
[17], LDA [1], T-SNE [11,12], etc. Besides, we can directly set the output feature
dimension of the last layer(Fully Connected Layer) to 3, corresponding to the
x, y, z-axis. Due to the large feature span, to better observe the distribution, it
is normalized by the 
2 norm before visualization(features are distributed on the
unit ball), Fig. 5 shows the feature distribution of multiple methods (The results
on MNIST and CIFAR10 are similar).

Figure 5(a) is the distribution trained by cross-entropy loss. Without addi-
tional methods, the feature distribution is scattered and contains a large number
of crosses, which will lead to errors. In a sense, some of these samples are abnor-
mal samples. While the classification task has a bottleneck, it is particularly
easy to cause adversarial examples. Figure 5(b) is the distribution trained by
large margin loss. It enlarges the margin between different classes and has a
good clustering effect, therefore adversarial examples can be greatly reduced.
Figure 5(c) uses the data augmentation method mixup to indirectly obtain a
thick boundary classifier. Compared with Fig. 5(b), its feature distribution is
slightly superior, which is mainly reflected in the reduction of intra-class variance.
But mixup has the problem of instability during training, which directly leads
to the disadvantage of insufficient inter-class spacing. It is obviously between
Fig. 5(a) and Fig. 5(b), the contradiction between model robustness and accu-
racy is more prominent. Figure 5(d) combines the advantages of the large margin
methods and the thick boundary methods, i.e. superimposes mixup and large
margin loss function. Smaller intra-class variance and larger inter-class spacing,
and then we can get less adversarial examples, further, it proves the fact that
“multiple boundary methods help improve the model’s defense capabilities (i.e.
robustness)”.

The comparison of Fig. 5 intuitively shows the direct way to reduce adversar-
ial examples caused by decision boundary through the feature space distribution.
Other data augmentation methods, network, feature, and other regularization
methods are not inconsistent with this, and they can be used in combination to
help model security. In addition, more in-depth descriptions of decision boundary
are also guiding directions for improving network performance.
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Fig. 5. Boundary methods and feature space visualization. Subfig a is the
distribution trained by cross-entropy loss. Subfig b is the distribution trained by large
margin loss. Subfig c is the distribution trained by mixup. Subfig d is the distribution
trained by large margin loss and mixup.

6 Conclusions

Deep learning methods seriously lack robustness and are susceptible to interfer-
ence from adversarial perturbation. We first train more robust classifiers with
large margin loss. Compared with the standard cross-entropy loss, it can reduce
non-robust features while enhancing the network defense capabilities. The exper-
imental results on the dataset prove that the model trained with large margin loss
function is more resistant to adversarial perturbation and it gets fewer non-robust
features. This further indicates a direction for training the network:to balance
model test accuracy and defense capabilities. Based on the margin methods, we
combined the thickness to strengthen the description of the boundary. The effect
of the boundary methods on the robustness is intuitively explained through the
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visualization of the feature space. Boundary margin and thickness can make the
feature distribution more compact, and it is hard to cause adversarial examples.
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Abstract. The overarching goal of Explainable AI is to develop systems that
not only exhibit intelligent behaviours, but also are able to explain their ratio-
nale and reveal insights. In explainable machine learning, methods that produce a
high level of prediction accuracy as well as transparent explanations are valuable.
In this work, we present an explainable classification method, which works by
first constructing a symbolic Knowledge Base from the training data, and then
performing probabilistic inferences on such Knowledge Base with linear pro-
gramming. Our approach achieves a level of learning performance comparable to
that of traditional classifiers such as random forests, support vector machines and
neural networks. It identifies decisive features that are responsible for a classifi-
cation as explanations and produces results similar to the ones found by SHAP, a
state-of-the-art Shapley Value based explainable AI method.

Keywords: Explainable AI · Classification · Probabilistic logic inference

1 Introduction

The need for building AI systems that are explainable has been raised [4]. The ability
to make machine-led decision making transparent, explainable, and therefore account-
able is critical in building trustworthy systems. Producing explanations is at the core of
realising explainable AI. Two main approaches for explainable machine learning have
been explored in the literature: (1) intrinsically interpretable methods [18], in which pre-
diction and explanation are both produced by the same underlying mechanism, and (2)
model-agnostic methods [12], in which explanations are treated as a post hoc exercise
and are separated from the prediction model. In the case for methods (1), while many
intrinsically interpretable models, such as short decision trees, linear regression, Naive
Bayes, k-nearest neighbours and decision rules [20] are easy to understand, they can be
weak for prediction and suffer from performance loss in complex tasks. As for meth-
ods (2), model agnostic approaches such as local surrogate [15], global surrogate [1],
feature importance [7] and symbolic Bayesian network transformation [19] leave the
prediction model intact and use interpretable but presumably weak models to “approx-
imate” the more sophisticated prediction model. However, it has been argued that since
model agnostic approaches separate explanation from prediction, explanation modules
cannot be faithful representations of their prediction counterpart [18]. In this context, we
present a classification approach that produces accurate predictions and explanations.
c© Springer Nature Switzerland AG 2021
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Classification is a set of machine learning problems described as follows. Given a
set of data instances, whose class membership is known, classification is the problem
of identifying to which of a set of classes a new instance belongs. Each instance is
characterised by a set of features F . For some data D, there exists a labelling function
L : D �→ {POS,¬POS}.1 Let D ⊆ D be the training set s.t. for each d ∈ D, L(d) is
known. For x ∈ D, we would like to know:

Q1: whether L(x) = POS;
Q2: if so, which features f ⊆ F make L(x) = POS.

Standard supervised learning techniques answer Q1 but not Q2, which asks for deci-
sive features. Understanding “what causes a query instance x to be classified as in some
class C?” is as important as “does x belong to C?”. For instance, for a diagnostic sys-
tem taking patients’ medical records as the input and producing disease classifications
as the output, pinpointing symptoms that lead to the diagnosis is as important as the
diagnosis itself. In this paper, we propose algorithms answering both questions. In a
nutshell, we solve classification as inference on probabilistic Knowledge Bases (KBs)
learned from data. Specifically, given training data D with features F , we define a
function M that maps D to a probabilistic KB. Then, for a query x, we check whether
M(D) and x together entail POS.

We present two algorithms for probabilistic KB construction. The first one con-
structs KBs from decision trees and the second constructs KBs directly from data.
Query classification is modelled with probabilistic logic inference carried out with lin-
ear programming. The main contributions are: (i) a method of performing classification
with probabilistic logic inference; (ii) a polynomial time inference algorithm on KBs;
and (iii) algorithms for identifying decisive features as explanations.

2 Training as Knowledge Base Construction

KB construction is at the core of our approach. Specifically, a KB contains a set of
disjunction clauses and each clause has a probability, defined formally as follows.

Definition 1. A Knowledge Base (KB) {〈p1, c1〉, . . . , 〈pm, cm〉} is a set of pairs of
clauses ci and probability of clauses pi = P (ci), 1 ≤ i ≤ m. Each clause is a disjunc-
tion of literals and each literal is a propositional variable or its negation.

Example 1. With two propositional variables α and β, {〈0.6,¬α ∨ β〉, 〈0.8, α〉} is a
simple KB containing two clauses with probabilities 0.6 and 0.8, respectively.

Generating logic clauses from decision trees or random forests has been studied
[3,11,14]. Unlike the existing approaches where, due to their use of strict inference
methods, non-probabilistic rules are generated, our KBs consist of probabilistic rules.
Specifically, from a decision tree constructed from the training data, we create a clause

1 POS stands for positive. For presentation simplicity, we only consider binary classification
problems in this paper. Our approach generalises to multi-category classification by replacing
POS with class labels for each candidate class accordingly.
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c from each path from the root to the leaf of the tree. The probability of c is the ratio
between the positive samples and all samples at the leaf. Formally, we define the KB
KT drawn from a decision tree T as follows.

Definition 2. Let T be a decision tree, each non-root node in T labelled by a feature-
value pair a v, read as feature a having value v. Let {ρ1, . . . , ρk} be the set of root-to-
leaf paths in T, where each ρi is of the form 〈root, a1 v1, . . . , an vm〉 and an vm labels
a leaf node in T. Then, the KB drawn from T is KT = {〈p1, c1〉, . . . , 〈pk, ck〉} s.t. for
each ρi, 〈pi, ci〉 ∈ KT, where ci = POS ∨ ¬a1 v1 ∨ . . . ∨ ¬an vm, and pi is the ratio
between positive and the total samples in the node labelled by an vm.

Algorithms 1 and 2 constructKT from dataD. Specifically, Algorithm 1 takes a root-
to-leaf path from a decision tree to generate a clause. The path with features a1, . . . , an,
s.t. each feature has a value in {v1, . . . , vm}, is interpreted as a1 v1 ∧ . . . ∧ an vm →
POS, and read as, a sample is positive if its feature a1 has value v1, . . . , feature an has
value vm. As a disjunction, the clause is then written as POS∨ ¬a1 v1 ∨ . . . ∨ ¬an vm.
Algorithm 2 builds a tree and then constructs clauses from paths in the tree. Example 2
illustrates how to build a KB from a decision tree.

Algorithm 1. Clause from Tree Path
1: procedure CLAUSEFROMPATH(path)
2: clause ← POS

3: for each edge e in path do
4: a ← feature of e
5: v ← value of e
6: clause ← clause ∨ ¬a v
7: return clause

Algorithm 2. Construct KB with Decision Tree
1: procedure DECSIONTREEKB(D)
2: KT ← {}; Use ID3 to compute a tree T from D
3: allPaths ← all paths from the root to leaves in T
4: for each path in allPaths do
5: n ← end node in path
6: r ← ratio between positive and total samples in n
7: add [r] CLAUSEFROMPATH(path) to KT

8: return KT

Example 2. Given a data set with four strings, 0000, 1111, 1010, 1100, labelled posi-
tive, and four strings, 0010, 0100, 1110, 1000, labelled negative. There are four features,
bits 1–4, each feature takes its value from {0, 1}. The decision tree constructed is shown
in Fig. 1. There are eight leaves, thus eight root-to-leaf paths and clauses. E.g., root →
a4 0 → a1 0 → a2 0 → a3 0 gives the clause POS∨ ¬a4 0∨ ¬a1 0∨ ¬a2 0∨ ¬a3 0.
The probability of the clause being the number of positive samples over the total sam-
ples at the leaf. There is only one sample, 0000, at this leaf, since it is positive, the
clause probability is 1. The KB KT is shown in Table 1.2

2 Henceforth, [p] z1 ∨ . . . ∨ zl denotes an l-literal clause in a KB with probability p.



Explainable AI for Classification Using Probabilistic Logic Inference 19

Fig. 1. Decision tree learned from data in Example 2. A node aX Y is read as “bit X has value
Y ”.

Table 1. KT from the tree in Fig. 1.

[0.0] POS ∨¬a1 0 ∨ ¬a2 0 ∨ ¬a3 1 ∨ ¬a4 0

[1.0] POS ∨¬a1 0 ∨ ¬a2 0 ∨ ¬a3 0 ∨ ¬a4 0

[0.0] POS ∨¬a1 0 ∨ ¬a2 1 ∨ ¬a4 0

[1.0] POS ∨¬a1 1 ∨ ¬a2 0 ∨ ¬a3 1 ∨ ¬a4 0

[0.0] POS ∨¬a1 1 ∨ ¬a2 0 ∨ ¬a3 0 ∨ ¬a4 0

[0.0] POS ∨¬a1 1 ∨ ¬a2 1 ∨ ¬a3 1 ∨ ¬a4 0

[1.0] POS ∨¬a1 1 ∨ ¬a2 1 ∨ ¬a3 0 ∨ ¬a4 0

[1.0] POS ∨¬a4 1

Algorithm 2 constructs clauses from root-to-leaf paths in a decision tree. We can
also use paths from the root to all nodes, not just the leaves, to construct clauses, i.e.,
replacing line 3 in Algorithm 2 with

allPaths ← all paths from the root to all nodes in T .
As random forests have been introduced to improve the stability of decision trees, we
can apply the same idea to obtain more clauses from a forest, i.e., repeatedly generating
different decision trees, and for each tree, we construct clauses for each path originated
at its root, in the spirit of [11]. If we further take the above idea of “generating as many
clauses as possible” to its limit, we realise that constructing KBs from trees is a special
case of selecting clauses constructed from all k-combinations of feature-value pairs, for
k = 1 . . . n, where n is the total number of features in the data. Formally, we define the
KB KD drawn directly from data D as follows.

Definition 3. Given data D with features F = {a1, . . . , an} taking values from
V = {v1, . . . , vm}, for each Fk = {a′

1, . . . , a
′
k} ∈ 2F \ {}, let C1

k =
{a′

1 v|v ∈ V }, . . . , Ck
k = {a′

k v|v ∈ V }. Ck = C1
k × . . . × Ck

k . For each
c = {a′′

1 v′
1, . . . , a

′′
k v′

k} ∈ Ck, Si ⊆ D is the set of samples s.t. feature a′′
i having

value v′
i′ for all i ∈ {1, . . . , k}. If |Si| �= 0, then let pi be the ratio between positive

samples in Si and |Si|, 〈pi, POS∨¬a′′
1 v′

1∨. . .∨¬a′′
k v′

k〉 is in the KB KD drawn directly
from data. There is no other clause in KD except those constructed as above.

Definition 3 can be illustrated with the following example.
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Example 3. Let F = {a1, a2} and V = {0, 1}. Then 2F \{} = {{a1}, {a2}, {a1, a2}}.
For illustration, let us choose Fk = {a1, a2}. Then C1

k = {a1 0, a1 1}, C2
k =

{a2 0, a2 1}, and Ck = {{a1 0, a2 0}, {a1 0, a2 1}, {a1 1, a2 0}, {a1 1, a2 1}}.
Then, suppose we choose c = {a1 0, a2 0} and add 〈pi, POS ∨ ¬a1 0 ∨ ¬a2 0〉 to
KD, where pi is the ratio between positive samples with both features a1, a2 having
value 0 and total samples with these feature-values. KD can be constructed by choosing
different Fk and c iteratively.

Finally, Algorithm 3 gives a procedural construction for KD.

Algorithm 3. Construct KB Directly
1: procedure DIRECTKB(data)
2: counts ← {}, KD ← {}
3: for each entry in data do
4: feaVals ← {a v| feature a has value v in entry}
5: label ←binary label of entry as integer
6: S ← POWERSET(feaVals) \{}
7: for each key as an element of S do
8: if key is in counts then
9: counts[key] ← counts[key] + [1, label]
10: else
11: counts[key] ← [1, label]

12: for each key in counts do
13: r ← counts[key][1]/counts[key][0]
14: Insert “[r] POS ∨ ¬key” to KD

15: return KD

In Line 14, ¬{s1, . . . , sn} is ¬s1 ∨ . . . ∨ ¬sn, e.g. for key = {a1 v1, a2 v2}, insert
“[p] POS ∨ ¬a1 v1 ∨ ¬a2 v2” to KD. counts is a dictionary with keys being sets of
feature-value pairs and values being two-element arrays. label is either 0 or 1. Line 9
is an element-wise addition, e.g., [1, 0] + [1, 1] = [2, 1]. At the end of the first loop,
counts[key][0] is the number of samples containing key and counts[key][1] is the num-
ber of positive ones.

3 Querying as Probabilistic Inference

Our KB construction methods produce clauses with probabilities. Intuitively, for a query
that asserting some feature-value pairs, we want to compute the probability of POS under
these feature-value pairs and predicting the query being positive when the probability
is greater than 0.5. To introduce our inference method for computing such probabili-
ties, we first review a few concepts in probabilistic logic [13], which pave the way for
discussion.

Given a KB K3 with clauses c1, . . . , cm composed from n propositional variables,
the complete conjunction set, denoted as W , over K is the set of 2n conjunctions s.t.
3 From this point on, we use K to denote a KB constructed using either of the two approaches
(KT or KD).
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each conjunction contains n distinct propositional variables. A probability distribution
π (wrt. K) is the set of 2n probabilities π(w) ≥ 0(w ∈ W), s.t.

∑
w∈W π(w) = 1.

π satisfies K iff for each i = 1, . . . ,m, the sum of π(w) equals P (ci) for all w s.t.
the truth assignment satisfying w satisfies ci. A KB K is consistent iff there exists a
π satisfying K. With a consistent KB, Nilsson suggested that one can derive literal
probabilities from π, i.e., for all literals z in the KB, P (z) is the sum of π(w) for
all w ∈ W containing z, e.g., for a consistent KB with two literals α and β, P (α) =
P (α∧β)+P (α∧¬β) [13]. In short, to compute literal probabilities, one first computes
probability assignments over the complete conjunction set, and then adds up all relevant
probabilities for the literal.

At first glance, since POS is an literal in our knowledge base, it might be possible to
perform our inference with the above approach for computing P (POS): all clauses in a
KB are of the form POS∨ ¬a1 v1 ∨ . . . ∨ ¬an vm, each with an associated probability;
a query is a set of feature-value pairs, e.g., a′

1 v′
1, . . . , a

′
n v′

m, each with an assigned
probability 1; P (POS) computed as the sum of P (POS∧a1 v1 ∧ . . .∧an vm), P (POS∧
a1 v1 ∧ . . . ∧ ¬an vm), . . . , P (POS∧ ¬a1 v1 ∧ . . . ∧ ¬an vm) estimates the likelihood
of POS. However, this idea fails for the following two reasons. Firstly, this approach
requires solving the probability distribution π, which has been shown to be NP-hard
wrt. the number of literals in the KB [8], thus the state-of-the-art approaches only work
for KB with a few hundred of variables [6].

Secondly, putting a KB and a query together introduces inconsistency, so there is
no solution for π. For instance, for the KB in Example 2, let the query be 0000, which
translates to four clauses, a1 0, a2 0, a3 0 and a4 0, each with P (ai 0) = 1. Conse-
quently, P (¬ai 0) = 0. Together with P (POS∨ ¬a1 0∨ ¬a2 0∨ ¬a3 0∨ ¬a4 0) = 1,
we infer P (POS) = 1. However, P (POS) = 1 is inconsistent with P (POS ∨ ¬a1 0 ∨
¬a2 0∨ ¬a3 1∨ ¬a4 0) = 0, as for any α, β, we must have P (α) ≤ P (α ∨ β). In this
case, K is inconsistent with the query thus there is no solution for π.

Therefore, we formulate the computation as an optimization problem so that incon-
sistency is tolerated. This is the core of our inference method. More specifically, we
propose to use linear programming to estimate the literal probabilities.

Definition 4. Given a KB K = {〈p1, c1〉, . . . , 〈pm, cm〉} with clauses C =
{c1, . . . , cm} over literals Z , a linear programLK of K with unknowns ω(σ), σ ∈ C∪Z ,
is the following.
minimise:

m∑

i=1

|ω(ci) − pi| (1)

subject to: for each clause ci = z1 ∨ . . . ∨ zl,

ω(ci) ≤ ω(z1) + . . . + ω(zl); (2)

for zj = z1 . . . zl in clause ci:

ω(ci) ≥ ω(zj); 1 = ω(zj) + ω(¬zj); 0 ≤ ω(zj) ≤ 1. (3)

Definition 4 estimates literal probabilities from clause probabilities without com-
puting the distribution over the complete conjunction set, i.e., for any literal z in the
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KB, ω(z) approximates P (z). We illustrate probability computation with the following
example.

Example 4. (Example 1 cont.) Given these two clauses, c1 = ¬α ∨ β; c2 = α, and
their probabilities, P (c1) = 0.6, P (c2) = 0.8, the complete conjunction set W =
{¬α ∧ ¬β,¬α ∧ β, α ∧ ¬β, α ∧ β}. Truth assignments satisfying α ∧ β,¬α ∧ β, and
¬α ∧ ¬β satisfy c1 and truth assignments satisfying α ∧ β and α ∧ ¬β satisfy c2. K is
consistent iff π1 = π(α∧β), π2 = π(α∧¬β), π3 = π(¬α∧β), and π4 = π(¬α∧¬β)
s.t.

∑4
j=1 πj = 1, π1 + π3 + π4 = 0.6 and π1 + π2 = 0.8. LK is:

minimise:

|ω(c1) − 0.6| + |ω(c2) − 0.8|
subject to:

ω(c1) ≤ ω(¬α) + ω(β); ω(c2) ≤ ω(α); ω(c1) ≥ ω(¬α); ω(c1) ≥ ω(β);

ω(c2) ≤ ω(α); ω(c2) ≥ ω(α); 1 = ω(α) + ω(¬α); 1 = ω(β) + ω(¬β);

0 ≤ ω(α) ≤ 1; 0 ≤ ω(β) ≤ 1.

A solution to LK is: ω(¬α ∨ β) = 0.6; ω(α) = 0.8; ω(¬α) = 0.2; ω(β) = 0.6;
ω(¬β) = 0.4.

With a means to reason with KBs, we are ready to answer queries. Algorithm 4
defines the query process. Let LK be the linear system constructed from K. Given
a query Q with feature-value pairs a1 v1, . . . , an vm, we amend LK by inserting
ω(ai vj) = 1 and ω(ai v′

j) = 0, where v′
j is a possible value of ai, v′

j �= vj , for
all ai, vj in Q. ω(POS) computed in LK answers whether Q is positive. Since the solu-
tion of ω(POS) can be a range, we compute the upper and lower bounds of ω(POS)
by maximising and minimising ω(POS) subject to minimising Eq. (1), respectively, and
use the average of the two. It returns positive when the average is greater than 0.5. The
intuition of our approach is that, for a query x, to evaluate whether K and x entail POS,
we compute ω(POS) in LK. Example 5 illustrates the query process.

Algorithm 4. Query Knowledge Base
1: procedure QUERYKB(query, LK)
2: for each feature a in query do
3: for each possible value v of a do
4: if a has value v in query then
5: Add ω(a v) = 1 to LK
6: else
7: Add ω(a v) = 0 to LK
8: return ω(POS) computed in LK

Example 5. (Example 2 cont.) For query 0101, we add the following equations as con-
straints to LK:
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ω(a1 0) = 1, ω(a1 1) = 0, ω(a2 0) = 0, ω(a2 1) = 1,
ω(a3 0) = 1, ω(a3 1) = 0, ω(a4 0) = 0, ω(a4 1) = 1.

The computed ω(POS) is no greater than 0.5, representing a negative classification.

The proposed querying mechanism differs fundamentally from that of decision
trees. A decision tree query can be viewed as finding the longest clause in the KB that
matches with the query in and checking whether its probability is greater than 0.5. For
instance, for query 0101, a decision tree query returns positive as the longest matching
clause in “POS ∨¬a4 1” has probability 1. However, our approach considers probabili-
ties from other clauses in the K and produces a different answer.

4 Explanations

One advantage of the presented classification method is that it supports partial queries,
which are queries with missing values, as the probability of POS can be computed with-
out values assigned to all features. Explanation computation can be supported with
partial queries in our approach.

Algorithm 5 outlines one approach. Given a query Q with n features, to find the k
most decisive features, we construct sub-queries s.t. each sub-query contains exactly k
feature-value pairs in Q. If Q yields a positive classification, then the sub-query that
maximises ω(POS) is an explanation; otherwise, the sub-query that minimises ω(POS)
is. Since we know that there are

(
n
k

)
different sub-queries in total, the order of sub-query

evaluation can be strategised with methods such as hill climbing for more efficient cal-
culation. Although in principle, Algorithm 5 could work with any classification tech-
nique supporting partial queries, our proposed method does not require reconstructing
the trained model for testing each of the sub-queries, making the explanation generation
convenient. The explanation approach is illustrated in Example 6.

Algorithm 5. Explanation Computation
1: procedure COMPUTEEXPLANATION(Q,LK, k)
2: S ← {sQ|sQ ∈ 2Q, SIZEOF(sQ) = k}
3: if QUERYKB(Q, LK) > 0.5 then
4: return argmaxsQ∈S QUERYKB(sQ, LK)
5: else
6: return argminsQ∈S QUERYKB(sQ, LK)

Example 6. (Example 5 cont.) To compute the single most decisive feature, we let k =
1. S contains four feature-value pairs: q1 = {a1 0}, q2 = {a2 1}, q3 = {a3 0},
q4 = {a4 1}. Let ωi, i = 1 . . . 4 be ω(POS) computed with q1 . . . q4, respectively. We
have ω1 = 0.33, ω2 = 0.5, ω3 = 0.5, and ω4 = 1. Thus, the computed explanation for
the classification is a1 0. We read this as:

0 - - - is responsible for 0101 being negative.
This matches with our intuition well as for each of the other choices, there are at

least as many positive samples as negative ones.
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5 Performance Analysis

We study the accuracy of the proposed approach in classification and finding explana-
tions over synthetic data sets. The major reason to use synthetic data sets is that there
is no ground truth for explanations in real data sets. For example, even if symptoms
are found as explanations for diagnosis results using explainable AI techniques, there
is no ground truth to verify whether these symptoms explain the results. Therefore, we
performed experiments with synthetic data sets with known explanation ground truth.
Specifically, we created four synthetic data sets of integer strings, Syn 10/4, Syn 10/8,
Syn 12/4, and Syn 12/8, with the following rules. For each data set, we set a (random)
seed string of the same length as strings in the data set from the same alphabet. For
instance, for the “Syn 10/4” data set with 10 bits strings where each bit can take 4 pos-
sible values, 3232411132 is the seed. Here, the size of the alphabet is 4. Each 10-bit
string denotes a data instance with 10 features s.t. each feature takes its value from {1,
2, 3, 4}. A string s in the data set is labelled positive iff s match bits in the seed for
exactly five places. E.g., 31334212424 is positive and 3133421232 is negative (it shares
6 bits as the seed rather than 5). For each string classified as positive, we compute a
k-bit explanation. An explanation is correct iff the seed string has the same values for
the bits identified as the explanation. The accuracy of an explanation is defined as the
number of correct bits over the length of explanation. For instance, for k = 5, we have

Query Explanation Seed Accuracy
3233112143 323–1-1– 3232411132 1.0
3244341112 -2—411-2 3232411132 0.8

The 2nd query contains an incorrect explanation 4. On our synthetic data sets with a
70% to 30% split on training and testing, the classification result is shown in Table 2.
Our approaches are Tree (Algorithm 2) and Direct (Algorithm 3). We use CART (a deci-
sion tree algorithm), multi-layer perceptron (MLP) neural networks (with two hidden
layers with 12 and 10 nodes, respectively), random forest (with 100 trees) and support
vector machine as our comparison baselines. To evaluate our explanation approach, we
compare Direct with the state of the art Shapley Value based approach SHAP [10], one
of the latest approaches for explaining classification results from trees. The explanation
accuracy is shown in Table 2.

Table 2. Experiment results (F1 scores)

Syn 10/4 Syn 10/8 Syn 12/4 Syn 12/8

Tree 0.71 0.78 0.62 0.70

Direct 0.92 0.95 0.89 0.94

CART 0.79 0.87 0.70 0.84

MLP 0.77 0.83 0.73 0.80

Forest 0.90 0.96 0.85 0.93

SVM 0.85 0.86 0.81 0.81

Table 3. Explanation accuracy on four syntactic
data sets and various explanation lengths k.

k = 1 k = 2 k = 3 k = 4 k = 5

10/4 Direct 1 1 1 0.995 0.972

SHAP 1 1 0.996 0.993 0/962

10/8 Direct 1 1 0.997 0.980 0.976

SHAP 0.996 0.995 0.972 0.967 0.951

12/4 Direct 1 0.982 1 0.997 0.901

SHAP 0.993 0.980 0.973 0.942 0.856

12/4 Direct 1 1 0.998 0.975 0.964

SHAP 1 0.990 0.977 0.929 0.918

4 The underlined bits are identical to the seed.
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Table 2 shows that the classification accuracy of our approach is competitive com-
paring to the baseline approaches. This further validates our approach for classification.
Table 3 shows that although our approach (Direct) and SHAP both can identify part of
the seed string from each query instances, hence computing correct explanations, ours
gives higher accuracy across the board.

6 Related Work

Performing probabilistic logic inference with mathematical programming has been
studied recently in [9] with its NonlInear Probabilistic Logic Solver (NILS) approach.
NILS either assumes independence amongst its variables or expand probability of con-
junctions as the product of the probability of a literal and some conditionals. Thus NILS
produces non-linear systems and rely on gradient descent methods for finding solutions.
Consequently, NILS is unsuitable for classification as the independence assumption
does not hold between the class labels and feature values or, in general, values across
different features. When independence cannot be assumed, systems constructed with
NILS are difficult to solve numerically.

In explainable machine learning, there has been significant interest in providing
explanations for classifiers; see e.g., [2] for an overview. Works have been proposed
to use simpler thus weaker classifiers to explain results from stronger ones, e.g., [5].
Recent works on model-agnostic explainers [15,16] focus on adding explanations to
existing (black-box) classifiers. [1] use KB based classifiers to explain results obtained
from MLP and random forests. LIME [15] augment the data with randomly generated
samples close to the instance to be explained and then construct a simple thus explain-
able classifier to generate explanations. [17] works by decomposing a model’s predic-
tions based on individual contributions of each feature. [19] explains Bayesian network
classifiers by compiling naive Bayes and latent-tree classifiers into Ordered Decision
Diagrams. [10] provides explanations for decision trees based on the game-theoretic
Shapley values.

7 Conclusion

We present a non-parametric classification technique that gives explanations to its pre-
dictions. Our approach is based on approximating literal probabilities in probabilistic
logic by solving linear systems corresponding to KBs, which are either directly learned
from data or augmented with additional knowledge. Our linear program construction is
efficient and our approaches tolerate inconsistency in a KB. As a stand-alone classifier,
our approach matches or exceeds the performance of existing algorithms.

There are three research directions that we plan to explore. Firstly, this work focuses
on developing the underlying explainable classification techniques. We will apply tech-
niques developed practical applications and perform user studies in the future. Secondly,
we will study semantics for inconsistent KBs. Thirdly, we will study richer explanation
generation with (probabilistic) logic inference.

Acknowledgements. The work is supported with a funding contribution from the Welsh Gov-
ernment Office for Science, Sêr Cymru III programme – Tackling Covid-19.
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Abstract. A range of provable defense methods have been proposed to
train neural networks that are certifiably robust to the adversarial exam-
ples. Among which, COLT [1] combined adversarial training and prov-
able defense method that achieves state-of-the-art accuracy and certified
robustness. However, COLT treats all examples equally during training,
which ignores the inconsistent constraint of certified robustness between
correctly classified (natural) and misclassified examples. In this paper,
we explore this inconsistency and add a regularization to exploit mis-
classified examples efficiently. Specifically, we identified that the certified
robustness of networks can be significantly improved by refining incon-
sistent constraint on misclassified examples. Besides, we design a new
defense regularization called Misclassification Aware Adversarial Regu-
larization (MAAR), which constrains the output probability distribu-
tions of all examples in the certified region of the misclassified exam-
ple. Experimental results show that MAAR achieves the best certified
robustness and comparable accuracy on CIFAR-10 and MNIST datasets
in comparison with several state-of-the-art methods.

Keywords: Adversarial defense · Certified robustness · Misclassified
examples · Consistency regularization

1 Introduction

Despite the widespread success of neural network on diverse tasks such as image
classification [8], face and speech recognition [17]. Recent studies have highlighted
the lack of robustness in state-of-the-art neural network models, e.g., a visually
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imperceptible adversarial image can be easily crafted to mislead a well-trained
network [16]. Even worse, researchers have identified that these adversarial exam-
ples are not only valid in the image classification task [4] but also plausible in
the object detection [23] and speaker recognition [11]. Considering the signifi-
cance of adversarial robustness in neural network, a range of defense methods
have been proposed. Adversarial training [4,22] which can be regarded as a data
augmentation technique that trains neural networks on adversarial examples are
highly robust against the strongest known adversarial attacks such as C&W
attack [2], but it provides no guarantee—it is unable to produce a certificate
that there are no possible adversarial attack which could potentially break the
model. Recent line of work on provable defense [15,20] has been proposed to
train neural networks that no attacks within a certain region will alter the net-
works prediction. Moreover, COLT [1] combines adversarial training and prov-
able defense methods to train neural network with both high certified robustness
and accuracy. However, recall that the formal definition of certified robustness is
conditioned on natural examples that are correctly classified [20]. COLT treats
both correctly classified and misclassified examples equally during training pro-
cess while evaluating certified robustness just on correctly classified examples.
From this perspective, the effect of misclassified example on certified robustness
is unknown.

Fig. 1. Verified error (red lines) and origi-
nal accuracy (blue lines) for COLT [1] and
Misclassification Aware Training (MAT).
The dataset is CIFAR-10 with L∞ maxi-
mum perturbation ε = 2/255. (Color figure
online)

Therefore, it is not clear for the
following questions: (1) Do mis-
classified examples have effec-
tiveness for improving certified
robustness? (2) If yes, how can
we make better use of misclassi-
fied examples to improve the cer-
tified robustness?

To address these issues, we explore
the inconsistent constraint of certified
robustness between the correctly clas-
sified and misclassified examples on
COLT. For correctly classified exam-
ples, the objectives of robust con-
straint and original accuracy con-

straint are the same: Constraining the correctly classified examples and all exam-
ples within their perturbations sets to be close enough to the correct labels, which
will improve the original accuracy as well as certified robustness of the network.
However, for misclassified examples, the constraints on robustness and accuracy
are different: Making the misclassified examples and the examples in the pertur-
bation sets close enough to the original labels can improve the original accuracy
of the network, but it is undeniable that this will destroy the stability of the
misclassified examples (the original label is the “wrong label” for misclassified
example), thereby reducing the certified robustness of the network. To deal with
this problem, we firstly propose to use the output label (the output label is
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the “true label” for misclassified example) of the misclassified example during
training process to keep the stability of misclassified examples (which we call
Misclassification Aware Training (MAT) in Sect. 3.2). Interestingly, as shown in
Fig. 1, we find that misclassified examples have a significant effect on the final
certified robustness of network. Compared with COLT [1] (dashed red line), the
verified error (the details of these metrics are in Appendix 1.3) of MAT (red line)
drops drastically. However, the original accuracy of MAT (blue line) is extremely
lower than standard COLT (dashed blue line).

In this paper, in order to make better use of misclassified examples, we pro-
pose a consistency regularization to constrain the output probability distribu-
tions of all examples in the certified region of the misclassified example. The
regularization term called Misclassification Aware Adversarial Regularization
(MAAR) aims to encourage the output of network to be stable against mis-
classified adversarial examples. In other words, MAAR focuses on solving the
inconsistency of certified robustness on both correctly classified and misclassified
examples, which improves the final certified robustness of network. Meanwhile,
MAAR does not change the training label during the training process, which
alleviates the decrease of model accuracy.

Our main contributions are:

– We investigate the inconsistency on constraint of certified robustness caused
by misclassified examples by a proof-of-concept experiment (i.e., Misclassifi-
cation Aware Training (MAT)).

– We propose a consistency regularization term called Misclassification Aware
Adversarial Regularization (MAAR) which improves certified robustness by
maintaining the stability of misclassified examples as well as relieving the
degree of accuracy decline.

– We show the effectiveness of MAAR by different networks and perturbations
on two datasets. Specifically, MAAR achieves the state-of-the-art certified
robustness of 62.8% on CIFAR-10 with 2/255 L∞ perturbations on 4-layer
convolutional network as well as 97.3% on MNIST dataset with L∞ pertur-
bation 0.1 on 3-layer convolutional network.

2 Related Works

2.1 Empirical Adversarial Defense

The most successful empirical defense to date is adversarial training. It was first
proposed in [16] and [4], where they showed that adding adversarial examples
to the training set can improve the robustness against attacks. More recently,
Madry et al. [12] formulated adversarial training as a min-max optimization
problem and demonstrated that adversarial training with PGD attack leads to
empirical robust models. However, it is equivalent to the minimization of the
lower bound on the inner maximum worst-case loss that will lure and mislead an
optimizer. Indeed, while adversarial training often provides robustness against a
specific attack, it often fails to provide guarantee to generalize to new attacks.
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2.2 Certified Adversarial Defense

Different from adversarial training, another approach is to compute the worst-
case perturbation exactly, and most of the existing methods are based on Satisfi-
ability Modulo Theories [6] or Mixed Integer Linear Programming [3]. Currently,
these approaches can take up to several hours to compute the loss for a single
example even for small networks. Computing an upper bound on the worst-case
loss can avoid the intractability of exact computation. These approaches are
typically based on linear [20], hybrid zonotope [13] or interval bound propaga-
tion [5]. While these approaches obtain robustness guarantees, accuracy of these
networks is relatively low. COLT [1] combines adversarial training and convex
relaxation method [20] layerwisely to train networks with high certified robust-
ness and accuracy. Another line of work proposes to replace neural networks
with a randomized classifier [10] which comes with probabilistic instead of exact
guarantees on its robustness.

However, all the methods above treat natural examples equally during train-
ing process regardless whether the examples can be correctly classified or not, but
only evaluate certified robustness on correctly classified examples. The effect of
misclassified example on final certified robustness is “undefined”. In this paper,
we explore the impact of these misclassified examples, and provide a Misclassifi-
cation Aware Adversarial Regularization (MAAR) as explained in next section.

3 Methods

3.1 Preliminaries

Base Classifier. For a K-class (K ≥ 2) classification problem, denote a dataset
{(xi, yi)}i=1,··· ,n with distribution xi ∈ R

d as natural input and yi ∈ {1, · · · ,K}
represents its corresponding true label, a classifier hθ with parameter θ predicts
the class of an input example xi:

hθ (xi) = arg max
k=1,··· ,K

pk(xi,θ) (1)

pk(xi,θ) = exp(zk(xi,θ))/
K∑

k′=1

exp(zk′(xi,θ)) (2)

where zk(xi,θ) is the logits output of the network with respect to class k, and
pk(xi,θ) is the probability (softmax on logits) of xi belonging to class k.

Adversarial Risk. The adversarial risk [12] on dataset {(xi, yi)}i=1,··· ,n and
classifier hθ output probability p(x) can be defined as follows:

ADV(p(x′
i), y) =

1
n

n∑

i=1

max
x′

i∈Bε(xi)
L(p(x′

i), yi) (3)

where L is the loss function such as commonly used cross entropy loss, and
Bε(xi) = {x : ||x − xi||p ≤ ε} denotes the Lp-norm ball centered at xi with
radius ε. We will focus on the L∞-ball in this paper.
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Original Training Risk in COLT. The original training risk in COLT [1] is
defined as follows:

RCOLT (hθ ,xi) := Lori(p(xi), yi) + ADV(p(x′
i), yi) (4)

where Lori(·) is the original training loss function such as cross entropy loss and
x′

i ∈ Bε(xi).

3.2 Misclassification Aware Training

Note that the training risk in Eq. (4) is defined on all natural examples, regardless
of whether they are correctly classified (hθ (xi) = yi) or misclassified (hθ (xi) �=
yi) by the current model hθ . To differentiate and explore the effect of misclassified
examples, we reformulate the training risk based on the prediction of the current
network hθ . Specifically, we split the natural training examples into two subset
according to hθ , with one subset of correctly classified examples (C+

hθ
) and one

subset of misclassified examples (C−
hθ

):

C+
hθ

= {i : i ∈ [n], hθ (xi) = yi} (5)

C−
hθ

= {i : i ∈ [n], hθ (xi) �= yi} (6)

Considering the inconsistency on constraints of certified robustness on cor-
rectly classified and misclassified examples in COLT, we use output label for mis-
classified examples rather than original label during training, which we call Mis-
classification Aware Training (MAT). The training risk on misclassified examples
is formulated as follows:

R−
MAT (hθ ,xi) := Lori(p(xi), yi) + ADV(p(x′

i), hθ (xi)) (7)

As we observed in Fig. 1, although directly changing the training label of the
misclassified example can achieve higher certified robustness, it leads to lower
classification accuracy.

3.3 Misclassification Aware Adversarial Regularization

With the purpose of avoiding excessive reduction of the original accuracy as
well as keeping the consistency of certified robustness on two subsets, we regu-
larize misclassified examples by an additional term (a KL-divergence term that
was used previously in [19,24]) rather than changing the training labels. The
proposed consistency regularization aims to encourage the output probability
distributions of neural network to be stable against examples in the perturba-
tion region of misclassified adversarial examples, thus improving the certified
robustness of network. The improved training risk of misclassified examples is
formulated as follows:

R−(hθ ,xi) := Lori(p(xi), yi) + ADV(p(x′
i), yi)

+ KL(p(xi)||p(x′
i))

(8)
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where

KL(p(xi)||p(x′
i)) =

K∑

k=1

pk(xi, θ) log
pk(xi, θ)
pk(x′

i, θ)
(9)

measures the difference of two distributions.
For correctly classified examples, we simply use original training risk, i.e.,

R+(hθ ,xi) := Lori(p(xi), yi) + ADV(p(x′
i), yi) (10)

Finally, by combining the two training risk terms (i.e., Eq. (10) and Eq. (10)),
we train a network that minimizes the following risk:

R(hθ ,x) :=
1
n

(
∑

xi∈C+
hθ

R+(hθ ,xi) +
∑

xi∈C−
hθ

R−(hθ ,xi))

=
1
n

n∑

i=1

{Lori(p(xi), yi) + ADV(p(x′
i), yi)

+ KL(p(xi)||p(x′
i)) · I(hθ (xi) �= yi)}

(11)

where I(hθ (xi) �= yi) is the indicator function. I(hθ (xi) �= yi) = 1 if hθ (xi) �= yi,
and I(hθ (xi) �= yi) = 0 otherwise.

Optimization for Regularization Term. As presented in Eq. (11), the
new training risk is a regularized adversarial risk with regularization term
1
n

∑n
i=1{KL(p(xi)||p(x′

i)) · I(hθ (xi) �= yi)}. However, the indicator function
cannot be directly optimized if we conduct a hard decision during the train-
ing process. In this study, we propose to use a soft decision scheme by replacing
I(hθ (xi) �= yi) with the output probability 1−pyi

(xi,θ). The output probability
will be large for misclassified examples and small for correctly classified exam-
ples, by which we could provide a approximate solution for 0–1 optimization
problem .

The Overall Objective. Based on the regularization optimization, the objec-
tive function of our proposed Misclassification Aware Adversarial Regularization
(MAAR) is formulated as:

RMAAR(θ) =
1
n

n∑

i=1

LMAAR(xi, yi,θ) (12)

where LMAAR(xi, yi,θ) is defined as:

LMAAR(xi, yi,θ) = Lori(p(xi), yi) + ADV(p(x′
i), yi)

+ λ · KL(p(xi)||p(x′
i)) · (1 − pyi

(xi,θ))
(13)

Here, λ is the tunable scaling paremeters and fixed for all training examples.
Our training process is shown in Algorithm 1.
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Algorithm 1. Misclassification Aware Adversarial Regularization (MAAR)
Input d-layer network hθ , training set (X , Y), learning rate η, step size α, inner
steps n, tunable scaling parameters λ, perturbation ε.
for l ≤ d do

for j ≤ nepochs do
Sample mini-batch: (x1, y1), (x2, y2) · · · , (xb, yb)} ∼ (X , Y);
Compute convex relaxations: Cl(x1), · · · ,Cl(xb);
Initialize: x′

1 ∼ Cl(x1), · · · , x′
b ∼ Cl(xb);

for i ≤ b do
Update in parallel n times: x′

i ← ΠCl(xi)(x
′
i + α∇x ′

i
ADV(hl+1:d

θ (x′
i), yi));

end for
L(hl+1:d

θ (x′
i), yi) ← Lori(p(xi), yi)+ADV(p(x′

i), yi)+λ ·KL(p(xi)||p(x′
i)) ·(1−

pyi(xi, θ))
Update parameters: θ ← θ − η · 1

b

∑b
i=1 ∇θ L(hl+1:d

θ (x′
i), yi);

end for
Freeze parameters θl+1 of layer function hl+1

θ .
end for
Output Certified robust neural network hθ

4 Experiments

In this section, we first introduce the experimental settings used in our exper-
iments. Then we investigate the sensitivity of regularization parameter λ, and
choose the best parameter λ to evaluate the effectiveness of our proposed MAAR
compared with COLT and MAT. Finally, we show the experimental results of
our MAAR under different network architectures and different perturbations on
two datasets (i.e., CIFAR-10 [7] and MNIST [9]) in comparison with several
other defense methods.

4.1 Experimental Settings

Experiments are conducted on CIFAR-10 and MNIST datasets. We use a four-
layer convolutional network with L∞ perturbations ε = 2/255, 8/255 on CIFAR-
10 dataset, a three-layer convolutional network with L∞ perturbations ε = 0.1
on MNIST dataset. The layerwise training fashion[1] has been adopted in our
MAAR’s training. We use four metrics to evaluate our training models, i.e.,
original accuracy (ACC), certified robustness (CR), verified error (VE), and
latent robustness (LR). The detailed information of these settings can be found
in Appendix 1 and 2.
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Fig. 2. The effectiveness of our proposed MAAR. (a) Sensitivity of regularization
parameter λ. Layerwise verified error (b) and layerwise original accuracy (c) of COLT,
MAT and proposed MAAR on different stages, respectively. (d) Certified robustness
of COLT and MAAR with different perturbations. (Color figure online)

4.2 Sensitivity of Regularization Parameter λ

We investigate the parameter λ with MAAR defined in Eq. (13) which controls
the contribution of the regularization term. We present the results in Fig. 2(a)
for different λ ∈ {2, 4, 6, 8, 10}. By explicitly setting different impact parameter
of misclassified examples, the network achieves good stability and robustness
across different choices of λ. According to the experimental results, we choose
λ = 6 for our following experiments.

4.3 the Effectiveness of MAAR

Comparison with COLT and MAT. In order to verify the effectiveness of our
proposed MAAR, we firstly compare MAAR with COLT and MAT. Note that all
experiment settings of these three methods are the same except for the constraint
on misclassified examples. The verified error and original accuracy evaluated at
every epoch during training process has been shown in Fig. 2(c), Fig. 2(d). As
shown in Fig. 2(c), the verified error of MAAR (green line) decreases more rapidly
in comparison with COLT (red line) during each stage, which indicates that
MAAR can reduce the proportion of potential adversarial examples in each layer.
On the other hand, MAAR maintains the stability of misclassified examples by
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Table 1. The final certified robustness (CR) and latent robustness (LR) of network

trained on MAAR and COLT with the parameters of different stages. LR3rd

represents
the latent adversarial attack is performed on the 3-rd ReLU layer.

Method CR(%) LR3rd

(%)

Stage #1 MAAR (Our work) 54.1 58.3

COLT 40.0 47.5

Stage #2 MAAR (Our work) 57.5 60.1

COLT 48.2 54.5

Stage #3 MAAR (Our work) 60.7 62.0

COLT 57.7 60.8

Stage #4 MAAR (Our work) 62.8 64.7

COLT 59.6 62.1

an additional regularization constraint rather than replacing the training label as
MAT, which mitigates the decrease of original accuracy. As shown in Fig. 2(d),
the accuracy of MAAR (green line) is obviously improved when compared with
MAT (blue line).

Table 2. Comparison with the pior work. Accuracy and certified robustness evaluated
with L∞ perturbation 2/255 and 8/255 on CIFAR-10 dataset, L∞ perturbation 0.1 on
MNIST dataset. ACC: Accuracy, CR: Certified robustness.

Method CIFAR-10 MNIST

ε = 2/255 ε = 8/255 ε = 0.1

ACC (%) CR (%) ACC (%) CR (%) ACC (%) CR (%)

Xiao et al. [21] 61.1 45.9 40.5 20.3 99.0 95.6

Mirman et al. [14] 62.3 45.5 46.2 27.2 98.7 96.8

IBP [5] 58.0 47.8 47.8 24.9 98.8 95.8

CROWN-IBP [25] 61.6 48.6 48.5 26.3 98.7 96.6

COLT [1] 80.0 58.6 51.3 26.7 99.2 97.1

Our work(MAAR) 77.7 62.8 47.6 29.8 99.1 97.3

The Consistent Promotion of MAAR in Layerwise Training Mech-
anism. In addition, we evaluate the final certified robustness of the network
on the checkpoint saved after each training stage. As shown in Table 1, we can
observe that the final certified robustness of our network has been significantly
improved in layerwise training fashion (from 54.1% on Stage #1 to 62.8% on
Stage #4). Furthermore, the final certified robustness of our proposed MAAR
is obviously higher than COLT when evaluated on all stages. Meanwhile, we
investigate the latent robustness (LR) of the model. Generally, we run latent
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adversarial attack (i.e., PGD attack with 150 steps and step size of 0.01) on 3-rd
ReLU layer with parameters of each stage. Table 1 indicates the LR of our pro-
posed MAAR improves from 58.3% on Stage #1 to 64.7% on Stage #4, which
is also obviously outperforming COLT on all stages. These results demonstrate
that MAAR can bring the consistent promotion in layerwise training.

4.4 Certification Under Different Perturbations

We then evaluate the effectiveness of our proposed MAAR on certified robust-
ness with different perturbations. As shown in Fig. 2(b), when perturbations
ε ∈ {2/255, 4/255, 6/255, 8/255}, the certified robustness of MAAR (orange bar)
is obviously higher than COLT (blue bar). Specifically, our method MAAR
achieves the state-of-the-art certified robustness (i.e., 62.8%) compared with
COLT (59.6%) when ε = 2/255.

4.5 Comparison with Prior Work on Different Datasets

We compare our MAAR with COLT [1], CROWN-IBP [25], and IBP [5] in
the same network architecture and parameter settings. Furthermore, we list the
results reported in literature of Xiao et al. [21] and Mirman et al. [14]. Table 2
shows the results.

CIFAR-10. For the L∞ perturbation 2/255. Experiment results show that
MAAR substantially outperforms its competitors by certified robustness (i.e.,
62.8%). Besides, the accuracy of our method also outperforms other works except
COLT. This is because one side-effect of our regularization is that it will maintain
the distribution around misclassified examples, which will decrease the accuracy
in comparison with COLT. Actually, the accuracy–robustness trade-off has been
proved to exist in predictive models when training robust models [18,24]. We
also run the same experiment for L∞ perturbation 8/255, where MAAR also
achieves the best certified robustness (i.e., 29.8%).

MNIST. To futher evaluate the effectiveness of our method, we also conduct
experiments on MNIST dataset with L∞ perturbation 0.1. We report the full
results in Table 2, MAAR also achieve the state-of-the-art certified robustness
(i.e., 97.3%) comparable with best results from prior work (i.e., 97.1%).

5 Conclusion

In this paper, we investigated the inconsistent constraint of certified robustness
between correctly classified and misclassified examples and find that misclas-
sified examples have a recognizable impact on the final certified robustness of
network. Based on this observation, we designed a consistency regularization



A Consistency Regularization for Certified Robust Neural Networks 37

which constrains the output probability distributions of examples in the certi-
fied region of the misclassified example. Our method, named Misclassification
Aware Adversarial Regularization (MAAR), achieves the state-of-the-art certi-
fied robustness of 62.8% on CIFAR-10 with 2/255 L∞ perturbation as well as
97.3% on MNIST dataset with L∞ perturbation 0.1. The method is general and
can be instantiated with most of training risk.

In the future, we plan to investigate the association between accuracy and
certified robustness among different neural networks, and apply our method to
more provable defense frameworks.
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Abstract. The accurate interpretation of neural network about how the
network works is important. However, a manipulated explanation may
have the potential to mislead human users not to trust a reliable net-
work. Therefore, it is necessary to verify interpretation algorithms by
designing effective attacks to simulate various possible threats in the
real world. In this work, we mainly explore how to mislead interpreta-
tion. More specifically, we optimize the noise added to the input, which
aims to highlight a certain area that we specify without changing the
output category of network. With our proposed algorithm, we demon-
strate that the state-of-the-art saliency maps based interpreters, e.g.,
Grad-CAM, Guided-Feature-Inversion, Grad-CAM++, Score-CAM and
Full-Grad can be easily fooled. We propose two situations of fooling,
Single-target attack and Multi-target attack, and show that the fooling
can be transfered to different interpretation methods as well as general-
ized to the unseen samples with the universal noise. We also take image
patches to fool Grad-CAM. Our results are proved in both qualitative
and quantitative ways and we further propose a quantitative metric to
measure the effectiveness of algorithm. We believe that our method can
serve as an additional evaluation of robustness for future interpretation
algorithms.

Keywords: Neural network · Interpretation · Attack

1 Introduction

As deep neural networks (DNNs) are increasingly being deployed in domains such
as healthcare and biology [20], there is growing emphasis on building tools and
techniques that can explain them to ensure that the decision-making mechanism
is transparent and easily interpretable.

As a consequence, there has been a recent surge in post hoc techniques for
explaining DNNs in an interpretable manner. Saliency map is a type of visuali-
sation method that provides an intuitive explanation of the output of model by
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highlighting the input regions which contributed the most to the final output,
including Grad-CAM [1], Grad-CAM++ [3], Score-CAM [4], Full-Grad [5] and
Guided-Feature-Inversion [2]. However, there has been very few analysis that a
manipulated explanation of a DNN may not accurately reflect the accuracy of
the network, especially in a controlled and adversarial setting, making human
user trust in a reliable model influenced.

In this work, we demonstrate significant vulnerabilities in local explanation
techniques that can be disturbed by the visually hardly noticeable noise to gen-
erate disturbed images whose explanations can be arbitrarily controlled. The
perturbation does not change the label of the classification model. Another contri-
bution of our work is to evaluate “goodness” of the fooling. We evaluate whether
the visual area is aligned with a certain area we have predetermined. To sum up,
our key contributions are summarized as follows:

– We introduce a novel algorithm to optimize noise added to images which
fools the interpretation of the input without changing the label predicted by
the classification model. We demonstrate its effectiveness for five explanation
methods and we show that our method (a) attacks both single-target and
multi-target interpretations (b) generalizes to unseen images and (c) transfers
to different interpretation methods.

– We are also the first to fool interpretations with image patches [23].
Recently, [23] showed that image patches can be created for person detection
algorithms. This is a complementary attacking form of noise, considering the
possibility that the attacks in real world is not limited to noise.

– Our results are proved in both qualitative and quantitative ways and we
further propose one quantitative metric that measures the effectiveness of
the adversarial noise generated by our algorithm.

2 Related Work

2.1 Local-level Interpretation Methods

In order to apply DNNs into real world application, their results should be inter-
pretable. The saliency map based interpreters, visualizing DNN internal repre-
sentations, is a more straightforward and important way to understand the way
networks interpret images [21,22]. Various algorithms have been proposed in this
direction. Although these methods have shown great performance in explaining
the decision of network, it is challenging to evaluate whether the explanation is
reliable. We believe our method can serve as an additional evaluation for future
interpretation algorithms.

2.2 Fooling Network Interpretation

[10] used the adversarial image to alter the attribution map while maintaining
the predicted class unchanged which shows that some gradient-based explanation
methods can be highly sensitive to small perturbations in the input. However, as
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is mentioned in the discussion section in [10], the adversarial image after pertur-
bation can lead to an unstructured change in the explanation map in this setting,
i.e., completely replace the explanations. To mitigate this problem, we change
only a small region of the image with our controlled setting. Here, we clearly know
that the manipulated interpretation should be within this region. [8] also altered
explanations of original images. Compared to [10], which was untargeted manip-
ulations, [8] focused on targeted manipulations, i.e., to reproduce a given target
map. [12] showed how saliency methods are unreliable by adding a constant shift
to the input image and checking against different explanation maps. [11] showed
that explanation maps are changed by randomization of (some of) the network
weights. This is different from our method as it modifies the weights of the
network. [9] also propose a novel theoretical framework for understanding and
generating misleading explanations based on MUSE framework [17], but it can
not extend well to other interpretation algorithms. [7] introduce a threat model
by modifying the parameters of the model to fool the interpretations without
hurting the accuracy of the original models. However, in a practical setting, the
adversary requires computationally expensive training and might not always be
able to modify the parameters. Our work is interested in modifying only the pix-
els in a small image area without altering the model. The paper most relevant
to our work is [6] whose attacker based on adversarial patch [19] modifies the
pixels in a small image area and leaves the rest unchanged to fool explanation.
However, they need to change the label to create the adversarial patches.

3 Methods

We propose algorithms to optimize the noise so that when added to the image,
the interpretation of the perturbed image would tend to a specific area without
changing the label predicted by the classification model. In addition, we propose
to use the approach similar to [16] to constraint the noise so that it is not to
be perceived by the human eye. Figure 1 illustrates the overview of our method.
We will mainly experiment on the following explanation methods:

– Grad-CAM (GCAM): This method calculates global average gradient of the
target classification as a weight vector of each pixel belonging to a convolu-
tional layer, then gets the interpretation as the weighted sum of activations of
the convolutional layer discarding the negative values. We refer to the original
publication for more details [1].

– Grad-CAM++ (GCAM++): This method has a more complicated weight
vector calculation than Grad-CAM. This method thinks each pixel on the
gradient contributes differently, so an additional weight is added to weight
the pixel on the gradient [3].

– Guided-Feature-Inversion (GFI): This framework inverts the representations
at higher layers of CNN to a synthesized image, while simultaneously encodes
the location information of the target object in a mask [2].
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Fig. 1. The overview of our attack on interpretation. Top row shows that Grad-
CAM [1] highlights the image location. Our attack algorithm goes beyond fooling the
Grad-CAM visualization while keeping the final prediction unchanged.

– Score-CAM (SCAM): This method firstly extractes feature maps. Each fea-
ture map then works as a mask on original image, and obtain its forward-
passing score on the target class. Finally, the explanation can be generated
by linear combination of score-based weights and feature maps [4].

– Full-Grad (FGrad): This method provides attribution to both inputs and
neurons. They alternate representation of the neural network output in terms
of input-gradients and bias-gradients. See the original reference [5] for more
details.

3.1 Fooling Interpretation with the Noise

Our method misleads the explanation methods to give out wrong interpretation
by optimizing the noise with a new location importance loss, lloim(h,m). Here
h is the interpretation representing the important features of an input image
of spatial dimension D ∗ D for the final prediction score for the class c, and
m ∈ {0, 1}D∗D is a predefined constant binary mask which take value of 0
corresponding to the location of the local area and 1 otherwise. We want to find
an optimal noise z ∈ RD∗D∗3 that changes the explanation of the perturbed
image x̃ ∈ RD∗D∗3 when added to the area of the original input x, so, assuming
the perturbed image is generated by:

x̃ = x + z � (1 − m) (1)

where � is the element-wise product. The total loss function on each training
image is a weighted sum of the cross-entropy loss lce(x̃; c) for the class c, and
the location importance loss:

L(x̃,m, h, c) = lce(x̃; c) + λlloim(h,m) (2)

lloim(h,m) = ‖h(x̃) − (1 − m)‖2 (3)
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in which λ is the hyper-parameter to trade-off the effect of the above two loss
terms, and lloim(h,m) is the value of l2 − norm.

However, it makes no sense to change the interpretation of only one object if
there are multiple objects in the image. In order to solve this problem, we prede-
fine multiple binary masks to obtain respective desired regions simultaneously.
Given an image with n objects, the final perturbed image can be expressed as:

x̃ = x +
n

∑

j=1

(z � (1 − mj)) (4)

And we modify (2) as follows:

L(x̃,mj , hj , cj) =
n

∑

j=1

(lce (x̃; cj) + λj lloim (hj ,mj)) (5)

We take just two objects for example, namely n = 2 in our experiment. In
addition to the single-target attack of interpretation, this work focuses on a more
challenging task, multi-target attack of their interpretations, which can assign a
corresponding different area that we want to highlight to each object, while keep
the class of each object unchanged by a single noise without repeated training.

3.2 Fooling Interpretation with the Universal Noise

Universal attack of interpretation is a stronger and more practical form of attack
wherein we optimize a noise just once that generalizes across images of original
category. Such an attack is possibly strong enough to fool the explanation of an
unknown test image using the noise learned by the training data. To do this, we
adopt the batch processing technology to optimize the summation of losses for
batch images for each category:

L(x̃i, c, hi,m) =
1
N

N
∑

i=1

(lce (x̃i; c) + λ‖hi (x̃i) − (1 − m)‖2) (6)

Here, N represents the batch size (32 in our experiment), and each disturbed
image is synthesized from the corresponding input image, binary mask and the
general noise. Each input image shares the same disturbed noise.

3.3 Fooling Interpretation with the Image Patches

In our paper, we also take image patches [23] to fool interpretations. These
patches can be printed and ‘pasted’ on top of an image to attack person detection.
We improve this by ensuring that the patches fool network interpretation. We
first resize an image into the predefined area, and then fill the remained area with
zeros. The image patch Ipatch will be processed, such as adding noise, modifying
brightness and contrast. The perturbed image is generated by:

x̃ = x � m + Ipatch � (1 − m) (7)

We optimize the Ipatch using the total loss function same as formula (2).
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Algorithm 1: Fooling interpretation through disturbed and invisible noise.
Input: X0, target label c, binary mask m, interpretation method h.
Output: Z, X.

1 Initialize the parameter z, iteration numbers max iter, Ir, λ, ∂, t = 0;
2 while t ≤ max iter do

3 Xt = X0 + Zt � (1 − m);

4 lloim(h, m) = ‖h(Xt) − (1 − m)‖2;

5 L(Zt, m, c) = lce(Zt; c) + λlloim(Zt, m);

6 ˜Zt+1 = Adam(L(Zt, m, c), Ir);

7 Zt+1 ← clip( ˜Zt+1, −∂, ∂);

8 t = t + 1;

9 end
10 X = X0 + Z � (1 − m);

11 return Z, X.

3.4 Constraining the Noise

The generated image is unnatural if we just use the formula (2). Our goal is to
inject a small amount of perturbation in the local area of the given input image
so that the perturbation is not visually perceivable but result in significant misin-
terpretations. To find an Z to minimize (2) with bounded l∞ −norm constraint
(‖Z‖∞ ≤ ∂), we develop an algorithm based on the idea of I-FGSM [16,18].

Let X0 denote the original input image and X denote the perturbed version
of X0, so we adopt the I-FGSM [16,18] update rule to iteratively update Z by
(see Algorithm 1):

Z̃n+1 = Zn + εsgn(∇L(Xn, h, c,m)) (8)

Zn+1 = clip−∂,∂

(

Z̃n+1

)

(9)

Xn+1 = X0 + Zn+1 � (1 − m) (10)

Where sgn∇ is the sign of the gradient of the loss function, ε controls the amount
of contribution that the calculated gradient provides at each iteration, and

clipa,b (Z) = min(max(Z, a), b) (11)

The term ∂ limits the maximum amount of perturbation to prevent noticeable
changes of the perturbed image. The final perturbed image is obtained by X =
XT , where T is the number of iterations.

4 Experiments

We use VGG19, ResNet18 and ResNet50 to experiment with various attack in
all of our experiments. More special, we fool GCAM [1] and GCAM++ [3] on
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ResNet50, SCAM [4] and FGrad [5] on ResNet18, and GFI on VGG19 (as used
in [2]). We consider the ImageNet [14] validation set in our experiments. This
set consists of a total of 50k images. We compare the changes before and after
the interpretation algorithms are attacked.

4.1 Evaluation

In this section, we discuss the detailed experimental evaluation of our algorithm.
More specially, we test how well the heatmap is focused on the area. We use the
Localization metric from the object localization challenge of ImageNet compe-
tition. We draw a bounding box around the tresholded heatmap (0.15 in all of
our experiments), and IOU (intersection over union) will be calculated as the
overlap of the local area annotations and the bounding boxes. The number of
IOUs less than 0.5 are used in our experiment. In this study, we propose and
formulate the metric MPI, which we will refer to as the Mean Position Impor-
tance. We first sum the interpretation heatmap and normalize it to the range
[0, 1] for every image: ̂h = h

‖h‖1
. Based on this, let the relationships between ̂h,

the mask m, the ith image, and the number of the images N be expressed by

MPI = 1
N

N
∑

i=1

∥

∥

∥ĥ � (1 − m)
∥

∥

∥

1
. It will be 1 if the heatmap is completely focused

on the area and 0 if the area is not highlighted at all. We also analyze the effec-
tiveness of the optimized noise generated by our algorithm. We mainly compare
the similarities between saliency maps of the original and the disturbed image
with the Histogram comparison (HC) to calculate histogram of the heatmap
respectively then normalize each, and finally compare the similarities between
them. The value of this metric, a value of 1 indicates that the heatmap has not
been changed, is the smaller, the better. For another similarity metric, we cal-
culate the Spear-man’s correlation coefficient (SC) [13] between saliency maps
for quantifying the fooling effectiveness.

4.2 Single-target Attack of Interpretation

In this part, we show the attack performance on the single-target attack of inter-
pretation task. We fool five interpretation methods, and we choose noise location
along top right area of the image because they have the least probability to cover
the salient object. The adversarial noise mask with size 60 × 60 ( 7% of the image)
is applied. We use 50,000 images of the validation set and Adam [15] optimization
algorithm for per image. The hyperparameter choices used in our single-target
attack experiments are summarized in Table 1. The GFI [2] is trained on VGG19
along with 60 iteration steps, 10−2 learning rate. Figure 3 corresponding to four
metrics presents summary of all the results. Figure 2 shows the qualitative attack
results.
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Table 1. Hyperparameters used in our
analysis.

Methods Iterations Ir λ ∂

GCAM [1] 50 10−1 10−1 70/255

GFI [2] 50 10−5 8 ∗ 10−2 80/255

GCAM++ [3] 100 10−1 10−1 50/255

SCAM [4] 60 10−1 5 ∗ 10−1 120/255

FGrad [5] 150 10−1 5 ∗ 10−4 100/255

Table 2. Results for the image patches
within the 7% of the input.

MPI(%) IOU(%) HC(%) SC(%)

No attack 2.88 99.96 100 100

Attack 33.87 36.64 77.70 58.04

Fig. 2. Interpretations of the baseline and the fooled on an image from Ima-
geNet validation set, of which the class label is ‘African elephant’ (shown in
(a)). The topmost row shows the baseline interpretations given the true class. The sec-
ond row shows the disturbed images. The bottom row shows the fooled interpretations.
See the baseline explanation results are changed dramatically when fooled

Fig. 3. Results before and after five interpretation algorithms are attacked.
Note that for IOU, lower is better while for MPI, higher is better.
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4.3 Multi-target Attack of Interpretation

With our algorithm, we can randomly decide the areas that we want the inter-
pretation to output high importance of two objects as is shown in Fig. 4 for
GCAM [1] and GCAM++ [3]. In our experiment, we set the area to the top
left and right corner, respectively. This is a more evident form of fooling the
interpretation, since that appearance that the explanation is inconsistent with
the predicted category in an image containing more than one object indicates
that the interpretation method is invalid.

Table 3. Comparison of MPI(%) for the single noise and our universal noise.

Methods Slug Pier Warplane Stinkhorn Green snake Traffic light Spiny lobster Toilet tissue European gallinule Red-breasted merganser

Original 2.22 2.76 2.00 2.62 2.98 2.94 1.98 2.50 3.57 2.95

Universal 38.04 22.65 25.25 31.52 36.90 37.79 32.38 35.24 32.56 31.47

Single 15.25 13.37 12.93 9.27 17.83 9.71 10.96 19.53 10.44 15.36

Fig. 4. Interpretation of the ‘tiger’ and ‘polecat’ before and after their inter-
pretations for ResNet50 are attacked. The odd columns show original interpre-
tations. The even columns show fooled interpretations. We set the area to the top left
for ‘polecat’ and top right for ‘tiger’.

4.4 Transfer to Different Interpretation Methods

The perturbed noise also possesses the transferability amoung different inter-
pretation methods, which means the perturbed image generated for attacking
one interpretation method can also mislead another method. For example, we
observe that our noise optimized for FGrad [5] has varying effectiveness against
GCAM [1], while noise that is optimized for GCAM is ineffective against FGrad,
finding that the GCAM is more easy to fool. The similar phenomenon has been
found in other explanations as is shown in Fig. 5.

4.5 Fooling Interpretation with the Universal Noise

Without loss of generality, we validate our method on a subset of 10 ImageNet
categories, of which each category contains 260 test images and 1040 train images.
For every fixed category, to learn an universal noise using train data, we fool
GCAM [1] on ResNet50 along with 250 iterations, Ir = 0.1, λ = 0.1, ∂ = 70/255
and then we evaluate it on test data. To prove the generalization of our noise,
we calculate the effect of a single training image on each test image, and then
evaluate 1040*260 attacks. The results are shown in Fig. 6 and Table 3 reflecting
the universal noise has better generalization.
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4.6 Fooling Interpretation with the Image Patches

In this paper we also consider image patches [23], which not just add noise to the
particular area. Figure 7 shows examples of our patches to fool GCAM [1]. A lot
of factors influence the appearance of the patch, so we do some transformations
on the patch before applying it to the input: noise is put on the patch, the
brightness and contrast of the patch is changed. In our experiment, We choose
an image as our patch also placed on the top right corner of the input, and
we fool GCAM on ResNet50 along with 150 iterations, Ir = 0.01, λ = 0.1 and
then we evaluate it on 5,000 random images from the ImageNet validation set
in Table 2.

Fig. 5. Results showing transfers of our adversarial noise trained for
GCAM++, GFI, SCAM, FGrad and evaluated on GCAM. The first row
shows original interpretations. The second row shows the effect of the transfers.

Fig. 6. GCAM visualization results comparing our universal noise vs the
noise from a single training image. (b), (f) are the original interpretations. As you
can see from columns three and four, our universal noise reflects better attack effect.
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Fig. 7. Example of image patches to fool GCAM. (a) and (b) show the orig-
inal images and interpretations, (c) and (d) show the disturbed images and fooled
interpretations.

5 Conclusion

In this work, we introduce adversarial noise (small area, 7%, with restricted
perturbations) which fool the interpretation of the unchanged category. We suc-
cessfully design the adversarial noise that can highlight the small area that we
specify. Compared with the existing attack algorithms, our proposed method is
simpler and has better generalization performance. Moreover, we show that our
attack works in various settings: (1) attacks multi-target interpretations, (2) gen-
eralizes across images of same category, (3) transfers from Grad-CAM++, GFI,
Score-CAM and Full-Grad to Grad-CAM. We conclude that Grad-CAM is more
vulnerable. We also fool interpretations with image patches, and some processes
are taken to make the patches more robust. Our current noise do not transfer
well to completely different interpretations, optimizing for different interpreta-
tions at the same time might improve upon this. In general, our work suggests
that the community needs to develop more robust interpretation algorithms.
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Abstract. The feature pyramid network (FPN) has achieved impressive results
in the field of object detection and instance segmentation by aggregating features
of different scales, especially the detection of small objects. However, for some
special large objects (such as tables, chairs, etc.), It is difficult to achieve good
results for FPN. In this paper, we propose a new simple but effective network, the
Bidirectional Path Network (BPN), for the problems that FPN cannot solve. In
simple terms, it consists of a top-to-down FPN and bottom-to-up FPN. This bidi-
rectional network structure can greatly enrich high-level semantic information
and improve the detection effect of these large objects. And we also introduce
dense connections to enrich the output features further. We tested our method
on the COCO dataset. Firstly, on the object detection task, our method obtains
comparable results with the state-of-the-art benchmark. Then, on the instance
segmentation task, our method also achieved good results.

Keywords: Object detection · Instance segmentation · Feature pyramid
network

1 Introduction

Instance segmentation that aims to identify and localize every object instance within
an image while accurately segmenting each instance is no easy task. It is considered a
combination of object detection and semantic segmentation. The interest in this field is
driven by a broad set of applications, such as self-driving vehicles, medical imaging, and
video surveillance. Recently, many powerful networks like Fast R-CNN [5], Faster R-
CNN [25], Mask R-CNN [8], PANet [17] have been proposed with the development of
convolutional neural networks. Many of them have achieved great rank or performance
on the instance segmentation task.

The latest models that perform best on the coco dataset are basically based on FPN
[13], like PANet [17], CenterNet [3]. Generally speaking, FPN uses high-level semantic
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features to detect large objects, and low-level semantic features to detect small objects.
Its top-down feature aggregation structure makes the output low-level features contain
rich information. Therefore, FPN [13] has a very good effect on small object detection.
However, the high-level semantic features output of FPN only includes information of
one scale, which makes FPN not perform well on some special large objects (although
large objects are usually thought to be well detected). Figure 1 shows the results of the
winner of PASCAL VOC Challenge 2012, which backbone is FPN. We can see that its
performance on class Table and class Plant is even worse than the bottle. It should be
noted that the former belongs to large objects, and the latter belongs to small objects in
the usual sense. We always pay too much attention to the detection of small objects and
ignore the detection of these special large objects.

(a) (b)
Plane Bicycle Bird Boat Bottle Bus Car Cat Chair Cow

90.4 90 82.8 77.4 76.8 89.5 85.9 93.3 73.0 86.7

Table Dog Horse Motor Person Plant Sheep Sofa Train TV

68.2 92.7 92.5 90.6 90.3 69.1 84.1 73.3 90.3 78.9

(C)

Fig. 1. Table (c) lists the result of the winner of the PASCAL VOC Challenge 2012, whose back-
bone is FPN. The worst results come from categories Table and Plant. Figure (a) and figure (b)
show the example images of those two classes, respectively. We can see that there are lots of
irrelevant background information inside these bounding boxes.

In this paper, we intuitively consider this phenomenon caused by the extreme
background-foreground information imbalance within the bounding box. For those
instances bounding boxes with large background areas, it is essential to utilize the fea-
ture at the lower level, not just high-level features. Integrating information from several
spatial scales is not uncommon. FPN [13] assign small proposal to low feature levels
and vice versa. Simple but crude, this method ignores the case mentioned above. PANet
[17] resolve the problem by augmenting a bottom-up path and cutting across the layers.
Liao [1] proposed an enhanced-FPN architecture to lateral connecting feature maps.
The above methods tried to maintain as much information undergoing the long path as
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Fig. 2. Illustration of our framework. Note that we omit the channel dimension of feature maps
for brevity.

possible. Inspired by bidirectional RNN, we present a novel Bidirectional Path Network
(BPN) by exploiting FPN [13] in parallel to strengthen feature propagation and better
fuse localized and semantic information to address this problem. The dense connec-
tion idea is implemented in two ways. When the primary features are extracting from a
VGG backbone, they undergo a fully dense network directly connecting with each other
and form intermediate ones. Then these intermediate features are sent to two parallel
paths, a top-down path transferring semantic information gradually and a bottom-up
path transferring detail and spatial information. At last, a set of high-quality feature
maps are created for generating proposals. In addition, we also introduce a multi-level
feature fusion (MFF) block to make each scale feature fuse the features of all scales,
which thereby enhances the information amount of features. Similar to Mask R-CNN,
the following of BPN is a class label prediction branch and a mask branch for mask pre-
diction. They both take different scales of proposals as input. We evaluate the method
on COCO [15] dataset, and the experimental results show the good performance of our
method (Fig. 3). The contributions of this paper can be summarized as:

1. A multi-level feature fusion block is proposed to fuse features at multiple resolu-
tions.

2. A bidirectional FPN network is proposed to boost the performance of FPN.
3. We validate the effectiveness of our method on the coco dataset.

2 Related Work

2.1 Proposal-Based and Proposal-Free Approaches

SDS [4] is built upon R-CNN [6]. It employs a method that combines multiple-scale
regions into object candidates instead of SS. Hypercolumns [7] improved SDS via
hypercolumns as pixel descriptors. In comparison, Fast R-CNN [5] followed SS [29]
and proposed RoI Pooling, where each candidate is divided into M × N blocks, and
then each block is max pooled so that the candidate regions are converted into uniform
size feature vectors. Soon after, Faster R-CNN [25] and Mask R-CNN [8] is presented.
The former replaces SS with RPN, while the later generating feature maps of different
scales. Both of the above methods have improved performance a lot.
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Fig. 3. Images in each row are visual results of our model (Top) and Mask R-CNN (Down) on
COCO test-dev.

Although the proposal-based approaches are popular, many proposal-free methods
come out one after the other. PFN [12] use off-the-shelf clustering method and for post-
processing. [36] encodes instance on a pixel-level while [36] samples patches from the
image and label each to have a patch-level prediction. [32] detect the instances from
transformed maps. [26] detects and segments an object at a time by using recurrent
neural network. [1] introduced inter-pixel Relation Network training with pseudo labels
to estimate rough boundaries. [33] adopted keypoint-based representation.

2.2 Integrating Multi-level Knowledge

Local and global information are both required to achieve a good semantic segmentation
result. Many approaches aim to make CNNs aware of multi-level information. [34]
uses dilated convolutions instead of pooling layers to integrates multi-scale information.
Feature fusion is another common way of aggregating context knowledge. PSPNet [37]
proposed a pyramid pooling module to improve the capability of embedding global
context information. ReNet [31], ReSeg [30] replace the omnipresent convolution and
pooling layer with ResNet [9] layers, which composed of four recurrent neural networks
that sweep the image. [23] trains different window sizes to predict labels. [22] makes
global convolution practical through a large kernel. [4] described a method based on a
Laplacian pyramid to combine both lower and higher resolution feature maps. Based on
FCN [19], U-Net [27] combined high resolution feature with upsampled output, while
[16,21] aggregates the results from all proposals. FPN [13] proposed feature pyramid
networks and showed significant improvement.

3 BPN

The structure of BPN is shown in Fig. 2. It mainly consists of two parts, multi-level fea-
ture fusion (MFF) and bidirectional residual dense connection (BRDC). MFF enables
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Fig. 4. Structure of the MFF. C denotes the channels of the feature.

the output of the network to aggregate features of different resolution sizes. BRDC
combines the output from a top-to-down residual dense connection (RDC) block and
a bottom-to-up RDC block. The structure of the top-to-down RDC is similar to the
bottom-to-up RDC, and only the feature fusion direction of the former is opposite to
the latter. At last, a set of high-quality features are created with those two blocks for
generating proposals. Similar to Mask R-CNN [8], the following are a class label pre-
diction branch and a mask branch for mask prediction.

3.1 Multi-level Feature Fusion

As mention in the Introduction, it is essential to integrate information from multiple
spatial scales, especially for objects with a larger background context, which implies
that we need to balance local and global information. So, we design a multi-level feature
fusion block to combine both local and global contexts, which help to achieve good
pixel-level accuracy and avoid local ambiguities. The structure of MFF is shown in
Fig. 4.

The original features are extracted from a backbone, like VGG, with a scaling step
of 2. The output of the backbone is denoted as F1, F2, F3, F4, F5. Our multi-level fea-
ture fusion makes dense connection [10] on the original features. Every output of MFF
can receive information from any other level through dense connection, not just preced-
ing layers, as illustrated in Fig. 4. The output of MFF is calculated as:
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M2 = Conv(F2 + U(F3) + U(F4) + U(F5)) (1)

M3 = Conv(D(F2) + F3 + U(F4) + U(F5)) (2)

M4 = Conv(D(F2) +D(F3) + F4 + U(F5)) (3)

M5 = Conv(D(F2) +D(F3) +D(F4) + F5) (4)

where D(.) means a downsampling operation, U(.) means a upsampling operation and
Conv means a 3 × 3 convolution operation. Each new feature Mi is the element-wise
sum of the all original features experienced several times downsampling with 3×3conv
or several times upsampling. In that way, the new featureMi combines features of mul-
tiple resolutions, so that Mi contains rich information. When the object to be detected
has a large background (Fig. 1), MFF can increase information of high-level feature,
thereby improving the accuracy of object detection.

3.2 Residual Dense Connection

Fig. 5. Structure of the FPN(Left) and our residual dense connection(Right).

The powerful performance of FPN has been proven [8,13]. In Fig. 5, the output features
of each resolution only fuse the features of two resolutions except the highest resolu-
tion output (it is just one). We think it is not enough. In order to detect those objects
whose bounding box is with a large background information, we should make the out-
put features contain enough information. To this end, we designed a residual dense
connection(RDC), it can be calculated as:

N ′
2 = M2 (5)

N ′
3 = Conv(M2 + U(N ′

3)) (6)

N ′
4 = Conv(M2 + U(N ′

3) + U(N ′
4)) (7)

N ′
5 = Conv(M2 + U(N ′

3) + U(N ′
4) + U(N ′

5)) (8)

where Conv means a 3 × 3 convolutional operation and U(.) means a upsampling
operation. There are L(L+1)

2 connections in a network with L layers. In our case, it is
six. Each feature in the bottom-up pathway is combined with all of the features from any
other lower level. RDC makes the N ′

2 used to detect large objects incorporate the other
four resolution information, while for FPN, it is just two. For N ′

3, in the same, RDC
also contains more information than N ′

3 in FPN. This allows RDC to help improve the
detection of large objects with a lot of background information.
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Table 1. Performance comparison (%) with the state-of-the-art methods on the MS-COCO test-
dev dataset. MS means multi-scale training

Method AP AP50 AP75 APS APM APL Backbone

Faster R-CNN +++ [9] 34.9 55.7 37.4 15.6 38.7 50.9 ResNet-101

Fitness R-CNN [28] 41.8 60.9 44.9 21.5 45.0 57.5 ResNet-101

Cascade R-CNN [2] 42.8 62.1 46.3 23.7 45.5 55.2 ResNet-101

Grid R-CNN w/ FPN [20] 43.2 63.0 46.6 25.1 46.5 55.2 ResNeXt-101

Champion 2016[10] 41.6 62.3 45.6 24.0 43.9 43.9 ResNet-101

Mask R-CNN [8] 39.8 62.3 43.4 22.1 43.2 51.2 ResNeXt-101

RetinaNet800 [14] 39.1 59.1 42.3 21.8 42.7 50.2 ResNet-101

YOLOv2 [24] 21.6 44.0 19.2 5.0 22.4 35.5 DarkNet-19

SSD513 [18] 31.2 50.4 33.3 10.2 34.5 49.8 ResNet-101

RefineDet512 [35] 36.4 57.5 39.5 16.6 39.9 51.4 ResNet-101

RefineDet512 (MS) [35] 41.8 62.9 45.7 25.6 45.1 54.1 ResNet-101

CornerNet511 (MS) [11] 42.1 57.8 45.3 20.8 44.8 56.7 Hourglass-104

CenterNet511 (MS) [3] 47.0 64.5 50.7 28.9 49.9 58.9 Hourglass-104

Ours[MS] 42.8 63.6 47.0 25.9 45.1 52.1 ResNet-50

Ours[MS] 46.9 68.2 51.5 30.5 49.6 56.6 ResNeXt101

3.3 Bidirectional Paths Network

In the previous part, we introduce the RDC module, which uses dense connections to
enrich the information of low-level semantic features like N ′

2, N
′
3. We think that high-

level semantic features N ′
4, N

′
5 can be enriched in a similar way. Inspired by bidirec-

tional RNN, we designe a bottom-up dense connection block, whose structure is shown
in Fig. 6 and it can be calculated as:

N ′′
5 = M5 (9)

N ′′
4 = Conv(M4 +D(N ′′

5 )) (10)

N ′′
3 = Conv(M3 +D(N ′′

4 ) +D(N ′′
5 )) (11)

N ′′
2 = Conv(M2 +D(N ′′

3 ) +D(N ′′
4 ) +D(N ′′

5 )) (12)

When the bottom-up augmentation output N ′
2, N

′
3, N

′
4, N

′
5 and the top-down augmen-

tation output N ′′
2 , N

′′
3 , N

′′
4 , N

′′
5 are ready, a combination process is conducted to fuse

features in corresponding scale. N ′
i and N ′′

i are fused through element-wise sum to
Pi, which are the final feature maps to be fed into prediction networks. We name it as
bidirectional residual dense block (BRDC).

Pi = N ′
i +N ′′

i (13)
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Fig. 6. Structure of our bidirectional paths network. It has a bottom-up dense connection block
(Top) and a top-down dense connection block.

4 Experiments

We compare our method with state-of-the-art on challenging COCO [15]. Comprehen-
sive ablation study is conducted on the COCO dataset.

4.1 Implementation Details

We follow the PANet, Mask R-CNN and FPN based to build BPN. We adopt image
centric training [5]. For each image, we sample 512 region-of-interests (ROIs) with
positive-to-negative ratio 1 : 3. Weight decay is 0.0001 and momentum is set to 0.9.
Other hyper-parameters slightly vary according to datasets and we detail them in respec-
tive experiments. Following Mask R-CNN, proposals are from an independently trained
RPN [13] for convenient ablation and fair comparison, i.e., the backbone is not shared
with object detection/instance segmentation. For multi-scale training, we set longer
edge to 1, 400 and the other to range from 400 to 1, 400. We calculate mean and
variance based on all samples in one batch across all GPUs, do not fix any parame-
ters during training, and make all new layers followed by a batch normalization layer,
when using multi-GPU synchronized batch normalization.

4.2 Experiments on COCO

Dataset and Metrics. COCO [15] dataset is among the most challenging ones, for
instance, segmentation and object detection due to the data complexity. It consists
of 115k images for training and 5k images for validation (new split of 2017). 20k
images are used in test-dev, and 20k images are used as test-challenge. Ground-truth
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Table 2. Performance comparison (%) with the state-of-the-art methods on the MS-COCO val
dataset. MS means multi-scale training

Method AP bb AP bb
50 AP bb

75 AP bb
S AP bb

M AP bbL Backbone

Mask R-CNN [8] 33.4 54.3 35.5 14.1 35.7 50.8 ResNet-50

PANet [17][MS] 37.8 59.4 41 19.2 41.5 54.3 ResNet-50

Ours[MS] 37.6 60.1 40.3 19.8 40.5 54.3 ResNet-50

Ours[MS] 40.7 64.6 43.7 21.7 43.9 58.3 ResNeXt-101

Table 3. Ablation study on COCO val dataset. The backbone of baseline method is FPN. “+”
means we replace FPN with other block.

Model AP bb AP bb
50 AP bb

75 AP bb
S AP bb

M AP bbL

Baseline 39.2 61.5 42.5 24.2 42.0 47.1

+MFF 39.8 59.1 42.3 21.8 42.7 50.2

+BRDC 39.9 61.6 43.4 24.5 42.8 47.7

+MFF + BRDC 40.2 61.9 43.4 24.5 42.7 48.2

labels of both test challenge and test-dev are not publicly available. There are 80
classes with pixel-wise instance mask annotation. We train our models on the train-
2017 subset and report results on the val-2017 subset for ablation study. We also report
results on test-dev for comparison. We follow the standard evaluation metrics, i.e.,
AP,AP50, AP75, APS,APM and APL. The last three measure performance with
respect to objects with different scales. Since our framework is general to both instance
segmentation and object detection, we also train independent object detectors. We report
mask AP, box ap APbb of an independently trained object detector, and box ap APbbM
of the object detection branch trained in the multi-task fashion.

Hyper-parameters. We take 16 images in one image batch for training. The shorter
and longer edges of the images are 800 and 1000, if not especially noted. For instance,
segmentation, we train our model with learning rate 0.02 for 120k iterations and 0.002
for another 40k iterations. For object detection, we train one object detector without the
mask prediction branch. Object detector is trained for 60k iterations with learning rate
0.02 and another 20k iteration with learning rate 0.002. These parameters are adopted
from Mask R-CNN and FPN without any fine-tuning.

Object Detection Results. BPN is more like a backbone network. It can be used to
replace FPN as a new benchmark backbone. To this end, we first test the performance
of BPN on object detection tasks. The experimental results are shown in Table 1. We
compared the effects of BPN and other detection networks on the COCO test dataset,
including some one-stage detectors and two-stage detectors. Since BPN is based on
mask-rcnn, it also belongs to two-stage detectors. We can see that BPN exceeds all one-
step detectors and achieves comparable results with the best two-stage method. These
things prove the effectiveness of BPN.
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Instance Segmentation Results. FPN can be used as a backbone network for a variety
of tasks, such as object detection and instance segmentation. In the previous section,
we discuss the performance of BPN in object detection. Therefore, in this section, we
mainly discuss the performance of BPN on instance segmentation task. Since COCO
[15] does not currently provide test services for instance segmentation, we can only
perform experiments on the val dataset. The results are shown in Table 2. We can see
that the performance of BPN is much better than mask-rcnn. The former even exceeds
the latter by 3%. In addition, BPN achieved comparable results with PANet. Note that
PANet is the state-of-the-art method.

4.3 Ablation Study

In this section, we mainly analyze the impact of our proposed two modules, MFF and
BRDC, on the performance of BPN. The backbone of baseline is FPN, we use MFF
module or BRDC module to replace FPN to build a new network. The experimental
results in the COCO val dataset for object detection are shown in Table 3. All methods
are trained with multi-scale training. We can see that the performance of MFF block or
BRDC block is better than FPN, and the combination of MFF and BRDC can achieve
better experimental results. It means that both MFF and BRDC can be used as a back-
bone to improve the performance of a detector, and the combined use of MFF and
BRDC can bring better results

5 Conclusion

In this article, we point out that the FPN network performs poorly on the detection
of some special large objects and analyze the reasons behind this phenomenon. Based
on this, we propose a new feature aggregation network, Bidirectional Path Network.
It has two parts, a Multi-level feature fusion module (MFF) and a bidirectional dense
connection module (BRDC). MFF can make each output feature contain all input infor-
mation, thereby enhancing the information of the output features. The BRDC module is
composed of a top-to-down residual dense connection (RDC) block and a bottom-to-up
RDC block. The RDC block is similar to the FPN. It can be implemented by adding
some extra connections to a FPN. The structures of MFF and BRDC are simple, and
it is easy to implement those two blocks. We test the performance of BPN on the coco
dataset, and the results show that BPN performs well on both the detection task and the
instance segmentation task, which implies that BPN can be used as a new feature fusion
backbone to replace FPN.
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Abstract. Sturge-Weber syndrome (SWS) is a vascular malformation
disease, and it may cause blindness if the patient’s condition is severe.
Clinical results show that SWS can be divided into two types based
on the characteristics of scleral blood vessels. Therefore, how to accu-
rately segment scleral blood vessels has become a significant problem in
computer-aided diagnosis. In this research, we propose to continuously
upsample the bottom layer’s feature maps to preserve image details, and
design a novel Claw UNet based on UNet for scleral blood vessel segmen-
tation. Specifically, the residual structure is used to increase the number
of network layers in the feature extraction stage to learn deeper features.
In the decoding stage, by fusing the features of the encoding, upsam-
pling, and decoding parts, Claw UNet can achieve effective segmentation
in the fine-grained regions of scleral blood vessels. To effectively extract
small blood vessels, we use the attention mechanism to calculate the
attention coefficient of each position in images. Claw UNet outperforms
other UNet-based networks on scleral blood vessel dataset. The robust-
ness test also shows that the network structure has a better effect in
resisting external Gaussian blur. The scleral blood vessel dataset can be
downloaded by https://figshare.com/s/87d375bb37fd72912bee.

Keywords: Sturge-Weber syndrome · Scleral blood vessel · Medical
image segmentation · Glaucoma · UNet

1 Introduction

Early diagnosis is significant for diseases such as glaucoma, hypertension, and
diabetic retinopathy which lead to human vision deterioration [1]. Ophthalmol-
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ogists typically access the clinical condition of retinal blood vessels based on the
retinal fundus images, and this is an effective indicator for the diagnosis of var-
ious eye diseases [2]. Sturge-Weber syndrome (SWS) is a vascular malformation
disease, and it will cause glaucoma [3]. When the symptoms are severe, SWS
can cause damage to the skin, brain, and eyes. Glaucoma caused by SWS has
two onset peaks viz. onset at birth and onset in adolescence. Due to the seri-
ousness of SWS, it has received great attention from ophthalmologists. Studies
have found that the distribution of scleral blood vessels is abnormal for SWS
patients. This abnormality may increase the outflow resistance, which in turn
leads to glaucoma [4,5]. During trabeculotomy, ophthalmologists will divide the
patients into two groups based on the degree of blood vessel expansion, whether
there is a thick grid-like structure, and whether the blood vessel density of the
surgical site is increased. Patients with diffuse vasodilatation and a thick grid-like
vascular network have a lower surgical success rate, only 36% in 2 years, while
the other group is as high as nearly 90% [6]. The artificial grouping is difficult
to promote and requires a high clinical experience. Therefore, there is an urgent
need to perform real-time automatic segmentation of scleral blood vessels. It is
meaningful for ophthalmologists to take different surgical methods to improve
the patient’s prognosis and protect the optic nerve to the greatest extent.

The existing blood vessel segmentation approaches are mainly designed for
fundus images. Unlike fundus images, in scleral vascular images, the vessels to be
segmented are denser and have different scales. In addition, it may be not possible
to obtain scleral vascular images with high quality during trabeculotomy. With
the rapid development of convolutional neural networks (CNNs) [7], a variety
of end-to-end segmentation models have been developed, such as fully convo-
lutional neural networks (FCNs) [7], UNet [8], PSPNet [9] and DeepLab [10].
Among them, UNet shows a good segmentation effect on medical images. The
decoder of UNet provides a high-level semantic feature map, and the encoder pro-
vides a low-level detailed feature map. These two phases are combined through
skip connections. UNet++ [11] improves the strength of these connections by
introducing nested and dense skip connections, reducing the semantic difference
between encoder and decoder.

To obtain a good segmentation effect on scleral blood vessel images, we pro-
pose a novel UNet-based architecture called Claw UNet by adding skip connec-
tions between the deepest feature maps and the decoders. Each decoder part is
connected with the upsampling of the bottom layer. By repeatedly using high-
level semantic feature maps, the location information in the images can be cap-
tured from a complete scale, which helps to accurately segment, especially for
the detailed areas of scleral blood vessels.

The objectives of this study are as follows:

1. A novel UNet-based network Claw UNet is proposed, which makes full use of
the high-level semantics and can achieve effective segmentation in the fine-
grained regions of scleral blood vessels.
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2. The attention module and residual structure are added to make our net-
work concentrate on the boundary segmentation of small blood vessels in the
images.

3. We first establish scleral blood vessel image dataset, and the performance of
Claw UNet is validated on this dataset. Gaussian blur and Gaussian noise
are also added to the images to test the robustness of the network.

Fig. 1. The architecture of Claw UNet.

2 Claw UNet

Claw UNet combines the encoding and decoding structure of UNet, the nested
and dense skip connections of UNet++ to achieve the ideal segmentation effect.
Noteworthily, we respectively introduce a residual structure and an attention
mechanism in the encoding part and the decoding part to further improve the
network performance.

2.1 Claw UNet Architecture

The overall structure of Claw UNet is shown in Fig. 1. It contains three stages:

1. Encoding part: extract image features, learn image texture information, and
use residual structure to realize shallow learning of deep information.

2. Bottom upsampling part: retain the deepest details in the scleral blood vessel
images, and improve the detailed performance of the segmentation at the
branch of the blood vessels.

3. Decoding part: upsample to restore the image size, and use the attention
mechanism to combine the features of other parts for fusion to achieve an
interpretable segmentation effect.
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Claw UNet takes a scleral blood vessel image with the size of 512 × 512 as
input. The first convolution operation uses kernels with the size of 7×7, and the
stride is set to 2 to adjust the image size to 256 × 256. Max-pooling operation
is used for downsampling to reduce the size of feature maps. For the following
encoding parts, residual blocks are applied for all convolutional operations. The
kernels in residual blocks are all set to 3 × 3 and the numbers of kernels are set
to 32×2i−1, where i represents the layer number of the encoder. After this oper-
ation, we obtain feature maps xi,0

En with different depths corresponding to each
layer. The size of feature maps of the i − th layer is 512/2i. The downsampling
part contains a total of four times, so the deepest feature maps are 16× 16 with
the depth of 512.

In the decoding part, the feature maps after convolution operation are upsam-
pled. To fuse the extracted features, the decoder xi,2

De is combined with the cor-
responding encoder feature map xi,0

En. The core of our Claw UNet is to send the
xi,1

Up that is sampled 4 − i times from the bottom feature maps to the decoder.
This operation allows us to more fully exploit deeper features to maintain more
image details. The skip connection can be expressed by the following formula.

when i = 1, · · · , N − 1,

xi,2
De =

[
C

(
D

(
Xk,0

En

))i−1
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(
X i,1
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)
,C

(
U

(
Xk,2
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))N
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]
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when i = N ,
xi,2
De = xi,0

En (2)

By concatenating the feature maps of encoding part, decoding part, and
upsampling part of the bottom layer, the features of images can be fused together
through a convolution operation. After each convolution operation, batch nor-
malization (BN) [12], and ReLUs [13] are added. The BN layer can keep the
training set and the test set independent and identically distributed, preventing
the input distribution from gradually moving closer to both ends of the nonlin-
ear function, resulting in a more obvious gradient in backpropagation and easier
convergence. The linear activation function ReLU adds a threshold to the input
to simplify the back propagation and improve the optimization effect.

It is worth mentioning that the attention mechanism is introduced between
short connections. xi,0

En and xi,1
Up are combined with xi,2

De respectively to calculate
the attention coefficient. This operation makes small areas easier to get more
attention during segmentation. The first layer’s concatenation does not use the
attention mechanism, because the upsampling part has been completed. After
that, the deconvolution operation restores the image size from 256 × 256 to the
initial size of 512×512. Finally, the Sigmoid function after convolution with size
of 3 × 3, BN and ReLUs for twice makes the output a binary image.

2.2 Feature Learning and Fusion

In this section, we will introduce how our network structure learns features and
fuses different feature maps.
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Fig. 2. Specific structure inside the attention block. A deep upsampling part is added
as the input of the third attention.

To effectively learn the deep features, we modify the fundamental encoding
block to the structure of the residual module and take Resnet-34 as the back-
bone of the downsampling part. The res-blocks can be divided into four parts
corresponding to four layers in Claw UNet. In the same part, the same number
of filters are used to maintain the same number of feature maps. As the num-
ber of encoding layers continues to increase, the number of filters also increases
in multiples, so that the time complexity of each layer is similar. The residual
part is connected by inserting shortcuts. It is worth noting that when inserting
connections in the same dimension, other operations are not required. When
inserting connections between different dimensions, additional zero entries can
be added to achieve dimension matching. Four parts contain 3, 4, 6, 3 shortcuts
respectively and each short connect is established between two layers of 3 × 3
convolution.

By integrating the decoding, upsampling and encoding parts, the segmen-
tation of small areas may get better performance. The attention mechanism
proposed in [14] uses the features of the next level to supervise the features of
the upper level, and optimizes the segmentation by reducing the activation value
of the background to achieve end-to-end output.

As shown in Fig. 2, the feature maps in the decoder and the feature maps in
the corresponding encoder are sent to the module together. The attention coeffi-
cient is more targeted to the local small area, which helps improve performance
[15]. To maintain more details in images, we also send the feature maps from
the bottom upsampling part into the attention block together, and therefore the
generated coefficients pay more attention to the deep features.

In the attention block shown in Fig. 2, g, xl, and yl represent the feature
matrix of the decoding part, the encoding part, and the bottom upsampling
part respectively. Following, xl and yl are multiplied by a certain coefficient to
achieve attention and then concatenate with g. The obtained feature maps are
entered into the next layer of the decoding part. The resampler here resamples
the feature map to the original size of xl and yl. The calculation of the attention
coefficient can be expressed by the following formula:
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Fig. 3. Comparison of (a) Claw UNet, (b) UNet, and (c) UNet++.
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where g, yl, and xl are respectively multiplied by the weight matrix. The
weight matrix can be learned through backpropagation to obtain the importance
of each element of g, yl, and xl. That is to say, the purpose of introducing
attention is to learn the importance of each element and target [14].

2.3 Comparison with UNet and UNet++

According to Fig. 3, we simply compare the similarities and differences between
the proposed Claw UNet, UNet, and UNet++. Figure 3(b) shows that UNet uses
an ordinary skip connection. The deep and shallow image features are captured
by the encoding layers, and the precise localization on the symmetrical paths are
realized by the decoding layers. The network realizes the end-to-end training,
and can get better results on a small dataset. However, in this decoding process
only uses the information in the corresponding encoder, and thus many details
are often overlooked. Figure 3(c) shows that UNet++ uses nested and dense skip
connections, and the redesigned skip connections aim to reduce the semantic gap
between the feature maps of the encoder and decoder. Both of the above struc-
tures are short of exploring image information on a complete scale. Figure 3(a)
shows that Claw UNet upsamples the feature maps of the bottom layer multiple
times and has skip connections among the encoder, the decoder, and the feature
maps upsampled from the bottom layer. We believe that when the feature maps
from the decoder, the encoder, and the deepest layer are semantically similar,
the optimizer will process the details in the image more effectively.

3 Experiments and Results

3.1 Experimental Protocol

Dataset. We establish the scleral blood vessel image dataset, and the images are
taken from the actual surgery. Because it is more difficult to take images during
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Table 1. Performance comparison of Claw UNet and other UNet-based networks on
scleral blood vessel dataset. The best performer is highlighted in bold.

Model UNet UNet++ ResUNet Channel-UNet Attention-UNet R2UNet Claw UNet

MIoU (%) 80.04 80.26 80.22 80.16 80.40 78.39 80.78

Aver hd 12.63 12.49 12.15 12.29 12.54 12.88 12.02

Dice (%) 88.49 88.65 88.59 88.55 87.81 87.47 88.90

Table 2. Performance comparison of UNet++, ResUNet adding attention mechanism
and Claw UNet without residual blocks and attention mechanism.

Model ResUNet +

attention

ResUNet UNet++ +

attention

UNet++ Claw UNet -

residual - attention

Claw UNet

MIoU (%) 80.20 80.22 79.03 80.26 79.64 80.78

Aver hd 12.18 12.15 13.02 12.49 12.69 12.02

Dice (%) 88.57 88.59 87.85 88.65 88.28 88.90

operation, there are certain differences in the size, resolution, and perception
field of the captured images. After discussing with experienced ophthalmologists,
we intercepted specific blood vessel parts from the images. Ophthalmologists
often judge this type of glaucoma caused by SWS based on the blood vessels
in these areas. The dataset contains 51 images of scleral blood vessels taken
from 51 different patients and covers two types of such diseases. To facilitate
the subsequent network training, we set the size of all images to 512× 512. The
masks of the dataset are manually labeled by ophthalmologists from Department
of Ophthalmology, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong
University School of Medicine.

Evaluation. We divide the dataset for training and testing at a ratio of 4:1
and use binary cross-entropy as the loss function for optimization. Considering
that the dataset is small, to avoid over-fitting, we adopt the method of 5-folded
cross-validation [16], divide the total dataset into five parts, and use them as
the validation set for training, separately. The final results are averaged. For
image segmentation problems, Dice is more sensitive to the internal filling of
the mask [17], and Hausdorff distance (Hd) is more sensitive to the segmented
boundaries [18]. We finally adopt intersection over union (IoU) [19], Hd, and
Dice as indicators to evaluate network performance. For a fair comparison, the
parameters of all experiments are set to the same situation. We implement our
model on NVIDIA GeForce RTX 2080 Ti using the PyTorch framework.

3.2 Comparison with Other UNet-Based Models

We choose a variety of derivative network structures based on UNet to com-
pare with Claw UNet, including UNet [8], UNet++ [11], Resnet34-UNet [20],
Channel-UNet [21], Attention-UNet [14], R2UNet [22]. Table 1 shows the cross-
validation results of various networks. It can be clearly seen that Claw UNet has
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Fig. 4. Visual comparison of segmentation performance between Res-UNet and Claw
UNet of three data from the scleral blood vessel dataset. The first column is the original
images, the second column is the labeled images, the third column is the results of Res-
UNet segmentation, and the fourth column is the results of Claw UNet segmentation.

achieved good results with MIoU, Dice, and Aver hd of 80.78%, 88.90%, and
12.02, respectively. MIoUs of other network structures are below 80.40%. It is
worth mentioning that Claw UNet has achieved the best performance in the first,
third and fifth test sets in five-folded cross-validation. The MIoUs for all three
are exceed 81%. UNet-based networks perform better than UNet. For the details
of scleral blood vessels segmentation, ophthalmologists often judge the symptom
type by blood vessels. Therefore, the segmentation of details is more important.
In addition to focusing on the overall segmentation effect, it also requires higher
performance for segmentation in details.

Figure 4 shows a detailed comparison of the segmentation results of our net-
work and ResUNet. Claw UNet preserves more small vascular areas, indicating
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that Claw UNet is excellent in keeping image details. Due to the limited area of
scleral blood vessels area in the image, the overall IoU difference between them
is not big, but the performance of small region segmentation has been improved
significantly. Small blood vessels are important for ophthalmologists to diagnose
disease, and therefore, the sensitivity of Claw UNet to small blood vessels is
necessary for computer-aided diagnostic systems.

3.3 Ablation Experiments

To illustrate the role of residual block and attention block, we conduct ablation
experiments by adding such modules to the comparative network structures.
Table 2 shows the comparison results of ResUNet and UNet++ combined with
the attention mechanism. The MIoU of ResUNet + attention mechanism is basi-
cally the same as before. What’s worse is that the MIoU of UNet++ drops more
than 1% after adding the attention modules. In Claw UNet, we test the same
network architecture without such mechanisms, and MIoU drops about 1%. The
results show that the performance improvement not only depends on adding
modules but also is greatly related to the network structure.

3.4 Robustness Experiments

The images taken in actual surgery often appear a lot of distortion such as
noise, blur, and other unfavorable factors that affect the image quality. There-
fore, improving the robustness of the network is of great help to practical appli-
cations. Although our data sets are all actual images during operation, we still
artificially add a certain amount of Gaussian blur and Gaussian noise to compare
the robustness of different networks to such effects.

We add Gaussian noise with a mean value of 0 and a variance of 0.0005,
0.001, 0.005 respectively to the images. Gaussian blur with a standard value of
3 and a template size of 3 × 3, 5 × 5, and 7 × 7 are also added respectively to
the images. To compare the network robustness, we do not retrain the network,
but directly use the images added to the trick to test.

Figure 5(a) illustrates the results of different models tested on the images
adding Gaussian blur. It can be clearly seen that as the degree of blur increases,
the segmentation results of all networks show a downward trend. Compared to
other UNet-based networks, Claw Unet’s results are relatively better, with the
slowest rate of decline. When the template window size is 7×7, our network per-
formance is more than 1.3% higher than other networks. Figure 5(b) illustrates
the results of different models tested on the images adding Gaussian noise. It can
be seen that when the noise level is low, Claw UNet still has a good segmentation
performance. As the degree of noise continues to increase, the performance of the
network begins to decline significantly. It is worth noticing that the performance
of Attention-UNet is obviously due to all other networks, which also shows that
the attention mechanism has better robustness in images with noise.
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Fig. 5. Robustness test of different networks: a) Gaussian blur test, b) Gaussian noise
test. Among them, Gaussian blur uses 3× 3, 5× 5, 7× 7 windows, and Gaussian noise
uses standard deviations of 0.0005, 0.001, and 0.005.

4 Conclusion

In this paper, we propose a novel UNet-based network called Claw UNet for the
segmentation of scleral blood vessel images. There are no datasets available for
segmenting scleral blood vessels, and hence, we first establish scleral blood vessel
image dataset. To achieve more precise segmentation, we propose to continu-
ously upsample from the bottom layer which provides rich detailed information.
Residual structure and attention mechanism are introduced into Claw UNet to
make our network more effective and extract features of an appropriate scale.
The residual structure can effectively extract deep information, the deepest level
features can retain more details of the original image, and the attention mecha-
nism can produce accurate boundary perception. The scleral blood vessel image
dataset is used to validate the performance of Claw UNet. The experimental
results show that Claw UNet is more effective than and superior to previous
work in detailed segmentation of scleral blood vessels. The robustness test also
reflects the good anti-Gaussian blur capability of the network structure.
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Abstract. Person re-identification (ReID) technology aims to iden-
tify characteristic people from different perspectives taken by different
surveillance cameras. Due to the large changes in external light and view-
ing angle, the traditional ReID may completely fail. In response to this,
we propose a joint recognition model with pedestrian attributes. Specif-
ically, first, from the perspective of machine attention, we comprehen-
sively consider the mutual exclusion and dependence between attributes,
and propose a multi-task attribute recognition method that limits the
attentional area of the neural network. Then we combine the pedestrian
attribute and the person identity characteristics as the complete pedes-
trian feature information, to measure the similarity. In particular, we
treat attribute information the same as identity information, instead of
treating it as an attachment to identity information, in order to more
effectively correct the errors of identity recognition. The experiments on
the DukeMTMC-reID and Market1501 datasets prove the superiority of
our method.

Keywords: Person re-identification · Pedestrian attribute
recognition · Muti-task learning

1 Introduction

Person re-identification, is an artificial intelligence technology that uses computer
vision technology to detect the target person in an image or video sequence. It is
widely regarded as a sub-problem of image retrieval. In recent years, with the rise
of deep learning, deep convolutional neural network has been widely used in ReID
and have achieved encouraging performance [1]. At the same time, ReID is also
used in many other fields, such as autonomous driving, video surveillance and
activity analysis [2–4]. However, ReID still have certain problems, in the actual
cross-camera scene, the appearance of the same person will change greatly in the
surveillance video at different times. The changes of light and shadow or angle
may make a person have two completely different appearance, and two different
pedestrians may have similar visual appearance.
c© Springer Nature Switzerland AG 2021
L. Fang et al. (Eds.): CICAI 2021, LNAI 13070, pp. 79–90, 2021.
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Zheng et al. [5] visualized the ReID clustering results and the activation
map of pedestrian images, they found that the color of the clothes may be the
most important clue to the ReID. The color of the clothes, as the most obvious
feature, basically captures the most of the attention of the ReID model. However,
the color of person’s clothes can be changed easily by changes in illumination
intensity. So, the robustness of the typical ReID model is insufficient. We need
to use more robust feature information to improve this situation.

Pedestrian attribute (such as age, gender, hairstyle) is an abstract feature
information that can be used to describe pedestrians. Different from low-level
features such as color, stripes, or edges, pedestrian attributes can be regarded as
high-level semantic features. They are a kind of robust semantic feature infor-
mation, the most of them are not affected by color, so pedestrian attributes are
not sensitive to changes in illumination. For example, in Fig. 1, if ReID model
considers the attribute information of pedestrians, these similar pedestrians can
be easily distinguished.

Fig. 1. Pairs of pedestrians with similar appearance and different attributes. Pairs of
pedestrians in each column have similar visual appearance, but they can be easily
distinguished by adding some specific attribute information to the judgment.

Considering the above issues comprehensively, we add pedestrian attributes
to the ReID model. It uses identity information as global feature to identify
pedestrians, and use attribute information as detailed features to correct pedes-
trian identification errors. The two complement each other to make the ReID
model represents pedestrian’s feature more comprehensively and robustly.

In conclusion, the main contribution of the proposed method is as following:
(1) We proposed a pedestrian attribute method with higher performance.

Specifically, it includes multi-task pedestrian attribute grouping method, end-
to-end model and auxiliary classification loss function. (2) Attribute information
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is combined with identity information to improve the ReID model’s ability to
identify similar pedestrians. In particular, we put pedestrian attribute character-
istics at the same priority as identity information, so that the role of pedestrian
attributes can be exerted more effectively, and correct the wrong result of pedes-
trian identification. (3) The experimental results on the DukeMTMC-reID and
Market1501 datasets prove the effectiveness of the framework. Whether it is
the accuracy of pedestrian attribute recognition or the performance of reid, our
method has achieved a good improvement.

2 Related Work

Pedestrian Attribute Recognition. DeepMAR [6] use the relationship between
attributes, consider the global image only, and directly identify all attributes
from a single image. The benefits are simple, intuitive and efficient. However,
due to the lack of the considerations of fine-grained recognition, their perfor-
mance is still limited. LGNet [7], PGDM [8] are based on local ideas, using local
information to supplement the global feature. It can improve the overall recogni-
tion performance, but also brings the following shortcomings: Firstly, incorrect
parts detection results will bring wrong features to the final classification; sec-
ondly, because human body parts are introduced, it is required more time to
train or inference. Visual attention mechanism has been introduced in pedes-
trian attribute recognition [9,10], but the existing works are still limited. In this
field, it is still necessary to explore how to design new attention models or learn
from other fields [11]. Wu et al. [12] proposed a method based on sequence con-
textual relation learning (SCRL). The attribute relation sequence is regarded as
a parallel branch, then the image sequence branch processed by CNN is merged
to learn the context relation from the sequence to improve pedestrian attribute
recognition.

Person Re-identification. Wu et al. [13] divided the image into five fixed-length
regions, extracted the histogram of each region, and mixed it with the global
depth feature. Although this cascade method extracts effective local features and
obtains better performance, it ignores the problem of image misalignment, so its
generalization ability is weak. In order to align pedestrians, Wei et al. [14] used
Deeper Cut [15] to detect three non-overlapping body parts, and then learned
feature vectors separately. Zheng et al. [16] used 14 key points located by the
pose estimation model to assist pedestrian alignment. Wang et al. [17] used the
attention mechanism to solve the problem of pedestrian dislocation.

ReID methods for adding pedestrian attributes. Lin et al. [18] re-weighting
the attribute information, and then fused it with the global image feature for re-
identification. Zhang et al. [19] calculated the appearance distance and attribute
distance of two separate models, and merged these two distances together to
obtain the final pedestrian ranking. Tay et al. [20] et al. designed an attribute
attention network (AANet), which integrates the functions of part segmentation,
attribute recognition and re-recognition, and performs these tasks in turn.
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3 The Proposed Method

In the following part, we first describe the detail of pedestrian attribute recog-
nition in Sect. 3.1 and then the Joint recognition model in Sect. 3.2.

3.1 Pedestrian Attribute Recognition

Combining the advantages of machine attention [21] and multi-task learning [22],
we propose a multi-task attribute recognition method that limits the focus of
neural networks. The method consists of two parts. The first part is to group the
attributes according to the different attention area of different attributes by the
neural network; the second part is the network model and loss function design
based on the attention area limitation.

Attribute Grouping. Based on the research of Grad-cam [23], we visualize
the area of interest of pedestrian attributes on the image. As shown in Fig. 2,
different attributes have different areas of interest in the neural network. The
regions of interest with different attributes may not affect each other, or may
be large overlaps. For two different types of attributes that overlapped, their
feature extraction will inevitably compete when performing in the overlapping
image regions. In addition, attributes such as hats, backpacks, and boots have
specific and local areas of interest, while abstract attributes such as age and
gender usually do not involve fixed objects of interest and locations.

Fig. 2. Class Activation Mapping (CAM) for some attributes.

Therefore, we divide the attributes into different groups according to the
different area of interest of each attribute on the input image and the charac-
teristics of specific attributes and abstract attributes, to ensure that the neural
network pays attention to each attribute. At the same time, the attributes within
the group will not cause interference, and the attributes of different groups pro-
mote each other through information sharing. The specific attribute groupings
are shown in Table 1.

Pedestrian attribute recognition network. The network framework is shown
in Fig. 3. The network mainly includes the following three parts:
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Input Network. Because the Bottom layers of the deep neural network is used to
extract low-level image features (such as texture, lines, etc.), we did not directly
use the original image as the subsequent input, but chose the data processed by
the base convolution block as the input of each sub-network. In this way, it can
not only reduce the amount of network calculations and reduce the burden of
hardware, but also enhance the connection between the sub-tasks of the network,
and strengthen the information exchange between attributes.

Table 1. Market-1501-attribute grouping. “up”, “down”, “clothes”, “upcolor” and
“downcolor” denote length of sleeve, length of lower-body clothing, style of clothing,
color of upper-body clothing and color of lower-body clothing.

Group 1 Group 2 Group 3 Group 4 Group 5

Hair Bag Backpack Handbag Hat Up Young Teenager Gender

Upcolor Down Downcolor Clothes Adult Old

Feature Extraction Network. The feature extraction part is divided into five
feature extraction subtask networks, which are used to extract features of differ-
ent attribute groups. The sub-network model uses VGG16 [24] as the backbone
network, selects its three intermediate convolution blocks (ConvBlock 1, Con-
vBlock 2, ConvBlock 3 in Fig. 3), and then connects a dimension-raised convo-
lution block (ConvBlock 4) to change the number of convolution kernels. Finally
processed by Global Average Pooling(GAP) and put it to the subsequent clas-
sification layer. Using GAP instead of Fully Connected operation can greatly
reduce the number of parameters of the model, and there is no limit to the size
of the input image, which is more flexible and easily to transplant to Person
re-identification.

Attribute Prediction Network. In this part, we input the feature information
extracted by each feature extraction subtask network into two classification net-
works: an auxiliary classification network, which only used in the training phase
and will be deleted during inference. Input the feature information of each sub-
network into the respective sub-classification network for recognition; the other is
the full classification network, which integrates the output information of each
sub-feature extraction network, and then input into the full recognition clas-
sification network. Through the design of two classification networks, we can
achieve three goals: (1) The machine attention areas between attributes in dif-
ferent subtasks do not overlap. (2) Fuse information of each subtask to realize
joint identification of attributes. (3) Do not increase the amount of calculation
in the inference stage.

Pedestrian Attribute Recognition Loss Function. Pedestrian attribute
recognition is a multi-label classification problem. For these attributes, we regard
it as multiple binary classification, using sigmoid and cross-entropy loss function.
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Fig. 3. Pedestrian attribute recognition framework.

For the full classification network loss function, loss full, the cross-entropy loss
function is used to measure the error between the ground truth and the predicted
score:

loss full = − 1
N

N∑

n=1

[
Qn log P̂n + (1 −Qn) log

(
1 − P̂n

)]
(1)

Where N is the number of attributes, and p̂n is the attribute prediction
output by sigmoid. Qn is ground truth. The loss function of the auxiliary clas-
sification network loss aux. Through the back propagation of this function, sub-
networks are restricted to focus on the attributes in their own group:

loss aux = − 1
M

M∑

m=1

[Qm logPm + (1 −Qm) log (1 − Pm)] (2)

Where M is the number of auxiliary classification attributes. Pm is the
attribute prediction output by auxiliary classification network. Qm is ground
truth. The attribute recognition loss function loss total is the sum of the loss
functions of the two classification networks:

loss total = loss full + loss aux (3)

3.2 Joint Recognition Model

The structure of the joint recognition model is shown in Fig. 4. For the extrac-
tion of pedestrian identity features, we use ResNet-50 as the backbone. For the
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last sampling layer, we set its sampling rate to 1, so as to fully retain the pedes-
trian identity features. In order to ensure that pedestrian attribute information
has sufficient influence on person re-identification, we set the same number and
weight of attribute features and identity features.

Fig. 4. The overview of the joint recognition model. The blue box is the pedestrian
identity network, the green box is the pedestrian attribute network, and the gray is
auxiliary layer for training, will not calculate in the inference stage. (Color figure online)

After a complete pedestrian image is processed by the joint recognition
model, we can obtain a 1024-d pedestrian feature vector containing identity
information and attribute information, and then the judgment of whether it is
the same person is calculated by the similarity between different feature vectors,
the closer the distance between the two feature vectors, the more similar the
pedestrian images. In this paper, we select Euclidean Distance for the similarity
measure of pedestrians.

3.3 Loss Function

Pedestrian identification part. We regard the task of pedestrian identification
as a multi-classification problem, and use the cross-entropy loss to learn the
identity classification. For a given training image X, joint model output the
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logits z of each identity label, z = {z1, z2, . . . , zk}, k is the number of identity
labels. Then transform it into predicted probability of corresponding identity
label by softmax: p(k | x) = exp(zk)∑K

i=1 exp(zi)
. So, the identity loss function can be

expressed as:

LID = −
K∑

i=1

pi log (p̂l) (4)

Where K is the number of identity labels, pi is true label of the i-th pedes-
trian’s identity, p̂i is the predicted output of the i-th pedestrian identity. The
loss function of the pedestrian attribute classification Lattr refers to formula (1),
(2).:

Ltotal = LID + Lattr (5)

4 Experimental Result

In the following experiments, we used the DukeMTMCreID and Market1501
datasets to conduct our training and testing.

4.1 Pedestrian Attribute Recognition

For the experimental configuration of reference [5], we use the weights pre-trained
by ImageNet for VGG16 backbone and use Kaiming Initialization to the new
layer. The optimizer selects the SGD and sets weight decay = 5e−4 and Momen-
tum = 0.9. And the learning rate of the pre-trained layer and the newly added
layer is back-propagated according to 1:10. The initial learning rate is set to
0.01 and 0.001, after 20K iterations, the respective learning rates are attenuated
to 1/10 of the original. The experimental platform uses Cloud Server (CPU:
Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30 GHz, GPU: NVIDIA Tesla K80). The
comparison results with other methods are shown in Table 2 and Table 3.

Table 2. Experimental results on the Market-1501 dataset. “age*”, “bp.”, “up”,
“down”, “clo.” denote Average accuracy of the four age attributes, whether backpack,
length of sleeve, length of lower-body clothing, style of clothing. APR* denote using
different backbone network, APR*1: Resnet18, APR*2: Resnet34, APR*3: Resnet50.
The best performance is shown in black.

Market-1501 age* bp. bag clo. down gender hair hb. hat up avg.

ARN [18] 85.80 86.60 78.60 93.60 93.60 87.50 84.20 88.10 97.00 93.50 88.85

JVIA [25] 91.60 86.70 80.20 80.90 84.70 88.90 84.90 92.30 97.60 78.30 86.61

DeepMAR [6] 82.60 88.10 79.30 94.60 93.50 91.70 87.10 88.70 97.30 93.20 89.61

SCRL [12] 86.80 86.20 89.90 90.70 91.70 87.10 86.00 86.30 96.40 93.20 89.43

APR*1 [18] 84.52 87.35 79.63 94.11 93.48 91.39 87.55 88.84 97.61 93.7 89.82

APR*2 87.24 87.59 77.86 94.83 94.54 92.09 78.24 89.20 98.24 93.80 89.36

APR*3 85.95 87.72 79.41 94.83 94.46 91.42 87.62 89.44 98.20 93.70 90.28

Ours 86.97 88.81 79.69 94.33 94.40 93.32 90.29 89.52 97.14 93.63 90.81
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Through the analysis of Table 2 and Table 3, it can be found that although
our method does not lead in every single attribute, it reaches the highest average
accuracy rate. This shows that we succeeded in making the neural network pay
enough attention to each attribute by limiting the focus area of the god machine,
and thus the overall recognition performance was greatly improved.

4.2 Person Re-identification

In this section, we test the performance of the joint recognition model on the
task of pedestrian re-recognition.

Comparative Experiment. For person re-identification, we use the joint
recognition model to conduct experiments. The experimental settings are similar
to the pedestrian attribute recognition experiments, using ImageNet pre-training
weights and Kaiming initialization methods. The optimizer selects SGD and sets
weight decay = 5e−4 and Momentum = 0.9. The initial learning rate for model
training is set to 0.1. In addition, in order to speed up the model convergence,
this paper uses CosineAnnealingWarmRestarts as the scheduler. The experimen-
tal platform is still Cloud Server. The experimental results are shown in Table 4.
From the table, we can see that our joint recognition model can extract a more
accurate representation of pedestrian features, making the distance measure-
ment between pedestrian images more accurate, surpassing most of the algorithm
models.

Table 3. Comparison of experimental results on the DukeMTMC dataset. “shoes”,
“top” denote the color of the shoes, length of upper-body clothing.

DukeMTMC backpack bag boots gender handbag hat shoes top avg.

ARN [18] 77.5 82.2 88.3 82 92.3 85.5 87.6 86.2 85.2

JVIA [25] 76.7 82 88.6 85.4 93.6 89.3 91.6 86.6 86.73

DeepMAR [6] 83.1 83.1 90.1 84.8 93.5 88.9 91.1 90.4 88.1

Yin’s [26] 85.4 83.4 89.9 85.9 93.4 88.7 91.6 89.5 88.48

APR*1 [18] 81.47 82.69 89.96 85.24 93.74 88.9 91.73 89.67 87.92

APR*2 83.01 82.76 90.26 85.66 93.45 89.47 91.37 89.39 88.17

APR*3 82.97 82.99 90.47 86.24 93.27 88.95 91.74 89.99 88.33

Ours 83.35 84 90.34 86.94 93.49 89.04 91.79 89.47 88.55

Self-contrast Experiment. In this section, we set up a comparison with the
benchmark experiment to verify the performance improvement of pedestrian
re-identification after adding the pedestrian attribute verification module. The
benchmark experiment is to use the standard ResNet-50 network to do pedes-
trian re-identification test. The experimental results are shown in Table 5. It can
be seen from the results in the table that the addition of pedestrian attribute
recognition can effectively enhance the model’s accurate representation of pedes-
trian images, thereby improving the performance of pedestrian re-recognition.
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Table 4. Comparison with other methods in Market-1501 and DukeMTMC-reID
datasets. Rank-1 accuracy (%) and mAP (%) are shown. The best performance is
shown in black.

Market-1501 DukeMTMC-reID

rank 1 rank 5 rank 10 mAP rank 1 rank 5 rank 10 mAP

SAN [27] 85.90 94.90 97.00 70.10 77.90 – – 58.80

APR [18] 87.04 95.10 96.42 66.89 73.92 – – 55.56

PESR [28] 85.60 94.80 97.50 – 79.40 91.30 92.10 –

PSE [33] – – – – 79.80 89.70 92.20 62.00

DRAL [29] 84.20 94.27 96.59 66.26 74.28 84.83 88.42 56.00

DistributionNet [31] 87.26 94.74 96.73 70.82 74.73 85.05 88.82 55.98

Ours 91.86 97.33 98.22 79.94 81.37 91.29 93.85 64.83

Table 5. Comparison results with baseline. Rank-1 accuracy (%) and mAP (%) are
shown

Market-1501 DukeMTMC-reID

rank 1 rank 5 rank 10 mAP rank 1 rank 5 rank 10 mAP

Baseline 86.49 94.30 96.20 68.79 78.05 88.29 91.65 59.52

Ours 91.86 97.33 98.22 79.94 81.37 91.29 93.85 64.83

5 Conclusions and Future Work

In this paper, we propose a multi-task pedestrian attribute recognition method
based on machine attention, and then add it to the person re-identification model
to improve the recognition performance of similar pedestrians. For pedestrian
attribute recognition, we grouped it first, and then an end-to-end network model
is designed to achieve higher recognition accuracy by sharing the low-level fea-
tures of the image and limiting the attention of the sub-network. For the joint
recognition model, we give the attribute information greater influence weight, so
that it can more effectively correct the error of the identity information. Finally,
Experiments on the two public datasets have shown that our method achieves
encouraging performance compared to the state-of-the-art approaches. For future
work, we will study a more suitable pedestrian similarity measurement method.
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Abstract. Multiview data contain information from multiple modalities
and have potentials to provide more comprehensive features for diverse
machine learning tasks. A fundamental question in multiview analysis is
what additional information can be brought by additional views and can
we quantitatively identify this additional information. In this work, we
try to tackle this challenge by decomposing the entangled multiview fea-
tures into shared latent representations that are common across all views
and private representations that are specific to each single view. We for-
mulate this feature disentanglement in the framework of information
bottleneck and propose disentangled variational information bottleneck
(DVIB). DVIB explicitly defines the properties of shared and private rep-
resentations using constrains from mutual information. By deriving vari-
ational upper and lower bounds of mutual information terms, represen-
tations are efficiently optimized. We demonstrate the shared and private
representations learned by DVIB well preserve the common labels shared
between two views and unique labels corresponding to each single view,
respectively. DVIB also shows comparable performance in classification
task on images with corruptions. DVIB implementation is available at
https://github.com/feng-bao-ucsf/DVIB.

Keywords: Information bottleneck · Variational inference · Multiview
representation learning · Information disentanglement

1 Introduction

With advances in the past decade, performances of major machine learning
frameworks have reached their accuracy plateau in many tasks [1–3]. To further
overcome the performance bottleneck, multiview learning methods are viewed
as promising solutions [4,5]. By collecting additional views from samples, we
expect to obtain more useful and task-relevant features, therefore enhancing the
performance of methods through increasing the information abundance within
the data [6–8].

In multiview data, each modality is collected using different technologies and
approaches and contains different levels of corruptions, noises and/or missings.
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One fundamental and critical question in multiview analysis is: compared with
single view data, can additional views provide additional effective information
to facilitate the learning tasks? If yes, can we explicitly identify the additional
information to explain the view property and enhance the data interpretability?

To answer these questions, it requires us to decompose the entangled infor-
mation embedded in multi-view data into view-shared and view-private (a.k.a
view-specific) representations [9,10] (Fig. 1a). Based on the view decomposition,
contributions from each single view can be explicitly quantified and analyzed.
Besides that, the view-shared information exhibits the general and common fea-
tures of the sample and can be used to reduce the effects of data corruption and
noise [9,11]. Meanwhile view-private information represents the unique prop-
erties from single modality therefore can be used to evaluate its importance to
specific tasks and reflect the strength and weakness of technologies that generate
the view.

Learning disentangled representation from multiview data is challenging in
terms of the modeling of the entanglement [7,9,10]. In this work, we formulate
the disentangled representation learning in the framework of information bot-
tleneck and propose disentangled variational information bottleneck (DVIB).
In the optimization target (see Sect. 3), we aim to maximize the mutual infor-
mation between shared latent representations generated from different views
while minimizing the mutual information between private representations at the
same time (Fig. 1b). With such constrains, the properties of private and shared
representations are explicitly formulated. The learning target can be efficiently
optimized through deriving variational bounds and auxiliary cost functions. We
demonstrate the ability of DVIB in accurately decomposing the common or
view-specific information from multiview data and improving the robustness in
classification task on large-scale datasets.

Fig. 1. Illustrations of (a) multiview disentangled representation learning concept and
(b) proposed disentangle variational information bottleneck (DVIB) method.
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2 Preliminaries and Existing Works

Representation learning is to extract effective, highly compact features from raw
data containing various levels of noises and corruptions [4,8,12]. Efficient design
of representation methods can greatly facilitate the down-streaming learning
tasks. Learning highly compact representations from the view of information
theory has attracted long-time attentions [13,14]. Pioneering work information
bottleneck [15,16] aims to learn the representation from minimal input infor-
mation but can predict the outcome well, by maximizing mutual information
between the latent representations and output while minimizing mutual infor-
mation between the input and latents.

The information bottleneck defines an elegant target for the optimization
of compact representations from the view of information theory. However, effi-
ciently calculation of the mutual information is challenging due to the intractable
estimation of marginal distributions [17,18]. Recently, approximation of mutual
information has been advanced greatly with the help of variational inference [18].
By replacing intractable margins with tractable approximators, we can alterna-
tively seek to derive the variational upper or lower bound of mutual information.
With the variational neural network and re-parameterization tricks [19], we can
efficiently optimize the mutual information bounds.

The combination of information bottleneck and variational inference leads to
the development of variational information bottleneck (VIB) [20]. VIB is able
to learn maximally informative representations and shows robust performance
with existence of perturbations. Following the idea of VIB, recently proposed
methods enable more flexible representation learning for classification task [21]
and information harmonization between multiview data (MVIB) [7].

Learning disentangled representation is an attracting task [22,23]. Some
recent works, e.g. (β-VAE) [10] try to formulate general disentangled informa-
tion learning from the view of variational inference and it is proved to be closely
related to the information bottleneck [24]. However, explicitly modeling and
quantifying the disentanglement is a challenge [25]. The recent development of
mutual information and information bottleneck methods provides a theoretical
fundamental of our method.

3 Disentangled Variational Information Bottleneck

To simplify the description, here we consider two views of features x and y
collected from the same sample. Our goal is to decompose each single feature
view, for example x, into two latent representations z

(s)
x and z

(p)
x , where z

(s)
x is the

shared representation that preserves the common information from both views,
and z

(p)
x is the private representation that exhibits the view-specific property in

x. Similarly, we can define the shared and private latents as z
(s)
y and z

(p)
y for

view y.
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3.1 Information Bottleneck for the Shared Representation

For the shared representations, we expect to capture the information shared by
both x and y meanwhile neglecting the view-specific information. Following the
definition of information bottleneck, we formulate the learning targets of z

(s)
x

and z
(s)
y using mutual information,

max I(x; z(s)x ) + λxI(y; z(s)x ) (1)

max I(y; z(s)y ) + λyI(x; z(s)y ) (2)

where in Eqs. 1 and 2, first terms require the shared representation z
(s)
∗ to have

maximal mutual information with the view where it was generated from. The
second term forces the shared representation, even it was learned from one view,
can maintain high mutual information with the other view. Hyperparameters
λx ≥ 0 and λy ≥ 0 balance the relative importance of two mutual informa-
tions. By maximizing two target functions, we can explicitly constrain shared
latent representations to maintain maximal mutual information for both views
simultaneously.

3.2 Information Bottleneck for the Private Representation

For the private representations, we restrict the learned z
(p)
x and z

(p)
y to only

contain the unique information from the view it is generated from, but no infor-
mation from the other view. Similarly, we define the learning targets as:

max I(x; z(p)x ) − βxI(y; z(p)x ) (3)

max I(y; z(p)y ) − βxI(x; z(p)y ) (4)

Similar as the information bottleneck [15], the maximization of first terms in
Eqs. 3 and 4 require private latents and raw features (z(p)x and x, or z

(p)
y and y) to

stay as similar as possible by mutual information metric. Meanwhile, the second
terms require the z

(p)
x (resp. z

(p)
y ) to contain as less information as possible form

the view y (resp. x). Again, non-negative hyperparameters βx and βy define
the trade-offs between the information to gain from the view where the private
representation is learned and the information to suppress from the other view.

3.3 Variational Bounds

The optimization of introduced targets requires the calculation of a number
of mutual information terms. However, it is known the mutual information is
intractable for high dimensional variables [17,19,20]. We alternatively sort to
derive the variational bounds of mutual information [18].
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Lower Bound of I(x, z(s)
x ). We first consider the lower bound of mutual

information between the latent representation (either shared or private) and the
view it was generated from. Taking I(x, z

(s)
x ) as an example, we have

I(x, z(s)x ) = E
p(x,z

(s)
x )

log
p(x|z(s)x )

p(x)

= E
p(x,z

(s)
x )

log
p(x|z(s)x )

q(x|z(s)x )

q(x|z(s)x )
p(x)

= E
p(x,z

(s)
x )

log
q(x|z(s)x )

p(x)
+ E

p(z
(s)
x )

KL[p(x|z(s)x )||q(x|z(s)x )]

≥ E
p(x,z

(s)
x )

log q(x|z(s)x ) + H(X)

(5)

where KL[p||q] ≥ 0 represents the Kullback-Leibler divergence of two variables
p and q; H(X) is the entropy of x; q(x|z(s)x ) is the variational approximation
of conditional distribution p(x|z(s)x ). Entropy term H(X) is determined by the
dataset and is independent of the optimization process. Therefore, to maximize
the I(x, z

(s)
x ), we can alternatively maximize the E

p(x,z
(s)
x )

q(x|z(s)x ). Similarly,

we can derive the lower bounds for I(x, z
(p)
x ), I(y, z

(p)
y ) and I(y, z

(s)
y ). The full

derivation of variational bounds can be found in Appendix A.

Lower Bound of I(y, z(s)
x ). Next we consider the mutual information between

shared latent representations and features that are from different views. We take
I(y, z

(s)
x ) as an example. We follow the derivation in Ref. [7] and write the lower

bound as

I(y, z(s)x ) = I(z(s)x , z(s)y ) + I(z(s)x ; y|z(s)y )

≥ I(z(s)x , z(s)y )

(6)

where the mutual information between a raw feature and a latent variable is
approximated by the mutual information between two shared latent represen-
tations z

(s)
x and z

(s)
y . We can derive the lower bound for I(x, z

(s)
y ) symmetri-

cally. Appendix B and Appendix Fig. 1 provide the derivation and illustration of
the lower bound. Therefore, we can combine the optimization of I(x, z

(s)
y ) and

I(y, z
(s)
x ) to the same target I(z(s)y , z

(s)
x ).

Upper Bound of I(y; z(p)
x ). Finally we consider the view-private latent rep-

resentations z
(p)
x and z

(p)
y . Again, we take the mutual information I(y; z(p)x ) as

an example and derive the upper bound. We have:
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I(y, z(p)x ) = E
p(y,z

(p)
x )

log
p
(p)
x (z(p)x |y)

p(z(p)x )

= E
p(y,z

(p)
x )

log
p
(p)
x (z(p)x |y)

r(z(p)x )

r(z(p)x )

p(z(p)x )

= E
p(y,z

(p)
x )

log
p
(p)
x (z(p)x |y)

r(z(p)x )
− KL[r(z(p)x )||p(z(p)x )]

≤ E
p(y,z

(p)
x )

log
p
(p)
x (z(p)x |y)

r(z(p)x )

= E
p(y,z

(p)
x )

log
p
(p)
x (z(p)x |y)

p
(p)
y (z(p)y |y)

+ E
p(y,z

(p)
x )

log
p
(p)
y (z(p)y |y)

r(z(p)x )

(7)

where p
(p)
x and p

(p)
y represent private encoders that learn private latent rep-

resentations z
(p)
x , z

(p)
y from raw features x, y. The upper bound tights on the

approximation of marginal distribution r(z(p)x ) to prior p(z(p)x ). Two terms are
in the upper bound: the first term is the encoding difference between two latent
representations from p

(p)
x and p

(p)
y but with the same input y. It encourages

two encoders to produce inconsistent encoding. The second term is the differ-
ence between encoder p

(p)
y with the approximated margin r(z(p)x ). Minimizing the

upper bound requires the encoder from y generates representations that are het-
erogeneous with both posterior and prior of z

(p)
x . Appendix C provides complete

derivation.
Here, the estimation of the first term is not easy as it requires to input y

to encoder p
(p)
x . Because we use stochastic neural network mapping from raw

data to the latent, the outputs from two view encoders can be greatly different.
Besides, the second term enlarges the differences between z

(p)
x prior and view-y

private encoder output and has the same optimization direction as the first term.
Therefore, we simplify the upper bound to

min I(y, z(p)x ) ≡ minE
p(y,z

(p)
x )

log
p
(p)
y (z(p)y |y)

r(z(p)x )
(8)

We note this formulation is the same as negative mutual information term in
variational information bottleneck [20], which constrains information flow from
raw features to the latent representations. Therefore, our optimization target
has the same function to control the information flow from two views to latents.
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3.4 Optimization

Finally, we combine the bounds and auxiliary targets introduced in the previous
section together and derive the overall optimization function:

max Itotal = Ix + Iy

≥ ILB(x; z(s)x ; z(p)x ) + ILB(y; z(s)y ; z(p)y )

+ λI(z(s)x , z(s)y ) − βI(c)(z(p)x , z(p)y )

(9)

where the full formulation of each term is given in Appendix D. ILB(x; z(s)x ; z(p)x )
and ILB(y; z(s)y ; z(p)y ) are lower bounds of I(x; z(s)x ; z(p)x ) and I(y; z(s)y ; z(p)y ),
respectively; I(c)(z(p)x , z

(p)
y ) represents the cross mutual information between pri-

vate representations of two views (Appendix D).
To optimize the target function, we make use of the variational autoencoder

structure and employ four encoders to output parameters that define posteriors
of z

(s)
x , z

(s)
y , z

(p)
x and z

(p)
y while decoders are used to reconstruct raw features

from latent representations. To maximize I(z(s)x , z
(s)
y ), we use the neural mutual

information estimators [16,18,26]. The exceptions over joint distributions are
approximated by the empirically joint distributions [7,20].

4 Experiments

In this section, we calibrate the performance of DVIB and evaluate the quality of
shared and private representations using various datasets. In the experiments, we
focus on two questions: 1) the ability of private and shared latent representations
to decompose entangled information and capture meaningful contents from each
view; 2) how can the representations facilitate down-streaming analysis.

We implemented the DVIB in the framework of variational autoencoder
where encoder and decoder networks (simple multi-layer neural network) were
used to learn the representation distribution and reconstruct original signal.
For prior distributions r(z(p)x ) and r(z(p)y ), we restrict them to follow N(0, I) as
described in [20]. To estimate the mutual information I(z(s)x , z

(s)
y ), our imple-

mentation employed the Jensen-Shannon estimator [7,17].

4.1 Evaluation of Information Disentanglement on MNIST

We start from MNIST handwriting digit dataset [27], which involves simple
sample categories and is easy to generate paired multiview data through image
transformations. This can be an example to set up the baseline performance
of DVIB. Here, for every sample in MNIST, we consider two transformation to
simulate two-view data: 1) a rotation of the image in one of the following angle
[0, π/16, π/8, 3π/16, π/4] to generate view x; 2) a random flip from [None, hori-
zontal, vertical, horizontal + vertical] to generate view y. We note each transfor-
mation choice is randomly performed on each digit so that the transformation is
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independent of the original MNIST digit labels. Because of the simple network
used in DVIB cannot efficiently capture complicate image transformation, we
firstly feed two view data into Inception-v31 that was pretrained on ImageNet
[28] and the output of last fully connected layer (2,048 dimensions) is used.

To demonstrate the ability of DVIB latent representations in dissecting
shared and latent representations, we evaluate the quality of shared represen-
tations (z(s)x and z

(p)
x ) by predicting the shared labels (digit identities) and the

quality of private representations by predicting the view-specific labels (rotation
angles for z

(p)
x and flip type for z

(p)
y , respectively) using simple linear classifier.

Fig. 2. (a) Example of simulated two-view data from original MNIST sample. (b)
Performance of DVIB latent representations in predicting view-specific and -shared
labels. Adjusted Rand index (ARI) is calculated between predicted labels and ground
truths.

This experiment gives an initial demonstration how DVIB can capture the
shared and unique information in views. The results (Fig. 2) demonstrate the
shared representations (z(s)x and z

(p)
x ) can best capture the shared label informa-

tion (digit) while each private representation (z(p)x and z
(p)
x ) has higher accuracy

in predicting each view-specific labels. Meanwhile, the private representation
from one view has poor performance to infer the private label in the other view
or the shared digit labels, indicating view-specific information from raw feature
is isolated into the private representations as expected.

4.2 Evaluation Using Corrupted Samples on ImageNet

One important application for multiview learning is to compensate from the
additional view and recover the corrupted information in either view. Here, we
consider the classification problem on ImageNet [28]. To simulate the image
corruptions, we add Gaussian noise for the generation of view x and use defocus
blur for the view y [29]. We use the existing image corruption implementation2

1 Pretrained model provided by TensorFlow Hub (https://tfhub.dev/).
2 https://github.com/bethgelab/imagecorruptions.

https://tfhub.dev/
https://github.com/bethgelab/imagecorruptions


Disentangled Variational Information Bottleneck 99

in the experiments. Again, to facilitate the efficient learning, we also employ the
pretrained Inception-v3 framework to construct raw features. And multiview
learning is built upon the deep features.

To calibrate the performance of our method, we consider general multiview
deep neural network (DNN) [6]; multiview non-negative matrix factorization
(M-NMF); deep canonical correlated autoencoder (DCCAE) [30] and its vari-
ational version (VCCA) [9]; variational autoencoder (VAE) [19]; information
theory based method deep variational information bottleneck (VIB) [20], mul-
tiview information bottleneck (MIB) [7]. As we focus on the ability to remove
the unwanted corruption information, we make use of the shared representations
learned from two views. We note not all methods were designed for multiview
study and we simply concatenate features from two views for these single-view
methods. The classification is performed by softmax regression on the latent
representations learned by each method.

Table 1. Classification accuracy of ImageNet using joint latent representations learned
from different method.

Method Description Accuracy

Baseline Simple feature concatenations 0.714

DNN Multiview neural network 0.763

M-NMF Joint matrix factorization 0.632

DCCAE A deep version of CCA 0.716

VCCA A variational version of CCA 0.758

VAE Variational autoencoder 0.782

VIB Variational information bottleneck 0.794

MIB Multiview information bottleneck 0.821

DVIB The proposed method 0.852

From the classification accuracies (Table 1), general multiview methods
showed improved performance compared with feature concatenations. Varia-
tional methods (VCCA, VAE and VIB) have better robustness to the corruption
than traditional methods DNN and NMF due to the design of variational infer-
ence. The recently proposed multiview information bottleneck method MIB,
which aims to learn informative shared representations, further improved the
accuracy. Our method, by explicitly formulating the property of shared latents
from mutual information constrain, obtains the best accuracy.

4.3 Robustness to Image Corruption Levels

Based on the results on ImageNet, here we ask how robust is each method’s
performance to the corruption levels of inputs. To investigate this, we consider
to increase the corruption level for each single modality or for both, and evaluate
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the accuracies correspondingly. As comparisons, we select top 5 methods from
Table 1 and the baseline.
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Fig. 3. Performance of classification on ImageNet with increasing corruption levels on
(a) view x alone, (b) view y alone and (c) both.

From the overall results (Fig. 3), corruptions in image blur level (view y)
have stronger effects to the accuracy than Gaussian noise (view x). All meth-
ods show decreasing trends when increasing the corruptions. MIB and DVIB
maintain better performances compared with other method and DVIB has the
best performance. It demonstrates the design of mutual information constrained
structures improves the effective information extraction.

5 Discussion

In this work, we formulate the information disentanglement task from multiview
data in the framework of information bottleneck. We explicitly define the desired
information property of view-private and view-share latent representations with
mutual information constrains and decompose each view. By deriving the varia-
tional bounds of mutual information, we effectively optimize the target function.
We demonstrate the learned latent representations well preserve the view-shared
and view-specific information and improve the classification robustness.

The DVIB model includes two hyperparameters λ and β. How to simultane-
ously determine the appropriate values of these parameters is a challenge and
requires further exploration. In our implementation, we consider same weights
for two views as they are generated from the same source. However, for other
types of multiview data which include different modalities (e.g. image and audio),
this assumption might not stand. In the optimization of upper bound of mutual
information (Eq. 7), we omit the first term in final loss function with the assump-
tion that neural network encoders for two view will produce different encodings
by default due to the random mapping property neural network. However, it
requires abundant experiments study and rigorous mathematical proof. Taken
together, with further extensive evaluation of the method, DVIB can be a poten-
tial powerful tool for the disentanglement of multiview data.
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Classification Based Camera and Millimeter

Wave-Radar Fusion
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Abstract. Collision warning is the core content in the vehicle active safety sys-
tem. However, relying on one sensor such as cameras and LIDARS will face
some special detection difficulties. Cameras are limited to light and LIDARS are
susceptible to rain or snow. Therefore, this paper proposes real-time collision
warning and status classification based on camera and millimeter wave (mmw)-
radar fusion. The proposed method can classify the object status automatically,
which includes the danger, potential danger and safety. The networks for camera
and radar are firstly constructed to detect and recognize targets respectively. Then
the coordinates of cameras and radars are transformed into the same world coor-
dinate by perspective transformation. Finally, both detection results of these two
networks are fused at the decision level. Experimental results demonstrate that the
proposed method provides an effective solution and owns robustness in detection
and recognition.

Keyword: Collision warning · Camera and millimeter wave-radar · Deep
learning · Status classification · Object detection

1 Introduction

Advanced automatic driving technology can solve the problem of urban traffic conges-
tion and reduce traffic accidents [1, 2]. One of the most important parts for automatic
driving technology is the vehicle active safety system, whose core content is the collision
warning. Cameras, LIDARS and radars are the sensors used for collisionwarningwidely.
These sensors possess their advantages and disadvantages for detection [3]. The images
captured by the camera have rich texture and shape information, which are intuitive
and interpretable. But cameras are easily affected by light and weather. Moreover, the
detection performance for targets located in the long range is poor. LIDARS can obtain
abundant point clouds about scenes and targets. But LIDARS are susceptible to severe
weather (e.g. heavy rain and snow) and their cost are expensive. Radars are sensitive to
the range and velocity of targets and possess strong robustness to heavy weather and
light. However, they are easy to produce some false alarm. Compared with the first two
sensors, the interpretation of radar imaging results is obscure. Therefore, the current
solutions are mostly considered to use multi-sensor detection.
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From the perspective of which sensors are fused, it can be categorized into two
classes generally: camera-LIDAR fusion and camera-radar fusion. As for camera-
LIDAR fusion, the fusion usually contained two-stage detectors to extract the common
feature from the bird-eye view (BEV) image recorded by LIDARs and images captured
by the camera [4, 5]. But the fusion from the data source was difficult for realization
in reality. As for camera-radar fusion, the fusion depended on the signal processing
of the radar echo. Radar data can be divided into radar cube and point cloud further.
Range-azimuth images are extracted from the radar cube to improve the capacity of
range detection for optical images [6, 7]. The low resolution of azimuth was made up
by the corresponding optical images. Interference of multi-channel radars is used to get
point cloud about targets [8–10]. Combined with the vehicle kinematic model, colli-
sion warning was achieved well by the range and speed information. The influence of
source-level, feature-level and decision-level feature fusion are analyzed [11]. Although
the source-level and feature-level fusion brought the benefit for fusion detection, once
one sensor was broken, the overall performance would sharply fall. Therefore, the sen-
sors used by this paper were camera and radar. Decision-level fusion was chosen as the
final fusion way.

With the development of deep learning, convolution neural network (CNN) has
shown superior performance in image classification, object detection and super-
resolution imaging [12, 13]. The deep learning for the radar field is faced with the
dilemma of insufficient data and labels. Radar data own special properties. At present,
commercially available radars can directly output radar cubes (called low-level fea-
tures) by 3-D Fourier transform. They can output the point cloud about the target (called
target-level features) by multi-channel interference. The specific content of point cloud
incorporates the position of scattering centers, velocity and relative reflection intensity.
These characteristics are contributive to design the network of radar.

In this paper, collision warning based camera and mmw-radar fusion is proposed.
The images captured by camera and the data recorded by radar are first input into their
corresponding networks to obtain the primary detection results. Especially, the radar
data consider the low-level features and the target-level features, which can significantly
reduce false alarm and computational burden. Then, the detection results of these two
networks are transformed into the sameworld coordinate. Finally, according to the range
and velocity of the detected target, the risk of objects status is predicted. The experimental
results validate the superiority of the proposed method in object detection.

The remainder of this paper is organized as follows: In Sect. 2, the network archi-
tecture is described and the methods for fusion and status classification are presented
in detail. The comprehensive experiment results demonstrate the effectiveness of the
proposed method in Sect. 3. Finally, Sect. 4 summarizes the conclusion.

2 Method

2.1 FMCW Radar Signal Model

Frequency Modulated Continuous Wave (FMCW) radars own the ability to measure
range (radial distance), velocity (Doppler), and azimuth angle [14, 15]. The frequency
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of FMCW radars is linearly modulated over the sweep period and can be expressed as

fs = fc + B

Ts
ts (1)

where fs denotes frequency at the time ts. fc denotes carrier frequency. B denotes band-
width.Ts denotes sweepperiod.At the time t, its phase of transmit signal can be expressed
as

φT (t) = 2π fst (2)

After reflecting on an object at the range r(t), the phase of the received signal is

φR(t) = 2π fs(t − τ) = φT (t) − φ(t) (3)

where c the light speed. τ = 2r(t)/c denotes the time delay of a round trip. φ(t) denotes
the phase shift

φ(t) = 2π fsτ = 2π fs
2r(t)

c
(4)

By measuring this phase shift, it can be deduced the range between the sensor and
the reflected object. When the target is moving, its relative velocity can be accessed by
the Doppler effect:

fd = 1

2π

dφ

dt
= 2vR

c
fs (5)

where fd denotes the Doppler frequency. vR denotes the radial velocity of the target.
Hence measuring Doppler frequency can deduce the radial velocity.

Using the MIMO system with multi-Rx antennas, the azimuth angle θ of the target
can be deduced from the phase shift �φθ of adjacent pairs Rx.

�φθ = 2π fs
2h sin θ

c
(6)

where h denotes the range separating the adjacent receivers.

2.2 Radar Network

Figure 1 shows the architecture of radar network. The overall pipeline is divided into three
parts: pre-processing, radar network, post-processing. In the part of pre-progressing, a
single frame of point cloud and the radar cube is first fetched. The absolute velocity
can be compensated by ego-motion. In this paper, the speed of ego-car is zero. The
point cloud and radar cube are considered to connect as follows. To filter the cluster
and improve the correctness, the point cloud is executed by statistic judges. Then the
information of point cloud is utilized to crop the radar cube to decrease the burden of
calculation. In the radar network, the size of cropped radar cube is L×W × H , which
represents range/azimuth/Doppler dimensions. Next, the 1× L×W ×H sized cropped
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radar cube is transformed to 25× 1× 1×H by three 3-D convolutions (Conv.) and two
max-pooling (MP.). This operation encodes the spatial feature of target and focuses on the
speed distribution [16]. This encoded feature is then down-sampled by three Convs and
MPs. The output of this module is a 64×1×1×H/8. This feature is concatenated with
the filtered point cloud. The total feature is fed into two fully connection layers (FC.),
whose nodes are 256 and 128 respectively. Finally, the filter point cloud is clustered by
the cluster method based density. The object of classification are persons, bicycles and
car. Clustering results are denoted in box. The detail will be presented in Sect. 3.

Fig. 1. The architecture of radar network

2.3 Radar and Camera Fusion

For the camera network, YOLO v4 is chosen as the baseline [12]. To decrease the
cost of memory, the network is fine-tuned and the categories of output are reduced to
three as above. Calibration between radars and cameras has been employed to the same
image plane. Figure 2 shows the target point in the coordinate of the radar and camera.
(Xr,Yr,Zr) and (Xc,Yc,Zc) denote the general radar coordinate and camera coordinate
respectively. r and α denotes the range and azimuth angle between the target and radar in
the coordinate of radar. (u, v) denotes the pixel coordinate in the coordinate of camera.

Fig. 2. Sketch of the target point in the radar and camera coordinate systems
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Calibration of the camera involves the intrinsic and extrinsic parameters, which can
be solved by Chessboard calibration [17]. The relation between pixel coordinates and
real-world coordinate can be expressed as

sp = ABc (7)

where p = [px, py, 1]T and c = [cx, cy, cz, 1] denote the pixel coordinate in the image
and the real-world coordinates in reality. s denotes a scaling factor. A and B denotes the
intrinsic and extrinsic parameters and are defined as

A =
⎡
⎣
fx 0 ax
0 fy ay
0 0 1

⎤
⎦,B =

⎡
⎣
r11 r12 r13 m1

r21 r22 r23 m2

r31 r32 r33 m3

⎤
⎦ (8)

The transformation from the coordinate of radar to camera can be achieved by per-
spective transform [18, 19]. The transform matrix T can be deduced by the position of
radar and camera. The transform matrix can be express as

rc = Trr =
⎡
⎣
t11 t12 t13
t21 t22 t23
t31 t32 t33

⎤
⎦rr (9)

where rr and rc denote the target coordinate in the coordinate of radar and the coordinate
transformed into the camera coordinate respectively.

2.4 Status Classification and Dataset

Figure 3 presents a sketch of status classification. Three risks of different areas are
the danger, potential danger and safety respectively. It should be noted that the accurate
collisionwarning can not only be determined by the range of the target but also influenced
by speed [2, 20, 21]. According to the condition of collision occurrence, the collision
time of different areas can be defined using the range and velocity. In this system, 0 s

Fig. 3. Sketch of status classification
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to 1.8 s is set as the time of dangerous range. 1.8 s ~ 3.6 s is set as the time of potential
danger. Other time is the safe time.

Figure 4(a) shows the camera and radar used in the experiment. The FMCW radar
chooses TI mmw-radar board AWR1642 with 2Tx and 4Rx producing a total of 8
virtual antennas [22, 23]. The ranging reliability for this radar has been carried out in the
anechoic chamber. It proves that the range error is not more than 0.06 m. Since it is not
our focus, we will no longer present the measuring process. The parameters of the radar
are listed in Table 1. The image resolution captured by camera is 1280 × 720 pixels.
The image and the recorded radar data are synchronized and have the same frame rate.
Figure 4(b) shows the signal indicator light used for danger alarm. The indicator light
can be bright as three colors: green, yellow and red, corresponding to the three status
classifications of the target. The real-world dataset contains about 1 h of driving with the
setups on campus and street. The target-level and low-level output of radar are recorded
simultaneously. Figure 5 presents several typical scenarios for recording data.

Fig. 4. Setups. (a) Radar and camera. (b) Signal indicator light. (Color figure online)

Table 1. Parameters of the radar sensor

Attribute Value

Max. range 80 m

Range resolution 0.0375 m

Max. velocity 20 m/s

Velocity resolution 0.2 M/s

Max. azimuth 120°

Azimuth resolution 1.23°

Frame 20
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Fig. 5. Several typical scenarios for recording data

3 Experimental Results and Analysis

In this section, an ideal environment is firstly chosen to verify the proposed method. The
detection results under different light conditions are compared to validate the advantages
of multi-sensor detection. Then, two complex reality scenes are tested to validate the
robustness against the general road condition. Finally, the quantitative analysis is given.

Experiments are carried out in the 64-bit Win7 system, and the software is mainly
based on the deep learning architecture of Pytorch. The hardware is mainly based on
Intel (R) Core (TM) i7-9700K @ 3.60 GHz CPU and one NVIDIA GTX 2080Ti GPU
with CUDA 10.0 accessing computation.

3.1 Validation of Basic Functions

Figure 6 simulates the scenario that a stationary vehicle in front is detecting a driving
bicycle behind. Figure 6(a-c) show three different status of the bicycle from far to near
under the camera, which are safe, dangerous potentially and dangerous. Figure 6(d-f)
and (g-i) present the range-Doppler results of radar cubes and the clustering results of
point clouds in the horizontal plane. The red circle represents the position of the detected
target.

It is not difficult to find that the ranges for these three statuses are 13.16 m, 10.86 m
and 2.27 m and the mean velocities are about −3.5 m/s, −5 m/s and −3 m/s. Negative
numbers of velocity indicate that the target is moving towards sensors. It can be deduced
that the collision times for these three cases are 3.76 s, 2.17 s and 0.76 s respectively.
According to the dangerous range time (1.8 s) and the safe range time (3.6 s), results of
status classification for these three cases are affirmed. As the bicycle drives from far to
near, the colors of the detection box varies from green to yellow, to red in turn, which are
corresponding to its status classification: safety, potential danger, and danger. The total
time is less than 0.05 s, which includes time for the radar signal processing and optical
imaging processing.

Figure 7 is an example of the advantages of detection for multi-sensor. Due to the
limitation of the environment, the comparative experiment takes only different lighting
conditions as examples. Figure 7(a-b) are the images captured by camera under day and
night conditions respectively. Figure 7(c-d) is the corresponding imaging results of the
radar. It can be found that multi-sensor detection can overcome the shortcomings of a
single sensor and realize robust detection intuitively.
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Fig. 6. Detection results and status classification under the ideal condition. (a-c) The images
captured by camera. (d-f) The range-Doppler images. (g-i) The clustering results of point cloud.
(Color figure online)

3.2 Results in Real-World

Street and campus are chosen to validate the proposed method. To express the results
more intuitively, the optical images, the clustering results of point clouds, and the range-
Doppler results are drawn in one image, which are located in the left, northeast and
southeast respectively. Figure 8 shows the detection results of one car or one bicycle at
different ranges and velocities in the street. In the clustering results of point clouds of
Fig. 8(a), the point cloud in the yellow circle is reflected by ironywindow roadside shown
in the corresponding optical image, which is considered as static clutter. Observing the
clustering results in Fig. 8(a), it can be seen that the range of the car is 8.1 m and the
velocity is 4.8 m/s at this time. Assuming that the car is moving at this constant velocity,
the collision time (1.68 s) is lower than the dangerous range time (1.8 s), so the result
of status classification at this time should be danger. The color of the detected box is
red. Similarly, Fig. 8(b) shows that the range and the velocity of the bicycle at this time
is about 16.5 m and about 5 m/s. Assuming that the bicycle is moving at this constant
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(a)        (b)

(c)                                      (d)

Fig. 7. Detection results of multi-sensor under different light conditions. (a-b) The images
captured by camera. (d-f) The clustering results of point cloud. (Color figure online)

velocity, the collision time (3.3 s) is higher than the dangerous distance time and lower
than the safe range time (3.6 s), so the status at this time is classified as potential danger
and the color of the detected box is yellow.

(a)                                                                        (b)

Fig. 8. Detection and classification results in the street. (a) One car. (b) One bicycle. (Color figure
online)

To evaluate the robustness of the proposed method, the campus owning a more
complex traffic environment is tested. Figure 9 shows the detection results of the multi
cars and bicycles. The point cloud in the yellow circle is reflected by the irony fence
roadside. The traffic volume of such road conditions is enormous and the velocities
of targets are fast, which greatly increases the difficulty and requirements for radar
hardware and signal processing. Figure 9(a) shows that the bicycle in front and the car
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(a)                                                                        (b)

Fig. 9. Detection results on campus. (a) One car and one bicycle. (b) One car and one person.
(Color figure online)

behind are classified corrected. It can be observed that the range and average velocity
for the bicycle is about 5.4 m and 4 m/s. The range and average velocity are about 16 m
and 5 m/s. According to both ranges and velocities, their status is classified as danger
and potential danger as expected. The car in front and the person behind are shown in
Fig. 9(b). Unfortunately, because the reflection intensity of the person is weak, it is hard
to classify which points belong to the person. Considering the velocity of the person is
slow and its danger level is low, it is worth noting that losing it in the cluster result of
point cloud has little effect. In addition, the point cloud of the car can be clustered and
its status is classified accurately, which verifies the effectiveness and robustness of the
proposed method.

3.3 Qualitative Analysis

The precision, recall and F1 score are chosen as the metrics to evaluate the model
performance. From the perspective of radar signal processing, high precision means a
low false alarm rate and high recall means a lowmissed detection rate. Thus, the F1 score
is an overall trade-off about precision and recall. From the perspective of F1 score, Table
2 shows that the detection performance of persons owns the best F1 score and the car
owns the lowest F1 score. Because the location of the person is usually near, the pixels in
optical images and the number of points in clustering results are relatively obvious. The
location of the car is far. The pixels in optical images are occupied less. Although the
number of reflected points for cars are obviously, their distributions of point cloud are
dispersive and the error range of clustered boxes will magnify correspondingly. From
the perspective of precision and recall, car owns the best precision and the lowest recall

Table 2. Performance metrics

Precision Recall F1 Score

Car 0.89 0.75 0.81

Bicycle 0.82 0.87 0.84

Person 0.86 0.91 0.88
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rare. It is because the cluttering box of car is susceptible to the clutter. It means that
the size of clustering box will be magnified, which lead in more error. The recall rate
of bicycle and person is higher than 0.85, which can guarantee the safety of detection
system.

4 Conclusion

In this paper, a method of collision warning and status classification using camera and
radar fusion is proposed. Especially, the radar network is designed by combining target-
level features with low-level features. The performance for classification and detection
is significantly improved. The final average F1 score l is 0.843, which realizes the high
efficiency at the low-cost level. Sufficient experiment results prove the reliability and
effectiveness of the proposed method in practical application.
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Abstract. Although Differentiable Architecture Search (DARTS) has
achieved promising performance in many machine learning tasks, it still
suffers from a problem during searching: due to those different opera-
tions in candidate set may need different levels of optimization, directly
handling them with the same training scheme will make DARTS in favor
of networks with fast convergence, resulting in a performance drop cor-
respondingly. This problem will become more serious at the later search-
ing stages. In this paper, we propose an adaptive dropout method for
DARTS (AD-DARTS), which zeros the output of each operation with a
probability according to structure parameters which can be considered
as the variable representing the difficulty-level training such a candidate
operation, thus serving to balance the training procedures for different
operations. The operations with more parameters can be trained more
adequately to strengthen the characterization ability of the network. Our
analysis further shows that the proposed AD-DARTS are also with high
search stability. The proposed method effectively solves the aforemen-
tioned problem and can achieve better performance compared with other
baselines based on DRATS on CIFAR-10, CIFAR-100, and ImageNet.

Keywords: Differentiable neural architecture search · Adaptive
dropout · Search stability

1 Introduction

Novel neural network architectures often lead to significant improvements on
various machine learning tasks. However, these handcraft-designed architectures
require a large amount of expert experience. Recently, the advent of neural archi-
tecture search (NAS) [1,8] has enabled machines to design the architectures of
neural networks automatically, which achieve better performance than hand-
crafted deep models. The key to NAS is to find the optimal network architec-
ture in a defined search space using heuristic search strategies [17,19]. However,
c© Springer Nature Switzerland AG 2021
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the searching stage of early NAS methods either relied on reinforcement learn-
ing [15,21] or genetic algorithms [12], which usually require plenty of resources
with a long searching time, e.g., the NASNet [22] needs 2000 GPU days to find
the optimal architectures, the AmoebaNet [16] even needs over 3000 GPU days.

Compared with the aforementioned methods, the DARTS based algorithms
like [13,18], modeling the searching problem as a differentiable optimization
problem, reduce the network search time from thousands of GPU days to just a
few GPU days while achieve better performance by modeling the searching prob-
lem as a differentiable optimization problem. Specifically, different from the NAS
methods such as [11], DARTS relaxes the decision variables and parameterizing
the possible network structure, while these structure parameters are learnable.
Moreover, similar to the idea of meta-learning, the search algorithm designed
by DARTS can be viewed as a meta-learning machine [7,14] that teaches the
machine to design the methodology of the network and uses a training set and
a validation set for bi-level optimization. Due to the fast searching speed and
its good performance, DARTS has attracted widespread interest in the NAS
community for differentiable searches. GDAS [6] performs random sampling of
an operation, which greatly reduces the search time; PC-DARTS [20] proposes
channel sampling connection with edge normalization, which improves the net-
work performance and also reduces the search time; P-DARTS [2] derives from
the depth interval of search and validation network due to the different number
of cell stacked, and established a depth progressive search algorithm.

However, classical DARTS treats all the candidate operations with the same
training scheme, which can lead to architecture collapse during searching. Due
to those different operations in the candidate set may need different levels of
optimization, DARTS seems to be in favor of the operations without parameters
and networks with fast convergence. This problem will become more serious
at the end of searching, where the resulted architecture contains much more
parameter-free operations. DARTS+ [10] proposed an early stop mechanism to
alleviate this problem. The regularization of skip connection at the early stage of
the search is widely adopted. NoisyDARTS [4] applies unbiased Gaussian noise
at skip connection paths to suppress their frequent appearance. DARTS- [3]
introduces additional hopping links and gives additional structural parameters
to control the training, etc.

In this paper, we propose an adaptive dropout method for DARTS (AD-
DARTS), which zeros the output of an operation with a probability according
to the structure parameter during searching. Moreover, we provide an analysis of
the optimality and stability of the obtained operations and architectures, which
reveals the correlation between the corresponding weight of this operation and
the final performance of the network. We further discuss whether the ranking
of the weights corresponding to the operations is stable at the late stage of the
search. Our contributions are listed as follows:

Firstly, we point out the unfair and inadequate training for each candidate
operation of DARTS, the candidate operations without parameters are more
likely to dominate, which has a significant impact on the network performance.
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Secondly, we propose an adaptive dropout method at the operation level,
i.e., the output of the operation is randomly set to zero according to the weight
by probability, which plays a role in suppressing the overtraining operations
which squeeze the training of the others.

Thirdly, we propose a new way to analyze the search stability. The opera-
tions in the discrete network obtained from a stable search process can be more
adequately trained and make more contributions to performance improvement.

Lastly, the experimental results show that our proposed search method can
alleviate the inequality in the search process while possessing better stability.
We also achieve state-of-the-art networks on CIFAR-10/100 and ImageNet.

2 Existing Problems of DARTS

2.1 Differentiable Architecture Search

The network of DARTS consists of several normal cells and two reduction cells
with shared weights. The cell can be seen as a directed acyclic graph. Each
node inside is represented as a feature map. DARTS constructs a set of 8 differ-
ent candidate operations {Zero, SepConv33, SepConv55, DilConv33, DilConv55,
Maxpool, Avgpool, Identity} with a mixed operation between two nodes:

o(i,j)(xi) =
∑

o∈Θ

exp(α(i,j)
o )

∑
o′∈Θ exp(α(i,j)

o′ )
· o(i,j)(xi) (1)

The above equation clarifies how the information of the ith node in the search
process is passed to the jth node through the mixed operation, where α

(i,j)
o is

a learnable network structure parameter whose result after softmax represents
the weights of operations, and o is a specific operation in the operation set Θ. In
this way, DARTS continuousizes the otherwise discrete operation selection and
search process into a weighted form among the operations represented by the
structure parameter, allowing the gradient to be updated by backpropagation.
The network parameter w is iteratively updated with the structure parameter α
by the following bilevel optimization algorithm:

min
α

Lval(w∗(α), α)

s.t. w∗(α) = arg min
w

Ltrain(w,α)
(2)

That is, the network parameter corresponding to the structure parameter is
optimized on the training set, while this optimized network is used to further
optimize the structure parameter on the validation set. After the search, the
construction of the discrete network is performed as follows:

xj =
∑

k<topk

max
k

(weight(i,j)) · o
(i,j)
non−zero(xi), i < j (3)
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where weight(i,j) denotes the operational weights formed by the structure
parameter α after softmax, and the largest k of all edges connected to the
forward node is selected to determine the discrete network structure, for CNN
topk = 2.

2.2 Performance Collapse Caused by Parameter-Free Operations

Many studies have pointed out that DARTS has more skip connect operations
in a single cell as the search process progresses, and this structure has a greater
impact on the final network performance. Since skip connect is a parameter-free
operation, this phenomenon leads to a shallow network and a significant decrease
in network parameters.

Fig. 1. Change of each operation in normal cell
and reduction cell at different stages of the training
process of DARTS on CIFAR-10.

Fig. 2. The test accuracy of
network at different stages of
DARTS on CIFAR-10.

From Fig. 1, we can see that the number of skip connects in DARTS increases
rapidly in the late stage of the search process and occupies most of the cell. Also,
the number of maximum pooling in reduction cell shares the same trend which
is also a parameter-free candidate operation.

The network obtained from DARTS does not show a trend of increasing
performance as the search goes deeper and deeper from Fig. 2. We take 5 different
random seeds for the test, and the red line indicates the average results. This
reflects the performance collapse, which is not only caused by skip connect as it
is reported in the existing paper, but also partly caused by maximum pooling,
and we therefore extend this phenomenon to parameter-free operations.

2.3 Unfair and Inadequate Training Scheme

DARTS prefers to select parameter-free operations rather than others. It indi-
cates the existence of unfair training, where the easy-to-fit and easy-to-converge
operations significantly squeeze the training of the others, making them inade-
quately trained. From Fig. 3, the curve of skip connect is clearly different from
the others. At the same time, the contrast between these four edges also shows
that this dominance of skip connect falls as the depth increases, in other words,
the dominance of skip connect in the normal cell is more obvious at shallow
levels.
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Fig. 3. The change curve of weights
within the four edges in the normal
cell of DARTS. Egde(i, j) represents the
connection of the i-th node to the j-th
node.

Fig. 4. Normal cell found at epoch
5/28/49 on CIFAR-10, representing the
network structure at the beginning,
middle and end of the search.

The unfair and inadequate training also appears between edge-to-edge at
different positions in the cell. From Fig. 4, as the search progresses, because a
single node has only two forward nodes connected to it, the interconnection
between the four intermediate nodes in the normal cell is gradually replaced
by the connection between the two input nodes to them. The four intermediate
nodes tend to be equivalent and the network becomes progressively shallow, thus
resulting in the performance drop.

3 The Adaptive Dropout Methodology

3.1 Motivation

Due to this unfair and inadequate training of DARTS, the network becomes
shallower and shallower, and the overall number of parameters decreases dra-
matically. Therefore, this search method, which treats all operations in the same
way, only results in a gradual decrease of the network representation capabil-
ity. The search algorithm can also be regarded as an optimization algorithm,
except that not only the optimized network parameters but also the hyperpa-
rameters that guide the design of the network structure are optimized, and it is
obvious that the overfitting and the unfair competition problem in the structure
parameter are not considered. Therefore, how to break this unfair competition
and balance the training of different operations is the current concern of many
studies.

A simple idea is regularization, i.e., regularizing parameter-free operations
that are easy to train and converge, but many existing methods only consider
representative skip connect and regularize it in different ways to limit the train-
ing. In this paper, we propose a more general approach to perform adaptive
regularization for all operations determined by the probability according to the



120 Z. Zheng et al.

structure parameter obtained from the previous epoch and setting the output
of all operations to 0 at the next epoch, so that the gradient of the opera-
tion is suspended to update. For those parameter-free operations, the corre-
sponding structure parameter tends to be larger, so we zero the output with a
larger probability, which slows down the training speed; for convolutional oper-
ations, the corresponding structure parameter becomes smaller due to the crush
of parameter-free operations, so we zero the output with a smaller probability,
and they will be trained more adequately. It is not absolutely possible to classify
two categories as parameter-free or parameterized according to the trend, and
this adaptive dropout approach is universally applicable to all operations.

3.2 Operation-Level Adaptive Dropout

Fig. 5. Operation-level adaptive dropout.

The method is revealed by Fig. 5, in the process of connecting two nodes, the
output of an operation is first weighted according to the structure parameter as
below:

w(i,j) =
exp(α(i,j)

o )
∑

o′∈Θ exp(α(i,j)
o′ )

(4)

Then it is set to 0 by the adaptive dropout module with probability pd:

p
(i,j)
d = fAD(w(i,j)) (5)

where fAD is a monotonic probability transformation function that describes
the process of mapping the structure parameter to the probability of setting 0.
Thus, the connection between two nodes can be described as:

o(i,j)(x) =
∑

o∈Θ

o(x) · m(i,j)
o (6)

Pr(mo = 0) = pd, P r(mo = 1) = 1 − pd (7)
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The mo represents as the mask whether to retain the output of a certain
operation, taking 0 or 1 accordingly. In our experiments, we found that the
construction of the probabilistic transformation function fAD has an impact on
the performance. If we adopt a plain idea, represented by an identity mapping,
since the network structure parameter is the same for each operation at the
initialization, the same dropout method is adopted in the pre-search stage to
limit the update. This approach produces almost the same result as no restriction
at all. Therefore, what should be done is to maximize the regularized variability
between operations and operations in the early stage of the search, and we
choose the following linear normalization method to map all probabilities to a
fixed range while maintaining a positive correlation:

fAD(w(i,j)) =
w(i,j) − w

(i,j)
min

w
(i,j)
max − w

(i,j)
min

· s (8)

where s(s < 1) is the scaling factor to restrict the scaled probability in the range
of [0, s]. s = 0 is the method of DARTS, and s is used as the hyperparameter of
AD-DARTS.

4 Experiments and Results

4.1 Implementation Details and Performance Comparation

Search. AD-DARTS searches on CIFAR10/100 following almost the same exper-
imental settings as DARTS. We use a network with stacked 6 normal cells and
2 reduction cells, 16 channels, and the one-level approximation in DARTS for
the experiments. The training and validation sets were randomly selected from
50,000 images with 50% probability each, and the batch size was set to 96 on
a single Nvidia Geforce RTX 2080ti, and a total of 50 epochs are trained to
the final discrete network. The network parameter and structure parameter are
bilevel optimized according to different optimizers. The network parameter w is
set using the stochastic gradient descent (SGD) algorithm with an initial learning
rate of 0.0375, a momentum of 0.9, and a weight decay of 0.0003; the structure
parameter α is set using the Adam optimizer with an initial learning rate of
0.0003, a momentum of (0.5, 0.999), and a weight decay of 0.001. The scaling
factor of the probability mapping function is set to s = 0.20.

Evaluation. The performance validation performs on CIFAR10/100 and Ima-
geNet according to almost the same settings as DARTS. The overall network is
stacked with 18 normal cells and 2 reduction cells, with an initial channel count
of 36. The experiments are performed with a batch size of 192, an SGD opti-
mizer, an initial learning rate of 0.05, a momentum of 0.9, and a weight decay of
0.0003, on a single Nvidia Geforce RTX 3090 with 600 epochs. The same cutout
and network auxiliary tower as DARTS is also used, and no additional tricks are
employed for data augmentation. We have obtained an average top-1 accuracy
of 2.24% and 15.88% on CIFAR-10/100 respectively, and 23.4% on ImageNet in
Table 1, which shows the best result compared to the current methods.
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Table 1. The test error on CIFAR10/100 (left), we run 5 times with different random
seeds. The test error on ImageNet (right), the method without mark indicates the
structures searched on other datasets and migrated to ImageNet for retraining to verify
the performance.

Method
Error on

C10(%)

Error on

C100(%)

Params

(M)

Cost

(days)

DARTS [13] 3 17.76 3.3 1.5

SNAS [19] 2.85 - 2.8 1.5

GDAS [6] 2.93 18.38 3.4 0.21

P-DARTS [2] 2.5 15.92 3.6 0.3

PC-DARTS [20] 2.50(2.57±0.07) - 3.6 0.1

Fair-DARTS [5] 2.49(2.54±0.05) - 3.32 -

Noisy-DARTS [4] 2.39 - 3.25 -

DropNAS [9] 2.26(2.58±0.14) 16.39 4.1 0.7

AD-DARTS(ours) 2.24(2.32±0.08) 15.88 3.35 0.7

Method
Top-1

Error(%)

Top-5

Error(%)

Params

(M)

Cost

(days)

DARTS [13] 26.7 8.7 4.7 4

SNAS [19] 27.3 9.2 4.3 1.5

ProxylessNAS [1]† 24.9 7.5 7.1 8.3

P-DARTS [2] 24.4 7.4 4.9 0.3

PC-DARTS [20]† 24.2 7.3 5.3 3.8

Fair-DARTS [5]† 24.4 7.4 4.3 3

Noisy-DARTS [4]† 23.9 7 4.9 -

DropNAS [9] 23.5 6.7 5.7 0.7

AD-DARTS(C10) 23.4 6.6 5.6 0.7

AD-DARTS(C100) 23.5 6.7 6 0.7

† Directly searched on ImageNet.

4.2 Influence of Hyper-parameter

Table 2 reflects the effect of different probability transformation function scaling
factor s on the network performance. It can be seen that the best performance
is achieved on both CIFAR-10/100 when s = 0.2, i.e., the probability of adap-
tive dropout is linearly normalized to the range of [0, 0.2]. Also, the results are
improved considerably compared to the degradation of s = 0 to DARTS.

Table 2. The influence of different s on CIFAR-10/100. We obtain 5 experiments for
each value on CIFAR-10.

Dataset s = 0 s = 0.1 s = 0.2 s = 0.3 s = 0.4

CIFAR-10 2.76± 0.18 2.50± 0.12 2.32± 0.08 2.38± 0.13 2.82± 0.10

CIFAR-100 17.76 16.05 15.88 15.93 17.87

4.3 Search Stability Study

Search Consistency Factor. We abstract a search consistency factor to mea-
sure the stability. The motivation is that if the variation of chosen operations
is as small as possible during a given search process, the better. To facilitate
quantification, we first encode all non-zero operations in the operation set u,
e.g., skip connect as number 0, maximum pooling as number 1, etc., for a total
of seven numbers. Define the maximum weight operation encoding vector within
a cell at search moment epoch = e as:

de = [u0, u1, . . . , u13]� (9)

To describe the variation, define the discrete difference mask vector De as:

De
k =

{
1, de

k − de−1
k �= 0

0, otherwise
, k = 0, 1, . . . , 13 (10)
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The changed location is set to 1. Since the value in weight vector we varies a
lot from different locations (or different depths) in the cell, to measure search
stability more accurately, we propose the change importance weighting vector
We as:

W e
k = we [de

k], k = 0, 1, . . . , 13 (11)

If the edge corresponding to a larger weight operation has changed, then we
define it as a more important change.

The discrete difference mask vector De and the change importance weighting
vector We are with same length, representing the 14 edges in the cell. The final
constructed search consistency factor Cn is represented by a sliding average:

Cn =
1
n

·
n−1∑

e=e0

De� · We (12)

n described as the size of window of sliding average.

The Stability of AD-DARTS. Instead of making the whole search process
unstable, the adaptive dropout method reinforces the stability of the search.
The reasons are as follows: 1) even the largest dropout rate is limited to a small
range due to the presence of the scaling factor s of the probability transformation
function; 2) the superiority of an operation is better reflected if the gradient
backpropagation is prevented with a large probability throughout the search
process but the weights still maintain large values.

Fig. 6. Change of each operation in normal cell at
late stage of the training process (epoch 30–49) of
DARTS and AD-DARTS on CIFAR-10.

Fig. 7. The test accuracy of
network at different stages of
AD-DARTS on CIFAR-10.

The comparison in Fig. 6 shows that the ranking of operations in DARTS
still changes a lot in the late search period, while AD-DARTS changes less,
which further illustrates the improved stability. Figure 7 reflects the network
performance of AD-DARTS at different stages of search on CIFAR-10. Unlike
the performance degradation problem of DARTS, AD-DARTS can maintain a
more stable performance improvement. Also, the impact of different random
seeds on the performance at the late stage of search becomes relatively small.
This reflects the stability of AD-DARTS in terms of performance growth, and
the search process of the network always proceeds steadily in the direction of
performance improvement.
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Fig. 8. The influence of stand-alone model on egde(1,2) of normal cell at two different
stage of search on CIFAR-10.

The Guiding Ability of Search Consistency Factor. The network search
consistency factor is proposed in AD-DARTS as a guide to the improvement of
the structural performance. Figure 8 shows two different stages of the search,
changing the selected operation to others, and testing its impact on network
performance, and we call it the operation stand-alone accuracy. In DARTS, the
operation selected by the discrete structure of this edge is the skip connect.
But the network performance does not necessarily decrease when it is changed
to others, and the final discrete structure even has a better performance for
the 3 × 3 convolution; in AD-DARTS, this phenomenon does not exist, and the
non-selected operations have a greater impact on the performance degradation,
which in turn proves the superiority of the network selected ones. It can be seen
that the value of the consistency factor Cn with the sliding window of n = 8
corresponding to DARTS is significantly larger, which means that the discrete
structure changes more during 8 epochs before the current epoch, while the
value of the search consistency factor of AD-DARTS is smaller and even keeps
the discrete structure without any change in the last 8 epochs, which illustrates
that our method does substantially improve the search stability, especially in
the late stage of the search.

5 Conclusion

We point out the performance collapse problem of DARTS, and the tendency
of this search method to prefer parameter-free operations. We propose a novel
differentiable search method for neural networks, AD-DARTS, which prevents
structure parameter updates by probabilistically and adaptively setting the out-
put of each operation to zero according to the weight, and substantially improves
the performance of the discrete network. AD-DARTS achieves optimal perfor-
mance compared to existing differentiable search algorithms. We also propose
a network search consistency factor and analyze how AD-DARTS improves the
network search stability.
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Abstract. As a decision-making problem with interaction between vehi-
cles, it is difficult to describe intelligent vehicle lane change state space
using a rule-based decision system. The deep deterministic policy gradi-
ent (DDPG) algorithm offers good performance for autonomous driving
decision, but still has slow convergence and high collision probability
in learning process when applied to lane change. Therefore, we propose
an improved deep deterministic policy gradient algorithm with barrier
function (DDPG-BF) algorithm to address these problems. The barrier
function is constructed depending on the safety distance required for
lane changes, and DDPG algorithm optimization is improved by guiding
the vehicle to choose actions within safety constraints. Simulation results
on TORCS confirmed that the proposed method converged in hundreds
of training episodes, and reduced the unsafe behavior ratio to less than
0.05. Compared with DDPG and FEC-DDPG algorithm, the proposed
method has the contribution to improve the convergence speed of learn-
ing and maintain the safe distance between vehicles in lane change.

Keywords: Lane change decision · Deep reinforcement learning ·
Deep deterministic policy gradient · Barrier function

1 Introduction

Lane change decision-making is a hot issue for autonomous driving, including
intelligent vehicle multi module interaction, complex environment, and diverse
traffic conditions [1]. Current autonomous driving decision-making modules are
mostly based on artificial rules that can address most driving situations. How-
ever, it is difficult to enumerate all the situations and find optimal decision-
making using artificially designed rules when driving environment become com-
plex, involving unexpected situations.
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Autonomous vehicles make optimal decisions in complex environments. This
view is consistent with the one of reinforcement learning. Hence, many recent
studies have applied deep reinforcement learning to autonomous driving decision-
making, integrating decision-making and motion planning modules [2] to address
problems in the driving environment. Wayve considered a smart car on a simple
road without large prior dataset using the deep deterministic policy gradient
(DDPG) algorithm [3], confirming that DDPG algorithm can effectively solve
some autonomous driving decision-making problems with incomplete or difficult
to obtain prior knowledge [4].

Although deep reinforcement learning is a potential policy generation method
for autonomous driving, most previous deep reinforcement learning approaches
fail to consider safety problems, which is likely to raise safety risk. However,
some recent studies have considered reinforcement learning safety [5–8]. Bin
et al. proposed FEC-DDPG [9] in 2019, which improves experience memory
buffer sampling to enhance DDPG algorithm ability to avoid illegal actions (e.g.,
applying accelerator and brake simultaneously) during training. Cheng et al.
added control barrier functions (CBF) to reinforcement learning [10] to extract
actions from the safety set to participate in training, and verified the proposed
method’s effectiveness in terms of efficiency and safety assurance through vehicle
following experiments.

Deep deterministic policy gradient has been applied to autonomous driving
with some success, but most DDPG algorithm and the related improved algo-
rithm application scenarios are relatively simple environments, such as vehicle
following, lane keeping and so on. It is difficult to construct a deterministic safety
state for decision scenarios with stochastic interactions, like the lane change
shown in Fig. 1, due increased state space dimensionality, leading to problems
such as the collision with interacting vehicles and slow convergence [11].

Fig. 1. Lane change scenario with surrounding vechicle.

Therefore, this paper proposes an improved DDPG algorithm with barrier
function (DDPG-BF). Safety constraints were established from the safe distance
model for lane change, and added to the loss function through the barrier func-
tion. Thus, the intelligent vehicle can be protected during reinforcement learning
by the boundary limitation, and will tend to choose safe actions with high reward.
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Our main contributions are as follows. (1) We construct a barrier function
based on safety distances during lane changes. (2) We extend the DDPG algo-
rithm by adding the barrier function term into the loss function. (3) We apply the
proposed method to intelligent vehicle lane change scenario. It shows improved
convergence speed and maintains the distance in the safety region for lane change
interactions.

2 Background

2.1 A Safety Distance in Lane Change Decision

Vehicle lane change decision has always been a key issue in safe driving. Some
scholars have constructed the dynamic model of safe driving from safety speed
[12] and safety distance [13,14].

A critical distance constraint is required to prevent collision between the
two vehicles at the next moment. Zang and his team put forward a calculation
method of safety distance when changing the road by establishing the lateral
safety distance model [13]. According to this distance model, we record the lane
keeping vehicle as A, and the lane changing vehicle as B, assuming that there
is no collision between the two vehicles after the lane change, the results can be
divided into two cases as shown in Fig. 2:

Fig. 2. The situations of vehicles in interaction after lane change.

Based on the relationship between the longitudinal speed and acceleration of
the two vehicles, the classification analysis is carried out [13]. The corresponding
time solutions of above lane change results are shown in Table 1 and Table 2.
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Table 1. Time Solutions (XA>XB)

Presupposition Time solution{
aA − aBcosβ < 0

vA − vBcosβ > 0
t1 does not exist{

aA − aBcosβ < 0

vA − vBcosβ > 0
t2 =

(vBcosβ−vA)+
√

(vA−vBcosβ)2+2(aA−aBcosβ)S0
aA−aBcosβ{

aA − aBcosβ > 0

vA − vBcosβ < 0
t3 = t2{

aA − aBcosβ > 0

vA − vBcosβ > 0
t4 = t2

Table 2. Time solutions (XA<XB)

Presupposition Time solution{
aA − aBcosβ < 0

vA − vBcosβ < 0
t5 =

(vA−vBcosβ)+
√

(vA−vBcosβ)2+2(aBcosβ−aA)S0
aBcosβ−aA{

aA − aBcosβ < 0

vA − vBcosβ > 0
t6 = t5{

aA − aBcosβ > 0

vA − vBcosβ < 0
t7 = t5{

aA − aBcosβ > 0

vA − vBcosβ > 0
t8 dose not exist

where, β is the angle between the two directions, vB and aB are the speed and
acceleration of host vehicle, vA and aA are the speed and acceleration of vehicle
A respectively, XB and XA are the longitudinal displacement of two cars, and
S0 is the longitudinal distance between two vehicles after lane change. According
to the research on lateral critical distance [15], the lateral safety distance during
lane change is expressed as:

D0 = sinβ(vBt +
aBt2

2
) + 0.94

{
t = t2, XB < XA

t = t5, XB > XA

(1)

2.2 Autonomous Driving Based on DDPG Algorithm

DDPG algorithm has good performance in dealing with continuous action space
problems. It improves the deterministic policy gradient (DPG) [16] method with
technical points of deep Q network (DQN) [17], combined with actor-critic neural
networks [3,18].

DDPG algorithm maps environment state s to policy, state-action pair (s, a)
to value function, and uses deep neural network to calculate Q value instead of
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Q table to store [16]. In the training process, the experience replay mechanism is
used to store the quadruple (st, at, rt, st+1) representing the state, action, reward
and the next state into the memory buffer. When updating the network, multi-
ple groups of experience samples are randomly selected from the memory pool
to weaken the temporal correlation of the samples, which can more effectively
optimize the network parameters.

At the same time, DDPG algorithm has target networks when using actor-
critic method [3]. Actor-critic network is responsible for updating the parameters
of policy network and value network. In light of the current state, it selects
the corresponding actions to interact with the environment, and updates the
parameters to the actor target network; The task of actor target network is to
select the optimal action through the sampling state in the experience replay
buffer; the critic target network Q

′
will calculate a term of the target Q value,

according to the sampling state action pair; the critic network calculates the
current Q value according to the sampling state sj and action aj , and constructs
the mean square error loss function combined with the current target Q value
yj :

L =
1
m

m∑

j

(yj − Q (sj , aj |ω))2 (2)

yj = E
[
rj + γQ

′ (
sj+1, πθ′ (sj+1) |ω′)]

(3)

where θ
′
, ω and ω

′
are the parameters of target actor network, critic network

and target critic network, respectively. And m is the number of samples, πθ′ is
the policy from target actor network. For autonomous driving decision, DDPG
algorithm obtains the state of the observation environment through the vehicle
sensor interface:

state = 〈v, d, rpm, yaw, track pos, vwheels spin〉 (4)

where v is the velocity in three dimensions, d is the actual lateral distance
between two interacting vehicles. rpm, yaw, track pos and vwheels spin are the
engine speed, yaw, track position and velocity of wheels spin respectively. It gets
the selected driving decision through the actor network, and controls the pedals
of throttle and brake, steering and gear of the vehicle through controllers.

action = 〈pthrottle, pbrake, steering, gear〉 (5)

In order to solve the problem of exploration ability caused by deterministic
policy, exploration noise is added, so that the action selection is determined by
the output policy of actor network and exploration noise. After executing the
action it receives the next state information, calculates the reward function:

rtotal = rdamage + ryaw + rtrack + rprogress (6)

The total reward can be formulated by four components: the reward for collision
damage, the yaw angle limit, the lane tracking and the progress of vehicle. And
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then it stores the samples of state, action and reward value in the memory pool,
and then randomly extracts groups of samples from the buffer to update the
actor and critic network.

3 DDPG Algorithm with Barrier Function

3.1 The Barrier Function for Safe Lane Change

In order to improve the learning efficiency of DDPG algorithm and maintain
vehicles at safe distance in lane change, we proposed an improved DDPG method
with barrier function (DDPG-BF).

Barrier function [19] is a kind of constraint continuous function. As the point
approaches the constraint boundary of optimization problem, the value of bar-
rier function will increase. When it reaches the boundary of feasible region, the
value of barrier function will increase to infinity. By designing an appropriate
barrier function, the constrained optimization problem can be reconstructed into
an unconstrained problem, and then the algorithm can converge through opti-
mization iteration [20].

When the safety constraints of lane changing scenario are involved, the opti-
mization problem of loss function becomes a kind of function minimum optimiza-
tion problem under constraint conditions, which belongs to the solution scope
of interior point method [21] in barrier function.

The key to deal with lane changing safety problem with interior point method
is to express the safety constraints in the process through barrier function B(s),
add the safety boundary constraints in the DDPG training process, and select
the optimal action in the feasible region. The feasible region F within B(s)
boundary can be expressed as:

F : {s ∈ Rn : 0 ≤ B(s) � ∞} (7)

where s is the state and Rn is the state space. In the lane change scenario,
the barrier function B(s) is obtained through the transformation of safety dis-
tance constraints. The feasible region F represents the set of states in which the
distance between interacting vehicles is greater than the safety distance in the
process of lane change.

3.2 Constructing Barrier Function by Interior Point Method

For DDPG algorithm, the objective function to be optimized is the loss function
L, and there is an inequality constraint based on safety distance in the opti-
mization process, which is denoted as g(s). Then the optimization problem is
expressed as:

min

⎧
⎨

⎩L =
1
m

m∑

j

(yj − Q (sj , aj |ω))2

⎫
⎬

⎭ s.t. g(sj)> 0 (8)
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By defining function B(s) as barrier function, the search point can be kept
in the barrier function:

B(sj) =
1

g(sj)
(9)

The solved function is transformed from L to a new objective function LBF .
It is constructed by the original loss function and barrier function

LBF =
1
m

m∑

j

[
(yj − Q (sj , aj |ω))2 + μB (sj)

]
(10)

The barrier factor μ is a very small number, which represents the influence of
barrier function on loss function. The smaller the μ is, the smaller the influence
of the barrier function on the loss function is, and the closer it is to the true
solution; if μ is too large, the greater the influence of the barrier function is, and
easier to get stuck at local optimum.

For the new loss function LBF with the structure of Eq. (10), when the state
tends to the boundary of feasible region F , the function value of LBF tends to
infinity. On the contrary, because μ is a very small number, the function value of
LBF is approximately L, and the approximate solution of the original problem
can be obtained by solving the new problem:

min LBF

s.t. S ∈ F
(11)

Where S is the state set inside the safety constraint. According to the lateral
safety distance in the process of lane changing, the corresponding barrier function
can be constructed:

B(sj) =
1

dj − D0j
(12)

Fig. 3. Illustration of DDPG-BF training process.
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3.3 Algorithm Process of DDPG-BF

The barrier function based on safety distance is introduced into the loss function
optimization process of DDPG algorithm, and the loss function under safety
constraints is used for the reinforcement learning training of intelligent vehicle
lane change decision. The illustration and pseudo code of DDPG-BF algorithm
are as follows (Fig. 3):

Algorithm 1. DDPG-BF
Input:
the parameters of networks θ, θ

′
, ω, ω

′
, discount factor γ, exploration noise N , barrier factor

μ, longitudinal safety distance S0, soft update coefficient τ , sample numberm, maximum
number of iterations T

Output: optimal actor parameter θ, and critic ω

1: Randomly initialize the parameters θ, ω, ω
′
= ω, θ

′
= θ

2: Initialize replay memory buffer D
3: Initialize the random noise N
4: for t from 1 to T do
5: Initialize st as the first state of the state sequence
6: Select action a=πθ(st) + N
7: Execute action a, get the new state st+1 and observe reward r
8: Compute barrier term B(st) according to the safe constraint and the states of vehicles

in interaction

9: Store (st, at, rt, st+1, B(st)) in memory buffer D
10: st = st+1

11: Sample a random minibatch of m transitions(sj , aj , rj , sj+1, B(sj)) from D

12: Set yj = rj + γQ
′
(sj+1, π

θ
′ (sj+1)|ω′

)

13: Update critic network via minimizing the loss:

LBF =
1

m

m∑

j=1

[(yj − Q(sj , aj |ω))2 + μB(sj)]

14: Update actor network by the sampled policy gradient:

J = − 1

m

m∑

j=1

Q(sj , aj |ω)

15: Update the target actor and target critic networks:

ω
′ ← τω + (1 − τ)ω

′

θ
′ ← τθ + (1 − τ)θ

′

16: if s
′

is the ending state: then

17: done
18: else

19: go to step 4

20: return return the output
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4 Experiments

4.1 Experimental Preparations

This experiment is based on TORCS platform, setting lane change decision scene
with vehicle interaction, and verifying the algorithm. The content of the com-
parative experiment includes the following two components:

(1) Through accumulated reward, the comparative experiments of DDPG [3],
FEC-DDPG [9] and DDPG-BF are carried out. This work shows the
improvement of the proposed algorithm in convergence speed.

(2) In order to have a comparison of above three methods in safety vehicle
interaction, we record the behaviors out of safety distance boundary occurred
at interaction each epoch and calculate the ratio of these epochs to the total
training episodes.

In the experiment, the training map is selected as “Speedway No. 1” in
TORCS, and the interactive vehicle driving model is selected as “Tita 4”. The
longitudinal safety distance S0 is set as 28 m, the maximum lateral safety dis-
tance is 3.75 m as the world standard, so as to ensure that the initial action
of the algorithm is selected in the feasible region. The value of experimental
hyperparameters is shown in Table 3:

Table 3. Value of Hyperparameters

Hyperparameter Value

Discount rate γ 0.99

Soft update coefficient τ 0.001

Number of extracting samples m 32

Capacity of Memory Buffer M 100000

Maximum step per epoch 300

4.2 Comparative Analysis of Experimental Data

Convergence Speed. In Fig. 4, it displays the accumulated reward per episode
for DDPG-BF. The experimental data comparison is shown in Fig. 5, abscissa
for training episodes, ordinate for accumulated reward.

DDPG-BF not only sets the reward for collision damage, but also adds the
barrier function constraint for the safety distance of vehicle interaction, and
adds the safety distance constraint for the training of networks, so as to guide
the agent to make action decisions and choices within the feasible region. In
Fig. 5, After 1450 episodes of training, DDPG and FEC-DDPG algorithm can
almost reach the accumulated reward value maintained by DDPG-BF, but the
data is still in shock, not obtained convergence. From figures, we can see that
accumulated reward of DDPG-BF has reached a relatively stable state after
700 episodes, and the convergence speed of DDPG-BF is obviously improved
compared with the other two algorithms.
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Fig. 4. The accumulated reward per episode for DDPG-BF.

Fig. 5. The accumulated reward for DDPG, FEC-DDPG and DDPG-BF.

Unsafe Behavior Ratio. The safety of the three methods in lane change
decision-making is compared by recording whether each episode has the behav-
iors made the gap less than safety distance at interaction, and calculating the
ratio of the safety warning (the vehicles gap less than corresponding safety dis-
tance) episodes to the total training times.

From Fig. 6, we can see that the ratio of behaviors out of safety bound-
ary is less than 0.05 in the whole training process of DDPG-BF. When using
DDPG method alone and FEC-DDPG without barrier function, the ratios are
almost above 0.15 and show the growth trend even in the later stages of train-
ing. Figure 7 illustrates the relationship between minimum lateral distance and
the corresponding safety distance in the learning process of DDPG-BF. Values
above the black line represent the safe set. And the safety distance boundary is
calculating by lateral safety distance model [13]. In the later stages of DDPG-BF
learning process, the lateral minimum distance is almostly maintained above the
safety distance boundary.
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Fig. 6. The unsafe behavior ratio for DDPG, FEC-DDPG and DDPG-BF.

Fig. 7. The minimum lateral distance of vehicles for each training episode of DDPG-BF
and the corresponding safety distance boundary.

5 Conclusion

The proposed DDPG-BF method was derived by analyzing DDPG autonomous
driving policy framework and safe distance model during lane changes, partic-
ularly to address slow convergence speed and consequential high collision prob-
ability. Barrier function interference is added to loss function optimization of
DDPG method, ensuring safety constraints act on driving action evaluation and
selection. We verified that DDPG-BF improved convergence and significantly
avoid collision by controlling the driving actions in the lane change safety region.
However, the proposed algorithm only considered when the interaction target is
other vehicles, and does not consider road emergency situations, pedestrians as
interaction targets, and other complex road conditions. Future work will extend
the approach to ensure safe driving considering multiple interaction objects.
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Abstract. In this paper, we propose a novel self-organized Hawkes pro-
cess (SOHP) to model complex event sequences based on extremely few
observations. Motivated by the fact that the complicated global relations
among events are often composed of simple local relations, we model
the event sequences by a set of heterogeneous local Hawkes processes
rather than a single Hawkes process. In the training phase, we learn the
Hawkes processes with a self-organization mechanism, selecting training
sequences adaptively for each Hawkes process by a bandit algorithm. The
reward used in the algorithm is originally defined based on an optimal
transport distance. Additionally, we leverage the superposition property
of the Hawkes process to enhance the robustness of our algorithm to
the data sparsity problem. We apply our SOHP method to sequential
recommendation problems in the continuous-time domain and achieve
encouraging performance in various datasets. The code is available at
https://github.com/UESTC-DaShenZi/MHP.

Keywords: Hawkes process · Self-organization · Bandit algorithm ·
Optimal transport · Sequential recommendation

1 Introduction

Hawkes process (HP) is a powerful mathematical framework for modeling gen-
erative mechanisms of event sequences in the continuous-time domain. Since it
was applied in modeling the patterns of earthquake [18], its ability to capture
exogenous fluctuations of events and endogenous triggering patterns between
different event types has made it a popular model in many application scenar-
ios, e.g., high frequency finance [3], social network [11], and recommendation
systems [25], etc.

Although Hawkes processes provide competitive solutions to many impor-
tant problems, their practical applications often suffer from some limitations:
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Fig. 1. An illustration of the proposed self-organized Hawkes process model.

(i) Real-world sequences may yield different models and the interrelation of the
event types within each sequence can be complicated. Therefore, it is often dif-
ficult to model their generative mechanisms by a single Hawkes process [15,23].
(ii) Even in the scenario using a single Hawkes process, the number of event types
is often huge while the observations can be extremely few in practice, making the
learning task challenging [25,26]. Take sequential recommendation problem as
an example. A sequential recommendation system needs to explore a huge set of
items and recommend attractive ones to each user based on her/his sparse pur-
chasing history. Moreover, the triggering patterns among the items for each user
can be personalized, which reflects the diversity of the users’ behaviors. Train-
ing a simple Hawkes process is often insufficient to handle such a complicated
scenario.

To address the problems above, we propose a self-organized Hawkes pro-
cess (SOHP) model, which learns heterogeneous local Hawkes processes based
on subsets of observed event sequences. The proposed model is motivated by a
fact that the complex global interrelation between events tend to consist of sim-
ple local structures [14]. Thus, it is feasible to capture the triggering patterns
in the complicated event sequences by many local Hawkes processes. In par-
ticular, Fig. 1 illustrates the principle of our model. We select and superpose K
sequences for each target sequence and learn a Hawkes process by maximum like-
lihood estimation (MLE) in an iterative way. In each iteration, the K sequences
are selected based on a bandit algorithm, whose rewards are initialized by their
optimal transport distance to the target sequence and updated according to the
learned likelihood. Accordingly, the training sequences are organized adaptively
as different subsets to support the learning of heterogeneous local Hawkes pro-
cesses.1 In this inference phase, we merge the local Hawkes processes and make
prediction of future events for each sequence.

This self-organization mechanism adjusts event sequences belonging to dif-
ferent Hawkes processes with training progress, which helps to capture diverse

1 Here, “heterogeneous” means that both the event types of different Hawkes processes
and the triggering patterns among the event types are different.
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generative mechanisms of different target event sequences based on few observa-
tions. Additionally, for the local Hawkes processes, their numbers of event types
are much smaller than the total number of the event types appearing in the
whole set, which is beneficial for improving the scalability of Hawkes processes.
We test our SOHP model in sequential recommendation tasks. Experimental
results show that our model owns better capacity and interpretability, which
achieves higher prediction precision than state-of-the-art methods.

2 Proposed Model

2.1 Continuous-Time Recommendation Based on Hawkes Processes

Denote {(ti, ci)}I
i=1 as an event sequence, where the timestamp t ∈ [0, T ], event

type c ∈ C, and (ti, ci) represents the i-th event with type ci and at time ti. A
temporal point process models the event sequence as a counting process N =
{Nc(t)|t ∈ [0, T ], c ∈ C}, where Nc(t) is the number of type-c events occurring
till time t, and characterizes the expected instantaneous happening rate of the
type-c event at time t by an intensity function:

λc(t) :=
E[dNc(t)|HC

t ]
dt

, ∀ c ∈ C and t ∈ [0, T ]. (1)

where HC
t = {(ti, ci)|ti < t, ci ∈ C} represents historical observations till time t.

As a special kind of temporal point process, Hawkes process is able to capture
the triggering patterns among the event types in an explicit way. It formulates
the intensity function above as

λc(t) = μc +
∑

ti<t
φcci(t, ti) = μc +

∑
ti<t

acciκ(t − ti), ∀ c ∈ C, (2)

where μc represents the basic happening rate (a.k.a. base intensity) of the type-c
event. φcc′(t, t′), t′ < t and c, c′ ∈ C, is called impact function, which represents
the influence of the type-c′ event at time t′ on the type-c event at time t. Gener-
ally, the impact function φcc′ is assumed to be shift-invariant and parameterized
by acc′κ(t− t′), where acc′κ(t) is a weighted decay function. For convenience, we
can represent a Hawkes process as HP(μ,A), where μ = [μc] ∈ R

|C| represents
the base intensity of the event types and A = [acc′ ] ∈ R

|C|×|C| is the infectivity
matrix capturing the triggering patterns among the event types.

Hawkes process owns many useful properties. Firstly, the infectivity matrix
corresponds to the adjacency matrix of the Granger causality graph of event
types [24], which represents the self- and mutually-triggering patterns hidden
in event sequences explicitly. Secondly, the superposition property of Hawkes
process [25] shows that when learning a Hawkes process from event sequences,
we can superpose observed event sequences to obtain an event sequence with
much denser events and learn the Hawkes process with a tighter bound of excess
risk [25], which improves the robustness to the data sparsity problem.
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Given a set of event sequences N = {Nu}u∈U , we can learn the Hawkes
process by the maximum likelihood estimation (MLE):

minθ − log L(N ;θ) + γR(θ), (3)

where θ = {μ,A} represents the model parameter, L(N ;θ) is the likelihood
function of the event sequences [10]:

L(N ;λ) =
∏

u∈U

(∏
(cui ,tui )∈Nu

λcui
(tui ) × exp

(−
∑

c∈C

∫ T

0

λu
c (s)ds

))
, (4)

and R(·) represents the regularization term imposed on the model parameters,
such as the sparsity and the low-rank regularizers on A [32]. This method applies
the idea that the observed events are most probable and updates parameters to
maximize the likelihood of the observed events.

After the intensity function is obtained, we could predict the type of next
event in the future. In particular, given the history till time t (i.e., HC

t ), the
probability of the type-c event at t + Δt could be computed by [28]:

p(c|t + Δt,HC
t ) =

λc(t + Δt)∑
c′∈C λc′(t + Δt)

. (5)

The Hawkes process above has the potentials to capture purchasing behaviors
of the users at the e-commercial platform and construct a sequential recommen-
dation system in the continuous-time domain [25]. In such a situation, the event
sequences correspond to the purchasing behaviors of different users and the event
types correspond to different items. By learning a Hawkes process, we model the
expected instantaneous purchasing rate of the users over time, where the infec-
tivity matrix A reflects the triggering patterns among the items and the base
intensity μ reflects the intrinsic popularity of the items.

However, on one hand, the real-world behaviors of the users may yield dif-
ferent generative mechanisms, which correspond to different Hawkes processes.
On the other hand, the purchasing behaviors of each individual are often very
sparse, which are insufficient to learn a Hawkes process model. To overcome this
conflict, we propose the self-organized Hawkes process model below, learning
multiple local Hawkes processes robustly by organizing the event sequences of
different users in an adaptive way.

2.2 Self-organized Hawkes Processes

As aforementioned, the proposed self-organized Hawkes process model is moti-
vated by the work in [14], which captures the complicated global relations among
all the items by learning and merging simple local relations among subsets of
items. Therefore, in our SOHP model, each event sequence corresponds to a local
Hawkes process.

The key challenge is how to solve the data sparsity problem—in the training
phase, we need to suppress the risk of over-fitting caused by insufficient training
events, while in the inference phase, we need to explore a sufficient large item
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space, predicting the items that may never appear in the sequence. Fortunately,
the superposition property of Hawkes process helps us to build an algorithmic
framework that is robust to this challenge above.

Theorem 1 (Superposition Property [25]). For a set of independent
Hawkes processes with a shared infectivity matrix, i.e., {Nu ∼ HP(μu,A)}u∈U ,
the superposition of their sequences satisfies

∑
u∈U Nu ∼ HP(

∑
u∈U μu,A).

With the help of this property, we can superpose sparse event sequences ran-
domly and learn the infectivity matrix with much denser training events. The
work in [25] demonstrates that this superposition-based strategy helps us to
achieve a tighter bound of excess risk in the learning phase.

However, when learning multiple heterogeneous Hawkes processes in a com-
plicated scenario, the event sequences belong to different Hawkes processes that
have various infectivity matrices. In such a situation, superposing the event
sequences randomly is likely to disobey the assumption imposed in Theorem 1
(i.e., the Hawkes processes have the same infectivity matrix). To overcome
this problem, we design a new self-organization mechanism, selecting
event sequences for each local Hawkes process and adjusting the selec-
tion with the training progress. Mathematically, denote N = {Nu}u∈U as
a set of real-world event sequences. Our learning task becomes

min{θu}u∈U minNu⊂N −
∑

u∈U
1

|Nu ∪ N u| log L(Nu ∪ N u;θu), (6)

where N u = {Ns1 ; . . . ;NsK} represents the K neighbors of the u-th sequence.
Nu∪N u constructs a subset of event sequences for learning the u-th local Hawkes
processes. Here, we aim at optimizing the parameters of the Hawkes processes
{θu}u∈U and the selection of their training sets jointly.

3 Learning Algorithm

3.1 A Reward-Augmented Bandit Algorithm

The learning problem in (6) is NP-hard. Therefore, we propose a novel reward-
augmented bandit algorithm to solve it heuristically. Intuitively, we hope that
1) the selected sequences are similar to the target sequence; 2) the selected
sequences own some randomness to avoid the over-fitting problem. To achieve
this aim, for each target sequence, we treat the selection of its neighbors (i.e., the
training set of a Hawkes process) as a multi-armed bandit problem [2], selecting
their neighbors according to the potential rewards. The accumulation of the
rewards formulates a benefit matrix B = [bu,k] ∈ R

|U|×|U|, where bu,k represents
the benefit from selecting the k-th sequence for the u-th Hawkes process.

The key of our algorithm is the design and the update of the benefit matrix.
Initially, we define the initial benefit based on the optimal transport distance
between event sequences [27]. This distance is applicable to the sequences with
heterogeneous event types. Specifically, for Nu = {Nu

i }i∈Cu
and Nv = {Nv

j }j∈Cv
,

where Cu and Cv are respectively the sets of event types appearing in Nu and
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Fig. 2. The optimal transport distance between heterogeneous event sequences.

Algorithm 1. Learning SOHP via a reward-augmented bandit algorithm
Input: Event sequences {Nu}u∈U , distance matrix D = [d(Nu, Nv)] ∈ R

|U|×|U|,
maximum iterations L, the number of neighbors K, learning rate α.
Output: benefit matrix B = [bu,k] ∈ R

|U|×|U| and model parameters {θu}u∈U .
1: for u = 1 : |U| do
2: Initialize bu,k = maxv d(Nu, Nv) − d(Nu, Nk) for k ∈ U .
3: for l = 1 : L do
4: if l < L then
5: Set p = [ bu,1∑

i bu,i
, ..,

bu,|U|∑
i bu,i

], sample {Ns1 , .., NsK} from N with p.
6: else
7: Select {Ns1 , .., NsK} with the K highest benefits.
8: end if
9: Learn the model parameter θu from {Nu} ∪ {Ns1 , .., NsK} by (3).

10: for k = s1 : sK do
11: bu,sk

= bu,sk
+ αL(Nsk ;θu)

12: end for
13: end for
14: end for

Nv, and Nu
i is the counting process associated with the i-th event types in Nu.

Then, the optimal transport distance between Nu and Nv is defined as

d(Nu, Nv) := minT ∈Π( 1
|Cu|1|Cu|, 1

|Cv|1|Cv|)

∑
i∈Cu,j∈Cv

Tijd(Nu
i , Nv

j )

= minT ∈Π( 1
|Cu|1|Cu|, 1

|Cv|1|Cv|)〈Duv,T 〉
(7)

where Π( 1
|Cu|1|Cu|, 1

|Cv|1|Cv|) = {T ≥ 0|T1 = 1
|Cu|1|Cu|,T �1 = 1

|Cv|1|Cv|} rep-
resents the set of joint distributions with marginals 1

|Cu|1|Cu| and 1
|Cv|1|Cv|.

Duv = [d(Nu
i , Nv

j )] ∈ R
|Cu|×|Cv| is a distance matrix, where d(Nu

i , Nv
j ) =

1
T

∫ T

0
|Nu

i (t) − Nv
j (t)|dt represents the discrepancy between the sequence of the

type-i events and that of the type-j events. The matrix T = [Tij ] that mini-
mizes (7) is called the optimal transport matrix. Figure 2 illustrates the optimal
transport distance. The optimal transport distance can be calculated efficiently
by the Sinkhorn scaling algorithm [9].
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Fig. 3. An illustration of merging local infectivity matrices. The purple ones correspond
to the overlapped event types, whose values are accumulated together. (Color figure
online)

Accordingly, we initialize the benefit bu,k as maxv d(Nu, Nv) − d(Nu, Nk).
In the training phase, we treat the normalized benefits as the probabilities of
the sequences and select them accordingly. Then, we regard the likelihood of
selected event sequences in each iteration as the intermediate reward and update
the corresponding benefit by accumulating the reward accordingly. In the end of
iteration, we select K sequences with the highest benefits for each sequence Nu.2

The steps of our reward-augmented bandit algorithm are shown in Algorithm 1.
It should be noted that this algorithm reduces the computational complexity of
learning Hawkes process: in each iteration, we only learn each Hawkes process
based on the superposition of K sequences, which greatly reduced the number
of event types for each Hawkes process.

3.2 Merging Learned Hawkes Processes

In the inference phase, instead of leveraging the intensity function of each local
Hawkes process to make predictions, we first merge the learned infectivity matri-
ces by superposition operations, as shown in Fig. 3. Then, for each sequence, we
predict its future events based on its local base intensity and the global infectiv-
ity matrix. Note that in the sequential recommendation scenario this inference
strategy achieves an exploration-exploitation trade-off: the local base intensity
reveals the preference of the user on purchased items while using the global
infectivity matrix helps the system to explore the items that she never saw but
might be interested in.

4 Related Work

Sequential Recommendation. By modeling the sequential behaviors from
user historical records, sequential recommendation predicts future interests and
2 We tried more sophisticated bandit algorithm like the Upper Confidence Bound

(UCB) method [1] to select the sequences, but our experimental results show that
the proposed greedy algorithm achieves the best performance.
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recommend items. Besides the shopping recommendation, sequential recommen-
dation has also been widely used in various application scenarios, such as web
recommendation [31], music recommendation [6], and Point-of-Interest recom-
mendation [7], etc. These years, many cutting-edge techniques have been applied
into the sequential recommend, e.g., FPMC [20] integrated matrix factorization
and Markov chains, HRM [22] regarded representation learning as latent factors,
they modeled the sequential behavior patterns via every two contiguous historical
records. DREAM [29] is based on recurrent neural network (RNN) and learns the
global sequential behavior patterns. These models all captured the contiguous
behavior information without taking time interval between them into consider-
ing. Instead, we leverage the time stamps of every behavior to calculate efficiently
the mutual effect of them, achieving continuous-time recommendation.

Hawkes Process. Because of its effectiveness on modeling the triggering pat-
terns among real-world events, Hawkes process has been widely used in many
scenarios, such as high frequency finance [3], and fake news mitigation [12]. Mean-
while, many variants of Hawkes process have been researched and developed,
such as the Hawkes process with self-attention mechanisms [30,33]. Recently,
the superposition of Hawkes process has been verified to be effective in both
theory and experiments [25]. The model applied a random algorithm to select
sequences and learned a single Hawkes process. Our work, however, demonstrate
that making superposition with the help of a bandit algorithm is more valid for
learning multiple Hawkes processes.

Multi-armed Bandit Problem. The multi-armed bandit problem denotes
a problem where we need to make choices to maximize expected gain under
some constraints [21]. These years, many bandit algorithms have been proposed,
such as the Upper Confidence Bounds algorithm [5,8], adaptive epsilon-greedy
strategy based on Bayesian ensembles [13], and behavior constrained Thomp-
son Sampling [4], etc. In this paper, we make an attempt to apply the bandit
algorithm to select training sequences for Hawkes processes.

5 Experiments

We experiment on the Amazon review dataset [16]. This dataset contains product
reviews from Amazon spanning May 1996–July 2014. We select five product
categories as our datasets to evaluate our model, including “Instant Video”,
“Musical Instruments”, “Video Games”, “Baby” and “Patio, Lawn and Garden”.
To be specific, we preprocess the datasets as follows. We select those items with
more than 40 reviews. Then, their users need to satisfy three conditions: (i)
the ratings they gave to these items are bigger than 4; (ii) there are at most
3 reviews spanning January 2014–April 2014; (iii) there are at least 1 review
from April 2014 to July 2014. The statistics of the final datasets are shown in
Table 1. After learning the behaviors of users from January 2014 to April 2014,
our model predicts items for them from April 2014 to July 2014.
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Table 1. Statistics of our datasets

Categories Musical instruments Baby Video games Garden Instant video

#Users 471 1979 2142 1812 5948
#Items 678 2134 2104 2064 1344
#Ratings 1218 6070 6126 4976 15470

To demonstrate the superiority of our SOHP model, we adopt the follow-
ing state-of-the-art methods as baselines for comparisons. SVD: Singular value
decomposition, a classical method from linear algebra is getting popular in rec-
ommender systems; kNN: user-based K-nearest neighbors algorithm, a non-
parametric classification and regression method; BPR: Bayesian personalized
ranking [19], a popular method for top-N ranking recommendation; SLIM:
Sparse linear method [17], a simple and effective method for top-N recommen-
dation; FPMC: Factorized personalized Markov chains [20], one of the stat-of-
the-art models for sequential recommendation based on matrix factorization and
Markov chains. Each item is regarded as a basket in this model. SHP: The super-
posed Hawkes process [25] that learn a single Hawkes process by randomly super-
pose event sequences. For each model, denote the top-N recommended items for
user u as Ru = {ru

1 , . . . , ru
N}, where ru

i is ranked at the i-th position, and the
set of real purchased items Tu, respectively. We use the top-N precision, recall
and F1 score as the measurements.

When implementing our method, the number of iterations L for each user is
set as 20 and the learning rate α is set as 0.1. We primarily set the number of
neighbor event sequences K = 10, and the effect of setting different K is studied
in the experiments. When learning the superposition of Hawkes processes, we
empirically set the decay function κ(t) as exp(−βt), where β = 3e–4, and use
no regularization term. For each user, 10 items are recommended.

Table 2 summarizes the performance for the baselines and our method on
the five datasets. For all the datasets except “Instant Video”, our SOHP model
achieves better performance than its competitors. Specifically, in the category
“Musical instrument”, the result of our model is 13% higher than that of the
best baseline (i.e., FPMC), and the difference would be up to 48% by tuning
K in the subsequent experiments. The results indicate the effectiveness of our
model for sequential recommendation.

Essentially, for the users, the more neighbor event sequences are considered,
the more intersections their training sets have. Accordingly the local Hawkes
processes learned based on the sets may more similar. In such a situation, our
SOHP model may tend to recommend different users similar items. We are curi-
ous about whether and how the number of neighbors affects the recommendation
results. To do so, we study the performance of our model on F1@10 by tuning
K in the range of {2, 5, 10, 20, 50, 100}. Results are shown in Fig. 4.

For the categories “Musical Instruments” and “Baby”, as the increase of K,
the performance of them gets better. At this moment, the model learns more
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Table 2. Summary of the performance for baselines and our model

Datasets Musical instruments Baby Video games Garden Instant video

Measures@10(%) P R F1 P R F1 P R F1 P R F1 P R F1

SVD 0.106 1.061 0.193 0.121 0.735 0.207 0.065 0.498 0.113 0.055 0.395 0.094 0.126 1.052 0.221

kNN 0.382 2.671 0.649 0.389 2.513 0.638 0.661 4.915 1.163 0.237 1.751 0.405 0.817 6.901 1.435

BPR 0.467 3.750 0.811 0.389 2.469 0.635 0.658 4.864 1.112 0.110 0.762 0.185 0.859 7.049 1.503

SLIM 0.212 1.351 0.347 0.111 0.712 0.180 0.499 3.595 0.835 0.242 1.544 0.401 1.333 11.428 2.351

FPMC 0.594 4.193 1.006 0.283 1.912 0.470 0.556 3.799 0.927 0.171 1.117 0.285 0.931 7.413 1.622

SHP 0.361 2.406 0.604 0.258 1.734 0.432 0.317 2.037 0.525 0.199 1.350 0.331 0.933 7.406 1.623

Our methods 0.658 5.149 1.138 0.389 2.640 0.651 0.700 5.108 1.180 0.248 1.801 0.436 0.999 7.911 1.738

Fig. 4. Performance of our model under different number of neighbors K.

popular interests and will be more inclined to recommend the most popular
items. For the category “Musical Instrument”, the users tend to focus on a
limited number of items and purchase similar ones. In the case of the category
“Baby”, babies cannot comment on the items, so parents often choose the most
popular products.

For the categories “Video Games” and “Garden”, the performance becomes
the best at K ≈ 10 and degrades a lot when further increasing neighbors. A
potential reason for this phenomenon is that the purchasing behaviors in these
two categories have diverse patterns. As aforementioned, when there are too
many neighbors, our model will tend to recommend the most popular items to
all the users, which is unsuitable for these two categories.

For the category “Instant Video”, however, we find that our model is inferior
to the SLIM method, and the performance is stable with respect to the number
of neighbors. According to our analysis, a possible reason for this phenomenon
is that for most users, their choice of instant video tend to be influenced by
Amazon’s recommendations or the most popular video list, which may not be
suitable for sequential recommendation. Evidence supporting this explanation
is that the FPMC, which is also a sequential recommendation model, has poor
performance as well for this category.

6 Conclusion

In this paper, we proposed a framework combining bandit algorithm with Hawkes
processes, which provides a new way to learn complicated sequential models
robustly from insufficient observations. We designed the reward of the Bandit
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algorithm, and exerted the greedy strategy to update the reward iteratively. The
proposed model achieved encouraging performance on continuous-time sequen-
tial recommendation. In the future, we plan to design new formulation of rewards
and update rewards by more efficient strategies. Additionally, we will make
attempts to set the number of neighbor event sequences adaptively to further
improve our model.
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Abstract. Causal inference directly explores the causality among vari-
ables, in which average causal effect estimation is a fundamental task.
But for heterogeneous confounding data, most previous methods fail
to estimate causal effect accurately when confounders among heteroge-
neous subgroups are more complicated, as they may ignore local balance.
Therefore, we propose a novel Heterogeneous subGroup Balance Adap-
tive Method (HGBAM), in which a penalty is elaborately proposed by
employing the balance condition of covariates and heterogeneity among
subgroups. The penalty constructs preferable balance constraints that
facilitate better causal variable selection and de-confounding. In addi-
tion, a partially sharing parameters structure is designed, in which the
confounders information among different subgroups could be investigated
together. The structure helps to make full use of similarities and reserve
heterogeneity among subgroups adaptively. Thus, our method will con-
tribute to estimating multi-subgroups causal effect simultaneously mean-
while achieving the local and global balance. Besides, our theoretical
analysis suggests that the method can make asymptotically unbiased
estimation. The experimental results on both synthetic and real-world
data demonstrate the efficacies of the proposed method for heterogeneous
causal effect estimation.

Keywords: Causal inference · Heterogeneous causal effect · Penalty
approach · Covariates balance

1 Introduction

Most machine learning (ML) algorithms employing the associations between
variables to make predictions, in contrast, causal inference aims to explore
causality between variables and assesses the causal effect of a treatment. It is
well-known that “association doesn’t imply causality”. So some ML algorithms
may have shortcomings in stability and explainability [9,24]. Learning causality
from observational data enable us to answer “counterfactual” question, such as
“would the patient recover had he/she received another treatment?” in medical
data mining. Besides, causal inference could improve the performance of ML
and deep learning methods in domain adaptation [9,27], removing confounding
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bias in pre-training models [25,26]. And causal inference has many important
applications in statistic, econometrics, computer science, etc. [24].

A fundamental task in causal inference is to estimate causal effect from obser-
vational data. As the distribution of covariates between treat units and control
units is not balanced due to some confounders available, it is hard to obtain
average causal/treatment effect estimation or counterfactual outcome prediction
directly. There are mainly two frameworks, the potential outcome framework [19]
and structure causal model (SCM) [16]. As the two frameworks could make full
use of observational data to explore causality, motivated by them, many methods
have been proposed.

Many related literatures typically focus on estimating average causal effect,
however, there are also some cases where heterogeneous causal effects are present,
and different subgroups may possess different causal effects. For example, the
same treatment may have different effects on subtypes of a complex disease.
When heterogeneous data is present, confounding among subgroups is more
complicated. Subgroups may have their unique confounders and share similar
confounders. So most previous methods fail to estimate subgroup causal effect
accurately [3,12] and they could not achieve subgroup balance and global balance
simultaneously.

Therefore, in this paper, we focus on heterogeneous causal effect estima-
tion and propose a novel Heterogeneous subGroup Balance Adaptive Metho
(HGBAM). For purpose of employing similarities among different subgroups
meanwhile reserving heterogeneity, we partially pools subgroups together to
share information meanwhile conducts elaborately designed penalty to impose
balance constraints and select causal variables. A special parameters structure
is established, and it can explore heterogeneity adaptively. Such pooling may
result in some weakly associated covariates and more complicated confounding
effect, which makes heterogeneous causal inference more challenging. Thus, in the
penalty, heterogeneity and balance criterions are taken into consideration, vary-
ing with different subgroups and covariates. In this way, the shared confounders
information and designed penalty enable the method to eliminate confounding in
heterogeneous subgroups and achieve subgroup balance. By theoretical analysis
and empirical experiments, we establish that the proposed method can achieve
better performance in the heterogeneous data.

The contributions of this paper are summarized as following:

• For heterogeneous data, we propose a novel Heterogeneous subGroup Bal-
ance Adaptive Method (HGBAM) to estimate multi-subgroup causal effects
simultaneously, where the connections and differences among subgroups are
fully employed by the parameters sharing structure.

• Bringing in balance criterions and heterogeneity, an adaptive penalty term is
specially designed for heterogeneous causal inference. It contributes to elim-
inating complicated confounding and achieving distribution balance in both
local and global data.

• We give theoretical analysis to prove its good property for addressing the
problem. We conduct various experiments in synthetic and real-world data,
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and the results demonstrate the advantages of our method. Especially, the
performance in complicated simulation scenarios validates its advantages.

2 Related Work

Two main challenges of estimating causal effect are unbalanced distribution and
selection bias. Under assumption of ignorability, some methods have been pro-
posed to achieve balance by propensity score re-weighting or matching [19,21].
There are some cases where models may be slightly misspecified. So, in order
to improve robustness, augmented estimator [17] and weighted regression [5] are
proposed. In addition, there are some literatures directly focusing on optimizing
balance criterions. Imai et al. [7] proposed covariates balance method by optimiz-
ing balance function induced from log-likelihood. By analyzing theoretical bias
and efficiency, Fan et al. [4] provided the optimal choice of the covariates balance
function and improved the method. Also, some papers investigated direct estima-
tion of sample weights by entropy balance [6], approximate residual balance [1].
The above-mentioned methods provide effective approaches to estimate average
causal effect, but for heterogeneous data, they could not estimate heterogeneous
causal effect accurately.

As not all covariates are confounders, Brookhart et al. [2] proposed variable
selection criterion for causal inference. Unlike the selection procedure in predic-
tion tasks of ML, we should consider the causalities of covariates, treatment and
potential outcome. So Shortreed et al. [20] introduced outcome adaptive method
to select appropriate covariates by adaptive penalty. In addition, group lasso was
applied to conduct simultaneously modelling of outcome and treatment [8].

Recently, there is a trend to combine causal inference and ML. For mul-
tiple domains, causal inference was employed to seek invariant subset [18] or
explore invariant conditional distribution [13] to improve performance on new
test task. Kuang et al. [9] applied direct balance scheme to make stable predic-
tion across unknown domains. Besides, eliminating confounders caused by back-
ground knowledge could make improvements without extra complexity [26,27].

3 Heterogeneous subGroup Balance Adaptive Method

3.1 Problem Formulation

For heterogeneous data, assuming it could be divided into K subgroups based
on an indicator G. Denote Gi ∈ {1, 2, · · · ,K} the subgroup label of sample i.
X(k) ∈ R

N(k)×P , Y (k) ∈ R
N(k)

, T (k) ∈ {0, 1} are respectively pre-treatment
covariates, potential outcome and treatment of subgroup k, where N (k) is the
sample size of subgroup k and P is the number of covariates,

∑
k N (k) = N . We

are interested in heterogeneous causal effect τ (k) = E{Y (1) − Y (0) | X,G = k},
for different subgroups k, h, satisfying τ (k) �= τ (h).

Following work [3], we assume basic assumptions (SUTVA, ignorability, over-
lap) of causal inference still hold for heterogeneous data. For purpose of balanc-
ing distribution of confounders, we prefer to employ propensity score π(X),
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which is defined as the probability of receiving treatment given covariates,
π(X) = Pr(T = 1 | X). And we have the following proposition.

Proposition 1. The propensity score balances the distribution of X in hetero-
geneous subgroups.

X ⊥ T | π(X,G), G = 1, 2, · · · K.

3.2 Heterogeneous subGroup Balance Adaptive Method

In order to detect similarities and reserve heterogeneity adaptively, we apply a
partially sharing structure β(k) = μ+γ(k) to formulate the involved parameters of
subgroup k, where μ represents the similarities and γ(k) represents heterogeneity.

The confounders in different subgroups may be related, so confounding effects
are more complicated. It is quite hard to achieve subgroup and global balance.
To address the challenges, we partially pool different subgroups together and
conduct elaborately designed penalty constraints to guarantee that the model
can explore the balance and heterogeneity of each subgroup adaptively. There-
fore, we propose Heterogeneous subGroup Balance Adaptive Method (HGBAM)
as:

arg min
μ, γ

K∑

k=1

L
(
T (k),X(k)

)
+ λ

⎡

⎣‖μ‖1 +
K∑

k=1

P∑

j=1

g(k)w
(k)
j

∣
∣
∣γ

(k)
j

∣
∣
∣

⎤

⎦ (1)

where L() is the logistic regression loss, and note that it can also take other
appropriate forms, such as calibration loss L() = E(T exp(−X�β)+(1−T )X�β).
The term w

(k)
j would conduct penalty to X

(k)
·j adaptively based on the covari-

ates balance, meanwhile, g(k) conducting adaptive penalty to subgroup k deter-
mined by its heterogeneity. And λ would impose an appropriate penalty con-
straint based on global balance. Unlike Lasso, note that w

(k)
j , g(k), λ are spe-

cially designed for motivations of heterogeneous causal inference, and we will
make more illustrations about it in later section.

By splitting parameters into two parts μ, γ(k) with adaptive penalty as
described in the Eq. 1, HGBAM can control model heterogeneity depending on
distributions of different subgroups. Working with a large enough g(k), γ(k) will
be forced to go to zero and β(k) ≈ μ, i.e. “one model for all”. Working with large
enough λ, the approach will be reduced to K different models.

Based on work [15], we see that the penalty in the Eq. 1 encourages that
β(k) possesses a sparse μ and sparse heterogeneity γ(k). Thus HGBAM can iden-
tify causal variables and eliminate complicated confounding to achieve subgroup
and global balance. We can get new transformation T̃ =

(
T (1)�, · · · , T (K)�)�

,
similarly getting Z by rearranging X(1), · · · ,X(K), getting β by rearranging
β(1), · · · , β(K), and employ a convenient optimizing method for Eq. 1 by coordi-
nate descent or subgradient descent. Meanwhile, after obtaining propensity score
from Eq. 1, inverse propensity score weighting (IPW) is applied to estimate het-
erogeneous causal effect τ (k).
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τ̂ (k) =
1

N (k)

N(k)
∑

i=1

T
(k)
i Y

(k)
i

π̂
(
X

(k)
i·

) − 1
N (k)

N(k)
∑

i=1

(
1 − T

(k)
i

)
Y

(k)
i

1 − π̂
(
X

(k)
i·

) (2)

3.3 Theoretical Analysis

Introduce β∗ the true solution of Eq. 1, support set M(β∗) =
{
j | β∗

j �= 0
}
,

cardinality J = |M(β∗)|. We assume the noise ε
(k)
i is i.i.d. and obey sub-Gaussian

distribution with parameter σ > 0. Assuming there is a constant C > 0, such
that the minimal eigenvalue Λmin(Z�

MZM ) ≥ C, ‖X
(k)
·j ‖/

√
N (k) ≤ 1. Then we

can state Theorem 1.

Theorem 1. The Eq. 1 has a unique solution and the bias upper bound with
high probability grater than 1 − 4 exp(c1Nλ2) → 1 satisfies:

∥
∥
∥β̂M − β∗

M

∥
∥
∥

∞
≤ λ

[∥
∥
∥
(
Z�

MZM/N
)−1

∥
∥
∥

∞
+

4σ√
C

]

≤ λ

(√
J

C
+

4σ√
C

)

(3)

Further, without losing generality, assuming ‖Z�
MZM/N‖∞ = O(1), setting λ =

O(
√

log(P )/N), the bias upper bound will satisfy:

∥
∥
∥β̂ − β∗

∥
∥
∥
2

= O
(
λ
√

J
)

= O
(√

J log(P )
N

)

(4)

When N → ∞, the bias ‖β̂ − β∗‖2 will go to zero. And note that inverse
propensity score weighting (IPW) is an unbiased estimator. Thus the theorem
suggests that the proposed HGBAM could provide a reliable solution and make
asymptotically unbiased estimation for the heterogeneous problem. In addition,
the theorem is an extended result of literatures [15,22].

3.4 Choice of Hyperparameters

The penalty is constructed to balance confounders and capture heterogeneity in
different subgroups. Therefore, we elaborately proposed hyperparameters setting
approach for heterogeneous causal inference.

Choice of g(k). Following group lasso, a sensible choice is g(k) = 1/
√

|V (k)|,
where |V (k)| is the cardinality of subgroup k. However, it can not guarantee
consistent selection and oracle property. Meanwhile, we need to reserve the het-
erogeneity among different subgroups, and g(k) must entail differences among
heterogeneous subgroups. Therefore, we specially set:

g(k) =
∥
∥
∥β(k)MLE − β̄MLE

∥
∥
∥

−c

(5)
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where β(k)MLE is the maximum likelihood estimation (MLE) of β(k) with samples
in subgroup k, β̄MLE the average of all β(k)MLE, c a positive constant.

The Eq. 5 suggests that the more heterogeneous a subgroup is, the less
penalty will be conducted. So that the heterogeneity would be reserved.

Choice of w(k)
j . In prediction tasks, a popular choice is to set w

(k)
j based on the

corresponding parameter. But here we need to consider distribution balance. By
investigating balance property of different covariates, we give the penalty as:

w
(k)
j =

∣
∣
∣
∣
∣
∣

1
N (k)

N(k)
∑

i=1

(
Ti

π̂(X(k)
i· )MLE

− 1

)

xij

∣
∣
∣
∣
∣
∣

c

(6)

where π̂(X(k)
i· )MLE is MLE of propensity score with samples in subgroup k.

Following works [4,14], a smaller value of Eq. 6 means that X
(k)
·j is more

balanced. It indicates that IPW is hard to balance its distribution if the value
is too larger. Therefore, we impose a larger penalty on the more unbalanced
covariate, as we prefer to decrease the dependence of unbalanced covariates [23]
and achieve approximate balance when the dimension is high [14]. In this way, it
will make a smaller impact to subgroup and global balance. And we can obtain
more accurate heterogeneous causal effect estimation.

Meanwhile, there is another approach to determine w
(k)
j based on associations

of Y and X, called outcome adaptive lasso (OAL) [20]. We also apply the setting
approach into our method, called Heterogeneous subGroup Outcome Adaptive
Method (HGOAM). And we will compare their performances in experiments.

Choice of λ. In most ML algorithms, λ is determined by errors on the valida-
tion data. However, causal inference is a counterfactual problem and the true
causal effect is not available. Moreover, tuning λ based on AUC of the treatment
assignments is also not preferred, as the motivation is to get accurate causal effect
estimation. For better balance, we use exact balance criterion [11] to tune λ. It
is an attractive property we would like to achieve.

h
(k)
j (λ) =

∑N(k)

i=1 x
(k)
ij T

(k)
i

(
1 − π̂

(k)
i

)

∑N(k)

i=1 T
(k)
i

(
1 − π̂

(k)
i

) −
∑N(k)

i=1 x
(k)
ij

(
1 − T

(k)
i

)
π̂
(k)
i

∑N(k)

i=1

(
1 − T

(k)
i

)
π̂
(k)
i

(7)

The bets situation is h
(k)
j = 0, which indicates the method has achieved

balance between control units and treat units. So the optimal λ∗ =
arg min

∑
k

∑
j h

(k)
j (λ).

From another perspective, dual form of the L1 penalty Eq. 1 is similar to
sample weights ζ direct optimizing methods with constraints, such as entropy
balance [6], residual balance [1]. To some extent, the adaptive penalty serves as
the constraint, satisfying ‖X

�(k)
·j (ζ � T ) − X̄

(k)
·j ‖ ≤ w

(k)
j . Thus our method can

impose preferable balance constraints based on the inner property of covariates.
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4 Experiments

In this section, we illustrate the performance of our method on both synthetic
and real-world datasets. For purpose of evaluating the performance comprehen-
sively, various simulation scenarios are designed.

4.1 Datasets and Settings

Synthetic Data. Assuming subgroup number K = 4, for each subgroup, X
(k)
i· is

generated from multivariate standard Gaussian distribution, X
(k)
i ∼ N(0,Σ(k)).

With logistic regression, propensity score is generated as π
(k)
i = logit(X(k)�

i· β(k)),
and binary treatment satisfies T

(k)
i ∼ Bernoulli(π(k)

i ). Then we generate poten-
tial outcome Y with respect to X, T , and heterogeneous causal effect τ (k) as
Y

(k)
i = τ (k)T

(k)
i + X

(k)�
i· α(k) + ε

(k)
i . Depending on subgroup heterogeneity, spar-

sity, and model generation mechanisms, there are five important scenarios.

• Scenario1. For each subgroup, the coefficient β(k) varies with k, but α(k) keeps
same. Meanwhile, the sparsity is relatively smaller.

• Scenario2. For each subgroup, the coefficients β(k), α(k) both vary with k.
And the sparsity of them becomes larger.

• Scenario3. The coefficients settings are the same as scenario2, the treatment
model keeping the same. But the potential outcome model becomes different.

Y
(k)
i = τ (k)T

(k)
i + X

(k)�
i· α(k) + S

(k)�
i· α + ε

(k)
i (8)

• Scenario4. The potential outcome keeps the same with scenario2, but treat-
ment model becomes different.

π
(k)
i = Pr(T (k)

i = 1) = logit
(
X

(k)�
i· β(k) + S

(k)�
i· β

)
(9)

Fig. 1. Model generation in scenario3 Fig. 2. Model generation in scenario4

The motivation of scenario3,4 (Figs. 1 and 2) is that we may not observe all
related covariates in the real-world data. Some unobserved variables may be
available, like S

(k)
i· in scenario3,4. In addition, for heterogeneous subgroups,

there could be similar inducing mechanisms, such as the example given in
section1. So scenario3,4 are more close to the real applications.
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• Scenario5. We also test the performance of our model in high-dimensional
situations when P = 100, 200. The coefficient is an extension of scenario2.

β
(k)
high =

(
β(k), 0, 0, · · · , 0

)
, α

(k)
high =

(
α(k), 0, 0, · · · , 0

)
(10)

Lalonde Data. Lalonde (Jobs) [10] is a famous dataset, which is employed to
assess the effect of a job training program on income. By analysis, taking 9 and
12 years of education as partition nodes, we divide it into three heterogeneous
subgroups. The quite different income also verifies the rationale of the division.
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Fig. 3. Covariates ASD of different methods in scenario2

Baselines and Metrics. As our method is based on logistic regression, we con-
sider generalized linear model (GLM) a baseline. In terms of covariates balance,
we implement covariate balance propensity score (CBPS) [7]. When covariates
number is increasing in scenario3,4,5, we also compare it with OAL [20]. Besides,
HGOAM is also implemented, as described in Sect. 3.4.

Mean Square Error (MSE) is adopted as a performance metric. Moreover,
the challenge of causal inference is to balance the distribution of confounders,
so absolute standardized difference (ASD) is used to assess covariates balance.
The smaller value of ASD means better performance.

ASD(X
(k)
·j ) =

∣
∣
∣
∣
∣
∣

X
(k)�
·j (w

(k)
1 � T (k))

w
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1 T (k)

−
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(
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Where σ̂
(k)2
j,t , σ̂

(k)2
j,c are the sample variances of X

(k)
·j in treat and control units

separately, and w
(k)
1i = 1/π̂

(k)
i , w

(k)
0i = 1/

(
1 − π̂

(k)
i

)
.

4.2 Results and Analysis

Experiments on Synthetic Data. In synthetic data, we test the method over
different scenarios and calculate the MSE as well as ASD of each subgroup.

We report the results of different methods in Table 1, and plot the ASD of
each covariate in Fig. 3 for scenario2. From Table 1, we have the following obser-
vational results. (1). In both subgroup and global situations, comparing with
other methods, HGBAM possesses the best performance under each scenario.
It indicates that our method can achieve subgroup and global balance simulta-
neously for heterogeneous causal inference, and estimate heterogeneous causal
effect accurately. (2). Another adaptive penalty applied in HGOAM, comparing
with it, the better performance of HGBAM demonstrates the effectiveness of the
proposed hyperparameters setting approach. So the adaptive penalty of covari-
ate balance is beneficial for de-confounding. (3). Besides, our method can also
improve the results in complicated scenario3,4, demonstrating its efficacies.

Table 1. Relative performance of different methods in synthetic data

Method Subgroup1 Subgroup2 Subgroup3 Subgroup4

MSE ASD MSE ASD MSE ASD MSE ASD ASD sum

Scenario1

GLM 0.421 5.783 0.491 4.473 0.692 4.966 1.005 5.102 20.324

CBPS 0.454 5.860 0.392 4.390 0.683 4.980 1.030 5.174 20.404

HGOAM 0.367 5.652 0.451 4.420 0.640 4.883 0.985 5.123 20.078

HGBAM 0.357 5.618 0.445 4.430 0.633 4.836 0.927 5.002 19.886

Scenario2

GLM 0.379 8.763 0.388 6.734 0.626 7.320 0.922 7.701 30.519

CBPS 0.363 8.797 0.356 6.466 0.605 7.129 0.918 7.682 30.074

HGOAM 0.301 8.397 0.356 6.562 0.574 7.106 0.883 7.620 29.685

HGBAM 0.293 8.362 0.351 6.514 0.562 7.034 0.822 7.416 29.325

Scenario3

GLM 0.418 8.860 0.506 6.619 0.722 7.329 1.043 7.658 30.466

CBPS 0.406 8.737 0.492 6.529 0.685 7.337 1.012 7.586 30.188

OAL 0.447 8.624 0.571 6.834 0.756 7.460 1.095 7.672 30.590

HGOAM 0.359 8.519 0.462 6.450 0.666 7.137 0.997 7.630 29.736

HGBAM 0.356 8.535 0.458 6.432 0.657 7.084 0.930 7.473 29.525

Scenario4

GLM 0.710 12.766 0.657 11.539 0.976 11.522 1.554 11.659 47.485

CBPS 0.655 12.786 0.687 11.422 1.020 11.216 1.338 11.342 46.766

OAL 0.693 13.092 0.702 11.662 0.964 11.848 1.515 11.968 48.570

HGOAM 0.517 11.969 0.534 10.910 0.831 10.942 1.389 11.518 45.339

HGBAM 0.519 11.939 0.535 10.929 0.821 10.919 1.183 10.978 44.764
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Fig. 4. MSE of different subgroups in scenario5 when P = 100 and P = 200

From Fig. 3, we can clearly see that HGBAM can achieve better balance for
most covariates as it can efficiently employ all confounding information among
different subgroups. Especially, at the end of the plot curve, our method has
much smaller ASD. It shows that our method is able to conduct appropriate
causal variables selection, as we set the coefficients of these variables nearly to
zero in synthetic data. In addition, for high-dimensional situations, varying P
from 100 to 200, we plot MSE in Fig. 4. Comparing with OAL, which is a strong
baseline for high-dimensional causal inference, the better results also verify the
advantages of our method.
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Fig. 6. Global ASD of different covari-
ates in Lalonde data

Experiments on Lalonde. As the true causal effect is not available in real-
world data, for heterogeneous subgroups, we plot subgroups ASD and global
ASD in Fig. 5. Due to space limitation, we only display global ASD of each
covariate in Fig. 6. Similar to results in synthetic data, our method consistently
outperforms other methods in both subgroup and global data.
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5 Conclusion

In this paper, we focus on heterogeneous causal inference problem. Most previous
methods have deficiencies in estimating heterogeneous causal effect, as they could
not achieve subgroup and global balance simultaneously. Therefore, we develop
heterogeneous subgroup balance adaptive method by employing connections of
different subgroups and imposing elaborately designed penalty constraints. The
penalty guarantees that the method can explore heterogeneity adaptively, mean-
while eliminate confounding in subgroup and global data. By theoretical analysis,
we prove the method could make accurate estimation for heterogeneous causal
effect. The extensive experimental results show that our method has improved
performance and validate advantages of the proposed penalty constraints.
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Abstract. Federated learning (FL) was originally proposed as a new
distributed machine learning paradigm that addresses the data security
and privacy protection issues with a global model trained by ubiqui-
tous local data. Currently, FL techniques have been applied in some
data-sensitive areas such as finance, insurance, and healthcare. Although
FL has broad application scenarios, there are still some significant and
fundamental challenges, one of which is the training on Not indepen-
dently and identically distributed (Non-IID) data. More concretely, the
global model aggregation and collaboration of a massive number of par-
ticipants on the Non-IID data remain an unsolved problem. We find
that most of the model aggregation optimization algorithms in the lit-
erature suffer from significant accuracy loss in the Non-IID setting for
FL. To this end, in this paper, we propose a novel model aggregation
algorithm terms FedSV, which dynamically updates global model aggre-
gation weights according to each local participant’s contribution in each
training round. Furthermore, to evaluate the participants’ contribution,
we propose a quantization algorithm based on Local Federated Shapley
Value, which dynamically computes the contribution by the properties of
the participant. Extensive experiments on Non-IID data partition, such
as CIFAR-10 and MNIST, demonstrate that our approach can improve
accuracy during training compared with existing methods.

Keywords: Federated learning · Model aggregation · Shapley value

1 Introduction

Federated Learning (FL) conception was initially proposed by Google [16] in 2016
as a decentralized model aggregation approach while keeping data localized. Now
it is gradually used to solve the problem of data island, privacy protection, and
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Fig. 1. The Overview of federated learning and model aggregation process. FL mainly
consists of central aggregation server and a large number of edge devices (e.g.,smart
devices, IoT devices, and organizations). The lower three dotted boxes (local models)
to the upper dotted box (global model) depict the model aggregation process. The dif-
ferent color network connecting lines indicate different weights of the model. The upper
dotted box represents the weights of the central server global model. The lower dotted
box represents the weights of edge clients’ local model. The middle parts (including
dotted lines and solid lines) represents the process model aggregation. The same struc-
ture of the global model and local model, W is global model weights, w is the local
model weights, Dk is the local datasets, and ψk is the weights for aggregation. The
different colors dataset icons represent the Non-IID datasets. (Color figure online)

security [24]. As can be observed from Fig. 1, the classical federated learning
process consists of two main steps. The central server randomly chooses some
clients to run local stochastic gradient descent (SGD) to update the local model
parameters, and then the central server performs model aggregation according
to receive local model parameters. Currently, we face two core problems that
federated learning has to solve. The first critical issue is how to evaluate the value
of clients’ data, and the second fundamental problem is how to solve the problem
of model aggregation according to clients’ contributions in system heterogeneity
and data heterogeneity setting [9,14].

The most primitive solution is the FedAvg [16] method. Intrinsically, the
FedAvg algorithm takes a simple weighted average according to the size of local
datasets. Currently, the state-of-the-art methods, for example, the FedPox [14]
method adds a proximal term that restricts the local updates in order to close
to the global aggregation model by automatic set number of local epochs. The
FedMA [22] method takes advantage of leveraging layer-wise and extracting sig-
nature by similar features to design the shared global model through, which
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adapts to most neural network architectures. The FedAtt [6] method uses the
attention mechanism as a model aggregation optimization algorithm, which only
adapts to the neural language modeling. However, these methods ignore the real
contributions of a massive amount of clients’ data during federated learning
training.

We find that most of the model optimization algorithms in the previous work
still suffer significant accuracy loss in the Non-IID setting for federated learning,
in particular under a massive number of edge devices [26], i.e., a large number
of participants. To address this problem, from a cooperative game theory view-
point, we present a novel model aggregation algorithm, which dynamic updates
global model weights according to the contribution of every device. However, in
practice, directly calculating exact Shapley value requires exponential time, as
the number of participants increases. So we focus on finding an efficient algo-
rithm to compute Shapley Value. We present local Shapley Value, which is a
modified form of exact Shapley value and computed more efficiently than the
exact Shapley Value.

Federated learning has two fundamental characteristics. First, the client’s
data is distributed over a vast number of devices. Second, training data is Non-
IID. We argue that the optimization model aggregation approach for federated
learning is still a research hot spot in research communities [8,13].

Contributions. In this paper, our primary contributions include three parts:

– We propose a novel global model aggregation strategy on the central server,
which is especially suitable for the situation where many Non-IID federated
learning nodes participate in the collaborative training of a global model.

– In order to address the core issues of computing the weights of clients accord-
ing to clients’ private data, we present an evaluation algorithm based on local
Shapley Value, which can dynamically quantify the contribution of partici-
pants on the entire federated learning process.

– We perform extensive experiments on different settings to verify the efficiency
of our approach on the MNIST and CIFAR-10 datasets, in particular, in Non-
IID data and a massive number of client scenarios.

2 Related Work

2.1 Federated Learning Settings

In heterogeneous system setting [1], for example, federated learning is currently
deployed in a large-scale distributed heterogeneous network [3], where includ-
ing most of the edge computing devices, such as mobile phones, IoT devices,
autonomous vehicles, various sensors, etc. [17]. In these settings, federated learn-
ing is unreliable and low effectiveness due to some of the massive numbers of
devices are unreliable in the heterogeneous system [20]. In addition, for het-
erogeneous data, the most significant difference between federated learning and
traditional large-scale distributed machine learning is that one is IID data, and
the other is Non-IID data.
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2.2 Model Optimization Algorithm

McMahan et al. introduced the Federated Averaging algorithm (FedAvg) [16],
one of the most common methods for optimizing federated learning settings.
Indeed, facing statistical heterogeneity challenges, the FedAvg method shows
the significant divergence in the training process, even when jointly learning a
single shared global model. From the perspective of optimization theory, Feder-
ated Averaging is a leading optimization algorithm which both simplicity and
effectiveness. However, due to lack of theoretical basis for Non-IID data, in order
to provide insight for a conceptual understanding of FedAvg, Li et al. formu-
lated strongly convex and smooth problems, establish a convergence rate O( 1

T )
by analyzing the convergence of FedAvg [15].

Currently, some approaches proposed aiming to address critical issues of the
modeling for Non-IID data. For example, to solve system heterogeneity and
statistical heterogeneity challenges, Li et al. presented a federated optimiza-
tion algorithm framework, name FedProx [14], which is a generalization and
re-parametrization of FedAvg. The core of this method is to add a proximal
term that restricts the local updates, then to close to the global model by auto-
matically set the number of local epochs.

Federated learning optimization algorithm facing another crucial challenge is
communication-efficient, aim to deal with communication bottlenecks and con-
vergence oscillation. The fundamental method of reducing communication costs
is structured updates or sketched updates approach [10]. Rothchild et al. pro-
posed a novel optimization algorithm (FetchSGD) [18], which compresses model
parameter updates employing Count Sketch. Some novel optimization algorithms
from other areas are used in federated learning. For instance, Wang et al. devel-
oped a novel optimzing federated learning mehtod using reinforcement learn-
ing [21], which is an experience driven control framework.

3 Preliminary

3.1 Federated Learning

For a federated learning process, we typically define the empirical risk over local
data as local objective function f(w) = 1

n

∑n
i=1 fi(w), where fi(w) = �(xi, yi;w),

�(.; .) is a user-defined loss function, and n represents the number of local avail-
able samples. By above analysis, we focus on the minimize finite-sum objective
function of the form [13,16]:

arg min
w∈Rd

F (w) , where F (w) =
K∑

k=1

pkFk(w) . (1)

Where, K denotes the total number of devices, pk indicates the weight of the
k -th device (pk ≥ 0 and

∑
k pk = 1), with two generally settings being pk = 1

n or
pk = nk

n , where n =
∑

k nk denote the total amount of samples, and Fk denote
the local objective function for the k -th device.
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3.2 Shapley Value

The concept of Shapley Value (SV) was first presented as a theoretical way
to solve the cooperative game problem [19], and it has been widely used in
computer science, in particular, use the SV method to evaluate data value for
machine learning.

The SV takes as input a set function v : 2N → R, N is a set (n players). The
SV produces attributions φ(i) for each player i ∈ N that add up to v(N). The
SV of a player i is given by:

φi(N, v) =
∑

S⊆N\i

|S|! ∗ (|N | − |S| − 1)!
N !

(v(S ∪ i) − v(S)) . (2)

where, v(S ∪ i) − v(S) denotes each player i expected marginal contribution,
v indicates utility function, S is the subset of all players. The Shapley value
method satisfies the following properties [2,4,7]:

1. Additivity: The total sum of the SV of each participant is equal to the SV of
the union of participants’ dataset, denoted by

∑m
i φ(Di) = φ(N), also known

as Group Rationality.
2. Symmetry: If any two participants Pi and Pj , for every subsets S of N , if

vx(S ∪ {i}) = vx(S ∪ {j}), ∀S ⊆ N \ {i, j}, then φx(i) = φx(j), also known
as Fairness.

3. Monotonicity: Given two participants Pi and Pj , let mx and m
′
x represent

the associated utility functions, and let φ(x) and φ
′
x represent the associated

Shapley values, if mx(S, i) ≥ m
′
x(S, i) for all subsets S, so we are assure that

φx(i) ≥ φ
′
x(i).

4. Dummy: Given a participant Pi, if vx(S ∪ {i}) = vx(S)), then φx(i) = 0, so
Pi is null player.

4 Proposed Method

4.1 Problem Formulation

As shown in Fig. 1, the classical federated learning paradigm involves learning
a global shared model from data stored in a massive number of remote edge
devices. It aims to collaboratively train a global model while decoupling the
model training and device-generated data, with only periodically updates model
parameters with a central server. In this work, we assume assumption is unbal-
anced and Non-IID dataset. We denote K as the total number of clients (devices
or organizations), which hold a fixed local dataset. At the beginning of train-
ing, a coordinate server randomly chooses a fraction (denoted by C) of clients,
and the server broadcasts the current global initial parameters to each of the
participants selected. Each participant selected conduct training by their local
dataset, and upload local model parameters to the central server. Finally, the
server aggregates the model by different strategies, and repeat this process until
subject to requirements (e.g., accuracy, communication rounds).
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4.2 Local Federated Shapley Value

We observe that classical federated learning is essentially a collaborative training
process in which participants randomly selected by the coordinator join in each
training process in a two-stage sampling order manner. Therefore, a variant of
FedSV [23] for federated learning called local FedSV was defined.

Definition 1 (Local FedSV). Let C = {1, · · · , n} represents the subset of
participants selected by the coordinator server during entire T -round fedrated
learning process. Let Ct be the coalition of clients selected in round t and Ct ⊆ C.
Then, the local FedSV of participant Pi at round t is defined as:

φt
i(v) :=

1

|Ct|
∑

S⊆Ct\{i}

1(|Ct|−1
|S|

)V(S) (3)

where V(S) = [v(C1:t−1 + (S ∪ {i})) − v(C1:t−1 + S)], i ∈ Ct, and S indicates the
number of chosen participants t-th round.

Definition 2 (Global FedSV). The ultimate weighed FedSV of participant
Pi takes the sum of the values of all rounds, Wi is the total number of train-
ing rounds for participants selected during the entire federated learning process.
Then, the global FedSV of participant Pi is defined as:

Ψ t
i =

1

Wi

T∑

t=1

ψt
i (4)

4.3 Dynamical Weights Update

The goal of a federated learning optimization approach is to learn an optimal
global model that can share with all clients by using private data training. In our
proposed model aggregation optimization method, we consider it as searching
and matching an optimal global model that is close to the client local models
in parameter space concerning the contribution of selected client local models
while aggregating on a central server. So we define the optimization objective as
follows [6]:

arg min
Wt+1

f(Wt+1), wheref(W) =
K∑

k=1

[
1
2
ψkL

(W, wt+1
k

)2
]

. (5)

where, Wt is the parameters of the global model at communication round t,
wt+1

k indicates the parameters of the k -th client local model at communication
round t + 1, L(·, ·) denotes the distance between local model parameters and
global model parameters, and ψk represents the shapley weight to measure the
importance of weights for the client models.

Then, we apply softmax on the similarity to calculate the weights of the k -th
client in Eq. 6.

ψt
k = softmax(φt

k) =
eφt

k

∑m
i=1 eφt

i

(6)
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Algorithm 1. Dynamic Federated Averaging (Dynamic FedAvg).
The K clients are indexed by k, C is the ratio of selected clients, B is the local
minibatch size, E is the number of local epochs, η is the learning rate, β is
momentum on server, Pk is the index of datasets on participant k, W is global
model weights, w is the local model weights, and W is global model weights with
momentum.

Server executes: // Run on server
1: Initialize: W0

2: Input: server parameters Wt at round t, client parameters wt+1
1 , ..., wt+1

m at round
t + 1.

3: Output: aggregated server parameters Wt+1,Wt+1.
4: for each round t = 1, 2, . . . do
5: m ← max(C · K, 1)
6: St ← (random set of m clients)
7: for each client k ∈ St in parallel do
8: wt+1

k ← ClientUpdate(k, Wt)
9: end for

10: Wt+1 ← ModelAggregation(wt+1
k ) // call Algorithm 2

11: W
t+1 ← βWt + (1 − β)Wt+1

12: end for
ClientUpdate(k, Wt): // Run on client k

13: B ← (split Pk into batches of size B)
14: for each local epoch i from 1 to E do
15: for batch b ∈ B do
16: wt+1

k ← wt
k − η � �(Wt : b)

17: end for
18: end for
19: return wt+1

k to central server

For the active online selected set of m clients, we perform stochastic gradient
descent (SGD) to update the parameters of the global model in Eq. 7 as:

W
t+1 ← βWt + (1 − β)Wt+1. (7)

where β is the momentum. The detail procedure of our presented model
optimization algorithm is depicted in Algorithm 1. It takes the parameters of
the serve global model Wt at round t and the parameters of the clients local
model wt+1

1 , ..., wt+1
m at round t + 1, and returns the updated parameters of the

global model on central server.

4.4 Algorithm

Global Model Aggregation on Central Server. We describe the main steps
of the global model aggregation in detail. The central server firstly initializes the
global model parameters, and broadcasts these parameters to all clients who
maybe will federated learning participants, or randomly choose a number of
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Algorithm 2. Model Aggregation Optimization using Shapley Value Weights.
k is the ordinal of clients, t is communication rounds, φk is the Shapley value of
k -th client, ψk is the Shapley weights of the k -th client, and wt+1 is local model
weights of the k -th client at t + 1 round.

ModelAggregation(wt+1
k )

1: Input: client parameters wt+1
1 , ..., wt+1

m at round t + 1 .
2: Output: aggregated server parameters Wt+1.
3: Initialize φi = {φ1, . . . , φk, . . . , φm}
4: for each clients l = 1, 2, ... m do
5: Ct ← (Random choose τ tuple from m clients)
6: for each user k do
7: φt

k(v) := 1
|Ct|

∑
S⊆Ct\{k}

1

(|Ct|−1
|S| )

V(S) // calculated by Eq. (3)

8: end for

9: ψt
k = softmax(φt

k) = e
φt

k
∑m

i=1 e
φt

i

10: end for
11: Wt+1 ← ∑m

k=1 ψt
kwt+1

k

12: return Wt+1

participants to join federated learning. Then, this server waits for active online
participants for local model training. During a federated learning task, the cen-
tral server periodically receives the model updated parameters and performs the
server model aggregation optimization after the selected number of participants
finish the local model train and update. Generally, one communication round
includes the global model parameter sending and local model parameter receiv-
ing. Our present optimization algorithm conducts in line 10 to line 11 in the
Algorithm 1 and Algorithm 2.

Local Model Training and Update on Clients. We introduce the main
steps of the local model training and update. Each participant (or online active
client) receives the global model parameters and conducts standalone local train-
ing using their devices-generated data. For neural network modeling (e.g., CNN,
ResNet), clients commonly perform local Stochastic Gradient Descent (SGD) to
update local client models. After several local epochs of training, the partici-
pants send the parameters of the global shared models to the central server by
secure communication channels or encrypt the model parameters with differen-
tial private. The details are elaborated in line 13 to 19 in the Algorithm 1.

5 Experiments

We evaluate Dynamic FedAvg for image classification on two datasets
(MNIST [12] and CIFAR-10 [11]). Because there are not the benchmarks and
libraries to adequately support diverse algorithmic comparisons for federated
learning [5], in our experiments, we compare Dynamic FedSV with FedAvg, to
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keep the fairness of comparison, The models and data partition are the same as
the FedAvg experimental setup.

5.1 Experimental Setup

Model and Datasets Partition. In our experiment, we use a standard neural
network architecture, which is sufficient for our experiments, as our goal is to
evaluate our model optimization algorithm and data evaluation method [25], not
achieve the best possible accuracy on this task. More concretely, the 2NN [16]
model consists of two 5 × 5 convolution layers (the first with 32 channels, the
second with 64, each followed with 2 × 2 max pooling), a fully connected layer
with 512 units and ReLu activation, and a final softmax output layer. Also, for
the original MNIST and CIFAR-10 dataset, we do not use data augmentation
and normalize each image, as we hope to evaluate the actual value of clients’
local data.

To simulate the experimental settings of the real-world image classification
task, we conduct data partition on popular image modeling datasets. We use
two data partition methods to mimic a federated learning scenario: For MNIST
dataset, (1)IID data partition, where the data is shuffled, and then divide into
100 clients each receiving 600 samples, and (2)Non-IID data partition, where
we first sort the data by digit label, split it into 200 shards of size 300, and
assign every of 100 clients two shards. Besides, we also perform experiments on
the CIFAR-10 dataset, which contains ten classes of 32 × 32 images with three
RGB channels, 50,000 training examples, and 10,000 testing examples. We split
it into 100 clients, each containing 500 training samples. In particular, in the
Non-IID data experiment, we use a 30% label distribution deviation as data
partition methods to evaluate our algorithm.

Baselines. We perform several group experiments for comparison. There are
two baselines totally in these comparisons. The basic settings of baselines and
our presented approach are as follows.

– FedSGD: Federated stochastic gradient descent takes all the clients for feder-
ated aggregation and every client conducts one epoch of gradient descent.

– FedAvg: Federated averaging random chooses a fraction of clients for each
iteration and online participants can take several steps of gradient descent.

– FedAvg+: In the process of model aggregation, our metod adds global
momentum as the weights of the previous global model and current global
model.

– FedSV: Our proposed approach takes a similar setting as FedAvg, but uses
an improved dynamical model aggregation algorithm, details are described in
Algorithm2

Federated Learning Setting. We deploy our experiments under a simulated
federated learning environment where we set a centralized node as central server



Optimizing Federated Learning on Non-IID Data 173

and 100 distributed nodes as clients. The number of local epochs E is 10, local
batch size B is 50, local learning rate lr is 0.01, local SGD momentum α is
0.5, the local optimizer is sgd, the fraction of clients C is 0.1 and the global
momentum β is 0.5.

5.2 Experimental Results

In this section, we employ the MNIST and CIFAR-10 datasets to investigate
the properties of our presented algorithm to improve the federated averaging
algorithm. We present an empirical study of our methods with performance
under two data partitions.

Table 1. Trained models summary for 2NN trained on CIFAR-10 and MNIST. (1)
(∗) denotes each client contains the same size training samples with two labels. (2)
(†) indicates Non-IID partition with 30% label skew. (3) Total 100 clients. (4) To
achieve final accuracy, we run 100 rounds federated learning on MNIST and 500 rounds
federated learning on CIFAR-10, respectively.

Settings Dataset FedSGD FedAvg FedAvg+(ours) FedSV(ours)

Non-IID MNIST(*) 99.03 97.61 96.93 97.52

MNIST(†) 99.03 90.01 93.78 92.64

CIFAR-10(*) 60.27 39.22 43.16 46.02

CIFAR-10(†) 60.27 49.49 51.19 52.43

IID MNIST 99.03 97.92 96.89 97.86

CIFAR-10 60.27 52.15 53.87 54.52

As shown in Table 1, dynamic federated Shapley value algorithm is superior
to the original federated averaging algorithm, especially on non-IID Settings
under a massive number of clients. Besides, FedAvg+ and dynamic FedSV can
reduce the oscillation by adding global momentum during the process of model
aggregation on the central server compared to the FedAvg algorithm.

6 Conclusion

In this work, we presented a novel dynamic model aggregation strategy based
on the Local Shapley value for federated learning. For IID and Non-IID data
partition, we conduct extensive experiments and show our approaches are avail-
able. Moving forward, we plan to quantify participants’ contributions through
statistical metrics such as local data characteristics such as quality, quantity, dis-
similarity, etc. This research results provide a new idea for solving optimization
problems and data valuation for federated learning.
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Abstract. In this paper, we propose a novel task-adaptive few-shot
learning (FSL) method called Multi-Level Mixed Supervision (MLMS),
which adapts a classifier specifically for each task by mixed supervi-
sion. Our method complements the supervised training with a multi-level
unsupervised loss including the instance-level certainty term, set-level
divergence term, and group-level consistency term. We further modify
the set-level divergence term under the unbalanced prior situation where
different classes of the unlabeled set contain different numbers of sam-
ples. Besides, we propose an approximate solution of minimizing our
MLMS loss which is faster than the gradient-based method. Extensive
experiments on multiple FSL datasets demonstrate that our method out-
performs several recent models by an obvious margin on both transduc-
tive FSL and semi-supervised FSL tasks. Codes and trained models are
available at https://github.com/Wangduo428/few-shot-learning-mlms.

Keywords: Few-shot learning · Task-adaptive · Multi-level mixed
supervision · Transductive FSL · Semi-supervised FSL · Unbalanced
prior

1 Introduction

Deep learning has achieved tremendous success, even outperforms human in var-
ious Artificial Intelligence (AI) tasks. However, its performance will degenerate
severely when the amount of training data is limited, making Few-Shot Learning
(FSL) a very active research topic recently [14,18]. Recent FSL works follow the
similar idea that extracting task-agnostic prior knowledge from a large annotated
dataset of some base categories to assist the learning of novel categories. Such
a large base dataset is exploited by either training a generic feature extractor
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through standard supervised learning, or a meta-model that can generate good
classifiers in an episodic manner, or both.

To tackle the low-data regime of novel tasks, some works use unlabeled
auxiliary samples for feature matching or model adapting, which can be the
entire query set (transductive FSL [1,6,9,11–13,21,24]) or an additional unla-
beled set (semi-supervised FSL [8,15,23]). In this paper, we follow this setting
and propose a novel and effective method called Multi-Level Mixed Supervision
(MLMS). For each FSL task from a novel set of categories, we train a classi-
fier adaptively with mixed supervision integrating 4 loss terms: (1) supervised
cross-entropy term from the labeled support set, (2) instance-level certainty term
encouraging confident predictions of unlabeled samples, (3) set-level divergence
term avoiding identical predictions of the whole unlabeled set and (4) group-level
consistency term favoring consistent predictions of similar samples. We further
consider a more practical unbalanced situation where different classes of unla-
beled set contain different numbers of samples and propose a weighted et-level
divergence term as modification towards the unbalanced prior. Besides, inspired
by ADMM, we propose an approximate solution of minimizing our MLMS loss
which is faster than gradient-based optimization without losing too much accu-
racy. We conduct comprehensive experiments on multiple popular FSL datasets
and achieve a series of SOTA results on both transductive and semi-supervised
FSL tasks.

Related Works. Recently, FSL with additional unlabeled data (including
transductive FSL and semi-supervised) has attracted lots of attention and pro-
duced great performance improvement over supervised inductive counterparts.
Related works can be generally categorized into: (1) label propagation or assign-
ing [4,6,11,12,21,24], (2) feature space learning or inducing [9,13,16], (3) adap-
tive model fine-tuning [1,3,5,8,15,23]. Our method belongs to (3) and is closely
related to [3] and [1], with the common ground of fine-tuning the model adap-
tively based on the information entropy of unlabeled predictions. The difference
is two-fold. First, we additionally design a group-level consistency loss term to
further regularize the model fine-tuning. Second, we modify the set-level diver-
gence loss term by introducing weights over categories towards the unbalanced
prior of unlabeled samples.

2 Proposed Method

2.1 Problem Definition

In this paper, we focus on the ‘C-way, K-shot, M -test’ few-shot learning (FSL)
problem. Typically, a FSL task T defined on some novel set of categories Cn

consists of a small labeled support set S and a large unlabeled query set Q.
S = {(xi,yi)|, i = 1, 2, ...C × K} and Q = {(xi,yi)|, i = 1, 2, ...C × M} contain
K and M samples of each of C different classes, respectively. xi denotes the raw
image data and yi denotes its one-hot label. To tackle data scarcity, we consider
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to augment the small support set S by an unlabeled auxiliary set U , which can be
either the query set Q of the given FSL task following transductive FSL setting
or an additional unlabeled set denoted by U = {(xi,yi)|, i = 1, 2, ...C × U}
following semi-supervised FSL. Let gθ denote the feature extractor parameterized
by θ that maps the input image to a d-dimensional feature embedding. A large
labeled base dataset Db = {(xi,yi)|, i = 1, 2, ...Nb} from a disjoint class set Cb

(i.e. Cb ∩ Cn = φ) is also available to facilitate FSL tasks from novel classes.
In this paper, we exploit Db to first pre-train gθ following standard supervised
learning then following the typical episodic training method [17] to produce class-
agnostic metric space for better generalization to different novel FSL tasks. The
influence of episodic pre-training will be evaluated in Sect. 3.

2.2 Task-Adaptive FSL with Multi-level Mixed Supervision

For a given ‘C-way, K-shot, M -test’ FSL task T = (S, Q, U) from some
novel set of classes, we adaptively define a classifier with parameters W =
[w1,w2, ...wC ] ∈ R

d×C that produces posterior distributions over categories
of input features based on the distance to each class weight:

pia =
exp(− τ

2 ||wa − ei||2)
∑C

b=1 exp(− τ
2 ||wb − ei||2)

(1)

where ei denote the L2-normalized featrue embedding of sample xi from pre-
trained backbone gθ. pia denotes the probability that the sample xi belongs to
the ath category.

We propose Multi-Level Mixed Supervision to optimize the parameters of
task-adaptive classifier W with both the labeled support set S and unlabeled set
U (or Q for transductive FSL). For labeled S, the supervised loss with standard
cross-entropy between the prediction and true label is calculated by:

Lsup = − 1
|S|

∑

i∈S

C∑

a=1

yia log(pia) (2)

For unlabeled U , we design a multi-level unsupervised loss which contains
the instance-level certainty term, set-level divergence term, and group-
level consistency. The instance-level certainty term forces the classifier
to produce highly certain predictions for the unlabeled samples since they come
from the same set of categories as the labeled ones. One common way to measure
the certainty (or uncertainty) of random variables is the Shannon Entropy, which
has been exploited by many semi-supervised learning works, given by:

Lcer = − 1
|U|

∑

i∈U

C∑

a=1

pia log(pia) (3)

Optimizing W merely with the certainty loss may lead to a degenerate situ-
ation where all unlabeled samples are classified into a single category. Therefore,



Boosting FSL with Task-Adaptive Multi-level Mixed Supervision 179

the set-level divergence term is exploited to increase the overall diversity of
predicted labels of the unlabeled set. High diversity of prediction means that each
category should contain substantial samples. In other words, the marginal distri-
bution over categories estimated by the whole unlabeled set should be uncertain,
yielding large Shannon Entropy, given by:

Ldiv = −
C∑

a=1

p̂a log(p̂a) (4)

where the estimated marginal distribution p̂a is calculated by the average of
posterior distributions of all unlabeled samples, i.e. p̂a = 1

|U|
∑

i∈U pia.
Besides, we propose the group-level consistency term to encourage the

classifier W to make consistent predictions among similar feature samples. Con-
cretely, for each unlabeled feature ei , we find its N -nearest-neighbors from the
unlabeled set let N (i) denote the set of their indices. Then the cross-entropy
between the prediction of ei and those of its neighbors are minimized, given by:

Lcon = − 1
N |U|

∑

i∈U

∑

j∈N (i)

C∑

a=1

pia log(pja) (5)

The final loss to adapt W towards the given FSL task is the weighted sum
of the terms introduced above:

L = λLsup − δLdiv + αLcer + βLcon (6)

2.3 Multi-level Mixed Supervision with Unbalanced Prior

The set-level divergence term imposes the estimated marginal distribution to
be close to uniform, following an implicit assumption that the unlabeled set U
contains an identical number of samples for all categories, which may not hold
in reality. When the category prior of unlabeled set is unbalanced, maximizing
the plain entropy of the estimated marginal distribution may produce degraded
performance. In this paper, we propose a simple yet effective weighted entropy
of category marginal distribution as a replacement to optimize W :

Ldiv−un = −
C∑

a=1

ra ∗ p̂a log(p̂a) (7)

where the weight ra control the bias of entropy towards category a, which is
proportional to the current estimated marginal distribution:

ra = p̂a ∗ C (8)
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2.4 FSL Model Solution

We initialize the classifier parameters wa by the mixure of support features of
class a and the weighted aggregation of unlabeled features:

w0
a =

∑
i∈U sia ∗ ei +

∑
i∈S yiaei

∑
i∈U sia +

∑
i∈S yia

(9)

where sia is defined as the similarity between the ith unlabeled feature and the
support feature of class a normalized by softmax. The classifier can be optimized
by minimizing the loss given by Eq. 6 with the common gradient-descent-based
(GD) method. Additionally, motivated by the Alternating Direction Method
of Multipliers and a recent work [1], we derive an approximate solution of the
optimal parameters W ∗ which is of higher computing efficiency without losing
much performance. We present the fast approximate solution with the set-level
divergence term of unbalanced prior. Solving with the balanced prior is a special
case when ra is set to 1. Plug the loss terms Eq. 2 3 7 5 into Eq. 6 and introduce
auxiliary variables q to replace the posterior distributions of unlabeled samples,
we have a multi-variable objective function:

L(W , q) = − λ

|S|
∑

i∈S

C∑

a=1

yia log(pia) + δ

C∑

a=1

raq̂a log(q̂a) − α

|U|
∑

i∈U

C∑

a=1

qia log(pia)

− β

N |U|
∑

i∈U

∑

j∈N (i)

C∑

a=1

qia log(pja) +
1

|U|
∑

i∈U

C∑

a=1

qia log(
qia

pia
)

s.t.
C∑

a=1

qja = 1, qja ≥ 0, ∀i ∈ U (10)

where the last term is the KL-divergence between q and p to guarantee the
equivalence to the original objective. Eq. 10 can be solved by alternately opti-
mizing q while fixing W (q-step) and then vice versa (W -step). For q-step,
the KL-divergence implicitly eliminates the inequality constraint and yields a
strictly convex problem. By introducing Lagrange variables and solving KKT
conditions, the optimal q∗ should satisfy:

qia =
p1+α

ia (
∏

j∈N (i) pja)β/Ne−raδ

( 1
|U|

∑

i∈U
qia)raδ

1
C∑

a=1

p1+α
ia (

∏
j∈N(i) pja)β/N e−raδ

( 1
|U|

∑

i∈U
qia)raδ

(11)

The optimal q∗ can not be directly solved from Eq. 11. Alternatively, we set q
in the right side of Eq. 11 to the value from the previous step and calculate q∗

in an iterative way.
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For W -step, substitute p in Eq. 10 by Eq. 1, we have:

L(W ) =
τλ
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2
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qia log(qia) (12)

The last line of Eq. 12 can be considered as constant w.r.t W . For each of the
other lines, the first term is quadratic and the second term can be approximated
linearly at the current point by first-order Taylor expansion, making Eq. 12 also
a strictly convex problem without constraint. Thus, the optimal W ∗ can be
obtained by setting its gradient to 0, which is:

w
n+1
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1
λ

|S|
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n
ja(w

n
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3 Experiments

3.1 Setup

Datasets. We conduct experiments on 3 common few-shot learning datasets:
mini-ImageNet [18], tiered-ImageNet [15], and CUB-200 [19], which are
split into 64-16-20, 351-97-160, and 100-50-50 in classes as the base, validation,
and novel subsets respectively, following general protocol. The base and vali-
dation subsets are used to pre-train and validate the backbone and the novel
subsets provide FSL tasks for model evaluation.

Implementation Details. We exploit 2 backbones in this paper which are
ResNet-12 and ResNet-18. We first follow [22] to pre-train ResNet-12 and
follow [20] to pre-train ResNet-18. Then we follow [17] to conduct metric meta-
training to both backbones. The number of meta-training epochs is 200 and each
epoch contains 100 synthesized FSL tasks from the base split. SGD optimizer is
exploited with the initial learning rate of 0.001, Nesterov momentum 0.9, and
weight decay 0.0005. The learning rate is reduced by half every 40 epochs. Images
are resized to 84×84 and augmented by random cropping and horizontal flipping.
For updating the task-adaptive classifier W , the gradient-descent-based method
uses ADAM optimizer with the learning rate of 0.001. The updating steps nout

is set to 80 in both methods and the steps of iterating q nU is set to 10. Other
hyper-parameters including the weights of different loss terms, τ , and N are
determined through grid search and will be introduced in Sect. 3.3.
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Table 1. Comparative results of transductive single-domain FSL with mini-ImageNet
and tiered-ImageNet datasets. Statistical over 2000 FSL tasks. “–” means not given.
The best and second-best results are marked in bold and underline.

Method Backbone Mini-ImageNet Tiered-ImageNet

1-shot 5-shot 1-shot 5-shot

CAN-T [4] R-12 67.19± 0.55 80.64± 0.35 73.21± 0.58 84.93± 0.38

DPGN [21] R-12 67.77± 0.32 84.60± 0.43 72.45± 0.51 87.24± 0.39

TAFSSL [9] R-18 73.73± 0.27 – 80.60± 0.27 –

TIM [1] R-18 73.9 85.0 80.0 88.5

MCT [7] R-12 78.30± 0.81 86.48± 0.42 80.89± 0.84 87.30± 0.49

Trans-Fine [3] W-28 65.73± 0.68 78.40± 0.52 73.34± 0.71 85.50± 0.50

TRPN [12] W-28 68.25± 0.50 85.40± 0.39 70.25± 0.50 85.21± 0.37

SIB [5] W-28 70.0± 0.6 79.2± 0.4 – –

BD-CSPN [10] W-28 70.31± 0.93 81.89± 0.60 78.74± 0.95 86.92± 0.63

LaplacianShot [24] W-28 74.86± 0.19 84.13± 0.14 80.18± 0.21 87.56± 0.15

TAFSSL [9] Dense 77.06± 0.26 84.99± 0.14 84.29± 0.25 89.31± 0.15

MLMS-gd R-12 79.23± 0.58 87.73± 0.29 80.58± 0.59 88.88± 0.32

MLMS-fast R-12 79.06± 0.58 87.66± 0.29 80.39± 0.63 88.81± 0.32

MLMS-gd R-18 77.19± 0.61 85.38± 0.33 83.01± 0.56 89.41± 0.32

MLMS-fast R-18 76.98± 0.62 85.55± 0.32 82.77± 0.57 89.31± 0.33

Table 2. Comparative results of the CUB-200 dataset on transductive single-domain
and cross-domain FSL. Statistical over 2000 FSL tasks. “–” means not given. The best
and second-best results are marked in bold and underline.

Method Backbone CUB-200 Mini-ImageNet→CUB-200

1-shot 5-shot 1-shot 5-shot

DPGN[21] R-12 75.71± 0.47 91.48± 0.33 – –

TEAM[13] R-18 80.16 87.17 – –

LaplacianShot[24] R-18 80.96 88.68 55.46 66.33

TIM[1] R-18 82.2 90.8 – 71.10

BD-CSPN W-28 87.45 91.74 – –

MLMS-gd R-12 91.14 ± 0.42 94.08 ± 0.20 58.68 ± 0.67 75.63 ± 0.46

MLMS-fast R-12 91.00± 0.41 93.90± 0.19 57.32± 0.66 74.56± 0.46

Table 3. Comparative results of semi-supervised FSL with mini-ImageNet and tiered-
ImageNet datasets. Statistical over 2000 FSL tasks. “–” means not given. The best and
second-best results are marked in bold and underline.

Method Backbone Mini-ImageNet Tiered-ImageNet

1-shot 5-shot 1-shot 5-shot

SKM[15] C-4 62.10 73.60 68.60 81.00

TPN[11] C-4 62.70 74.20 72.10 83.30

TEAM[13] R-18 54.81± 0.59 68.92± 0.38 – –

LST[8] R-12 70.10± 1.90 78.70± 0.80 77.70± 1.60 85.20± 0.80

TransMatch[23] W-28 63.02± 1.07 82.24± 0.59 – –

TAFSSL[9] Dense 80.11± 0.25 85.78± 0.13 86.00 ± 0.23 89.39 ± 0.15

MLMS-gd R-12 81.33 ± 0.57 88.23 ± 0.29 83.25± 0.55 89.20± 0.33

MLMS-fast R-12 80.62± 0.57 87.76± 0.26 82.44± 0.55 88.69± 0.34
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3.2 Comparison with SOTA Works

We compare our proposed method with extensive state-of-the-art transduc-
tive FSL and semi-supervised FSL works. Transductive FSL results on mini-
ImageNet and tiered-ImageNet are listed in Table 1, and results on CUB-200
and a more challenging cross-domain setting ‘mini-ImageNet→CUB-200’ [2] are
listed in Table 2. Results of semi-supervised FSL are shown in Table 3. All the
results are presented in the form of average classification accuracy and 95% con-
fidence interval over 2000 randomly-sampled ‘5-way, 1-shot/5-shot, 15-test’ FSL
tasks of the novel subsets. For semi-supervised FSL, we exploit 50 unlabeled
samples per class. Results show that our proposed methods outperform a series
of SOTA works by an obvious margin almost under all FSL settings and datasets
except some cases on tiered-ImageNet. However, our methods still rank in top-2
and the best competitor TAFSSL [9] exploits DenseNet as backbone which costs
more computational resources than ResNet. The results of TAFSSL with ResNet
backbone are inferior to ours (see Table 1). Besides, the performance of the fast
solution is very similar to that of the gradient-based method, demonstrating the
effectiveness of the approximation.

3.3 Ablation Study

Hyper-parameters. We conduct the grid search to determine the hyper-
parameters including weights of different loss terms, τ , and N . Limited by space,
we only present the results. δ and α are set to 1.0 and 0.1 for all experiments.
τ is set to 10 for 1-shot mini-ImageNet and 15 for the rest. β and N are set to
0.1 and 4 for 1-shot setting and 0.02 and 2 for 5-shot setting. λ is set to 0.1 for
mini-ImageNet and 0.5 for 1-shot tiered-ImageNet, and 0.2 for the rest.

Loss Terms and Training Options. We evaluate the influence of all loss
terms and training options including meta pre-training and initialization with
provided samples. The results are listed in Table 4. We can see that all the
unsupervised terms consistently enhance the accuracy over the plain supervised
training. However, the improvement of Lcer is very limited and the possible
reason is that Lcer will uncontrollably lead to a degenerate situation where
all samples are classified into the same category. Regularizing it further with
the divergence loss and consistency loss will bring remarkable improvement.
The meta pre-training also plays an important role in the final performance.
In a word, the model equipped with all terms and options outperform other
counterparts across all 3 datasets.
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Table 4. Ablation study of loss terms and training options over 600 FSL tasks.

Lsup Ldiv Lcer Lcon MetaPre Init 1-shot/5-shot

Mini Tiered Cub

� � � 69.39/83.26 71.25/85.70 82.40/90.72

� � � � 73.20/85.63 75.26/87.46 86.77/91.83

� � � � 69.47/84.15 71.51/86.19 85.52/91.48

� � � � � 78.58/87.71 79.78/88.71 87.37/93.38

� � � � � 79.35/87.07 80.48/88.38 90.76/92.70

� � � � � 75.43/85.01 77.25/86.13 83.75/90.06

� � � � � 79.24/87.92 80.84/88.84 90.81/93.49

� � � � � 79.30/87.36 80.45/88.28 90.57/93.16

� � � � � � 79.66/88.03 80.89/88.89 90.89/93.56

Numbers of Unlabeled Samples. We vary the number of unlabeled sam-
ples per class from 5 to 50 and test our method on mini-ImageNet and tiered-
ImageNet datasets. The results are illustrated in Fig. 1(a) (transductive FSL)
and (b) (semi-supervised FSL). As is shown in the figure, the accuracy generally
increases as more unlabeled samples are included.

Fig. 1. Different numbers of unlabeled samples and accuracies of mini-ImageNet and
tiered-ImageNet. (a) Transductive FSL; (b) Semi-supervised FSL.

Unbalanced Prior. For the FSL with unbalanced prior, different classes in a
task contain different numbers of unlabeled samples. Here we set the median
number to 15 and a 5-way FSL task contains 15-2 ∗ un b, 15-un b, 15, 15+un b,
15+2∗un b unlabeled samples for the 5 categories, where un b is the unbalanced
factor and varies from 0 to 7 in our experiments. The true prior distribution
over classes can be calculated by the number of samples each class contains
divided by the total unsupervised number. Results of transductive FSL and semi-
supervised FSL with mini-ImageNet and tiered-ImageNet are shown in Fig. 2.
“TP” means True Prior, where the Ldiv is substituted by the cross-entropy
between the true prior distribution and the prediction of the model. “NP” means
None Prior, where the unbalanced prior is not taken into consideration, and
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Ldiv remains unchanged as Eq. 4. “EP” denotes Estimated Prior that calculates
Ldiv by Eq. 7, and “EP-F” means its fast approximation solution. As is shown
in Fig. 2, introducing prior in the training loss will keep the accuracy much
more stable. As the unbalance becomes large, performance without true prior
will drop, and the divergence loss term with estimated prior outperforms that
without prior by an obvious margin. However, under small unbalance, the model
without prior performs better. This is probably because the bias between the
estimated prior and small unbalanced prior is larger than that between balance
prior and small unbalanced prior.

Fig. 2. Different unbalanced factors and accuracies of mini-ImageNet and tiered-
ImageNet. (a) Transductive FSL; (b) Semi-supervised FSL.

Running Times. We report running times of 600 “5-way, 1-shot/5-shot, 15-
test” FSL tasks from mini-ImageNet with ResNet-12 backbone. All the experi-
ments are run on two GTX 1080 Ti GPUs. For 1-shot setting, MLMS-fast spends
55.7 s totally, i.e. 0.093 s/task, while MLMS-gd spends 78.5 s/600 = 0.131 s/task.
For 5-shot setting, MLMS-fast spends 67.1 s/600 = 0.112 s/task and MLMS-gd
spends 81.2 s/600 = 0.135 s/task. MLMS-fast behaves more efficient than the
gradient-based solution.

4 Conclusion

In this paper, we propose a simple yet effective FSL method called Multi-Level
Mixed Supervision (MLMS) that adapts the classifier specifically for a given
FSL task based on the mixed supervision. In conjunction with the episodic pre-
training of backbone with base classes, our method achieves a series of state-
of-the-art results on both transductive and semi-supervised FSL benchmarks.
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Incorporating weights over categories induced by the estimated prior into set-
level divergence term yields great improvement in the unbalanced situation. The
fast solution based on ADMM and first-order approximation will speed up the
inference with little performance gap. We believe our work in this paper could
provide substaintial benefit to the FSL research in the future.
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Abstract. Sparse regularization has attracted considerable attention in
machine learning community these years, which is a quite powerful and
widely used strategy for high dimensional learning problems. However,
when applied in deep neural networks (DNNs), sparse regularizers have
a lot of redundant weights and unnecessary connections, and little work
has been devoted to regularizer-based method for DNNs sparsification.
Therefore, we aim to develop a proper sparse regularizer that can avoid
augmenting excessive computation complexity in DNNs. In this paper,
we find that the sparse regularizer learning corresponds to learning a
activation function. Further, the regularizer is learned by the bilevel opti-
mization method for smaller number of function evaluations. Moreover,
we design a novel learning method, named bilevel sparse regularized neu-
ral network (BSRL) to learn the regularization parameters based on the
prior knowledge of the system. Experimental results on standard bench-
mark datasets show that the proposed BSRL framework outperforms
other models with state-of-the-art sparse regularizers.

Keywords: Sparse regularizer · Neural networks · Bilevel optimization

1 Introduction

Recent progress in deep learning [8] has improved the state-of-the-art perfor-
mance in a range of applications. The multiple layers of non-linear transfor-
mations in a deep neural network (DNN), or related network variations, allow
complex and difficult data to be well modelled. However, its high-level abstrac-
tion and representation of input features make it difficult to interpret the DNN
parameters. This can cause various issues for improving parameter estimation,
and network generalisation.

To reduce over-fitting, regularisation techniques are commonly used in DNN
training. Weight decay adds a squared L2-norm term of the DNN parameters to
the cost function. This penalises large weights during parameter optimisation.
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Rather than modifying the criterion, dropout [10] randomly turns off, drops, a
set of nodes during the training procedure; as a result, the final DNN can be
viewed as an ensemble model of many small DNNs. This averaging helps reduce
over-fitting to the training data.

The sparse optimization method can be utilized to regularizers to produce
sparse solutions. The �0 norm, which counts the number of non-zero elements,
is the most intuitive form of sparse regularizers and can promote the sparsest
solution. However, minimizing the �0 problem is combinatory and usually NP-
hard [3,11,21]. The �1 norm is the most commonly used surrogate [6,25], which is
convex and can be solved easily. Although �1 enjoys several good properties, it is
sensitive to outliers and may cause serious bias in estimation [9,13]. To overcome
this defect, many norms are proposed and analyzed, including smoothly clipped
absolute deviation (SCAD) [9,17], log penalty [6,32], capped �1 [7,31], minimax
concave penalty (MCP) [14,31], �p penalty with p ∈ (0, 1) [5,30], the difference
of �1 and �2 norms [18,26].

However, as far as we know, existing regularizers on these efficient algorithms
either have relatively poor ability in promoting the sparseness of the solution,
or lack applicability due to the tough choices of hyper-parameters. And we also
realize that existing works rarely discuss the regularization based on bilevel
optimization method, which has the potential to reduce over-fitting and improve
the capability to generalise DNNs.

In this paper, we propose a novel network dubbed bilevel sparse regular-
ized neural network using activation function (BSRL), whose generalization is
improved utilizing bilevel sparse regularization. Bilevel optimization problem
contains two levels of optimization tasks, whose optimal solutions to the lower
level problem become possible feasible candidates to the upper level problem.
The main contributions of this paper can be summarized into the following
aspects:

– We find a strong connection between sparse regularizers and activation func-
tions, which converts the problem of learning the sparse regularizer into that
of learning a activation function. (see Subsect. 2.1).

– We propose a novel bilevel optimization method to learn a sparse regularizer
based on the idea of meta learning, which is a nested optimization prob-
lem that involves two levels of optimization tasks. The approach is capa-
ble of handling complicated bilevel optimization problems and learning the
optimal regularizer in relatively smaller number of function evaluations (see
Subsect. 2.2).

– We set up a novel learning method, named bilevel sparse regularized neural
network (BSRL), where the outer level objective measures an expectation
of the error over the training data and the inner level problem measures
the regularized data misfit (see Subsect. 2.3). Experimental results show that
BSRL outperforms the networks with existing sparse regularizers, both in
terms of classification accuracy and regularization effectiveness.
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2 Proposed Approaches

2.1 A Strong Connection Between Regularization and Activation
Function

Proximal algorithms are very generally applicable. Their base operation is evalu-
ating the proximal operator of a function, which involves solving a small convex
optimization problem that often admits a closed-form solution. In particular,
the proximal operator often admits a closed-form solution. In particular, the
proximal operator proxf (x) : R → R of a function is defined as

proxf (x) = arg min
y

1
2
‖y − x‖2 + f(y), (1)

where f(·) can be a sparse regularizer. If f is convex, the fixed points of
the proximal operator of f are precisely the minimizers of f. In other words,
proxf (x∗) = x∗ iff x∗ minimizes f. This fix-point property motivates the
simplest proximal method called the proximal point algorithm which iterates
x(n+1) = proxf

(
x(n)

)
. All the proximal algorithms used here are based on this

fix-point property. Note that even if the function f(·) is not differentiable (e.g., �1
norm) there might exist a closed-form or easy-to-compute proximal operator.

Then we define a regularizer F(x) :

F(x) =
n∑

i=1

∫ xi

0

(
ξ−1(y) − y

)
dy =

n∑

i=1

∫ xi

0

ξ−1(y)dy − 1
2
‖x‖2, (2)

where ξ(·) : R → R is a activation function, ξ−1(y) is the inverse function of ξ(·).
Then we can verify that the solution to the proximal operator:

proxF (x) = argmin
y

1
2
‖y − x‖2 + F(y) (3)

is exactly y = proxF (x) = ξ(x) [19], where ξ(x) is applied to x entrywise and a
non-decreasing Lipschitz continuous function of x, which can be saturating (e.g.,
sigmoid and tanh) and non-differentiable (e.g., ReLU and leaky ReLU).

We notice a strong connection between the regularizer F(x) and the acti-
vation function ξ(x) by the solution to proximal operator. For instance, once
we decide upon a choice of regularizer, the activation function is dictated by
that choice. On the other hand, if we choose a activation function first, then the
regularization is dictated by that choice. With the above analysis, regulariza-
tion in a model can be transformed into learning a activation function which is
non-decreasing.

2.2 Learnable Bilevel Sparse Regularizer

Due to the computational complexity of learning activation functions, traditional
optimization algorithms suffer from low efficiency since they usually require a
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huge number of function evaluations. In order to solve this problem, we introduce
the idea of bilevel optimization which is widely used in meta learning [23]. Bilevel
optimization is a class of problems which exhibit a two-level structure, and its
goal is to minimize an outer objective function (4) with variables which are
constrained to be the optimal solution to an inner optimization problem (5). In
this section, we consider learning a regularizer as a bilevel optimization problem:

min
y∈Ya

L(y) =
1

2m

m∑

i=1

∥
∥
∥ξ(i)(y) − x

(i)
true

∥
∥
∥
2

, (4)

s.t. ξ(i)(y) = arg min
x∈Xa

J (i)(x) = arg min
x∈Xa

1
2
‖x − y‖2 + F(x) = φ(x) + F(x),

(5)
where x = ξ(y) based on the analysis of Subsect. 2.1, Ya is a closed convex and
nonempty admissible set for y and Xa is a closed, convex, nonempty admissible
set which is contained in the solution space X (x ∈ Xa ⊆ X).

Then, we can write our inner minimization problem (5) with a generalized
regularizer as an average:

ξ(i)(y) = arg min
x∈Xa

J (i)(x) = arg min
x∈Xa

1
2m

m∑

i=1

[∥
∥
∥x(i) − y(i)

∥
∥
∥
2

+ F(x(i))
]

, y ∈ Ya.

(6)
To solve this problem in (6), we will employ derivative based methods [2] such

as projected gradient descent. The directional derivative of J in a direction �h in
(6) w.r.t y in its variational form is, for i = 1, ...,m,

DJ (i)
(
x(i)

)
[�h] =

1
m

[
((x(i) − y(i)),�h) +

(
(∂x(i)ξ)∗ (∂ξF) F ,�h

)]
, (7)

where (∂x(i)ξ)∗ is the adjoint of ∂x(i)ξ.
The iteration rule of generalized proximal gradient (GPG) method [19] for

solving the minimization problem (5) is as follows:

x(k+1) = arg min
x

φ
(
x(k)

)
+

〈
∇φ

(
x(k)

)
, x − x(k)

〉
+

L

2

∥
∥
∥x − x(k)

∥
∥
∥
2

F
+ F(x)

= arg min
x

L

2

∥
∥
∥
∥x − x(k) +

1
L

∇φ
(
x(k)

)∥
∥
∥
∥

2

F

+ F(x),

(8)
where L is the Lipschitz constant of ∇φ(·), which guarantees the convergence of
generalized proximal gradient (GPG) method, satisfying

‖∇φ(x) − ∇φ(y)‖F ≤ L‖x − y‖F . (9)

We denote R = x(k) − 1
L∇φ

(
x(k)

)
, and solving (8) requires solving the fol-

lowing optimization problem

ProxF (R) = arg min
x

1
2
‖x − R‖2F + F(x), (10)
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where ProxF (·) is the proximal operator that is associated with the regularizer
F(·). We are now able to get the optimal solution to (10) by the updating x(i):

x(i) = ProxF

(
x(i−1) − 1

L
∇φ

(
x(i−1)

))
. (11)

Then, the projected gradient descent scheme for solving (6), for the network
layers (optimization iteration) j = 1, ..., n, is given by

x
(i)
j = Proxx∈Xa

(
x
(i)
j−1 − 1

L
∇J

(
x
(i)
j−1

))
. (12)

(12) is also known as the forward propagation. We are using ∇ to denote the
gradient and D to denote the directional derivative in (7). Now substitute the
gradient from (7) in (12) to arrive at

x
(i)
j = Proxx∈Xa

(
x
(i)
j−1 − 1

mL

[(
x
(i)
j−1 − y(i)

)
+

(
∂

x
(i)
j−1

ξ
)∗

(∂ξF) F
])

. (13)

2.3 Learning Bilevel Sparse Regularized Neural Network (BSRL)

Putting it all together, we now describe our proposed bilevel sparse regularized
neural network learning architecture (BSRL). Suppose we have m distinct sam-
ples, and n layers in our network. Let x

(i)
true and y be the known true solution

and its corresponding experimental data for the i-th sample, with i = 1, ...,m.
Then, we formulate our learning problem as, for j = 1, ..., n,

min
y∈Ya

L(y) =
1

2m

m∑

i=1

∥
∥
∥ξ(i)n (y) − x

(i)
true

∥
∥
∥
2

=
1

2m

m∑

i=1

∥
∥
∥x(i)

n − x
(i)
true

∥
∥
∥
2

, (14)

s.t. x
(i)
j = Proxx∈Xa

(
x
(i)
j−1 − 1

L
∇J

(
x
(i)
j−1

))

= Proxx∈Xa

(
x
(i)
j−1 − 1

mL

[(
x
(i)
j−1 − y(i)

)
+

(
∂

x
(i)
j−1

ξ
)∗

(∂ξF) F
])

.

(15)
To solve the outer level problem for y ∈ Ya, we again use the projected gra-

dient descent method, as described above, with learning rate β and z iterations,

yl+1 = Proxy∈Ya
(yl − β∇yl

L (yl)) , l = 0, . . . , z − 1, (16)

where Proxy∈Ya
(·) is the projection onto the admissible set. It then remains to

evaluate ∇yl
L (yl) . After applying the chain rule, we obtain that

∇yl
L (yl) =

1
m

m∑

i=1

∫

Ω

(
x(i)

n − x
(i)
true

) dx
(i)
n

dy

∣
∣
∣
∣
∣
y=yl

dΩ, (17)
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where Ω ⊂ R
n with n ≥ 1 is a bounded domain.

The computation of sensitivity of x w.r.t. y is challenging, because at each
network layer, y depends on the previous iterate, as well as y. We evaluate
dx(i)

n

dy

∣
∣
∣
y=yl

in (17) by implicit differentiation. This results in an iterative system

of equation that we need to solve. For each sample index i, it is explicitly derived
as follows, for j = 1, . . . , n,

dxj

dy

∣
∣
∣
∣
y=yl

=
∂xj

∂xj−1
· dxj−1

dy

∣
∣
∣
∣
y=yl

+
∂xj

∂y
· dy

dy

∣
∣
∣
∣
y=yl

, (18)

∂xj

∂xj−1
=I − 1

mL

[
I +

∂

∂xj−1

(
∂ξ

∂xj−1

)∗ (
∂F
∂ξ

)∗
F

+
(

∂ξ

∂xj−1

)∗
∂

∂xj−1

(
∂F
∂ξ

)∗
F

+
(

∂ξ

∂xj−1

)∗ (
∂F
∂ξ

)∗ (
∂F
∂ξ

· ∂ξ

∂xj−1

)]
,

(19)

and,

∂xj

∂y
= − 1

mL

[
−I +

(
∂

∂y

(
∂ξ

∂xj−1

)∗)(
∂F
∂ξ

)∗
F

+
(

∂ξ

∂xj−1

)∗ (
∂

∂y

(
∂F
∂ξ

)∗)
· F +

(
∂ξ

∂xj−1

)∗ (
∂F
∂ξ

)∗
· ∂F

∂ξ

∂ξ

∂y

]
.

(20)

Fig. 1. The key architecture of the deep BSRL.

Substituting (19) and (20) in (18) yields the sensitivity of x w.r.t. y. Now we
have the key architecture of the deep BSRL, as shown in Fig. 1. We divide our
network into a training phase and a testing phase, as is common in a standard
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Algorithm 1. Training Phase of BSRL

Input:
{

x
(i)
true, y

(i)
}m

i=1
, m training samples

Output: y∗

repeat
Initialize x0,

dx0
dy

and y0.
for l = 0 to z − 1 do

for j = 1 to n do

Compute x(i) and dx
(i)
n

dy
for all i = 1, . . . , m :

x
(i)
j = Proxx∈Xa

(
x
(i)
j−1 − 1

L
∇J

(
x
(i)
j−1

))

= Proxx∈Xa

(
x
(i)
j−1 − 1

mL

[(
x
(i)
j−1 − y(i)

)
+

(
∂

x
(i)
j−1

ξ

)∗
(∂ξF) F

])
,

dx
(i)
j

dy

∣∣∣∣∣
y=yl

=
∂x

(i)
j

∂x
(i)
j−1

· dx
(i)
j−1

dy

∣∣∣∣∣
y=yl

+
∂x

(i)
j

∂y
· dy

dy

∣∣∣∣∣
y=yl

.

end for
Compute the gradient of L(y) :

∇ylL (yl) =
1

m

m∑
i=1

∫

Ω

(
x(i)

n − x
(i)
true

) dx
(i)
n

dy

∣∣∣∣∣
y=yl

dΩ,

Update y : yl+1 = Proxy∈Ya (yl − β∇ylL (yl)) .
end for

until BSRL is convergent

machine learning framework. During the training phase, we solve the bilevel
optimization problem ((14) and (15)) to learn the regularization parameters,
and during the testing phase we only solve the inner problem in ((14) and (15))
using the regularization parameters learned from the training phase.

2.4 Framework of BSRL

We summarize our deep BSRL architecture as follows: training Phase
(Algorithm 1) and testing Phase (Algorithm2). In the training phase, we pass in

Algorithm 2. Testing Phase of BSRL

Input: y∗,
{

y
(i)
test

}mtest

i=1
, mtest testing samples

Output: x
Initialize x0.
for j = 1 to ntest do

Compute x for all i = 1, . . . , mtest :

x
(i)
j = Proxx∈Xa

(
x
(i)
j−1 − 1

mL

[(
x
(i)
j−1 − y

(i)
test

)
+

(
∂

x
(i)
j−1

ξ

)∗
(∂ξF) F

])
.

end for
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Table 1. Performance of different methods on the datasets.

Dataset Measure �1 �2 �1−2 SGL CGES SCAD capped-�1 LSP MCP BSRL

(ours)

Fashion-MNIST Accuracy 0.9012 0.9124 0.9281 0.8924 0.8873 0.8671 0.8982 0.9031 0.9127 0.9389

Parameter 1 0.2398 0.4363 0.4218 0.2819 0.5728 0.6629 0.2763 0.3397 0.1784

MNIST Accuracy 0.9752 0.9642 0.9538 0.9863 0.9837 0.9824 0.9563 0.9563 0.9623 0.9887

Parameter 1 0.1727 0.2735 0.1029 0.2013 0.1197 0.1126 0.0928 0.3328 0.0753

DIGITS Accuracy 0.8563 0.8638 0.8837 0.8542 0.8837 0.8682 0.8538 0.8772 0.8831 0.8993

Parameter 1 0.3387 0.2928 0.2901 0.4283 0.4419 0.2765 0.5319 0.4019 0.1972

CIFAR-10 Accuracy 0.8103 0.8238 0.8188 0.8092 0.8542 0.8452 0.8562 0.8458 0.8229 0.8642

Parameter 1 0.6784 0.5829 0.5429 0.4492 0.5186 0.6294 0.5529 0.3165 0.2754

CIFAR-100 Accuracy 0.7029 0.7329 0.7219 0.6872 0.7239 0.6549 0.7129 0.7278 0.7362 0.7641

Parameter 1 0.5587 0.4982 0.8829 0.7623 0.4927 0.6549 0.5498 0.4892 0.3361

SDD Accuracy 0.9658 0.9829 0.9669 0.9539 0.9827 0.9567 0.9632 0.9862 0.9685 0.9937

Parameter 1 0.3092 0.4294 0.2397 0.4962 0.2981 0.3982 0.5729 0.4839 0.1993

PENDIGITS Accuracy 0.9828 0.9852 0.9902 0.9762 0.9683 0.9719 0.9629 0.9739 0.9827 0.9938

Parameter 1 0.6931 0.3397 0.6791 0.3018 0.2973 0.7538 0.5392 0.4492 0.1833

Table 2. Training and test time of networks with each regularizer.

Dataset Measure �1 �2 �1−2 SGL CGES SCAD capped-�1 LSP MCP BSRL (ours)

CIFAR-10 Seconds per

batch

0.0293 0.0198 0.0231 0.0231 0.0178 0.0155 0.0239 0.0301 0.2931 0.0129

Seconds per

test dataset

0.3129 0.2783 0.2873 0.2183 0.2933 0.2319 0.2754 0.2583 0.2307 0.2018

CIFAR-100 Seconds per

batch

0.3984 0.4185 0.4029 0.3938 0.4294 0.4036 0.4173 0.4219 0.3992 0.3889

Seconds per

test dataset

14.6723 14.9029 13.9987 14.9824 14.8528 13.8237 13.4986 14.8399 13.9643 13.0829

m training samples
{

x
(i)
true, y

(i)
}m

i=1
to learn the optimal y which we denote by

y∗. The depth of the BSRL at the training phase is z sets of n layers.
In the testing phase, we use the y∗ learned from the training phase and testing

data
{

y
(i)
test

}mtest

i=1
to Algorithm 2. The depth of the network at the testing phase

is ntest layers.

3 Experiments

In this section, we perform experiments on several real-world public classifi-
cation datasets. We adopt accuracy as the evaluation metric.

We use Tensorflow framework to implement the models. Except for our pro-
posed BSRL, in other cases, we employ the ReLU function f(x) = max(0, x) as
the activation function. As for the output layer, we apply the softmax activation
function.

Besides, one-hot encoding is used to encode different classes. We initialize
the weights of the network by random initialization according to a normal dis-
tribution. The size of minibatch is varied depending on the scale of the datasets.
We choose the standard cross-entropy loss as the loss function. On one specific
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dataset, we use the same network architecture for various penalties to keep the
comparison fair. To obtain more reliable results, we repeatedly run the training
process five times in each experiment. Experiments are repeated 20 times, and
the averaged performance are reported.

3.1 Baselines

To demonstrate the superiority of our proposed BSRL solved by proximal algo-
rithm, we compare it with several representative state-of-the-art baselines:

– Network with �1 [6]. �1 is a biased and commonly used convex regularizer.
It can only achieve sparsity in connection level.

– Network with �2 [20]. It is a fully connected network and is utilized as a
reference to illustrate the sparsity-promoting ability of the competitors. �2
cannot promote sparsity and it is only used to improve the generalization
ability and the performance of the model.

– Network with �1−2 [28]. This regularization term is used to illustrate the
superiority of BSRL among other non-convex regularizers. We choose �1−2 as
the non-convex competitor.

– Network with sparse group lasso (SGL) [24]. The SGL is a regularizer
that combines group sparsity and �1 regularizer. The group sparsity is used
to introduce neuronlevel sparsity and �1 regularizer is still utilized to promote
sparsity among connections.

– Network with combined group and exclusive sparsity (CGES) [29].
The CGES combines group sparsity and exclusive sparsity. It differs from
the SGL in that the CGES uses exclusive sparsity instead of �1 to promote
connection-level sparsity.

– Network with SCAD, capped-�1,LSP, and MCP [12]. They are a gen-
eral class of nonconvex penalties and adaptive nonconvex lowrank regulariz-
ers.

3.2 Datasets

– Fashion-MNIST [27]. This dataset consists of a training set with 60,000
instances and a test set with 10,000 examples. Each example is a 28 × 28
grayscale image, associated with a label from 10 classes.

– MNIST [16]. This dataset consists of 70, 000 28×28 grayscale images of
handwritten digits, which can be classified into 10 classes. The number of
training instances and test samples is 60,000 and 10,000, respectively.

– DIGITS [22]. This is a toy dataset of handwritten digits, composed of 1, 797
8×8 grayscale images.

– CIFAR-10 [15]. This dataset consists of 60, 000 32×32 color images in 10
classes, with 6,000 images per class.

– CIFAR-100 [15]. This dataset comprises 60, 000 32×32 pixels color images
as in CIFAR-10. However, these images can be divided into 100 categories
instead of 10 classes and each class has 600 images.
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– Sensorless Drive Diagnosis (SDD) [4]. This dataset is downloaded from
the UCI repository. It contains 58,508 examples obtained under 11 different
operating conditions.

– PENDIGITS [1]. This dataset is composed of 10, 992 4×4 grayscale images
of handwritten digits 0–9, where there are 7,494 training instances and 3,498
test samples.

3.3 Experimental Results and Analysis

In this subsection, we compare our proposed BSRL with several baselines to
verify the superiority of our model. To quantitatively measure the performance
of various models, two metrics are utilized, including the prediction accuracy and
the corresponding number of parameters used in the network. A higher accuracy
means that the model can train a better network to implement classification
tasks. The smaller the number of parameters used is, the better the regularizer
is. The experimental result about number of parameters in Table 1 is expressed
as a percentage of the used parameters relative to �2 norm.

We list the results in Table 1. The best results are highlighted in bold face.
As seen from Table 1, our model has the best performance when compared with
other baselines. The reason why our network can achieve best performance might
be that such network is dense and can learn more information from the input
data. Generally speaking, the performances of our proposed BSRL are better
than that of other regularizers. In detail, our model achieves the best results
in terms of all two indicators (the prediction accuracy and the corresponding
number of parameters) among all regularizers.

Next, we verify the acceleration effect of the introduction of sparse regular-
ization terms on the network. We list the time which takes for the model to
train a data batch (seconds per batch) and to test the whole test dataset (sec-
onds per test dataset). Since the models constructed on FashionMNIST, MNIST,
DIGITS, SDD and PENDIGITS are all simple and with small size, the training
and test time are short and the acceleration effect of the sparse regularizers is
not obvious. Therefore, we implement this experiment on more complex dataset,
including CIFAR-10 and CIFAR-100. We list the results in Table 2. As can be
seen in Table 2, the training process and the test process are both accelerated
due to the introduction of sparse regularization terms and our proposed BSRL
has best acceleration.

4 Conclusion

In this paper, we proposed a new neural network model BSRL for learning
sparse regularizer. In this model, we find a correspondence between sparse reg-
ularizers and activation functions via proximal operators. BSRL, which divides
the network into a training phase and a testing phase, can be learned by solv-
ing bilevel optimization problems with sparse regularizers. Experiments have
demonstrated that our proposed BSRL framework achieves better results than
other regularizer-based ones.
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Abstract. Sentence semantic matching requires an agent to determine the
semantic relation between two sentences, where much recent progress has been
made by advancement of representation learning techniques and inspiration of
human behaviors. Among all these methods, attention mechanism plays an essen-
tial role by selecting important parts effectively. However, current attention meth-
ods either focus on all the important parts in a static way or only select one impor-
tant part at one attention step dynamically, which leaves a large space for further
improvement. To this end, in this paper, we design a novel Dynamic Gaussian
Attention Network (DGA-Net) to combine the advantages of current static and
dynamic attention methods. More specifically, we first leverage pre-trained lan-
guage model to encode the input sentences and construct semantic representa-
tions from a global perspective. Then, we develop a Dynamic Gaussian Atten-
tion (DGA) to dynamically capture the important parts and corresponding local
contexts from a detailed perspective. Finally, we combine the global informa-
tion and detailed local information together to decide the semantic relation of
sentences comprehensively and precisely. Extensive experiments on two popu-
lar sentence semantic matching tasks demonstrate that our proposed DGA-Net is
effective in improving the ability of attention mechanism.

1 Introduction

Sentence semantic matching is a long-lasting theme of Natural Language Process-
ing (NLP), which requires an agent to determine the semantic relations between two
sentences. For example, in Natural Language Inference (NLI), it is used to determine
whether a hypothesis can be inferred reasonably from a given premise [15]. In Para-
phrase Identification (PI), it is utilized to identify whether two sentences express the
same meaning or not [9]. Figure 1 gives us two representative examples of NLI and PI.

As a fundamental technology, sentence semantic matching has been applied suc-
cessfully in many NLP fields, e.g., information retrieval [7,26], question answer-
ing [18], and dialog system [24]. With advanced representation learning techniques
c© Springer Nature Switzerland AG 2021
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https://doi.org/10.1007/978-3-030-93049-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93049-3_17&domain=pdf
https://doi.org/10.1007/978-3-030-93049-3_17


204 K. Zhang et al.

Fig. 1. Two example from different sentence semantic matching datasets (colored words are the
important parts that need attention). (Color figure online)

[8,11,31], numerous efforts have been dedicated to this task, where the dominant trend
is to build complex structures with attention. For example, self-attention [28] can gen-
erate better representations by relating elements at different positions in a single sen-
tence. Co-attention [15,34] focuses on sentence interaction from a detailed perspective.
Dynamic re-read attention [35] is able to select the important parts in a dynamic way
based on learned information. They all help to achieve impressive performance.

However, most work either focuses on all the important parts in a static way [3] or
only selects one important part at each selection in a dynamic way [35]. They either are
incapable of adapting to dynamic changes during the sentence understanding process or
ignore the importance of local structures. For example, in Fig. 1, colored words illustrate
the focus points. When selecting the important parts as the static attention methods do,
the representations of two sentences may be similar since many of the important words
are the same (e.g.,woman, shirt). When employing the dynamic attention methods [35],
the attributes of the selected parts may be missed since dynamic methods only select
one important word at each step and ignore the local contexts (e.g.,woman with purple
shirt, woman with blue shirt). All these will lead to a wrong decision. Therefore, how to
leverage attention mechanism to select proper information for precise sentence semantic
understanding and matching is the main challenge that we need to consider.

To this end, in this paper, we propose an effective Dynamic Gaussian Attention Net-
work (DGA-Net) approach to combine the advantages of current static and dynamic
attention methods. In concerned details, we first utilize pre-trained BERT to model
the semantic meanings of input words and sentences globally. Based on the dynamic
attention mechanism and Gaussian distribution, we develop a novel Dynamic Gaus-
sian Attention (DGA) to pay close attention to one important part and corresponding
local contexts among sentences at each attention step simultaneously. Along this line,
we can not only focus on the most important part of sentences dynamically, but also
use the local context to support the understanding of these selected parts precisely.
Extensive evaluations on two popular sentence semantic matching tasks (i.e., NLI and
PI) demonstrate the effectiveness of our proposed DGA-Net method and its advantages
over state-of-the-art sentence encoding-based baselines.

2 Related Work

With the available large annotated datasets, such as SNLI [1], SCITAIL [14], and Quora
Question Pair [13], as well as various neural networks, such as LSTM [4], GRU [6], and
attention mechanism [22,28,35–37], plenty of methods have been developed to repre-
sent and evaluate sentence semantic meanings. Among all methods, attention mecha-
nism has become the essential module, which helps models capture semantic relations
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and properly align the elements of sentences. For example, Liu et al. [19] proposed
inner-attention to pay more attention to the important words among sentences. In order
to better capture the interaction of sentences, Kim et al. [15] utilized co-attention net-
work to model the interaction among sentence pairs. Moreover, Cho [12] and Shen [25]
proposed to utilize multi-head attention to model sentence semantics and interactions
from multiple aspects without RNN/CNN structure. They took full advantage of atten-
tion mechanism for better sentence semantic modeling and achieved impressive perfor-
mance on sentence semantic matching task.

Despite the success of using attention mechanism in a static way, researchers also
learn from human behaviors and propose dynamic attention methods. By conducting
a lab study, Zheng et al. [38] observed that users generally read the document from
top to bottom with the reading attention decays monotonically. Moreover, in a specific
scenario (e.g., Answer Selection), users tend to pay more attention to the possible seg-
ments that are relevant to what they want. They will reread more snippets of candidate
answers with more skip and up transition behaviors, and ignore the irrelevant parts [17].
Furthermore, Zhang et al. [35] designed a novel dynamic re-read attention to further
improve model performance. They tried to select one important word at each attention
calculation and repeated this operation for precise sentence semantic understanding.

However, static attention methods select all the important parts at one time, which
may lead to a misunderstanding of sentence semantics since there are too many similar
but semantically different important parts. Dynamic methods only select one important
part at each operation, which may lose some important attributes of the important parts.
Thus, we propose a DGA-Net to select the important parts and corresponding local
context in sentences for better sentence semantic understanding and matching.

3 Problem Statement and Model Structure

In this section, we formulate the NLI task as a supervised classification problem and
introduce the structure and technical details of our proposed DGA-Net.

3.1 Problem Statement

First, we define our task in a formal way. Given two sentences sa = {wa
1 ,wa

2 , ...,wa
la

}
and sb = {wb

1,w
b
2, ...,w

b
lb

}. Our goal is to learn a classifier ξ which is able to precisely
predict the relation y = ξ(sa, sb) between sa and sb. Here, wa

i and wb
j are one-hot

vectors which represent the ith and jth word in the sentences. la and lb indicate the
total number of words in sa and sb, respectively.

In order to model sentence semantic meanings more precisely and comprehensively,
the following important challenge should be considered:

– How to overcome the shortcomings of static and dynamic attention methods, and
leverage attention operation to select proper information for precise sentence seman-
tic understanding and matching?

To this end, we propose a novel Dynamic Gaussian Attention Network (DGA-Net) to
tackle the above issue and doing better sentence semantic matching.
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Fig. 2. Architecture of Dynamic Gaussian Attention Network (DGA-Net).

3.2 Dynamic Gaussian Attention Network

The overall architecture of DGA-Net is shown in Fig. 2, which consists of three main
components: 1) Input Processing: utilizing pre-train BERT to generate the extravagant
representation of input words; 2) Dynamic Gaussian Attention: selecting one important
part and proper local structure at each step and dynamically reading these contextual
parts with all learned information; 3) Label Prediction: predicting the final results based
on the expanded semantic representations.

Input Processing. By making full use of large corpus and multi-layer transformers,
BERT [8] has accomplished much progress in many natural language tasks and become
a powerful tool to process the raw input sentences. Therefore, we also employ BERT
to encode the input sentences. In order to make full use of BERT and encode sen-
tence comprehensively, we use the weighted sum of all the hidden states from different
transformer layers of BERT as the final contextual representations of input sentences.
Specifically, the input sentence sa = {wa

1 ,wa
2 , ...,wa

la
} and sb = {wb

1,w
b
2, ...,w

b
lb

}
will be split into BPE tokens [23]. Then, we leverage a special token “[SEP]” to con-
catenate two sentences and add “[CLS]” token at the beginning and the end of con-
catenated sentences. As illustrated in Fig. 2(A), suppose the final number of tokens
in the sentence pair is lab, and BERT generates L hidden states for each BPE token
BERT l

t , (1 ≤ l ≤ L, 1 ≤ t ≤ lab). The contextual representation for tth token in
input sentence pair at token level is then a per-layer weighted sum of transformer block
output, with weights α1, α2, ..., αL.

ht =
L∑

l=1

αlBERT l
t , 1 ≤ t ≤ lab, (1)

where αl is the weight for the lth layer in BERT and will be learned during the training.
ht is the representation for the tth token. Moreover, we treat the output BERTL

0 of
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the first special token “[CLS]” in the last block as the contextual representation hg for
input sentences globally. Along this line, we can model the semantic meanings of words
and sentences comprehensively, which lays a good foundation for subsequent study.

Fig. 3. The processing of Dynamic Gaussian Attention (DGA) calculation.

Dynamic Gaussian Attention. As introduced in Sect. 1, static attention methods select
all the important parts at one time, which may lead to a misunderstanding of sentence
semantic meanings since there are too many similar but semantically different important
parts. Meanwhile, dynamic attention methods [35] try to select one important part at
step, which can alleviate the problem that static attention methods suffer from. However,
it still causes the model to lose some important attributes of important parts and lead to
an incorrect result. Therefore, it is crucial to employ attention mechanism in a proper
way for better sentence semantic understanding and matching.

Inspired by previous work [35,38] and Gaussian distribution, we design a novel
Dynamic Gaussian Attention (DGA) unit to select the important part and proper local
context simultaneously. Figure 2(B) and Fig. 3 illustrate the entire processing of DGA
calculation. During each DGA operation, we first calculate the attention weight among
input sequence. Meanwhile, we leverage a position generation method G(·) to predict
the focus point, which can be visualized as the yellow bar in Fig. 3. Then, we generate a
Gaussian distribution with the focus point as the center. Next, we multiply the attention
weight and Gaussian distribution to get the DGA result. Along this line, the attention
weights of the words that are close to the important part will be preserved, and the rest
will be discarded. In other words, we can focus on the important part and correspond-
ing local context for better semantic understanding. Inspired by DRr-Net [35], we also
repeat DGA operation many times for the final decision.

Specifically, DGA unit treats {hi|i = 1, 2, ..., lab} as the inputs, and produces an
important position pt at attention step t. The representation ct for this position is derived
as a weighted summation over the inputs within the window [pt − D

2 , pt + D
2 ]; D is the

window size. Since we select these important parts in a sequential manner, GRU is
adopted to encoder these important parts. This process can be formulated as follows:

H = [h1,h2, ...,hlab
], pt = G(H, h̄t−1,hg),

ct = F(pt,H, h̄t−1,hg), h̄t = GRU(h̄t−1, ct), t = 1, 2, ..., T,
(2)

where G(·) is position generation function. F(·) denotes DGA function. T is the
dynamic attention length. In order to take global information into consideration, we
also treat the global representation hg as an additional context inG(·) and F(·). h̄T can
be regarded as the dynamic locally-aware representation for the input sentence pair.
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Different from DRr-Net [35] that treats the word that has biggest weight as the
current selection, we intend to use MLP to predict the focus point at current step. More
specifically, we utilize position generation functionG(·) to generate the important posi-
tion pt at attention step t as follows:

mt =
lab∑

i=1

(W p
1 hi) + W p

2 h̄t−1 + W p
3 hg,

pt = lab · sigmoid(vT
p tanh(Upmt)),

(3)

where {W p
1 ,W p

2 ,W p
3 ,vp,Up} are trainable parameters. T is transposition operation.

As the result of sigmoid(·) function, pt ∈ [0, lab]. Along this line, we are able to use all
the learned information to generate the important position at each attention step.

After getting the important position pt, it is urgent to ensure its exact meaning in
the sentence, which is in favor of overcoming the issue in Sect. 3.1. Inspired by the
observation that adjacent words contribute more for understanding current phrase than
distant ones, we develop a novel DGA method by placing a Gaussian distribution cen-
tered around pt to further process the attention weights. The implementation function
F(·) can be formulated as follows:

gt = exp(− (s − pt)2

2σ2
),

αa =ωT
d tanh(WdH + (Udh̄t−1 + Mdhg) ⊗ elab

),

ᾱa =αa · gt, ct =
lab∑

i=1

exp(ᾱa
i )∑lab

k=1 exp(ᾱa
k)

hi,

(4)

where {ωd,Wd,Ud,Md} are trainable parameters. gt is Gaussian distribution centered
around pt, σ = D

2 , and elab
∈ R

lab is a row vector of 1. In this operation, we utilize
the Gaussian distribution to optimize the original attention value αa so that the model
can focus on the important position and its corresponding context, capture the local
structure of sentences, and represent the sentence semantic more precisely.

Label Prediction. After finishing the dynamic selections, we first adopt attention pool-
ing to fuse all the selected important parts to generate a locally-aware representation h̄
from a detailed perspective as follows:

H̄ = [h̄1, h̄2, ..., h̄lab
], αb = ωTtanh(WH̄ + b),

h̄ =
lab∑

i=1

exp(αb
i )∑lab

k=1 exp(α
b
k)

h̄i.
(5)

After getting the locally-aware representation h̄, we leverage heuristic matching [3]
between h generated from a global aspect and h̄ generated from a detailed aspect.
Then we send the result u to a two-layer MLP for final classification. This process is
formulated as follows:

u = [hg, h̄,hg � h̄, h̄ − hg], P (y|(sa, sb)) = MLP(u), (6)
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Table 1. Performance (accuracy) of models on different SNLI test sets and SICK test set.

Model Full test Hard test SICK test

(1) CENN [33] 82.1% 60.4% 81.8%

(2) BiLSTM with Inner-Attention [19] 84.5% 62.7% 85.2%

(3) Gated-Att BiLSTM [2] 85.5% 65.5% 85.7%

(4) CAFE [27] 85.9% 66.1% 86.1%

(5) Gumbel TreeLSTM [5] 86.0% 66.7% 85.8%

(6) Distance-based SAN [12] 86.3% 67.4% 86.7%

(7) DRCN [15] 86.5% 68.3% 87.4%

(8) DSA [32] 87.4% 71.5% 87.7%

(9) DRr-Net [35] 87.5% 71.2% 87.8%

(10) BERT-base [8] 90.3% 80.8% 88.5%

(11) DGA-Net 90.72% 81.44% 88.36%

where concatenation can retain all the information [33]. The element-wise product is a
certain measure of “similarity” of two sentences [21]. Their difference can capture the
degree of distributional inclusion in each dimension [30].

4 Experiment

In this section, we first present the details about the model implementation. Then, we
introduce the datasets that we will evaluate our model on, including four benchmark
datasets for two sentence semantic matching tasks, which cover different domains and
exhibit different characteristics. Next, we will make a detailed analysis about the model
and experimental results.

4.1 Experimental Setup

Loss Function. Since sentence semantic matching task can be formulated as classifi-
cation task, we employ cross-entropy as the loss function:

L = − 1
N

N∑

i=1

yilogP (yi|(sa
i , s

b
i )) + ε ‖θ‖2 , (7)

where yi is the one-hot representation for the true class of the ith instance. N repre-
sents the number of training instances. ε is the weight decay. θ denotes the trainable
parameters in the model and ‖θ‖2 is l2-norm for these parameters.

Model Initialization. We have tuned the hyper-parameters on validation set for best
performance. An Early-Stop operation is employed to select the best model. Some com-
mon hyper-parameters are listed as follows:

The vocabulary is the same as the vocabulary of BERT-base. The window size in
Gaussian distribution is D = 4. The dynamic attention length in DGA is T = 4. The
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Table 2. Experimental results on
Quora and MSRP datasets.

Model Quora MSRP

(1) CENN [33] 80.7% 76.4%

(2) MP-CNN [10] – 78.6%

(3) BiMPM [29] 88.2% –

(4) DRCN [15] 90.2% 82.5%

(5) DRr-Net [35] 89.7% 82.5%

(6) BERT-base [8] 91.1% 84.3%

(7) DGA-Net 91.7% 84.5%

Table 3. Ablation performance (accuracy) of DGA-
Net.

Model SNLI test SICK test

(1) BERT-base 90.3% 88.5%

(2) DGA-Net (w/o vector hg) 85.3% 83.2%

(3) DGA-Net (w/o vector h̄) 89.4% 87.5%

(4) DRr-Net 87.5% 87.8%

(5) Multi-GRU + DGA 88.4% 88.1%

(6) DGA-Net (w/o local context) 90.5% 88.5%

(7) DGA-Net 90.72% 88.36%

attention size in DGA is set to 200. The hidden state size of GRU is set to 768. The
initial learning rate is set to 10−4. An Adam optimizer with β1 = 0.9 and β2 = 0.999
is adopted to optimize all trainable parameters.

Dataset. In order to evaluate the model performance comprehensively, we employ two
sentence semantic matching tasks: Natural Language Inference (NLI) and Paraphrase
Identification (PI) to conduct the experiments. NLI task requires an agent to predict
the semantic relation from premise sentence to hypothesis sentence among “Entail-
ment, Contradiction, Neutral”. We select two well-studied and public available datasets:
SNLI [1] and SICK [20]. Meanwhile, PI task requires an agent to identify whether two
sentences express the same semantic meaning or not. For this task, we select Quora [13]
and MSRP [9] to evaluate the model performance.

4.2 Experiment Results

In this section, we will give a detailed analysis about the models and experimental
results. Here, we use Accuracy on different test sets to evaluate the model performance.

Performance on SNLI and SICK. Table 1 reports the results of DGA-Net compared
with other published baselines. We can observe that DGA-Net achieves highly compara-
ble performance on different NLI test set. Specifically, we make full use of pre-trained
language model to get the comprehensive understanding about the semantic meanings.
This is one of the important reasons that DGA-Net is capable of outperforming other
BERT-free models by a large margin. Furthermore, we develop a novel DGA unit to
further improve the capability of dynamic attention mechanism. Instead of only select-
ing one important part at each attention operation, DGA can select the important part
and proper local context simultaneously at each step. Therefore, the local context of
the sentence can be fully explored, and sentence semantics can be represented more
precisely. This is another reason that DGA-Net achieves better performance than all
baselines, including the BERT-base model.

Among all baselines, DRr-Net [35] and DSA [32] are current state-of-the-art meth-
ods without BERT. DSA [32] modifies the dynamic routing in capsule network and
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develops a DSA to model sentences. It utilizes CNN to capture the local context infor-
mation and encodes each word into a meaningful representation space. DRr-Net adopts
multi-layer GRU to encode the sentence semantic meanings from a global perspec-
tive and designs a dynamic re-read attention to select one important part at each atten-
tion step for detailed sentence semantic modeling. They all achieved impressive perfor-
mances. However, both RNN and CNN structures have some weaknesses in extracting
features or generating semantic representations compared with BERT. We can observe
from Table 1 that the BERT-base model outperforms them by a large margin. Mean-
while, their attention operations either select too many important parts at one time or
only focus on one important part at each operation, which may lead to a misunder-
standing of the sentence semantic meanings. Thus, their performance is not as good as
DGA-Net reaches. On the other hand, apart from the powerful encoding ability, BERT
still focuses on the importance of words to the sequence and has some weaknesses in
distinguishing the exact meanings of sentences. By taking the local context into consid-
eration and leveraging DGA to get the precise meanings of sentences, DGA-Net is able
to achieve better performance than BERT.

Performance on Quora and MSRP. Besides NLI task, we also select PI task to better
evaluate the model performance on sentence semantic similarity identification. Table 2
illustrates the experimental results on Quora and MSRP datasets. Different from the
results on NLI datasets, our proposed DGA-Net achieves the best performance com-
pared with other baselines on both test sets, revealing the superiority of our proposed
DGA-Net. Besides, we can obtain that almost all the methods have better performance
on Quora dataset and the improvement of our proposed DGA-Net on Quora dataset is
also larger than the improvement on MSRP dataset. Quora dataset [13] has more than
400k sentence pairs, which is much larger than MSRP dataset. Large data is capable
of helping to model to better analyze the data and get close to the upper bound of
the performance. Meanwhile, we also speculate that the inter-sentence interactions is
probably another possible reason. Quora dataset contains many sentence pairs with less
complicated interactions (e.g., many identical words in two sentences) [16].

4.3 Ablation Performance

The overall performance has proven the superiority of DGA-Net. However, which part
is more important for performance improvement is still unclear. Thus, we conduct an
ablation study on two NLI test sets to examine the effectiveness of each component.
Recall the model structure, two important semantic representations are hg from BERT
output and h̄ from DGA output. As illustrated in Table 3(2)–(3), when we remove the
global representation h, we can observe that the model performance has a big drop.
This result is in line with our intuitive. We should have a comprehensive understanding
about the sentence before making a decision. Only the important parts are insufficient
for the decision making.

Meanwhile, when removing the detailed representation h̄, model performance is
worse than BERT-base model. we speculate that DGA is in the training process but
not in the predicting process, which decreases the model performance. Besides, we
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Fig. 4. Performance of DGA-Net with different window sizes (1–6), and attention lengths (1–8).

investigate the effectiveness of BERT encoder and local context. When replacing BERT
with multi-layer GRUs, we can observe that its performance is still better than DRr-Net,
suggesting the importance of local context utilization. Meanwhile, its performance is
not comparable with BERT-base, let alone the entire DGA-Net, proving the importance
of BERT. When removing the local context, the performance of DGA-Net is capable of
optimizing the BERT-base model, proving the effectiveness of local context utilization.
In other words, both BERT encoder and local context utilization are indispensable for
DGA-Net to achieve better performance.

4.4 Sensitivity of Parameters

There are two hyper-parameters that affect the model performance: 1) The window size
D in DGA unit; 2) The dynamic attention length T in DGA unit. Therefore, we evaluate
DGA-Net performance on two NLI test sets with different hyper-parameter settings. The
results are summarized in Fig. 4.

When talking about the window size in DGA unit, we can observe that the model
performance first increases and then becomes smooth with the increase of window size.
We speculate that a too small or too big window cannot help to capture the local struc-
ture for precisely semantic understanding. When the window size is D = 4, DGA will
consider two words on each side of the center word, which is suitable for leveraging
local context to enhance the semantic understanding of sentences.

As for the dynamic attention length, Bowman et al. [1] has conducted that the aver-
age length is 14.1 for premise and 8.3 for hypothesis in SNLI. From Fig. 4(B), 4 is
suitable for dynamic attention length. Too short reading length may cause the model
to ignore some important parts. Meanwhile, too long reading length may weaken the
ability of precisely local structure capturing and semantic understanding.

5 Conclusion and Future Work

In this paper, we proposed an effective Dynamic Gaussian Attention Network (DGA-
Net) approach for sentence semantic matching, a novel architecture that not only mod-
els sentence semantics in a global perspective, but also utilizes local structure to support
the analysis of the important parts step by step. To be specific, we first make full use of
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pre-trained language model to evaluate semantic meanings of words and sentences from
a global perspective. Then, we design a novel Dynamic Gaussian Attention (DGA) to
pay close attention to one important part and corresponding local context among sen-
tences simultaneously at each attention operation. By taking the local information into
consideration, DGA-Net is capable of measuring the sentence semantics more com-
prehensively. Finally, we integrate the global semantic representation from Bert and
detailed semantic representation from DGA to further improve the model performance
on sentence semantic matching. Extensive evaluations on two sentence semantic match-
ing tasks (i.e., NLI and PI) demonstrate the superiority of our proposed DGA-Net. In
the future, we will focus on providing more information for dynamic attention to better
local important parts selecting and sentence semantic understanding.
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Abstract. Although the self-supervised pre-training of transformer
models has resulted in the revolutionizing of natural language processing
(NLP) applications and the achievement of state-of-the-art results with
regard to various benchmarks, this process is still vulnerable to small
and imperceptible permutations originating from legitimate inputs. Intu-
itively, the representations should be similar in the feature space with
subtle input permutations, while large variations occur with different
meanings. This motivates us to investigate the learning of robust tex-
tual representation in a contrastive manner. However, it is non-trivial to
obtain opposing semantic instances for textual samples. In this study, we
propose a disentangled contrastive learning method that separately opti-
mizes the uniformity and alignment of representations without negative
sampling. Specifically, we introduce the concept of momentum represen-
tation consistency to align features and leverage power normalization
while conforming the uniformity. Our experimental results for the NLP
benchmarks demonstrate that our approach can obtain better results
compared with the baselines, as well as achieve promising improvements
with invariance tests and adversarial attacks. The code is available in
https://github.com/zxlzr/DCL.

Keywords: Natural language processing · Contrastive learning ·
Adversarial attack

1 Introduction

The self-supervised pre-training of transformer models has revolutionized nat-
ural language processing (NLP) applications. Such pre-training with language
modeling objectives provides a useful initial point for parameters that generalize
well to new tasks with fine-tuning. However, there is a significant gap between
task performance and model generalizability. Previous approaches have indicated
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that neural models suffer from poor robustness when encountering randomly
permuted contexts [21] and adversarial examples [11,13].

To address this issue, several studies have attempted to leverage data aug-
mentation or adversarial training into pre-trained language models (LMs) [11],
which has indicated promising directions for the improvement of robust tex-
tual representation learning. Such methods generally augment textual samples
with synonym permutations or back translation and fine-tune downstream tasks
on those augmented datasets. Representations learned from instance augmen-
tation approaches have demonstrated expressive power and contributed to the
performance improvement of downstream tasks in robust settings. However, the
previous augmentation approaches mainly focus on the supervised setting and
neglect large amounts of unlabeled data. Moreover, it is still not well understood
whether a robust representation has been achieved or if the leveraging of more
training samples have contributed to the model robustness.

Specifically, a robust representation should be similar in the feature space
with subtle permutations, while large variations occur with different semantic
meanings. This motivates us to investigate robust textual representation in a
contrastive manner. It is intuitive to utilize data augmentation to generate pos-
itive and negative instances for learning robust textual representation via aux-
iliary contrastive objects. However, it is non-trivial to obtain opposite semantic
instances for textual samples. For example, given the sentence, “Obama was
born in Honululu,” we are able to retrieve a sentence such as, “Obama was liv-
ing in Honululu,” or, “Obama was born in Hawaii.” There is no guarantee that
these randomly retrieved sentences will have negative semantic meanings that
contradict the original sample.

In this study, we propose a novel disentangled contrastive learning (DCL)
method for learning robust textual representations. Specifically, we disentangle
the contrastive object using two subtasks: feature alignment and feature uni-
formity [27]. We introduce a unified model architecture to optimize these two
sub-tasks jointly. As one component of this system, we introduce momentum rep-
resentation consistency to align augmented and original representations, which
explicitly shortens the distance between similar semantic features that contribute
to feature alignment. As another component of this system, we leverage power
normalization to enforce the unit quadratic mean for the activations, by which
the scattering features within the same batch implicitly contribute to the feature
uniformity. Our DCL approach is a unified, unsupervised, and model-agnostic
approach, and therefore it is orthogonal to existing approaches. The contribu-
tions of this study can be summarized as follows:

– We investigate robust textual representation learning problems and introduce
a disentangled contrastive learning approach.

– We introduce a unified model architecture to optimize the sub-tasks of feature
alignment and uniformity, as well as providing theoretical intuitions.

– Extensive experimental results related to NLP benchmarks demonstrate the
effectiveness of our method in the robust setting; we performed invariance
tests and adversarial attacks and verified that our approach could enhance
state-of-the-art pre-trained language model methods.
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2 Related Work

Recently, studies have shown that pre-trained models (PTMs) [5] on the large
corpus are beneficial for downstream NLP tasks, such as in GLUE, SQuAD, and
SNLI. The application scheme of these systems is to fine-tune the pre-trained
model using the limited labeled data of specific target tasks. Since training distri-
butions often do not cover all of the test distributions, we would like a supervised
classifier or model to perform well on. Therefore, a key challenge in NLP is learn-
ing robust textual representations. Previous studies have explored the use of data
augmentation and adversarial training to improve the robustness of pre-trained
language models. [12] introduced a novel text adversarial training with token-
level perturbation to improve the robustness of pre-trained language models.
However, supervised instance-level augmentation approaches ignore those unla-
beled data and do not guarantee the occurrence of real robustness in the feature
space. Our work is motivated by contrastive learning [23], which aims at maxi-
mizing the similarity between the encoded query q and matched key k+, while
distancing randomly sampled keys {k−

0 , k−
1 , k−

2 , ...}. By measuring similarity with
a score function s(q, k), a form of contrastive loss function is considered as:

Lcontrast = − log
exp(s(q, k+))

exp(s(q, k+)) +
∑

i exp(s(q, k−
i ))

, (1)

where k+ and k− are positive and negative instances, respectively. The score
function s(q, k) is usually implemented with the cosine similarity qT k

‖q‖·‖k‖ . q and
k are often encoded by a learnable neural encoder (e.g., BERT [5]). Contrastive
learning have increasingly attracted attention, which is beneficial for unsuper-
vised or self-supervised learning from computer vision [3,10,25,30,34] to natural
language processing [9,17,18,20,31,33].

3 Preliminaries on Learning Robust Textual
Representations

Definition 1. Robust textual representation indicates that the represen-
tation is vulnerable to small and imperceptible permutations originating from
legitimate inputs. Formally, we have the following:

g (X + z) = g(X), and Sim (f(X + z), f(X)) ≥ ε, (2)

where z refers to the random or adversarial permutation of the input text and
g(.) takes input from x and outputs a valid probability distribution for tasks. f(.)
is the feature encoder, such as BERT. We are interested in deriving methods for
pre-training representations that provide guarantees for the movement of inputs
such that they are robust to permutations. Therefore, a robust representation
should be similar in the feature space with subtle permutations, while large
variations are observed for different semantic meanings. Such constraints are
related to the well-known contrastive learning [2] schema as follows:
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Remark. Robust representation is closely related to regularizing the feature
space with the following constraints:

Lcontrast =
∑

(
m∑

1

|f(X) − f(X + z)| −
n∑

1

|f(X) − f(X ′)|) (3)

where m and n are the number of positive and negative instances, respectively,
regarding the original input, X, X + z and X ′ are the positive and negative
instances, respectively. Note that we can obtain X + z via off-the-shelf tools
such as data augmentation or back-translation. However, it is non-trivial to
obtain negative instances for textual samples. Previous approaches [4,6,7,28]
regard random sampling of the remaining instances from the corpus as nega-
tive instances; however, there is no guarantee that those random instances are
semantically irrelevant. Recent semantic-based information retrieval approaches
[32] can obtain numerous similar semantic sentences via an approximate near-
est neighbor [14], which further indicates that negative sampling for sentences
may result in noise. In this study, inspired by the approach utilized by [27], we
disentangle the contrast loss with the two following properties:
– Alignment : two samples forming a positive pair should be mapped to nearby

features and therefore be (mostly) invariant to unneeded noise factors.
– Uniformity : feature vectors should have an approximately uniform distribu-

tion on the unit hypersphere.

Lcontrast = E

⎡

⎣− log
efT

x fy/τ

efT
x fy/τ +

∑
i e

fT
x f

y
−
i

/τ

⎤

⎦

= E
[−fT

x fy/τ
]
+ E

[

log

(

efT
x fy/τ +

∑

i

e
fT

z f
y
−
i

/τ

)]

P[f,v=fy)]=1
= E

[−fT
x fy/τ

]

︸ ︷︷ ︸
positive alignment

+E

[

log

(

e1/τ +
∑

i

e
fT

x f
y
−
i

/τ

)]

︸ ︷︷ ︸
uniformity

(4)

The alignment loss can be defined straightforwardly as follows:

Lalign (f ;α) � − E
(x,y)∼ppos

[‖f(x) − f(y)‖α
2 ] , α > 0 (5)

where f(.) is the feature encoder and x,y are positive instance pairs. The uni-
formity metric refers to optimizing this metric should converge to a uniform
distribution. The loss can be defined with the radial basis function (RBF) kernel
Gt : Sd × Sd → R+ [27]. Formally, we have:

Luniform(f ; t) � log E

x,y
ii.d.
E

[Gt(u, v)]

= log E
x,yid.d.pdata

[
e−t‖f(x)−f(y)‖2

2

]
, t > 0

(6)

where t is a fixed parameter.
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4 Disentangled Contrastive Learning

Fig. 1. Disentangled contrastive learning for robust textual representations.

In this section, we present a preliminary study on how to learn robust textual
representation via disentangled contrastive learning, as represented in Fig. 1.

4.1 Feature Alignment with Momentum Representation
Consistency

There are multiple ways to align a textual representation. We utilize two trans-
formers with a consistent momentum representation to explicitly guarantee fea-
ture alignment [8]. The two networks are defined by a set of weights θ and ξ. We
use the exponential moving average of the parameters θ to get ξ. Formally, we
have:

ξ ← τξ + (1 − τ)θ (7)

Given a sentence X and its augmentation X′ (e.g., via data augmentation) from
the first original network, we may obtain output representations q � fθ(X) and
p � fθ(X ′). Note that previous works [3,8] indicates that an projection p in fea-
ture space improve the performance. We then leverage a projection function g(pθ)
and �2-normalize both g(pθ) and qξ to ḡ(pθ) � g/‖g(pθ)‖2 and q̄ξ � qξ/‖qξ‖2,
respectively. We leverage the mean squared loss as follows:

Lalign � ‖g (q) − p̄ξ‖22 = 2 − 2 · 〈g (qθ) , pξ〉
‖g (qθ)‖2 · ‖pξ‖2

(8)

Additionally, we make the losses symmetrical Lalign by feeding X to the
augmented network and X ′, separately. We optimize Lalign + L̃align with respect
to θ only, but not ξ, via the stop-gradient.
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4.2 Feature Uniformity with Power Normalization

To ensure that feature vectors should have an approximately uniform distribu-
tion, we can directly optimize the Eq. 6. However, different from computer vision,
in the original loss of BRET [5], we have already utilized the next sentence pre-
diction loss. Such a contrastive object has explicitly made the sentence represen-
tation f(.) scattered in the feature space; thus, the model may quickly collapse
without learning. Inspired by [22], we argue that batch normalization can identify
the common-mode between examples of a mini-batch and removes it using the
other representations in the mini-batch as implicit negative examples. We can,
therefore, view batch normalization as a novel method of implementing feature
uniformity on embedded representations. Because vanilla batch normalization
will lead to significant performance degradation when naively used in NLP, we
leverage an enhanced power normalization [24] to guarantee feature uniformity.
Specifically, we leverage the unit quadratic mean rather than the mean/variance
of running statistics with an approximate backpropagation method to compute
the corresponding gradient. Formally, we have the following:

X̂(t) =
X(t)

ψ(t−1)

Y (t) = γ � X̂(t) + β
(
ψ(t)

)2

=
(
ψ(t−1)

)2

+ (1 − α)
(

ψ2
B −

(
ψ(t−1)

)2
)

(9)

Note that we compute the gradient of the loss regarding the quadratic mean of
the batch. In other words, we utilize the running statistics to conduct backprop-
agation, thus, resulting in bounded gradients, which is necessary for convergence
in NLP (see proofs in [24]).

4.3 Implementation Details

We leverage synonyms from WordNet categories to conduct data augmentation
for computation efficiency. We combine all the momentum representation con-
sistency and power normalization results in a unified architecture with the mask
language model object. We leverage the same architecture of the BERT-base
[5]. We first pre-train the model in a large-scale corpus unsupervisedly (e.g., the
same corpus and training steps with BERT) and then fine-tune the model using
task datasets.

5 Experiment

5.1 Datasets and Setting

We conducted experiments on three benchmarks: GLUE, SQuAD, SNLI, and
DialogRE.
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Table 1. Summary of results on GLUE.

Model CoLA SST-2 MRPC QQP MNLI

(m/mm)

QNLI RTE GLUE

Avg

Normal BERT 56.8 92.3 89.7 89.6 84.6/85.2 91.5 69.3 82.3

BERT+DA 58.6 93.2 86.5 86.7 84.2/84.4 91.1 68.9 81.7

DCL 60.9 93.0 89.7 90.0 84.7/84.6 91.7 69.7 83.0

Robust BERT 46.4 91.8 88.1 84.9 81.6/82.2 89.2 67.1 78.9

BERT+DA 53.8 92.9 85.6 85.5 83.1/83.4 90.7 66.3 80.1

DCL 48.4 92.4 86.0 85.5 82.5/82.7 89.7 68.8 79.5

GLUE [26] is an NLP benchmark aimed at evaluating the performance of
downstream tasks of the pre-trained models. Notably, we leverage nine tasks
in GLUE, including CoLA, RTE, MRPC, STS, SST, QNLI, QQP, and MNLI-
m/mm. We follow the same setup as the original BERT for single sentence and
sentence pair classification tasks. We leverage a multi-layer perception with a
softmax layer to obtain the predictions.

SQuAD is a reading comprehension dataset constructed from Wikipedia
articles. We report results on SQuAD 1.1. Here also, we follow the same setup as
the original BERT model and predict an answer span—the start and end indices
of the correct answer in the correct context.

SNLI is a collection of 570k human-written English sentence pairs that have
been manually labeled for balanced classification with entailment, contradiction,
and neutral labels, thereby supporting the task of natural language inference
(NLI). We add a linear transformation and a softmax layer to predict the correct
label of NLI.

DialogRE is a dialogue-based relation extraction dataset, which contains
1,788 dialogues from a famous American television situation comedy Friends.

To evaluate the robustness of our approach, we also conduct invariance test-
ing with CheckList1 [21] and adversarial attacks2. To generate label-preserving
perturbations, we used WordNet categories (e.g., synonyms and antonyms). We
selected context-appropriate synonyms as permutation candidates. To generate
adversarial samples, we leverage a probability-weighted word saliency (PWWS)
[19] method based on synonym replacement. We manually evaluate the quality
of the generated instances. We also conduct experiments that apply data aug-
mentation and adversarial training to the BERT model. We utilize PyTorch to
implement our model. We use Adam optimizer with a cosine decay learning rate
schedule. We set the initial learning rate as 1e−5. We use a batch size of 32 over
eight Nvidia 1080Ti GPUs.

1 https://github.com/marcotcr/checklist.git.
2 https://github.com/thunlp/OpenAttack.

https://github.com/marcotcr/checklist.git
https://github.com/thunlp/OpenAttack
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5.2 Results and Analysis

Table 2. Summary of results on
SQuAD.

Model F1 EM

Normal BERT 88.5 80.8

BERT+DA 88.2 80.4

DCL 88.4 81.0

Robust BERT 86.7 77.8

BERT+DA 87.8 79.9

DCL 86.8 78.1

Main Results
From Table 1 and 2, we can observe the fol-
lowing: 1) Vanilla BERT achieves poor per-
formance in the robust set on both GLUE
and SQUAD, which indicates that the pre-
vious fine-tuning approach cannot obtain a
robust textual representation. This will lead
to performance decay with permutations.

2) With data augmentation, BERT can
obtain improved performance in the robust
set; however, a slight performance decay is
observed in the original test set. We argue
that data augmentation can obtain better performance by fitting to task-specific
data distribution; there is no guarantee that more data will result in robust
textual representations.

3) Our DCL approach achieves improved performance in both the original
test set and robust set compared with vanilla BERT. Note that our DCL is
an unsupervised approach, and we leverage the same training instances with
BERT. The performance improvements indicate that our approach can obtain
more robust textual representations that enhance the performance of the system.

Table 3. Summary of results on CoLA, SNLI,
DialogRE.

Model CoLA SNLI DialogRE

Normal BERT 56.8 91.0 63.0

BERT+Adv 55.0 90.9 64.3

DCL 58.8 91.0 64.2

Adversarial BERT 47.0 87.4 59.0

BERT+Adv 55.1 90.3 62.9

DCL 48.2 90.5 63.2

Adversarial Attack Results
From Table 3, we can observe
the following: 1) Vanilla BERT
achieves a poor performance
with adversarial attacks; BERT
with adversarial training can
obtain a good performance.
However, we notice that there
exists a performance decay for
adversarial training in the origi-
nal test set. Note that adversar-
ial training methods would lead to standard performance degradation [29], i.e.,
the degradation of natural examples. 2) Our DCL approach achieves improved
performance in the test set with and without an adversarial attack, which fur-
ther demonstrates that our approach can obtain robust textual representations
that are stable for different types of permutations.

Quantitative Analysis of Textual Representation
As we hypothesize that power normalization can implicitly contribute to feature
uniformity, we conduct further experiments to analyze the effects of normal-
ization [1]. Specifically, we random sample instances and leverage the cosine
similarity of the original input projection vectors and the augmented projection
vectors. We calculate the average cosine similarity between positive instances (in



Disentangled Contrastive Learning 223

(a) BERT(Random) (b) DCL(Random) (c) BERT(Adv) (d) DCL(Adv)

Fig. 2. T-SNE visualizations of sentence embeddings.

blue) and random instances (in red) with different strategies, including without
normalization (No Norm), batch normalization (BN), and power normalization.

Fig. 3. Cosine similarity of
the original input projec-
tion vectors with the aug-
mented input projection vec-
tors. (Color figure online)

From Fig. 3, we observe that with no normal-
ization in p or q, the feature space is aligned for
both positive and negative instances, which shows
that there exists a feature collapse for textual rep-
resentation learning. Considering DCL training
(i.e., with power normalization), we notice that
the textual representations are relatively more
similar between the positive instances (0.9842)
than random (negative) ones (0.7904); thus, we
can obtain different vectors.

Next, we give an intuitive explanation of pre-
venting feature collapse for textual representation
learning. Given an input instance without nega-
tive examples, the model may always output the
projection vector z with [0, 1, 0, 0, . . .]. Thus, the
model can achieve a perfect prediction through
learning a simple identity function, which, in other words, collapse in the fea-
ture space. With normalization, the output vector z cannot obtain such singular
values. Since the outputs will be redistributed regarding the learned mean and
standard deviation, we can implicitly learn robust representations.

Qualitative Analysis of Textual Representation
We randomly selected instances to visualize a sentence with T-SNE [15] to better
understand the behaviors of textual representations. The different color refers
to the different sentence pairs for both random permutation and adversarial
attack settings. From Fig. 2, it may be observed that our approach can obtain
a relatively similar semantic representation with permutations in both invariant
tests and adversarial attack settings. Note that we explicitly align the projection
of the textual representation with a random permutation, thereby encouraging
similar semantic instances to have relatively similar representations.
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5.3 Discussion

Robust Representation with Contrastive Learning. Conventional
approaches usually try to leverage instance-level augmentation aimed at achiev-
ing good performance on a robust set. However, there is no guarantee that robust
textual representations will be obtained. Intuitively, directly aligning the repre-
sentation of input tokens with slight permutations may contribute to robust
representations. However, without any negative constraints, the model will eas-
ily collapse with a sub-optimal solution. In this study, we observe that power
normalization identifies this common mode between examples. In other words,
it can remove those trivial samples by using the other representations in the
batch as implicit negative instances. We can, therefore, view normalization as
an implicitly contrastive learning method.

Limitations. This work is not without limitations. We only consider the syn-
onym replacement as a data augmentation strategy due to the efficiency of pro-
cessing a huge amount of data. Other strong data augmentation methods can
also be leveraged. Another issue is representation alignment, as there are lots
of augmentations. We cannot enumerate all positive pairs for alignments; thus,
there is still some room for designing more efficient feature-aligning algorithms.
Moreover, as we utilize the square root loss, which is absolutely a Euclidean dis-
tance. Recent approaches [16] indicates that Euclidean space may be sub-optimal
for textual representations, and we leave this for future works.

6 Conclusion

We investigated robust textual representation learning and proposed a disen-
tangled contrastive learning approach. We introduced feature alignment with a
momentum representation consistency and feature uniformity with power nor-
malization. We empirically observed that our approach could obtain an improved
performance compared with baselines in NLP benchmarks and achieve a robust
performance with invariant tests and adversarial attacks.
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Abstract. Query reformulation is the task of rewriting users’ query to
predict their information need. A user often struggles to modify a query
by adding or removing terms when interacting with search engines. To
address this issue, we propose a history-aware expansion and fuzzy model
for query reformulation that improves follow-up queries based on success-
ful history click-through logs. A probabilistic model is thus presented to
calculate term weight in history and expand meaningful terms or fuzz triv-
ial terms to follow-up query. Experimental results show that reformulated
query can improve search engine results on low-frequency and long-tailed
queries.
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1 Introduction

Fig. 1. An illustration of history-aware expansion and fuzzy for query reformulation.

Query reformulation is a proven approach to deal with a mismatch between
query and document that is a challenging problem for search engines [1]. On the
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one hand, users and documents often use different words leading to a mismatch
between query terms and document terms [1]. On the other hand, many people
usually try to modify queries during the search to make their real needs more
accurate, especially when seeking unclear requirements. For microblog search,
because tweets only contain a dozen words, the mismatch problem is extensive.
This paper focuses on the above problem with the two reformulation methods
of query expansion and fuzzy.

Most prior work focuses on expanding query by adding new terms into the
original query. Especially, the new terms mainly come from thesaurus [2] and
external resources [3,4], such as WordNet [2,3,5,6] and Freebase [7]. Pseudo-
relevance feedback [1,8,9] method selects expanded words from the initially
returned documents and then searches again, achieving state-of-the-art results.
However, this method highly relies on the initial search result. Word embedding
[4,10–12] is also used for query expansion and chooses similar words for query
terms as expansion. Although these types of query expansion can augment some
of the original query term’s synonyms, they cannot help understand users’ hid-
den needs. Yiqun Liu et al. [13] proposed a snippet click model, mining keywords
from snippets clicked by users.

Query deduction aims to drop query terms with little information in a long
query [14]. However, removing some words from the user’s query is not good. In
some cases, dropping terms could hide the user’s practical search intention.

A good query matches well and retrieves many relevant documents ranked
at the top position, e.g., at the top three positions on the head page. However, a
poor query might get bad search results because it is not adequate to understand
the user’s need, or the satisfying results might rank in later positions since the
score is lower due to the term mismatch problem. Although the search result is
irrelevant in the returned search result, some users often browse the later result
until finding a relevant result, click the URL, and complete this search action. In
comparison, some users may struggle to rewrite a series of queries until success
[15]. Motivated by this, we aim at improving the users’ search experience by
extracting the knowledge from the successful search experience.

We think two queries that share co-click documents might have a similar
meaning. With click-through logs, we can actively help users rewrite their queries
through the related co-clicked queries. We calculate the weight of terms with co-
clicked queries, where the meaningful terms are used for expanding a query and
the trivial terms for fuzzing. For example, in Fig. 1, there are three queries that
co-click the same document http://www.4399.com/, where “4399 (4399
mini-game)” is a hot query that has real search need, while “ (online
mini-games)” and “ (play penguin game)” are low-frequency and
retrieves poor results. With query reformulation, we expand the word “4399”
to “ (play penguin game)”, and fuzzy “ (mini)” in “
(online mini-games)”, and thus satisfying users’ information needs.

This paper proposes a novel history-aware expansion and fuzzy framework
to implement the above ideas. It consists of four modules: History-aware Term
Weight (HaTwei), Index, Matching, and Fine-tune (Ftune). HaTwei computes

http://www.4399.com/
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weight distributions of terms based on co-click behavior in click-through logs.
Index stores the results of HaTwei as an index database, which is used for the
Matching module to find expanded or fuzzy terms for follow-up queries. Ftune
module fine-tunes the documents by expanded or fuzzy terms. Experimental
results on two different datasets show that our model achieves better results
compared with three strong baselines.

To summarize, our contributions are mainly three-fold:

– We propose a novel history-aware expansion and fuzzy framework for query
reformulation. Based on click-through logs, we combine query expansion and
query reduction through a probabilistic model.

– We present query fuzzy strategy that reduces trivial terms in the weight
calculating, instead of query reduction to drop them.

– We evaluate our method on two different datasets and explicitly improve
search engines’ quality compared with the three baselines.

2 Related Work

Query reformulation plays an essential role in query understanding in search
engines [1,16,17]. It helps solve the mismatch problem [1] between query and
document, rewriting a query to make their meaning more effective. Generally,
query reformulation consists of spelling error correction, stemming, query seg-
mentation, query expansion, and query deduction [1]. This paper focuses on two
basic types, query expansion with adding meaningful terms and query deduction
via fuzzy trivial terms.

Query expansion is a well-known method to deal with the term mismatch
problem [1,3,6,10,18]. One typical way is to use external resources [1,2] to select
additional terms. A common practice is to derive from knowledge bases, such as
Freebase [7], Probase [18], WordNet [5], ConceptNet, and Wikipedia.

Another method is pseudo-relevance feedback [1,8], which assumes the top-
retrieved document is relevant, selects the expansion terms from the initially
returned documents and then prompts a second search with the original query
plus expansion terms. Recently, query expansion based on word embedding
[4,10–12] is widely applied. They train the Word2Vec model over the entire cor-
pus and select semantically related terms to the raw query in the word2vec space
[4,10–12]. These expansion methods tend to find synonyms or related words of
a query word [6] and solve mismatch problems. In [4], Qian Liu et al. also use
word embedding to select top similar words with the initial query via cosine
similarity.

Reinforcement Learning is also used for query reformulation tasks [19,20].
Nogueira et al. [19] propose a neural network with reinforcement learning to
model relationships of expansion terms and document recall, selecting some
terms to maximize the recall rate of relevant documents returned.

Qian Liu et al. [4] proposed four fuzzy rules to re-weight the expansion words,
which differs from our fuzzy method. We focus on fuzzing uninformative terms
in the raw query.
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In contrast to query expansion, query deduction is another query reformula-
tion technique via the removal of trivial terms from the query [1,21]. However,
instead of removing terms in our task, we focus on fuzzing them in the original
query. We refer to this type of reformulation as query fuzzy. One advantage of
fuzzy reformulation is that we can preserve as much search need of users’ original
intention as possible.

3 Models

Figure 1 shows the overview of our History-aware Expansion and Fuzzy model for
Query Reformulation (HaEFQR). There are four modules: History-aware Term
Weight (HaTwei), Index, Matching, and Fine-tune (Ftune). HaTwei calculates
term weight based on history click-through logs. The three modules of Index,
Matching, and Fine-tune are applied to a microblog retrieval task. Details of
each module are given as follows.

3.1 History-Aware Term Weight (HaTwei)

The goal of HaTwei is to find essential or trivial terms according to history
click-through logs. For example, if many users issue the query “Alipay fast pay-
ment”, they mostly click an official website at the top position. A few people
submit a query “Alipay” and click the same official website on the fourth page,
and they might share the same need because they have the same co-click behav-
ior. This co-click information can help users understand their intention actively,
e.g., extracting the meaningful phrase “fast payment”. If a user searches for
“Alipay”, the search engine might automatically expand it with “fast payment”,
which performs retrieving documents with the reformulated query “Alipay fast
payment”.

On the contrary, a query “natural logarithm transformation” [1], “natural”
is invaluable in understanding user need; we fuzz the trivial “natural” to obtain
more relevant results.

We group all the queries by co-click, Q = {q(i)}Ni=1 denotes a set of N queries
that share the same clicked documents, U = {u(i)}Mi=1 denotes the co-clicked
documents given Q, u indicates a document and M is the total number of doc-
uments. Let t indicates a query term, q indicates a query.

To simplify the discussion, we initially consider two co-clicked queries q(i) =
{t(i)}ni=1 and q(j) = {t(i)}mi=1, each query is represented as a bag of words of size
n and m, respectively. If we want to choose some terms from q(j) to reformulate
q(i), how to measure the weight of each query term of q(j). In this work, our
main objective is to calculate conditional probability, i.e. p(t ∈ q(j)|q(i)).

A click graph is seen in Fig. 2. We start at a query q(i) and allow two random
walks via a document to q(j). There exist multiple paths between the two queries.
Along each path, we define the conditional probability p(t ∈ q(j)|q(i)) using the
multiplication rule. The term weight can be expressed as the sum conditional
probabilities of multiple paths, as written in Eq. 1:
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Fig. 2. A co-click graph among queries and their clicked documents, red nodes denote
documents, the yellow mean queries, and the edge represents click behavior between
query and document. (Color figure online)

p(t ∈ q(j)|q(i)) =
∫
u∈U

p(t|u)p(u)du, (1)

where p(u) denotes the marginal distribution of document u, p(t|u) is the term
weight of t under the document u. Notes that in this work p(u) can be extended
to include q(i) and q(j), then it is defined as Eq. 2:

p(u) =
∏

q∈{q(i),q(j)}
p(u|q)p(q). (2)

Based on the analysis of the relationship between q(i) and q(j), we present a
novel probabilistic model from the viewpoint of random walk. The more impor-
tant the walking path is, the larger conditional probability will get. The term
might play a crucial role in representing the user’s needs in q(i). As an approxi-
mation, we calculate p(t|u) by using its source query q(j), and p(t|u) is given by
p(t|u) ≈ p(q(j)|u). The new model is then written as Eq. 3:

p(t ∈ q(j)|q(i)) =
m∑

k=1

p(u(k)|q(j))p(q(j)|u(k))p(u(k)|q(i)). (3)

Let p(q(j)|u(k)) denote click weight of a special query q(j) under given clicked
document u(k). Similarly, p(u(k)|q(i)) can be represented as clicked weight of
a special document u(k) when given a query q(i). Formally, we give a detailed
calculation as following subsections.

Query Weight Score (qwei) is a distribution of queries co-clicking the same
document, abbreviated as qwei, its empiric formula is defined as Eq. 4:

p(q|u) =
click count1.75(<q,u>)

search count(q)

0.01
∑

e∈{e|e co−clicks u}
click count1.75(<e,u>)

search count(e)

, (4)
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where search count(q) denotes the total search count of query q, click count(<
q, u >) is the total clicked times between the pair of < q, u >. The symbol
clicked-count squared 1.75 we used in Eq. 4 because we think that users’ clicking
behavior plays an important role in relevance.

Document Weight Score (dwei) means a distribution of documents clicked
by the same query, short for dwei, and also has an empiric formula as written in
Eq. 5:

p(u|q) =
click count1.75(<u,q>)

search count(q)

0.01
∑

d∈{d|d co−clicks by q}
click count1.75(<d,q>)

search count(q)

. (5)

In our work, we find many pairs of {q(i), q(j)}j �=i that co-clicks the same
documents as shown in Fig. 2. Such crowd-sourced user experience is valuable
in inferencing what a user wants to know and yield insights into how people
generate a query using keywords step by step. More generally, integrating all
co-clicked pairs < q, u > that are associated with q(i), we total probabilities of
the term as Eq. 6:

p(t|q(i)) =
∑
j �=i

p(t ∈ q(j)|q(i)). (6)

Terms (words or phrases) are ranked in descending order according to Eq. 6. In
the experiment, we choose expanded terms with the top k for query expansion,
the tail l as fuzz terms for fuzzing. We observe that the reformulated query
enables us to grasp users’ needs. As an illustration detail, Table 2 shows some
examples for query reformulation.

Merger Query Expansion and Fuzzy. We merged query expansion and query
fuzzy strategy into the same framework. However, query reformulation may bring
several problems, such as ambiguous terms, irrelevant statistically correlated
terms [2], and the complicated problem is topic drift [1,21], indicating a change
in query intent. To avoid these issues, we adopt three strategies that perform
well together in the experiment.

First, we reduce the coverage ratio of query expansion and fuzzy algorithm
to hold down the number of impacted queries. Furthermore, to deal with noise
in the click-through data [1,13], we use some smoothing methods.

Second, we utilize the knowledge extracted from click-through logs, represent-
ing historical relevance knowledge of crowd-sourced feedback by many users.

Finally, information retrieval mainly includes three steps: inverted index,
matching, and ranking [2]. In our work, the expanded term or fuzz term plays
an auxiliary role in retrieving. Firstly, for intersecting, the expanded or fuzz term
is transparent to the engine. The fuzz term does not participate in intersecting.
The recall rate will be increased significantly in the query fuzzy task. Secondly,
based on the initial documents retrieved from the index, we are interested in the
documents containing the expanded terms. We tune the relevance score via the
proximity-weighted scoring function sum over the expanded terms. Similarly, if
some of the matched words are fuzz terms, the score will be discounted.
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Parameter Setting. Here we provide two methods to estimate the model
parameters, dwei, and qwei.

First, we only consider a document, which means group all the queries that
co-click a specific document, called a local query model. Then we pair a query
with each other and calculate the conditional probability in each pair according
to Eq. 1–5.

Second, a query might click many documents with other queries, as seen in
Fig. 2. We sum the probability along other click paths according to Eq. 6. We
refer to a global query model. Specially, we use a hash lookup table to store
the expanded terms and fuzz terms for each query. To avoid repeated terms
and reduce memory space, we decompose model parameters into two tables.
One table is HashLookUp Table, storing hash value for query with additional
information, including the hash of terms. The other one is the terms table, only
memory unique terms, consisting of expansion and fuzz terms. During looking
up, the key is the hash value of the query and then perform the hash search as
quickly as possible.

Estimate Score with Smoothing Methods. Click-through logs with much
noise and sparseness [1,13,22] are challenging. For example, if we have one click
and two impressions, then the CTR would be 50%, while if we have 50 clicks
and 100 impressions, the CTR (Clickthrough rate) is the same. However, the two
cases have different meanings; the latter one is more reliable. However, the Wil-
son score of 1 click in 2 impressions is significantly lowered to 21.13%. Therefore,
we use two tricks to alleviate the issues as follows:

(1) We exploit the click count to the power of 1.75 for reducing sparseness of
click information in the click-through logs.

(2) We use the Wilson score confidence interval [23,24], abbreviated as Wilson
score, to compute the Click-Through Rate avoiding biased ratio caused by
sample size [23]. Similarly, we also adopt another weighting function as in
Eq. 7, which is introduced by Pennington et al. [25] for discounting the search
count and click count.

f(x) =

{
(x/xmax ) 3/4 if x < xmax

1.0 otherwise
(7)

Compared with the traditional CTR method, it is clear that the Wilson score
method helps limit noises in click-through data. In search engine, 50 clicks occur
in 100 impressions might represent more robust and more relevant feedback than
one click out of 2 impressions. In the SougouQ dataset, the number of impressions
is no more than 20 possess about 73.76%, the Wilson score of CTR can balance
the impact of small sample size caused by random noises [1].

4 Experiment

Datasets. We conduct an extensive experiment on two datasets. The SogouQ
dataset consists of search and click-through logs released by the Sogou Labs
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[26]. The SogouQ dataset contains queries and its clicked document per line,
including four columns: query, rank position, click order, and clicked document,
where click order means which ranked position the click behavior occurs. In
total, there are 20.43M queries. We obtain 3.02M of distinct query collection
after data preprocessing, 8.2M separate documents. With word segmentation,
we get a total number of unique words is 695,148, the average length of queries
is 2.488. We collected MicroBlog data from Sina, containing 74.6K tweets. We
use MicroBlog to evaluate our model and baseline methods.

Search: Matching and Ranking. We apply the proposed model to a
microblog retrieval task for practical use. It involves three parts: query under-
standing, matching, and ranking. In query understanding phrase, we design a
simple strategy to expand short query or fuzzy long query for a new query as
[14] does.

Expanding Short Query. We consider a short query in our work as the size
of terms is less than 5, which requires expanding for improving the retrieved
accuracy.

How many distinct terms k we chose to expand? With more terms for query
expansion, it might cause topic drift problems [1,27]. While fewer terms expand
to a query would not benefit. Our focus is the relationship between the CTR
and the number of query terms, as heuristics information to help us select a
fair number of expanded terms. Finally, we empirically set up the number of
expanded terms k to 2.

Fuzzing Long Query. We consider a long query as the size of query terms
is more than 7. We restrict fuzzy query strategy to long query and fuzz trivial
query terms for increasing document recall rate.

Query fuzzy strategy, a type of query reformulation, is defined as the reverse
formation of query expansion through fuzzing query terms with little meaning.
We consider trivial terms as the minimum weight of conditional probability
p(t|q(i)) and set l to 2, as shown in Table 2.

Query Understanding. Query understanding plays a crucial role in search
engines [1]. Coming to a new query, we first check whether or not the query
is long or short. If so, then compute the hash value of the query and finally
conduct a binary search on the hash lookup table. Then the strategy of query
reformulation is triggered. The original query, plus expanded or fuzz terms and
their weights, are used to retrieve documents.

Matching Between Query and Document. In matching, based on the
inverted index, we cannot take the expansion terms or fuzz terms into account.
The hidden relevant documents can be matched by intersecting the posting list
associated with the other query terms. Therefore, the document recall rate might
not be decreased by expansion or fuzzy operation.

Ranking of Relevance Score. With initially matched documents, we boost the
documents that contain expansion terms with a boost weight, which is defined
as Eq. 8:
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boost = α ×
∑

ex wei(ex)idf(ex)∑
ori idf(ori)

× Jaccard(ex, ori), (8)

where ex denotes the expanded terms, ori denotes the original query terms.
Jaccard(ex, ori) is a function that denotes the Jaccard similarity coefficient
between hit sentences of expansion terms and original query terms, is given
by Eq. 9:

Jaccard =
|HitSents(ex) ∩ HitSents(ori)|
|HitSents(ex) ∪ HitSents(ori)| (9)

idf(t) = 1.0 + log(df/(df(t) + 0.5)) is the inverse document frequency of term t,
df(t) is the number of documents in which t occurs, df is the total number of
documents in the corpus, wei() stands for the expansion weight.

We access the IDF value for every term for ranking, pre-calculated, and stored
in indexing. This boost weight is added to relevance scores between query and
document, and then the score of most relevant documents may be ahead during
ranking. We achieve the aim of query reformulation in helping users to get a
better result by one-time search.

In terms of hitting fuzzy terms containing little click information in the orig-
inal query, the document may be demoted to avoid matching irrelevant words.
We set demote weight as Eq. 10 to fuzz terms in the matching of query and
document,

demote =

⎧⎨
⎩

α
|BM25(fuzz terms)|
|BM25(all terms)| if fuzz terms hit

1.0 otherwise,

(10)

where α is a damping coefficient, we set it to 0.85 by default. BM25 is a widely
used method for computing term scores [1,4]. Both Demote and Boost weight
are used to weight factors that adjust the final ranked score of the document.

Baseline Models. We compare with three baseline methods. The first method
is pseudo-relevance feedback-based query expansion [1,8,9], the expanded terms
obtained from initially retrieved top-ranked documents. Here, the title of the top
10 documents is used as resources. We find expanded terms using the TF-IDF
algorithm. The second one is based on word embeddings for query expansion
[4,9,11,12], which selects expanded terms with cosine similarity in word vector
space. We train word vectors on the MicroBlog data using the word2vec tool
[28,29] and use the top 2 most similar words related to query terms for expand-
ing. The third one chose terms from Freebase [7].

Comparisons on NDCG. Table 1 shows the result compared with strong base-
lines, ‘Good’ denotes the result of the reformulated query is better than the
original query’s, ‘Bad’ is the opposite, ‘TheSame’ means that both ‘Good’ and
‘Bad’ are as good as each other. Our model is better than compared methods
and shows that the terms come from historical queries containing the user’s real
search need. However, the number of queries impacted is much lower than the
baselines since we try to reduce topic drift [1]. We also note that there is a



236 W. Pang and R. Duan

Table 1. Performance of NDCG on the WeiBo dataset

Method Measures Query
impacted(%)

User review(%)

MAP NDCG@5 P@5 Good Bad TheSame

Embedding 0.2490 0.4785 0.4401 53.60 11.5 6.5 75.50

Pseudo-relevance 0.2460 0.5372 0.4943 48.50 16.28 10.23 73.49

Freebase 0.2166 0.3672 0.3741 34.43 10.87 9.39 79.74

HaEFQR (Ours) 0.2826 0.5443 0.5060 17.75% 21.5 5.7 72.8

Table 2. Query reformulation examples for the proposed model.

Original query Candidate
terms

Reformulation New query

Sina Weibo, video Expansion Sina expand (weibo, video)

Sohu Video, news Expansion Sohu expand (video, news)

Trade war ZTE,
negotiate

Expansion Trade war expand (ZTE,
negotiate)

Amazing ! this logo ! this Fuzzy Amazing logo Fuzzy (this, !)

The wife wants to go
home in half an hour

The, wants,
to, in

Fuzzy Wife go home half an hour
Expand (The, wants, to, in)

Table 3. Comparison performance of parameter k on NDCG@k.

Method NDCG@k

k = 1 k = 2 k = 5 k = 10

Embedding 0.1207 0.1821 0.4647 0.5244

Pseudo-relevance 0.1164 0.2420 0.5272 0.5263

HaEFQR (Ours) 0.1691 0.3114 0.5391 0.5718

tradeoff between query drift and query reformulation. Given a query, we add
more terms that usually diversify the search results, while it is easy to fall into
the topic drift.

Table 2 gives some examples. We find that the expanded terms might grasp
the user’s need. Furthermore, expanded terms have two types: the categorical
term representing the query topic and the functional term that often makes the
user’s intention more concrete and accurate.

Table 3 shows the result of 150 queries in the experiment, and it demonstrates
that our model gains good results. However, the limitation of the proposed model
is that the affected query’s coverage ratio is lower than the baseline methods.



History-Aware Expansion and Fuzzy for Query Reformulation 237

5 Conclusion

With this paper, we propose a History-aware Expansion and Fuzzy model for
Query Reformulation (HaEFQR), integrating query expansion and query fuzzy
into a probabilistic framework. The basic idea is that successful historical expe-
riences from previous users might help follow-up users. Especially, we develop a
fuzzy strategy for trivial terms to reformulate long query, rather than removing
them directly. Experiments show that the expanded terms are usually closely
related to the original query. The reformulated query provides a more enriched
description than the original query and naturally diversifies the search results.
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Abstract. Microblog stance detection aims to determine an author’s stance (for
or against) towards a specific topic or claim in a post. It has become a key com-
ponent in applications like truth finding, intention mining and rumor detection.
Recently, researchers have becoming more and more interested in using neu-
ral models to detect user’s stance. Most of the work directly models the word
sequence in the text and learns its text representation. However, few researches
have explored the integration of external knowledge into stance detection to
enrich the learned text representation. In this paper, a knowledge-enhanced BERT
model for Microblog stance detection is proposed. In this model, the triples in
knowledge graphs are used as domain knowledge injected into the sentences. We
conduct experiments and test the proposed method on a public Chinese Microblog
stance detection dataset. Experimental results show that our model significantly
outperforms the competitive baseline methods. Furthermore, the incorporation of
knowledge graph gives more than 11.3% improvement in F1 score compared with
state-of-the-art method.

Keywords: Stance detection · Knowledge · Pre-trained language model

1 Introduction

With the increasing popularity of social media, people express their attitude towards
almost everything at any time through online websites. Recently, much attention has
been paid to automatic stance classification (detection) because of its wide range of
applications [1,2], especially in the field of social media analysis, opinion mining, and
rumor detection. The early work of stance detection focused on argumentative debates
in online-forums [11,18,22]. Gradually, stance detection began to be studied on online
social media such as Twitter and Microblog.

Microblog Stance detection represents a well-established task in Natural Language
Processing and is often described by having two inputs: (1) a target and (2) a post or
comment made by an author. In detail, given these two inputs, the purpose is to auto-
matically determine the author’s stance (Favor, Against or None) of the post towards
the target. The target here may be a product, an event, a government policy or even a
social phenomenon. Users may not explicitly mention the target or express their stance
in microblog posts, which brings challenges to the task of microblog stance detection
[28].
c© Springer Nature Switzerland AG 2021
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Fig. 1. Example of stance detection with knowledge graph.

So far, a considerable amount of literatures have been published on text stance
detection [4,7,25,31]. Most work on stance detection regards it as a text classifica-
tion task, in which the text of post and target is used as the features in traditional
machine learning methods, such as Logistic Regression, Naive Bayes, Decision Tree
and Support Vector Machine [7,10,17,21]. With the wide application of deep learn-
ing models, some researchers use deep neural networks like RNN, CNN and LSTM to
learn the representation of a microblog post and then perform text classification based
on the learned representation. Furthermore, pre-trained language models such as BERT
[6], GPT [19] and XLNet [30] have shown great potential in learning effective repre-
sentations recently, and have achieved state-of-the-art performance on various natural
language processing tasks.

It has been demonstrated that the combination of knowledge graph (KG for short)
and language representation model can improve the performance in specific domain
tasks [14,23,32]. Therefore, we use the pre-trained model BERT in large-scale open
domain corpora to obtain universal language representations, and then fine-tuned it in
stance detection task. In Fig. 1, given the target “Prohibition of motorcycles and restric-
tions on electric vehicles in Shenzhen”, it is difficult to determine the stance of the post
“Bicycles can also travel healthily”. Nevertheless, if we have the knowledge that bicy-
cling is a green transport that can replace motorcycles or electric vehicles, it may be
inferred that the author’s stance towards the target is “Favor”.

In order to overcome the above challenges, we propose a microblog stance detec-
tion framework based on pre-trained language model and external knowledge. Inspired
by previous studies [14,23], our model extracts triples from a knowledge graph CN-
DBpedia [26], and integrates the informative entities in KGs into the stance detection
model based on BERT. Experimental results on a Chinese microblog benchmark dataset
demonstrate that our proposed method outperforms state-of-the-art methods for stance
detection. The main contributions of this paper can be summarized as follows:

– We propose a microblog stance detection framework based on a knowledge
enhanced BERT model. As far as we know, this is the first work to combine knowl-
edge graph and pre-trained language models into an integrated framework for this
task.
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– We thoroughly investigate several baseline methods including recent neural
attention-based models and pre-trained language model BERT for comparison.
Experiment results show that by taking full advantage of lexical, syntactic, and
knowledge information, our model outperforms various state-of-the-art methods.

2 Method

In this section, we present a Microblog Stance Detection framework with Knowledge
enhanced BERT model (K-BERT-MSD for short). As shown in Fig. 2, the K-BERT-
MSD model consists of two parts: external knowledge integration and stance detection.

In the rest of this section, we will present each of these two parts in detail.

Fig. 2. The model structure of K-BERT-MSD.

2.1 Task Definition

Let D = {xi = (si ,ti, yi)Ni=1 SPSVERBc2be a dataset with N examples, each consisting
of a sentence si (a text), a target ti, and a stance label yi. In addition, the sentence is
denoted as a sequence s = {w0, w1, ..., wn}, and the target is expressed as t = {t0, t1, ...,
tm}, where n, m is the length of the sentence and the target, respectively. Each token wi

or ti is included in the vocabulary V, wi

⋂
ti∈ V. The knowledge graph K used by the

model is CN-DBpedia, which represents knowledge as triples, ε = (wi, rj , wk), where
wi and wk are entities and the relationship is represented by rj .

2.2 Knowledge Integration

Target-Text Pair. Given a set of microblog data and five targets respectively, we first
segment the text data using the BERT preprocess tokenizer. In detail, the [CLS] and
[SEP] identifiers are added to the sentence for indicating the begin of a sentence or
separating two sentence.



242 Y. Sun and Y. Li

Knowledge Graph. KG is a domain related conceptual model. The common knowl-
edge graphs include WiKiData [24], ConceptNet [13], CN-DBpedia [26] and so on.
We use the commonsense knowledge base CN-DBpedia as knowledge sources in our
model. CN-DBpedia is a large open field encyclopedia KG developed by the knowledge
work laboratory of Fudan University, which classifies knowledge into triples (as shown
in the Table 1 below). We use the refined CN-DBpedia by deleting triples whose entity
names are less than 2 or contain special characters [14].

Table 1. Example of knowledge triples from CN-DBpedia.

Entity Relation Entity

Jay Chou Date of birth 1979-01-18

Real Madrid Fans’ nicknames Meilinger

Sentence Tree. The construction of a sentence tree is divided into two processes:
Knowledge Query (K-query) and Knowledge Injection (K-inject). In K-query, we find
out the nouns in the target-text pair ts through NER, to search them one by one in the
entity lookup table of knowledge graph. K-query can be formulated as Eq. 1:

E = K Query (ts,K) , (1)

where E = {(wi, ri0, ei0) , ..., (wi, rik, eik)} is a collection of the corresponding triples.
Next, K-inject injects the triple into the target-text pair ts and generates a sentence

tree T. We specify that a sentence tree can have multiple branches, but at a fixed depth
of 1. K-inject can be formulated as Eq. 2,

SenT = KInject (ts,E) , (2)

Specifically, given an input target t = {t0, t1, ..., tm}, an input sentence s = {w0,
w1, ..., wn}, and a knowledge graph K, then the sentence tree SenT = {w0, w1, ...,
wi{(ri0, ei0) , ..., (rik, eik)}, ..., wn+m}.

2.3 Stance Detection

Embedding Layer. The function of the Embedding Layer(EL) is to transform the sen-
tence tree into an embedding representation, and the embedding vector is similar to
BERT. The input vector of BERT consists of three parts. While for the input vector, the
difference between our model and BERT is that we input a sentence tree rather than a
token sequence. Next, we introduce the embedding methods in our model detailedly.

– Token Embedding: The part converts words into limited common subword units
through WordPiece (word segmentation). Tokens in the sentence tree need to be
rearranged before they are embedded, and the tokens in the branch are inserted fol-
lowing the correspond node, then the subsequent tokens are moved backwards.
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– Segment Embedding: It is used to distinguish two input sentences.
– Soft-Position Embedding: For encoding the position of words as eigenvectors. Here,

soft-position embedding and visible matrix can well solve the problem of lost struc-
tured information of sentence tree if it is forced to be tilted into a sequence input
model. In the sentence tree shown in Fig. 3, the Numbers in Step 2 are hard-position
indexes and the Numbers in Step 3 are soft-position indexes. For token embedding,
tile the token in the sentence tree into a sequence of token embedding according
to its hard position index, and soft position index is embedded as position token
together with token embedding.

Fig. 3. The formation process of soft-position embedding.

Visible Matrix. In the process of knowledge integration, it is inevitable to introduce
knowledge noise (KN), that is, too much knowledge will make the sentence deviate
from the correct meaning. The introduction of visible matrix limits the visible area of
each token so that the problem of KN is alleviated. For a visible matrix M, the blue
points are visible to each other, while the beige points are invisible. The visual matrix
is defined as follows:

Mij =
{
0 wi � wj

−∞ wi � wj
(3)

where wi�wj refers wi and wj are in the same branch, vice versa.

Mask-Transformer. We add a visible matrix to obtain some structural information.
However, since the encoder of Transformer cannot receive the input of visible matrix,
we need present a Mask-Transformer to process. As BERT, we denote the number of
layers as L, the hidden size as H, and the number of mask-self-attention heads as A.



244 Y. Sun and Y. Li

Transformer layer includes two main sub-layers: MHA (multi-head attention) and
FFN (fully connected feed-forward network). While MHA is actually the combination
of multiple self-attention structures. Each head learns the features in different repre-
sentation spaces. The Q (query), K (key) and V (value) matrices in the self-attention
mechanism are all from the same input. First, we need to calculate the dot product
between Q and K, and then divide it by a scale

√
dk to prevent the result from being too

large, where
√

dk is the dimension of Q and K vectors. Next, the softmax operation is
used to normalize the result to probability distribution, and then multiply by matrix V
to get the representation of weight sum. The operation can be expressed as Eq. 4:

Attention (Q,K, V ) = softmax

(
QK�
√

dk

)

V , (4)

We propose a mask-self-attention, which is an extension of self-attention. Formally,
the mask-self-attention is shown in Eq. 5, 6 and 7:

Qi+1,Ki+1, V i+1 = hiWq, h
iWk, h

iWv, (5)

Si+1 = softmax

(
Qi+1Ki+1� + M√

dk

)

, (6)

hi+1 = Si+1V i+1, (7)

where Wq, Wk and Wvare trainable model parameters. hi is the hidden state of the i-th
mask-self-attention blocks. Intuitively, if Wk is invisible to Wj , the Mjk will mask the
attention score Si+1

jk to 0, which means Wk make no contribution to the hidden state of
Wj .

Model Training. We use cross-entropy and SGD with Adam optimizer to train the
model parameters. The loss function is defined as follows:

loss = −
N∑

i=1

C∑

j=1

yi
j log pij (8)

where yi
j represents the true label of the i-th instance in the dataset, and the pij is the

probability value of the stance prediction. C is the number of categories of stance labels,
and N is the total number of instances.

3 Experiment

The method is applied to Microblog stance detection task, and its performance is evalu-
ated. In this section, we design experiments to answer the following research questions:
(1) Compared with other baseline methods, how helpful is the pre-trained language
model BERT for stance detection? (2) Is the external knowledge useful to this task? If
so, how much improvement can be made to the task of stance detection by using the
knowledge enhanced BERT model in this paper?
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3.1 Dataset

Our dataset was released by NLPCC-ICCPOL 2016 task 4 “Chinese Microblog Stance
Detection Task” 1. The dataset contains 4000 Chinese microblogs with stance labels,
among which 3000 microblogs are for training and 1000 microblogs for testing.

The data is represented by the format of (“stance”,“target”,“text”), where “stance”
is a stance label, divided into three categories: Favor, Against and None. The five
targets are “IPhone SE”, “Set off firecrackers in the Spring Festival (SF for short)”,
“Russian anti-terrorism operations in Syria (RA for short)”, “Two child policy (TP for
short)” and “Prohibition of motorcycles and restrictions on electric vehicles in Shen-
zhen (PM for short)”. For the five different targets, the distribution of instances in the
training data is shown in Table 2 [28].

Table 2. Distribution of instances for five different targets in training data.

Targets Training dataset Testing dataset

Favor Against None Favor Against None

iPhone SE 245 209 146 75 104 21

SF 250 250 100 88 94 18

RA 250 250 100 94 86 20

TP 260 200 140 99 95 6

PM 160 300 140 63 110 27

3.2 Experimental Settings

Baseline Methods. For comparison, we consider the following baseline methods:

– RUC MMC: Dian et al. [7] used five manually selected features as input of Random
Forest and SVM model. They achieve the best results in task 4 of NLPCC-ICCPOL
2016.

– ATA: A two-stage attention model proposed by Yue et al. [31]. Firstly, the attention
mechanism is applies to model target, then the context is matched with the target rep-
resentation to obtain attention signal, and finally the target mixed text representation
for stance classification is formed.

– T-DAN: The two-stage deep attention neural network (TDAN) proposed by Yang
et al. [29] for target-specific stance detection. The model decompose the stance clas-
sification problem into two binary classification problems to mitigating the imbal-
anced distribution of labels. In the first stage, they find out the tweet is neutral or
subjective about the specific target. In the second stage, they classify the stance of a
given subjective tweet’s stance.

– BERT: The Chinese BERT pre-training model “BERT-Base, Chinese” released by
Google. The model uses 12 layers of transformer, outputs 768 dimension vectors, the
head number of multi-head Attention is 12. The total number of trainable parameters
of BERT and our model are the same (110M).

1 http://tcci.ccf.org.cn/conference/2016/pages/page05 evadata.html.

http://tcci.ccf.org.cn/conference/2016/pages/page05_evadata.html
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Evaluating Metrics. We use Precision (p), Recall (r ) and F-score as the evaluation
metric stance detection. FFavor and FAgainst stand for the F-score of the “Favor” class
and “Against” class respectively. FAvg is the macro-average of FFavor and FAgainst.
For more detail about the evaluation metrics, please refer to the previous work [28].

Experimental Setup. We perform stance detection experiments according to the fol-
lowing steps. We first train our model on training data, and save the best performance
our proposed model. For our model and BERT, we use the same settings, in which the
learning rate is set to 2e−5 and the batch size is set to 8. We run the model for several
iterations until it convergences. Please note that, we set a target-text pair can only have
two entities that extend triple knowledge. For all other baseline methods, we directly
obtain the results reported in their papers, since we conduct experiments under the same
dataset and settings.

3.3 Experimental Results

Comparison to Other Methods. In this part, first of all, we compare the F-score
our model with the four baselines obtained, using the same dataset and segmentation
method, and the experimental results are shown in Table 3. We can come to the follow-
ing conclusions: (1) In the task of stance detection, our K-BERT-MSD model obviously
outperforms to the three state-of-the-art neural methods. (2) Compared with other base-
lines (including traditional machine learning methods and deep neural models), BERT
is effective in learning semantics, and achieves the second best result. Our model K-
BERT-MSD enhances BERT model by fusing knowledge, and obtains more competitive
results with BERT.

Table 3. The performance of our model compared with the baseline.

Model FFavor FAgainst FAvg

RUC MMC 0.697 0.724 0.711

ATA 0.762 0.671 0.717

T-DAN 0.762 0.702 0.741

BERT 0.821 0.804 0.813

K-BERT-MSD 0.834 0.815 0.825

We also compare the results of our model and baselines for every target separately,
as shown in Table 4.

Ablation Experiment. In order to analyze the influence of knowledge, we also conduct
two ablation experiments by controlling the specific parameters of our model. One is
the number of entities introduced in the sentence tree(max entities for short), and the
other is the size of the external knowledge graph. We set the value of max entities from
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Table 4. The results of training five targets separately.

Targets RUC MMC ATA T-DAN BERT K-BERT-MSD

IPhone SE 0.615 0.600 0.732 0.737 0.769

SF 0.782 0.801 0.664 0.803 0.835

RA 0.720 0.563 0.543 0.733 0.784

TP 0.847 0.818 0.693 0.838 0.895

PM 0.776 0.807 0.761 0.777 0.810

Overall 0.711 0.717 0.741 0.813 0.825

0 to 3, to test the effect of number of introduced knowledge for each target-post instance
on the final result.

Experimental results in Table 5 show that the performance of the F-score improves
when max entities increases from 0 to 2. When max entities is equal to 2, K-BERT-
MSD achieves the best results. The results decrease when max entities is larger than 2.
The results demonstrate that the increase of knowledge can improve the effect of stance
detection, but too much knowledge will also bring noise. Next, we perform experiments
0%, 25%, 50% of knowledge graph and the full knowledge graph. The experimental
results are shown in Table 6. Therefore, we can draw the following conclusions from
the results in Table 6: (1) By adding external knowledge within a certain range, the per-
formance of our model can be improved. (2) Because a large knowledge graph contains
more information, it helps to detect the stance of target-post pairs.

Table 5. F-score with max entities ranging from 0 to 3.

max entities 0 1 2 3

F-score 0.813 0.824 0.831 0.820

Table 6. F-score with size of KG ranging from 0 to 1.

Size of KG 0 25% 50% 100%

F-score 0.813 0.820 0.826 0.831

4 Related Work

4.1 Stance Detection

So far, a considerable amount of literature has been published on microblog stance
detection [7,29,31]. The proposed methods can be roughly divided into two categories:
traditional machine learning methods and deep neural models.
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Traditional machine learning methods focus on how to select appropriate features
for stance detection. Besides simple textual features like bag-of-words(BoW) model,
Xu et al. [27] used para2vec, LDA and LSA to represent the semantic information
in tweets, and compared the effect of different machine learning algorithms such as
random forest and support vector machine (SVM) in stance detection. Ebrahimi et al.
[9] integrated sentiment polarity into target and stance, and modeled the interaction of
target, stance label and sentiment words in a probabilistic graph model.

Deep learning based methods for stance detection make attempts to learn the repre-
sentations of target and text, and then perform text classification based on the represen-
tations. Early stage of deep learning method, Augenstein et al. [3] proposed a neural net-
work architecture based on conditional encoding. A LSTM network is used to encode
the target, followed by a second LSTM that encodes the tweet using the encoding of
the target as its initial state. Experimental results showed that the model performed bet-
ter than coding tweets and targets separately, which is consistent with the work of Luo
et al. [16] and Du et al. [8]. With the introduction of attention mechanism, Bai et al. [4]
proposed a BiLSTM-CNN model based with attention mechanism to focus on the target
and text respectively. When PLMs are on the stage of deep learning, Wang et al. [25]
proposed a stance detection model BERT-condition-CNN. They use BERT pre-trained
model to obtain the representation vector of the text, and the relationship matrix condi-
tion layer between the targets and the text vector is constructed. Finally, CNN was used
to extract the features of the condition layer to perform the classification.

4.2 Pre-trained Language Model

Since BERT was proposed by Devlin et al. [6], a lot of models like RoBERTa [15],
BERT WWM [5], TinyBERT [12] and so on had made great efforts on the optimiza-
tion of the pre-trained process in different ways. Integrating structured knowledge, such
as knowledge graph, into deep learning models can improve the effectiveness of infor-
mation retrieval [20], but there is little research on this aspect. Zhang et al. [32] make
the first attempt to integrate entity information to cover the weakness of BERT in data
dependence, but they ignored the relationship between entities. Liu et al. [14] proposed
K-BERT, which enriched the representation by injecting triples in knowledge graph into
sentences. Liu et al. [15] encoded the knowledge graph with a graph attention model
and encoded the text using RoBERTa as the language model. Inspired by [14], we mod-
ify the K-BERT model and apply it to the task of stance detection, and finally provide
state-of-the-art (SOTA) results.

5 Conclusion

In this paper, we propose a microblog stance detection model with knowledge enhanced
BERT. The K-BERT-MSD model incorporates knowledge graph into the BERT archi-
tecture through a tree-structured sentence encoding mechanism and takes over the
advantages of the both. We design experiments to evaluate our model against several
state-of-the-art models. By comparing BERT with baseline methods including RUC
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MMC, ATA and T-DAN, we found that pre-trained language model like BERT signif-
icantly helped in this task. In addition, we found it beneficial to incorporate external
knowledge by comparing our model with a basic BERT model. Finally, we also tested
with different settings of K-BERT-MSD and found that both external knowledge is con-
ducive to stance detection, but too much external knowledge will bring noise, and too
little external knowledge will not improve the results.
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guage Resources Association (ELRA) (May 2016). https://www.aclweb.org/anthology/L16-
1623

18. Murakami, A., Raymond, R.: Support or oppose? Classifying positions in online debates
from reply activities and opinion expressions. In: 23rd International Conference on Compu-
tational Linguistics, COLING 2010, Posters, Beijing, China, 23–27 August 2010 (2010)

19. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.: Improving language understanding
by generative pre-training (2018)

20. Sheth, A., Kapanipathi, P.: Semantic filtering for social data. IEEE Internet Comput. 20(4),
74–78 (2016)

21. Siddiqua, U.A., Chy, A.N., Aono, M.: Stance detection on microblog focusing on syntactic
tree representation (2018)

22. Somasundaran, S., Wiebe, J.: Recognizing stances in online debates. In: Proceedings of the
Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint
Conference on Natural Language Processing of the AFNLP (2009)

23. Sun, T., et al.: CoLAKE: contextualized language and knowledge embedding. arXiv preprint
arXiv:2010.00309 (2020)
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Abstract. This paper proposes a two-stage learning pipeline for CQA in
the Buddhism domain. In the first stage, we trained an answer selection
model through Keywords-BERT that performs a deep semantic match
for QA pairs. Given a question, our algorithm selects the answer with the
highest relatedness score. Stage two also employs the trained Keywords-
BERT model to eliminate redundant information and only keep the most
relevant sentences of an answer for summary extraction. Our method
only requires standard QA pairs for training, significantly reducing the
annotation cost and the knowledge threshold for annotators. We tested
our model on a self-created Buddhism CQA dataset. Results show that
the proposed pipeline outperforms state-of-the-art methods like BERT-
Sum in terms of summary quality and model robustness.

Keywords: Community question answering · BERT · Answer
selection · Extractive summary · Buddhism

1 Introduction

Current answer selection methods exploit the semantic correlation between ques-
tions and answers via different deep neural architectures. Zhang et al. [10]
designed an attentive and interactive neural network to learn interactions of each
paired QA. Zhou et al. [11] combined a convolutional neural network a recur-
rent neural network to capture the semantic matching of a QA pair. Xie et al. [8]
presented an Attentive User-engaged Adversarial Neural Network to incorporate
users into the learning pipeline for answer selection. These prior studies, how-
ever, did not address the importance of domain knowledge in domain-specific
CQA systems.

Text summarization techniques generally fall into two categories: extractive
and abstractive summarization. The former aims to extract key sentences from
c© Springer Nature Switzerland AG 2021
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the source text, while the latter may use external vocabulary to construct sen-
tences not belonging to the source text. In the context of CQA, both extractive
[6,7] and abstractive [1,7,9] methods were developed. Deng et al. [6] propose
a joint learning model that tackles answer selection and summarization via an
attentive pointer-generator network. Zhang et al. [9] model a long sentence as
a graph, where vertices represent domain concepts, and edges are identified via
keywords/entities that co-occur between sentences. The constructed graph con-
volutional network is equipped with a question-focused dual attention module
that allows the model to generate summaries relevant to questions. We emphasize
that a competent summarization model in CQA should exploit the core infor-
mation in answers and the semantic correlation between QA pairs to generate
concise and accurate answer summaries.

To address these challenges, we propose a matching-based two-stage learn-
ing pipeline to tackle the CQA task in the Buddhism domain. In particular,
the proposed learning pipeline includes answer selection and extractive summa-
rization. The method utilized Keywords-BERT [5] for deep semantic matching
between QA pairs. Attended by domain keywords, we trained a QA model to
predict the relatedness of the answer with a given question. Both stages adopted
the QA model. For answer selection, the most relevant answer was selected;
while for answer summarization, we split the selected answer into sentences that
were re-matched against the corresponding question to obtain a rank for each
sentence, then only kept the top-k ranked sentences to form a summary. Unlike
conventional summarization methods that require costly annotation, i.e., human-
written reference summaries, our strategy only needs annotated QA pairs for
training, significantly reducing the annotation cost. Below we provide an exam-
ple Buddhism question with an answer of over 200 characters, while the answer
summary only contains 40 characters and is concise enough to comprehend.

Question: (What does it mean when
one thought of anger raises a million barriers?)
Answer summary:

(As soon as a moment of hatred and
anger against others arises, millions of sins that hinder practice will grow.)

This paper makes the following contributions:

– We propose a two-stage method for the CQA problem in the Buddhism
domain. The first stage, answer selection, trains a QA model based on
Keywords-BERT to match the most relevant answer given a question. The
second stage, extractive summarization, reuses the QA model from stage one
to choose the most relevant sentences from the selected answer to form a sum-
mary. Our model training is featured by a deep semantic matching between
QA pairs attended by domain keywords, exploiting the context information
and domain knowledge for the task.

– We create a Buddhism CQA dataset used for both answer selection and sum-
marization tasks. We also evaluated the impact of different training methods
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on subsequent summarization. Experimental results show that the proposed
method can identify the best answer and generate accurate answer sum-
maries, outperforming other state-of-the-art (SOTA) methods like BERT-
Sum in terms of summary quality and robustness.

2 Method

2.1 Problem Definition

Let Q and A denote the questions and answers sets, respectively. Given a ques-
tion q ∈ Q, we are tasked to select the best answer a∗ ∈ A and then perform
extractive summarization for a∗. In particular, let Sa∗ = {s1, s2, . . . , sn} be a
list of sentences split from a∗, our model needs to extract a subset of sentences
from Sa∗ to form an answer summary, denoted by β∗, which does not exceed a
length of l characters.

2.2 Keywords-BERT

Keywords-BERT [5] adds a keyword-attentive layer that highlights the domain
keywords to enhance the semantic interaction of the sentence pair supplied dur-
ing training. A well-trained Keywords-BERT model takes as input a sentence
pair and outputs a score that quantifies the relatedness of the sentence pair. A
set of keywords should be collected to facilitate training. Specifically, Keywords-
BERT modifies BERT in two ways. First, keywords are masked to participate
the training using masked language modeling [2]. For our case, the point-wise
training takes a Q-A pair as input, where keywords in the answer sentence are
masked so that tokens in the question can attend to the keywords in the answer.
Second, to enhance/decrease the semantic relatedness for positive/negative sam-
ples, a keyword-attentive layer is added in parallel with the last Transformer
layer to compute a keyword difference vector, which is a concatenation of the
differences of average-pooled representations of the input sentence pair. With
this change, the last Transformer layer of BERT is basically replaced by the
keyword-attentive layer so that keywords information can be injected closer to
the detection head, which turned out to be empirically effective.

2.3 Keywords Collection

We applied a NER method to extract Buddhism keywords used for the
Keywords-BERT training. The pre-defined named entity types in Buddhism
include PER (person), ORG (organization), NW (work name), LOC (place
name), and NZ (other proper nouns). For each entity type, we list a few instance
examples as follows.

– PER: (Manjushri), (Shakyamuni)
– ORG: (Tiantai Sect), (Brahmanism)
– NW: (Vajrapani Sutra), (Immeasurable Life Sutra)
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– LOC: (Mount Fahua), (Sakyamuni Temple)
– NZ: (Karma), (Walking meditation)

We then scraped over 20k Buddhism words from encyclopedias, sutras, and Bud-
dhist websites to create a small annotated corpus, which was utilized to fine-tune
the Baidu LAC base NER model [3]. This way, the Buddhism domain knowledge
can be incorporated into the resulting NER tagger. In addition, we selected 700
representative keywords from the 20k-word list to create a gazetteer. The final
gazetteer-assisted NER tagger was employed to detect domain keywords in the
QA pairs.

2.4 Training an Answer Selection Model

We employed point-wise and pair-wise approaches for training.
The input of the point-wise model is a QA pair that belongs to a training

set D = {(xi, yi)}mi=1, where xi = (q, a), q ∈ Q, a ∈ A, yi ∈ {1, 0}, and m is
the number of training examples. yi = 1 means a match for q and a, indicating
a positive example, and vice versa. We applied the binary cross entropy loss
function as follows:

Lpoint-wise = −
∑

i∈Ipos

log ri −
∑

i∈Ineg

log(1 − ri)

in which Ipos and Ineg are the sets of indices of the positive and negative exam-
ples, and ri = Keywords-BERT(xi) is the model’s output, which can be regarded
as the probability of answer ai being a match of question q.

We also trained a pair-wise model on set D′ = {(q, a+, a−) | q ∈ Q, a+ ∈
A, a− ∈ A}, in which a+ and a− represent matched and mismatched answers for
question q, respectively. A triplet loss function was adopted:

Lpair-wise = max(0, α − r+ + r−)

where r+ = Keywords-BERT((q, a+)), r− = Keywords-BERT((q, a−)), and α is
a hyperparameter that represents the margin between positive and negative QA
pairs.

2.5 Extractive Summarization

Given question q, we took the highest scoring answer a∗ and split it into
sentences S = {s1, s2, . . . , sn}. For each sentence si ∈ S, we formed a q-
si pair and sent it through the trained selection model to obtain a score
ri = Keywords-BERT((q, si)). Based on the scores, we re-ranked the sentences
in descending order and kept the top k sentences such that the total length of
the k sentences does not exceed l. Finally, the k sentences were reordered based
on their original positions within the answer a∗ to form an extractive summary
β∗. Figure 1 describes the process of our answer summary method.
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Fig. 1. Stage two: extractive summarization

3 Dataset and Experimental Setting

3.1 Dataset

The entire dataset contains the following components.

– Dtrain: to train the Keywords-BERT model, we gathered a collection of ques-
tions and answers by crawling a Buddhist community Q&A website and con-
structed a total of 50,000 QA pairs with a 50/50 split of positive and negative
examples.

– Dtest-sel: to test the answer selection model, we created a dataset with 3,553
QA pairs with 1,119 distinct questions. In this test set, correct answers were
selected and labeled by human annotators.

– Dtest-sum: to test the answer summarization, we created a test set with 2,166
QA pairs that were all positive samples. For each answer in the test set, we
manually wrote a reference summary using the sentences from the original
answer. Samples in the training and test sets were collected from the same
source.

– Dtest-sum-OOS: to further test the model’s robustness, we gathered an addi-
tional out-of-sample (OOS) test set from a different source with 207 QA pairs,
where each question was answered by Venerable Yin Guang.

3.2 Negative Sampling

High-quality negative samples are important for training a robust model. In this
study, we followed the negative sampling method in [5] to auto-generate negative
samples based on the positive samples available to us. In particular, given an
answer a′, we first generated a keyword-augmented answer a′||ka′ that was a
concatenation of a′ and the domain keywords found in a′. We then performed a
search for a′||ka′ within the question set using Elasticsearch. The search returned
a list of questions that were ranked by the similarity between the QA pair. For
each candidate question q′ in the result list, we determined (q′, a′) as a negative
sample pair if 1) a′ was not marked as an answer to q′ in the positive examples,
and 2) the similarity between q′ and a′||ka′ was below a pre-defined threshold.
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3.3 Baselines

For answer selection, we compared our method to the base BERT model trained
using point-wise and pair-wise approaches on Dtest-sel and compared our method
to the Joint Learning model on an open domain dataset called WikiHowQA [1].
For answer summary, we picked two baseline models, including Lead-100 and
BERT-Sum [4]. Lead-100 takes the first hundred characters of the answer to
form a summary; the reason to set a maximal length of one hundred characters
is due to the display limit of the client mobile App. BERT-Sum, on the other
hand, stacks several layers on top of the BERT output for summarization. The
latter achieved SOTA results in several public QA datasets.

3.4 Experimental Setting

We utilized the Chinese BERT-base with a maximum document length of 256.
In the experiment, a longer input led to performance degradation, potentially
due to the fact that the key part of an answer generally appears early in the
whole answer text, and the following redundant text that carries less critical
information would have an unnecessary impact on learning. Also, we adopted a
learning rate of 1e−5. For the pair-wise training, the margin was set to 0.6. The
model was trained for three rounds on an NVIDIA Tesla V100 GPU. In the sub-
sequent summary extraction, we removed some useless interrogative sentences
and repeated sentences that were the same or highly similar to the question, and
kept the summary length between 50 and 100 characters.

4 Results and Discussion

Experiments were conducted to evaluate the performance of the proposed model
in both answer selection and summarization.

4.1 Answer Selection Evaluation

Two datasets, including our dataset Dtest-sel and an open domain WikiHowQA
dataset [1], were used to evaluate answer selection. For Dtest-sel, precision at
one (P@1) and mean reciprocal rank (MRR) were used as performance metrics.
The reason to use P@1 was that the human annotators only marked one correct
answer (the gold standard) per question. Also, MRR was used to evaluate how
well a model can rank the answers in relatedness. For the WikiHowQA dataset,
mean average precision (MAP) was used instead of P@1, because each question
in the dataset could have multiple correct answers.

Results in Table 1 show that the Keywords-BERT model outperformed
the base BERT in answer quality on test set Dtest-sel, verifying that adding
a keyword-attentive module to BERT can enhance the semantic interaction
between a QA pair, which allowed the model to find a more relevant answer.

The WikiHowQA dataset contains 203,596 questions and 1,188,189 QA pairs.
We compared our model with ASAS [1], which was considered as the SOTA for
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Table 1. Answer selection evaluation on Dtest-sel

Model P@1 MRR

BERT-Point-wise 0.3083 0.5564

BERT-Pair-wise 0.3065 0.5545

Keywords-BERT-Point-wise 0.3834 0.6071

Keywords-BERT-Pair-wise 0.3941 0.6173

this task. Table shows that our method outperformed ASAS by 11.1% in MRR
but under-performed ASAS by 4.7% in MAP, meaning that our method did a
better job in ranking the answers and performed worse in classifying positive and
negative samples. The relatively low MAP of our method could be resulted by the
quality of keywords gathered on the WikiHowQA dataset, which is open domain
and covers a variety of topics. It is challenging to collect high-quality keywords
in an open domain dataset, and our experiment only utilized a basic NER tagger
from NLTK for keywords collection, which may affect the performance.

Table 2. Answer selection evaluation on WikiHowQA

Model MAP MRR

Joint learning (ASAS) [1] 0.5522 0.5686

Keywords-BERT-Pair-wise 0.5051 0.6790

4.2 Extractive Summary Evaluation

We took the trained Keywords-BERT model and performed summary extraction
on Dtest-sum. Results were reported in ROUGE scores in Table 3. It is observed
that our approach based on Keywords-BERT is not advantageous. There are
three reasons. First, the majority of questions collected on the Buddhist CQA
website were factual questions that asked for noun explanation. Key information
to answer these questions mostly appeared in the first few sentences of an answer,
which was in favor of Lead-100. Second, as mentioned earlier, the annotators did
not have much knowledge of Buddhism, so that they may not fully understand
a lengthy answer and tended to make a reference summary using the first couple
of sentences of the answer, leading to a performance drop on the ROUGE scores
for both BERT-Sum and our approach. Lastly, for certain Buddhism questions,
there is more than one summary that can be extracted from a lengthy answer.

For these reasons, we conducted a human evaluation for the tested models
on Dtest-sum. The human evaluators had some knowledge of Buddhism, and
their job was to tell whether or not the generated summary of a model could
answer the question. We had four human evaluators conduct this test to reduce
the impact of subjective opinions on the results, shown in Table 4. It is observed
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Table 3. Extractive summary evaluation

Model R-1 R-2 R-L

Lead-100 54.50 46.25 51.10

BERT-Sum 51.01 39 45.31

Keywords-BERT-Point-wise 48.79 38.39 44.10

Keywords-BERT-Pair-wise 49.12 38.41 44.16

that the Keywords-BERT-Pair-wise model performed the best, with 90.1% of the
generated summaries being able to answer the corresponding question because
of the ranking ability introduced by the pair-wise model. Lead-100 did poorly in
this test since critical pieces of the answer may spread across the entire answer,
not just in the first few sentences. BERT-Sum was in line with our method.

Table 4. Human evaluation results on Dtest-sum

Model Answerability

Lead-100 0.729

BERT-Sum 0.897

Keywords-BERT-Point-wise 0.889

Keywords-BERT-Pair-wise 0.901

Due to the annotation problem mentioned earlier, BERT-Sum is prone to
overfit. As such, we conducted an OOS testing on Dtest-sum-OOS and report the
results in Table 5. The test data contained 207 QA pairs from Venerable Yin
Guang’s QA records, which is different from the source from where Dtrain was
taken. Due to the lack of reference summary, we only did the human evalua-
tion. Results show a noticeable performance drop for BERT-Sum, indicating an
overfitting issue. This result further verifies that the interaction of questions and
answers during BERT’s training, along with a keyword attentive mechanism, is
crucial to extract key information for a high-quality answer summary.

Table 5. Human evaluation results on Dtest-sum-OOS

Model Answerability

Lead-100 0.677

BERT-Sum 0.778

Keywords-BERT-Point-wise 0.847

Keywords-BERT-Pair-wise 0.884
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We display an example below to show that Keywords-BERT-pair-wise does
better in locating the key information of the answer to generate a concise and
accurate summary. The Mage’s answer is lengthy, while the summary given by
BERT-Sum fails to capture the key information.

Question: (There are five
existing translations of the Infinite Life Sutra, and there are also collected texts,
what should be the guideline?)
Mage’s answer:

(There are five translations of the
Sutra of Infinite Life. Originally translated from Lou Jiazhen, the Moon Branch
of the Later Han Dynasty, three juan, literary complex, the name Buddha said
boundlessly pure and equal enlightenment. The second translation is in Wuyue
Zhizhiqian, there are two volumes, the name Buddha said Amitabha Sutra. The
sutras recited in the sun, also known as the Buddha Amitabha Sutra... (400
characters))
BERT-Sum:

(There are five
translations of the Sutra of Infinite Life. The second translation is in Wuyue
Zhizhiqian, there are two volumes, the name Buddha said Amitabha Sutra. The
sutras recited in the sun are also called Amitabha Sutras, so a large character is
added to the outside.)
Keywords-BERT-pair-wise:

(In the case of the infinite life of the
Buddha, the text is good, but the text of the last exhortation is not recorded,
so all of them are based on Kang Shengjia’s infinite life sutra as a
guideline.)

5 Conclusion

This paper presented a matching-based two-stage method for answer selection
and extractive summarization in CQA. The method utilized Keywords-BERT
for deep semantic matching between QA pairs. Attended by domain keywords,
we trained a QA model to predict the relatedness of the answer with the given
question. Both stages adopted the QA model. For answer selection, the most rel-
evant answer was selected; while for answer summarization, we split the selected
answer into sentences that were re-matched against the corresponding question
to obtain a rank for each sentence, then only kept the top-k ranked sentences to
form a summary. We compared the proposed method with SOTA approaches in
the quality of answer selection and summarization. Results demonstrated that
our method showed strong ranking ability in answer selection and generated a
high-quality summary through extracting key sentences, especially in the OOS
testing, showing the model’s robustness. We also realize that the model’s per-
formance is limited by the keywords quality in an open domain dataset, which
is a challenge to be addressed in our future work.
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Abstract. The performance of speech emotion recognition (SER) sys-
tems can be significantly compromised by the sentence structure of words
being spoken. Since the relation between affective content and the lexi-
cal content of speech is difficult to determine in a small training sample,
the temporal sequence based pattern recognition methods fail to gen-
eralize over different sentences in the wild. In this paper, a method to
recognize emotion for each syllable separately instead of using a pattern
recognition for a whole utterance is proposed. The work emphasizes the
preprocessing of the received audio samples where the skeleton struc-
ture of Mel-spectrum is extracted using formant attention method, then
utterances are sliced into syllables based on the contextual changes in
the formants. The proposed syllable onset detection and feature extrac-
tion method is validated on two databases for the accuracy of emotional
class prediction. The suggested SER method achieves up to 67% and 55%
unweighted accuracy on IEMOCAP and MSP-Improv datasets, respec-
tively. The effectiveness of the method is proved by the experimentation
results and compared to the state-of-the-art SER methods.

Keywords: Speech emotion recognition · Syllables · Feature
extraction

1 Introduction

Speech Emotion Recognition (SER) is an experimental field that has future
prospects of aiding language learning of computers. Currently, the automatic
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speech recognition requires labeling of spoken words and their meanings to
understand those words. However, there are many aspects of language that can
not be labelled as certain words, but they carry important symbolic meanings.
SER is one of the aspects of understanding the spoken symbols in speech that
can help the computers to recognize important messages with better accuracy.

There are three major categories of deep learning models to learn speech
emotions. The LLD (Low Level Descriptors) based models usually use prosodic
features for learning patterns in a non-sequential way [4,7], the CNN based
models use the spectrograms find patterns in the spectra of speech signals (e.g.,
[11,21]), and thirdly the LSTM based models either use the LLDs or the spectral
features of the frame-by-frame windows of speech signal to learn sequential pat-
terns (e.g., [20,22]). Some related works have proposed attention based learning
by removing redundant information to improve recognition speed without com-
promising precision [5,12,18]. Our focus of this paper is to find a way to use the
inherently occurring separations in the speech signals such that a modular unit
of speech (i.e., syllables) is used rather than a fixed sampling window size or few
seconds long utterances.

To solve the above problems, we propose a model that can recognize syl-
lable separations in the speech signal. We present a syllable level recognition
model that splits the Mel-spectrum into constituent syllables by the cues of
the changing speech sounds such that it helps to distinguish separate units of
speech syllables in order to learn the syllable level features. This method helps
to learn the relation between of the syllables of variable time duration and emo-
tional categories without having to compromise between recognition accuracy
or speed. The experimental results prove the effectiveness, leading to improved
performance on two databases with four categorical emotional labels.

The rest of this paper is organized as follows. A syllable level features extrac-
tion method is explained in Sect. 2. In Sect. 3, the experimental setup and results
are presented along with a brief discussion and comparison to other works. Then
we conclude the paper in Sect. 4.

2 Syllable Level Emotion Recognition

The general framework for SER starts with the segmentation of audio signal into
20–100 millisecond frames, then spectrogram or audio features of each frame
are passed as the input to a deep neural network or any other machine learning
classification tool. The RNN based neural networks use LSTM or similar machine
learning methods to learn the temporal order of frames (e.g., [8,14]). There are
few other methods to learn the temporal cues without using recurrent neural
networks (e.g., [10,23]). The number of audio features is usually within the range
of 20 to 1000 per few milliseconds frame. Spectrogram based methods use varying
sizes of image inputs per frame. Some related works have tried to decrease the
input size of the network by using techniques such as discriminative dimension
reduction or the attention based deep learning [5,6]. Decreasing the input size
increases the risk of information loss, whereas increasing the input size increases
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the risk of over-fitting, therefore it is important that the automated feature
selection process select features with a careful analysis and validation across
variety of speakers and datasets. In this paper, however, we propose a static
feature selection algorithm that focuses on the preprocessing stage and extracts
only the statistical syllable features from a Mel-spectrum of an utterance.

As an alternative to the conventional approach, the proposed method has
a highly granular time-step, which processes the speech syllable-by-syllable and
decomposes the Mel-spectrum into easily digestible syllable features. In a recent
paper, a phoneme type converge method was proposed that assigns phoneme
labels to each 25 ms speech frame [17]. That method had few shortcomings such
as that phoneme duration was fixed and no sequencing was taken into account.
In this paper, using the same formant extraction method, we maintain the gran-
ularity from speech signal input to the label prediction at the syllable level. The
core idea is to distinguish syllables as separate units of speech which are then
used as input features for training a simpler and more generalizable neural net-
work. An overview of the proposed model is given in Fig. 1. Parts of the method
are explained in the following subsections.

Fig. 1. An overview of the proposed method.

2.1 Mel-Spectrum Extraction

Similar to conventional methods, we start with creating a mel-spectrogram of
the speech signal. A Mel-spectrogram is a spectrogram where the frequencies are
converted to the Mel scale. On Mel scale, each unit step is such that pitch sounds
equally distinct to the listener. In other words, on Hertz scale pitch units are
objectively equidistant, but on Mel-scale pitch units are perceptively equidistant.
This is because humans can perceive pitch differences at lower frequencies better
than at higher frequencies.

The speech signal is preprocessed by dividing it into a few millisecond frames
such that each frame has minimum variation within its timeframe. A contextual
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frame window of time duration Tw is iterated through the speech signal with a
stride of Ts. Then a Hamming window is applied to each window

xt(n) = (0.54 − 0.46 cos(
2πn

W − 1
))st(n) (1)

where st is the input signal of frame t, xt is the windowed frame, 0 ≤ n ≤ W −1,
and W is the size of window (Tw times sampling rate). Then power spectrum
of each frame is calculated by taking Short-term Fourier Transform (STFT ) of
xt. Then a triangular Mel-filter is applied to the power spectrum that coverts
linear Hertz to a non-linear log scale, which is commonly used for many speech
recognition methods due to similarity with the human ear perception. The Mel
scale frequency can be converted to Hertz scale by

m = 2596 log10(1 +
f

700
) (2)

where m is Mel frequency and f is the Hertz scale frequency. Then the central
frequencies of Mel-filter banks can be calculated as

f(l) = 700(10(ml−ml+1)/5190 − 1) (3)

where f(l) is the central frequency of filter bank l on Hertz scale and m is the
lower limit of filter bank l on Mel scale. By adjoining the Mel-filter banks of
few adjacent frames (frames are usually 25 ms long), we get a Mel-spectrum of
speech signal. In our experiments, 128 Mel filter bin ranging 50 Hz to 4000 Hz
were used.

2.2 Formants Extraction

Formants of fundamental frequency have the highest magnitude compared to
the rest of frequencies for harmonic sounds. Formant recognition is useful for
estimating pitch, removing noise, detecting voiced speech in the Mel-spectrum.
We consider the top six Mel-filter banks with the highest magnitude as the
top six formants. Formants (i.e., high amplitude frequency bands) are usually
separated from each other by low energy frequency bands. Formants are detected
by comparing the local maxima and minima of amplitude of Mel-filter banks with
each other.

ph = max
h=0|p(l)≤ph−1

p(l) (4)

where ph is the power amplitude of hth the highest amplitude formant and p(l) is
the amplitude of filter bank l. Similarly, the Mel-scale frequencies of top formants
can be calculated as

fh = arg max
h=0|p(l)≤ph−1

p(l) (5)

where fh is the Mel-scale frequency of hth the highest amplitude formant.
Equation 5 gives us the central frequencies of formants, however, formants do
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not have a precise narrow frequency band, instead, the width of the formant
band is an important measure of sound quality. Therefore, we calculate the span
formant frequency range (from minima to minima) as

sh(t) = |arg min
l<fh

p(l) − arg min
l>fh

p(l)| (6)

where sh is the frequency domain span of formant h. The width of formant
represents the spread of pitch, which is perceived as the sharpness of voice. The
wider vertical span of a formant at a higher frequency is an indicator of voice
affects such as breath sounds or gasping expression. Similarly, the span of the
lower frequency formants is helpful in discriminating male and female voices.

2.3 Formant Matching Index

In order to link the formants of supra-segments across a speech segment to
distinguish syllables, a matching index Ia,b between any two formants (ha, hb)
of any two frames (ta, tb) is calculated as

Ia,b =
10

tb − ta
+ (10 − (fb − fa)2) + La

minp(pa, pb)
maxp(pa, pb)

(7)

where first term accounts the temporal distance and the frequency difference
such that farther the distance or difference, lower the match index. The second
term multiplies La, the number of already linked formants to the formant ha,
to the ratio of power of both formants given that the ta < tb, tb − ta < 10, and
fb − fa < 10.

2.4 Syllable Onset and Offset Detection

Syllable separation is a difficult task because there is usually no clear boundary
between the two parts of the words or even between two adjacent words. In
our method, we propose a technique that uses the maxima and minima of the
amplitude of the formants to separate phonemes. One of the clear signs of syllable
separations is a silent pause in speech, but that only helps to find the end of
the sentences or utterances. Besides that, some parts of speech such as nasal
sounds have a clear minimum at the center while maxima at the edges, which
makes it difficult to program a hard coded rule for the phoneme separation. Our
proposed solution is to use an amplitude hysteresis that adjusts the thresholds for
the syllable-ending parameters based on the ad-hoc amplitude threshold of the
recent speech frames. Most of the time, there are multiple formants contributing
to the energy of the frame, so the formant’s center energy can’t be taken as the
perceived volume, but at the same time the overall energy of the frame is likely
to include noise which is what we are trying to avoid. Therefore, we calculate a
composite energy that sums up the energy of only the top ten major formants
at each frame t as

ec(t) =
6∑

h=0

eh(t) + [1 + fh(t) + HE ] (8)
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where ec is the composite energy at frame t, ft,h is the hth formant’s frequency
and HE < 0.1 is an emphasis constant for raising the weights of the energies
of the higher frequency formants because higher frequencies carry more energy
than the lower frequencies if the amplitudes are kept the same. Using only the
top 6 formants prevents low energy formants to be considered as the voiced
sound energy since the low energy formants are likely to be noise or the echo of
the actual speech. This frame energy is used to distinguish pauses in the speech.
When the composite energy is lower than a certain threshold for a certain number
of frames, then the syllables or the speech segment is truncated. A longer pause
is used to separate utterances into multiple segments, while shorter pauses of at
least 2 consistent frames (<50 ms) are used to separate syllables. The syllable
separation algorithm initializes at the stage of looking for the rising edge of the
amplitude. Once a rising edge is found, it moves to the second stage where is
looks for at least 50% drop in energy ec, then it moves to the third stage where
it looks for the lower threshold of the amplitude that is set according to the
contextual amplitude maxima. An example of separated syllables is shown in
Fig. 2. The syllables’ onsets are marked by their indices along the horizontal
axis.

Fig. 2. A spectrum of formants showing the syllable onsets and word separations by
longer pauses. Each syllable onset is market by its index (word index, syllable index).

2.5 Syllable Level Feature Extraction

Syllables come in various shapes and sizes. The spectrum representation of a
syllable are more dependent on the lexical content rather than the affective
content, therefore the proposed strategy here is to extract statistical features
instead of sequential features. Based on the experimental evaluations, a set of
40 features is proposed for syllable level emotion recognition. Table 1 shows the
list of features with their brief Introduction.
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Table 1. Description of formant based syllable features. All features except for the syl-
lable duration are calculated separately for top 3 formants of syllables. Mean, standard
deviation, and sum are taken across multiple suprasegmental frames (25 ms) within a
syllable.

Count Type Brief description

1 Time axis Duration of syllable in seconds

3 Frequency Mean of non-zero formant frequencies in syllable context

3 Frequency Standard deviation of non-zero formant frequencies

3 Time axis Voiced duration of formant

3 Power Formant energy/syllable duration

3 Power Formant energy/formant voiced duration

3 Bandwidth Mean of formant span

3 Numeric Break counts due to unmatched formants in a syllable

3 Accent
∑

formant frequency increments relative to previous frame

3 Accent
∑

formant frequency decrements relative to previous frame

3 Stress Count of power maxima within the syllable

3 Stress Mean of power of formant power maxima

3 Stress Standard deviation of formant power maxima

3 Stress Ratio of mean of formant power maxima over average power

40

In this method, each formant is treated separately to estimate the timbre,
tone, accent, and stress of syllable rather than the overall pitch. There are essen-
tially five types of features, i.e., formant frequencies, power, span, accent, and
stress. Formant frequencies, power, and span at syllable level can be calculated
by taking the mean and standard deviation of these features at suprasegmental
level as given in Sect. 2.2. The accent features measure the overall declination or
inclination of formant pitch which is also an indication of increase or decrease in
pitch of a syllable from it’s starting frame to the last frame. The stress features
measure the stress within a syllable by comparing the energy maxima to the rest
of the frames within a syllable.

3 Experimentation

We evaluated our SER model on two databases based on unweighted accuracy
for the classification. All experiments were carried out in Python 3.7.10 (64-bit)
environment on a computer of the 64-bit Windows 10 system with 16G memory
and Intel Core i7-8550U processor. The syllable features were extracted using
the method described in Sect. 2, then the Keras python library was used to
incorporate the neural network in our method.
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3.1 Databases

Two databases were used, i.e., IEMOCAP (Interactive emotional dyadic motion
capture database) [2] and MSP-Improv [3]. Both the databases have 4 common
categorical emotional labels i.e., Happiness, Sadness, Anger, and Neutral from
multiple raters. We used these 4 common emotions for the IEMOCAP and MSP-
Improv. In IEMOCAP, there are only 2942 utterances and in MSP-Improv there
are 3476 utterances with more than 67% agreement among raters. Table 2 shows
the sample counts and duration of utterances before the syllable extraction. Note
that the total duration of is almost the half for syllables, its because leading and
ending silences and short pauses (more than 250 ms) in between the words are
removed while separating syllables.

Table 2. Sample counts and total duration (minutes) of raw utterances and the
extracted syllables for each label in databases.

Label IEMOCAP MSP-Improv

Utterances Syllables Utterances Syllables

Count Minutes Count Minutes Count Minutes Count Minutes

Angry 289 21 1790 15.3 362 21 1956 12.4

Happy 946 61 5311 42.1 1205 65 6495 41.5

Neutral 1099 74 7013 46.3 1489 95 8591 50.4

Sad 608 51 3719 23.3 420 32 2749 15.82

Total 2942 207 17833 127 3476 213 19791 120.12

Avg. duration 4.2 s 0.43 s 3.8 s 0.36 s

3.2 Training and Validation

The parameters for the feature extraction process are quite few as compared
to the parameters required to tune the neural network. We used 25 ms frame
windows with 15 ms steps, 4 kHz maximum frequency, 256 FFT bins and 128 Mel
bins for the feature extraction process. Syllable separation also have a parameter
for pause length and minimum syllable length which was set to 100 ms (4 frames).
A neural network with three hidden layers (units = [100, 100, 32], with ReLU
activation) that are followed by a softmax layer was used for all experiments.
The training was performed with a learning rate of 0.01, decay rate of 0.001 and
the batch size of 100. The model was trained for maximum 100 epochs for both
databases, however the minimum validation loss was reached within the first
50 epochs. It is also worth mentioning that the IEMOCAP reached minimum
validation loss at around 25 epochs while MSP-Improv took around 50 epochs.

For training the network to predict the emotional classes we used the cate-
gorical cross-entropy function given as

Loss = −
Ne∑

i=1

yi · log ŷi (9)
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where Ne is the total number of the emotion classes, ŷi is the ith scalar value in
the model output, and yi is the corresponding target value of the model output.

For predicting labels at utterance level, the probabilities of emotional classes
at syllable levels are summed up for all syllables in a given utterance as

Ck,u =
Nsyls∑

s=0

√
TsPk,s (10)

where Ck,u is the cumulative confidence in emotional class k for an utterance u,
Nsyls is the number of syllables in the utterance, Pk,s is the predicted probability
by the softmax for syllable s, and Ts is the duration of the syllable s in seconds.
The utterance is assigned with a label with the highest cumulative confidence.

For validation, two types of schemes were used for a better comparison with
related works. In k-fold scheme, all samples are first shuffled randomly then
divided into various folds. In LOSO (Leave One Speaker Out) scheme, samples
for one speaker are used for validation while all other samples are used for
training, this process is repeated for each individual speaker as the validation
fold, then the average of all folds is taken as the overall UAR. The validation
results are given in Table 3.

The results in Table 3 show that the unweighted average recall (UAR) for the
proposed model is between 45% to 67% for the baseline comparison databases of
IEMOCAP and MSP-Improv. The unweighted accuracy takes into account the
unbalanced samples for four emotions, and takes the average of recall precision
for each emotion. Various validation schemes result into various results there-
fore unweighted accuracies of four schemes are reported. The results differed
from minimum 52% to maximum 69% for each individual validation speaker of
IEMOCAP during LOSO validation.

Other related works have reported the unweighted accuracy (or Unweighted
average recall) within the same range for these datasets using the LOSO valida-
tion. Related works have reported similar accuracy for IEMOCAP database, such
as 65.73% by [6], 60.89% by [9], 63.5% by [18] and 63.9% by [15]. A very similar
accuracy of 62% for IEMOCAP and 56% for MSP-Improv has been reported by
using a graph attentive GRU based method [19]. The best performance models
use deep learning methods such as CNN and LSTM along with various feature
finding techniques to predict the emotional categories.

The lack of difference in the accuracies of all these models shows that the
accuracy as a metric of comparison is not enough, therefore some other pros and
cons should also be compared to judge the effectiveness of the model. One of the
advantages of our model is that it uses the shallow neural network model, which
means it is not a deep learning model therefore it does not require long hours
of training for few hours of speech. It also shows that the feature learning by
deep learning predicts with as much accuracy as our proposed (rather simpler)
method. The second advantage of the proposed method is the small sampling
window for syllable level prediction. Almost all other related works have used
methods that apply to a complete utterance of a few seconds. The smaller the



270 A. Rehman et al.

sampling window, the poorer the accuracy. Although there is no available com-
parison for the syllable level predictions (<0.5 s), the syllable level predictions
can be useful in real-time prediction with almost no latency.

An interesting trend to be noted in Table 3 is that the UAR of syllable level
predictions increases with the increase in the validation sample ratio. Whereas,
the general trend for utterance level prediction is the decrease in UAR with the
increase in validation sample ratio. This trend hints towards the better ability
of the syllable level prediction model to perform better with relatively smaller
training samples.

Table 3. Comparison of the UAR% at utterance level using our method and results
reported by the other comparative works. The prediction UAR at syllable level is given
only for the proposed method.

Ref. Method DB Validation UAR%

Utterance Syllable

[1] CNN IEMOCAP LOSO 61.8 NA

[13] CNN-GRU IEMOCAP LOSO 61 NA

[9] CNN-LSTM IEMOCAP LOSO 60.9 NA

[6] Gaussian-NN IEMOCAP LOSO 65.7 NA

[18] RNN IEMOCAP LOSO 63.5 NA

[15] RNN IEMOCAP LOSO 63.9 NA

Ours Proposed IEMOCAP LOSO 63.1 52.1

Ours Proposed IEMOCAP 5-folds 67.2 56.7

[16] Triplet MSP-Improv LOSO 46.2 NA

[1] CNN MSP-Improv LOSO 52.6 NA

[19] GRU MSP-Improv LOSO 56 NA

Ours Proposed MSP-Improv LOSO 52.5 48.3

Ours Proposed MSP-Improv 5-folds 55.6 52.6

4 Conclusion

One of the challenges in SER is to learn to predict very specific labels from
highly overlapping samples. There is a need for more discriminative yet general-
izable methods. To solve this problem, we proposed an SER method that tries
to predict categorical emotional label for spoken syllables. The idea behind the
method was that the highly granular predictions will increase the generalizability.
We used Mel-filter banks to extract speech formants which are used to recognize
the syllable separations in order to extract syllable level features. These syllable
features were then used to train a simple neural network to recognize categorical
emotions. The effectiveness of the proposed model was evaluated on two stan-
dard benchmark databases (IEMOCAP and MSP-Improv). Our method achieves
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UAR of 67% on the IEMOCAP database and 55% on MSP-Improv with 5-folds
validation at utterance level, whereas it achieved a relatively lower accuracy for
each individual syllable.

In the future, we plan to improve the proposed model to perform experiments
on an even wider range of databases. There is a need for automatic recognition
of differences among the databases. Even though most emotion labels are usually
common, a recognition model that recognizes the differences other than emotion
labels will greatly improve the cross-corpus SER. We plan to create such a model
that requires minimum labeling to perform a multi-category classification task.
We hope to improve the applicability of SER further so that it can be employed
in more real-world applications such as medical assistance, social media, and
online interfaces.

References

1. Aldeneh, Z., Provost, E.M.: Using regional saliency for speech emotion recognition.
In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 2741–2745. IEEE (2017)

2. Busso, C., et al.: Iemocap: interactive emotional dyadic motion capture database.
Lang. Resour. Eval. 42(4), 335 (2008)

3. Busso, C., Parthasarathy, S., Burmania, A., AbdelWahab, M., Sadoughi, N.,
Provost, E.M.: MSP-IMPROV: an acted corpus of dyadic interactions to study
emotion perception. IEEE Trans. Affect. Comput. 8(1), 67–80 (2016)

4. Cao, H., Verma, R., Nenkova, A.: Speaker-sensitive emotion recognition via rank-
ing: studies on acted and spontaneous speech. Comput. Speech Lang. 29(1), 186–
202 (2015)

5. Chen, M., He, X., Yang, J., Zhang, H.: 3-d convolutional recurrent neural networks
with attention model for speech emotion recognition. IEEE Signal Process. Lett.
25(10), 1440–1444 (2018)

6. Daneshfar, F., Kabudian, S.J., Neekabadi, A.: Speech emotion recognition using
hybrid spectral-prosodic features of speech signal/glottal waveform, metaheuristic-
based dimensionality reduction, and gaussian elliptical basis function network clas-
sifier. Appl. Acoust. 166, 107360 (2020)

7. Dave, N.: Feature extraction methods LPC, PLP and MFCC in speech recognition.
Int. J. Adv. Res. Eng. Technol. 1(6), 1–4 (2013)

8. Etienne, C., Fidanza, G., Petrovskii, A., Devillers, L., Schmauch, B.: Cnn+ lstm
architecture for speech emotion recognition with data augmentation. arXiv preprint
arXiv:1802.05630 (2018)

9. Fayek, H.M., Lech, M., Cavedon, L.: Evaluating deep learning architectures for
speech emotion recognition. Neural Netw. 92, 60–68 (2017)

10. Hajarolasvadi, N., Demirel, H.: 3d CNN-based speech emotion recognition using
k-means clustering and spectrograms. Entropy 21(5), 479 (2019)

11. Issa, D., Demirci, M.F., Yazici, A.: Speech emotion recognition with deep convo-
lutional neural networks. Biomed. Signal Process. Control 59, 101894 (2020)

12. Koduru, A., Valiveti, H.B., Budati, A.K.: Feature extraction algorithms to improve
the speech emotion recognition rate. Int. J. Speech Technol. 23(1), 45–55 (2020)

13. Lakomkin, E., Weber, C., Magg, S., Wermter, S.: Reusing neural speech represen-
tations for auditory emotion recognition. arXiv preprint arXiv:1803.11508 (2018)

http://arxiv.org/abs/1802.05630
http://arxiv.org/abs/1803.11508


272 A. Rehman et al.

14. Le, D., Aldeneh, Z., Provost, E.M.: Discretized continuous speech emotion recog-
nition with multi-task deep recurrent neural network. In: INTERSPEECH, pp.
1108–1112 (2017)

15. Lee, J., Tashev, I.: High-level feature representation using recurrent neural network
for speech emotion recognition. In: Sixteenth Annual Conference of the Interna-
tional Speech Communication Association (2015)

16. Lee, S.w.: Domain generalization with triplet network for cross-corpus speech emo-
tion recognition. In: 2021 IEEE Spoken Language Technology Workshop (SLT), pp.
389–396. IEEE (2021)

17. Liu, Z.T., Rehman, A., Wu, M., Cao, W.H., Hao, M.: Speech emotion recognition
based on formant characteristics feature extraction and phoneme type convergence.
Inf. Sci. 563, 309–325 (2021)

18. Mirsamadi, S., Barsoum, E., Zhang, C.: Automatic speech emotion recognition
using recurrent neural networks with local attention. In: 2017 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2227–2231.
IEEE (2017)

19. Su, B.H., Chang, C.M., Lin, Y.S., Lee, C.C.: Improving speech emotion recognition
using graph attentive bi-directional gated recurrent unit network. Proc. Interspeech
2020, 506–510 (2020)

20. Wang, J., Xue, M., Culhane, R., Diao, E., Ding, J., Tarokh, V.: Speech emotion
recognition with dual-sequence LSTM architecture. In: ICASSP 2020–2020 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 6474–6478. IEEE (2020)

21. Yao, Z., Wang, Z., Liu, W., Liu, Y., Pan, J.: Speech emotion recognition using
fusion of three multi-task learning-based classifiers: HSF-DNN, MS-CNN and LLD-
RNN. Speech Commun. 120, 11–19 (2020)

22. Zhang, S., Zhao, X., Tian, Q.: Spontaneous speech emotion recognition using mul-
tiscale deep convolutional LSTM. IEEE Transactions on Affective Computing, p.
1 (2019). https://doi.org/10.1109/TAFFC.2019.2947464

23. Zhang, S., Zhang, S., Huang, T., Gao, W.: Speech emotion recognition using deep
convolutional neural network and discriminant temporal pyramid matching. IEEE
Trans. Multimedia 20(6), 1576–1590 (2017)

https://doi.org/10.1109/TAFFC.2019.2947464


Judging Medical Q&A Alignments
in Multiple Aspects

Pengda Si1, Qiang Deng2, Yiru Wang2, Bin Zhong2, Jin Xu2(B),
and Yujiu Yang1(B)

1 Shenzhen International Graduate School, Tsinghua University, Beijing, China
spd18@mails.tsinghua.edu.cn, yang.yujiu@sz.tsinghua.edu.cn

2 Tencent Inc., Shenzhen, China
{calvindeng,harryzhong,jinxxu}@tencent.com

Abstract. Question and answer (Q&A) matching is a widely used task,
and there have been many works focusing on this. Previous works tend
to give an overall label indicating whether the question matches the
answer. However, this method mainly relies on detecting identical or
similar keywords in Q&A, which is inappropriate for medical text data.
Based on a drug, patients’ questions may vary, such as usage, side effects,
symptoms, and price. Thus, it is absurd to judge the answer containing
the same drug as a matching answer. We argue a better solution is to
judge alignments both in entity and intention aspects. To this end, we
propose a novel model, which consists of two modules. Specifically, an
extractor module gets matching features from text inputs, and then a
discriminator module gives alignment labels in both aspects. An adver-
sarial mechanism is designed to disentangle entity matching feature and
intention matching feature, which reduces mutual interference. Experi-
mental results show our method outperforms other baselines, including
BERT. Further analysis indicates the effectiveness and interpretability
of the proposed method.

Keywords: Q&A matching · Adversarial disentangle · Multi-aspects

1 Introduction

Question and answer (Q&A) matching is widely used in the search, community
question answering, reading comprehension, and other scenarios. Some works
aim to judge the alignment between Q&A, which usually gives a label indicat-
ing whether the question matches the answer. However, those whole matching
methods are not suitable for medical question answering scenarios.

As we all know, an overall alignment label between a text pair depends on text
similarity, where the similarity of the keywords occupies a large weight. There
are many keywords in medical texts called medical entities, such as diseases,
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Fig. 1. An Example about Medical Q&A. For the question Q, both A1 and A2 contain
the same entity “a cold” as Q. But only A1 is a good answer while A2 is not. Thus,
judging medical Q&A matching needs to consider both the entity and the intention.
(Color figure online)

drugs, etc. However, questions and answers containing the same entity may not
match because various questions exist based on the same entity. As far as a
drug-related issue is concerned, patients may ask questions in different aspects,
such as usage, applicable conditions, side effects, and price.

Therefore, we argue that medical Q&A text contains two critical attributes:
entity and intention. A toy example is shown Fig. 1, and we mark entity in green
and intention in orange. The entity in Q is “a cold”, and the intention is “what
to do”. Both A1 and A2 have the entity “a cold”, but only A1 is a good answer
because it gives the treatment while A2 describes the symptoms. Obviously, for
a medical question, its good answers must match it in both entity aspect and
intention aspect.

Unlike previous works, we argue a better solution is to give alignment labels
in each aspect, respectively. To this end, we propose a novel fine-grained match-
ing framework to address this issue, which consists of an encoder module and a
discriminator module. Specifically, the extractor module utilizes a BERT-based
network to get the matching features of question and answer. Then, the discrim-
inator module makes judgments by a series of sub-discriminators. To reduce the
mutual interference of matching features in two aspects, we apply an adversarial
mechanism to disentangle them.

We conduct our experiment on a medical Q&A dataset, and the results show
our method outperforms other baselines, including BERT [4]. Further analysis
indicates the effectiveness and interpretability of our method.

We summarize the main contributions of this paper into three points:

– We propose to decompose the judging medical Q&A alignment task into
entity aspect and intention aspect.
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– We present a novel model, which could give alignment labels for each aspect.
– The experimental results show that our outperforms other baselines, including

BERT, indicating its effectiveness and interpretability.

2 Related Work

Previous text matching models can be roughly divided into two types: siamese
structures and attention structures. Siamese models first encode text pairs and
then compute their similarity, such as InferSent [3], SSE [15], SiamCNN [14]
and Multi-view [23]. This method ignores the interaction between text pairs.
Attention models directly design various structures to model interaction fea-
tures between text pairs, such as DecAtt [16], ESIM [1], PWIM [6], DAM [24]
and HCAN [18]. Although attention models work better than Siamese mod-
els, they are surpassed by pre-trained models, such as BERT [4], XLNet [22],
RoBERTa [12] and other models [19,21]. However, all these methods give an
overall alignment label for a Q&A pair and fine-grained matching labels are
lacked.

Disentanglement is a widely used method in the Computer Vision (CV)
domain, which usually separates different attributes of images [2,13,17]. For
NLP tasks, there have been some works that utilize disentangle framework for
style transfer task [5,9,20]. Inspired by this, we implement an adversarial frame-
work to disentangle matching features in multiple aspects for our fine-grained
matching method. As far as we know, we are the first work that applies disen-
tanglement to the text matching task.

3 Method

3.1 Task Definition and Pipeline

Q&A matching mask could be defined as follows: Given a Q&A pair (q, a), we
aim to give a label z indicating whether q matches a. As discussed above,
medical text contains two attributes: entity and intention. Thus, we aim to give
two alignment labels, ze for matching in the entity aspect and zi for matching
in the intention aspect.

Our method’s pipeline is shown in Fig. 2, which could be split into two steps.
First, to get matching features fe and fi in two aspects respectively, we construct
a BERT-based extractor module. Secondly, to disentangle matching features
and get matching labels, we construct a discriminator module and apply the
adversarial mechanism to it.
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Fig. 2. Pipeline of our proposed method. On the left is the extractor module, and
on the right is the discriminator module. We use the dashed lines to indicate the
back propagation of the gradients of four losses. Red dashed lines represent positive
gradients, and blue dashed lines represents negative gradients. (Color figure online)

3.2 Extractor

We apply inner attention [11] to vanilla BERT, and conduct our extractor module
E. The process is shown as follows.

oave =
∑T

t=1 oi
T

(1)

fe =
T∑

t=1

ateot, fi =
T∑

t=1

atiot (2)

ate =
exp(We([oave, ot]) + be)

∑T
k exp(We([oave, ok]) + be)

(3)

ati =
exp(Wi([oave, ot]) + bi)

∑T
k exp(Wi([oave, ok]) + bi)

(4)

where T is the number of layers in BERT [4]. After feeding (q, a) into BERT,
we get output of each layer, o1, o2, · · · , oT . Then, we use inner attention twice
to get fe and fi, separately. oave is the average of outputs of all layers. We, be
and Wi, bi are parameters of two linear networks, respectively. ate and ati are
attention weight of t-th layer in entity and intention aspect, respectively.

Compared to vanilla BERT, which regards the last layer’s output as output,
our method could extract text information from all layers. Under the assumption
that features of different attributes are distributed in different layers, our method
is more effective. We prove this assumption in Sect. 5.4.

3.3 Discriminator

Our discriminator module consists of four sub-discriminators, and each of them is
implemented by a linear network. De and Di utilize matching features to obtain
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corresponding matching probability pe and pi. We use the cross-entropy between
them and the ground truth label ze and zi as the loss function, as follows:

losse = cross entropy(pe, ze) (5)
lossi = cross entropy(pi, zi) (6)

Gradients of losse and lossi are used to update De, Di, and the extractor
module E. Inspired by adversarial learning in style transfer [9], we construct two
more discriminators De adv and Di adv to disentangle fe and fi. The purpose is
to reduce the mutual influence between the two features. Specifically, De adv get
intention alignment probability pi adv based on entity matching feature fe, and
then cross entropy between pi adv and the ground truth label zi is regarded as
the loss function. Similarly, Di adv gets pe adv based on fi. Thus, the adversarial
losses are shown as follows:

losse adv = cross entropy(pe adv, ze) (7)
lossi adv = cross entropy(pi adv, zi) (8)

Gradients of losse adv and lossi adv are used to update De adv and Di adv,
while the negative gradients are used to update the extractor module. To better
illustrate the process, we give our training algorithm here.

Algorithm 1. Training algorithm of our method
for Each minibatch do

Calculate all losses.
Get gradient G of losse + lossi, gradient Gadv of losse adv + lossi adv.
Update De, Di with G.
Update Dadv e, Dadv i with Gadv.
Update E with G - Gadv.

end for

In this way, we conduct an adversarial relationship between two adversarial
discriminators and the extractor. De adv tries to get the true intention alignment
label, while the extractor prevents the process. As a result, intention matching
information in the entity matching feature fe is reduced. The adversarial discrim-
inator Di adv functions in the same way. Therefore, fe and fi are disentangled.

4 Experiment

4.1 Dataset and Evaluation Metrics

We crawled about 1M medical question-answer pairs from some online Chinese
medical forums. Then, we randomly sample 50K pairs and hire several medical
experts for annotation. After removing pairs which text is not complete, there
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are 42793 pairs left. Annotators are required to give two types of matching labels:
entity matching label and intention matching label. To ensure the agreement of
different annotators, each pair is annotated by at least three human experts. In
this way, we get a new medical Q&A dataset, and its information is presented
in Table 1. As far as we know, our dataset is the first Q&A dataset in which
matching labels are in multiple aspects. We hope it could help further research
on multi-aspects text matching tasks.

Table 1. Statistical characteristics of the dataset constructed in this work

Item Information

Total Q&A pairs 42793

Match 27607

Entity mismatch 2474

Intention mismatch 12712

Avg sentences in question 1.05

Avg sentences in answer 3.06

Avg words in question 8.12

Avg words in answer 85.80

During experiments, we randomly sample 1500 for the test, 1500 for the
validation, and use the rest as train data. As mismatch pairs account for a
smaller percentage, we use the F1 score of mismatched pairs as the evaluation
criterion, which is consistent with the purpose of filtering mismatched Q&A pairs
in the actual application scenario.

4.2 Baselines

We use BERT [4] as our baseline. We also conduct a baseline model named two-
BERT based on vanilla BERT. Specifically, we finetune two BERT models, one
for entity matching judging and the other for intention. In addition to pretrain
models, we utilize some classic text matching models as baselines, as below:

– Infersent: It uses a LSTM architecture [7] get features of sentence pair [3].
– SSE: It uses stacked bidirectional LSTM with shortcut connections as

encoder [15].
– PWIM: It proposes a novel similarity focus mechanism [6].
– DecAtt: It uses attention to decompose the problem into sub-problems [16].
– ESIM: It enhances chain LSTMs and introduces recursive architectures [1].

For InferSent, we utilize its original code, which is implemented on PyTorch.
For the other four baselines, [10] realized them on PyTorch, and we directly
utilize their codes.
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4.3 Implementation Details

For our model, we build our extractor module based on 12-layer Chinese BERT
codes. Every sub-discriminator network in the discriminator module is imple-
mented with a fully connected layer. The overall framework is implemented on
Tensorflow. We set hidden size, batch size, max length to 768, 32, 256, respec-
tively. The Adamer optimizer with the learning rate of 2e−5 is hired to train
our model. We use early stopping strategy during the training process, and the
stop epoch is set to 3.

5 Evaluation

5.1 Evaluation Results

The evaluation results are shown in Table 2. We could see that two-BERT gets
the highest F1 score, higher than BERT. This proves our assumption that the
two matching features will interfere with each other. Thus, deposing the medical
Q&A matching task in entity and intention aspect is necessary. Our model gets
the second-highest F1 score, about 0.03 higher than BERT, which indicates the
effectiveness of our framework.

Table 2. Evaluation results of all models

Model Precision Recall F1

Infersent 0.448 0.445 0.447

SSE 0.515 0.421 0.463

PWIM 0.684 0.427 0.526

DecAtt 0.558 0.424 0.482

ESIM 0.494 0.653 0.563

BERT 0.708 0.784 0.744

Two-BERT 0.749 0.811 0.779

Ours 0.748 0.800 0.773

Although our method doesn’t get the highest score, the score is very close to
the result of two-BERT, which demonstrates that our framework could reduce
the mutual interference of matching features on two aspects. We also present the
parameters and training time of different models in Table 3. We could see, two-
BERT contains almost twice as many parameters as ours. Under the same com-
puting resources, two-BERT takes approximately twice as long as our model to
train an epoch. If the matching features of Q&A are distributed in more aspects,
training a BERT model for each aspect will consume more computing resources.
Therefore, our model is a better choice with limited computing resources.
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5.2 Ablation Study

To analysis our method further, we remove the adversarial discriminators De adv

and Di adv in our framework and construct an ablation model named w.o adv.
The results are presented in Table 4. Our w.o adv model gets a 0.754 F1 score,
lower than our method, which shows that the adversarial disentangle mecha-
nism is vital for the medical Q&A matching task. Meanwhile, w.o.adv model
outperforms BERT, demonstrating the effectiveness our extractor module.

Table 3. Parameters and training
time.

Model Parameters Time

Ours 103.5 M 30 m

BERT 102.3 M 29 m

Two-BERT 204.6M 58 m

Table 4. Results of the ablation model.

Model Precision Recall F1

Ours 0.748 0.800 0.773

w.o adv 0.709 0.805 0.754

To verify the effectiveness of our adversarial mechanism, we apply it to our
two baseline models: Infersent and DecAtt, and construct two models: Infersent-
dis and DecAtt-dis. The results are given in Table 5. Obviously, these two base-
lines get better scores with our mechanism, indicating that our adversarial dis-
entangle framework is generic and effective.

Table 5. Evaluation results of two baseline models with our disentangle mechanism.

Model Precision Recall F1

Infersent 0.448 0.445 0.447

Infersent-dis 0.488 0.371 0.421

DecAtt 0.558 0.424 0.482

DecAtt-dis 0.589 0.536 0.562

5.3 Case Study

To further explore how our method judges Q&A pairs, we give two examples in
Table 6, with the output labels of our model and BERT.

For the first Q&A pair, its answer is just a repeat of the question. However,
BERT gives the wrong label that the answer matches the question. It shows that
BERT makes judgments based on text similarity sometimes. Our model gives
matched label in the entity aspect and mismatched label in the intention aspect,
consistent with human judgment.
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Table 6. Two cases of Q&A pairs. We present the matching labels that given by our
method and BERT.

case 1 case 2

Question
Does a low fever cause

seizures?

What are the consequences of taking

contraceptives?

Answer
Does a low fever cause

seizures?

Hello, your situation could be irregular

menstruation caused by contraceptives.

result of BERT match � mismatch ×

result of ours
entity match �

intention mismatch ×
entity match �

intention match �

For the second Q&A pair, the question and answer contain the same entity
“contraceptives”, so the Q&A pair matches in entity aspect. Meanwhile, “irreg-
ular menstruation” is a type of “consequence” caused by contraceptives. There-
fore, the Q&A pair matches in the intention aspect, too. We could see our method
gives correct matching labels while BERT does not. We infer BERT may be
affected by the mutual interference of matching features in two aspects.

5.4 Attention Visualization

For test data, we visualize attention weights of each layer in the extractor module,
and the result is shown in Fig. 3. The main attention of fe is distributed at the
10th layer, while the main attention of fi is distributed at the 12th layer.

Fig. 3. Attention weights in different layers. The darker color means the greater atten-
tion weight.

For medical Q&A pairs in our experiment, this demonstrates that the entity
matching information and the intention matching information in BERT are dis-
tributed on different layers. Therefore, our extractor structure is necessary for
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getting the proper matching features. Furthermore, this also indicates that our
extractor module could obtain matching features in two aspects simultaneously.

What’s more, entity matching features are extracted on lower layers while
intention matching features on higher layers. We assume this is because judg-
ing whether two sentences have the same entity a simpler task than judging
intention, as [8] proves before.

5.5 Matching Features Visualization

To verify whether our proposed framework successfully disentangles matching
features in two aspects, we conduct a further analysis experiment. Specifically,
we choose two types of Q&A pairs in our test data. The first type matches in
both aspects, while the second type matches only in the entity aspect. We get
matching features fe and fi of them and then use t-SNE to transform them into
two-dimensional vectors. The visualization results are shown in Fig. 4, and we
mark two types of Q&A pairs in red and blue separately.

Fig. 4. Distribution of matching features in two aspects. (Color figure online)

It could be seen that entity matching features fe of two types of Q&A pairs
are mixed while intention matching features fi have a clear margin. This indi-
cates matching features in two aspects are disentangled effectively by our frame-
work. The result also explains why our adversarial disentangle mechanism is
valid.

All analysis results further show our model could disentangle matching fea-
tures and give correct matching labels. Compared to BERT, our method is more
effective and more interpretable.

6 Conclusion

We argue that giving an overall alignment label is not proper for the medical
Q&A matching task because medical text contains two attributes: entity and
intention. Thus, we propose a fine-grained matching method, which gives align-
ment labels in each aspect. Our model consists of an extractor module and a
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discriminator module. The extractor module is constructed on vanilla and could
get matching features in two aspects. And the discriminator module contains a
series of discriminators, which gets matching labels. We also apply an adversarial
mechanism to disentangle matching features. Experiment results on a medical
Q&A dataset show our method outperforms other baselines, including BERT.
Further analysis indicates our method is more interpretable. Our feature work is
to improve our framework and use it for Q&A matching tasks in other domains.
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Abstract. Extractive summarization aims to extract sentences con-
taining critical information from the original text, one of the main-
stream methods for summarization. Generally, extractive summarization
is regarded as a sentence binary classification task in many works. Still,
the positive samples selected by these methods are incomplete, and the
negative samples are composed of random single sentences, which leads
to unsatisfactory classification results and incomplete abstract sentences.
To address this issue, we propose a Dynamic Programming BERT (DP-
BERT), which can dynamically select the positive example with the
closest meaning of the reference abstract and adjusts the correspond-
ing negative samples. Specifically, we design a selector responsible for
the dynamic selection of positive and negative samples and then uti-
lize the BERT pre-training model to fine-tune the sentence classifier.
Extensive experiments show that DP-BERT can better extract the orig-
inal text’s key sentences and achieve state-of-the-art performance on two
widely-used benchmarks.

Keywords: Extractive summarization · Dynamic programming ·
Sentence selection

1 Introduction

Text summarization is a classic natural language processing task; due to the
explosive growth of information and mobile applications’ popularity, the demand
for short and refined text to transfer knowledge increases. The task of text
summarization has also become compelling.

Generally, text summary generation is divided into extractive summarization
and abstractive summarization: the former is to select several vital sentences
from the original text directly and sort and reorganize them to form a summary;
the latter is similar to the process of human writing abstracts, compress and inte-
grate vital sentences in the original text to form a new and more comprehensive
summary.

According to Lebanoff Logan [10], most of the manual summary sentences
are composed of multiple sentences in the article; if these sentences can be found
and remove the redundant parts, they can be close to the hand-written abstract.
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Therefore, to reduce the difficulty for machines to understand long texts and gen-
erate high-quality summaries, such as [10,12,22], they adopt a two-stage method:
the first stage is an extractive summarization, which selects essential sentences
from the article; the second stage is a generative summarization, which rewrites
the sentences obtained in the previous stage into more concise sentences. In this
way, generating abstracts is completed in stages. The model must accurately and
comprehensively extract sentences containing critical information in the article
in the first stage to better the final abstract.

Fig. 1. The positive sample of sentence extraction. For the sentence in the refer-
ence(marked in brown), the sentences extracted by Lebanoff Logan [10] from the origi-
nal text are 7, 15, the matching sentences extracted by DPBERT is 7, 13, 14. we marked
the better-extracted sentences in yellow, and the rest were marked in black. (Color
figure online)

But, the existing works limit the number of sentences when selecting posi-
tive sample sentences similar to the reference abstract, resulting in incomplete
abstract sentence extraction and an inadequate abstract generation. As shown
in Fig. 1, a sentence or two random sentences in the text are directly packaged as
positive samples [10] and then classified to determine whether it is a summary
sentence. Undoubtedly, this extraction method makes each summary sentence
only come from a single sentence or two sentences in the text, which is relatively
simple and violent. These methods, which limit the number of sentences, are easy
to calculate. Still, they easily lead to incomplete semantics and further deviate
from expression and classification because some summary sentences may come
from a complete summary of more than two sentences.

Based on the above observations, we focus on making the extracted sentences
more accurate and comprehensive and introduce the Dynamic Programming
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BERT (DP-BERT) based on the dynamic programming algorithm, which can
optimally select sentence combinations that are close to hand-written summaries
and do not dropout key text information, and adjust the settings of the positive
and negative examples of the classifier to avoid too short samples and increase
the hard samples of classifier learning. The experimental results show that the
abstract sentences extracted by the proposed model are more reasonable and
closer to the content of manual abstracts, and the DP-BERT outperforms the
state-of-the-art (SOTA) model randomly initialized counterpart by 1.70 ROUGE
on the CNN/Dailymail dataset and by 0.16 ROUGE on the XSUM dataset.

2 Related Work

The research on extractive summarization generation has a long history. Gen-
erally speaking, the current mainstream methods can be divided into graph
method, ranking method, matching method, classification method, etc.

To be specific, Some graph-based extractive summarizations [3,6,13,19,23]
consider that the keywords and sentences are the primary nodes in the graph,
so the sentences contained in the primary node are extracted as abstracts, this
method of considering the structure of the article can make the abstract more
logical to a certain extent, but it is computationally intensive and difficult to
learn. There are also some work regard the abstract as a sentence ranking prob-
lem [2,9,11,17,18], all the sentences are sorted by importance, and the most of
critical TOP-N sentences are extracted as abstracts; this method is closer to the
way humans write abstracts. However, it is difficult to define ‘importance’ and
the N value. Besides, in the deep neural networks framework, Ming Zhong [24]
treat extractive summarization as a semantic matching problem and directly
extract candidate summary (several sentences) instead of sentence-level (one by
one) extraction, this semantic unit-based matching method has lower redun-
dancy than sentence-level matching and higher semantic accuracy than word-
level matching. Still, it is controversial whether the definition of Pearl-Summary
in the reference summarization is accurate or not. Zhengyuan Liu [14] introduces
information in a specific field to help extract key sentences, this method works
well in specific fields, but the general-purpose type is poor.

At the same time, some summarization methods treat the abstract problem
as a sentence two-category problem [1,2,10,15,21,22] by training the classifier
model, the sentences in the article that are suitable for the summary are classified
as positive samples, the redundant sentences are negative samples. But, how to
find positive samples and set negative samples is the key.

Compared with previous two-category works, we combine the advantages of
semantic mining and sentence classification problems; the proposed DP-BERT
matches each reference abstract sentence semantically, improves abstract extrac-
tion accuracy, and helps generate high-quality abstracts.
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Fig. 2. The framework of the DP-BERT. In the training phase, the text sentences
that match the reference abstract are marked as positive. Then the labeled positive
examples and random negative examples are input to the classifier.

3 DP-BERT Model

Traditionally, extractive summarization can be regarded as a sentence binary
classification task. The sentences containing critical text information are viewed
as positive samples, and the rest are negative samples. A reference sentence
corresponds to at most two sentences in the original text in the past work. Still,
according to the findings of Lebanoff Logan [10], in most cases, two sentences
cannot fully express the meaning of the reference abstract. Unlike the previous
method, we introduce dynamic programming to select positive samples, named
DP-BERT, which can match sentences with similar semantics to the reference
abstract as positive samples to the greatest extent and ensure the abstract’s
semantic integrity. As shown in Fig. 2, DP-BERT is mainly divided into the
DP-selector and a classifier.

3.1 Problem Formulation

Suppose there are N sentences (s0, s1, ..., sN−1) and L reference abstract sen-
tences (r0, r1, ..., rL−1) in an article, our goal is to find the most similar sentence
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Algorithm 1. The DP Selector Algorithm
Input: Given document sentence (s0, s1, ..., sN−1) ∈ S ,

reference sentence (r0, r1, ..., rL−1) ∈ R and let x = 0, maxsim = 0
Output:

1: for ri ∈ R, i = 0 to L − 1 do
2: j = x
3: while j ≤ N − 1 do
4: Calculate the similarity between ri and sj
5: maxsim = max(similarity,maxsim)
6: j+ = 1

7: Select the sentence combination (sa, sb, ..., sc) with the highest similarity as the
positive example of ri, k ≤ len(ri), x = max(a, b, c).

combination to the reference abstract in the original text. In addition, people
usually read the article from the beginning to the place in the order of sentences.
Therefore, it is more in line with human reading habits to summarize the article
according to the article’s sentence order.

3.2 DP Selector

DP selector is designed to select multiple suitable sentences for merging as pos-
itive samples. Accurate positive and negative samples can improve the accuracy
of the classifier.

In the task of generating extractive abstracts, for each reference sentence, it
is necessary to find the best matching sentence in the original text, which means
that the model needs to make a decision when matching each reference sentence.
Therefore, the abstract generation can be divided into different reference sen-
tence matching stages. Decisions are made at each stage (the most matching
sentence or sentence combination is found in the article). As a result, the entire
abstract can achieve the best matching effect. Furthermore, when the decision at
each stage is determined, each reference sentence selects the most matching orig-
inal sentence or sentence combination to form a decision sequence, thus confirm-
ing the selection of the overall abstract sentence. Therefore, in order to achieve
the overall best decision, it is natural to think of using dynamic programming
algorithms to solve the problem of multi-stage decision-making optimization.

The algorithm flow chart of DP selector is shown in Algorithm 1. For the xth

reference summary sentence rx , the revenue of the ith sentence si is defined as
fellows,

̂Prx(si) = max
0≤j<i

[Prx(sj) + A(sj , si)]

Prx(si) = max
0<i≤N−1

(Prx(si−1), ̂Prx(si))
(1)
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where Prx(s1) = A(s0, s1), and A(sj , si) means the maximum benefit of
the sentence selected from the jth sentence to the ith sentence, which can be
computed by the following equation:

A(sj , si) = max
k

[A(sj , sk) + L((sj , sk), si)

−R(sj , sk, si)]
(2)

L((sj , sk), si) = cosine((sj , sk), si) (3)

R((s0, sk), si) = cosine((s0, sk), si) (4)

where, L(sj , sk, si) represents the amount of information increased by si com-
pared to the sentence selected in the (j, k) interval , R(sj , sk, si) represents the
redundancy of the ith sentence and the sentences in the (j, k) interval and the
sentence selected by P (sj) , computed as the cosine similarity of these sentences.

Regarding calculating the similarity between the reference abstract sentence
and the article sentence, we first remove the stop words in the sentence. If the
same words in the two sentences are greater than or equal to three, we use the
cosine similarity to judge whether the two sentences are similar. On the contrary,
if two sentences have less than three identical words after removing the stop
words, we do not include the sentence to consider possible abstract sentences.
Therefore, for a reference abstract sentence of length W , it corresponds to at
most W/3 sentences in the original text. To reduce the computational complexity
while selecting sentences similar to the reference summary sentence as complete
as possible, we limit the number of sentences corresponding to each reference
summary sentence in the original text to W/3. As shown in Fig. 3, for each
reference sentence, traverse all sentences in the article and calculate sentence
similarity. When the number of sentences is limited to 1, only the reference
abstract sentence and the original sentence need to be compared for the sentence
similarity one by one, and select the sentence with the highest similarity to
the reference abstract sentence as the candidate sentence; when the number of
determinate sentences is bigger than 1, select the sentence combined with the
highest similarity under the number of sentences. For example, (0, 1)0.28 in the
dashed frame means that when r0 is traversed to sentence s2 under the condition
that the number of sentences is limited to 2, the selected sentence is (0, 1), and
the sentences similarity at this time is 0.28. Experimental results show that if
the number of abstract sentences is too low, a certain amount of information
will be lost.

3.3 Classifier

The classifier is obtained after fine-tuning the specificity of the summary task on
the following sentence prediction task of BERT [4], which is roughly the same
as Lebanoff Logan [10], and will not be repeated here. The difference is that
because we used a DP selector before the classifier, the resulting favorable sample
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Fig. 3. An example of DP selector.

sentence combination may be more than two sentences. Still, the classifier inputs
up to two sentences, so we cut the positive samples of more than two sentences
into the form of sentence pairs. For example, in the second summary sentence in
Fig. 1, the corresponding sentence selected by the DP selector is the 7-th, 13-th,
and 14-th sentence, so the positive sample is {7-th,13-th,14-th}, we cut it into
two positive examples {7-th,13-th} and {13-th,14-th}.

Actually, the framework designed by Lebanoff Logan [10] ignores the balance
of positive and negative samples; that is, accurate positive samples are essential,
but appropriate negative samples are also necessary. After analyzing the exam-
ples, we found that if the negative sample sentence’s length is too short and
the amount of information is too small. It is difficult for the classifier to learn
the difference between the positive and negative samples. Therefore, to ensure
that the classifier is not affected by the sentence’s length, we force the negative
sample to be a random combination of two sentences in the original text.

4 Experiments

4.1 Datasets

Our experiments are mainly based on both the CNN/Dailymail and the Xsum
data sets. The CNN/Dailymail (CNN/DM) data set [8] is a commonly used long
text summary data set containing 287k text-summary training examples and
11k test examples. XSUM [16] is a relatively new summary data set. Its text
summary is relatively short and usually consists of one sentence containing 204k
text-summary training examples and 11k test examples.
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4.2 Results

In this part, we did some comparative experiments to analyze the impact of
DP-BERT. We mainly compared some classic work, such as SumBasic [20], KL-
Summ [7], LexRank [5], and some of the latest work BERT-SingPairMix [10],
HIBERT [22], BERTsum [24].

Table 1. The result of extracted abstract.

Dataset Methods Primary Secondary

P R F P R F

CNN/DM SumBasic 15.2 17.3 16.2 5.3 15.8 8.0

KL-Summ 15.7 17.9 16.7 5.4 15.9 8.0

LexRank 22.0 25.9 23.8 7.2 21.4 10.7

BERT-SingPairMix 33.6 67.1 44.8 13.6 70.2 22.8

DP-BERT 84.6 61.7 71.4 79.1 76.9 78.0

XSUM SumBasic 8.7 9.7 9.2 5.0 8.9 6.4

KL-Summ 9.2 10.2 9.7 5.0 8.9 6.4

LexRank 9.7 10.8 10.2 5.5 9.8 7.0

BERT-SingPairMix 33.2 56.0 41.7 24.1 65.5 35.2

DP-BERT 47.7 53.9 50.6 34.9 63.8 45.1

We use the evaluation method of Lebanoff Logan [10] to evaluate the qual-
ity of the abstract generated by Precision (P), Recall (R), and F1-score (F),
and compare the abstract generated by the model and the positive samples of
DP selector selection. Table 1 shows the P, R, and F results of the sentences
extracted by the DP-BERT on the CNN/DM and XSUM data sets. The results
show that whether it is primary or secondary in both data sets, the P and F
measures of the proposed model greatly exceed the previous baseline. Simulta-
neously, the R index is also slightly different from the baseline, which means
that our model can more accurately extract sentences that match the meaning
of the reference abstract.

To avoid the deviation caused by the data set, we test the model’s effective-
ness on two data sets. Table 2 shows the extractive summary (Ext) results of the
rouge value on the CNN/DM and XSUM dataset. Obviously, whether it is the
matching degree of 1-gram, 2-gram, or the longest matching substring, we have
greatly exceeded the previous model on the CNN/DM dataset. We have achieved
a new state-of-the-art extractive summary. On the XSUM dataset, except that
the ROUGE-2 indicator is slightly lower than the baseline in the extractive sum-
mary, the remaining indicators are higher than before; this means that our model
is also effective for generating short summaries.

In addition to using automatic indicators to evaluate the abstract’s qual-
ity, we invited scholars with undergraduate education and above to manually
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Table 2. The result on CNN/DM and XSUM dataset.

Dataset Methods CNN/DM XSUM

R-1 R-2 R-L R-1 R-2 R-L

Ext SumBasic 34.11 11.13 31.14 18.56 2.91 14.88

KL-Summ 29.92 10.50 27.37 16.73 2.83 13.53

LexRank 35.34 13.31 31.93 17.95 3.00 14.30

BERT-SingPairMix-Ext 41.13 18.68 37.75 23.53 4.54 17.23

HIBERT 42.37 19.95 38.83 / / /

BERTsum 44.41 20.86 40.55 / / /

DP-BERT 46.11 24.05 42.77 23.69 4.48 17.75

Table 3. The result of human evaluation.

Systerm Informativeness Fluency Succinctness

CNN/DM BERT-SingPairMix 35.8% 36.3% 24.2%

DP-BERT 50.0% 42.9% 41.3%

Xsum BERT-SingPairMix 27.5% 36.1% 37.7%

DP-BERT 44.6% 39.6% 34.8%

evaluate our abstract and evaluate the abstract from three aspects: Informa-
tiveness, Fluency, and Succinctness. Table 3 shows the evaluation results. The
results show that in the CNN/DM data set, we comprehensively surpassed the
previous baseline in the above three aspects. Simultaneously, in the XSUM data
set, we are also ahead of the baseline but slightly worse in succinctness. Overall,
DP-BERT is superior to the existing approaches.

Fig. 4. Case study
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At the same time, as shown in Fig. 4, we did a case study. We compared
the abstract sentences extracted by the model with the reference abstracts and
marked the same words in the sentences with the same color. The case shows
that the sentences extracted by the model can express the general meaning of
the reference abstract, but there are also a few redundant sentences.

Moreover, we tested the impact of the number of extracted sentences on
the quality of the abstract. As shown in Fig. 5, we tested the effects of a single
sentence, double sentences, three sentences, and W/3 sentences on the CNNDM
dataset. Among them, the single sentence test is to directly compare all the
sentences in the original text with the reference abstract, and the two sentences
adopt the method of Lebanoff Logan [10]; the three sentences and W/3 are all
extracted by DPBERT, and the number of extracted sentences is limited to 3 and
W/3 respectively. The results show that as the number of restricted extracted
sentences increases, the three groups’ Rouge values all increase to a certain
extent. However, the limited number of extracted sentences is too large, and the
Rouge value is not improved much. Therefore, to balance the summary effect
and calculation difficulty to a certain extent, we will link the limited number of
extracted sentences with the sentence length, taking W/3.

Fig. 5. The impact of different sentence limits on the summary results.

5 Conclusion

In this work, we introduce a dynamic programming algorithm into the summary
sentence classification and propose a Dynamic Programming BERT, which can
extract abstract sentences more accurately and completely. The summary gener-
ated by DP-BERT is significantly improved compared to the previous baselines
based on the CNN/DM and XSUM data sets. We will further improve redun-
dancy in the abstract in future work, hoping to produce a more concise summary.
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Abstract. In the field of obstacle avoidance path planning, the tra-
ditional Rapidly-Exploring Random Tree (RRT) algorithm has many
problems, such as no direction and low efficiency. So it is often used
to adjust the growth direction of random tree nodes by introducing a
target bias strategy to decrease the search blindness. On this basis, the
end movement distance and the variation range of each joint during the
manipulator trajectory planning process have been focused on in this
paper. Considering the requirements of the speed of the planning exe-
cutable trajectory and the smoothness of the moving process, a cost
function about the path length and the smooth change of the joints has
been designed. Then, under the premise of the stability of the path plan-
ning results, an improved RRT algorithm on dynamical adjustment of
the new nodes generation has been proposed to increase the planning
efficiency obviously. Its feasibility and effectiveness have been verified
fully by a series of simulation experiments based on MATLAB platform.

Keywords: Joint space · Obstacle avoidance path planning · RRT
algorithm · Dynamic step size control · Greedy strategy

1 Introduction

Nowadays, the manipulator occupies a large market in the field of industrial
robots because of its simple structure and flexible work. In the application, how
to ensure that the manipulator in the workspace quickly planning a smooth and
collision-free path will be the key issue. So far, there have been a variety of path
planning algorithms, such as Rapidly-Exploring Random Tree (RRT) algorithm
[1], artificial potential field method [2], ant colony algorithm [3] and A* algo-
rithm [4]. But there are still some problems in certain aspects. For example,
RRT algorithm has high randomness and slow convergence speed in planning,
so its planned path is not optimal. Due to the lack of global information, the
artificial potential field method is easy to fall into the local minimum [5]. Ant
colony algorithm is mostly used in two-dimensional space or path planning of
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mobile robots. With the growth of the search dimension, the optimization effi-
ciency of the algorithm decreases. As a heuristic algorithm, the spatial growth
of A* algorithm is exponential. Much more time would be taken to get higher
accuracy. In comparison, for path planning in multi-joint high-dimensional space
like manipulators, RRT algorithm can generally plan a solution to the problem.
However, the planned solution is only a feasible solution, not an ideal or optimal
path, so it is unavoidable to have too many unnecessary path segments.

In order to optimize the quality of RRT planning path, the idea of cost func-
tion from the path distance and motion smoothness [6] as the guidance of later
path search has been adapted. To improve the utilization of sampling nodes
and reduce the number of iterations, some scholars have proposed an improved
RRT algorithm based on variable sampling domain and Map Compression Algo-
rithm for mobile robots [7], and the combination of variable sampling domain
and greedy strategy can improve the sampling efficiency and save time. Litera-
ture [8] has proposed a greedy heuristic search algorithm in the search process
effectively to make the newly generated nodes expand towards the target point
continuously. Literature [9] has added the idea of dynamic step size character-
istic, aiming at making the random tree expand as far as possible toward the
target point when there are no obstacles, but there is no concrete implementation
method in this article. In subsequent studies, an adaptive step size strategy [10]
has been proposed. Only when there is no collision, the target gravity strategy
is adopted to expand the random tree. To solve the problem of large differences
in search path results of RRT algorithm and many invalid traversals, literature
[11] has proposed the RRT* algorithm of adding prior knowledge, providing a
low-cost solution with fewer iterations.

In this paper, a new step size control strategy is proposed based on the
probability bias RRT algorithm in which the cost function has been added. It
can reduce the cost and blindness of the path planning of the manipulator in
joint space, and shorten the search time and the length of the obstacle avoidance
path. In the case that random points are the target points, the greedy idea is
used to further improve the search efficiency.

2 Modeling and Kinematics Analysis of Manipulator

The research object of this paper is a manipulator with 3-DOF series joint struc-
ture. The three revolute joints are the lumbar (lower back), shoulder (upper arm)
and elbow (lower arm).

The manipulator is modeled by using the standard Denavit-Hartenberg (D-
H) notation, as shown in Fig. 1. Table 1 is a list of DH parameters based on the
mechanical structure and the link coordinate system. Where αi is the torsion
angle, which is a constant determined by the properties of the connecting rod; ai

is the length of connecting rod; di represents the bias distance of the connecting
rod; θi is the joint angle.
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Fig. 1. DH modeling of the manipulator

Table 1. DH parameters of each link of the manipulator

i αi ai di θi

1 90◦ 0 0 θ1

2 0 250 0 θ2

3 0 250 0 θ3

Since only forward kinematics [12] is used in the search process of RRT
algorithm in joint space, only forward kinematics is analyzed. The homogeneous
transformation matrix of two adjacent connecting rod coordinate systems is
obtained through four standard motion transformations:

T i−1
i = Ai = Rot (zi−1, θi) × Trans (0, 0, di) × Trans (ai, 0, 0) × Rot (xi, αi)

=

⎡
⎢⎢⎣

cos θi − sin θi cos αi sin θi sin αi ai cos θi
sin θi cos θi cos αi − cos θi sin αi ai sin θi

0 sinαi cos αi di
0 0 0 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

nx ox ax px
ny oy ay py
nz oz az pz
0 0 0 1

⎤
⎥⎥⎦

(1)
where Rot(i, y) indicates that the previous joint rotates y angles around the i
axis. Trans(x, y, z) represents the translation along a certain axis of x, y or z, and
the non-zero parameter represents the translation distance. So T i−1

i represents
the relative pose of the connecting rod i in the member coordinate system i− 1.

For a serial manipulator with three joints, the homogeneous transformation
matrices of each connecting rod are A1, A2 and A3 respectively, so the end pose
of the manipulator arm can be calculated by Eq. (2).

T 0
3 = T 0

1 T 1
2 T 3

2 = A1A2A3 (2)

In the formula, T 0
3 is the pose matrix of the end-effector coordinate system

changing in the base coordinate system.
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3 Search Algorithm for Obstacle Avoidance Path
Planning

3.1 Basic Principle of RRT Algorithm

The idea of the RRT algorithm is to rapidly expand a group of tree-like paths
to fill the search area. Figure 2 shows the expansion process.

– Put the starting point into the tree before searching. At this time, there is
only one node Qrand as the start of tree growth.

– In the configuration space of the manipulator, a random point Qrand is gen-
erated. Qrand is selected with a small probability as the target point.

– Traverse the existing nodes in the random tree. Select the node closest to
Qrand as Qnearest, which is the parent node of Qnew.

– Find the direction vector (Qrand−Qnearest)/‖Qrand−Qnearest‖ between
Qnearest and Qrand, and generate a new node Qnew in this direction with
a step Δq.

– Perform collision detection. If there is no collision with the obstacle, add
Qnew to the random tree.

– Repeat the above steps. When it reaches the target threshold, save the target
point in the tree, and let the search stop.

– Backtrack the parent node from the target point to find a feasible path from
the starting point to the target point.

Fig. 2. Schematic diagram of random tree expansion

It can be seen from the above description that the growth direction of new nodes
completely depends on the selection of random points. Therefore, there will be
problems such as aimlessness and tortuous paths in the application.

3.2 Establishment of the Cost Function

In the joint space RRT algorithm, each step changes a set of joint angles of the
manipulator. Therefore, the planning of the obstacle avoidance path should take
two factors into account: the end-motion distance of the manipulator and the
intensity of the angle change of each joint.

Assuming F−D is the parameter to measure the distance between the end of
the manipulator, and the spatial pose of each joint angle is obtained through for-
ward kinematics, then the distance between the end position of the manipulator
and the random point can be expressed by Euclidean distance:

F−D = ‖pxyzQrand − pxyzQtree‖ (3)



Path Planning of Manipulator Based on Improved RRT Algorithm 90 303

where pxyzQrand represents the spatial position of random points obtained by
forward kinematics, that is, px, py, pz in homogeneous transformation matrix;
pxyzQtree represents the spatial position of each existing node in the tree. The
smaller the value of F−D, the shorter the distance between two points.

Assuming F−A is the standard to measure the joint change amplitude of the
manipulator, in order to reach the joint angle represented by the random point,
the joint angle variation of nodes in the tree can be expressed by Euclidean
distance (Eq. (4)) or Manhattan distance (Eq. (5)).

F−A = ‖θQtree − θQrand‖ (4)

F−A =

∣∣∣∣∣
3∑

i=1

θQtree,i − θQrand,i

∣∣∣∣∣ (5)

where θQtree,i and θQrand,i represent the joint angles of the i(i = 1, 2, 3)th joint
of node and random point respectively. The smaller the F−A is, the more stable
the change of planning joint is.

In the process of searching, the importance of the two evaluation criteria is
determined by the actual demand. Different weights W−D and W−A are given
to the distance change and angle change respectively, and the cost function is
described in the form of Eq. (6).

F−N = W−D ∗ F−D + W−A ∗ F−A (6)

The smaller the value of the cost function is, the better the comprehensive eval-
uation result of the change of the end distance and the angle of each joint is.
Thus, the node with the minimum function value is selected as Qnearest node
to be expanded in the tree.

3.3 Improved Dynamic Step Method to Generate Qnew

The generation of new nodes in traditional RRT algorithm depends on the direc-
tion vector from the nearest node to the random point and the step length grow-
ing along the direction of the random point. For the joint space, the calculation
formula is shown in Eq. (7).

Qnew = Qnearest + Δθ × (Qrand − Qnearest)/‖Qrand − Qnearest‖ (7)

where Δθ is the step size increased each time. It can be seen that the generation
of new nodes is completely determined by random points, which is too blind.

Therefore, the method of adding virtual attraction points can avoid the
manipulator falling into the local minimum [13], and literature [14] has inte-
grated it into RRT algorithm. The target gravity function is introduced to make
the random tree grow towards the target point, it can effectively reduce unnec-
essary expansion during the search. The mathematical formula of adding the
objective gravitational function is as follows:

Qnew =Qnearest + Δθ1 × (Qrand − Qnearest)/‖Qrand − Qnearest‖
+ Δθ2 × (Qgoal − Qnearest)/‖Qgoal − Qnearest‖ (8)
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where θ1 is the growth step in the direction of the random point, and θ2 is the
growth step in the direction of the target point.

When θ1 is greater than θ2, the generation of new nodes tends to the direction
of random points. When θ2 is greater than θ1, the random tree will expand to the
target direction as much as possible. But for the environment with more obsta-
cles, the target gravity method can not bypass the obstacles to reach the target
point, and a collision occurs in the search process, and the obstacle avoidance
path cannot be planned.

On how to control the new node as far as possible toward the direction of
target generated without collision, this paper uses the basic idea of dynamic
step: the generation of new node Qnew is determined by two directions. Based
on the idea of target gravity, a dynamic change quantity is set in each direction,
makes the bias probability in the target direction increase iteratively, and the
bias probability in the random point direction decrease correspondingly. Iteration
stops when the first collision occurs. As shown in Eq. (9).

Qnew = Qnearest + (1 − t) × Δθ1 × (Qrand − Qnearest)/‖Qrand − Qnearest‖
+t × Δθ2 × (Qgoal − Qnearest)/‖Qgoal − Qnearest‖

(9)
where t is the proposed dynamic change. At first, t = 0,while t ≤ 1, perform
iterative judgment. During each iteration, collision detection is performed. When
the pose of the connecting rod formed by the joint angle of the new node does not
collide with obstacles, increase the value of t. The principle of increasing t is: take
the total number of judgments as N , N is a positive integer, and dt is the single
change of t. Then, when t ≤ 1 and collision detection is satisfied, there are:

{
dt = 1/N
t = t + dt

(10)

In the process of iterative judgment, the generated node is a temporary node,
which will not be stored in the random tree, and it will be overwritten by the
nodes produced by the next round of judgment. Until t = 1 and there is no
collision, or exit the cycle due to collision, the last generated new node is added
to the tree. The principle of the improved dynamic step size method is shown in
Fig. 3 (assuming Δθ1 = Δθ2).

3.4 Local Greedy Strategy

In order to further shorten the search time of the improved RRT algorithm,
enhance the guidance of the random tree growth process, and reduce the number
of path nodes generated, we consider adding greedy strategy in the early stage of
the search. Literature [15] proposes a guided RRT path planner, which reduces
the search time under dynamic constraints and avoids the expansion of most
futile nodes. Considering that the greedy algorithm’s node growth mode makes
each branch longer, the planned path contains multiple linear path segments, and
the result is unstable due to continuous rotation of joints in a specific direction,



Path Planning of Manipulator Based on Improved RRT Algorithm 90 305

Fig. 3. Control principle of the improved dynamic step method

therefore, a greedy strategy is proposed to guide the generation of new nodes
only when the sampling point is the target point in this paper. That is: in each
iteration, when Qrand = Qgoal, jump into greedy search subroutine. In the
greedy algorithm, the new node is calculated as follows:

Qnew1 = Qnearest + Δθ2 × (Qgoal − Qnearest)/‖Qgoal − Qnearest‖ (11)

When Qnew does not reach the threshold range of the target point, collision
detection is carried out. If there is no collision, Qnew is updated with Eq. (12).
The new nodes generated in the intermediate process are not saved in the tree,
they are represented as Qnew1.

Qnew1 = Qnew1 + Δθ2 × (Qgoal − Qnew1)/‖Qgoal − Qnew1‖ (12)

When the collision occurs, take the last non-collision Qnew and save it in the
tree. Greedy subroutine exits. The calculation formula of Qnew is as follows.

Qnew1 = Qnew1 − Δθ2 × (Qgoal − Qnew1)/‖Qgoal − Qnew1‖ (13)

The principle of greedy strategy to add new nodes is shown in Fig. 4.

Fig. 4. Greedy strategy adds new nodes

When the random sampling point is not the target point, the improved
dynamic step method is used to expand the random tree.
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4 Simulation Experiment

The manipulator is modeled on MATLAB software platform. The two improved
strategies proposed in this paper are compared with the existing algorithms,
such as probability bias RRT algorithm and target gravity RRT algorithm, and
the effect of optimization is analyzed from multiple perspectives.

In the three-dimensional space, obstacles are represented by the sphere enve-
lope method. Each obstacle has a radius(R) of 0.1 m; the collision safety dis-
tance is R + 0.03 meter; the starting point is (0◦, 0◦, 0◦); the target point is
(120◦, 60◦,−30◦); the bias probability p is 0.1; The step size is increased by 5◦

each time, and N is set to 10. In the same obstacle environment and parameter
settings, the four algorithms are run. Figure 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
Fig. 16 respectively show the simulation results of probability bias RRT, target
gravity RRT algorithm, improved dynamic step RRT and local greedy-dynamic
step RRT algorithms.

According to the situation results, the path length, the number of path nodes
and the search time corresponding to each group of experiments are compared,
and the data in Table 2 are obtained.

Fig. 5. Probability bias
RRT

Fig. 6. Search process of
probability bias RRT

Fig. 7. Joint changes of prob-
ability bias RRT

Fig. 8. Target gravity
RRT

Fig. 9. Search process of
target gravity RRT

Fig. 10. Joint changes of tar-
get gravity RRT
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Fig. 11. Improved dynamic
step RRT

Fig. 12. Search process
of improved dynamic step
RRT

Fig. 13. Joint changes of
improved dynamic step RRT

Fig. 14. Greedy-dynamic
step RRT

Fig. 15. Search process of
greedy-dynamic step RRT

Fig. 16. Joint changes of
greedy-dynamic step RRT

Fig. 17. Probability
bias RRT

Fig. 18. Target
gravity RRT

Fig. 19. Improved
dynamic step RRT

Fig. 20. Greedy-
dynamic step RRT

Table 2. Parameter comparison of four RRT algorithms

Algorithm name Path length/m Number of nodes Search time/s

Probability bias RRT 1.2866 63 0.5939

Target gravity RRT 1.1774 22 0.3963

Improved dynamic step RRT 1.0670 31 0.2357

Greedy-dynamic step RRT 1.0397 14 0.1167
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Each of the four algorithms runs 20 times, and the average parameters
obtained by each algorithm are calculated to obtain the data in Table 3. It can
be seen from the running results and the data in Table 3 that local greedy-
dynamic step RRT algorithm has the shortest search time and the least path
nodes. The average path length of the local greedy-dynamic step RRT algorithm
is slightly smaller than that of the improved dynamic step RRT algorithm and
much smaller than the other two algorithms. The smoothest change of joint angle
is improved dynamic step RRT algorithm. Compared with the probability bias
RRT algorithm and target gravity RRT algorithm, the performances of the two
improved algorithms are all improved a lot.

When the obstacle environment is more complex, update the starting and
target points. Improved RRT algorithm is more likely to jump out of the narrow
channel, so as to avoid the search of a large number of redundant space, and the
planned path is more smooth and simplified. The simulation results are shown
in Fig. 17, 18, 19, Fig. 20.

Table 3. Average parameters of the four algorithms

Algorithm name Path length/m Number of nodes Search time/s

Probability bias RRT 1.3123 64 0.4314

Target gravity RRT 1.1689 25 0.3753

Improved dynamic step RRT 1.0713 31 0.2326

Greedy-dynamic step RRT 1.0430 15 0.0967

5 Conclusion

The traditional RRT algorithm can explore all unknown regions with enough
iterations. But its blindness and randomness are too large. The planned path
is always not ideal. This paper designs a multi-objective cost function, which
adjusts the weight of each factor independently according to the target demand.
It can reduce the randomness of RRT algorithm partly. The path planned by
the improved dynamic step method has the highest smoothness and greatly
reduces the path length. Compared with target gravity RRT algorithm, the
improved dynamic step RRT algorithm overcomes the disadvantage of weak
obstacle avoidance ability, reduces the search of redundant space, and can jump
out of the narrow exit quickly in the case of a complex obstacle environment, so as
to ensure the success rate of path planning. At the same time, the greedy strategy
has been adopted to ensure the smoothness of the path while sacrificing some
randomness. The search speed has been accelerated because some intermediate
nodes are avoided. Therefore, the improved methods proposed in this paper is
effective and feasible. It has laid a theoretical foundation for the manipulator to
realize the fast and stable trajectory execution without collision.
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Visual Odometer Algorithm Based
on Dynamic Region Culling
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Abstract. There are many moving objects in the dynamic scenes. Due
to excessive changes in feature points on dynamic objects, large position-
ing errors will be caused, which will have a great impact on mapping.
Existing algorithms have well operating accuracy. However, when there
are static and moving prior masks in the scene, the selection error of the
dynamic region common occurs. To address the problem, we propose a
method that fuses geometric feature and semantic segmentation, and the
re-discriminant mechanism is used to dynamic scene recognition. In this
work, the pyramid optical flow method is used to track the feature points
between matching frames. The dynamic points will be filtered through
geometric constraints. When the pre-selected dynamic points are in the
prior mask, the pre-selected dynamic area is delineated. Then, when
the number of dynamic points in the mask exceeds the threshold, the
dynamic area is finally located. This eliminates the impact of dynamic
objects on the accuracy of the system. Experiments on the TUM datasets
show that the proposed algorithm can effectively improve the robustness
and tracking accuracy than the ORB SLAM2 system, meanwhile it can
effectively solve the miss election of the dynamic region.

Keywords: Dynamic scene · Semantic segmentation · Epipolar
geometric constraints · Dynamic region elimination

1 Introduction

For a long time, the constructed maps by SLAM technology are mostly static
and pure environmental objects. In other words, a basic assumption of SLAM
technology is that the environment is static. It can only handle a small amount of
dynamic content, the solution is to mark them as outliers of static models [1–6].
However, moving objects like humans exist in many real scenes.

Existing algorithms are basically looking for data associations between the
previous frame information and the environmental map that is assumed to be
static. When a mobile robot is working in a complex dynamic scene, highly
dynamic obstacles will cause errors in the corresponding relationship. These
errors will cause huge inconsistencies in the adjacent frames and then greatly
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affect the process of system tracking and pose estimation. So the method orig-
inally designed to execute SLAM in a static environment can no longer handle
serious dynamic scenes and provide enough effective information for subsequent
work. Therefore, how to eliminate the impact of dynamic targets in the scene on
the SLAM system, and improve the robustness of the SLAM system has become
the major challenge in the practical application of SLAM systems. Among them,
the identification of dynamic areas is a breakthrough in dealing with dynamic
environments. The proposed methods in recent years mainly include: multi-view
geometric constraints; scene flow; foreground or background detection methods;
fusion deep learning methods, etc.

Tan et al. [7] used the prior adaptive random sampling consensus algo-
rithm [8] to remove abnormal points in the scene, then estimated the more accu-
rate camera poses. But this method is not suitable for high dynamic scenes. Li
et al. [9] detected dynamic targets in actual scenes based on optical flow and
image super-pixel segmentation. But the dense optical flow method requires a
large amount of calculation, this is difficult to calculate in real time. And this
method is greatly affected by changes in ambient lighting. Wang et al. [10]
improved the traditional optical flow method to detect and process moving
objects in the scene, thereby reducing the impact of dynamic objects. But the
improvement of positioning and mapping accuracy is limited. And it uses the
dense optical flow method, which makes the system unable to run in real time.
Han et al. [11] proposed an improved PSPNet-SLAM based on ORB-SLAM2,
which combined the PSPNet network and optical flow method for the detection
of dynamic features. This method first filtered out the features with larger opti-
cal flow values, and then filtered out the features that are judged to be dynamic
objects. This method achieved higher accuracy on the TUM data set, effectively
reduced tracking drift and improved the robustness of visual SLAM in dynamic
environments. In addition to the above methods, many algorithms applied to
dynamic scenes have been proposed [12–18].

There are two more classic methods currently recognized for processing
dynamic scenes: Chao Yu et al. [19] improved the traditional ORB-SLAM2 algo-
rithm and proposed a complete semantic SLAM system (DS-SLAM) in dynamic
scenarios. Berta et al. [20] proposed the DynaSLAM algorithm. Both of these
algorithms have the characteristics of high precision and high robustness. How-
ever, they have some disadvantages. For example, DS-SLAM algorithm usually
uses human-being as prior moving objects. And the feature points within the
mask range of both will be eliminated when there are static and moving prior
masks in the scence. DynaSLAM applies the Mask RCNN algorithm in semantic
segmentation thread. But the running speed of this algorithm is slow and it can-
not meet the real-time requirements. This method chooses to remove all objects
with potential movement, for the prior mask that does not actually move, it is
often removed for no reason. This may result in too few remaining stationary
feature points and affect the camera pose estimation.

This research is based on a dynamic scene, and at the same time, this studies
the situation that when there are both a moving and a non-moving prior mask
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in the scene, the recognition error causes the feature points in the static mask
to be eliminated. It is to ensure that the robot is working in the camera’s vision
range and there are dynamic objects, it can avoid the interference of dynamic
features and construct a static environment map that can be used by the robot
to complete the subsequent required work.

2 Visual Odometer in Dynamic Scene

2.1 Algorithm Framework

Due to the flexible deformation and complex motion of moving objects such
as the human body, it is difficult to extract a complete dynamic area contour
with a simple motion consistency inspection method. And it takes a long time
to complete the extraction of the entire contour. Using a semantic segmentation
network, the complete outline of the target is easy to obtain. Therefore, the com-
bination of motion consistency detection and deep learning is the currently ideal
choice. Our algorithm is based on the depth camera, with ORB SLAM2 as the
main line for improvement. The semantic segmentation method and geometric
constraint are combined to work together to detect dynamic objects, and then
identify dynamic regions and add dynamic masks to eliminate dynamic points.
The specific implementation process is shown in Fig. 1.

Fig. 1. System structure framework

Our algorithm mainly improves the fusion method and adds a re-
discrimination mechanism. In the tracking thread, the F matrix is calculated
between two frames. The RANSAC algorithm is used for classification first, and
feature points are divided into candidate dynamic points and static points. After-
wards, it is detected whether the preselected dynamic point is within the range
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of the delivered prior mask. If dynamic feature points are within this range and
total exceeds the set threshold, the position of the prior mask is regarded as the
dynamic area and removed.

2.2 Semantic Segmentation

We chooses the YOLACT++ network [21] for instance segmentation, and its
real-time performance and accuracy are relatively high. The YOLACT++ net-
work is improved on the basis of the YOLACT network [22]. The YOLACT++
network has made great progress in capability. It can achieve real-time (>30fps)
speed, so it can meets the real-time requirements of SLAM. The network struc-
ture of YOLACT is shown in Fig. 2.

C1

C2

C3

C4

C5

P3

P4

P5

P6

P7

Protonet

Prediction Head NMS

Crop Threshold×+
+

Fig. 2. YOLACT network structure

For better association class confidence and mask quality, the YOLACT++
network combines 6 convolutional layers and a global average pooling layer to
form the model structure of the fast Mask Re-Scoring branch. The input is
the cropped but not thresholded prediction mask generated by the YOLACT
network, the output is the mask IoU of each object. Re-scoring each mask is
performed by selecting the product of the IoU of the prediction mask of the
category predicted by the classification header and the corresponding classifi-
cation confidence. Replace the standard convolutions in the C3 ∼ C5 layers in
the ResNet network structure with 3*3 deformable convolutions. Do not use
modulated deformable module to ensure detection speed. At the same time, it
chooses to increase the anchor aspect ratio from the original [1, 1/2, 2] to [1, 1/2,
2/3, 3] while keeping the original scale unchanged. Compared with the original
YOLACT, the number of anchors has increased by 5/3 times.

Our select the MS COCO [23] which is an open dataset created by the
Microsoft team, as the training sample to train the network, and applies the
network to the work of removing outliers. The network trained with this data
set can recognize and detect objects in the dynamic environment set in this
article.
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3 Methods

3.1 Traditional Method

Traditional methods use the walking series data set in TUM for experimental
testing. Figure 3(a) is the original picture. The mask M is applied to the original
image as shown in Fig. 3(b); then, as shown in Fig. 3(c), the dynamic area is
eliminated. The system will only use these static points for subsequent pose
estimation and other tasks. Such as the classic algorithm DynaSLAM, etc.

(a) (b) (c)

Fig. 3. Removal of dynamic points (a) Original image; (b) Dynamic area segmentation;
(c) Removal of dynamic points (Color figure online)

But just like the shortcomings of the DynaSLAM algorithm, it chooses to
remove all objects with potential movement, and almost eliminates the area
where the person is in the image during the processing. For the prior mask area
that does not actually move, it is often removed for no reason. When there are
both a moving and a static prior object in the current image, the processing is
not accurate. It can be seen from the figure above that the person on the right
is actually sitting still, with only slight movements. For the whole environment,
the person on the right is relatively static now. But the feature points on it are
also eliminated, which is to some extent inaccurate.

3.2 Improved Method

Dynamic Points Detection. First, the image is converted to a grayscale image
and extract key feature points to get a feature point set p = {pt1, p

t
2, ..., p

t
i}. pti

represents the image coordinates of the i-th feature point on the t-th frame.
From the tracking results of the image pyramid LK optical flow method, several
pairs of feature points matching the current frame can be obtained. Here, a
preprocessing is performed on the matching point pairs first, and the matching
pairs that are too close to the edge of the image or the 3*3 image block pixels in
the center of the matching pair have obvious differences are regarded as abnormal
matches and preliminary eliminated. Then, the matched points after screening
are constrained by epipolar geometry to determine whether they are dynamic
feature points.
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Then we calculate the distance from the tracked feature point to its corre-
sponding epipolar line, and judge whether the tracked feature point is a dynamic
feature point according to the principle of geometric constraint of the epipolar
line. Different projection points produced by the same image point through dif-
ferent projection matrices must meet the following constraints:

xT
2 Fx1 = 0 (1)

We use the eight-point method to calculate the fundamental matrix F . Now
we supposed that given any pairs of matching points, the normalized coordinates
are x = (x, y, 1)T , y = (x′, y′, 1)T , then substitute it into the formula (1)

[
x y 1

]
⎡

⎣
f11 f12 f13
f21 f22 f23
f31 f32 f33

⎤

⎦

⎡

⎣
x′

y′

1

⎤

⎦ = 0 (2)

After the above formula is expanded, rendered F in vector form and given a
set of n groups of points, the motion relationship between two adjacent frames
of images can be obtained:

l2 =

⎡

⎣
A
B
C

⎤

⎦ = Fp1 = F

⎡

⎣
x1

y1
1

⎤

⎦ (3)

In the formula, A, B, C represent the polar equation vector. In the actual
environment, there are two reasons for the excessive distance: one is the mis-
match of tracking feature point; the other is the existence of dynamic objects in
the environment. Then we calculate the distance d from the feature point p2 to
the corresponding epipolar line.

d =
|pT2 Fp1|√||A||2 + ||B||2 (4)

We set the filtering threshold to ε, and the calculation method is as follows:

ε =
∑N

i=0 e−di

N
(5)

In the formula, N is the total number of extracted ORB feature points, and
di represents the distance from the i-th matching point to its corresponding
epipolar line. According to the constraint of the distance d, both mismatching
can be eliminated, and dynamic points caused by moving objects can also be
eliminated. If di > ε, it is preset as a dynamic point.

As shown in Fig. 4(b), the red points are the detection results of dynamic
feature points in the scene.
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(a) (b)

Fig. 4. Dynamic point elimination (a) Original picture; (b) Dynamic point detection
(Color figure online)

Improved Fusion Method. In our research, the fusion method is improved
to improve the accuracy of system processing. First, we extract global ORB
feature points. Through epipolar geometric constraints to choose feature points
with a distance greater than varepsilon are temporarily set as dynamic points
O. Meanwhile, the image is semantically segmented and the prediction mask m
is generated. Combined with the preset dynamic point information, when the
points o and mask m in O are at the same coordinate position of the image, the
mask becomes the preselected dynamic area.

Then we increase the re-discrimination mechanism, when the number of
dynamic feature points in the area contour is greater than the set threshold
δ, the final dynamic area is determined. Then dynamic area will be split. Con-
sidering the noise points that may appear in dynamic feature point detection,
and the actual density of feature point extraction and other factors, the threshold
δ is finally set to four.

Seen from the test results, our method can accurately and completely elim-
inate the entire dynamic area, and the robustness of the system is effectively
enhanced.

(a) (b)

Fig. 5. Experimental results in a semi-dynamic scenarios (Color figure online)



318 H. Mo and X. Zhang

It can be seen from Fig. 5(a) and 5(b) that the person on the left side of
the image is moving, while the person on the right side is sitting quietly. Our
improved algorithm can well extract feature points when the prior masks are
both dynamic and static. Meanwhile, it also has a good performance when the
prior masks are moved. As shown in Fig. 6, all dynamic areas are accurately
eliminated.

(a) (b) (c) (d)

Fig. 6. Experimental results in dynamic scenarios

From the experimrntal results, our algorithm has neither eliminated the fea-
ture points in the non-moving prior mask. At the same time, the dynamic area
can be accurately eliminated in a semi-dynamic environment (there are both a
dynamic and a static prior masks) or a high-dynamic environment. This proves
the accuracy of our algorithm.

Compared with the DynaSLAM algorithm, it solves the shortcomings of
choosing to remove all potentially moving objects, and can accurately seg-
ment moving objects when they are prior dynamic objects in a semi-dynamic
environment.

4 Experimental Results and Analysis

4.1 Qualitative Analysis of Motion Trajectory

The experiment is tested under Ubuntu 16.04 system. The host environment is
equipped with Intel i5-8500 processor and NVIDIA GeForce GTX 980 graphics
card. To verify the validity of the algorithm, we select the dynamic frame sequence
to test (respectively freiburg3 walking xyz, freiburg3 walking halfspere), and
compares it with the original ORB-SLAM2 algorithm. The trajectory comparison
chart is shown in Fig. 7.
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(a) (b)

(c) (d)

Fig. 7. Trajectory error comparison chart (a) ORB-SLAM2 xyz (b) Ours xyz (c) ORB-
SLAM2 half (d) Ours half

Compared with the ORB-SLAM2 algorithm, the performance improvement
of our algorithm can be calculated by the following formula:

η = (1 − α

β
) × 100% (6)

Where, η represents the degree of performance improvement; α indicates the
calculated error of the algorithm in this paper; β represents the calculated ORB-
SLAM2 algorithm error.

Table 1. Absolute track error (ATE, m)

Sequences ORB-SLAM2 Ours Improvement

RMSE S.D RMSE S.D RMSE S.D

fr3 walking xyz 0.8612 0.4375 0.0312 0.0182 96.3% 95.8%

fr3 walking half 0.4824 0.2693 0.0501 0.0256 89.6% 90.5%

fr3 walking rpy 0.8907 0.4167 0.4178 0.3275 53.1% 21.4%

fr3 siting xyz 0.0223 0.0128 0.0171 0.0092 23.3% 28.1%

fr3 siting half 0.0214 0.0109 0.0161 0.0095 24.7% 12.8%

fr3 siting static 0.0087 0.00412 0.0073 0.0034 16.1% 17.5%
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Table 2. Relative translation error (RPE, m/s)

Sequences ORB-SLAM2 Ours Improvement

RMSE S.D RMSE S.D RMSE S.D

fr3 walking xyz 0.8117 0.4992 0.0362 0.0186 95.5% 96.2%

fr3 walking half 0.8234 0.5024 0.0479 0.0174 94.2% 96.5%

fr3 walking rpy 0.9241 0.4125 0.5712 0.2081 38.2% 49.6%

fr3 siting xyz 0.0352 0.0176 0.0266 0.0152 24.4% 13.6%

fr3 siting half 0.0368 0.0267 0.0252 0.0154 31.5% 42.3%

fr3 siting static 0.0135 0.0074 0.0097 0.0056 28.1% 24.3%

Table 3. Relative rotation error (RPE, deg/s)

Sequences ORB-SLAM2 Ours Improvement

RMSE S.D RMSE S.D RMSE S.D

fr3 walking xyz 8.9542 5.1502 0.9214 0.5283 89.7% 89.7%

fr3 walking half 7.4834 5.3099 0.8133 0.3954 89.1% 92.6%

fr3 walking rpy 9.3457 6.5917 5.6206 3.5548 39.8% 46.1%

fr3 siting xyz 0.4669 0.2375 0.4216 0.2612 10.3% –

fr3 siting half 0.6012 0.3215 0.5329 0.2848 11.3% 11.4%

fr3 siting static 0.2953 0.1324 0.2813 0.1187 4.7% 10.3%

Compare the trajectory error obtained by running the algorithm with the
ORB-SLAM2 algorithm, and the results are shown in Table 1, Table 2, and
Table 3. In a high dynamic scenario, the RMSE of the absolute error has dropped
by 80.0% on average, the RMSE of the relative translation error has dropped
by 75.96%, and the RMSE of the relative rotation error dropped by 72.86% on
average. It can be seen that compared with the ORB-SLAM2 algorithm, ours
performs better on highly dynamic sequences. The accuracy and robustness have
obviously improve. Because the ORB-SLAM2 algorithm has been able to solve
the low dynamic and static scenes well, the room for improvement in accuracy
is limited.

4.2 Time Efficiency

The following is a statistical analysis of the time consumed by each module of
the improved visual front end, as shown in Table 4. Take the fr3 walking xyz
sequence as an example. In this article, ORB feature point extraction, detection
of dynamic points, and instance segmentation are executed simultaneously on
two different threads. As can be seen from the table below, the total time used
by the instance segmentation thread and the tracking thread is similar, which is
conducive to the real-time operation of the system.
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Table 4. Time used by each module(ms)

Thread Module Time Total time

Tracking ORB feature point extraction 14.27 37.91

Detect dynamic points 23.62

Instance segmentation Instance semantic segmentation 35.32 35.32

The Semantic Segmentation Network Mask R-CNN used in the DynaSLAM
algorithm. He et al. [24] report that Mask R-CNN runs at 195ms per image on
Nvidia Tesla M40 GPU, plus 15 ms CPU time for resizing outputs to original
resolution. Note that Dyna-SLAM has not been optimized for real-time oper-
ation [20]. Compared with Dyna-SLAM, the algorithm strength of this paper
requires only 35.32ms per frame for the segmentation thread, which greatly
reduces the running time and can meet the real-time requirements.

5 Conclusion

Our algorithm adds a re-discrimination mechanism, which greatly reduces the
miss election of dynamic regions and improves the accuracy of dynamic region
elimination. The feature point can be extracted well when the object’s prior
masks are both dynamic and static. At the same time, it also has a good per-
formance when there is movement in the prior mask, and can accurately remove
the dynamic area. At the same time, the selected instance segmentation network
has good real-time performance, which ensures that the SLAM system can run
in real time. Experiments were conducted on public datasets. The experiments
show that the proposed method has improved trajectory accuracy and is superior
to other algorithms. But the algorithm still has some shortcomings. For example,
the stability of the algorithm is not enough, and sometimes the feature points of
some frames have tracking loss. Therefore, the algorithm still needs subsequent
improvement.
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Abstract. Grasping is the first step in most robotic manipulation tasks,
and it is essential for applications of robots in real-life scenarios. For
humans, grasping novel objects is a naturally gained ability, however, for
robots, it is a challenging task due to complex object shapes and incom-
plete visual information. Many current grasp pose estimation methods
need to first construct 3D models of the scene and generates a large pool
of grasp candidates, and then perform a search for the best grasp. These
methods rely on high quality 3D models, and their long pipeline makes
them unfeasible for real-time processing. End-to-end grasp pose estima-
tion methods mitigate these issues, but they can only deals with few DoF
planar grasps that fail to cover many successful grasps. In this paper, we
propose a viewing angle generative network (VAGN), an approach that
bridges the aforementioned two main classes of methods. VAGN decou-
ples 7-DoF grasp detection into two stages. In the first stage, it predicts
the camera viewing angle, which is also the orientation of the gripper
around the object from an RGBD frame. In the second stage, it gener-
ates a planar grasp pose by taking another RGBD image at the predicted
viewing angle in stage 1. We trained VAGN on the Cornell dataset. Real
robot experiments on a UR-10e robot with camera-in-hand show real-
time processing speed and higher success rates compared to the state-of-
the-art GR-ConvNet, in both single object scenes and cluttered scenes.

Keywords: Robotic grasping · 7-DoF · Viewing angle · Real-time

1 Introduction

Robotic grasping of unseen objects is fundamentally important to robot appli-
cations in unstructured environments such as flexible manufacturing, warehouse
and household servicing. It is one of the key abilities that an intelligent robot
should have. However, grasping novel objects remains a highly challenging task
due to occlusions in a cluttered scene, complex object shapes and sensory noise
and deficiency in visual perception. Traditional physical grasp analysis tech-
niques rely on contact force analysis [1], object contour features [4] or template
matching [7] to search for the optimal grasp. These approaches, however, are not
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Fig. 1. The two-stage grasp prediction process of VAGN.

applicable to previously unseen objects. Besides, they usually require accurate
object models which are not always available due to perception limitation of
object appearance.

The development of computer vision and AI enables researchers to use
learning-based or data-driven approaches to find 6-DoF grasp poses. 6-DoF
grasping has attracted much attention, as it allows a 6-axis robot to approach
the object from many different angles and thus fully utilize the robot’s capa-
bility. In [16] and [14], researcher study 6D grasp estimation with pre-scanned
object CAD models, which are methods that are unable to quickly generalize
to unseen objects. Without knowing the object models, existing methods such
as GPD [13], GraspNet [11] and PointNet++ [12] typically follow a object pose
recognition, grasp candidates generation and sampling pipeline. However, these
methods need to evaluate a huge number of grasp candidates to find suitable
grasp poses which is time-consuming. In addition, point cloud data is not as
stable as RGB data due to the limitations in consumer grade 3D camera.

In recent years, several benchmark grasp datasets such as Cornell [15] and
Jacquard [3] greatly facilitated the researches and evaluations of end-to-end
grasp learning algorithms [2,9,10]. These methods achieve high success rate
and real-time performance on the benchmark datasets. However, the 2D planar
grasps generated by these methods are greatly restricted compared to 6-DoF
grasps: the gripper can only approach the object from a fixed direction. For
example, the gripper can only grab the water cup from a top-down direction,
which not only makes grabbing certain objects difficult, but also limits the next
move of the robot such as pouring the water out of the cup.
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In this paper, we propose an end-to-end 7-DoF viewing angle generative net-
work (VAGN). The aim of VAGN is to bridge the gap between the 6-DoF grasp
sampling methods and the end-to-end planar grasping methods, and thus tak-
ing advantages of both. In VAGN, a camera mounted in-hand first captures an
RGBD image from the top-down direction. The robot then rapidly moves to
a suitable viewing angle generated by VAGN and takes another RGBD shot.
Finally, the robot executes the planar grasp generated by VAGN. VAGN is
a lightweight end-to-end generative model that trained with publicly available
grasp datasets. It does not require object CAD models or grasp simulations.

The contributions of this paper are as follows.

1. An end-to-end grasp detection model is proposed to detect grasps efficiently.
The model performs viewing angle prediction and planar grasp generation in
a single network.The model uses RGBD images as input and infers 7-DoF
grasps for two-finger parallel grippers.

2. The results show the real-time performance and higher success rate over a
state-of-the-art baseline method on a set of household items.

2 Problem Formulation

In this work, we define the problem of robotic grasping as predicting an optimal
antipodal grasp pose for unknown objects from 4-channel RGBD images of the
scene.

2.1 Grasp Representation

Inspired by the 6-DoF grasp representation [11], we improve the planar grasp
representation Morrison et al. in [10] to a 7-DoF grasp representation in robot
frame as

Gr = (x, y, z, rx, ry, rz, w), (1)

where x, y and z denote the position of the gripper, rx, ry and rz denote the
rotation and w denotes the gripper width.

A grasp is detected from an 4-channel RGBD image I = R
4×m×n with image

height m and width n, which can be defined as

Gi = (xi, yi, zi, θ, α, β, wi), (2)

where (xi, yi) corresponds to the center of grasp in image coordinates, zi is
the depth value at the grasp center (xi, yi), θ is the grasp rotation in image
coordinates, α and β are viewing angles in the horizontal and vertical directions
as shown in Fig. 2, wi is the required width in image coordinates. Specifically,
θ indicates the angular rotation required at each point of the image plane to
grasp the object of interest and is a value in the range [−π/2, π/2]. Similarly, α
indicates the horizontal viewing angle towards the object in the range of [−π, π],
and β indicates the vertical viewing angle is a value in the range [0, π/2]. wi is
the required width ranging from 0 to Wmax pixels, where Wmax is the maximum
width of the two-finger gripper.
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Fig. 2. Horizontal viewing angle α, vertical viewing angle β and in-plane rotation angle
θ for object O. (Color figure online)

2.2 Grasp Quality Score

The grasp quality score q is the quality of the grasp at every point in the image
and is indicated as a score value between 0 and 1 where a value that is in
proximity to 1 indicates a greater chance of grasp success. For every measurable
points (xi, yi, zi) in the 3D space, our goal is to design a network that estimates
a tuple consisting of five scalar values (θ, α, β, wi, q). Then the inference module
finds the best grasp pose by locating the largest corresponding grasp quality
score q.

To make the robot actually perform a grasp in its coordinates, we need to
convert the grasp pose in image space Gi into a grasp pose in robot space. Such
translation can be performed given the robot hand-eye calibration and camera
calibration results.

3 Method

Our proposed approach VAGN treats the grasp pose prediction problem as a
two-stage regression problem (see Fig. 1). In stage 1, VAGN predicts the best
viewing angle pair (α, β) by overlooking the object-to-be-grasp from an top-down
position; and the robot adjusts to the best viewing angle accordingly. In stage
2, VAGN predicts the final suitable grasp poses for the objects in the camera’s
field of view. The robot’s controller uses these grasp poses to plan and execute
robot trajectories to perform antipodal grasps.

3.1 Stage 1: Viewing Angle Prediction

At this stage, VAGN predicts the pixel-wise camera viewing angles of the camera
from an RGBD frame taken from a top-down position. Because we assume an
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eye-in-hand setup, where the camera is installed near the robot’s end-effector, i.e.
the gripper. The viewing angle also represents the approaching direction of the
gripper. The blue arrow in Fig. 2 shows an example of the approaching direction.
As such, the rotation of the gripper is decoupled into the viewing angle (α, β)
and in-plane rotation θ.

The input RGBD image is first pre-processed where it is cropped, resized,
and normalized to a four channel image of the size 224×224. The depth channel
is inpainted and aligned with the RGB channels to obtain corresponding depth
values at each pixel. The 224 × 224 4-channel image is then fed into the VAGN
to obtain three images of the size 224 × 224, grasp quality score q, horizontal
viewing angle α and vertical viewing angle β as the output. Finally, an inference
module infers an optimal viewing angles from the three output images.

3.2 Stage 2: Planar Grasp Pose Generation

After stage 1, the robot will move to the viewing pose defined by (α, β) to perform
the planar grasp pose generation stage. The second stage is similar to the first
stage, except that 1) the input RGBD image is taken from a viewing angle (α, β)
rather than a top-down pose; 2) The output of VAGN are three images including
grasp quality score q, in-plane rotation angle θ and gripper width wi. All three
images share the same size of 224×224. The role of VAGN in stage 2 is similar to
those in GG-CNN [10] and GR-ConvNet [9]. The inference module returns the
grasp pose with the highest quality score. The grasp pose is then converted from
camera coordinates into robot coordinates using the transform calculated from
hand-eye calibration. Further, the grasp pose in robot frame is used to plan a
trajectory to perform the object picking action using inverse kinematics through
the robot controller. The robot then executes the planned trajectory and grasp
the object.

3.3 Model Architecture

Figure 3 shows the network architecture of the proposed VAGN model, which is
inspired by GG-CNN [10] and GR-ConvNet [9]. VAGN is a generative architec-
ture that generates pixel-wise grasps in the form of five images. The 4-channel
processed RGBD image is first fed into the three convolutional layers, where
features are extracted by learning a large number of filters automatically.

The convolutional layers are followed by five residual blocks. Each residual
block contains two convolutional layers with skip connections, which is identical
to the residual blocks in ResNet-34 [6] where no down-sampling happens. Using
residual blocks enable us to gain higher accuracy from increased depth of the
network, while avoiding difficulties such as vanishing gradients and performance
degradation.

Followed by the residual blocks, we use convolution transpose layers to up-
sample the images from 56 × 56 to 224 × 224 so as to retain spatial features. In
other words, we obtain the same size of the output image as the size of the input.
There are two separate ends in the convolution transpose layers. One generates
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Fig. 3. Network architecture.

output images for viewing angle prediction (stage 1), including horizontal angle
α and vertical angle β. Note that α is decoupled in the form of cosα and sinα for
unique values in the range of [−1, 1] that can be combined to form the required
angle α in [−π, π]. The other end generates the grasp quality score, in-plane
rotation angle as well as the width of the end-effector. The simple architecture
of VAGN makes it efficient and fast in computation compared to other similar
models [11,17].

3.4 Model Training

For a dataset having input scene images I = {I1, I2, ..., In} and successful grasps
in the n images G = {G1, G2, ..., Gn}, where Gi = {gi1, gi2, ..., gimi

}, i = 1, 2, . . . n
means that for image i there are mi successful grasps: gi1, g

i
2, ..., g

i
mi

. Then the
mapping function f(I) = G can be learned by minimizing the negative log-
likelihood of G given the input image scenes I,

− 1
n

n∑

i=1

1
mi

mi∑

j=1

log f(gij |Ii). (3)

The model was trained using the standard back-propagation with Adam
optimizer [8]. We set the learning rate to 10−3 and the mini-batch size to 8.

3.5 Loss Function

We define two losses L1 and L2 for the two-head structure accordingly. For the
head that generates a planar grasp pose, we define L1as
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Fig. 4. Experiment setup. (a) Robot experiment on a cluttered scene. A: UR-10e
Robot; B: Robotiq two-finger parallel gripper; C: Intel RealSense RGBD camera; D:
Graspable objects. (b) Household objects for the experiment.

L1(Gi, Ĝi) =
1
n

k∑
lk. (4)

where k is the mini-batch index and lk is given by

lk =

⎧
⎨

⎩
0.5(Gi − Ĝi)2, if

∣∣∣Gi − Ĝi

∣∣∣ < 1∣∣∣Gi − Ĝi

∣∣∣ − 0.5, otherwise
(5)

lk is the smooth L1 loss (also known as Huber loss).
∣∣∣Gi − Ĝi

∣∣∣represents the
summation of element-wise difference between the predicted planar grasp pose
Ĝi and the ground truth Gi, in terms of (xi, yi, cos 2θ, sin 2θ, wi). The definition
of L2 is similar to L1, except that the terms now become (cos α, cos α, cos 2β).
Note that the ground truth grasps Gi are manual annotations provided by a
grasp dataset such as the Cornell dataset [15]. There is no guarantee that they
will work perfectly with all types of two-finger grippers (Fig. 5).

4 Experiments

4.1 Training Dataset

We trained our VAGN model using the Cornell grasp dataset [15], which is one
of the most popular robotic grasping datasets. The Cornell dataset contains
1035 RGBD images with a resolution of 640 × 480 pixels of 240 different real
objects with 5110 positive and 2909 negative grasps. In each RGBD image, grasp
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Fig. 5. 7-DoF grasp poses (bottom) are inferred based on the output images in (a) a
single object scene; (b) a cluttered scene.

rectangles are used to annotate both positive and negative grasps per object. The
annotations of grasp rectangles can only represent planar grasp poses, which are
insufficient to train our VAGN model. Therefore, we manually label viewing
angles α and β along with each grasp rectangles. Uniformly distributed noise
between ±π/30 is added to the ground truths of α and β. To prepare sufficient
training samples, we augmented the dataset using random crops, zooms, and
rotations which effectively has 51k grasp examples. Only positively labeled grasps
from the dataset were considered during training.

4.2 Real Robot Experiments

In this section, we show the experiments carried on a UR-10e robot. We compare
our results with a baseline method GR-ConvNet [9] which reports state-of-the-
art performance on Cornell dataset and analyze the differences.

The setup of our experiment is shown in Fig. 4. The experiment is carried on
a Universal Robot UR-10e robot mounted with an Intel RealSense D435i camera
and a Robotiq 2f-85 two-finger gripper. A computer with an Nvidia GTX 2080Ti
GPU, an Intel i9-10900X CPU, 64G RAM and an Ubuntu 18.04 operating system
is used to run our pipeline and control the robot. The trajectory is planed using
UR’s built-in controller. To ensure the robot is planning in a safe workspace,
and avoid possible collision with other objects in the scene, we limit the vertical
viewing angle α to [0, π/3] rad.
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Experiment on Single Object Scenes. We randomly select 10 household objects
and place them on the table at random place with random orientation. Objects
with different shapes and sizes are selected to analyze the performance of gener-
alization. We conduct 10 experiments for each object and calculate the success
rate. The results are shown in Table 1.

Experiment on Cluttered Scenes. We also conduct experiments on cluttered
scenes. In each scene, we randomly select 3–5 objects from the 10 objects in
Fig. 4(b) and randomly place them on the table. We repeatedly executed the
optimal grasp using VAGN until all the objects are clear. The results are shown
in Table 2.

5 Results

5.1 Single Objects

In the single objects experiment (Table 1), the robot performed 96 successful
grasps of the total 100 grasp attempts on household objects, which outperforms
the 81% success rate from GR-ConvNet. The advantages of VAGN over GR-
ConvNet is that VAGN performs 7-DoF grasps. The additional DoF allows the
robot to grab an object from the side, which we found was more stable for round
objects or tall objects. The results obtained in Table 1 indicates that VAGN is
able to generalize well to novel objects that it has never seen before.

Table 1. Grasp success rates on single object scenes.

ID Object Type GR-ConvNet [9] Our method

1 Paper Cup Unseen 80% 100%

2 Chewing Gum Box Unseen 70% 90%

3 Cylinder Tea Can Unseen 70% 90%

4 Toilet Paper Roll Unseen 80% 100%

5 Water Bottle Unseen 60% 90%

6 Plastic Bottle Unseen 60% 90%

7 Transparent Plastic Bag Unseen 100% 100%

8 Network Cable Similar 90% 100%

9 Box Similar 100% 100%

10 Orange Similar 100% 100%

– Overall – 81% 96%

5.2 Objects in Clutter

Although our model is trained on single isolated objects from Cornell dataset, it
is also able to generate grasps for multiple objects in clutter. In this experiment,
we let the robot perform 10 grasp attempts the cluttered scenes. Objects were
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grabbed one by one without replacement. If all objects in a scene were taken
away, we reset the scene with the objects with different placement and orienta-
tions. We achieved an average success rate of 84% in all five scenes (Table 2).
This demonstrates that VAGN is able to predict robust grasps for objects in
clutter.

Table 2. Grasp success rates on cluttered scenes.

ID Objects Attempts GR-ConvNet [9] Our method

1 2,7,9,10 10 60% 80%

2 1,4,8 10 80% 80%

3 3,5,7,9 10 80% 90%

4 4,6,8,9,10 10 70% 90%

5 1,2,3,5 10 70% 80%

– Overall – 72% 84%

During the experiments, we observed that the cascade pipeline structure of
VAGN did not necessarily result in accumulating errors, because the second stage
of VAGN generates grasps for any viewing angle, and usually objects could be
picked up from a wide range of viewing (approaching) angles.

Our VAGN model runs at a real-time speed of 16 ms per frame on ourcurrent
platform. The simple pipeline and real-time performance make our model suit-
able for migration to embedded platforms. Moreover, our solution is cost-efficient
given that no expensive 3D camera is needed.

6 Conclusion

We presented a two-stage solution for 7-DoF grasping novel objects using our
Viewing Angle Generative Network (VAGN). It decouples the 7-DoF grasp pose
into a viewing angle prediction step and a planar grasp pose generation step,
where both are carried out using one model. We trained VAGN on the Cornell
grasp dataset, and validated VAGN in cluttered scenes using a robotic arm.
The results demonstrate that our approach can generate more accurate grasps
for previously unseen objects than a baseline planar grasp algorithm. Also, the
simple pipeline of our model makes it achieve a real-time performance at 60 fps,
which is suitable for real-time dynamic grasping.

In future work, we would like to extend our solution to real-time close-loop
grasping. We would also like to train and improve our model on GraspNet-
1Billion [5], which is a recently published large-scale grasp dataset.
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Abstract. Various algorithms of traditional visual Simultaneous Local-
ization and Mapping (SLAM) can well match with static scenes, but mis-
matches will occur in dynamic scenes, which makes the positioning and
mapping of the SLAM system produce large errors. Therefore, this paper
proposed a visual odometry algorithm based on semantic feature points,
which can improve the positioning accuracy in dynamic scenes. The algo-
rithm combined semantic information to detect dynamic objects, and
then detects and eliminates dynamic feature points. This paper con-
ducted an extensive evaluation of the system and compared it with
ORB-SLAM3 and other dynamic scene SLAM systems. The experimen-
tal results show that this method greatly improves the positioning accu-
racy of the camera and the robustness of the system in a highly complex
dynamic environment, which verifies the advancement and effectiveness
of the algorithm in this paper.

Keywords: Visual SLAM · Dynamic scenes · Semantic SLAM ·
Semantic feature points

1 Introduction

The SLAM of robot solves the problem of its positioning and mapping. In an
unknown environment, the robot uses its own various sensors to collect informa-
tion about its body, analyzes its own position through algorithms, and builds
a map incrementally. Visual SLAM mainly uses cameras to obtain data sources
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and has been a popular research direction in robotics, unmanned driving and
other fields in recent years [6].

During the past decades, researchers in the field of SLAM have developed
many classic SLAM frameworks amid its development. Davison et al. [3] pro-
posed MonoSLAM in 2007, which is a real-time monocular vision SLAM with
extended Kalman filtering as the backend. In the same year, Klein et al. [8]
proposed PTAM, which established a parallel thread for tracking and mapping,
and introduced a key frame mechanism and a back-end nonlinear optimization
method, which is of great significance. Forster et al. [5] proposed the SVO algo-
rithm in 2014, which is a visual odometry based on the semi-direct method. The
ORB-SLAM proposed by Artal and Tardos et al. [10] in 2015 is one of the suc-
cessors of PTAM, which performs visual odometry and loop detection around
ORB features. In 2017, they proposed an improved version of ORB-SLAM2 [11]
and they launched the latest version of ORB-SLAM3 [2] to support for IMU
sensors in 2020.

These SLAM systems are all based on static environments. However, there
are inevitably dynamic objects in the actual environment, which will affect the
accuracy and robustness of the SLAM system. Li and Lee et al. [9] calculated
the points on the edge according to the depth map, and judged the possibility
of them belonging to dynamic objects according to the weight of these points.
Sun et al. [12] calculate the intensity difference between consecutive RGB images
and complete the pixel classification by quantizing the segmentation of the depth
map.

Some dynamic object detection algorithms are introduced above. Although
their positioning in dynamic scenes has achieved good results, they can’t identify
objects in the scene and use semantic information to identify dynamic feature
points in the scene. Therefore, researchers have proposed the use of deep learning
to identify objects in the scene, in recent years.

Yu et al. [13] used SegNet to detect dynamic objects and combined with
motion consistency to detect and filter dynamic feature points, but their algo-
rithm only judged dynamic feature points by the distance between the feature
point and the epipolar line. Fang et al. [4] used semantic descriptors combined
with knowledge graph to detect and eliminate dynamic objects, thus improv-
ing the accuracy of pose estimation in medical places. However, its ability to
recognize dynamic objects is limited by the scale of knowledge graph.

In this paper, we propose a novel dynamic objects detection and dynamic
feature points detection method based on semantic feature points and sparse
optical flow. The method fully considers the object instance, the possibility of
object movement, the movement direction and distance of feature points. Fur-
thermore, a robust visual odometry was proposed based on our dynamic feature
points detection, which can work well in highly complex dynamic environments.

2 Our Works

This section will introduce algorithm in detail. The system structure is shown
in Fig. 1. A segmentation thread is added based on the ORB-SLAM2 system
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structure. In the tracking thread, the structure of feature points is reformed,
semantic information to form semantic feature points is added, and a dynamic
object detection algorithm is designed based on semantic feature points.

Fig. 1. The system flowchart of the algorithm.

2.1 Semantic Segmentation

As the algorithm in this paper aims to extract and match semantic feature points,
the accuracy of semantic segmentation is particularly important. In the semantic
segmentation thread, MASK R-CNN [7] is used for semantic segmentation.

The input RGB image in the semantic segmentation thread is semantically
segmented, a two-dimensional matrix P with the same scale as the original image
frame F is outputted, and the semantics of each pixel is recorded. For each pixel,
there are two semantic attributes, that is, the number of the object it belongs
to and the number of different individuals of the same object. We number the
objects that MASK R-CNN can recognize from 0 to 80, where 0 represents the
background. The number of vertical and horizontal pixels of the original image
frame are w, h. P is shown in formula (1).

Pw,h =

⎡
⎢⎣

hP11 · · · P1h

...
. . .

...
Pw1 · · · Pwh

⎤
⎥⎦ , Pij = (m,n) (1)

Among them, m represents the type number of the object, and n represents
the number of different individuals of the same type of object. For example, there
are two cups in the image, whose pixels are distinguished by the number n.
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2.2 Detection of Dynamic Feature Points Based on Semantic
Feature Points

The detection algorithm of dynamic feature points in this paper is divided into
the following steps. The first is to construct semantic feature points. The second
one is to track motion vectors of feature points using sparse optical flow. The
third one is to roughly detect dynamic feature points set. The fourth one is to
identify dynamic objects and correct the dynamic feature points set, combined
with the possibility of object motion.

Construct Semantic Feature Points. The semantic feature points pro-
posed in this article are expanded on the basis of ORB feature points.
Semantic features are added on the basis of key points and descriptors
of ORB feature points. According to the pixel-level semantic information
matrix P provided by the semantic segmentation thread, after the ORB fea-
ture points are extracted, the semantic information of the feature points is
obtained from the matrix P . The semantic feature points Bi is expressed as
Bi = {keypoint, descriptor, semantic}. After the semantic feature points are
extracted, the semantic feature points set C is obtained, then a collection M is
created and classified by the feature points according to object instances, as in
formula (2). {

M = {Q1, Q2, · · · , Qn}
Qi = {B1, B2, · · · }, 0 ≤ i ≤ n

(2)

Where n represents the number of object instances, Qi represents the set of
feature points on the ith object. Qi ⊆ C.

Track Motion Vectors of Feature Points Using Sparse Optical Flow.
The motion vectors of the feature points in the feature points set are detected
by the pyramid Lucas optical flow method [1]. The set of motion vectors of all
feature points is detected as V = {v1, v2, · · · , vn}.

Roughly Detect Dynamic Feature Points Set. According to the results
of semantic segmentation, objects can be classified into 3 categories, that is,
immovable objects, like tables, walls, floors, lights, etc., movable objects like,
people, animals, cups, books, chairs, etc. and background objects, like objects
not recognized by semantic segmentation.

After using optical flow method to track the motion vectors of the feature
points, the motion vectors of the feature points marked as immovable objects
and background objects are extracted according to the semantic information
of the feature points. The average motion vector db is calculated and shown in
formula (3), among which, s represents the average modulus length of all feature
points, and μ represents the average movement direction of all feature points.

db = s · μ =
1
n

n∑
i=1

√
v2
ix + v2

iy ·
n∑

i=1

vi√
v2
ix + v2

iy

(3)
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In addition, the differences dm of modulus length of the feature points
between the maximum and the minimum motion vector are calculated in the
current frame. In order to reduce the error, the average value of the smallest
five module lengths and the average of the largest five module lengths are taken
as the minimum and maximum values, respectively, as shown in formula (4).
Among them, {v1, v2, · · · , vn} is sorted in ascending order of vector modulus
length.

dm =
1
5

(
v.size∑

i=v.size−4

√
v2
ix + v2

iy −
5∑

i=1

√
v2
ix + v2

iy

)
(4)

When the movement speed of the feature point is greater than the average
background speed, or the angle between the movement direction of the feature
point and the background movement direction is large, there will be obvious
movement inconsistencies. Based on this principle, an algorithm is designed to
identify dynamic feature points. The algorithm flow is shown in Fig. 2.

Fig. 2. Process of judging dynamic feature points.

It is more appropriated to assign δ1,δ2 and δ3 in the process as 15.0, 2.0, and
2.0 after experiments.

Identify Dynamic Objects and Correct the Dynamic Feature Points
Set. After rough extraction of feature points, it combines semantic informa-
tion to identify dynamic objects in the scene and correct incorrectly marked
dynamic feature points, with the specific process as follows. According to the
above dynamic feature points detection algorithm, the dynamic feature points
set C ′ is initially calculated. According to C ′, the number of dynamic feature



RGB-D Visual Odometry Based Semantic Feature Points 339

points extracted from each object instance in the calculation set M , which is
saved in the set U = {uQ1 , uQ2 , · · · , uQn

}, among which, uQi
represents the

number of dynamic feature points in the set Qi. The calculation method of is as
formula (5).

uQi
=

Qi.size∑
x=1

f(Bx), Bx ∈ Qi

f(X) =

{
0, X ∈ C ′

1, X /∈ C ′

(5)

The three categories of immovable objects, movable objects, and background
objects are numbered as 0, 1, and 2. A vector L = [l1, l2, · · · , ln] , n = M.size, li ∈
{0, 1, 2} is created, so as to identify the category of all objects in the collection
M . Then the object category and the number of feature points on the object
are combined to determine the dynamic object, and the static feature points for
feature matching are screened out. The algorithm is as follows:

Where Qi, 1 ≤ i ≤ n in scanning collection M ,
If Qi is an immovable object, the object is considered and marked as static. If

there is a dynamic point in Qi, then it can be considered as a result of semantic
segmentation error or optical flow calculation error. The dynamic point will be
corrected as a static point.

If Qi is a movable object, then it is judged whether it is a movable object or
not according to uQi

. If uQi
< α·size(Qi), where α is the judgment threshold and

it is more appropriate to assign 0.2 after experiment and size(Qi) represents the
number of feature points in Qi, the object is considered to be static, otherwise it
is considered to be a dynamic object. The object is marked as a dynamic object
and deleted from the collection.

If Qi is the background objects, all dynamic feature points are deleted directly
in Qi.

After the complement of the above steps, all semantic feature points in the
set are static feature points. As shown in formula (6), the feature points in each
object instance Qi are taken out in the set M and put them into the set W ,
which can be used as a set of candidate feature points for feature matching.

W = Q1 ∪ Q2 ∪ · · · ∪ Qn, Qi ∈ M (6)

3 Experiments and Results

This article uses the data set in the dynamic scenes provided by the TUM
data set for testing. The hardware parameters of the experimental computer
are AMD 2990wx 32-core 3GHz CPU, 96GB memory, 1TB hard disk, NVIDIA
2080Ti discrete graphics card × 2 and Ubuntu 16.04 operating system. The test
set includes two types: low dynamic environment (sitting) and high dynamic
environment (walking). Test indicators include Relative Pose Error (RPE) and
Absolute Trajectory Error (ATE). The RPE indicator evaluates the drift of the
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visual odometry by calculating the difference between cameras’ pose changes of
two same time stamp, including translation drift and rotation drift. The ATE
indicator directly calculates the difference between the true value and the esti-
mated value of the camera pose.

3.1 Feature Points Extraction Experiment

(a) and (d) in Fig. 3 show the recognition effect of the roughly detect dynamic
feature points algorithm on fr3 walking half and fr3 walking xyz of the TUM
dataset. The red lines represent the motion trajectory of the dynamic points,
while the green points represent the motion trajectory of the static feature
points. It can be seen from these figures that some feature points are incor-
rectly recognized. For example, the feature points extracted from the legs of a
person are marked as static feature points, due to little motion, while some of
the feature points extracted on the table are marked as dynamic feature points
due to calculation errors.

(b) and (e) in Fig. 3 show the result of semantic segmentation. As shown in (c)
and (f) in Fig. 3, the results of the correction dynamic feature points algorithm
are shown after the rough extraction of dynamic feature points. It can be found
that the incorrectly identified dynamic feature points on the table are corrected
to static, while the static feature points of the walking person are corrected to
be dynamic.

3.2 Experiment Results of VO in TUM Dataset

This article compares RPE, ATE indicators with ORB-SLAM3 and some other
SLAM algorithms in dynamic scenes. The best and second performance data are
represented in the bolded data and underlined data.

The comparison results of translation drift of RPE between ORB-SLAM3
and the algorithm in this paper are shown in Table 1, respectively, including
root mean square error (RMSE) and standard deviation (S.D.). Table 2 shows
the comparison results of ATE between ORB-SLAM3 and the algorithm in this
paper. According to the comparison results, compared with ORB-SLAM3, the
proposed algorithm greatly reduces the translation drift and trajectory error of
the visual odometry in the dynamic environment, especially in a high dynamic
environment, it eliminated the interference of dynamic objects on extraction and
matching of feature point, with significant improvement effects.
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Feature points extraction experiment.

Table 1. Comparisons of Translation drift of RPE between ORB-SLAM3 and Ours
(unit m/s)

Sequences ORB-SLAM3 Ours

RMSE S.D. RMSE S.D.

fr3 walking static 0.0172 0.0106 0.0121 0.0063

fr3 walking xyz 0.1189 0.0597 0.0202 0.0099

fr3 walking rpy 0.1754 0.1286 0.0488 0.0278

fr3 walking half 0.2862 0.1910 0.0292 0.0139

fr3 sitting static 0.0138 0.0078 0.0082 0.0042

fr3 sitting half 0.0809 0.0579 0.0199 0.0093

Table 2. Comparisons of ATE between ORB-SLAM3 and Ours (unit m)

Sequences ORB-SLAM3 Ours

RMSE S.D. RMSE S.D.

fr3 walking static 0.0271 0.0136 0.0101 0.0044

fr3 walking xyz 0.1189 0.1417 0.0157 0.0077

fr3 walking rpy 0.2836 0.1436 0.0456 0.0275

fr3 walking half 0.4967 0.1972 0.0310 0.0154

fr3 sitting static 0.0355 0.0165 0.0064 0.0034

fr3 sitting half 0.1519 0.0701 0.0177 0.0081
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Table 3. Comparisons of RMSE of RPE between Ours and Other Algorithms.

Sequences Translation drift, unit m/s

Li [9] Sun [12] Yu [13] Fang [4] Ours

fr3 walking static 0.0327 0.0842 0.0102 0.0150 0.0121

fr3 walking xyz 0.0651 0.1214 0.0333 0.0241 0.0202

fr3 walking rpy 0.2252 0.1751 0.1503 - 0.0488

fr3 walking half 0.0527 0.1672 0.0297 0.1369 0.0292

fr3 sitting static 0.0231 - 0.0078 0.0115 0.0082

fr3 sitting half 0.0389 0.0458 - 0.0189 0.0199

This paper also compares RPE and ATE indicators with some SLAM algo-
rithms in dynamic scenarios, which is shown in Table 3 and Table 4. It can be
seen from the results that the performance of the algorithm in this paper is
significantly better than that of Li [9], Sun [12] and Fang [4] in both high and
low dynamic environment. Compared with the algorithm of Yu [13], the perfor-
mance is better in high-dynamic scenes, but the difference in RPE indicators
is very small in some low-dynamic scenes, which can be considered as equal
performance, because in this case dynamic objects have less influence on the
estimation of camera pose estimation.

Table 4. Comparisons of RMSE of ATE between Ours and Other Algorithms.

Sequences Absolute Trajectory Error, unit m

Li [9] Sun [12] Yu [13] Fang [4] Ours

fr3 walking static 0.0261 0.0656 0.0081 0.0104 0.0101

fr3 walking xyz 0.0601 0.0932 0.0247 0.0164 0.0157

fr3 walking rpy 0.1791 0.1333 0.4442 - 0.0456

fr3 walking half 0.0489 0.1252 0.0303 0.0923 0.0310

fr3 sitting static - - 0.0065 0.0065 0.0064

fr3 sitting half 0.0432 0.047 - 0.0145 0.0177

The comparison of the camera trajectories between ORB-SLAM3 and the
algorithm in this paper on the two dynamic environment sequences of the TUM
dataset are shown in Fig. 4. It also shows the camera motion trajectory obtained
by the ORB-SLAM3 algorithm without dynamic feature points detection and
removal, and the camera motion trajectory after adding the algorithm in this
paper. It can be seen from the figure that after adding the algorithm in this
paper, the accuracy of motion trajectory estimation in a dynamic environment
is significantly improved.
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(a) (b)

(c) (d)

Fig. 4. Trajectories estimated by the proposed system.

3.3 Experiment in a Real Environment

To demonstrate the robustness and real-time performance of the algorithm in
this paper, we conduct extensive experiments in a real environment. Images are
captured by Kinect V2 camera with 480 × 640 resolution.

Meanwhile, the experiment with the algorithm in a real scene is also carried
out in this paper. The experimental scene is a living room environment, which
contains people walking around. Fig. 5 shows the removal effect of dynamic fea-
ture points. The green dots in the figure represent the feature points. Figure 5(a)
shows the feature points extracted using the ORB feature points extraction algo-
rithm, while Fig. 5(b) shows the segmentation results of the semantic segmenta-
tion thread. The different color masks in the figure represents different objects.
Figure 5(c) shows the static feature points after the algorithm culls the dynamic
feature points. It can be seen that the algorithm in this paper can remove the
dynamic feature points well in the actual scene.

(a) (b) (c)

Fig. 5. The process of deleting dynamic feature points. (Color figure online)



344 H. Wang et al.

4 Conclusions

This paper proposed a visual odometry based on semantic feature points in
dynamic environments. The algorithm can effectively identify the dynamic
objects and remove the dynamic feature points, and ultimately improve the
accuracy of pose estimation. Extensive experiments on the TUM dataset and
in the actual scene with ORB-SLAM3 and other related algorithms in dynamic
scenarios were conducted, which shows the effectiveness and rationality of the
algorithm in this paper. Following studies will be carried out and semantic fea-
ture points will be applied for the SLAM mapping stage. Since semantic feature
points contain object motion state and instance information, which will provide
effective input information for constructing a semantic map.
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Abstract. Anomaly detection is becoming increasingly ubiquitous in
the society of data mining. Prominent anomaly detection works have
achieved great success in theory and practice. However, they cannot
handle the generalized semi-supervised scenario where there are only
a handful of labeled anomalies, and plentiful unlabeled data that may
bring in some instances of augmented anomaly classes but which are
hard to be sampled. To solve this new problem, we propose a method
called ACAD (Augmented Classes Anomaly Detection), which consists of
three components. ACAD firstly suggests an augmented anomaly class
discovery module that connects the isolation score and the similarity
score to excavate the instances of hidden anomaly classes from unla-
beled data accurately. ACAD then uses a specific cluster approach to
compute useful similarity scores to separate reliable anomalous and nor-
mal instances among unlabeled data, respectively. ACAD finally builds a
robust anomaly detector based on mined examples, successfully perform-
ing anomaly detection from partially observed anomalies with augmented
classes. A series of empirical studies show that our algorithm remarkably
outperforms state of the art on almost twenty datasets.

Keywords: Anomaly detection · Augmented classes · Positive
unlabeled learning

1 Introduction

Anomaly detection is becoming increasingly ubiquitous, making the information-
based society more safe, civilized, harmonious, beautiful. The application of
anomaly detection plays a key role in our daily life, such as fraud detection [1],
intrusion detection [27], anomaly vision detection [5], cardiac signal abnormal-
ity detection [17], rare disease detection [9] and video anomaly detection [34].
Anomaly detection techniques can help society find dangerous anomalies faster
to reduce latent risks. For instance, anomaly detection techniques can be used
to detect new emerging COVID-19 diseases effectively [31]. In addition, anomaly
c© Springer Nature Switzerland AG 2021
L. Fang et al. (Eds.): CICAI 2021, LNAI 13070, pp. 347–358, 2021.
https://doi.org/10.1007/978-3-030-93049-3_29
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detection is commonly used in security departments. Another example is surveil-
lance video anomaly detection. By the technology of anomaly detection, the staff
of traffic management department can more quickly detect traffic accidents or
illegal driving on the road.

Fig. 1. Overview of anomaly detection from partially observed anomalies with aug-
mented classes. ‘0’ denotes labeled anomaly class. ‘8’ and ‘9’ denote augmented anomaly
classes. ‘6’ denotes normal class.

Prominent advanced algorithms have been achieved in anomaly detection.
Dating back to 1887, Edgeworth [11] carried out a pioneering work to detect
anomalies from statistical data. To date, anomaly detection has grown into a
big tree with mainly three branches of approaches: unsupervised anomaly detec-
tion [19], supervised anomaly detection [13], and semi-supervised anomaly detec-
tion [28]. Unsupervised anomaly detection methods attempt to utilize the intrin-
sic statistical properties of data to find anomalies, including distance-based meth-
ods [23], density-based methods [3] and depth-based methods [26]. The branch of
supervised anomaly detection obtains less attention since it can be easily resolved
by traditional supervised classifiers, such as support vector machine [29], deci-
sion tree [30], and so on. Recently, semi-supervised anomaly detection, with
partially observed anomalies, gets much attention because it meets actual needs
in industry [15]. Zhang et al. [32] viewed semi-supervised anomaly detection as
a positive unlabeled (PU) learning problem, which assumes that there are a
handful of labeled positive (anomalous) examples and plentiful unlabeled data
that include normal and anomalous instances. They then adopted a two-stage
PU learning approach to perform anomaly detection. Zhang et al. [33] suggested
that anomalies always involves multiple distinct classes, which are ignored by
previous works. They thus built a multi-class anomaly detection model by divid-
ing anomalies into multiple sub-categories.

While previous semi-supervised anomaly detection works have achieved great
success, they cannot handle the generalized semi-supervised anomaly detection
in which new (augmented) classes may appear in the unobserved anomalies.
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That is, there are a few labeled positive (anomalous) examples and many unla-
beled data that contain normal and anomalous instances that easily involve some
instances of augmented anomaly classes. Let’s take Fig. 1 as an example to illus-
trate the generalized semi-supervised anomaly detection scenario. We assume
that ‘0’ represents labeled anomaly class, ‘6’ represents normal class, ‘8’ and
‘9’ represent the augmented anomaly classes. During the training stage, only
labeled abnormal instances and unlabeled instances are provided, and unlabeled
instances include known abnormal instances, normal instances and augmented
anomaly instances. We define this generalized semi-supervised anomaly detection
scenario as ADPOAC (Anomaly Detection from Partially Observed Anomalies
with Augmented Classes).

In a nutshell, this new scenario is more practical, generalized, and challenging
than existing settings. It is more practical because, for example, the anomalous
data of COVID-19 diseases first appear in the unlabeled set and are not eas-
ily detectable. It is more generalized because anomalous data involve multiple
sub-categories, and the sampling process easily misses a part of sub-categories
due to the sampling bias. Meanwhile, the setting is appropriate for the com-
mon situation where the distribution of anomalies is relatively wide. Due to the
sampling bias, the labeled anomalous instances only occupy a part of the whole
distribution in a broad spectrum, such that lots of anomalous instances with
different properties are missing into the labeled set. Moreover, it is exceptionally
challenging because of the new emerging augmented classes. For example, in the
detection of malicious URLs, new emerging malicious URLs are often difficult
to detect.

In this paper, we propose a method called ACAD (Augmented Classes
Anomaly Detection) to achieve robust anomaly detection from partially observed
anomalies with augmented classes. As illustrated in Fig. 2, the framework of
ACAD consists of three components. Given a set of training examples, ACAD
firstly suggests an augmented anomaly class discovery module that connects the
isolation score and the similarity score to discover the instances of augmented
anomaly classes from unlabeled data. Secondly, ACAD attempts to mine use-
ful information of the unlabeled instances by clustering them to select potential
anomalies and reliable normal instances. Finally, ACAD builds a robust anomaly
detector based on mined examples, successfully executing anomaly detection
from partially observed anomalies with augmented class.

The main contributions of this paper include:

– To the best of our knowledge, it is the first time to study on anomaly detection
from partially observed anomalies with augmented classes.

– To overcome this new open problem, we propose a first specific solution called
ACAD (Augmented Classes Anomaly Detection). Specifically, we propose a
Augmented classes discovering module which connects isolation score and
similarity score to excavate the instances of augmented anomaly classes from
unlabeled data.

– A series of empirical studies and experiment results have demonstrated the
robustness and effectiveness of our method.
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Fig. 2. Overview of ACAD for anomaly detection from partially observed anomalies
with augmented classes.

2 Related Work

The setting we proposed in this paper lies on the intersection of anomaly detec-
tion, PU (Positive and Unlabeled) learning and new class discovery.

2.1 Anomaly Detection

Anomaly detection has attracted attention from various research areas and appli-
cation domains. Anomaly detection is the task of finding patterns in data that do
not conform to the expected behavior [34]. These inconsistent patterns are often
referred to as outliers, inconsistent observations, anomalies or contaminants in
different application domains.

Based on the different way of training, anomaly detection methods can be
divided into three categories [4]: 1) Unsupervised methods, which detect anoma-
lies based on intrinsic properties of the data samples without labels, assuming
that normal instances have a higher occurrence frequency than anomalies. For
example, a popular method is Isolation Forest [22]; 2) supervised methods, which
infers functions from labeled training data sets. In this kind of methods, the train-
ing set generally contains both normal and anomalous samples. However, normal
samples are more common than abnormal instances in practice, resulting sub-
optimal performance of supervised classifier. 3) semi-supervised methods, which
provides a small number of labeled anomaly instances and a large number of
unlabeled instances. Different from the existing work [33], in this paper, new
anomaly classes are involved in the unlabeled data.

2.2 PU Learning

PU learning [18] is a special case of semi-supervised learning [6,35]. It is suitable
when only positive and unlabeled data are available, and no negative sample
is labeled. Existing methods can be divided into three types [33]: (1) Two-step
method that firstly identifies reliable negative or positive examples and then
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adopts supervised learning techniques [21]. (2) Biased PU learning method [20].
unlabeled set is regarded as a negative sample set, and negative samples are
given lower regularization weights, thereby allowing a certain amount of nega-
tive instances to be misclassified. (3) Class prior estimation method [18]. They
estimates the class prior to positive classes.

However, one of the default assumptions of PU Learning is that labeled
anomaly set only includes one type of class, which obviously does not meet
actual needs. In [33], the application of PU learning is extended to the case
where the marker set contains multiple classes. However, the existing research
has not solved the problem: some abnormal categories that do not appear in
the unmarked anomaly will appear in the unmarked data, which is a common
but more complicated situation. Besides, recent works [7,24] show that including
novel classes in the unlabeled set can hurt the performance compared to not using
any unlabeled data. Based on this, in this paper, we aim to solve a more realistic
and challenging task, requiring the model to discover augmented anomaly classes
and normal class in the unlabeled data under the condition where the labeled
data provided only contain known anomaly classes.

2.3 New Class Discovery

New class discovery refers to the process of learning to find categories that
have not appeared before without labeled instances provided, which is a fun-
damental task for robust learning in open and dynamic environment. In [10],
Da et al. proposed to exploit unlabeled data for the learning problem and design
a novel algorithm by tuning the decision boundary to pass through low-density
regions. In [16], Hsu et al. proposed to transfer predictive pairwise similarities
from labeled to unlabeled data by posing the categorization problem as a surro-
gate same task problem. Deep Transfer Clustering extends the deep clustering
framework by incorporating information about the known classes [14]. [12] trains
the model by generating pseudo-labels of the unlabeled data using rank statistic.
However, in our setting, the unlabeled data contain vast unknown normal class
samples and a few new abnormal class samples, in addition to a few samples of
known abnormal classes, which previous methods are not suitable to solve.

3 Proposed Method

3.1 Learning Set-Up

During the training phase, we are only provided a few labeled anomaly instances
and plentiful unlabeled instances. We use P+ = {(x1, y1), (x2, y2), . . . , (xm, ym)}
to denote the labeled anomaly data set, and use U = {xm+1, xm+2, . . . , xm+n} to
denote the unlabeled set which contains vast normal instances and a few anomaly
instances, where m denotes the number of labeled instances and n denotes the
number of unlabeled instances respectively, and n >> m. We denote the set of
ground-truth anomaly classes in P+ and U as C+ and C, respectively. And we
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Fig. 3. Brief process of discovering augmented classes.

assume C+ ⊂ C. We consider CN = C − C+ �= ø as augmented anomaly classes.
That is, augmented anomaly classes are classes that emerge in the unlabeled set
U and the test set but not emerge in the labeled data set P+. The key of
this problem is to excavate the augmented anomaly classes. To achieve that,
we propose a first specific solution called ACAD (Augmented Classes Anomaly
Detection), which contains three modules.

3.2 Proposed Method

Augmented Classes Discovering. The augmented class discovery method
can effectively excavate the instances of augmented anomaly classes by connect-
ing the isolation score [22] and the similarity score [33]. As illustrated in Fig. 3,
we firstly acquire two score distributions and then take the intersection of them
to get the instances of augmented classes. The two scores are introduced as
follows.

Isolation Score. The concept of isolation score was first introduced in [22]. By
using an extremely random forest, we can obtain the isolation score for each
instance. Because the anomalous examples are few and different, the isolation
score IS is relatively high for the anomalous examples. The isolation score IS(x)
can be used to describe the probability of x being anomalous. We assume that
there are n instances, and

T (n) = H(n − 1) − (2(n − 1)/n) (1)

denotes the average path length of unsuccessful search in the random trees.
H(n − 1) is the harmonic number. The isolation score IS(x) for instance x can
be acquired by

IS(x) = 2−E(h(x ))
T (n) , (2)

where E(h(x)) is the average value of h(x), which represents the path length of
a point x in the isolation tree.

Similarity Score. The similarity score SS(x) indicates the similarity of instance
x to its nearest anomaly clustering center [33], and it is defined by

SS(x) =
N

max
k=1

e−(x−µk)
2
, (3)
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where µk represents the k-th clustering center and N represents the number of
clustering centers. The higher the SS(x), the higher the probability of being
anomalous.

Based on these two scores, on the one hand, we first obtain an isolation score
distribution on unlabeled instances. Based on a predefined threshold βis, we
divide the distribution into two sets of {P̃+, ˜new} and {Ñ} by

IS(x) > βis, (4)

such that we can get {P̃+, ˜new}. P̃+, ˜new, and Ñ represent possible anomalies
of known classes, possible anomalies of augmented classes, and normal exam-
ples, respectively. On the other hand, we cluster the labeled anomalies to obtain
the clustering centers. Then we compute the similarity score for each unlabeled
instance to the nearest clustering center. Accordingly, we can acquire the sim-
ilarity scores of all unlabeled instances. After setting a threshold βss, we can
divide the similarity score distribution into {P̃+} and { ˜new, Ñ} by

SS(x) < βss, (5)

such that we can get { ˜new, Ñ}. Finally, we take the intersection between
{P̃+, ˜new} and { ˜new, Ñ} to acquire the possible anomalies of augmented classes
{ ˜new}.

Unlabeled Anomalies Discovering. The objective of this component is to
separate reliable anomalous and normal instances among unlabeled data. Firstly,
we obtain the new clustering centers by considering the newly discovered anoma-
lies of augmented classes. The similarity score can be updated according to the
new clustering centers. Then we combine it with the isolation score to get the
weighted score WS of each unlabeled instance by

WS(x) = θ × IS(x) + (1 − θ) × SS(x), (6)

where θ ∈ [0, 1]. Finally, we design two thresholds to select out reliable anomalous
and normal instances, respectively, by

WS(x) > αw, WS(x) < βw, (7)

where αw is the selection threshold of reliable anomalies, which is defined by

αw =
1

L + Nnew

L+Nnew∑

i=1

WS(xi), (8)

where L denotes the number of known anomalies and Nnew denotes the number
of obtained reliable instances of augmented classes. Besides, βw is a predefined
parameter. Note that these predefined thresholds (βis, βss, βw) are set according
to the class prior or the mean value of WS respectively, following the existing
work [33].
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Robust Weighted Classifier. The objective of this component is to build a
robust anomaly classifier. Firstly, we perform a weighting operation to obtain the
weights of reliable anomalies, potential anomalies, and reliable normal instances,
respectively. Specifically, we set the weights of anomalies in P+ and anomalies in
augmented classes obtained in the first component to one. For potential anoma-
lies, we assign their weights according to the criterion:

w(x) =
WS(x) − αw

maxx WS(x) − αw
. (9)

For reliable normal instances, we assign their weights according to the fol-
lowing distinct criterion:

w(x) =
βw − WS(x)

βw − minxWS(x)
, (10)

where 0 < w(x) ≤ 1.
Furthermore, we train a weighed classifier using all the above-mentioned

instances and their weights. The objective of this classifier is given by

�(X,Y ) =
n∑

i=1

w(xi)�(yi, f(xi)), (11)

where w(xi) denotes the weight of instance xi, n is the training instance number,
and � represents a general loss function.

4 Experiments

We evaluate our algorithm on twenty datasets against the state-of-the-art meth-
ods. The code about the proposed method will be available. The compared meth-
ods include unsupervised method (Isolation Forest [22]), semi-supervised meth-
ods (ADOA [33], PU learning [2]), and supervised method (PN learning [8]) that
views U set as negative set. We use the hinge loss of support vector machine
as the basic loss function in Eq. (11) as same as [8]. All the experiments are
repeated 20 times to obtain a fairer AUC score.

4.1 Experiments on Synthetic Data

We first verify the performance of our proposed method on a synthetic 32-
dimensional dataset from Gaussian distributions. This dataset consists of four
different Gaussian distributions Pi = N(μi, Σi), i ∈ {0, 1, 2, 3} that represent
four different classes, respectively. μi ∈ R32 and Σi ∈ R32×32. Each element of
μi belongs to the interval [2, 4], [0, 1], [0, 2], [1, 3], respectively. And each diago-
nal element of Σi belongs to the interval [1, 8], [1, 2], [1, 2], [1, 2], respectively. We
randomly select 100 samples respectively from P1, P2 to put them into P+ as the
set of labeled anomalies. We then put the remaining instances from P1, P2, the
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Table 1. AUC on different datasets. Bold values indicate the best performance.
Besides, • (◦) means that ACAD is significantly better (worse) than the compared
method. And Win/Tie/Loss are summarized in the last row.

ADOA Unsupervised method PU method PN method ACAD

Synthetics 0.931 • 0.784 • 0.943 • 0.797 • 0.983

Mnist 0.858 • 0.853 • 0.808 • 0.803 • 0.996

Arrhythmia 0.669 • 0.754 • 0.686 • 0.684 • 0.785

KDDCUP99 0.831 • 0.865 • 0.833 • 0.776 • 0.886

Annthyroid 0.914 • 0.817 • 0.807 • 0.822 • 0.934

Synthetics 0.989 • 0.987 • 0.985 • 0.968 • 0.990

Http 0.999 ◦ 0.999 ◦ 0.997 ◦ 0.996 ◦ 0.991

Ionosphere 0.934 • 0.822 • 0.887 • 0.708 • 0.948

Letter 0.671 • 0.639 • 0.629 • 0.613 • 0.810

Mammography 0.903 ◦ 0.890 • 0.913 ◦ 0.695 • 0.901

Musk 1.000 0.995 • 1.000 0.979 • 1.000

Optdigits 0.964 • 0.719 • 0.959 • 0.959 • 0.966

Pendigits 0.985 ◦ 0.956 • 0.986 ◦ 0.869 • 0.982

Pima 0.782 • 0.712 • 0.775 • 0.716 • 0.793

Satellite 0.803 • 0.750 • 0.837 ◦ 0.735 • 0.820

Satimage 0.992 • 0.990 • 0.988 • 0.962 • 0.994

Shuttle 0.997 • 0.994 • 0.985 • 0.983 • 0.998

Smtp 0.902 • 0.907 • 0.876 • 0.788 • 0.956

Speech 0.644 • 0.509 • 0.550 • 0.615 • 0.661

Thyroid 0.994 • 0.964 • 0.996 • 0.873 • 0.997

ACAD:W/T/L 16/1/3 19/0/1 15/1/4 19/0/1 Rank first 16/ 20

instances from P3 (augmented anomalies), and the instances from P0 (normal
class) into U set and the test set in a 4:1 ratio. The results on the synthetic
dataset are located in the first raw of Table 1. ACAD remarkably outperforms
compared methods in a large margin, which verifies its ability on generalized
semi-supervised anomaly detection with augmented class discovery.

4.2 Experiments on Real-World Data

To verify the robustness of our method, we perform experiments on real-world
datasets [25]. We strictly construct three generalized semi-supervised anomaly
detection datasets based on three multi-class datasets of MNIST, arrhythmia,
and KDDCUP99. We randomly define some classes as anomalies. Among them,
partially anomaly classes are sampled as labeled anomaly classes, and the
remaining anomaly classes are considered as augmented anomaly classes. Rows
two to four of Table 1 report the results. Our algorithm significantly outperforms
existing anomaly detection methods.

To verify the universality of our method, we perform experiments on the other
datasets that only contain one anomaly class and one normal class. However,
this anomaly class may implicitly contain some sub-categories of anomalies. We
apply our algorithm to these datasets directly. Rows five to twenty of Table 1
report the results, which clearly demonstrate that our algorithm achieves the
best performance than existing methods. These surprising results verify that
our algorithm can apply to general anomaly detection scenarios.
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Fig. 4. The AUC of the (a) different numbers of augmented classes, and (b) different
values of θ on KDDCUP99 dataset.

4.3 Ablation Study

The Effect of the Number of Augmented Classes. We dissect the strengths of
augmented class discovery. Figure 4(a) reports the results of different numbers
of augmented classes on KDDCUP99. The result of our method stably decreases
with the increase of class numbers. This result fits our intuition that the richer
the augmented classes, the harder the task.

The Effect of the Weight. θ Fig. 4(b) reports the results of different weights θ
that play a key role in balancing the isolation score and similarity score. On
the KDDCUP99 dataset, the weight of 0.4 achieves the best performance, while
the other values also obtain stable results. This result verifies the effectiveness
of our algorithm on discovering reliable anomalous and normal instances among
unlabeled data.

5 Conclusions

We presented a new analysis of generalized semi-supervised anomaly detection,
an under-explored but more realistic scenario. We also proposed the Augmented
Class Anomaly Detection method tailored to the new problem. Specifically, we
propose a Augmented classes discovering module which connects isolation score
and similarity score to excavate the instances of augmented anomaly classes from
unlabeled data. Extensive experiments show that the proposed method achieves
the best performance compared to the state-of-the-art methods. However, the
method proposed in this paper is based on traditional machine learning method,
resulting in limited application. In the future, we will combine the idea of the
method proposed in this paper with deep learning to deal with visual anomalies.
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tion of China (61876098), the National Key R&D Program of China (2018YFC0830100,
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Abstract. Brain functional connectivity (BFC) built from resting-state
functional magnetic resonance imaging (rs-fMRI) has shown promising
results in revealing the pathological basis of neurological disorders. How-
ever, a major problem is that existing approaches tend to limit analysis
to a single scale, which unmatches the truth that modern neuroscience
highlights BFC as a multi-scale topological architecture. Such a nar-
row view does lose representation of the inherent BFC topology and
would weaken its performance. To solve this issue, we propose a novel
triple-pooling graph neural network (TPGNN) to learn different scales of
BFC topological knowledge in a task-adaptive way. Specifically, a pool-
ing architecture with triple branches is designed to automate BFC anal-
ysis on the global scale, community scale, and region of interest (ROI)
scale, respectively. We validate the diagnostic performance of TPGNN on
an open autism spectrum disorder (ASD) dataset. Experimental results
demonstrate that TPGNN outperforms the alternative state-of-the-art
BFC analysis methods and provides potential biomarkers of different
scales to benefit neuroscience.

Keywords: Multi-scale topological learning · Brain functional
connectivity · Graph neural network

1 Introduction

Over the past decade, brain functional connectivity (BFC), which is constructed
by the correlation between different regions of resting-state functional magnetic
resonance imaging (rs-fMRI) series over time, has become a promising tool to
investigate functional changes in patient populations [4,7]. Learning and under-
standing its intrinsic functional organization is essential for revealing the patho-
logical basis of neurological disorders [9,17]. With the evolvement of practices
in neuroscience, recently neuroscientists like Bassett et al. have shown evidence
c© Springer Nature Switzerland AG 2021
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Global scale ROI scaleCommunity scale

Fig. 1. Topologies of BFC at three different scales

that BFC is fundamentally multi-scale topological architecture [3]. However, the
multi-scale reality has never been fully considered as a priority, which would
weaken the effectiveness of brain disease diagnosis. The multi-scale topology of
BFC focuses on the relations highlighted by different measurement methods [3].
The scales can range from individual regions to the brain as a whole. In neu-
roscience research, three scales are often concerned, namely the global scale,
community scale, and region of interest (ROI) scale [2]. The specific schematic
is shown in Fig. 1. Specifically, the global scale takes notice of the synergetic
patterns all over the whole brain; community scale emphasizes the relationships
between communities formed by clustering brain regions with similar properties
together, such as the default mode community that is always active during peo-
ple’s passive rest [24]; ROI scale focuses on the relationship between brain regions
associated with the task. Because of the close relationship between topological
alterations and neurological diseases, each particular-scale topology could give
its own unique insight [12,34], thus, developing an approach to bridge multiple
scales of BFC will be an essential force in understanding the brain [16]. Multi-
scale topological learning of BFC will help to better characterize its complex
neural mechanisms and improve the diagnosis performance.

With the development of deep learning technologies [25,32], graph neural
networks (GNNs) have shown superior performance in mining useful topological
patterns of BFC for disease classification [1]. The main reason is that BFC
can be seen as a graph consisting of a series of nodes and edges, GNN can
explicitly capture the topological information by embedding and passing the
nodes’ information through edges in the graph. Although existing GNN-based
approaches have proven effective in processing neuroimaging applications, they
just focused on a single scale to identify the difference between patients and
healthy controls (HCs) [6]. For example, Ktena et al. used a siamesed GNN
to learn a global-based similarity metric with a supervised setting for disease
diagnosis [18]; Yang et al. used an attention-based GNN to understand the causes
of the disorders from its global topology [29]; Zhang et al. incorporates a spatial
GNN to learn a global-scale embedding for classifying human brain activity
under cognitive tasks which outperforms a multi-class support vector machine
classifier [33]. None of the above GNN-based methods has sufficiently taken
into account the multi-scale topological property learning. Such a narrow view
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does lose representation of the inherent BFC topology and would weaken its
performance.

To overcome the issues, we proposed a novel triple-pooling graph neural net-
work (TPGNN) to conduct multi-scale topological learning of BFC. As autism
spectrum disorder (ASD) is a neurodevelopmental disorder closely related to
potential dysfunction of the brain [19], our experiments are performed on the
large challenging ABIDE database to distinguish ASDs from HCs. Our pro-
posed TPGNN consists of three branches with different pooling mechanisms,
each branch in TPGNN is designed to learn the above-mentioned three types
of topological scales respectively. Our design achieves different-scale topological
learning of BFC in a one-to-one corresponding architecture. Finally, we inte-
grate information from different topological scales by a concatenate mechanism
to realize a multi-scale representation of BFC.

Our contributions are summarized as follows: (1) Considering the multi-
scale topological reality of BFC, we proposed TPGNN with three novel pooling
branches to learn different scales of information respectively with a workable set-
ting. (2) We applied the proposed method on a multi-center public ASD dataset
for a classification task, achieving state-of-the-art performance (72.5% accuracy
on the ABIDE dataset). (3) Our model is highly interpretable, different scales
will provide their own insights into potential biomarkers.

2 Materials and Methods

2.1 Overview

The architecture of our proposed TPGNN computing framework is shown in
Fig. 2. The three branches correspond to the topological learning for global
scale, community scale, and ROI scale respectively. In Sect. 2.2, data processing
was performed on each subject. With the BFC graphs constructed by the pre-
processed fMRI data, the TPGNN framework was designed for the multi-scale
topological learning of BFC (Sect. 2.3).

2.2 Image Acquisition and Preprocessing

ABIDE Dataset. The Autism Brain Imaging Data Exchange (ABIDE) aggre-
gates data from 20 different sites and openly shares 1112 existing rs-fMRI
datasets. The Preprocessed Connectomes Project (PCP) released preprocessed
ABIDE data using several pipelines and calculated derivatives. We downloaded
the time series data of brain regions processed by DPARSF (Data Processing
Assistant for Resting-State fMRI) and AAL atlas, which comprises R = 116 cor-
tical and subcortical regions. It is worth noting that the preprocessed data with
missing values were excluded from our experiment. One can check the ABIDE
Preprocessed website1 for more details.

1 http://preprocessed-connectomes-project.org/abide/download.html.

http://preprocessed-connectomes-project.org/abide/download.html
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Fig. 2. A schematic diagram of the proposed TPGNN framework for ASD identifica-
tion. Each of the three branches corresponds to the topological learning for global scale,
community scale, and ROI scale respectively. Different graph pooling mechanisms are
performed in each branch to construct and learn the corresponding-scale topology.

2.3 Triple-Pooling Graph Neural Network (TPGNN)

In this work, we focus on improving a multi-scale topological learning method
for BFC, aiming at integrating topological information from different scales for
better diagnosis of brain diseases. Specifically, a triple-pooling mechanism is pro-
posed, with each pooling mechanism corresponding to each scale branch. For the
global-scale branch, local-aggregation graph convolutions are first conducted to
learn node embeddings, and then a global pooling technique is implemented to
learn the topological representations of the whole brain. For the community-
scale branch, a soft clustering graph pooling technology is exploited to carry
out low-dimensional continuous community mining on the original BFC so as
to realize the learning of the topological representations between communities.
For the ROI scale, a projection-based pooling technology is adopted to extract
the most indicative ROIs in a task-adaptive manner, thus establishing the topo-
logical representations between the task-related ROIs. Finally, We integrated
information at different scales to realize multi-scale topological learning of BFC,
and the concatenated features are then fed to two fully connected layers for
classification.

Graph Settings. A graph G with n nodes is represented by (V,X,A), where V
denotes the nodes, X ∈ R

n×d denotes the nodes feature matrix that each node
with a d-dimensional vector. A ∈ R

n×n is the adjacency matrix. Aij = 1 if there
is an edge between vi and vj , and 0 otherwise. Given a labeled graph dataset
D = {(G1, y1), (G2, y2), ...}, a graph classifier can be trained to learn a mapping
relationship between graphs G to the set of labels y.
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From fMRI data to graph signals, the nodes are defined by the brain regions
from a given atlas. For the adjacency matrix, Pearson’s correlation coefficients
(PCCs) of BOLD time-series between each pair of regions were used as the edges.
Note that a sparse strategy of setting negative edges to zero was adopted because
research shows that spurious negative correlation values would be introduced by
the global signal regression preprocess [21]. Thus only the positive edges were
retained as the adjacency matrices. For each node, the PCCs between the node
and all of the others and the (x, y, z) Montreal neurological institute (MNI) spa-
tial coordinates were utilized as nodes features, where PCC reflects the functional
connectivity strength, coordinates reflect the spatial position relationship. Since
AAL atlas parcellates the whole brain into 116 regions, plus its spatial three-
dimensional coordinates, nodes feature X ∈ R

116×119. It is worth noting that
the features of each node are ordered and aligned.

Graph Convolution. Graph-based convolution tends to follow a message pass-
ing mechanism directly in the nodal domain; namely, each node sends its feature
message to the nodes in its neighborhood; and then updates its feature repre-
sentation by aggregating all messages received from the neighborhood. In our
TPGNN framework, GraphSAGE is exploited as the basis for graph convolu-
tions [14]. Specifically, GraphSAGE performs inductive learning by aggregating
feature information from a node’s local neighborhood with a trainable aggrega-
tion function. Each node v ∈ V has a feature vector Xv ∈ R

d, GraphSAGE layer
infers a new vector representation hv

(k+1) ∈ R
d2 for node v from its neighbors

by:

hv
(k+1) = g(W (k)[hv

(k) � hNv

(k+1)]),∀v ∈ V (1)

where [�] denotes a vector concatenation operation, W (k) ∈ R
d2×d1 is a weight

matrix, g is a non-linear activation function, k is the layer index, and hv
(0) = Xv.

hNv

(k+1) can be computed in several ways such as applying an element-wise
max-pooling operation as follows:

hNv

(k+1) = max({g(Wpoolh
(k)
u + b(k)),∀u ∈ Nv}),∀v ∈ V (2)

where Nv is defined as a fixed-size, uniformly drawn from the set of all neighbor
nodes of v, and uniformly sampled differently through each layer.

Global Pooling for Global-Scale Branch. Inspired by [23] that leverages a
global pooling technology to directly extract features from the unordered nodes
as a task-related global representation, we performed the global max-pooling
and the global mean-pooling on the embedded features of all nodes to select the
most representative features in each feature channel as a global-scale represen-
tation. In detail, global max-pooling can effectively extract features that have a
significant contribution to the task, and global mean-pooling can better preserve
the localization features. Finally, they concatenate together to effectively learn
the global topological representation of the brain.
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Hierarchical Pooling for Community-Scale Branch. The hierarchical
pooling layer is a differentiable graph pooling layer to build the community-
scale topology. Specifically, we adopt the approach in [30] to perform the com-
putation of the soft clustering assignments and learn hierarchical representations
in an end-to-end manner with relatively few parameters. Specifically, from k-th
layer to (k+1)-th layer, the hierarchical pooling uses A(k+1) = S(k)TA(k)S(k) and
X(k+1) = S(k)TZ(k) to coarsen the input graph by generating a new coarsened
adjacency matrix A(k+1) and a new matrix of embeddings X(k+1) for each of the
nodes/clusters in the coarsened graph. The assignment matrix S(k) and embed-
ding matrix Z(k) can be respectively learned by two separate graph convolutions,
this process can be represented as:

Z(k) = GraphSAGEk,embed(A(k),X(k)) (3)

S(k) = softmax(GraphSAGEk,pool(A(k),X(k))) (4)

The computed Z(k) and S(k) in the k-th layer can be used for the community
construction in the (k+1)-th layer.

ROI-topK Pooling for ROI-Scale Branch. The ROI-topK Pooling Layer is
designed for sparsing the original graph by selecting the top-k nodes associated
with the task [5,13]. Specifically, it implements downsampling on the graph by
adaptively selecting nodes to form a smaller graph based on their scalar pro-
jection values on a trainable projection vector. Given a node v with its feature
vector xv, the scale projection of Xv on p is xvp/ ‖p‖, this measures the infor-
mation reservation of node v when projected onto the direction of p. The nodes
with larger-scale projection values on direction p can preserve the topology of
the original graph to the greatest extent. Finally, the top-k nodes are selected
to form a new small graph for performing topological learning on the ROI scale.

Pooling Layer Designing. A triple-pooling framework is designed to build
the learning of BFC at different scales. Especially for both the Community-
scale and ROI-scale branched, they all have a continuous and gradual pooling
behavior. Therefore, to make sure that these graph down-sampling layers behave
idiomatically with respect to a wide class of graph sizes and structures, we adopt
the approach of reducing the graph with a pooling ratio, r ∈ (0, 1]. Due to deeper
graph neural network will result in over-smoothing effect which weakens the
performance [20], a two-layer pool was designed on Community-scale and ROI-
scale branches. Considering the typical numbers of communities discovered in
previous literature that the brain exists in seven or eight ubiquitous communities
[11,26], and brain disease usually occurs in a part of the brain regions [31], we set
the pooling ratio r = 0.25 for the two continuous pooling branches. Thus after
two pooling blocks, we will get eight ROIs and eight communities, respectively.

The architecture of TPGNN is depicted in Fig. 2. The number of feature maps
for all the graph convolutional layers was set to 64, each convolution followed



Triple-Pooling Graph Neural Network 365

by ELU activation to increase non-linearity. A fusion block concatenated the
features from all scales and then fed them into two fully connected (FC) layers.
The FC layers were implemented with 32 and 2 channels, respectively, followed by
a softmax function to drive a 2-class disease probability vector for each subject.
Cross-entropy loss was employed on the labelled graphs for training the overall
model. During each training process, all the subjects were randomly divided into
ten subsets. Specifically, each time subjects in one subset were selected as the
testing data, another one as the validating data, samples in the remaining eight
subsets were used as the training data. The training was carried out for 300
epochs with a batch size of 16 and a learning rate at 0.001 for 100 epochs and
then adjusted to 0.0001, using Adam optimizer. The weight decay parameter
was 0.005. In this paper, we implemented the TPGNN model with PyTorch
geometric [10], and train it on a GPU of Nvidia Tesla V100.

Summary of Advantages. (1) Our proposed TPGNN consists of three
branches with different pooling layers, achieving different-scale topological learn-
ing of BFC in a corresponding one-to-one architecture. (2) Thanks to the
advanced pooling architecture, the constructions of different scale topologies are
done adaptively in a task-driven process, without any manual processing. (3) Our
designed biologically significant pooling architecture consistent with real-world
neuroscience guidance makes model results easier to interpret.

3 Results

We validate TPGNN on the large open ABIDE dataset. Comparative experi-
ments and ablation experiments respectively proved the excellent performance
of our method. Overall, our method achieved better performance in comparison
to other incomplete-scale approaches in the ASDs vs. HCs classification task in
terms of accuracy, f1-score, precision, and recall.

3.1 Comparison with State-of-the-Art Methods

TPGNN is compared with six state-of-the-art methods. These methods can be
grouped into three categories: (1) Representative traditional machine learning
(ML) methods including Random Forest (1000 trees), SVM (RBF kernel); (2)
State-of-the-art CNN-based methods including DNN [28], ASD-DiagNet [8]; (3)
State-of-the-art GNN-based methods including population-based GCN (P-GCN)
[22], EGAT [29].

Table 1 shows the comparative results on the challenge ABIDE dataset. The
traditional feature-based methods are to train and learn each edge of the BFC as
a discrete feature, which loses the representation of its inherent topological struc-
ture. The methods based on deep learning can capture the topological informa-
tion through a convolution mechanism, thus achieving better performance than
traditional methods. Comparatively, graph-based methods (Parisot, EGAT, and
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Table 1. Comparison with state-of-the-art methods for ASD identification using brain
functional connectivity data.

Methods Accuracy (%) Precision (%) Recall (%) F1-score (%) Param. (k)

Random Forest 61.41 ± 3.75 59.86 ± 6.00 76.46 ± 5.09 67.03 ± 5.02 4

SVM 65.76 ± 3.69 65.02 ± 3.84 75.12 ± 6.00 70.82 ± 3.99 4

DNN [28] 66.31 ± 3.01 73.14± 4.09 56.99 ± 4.78 68.92 ± 5.42 580

ASD-DiagNet [8] 67.28 ± 3.43 72.25 ± 3.69 64.25 ± 4.11 67.54 ± 5.74 500

P-GCN [22] 69.65 ± 4.28 71.90 ± 5.92 65.42 ± 7.45 68.25 ± 6.42 95

EGAT [29] 70.71 ± 3.75 71.57 ± 5.59 68.11 ± 4.47 71.88 ± 4.70 82

Ours 72.49± 3.65 72.17 ± 4.88 76.95± 5.58 74.51± 4.84 85

ours) yield larger performance gains, benefiting from the more flexible convo-
lutional mechanism in GNNs comparing with CNN. The convolution on GNN
is not limited to spatial structure. Thus, more suitable topological learning for
our diagnostic tasks. Compared with the graph-based methods, our proposed
TPGNN significantly improved the performance with an accuracy of 72.5%, F1-
score of 74.5%, precision of 72.2%, recall of 77.0%, which outperforms other
comparative methods. The main reason may be that TPGNN combines topo-
logical information at three different scales to provide a more comprehensive
understanding of the brain states.

3.2 Ablation Analysis

Table 2. Results summary of ablation analysis on the key components of TPGNN. G,
C, R stand for global scale, community scale, and ROI scale respectively. × stands for
the removed branch.

G C R Accuracy (%) Precision (%) Recall (%) F1-score (%) Param. (k)

× 70.41 ± 4.29 67.88 ± 4.27 74.98 ± 5.12 71.87 ± 5.70 62

× 70.93 ± 3.77 69.28 ± 4.96 73.55 ± 5.73 72.92 ± 4.60 50

× 69.50 ± 4.83 71.26 ± 4.78 68.70 ± 5.52 70.80 ± 5.68 60

� � � 72.49± 3.65 72.17± 4.88 76.95± 5.58 74.51± 4.84 85

Ablation analysis is performed to explore and validate our designed triple-pooling
mechanism in TPGNN. We remove each branch in turn (Global, Community,
ROI), and leave the other structure unchanged, to perform ASD classification
tasks. The comparing results of these aspects are summarized in Table 2. It
can be observed that when one of these branches is abandoned, the performance
decreases significantly compared to the original TPGNN that included all scales,
indicating that topological information of different scales is necessary for the
analysis of BFC. The effect of the combination of global scale and ROI scale
is better than that of the other two-scale combined methods, indicating that



Triple-Pooling Graph Neural Network 367

the information on the most refined scale and the coarsest scale is more critical
for the topological learning of BFC. In the end, the classification performance of
combining all scale information is the best, indicating that each designed pooling
layer is effective for constructing and learning the corresponding scale and that
different scales provide complementary information for BFC topology learning
from their perspective. Our experiment further illustrates the important value
of learning from the inherent scale properties of the brain.

Fig. 3. The most contributing features selected by different pooling branches for ASD
diagnostic tasks. (a) The eight most frequently selected regions by the ROI-topK pool-
ing layer in the ROI-scale branch. (b) The community clustering pattern learned from
the hierarchical pooling layer in the community-scale branch. (c) The twenty most fre-
quently selected regions by the global pooling layer in the global-scale branch. Different
colors denote different communities or regions.
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3.3 Biomarkers Discovery

An interpretable network model is essential for investigating potential biomark-
ers of disease. Fortunately, the core of the pooling mechanism is to extract effec-
tive low-dimensional features from high-dimensional features. In TPGNN, each
pooling branch can provide biomarkers that contribute to classification from
its own perspective. For the global-scale branch, global max pooling selects the
nodes with the greatest contribution to each input feature channel as a task-
related global descriptor. The nodes with a larger frequency of being selected
indicate having a weightier contribution to the ASD diagnosis task. For the
community-scale branch, the learned embedding matrix S(k) provides the prob-
ability that each node belongs to a coarse community. The community clustering
pattern of the whole brain under task induction will be got to benefit the task.
For the ROI-scale branch, the ROI-topK pooling layer adaptively selects the
most top-k relevant brain regions for our task by xvp/ ‖p‖ as potential biomark-
ers.

Figure 3 visualizes the most contributing features selected by the three types
of pooling mechanisms. It can be observed that most of the eight brain regions
selected by the ROI-scale pooling are included in the twenty brain regions
selected by the global-scale pooling, indicating that they have all carried out
efficient feature learning and retrieval under the guidance of the task. Many
previous studies have also reported these regions are implicated in ASDs. For
example, the lateral prefrontal cortex and the lateral dorsal prefrontal cortex
play an important role in a vital influence in multiple areas of child develop-
ment, such as social cognition, communicative behavior, and moral behavior
[15]. The superior parietal lobule is known to be involved in spatial orientation
and receives many visual inputs as well as sensory input from one’s hand, which
may play a vital role in repetitive behavior and restricted interest symptoms
found in individuals with ASD [27].

4 Conclusion

BFC has been widely used in the diagnosis of brain disorders. In this paper, moti-
vated by the increasing evidence from neuroscience research that BFC presents
a multi-scale topological structure, we proposed a multi-scale topological struc-
ture learning model called TPGNN to conduct BFC analysis at three different
scales from coarse to fine for diagnosis of ASD. Specifically, a triple-pooling
architecture is realized with three different branches, each branch with a dif-
ferent pooling layer is designed to achieve different-scale topological learning
of BFC in a corresponding one-to-one architecture. The topological structure
construction at different scales is done adaptively in a task-driven process, with-
out any manual processing. Experimental results show that TPGNN effectively
extracts task-related features on different scales from rs-fMRI data and improves
the diagnostic performance of ASD over other methods. Moreover, the strong
interpretability of TPGNN facilitates us to obtain the potential biomarkers of
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different scales to identify ASDs from HCs. Our work indicates that the multi-
scale topological learning strategy of BFC shows great potential in the diagnosis
of brain disorders and may provide insights for better understanding the mech-
anisms of brain function to move toward a more biologically meaningful brain
connectome.
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Abstract. Estimating the 3D positions of the body and hand joints
(keypoints) of human is widely investigated in computer vision. However,
without knowing the joint rotations, the joint positions only cannot fully
determine the body and hand motions and cannot drive a full geome-
try model of human to move. Thus the well-known Inverse Kinematics
(IK) problem is proposed to solve for the full joint rotations based on
some position constraints of the keypoints. Due to the noisy keypoint
estimation and the ambiguity in twist rotations (Twist rotations cannot
be solved by keypoint positions as they do not lead to position changes of
any keypoint.), unnatural poses and jitters are commonly seen in current
IK results. In this paper, we present a novel real-time IK solver where a
deep multi-stage neural network takes the hierarchy of the human kine-
matic tree into consideration to robustly solve for the joint rotations in a
depth-wise manner. Qualitative and quantitative results show the supe-
riority of our hierarchical IK solver over the optimization-based methods
and the solutions based on fully-connected neural networks.

Keywords: Inverse Kinematics · Pose estimation · Deep learning

1 Introduction

Human pose estimation from visual inputs is a widely-studied task with a variety
of applications such as AR/VR, gaming, and sports. Recently, many works have
explored estimating 3D keypoints from images [4,12,15,21,22,27]. However, such
sparse keypoint coordinates are not sufficient for dense surface reconstruction. To
obtain dense meshes, many works leverage statistical parametric human models
[1,23,31] and regress the parameters for model-based mesh reconstruction. Esti-
mating pose parameters, i.e. rotations of each joint, from keypoint positions, is
known as solving the Inverse Kinematics (IK) problem. This task is previously
addressed using iterative optimization [14,26,28–30,33,36]. Nevertheless, key-
point positions are often wrongly predicted in practice scenarios. In such cases,
optimization-based IK approaches tend to give unnatural results due to the lack
of prior knowledge on human poses. Solving IK problems accurately and robustly
is of considerable importance in the area of human pose estimation.
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To this end, we present HierarIK, a hierarchical neural IK solver that explic-
itly exploits the joint correlation information. To effectively learn the pose prior,
we propose to formulate the IK task into sequential subtasks according to the
kinematic tree structure, where each subtask incorporates a neural network to
regress the local rotations for all joints at the same depth on the kinematic tree.
Specifically, we handle each subtask in a depth-increasing order, i.e. we solve the
rotation for the root joint first and the end effectors last. Once a subtask is solved,
the estimated rotations are immediately used to rotate the descendant keypoint
vectors inversely before entering the next subtask. As a result, the hierarchical
solver achieves better accuracy than one-stage networks and optimization-based
approaches, and shows great robustness to noisy 3D position inputs.

The hierarchical design of our IK solution is based on the observation that,
according to the kinematic tree structure, 1) joints at a smaller depth (e.g.
the root joint) are more important as their rotations affect all the descendants,
while 2) joints at a larger depth (e.g. the end effectors) have less influence on the
skeleton pose, but they can somehow correct the errors accumulated in ancestors
by rotating towards the target. So the ancestors’ rotations should be determined
earlier than the descendants’. Therefore, we do not take all the joints equally and
solve them together in a single forward pass as in [40,41], but instead, we divide
the joints according to their hierarchical depths and solve them in a level order,
which alleviates the error accumulation and helps the motion constraints be
separately learned for each level of joints. Experiments show that our method is
super-robust to noise and can even correct the errors in the input, which suggests
HierarIK effectively learns the pose prior. In summary, our contributions are:

– An IK solver for human bodies and hands which significantly outperforms
commonly-used iterative optimal algorithms and fully-connected networks.

– A novel hierarchical network that exploits the kinematic tree structure which
results in super robustness and a large reduction of cumulative errors.

2 Related Work

General Inverse Kinematics (IK) problems, aiming at solving the joint rotations
to reproduce the known positions of an articulated chain, have long been studied
and can be solved using iterative optimization. IK for body and hand pose
estimation can also be solved with neural networks leveraging motion datasets.
In this section, we introduce the previous efforts on solving the IK problem.

2.1 Optimization-Based Methods

The most commonly used methods to solve IK problems are based on optimiza-
tion. Due to the differentiability of the forward kinematics function, a gradient-
descent-like updating strategy is often used. Many researches focus on the calcu-
lation of the inverse of the Jacobi matrix. The very early works take the transpose
[35] or use the Moore-Penrose inverse [5]. To cope with the singularity, some works
propose to use damped least squares [8], selectively damped least squares [6] or
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Levenberg-Marquardt algorithm [34]. Colome and Torras [9] propose a filter for the
singular values of the Jacobi matrix to limit its conditioning. Besides, some non-
gradient-based greedy approaches such as angle-based [7,25] and position-based
[2,3] algorithms are often used when end effector positions are known. However,
these methods rely much on initialization and suffer from severe local-minimum
problems. Some works [11,37] propose to solve a convex relaxation of the original
IK problem for global solutions. For human pose estimation, adding constraint
terms also helps to narrow the solution space [14,26,28–30,33]. As some restric-
tions are too complex to model and it is impossible to exclude all the infeasible
solutions, optimization-based methods are limited. On the contrary, we propose
a fully data-driven method where the motion prior can be effectively learned by
neural networks, resulting in natural estimations.

2.2 Learning-Based Methods

Solving IK tasks for pose estimation with learning-based methods has attracted
much attention recently. Leveraging human pose datasets, neural networks can
automatically learn the constraints of motions and solve IK problems fast and
accurately. Usually, a constraint of the degree of freedom (DOF) is imposed
on the predicted poses to restrict the range of the Inverse Kinematics function
[10,38]. A deep neural network is proved robust to noisy inputs and able to reduce
errors through IK solving [16,40,41]. Zhou et al. [39] demonstrate the disconti-
nuity of commonly used 3D rotation representations such as axis-angles, Euler
angles, and quaternions, and present a continuous 6D representation which is
suitable for network outputs. There are also works that regress joint angles from
images directly [13,19,20,32]. However, none of these approaches take the advan-
tage of the hierarchical structure of human bodies and hands, which often leads
to severe error accumulation (i.e. large errors in the end effector positions). In
contrast, we propose to use a hierarchical neural network that explicitly encodes
the kinematic tree structure for IK problems in the pose estimation tasks, result-
ing in superior accuracy and robustness.

3 Method

In this section, we present HierarIK, a hierarchical Inverse Kinematics solver that
estimates joint rotations from 3D positions for human pose estimation tasks. In
Sect. 3.1, we introduce the kinematic model and the rotation representation we
use in this paper. In Sect. 3.2, we introduce the proposed solution, HierarIK, for
any specific kinematic tree structure. Finally, in Sect. 3.3, we present the details
in training HierarIK on human body and hand pose datasets. An example of
HierarIK for human body pose estimation is shown in Fig. 1.

3.1 Preliminary

Body and Hand Model. We use the SMPL [23] and MANO [31] model as our
body and hand model respectively. The corresponding kinematic tree structures
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Fig. 1. HierarIK for human body pose estimation. We calculate bone vectors b (position
difference of each joint and its parent) from the input keypoints. Then we sequentially
solve D subtasks where D is the height of the kinematic tree and D = 9 here for SMPL
[23] body model. In the dth subtask, we estimate the local rotations represented by
6D [39] vectors for all nd joints at depth d in the kinematic tree using a 4-layer neural
network. Then we transform the results to rotation matrices and inversely rotate the
corresponding descendant bone vectors. After solving D subtasks sequentially, we get
all joint rotations θ which can be used to drive the SMPL body model to move.

are shown in Fig. 2. We optionally add 5 external keypoints for each skeleton to
deduce the rotations of the leaf joints. Both models share the same formulation
defined as:

M(β,θ) = W (T̄ + BS(β) + BP (θ), J(β),θ,W), (1)

where T̄, BS , and BP are the template mesh, the shape blendshape, and the pose
blendshape respectively, β and θ are shape and pose parameters respectively,
J is the joints, W is the blend weights, and W (·) is the linear blend skinning
function. The mesh is used in our train data generation and result visualization.

Rotation Representation. We use 6D rotation representation [39] in our
network output for better continuity. Compared with common representations
such as quaternions, 6D is continuous and thus more suitable for neural networks,
as demonstrated in [39]. Evaluations of rotation representations are in Sect. 4.2.

3.2 Hierarchical Inverse Kinematics Solver

We introduce our general IK solution in this section. IK problems are ill-posed as
the same joint positions can be produced by more than one set of joint rotations.
Usually, there are constraints on the skeleton movements, which can be difficult
to model mathematically (e.g. human poses). Besides, the input positions may be
noisy, making exact solutions infeasible. While the previous works [40,41] adopt
neural networks to learn the direct mapping from joint positions to angles, we
argue that it is significantly helpful to incorporate the hierarchy of the kinematic
tree and solve IK in a multi-task manner. The overview of our method is shown
in Fig. 1.

The input to our system is the joint positions {pj |j = 1, 2, · · · , J} where J is
the number of joints and pj ∈ R

3 is the position of joint j. Leveraging the kine-
matic structure, we calculate the position difference of each joint and its parent in
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Fig. 2. The kinematic tree structure for SMPL body model (left) and MANO hand
model (right). Root joints are shown in red. Additional keypoints are shown in blue.
We add these keypoints to the IK input for the deduction of the leaf joints’ rotations.
(Color figure online)

Fig. 3. Visualization of the input bone vectors for each subtask of HierarIK. We take
the body IK as an example and visualize the bone vectors b(d) in SMPL meshes.

the kinematic tree, which is referred to as bone vectors b = {bj |j = 2, 3, · · · , J}
where bj = pj − pparent(j). This formulation encodes the joint relationships in
the input and also facilitates the inverse operation of each subtask. To further
exploit the kinematic tree structure, we group the joints by their depths in the
tree, resulting in D groups where the dth group contains nd joints at depth d.
We denote the mth joint in the dth group as j

(d)
m (1 ≤ m ≤ nd). We formulate

the IK task into corresponding D subtasks which regress the rotations for each
group sequentially in a depth-increasing order. Specifically, in the dth subtask,
the input is bone vectors b(d) (and for the first one we have b(1) = b). We first
use a 4-layer neural network with batch normalization [17] and tanh activation
to regress the local rotations for nd joints. Complex motion constraints for each
group of joints can be effectively learned by these networks. Before entering the
next subtask, we use the estimated rotations to inversely rotate the correspond-
ing descendant bone vectors in b(d) to mitigate error accumulation, as shown in
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Algorithm 1: The inverse operation of the dth subtask
Input: The input bone vectors b(d) and the estimated joint rotation matrices

R
j
(d)
1

, R
j
(d)
2

, · · · , R
j
(d)
nd

.

Output: The input bone vectors for the next subtask b(d+1).
1 begin

2 b(d+1) ←− b(d)

3 for j
(d)
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7 end

8 end

Algorithm 1. After solving all D subtasks, we get the rotation matrices of all
joints and the IK is solved. We visualize the input bone vectors for each stage
in Fig. 3. As demonstrated in the experiments, our hierarchical design achieves
great accuracy and robustness in human body and hand pose estimation.

3.3 Dataset and Training

We implement HierarIK for human bodies and hands (denoted as Body-HierarIK
and Hand-HierarIK) for pose estimation tasks. The kinematic tree structures
are shown in Fig. 2. For Body-HierarIK, we leverage AMASS [24] dataset which
is composed of different existing motion capture datasets and contains more
than 40 h of motions. We use the default train-validation-test split and sample
the frames at a rate of 0.005 to reduce similar poses. We augment the data
with random global rotations and normally distributed shape parameters with
σshape = 2 for better robustness. The joint and the external keypoint positions
are computed from the pose and shape parameters using Eq. 1. The bone vectors
are directly calculated from the keypoint positions. We further add Gaussian
noise with σinput = 0.04 to the input bone vectors of each subtask to simulate real
inputs which may be noisy. For Hand-HierarIK, we leverage the hand pose data
in TCD-HandMocap of AMASS dataset, MANO [31] dataset, and FreiHAND
[42] dataset. A similar augmentation with σshape = 1.5 and σinput = 0.004 is
applied during training and testing. For both tasks, we separately train each
network with a batch size of 256 using an Adam [18] optimizer with a learning
rate of 10−3. The training data is calculated by applying the inverse operations
(see Algorithm 1) on the bone vectors using ground truth rotations, and the
labels are acquired from ground truth poses. Both tasks use an L2 loss defined
as:

L = ‖R
(6D)
pred − R

(6D)
GT ‖2, (2)

where R
(6D)
pred is the estimated local rotation in the 6D representation and R

(6D)
GT

is the corresponding ground truth.
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4 Experiments

4.1 Data and Evaluation Metrics

We use the test split of AMASS dataset (including Transitions-Mocap and SSM-
synced) for the evaluation of body IK, and the predetermined test split of the
hand pose dataset (including MANO, TCD-HandMocap, and FreiHAND) for the
evaluation of hand IK. We randomly initialize global rotations and shape param-
eters as similar in training. We use joint error as the metric which measures
the mean distance error of all joints with the pelvis/middle0 (for body/hand)
aligned, and vertex error which measures the mean distance error of all vertices
of the estimated mesh also with the pelvis/middle0 joint aligned. The vertex
coordinates are computed using Eq. 1 with the estimated poses and the mean
shape. Note that twisting errors are reflected only in the vertex error.

4.2 Evaluations

Rotation Representation. To demonstrate the superiority of using the 6D
rotation representation in IK tasks, we train the following two models for com-
parisons on solving body IK: 1)HierarIK-Q(uaternion) where we use quaternions
for all network outputs; 2)HierarIK-M(ixture) where we use 6D for the first net-
work (i.e. root rotation) and quaternions for the others. We use a similar loss as
[41] for quaternions, which is defined as:

L = Ll2 + Lcos + Lnorm. (3)

Evaluation results on AMASS test split are shown in Table 1. HierarIK-Q per-
forms significantly worse than HierarIK-M, indicating that 6D is necessary for
the estimation of the root rotation due to its continuity property. Also, 6D
performs a little better than quaternions on non-root joints as shown in the
comparison between HierarIK-M and HierarIK. Due to the motion constraints
of human bodies which limit the joint rotations to a contiguous space of quater-
nions, the accuracy improvements on non-root joints are small. Nevertheless, the
continuous 6D still outperforms quaternions for the estimation of all joints.

Training Noise. To demonstrate the effectiveness of the training noise, we
train HierarIK using different σinput ranging from 0 to 0.06 for bodies and 0
to 0.006 for hands. We show the estimated joint error under different input
error expectations in Fig. 4. The results suggest that adding noise to the input
during training is critical to improving robustness. Thus we use the exact model
(σinput = 0) only when solving IK with exact input as it is accurate enough,
while we use σinput = 0.04 for body and 0.004 for hand in practical IK tasks.

4.3 Comparisons

Exact Input. We compare HierarIK with commonly-used optimization- and
learning-based methods to show our superiority. Concretely, we evaluate 1)IK-
Optim(ize) which is an optimization-based solution that minimizes the joint error
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Table 1. Ablation study on rotation representations. We perform body IK on AMASS
test split using different rotation representations. We adopt two settings where we
train and evaluate the models using σinput = 0 (i.e. solving IK with exact inputs) and
σinput = 0.04 (i.e. solving IK with noisy inputs, where the expected joint error in the
input is 63.83 mm). The evaluations demonstrate the superiority of the 6D rotation
representation [39] to quaternions in the IK tasks, which comes from its continuity
property.

σinput = 0 σinput = 0.04

Joint error (mm) Vertex error (mm) Joint error (mm) Vertex error (mm)

HierarIK-Q 224.10 244.39 263.27 293.49

HierarIK-M 8.63 10.66 60.50 72.05

HierarIK 7.08 9.15 58.62 69.72

Fig. 4. Ablation study on training noise. We add Gaussian noise with different standard
deviations σinput to the train data. We evaluate each model on noisy keypoints with
different error expectations and plot the joint error curve. A lower slope indicates better
robustness to input noise. Results show that training noise makes our model robust.

using the Levenberg-Marquardt algorithm; 2)IK-Optim(ize)-I(nitialize) which is
the same as IK-Optim but we initialize the pose with the ground truth global
rotation (i.e. the root rotation is known); 3)MLP-L(ocal) and 4)MLP-G(lobal)
which are deep multi-layer perceptions (MLPs) that directly regress local or
global joint rotations from positions as in [41], except that we use 6D rather
than quaternions as 6D performs significantly better (Sect. 4.2). We train and
evaluate the MLPs and HierarIK on exact keypoint inputs. As shown in Table 2,
HierarIK outperforms optimization-based and MLP solutions for both body and
hand IK. We attribute our superiority to the hierarchical structure of our net-
work, as we make full use of the joint correlations in the kinematic tree. The
qualitative results in Fig. 5 also show that optimization-based methods suffer
from local-minimum problems which lead to unnatural poses, and MLPs are
often inaccurate due to the error accumulation from the root to the end effec-
tors. Our hierarchical design helps to alleviate the problems and thus gives the
best result. Please refer to our video for more qualitative comparison results.
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Table 2. Quantitative comparison results for body and hand IK on exact inputs.
HierarIK outperforms optimizing methods and MLPs due to the hierarchical design.

Body IK Hand IK

Joint error (mm) Vertex error (mm) Joint error (mm) Vertex error (mm)

IK-Optim 154.87 207.18 10.97 13.51

IK-Optim-I 14.40 23.11 1.91 3.17

MLP-L 32.83 39.35 2.16 2.73

MLP-G 22.33 22.73 2.20 2.64

HierarIK 7.08 9.15 0.57 0.72

Fig. 5. Qualitative comparison results for body and hand IK. The input is exact joint
positions. Color encodes the vertex error of the estimated pose. Front views are shown
here but we should note that global rotations are not known except in IK-Optim-I.

Noisy Input. To demonstrate the robustness and accuracy of HierarIK, we
compare learning-based methods on noisy inputs for body and hand IK tasks.
As shown in Fig. 6, HierarIK outperforms the other methods and can reduce
the errors in the input keypoints by IK solving. This is more evident in hand
IK because there are more constraints for hand motions compared with body
motions, and thus adding Gaussian noise to the hand joints may more easily
result in wrong positions, which can be corrected by HierarIK. We show more
cases where HierarIK corrects the errors in FreiHAND dataset by re-estimating
the pose parameters from the ground truth poses, and estimates natural hand
poses even from random noise (Fig. 7). We attribute this to the training noise
and our multi-stage design which helps with the layer-wise learning of the pose
prior. These results demonstrate our superior robustness to noisy inputs.
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Fig. 6. Quantitative comparison results of solving body and hand IK with noisy inputs.
The curve below y = x means that the method corrects some errors in the input.

Fig. 7. HierarIK corrects the errors in FreiHAND dataset (left) and gives natural
results from random noise (right). The original pose parameters in FreiHAND dataset
are acquired by fitting a hand model from multiple views [42]. There are several unnat-
ural poses in the original dataset. We compute keypoint positions from the pose param-
eters and re-estimate joint rotations using HierarIK, resulting in more natural poses.

5 Conclusion

This paper presents a novel data-driven Inverse Kinematics solver for human
body and hand pose estimation tasks. As the commonly-used optimization-based
methods rely on good initialization, noiseless input positions, and well-designed
constraints which are difficult to achieve, we take the advantage of deep neu-
ral networks and learn the pose prior from body and hand pose datasets. To
cope with the difficulty that the poses estimated by MLPs are often inaccurate
due to the error accumulation from the root to the end effectors, we propose
a novel hierarchical solution that exploits the correlations of the keypoints and
estimates joint rotations sequentially according to the joint’s depth in the kine-
matic tree. We use an inverse operation to broadcast the estimated joint rota-
tion information to all its descendants, which helps with the estimation of local
rotations and the mitigation of the error accumulation. The multi-stage design
helps the model separately learn the motion constraints for joints at different
depths. Experiments demonstrate our superiority to common optimization- and
learning-based solutions: super accurate, and robust to noisy keypoint inputs.
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Abstract. Many statements in the massive scientific text data are in
the form of conditional sentences. Conditions are of great importance to
facts. Existing conditional knowledge graphs have introduced condition
triples, but ignore the latent semantic relations between fact and con-
dition triples and the logical relationships among condition triples. To
address these issues, we propose a novel conditional knowledge graph rep-
resentation, which is a nested hierarchical triple. We design a new extrac-
tion strategy that employs a text hierarchy parsing module to extract
the semantic relations between facts and conditions and a triple extrac-
tion module to extract fact and condition triples. Moreover, we provide
a corresponding knowledge storage scheme which can store conditional
knowledge. Experimental results on our constructed conditional dataset
show that our model can not only capture semantic relations between
fact and condition triples as well as logical relationships among condition
triples, but also significantly improve the accuracy of triple extractions
compared to baselines.

Keywords: Conditional knowledge graph · Knowledge
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1 Introduction

In recent years, knowledge graph has gradually become the core technology driv-
ing the development of artificial intelligence, which plays a vital role in vari-
ous applications, such as question answering [16] and information retrieval. We
observe that there are a certain percentage of facts or truths in the form of condi-
tional sentences in the vast amount of scientific text data. We conduct statistics
on scientific literature in several fields. The proportions of conditional sentences
in biomedical, chemistry, mathematics and computer science are 25.6%, 20.5%,
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Conditional 1: The rescue antiemetic was given, if patient 
remained nauseous for more than 15 minutes, or experienced 
retching or vomiting during study period.

fact1: ( rescue antiemetic, was given, null )
condition 1: ( patient, remained, nauseous )
condition 2: ( null, for, more than 15 minutes )
condition 3: ( patient, experienced, retching )
condition 4: ( patient, experienced, vomiting )
condition 5: ( null, during, study period )

Conditional 2: Open repair is also required if endovascular 
facilities or expertise is unavailable and in cases where the 
patient is unstable.

fact1: ( open repair, is required, null )
condition 1: (endovascular facilities, is unavailable, null ) 
condition 2: ( expertise, is unavailable, null )
condition 3: (patient, is unstable, null )

was given

remained

is unstable

is unavailable

is unavailable

is required

rescue 
antiemetic

for

during

experienced 

experienced 
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open repair

endovascular 
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CONDITION

CONDITION

subj.
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obj

obj

Conditional 1

Conditional 2

Fig. 1. The extractions generated by MIMO.

22.1% and 23.3% respectively. Traditional knowledge graphs represent knowl-
edge as entity-level semantic networks. Their constructions only rely on plain
triples extracted from text without distinguishing whether they are condition
or fact triples. Consequently, important conditional information is lost, and the
conditional semantics expressed by conditional sentences cannot be formalized
completely and accurately. Furthermore, this limits the expression ability of
knowledge graph, potentially affecting the exploration of downstream tasks, such
as knowledge reasoning.

To the best of our knowledge, Jiang et al. [7] are the first to attempt to extract
conditional information from text. They propose a MIMO model to extract fact
and condition tuples, but ignore several issues. First, MIMO cannot clearly dis-
tinguish the mutual constraint relations between tuples. Take the first sentence in
Fig. 1 as an example. The prepositional phrase “for more than 15 min” and “dur-
ing study period” modify “patient remained nauseous” and “patient experienced
retching or vomiting”, respectively. However, following its extractions, we cannot
conclude that condition 2 is a further constraint on condition 1, and condition
5 is a specific constraint on condition 3 and 4. Secondly, it does not consider
the specific logical relations between condition tuples, such as “AND”/“OR”,
which have different meanings. For instance, from MIMO’s extractions for the
conditional 2 in Fig. 1, we cannot judge the logical relations between the three
condition tuples. The real meaning of the conditional is that the fact will be
valid under the existence of both condition 1 and 3 or both condition 2 and 3.
To solve these problems, we intend to construct a richer knowledge graph based
on the characteristics of existing data.

The construction of conditional knowledge graph is extremely challenging.
First of all, conditional sentences have complex structures. To capture and for-
malize the conditional semantic information accurately, we need to analyze and
demonstrate conditionals in depth from the perspective of morphology and syn-
tax in linguistics. Secondly, we expect to extract not only fact and condition
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triples, but also rich semantic relations between triples, so we need to reckon
with how to trade off both as well as possible. Finally, it has a significance to
store and manage the extracted results. To be specific, during the construction
process of conditional knowledge graph, we are confronted with the following
three challenges:

– There are rich hierarchical semantic relations between triples which are
beyond the capabilities of the current triple representation. It is a great chal-
lenge to express the hierarchical semantic information of conditional sentences
more clearly without abandoning the advantages of the original triple repre-
sentation. Therefore, we propose a novel conditional knowledge graph repre-
sentation, which is in the form of nested hierarchical triples. It can represent
entity-level and triple-level semantic relations simultaneously.

– In order to construct such a conditional knowledge graph, how to extract the
fact and condition triples and the semantic relations is also a difficulty. We
design a textual structure hierarchical parsing module to derive the hierarchi-
cal structure of conditional sentences. And then we extract fact and condition
triples using the OpenIE method based on sequence labeling.

– Knowledge storage and management is necessary to facilitate the downstream
application. Following our proposed logical model of conditional knowledge
graph, knowledge structure to be stored has changed to some extent. How to
build the mapping of knowledge logical representation to the physical stor-
age based on the existing storage model is also crucial. Thus we propose a
knowledge storage scheme to fit the proposed representation model based on
the relational database to ensure the portability of knowledge.

Experiments show that our approach achieves significant and consistent
improvements over other benchmarks on our proposed conditional dataset, and
captures additional semantic relations between fact and condition triples. We
apply our proposed approach to a great number of scientific literature to con-
struct a conditional knowledge graph.

2 Conditional Knowledge Graph Representation

Triple is the basic unit of knowledge representation in the construction of knowl-
edge graph. It has a simple structure and strong knowledge expression ability.
Therefore, to keep the advantages of traditional triple representation and address
the issues of existing works, we extend and improve the classical triple represen-
tation model, and propose a novel conditional knowledge graph representation
to express conditional sentences more accurately and completely. Our knowledge
representation not only uses triples to describe the semantic relationships at the
entity level, but also extends to the deep semantic connections at the triple level.

More specifically, we construct a nested triple to formalize the representa-
tion of conditional sentences. The basic units of conditional knowledge graph
representation are defined as the following three types:
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Fig. 2. The nested triple representation of conditional knowledge graph. Any type of
triple can also serve as the head or tail node of a triple besides entities.

1) (Entity, Relation, Entity)
2) (Triple, Relation, Triple)
3) (Triple, Relation, Entity)/(Entity, Relation, Triple)

We define the first type as a plain triple, and the last two types as a nested
triple. Different from the traditional knowledge representation, the head and tail
node in the nested triple can be not only an entity, but also a triple. Or say,
a triple can exist as a member of another triple, thus forming a nested triple
representation. Figure 2 illustrates our proposed conditional knowledge graph
representation more intuitively.

Take the conditional 1 in Fig. 1 for instance:
“The rescue antiemetic was given, if patient remained nauseous for more

than 15min, or experienced retching or vomiting during study period.”
The expected knowledge representation in our method is as follows:
((rescue antiemetic, was given, null), if, (((patient, remained, nauseous), for,

more than 15 min), or, (((patient, experienced, retching), or, (patient, experi-
enced, vomiting)), during, study period))).

The whole is a nested triple with the condition subordinator “if” as the
relation, where the head node is a fact triple belonging to type 1, and the tail
node is the second type of nested condition triple that makes the fact triple valid.
For the tail node, its head and tail node are all nested triples belonging to type
3. They are connected by the coordinate conjunction “or”, which means that any
one of the two condition triples is able to make the fact triple valid. The triple
((patient, experienced, retching), or, (patient, experienced, vomiting)) belongs
to type 2, which contains two plain condition triples. From the above analysis,
it is easy to know that the fact in conditional 1 has three sufficient conditions,
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as well as extracts the semantic relations (the intermediate nodes) between facts and
conditions. The triple extraction module is used to extract fact and condition triples.
(Color figure online)

and is valid as long as any of them exists. Apparently, our proposed idea can
effectively represent the complex semantics of conditional sentences.

3 Extraction Method for Nested Triples

In this section, the extraction strategy of fact and condition triples will be
introduced in detail. Our approach aims to extract fact and condition triples
and semantic hierarchical relations between triples from conditional sentences.
Firstly, we operate text hierarchy semantic parsing for conditional sentences
to construct a semantic hierarchical parse tree. The leaf nodes are a group of
text units {c1, . . . , cm, f1, . . . , fn, s1, . . . , sr}. We classify them into three types,
ci (i ∈ {1, . . . ,m}) is a condition unit, fj (j ∈ {1, . . . , n}) is a fact unit, and
sk (k ∈ {1, . . . , r}) is a supplementary unit. Notice that both the condition
unit and the fact unit are simple sentences with a subject-predicate structure.
The noun phrase structure is the form of the supplementary unit, which can be
null. We extract triples from the fact and condition units to obtain the relevant
triples. Finally, the triples are substituted into the leaves of the parse tree, and
the tree is linearized into a hierarchical nested combination of triples. As shown
in the Fig. 3, our model consists of two parts: hierarchy parsing module and triple
extraction module. These modules are described in more detail in the following
sections.
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3.1 Hierarchical Parsing Module

In order to capture the deep semantic relations between facts and conditions,
inspired by rhetorical structure theory (RST) in the field of linguistics, we make
conditional sentences structured by building a semantic hierarchical parse tree.
Naturally, we can derive local semantic connections between facts and conditions.

From a linguistic perspective, we conduct an in-depth linguistic analysis of
conditional sentences. Conditional adverbial clauses, coordinate clauses, coordi-
nate phrases (including coordinate verbs, coordinate nouns, coordinate adjec-
tives) and prepositional phrases are the main scenarios that we need to deal
with. In terms of these sentence patterns, we apply a small set of transformation
rules [11] designed based on syntax driven for pattern matching and improve on
them. Niklaus et al. [11] transform the prepositional phrases into simple sentences
and fail to decompose coordinate relations. Instead of this method, we extract the
noun phrase from the prepositional phrase as a stand-alone entity node to form
nested triples and ensure the extensibility of knowledge representation. We retain
the cue connectives with logical attributes (such as if/for/during/...) in condi-
tional sentences as intermediate nodes of the parse tree to connect related text
units to more clearly express the relations between the three types of units. In
addition, we make further improvement on the transformation rules related to
coordinate phrases, so that it can effectively split the coordinate components. We
take the whole conditional sentence as the root node of the parse tree, and apply
the syntactic transformation patterns recursively from top to bottom to simplify
the sentence until we gain a set of basic text units that no pattern matches any
more, which will be used as the input of the triple extraction task.

3.2 Triple Extraction Module

The purpose of this module is to extract triples from text units obtained by
hierarchy parsing. The supplementary unit is generally a short noun phrase,
which serves as an entity of a triple directly. The fact and the condition unit is
a simple sentence, which serves as the input of the extraction model. Due to the
simplification of input, a single triple can be extracted from each fact or condition
unit, so the model does not need to consider the problem that the sentence may
contain overlapping or multiple triples. We simplify the multi-input multi-output
sequence labeling framework in [7] to multi-input single-output model. We use
seven kinds of labels [6] to mark subject, predicate and object in the triple.

4 A Storage Schema for Conditional Knowledge Graph

Knowledge storage refers to how the acquired triples and schemas are stored in
the computer. At present, relational database and graph database are used to
store knowledge. In the graph database storage method, one entity of a triple
corresponds to one vertex in the graph, which cannot store our representation
because our triple nodes are not just entities, but triples. Therefore, we choose
the storage scheme based on relational database which is widely used now.
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nested_id e_sub f_sub c_sub n_sub predicate e_obj f_obj c_obj n_obj
n1 c1 for more than 15 minutes
n2 c2 or c3
n3 n2 during study period
n4 n1 or n3
n5 f1 if n4

nested_triple

fact_id subject predicate object
f1 rescue antiemetic was given null

condition_id subject predicate object
c1 patient remained nauseous
c2 patient experienced retching
c3 patient experienced vomiting

fact_triple
condition_triple

Fig. 4. The physical storage scheme for nested triples. The fact triple table and the
condition triple table store the plain fact and condition triples, respectively. The
nested triple table stores triples that their subject and object may be plain/nested
triples, where the field ending with sub represents the subject of the triple, and the
field ending with obj represents the object. The prefix of these fields indicates the type
of node, for example, e denotes the entity, f and c denote the plain fact and condition
triple, respectively, and n denotes the nested triple.

We carefully design the table schema, which can not only store the representa-
tion of nested triples, but also be compatible with traditional triples. As shown
in Fig. 4, we design three tables to storage our knowledge. The fact triple
table and condition triple table correspond to the first type of representa-
tion method, so traditional triples can also be stored in this way. The type of
the head and tail nodes in nested triples is uncertain. To solve this uncertainty
and preserve the hierarchical semantic information between triples, we provide
a nested triple table with fields representing triple node type. Only three
columns in each row of the table are non-null, forming in a nested triple, and
the predicate column represents the relation between the subject and object.
Since a nested triple can be used as a column in other rows, multi-level nested
triples can be stored in a relational database.

The specific storage algorithm is shown in Algorithm 1. We perform differ-
ent operations depending on whether there is any condition connective cc in
the extraction. If no cc, the extraction is only a plain/nested fact triple, then
we can insert it into the database through the recursive function insertToDB.
Its termination condition is that the triple is no longer a nested triple, then
we insert it into the fact triple or condition triple table according to the
fact/condition type. Otherwise, we split the nested triple to get the correspond-
ing subject, predicate and object, recursively execute insertToDB on subject
and object, and return the id of the triple in the table as the subject or object
of the previous recursion to implement the insertion of the nested triple. If there
is cc in the extraction, we split it to obtain the plain/nested fact and condition
triple according to cc. Then we apply insertToDB on them and obtain the cor-
responding id of each triple in the table. Finally, the ids of the fact and condition
triple combined with cc are inserted into the nested triple table.
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Algorithm 1: Storage.
Input: extraction result e; condition connective cc
Output: the id of e in a relation table

1 if cc == null then
2 call insertToDB(e, “fact”) to insert the plain/nested fact triple e into

database;

3 else
4 split e to acquire the plain/nested fact triple f and condition triple c

according to cc;
5 call insertToDB(f, “fact”) to insert the plain/nested fact triple into

database and get tripleId(f);
6 call insertToDB(c, “condition”) to insert the plain/nested condition triple

into database and get tripleId(c);
7 Insert triple (tripleId(f), cc, tripleId(c)) into nested triple;

8 return tripleId(e);

5 Experiments

5.1 Experimental Setting

Dataset: We build a new dataset for the purpose of the joint extraction of fact
and condition triples and their relations, named Biomedical Conditional Dataset
(BioCD). Three participants manually annotated triples from conditional sen-
tences with condition connectives such as “if”, “unless” and so on, which are
extracted from the abstracts of 81770 papers on Pubmed. BioCD contains 420
sentences, divided into 270 sentences for training (64%), 50 sentences for devel-
opment (12%) and 100 sentences for test (24%).

Comparison Methods: We choose several advanced baseline methods to compare
with our method, including the traditional rule-based OpenIE system Stanford
OpenIE [2], sequence-labeling based model AllenNLP [14] and MIMO [7], as well
as IMOJIE [10] based on sequence-generation. We use open-source implementa-
tions of these methods for experimental comparisons on our dataset.

Evaluation Metrics: We evaluate the performance of the above methods on two
tasks. (i) triple unit extraction and (ii) triple extraction. For triple unit extrac-
tion, following Jiang et al. [7], we also use pair comparisons to match the con-
stituent units (including subject, predicate, and object) of the extracted triples
and ground-truth triples respectively to evaluate the accuracy of the triple units.
For triple extraction, we undertake a pairwise comparison of the entire triple to
evaluate the performance of the proposed approach more strictly.

5.2 Results Analysis

Table 1 reports the evaluation of all methods on triple unit extraction and
triple extraction. The performance of our model consistently outperforms those
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Table 1. Comparison of existing methods and our proposed model on triple unit
extraction and triple extraction in the BioCD dataset. Higher score performs better.

Baseline methods Triple unit extraction Triple extraction

Prec.(%) Rec.(%) F1(%) Prec.(%) Rec.(%) F1(%)

Stanford OpenIE 23.47 25.71 24.54 1.62 2.67 2.01

Allennlp OpenIE 46.00 45.60 45.80 22.83 20.25 21.46

IMoJIE 61.25 57.76 59.45 33.67 32.12 32.87

MIMO (BERT based) 84.59 81.73 83.13 65.58 65.25 65.42

Ours 86.97 84.08 85.50 76.85 73.88 75.34

baseline methods on the two triple accuracy evaluation tasks. Compared with
BERT-based MIMO, our model improves F1 score relatively by 2.9% on triple
unit extraction and by 15.2% on triple extraction. Our model goes far beyond
previous rule-based systems and neural approaches based on sequence labeling
or generation. This suggests that it is useful to parse hierarchical structure of
the conditional sentence in advance to get text units, and then extract triples,
which reduces the difficulty of neural extraction model in learning the complex
structure of conditional sentences. Moreover, it is observed that the results on
triple extraction are relatively lower compared with those on triple unit extrac-
tion. Because our criterion for judging the correctness of a triple is that all the
components of the triple are correct, and it is more difficult to extract the entire
triple. Compared to other baselines, the performance of our model on triple
extraction has a less decline than on triple unit extraction.

In addition to extracting fact and condition triples, our method also captures
the deep semantic relations between triples, such as conditional and logical rela-
tions. However, the evaluation methods currently for OpenIE only handle the
accuracy of triples and cannot evaluate the hierarchical dependencies between
triples. So we manually evaluate the semantic hierarchical relations of 100 condi-
tional sentences from the test set. As shown in Fig. 5, we undertake manual anal-
ysis on the final nested triples from the conditional sentences to check whether
they are equivalent to the original meanings expressed by the conditional sen-
tences and have the same hierarchical structure. We achieve 68% accuracy.

6 Related Work

Conditional Knowledge Graph: Conditional sentences exist widely in scientific
literature. Most of the existing knowledge graphs ignore the influence of condi-
tions. To address this issue, [8] proposes a representation and construction model
of scientific conditional knowledge graph. But it cannot handle the overlapping
tuple problem. [7] solves this problem on the basis. However, it cannot derive
the relations between fact and condition triples.
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Conditional: Atrial extrasystoles as such do not require any treatment unless they are accompanied by 
atrial fibrillation.
Nested triple: ((atrial extrasystoles as such, do not require, any treatment), unless, (atrial extrasystoles 
as such, are accompanied by, atrial fibrillation))

Conditional: If symptomatic treatment fails, pharyngeal airway obstruction is possible and a 
tonsillectomy may be necessary.
Nested triple: (((pharyngeal airway obstruction, is possible, null), if, (symptomatic treatment, fails, 
null)), and, (a tonsillectomy, may be necessary, null))

Conditional: Parathyroid tissue can be successfully autotransplanted and can be even allotransplanted 
if the host is immunosuppressed.
Nested triple: ((parathyroid tissue, can be successfully autotransplanted, null), and, ((parathyroid 
tissue, can be even allotransplanted, null), if, (the host, is immunosuppressed, null)))

Fig. 5. Examples for manual evaluation.

Information Extraction: Information extraction is an essential step in the con-
struction of knowledge graph. Recent works [4,13,15,17,21–23] apply neural net-
works to extract pre-defined relations between entities. Open information extrac-
tion (OpenIE) extracts triples from text, which is not limited to pre-defined rela-
tions. The popular OpenIE methods mainly include two categories. [3,10] use
sequence-to-sequence learning based on neural network. [9,14] learn to identify
triples by tagging each word that composes the subject, predicate or object.

Knowledge Graph Storage: There are two main storage methods of knowledge
graph, relational database based storage and graph based storage. [1,5,12,19,20]
first build tables in a relational database, then map triples to records and store
them in the database. Neo4j is a storage scheme based on attribute graph [18]
and gStore is a method for RDF graph [24].

7 Conclusion

In this paper, we propose a novel knowledge graph representation, which is a
nested triple structure. We implement a new extraction strategy for fact and
condition triples which contains a text hierarchy parsing module to transform
conditional sentences into a set of semantically related text units and an extrac-
tion module to extract fact and condition triples from text units. Our model can
better structure conditional sentences and solve the problem that the existing
conditional knowledge graph loses the deep semantic relations between facts and
conditions. The proposed knowledge storage scheme can store fact and condi-
tion knowledge as well as their semantic hierarchical relations simultaneously. In
the experiments, we show that our model significantly and consistently outper-
forms the state-of-the-art models in fact and condition triple extraction while
capturing the relations between the triples.
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Abstract. It almost reaches a consensus that off-policy algorithms dom-
inated research benchmarks of multi-agent reinforcement learning, while
recent work [34] demonstrates that on-policy MARL algorithm, Multi-
Agent Proximal Policy Optimization (MAPPO), can also attain com-
parable performance. In this paper, we propose a training framework
based on MAPPO, named async-MAPPO, which supports scalable asyn-
chronous training. We further re-examine async-MAPPO in StarCraftII
micromanagement domain and obtain state-of-the-art performances on
several hard and super-hard maps. Finally, we analyze three experimen-
tal phenomena and provide hypotheses behind the performance improve-
ment of async-MAPPO.

Keywords: Multi-agent reinforcement learning · Asynchronous
training · Distributed computing

1 Introduction

Recent research progress of multi-agent systems, such as AlphaStar [29], OpenAI
Five [20] and hide-and-seek agents [1], indicate the general effectiveness and
promising prospect of Multi-Agent Reinforcement Learning (MARL) in building
intelligent agents that can behave cooperatively or competitively. It has been a
growing trend to design and improve MARL algorithms [6,12,23,32], and to
apply MARL to diverse applications, such as full Multiplayer Online Battle
Arena (MOBA) game [33], autonomous driving [26] and social dilemmas [14].

Off-policy and value decomposition-based MARL algorithms have been pre-
ferred by researchers in recent years [27,30,31] since they are thought to be
more sample efficient than on-policy ones. However, a recent work [34] demon-
strates that with minimal hyperparameter tuning and restricted representa-
tion power, Multi-Agent Proximal Policy Optimization (MAPPO), i.e., PPO
with centralized value function and decentralized policy, can match or sur-
pass the performance of strong off-policy baselines on 3 categories of coopera-
tive multi-agent benchmarks: Multi-agent Particle Environments (MPE) [17,18],
c© Springer Nature Switzerland AG 2021
L. Fang et al. (Eds.): CICAI 2021, LNAI 13070, pp. 395–407, 2021.
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StarCraftII Multi-Agent Challenge (SMAC) [24] and Hanabi challenge [2]. The
success of MAPPO indicates that on-policy multi-agent actor-critic algorithms
are surprisingly effective and have great potential for MARL applications.

Even though the performance of MAPPO is impressive, there are some defi-
ciencies in the original implementation1 and experiments.

– The original implementation of MAPPO is in a serial manner. The
agent sequentially collects data through environment interaction (referred to
rollout stage) and then uses collected data for optimization (referred to learn-
ing stage). Rollout and learning need to wait for the completion of the other
to enter the next round. If the data to be generated and consumed is vast,
both rollout and learning require a longer time to complete and wait, which
doubly increases training time and makes large-batch training unendurable.

– MAPPO still requires carefully selected network architectures and
moderate hyperparameter tuning on several maps. To be more spe-
cific, Convolutional Neural Network (CNN) with frame-stacking is used on
SMAC maps 3s vs 4z and 3s vs 5z, while the network architecture on other
maps is either Multi-Layer Perceptron (MLP) or MLP with GRU [3]. In
terms of hyperparameter tuning, uniquely different mini-batch numbers and
initialization gain of the last action layer are utilized on the MMM2 map.

Can we ameliorate the hyperparameter sensitiveness of MAPPO and accel-
erate the training procedure simultaneously? Authors of [1] found that batch
size plays an imperative role in hide-and-seek training: larger batch size leads
to faster convergence and even better sample efficiency, while training with a
small batch may never converge. Besides, the aforementioned large-scale MARL
applications, such as OpenAI Five and hide-and-seek agent, conformably uti-
lize distributed RL system for fast data collection and large batch for stable
training. This acquiescent agreement makes us wonder whether asynchronous
training with a large batch is the key element to enhance original MAPPO and
to unlock its full potential.

In this paper, we propose async-MAPPO , a MARL framework that inte-
grates MAPPO and the refined SEED (Scalable, EfficiEnt Deep-RL system [4])
architecture. We re-examine async-MAPPO on several hard and super-hard
maps in SMAC domain and find that MAPPO algorithm can attain better final
performance when training with asynchronous optimization and large batch.
Notably, the final performance surpasses all the results reported in [34] and
establishes a new state-of-the-art (SOTA). Finally, three experimental phenom-
ena are proposed and discussed, through which we provide enlightenment about
the reason behind the performance boost of async-MAPPO.

The contributions of this paper are summarized as follows:

1. We propose async-MAPPO, a scalable asynchronous training framework
which integrates a refined SEED architecture with MAPPO.

2. We show that async-MAPPO can achieve SOTA performance on several hard
and super-hard maps in SMAC domain with significantly faster training speed
by tuning only one hyperparameter.

1 https://github.com/marlbenchmark/on-policy.

https://github.com/marlbenchmark/on-policy
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3. We formulate hypotheses about the effectiveness of large-batch training based
on the empirical results.

2 Related Works

Modern multi-agent deep reinforcement learning algorithms mostly follow the
paradigm of Centralized-Training-with-Decentralized-Execution (CTDE [7,8]).
Under CTDE paradigm, each agent independently behaves using its policy, while
policies are jointly trained given global environment information. Popular MARL
algorithms adopting CTDE paradigm can be roughly divided into off-policy
and on-policy branches. Off-policy branch includes multi-agent actor-critic algo-
rithms, such as MADDPG [17] and COMA [6], and value-decomposition based
algorithms, such as QMIX [23], ROMA [31] and RODE [32]. On-policy branch
typically includes MAPPO [34]. While off-policy MARL algorithms attract more
attention and are nearly exhaustively developed, on-policy MARL algorithms are
rarely studied. However, surprisingly, they are empirically promising and worth
further improving [34].

Large-scale MARL projects are always supported by an efficient RL sys-
tem, such as Rapid framework used in OpenAI Five [20]. RL system design
was an early research focus [16]. To address the problem of iterative waiting
in serial implementation, IMPALA [5] adopts a scalable actor-learner architec-
ture, where each actor is placed on a CPU core and manages the whole rollout
procedure independently, and the learner collects data generated by actors and
optimizes model parameters on GPUs. To further utilize GPU/TPU resources in
a cluster, SEED [4] decomposes the rollout procedure of IMPALA into a client-
server mode. Every client steps through local environments on CPU, and issues
action requests to the inference server, while inference server batches observa-
tions received from clients and provides action inference on a GPU or TPU.
Providing the scalability, efficiency, and resource utilization requirement, SEED
is currently one of the best architecture backbones in building a distributed RL
system, whose modification has been applied in recent works [33].

Performance improvement with asynchronous training was reported previ-
ously in the domain of single-agent RL. Asynchronous training can both facili-
tate exploration and allow wider hyperparameter sweeping by setting different
hyperparameters in every worker node [11]. When integrated with recurrent neu-
ral networks and distributed training, deep Q network can achieve state-of-the-
art performance on most Atari games and outperform normal Q-learning-based
algorithm by a large margin [13]. Considering the above results in single-agent
benchmarks and the successful applications of PPO in large-scale multi-agent
projects, we could expect a performance boost of MAPPO when combining it
with an efficient asynchronous RL system in multi-agent benchmarks.

3 Preliminaries

We consider a decentralized partially observable Markov decision process (Dec-
POMDP) [19] with shared rewards among agents defined by the tuple G =
〈I, S,A, P,R,Ω,O, n, γ〉. I defines the set of agents and n is the number of agents.
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Algorithm 1. Trainer Process of MAPPO with Asynchronous Optimization
Input: Parameters θ0, ψ0, replay buffer D, parameter queue Q, learning rate α

1: Send θ0 and ψ0 into Q
2: Launch rollout processes
3: for update iteration i = 1, 2, . . . do
4: wait until there’s enough data in D for optimization
5: fetch data batch from D
6: compute Aπ

ψi
using GAE [25] with PopArt [10] denormalization

7: compute V π
target based on Aπ

ψ

8: use V π
target to update PopArt parameters

9: compute loss −Jπ(θi) and −JV π (ψi) according to Equation (1) and (2)
10: θi+1 ← θi + α∇Jπ(θ)|θ=θi

11: ψi+1 ← ψi + α∇JV π (ψi)|ψ=ψi

12: Send θi+1 and ψi+1 into Q
13: i ← i + 1

14: return policy πθ

γ is the discount factor. S is the support set of true state in the environment.
At each timestep, agent i receives an observation oi drawn from the observation
function O, i.e., oi = O(s, i) ∈ Ω. After receiving an observation, agent i infers
an available action ai ∈ A to execute. A shared reward R(s,a) is received by
all agents once a joint action a ∈ An is formulated and a transition is triggered
according to the transition function P (s′|s,a). τi ∈ T ≡ (S × An)t denotes the
trajectory of agent i of the elapsed t timesteps in one episode.

MAPPO follows the CTDE paradigm, where each agent learns a shared pol-
icy πθ(·|τi) : (Ω×A)∗ → [0, 1] parameterized by θ conditioned on local history
observation, and a centralized value function of current policy π, V π

ψ (τ ) : S∗ → R

parameterized by ψ conditioned on global history states. Here X∗ means the
Cartesian product of set X in an arbitrary number of timesteps. Note that tra-
jectory τ together with observation function O contains the history information
of both local observation and global state. Hence we use τ to denote the input
of both policy and value function, while the actual input may not be the same.

4 Async-MAPPO

4.1 MAPPO Algorithm

Similar as single-agent PPO, MAPPO simultaneously learns a shared policy
πθ(·|τi) and a centralized value function Vψ(τ ) = E(st,at)∼T [

∑∞
t=0 R(st,at)] by

optimizing the following objective:

Jπ(θ) =

n∑

i=1

E(τi
t ,ai

t)∼G

[
min
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clip
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i
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(1)

JV π (ψ) = −
n∑

i=1

Eτ ∼G

[
V π
target(τ ) − V π

ψ (τ )
]2 (2)
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Algorithm 2. Client
Input: total k ∗ m environments in m groups, remote reference of inference server S
1: for group g = 1, . . . , m do
2: for environment e in g do
3: o, oshare, aavail = e.reset()

4: Batch o, oshare and aavail into vector
5: invoke RPC S.select action(o, oshare, aavail)

6: while True do
7: for group g = 1, . . . , m do
8: wait for action response a from S
9: for for environment e in g do

10: o, oshare, aavail, r, d = e.step(a)

11: Batch o, oshare, aavail, r, d into vector
12: invoke RPC S.select action(o, oshare, aavail, r, d)

In the above equations, Aπ
ψ(τ i

t , a
i
t) denotes the advantage function [28] and

V π
target(τ ) denotes the target value computed by Generalized Advantage Estima-

tion (GAE [25]). Pseudocode and algorithmic details of trainer process can be
found in Algorithm 1.

4.2 Refined SEED Architecture

As mentioned in 2, SEED [4] is a high-performance distributed RL architecture
built upon the gRPC package, which decomposes the rollout stage into client
and server calls to fully utilize GPU/TPU resources in a cluster. Although it
is scalable and cost-effective, an obvious flaw is that, in the aspect of a remote
environment client, after issuing a request to the server, it must wait until the
completion of inference and data transportation to continue the next step of
environment simulation. This indicates that CPU resources may not be fully
utilized due to the idle time of clients. To address this issue and remove the
potential bottleneck, similar to the system designed by [22], we propose to store
a vector of environments in each client, split the environments into multiple
parts, e.g., 2 parts, and alternate stepping across them, which is referred to
Multiple-Buffered Sampling.

To be more specific, a client possesses m environment splits, and an environ-
ment split is composed of k environments. The simulation of each environment in
the same split is executed sequentially in a for loop. After the request initiation
of any environment split, the client will keep stepping through the other envi-
ronment splits instead of waiting for the response. For example, while the second
environment split is stepped through, the actions of the first split are computed
on the inference server. Hence, clients can attain full CPU utilization once k is
correctly chosen such that the time of inference and data transportation can be
overlapped by simulation of other environment splits. Graphical illustration can
be found in Fig. 1.
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Algorithm 3. Inference Server Invocation
Input: replay buffer D, parameter queue Q, inference model π and V , inference batch

size B, observation o, centralized observation oshare, available action aavail, reward r,
termination indicator d

1: if there’s new parameter θ′, ψ′ in Q then
2: θ ← θ′, ψ ← ψ′

3: Store o, oshare, aavail, r, d into D
4: batching count ← batching count + 1
5: Set callback object a to be the slice of abatch

6: if batching count ≥ B then
7: Get batched obatch, obatch

share , abatch
avail from D

8: Get hidden state hbatch from D
9: abatch, ĥbatch = model.inference(obatch, obatch

share , abatch
avail ,hbatch)

10: Store abatch, ĥbatch into D
11: batching count ← 0
12: Trigger callback function on a

13: return a

Fig. 1. Graphical illustration of Multiple-Buffered Sampling. (Left) original SEED sam-
pling architecture. Servers wait for client requests, batch data, conduct inference, store
inference outputs, and then send action slices back to clients. Clients wait for the
response from servers after issuing a request. Idle time of client CPU is non-negligible.
(Right) Multiple-Buffered Sampling. Clients alternate among m = 2 environment splits
and step through them. Overlapping between client CPU and server GPU makes full
use of computation resources.

4.3 Implementation Details

Communication between clients and the inference server is supported by
PyTorch [21] torch.distributed [15] package. Remote reference of inference server
is kept by several clients, through which clients can invoke remote procedure
calls (RPC) to request actions from the server. After receiving a request from
any client, the server stores observations returned in the previous environment
step into the replay buffer and returns a torch.futures.Future object immediately.
Once a certain number of clients invoke RPCs, the server will fetch a data batch
from the buffer, conduct inference, and save data returned by inference back into
the buffer. At this point, slicing callback function chained in torch.futures.Future
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object is triggered. Finally, clients receive the corresponding slice of the action
batch as a response and start a new round of environment steps. Detailed algo-
rithm description of client and server is illustrated in Algorithm 2 and Algorithm
3 respectively.

Replay buffer is based on NumPy library [9] and shared memory in Python
multiprocessing package, i.e., every data segmentation is a NumPy array in
shared memory, such that the learner can benefit from zero-copy communi-
cation when requesting for a data batch stored by inference servers. During
optimization, the learner converts a data batch in replay buffer into PyTorch
Tensor [21], loads it into GPU memory, and optimizes model parameters. After
every full update iteration (several PPO update epochs), the updated parameter
is pushed into a queue, through which servers synchronize the local model with
the latest one to ensure that the rollout procedure is sufficiently on-policy.

5 Experiment

In this section, we examine both system-level and algorithm-level performance
of async-MAPPO. In Sect. 5.1, experiments concerning the effect of Multiple-
Buffered Sampling and scalability are conducted, which show that refined SEED
architecture provides higher system throughput than the original one and still
scales well. Algorithm performance is measured in Sect. 5.2 on selected SMAC
maps. These results meet our expectation of performance enhancement with
asynchronous optimization and a large batch. We analyze the reason behind
algorithm performance gain and formulate two hypotheses derived from experi-
mental observations in Sect. 5.3.

5.1 System-level Evaluation

We examine the scalability of the refined SEED architecture and the influence
of refinement in terms of system throughput, i.e., collected environment Frames
Per Second (FPS), on Hanabi learning environment [2]. Table 1 demonstrates the
numerical results tested on a single machine and a cluster. In both systems, the
first 3 GPUs are used for optimization and the last one is used for rollout infer-
ence, where four inference servers are initialized. Detailed hardware description
of System #1 and System #2 can be found in the caption of Table 1.

On the one hand, from the first three rows of system #2, we can see that
refined SEED architecture can be employed to a cluster with near-linear scal-
ing, i.e., system throughput improves linearly as the number of actors increases,
which shows promising scalability. On the other hand, by setting environment
from single split into double splits, system throughput is improved in both local
and distributed settings (first two rows of system #1, last two rows of system
#2), which verifies the necessity of Multiple-Buffered Sampling in SEED archi-
tecture. If environment splits are further increased (last row of system #1),
system throughput will be hurt because there exists a group of environments
that are neither stepped through in clients nor waiting for action response from
servers. Empirically, splitting environments into two groups is the best practice.
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Table 1. System throughput measurement results and corresponding experiment con-
figuration. System # 1 is a laboratory-level server machine with one physical CPU of
64 cores, 128 GB memory, and 4 NVIDIA 2080Ti GPUs. System #2 is an Ali-Cloud
cluster, whose head node is a GPU machine with 48 cores and 4 NVIDIA V100 GPUs
and worker nodes are homogeneous CPU machines with 104 virtual cores. Rounded
average FPS of 3 independent runs across 30 s is presented. The refinement of SEED
architecture improves system throughput, with which SEED architecture still scales
well.

System #Actors #Envs per actor #Env splits FPS

#1 48 80 1 13.5k

2 17.5k

3 16.3k

#2 32 128 2 11.1k

64 22.0k

128 44.5k

1 30.6k

5.2 Algorithm-level Evaluation

Algorithmic Details. Experiments in this section are conducted on System
#1 described in the previous section. Only 1 GPU is utilized for both rollout
inference and network optimization in consistent with [34]. The number of envi-
ronment splits is fixed to 2, while the number of actors and environments in
each actor varies across selected environments. For StarCraftII environment, the
more agents are in the map, the lower FPS and the fewer total environments a
single machine can support. The same setting on maps with fewer agents (e.g.
3s vs 5z ), which initializes a relatively large number of environments, can not be
adopted on maps with plenty of agents (e.g. 27m vs 30m), otherwise, the game
will cause a memory overflow problem. Hence, we report the batch size magnifi-
cation and FPS acceleration factor instead of specific system configuration and
actual FPS. We believe this substitution will make the conclusion more clear.

Two separate networks with the same recurrent structure as [34] are main-
tained for policy πθ and value function Vψ respectively. Hyperparameters, includ-
ing hidden size, learning rate, and so on, are mostly the same as [34] except for
reuse times of each data batch, which is presented in Table 2 in details. We fol-
low the suggestions proposed by [34] and include all the recommended tricks in
async-MAPPO, including agent-specific global state, training data usage, value
normalization (PopArt) [10], action masking, and death masking, since they are
all found to be critical to MAPPO’s practical performance. We directly mod-
ify the codebase released with [34] for maximum consistency. If not specified,
all evaluation procedure is the same as that reported in [34]. To better distin-
guish original MAPPO implementation from async-MAPPO, we refer to it as
serial-MAPPO in the remaining part of this section.



Unlocking the Potential of MAPPO with Asynchronous Optimization 403

Fig. 2. Learning curves of serial-MAPPO and async-MAPPO on selected SMAC maps.
Results of serial-MAPPO is taken from [34] in communication with authors. The Y-
axis is the median evaluation winning rate throughout the training procedure. The
shaded area indicates the standard deviation of different runs with different ran-
dom seeds. The X-axis is the number of update iterations. (#update iteration =
#total environment steps × sample reuse/batch size)

StarCraftII Multi-Agent Challenge. Because all the features and tricks of
serial-MAPPO are preserved, we expect no performance drop in async-MAPPO
given that correctly tuned hyperparameters for asynchronous training. There-
fore, we omit experiments on easy SMAC maps where the final performance of
serial-MAPPO can not be further improved. SMAC maps that meet any of the
following conditions are considered:

(1) Serial-MAPPO can not achieve SOTA performance. (8m vs 9m, 3s vs 5z,
27m vs 30m, 3s5z vs 3s6z );

(2) Even though serial-MAPPO achieves SOTA performance, there is plenty of
room to improve. (5m vs 6m);

(3) There is uniquely different hyperparameter or network architecture selection
in serial-MAPPO. (MMM2, 3s vs 4z, 3s vs 5z )

Figure 2 demonstrates the median evaluation winning rate and the corre-
sponding standard deviation across the training process. Final evaluation per-
formance, sample reuse2 times, FPS speedup and batch size magnification are
presented in Table 2. When training with asynchronous optimization and large
batch, the performance of async-MAPPO matches or exceeds serial-MAPPO,
QMIX, and RODE examined in [34], either of which achieved SOTA results on
these maps. Besides, training is significantly accelerated compared with serial-
MAPPO for about 4∼5 times in terms of wall clock speed.

5.3 Discussion

We provide three experimental phenomena and corresponding analyses in async-
MAPPO practice.
2 Referred to as ppo epoch in [34].
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Table 2. Final median evaluation winning rate (standard deviation) of async-MAPPO
and serial-MAPPO. Speedup in FPS, magnification in batch size, and sample reuse are
presented in the right columns. Runs of async-MAPPO include at least 3 random
seeds. Evaluation winning rate of serial-MAPPO is directly taken from [34], while FPS
of serial-MAPPO is re-measured in the same machine, system #1. FPS metric applied
is the same as in Table 1.

Map async-MAPPO serial-MAPPO FPS Speedup Batchsize
magnification

Sample
reuse

3s vs 4z 100.0(1.5) 100.0(0.9) 5.50x 7.5× 10

3s vs 5z 100.0(2.3) 96.9(37.5) 5.84× 7.5× 15

5m vs 6m 90.6(3.1) 75.0(18.2) 5.22× 7.5× 10

8m vs 9m 96.8(1.5) 87.5(4.0) 4.66× 7.5× 10

27m vs 30m 98.4(3.3) 93.8(2.4) 3.91× 2× 5

3s5z vs 3s6z 96.8(3.3) 84.4(34.0) 5.20× 7.5× 10

MMM2 96.8(1.1) 90.6(2.8) 4.96× 6× 5

Async-MAPPO Can Endure More Reuse Times. Note that sample reuse
reported in Table 2 is greater or equal to that in [34]. First, a large batch reduces
the variance of episode returns and improves the precision of value function and
advantage estimation. Second, with more diverse experiences in a data batch,
the expectation in Eq. 1, i.e., off-policy correction of advantage function, is also
more accurate. Consequently, policy improvement direction is more accurate and
off-policy correction is not prone to diverge, which is the reason why more reuse
times can be applied on the same data batch in async-MAPPO.

Async-MAPPO Requires Fewer Update Iterations. Even though sample
reuse and total environment steps of async-MAPPO may be larger, the update
iterations are fewer than serial-MAPPO, as shown in Fig. 2. In the context of
advantage normalization, a large batch reduces the variance of advantage esti-
mation and increases the scale of normalized advantage (because the divisor is
reduced) while maintaining high accuracy of mean advantage estimation. This
means async-MAPPO may step further in the correct direction when using the
same learning rate as serial-MAPPO, which explains fewer update iterations are
required.

Async-MAPPO Is Less Sensitive to Network Architectures and
Hyperparameters. To attain better results, on MMM2, serial-MAPPO splits
one data batch into two mini-bathes to escape local optima, while async-MAPPO
uses the whole data batch. For a similar reason, CNN with frame-stacking
was used in maps 3s vs 4z and 3s vs 5z, while async-MAPPO uses a universal
MLP+GRU network architecture. However, async-MAPPO achieves even better
performance on these maps. We reckon the analysis in the previous two phenom-
ena also applies in that accurate policy evaluation and fast policy improvement
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help escaping local optima, causing hyperparameter and network architecture
less imperative.

6 Conclusion

In this work, we propose async-MAPPO, the integration of MAPPO algorithm,
and refined SEED architecture. Async-MAPPO has promising system-level and
algorithm-level performance and establishes a new SOTA result on selected
hard and super-hard SMAC maps. We formulate hypotheses about the reason
behind based on experimental phenomena. We conjecture that training with
asynchronous optimization and a large batch is possibly a generally beneficial
choice to use MAPPO. Systematic and theoretical verification of these hypothe-
ses remains in future works.
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Abstract. In this paper, an improved intelligence algorithm is proposed
for path planning problem. The algorithm is based on Sparrow Search
Algorithm and is combined with Random Opposition-based Learning
and linear decreasing strategy, named ROSSA. The mobile robot path
planning problem can be mathematically transformed into an optimiza-
tion problem, which can be solved by intelligent optimization algo-
rithms. With this consideration, an SSA-based optimization algorithm
is proposed. Random opposition-based learning increases the diversity
of the population and enhances the exploration ability of the algorithm;
the linear decreasing strategy balances the ability of the algorithm to
explore globally and exploit locally by adjusting the algorithm param-
eters. Meanwhile, the Bezier curve satisfies the requirement of path
smoothness for the robot path planning problem. The superiority of
the proposed algorithm is verified by conducting experiments with three
standard algorithms for 11 benchmark test functions, and some compar-
ison experiments on the path planning problem with PSO and SSA to
confirm that the proposed algorithm can find a safe and optimal path in
the mobile robot path planning problem.

Keywords: Path planning · Sparrow search algorithm ·
Opposition-based learning · Bezier curve

1 Introduction

Robot path planning is a very important part in the field of robotics, because
it gives robots the ability to move, so that it can handle a variety of tasks that
need to move between two points [1].

Given the start and goal position for robot in a 2D environment with static
obstacles, the goal of path planning is to search for an optimal or suboptimal
collision-free path so that robots can move from the start point to the target point
without collision with obstacles [2]. Based on the mastery of the environment,
path planning can be divided into global path planning and local path planning.

There has been lots of research on motion planning since the pioneering work
presented by N. J. Nilsson in late 1960 s [3]. Thus far, various motion planning
c© Springer Nature Switzerland AG 2021
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https://doi.org/10.1007/978-3-030-93049-3_34
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algorithms have been presented such as Probabilistic Roadmaps [4,5], Rapidly
Exploring Random Trees [6,7], and Potential Fields [8,9], etc. These algorithms
can be divided into deterministic and undeterministic algorithms. Deterministic
algorithms must find the optimal solution when the problem has an optimal
solution, otherwise they return information that there is no optimal solution.
However, as the size of the problem becomes more complex, the complexity of
modeling the problem and the amount of computation required by the algorithm
grows exponentially. Besides, since practical engineering problems usually have
many locally optimal solutions, it is difficult for these deterministic algorithms to
cope with increasingly difficult problems. Unlike deterministic algorithms, meta-
heuristic algorithms can find an approximate solution in case the exact solution
cannot be found. This can significantly reduce the amount of computation. Also,
meta-heuristic algorithms introduce stochasticity, which gives it the ability to get
rid of the local optimum problem. These advantages provide important implica-
tions for metaheuristic algorithms to solve global optimization problems. In the
past decades, researchers have proposed various Swarm intelligence algorithms,
including: Particle Swarm Optimization Algorithm [10], Krill Herd Optimization
Algorithm [11], Beetle Antenna Search Algorithm [12], etc. The sparrow search
algorithm [13] is a novel metaheuristic optimization algorithm recently proposed
with faster convergence, fewer control parameters, and simpler computation, but
like other swarm intelligence algorithms, it tends to converge early when solving
complex optimization problems, thus falling into the local optima.

In this paper, a novel SSA-based path planning algorithm is proposed. The
algorithm incorporates random opposition-based learning strategy and linear
decreasing mechanism and is utilized to optimize the control points of Bezier
curve, which is used to generate an optimal feasible path. The Bezier curve
requires only a few control points to generate a smooth curve, which makes
the dimension of the path planning problem not increase exponentially with
the complexity of the environment and greatly reduces the complexity of the
path planning problem. The superiority of the proposed algorithm is verified by
benchmark function experiments, and the smooth optimal path of the robot is
designed more stably in the contrast experiments of the path planning problem.

The remaining of the article is arranged as follows: Sect. 2 explains basic SSA
algorithm. Section 3 presents the proposed algorithm ROSSA. The description
of robot path planning problem and Bezier curve are discussed and contrast
experiments with PSO and SSA are conducted in Sect. 4. Finally, Sect. 5 gives
the conclusion.

2 Sparrow Search Algorithm(SSA)

SSA is a novel swarm intelligence-based optimization algorithm inspired by the
foraging and anti-predatory behaviors of a sparrow population. It has three
phases: producer phase, scrounger phase and scouter phase. The key steps of
the SSA algorithm are following:
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Initialization: First of all, SSA initializes all the parameters and random
population of sparrow as follows:

Xi,j = rand × (UBj − LBj) (1)

where i = 1, 2, ..., pop, j = 1, 2, ..., dim. LBj and UBj are lower and upper
bounds of search spaceseparately. rand ∈ (0, 1) is a random number.

Producer phase: After initialization, sparrows in the top 10%–20% fitness
values (producers) start to search for a better solution in the search space. In
this phase, the location of the sparrow is updated by

Xt+1
i,j =

{
Xt

i,j · exp
( −i

α·T
)

ifR2 ≤ ST
Xt

i,j + Q · L ifR2 ≥ ST
(2)

where t represents the current iteration. α is a random number in the range (0, 1).
T is the max iteration. Q obeys normal distribution. R2 ∈ [0, 1], ST ∈ [0.5, 1]
are the alarm value and the safety threshold respectively.

Scrounger phase: The rest of population are called scroungers. The movement
of scrounger individuals can be defined as:

Xt+1
i,j =

{
Q · exp

(
xt
worst−Xt

i,j

i2

)
i > n/2

Xt
p +

∣∣Xt
ij − Xt

p

∣∣ · A+ · L otherwise
(3)

where Xp is the best position occupied by the producer. Xworst denotes the
current global worst location. A represents a matrix of 1 × d for which each
element inside is randomly assigned 1 or –1, and A+ = AT

(
AAT

)−1.
Scout phase: Randomly select 10%–20% of population as scout. The update

formula of scout is described as follows:

Xt+1
i,j =

{
Xt

best + β · ∣∣Xt
i,j − Xt

best

∣∣ fi > fg

Xt
i,j + K ·

( |xt
l,j−Xt

worst

(fi−fworst)+ε

)
fi = fg

(4)

where Xbest is the current global optimal location. b is the step control parameter
that obeys a normal distribution. K ∈ [−1, 1] is a random number. fi represents
the fitness value of sparrow i. fg and fw denote the current global best and
worst fitness values, respectively. ε is a constant used to avoid the denominator
being 0.

3 Improvement

3.1 Opposition-based Learning(OBL)

OBL was first proposed by Tizhoosh [14], and a large amount of variants of
opposition-based learning were proposed, such as quasi-opposition [15], quasi-
reflection [16], comprehensive opposition [17], etc. Studies showed that consider-
ing both random outcomes and their opposite results is more advantageous than
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considering only random results [18]. The concept of opposition-based learning
is based on opposite numbers. It is expressed as follows: Let x ∈ [a, b] be a real
number. Then its opposite number, x̆, is given by following equation:

x̆ = a + b − x (5)

In higher dimensional space, the extended definition is defined as follows:
Let x (x1, . . . , xd) be a point in d-dimensional space and xi ∈ [ai, bi], i =

1, 2, . . . , d. The opposite point of x, x̆ (x̆1, . . . , x̆d), can be expressed as:

x̆i = ai + bi − xi (6)

Different from basic opposite point, this paper uses a variant strategy called
random opposite point [19], which is defined by:

x̆i =
{

ai + bi − xi rand ≥ R
xi otherwise

(7)

It is reported that by this reverse strategy there are more possible positions than
the base reverse strategy, further increasing the diversity of the population.

3.2 Random Opposition-based Sparrow Search Algorithm(ROSSA)

SSA has the disadvantage that when the search is close to the global optimum,
the population diversity decreases and it is easy to fall into the local optimum
solution [20]. This paper uses random opposition-based strategy to improve SSA.
First, a random OBL strategy is used to generate the opposite initial solution
when initializing the population, and an elite strategy is used to select better
individuals from the initial population and the opposite initial population to
form the final initial population. This gives the algorithm an advantage at the
beginning. Meanwhile, the producers in SSA searches the whole search space,
and random opposition-based strategy can effectively increase the population
diversity and optimize the global search ability.

Both producers and scouters in SSA can enhance the global exploration abil-
ity of the algorithm, but their proportion is fixed, which does not balance well
between global exploration and local exploitation in the first and second stages
of SSA algorithm. Therefore, this paper adopts a linear decreasing strategy to
control the number of both producers and scouters, which is beneficial to the
convergence of the algorithm. The decreasing formula is as follows.

p = pmax − (pmax − pmin) · t

T
(8)

where p is the proportion of producers and scouters, pmax and pmin denote the
maximum and minimum number of p. In this paper, the maximum and minimum
values of both are taken as 0.4 and 0.1, respectively.

The main flow of ROSSA is shown in Algorithm 1.
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Algorithm 1: Framework of ROSSA
input : T : the maximum iterations,

pop: the size of population,
nump: the number of producers,
nums: the number of scouters,
ST : the threshold of alert value

output: Xbest, fbest

1 Initialize the population and opposition population;
2 Sort the population by fitness and retain the pop individuals with better

fitness values;
3 while t < T do
4 Calculate nump with equation 8;
5 for i = 1 : nump do
6 update the producers’ location with Equation 7;
7 end
8 for i = (nump + 1) : pop do
9 update the scroungers’ location with Equation 3;

10 end
11 Calculate nums with equation 8;
12 for i = 1 : nums do
13 update the scouters’ location with Equation 4;
14 end
15 t=t+1;
16 end
17 return Xbest, fbest;

3.3 Benchmark Test

To verify the advancedness of the proposed algorithm, PSO, KH, SSA and
ROSSA are used to solve these test functions, which are shown in Table 1. In
the tests, the population size is set to 30, the total number of iterations is set
to 500, and the dimension of each test function are 30. The other properties of
the functions are shown in the following table. 30 simulation experiments were
conducted for each test function separately, and the mean and variance obtained
from 30 experiments were counted as shown in Table 2.

Among them, F1–F6 are unimodal test functions, which are mainly used to
test the exploitation ability of the algorithm. The results of these 6 unimodal
functions show that ROSSA has the best effect of finding the best solution for
unimodal functions, and can obtain the global optimal solution to all of these 6
functions, and the stability of ROSSA is better than other 3 algorithms.

F7–F11 are multimodal test functions, which have multiple local optimal
solutions, and the intelligent optimization algorithm is easy to fall into the local
optimum when solving, so the multimodal test functions are mainly used to test
the exploration ability of the algorithm. In solving F7, all four algorithms have
unsatisfactory results for this function on average, but SSA and ROSSA can
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Table 1. benchmark functions

Unimodal functions Range fmin

Sphere [–100,100] 0

Schwefel 2.22 [–10,10] 0

Schwefel 1.2 [–100,100] 0

Schwefel 2.21 [–100,100] 0

Rosenbrock [–30,30] 0

Step [–100,100] 0

Multimodal functions Range fmin

Schwefel 2.26 [–500,500] 0

Rastrigin [–5.12,5.12] 0

Ackley [–32,32] 0

Griewank [–600,600] 0

Penalty [–50,50] 0

Table 2. Test results

Function Values PSO KH SSA ROSSA

Sphere Ave 1.139900e+03 1.834809e+03 6.655620e-66 0

Best 7.770424e+01 1.366952e+03 0 0

Var 6.449311e+06 7.730924e+04 7.504269e-130 0

Schwefel 2.22 Ave 6.683219e+01 1.610389e+10 4.019652e-38 0

Best 3.229506e+01 7.338242e+06 0 0

Var 4.282651e+02 2.609927e+21 4.826645e-74 0

Schwefel 1.2 Ave 1.989746e+04 5.264767e+03 3.469262e-41 0

Best 9.569614e+03 2.534085e+03 0 0

Var 2.610611e+07 2.632828e+06 3.610733e-80 0

Schwefel 2.21 Ave 2.519220e+01 1.506538e+00 2.556319e-27 0

Best 1.836057e+01 1.066817e+00 0 0

Var 1.893842e+01 8.679998e-02 1.960410e-52 0

Rosenbrock Ave 9.918774e+03 5.557089e+05 1.722730e-05 1.349896e-09

Best 2.237782e+02 2.341405e+05 0 0

Var 6.563432e+08 6.284255e+10 4.127078e-09 5.466655e-17

Step Ave 1.876022e+00 4.683979e+02 7.875731e-08 2.208193e-11

Best 3.994384e-01 3.481912e+02 0 0

Var 4.533699e+00 3.435012e+03 3.706890e-14 1.462835e-20

Schwefel 2.26 Ave 2.143348e+03 4.225624e+03 3.038711e+03 1.908453e+03

Best 9.521574e+02 2.625807e+03 3.818270e-04 3.818270e-04

Var 3.464213e+05 6.830527e+05 9.286784e+06 3.112237e+06

Rastrigin Ave 1.185528e+02 3.808714e+01 0 0

Best 6.077383e+01 2.178187e+01 0 0

Var 1.086724e+03 1.342092e+02 0 0

Ackley Ave 1.406729e+00 1.891097e+00 8.881784e-16 8.881784e-16

Best 2.128831e-01 1.439818e+00 8.881784e-16 8.881784e-16

Var 5.047473e-01 4.622237e-02 0 0

Griewank Ave 8.646091e-01 5.004274e+00 0 0

Best 3.867774e-01 3.705478e+00 0 0

Var 4.332038e-02 5.003298e-01 0 0

Penalty Ave 5.049397e+00 5.059365e+04 3.214013e-09 6.214156e-10

Best 1.200169e+00 2.353369e+03 1.570545e-32 1.570545e-32

Var 7.984803e+00 3.192327e+09 7.707496e-17 1.124535e-17
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explore better positions; in solving F8, F9 and F10, SSA and ROSSA outper-
form the other two algorithms; in solving F11, both SSA and ROSSA have the
ability to find excellent solutions, but ROSSA has a slight advantage. In sum-
mary, ROSSA performs better than the other three algorithms in the benchmark
function experiments.

Figure 1 shows the convergence curves of the partial functions of each algo-
rithm. The horizontal axis represents the number of update generations and the
vertical axis represents the log of the fitness value. It can be seen that, ROSSA
has better convergence speed, accuracy and stability.
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Fig. 1. Convergence curves of partial functions: (a) F1, (b) F8, (c) F11.

4 ROSSA for Path Planning Problems

4.1 Problem Description

In this paper, ROSSA is used to solve the robot path planning problem.
The target environment is a two-dimensional plane with static obstacles.
Each individual in the algorithm denotes a path, represented by N con-
trol points as p[p1, p2, . . . , pN ], where p1 is the starting point and pN is the
end point. In the implementation, the SSA individuals are represented as
[x2, y2, x3, y3, . . . , x(N−1), y(N−1)] for coding. In the actual environment, obsta-
cles have various shapes. In this paper, for the simplification of the environment
model, the circumcircle of the obstacle is used to simplify modeling.

4.2 Bezier Curve

Bezier curve was first proposed by engineer P.E. Bezier [21] and is widely used
in practices such as computer graphics and mechanical design [22]. Bezier curve
is generated by a series of control points and these points are not on the curve
except for the start and end points. Given a set of control points P0, ..., Pn, the
corresponding Bezier curve can be expressed as

P (t) =
n∑

i=0

PiBi,n(t), t ∈ [0, 1] (9)
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where t is the normalized time variable, Bi,n is the Bernstein basis polynomials,
which represents the base function in the expression of a Bezier curve:

Bi,n(t) = Ci
nti(1 − t)n−i i = 0, 1, . . . n (10)

In this way, a smooth curve can be created with only a small number of control
points.

4.3 Fitness Function

The purpose of this paper is to find an optimal path for the robot that satisfies
the constraints, where the constraints include (1) feasibility, (2) optimality, and
(3) safety.

1. Feasibility

Feasibility is the most important goal of path planning. If the path collides
with an obstacle, the fitness should be large, which is set here to 10000:

ffeasible =
{

0 if feasible
10000 otherwise

(11)

2. Shortest distance

The second target is to minimize the length of the solution generated by the
algorithm. For simplicity, we choose 100 points on the path and calculate the
Euclidean distance between two adjacent points:

flength =
n−1∑
i=1

‖pi+1 − pi‖ (12)

3. Safety
An excellent path should be as far away from obstacles as possible. If the
distance between the path and the obstacle is less than the safe distance,
dsafe, it will be penalized:

fsafe (oj) =

{(
1 − dmin(oj)

dsafe(oj)

)2

if dmin (oj) ≤ dsafe (oj)
0 otherwise

(13)

frisk = max (fsafe) (14)

where dmin(oj) means the minimum distance of the path from the obstacle
j. dsafe(oj) can be expressed as follow:

dsafe (oj) = kroj
(15)

where k indicates the scale factor and roj
denotes the radius of obstacle j.

Considering the above factors, the fitness function of the robot path planning
problem can be expressed as:

f = ffeasible + w1 ∗ flength + w2 ∗ frisk (16)



416 G. Zhang and E. Zhang

4.4 Comparision

The parameters of the path planning model are set as follows: the map is 500 ×
500, as shown in Fig. 2. The number of control points is 5, the robot moves from
(10,10) to (490,490).

(a) Environment 1. (b) Environment 2. (c) Environment 3.

Fig. 2. Environments.

The objective function of this path planning model is solved using PSO, SSA
and ROSSA respectively to obtain the desired paths. The population size is set
to 30, each individual is a path, the maximum number of iterations is 500, and
30 simulation experiments are conducted. Figure 3 shows the convergence curves
of the three algorithms and related data are shown in Table 3.
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Fig. 3. Convergence curve of each environment.

The comparison in Fig. 3 and Table 3 show that the ROSSA algorithm out-
performs the PSO and SSA algorithms for the path planning problem. As can
be seen from Fig. 3, due to the opposition-based initialization of ROSSA, the
initial solution of ROSSA is in a more optimal position. Meanwhile, the rapid
convergence to the better position and the continuous approximation to the
optimum can stabilize the convergence to the optimal value. Table 3 shows that
the average and minimum fitness values obtained by the ROSSA algorithm are
lower than those of the PSO and SSA algorithms, and that it is able to solve the
path planning problem stably, resulting in a safe and feasible trajectory that is
optimal and satisfies the constraints.
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Table 3. Performance comparison of three algorithms

(a) Environment 1.

Algorithm Ave Best Var Success rate

PSO 7.679612e+02 7.160134e+02 7.450565e+03 90%

SSA 8.636940e+02 7.040057e+02 2.140079e+04 50%

ROSSA 7.145130e+02 7.023720e+02 9.443526e+01 100%

(b) Environment 2.

Algorithm Ave Best Var Success rate

PSO 8.929376e+02 7.090549e+02 1.959787e+04 40%

SSA 9.395579e+02 6.977466e+02 1.623664e+04 30%

ROSSA 8.003072e+02 7.034846e+02 2.640106e+03 100%

(c) Environment 3.

Algorithm Ave Best Var Success rate

PSO INF INF 0 0%

SSA 9.714638e+02 9.146378e+02 8.143158e+03 10%

ROSSA 8.216849e+02 8.152322e+02 5.115674e+01 100%

5 Conclusions

In this paper, an improved SSA is used to solve the path planning problem.
The random OBL strategy and a linear decreasing strategy are introduced into
the basic SSA. These strategies are used to increase the population diversity,
balance the local exploitation and global exploration ability of the algorithm, and
avoid the algorithm from falling into local optimum. The results of benchmark
function test show that the proposed algorithm has a significant improvement in
the performance of convergence speed, accuracy and stability. The path planning
simulation results show that the path planning based on ROSSA can effectively
find the optimal path and steadily plan a feasible and efficient path.
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Abstract. Federated learning (FL) aims to build a deep learning model
based on distributed datasets. Different from traditional deep learning,
federated learning does not need to centralize data from multi-party.
Clients store datasets locally and train a central model through inter-
action with the central server. And the data privacy of clients could be
preserved very well. However, sending a huge number of information to
the central server will lead to huge communication overhead. This article
presented two methods to solve the problem. The first is the enhanced
federated learning technique with multi-layered compressed model. The
second is the dynamic weighting aggregation algorithm considering the
size of the dataset, local learning accuracy and the frequency of local
model update for each client. The result of experiments demonstrates
that the proposed framework with multi-layered compressed model and
dynamic weighting aggregation performs better than the baseline algo-
rithm in both accuracy and communication efficiency.

Keywords: Federated learning · Multi-layered compressed model ·
Aggregation · Huffman

1 Introduction

In the past few years, we have seen the rapid development of machine learn-
ing in the field of artificial intelligence, such as computer vision [3,19], natural
language processing [22,26] and recommendation system [20,21]. The success
of these machine learning technologies is based on a large amount of data. For
example, the target detection system of Facebook company is trained by 350
million images from Instagram [18]. With the continuous development of soci-
ety, people pay more attention to user privacy and data protection. In this case,
the owners of some highly sensitive data (such as financial transaction data and
health data) can only keep the data confidential strictly. This phenomenon is
called isolated data islands [23], which brings great resistance to the data inte-
gration of artificial intelligence technology.
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The reason why the traditional machine learning technology is restricted by
the phenomenon of isolated data islands is that the training of the traditional
machine learning model [2,12] needs to gather all the data together, and then
unified by the learning model for training. A feasible method to solve the problem
is that each client trains their own model, then each client communicates with
each other on their own model, and finally gets a central model through model
aggregation. The data of each client is only stored locally, so that no one can
guess the privacy data content of each client.

Compared with the traditional machine learning model, federated learn-
ing [5,11,13] still has the challenge of communication bandwidth and learning
accuracy. Nowadays, there are two strategies for improving communication effi-
ciency. The first is the sketched updates [10]. Clients compute local updates and
compress them locally. The compressed model parameters update is the unbi-
ased estimation of the real parameters update. The second is the structured
updates [8]. In the training process of federated model, the updating of model
parameters is limited to the form that allows effective compression operation.
For example, model parameters may be required to be sparse or low-order. But
this method will reduce the learning accuracy to a certain extent.

To tackle the challenges mentioned above, this article proposed multi-layered
compressed model update and dynamic weighting aggregation to reduce the
communication cost and improve the accuracy rate. The main contributions of
this article are as following.

First, the enhanced federated learning technique with multi-layered com-
pressed model is proposed to reduce the communication costs. Layers of the
network are categorized into feature layer and composition layer. Parameters
of the different layers are compressed with Huffman coding and updated asyn-
chronously.

Second, different from the traditional aggregation algorithm only considering
the size of dataset, dynamic weighting aggregation algorithm considering the size
of the dataset, local learning accuracy and the frequency of local model update
for each client is proposed to improve the speed and stability of the convergence.

2 Related Work

2.1 Horizontal Federated Learning

Horizontal federated learning [6,28] is applied to scenarios where each client’s
dataset has the similar feature space and different sample space. The federated
learning mentioned later is all horizontal federated learning. The detailed steps of
federated learning are divided into server execution part and client update part.

Server Execution: First, the central server initializes the model parameters and
broadcasts them to all clients. Second, the central server determines the number
of participating clients and randomly selects the corresponding number of clients.
Third, the central server collects the parameters uploaded by each client. Fourth,
the server broadcasts the aggregated result to all clients.
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Client Update: First, the clients get the aggregation result from the server. Sec-
ond, split the dataset into the batches of certain size. Third, SGD [14] is per-
formed on each batch of data to calculate the parameters. Fourth, return the
parameters to the central server.

2.2 Federated Learning Algorithm

Federated averaging algorithm (FedAvg) [15] is proposed by Google to obtain a
central prediction model of Google’s Gboard app. The aggregated model weights
in FedAvg is decided by the size of each client’s local dataset. It’s showed as
following.

wt+1 ←−
K∑

k=1

nk

n
∗ wk (1)

n is the total number of the dataset of all clients which participates in the
tth federated learning. nk is the number of the dataset which the kth client has.
wk is the model parameters which learned from the kth client. The larger size of
dataset that the client uses to train the local model, the more weight that the
client has in the aggregation.

2.3 Temporally Weighted Aggregation

In federated learning, the training datasets of each client may change all the
time. Therefore, clients whose local datasets had changed recently should have
more weight in the aggregation. Different from FedAvg only considering the size
of dataset, temporally weighted aggregation algorithm [1] takes into account of
both the size of dataset and the latest learning round of the client. It’s showed
as following.

wt+1 ←−
K∑

k=1

nk

n
∗ (

e

2
)−(t−timestampk) ∗ wk (2)

t is the label of the current round. timestampk is the label of the round
in which the newest local model parameters of the client was updated. wk is
the model parameters which learned from the kth client. Temporally weighted
aggregation algorithm is proposed to increase the communication efficiency of
federated learning. It enables faster convergence of the training accuracy com-
pared to FedAvg.

3 Proposed Method

3.1 Multi-Layered Model Update

In the implementation of traditional model aggregation, each client needs to
send complete model parameter updates to the central server in each central
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model training round. Because the modern DNN model usually has millions
of parameters, sending so many values to the central server will lead to huge
communication overhead. And the overhead will also increase with the number
of clients and iterations.

The idea of multi-layered model update is inspired by the interpretability of
deep neural network model [16]. Different from the design of logical regression [7]
and decision tree [25] which is easy for people to understand, deep neural network
can fit highly complex data with a large number of parameters but how to explain
this is very difficult. We can roughly assume that the lower-level layers in the
deep neural network learn the basic features and the higher-level layers in the
deep neural network learn the feature composition laws in specific datasets. In
other words, when the training datasets does not change greatly, the model
learns more basic features through the new training data. The relevant practice
has also proved that the lower-level layers in the deep neural network change
more frequently than the higher-level layers in the later stage of the training
process.

Fig. 1. The classification of feature layer and composition layer. (b) The diagram of
multi-layered model update strategy.

The simple diagram of deep neural network is showed in Fig. 1(a). The Lay-
ers of deep neural network are categorized into feature layer and composition
layer. The feature layer learns the basic features and the composition layer learns
feature composition laws in specific datasets. The composition layer usually has
more parameters than the feature layer because of the complexity of the fea-
ture composition laws. In the proposed multi-layered model update strategy,
parameters in the feature layer will be updated more frequently than that in the
composition layer. The process of federated learning consists of a large number
of training rounds. We record three training rounds as one loop. In each loop,
only parameters of the feature layer are updated during the first two training
rounds both in local clients and the central server. And only in the last train-
ing round, parameters of both the feature layer and the composition layer are
updated synchronously.
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An example is given in Fig. 1(b) to show how the multi-layered model update
strategy works. In this example, there are a large number of clients whose labels
are from 1 to N and a central server. The process of the federated learning consists
of six training rounds (n, n + 1, . . . , n + 5). Point (n, client1) means client1 is par-
ticipating in training the central server during the stage of training round ‘n’. The
parts surrounded by gray rectangles mean they will be transmitted to the central
server to participate in the model aggregation. The training rounds are categorized
into loop ‘a’ which consists of training round from ‘n’ to ‘n + 2’ and loop ‘a + 1’
which consists of training round from ‘n + 3’ to ‘n + 5’. It can be seen from the
Fig. 1(b) that parameters of the composition layer are only updated in the train-
ing round ‘n + 2’ and ‘n + 5’ while parameters of the feature layer are updated in
the whole process of the federated learning. As a result, the number of parameters
which should have been transmitted is reduced greatly.

3.2 Dynamic Weighting Aggregation

Dynamic weighting aggregation algorithm is proposed as a more mature and
comprehensive model aggregation algorithm to improve the speed and stability
of the convergence. It considers the size of the dataset, local learning accuracy
and the frequency of local model update for each client. And it adopts a more
reasonable way of selecting participants rather than random selection. The spe-
cific design of the dynamic weighting aggregation is as following.

Local Accuracy: Clients have a test dataset locally. The local accuracy of par-
ticipants will affect their weight when participating in model aggregation. The
local accuracy of each participant is recorded as ak. a is the sum of the local
accuracy for all participants.

Select Participants: In traditional model aggregation algorithm, the server uses
the random selection method while choosing the federated learning participants.
In order to motivate more participants to join the federated learning framework
and contribute more, we optimize the process of participants selection. All clients
are ranked according to a reliable index. The index is calculated by the size of
the datasets and the local accuracy. Then select the appropriate number of par-
ticipants according to the index from large to small. q represents the proportion
of the local accuracy in the index.

index ←− q ∗ ai

a
+ (1 − q) ∗ ni

n
(3)

Frequency of Local Model Update: When the local datasets of participants do
not change for a long time, it has no effect on the training of the central model.
The frequency of local model update is the proportion of the number of local
dataset updates in the total number of training rounds. It’s recorded as fk. The
central server will record the number of local dataset updates and the total
number of training rounds for each client. However, if the frequency is directly
used in model aggregation without modification, the influence of the frequency
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in model aggregation will be too large because some frequencies may approach
zero. So, we normalize the frequency between 0.5 and 1 as following. f is the
sum of the update frequency for all participants.

fk ←− (fk + 1)/2 (4)

Dynamic Weighting Aggregation: First, the server selects the optimal partici-
pants according to the size of the dataset and local learning accuracy. Then the
server execution in Sect. 2.1 is performed for each participant. After the server
receiving information from all participants, it will update the number of local
dataset updates and the total number of training rounds for each client. At last,
the dynamic weighting aggregation algorithm based on the size of the dataset,
local learning accuracy and the frequency of local model update for each partic-
ipant is performed as following. α, β, γ is the proportion of the three parts in
the model aggregation.

wt+1 ←−
K∑

k=1

(α ∗ nk

n
∗ (

e

2
)−(t−timestampk) + β ∗ ak

a
+ γ ∗ fk

f
) ∗ wk (5)

3.3 Model Compression

As mentioned in Sect. 3.1, different layers of the deep neural networks are cat-
egorized into feature layer and composition layer and they are updated asyn-
chronously. In order to further reduce the communication overhead of federated
learning, the model is compressed by pruning [27] and Huffman coding [9].

Fig. 2. The simple diagram of pruning and Huffman coding.
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Pruning: Pruning is a method of deleting some calculation costs with low bene-
fits. Deep neural networks usually have millions of parameters. But the value of
zero accounts for a large part of these parameters. Multiplying zero by one of the
input values will come to zero which takes up storage resources and brings low
benefits. So, the weights which are close to zero can be cut off while compressing
the model.

An example of pruning with two-layers model is given in Fig. 2. The model is
stored in the program as the form of Idx:Value. In the proposed pruning method,
parameters with absolute value less than or equal to 0.001 are cut off. As shown
in Fig. 2, the two-layers model is stored as 2:1.23, 6:0.91, 10:0.91 and 15:2.15 in
the program.

Huffman Coding: Huffman code can represent complex numbers with short code
value. As the example shown in Fig. 2, the two-layers model in the program
has become 2:00, 6:1, 10:1, 15:01 in the form of Idx:Huffmancode. The original
average code length is 4 bit/sym. After Huffman coding, the average code length
is 1.5 bit/sym. It can be clearly seen that the storage space utilization can be
improved greatly after the proposed method of pruning and Huffman coding.

3.4 Framework

The framework of the proposed federated learning with multi-layered compressed
model update and dynamic weighting aggregation is given in Fig. 3.

Fig. 3. Federated learning with multi-layered compressed model update and dynamic
weighting aggregation.
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4 Experiments

4.1 Dataset and Dataset Processing

Commercial data is not available for our experiments due to its privacy. So, the
MNIST dataset [17] is used in the experiment. The MNIST dataset is a classic
dataset in the field of machine learning. It consists of 60000 training samples
and 10000 test samples. Each sample is a 28 * 28 pixel gray handwritten digital
image. Each picture represents a number from 0 to 9.

To make the framework have better robustness, we preprocess the MNIST
dataset to make it satisfied the requirements of Non-IId data [29], unbalanced
data and large number of clients. As shown in Fig. 4, We have five processed
datasets with different distributions. The X-axis represents the Id of clients. The
Y-axis represents the label of digit number. The Z-axis represents the number of
samples. An example is given in Fig. 4(a), point (clien6, digit8, 991) means the
client6 has 991 samples of digit number 8.

Fig. 4. 3-D column charts of processed MNIST dataset. (a) MNIST-1. (b) MNIST-2.
(c) MNIST-3. (d) MNIST-4. (e) MNIST-5.

4.2 Experimental Design and Settings

We perform two set of experiments using multi-layer perceptron (MLP) [4] and
convolutional neural networks (CNN) [24] for processed MNIST dataset.

MLP: MLP is one of the most classical machine learning algorithms. The archi-
tecture of the MLP is described as following. The input layer has 28 * 28 nodes.
Both of the two hidden layers have 512 nodes with the Relu activation. The soft-
max output layer has 10 nodes corresponding to the digit number from 0 to 9.

CNN: CNN has the ability of representation learning which is often used to
process images. The architecture of the CNN is described as following. The
model has two 5 * 5 convolution layers and two 2 * 2 max-pooling layers. The
first convolution layer has 32 channels and the second convolution layer has 64
channels. After that, a fully connected layer with 512 nodes and Relu activation
will follow. At last, the softmax output layer has 10 nodes corresponding to the
digit number from 0 to 9.

The parameters of α, β and γ in dynamic weighting aggregation are set as
1/2, 1/4 and 1/4.
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4.3 Results and Analysis

As mentioned above, experiments of MLP and CNN are designed on the dataset
from MNIST-1 to MNIST-5. The baseline algorithm is FedAvg. The compar-
ative algorithms are federated learning with only dynamic weighting aggrega-
tion (DW FedAvg) and federated learning with multi-layered compressed model
update and dynamic weighting aggregation (MCDW FedAvg). We use accuracy
(Acc) and communication cost (C.Cost) [20] as the metrics. Accuracy is the accu-
racy when the model has converged. Communication cost is the time required
when the accuracy of the model reaches 90%. The result of comparative exper-
iments is showed as following. In each experiment, the communication cost of
MCDW FedAvg is termed as 1. The communication costs of other algorithms
are compared to that of MCDW FedAvg (Table 1).

Table 1. The result of the comparative experiments.

Model Dataset FedAvg DW FedAvg MCDW FedAvg

Round(Acc) C.Cost Round(Acc) C.Cost Round(Acc) C.Cost

MLP MNIST-1 103(95.2%) 4.89 79(95.8%) 1.37 135(93.4%) 1

MLP MNIST-2 121(95.1%) 4.72 92(95.5%) 1.49 143(95.2%) 1

MLP MNIST-3 97(95.6%) 7.34 67(96.1%) 1.42 132(94.1%) 1

MLP MNIST-4 142(95.1%) 2.42 103(94.7%) 2.17 189(93.5%) 1

MLP MNIST-5 114(95.2%) 5.66 96(95.5%) 1.51 157(93.3%) 1

CNN MNIST-1 201(96.1%) 3.25 114(96.6%) 0.89 249(93.4%) 1

CNN MNIST-2 187(96.5%) 4.92 98(97.1%) 3.18 194(94.3%) 1

CNN MNIST-3 225(95.7%) 3.81 136(96.2%) 1.72 285(95.8%) 1

CNN MNIST-4 198(96.1%) 5.14 131(96.4%) 2.13 238(93.8%) 1

CNN MNIST-5 210(96.2%) 5.76 144(96.3%) 1.53 251(94.1%) 1

It can be seen that, MCDW FedAvg performs better than FedAvg in com-
munication cost. MCDW FedAvg uses the lossy model compression method,
so its accuracy would be lower. But with more communication rounds,
MCDW FedAvg could perform better than FedAvg in accuracy for certain exper-
iments, such as the MLP on MNIST-2 and the CNN on MNIST-3. DW FedAvg
performs better than FedAvg in both accuracy and communication cost. But it
is inferior to MCDW FedAvg in improving communication efficiency.

We also design ablation experiments on the proportion of composition layer
in all the networks. The proportion is set as 1/2 and 1/4 on the MLP in MNIST-
1. The result is showed in Fig. 5. It can be seen that the training could converge
in less communication rounds if the proportion is lower. But each communication
round would take more time when the proportion is set as 1/4 because a larger
number of parameters should be transmitted in each communication round.
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Fig. 5. Experiments on proportion of composition layer.

5 Conclusion and Future Work

The article proposed federated learning framework with multi-layered com-
pressed model update and dynamic weighting aggregation to reduce the com-
munication cost and improve the accuracy rate. Comparative experiments of the
MLP and CNN on five processed MNIST dataset demonstrate that the proposed
method could perform better than the baseline algorithm in both accuracy and
communication cost.

This article uses the lossy compression method to reduce the communication
cost at the expense of accuracy. In the future, we are going to develop new fed-
erated learning algorithms to further improve the learning accuracy and reduce
communication cost.
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