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Abstract. Patent classification is beneficial for many patent applica-
tions, such as patent quality valuation, retrieval, and litigation analysis.
Recently, many automatic patent classification methods have been pro-
posed to save labor costs, which usually formulate this task as a multi-
label text classification problem. In reality, patent language is highly
terminological, full of scientific entities and domain knowledge. However,
existing works seldom consider such unique property of patents, which
reduces the classification performance. To this end, we propose a novel
framework named Knowledge Powered Cooperative Semantic Fusion to
capture deeper knowledge semantics for patent classification. Specifically,
we first exploit knowledge graphs to enrich the patent with related enti-
ties. Then we design a mutual attention mechanism between entities and
original texts to emphasize the crucial semantics of entities with the
guide of texts, and vice versa. Finally, we introduce the graph convo-
lutional network further to enhance the fusion representation of entities
and texts. Extensive experiments on large-scale patent data demonstrate
the superior performance of our model on the patent classification task.

Keywords: Patent classification · Knowledge graph · Attention
mechanism · Graph convolutional network

1 Introduction

Patent classification is regarded as a basic task in the field of patent manage-
ment, which can provide support for many downstream intelligent tasks, such
as patent quality valuation [1], patent retrieval [2], and patent litigation analy-
sis [3]. To avoid the ambiguity, patent classification schemes such as International
Patent Classification (IPC1) and Cooperative Patent Classification (CPC2) are
proposed to standardize patent categories. For instance, in CPC scheme, code

1 https://www.wipo.int/classifications/ipc/en/.
2 https://www.cooperativepatentclassification.org/index.
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Fig. 1. A toy example of a patent document and its related entities.

“G06F 40/20” refers to category “Natural Language Analysis” and “G06F
40/56” refers to “Natural Language Generation”. Traditionally, patent classi-
fication is completed by well-trained specialists, which is labor-intensive and
sometimes error-prone because the code system is vast and growing.

Consequently, automatic patent classification has aroused widespread atten-
tion in the industry and academia [4,5]. Since the patent that contains title,
abstract and other sections is usually long text and can be classified into mul-
tiple categories, most researchers have treated this task as a multi-label text
classification problem. Concretely, shallow machine learning-based methods [6,7]
usually focus on learning handcrafted feature combinations and deep learning-
based methods [8,9] are dedicated to capturing the contextual semantics of
patent texts. Although these methods have achieved great success by mining
pure text semantics, they usually ignore the terminology of patents. Specifi-
cally, the patents are related to a large number of knowledge entities that can
play an important role in patent classification. As shown in Fig. 1, it presents
a patent, related entities discovered with entity linking technology [10,11], and
CPC category codes of the patent. We can observe that the red entities are
closely associated with code “G21C (Nuclear Reactors)” and “G21Y (Radioac-
tive Sources)”, while the blue ones are closely associated with “C01B (Non-
metallic Elements)”. In other words, these related entities can provide additional
distinguishable semantics for patent classification besides original texts.

However, there are still many unique challenges in incorporating these entity
semantics with pure text semantics into patent classification. First, it is difficult
to mine such entity semantics with previous methods because the related enti-
ties may be very sparse in the patent corpus, which becomes the bottleneck of
improving patent classification. Second, the importance of different entities to
patent classification varies greatly, and domain-specific entities are usually more
helpful. Take Fig. 1 as an example, “nuclear power plant” and “hydrogen” are
strongly associated with target categories, while “gas” seems to be useless for
classification. More seriously, due to the limitations of entity linking technology,
some wrong entities may be introduced such as “enhanced oil recovery”. Third,
patent texts usually contain hundreds of words, but only a few key fragments
can provide valuable information for classification. Extracting crucial fragments
for target categories is as tricky as finding a needle in a haystack.
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To address these challenges, we propose Knowledge Powered Cooperative
Semantic Fusion (KCSF) that jointly models the text semantics and entity
semantics for more distinguishable representation of the patent. It achieves
better performance on patent classification task by incorporating Knowledge
Graphs (KG), mutual attention mechanism, and Graph Convolutional Network
(GCN) [12]. The technical contributions of this paper are summarized as follows:

– We propose to employ entity linking and knowledge graph embedding tech-
niques to introduce additional knowledge into semantic modeling so that the
deeper entity semantics can be captured for patent classification.

– We design a novel mutual attention mechanism to extract the crucial seman-
tics in texts with the help of entities and then reduce the bad influence of
improper entities with the generated features of texts. Furthermore, we intro-
duce the graph convolutional network to facilitate the fusion representation
learning of texts and entities towards better classification performance.

– Extensive experiments on large-scale patent data clearly validate the effec-
tiveness of our model, which also demonstrate the potentiality of knowledge-
enhanced methods on patent classification task.

2 Related Work

2.1 Patent Classification

With the advances of natural language processing technology, many methods
have been proposed to perform automatic multi-label patent classification such
as KNN [13] and SVM [7]. These methods represent patent texts by contained
words but ignore the contextual information and deep semantic information.
To address this problem, deep learning techniques have been gradually applied
on patent classification. For instance, based on TextCNN [14], DeepPatent [8]
builds a deep convolutional neural network combined with the word embed-
ding. BiGRU [15] is also used to encode patents based on domain-specific word
embedding [4]. PatentBERT [9] utilizes pre-trained language model BERT [16]
to represent the patent and then fine-tune it. In addition, A-GCN+A-NLSOA [5]
attempts to study the patent classification with graph representation learning,
which focuses on the links among patents and words. These methods usually take
the original patent texts as input but ignore the scientific entities and common
sense existing in patents, leading to limitations in their performance.

2.2 Knowledge-Enhanced Short Text Classification

Due to the lack of contextual semantics in short texts, researchers have gradually
realized the importance of introducing knowledge as additional semantics [17,18].
Specifically, KPCNN [19] proposes to conceptualize the short texts as relevant
concepts predefined in knowledge graphs and then stacks the words and con-
cepts to obtain the embedding of the short texts. Based on that, STCKA [20]
further introduces the attention mechanism to measure the importance of each
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Fig. 2. The framework of KCSF for patent classification.

Fig. 3. Illustration of knowledge powered semantic augmentation process.

concept. Moreover, HGAT [21] attempts to model short texts, related entities,
and contained topics simultaneously with heterogeneous information networks
and adapts graph neural networks for semi-supervised classification. Inspired by
these methods, we utilize knowledge graphs to enrich the semantic features of
patents and design a dedicated cooperative semantic fusion framework.

3 The Proposed Model KCSF

Our model KCSF is a knowledge powered deep neural network as shown in
Fig. 2. It consists of three key components: Knowledge Powered Semantic Aug-
mentation, Mutual Attention Mechanism, and Entity-based Graph Convolu-
tional Network (EntGCN).

3.1 Knowledge Powered Semantic Augmentation

The knowledge powered semantic augmentation aims at discovering and repre-
senting entities related to patent texts, which is shown in Fig. 3. First, entity
linking tool TagMe3 is used to recognize the entities in the patent texts. For
example, in the patent title “Method for the contactless charging of the battery
of an electric automobile”, “charging” is linked with the entity “battery charger”,

3 https://sobigdata.d4science.org/web/tagme/.

https://sobigdata.d4science.org/web/tagme/
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while “electric” and “automobile” are linked with the entity “electric car”. Sec-
ond, based on all identified entities of all patents, we construct a sub-graph G
by extracting all relations among them from KG DBpedia [22]. To enrich the
relational information, we further expand G to all entities in the one-hop neigh-
borhood of identified ones. Third, the KG embedding method TransE [23] is
utilized to learn a low-dimensional embedding vector for each entity in G.

Specifically, the KG G consists of a large number of entity-relation-entity
triples (h, r, t), where h, r, and t are the head entity, the relation, and the tail
entity, respectively. TransE defines the score function as:

fr(h, t) = ‖h + r − t‖22, (1)

where h, r, and t are the corresponding embedding vector of h, r, and t. The
goal of TransE is to force fr(h, t) to be low if (h, r, t) is true, and high otherwise.
In this manner, the embedding of each entity can be trained to preserve both
relational information and structural information, which can provide additional
distinguishable features for patent classification.

For a patent composed of a sequence of words, i.e., s = [w1, w2, ..., wn], each
word may be associated with an entity in the KG. So the patent can be also
processed as a sequence of entities, i.e., s′ = [e1, e2, ...en′ ] and each entity ei can
be represented as a vector via KG embedding.

3.2 Mutual Attention Mechanism

We design the mutual attention mechanism to model the original texts and
related entities jointly. Specifically, we first employ two sequence encoders on
word sequence and entity sequence respectively to get the corresponding hidden
features. Then we employ two types of attention mechanisms consecutively to
enhance the representation of entities with the guide of texts and vice versa.

Word/Entity Sequence Encoder. We construct the word sequence encoder
based on word2vec [24] and Bidirectional Gated Recurrent Unit (BiGRU) [15].
First, given the word sequence s = [w1, w2, ..., wn], each word is mapped to an
embedding vector wi ∈ R

dw via word2vec, where dw denotes the size of word
embedding. Then we utilize BiGRU to encode patterns in word sequence to
get the hidden features. Specifically, the input of BiGRU is a word embedding
sequence s = [w1,w2, ...,wn], and the hidden feature hi is calculated as follows:

−→
hi =

−−−→
GRU(

−−→
hi−1,wi)

−→
hi ∈ R

dh ,
←−
hi =

←−−−
GRU(

←−−
hi+1,wi)

←−
hi ∈ R

dh ,

hi = [
−→
hi;

←−
hi] hi ∈ R

2dh ,

(2)

where dh is the hidden size of GRU and the semicolon refers to concatenation.
Next, we adopt a similar architecture to construct the entity sequence

encoder. Given the entity sequence s′ = [e1, e2, ..., en′ ], each entity is mapped to
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an embedding vector ei ∈ R
de via TransE, where de is the size of entity embed-

ding. Then we employ another BiGRU (i.e.,
−−−→
GRU′ and

←−−−
GRU′) to get the hidden

feature h′
i ∈ R

2dh for each entity. The detailed formula is similar to Eq. 2.

Entity-Guided Attention. Afterwards, we try to use the entities to enhance
the representation of pure texts because the text semantics that are also reflected
by entities are usually more crucial. To this end, we propose the entity-guided
attention to evaluate the importance of different words with the help of entities.
We first exploit the average pooling operation to merge n′ entity embeddings into
an average embedding ē and then feed it into vanilla attention [25] to calculate
the attention weights α w.r.t each hidden feature hi as follows:

ē =
1
n′

n′∑

i=1

ei,

αi = softmax(v(1) · tanh(W(1)[hi; ē] + b(1))),

(3)

where W(1), b(1), and v(1) are trainable parameters. We combine all the hidden
features of words to get the fusion feature f for word sequence as:

f =
1
n

n∑

i=1

αihi. (4)

Text-Guided Attention. To reduce the bad influence of improper entities
introduced due to the complexity of patent language or the imprecision of entity
linking, we further propose the text-guided attention as follows:

α′
i = softmax(v(2) · tanh(W(2)[h′

i; f ] + b(2))), (5)

f ′ =
1
n′

n′∑

i=1

αih′
i, (6)

where f is the fusion feature of word sequence in Eq. 4 and h′
i(i ∈ {1, ..., n′}) is

the hidden feature for each entity obtained by BiGRU. The motivation is that
the entities with semantics that are not similar to text semantics are usually
insignificant or even noise, which is also observed in work [20]. Finally, we con-
catenate the two types of fusion features of patents to get the joint fusion feature
x ∈ R

4dh , i.e., x = [f ; f ′].

3.3 Entity-Based Graph Convolutional Network

Intuitively, for patents with similar entities, their scientific fields are usually very
similar, so they may have similar categories. Along this line, to further emphasize
the crucial information in both the texts and entities, we consider the relations
among different patents. Specifically, for the target patent pm, we first compute
the entity-based similarity between it and other patents, defined as the cosine
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similarity between their average entity embeddings, i.e., ē in Eq. 3. Next, we
select the top K most similar patents of pm and itself as the nodes and then
compute the similarity scores between these K +1 patents as the weighted edges
to constructed a neighborhood graph for pm.

We use A to denote the adjacency matrix of the graph in which A(i, j) is
the entity-based similarity between patent pi and patent pj . Let D denote the
degree matrix. Moreover, we first obtain the joint fusion feature x ∈ R

4dh for
each patent node and then stack them to get the feature matrix X ∈ R

(K+1)×4dh .
Because the graph only involves the one-hop neighbor nodes of pm, we employ a
single layer GCN [12] to enhance the presentation of pm with its neighborhood:

Z = ReLU(D− 1
2 AD− 1

2 XW(3)). (7)

Here, ReLU(·) is rectified linear unit [26] and the m-th row of the output matrix
Z ∈ R

(K+1)×dz is the enhanced fusion feature of pm. Let zm ∈ R
dz denote the

m-th row of Z. We feed it into a fully connected layer for classification:

ŷm = softmax(W(4)zm + b(3)), (8)

where ŷm is the predicted categories. Then we apply binary cross-entropy loss as
the objective function, which is often used in multi-label text classification [27].

4 Experiments

4.1 Experimental Setup

Dataset and Evaluation Metrics. We built a dataset named USPTO-1M
from the website of the United States Patent and Trademark Office (USPTO4),
which has granted millions of USA patents since 1976. We first collected
1,441,172 patents from the USPTO website and only retained the patents con-
taining both the title and abstract. Next, we adopted the exact same data clean-
ing process as DeepPatent [8], which included filtering low-frequency words,
removing too short patents, etc. As a result, the USPTO-1M dataset contained
1,086,422 patents in 661 CPC subclass-level categories, and each patent had
1.88 categories averagely. We split the dataset into training and testing in an
80/20 ratio and further held 10% training data as the validation set to choose
the optimal parameters.

We adopted the rank-based metrics including Precision@k, Recall@k, and
NDCG@k (Normalized Discounted Cumulative Gain), which were widely used
in multi-label text classification [5,28]. Particularly, we set k as 1, 3, and 5.

Implementation Details. For training KCSF, we used the Adam [29] opti-
mizer and set the learning rate and weight decay to 1 × 10−3 and 5 × 10−5,
respectively. We set the dropout [30] probability to 0.4 and the batch size to 32.
We also applied an early stop mechanism, in which the training would stop if

4 www.uspto.gov.

www.uspto.gov
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the Precision@1 on the validation set did not improve in 10 continuous epochs.
We trained word2vec [24] for word embeddings with dw = 100 and trained
TransE [23] for entity embeddings with de = 100. For the remaining parameters,
we used the grid search for the optimal values. Specifically, we set dh = 256 for
the hidden states in BiGRU, K = 8 to construct the neighborhood graph, and
dz = 384 for the output of EntGCN.

Baselines. We compared our model KCSF with the following baselines, includ-
ing general text classification models, patent classification models, knowledge-
enhanced short text classification models and two variants of KCSF:

– FastText [31]: It is a widely used text classification model that makes full use
of n-gram features for text representation.

– BiLSTM-SA [32]: It takes the benefit of BiLSTM and self-attention mecha-
nism to mine deeper contextual semantics for classification.

– DeepPatent [8]: It is a deep learning-based patent classification model with
core component based on the architecture of TextCNN [14].

– PatentBERT [9]: It applies BERT [16] to encode patent texts and classifies
patents to multiple categories accurately by fine-tuning BERT.

– KPCNN [19]: It uses relevant concepts to enrich the semantics of short texts
and adopts TextCNN to learn the coalesced embedding of concepts and texts.

– STCKA [20]: It is the state-of-the-art model for short texts classification,
utilizing attention mechanism to evaluate the importance of each concept.

– KCSF-MAM: It is a variant of KCSF, without considering the mutual guid-
ance between entities and texts. In other words, it uses the following formula
to replace the mutual attention mechanism:

x = [(
1
n

n∑

i=1

hi); (
1
n′

n′∑

i=1

h′
i)]. (9)

– KCSF-GCN: It is a variant of KCSF, which discards the relations among
different patents by removing the EntGCN module from our model.

4.2 Experimental Results and Ablation Studies

Comparison Between Different Models. We concatenated the title and
abstract of the patent together as the original texts input into different mod-
els and focused on the subclass-level categories defined by the CPC schema.
According to the results shown in Table 1, we have the following observations:

– Although both STCKA and BiLSTM-SA are BiLSTM-based models with
attention mechanism, STCKA achieves an improvement of 3.6% on Prici-
sion@1 against BiLSTM-SA, which means that external knowledge can sig-
nificantly improve the results of patent classification. The performance of
KPCNN over DeepPatent, BiLSTM-SA, and FastText also proves this point.
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Table 1. Results of multi-label patent classification on USPTO-1M.

Models Precision@k (%) Recall@k (%) NDCG@k (%)

1 3 5 1 3 5 1 3 5

FastText 78.96 44.43 31.31 53.61 78.62 84.47 78.96 78.12 79.24

BiLSTM-SA 81.23 45.77 32.24 54.83 79.64 86.63 81.23 80.29 81.06

DeepPatent 81.38 45.93 32.48 54.80 79.86 86.53 81.38 80.66 81.41

PatentBERT 85.23 49.88 34.82 58.47 83.44 90.26 85.23 84.08 85.26

KPCNN 82.57 46.64 33.29 56.20 80.37 86.99 82.57 81.49 82.71

STCKA 84.78 49.21 34.73 57.49 83.22 89.16 84.78 83.66 85.29

KCSF 87.82 51.27 36.76 59.91 84.23 91.74 87.82 86.04 87.73

– The importance of different entities to patent classification varies greatly, and
the attention mechanism can capture this difference well. Our model employs
the mutual attention mechanism to evaluate the importance of different enti-
ties, and hence it performs much better than all baselines. On the contrary,
KPCNN does not consider this issue, and thus it only performs a little bit
better than another CNN-based model, i.e., DeepPatent.

– Our model obtains 3.0%, 2.1% and 2.0% improvements in precision and 3.0%,
2.4% and 2.4% in NDCG over STCKA. The reason is that our model is aware
of the different roles of each fragment in patent texts and uses the entity-
guided attention to emphasize the key fragments.

– PatentBERT outperforms all the other baselines because BERT can encode
much more semantic information in word embeddings than common
word2vec. KCSF still achieves better performance than PatentBERT, once
again validating the effectiveness of cooperative semantic fusion.

Ablation Studies. We conducted ablation studies to evaluate the effectiveness
of each module in our model KCSF, and the results are shown in Table 2. Par-
ticularly, KCSF-MAM ignores the harm of inappropriate entities and non-key
words to the representation of patents, resulting in too much worthless semantic
information being input into EntGCN. So its performance is much worse than
KCSF. Moreover, KCSF-GCN discards the relations among patents, so that the
fusion representation of texts and entities can not be further refined by aggre-
gating additional semantic information from similar patents. That is the reason
why KCSF-GCN performs worse than KCSF. In summary, the cooperation of our
model is not only in the use of mutual attention mechanism to jointly model the
entity semantics and text semantics, but also in the use of EntGCN to enhance
each other between different patents.

4.3 Sensitivity Analysis on Neighborhood Graph Size

As mentioned in Sect. 3.3, the top K most similar patents of target patent pm
are selected to construct the neighborhood graph. In other words, K not only
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Table 2. Ablation studies.

Models Precision@k (%) Recall@k (%) NDCG@k (%)

1 3 5 1 3 5 1 3 5

KCSF-MAM 82.79 46.66 33.18 56.53 80.81 87.12 82.79 81.24 82.60

KCSF-GCN 85.49 49.76 34.95 58.50 83.69 90.14 85.49 84.55 85.54

KCSF 87.82 51.27 36.76 59.91 84.23 91.74 87.82 86.04 87.73

Fig. 4. Parameter sensitivity of KCSF.

determines the size of the graph but also reflects the quality of these neighbors.
We tested all K in the set {0, 4, 8, 12, 16, 20} by examining how they affect the
performance of our model. According to Fig. 4, we realize that when K < 12, the
performance keeps improving, but the improvement becomes more limited with
larger K. Obviously, these similar patents can provide rich semantic information
to enhance the representation of pm. However, as more and more neighbors are
considered, when a new neighbor is integrated, its contribution will be limited
compared with the known information. More seriously, too large K may cause
many patents that are not similar to pm to be considered, resulting in a large
amount of semantic noise being gathered by EntGCN into the representation of
pm. This is why the performance begins to deteriorate when K > 12.

5 Conclusion

In this paper, we proposed the KCSF framework to perform knowledge-enhanced
patent classification. Specifically, we designed the mutual attention mechanism
to capture the crucial semantics of entities with the guide of texts and vice versa.
Moreover, we introduced the graph convolutional network to further enhance the
fusion representation of entities and texts. Experimental results showed that our
model had obtained substantial improvements on patent classification task.

Acknowledgement. This research was supported by the National Key Research and
Development Program of China (Grant No. 2018YFB1402600), and the National Nat-
ural Science Foundation of China (Grant No. 91746301, 62072423).



Knowledge Powered Cooperative Semantic Fusion for Patent Classification 121

References

1. Lin, H., Wang, H., Du, D., Wu, H., Chang, B., Chen, E.: Patent quality valuation
with deep learning models. In: Pei, J., Manolopoulos, Y., Sadiq, S., Li, J. (eds.)
DASFAA 2018. LNCS, vol. 10828, pp. 474–490. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-91458-9 29

2. Fujii, A.: Enhancing patent retrieval by citation analysis. In: Proceedings of the
30th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, pp. 793–794 (2007)

3. Liu, Q., Wu, H., Ye, Y., Zhao, H., Liu, C., Du, D.: Patent litigation prediction: a
convolutional tensor factorization approach. In: IJCAI, pp. 5052–5059 (2018)

4. Risch, J., Krestel, R.: Domain-specific word embeddings for patent classification.
Data Technol. Appl. (2019)

5. Tang, P., Jiang, M., (Ning) Xia, B., Pitera, J.W., Welser, J., Chawla, N.V.: Multi-
label patent categorization with non-local attention-based graph convolutional net-
work. In: AAAI, pp. 9024–9031 (2020)

6. D’hondt, E., Verberne, S., Koster, C., Boves, L.: Text representations for patent
classification. Comput. Linguist. 39(3), 755–775 (2013)

7. Chih-Hung, W., Ken, Y., Huang, T.: Patent classification system using a new
hybrid genetic algorithm support vector machine. Appl. Soft Comput. 10(4), 1164–
1177 (2010)

8. Li, S., Jie, H., Cui, Y., Jianjun, H.: DeepPatent: patent classification with con-
volutional neural networks and word embedding. Scientometrics 117(2), 721–744
(2018)

9. Lee, J.-S., Hsiang, J.: Patent classification by fine-tuning BERT language model.
World Patent Inf. 61, 101965 (2020)

10. Milne, D., Witten, I.H.: Learning to link with Wikipedia. In: Proceedings of the
17th ACM Conference on Information and Knowledge Management, pp. 509–518
(2008)

11. Sil, A., Yates, A.: Re-ranking for joint named-entity recognition and linking. In:
Proceedings of the 22nd ACM International Conference on Information & Knowl-
edge Management, pp. 2369–2374 (2013)

12. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)
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