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5.1 Introduction

In this chapter, we posit a novel approach for tracing the sources of extreme oil
market shocks to assess whether changing conditions in the international crude
oil market can characterise changes in the relationships between oil, exchange
rates, and the stock market. The origins of extreme shocks matter because there is
convincing empirical evidence suggesting that different types of oil market shocks
have different consequences for financial markets (see, e.g., Basher et al., 2018;
Güntner, 2014; Kang et al., 2015b; Kilian & Park, 2009). A principal innovation
of our procedure is a new rule-based specification to classify supply and demand
shocks in the international crude oil market into relatively calm and extreme
shock episodes. This specification consolidates non-linear oil price measures in
the empirical oil economics literature to identify the most profound movements in
oil market shocks over the preceding year (see, e.g., Hamilton, 1996) and devia-
tions in oil market shocks which reside outside a normal range (see, e.g., Akram,
2004), given that such crude oil market episodes are considered to be the most con-
sequential to the economy. Our procedure is also flexible to further filter extreme
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oil market shocks into positive and negative states, which facilitates the detection
of asymmetric behaviours in market relationships during extreme times.

To identify the extreme shocks, the rules are applied to an off-the-shelf method
to disentangle structural (i) oil supply, (ii) global aggregate demand, and (iii) oil-
specific demand innovations in the international oil market. In particular, we use
the structural vector autoregression (SVAR) model suggested in Kilian (2009).
The identification of discrete calm and extreme conditions can be useful to under-
stand the genesis of oil market contagion. Contagion characterises the intermittent
marked increase in cross-market linkages which occur in the wake of a shock to
one market, whereas interdependence refers to consistent co-movement between
markets under pre- and post-shock conditions (Forbes & Rigobon, 2002). The idea
behind contagion analysis is that closely linked markets are more vulnerable as
negative shocks are able to propagate and proliferate more in these markets than
in weakly associated markets (Kritzman et al., 2011). Energy contagion, which
is pertinent to countries whose financial and macroeconomic fate are tied to hard
commodity prices, refers to the deepening of energy-finance linkages under crisis
periods in energy markets (Mahadeo et al., 2019).

We demonstrate the usefulness of our novel procedure by reappraising the
energy contagion analysis of Mahadeo et al. (2019), who examine how the rela-
tionship between the international crude oil market and the exchange rate and
stock market indices of the small open petroleum economy of Trinidad and Tobago
change under oil market crises. Wang et al. (2013) argues that the relative influ-
ence of oil market shocks is based on the degree of importance of oil to national
economy. Trinidad and Tobago provides an appropriate case for contagion anal-
ysis when the crude oil market is the source of adverse shocks: small open
economies are particularly vulnerable to developments in the international oil mar-
ket (Abeysinghe, 2001); and small resource-rich economies have a documented
legacy of underachievement relative to both their larger counterparts and small
resource-poor countries (see Auty, 2017 and references therein).

In addition to using our rule-based specification, we also extend the work of
Mahadeo et al. (2019) by considering time-varying rather than static relationships
in the oil-finance nexus. As contagion is a phenomenon which appears and disap-
pears relatively quick, we are able to evaluate whether there is additional evidence
of contagion that can be diluted in a static correlation analysis. Filis et al. (2011)
use a dynamic conditional correlation (DCC) model and examine how the oil-
stock market correlations for a selection of countries change during momentous
episodes in the crude oil market collated from Kilian (2009) and Hamilton (2009a,
2009b). We estimate a DCC model not only to acquire the time-varying oil-stock
market relationship like Filis et al. (2011), but by including exchange rates we
are able to also obtain the oil-exchange rate and the exchange rate-stock market
relationships. Such an inclusion is important because little is still known about
the dynamic relationship between oil prices, exchange rates, and emerging mar-
ket stock prices (Basher et al., 2012), in spite of the relevance of such variables
in financial stabilisation policies. In fact, recent evidence suggests that exchange
rates have been found to be the most significant macroeconomic fundamental in the
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transmission channel of oil prices on the stock market in emerging markets (see,
e.g., Wei et al., 2019). Indeed, it is crucial to understand the dependence struc-
ture between several variables interacting simultaneously, since essential omissions
provide incomplete information (Aloui & Aïssa, 2016), potentially misleading
policymakers.

Hence, another original contribution of our work is that we are the first to
explicitly consider how the exchange rate-stock market relationship evolves under
alternative global crude oil market conditions. The trade flow-oriented model char-
acterises the influence exchange rates can have on the stock market, while the
portfolio balance approach establishes that stock prices affect exchange rates (see
Chkili & Nguyen, 2014) and references therein), and the correlation between
these two variables can be either positive or negative (Tang & Yao, 2018).
Lin (2012) finds that exchange rate and stock price relationship increases dur-
ing crisis episodes in comparison to tranquil periods, which is consistent with
contagion between financial asset classes.

The economic significance of the oil-stock market relationship is well-
established in the energy-finance literature given the impact oil price changes have
on costing associated with consumption and investment, which are factors affect-
ing stock returns. Furthermore, because stock prices are assumed to reflect all
available market information, the oil-stock market relationship is considered to be
a high-frequency data proxy for the oil-macroeconomy connection. Although there
is no consensus on whether the relationship between oil price shocks and aggregate
stock returns are positive or negative (Chen et al., 2014), a reasonable assumption
held is that oil price shocks create uncertainty for firms which is reflected in higher
stock market volatility (Degiannakis et al., 2018b). In particular, many studies find
that oil price increases due to oil demand shocks are positive news for markets,
while oil price increases due to oil supply shocks hurt the real and financial sectors
(Cheema & Scrimgeour, 2019). In the case of oil-exporting economies, the empir-
ical evidence suggests that the sign and magnitude of responses to oil market
shocks are country-specific (Basher et al., 2018).

While the importance of the oil-exchange rate relationship is also well-known,
how the different types of extreme crude oil market shocks influence this cor-
relation remains unexplored. The oil-exchange rate linkage has implications for
the international competitiveness of an oil-exporter via the wealth effects (see,
inter alia, Basher et al., 2016; Bjørnland, 2009) and Dutch disease (see, inter
alia, Corden, 1984, 2012) channels. Both such channels detail the mechanisms
by which oil price increases lead to exchange rate appreciations for oil-exporters,
making their exports (imports) more expensive (cheaper).

Comparing our results with Mahadeo et al. (2019), we are able to highlight
the further insights gained from employing our innovative rule-based specifica-
tion for filtering oil market shocks into discrete calm and extreme scenarios, as
well as using dynamic rather than static correlations. Our results for the relation-
ship between the crude oil market and the stock market of Trinidad and Tobago
serve as an example. Static correlation analysis shows that this is a relatively weak
relationship but dynamic correlations reveal that this market linkage strengthens
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intermittently during international financial crises events, such as the late 1990s
Asian flu, the crash of the internet bubble in the early 2000s, and the 2008/2009
global financial crisis. Furthermore, our rule-based specification shows that, from
disentangling oil market shocks and classifying them into calm and extreme con-
ditions, it is demand-side rather than supply-side shocks which are more relevant
to this small open energy economy.

The rest of this chapter is organised as follows: Sect. 5.2 details the methodol-
ogy and data; Sect. 5.3 is devoted to the empirical applications; and conclusions
are presented in Sect. 5.4.

5.2 Methods and Data

Our empirical procedures can be outlined in three parts. In the first part, we esti-
mate global oil market shocks with a recursive SVAR model and, using our novel
rule-based specification, we classify these shocks into relatively calm and extreme
episodes. We also decompose crude oil prices into bull and bear market phases,
similar to Mahadeo et al. (2019), to determine which extreme oil market shocks
dominate periods of rising and falling oil prices. Using such a complementary tool
provides a fresh way of conveying which extreme oil market shocks have tended
to dominate historical booms and busts in crude oil prices.

For the second part, we estimate a DCC model to obtain three pairs of dynamic
financial correlations: the oil-exchange rate, the oil-stock market, and the exchange
rate-stock market relationships.

In the third part, we compare how the dynamic correlations change under these
calm versus extreme and bull versus bear conditions in the crude oil market. This is
accomplished by both qualitative (graphical) and quantitative (statistical) analysis
of the correlations during these alternative oil market conditions.

There are a number of reasons why the contemporaneous nature of the time-
varying correlations is appropriate for our analysis. First, contagion tends to appear
and vanish quickly unlike interdependence and cointegrating relationships which
are maintained over a much longer horizon (Reboredo et al., 2014). Second,
stock prices absorb all available information relatively instantaneously including
developments in international oil markets (Bjørnland, 2009), particularly in oil-
dependent economies (Wang et al., 2013). Third, crude oil is mainly indexed in US
dollars (Kayalar et al., 2017), implying that this commodity is likely to be affected
by movements in this currency (Zhang et al., 2008). At the same time, currency
markets are one of the most liquid classes of financial assets and the Trinidad
and Tobago dollar is anchored to the US dollar. As such, the oil-exchange rate
relationship is expected to promptly adjust to reflect the changes in this common
factor.



5 Tracing the Sources of Contagion in the Oil-Finance Nexus 119

The period under investigation is January 1996 to August 2017.1 At each step
of our methodology, we explain the data required and their respective descriptions,
sources, and transformations. All data are monthly, primarily because the approach
for identifying the structural oil market shocks is based on delay restrictions which
are only economically plausible at this frequency (see Kilian, 2009).

5.2.1 Identifying Discrete Oil Market Conditions

The two complementary rule-based approaches to identify discrete oil market
conditions are subsequently detailed.

5.2.1.1 Discrete Calm and Extreme Oil Market Shock Conditions
from a Global Oil Market SVAR Model

We derive oil supply, global aggregate demand, and oil-specific demand shocks
from an international oil market SVAR model postulated in Kilian (2009). This
step requires monthly data from January 1994 to August 2017 on the growth rate in
global oil production, which we proxy with the per cent change in world petroleum
production2 ; a Kilian (2019) correction of the global index of real economic activ-
ity introduced in Kilian (2009)3 ; and the log of real oil prices calculated from the
European Brent crude oil spot prices deflated using the US CPI.4 Equation (5.1)
gives the Kilian (2009) SVAR representation:

A0zt = α +
24∑

i=1

Ai zt−i + εt (5.1)

1 A switch to a dirty floating exchange rate from a fixed exchange rate regime in Trinidad and
Tobago occurred in April 1993. On this grounds we start our analysis in January 1996, to allow
for some time for the economy to acclimatise to the new exchange rate regime.
2 The data are available from the US Energy Information Administration at www.eia.gov/internati
onal/data/world and accessed in November 2018.
3 It is important to note that Hamilton (2018) points out a data transformation error in the index of
nominal freight rates underlying the Kilian (2009) global real economic activity measure, where
the log operator is performed twice. Kilian (2019) acknowledges this coding error and corrects the
global business cycle index. We use this updated data, which are available at https://sites.google.
com/site/lkilian2019/research/data-sets and accessed in November 2018.
4 These data are available from the Federal Reserve Economic Data (FRED) at fred.stlouisfed.
org/, accessed in November 2018. Like Broadstock and Filis (2014), we use the Brent benchmark
instead of the West Texas Intermediate (WTI) to represent the global price of oil. The latter has
been traded at a discounted price since 2011 due to the US shale boom (Kilian, 2016). In light
of such developments, Brent oil has further fortified its prominence as global benchmark, while
the WTI price increasingly reflects US-specific dynamics (Manescu & Van Robays, 2016). More-
over, Trinidad and Tobago produces water-borne crude which is pegged to the Brent crude oil price
benchmark, trading at either a premium or a discount to this international reference price.

https://www.eia.gov/international/data/world
https://sites.google.com/site/lkilian2019/research/data-sets
https://fred.stlouisfed.org/
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where εt is a vector of serially and mutually uncorrelated structural errors; and A−1
0

is recursively identified so that the reduced-form errors et are linear combinations
of the structural errors of the form et = A−1

0 εt , as described in Eq. (5.2). Con-
sistent with the empirical literature, we use a lag length of 24 months to remove
residual autocorrelation and account for the possibility of delays in adjusting to
shocks in the international oil market (see Kang et al., 2015a; Kilian & Park, 2009
and references therein).

et ≡
⎛

⎜⎝
e�global oil production
t

eglobal real activi t yt

ereal oil pricet

⎞

⎟⎠ =
⎡

⎣
a11 0 0
a21 a22 0
a31 a32 a33

⎤

⎦

⎛

⎜⎝
ε
oil supply shock
t

ε
aggregate demand shock
t

ε
oil−speci f ic demand shock
t

⎞

⎟⎠

(5.2)

The identification strategy of the SVAR assumes a vertical short-run oil supply
curve. This indicates that demand innovations in the oil market are contemporane-
ously restricted from affecting oil supply, as implied by the zeros imposed in the
a12 and a13 positions of the A−1

0 matrix in Eq. (5.2). Kilian (2009) argues that such
a specification is reasonable, as the cost associated with adjusting oil production
disincentivises oil-producers to adjust to high-frequency demand shocks. Further,
aggregate demand shocks are innovations to global real activity unexplained by oil
supply shocks. Another zero restriction is imposed in the position of a23 to delay
real oil prices from affecting the aggregate demand within the same month. Lastly,
oil-specific demand shocks are the unexplained innovations to the real price of oil
after oil supply and aggregate demand shocks have been accounted for.

Subsequently, to classify each of the structural oil market shocks into calm and
extreme disturbances, we propose a new discrete rule-based specification which
consolidates two veteran measures for identifying extreme oil prices: outlier oil
prices outside a normal range and net oil price increases over the preceding year.
Regarding the former measure, the idea that oil prices are important if found to
be atypically high or low stems from the work of Akram (2004), who constructs
extrema bands based on a normal range of oil prices with lower and upper bounds
of USD 14 to USD 20, respectively, where values within the band are forced
to zero and values outside the band are retained. Akram (2004) and Bjørnland
(2009) use this oil price band to investigate the asymmetric effects extreme oil
price changes have on the Norwegian exchange rate and stock market, respec-
tively. However, this range is an artefact of oil price behaviour during the 1990s
and much has changed since this period with unprecedented oil booms and busts
characterising the twenty-first-century energy markets. Therefore, we augment this
approach by using the standard deviation value of the three structural oil market
shocks to determine the maximum and minimum values of the band.

On the other hand, the net oil price increases measure is proposed by Hamilton
(1996) as an extension of the positive and negative oil price transformation
suggested in Mork (1989), in an effort to preserve the empirical importance of oil
prices in the US macroeconomy. The net oil price increases measure compares
the current growth rate in the price of oil with the rate over the preceding year
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and censors the current observation if it does not exceed the values observed
over that period. It is straightforward to extend this approach beyond oil prices
to consider net increases from all oil market shocks. We also invert this approach
to also allow for net oil market shock decreases, which are also expected to
have influential implications if, for instance, a small energy-exporting economy is
being considered as is the case here.

We combine these rules to filter the oil market shocks into discrete calm and
extreme oil market conditions defined in Eq. (5.3):

shockdummy
i,t =

⎧
⎪⎪⎨

⎪⎪⎩

1, if |εi,t | > σ ;
if εi,t > max(0, εi,t−1, εi,t−2, ..., εi,t−12);
if εi,t < min(0, εi,t−1, εi,t−2, ..., εi,t−12);

0, otherwise

(5.3)

where i represents the oil supply, global aggregate demand, or oil-specific demand
shocks derived from the oil market SVAR model. In the first rule, σ is the stan-
dard deviation of the structural shocks, which is equal to 0.850 across all structural
oil market shocks. Any value outside this standard deviation band is characterised
as an extreme shock. The second and third rules correspondingly detect the pres-
ence of net oil price positive increases and negative decreases over the previous
12 months. To acquire the extreme positive and negative oil market shocks, from
the rule-based specification described by Eq. (5.3), involves a further filtering of
all periods identified as 1 into episodes where εi,t > 0 and εi,t < 0, respectively.
Considering both symmetric or asymmetric movements in the crude oil market are
especially useful, given that the conclusions in applied studies tend to vary depend-
ing on which has been used (Degiannakis et al., 2018a). The months which are
consistently identified as 0 by the rule-based specification in Eq. (5.3), across all
three structural oil market shocks, form a relatively calm sample. Such a common
calm sample is useful for identifying periods to compare how financial returns and
the relationships between returns behave in calm times (0) to periods otherwise
identified as extreme (1).

5.2.1.2 Classifying Bull and Bear Oil Market Phases
Much of the literature has been devoted to debating and testing the asymmetric
effects of oil prices (see, inter alia, Kilian & Vigfusson, 2011a, 2011b; Cheema &
Scrimgeour, 2019). A novel and interesting way to consider this issue in energy
contagion analysis is with bull and bear market phases, which captures an environ-
ment when oil prices are increasing or decreasing, respectively (Mahadeo et al.,
2019). Rule-based algorithms are more appropriate for in-sample identification of
bear and bull market states than Markov-switching models (Kole & Dijk, 2017).
We use the Pagan and Sossounov (2003) semi-parametric rule-based algorithm to
identify bull and bear oil market phases, as it is one of the most popular of such
approaches (Hanna, 2018). Hence, we are able to test whether an environment
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where oil prices are increasing influences the relationships between oil and finan-
cial variables differently when compared to a period of decreasing oil prices. An
auxiliary benefit of using this procedure is that it permits us to see which types
of extreme oil market shocks dominate the historical bear phases in the crude oil
market over the time period under investigation.

Phases in the Pagan and Sossounov (2003) algorithm are determined based on
maxima and minima in real crude oil prices with the application of various rules.
A peak (trough) is based on whether the oil price in month t is above (below)
other months within the interval t − τwindow and t + τwindow. Furthermore, the
turning points which trigger a switch between phases are restricted with minimum
duration rules. For instance, a cycle cannot be less than 16 months and a phase
cannot be less than 4 months. Additionally, a censor (τcensor ) prevents extrema
values towards the end of the interval from distorting the identification of mar-
ket states. Moreover, the minimum duration rule is overruled if the real oil price
increase or decrease is larger than 20%, which initiates a change in the market
phase. We set τwindow = 8 months and τcensor = 6 months, which are feasible
combinations given in Pagan and Sossounov (2003). We subsequently acquire an
oil price dummy variable where bear (bull) phases are coded as 1 (0).

5.2.2 Estimating Oil-Finance Dynamic Correlations

We specify a DCC model to obtain the three pairs of time-varying correla-
tions between oil, exchange rate, and stock returns. The DCC model uses oil
market data, as well as exchange rate and stock market indicators for Trinidad
and Tobago. For crude oil prices, we again use European Brent crude oil prices in
constant 2010 US dollars from the preceding section. For the exchange rate indi-
cator we use the real effective exchange rate (REER),5 where a rise (fall) in this
index implies currency appreciation (depreciation). We also use real stock prices,
which are represented by the Trinidad and Tobago Stock Exchange (TTSE) Com-
posite Stock Price Index (CSPI) adjusted for inflation, with a 2010 base year, using
the RPI.6 These three variables are first expressed as returns.7 In order to avoid
the issue of omission of relevant variables (see, e.g., Rigobon, 2019), we pre-filter
the return series before approaching the DCC model. Following Mahadeo et al.
(2019), we work with residuals (εt ) from Eqs. (5.4), (5.5), and (5.6), respectively,
as our adjusted returns net of market fundamental. Our specifications for these
regressions are motivated by the plausible assumption that a frontier market such
as Trinidad and Tobago is a price-taker with respect to crude oil market, where

5 Data are sourced from the International Monetary Fund (IMF) International Financial Statistics
and retrieved via Thomson Reuters Eikon, accessed in November 2018.
6 These data are calculated using data from the Central Bank of Trinidad and Tobago (CBTT), and
are available from www.central-bank.org.tt/statistics/data-centre and accessed in November 2018.
7 Returns are calculated as the first difference in the natural logarithm for each series, times 100.
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prices are internationally determined. Hence, the single equation regression in Eq.
(5.4) is used to obtain adjusted oil returns:

� ln BRt = γ0 + γ1� ln BRt−1 + γ2USI Rt−1 + εt (5.4)

where � ln BRt are real Brent crude oil returns, γ0 is a constant, � ln BRt−1 is
the lag of the real Brent crude oil returns, and USI Rt−1 are interest rates for the
US. SBIC suggests an optimal lag length of 1 month and the LM test shows no
statistically significant serial correlation in the residuals.

A VAR model, which includes exogenous regressors, is used to adjust exchange
rates and stock returns for Trinidad and Tobago in order to appropriately treat with
domestic endogenous and foreign exogenous variables. Therefore, we work with
the residuals from Eqs. (5.5) and (5.6) to take market fundamentals into account
for these two series:

� ln REERt =γ10 + γ11� ln REERt−1 + γ12� ln T T SRt−1 + γ13T T I Rt−1

+ γ14� ln BRt−1 + γ15USI Rt−1 + ε1t (5.5)

� ln T T SRt =γ20 + γ21� ln T T SRt−1 + γ22� ln REERt−1 + γ23T T I Rt−1

+ γ24� ln BRt−1 + γ25USI Rt−1 + ε2t (5.6)

where � ln REERt is the REER returns, � ln T T SRt are Trinidad and Tobago
stock market returns, T T I Rt−1 is a domestic interest rate variable for Trinidad
and Tobago, along with exogenous variables for oil returns (� ln BRt−1) and US
interest rates (USI Rt−1). SBIC suggests a 1 month optimal lag length for the VAR
system and a LM test shows no evidence of autocorrelation in the residuals.

In line with the contagion literature, interest rates are included in Eqs. (5.4),
(5.5), and (5.6) to ensure returns are net of market fundamentals (see, inter alia,
Forbes & Rigobon, 2002; Fry et al., 2010). To these ends, we use US shadow short
rates as a foreign interest rate measure relevant to this small-island economy. US
shadow short rates adjusts the conventional policy rate to accommodate for uncon-
ventional monetary authority actions characterising much of the post 2008/2009
global financial crisis era (see Krippner, 2016). The commercial banking median
basic prime lending rate is used to account for activity from the real and financial
sectors, as well as the policy environment in Trinidad and Tobago. Additionally,
we allow exchange rate and stock returns to enter each other’s regression functions
endogenously to account for possible lead-lag effects.

The DCC estimation consists of a two-step process. Step 1 involves the
estimation of univariate generalised autoregressive conditional heteroskedastic
(GARCH) processes for all three adjusted returns. Step 2 uses the residuals from
the first stage to estimate the three pairs of conditional correlations between these
three variables.

In step 1, we aim to optimally estimate each individual return series. Due to
the pre-filtering of the data, the mean equation for each return series (rt ) takes the
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form of a constant only, as no autoregressive terms are necessary, as defined in
Eq. (5.7):

rt = a0 + εt (5.7)

To estimate the conditional variances, we commence with the parsimonious
GARCH(1,1) process given by Eq. (5.8) for each series:

ht = ω0 + α1ε
2
t−1 + β1ht−1 (5.8)

where ω0 is the intercept of the variance, εt are ARCH innovations with a con-
ditional distribution that has a time-dependent variance ht , and ht−1 are lags
of the conditional variance. Further, εt follows the Student’s t-distribution and
the solver used is a non-linear optimisation with augmented Lagrange method.
The GARCH(1,1) models for all returns are stable in variance as the condi-
tion α + β < 1 is met (see Table 5.2). Additionally, the Ljung-Box and ARCH
Lagrange multiplier (LM) tests indicate no concerns regarding autocorrelation and
ARCH effects, respectively, in the residuals of the GARCH(1,1) specification for
all three returns. Moreover, Engle and Ng (1993) sign bias tests provide no sub-
stantive evidence of asymmetric responses to positive and negative news in the
three financial returns.8 Hence, the parsimonious univariate GARCH(1,1) process
is an optimal representation of the conditional variance for each return series.

Step 2 of the DCC model follows Engle (2002). The k x k conditional
covariance matrix of returns, Ht , is decomposed as:

Ht = Dt Pt Dt (5.9)

where Dt are the standard deviation diagonal matrices derived from the
GARCH(1,1) models suggested in Eq. (5.8) and Pt is the correlation evolution
of the (possible) time-varying correlation matrix which takes the form:

Pt = diag
(
q−1/2
1,t , q−1/2

2,t , q−1/2
3,t

)
Qtdiag

(
q−1/2
1,t , q−1/2

2,t , q−1/2
3,t

)
(5.10)

8 We find no statistically significant asymmetric responses to positive and negative news for
exchange rates and stock returns. However, in the case of oil returns, the asymmetric volatility tests
show that the individual sign bias tests convey no asymmetric volatility in the standardised residu-
als, but the joint effects test is statistically significant. Therefore, we consider asymmetric GARCH
variants for this particular series to accommodate for this artefact. Yet, an EGARCH(1,1) for oil
returns, which we find to be the most suitable alternative GARCH specification for this series,
shows that the leverage effects term is not significant. Further, the differences in dynamic correla-
tions estimated from a model where oil returns follows either a GARCH(1,1) or an EGARCH(1,1)
specification is negligible. As such, we revert to the parsimonious GARCH(1,1) model for oil
returns.
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where Qt defined in Eq. (5.11) is a symmetric positive definite matrix whose
elements follow the GARCH(1,1) specified in Eq. (5.8):

Qt = S(1 − λ1 − λ2) + λ1
εt−1√
ht−1

(
εt−1√
ht−1

)′
+ λ2Qt−1 (5.11)

where S is the unconditional correlations matrix, and the adjustment parameters λ1
and λ2 are time-invariant non-negative scalar coefficients related to the exponential
smoothing process that is used to construct the dynamic conditional correlations.
The constraint λ1 + λ2 < 1 indicates that the process is stationary. Finally, the
time-varying correlations are estimated by:

ρi, j,t = qi, j,t/
√
qi,i,t q j, j,t (5.12)

5.2.3 Comparing Dynamic Correlations by Oil Market Conditions

Using the discrete oil market conditions identified with the rule-based specifica-
tions and the time-varying correlations obtained from the DCC model, it becomes
straightforward to perform oil market contagion analysis. We offer complementary
qualitative and quantitative perspectives for this purpose. The qualitative approach
involves a visual analysis of the extreme oil market shocks and bear phases in the
oil market superimposed onto the dynamic correlations. Such graphics are use-
ful for contagion analysis as they can reveal the oil market conditions that tend to
characterise any potential marked increases in the correlations, fully embracing the
time-varying feature of the relationships, without having to average the correlation
values over extreme conditions as this can dilute a crisis.

For a quantitative contagion test, we use the Welch (1947) two-sample t-test to
compare the equality of means for the three pairs of market correlations under the
relatively calm periods versus extreme structural oil market shock conditions, and
bullish versus bearish oil market phases. Welch’s t-test has desirable properties
over the Student’s t-test when comparing the equality of means between two sam-
ples. In particular, the former is robust to unequal variances and unequal sample
sizes relative to the latter, reducing the incidence of a Type I error (Fagerland &
Sandvik, 2009).

5.3 Application to the International Crude Oil Market
and a Small Oil-Exporter

5.3.1 Discrete Calm and Extreme Oil Market Conditions

In Fig. 5.1, the blue dots show the extreme positive shocks and red stars show the
extreme negative shocks identified by our novel rule-based specification, described



126 S. M. R. Mahadeo et al.

in Eq. (5.3), for classifying oil market shocks into discrete calm and extreme
conditions. Graphs (A), (B), and (C) illustrate the result of this filtering process
applied to each of the structural oil supply, global aggregate demand, and oil-
specific demand shocks, respectively, obtained from the global oil SVAR model
described in Eq. (5.2). With reference to Fig. 5.1 (A) and (C), extreme oil sup-
ply and oil-specific demand shocks, respectively, are seen to occur intermittently
over the entire sample. On the other hand, when compared to the latter half of the
1990s, extreme global aggregate demand shocks in Fig. 5.1 (B) appear to increase
in frequency from the 2000s and especially so in the 2008/2009 Global Financial
Crisis (GFC) and post-GFC eras.

Bear phases in the real Brent crude oil prices are shown by grey vertical panels
in Fig. 5.1. Graph (D) conveys that the contemporary oil slumps identified coin-
cide with international crises such as the Asian financial crisis (1997), the internet
bubble burst and the 9/11 terrorist attacks (2001) in the US, and the GFC (2008).
Additionally, Baumeister and Kilian (2016a, 2016b) find that the stark oil decline
between June 2014 and January 2015 can be explained partly due to a negative
oil-specific demand shock from a slowdown in the global economy, and positive
oil supply shocks coming from the US shale boom and other major oil producers.

5.3.2 Performance of Returns Under Alternative Oil Market
Conditions

Table 5.1 shows simple summary statistics which captures the behaviour of the
monthly returns (adjusted for market fundamentals) under calm and extreme struc-
tural oil market shocks, and during bullish and bearish oil market phases. We
provide results for two samples: a full sample and a sample where the GFC
is censored.9 The latter sample omits the main adverse events associated with
GFC crisis in international markets, which incorporates the infamous collapse of
Lehman Brothers in September 2008. In a study of nine episodes of turbulence in
global financial markets, ranging from 1997 to 2013, Fry-McKibbin et al. (2014)
find that the 2008 Great Recession is a true global financial crisis. As this is an
unprecedented event in our study, we take care to account for the potential role of
the GFC and understand how sensitive our results are to the effects of this global
debacle.

The relatively calm oil market condition, in Table 5.1, is that time period in
the international oil market where no extreme structural shock is identified by our
consolidated non-linear rule-based specification. Such a common calm period can
be used as a basis for comparing how financial returns from the oil, exchange rates,
and stock markets and the relationships between them behave during comparatively

9 The National Bureau of Economic Research defines the timespan of the Great Recession in the
US from December 2007 to June 2009. The dating is obtained from www.nber.org/cycles, and
accessed in November 2018.

http://www.nber.org/cycles/cyclesmain.html
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Fig. 5.1 Graphs (A), (B),
and (C) shows the oil supply,
global aggregate demand, and
oil-specific demand shocks,
respectively, from the
international crude oil market
which are derived from the
SVAR model specified in
Eq. (5.2). For each of these
three graphs, the extreme
positive (blue dots) and
negative (red stars) conditions
for a particular shock are
identified by our novel
rule-based specification in
Eq. (5.3). To provide an
illustrative perspective of our
procedure for identifying
discrete calm and extreme oil
market conditions, consider
that the extreme positive
(negative) shocks in the three
structural oil market shocks
in graphs (A), (B), and (C)
are either values greater (less)
than the standard deviation
band of +0.850 (−0.850) or
the largest (smallest) value
over the preceding 12
months. Bear oil market
phases identified by the
Pagan and Sossounov (2003)
algorithm are shown in grey
vertical panels in graphs (A)
to (D). For reference, graph
(D) shows real Brent crude
oil prices in US dollars per
barrel

calm oil market conditions versus periods when there are extreme oil supply, global
aggregate demand, and oil-specific demand shocks. This relatively calm period is
computed as the periods which are consistently identified as 0 in Eq. (5.3) across
all three structural oil market shocks.
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For the oil market, the highest (lowest) returns are observed under periods of
extreme positive (negative) oil-specific demand shocks. Moreover, the highest mar-
ket volatility occurs during extreme positive oil-specific demand shocks, while the
lowest volatility is, as we might expect, in the calm oil market condition. Fur-
thermore, we find that the mean oil returns are highly significantly different from
zero under extreme positive and negative oil demand shocks, and under bearish
and bullish oil market phases. Also, Welch’s t-test for the equality of means shows
that average oil returns under extreme negative global aggregate demand shocks,
and positive and negative oil demand shocks are significantly different from the
relatively calm period, and average returns in the bearish oil market phases are
statistically different to bullish oil market conditions.

Turning to the returns of the exchange rate index for Trinidad and Tobago, there
are two particularly surprising observations for this small oil-exporter. First, the
mean REER appreciations (depreciations) of the greatest magnitude are exhibited
under extreme negative (positive) oil demand shocks and the value is significantly
different from zero. Secondly, REER depreciations are noted under bullish oil mar-
ket phases and appreciations occur in bearish conditions, where the latter results
are significantly different from zero. Both statistical artefacts contradict the Dutch
disease and positive wealth effects propositions of real exchange rate apprecia-
tions in the presence of increasing oil prices, at least from a contemporaneous
perspective. Moreover, the Welch’s t-test for the equality of means conveys that
there are statistically significant differences in the mean adjusted REER returns
under extreme positive and negative oil demand shocks compared to relative calm
periods, as well as bearish compared to bullish oil market conditions.

Considering stock returns behaviour in this frontier market, the mean returns
are highest in the relatively calm period, while the lowest negative returns are
in periods of extreme negative global demand shocks. However, these results are
sensitive to the GFC. Once this period is censored, the highest returns are instead
observed during bearish oil market phases, whereas the largest negative returns are
observed under extreme positive oil demand shocks. Once again, these are results
contradicting the expectations for a small intensive oil-exporter. Market volatility
is highest in both the full and GFC-censored samples during conditions of extreme
negative oil demand shocks. However, none of the mean adjusted stock returns are
found to be statistically different from zero and the Welch’s t-test for the equality
of means shows that there are no statistically significant differences in the mean
stock returns in calm versus extreme oil market conditions, or in bullish versus
bearish oil market phases.

5.3.3 Oil-Finance Time-Varying Correlations Under Alternative
Oil Market Conditions

The DCC parameters are shown in Table 5.2; while the evolution of the dynamic
oil-REER, oil-stock market, and REER-stock market relationships over the sam-
ple period of January 1996 to August 2017 are graphed as the solid black lines in
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Table 5.2 Crude oil, exchange rate, and stock market returns DCC(1,1) parameter estimates

Coefficient Std. error t value Prob.

aOil
0 0.1212 0.4896 0.2475 0.8045

ωOil
0 8.0666 7.9570 1.0138 0.3107

αOil
1 0.1832 0.0677 2.7082 0.0068

βOil
1 0.7246 0.1295 5.5944 0.0000

aREER
0 −0.0187 0.0526 −0.3558 0.7220

ωREER
0 0.0252 0.0194 1.3017 0.1930

αREER
1 0.0874 0.0433 2.0172 0.0437

βREER
1 0.8873 0.0497 17.8693 0.0000

aStock0 −0.0832 0.1184 −0.7028 0.4822

ωStock
0 0.0000 0.0000 0.0044 0.9965

αStock
1 0.0467 0.0249 1.8752 0.0608

βStock
1 0.9523 0.0206 46.1906 0.0000

λ1 0.0261 0.0154 1.6936 0.0903

λ2 0.8980 0.0466 19.2627 0.0000

Notes The coefficients are from the mean and variance Eqs. (5.7) and (5.8), respectively, from the
first step of the DCC model. The univariate GARCH models are stable as the condition α1 + β1 <

1 is met. λ1 and λ2 are the scalars which take the same value for all the time series from the second
step of the DCC model. The process is stationary as the condition λ1 + λ2 < 1 is satisfied

Figs. 5.2, 5.3, and 5.4, respectively.10 These time-varying correlations are illus-
trated under extreme positive (blue dots) and negative (red stars) oil supply, global
aggregate demand, and oil-specific demand shocks. Bearish oil market phases are
superimposed, as grey vertical bars, for reference. All three pairs of dynamic cor-
relations exhibit contagion effects during the GFC, as all relationships deepen in
this period. The GFC is hallmarked by extreme negative global aggregate demand
and oil-specific demand shocks, an artefact that is well-documented in the litera-
ture (see, e.g., Baumeister & Kilian, 2016a; Kim, 2018), and is a bear phase in the
crude oil market.

Figures 5.2 and 5.4, which, respectively, show the time-varying correlations
between oil and the REER of Trinidad and Tobago, as well as Trinidad and
Tobago’s REER and real stock returns, convey that these are both negative and rel-
atively moderate associations across the two-decade sample period. Apart from the
marked stronger negative relationship in these two DCCs during the GFC period,
there is also additional observational evidence for oil market contagion as these
relationships also deepen during the 2014/2015 oil market crash. In the 2014/2015
oil price plummet, the increase in the magnitude of the relationship for these pair

10 The DCC model coefficients and dynamic correlations are estimated with the rmgarch package
in R (see Ghalanos, 2019).
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Fig. 5.2 Oil-REER DCC
under extreme shocks and
bear phases in the
international crude oil
market. In each graph, the
black solid line is the
dynamic conditional
correlation (DCC) between
the real Brent crude oil
returns and the REER returns
of Trinidad and Tobago
estimated from the DCC(1,1)
model with oil, exchange
rates, and stock returns.
Graphs (A), (B), and (C)
show oil-REER DCC under
periods of extreme oil supply,
global aggregate demand, and
oil-specific demand shocks,
respectively. These extreme
periods are obtained from Eq.
(5.3) applied to the structural
shocks estimated from the
global crude oil SVAR model
in Eq. (5.2). In graphs (A),
(B), and (C) blue stars show
the extreme positive episodes
derived from each particular
shock, while red stars show
the extreme negative shocks.
For reference, the grey
vertical bars in all graphs are
bear oil market phases
identified from the Pagan and
Sossounov (2003) rule-based
algorithm

of DCCs can be seen to coincide with multiple shocks in the international crude oil
market, i.e. extreme positive oil supply, negative global aggregate demand shocks,
and negative oil-specific demand shocks, which are expected to adversely impact
an oil-exporter. For Trinidad and Tobago, these relationships during crisis imply
that as oil prices fell due to such disturbances in the crude oil market, the currency
appreciated and appreciations are associated with negative stock returns.

Figure 5.3 shows that the oil-stock market association is typically weak
with distinct punctuated phases where the correlation strengthens. The negative
oil-stock market relationship prior to 1999 is reversed thereafter to a positive
association, which is in line with the inferences of Miller and Ratti (2009) who
examine a selection of OECD countries. They argue that the positive association
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Fig. 5.3 Oil-stock market
DCC under extreme shocks
and bear phases in the
international crude oil
market. In each graph, the
black solid line is the
dynamic conditional
correlation (DCC) between
the real Brent crude oil
returns and the real
composite stock returns of
the Trinidad and Tobago
Stock Exchange estimated
from the DCC(1,1) model
with oil, exchange rates, and
stock returns. Graphs (A),
(B), and (C) show oil-stock
market DCC under periods of
extreme oil supply, global
aggregate demand, and
oil-specific demand shocks,
respectively. These extreme
periods are obtained from Eq.
(5.3) applied to the structural
shocks estimated from the
global crude oil SVAR model
in Eq. (5.2). In graphs (A),
(B), and (C) blue stars show
the extreme positive episodes
derived from each particular
shock, while red stars show
the extreme negative shocks.
For reference, the grey
vertical bars in all graphs are
bear oil market phases
identified from the Pagan and
Sossounov (2003) rule-based
algorithm

is likely due to the existence of stock and oil market bubbles which have char-
acterised twenty-first century financial markets. Indeed, we observe that there are
three distinct periods where the time-varying oil-stock market correlations increase
(in absolute value) over the sample period, which coincide with the Asian financial
crisis, and the dot-com and sub-prime bubbles and crashes. Extreme negative oil
demand shocks occur in all three periods of international financial turmoil, where
we also see that the oil-stock market relationship strengthens.

Table 5.3 conveys the average financial correlations during relatively calm and
extreme structural oil market shocks, and during bullish and bearish oil market
phases, in the full sample and a GFC-censored sample for robustness analysis.
The relatively calm period in the crude oil market forms the sample which is
used as basis for comparing each of the extreme structural shock periods. First,
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Fig. 5.4 REER-stock market DCC under extreme shocks and bear phases in the international
crude oil market. In each graph, the black solid line is the dynamic conditional correlation (DCC)
between Trinidad and Tobago’s REER index returns and the real composite stock returns of the
Trinidad and Tobago Stock Exchange estimated from the DCC(1,1) model with oil, exchange
rates, and stock returns. Graphs (A), (B), and (C) show REER-stock market DCC under periods of
extreme oil supply, global aggregate demand, and oil-specific demand shocks, respectively. These
extreme periods are obtained from Eq. (5.3) applied to the structural shocks estimated from the
global crude oil SVAR model in Eq. (5.2). In graphs (A), (B), and (C) blue stars imply the extreme
positive episodes derived from each particular shock, while red stars imply the extreme negative
shocks. For reference, the grey vertical bars in all graphs are bear oil market phases identified from
the Pagan and Sossounov (2003) rule-based algorithm
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we observe a moderate and inverse oil-REER interdependence. This relationship
suggests that oil price increases (decreases) are associated with exchange rate
depreciations (appreciations), and is inconsistent with the Dutch disease conjec-
ture and the positive wealth effect spillovers expected for an oil-exporter which
implies the opposite outcome. As the US dollar is a vehicle currency and the
energy sector in Trinidad and Tobago has traditionally been the main source of
foreign currency for authorised dealers, the Central Bank of Trinidad and Tobago
supports the local foreign exchange market with the sale of foreign reserves to
authorised dealers. Such interventions maintain exchange rate stability when there
is a shortfall in the inflows of foreign exchange or when the demand for foreign
exchange is robust (CBTT FSR, 2019; CBTT MPR, 2019). In the full sample,
we find statistically significant results that the oil-REER relationship marginally
deepens during extreme global aggregate demand shocks when compared to the
relatively calm period. This conforms with the findings of Atems et al. (2015)
for the responses of exchange rate indexes to this demand-side shock. However,
such evidence of oil market contagion in the oil-REER correlation is primarily
associated with the GFC period.

Looking at the oil-stock market correlation in Table 5.3, this association is
generally weak. Therefore, we find no evidence of either interdependence or con-
tagion. We also observe that oil-stock returns correlation in bullish oil market
phases becomes weaker under bearish conditions. These results can be linked to
the relatively underdeveloped stock market of Trinidad and Tobago, and the fact
that there is only one energy security listed on the stock exchange, which sub-
dues the spillover effects from the international oil market. The minimal effect
of the oil market on the stock market is consistent with evidence from other
oil-exporting markets in the Global South such as the Gulf Cooperation Coun-
cil countries (Al Janabi et al., 2010), Mexico (Basher et al., 2018), and Trinidad
and Tobago (Mahadeo et al., 2019). Yet, this can be contrasted against the expe-
rience of other oil-exporters in the Global North such as Canada (Kang & Ratti,
2013), Norway (Bjørnland, 2009; Park & Ratti, 2008), and Russia (Ji et al., 2018),
where a positive oil-stock market relationship is exhibited.

Turning to the REER-stock market association, the inverse interdependence
suggests that an exchange rate appreciation (depreciation) is correlated with a
downturn (uptick) in stock returns. This result is in contradiction with those of
Delgado et al. (2018) for Mexico, also an emerging market and oil-exporter, who
find that an appreciation of the exchange rate is related to an improvement in
the stock market performance. It is plausible to pin down the differences in the
findings to differences in exchange rate regimes between Mexico (free float) and
Trinidad and Tobago (managed float). Moreover, there is also indication of the
exchange rate and stock market dependence strengthening since the GFC, which
is consistent with Caporale et al. (2014). It can be useful to consider this result
in tandem with the aforementioned oil-REER relationship. Although the oil-stock
returns relationship is weak, it is possible for crude oil to have indirect spillovers
for the stock market performance through the exchange rate channel. We also find
that the REER-stock returns relationship becomes somewhat stronger under the
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global aggregate demand shocks, but this result is sensitive to the omission of
the GFC period. This is in line with Wei et al. (2019), who find that compared
to other macroeconomic fundamentals, the exchange rate market plays the most
significant role in transmitting the impacts of oil prices on the emerging Chinese
stock market, especially in the GFC aftermath.

Altogether, Table 5.3 shows that there are some statistically significant results
for differences in correlations derived from the equality of means tests. However,
the average correlations generally do not convey a marked increase in cross-market
linkages, to satisfy the operational definition of contagion used in this chapter,
under extreme or bearish oil market conditions as these variations tend to be rela-
tively small. Such findings, which are consistent with Mahadeo et al. (2019), might
lead to an inference of no oil market contagion risk for this frontier market. Yet, the
qualitative (graphical) analyses of Figs. 5.2, 5.3, and 5.4 underscore the potential
consequences of overlooking the time-varying nature of correlation as we observe
that the contagion phenomenon has a tendency to intermittently appear and vanish
under certain extreme conditions.

In addition, correlations during the calm period versus periods of extreme oil
supply shocks across all three dynamic relationships appear less sensitive when
compared to correlations under demand-side shocks. This resonates with Atems
et al. (2015) and Basher et al. (2016) who find limited evidence that oil supply
shocks affect exchange rates, and with Filis et al. (2011) who find that supply-side
oil price shocks do not influence the oil-stock market relationship. In fact, many
studies are alluding to the notion that the role of oil supply shocks on the real
and financial sectors is no longer consequential (see Broadstock & Filis, 2014 and
references therein).

Our results also align with Antonakakis et al. (2017), who find that global
aggregate demand innovations are the main source of shocks to stock market dur-
ing economic turbulence, as well as Aloui and Aïssa (2016), who find that the
dependence structure between oil, exchange rates, and stock returns are sensitive
over the 2007–2009 GFC and Great Recession period. Indeed, we also find that
shocks associated with the GFC appear to deepen cross-market linkages between
these three returns more than oil market shocks outside of this period in Trinidad
and Tobago.

5.4 Conclusion

We have put forward an original approach to trace the sources of contagion in
three pairs of financial market relationships: the crude oil-exchange rate returns,
crude oil-stock returns, and exchange rate-stock returns correlations. This is done
by combining non-linear oil price measures to design a rule-based specification
in order to filter supply and demand-side shocks originating from the interna-
tional crude oil market into discrete typical and extreme episodes. Such identified
episodes are then used in order to compare the time-varying financial market
relationships (estimated with a dynamic conditional correlations model) under
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calm versus extreme, as well as bullish versus bearish, oil market conditions.
Our methodology is particularly appropriate for financial stability analysis in
economies vulnerable to disturbances from the international crude oil market.

Our empirical analysis is carried out on the Brent crude oil market and finan-
cial market indicators of the small petroleum intensive economy of Trinidad and
Tobago. The results show a moderate interdependence in the oil-exchange rate
and exchange rate-stock market linkages, as well as a generally weak oil-stock
market relationship. We also find evidence of contagion in all three market rela-
tionships, the most pronounced occurring during the 2008/2009 global financial
crisis. Additionally, the 2014/2015 oil crash is a source of contagion in the relation-
ship between the exchange rate and stock market, whereas intermittent increases in
correlations are observed in the oil-stock market relationship in the Asian financial
crisis in the late 1990s and again in the dot-com crash in the early 2000s. By using
a dynamic framework, as opposed to a static correlation approach, we have been
able to detect further episodes of contagion during international financial crises. In
general, we find that contagion in the nexus between the crude oil market and this
frontier market tends to be driven more by extreme negative demand-side shocks
in the international oil market rather than supply-side shocks.
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