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Preface

The field of Energy Finance is a rapidly growing field of research that has a multi-
tude of motivating empirical applications. There is a wealth of literature on studies
investigating the impact of the energy sector on macroeconomic and financial vari-
ables, while the implications for stock markets and economic activity in the light
of the recent debate on climate change also constitute a promising and topical field
for empirical research. It should also be noted that the market for crude oil is very
popular in the relevant existing literature; a fact that stands to reason, considering
the importance of crude oil as an input of production. What is more, the recent
financialization of commodity markets (e.g. crude oil derivatives contracts) has
resulted in energy markets and financial markets coming closer together, implying
that economic developments that affect either side might further entail contagion
dynamics.

The motivation for putting together this Volume is not to offer an exhaustive
list of energy markets and of research conducted therein, but rather, to provide a
set of illustrative studies that help introduce readers to the empirical approaches
currently employed in the broader field of Energy Finance. In this regard, this
Volume constitutes a collection of studies relating to Energy Finance that predicate
upon contemporary and advanced empirical methods. Our objective is to provide a
point of reference for presenting how research is being carried out in the relevant
field.

We anticipate that the Volume will be of particular value to researchers with
a keen interest in the field of Energy Finance and empirical methods. Students
could also benefit from this Volume by adopting the empirical methods presented
here in order to develop and answer their own research questions. Furthermore,
the topics presented in this Volume are quite popular and relevant for the field of
Energy Finance and as such, they could be incorporated as discussion topics or
case studies in any program of study that involves the market for energy.

With regard to the underlying structure of the Volume, Part One introduces the
reader to the field of Energy Finance. Chapter 1 is therefore an insightful intro-
duction to the field of Energy Finance by D. Zhang and Q Ji. The authors elaborate
on the development of the field and discuss the financialization of energy markets,
the linkages between energy and financial markets, micro-firm level issues in the
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energy sector, as well as, the relationship between the field of Energy Finance and
climate change, green financing and investments.

In turn, the Volume breaks down into two closely associated thematic areas. In
this regard, Part Two of the Volume focuses on empirical applications of Energy
Finance on the Macroeconomy and Financial Markets and comprises Chapters 2 to
6. In Chapter 2, J. Beckmann and R. Czudaj utilize Cointegration Analysis in order
to investigate the relationship between the price of oil and effective USD exchange
rates. The authors distinguish between demand and supply-side dynamics and fur-
ther purport to investigate the extent to which forecasting opportunities of either
variable are possible within this setting. Chapter 3 by S. Soylu, İ. Sendeniz-Yüncü,
and U. Soytas involves an application of the Toda Yamamoto Augmented Vec-
tor Autoregression for Granger Non-Causality method. The authors employ this
approach in order (i) to investigate the linkages between crude oil prices, real
stock returns, exchange rates, and industrial production levels (for emerging coun-
tries) and (ii) to make appropriate inferences based on their findings. Next, in
Chapter 4, authors M. Balcilar, O. Usman, and D. Roubaud employ a non-linear
Vector Autoregressive model to study the propagation of shocks through an econ-
omy. They particularly focus on crisis episodes and oil supply shocks. Chapter
5 by S.M.R. Mahadeo, R. Heinlein, and G.D. Legrenzi, focuses on the relation-
ship between exchange rates and stock market changes under extreme shocks in
the market for oil. The authors predicate their analysis upon the combination of
a Structural Vector Autoregressive (SVAR) model, a Dynamic Conditional Cor-
relation (DCC) model, as well as, a thorough correlation analysis in the light
of the pertinent discrete oil market conditions. Finally, in Chapter 6, authors I.
Chatziantoniou, C. Floros, and D. Gabauer utilize the Time-Varying-Parameter
Vector Autoregressive (TVP-VAR) Extended Joint Connectedness approach in
order to investigate volatility contagion. The authors consider the G7 stock mar-
kets and the market for crude oil and provide useful insights regarding the
connectedness dynamics of the particular network of variables.

In turn, Part Three of the Volume, further introduces a green finance/climate
policy element to the analysis. This part comprises chapters 7 through 10. In
Chapter 7, P. Sadorsky employs multivariate Generalized Autoregressive Con-
ditional Heteroskedastic (GARCH) processes, such as the Asymmetric Dynamic
Conditional Correlation (ADCC) and the Generalized—Orthogonal (GO) GARCH
methods. The overriding objectives of the study are (i) to calculate time-varying
conditional clean energy equity betas and (ii) to study the impact that market
uncertainty (i.e., captured by implied volatility) has on clean energy equity betas.
Chapter 8, by P. Tzouvanas, focuses on climate finance and climate change. In
particular, the author employs the Panel Data method and examines 1800 compa-
nies included in the STOXX Index in order to deduce whether EU firms are being
rewarded the most when they decrease their emissions, considering that they pay
particular notice on climate change issues. In Chapter 9, authors D. Broadstock,
I. Chatziantoniou, and D. Gabauer discuss Socially Responsible Investing (SRI)
and the market for Green Bonds. The authors consider both the traditional and the
Green Bonds market in three different regions of the World (i.e., China, Europe
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and the US). They initially employ the TVP-VAR method and in turn, they intro-
duce the Minimum Connectedness Portfolio approach as an alternative method for
making effective investments. The motivation for the study is to ascertain when and
to what extent Green Bonds can be part of an international fixed-income investor’s
portfolio. Finally, Chapter 10, by B. Ghosh, S. Papathanasiou, and V. Gablani,
focuses on Greenhouse Gas (GHG) emissions and investigates GHG persistence
levels in 186 countries around the World. The authors consider Long Memory
Identification through Order of Fractional Differencing (d) and Hurst Exponent
(H), utilizing an ARFIMA process. What is more, they are particularly interested
in identifying appropriate policy stances that will help reduce GHG emissions,
thereby benefiting markets and the economy.

We hope that you enjoy reading the Chapters. We are positive that this Vol-
ume will help introduce readers to the relevant empirical applications and will
contribute to the development of research in the field of Energy Finance.

Heraklion, Crete, Greece
April 2022

Christos Floros
Ioannis Chatziantoniou
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Introductory Chapter on Energy Finance



1Review of the Development
of Energy Finance

Dayong Zhang and Qiang Ji

1.1 Introduction

Energy finance has arisen in recent years, and it has become a booming subject of
research. A large strand of literature has developed looking into the financial char-
acteristics of energy products, for example, oil (Zhang, 2017). Other researchers
have been paying attention to the general financing and investment issues of the
energy sector (Haushalter, 2000). New models have been developed to study risk
spillovers in the energy sector, and these have been applied to enrich the cur-
rent models for energy risk management (Zhu et al., 2020). With more attention
towards sustainable development and climate change, green finance (or climate
finance) has also appeared as the new hotspot (Zhang & Rong et al., 2019).

In fact, studying the links between energy markets and financial markets is not
new (e.g., Jones & Kaul, 1996; Park & Ratti, 2008; Sadorsky, 1999). However,
these studies follow Hamilton (1983) and generally take oil prices as an external
shock to stock markets. As the most important input factor for production, oil price
changes will affect firms’ cash flows or change expected returns (Jones & Kaul,
1996)—although their empirical results show that the price reaction is higher than
what can be explained by the changes of real cash flows or future expected returns.
Using a sample of energy firms, Broadstock et al. (2014) proposed the idea that
oil shocks may pass through stock markets via a direct and an indirect channel.
The variability in oil prices is considered an additional risk factor that enters the

D. Zhang (B)
Research Institute of Economics and Management, Southwestern
University of Finance and Economics, Chengdu, China
e-mail: dzhang@swufe.edu.cn

Q. Ji
Institutes of Science and Development, Chinese Academy of Sciences, Beijing, China
e-mail: jqwxnjq@casipm.ac.cn

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
C. Floros and I. Chatziantoniou (eds.), Applications in Energy Finance,
https://doi.org/10.1007/978-3-030-92957-2_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92957-2_1&domain=pdf
mailto:dzhang@swufe.edu.cn
mailto:jqwxnjq@casipm.ac.cn
https://doi.org/10.1007/978-3-030-92957-2_1


4 D. Zhang and Q. Ji

basic Capital Asset Pricing Model (CAPM); it can also pass to individual stocks
by affecting market returns.

Despite the differences in methodology or markets in the studies mentioned
above, the fundamental logic of oil shocks is that these firms or markets are price
takers. This is consistent with the fact that the global oil markets are largely
influenced by the Organization of Petroleum Exporting Countries (OPEC), an
intergovernmental organization of 13 oil producers. Although there are some con-
troversies about OPEC’s role (Kaufmann et al., 2004; Wirl & Kujundzic, 2004),
the general belief is that OPEC has fundamental impacts on the world oil markets,
especially in the early years (Gately, 1984). The global crude oil market can be
treated as a single market (Adelman, 1984), or prices in different regions tend to
move together.

The situation, however, has changed in the new century. The Shale Revolution
led by the U.S. is one of the most fundamental shocks. Bataa and Park (2017),
for example, showed that the increase of U.S. oil production from shale oil con-
tributes critically to oil price movements. Another important issue contributing to
OPEC’s weakening power is commodity financialization (e.g., Cheng & Xiong,
2014; Henderson et al., 2015; Tang & Xiong, 2012). While the Shale Revolution
changed the general landscape of global oil supplies, the financialization process in
the new century has brought fundamental changes to our traditional view of energy
markets. It has also directly contributed to the development of energy finance.

In this chapter, we will start from financialization in energy markets, making
use of the most recent empirical evidence and theoretical arguments to revisit the
relationship between energy and the financial market in Sect. 1.2. In particular,
we emphasize the concept that energy products, such as oil, intrinsically have
the characteristics of financial products. Its linkage with financial markets is not
simply via fundamental shocks but via more complicated mechanisms. Moreover,
we also review some recent risk spillover techniques, paying special attention to
the implications for energy risk management. Section 1.3 moves to the micro-
firm-level issues in the energy sector. Specifically, we will introduce the most
recent developments in corporate finance for energy firms. Section 1.4 reviews the
literature on green finance and investment, and then the last section summarizes
and discusses future directions in this newly developed subject.

1.2 Energy Financialization

1.2.1 Conceptual Issues

As a relatively new concept, there is no clear definition of energy financialization.
Nevertheless, we can go back to the idea of commodity financialization, wherein
Cheng and Xiong (2014) observed a large inflow of investment into commodity
futures markets. They found that the investments go beyond the fundamental role
of commodity futures as a risk-hedging instrument. These capital inflows sub-
stantially change commodity markets and affect the traditional risk-sharing and
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information discovery mechanisms. As one of the most important commodities,
energy products share similar changes but behave differently, making the need to
study energy financialization more urgent.

A few recent collections of articles may present a clue about how energy finan-
cialization is defined among researchers. In an editorial introduction on a special
issue in Emerging Markets Finance and Trade, Ji and Li et al. (2019) stated that
“energy financialization refers to the financial behavior of energy prices and the
integration of energy and financial markets considering the increasing innovation
of energy-oriented products in the financial markets”. They suggested that energy
financialization provides “new research ideas and directions for the study of price
behavior, risk contagion mechanisms and risk management in the energy market”.

In 2020, Ji, Zhang, and Kutan organized another special issue in the Inter-
national Review of Financial Analysis on “Energy financialization, risk and
challenges”. They further elaborated on the concept of energy financialization in
their editorial introduction. Starting from the structural changes due to the 2008
global financial crisis and recent geopolitical risks, they illustrated several clear
fundamental changes in global energy markets. For example, extreme price fluctua-
tions, more active energy financial derivatives and the associated high capital flows
by hedge funds, and the need to diversify portfolio risks by financial investors. The
consequence of these changes is the increasing co-movements among energy mar-
kets, commodity markets and financial markets, which lead to more complicated
risk spillovers than before and more challenges to energy risk management. In
general, they believe that energy financialization brings new risks and challenges
to energy markets and inevitably leads to new research issues and the need to
develop new methodologies.

1.2.2 Energy–Stock Market Relationship

As mentioned above, the energy–stock market relationship, particularly the rela-
tionship between oil shocks and the stock market, has been an interesting topic
among researchers for a reasonably long time. While the early researchers took oil
shocks as exogenous and tried to understand the channel of oil passing through
to stock prices, recent researchers have taken a distinctive approach and found
something very different. From the numerous research articles that have appeared
in recent years, this section uses Zhang (2017) as an example to demonstrate how
to study the energy–stock market relationship in a different way and illustrate the
empirical evidence supporting energy financialization.

The first and perhaps the most important contribution of Zhang (2017) is to
adopt a network approach to study the oil–stock relationship. A Vector Autoregres-
sive (VAR)-based approach—developed initially by Diebold and Yilmaz (2009)
and subsequently refined by Diebold and Yilmaz (2012, 2014)—is the key of this
research. In time series models, when we have no prior information about the
causality of the variables studied, it is often more appropriate to assume all endo-
geneity and let the data speak. The VAR model is, therefore, a widely applied
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empirical method in macroeconomics and financial econometrics. Unfortunately,
the standard VAR model is difficult to interpret due to the many estimated param-
eters. It is also hard to link these estimated coefficients directly to economic
meanings.

Diebold and Yilmaz (2009) and their following works have made a very simple
twist on interpreting the VAR models, and thus, become an extremely effective
tool. We know that the Impulse Response Function (IRF) and the Forecasting
Error Variance Decomposition (FEVD) are two commonly used approaches to
interpreting VAR estimations. The IRF shows to what extent the system responds
to the shock on one (or any) of the variables in the system. In contrast, the FEVD
takes an alternative angle by estimating how much the variations of one variable
are due to the changes of other variables (including itself). Defining θi j as the
contribution of variable j on variable i , then

∑k
i=1 θi j = 1, meaning that the total

changes of variable i (normalized as 1) can be decomposed into contributions
from the whole system (K variables). Diebold and Yilmaz (2009) repackaged the
estimated FEVD (or θi j ) and created a connectedness matrix (see Table 1.1) to
illustrate how variables interact with each other.

A few important messages can be extracted from the connectedness matrix: first,
the matrix is asymmetric, meaning that θi j �= θ j i . This allows us to calculate the
relative importance between any two variables, and then the net contributions can
create directional connectedness (defined as the net directional connectedness or
NDC). The column summation of the matrix (excluding self-contributions or diag-
onal elements) can be taken as the informational gain from the system (all other
variables or From). The row summation of the matrix (excluding self-contributions
or diagonal elements again) can be taken as the contribution of each variable to
the system (all other variables or To). The last information from the matrix, and
the most important one, is 1

K

∑K
i, j=1 θH

i j , i �= j . It shows the share of explanatory

Table 1.1 Connectedness matrix (Zhang, 2017)

y1 y2 . . . yK From others

y1 θH
11 θH

12 . . . θH
1K

K∑

j=1
θH
1 j , j �= 1

y2 θH
21 θH

22 . . . θH
2K

K∑

j=1
θH
2 j , j �= 2

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

yK θH
K1 θH

K2 . . . θH
KK

K∑

j=1
θH
K j , j �= K

To others
K∑

i=1
θH
i1 , i �= 1

K∑

i=1
θH
i1 , i �= 2 . . .

K∑

i=1
θH
i1 , i �= K 1

K

K∑

i, j=1
θH
i j , i �= j

Note This table is taken from Zhang (2017, Table 1). H is the number of steps ahead in forecasting
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power other than self-contributions, which can also be interpreted as the level of
systemic interaction or systemic risk (Diebold & Yilmaz, 2009).

Following this repackaging, a number of improvements were made by Diebold
and Yilmaz (2012, 2014). First, it is well known that the FEVD in a typical
VAR model is affected by the ordering of variables, thus making the connected-
ness matrix unstable. To control for this, Diebold and Yilmaz (2012) adopted the
approach suggested by Koop et al. (1996) to use a generalized FEVD or GFEVD.
Second, the interactions of any system or the estimation of a VAR model can be
affected by structural changes or containing time-varying characteristics. Dividing
samples using known structural changing points can solve the first problem, but
it is often difficult to identify breaking points, and there is also the possibility of
multiple breaks. Diebold and Yilmaz (2009) proposed a simple rolling-window
approach to solve this problem, allowing us to evaluate time-varying systemic
risks in financial markets. The last improvements in the interpretation of systemic
connectedness were by Diebold and Yilmaz (2014), who suggested using a net-
work approach. Using the pairwise NDC as the foundation, we can establish a
directional network to give a more intuitive illustration of how the system works.

After these improvements, this approach has been used extensively and has
become a powerful tool to study systemic interactions in financial markets. Zhang
(2017) is one of the earliest empirical studies using this approach. In this paper,
a seven-variable system was established using monthly data from 2000 to 2016.
The Brent crude oil price was used together with six major stock market indices,
including the Dow Jones Industrial Average, FTSE 100, DAX, Nikkei 225, Singa-
pore Straits Times Index (STI) and the Shanghai Stock Exchange (SSE) composite
index.

Unlike previous research taking oil shocks as exogenous, this paper allows all
variables to be endogenous in the system, and all of them can interact with each
other. Interestingly, the empirical results show that crude oil prices are a net infor-
mation taker in the system, which contradicts the common finding that oil shocks
drive stock market movements. The level of connectedness in this seven-variable
system demonstrates clear time-varying patterns. A sharp increase in the total con-
nectedness is found following the 2008 global financial crisis, reaching an overall
49.62%, but the level of connectedness falls back after 2013. We are also interested
in whether oil shocks matter and, if so, when they matter. The evidence suggests
a positive answer to the first part of this question, and then a large variation was
found for oil shocks’ contribution to the system. Oil shocks’ contribution can range
from 10% to 37%, depending on the market conditions.

While several other findings from Zhang (2017) are interesting, this study’s key
message is that oil shocks are no longer independent from global financial markets.
The general situation has changed fundamentally since the 2008 global financial
crisis. In recent years, movements in the major global financial markets, especially
the rise of the Chinese stock market, have strongly influenced the dynamics of
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oil prices. This research, together with other subsequent studies (e.g., Degiannakis
et al., 2018; Ferrer et al., 2018; Wei et al., 2019; Wen et al., 2019; Xu et al.,
2019; Zhang et al., 2018), has established a large amount of empirical evidence
supporting the concept of energy financialization.

1.2.3 Price Determination with Financialization

Knowing that energy prices are affected more than their fundamental factors (such
as demand and supply), the next step is to rethink the price determination mech-
anisms of energy products. Obviously, we would expect to see an increasing role
of financial factors due to the financialization process in energy markets. Morana
(2013), for example, finds that financial shocks have made a sizeable contribution
to oil prices. One of the main characteristics of these empirical studies is that the
factors influencing energy prices are time-varying.

Following this idea, a strand of works (e.g., Drachal, 2016, 2018) adopts a
new approach named the dynamic model averaging (DMA) model to study the
determining factors of oil prices. This approach is a useful method to perform
empirical analyses when a clear theoretical foundation is lacking. The idea is to
let the data tell which factors are important determinants. The DMA approach
was further developed by Raftery et al. (2010) and Koop and Korobilis (2011). It
has been widely used for forecasting the prices of crude oil and other products.
The DMA model’s main advantage is that it allows parameters in an estimated
model to vary over time, and thus, it can uncover information that a stable model
framework cannot (Wang et al., 2019).

In this section, we move from oil to natural gas and illustrate how to rethink
price determination with energy financialization. Specifically, we briefly introduce
one of our research works on natural gas price determination. This is a study by
Wang et al. (2019), who used the DMA approach presented above to study the
time-varying determining factors of natural gas prices.

Historically, natural gas was determined by the price of oil, a mechanism called
oil-indexation (Zhang et al., 2018). The reason behind this is that oil and gas are
substitutable in nature. Brown and Yucel (2008) introduced a “rule of thumb” that
the gas and oil price ratio should be one to ten or one to six in the U.S. market.
The Shale Revolution in the early 2000s marked a fundamental change that led to
a general movement away from oil indexation. Although the oil price remains the
most important driving factor of the natural gas price (Zhang et al., 2018), clear
evidence of oil–gas price decoupling has been found (Zhang & Ji, 2018). Together
with energy financialization, the determinants of natural gas prices can be more
complicated.

Taking this question forward, Wang et al. (2019) performed an empirical study
using the DMA approach to examine the main driving factors and how their influ-
ential power has changed over time. Specifically, financial factors are explicitly
introduced to their empirical framework. In this study, monthly data from 2001
to 2018 are used. Some typical fundamental factors—such as gas consumption,
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production, storage, heating degree days and cooling degree days—are included in
the model. An interesting feature of this work is that a number of financial factors
are studied.

Following Zhang et al. (2017) and Ji and Liu et al. (2018), the paper includes the
Chicago Board Options Exchange Volatility Index (VIX), a couple of speculation
factors (long and short) and the weighted U.S. dollar index. These financial factors
are then fitted into the regression models together with other factors. Consistent
with most of the recent literature (e.g., Ji & Zhang, 2019), the explanatory power
of crude oil prices (i.e., the West Texas Intermediate [WTI] oil price) has been
declining, especially since the 2008 global financial crisis. Most importantly, the
DMA estimation shows that financial factors are becoming more important over
time. Among all four financial indicators, the long-speculation proxy is the most
important determinant, and it dominates all other financial factors in the model. It
is significant for 65.59% of the whole sample period, and the values of inclusion
probability are often close to 80% with an increasing trend.

1.2.4 Energy Risk Management

Energy financialization can undoubtedly enrich the traditional energy pricing sys-
tem by introducing more efficient market mechanisms. It also brings significant
challenges to energy risk management. The declining power of OPEC may give
a chance for a better-functioned pricing mechanism. Still, it will definitely raise
uncertainties and energy security issues in certain oil-importing countries, for
example, China, Japan and South Korea (Ji & Zhang et al., 2019). Increased
volatility spillovers and risk contagion between energy and financial assets give
investors opportunities to diversify their portfolios. However, at the same time,
extra financial market activities and speculative trading behaviour can bring serious
challenges to standard risk management frameworks.

A set of new models has been developed to model systemic risks since the
2008 global financial crisis (e.g., Acharya et al., 2012, 2017; Adrian & Brunner-
meier, 2016). The influence of this crisis on the global economy is fundamental,
and its aftermath carries on influencing the global financial system. Financial mar-
kets have become remarkably more volatile (Wu et al., 2019), and risks spreading
across countries, markets, sectors and individual assets have made systemic risk a
much more important issue. Financialization in energy markets means that extreme
events are more likely to happen, and risk contagions between financial markets
and energy markets will lead to higher systemic risk. Thus, it is much more com-
plicated for individual investors or a nation to form a proper risk management
strategy. The need to reconsider the traditional energy risk management framework
is more urgent than ever.

The COVID-19 pandemic outbreak in 2020 is a clear example that shook global
financial markets and also crude oil markets. On 20 April 2020, crude oil futures
for the WTI closed at −$37.63 per barrel, making it an unprecedented event
throughout history. Technically, how to form a strategy to hedge against such a
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“once-in-a-century” pandemic (Gates, 2020) and find safe-haven assets became
challenging (Ji et al., 2020).

Indeed, a large volume of research is taking extreme risk spillovers among asset
classes (including energy) into consideration. Du and He (2015), for example,
apply Granger causality on the Value at Risk (VaR) of the S&P 500 index and
WTI crude oil future returns to show extreme risk spillovers between oil and stock
markets. Wen et al. (2019) used a VAR for VaR approach and demonstrated that
the extreme risk spillovers between oil and stock markets increased after the 2008
global financial crisis. Yang et al. (2020) built VaR into a connectedness network
to model extreme risk spillovers between the Chinese crude oil futures and other
global crude oil futures markets. They reported a sharp increase in spillovers due
to the COVID-19 pandemic.

With new techniques developed, more complicated models are used to study
extreme risk spillovers among energy, commodity and financial markets. First, the
CoVaR and the Delta CoVaR approach in Adrian and Brunnermeier (2016) are
used. Second, copula models or dynamic copula models are adopted to provide
a better estimation of extreme risks (Patton, 2012). Third, the estimated extreme
risks are further investigated via a network-based approach (Yang et al., 2020).
There is also evidence showing asymmetric effects in the spillover (e.g., Ji &
Zhang et al., 2018), giving risk management more challenges.

1.2.5 Is Financialization Temporary or Permanent?

Despite abundant evidence found in the literature supporting the financialization of
energy markets, our understanding of the underlying mechanism remains limited.
The majority of the existing efforts are to build evidence and identify empirical
patterns. Without a solid theoretical foundation, it is hardly possible to reconcile
the current differences in empirical works. Some have already raised questions
about whether energy financialization is the “new normal” or merely a passing
trend (Adams & Gluck, 2015). Zhang et al. (2017) studied whether there is de-
financialization in energy commodity markets. In Zhang and Broadstock (2020),
rising connectedness in the global commodity markets is found to be only relevant
to the 2008 global financial crisis period, and certain patterns have disappeared in
recent years.

Of course, none of the studies mentioned above provides strong evidence
against energy financialization; rather, their findings generally support it. How-
ever, these challenges and issues deserve further investigation. Over ten years
have passed since the 2008 global financial crisis, but the sample we have is
still relatively small and hardly sufficient to give a deterministic confirmation.
Nevertheless, we strongly believe that the energy financialization process will be
irreversible.
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1.3 Corporate Finance in the Energy Sector

Compared to the booming research output in energy financialization, corporate
finance issues in the energy sector have received less attention in the energy finance
literature. However, it is an essential part, as suggested by Zhang (2018). Given
the strategically important position of the energy sector in any nation’s economy,
financing and investment decisions in the energy sector are critical. These decisions
are not only relevant at the macro-level but are also major issues at the micro-level,
as firms are the essential units delivering energy products and services.

1.3.1 Why Are Energy Firms Special?

Financing and investment decisions are core elements in corporate finance, and
the general issues have already been studied in the mainstream corporate finance
literature. Like other industries, the energy industry is often part of the picture and
will only be controlled as an industrial dummy in most empirical studies. In theory,
energy firms should face the same challenges as other types of firms. They need
to invest in projects with positive NPVs, and they also have to choose an optimal
capital structure to maximize their value when making financing decisions. At
the same time, being a corporation, an energy firm also needs to resolve agency
problems by designing an effective governance system. The question of making
energy corporate finance a separate issue is whether energy firms are special and
in what aspects they should be treated differently. This is the obvious challenge
that has limited the development of energy corporate finance (Zhang, 2018).

Back to Jensen (1986), who raises the free cash flow (FCF) problems that lead
to the following discussions on the agency problems of corporate decision-making.
The example used in his argument is a sample of oil companies. In the 1970s, oil
prices went up sharply after several oil crises. Consequently, these oil compa-
nies accumulated a large amount of cash. Instead of distributing this cash to their
shareholders after investing in good (positive NPV) projects, the managers kept
investing in poor-quality projects (negative NPV). Their behaviour brought bene-
fits to themselves at the cost of the shareholders, thus becoming a typical example
of agency conflicts. Similar issues have been found recently in China by Zhang
et al. (2016a)—average cash flows held by energy firms are substantially higher
than other firms in the Chinese stock market. Once again, these firms expand and
invest in projects that are not optimal.

Energy is the foundation of the modern industrial economy, and its supply
relates directly to general economic development. For countries like China, energy
supply relies heavily on the international energy markets (Zhang & Rong et al.,
2019), and thus, shocks to energy markets can lead to serious concerns about
energy security. To ensure a stable supply of energy, China continues to invest
in the international energy market. Tan (2013), for example, showed that a large
proportion of international investment from China is in the energy and resource
sector. These investments are primarily executed through energy firms. From this
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perspective, when making decisions, energy firms are different because standard
profit maximization may not be the only concern.

In addition to the arguments above, there are potentially other major issues
that distinguish energy firms from other sectors. For example, their governance
structure can be different; energy firms tend to have large state ownership. Like
the banking industry, major energy firms in China are a consequence of a series of
reforms. However, they generally have a very significant state presence and operate
differently (Zhang et al., 2016a). These differences between energy firms and other
firms have clear country-specific features and warrant further investigation.

1.3.2 Investment Decisions by Energy Firms

Bearing in mind that energy firms may behave differently from firms in other
industries, we introduce a few studies looking into energy firms’ investment deci-
sions. The first issue worth exploring is whether these firms invest according to
the standard corporate finance theory. For example, Lang et al. (1991) proposed
using Tobin’s Q to measure investment opportunities. Q equals the market value
of a company divided by its assets’ replacement cost. Higher Q is often consid-
ered to indicate good investment opportunities for the underlying firm. Lang and
Litzenberger (1989) took the unity value of Q as a threshold; in other words, when
Q is less than one, the firm’s investment opportunity is poor.

Empirically, Fazzari et al. (1988) set up a benchmark regression model:

(I
/
K)it = β0 + β1Qit + β2(CF

/
K)it + εit (1.1)

where I/K stands for the investment (I) divided by the beginning-of-period capital
stock (K), and CF/K stands for the cash flow scaled by the same capital stock.
Q is the proxy for investment opportunities, such as Tobin’s Q. Both β1 and β1
are expected to be positive. Following Lang et al. (1991), an interaction term is
created, which then moves to Eq. (1.2):

(I
/
K)it = β0 + β1Qit + β2(CF

/
K)it + β3

[(
CF

K

)

it
× D(Qit < 1)

]

+ εit (1.2)

D(Qit< 1) is a dummy variable that equals one if Tobin’s Q is less than unity.
Other things being equal, if β3 is positive, then firms invest even if their investment
opportunity is poor. In other words, they tend to have agency problems.

Zhang et al. (2016a) followed these arguments and investigated these models
with a sample of energy firms listed on the Chinese stock market. The sample firms
cover electricity, coal, oil and gas, the new energy sector and related sectors from
2001 to 2012. One additional contribution of their work is to use a new measure
of Q: the fundamental Q. This was proposed by Gilchrist and Himmelberg (1995)
to overcome the problems of basic Q in measuring investment opportunity. In
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general, the empirical analyses show clear evidence supporting the FCF hypothesis
for Chinese energy-related firms. These firms tend to overinvest, even when future
investment opportunities are poor. Furthermore, Zhang et al. (2016a) controlled
for several corporate governance factors, such as degrees of state ownership and
managerial shareholder levels. Not surprisingly, these factors can play a role in
firms’ investment decisions.

Inspired by Zhang et al. (2016a), a series of subsequent works began to fur-
ther investigate in this direction. For example, Yu et al. (2020) explored the role
of political connection on the overinvestment problems of Chinese energy firms.
Kong et al. (2020) studied the effects of foreign investment in Chinese energy
firms’ innovation. Cao et al. (2020) used listed firm data to show that oil price
uncertainty can affect renewable energy firms’ investment.

1.3.3 Financing Decisions by Energy Firms

An equally important issue for energy corporate finance is firms’ financing deci-
sions or how they choose their capital structure. According to the standard
corporate finance theory (e.g., the pecking order theory of financing), firms should
use internal capital, followed by debt and then equity financing. In a perfect mar-
ket, firms’ value is not affected by their specific capital structure (debt/equity ratio),
but the tax benefit of debt and bankruptcy cost bring forward the trade-off theory
(see Myers, 2001). The literature in this area is abundant for general corporate
finance studies but limited for general energy firms. An exception is renewable
energy firms, which will be illustrated later in the next section.

Here, we take a couple of examples to elaborate on what can be done in this
area. The first study is by Narayan and Nasiri (2020), who used a sample of 726
energy firms from 56 countries to study whether oil market activities can affect
these firms’ capital structure. Their first argument is that oil companies are differ-
ent from non-oil companies, similar to the earlier arguments. Meanwhile, energy
firms are more likely to be affected by oil price shocks (see Broadstock et al.,
2012; Ma et al., 2019), as price movements in oil markets can directly affect the
cost and revenue of these firms. Empirical analyses of this cross-country study
demonstrate both statistically and economically significant effects of international
oil market changes on energy firms. However, similar effects cannot be found
in non-oil companies. Kim and Choi (2019) took a different approach and also
showed that hedging can affect oil and gas project companies’ capital structure.
The capital structure may also affect firms’ performance (e.g., Zhang et al., 2016b).
Cole et al. (2015) used the data of a sample of U.S. firms covering industrial,
healthcare and energy sectors to see whether there is a relationship between capi-
tal structure and firm performance. They showed a clear difference in the energy
sector relative to others.

The second example is on the financing constraints of energy investment. It is
a well-explored area that financing constraints can directly affect corporate invest-
ment (Fazzari et al., 1988). Si et al. (2021) used a sample of 230 energy firms from
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2003 to 2018 to show that financial deregulation can lower these firms’ operational
costs by alleviating financing constraints. Once again, this research direction is a
much more relevant issue for renewable energy investment, so we will cut it short
here and discuss it more in the following sections.

1.3.4 Governance in the Energy Sector

As mentioned above, corporate governance factors can impose a substantial impact
on firms’ decisions. There are no exceptions for energy firms. Also, due to the
special features of the energy industry, it is typically more complicated for the
internal governance system to work out properly (Zhang et al., 2016a). Meanwhile,
firms’ behaviour/performance can also be affected by the institutional environment
or external governance. The interaction of internal and external governance can
impose a significant impact on firms’ behaviour (Liu et al., 2019). For example, a
large volume of literature following La Porta et al. (1997) discusses the financial
impacts of legal origins. The general idea is that the common law system tends to
give higher weight to shareholders’ interests, whereas the civil law system empha-
sizes general stakeholders’ benefits. Investment in the energy sector is shown to be
affected by legal differences, together with some internal governance issues (e.g.,
Liu et al., 2019). Of course, there are also other external governance factors to be
considered.

The corporate governance system is designed to reduce agency costs and
improve the efficiency of firms. The first and perhaps the most widely used gov-
ernance factor is ownership structure. It is often argued that state ownership tends
to bring inefficiency into corporate operations. Thus, empirical findings often
demonstrate that private companies outperform their state-owned counterparts
(e.g., Ohene-Asare et al., 2017). Conversely, foreign ownership or institutional
ownership can improve firms’ performance. Kong et al. (2020), for example,
studied energy firms’ innovation performance and showed that foreign institu-
tional investors can improve energy firms’ innovation via three possible channels:
investment, governance and human capital. Filippini and Wetzel (2014) used 28
electricity distribution companies in New Zealand to show that separating the own-
ership of electricity generation and retail operations from the distribution network
can improve these firms’ cost efficiency. In a cross-country study, Clo et al. (2017)
found that public ownership is associated with lower emissions than private own-
ership in the power industry. The results are obviously different across countries.
Wang et al. (2021) reported that equity concentration can improve Chinese energy
companies’ investment efficiency.

From these studies, we can see that private ownership (or foreign owner-
ship) tends to give more weight to efficiency and thereby improves performance,
whereas public ownership may improve energy sectors’ environmental perfor-
mance. Given that energy firms bear more of the burden for carbon reduction or
environmental benefits than the general society, they must also be responsible for
energy security issues (Zhang & Rong et al., 2019), which is not a major concern
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for firms in other sectors. Hence, it is important for us to investigate whether there
is an optimal ownership structure.

Other issues in the corporate governance literature also have clear, unique
features in the energy industry. For example, manager characteristics, political
connections and executives’ compensation schemes may also differ from other
sectors (subject to country-specific institutional environments). Using a sample
of Chinese energy firms, Yu et al. (2020) explored the relationship between firms’
political connections and investment behaviour, demonstrating a statistically signif-
icant relationship. Overinvestment is more likely to happen when local politicians
approach promotion lines.

1.4 Green Finance and Investment

The concept of “green finance” has arisen in recent years due to increasing pres-
sure from climate change and the need to pursue a sustainable growth path in the
global society. In 2015, the Paris Agreement was signed within the United Nations
Framework Convention on Climate Change (UNFCCC). Member countries have
agreed to work cooperatively to mitigate the severe problem of greenhouse gas
(GHG) emissions.

Five years after adopting the Paris Agreement, the world remains a long
way behind the race against climate change. Ambitious commitments and urgent
actions are needed for transitioning to net-zero emissions (or carbon neutrality)
by 2050. A significant amount of investment is required to solve the problem.
For example, maintaining the 2 °C temperature threshold of the Paris Agreement
requires $53 trillion in energy-related investments by 2035 (IEA, 2014). The Euro-
pean Commission (2020) estimated that for the EU alone, more than EUR 270
billion of investment per year would be necessary to achieve an 80% reduction of
emissions by 2050. Global investments in low-carbon solutions are growing, and
the cumulative clean energy investment was around USD 3.7 trillion from 2004 to
2018, although it is still not sufficient to meet the required pace (Climate Finance
Leadership Initiative, 2019). A substantial investment gap remains between the
current development and the requisite level of emissions.

1.4.1 Green Finance or Climate Finance

In 2010, the Green Climate Fund (GCF) was established by 194 countries, aiming
to provide financial support to developing countries to mitigate GHG emis-
sions and adapt to climate change. Since then, the term “green finance” has
frequently appeared in the reports of international organizations (e.g., the Inter-
national Finance Corporation [IFC], 2017) and national governments. Relevant
discussions have also attracted enormous attention from academics. Green finance
per se, however, remains vaguely defined and is often mixed with climate finance.
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Zhang and Rong et al. (2019) reviewed the existing literature in a simple biblio-
metric analysis. They did not explicitly distinguish the difference between green
finance and climate finance but instead used them in the same way. In total, 381
papers were included in their survey, and there has been a clear upward trend of
research interest since 2011. Their research may provide some clues about the
concept of green finance.

According to the IFC (2017), green finance is defined as the “financing of
investments that provide environmental benefits”. A related concept named “cli-
mate finance” is proposed and defined by the UNFCCC as “local, national or
transnational financing—drawn from public, private and alternative sources of
financing—that seeks to supportmitigation andadaption actions thatwill address cli-
mate change”. In their simple bibliometric analysis, Zhang and Rong et al. (2019)
showed that at the heart of both terms is the financing tools for coping with climate
change and other issues for sustainability. Moreover, these two concepts are rele-
vant to energy finance, as major changes are expected to apply to the energy sector,
such as developing the renewable energy sector or achieving energy transition to
a sustainable regime.

To get a general idea of the current status of the global energy structure, Fig. 1.1
plots the world’s total energy production structure from 1980 to 2018.1 Clearly,
total primary energy production keeps increasing to fuel global economic develop-
ment. Although the renewable energy sector has already experienced a significant
increase in recent years, its share remains low, and three main fossil fuel energy
sources (i.e., coal, petroleum and natural gas) together account for over 84% of
the world’s total energy production. To achieve the climate goal, there is obviously
much more work to be done to change the energy structure or make a substantial
transition towards renewable energy.

1.4.2 Financing the Energy Transition

Speeding up the energy transition process is challenging, and an enormous amount
of investment is needed. Note that the information presented in Fig. 1.1 is the
status of the whole world; there are clearly regional/country-specific differences.
Together with the large variation in the world’s economic development, a general
improvement is hard to achieve. Taking China, the largest emitter of GHG in
the world, as an example, fossil fuel accounts for about 90% of the total energy
consumption (Ji & Zhang, 2019). Despite this, the leaders of China made strong
commitments and pledged to reach peak GHG emissions in 2030 and achieve
carbon neutrality by 2060. To realize such an ambitious plan, a combination of
efforts is needed, and one of the major constraints is financing.

Ji and Li et al. (2019) presented a simple empirical study for the case of
China. They used historical data to investigate the main contributing factors that

1 Source: www.eia.gov.

http://www.eia.gov
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Fig. 1.1 World energy structure (Source www.eia.gov)

are pushing China’s energy transition. Through the Diebold and Yilmaz (2014)
network approach, they found some very interesting results. The main message
from this research is that financial development is critical to the development of
the renewable energy sector. Among the stock market, the credit market and for-
eign capitals, the stock market takes the leading position in providing the most
explanatory power for the changes in renewable energy growth. An additional
analysis using U.S. and EU data shows that they are considerably different. While
the U.S. energy transition is mainly due to the stock market, the credit market
demonstrates a dominating role in Europe.

Le et al. (2020) further confirmed the role of financial development on renew-
able energy development using a sample of 55 countries in the 2005–2014 period.
They suggested that policymakers should facilitate renewable financing through
proper policy designs. Taking Europe as an example, Polzin and Sanders (2020)
identified a clear investment gap for the European energy transition and limited

http://www.eia.gov
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participation of institutional investors and risk-carrying capitals. In a sub-regional
study, Wang et al. (2020) established a regional-level index for China to show
its unbalanced development status and potential for the renewable energy sector.
In their study, financial development or support was used as a key dimension of
interest. There is clear evidence of unbalanced inter-provincial development in
renewable energy development.

These macro-level studies may provide critical information on the big picture;
however, a much larger volume of literature using micro-level data has appeared
recently. The main objective of these studies is to determine the main issues for the
financing of the world’s energy transition. Using a bibliometric analysis approach,
Elie et al. (2021) surveyed the literature on renewable energy finance and discov-
ered eight clusters based on the type of finance, location and technology. Their
results show that policy-relevant studies are the most popular.

It is obvious that renewable energy development or financing depends largely
on policy support. Liu et al. (2021) showed that the listed Chinese solar PV firms
responded significantly to subsidy policy changes. Understanding capital market
responses to policy shocks is essential for policymakers. Financing the renewable
energy transition requires private capital participation; a favourable capital market
condition can reduce the cost of financing for renewable energy firms. Appropriate
policy instruments can also facilitate the financing process by reducing operational
risks and providing support for start-ups. Although this study is based on listed
firms, it is worth noting that most newly established renewable energy firms rely on
equity financing. Thus, the findings on capital market responses to policy shocks
matter to more than listed firms.

One has to realize that financing the renewable energy transition also needs
financial innovation (Horsch & Richter, 2017). For example, green bonds have
emerged in recent years as a major source of financing green development, and
they have attracted a great deal of attention in the literature. Since the first
green bonds in 2007 by the European Investment Bank, green bond assurance has
reached USD 167.3 billion by international organizations, governments, banks and
the corporate sector. Initially led by international organizations, corporate green
bonds have grown at a much faster pace since 2014, becoming the main player
in the global green bond markets. There are numerous issues that have been dis-
cussed intensively in the literature. For example, are green bonds different from
other traditional bonds (Ferrer et al., 2021)? Can green bond issuance benefit
shareholders (Tang & Zhang, 2020)? How do investors respond to the issuance
of corporate bonds (Flammer, 2021)? More empirical evidence is needed to pro-
vide a solid understanding and make proper policy suggestions. There is also a
need for governments to engage further in financial innovation, such as introduc-
ing more financial instruments, using derivatives or structuring financial products.
Of course, it is also necessary for more sophisticated risk management tools to be
developed.
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1.4.3 Investment in the Energy Transition

Financing is only one side of the story; how to support investment in energy tran-
sition is another major issue. We do expect to see large-scale investment employed
in the near future, but challenges remain concerning how to make sure the invest-
ment is efficient and how to encourage a sustainable investment strategy. Once
again, there is a large volume of literature discussing relevant issues from both the
aggregate (Fadly, 2019) and disaggregate (Liu et al., 2019) levels. Relevant issues
include how to improve investment efficiency, promote green innovation, invest in
energy-efficient projects and so forth.

Like other energy firms, renewable energy firms also tend to be affected by
agency costs; in other words, managers may choose investment decisions that are
not necessarily optimal (Zhang et al., 2016b). For example, China experienced
significant overinvestment in the wind and solar PV industry, resulting in a large
volume of wind curtailments and overcapacity. Therefore, proper governance is
important. It is also worth noting that renewable energy investment can be affected
by external governance or institutional environments (Liu et al., 2019). Using a
sample of renewable energy companies around the world, Liu et al. (2019) exam-
ined the role of legal systems and national governance on these firms’ investment
decisions. Firms under the civil law system are more likely to invest relative to
those in the common law system. This is consistent with the legal origin literature,
which states that the common law system gives more weight to shareholders’ inter-
ests, whereas the civil law system encourages the broader social responsibilities of
firms. The level of national governance can also play a role here.

Technological progress is critical for energy transition and achieving carbon
neutrality; therefore, green technology investment is another crucial issue attract-
ing a great deal of attention. Firms are profit maximization entities; thus, they
only engage in green innovation if it can create value by sending a positive sig-
nal to the investors. Zhang and Zhang et al. (2019) used a sample of Chinese
listed firms to examine the famous Porter hypothesis (Porter & Van der Linde,
1995), which suggests that strict environmental regulations can induce efficiency
and encourage innovation. Green innovation can then help improve the commercial
competitiveness of firms. Based on their empirical analysis, Zhang and Zhang et al.
(2019) confirmed the hypothesis that green innovation can improve firms’ subse-
quent performance. In other words, green innovation is associated with higher
sales growth and higher net profits. In their study, the evidence also shows that
ownership matters: state-owned firms tend to gain more of the economic benefits.

While there is a long way to go to remove fossil fuel energy completely, improv-
ing energy efficiency is another major step towards sustainability. In a recent study,
Zhang et al. (2020) used firm-level data from the World Bank Enterprise Survey
to investigate whether access to credit can affect energy intensity in a sample of
Chinese manufacturing firms. Their research is related to the “efficiency paradox”
proposed by DeCanio (1998), in which firms may not take profitable investment
opportunities in energy efficiency. The underlying reasons for this paradox include
market failure, bounder rationality, asymmetric information and inefficient energy
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management. Zhang et al.’s (2020) empirical results support the paradox that firms
with credit access tend to have significantly higher energy use per unit of output,
although local government environmental regulations can mitigate this inefficient
relationship. This suggests that local government may play an important role in
correcting firms’ irrational behaviour and pushing for efficient energy use.

1.5 Summary and Looking Forward

This chapter provides a survey of the literature related to energy finance. We hope
to provide a general structure that gives readers some general ideas about how
this subject has developed over time and what topics energy finance covers. In
particular, we focus on three categories of research, namely, energy financializa-
tion, energy corporate finance and green finance. We have to acknowledge, once
again, that this subject is still emerging, and an accurate conceptual framework
remains unavailable. Furthermore, with the ever-increasing pressure of climate
change, energy finance as a major element of climate finance will inevitably attract
more attention.

Extending from the literature review above, we also list several exciting
research directions. First, supported by richer empirical evidence and policy dis-
cussions, theoretical investigations are needed to complete the general picture. Up
to now, we have accumulated a large volume of empirical literature justifying the
need for energy finance research and clarifying its relevance. It is time to consider
establishing a more solid theoretical framework that allows us to consolidate this
subject area further.

Second, despite the booming literature on green/climate finance, the need to
move in this direction is still urgent. This is especially relevant as more coun-
tries begin setting up a clear timetable for reaching carbon–neutral. For example,
there is enormous demand for research on the pathways to carbon neutrality for
China. Being the largest emitter in the world and the biggest emerging economy,
balancing the needs of economic development while achieving the tight goal of
carbon–neutral in 2060 is almost a mission impossible. Searching for feasible
pathways not only requires developing technological advances but also looking
for financial solutions.

Third, corporate financial decisions remain an interesting direction of research.
Currently, we have very limited information about this due to sampling issues
and limited attention. Academic research on corporate social responsibility (CSR)
or ESG has already developed rapidly, but linking this to energy-related firms is
needed to understand the fundamental decision-making by firms.

Lastly, there is a clear need to make international comparisons. Most current
studies focus on a single country or sector, which is not sufficient, given the large
variety of institutional environments among countries worldwide. There are also
cultural differences yet to be explored.
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2What Do We Know About the Oil
Price–Exchange Rate Link?—The Role
of Time-Variation
and Supply/Demand Dynamics

Joscha Beckmann and Robert Czudaj

2.1 Introduction

Oil prices and exchange rates have two things in common: Both have experienced
long swings after the breakdown of Bretton Woods and are incredibly hard to
predict. There is also an inherent belief that both markets are related with potential
causalities going in both directions. If a commodity, such as oil, is denominated
in the US dollar, a domestic appreciation against the dollar lowers the price of
oil measured in terms of the domestic currency, which increases demand and may
result in a general rise in oil prices (Akram, 2009). Changes in the oil price can
also affect the exchange rate since oil exporters receive a wealth transfer, which
might be invested in international financial markets if the price of oil increases.

Against this background, researchers have analyzed linkages between oil prices
and exchange rates over the short-run, the medium-run and also in terms of out-
of-sample predictability. Unsurprisingly, the results vary across countries, sample
periods and forecasting horizons. This is true for both identifying long-run rela-
tionships and evaluating forecasts. When it comes to forecasts, several studies have
provided selected evidence for predictability which is encouraging (Lizardo &
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Mollick, 2010). However, no clear pattern has so far emerged except the fact the
currencies of oil exporters are affected more frequently. From a general point of
view, the main problem a researcher faces when trying to identify an adequate
forecasting model is that in-sample explanation power does not necessarily trans-
late into out-of-sample predictability in the presence of parameter shifts (Rossi,
2013). Finding a consensus across studies is also complicated by the fact that nei-
ther the distinction between oil supply and oil demand nor the role of common
drivers of oil prices and exchange rates is addressed when drawing conclusions
about predictability and causalities between both.

Against this background, this paper contributes to the literature on oil prices
and exchange rates by analyzing (1) the importance of time-variation in- and out-
of-sample, (2) a distinction between oil supply and demand when focusing on
long-term dynamics, and (3) a potential link between long-run relationships and
out-of-sample predictability. Our empirical evidence is based on a broad set of
recursive and rolling estimates for various exchange rates.

The remainder of this paper is organized as follows. The following section pro-
vides a brief summarization of theoretical linkages and previous empirical findings.
Section 2.3 describes our data set. The empirical framework for analyzing the long-
run relationship between oil prices and exchanges rates is presented in Sect. 2.4
together with the discussion of its results. The results of our forecasting analysis
are presented and analyzed in Sect. 2.5. Section 2.6 concludes.

2.2 Literature Review

The literature on the link between oil prices and exchange rates covers a notable
range of methods, sample periods and countries. The reader is referred to
Beckmann et al. (2017) for a detailed literature review and a summarization
of theoretical linkages. Taking the aim and scope of our paper into account,
this section focuses on the main empirical findings and the existing gaps in the
literature we are interested in.

Nevertheless, a brief summarization of the two main transmission channels
in nominal terms is useful at this stage. The basic idea of the portfolio and
wealth channel which postulates a causality from oil prices to exchange rates
is that oil-exporting countries experience a wealth transfer if the oil price rises
(Bénassy-Quéré et al., 2007). In such a scenario, wealth is transferred to oil-
exporting countries (in US dollar terms) and is reflected in an improvement in
exports and the current account balance in domestic currency terms. The oppo-
site effect is observed for oil-importing countries (Beckmann & Czudaj, 2013).
The dollar potentially appreciates in the short-run because of the wealth effect—
if oil-exporting countries reinvest their revenues in dollar assets. The short- and
medium-run effects on the dollar relative to currencies of oil exporters will depend
on various factors such as oil exporters’ relative preferences for dollar assets
(Bénassy-Quéré et al., 2007; Buetzer et al., 2016; Coudert et al., 2008). A reversed
causality from exchange rates to oil prices can be derived based on the fact that an
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Table 2.1 Data description

Series Source

West Texas Intermediate Federal Reserve Bank of St. Louis

Effective Dollar Exchange Rate Federal Reserve

Oil demand Index / Global Industrial Production Baumeister and Hamilton (2015)

Oil supply index US Energy Administration

Federal Funds Rate Federal Reserve

appreciation of the US dollar increases the price of oil measured in terms of the
domestic currency. This lowers demand for oil outside the US, resulting in a drop
in the oil price, all else equal (Akram, 2009; Bloomberg & Harris, 1995).

There are different strands of the literature dealing with the link between oil
prices and exchange rates. One frequent observation is that oil price and exchange
rate dynamics are found to be related over the long-run with the intensity vary-
ing across sample periods, countries and methodologies and causalities running
in both directions (Beckmann et al., 2017; Chen & Chen, 2007). However, a dis-
tinction between oil demand and supply factors has hardly been addressed by the
literature. The results of Basher et al. (2016) based on structural VARs show that
oil demand shocks have stronger effects on oil exporters exchange rates compared
to oil supply shocks while a recent study by De Schryder and Peersman (2015)
finds that a decline in oil demand of 65 oil-importers as a result of an appreciation
of the US dollar. The out-of-sample evidence in both directions is less conclusive.
Alquist et al. (2011) do not find systematic forecasting gains for oil price predic-
tions based on exchange rates and the evidence on exchange rate predictions also
do not provide systematic evidence for exchange rate predictability (Rossi, 2013).
A natural question therefore is whether significant forecasting results are due to
specific sample choices.

There are several explanations for the time-varying evidence between oil prices
and exchange rates. Commodity market dynamics and monetary policy and other
dynamics are related to both stock prices and exchange rates and therefore affect
any empirical investigation on the linkage between exchange rates and oil prices.
Nonlinearities constitute another important explanation for the observed time-
variation (Beckmann & Czudaj, 2013). Such patterns might be triggered by
common factors or specific oil price dynamics, such as a hike and a fall in oil
prices. There is also plenty of evidence that the intensity of the link between oil
prices and exchange rates has increased over time (Table 2.1).

2.3 Data

Our sample runs from January 1974 until December 2016. Trade-weighted nomi-
nal and real effective exchange rates are provided by the Federal Reserve System.
The broad index includes 26 currencies while the major index only includes
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the euro, the Canadian dollar, the Japanese yen, the British pound, the Swiss
franc, the Australian dollar and the Swedish krona. The broad index also includes
Brazil, Russia, Mexico, Saudi Arabia, Venezuela, Argentina and Colombia as
oil-exporting countries. Table 2.2 illustrates that most of them enter with small
weights. We use the series of the nominal Brent Crude Oil price expressed in
US dollar per barrel provided by the Federal Reserve Bank of Saint Louis. Data
on World Crude Oil Production is obtained from the US Energy Administration.
As a proxy for global Energy demand, we rely on the extended global industrial
production index provided by Baumeister and Kilian (2015). The Effective Fed-
eral Funds Rate, Industrial Production of the US and the exchange rate of the
Australian Dollar relative to the US Dollar are all obtained via Datastream.1

2.4 Empirical Framework and Findings

2.4.1 Framework for Analyzing Long-Run Relationships

A rich amount of studies has dealt with long-run relationships between the price
of oil and various exchange rate. Compared to the Engle and Granger (1987)
approach, the cointegrated VAR framework proposed by Johansen (1988) and pre-
sented in Juselius (2006) has the main advantage that the analysis is carried out
without pre-assuming a specific causal structure for long-run relationships. The
basic model draws upon the following vector autoregression representation (VAR):

�Zt = �Zt−1 + �(L)�Zt−1 + �Dt + εt , t = 1, . . . , T . (2.1)

The vector Z = (ot , st ) at the minimum contains the nominal effective exchange
rate and the nominal price of oil. We will extend this set in various directions
by including measures of oil supply and oil demand as well as industrial produc-
tion and interest rates as potential common drivers of both the price of oil and
exchange rates. The different models will be classified further below. The long-
run level matrix � can be fragmented into two r × p matrices α and β ′ (�=αβ ′),
where p denotes the number of lags and r the number of long-run relationships. β ′
gives the coefficients of the variables for the r long-run relation, while α contains
the adjustment coefficients describing the reaction of each variable to disequilibria
from the r long-run relations. The (p × 1) vector �Dt , gives the deterministic
components while �(L)�Yt−1 describes the short-run dynamics which we do not
explicitly address in the following while εt denotes an i.i.d. error term (Juselius,
2006). In the case of a rank equal to one, identification is achieved via normaliza-
tion. If the rank is larger than one, it is necessary to impose (at least) identifying
restrictions on β in order to establish economic long-run relationships. The corre-
sponding hypotheses tests are based on a likelihood ratio procedure described in
Johansen and Juselius (1992).

1 Table 2.1 provides all data sources.
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We consider various specifications to disentangle the underlying dynamics
between oil prices and exchange rates. As a starting point, we consider both effec-
tive exchange rate measures against the nominal oil prices, and measures of oil
demand odt and oil supply ost . This results in an estimation of six subsystems:

Zt = [
Smt , ot

]
, Zt = [

Smt , ost
]
, Zt = [

Smt , odt
]
for the major effective exchange

rate smt and
Zt = [

Sbt , ot
]
, Zt = [

Sbt , o
s
t

]
, Zt = [

Sbt , o
d
t

]
for the broad effective exchange

rate smt .
We then augment this system in two different directions: One setting includes

the interest rate and industrial production of the US if cointegration is detected in
the first place. For the broad effective exchange rate model, this results, for exam-
ple, in Zt = [

sbt , ot , yt , it
]
. The second extension includes interlinkages between

the price of oil, demand and supply into one model, also including interest rates
which result in Zt = [

sbt , ot , o
d
t , o

s
t , it

]
. Cointegration tests should be applied to

different subsystems to verify that the findings are consistent (Kilian & Lütkepohl,
2017). Restrictions which have been applied to subsystems should continue to hold
when additional variables are included (Johansen, 1988; La Cour & MacDonald,
2000).

2.4.2 Preliminary Diagnosis and Tests for Cointegration

A natural starting point is to test for cointegration between the broad and major
effective exchange rates on the one hand and either the price of oil, oil demand or
oil supply on the other. Table 2.3 summarizes the rank test results for all bivariate

Table 2.3 Rank test results

R Trace Traceα p-value p-valueα r Trace Traceα p-value p-valueα

(a) Broad Effective / Oil Price / Trend Broad Effective / Oil Price / Constant

0 13.212 13.068 0.724 0.735 0 23.25 22.987 0.017 0.019

1 4.758 4.461 0.637 0.678 1 2.878 1.915 0.611 0.790

(b) Major Effective / Oil Price / Trend Major Effective / Oil Price / Constant

0 11.647 11.526 0.833 0.840 0 11.07 9.995 0.636 0.646

1 4.743 4.218 0.639 0.711 1 2.159 1.948 0.745 0.784

(c) Broad Effective / Oil Demand / Constant Broad Effective / Oil Supply / Constant

0 59.921 58.967 0.000 0.000 0 22.24 22.015 0.025 0.027

1 5.809 1.248 0.213 0.902 1 4.41 2.395 0.366 0.701

(d) Major Effective / Oil Demand /Constant Major Effective / Oil Supply /Constant

0 25.635 25.193 0.007 0.008 0 5.927 5.874 0.946 0.948

1 4.754 0.003 0.322 1.000 1 1.684 1.563 0.831 0.852

Note The Table reports Johansen (1988, 1991) cointegration tests. Traceα and p-valueα refer to
Bartlett-corrected values. r denotes the cointegration rank
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settings. A rejection of r = 0 implies that there is a cointegrating relationship. A
rank of r = 2 is naturally rejected since this would imply that both variables are
stationary which is rejected by unit root tests.

An important issue corresponds to the choice of the deterministic component
Dt in Eq. (2.1). According to Johansen (1988), a major question is whether the
cointegrating space contains a deterministic trend. Such a trend is relevant if the
underlying variables include a deterministic trend which does not chancel out in
the cointegrating relationship. Table 2.3 shows that the test result depends on this
choice since the rank test does not reject the null of no-cointegration at the ten
percent level for either the major or the broad effective exchange rate and the
price of oil. However, additional exclusion tests indicate that a trend should be
excluded. This is intuitive considering that the price of oil and the exchange rate
measures do not contain a clear deterministic trend.

We therefore choose the setting including a constant as the main setting. The
findings in this case suggest that the broad effective exchange rate is cointegrated
with the price of oil, oil demand and oil supply while the broad index only displays
a cointegrating relationship with the oil demand. These findings reflect the conven-
tional wisdom that the exchange rates of oil and commodity exporters display a
stronger relationship with the price of oil. It is also important to take into account
that our oil demand measure is simply based on global industrial production which
is related to the dollar exchange rate via different potential transmission channels,
such as current accounts that are not related to the price of oil.

2.4.3 Long-Run Relationships

We continue our investigation by providing estimates for the broad effective
exchange rate and the price of oil, oil demand and oil supply. Table 2.4 pro-
vides autocorrelation, ARCH and normality tests for the setting including the broad
effective exchange rate and the price of oil. The diagnostics show that the null of
no autocorrelation is not rejected at the five percent level and ARCH effects are
also partly rejected. Both variables do not display excessive skewness or kurto-
sis. The diagnostics for the following models are available upon request and show
similar results in the sense that the model is well behaved.

Table 2.5 provides the estimation results of long-run and adjustment coeffi-
cients for the first model. The hypothesis that the broad effective exchange rate
and the price of oil are inversely related is clearly not rejected with a p-value of
0.464. The adjustment coefficient suggests that the exchange rate adjusts stronger
compared to the price of oil. However, linear adjustment coefficients often under-
estimate the speed of adjustment due to various nonlinear dynamics (Beckmann &
Czudaj, 2013). We therefore do not elaborate on these findings in the following.
Our estimates in Table 2.5 show that the broad effective exchange rate is both
clearly inversely related to our proxy of oil demand. This is not surprising con-
sidering that although a dollar depreciation tends to improve the current accounts
relative to the US and lowers the price of oil while several other causalities also
exit. Our estimates show that exchange rate effects on the supply side tend to be
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Table 2.4 Estimation results and diagnostics, bivariate setting

(a) Test for autocorrelation Test for ARCH

LM(1): χ2(4) 8.359 [0.079] LM(1): χ2(9) 22.718 [0.007]

LM(2): χ2(4) 9.484 [0.050] LM(2): χ2(18) 34.265 [0.012]

LM(3): χ2(4) 2.384 [0.666] LM(3): χ2(27) 43.804 [0.022]

LM(4): χ2(4) 9.322 [0.054] LM(4): χ2(36) 93.159 [0.000]

(b) Skewness Kurtosis Maximum Minimum

S_Broad 0.007 −0.11 3.724 −0.025

OIL 0.031 0.122 5.416 0.151

(c):BETA (transposed) TEST CHISQR(1) = 1.856 [0.173]

S_BROAD OIL CONSTANT

Beta(1) 1.000 1.000 −4.147

(.NA) (.NA) (−20.941)

(d): ALPHA Alpha(1)

S_BROAD −0.000

(−3.939)

OIL −0.000

(−6.246)

Panel (a) reports LR tests on autocorrelation, which is distributed as χ2, with degrees of freedom in
parentheses [p-value]. The Table also shows hows the estimates of the cointegration vector with t-
statistics (Panel c) in parenthesis and the adjustment coefficients towards the long-run equilibrium
for both regimes, with t-statistics in parentheses (Panel d). Test reports the test for over-identifying
restrictions, which is an LR-test [p-value]

Table 2.5 Estimation results, oil demand

Panel (a): BETA (transposed) CHISQR(1) = 4.828 [0.028]

S_BROAD OIL CONSTANT

Beta(1) 1.0000 1.0000 −14.943 ***

(.NA) (.NA) (−9.585)

Panel (b): ALPHA

Alpha(1) Alpha(2)

S_BROAD 0.003 −0.003

(0.704) (−1.639)

OIL 0.059* 0.004

(1.828) (0.354)

The Table shows the estimates of the cointegration vector with t-statistics (Panel a) in parenthesis
and the adjustment coefficients towards the long-run equilibrium for both regimes, with t-statistics
in parentheses (Panel b). Test reports the test for over-identifying restrictions, which is an LR-test
[p-value].
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Table 2.6 Estimation results, extended model

Panel (a): BETA (transposed) TEST CHISQR(1) = 1.856 [0.173]

S_BROAD OIL IN INUS CONSTANT

Beta(1) −0.715*** −0.084** 0.000 1.000 −0.374***

(−13.446) (−2.493) (.NA) (.NA) (−4.005)

Beta(2) 0.000 0.000 0.023*** 1.000 −2.142***

(.NA) (.NA) (4.138) (.NA) (−54.760)

Panel (b): ALPHA

Alpha(1) Alpha(2)

S_BROAD 0.003 −0.003

(0.704) (−1.639)

OIL 0.059* 0.004

(1.828) (0.354)

IN 1.570*** 0.326***

(4.549) (3.032)

DLINUS −0.005** −0.005***

(−2.120) (−6.553)

The Table shows the estimates of the cointegration vector with t-statistics (Panel a) in parenthesis and the adjustment
coefficients towards the long-run equilibrium for both regimes, with t-statistics in parentheses (Panel b). Test reports the
test for over-identifying restrictions, which is an LR-test [p-value]

much weaker with a potentially positive relationship being not rejected with the
findings available upon request.

In the following, we extend the oil price model by including industrial pro-
duction of the US and the Federal Funds rate as potential common drivers. The
findings are provided in Table 2.6. We obtain two cointegrating relationships with
the first relationship showing that interest rates and industrial production of the
US are inversely related as suggested by a standard aggregated demand function
while the second one confirming the inverse relationship between exchange rates
and oil prices which are both positively related to US industrial production. This
implies that an increase in US industrial production coincides with both dollar
appreciations and increasing oil prices.

As a final step, we analyze a full model setting which includes the price of
oil, oil demand and oil supply with the findings given in Table 2.7. The find-
ings again confirm the robustness of the inverse link between the dollar exchange
rate and the price of oil. The three long-run relationships we identify provide
different perspectives on the oil market. The first established equation shows a
positive relationship between oil supply and oil demand.2 The second relationship
accounts for the global effects of US interest rates with lower interest rates enhanc-
ing global industrial production. The inversed oil price–exchange rate relationship
is confirmed in the third long-run relationship where the price of oil is positively

2 The insignificance of the price of oil in the first equation is due to the significance of the link
between oil demand and the price of oil in the third equation.
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Table 2.7 Estimation results, full

Panel (a): BETA (transposed) TEST: CHISQR(1) = 1.388 [0.239]

S_BROAD OIL IN OILD OILS CONSTANT

Beta(1) 0.000 −0.047 0.000 1.000 −2.974*** 12.636***

(.NA) (−1.041) (.NA) (.NA) (−14.490) (13.326)

Beta(2) 0.000 0.000 0.184*** 1.000 0.000 −1.273***

(.NA) (.NA) (5.836) (.NA) (.NA) −3.937)

Beta(3) −0.503*** −0.198*** 0.000 1.000 0.000 −0.786***

(−12.978) (-6.774) (.NA) (.NA) (.NA) (−10.061)

Panel (b): ALPHA

Alpha(1) Alpha(2) Alpha(3)

S_BROAD 0.002 0.001 0.001

(0.433) (1.448) (0.168)

OIL 0.045 0.007** 0.108**

(1.353) (2.539) (2.544)

IN −1.401*** −0.015 −1.171**

(−3.731) (−0.464) (−2.453)

OILD −0.003 −0.001*** −0.015***

(−1.127) (−3.647) (−4.778)

OILS 0.028*** 0.000 0.018**

(4.063) (−0.846) (2.058)

The table shows the estimates of the cointegration vector with t-statistics (Panel a) in parenthesis and the adjustment
coefficients towards the long-run equilibrium for both regimes, with t-statistics in parentheses (Panel b). Test reports the
test for over-identifying restrictions, which is an LR-test [p-value]

affected by oil demand and negatively related to the effective dollar exchange rate.
This relationship is also characterized by strong oil price adjustment.

2.4.4 Recursive Estimations

When performing a cointegration analysis, a major problem is that a minor change
in the sample period under consideration can result in a breakdown of a cointe-
grating relationship. Therefore, we rely on two recursive tests for the link between
the broad effective dollar exchange rate and the nominal oil price based on the
methodology proposed by Johansen (1988): One corresponds to the choice of the
long-run relationships while the second one relates to the identification of the
model via the likelihood ratio test. We run both tests recursively from both the
beginning (“recursive”) and the end (“backward recursive”) of our sample period.
Based on these tests, we re-assess the long-term relationship between the nominal
price of oil and proxies of oil demand and supply. Figures 2.1 to 2.11 display the
corresponding findings.

Figure 2.1 provides the trace test for a cointegrating relationship between the
broad effective exchange rate and the nominal oil price. The vertical line reports
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Fig. 2.1 Trace test recursive—broad effective and oil price (Note The Graph displays the recursive
trace test to determine the cointegration rank. The upper graph refers to the full model and the lower
graph to the reduced model without short-run dynamics)

LR-test of Restrictions

1975 1978 1981 1984 1987 1990 1993 1996 1999 2002 2005 2008 2011 2014
0.0
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X(t)
R1(t)
5% C.V. (3.84 = Index)

Fig. 2.2 Likelihood ratio test recursive—Broad effective and oil price (Note The Graph displays
the recursive trace test to determine the cointegration rank. The blue graph refers to the full model
and the green graph to the reduced model without short-run dynamics)

Fig. 2.3 Trace test recursive—Broad effective and oil demand (Notes See Table 2.1)
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LR-test of Restrictions
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Fig. 2.4 Likelihood ratio test recursive—Broad effective and oil demand (Notes See Table 2.2)

Fig. 2.5 Trace test recursive—Broad effective and oil supply (Notes See Table 2.1)

Fig. 2.6 Trace test recursive—Broad effective and price of oil (Notes See Table 2.1)
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Fig. 2.7 Trace test recursive—Broad effective and oil demand (Notes See Table 2.1)

Fig. 2.8 Trace test recursive—Broad effective and oil supply (Notes See Table 2.1)

Fig. 2.9 Trace test recursive—Broad effective and oil price extended (Notes See Table 2.1)
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Fig. 2.10 Trace test recursive—Broad effective and oil price extended (Notes See Table 2.1)

LR-test of Restrictions
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Fig. 2.11 Likelihood ratio test recursive—Broad effective and oil price extended (Notes See Table
2.2)

the five percent significance benchmark. A long-run relationship between oil prices
and exchange rates is detected if the trace test statistic exceeds this line. Figure 2.2
provides the test statistic of a likelihood ratio (LR) test for the hypothesis that an
effective dollar depreciation coincides with a proportional drop in the nominal
oil price. A cointegrating relationship is clearly detected around the Millennium
while a researcher who conducts an empirical analysis for a sample period end-
ing in 2009 might conclude that none exists. The results again change around the
end of the sample period. The LR statistics for a test of the hypothesis that oil
price increases and effective dollar depreciations are inversely related also fluctu-
ate over time but is clearly not rejected over the last years. Figures 2.3 and 2.4
show that the link between the broad effective exchange rate and oil demand is
much stronger and always detected after 1992. However, a researcher who tests
the restriction that oil demand and the effective dollar rate are inversely related
ending around 2005 might reject this hypothesis while a similar test shortly after-
ward would clearly lead to the opposite conclusion. The fact that the p-value of
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these restrictions wildly fluctuates clearly illustrates the sample dependency of
results, even if the starting point remains unchanged and is also intuitive taking
the complexity of the link between exchange rates and global industrial production.
Figure 2.5 shows that a cointegrating relationship between exchange rates and the
price of oil is mostly detected with the evidence becoming slightly weaker at the
end of our sample period. The backward-recursive tests reported in Figs. 2.6 and
2.7 confirm that our oil demand proxy is strongly related to the effective exchange
rate while the evidence for the price of oil is slightly weaker with evidence for a
long-run relationship strongly detected at the beginning and becomes weaker in the
middle of our sample period. The findings for oil supply show wild fluctuations,
suggesting that a long-run relationship is rejected most of the time (Fig. 2.8).

Unsurprisingly, Figs. 2.9, 2.10, 2.12 and 2.13 also provide some evidence for
time-variation in the number of long-run relationships for the extended model.
Nevertheless, we find that two and three long-run relationships are identified over
the sample period, respectively. While Fig. 2.11 shows that restrictions for the
model with two relationships are clearly not rejected after 2000, the recursive

Fig. 2.12 Trace test recursive—Full model (Notes See Table 2.1)
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Fig. 2.13 Likelihood ratio test recursive—Full model (Notes See Table 2.2)
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Fig. 2.14 Trace test backward recursive—Full model (Note The Graph displays the backward-
recursive trace test to determine the cointegration rank. The blue graph refers to the full model
and the green graph to the reduced model without short-run dynamics)

LR-test of Restrictions
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Fig. 2.15 Likelihood ratio test backward recursive—Full model (Note The Graph displays the
backward-recursive likelihood ratio test)

and backward recursive tests in Figs. 2.14 and 2.15 show that identification for
the full model including the price of oil, oil demand and oil supply temporarily
breaks down at the end of our sample (Fig. 2.14) and in the middle of our sample
(Fig. 2.15) due to large spikes. This suggests that restrictions on the cointegrating
space are often not robust to sample period extensions.

2.5 Time-Varying Forecasting Ability

In this section, we analyze the potential of exchange rates and price of oil for
forecasting one another out-of-sample. We compare two rolling window forecast
models: the first one is a simple ARIMA benchmark model and solely relies on
information from the recent past (i.e. 40 observation) of the crude oil price or the
exchange rate while the second one additionally includes the recent past of the
exchange rate for forecasting the price of oil or vice versa. We use both models
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for one-month-ahead (h = 1), three-months-ahead (h = 3), six-months-ahead (h =
6) and 12-months-ahead (h = 12) forecasts. We then repeat this exercise in a recur-
sive framework to allow for a comparison with our recursive cointegration results.
We do not only focus on effective exchange rates but also adopt the first princi-
pal component of one-month-ahead exchange rate expectations from Consensus
Economics and the Australian Dollar as a commodity currency.

2.5.1 Time-Varying Forecasting Ability of Exchange Rates for Oil
Prices

Figures 2.16, 2.17, 2.18 and 2.19 show the corresponding results for two forecast-
ing horizons, h = 1 and h = 12, and report the actually observed crude oil price
and the rolling window forecasts based on both models. We only display findings
for the broad effective exchange rate and the Australian dollar with the other ones
available upon request. The colored dots display which model is better at which
point in time. The turquois dots stand for the benchmark model while the red dots
stand for the exchange rate model. For recursive forecasts, the figures look very
similar and are therefore not reported to save space but are also available upon
request.

As can be seen, the exchange rate model is better than the benchmark model
in more than 50% of the cases if we simply count the differences. However, it
is important to highlight that even these findings do not necessarily imply that

Fig. 2.16 Oil price forecast with broad effective dollar rate (h = 1)—rolling window (Note The
colored dots display which model is better at which point in time. The turquoise dots stand for the
benchmark model while the red dots stand for the extended model)
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Fig. 2.17 Oil price forecast with broad effective dollar rate (h = 12)—rolling window (Note See
Fig. 2.16)

Fig. 2.18 Oil price forecast with Australian dollar rate (h = 1)—rolling window (Note See
Fig. 2.16)

exchange rates dynamics are useful for oil price predictions for a number of rea-
sons. First of all, trade weights used for calculations of effective exchange rates
are not calculated in real time and might exhibit future trade dynamics.

A more important problem is that forecasts from the model including exchange
rates partly inflate forecast errors. This is not obvious from the percentages pro-
vided from the graphs since those only reflect a binary decision for one of the
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Fig. 2.19 Oil price forecast with Australian dollar rate (h = 12)—rolling window (Note See
Fig. 2.16)

models. In terms of absolute differences, the exchange rate model hardly outper-
forms the simpler model to an outstanding degree while the simpler model in
many cases outperforms the exchange rate model substantially. A simple example
is the case where the simple model correctly proposes a constant oil price while
the exchange rate predicts changes which do not materialize. This is reflected in
Table 2.8 which provides findings of the Diebold-Mariano test over several hori-
zons. The findings clearly show that exchange rate predictions at best just provide
a statistical improvement over simplified benchmark models for one month ahead
forecasts.

2.5.2 Time-Varying Forecasting Ability of Oil Prices for Exchange
Rates

The seminal work of Meese and Rogoff (1983) which shows that exchange rate
models based on economic fundamentals are unable to outperform a simple ran-
dom walk forecast still constitutes a benchmark result in the international finance
literature. The resulting exchange rate disconnect puzzle remains one of the most
important topics in international economics (Sarno, 2005). In general, the fore-
casting performance of fundamental exchange rate models is highly sensitive to
the selection of different currencies, sample periods and forecast horizons (Rossi,
2013). Lizardo and Mollick (2010) imbed the real oil price into a simple form
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Fig. 2.20 EUR/USD rate with oil price (h = 1)—rolling window

Fig. 2.21 EUR/USD rate with oil price (h = 12)—rolling window (Note See Fig. 2.16)

of the monetary model of exchange rate determination and show that it improves
exchange rate predictions for several bilateral currencies.3

The findings reported in Figs. 2.20, 2.21, 2.22 and 2.23 provide similar evidence
as obtained for oil price predictions above: including the oil price temporarily
improves forecasts but these gains are often not statistically significant according

3 Our results do not contradict the results of Kohlscheen et al. (2016) who provides evidence for
superior exchange rate forecasts based on commodity prices. However, they conduct “pseudo-out-
of-sample” forecasts based on future values.
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Fig. 2.22 CAD/USD rate with oil price (h = 1)—rolling window (Note See Fig. 2.16)

Fig. 2.23 CAD/USD rate with oil price (h = 12)—rolling window (Note See Fig. 2.16)

to Table 2.9. The findings reflect the results of Rossi (2013) for exchange rate
predictability. A rejection of the null of equal predictability often points to a better
performance of the benchmark model. The overall conclusion is that extending a
simple benchmark model with either oil prices or exchange rates for forecasting
the other potentially inflates statistical forecast errors.
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Fig. 2.24 Rolling window correlation between recursively computed Diebold-Mariano test statis-
tic at h = 1 and recursively computed trace test statistic for the broad effective rate (Note See
Fig. 2.16)

2.5.3 Link Between in-Sample and Out-of-Sample Analysis

As a final step, we assess the question of whether establishing a long-run rela-
tionship is related to detecting predictability. This is done via comparing recursive
estimates of the cointegrating trace test discussed in Sect. 2.4 and recursive esti-
mates of the Diebold-Mariano test statistic. It is important to take into account that
a rejection of equal predictability does not imply that the extended model outper-
forms the simpler model. Since we are dealing with a two-sided test, a rejection
can imply that the extended model is either statistically better or worse (Fig. 2.24).

Quite strikingly, we find that the correlation between the trace test and the
Diebold-Mariano test turns out to be negative until early 2000 while the correlation
is strongly positive at the end of our sample. Hence, detecting a cointegrating
relationship is not consistently related to the out-of sample performance. This is
consistent with the difficulty to select an adequate model in real-time based on the
in-sample fit. The findings at the end of the sample deserve further attention, for
example, by taking a lead-lag relationship in an extended framework into account.

2.6 Conclusion

Previous research has often drawn strong conclusions regarding the relationship
between the oil price and exchange rate without taking time-variation into account.
We have addressed this issue both in- and out-of-sample while also providing a
distinction between oil demand and supply factors.
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As a starting point, we have provided an extensive cointegration analysis which
does incorporate different dollar exchange rates, oil supply and oil demand factors
and potential common drivers. While we have established robust evidence for an
inverse relationship between the broad effective dollar exchange rate, we find that
the major effective exchange rate index displays a weaker relationship with the
price of oil. We also identify links between the broad index on the oil supply and
oil demand. However, the link between the effective dollar exchange rate and oil
supply is not robust over time while the direction of the link between exchange
rates and oil demand approximated by global industrial production is changing
over time. An extended version of our model confirms the inverse relationship and
displays oil price adjustments even if oil supply and demand factors are considered.
Overall, the underlying driver of the long-run link between oil price and exchange
rates is therefore not only related to aggregated supply and demand effects with
expectations playing a potential role (Beckmann et al., 2017).

Our out-of-sample results show that neither exchange rates nor oil prices are a
silver bullet for forecasting each other and often inflate forecast errors. However,
they contain potentially useful information and should be taken into account in a
broader modeling or forecasting framework, for example, when combing forecasts
in a parsimonious framework. Our findings reflect the findings of the seminar
paper by Alquist et al. (2011) regarding forecasting the price of oil. It also implies
that some studies provide selective forecasting evidence. Finally, we have shown
that the probability to find a long-run relationship is not consistently related to the
out-of-sample forecasting performance.

Future research should, for example, assess the economic value of predictions
in a multivariate setup, for example, in the spirit of Della Corte et al. (2009) for
exchange rate models or Alquist et al. (2011) in the context of upside–downside
risk for the oil price. Such an exercise potentially sheds some light on the question
of whether exchange rates are a useful predictor for oil prices or vice versa. It is
also important to emphasize that a structural identification of demand and supply
shocks in the context of structural VARs as proposed by Kilian and Murphy (2012)
remains on the agenda for further research given the potential drawbacks of the
conventional Johansen (1988) approach discussed in Kilian and Lütkepohl (2017).
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3Crude Oil Prices, Exchange Rates,
Stock Markets and Industrial
Production Relationships
in Emerging Markets

Sibel Soylu, İlkay Şendeniz-Yüncü, and Uğur Soytaş

3.1 Introduction

Oil is an important commodity affecting the economic and financial indicators of
a country. A considerable number of studies investigate the effect of oil prices on
macroeconomic variables. One of the linkages pointed out in the literature is the
one between oil price and exchange rates. There are several channels over which
oil prices can have an impact on exchange rates (Beckman et al., 2020; Turhan
et al., 2013). One straightforward channel is that any disruption accounting for the
change in exchange rates can drive financial pressure for oil-dependent countries.
In addition to this effect, trade balance of a country can be vulnerable to exchange
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rate fluctuations. The negative link between oil price and exchange rates is pointed
out in Fratzscher et al. (2014). This negative link can be due to 2 channels. One
channel is the wealth transfer from oil importers to oil exporters as oil prices
rise. Second channel is due to the changes in trade balances in response to a
change in oil price, which in turn causes exchange rates to fluctuate. Supply and
demand chains are formed according to these fluctuations that directly affect the
production processes of countries. Industrial production costs are also a distinctive
factor linking oil prices to manufacturing indices.

Relationship between production processes and the returns in stock market
is also investigated in the literature. Industrial production is a leading indicator
of economic activities. Therefore, economic and financial performances can be
linked by using the variables of industrial production and real stock returns. Dro-
betz (2000) anticipates that not only industrial production provides information
about the economic development of a country but also the future expectations
of cash flows are formed according to the production level. This suggests that
industrial production leads stock returns. Studies carried out by Fama (1990) and
Schwert (1990) also support the idea of this relationship between stock returns
and industrial production.

Relationship between stock market returns and exchange rates is important
since exchange rate fluctuations can change trade dynamics and investment deci-
sions. According to the changes in exchange rate levels, foreign investors may
adjust their investment decisions to utilize economic opportunities. For emerging
countries, maintaining investment opportunities to attract foreign investors may be
crucial for economic development. Hence, understanding how stock market returns
and exchange rates of an emerging economy affect each other is important. The
production level of a country may have a significant effect on stock market returns
due to the close relationship between production and stock market returns, but also
due to exchange rates.

While developed countries have more stable economic conditions, emerging
economies are more vulnerable to external shocks. This study aims to add to the
literature by shedding more light on the relationships between crude oil prices,
exchange rates, stock returns, and industrial production in emerging markets.

Fifteen emerging markets are chosen with monthly data ranging from January
1990 to December 2016. Relations between exchange rates, oil prices, stock mar-
ket returns, and industrial production are estimated and causal relations are tested
to determine the direction of long-run causality. Toda Yamamoto procedure is used
for this purpose. To complement the analysis with short-run dynamics, generalized
Impulse Response Functions are estimated and interpreted.

Paper is organized as follows: Sect. 3.2 presents the literature review, Sect. 3.3
describes the data, Sect. 3.4 presents the methodology and results, and Sect. 3.5
concludes the paper.
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3.2 Literature Review

Numerous studies investigated the relationships between energy prices, stock mar-
ket prices, exchange rate, and economic activity. Researchers focused on both the
short-run and long-run effects of the variables with varying time intervals. Most
studies look at a subset of these links. In what follows, we try to categorize the
literature depending on which link they aim to investigate.

3.2.1 Stock Market and Exchange Rate Relationship

Changes in exchange rate levels can be a leading factor for investment decisions.
Their impact depends on the sensitivity of the relationship between the two vari-
ables. Several studies have worked on the potential link between stock market
activities and exchange rates. Although there exists a large amount of studies
ascertaining that there is a causality relationship between the two, in either direc-
tion or both, other attained results show that there is no long-run relationship
between them. Islami and Welfens (2013), for example, investigate the relationship
between stock markets and exchange rates for Poland, Czech Republic, Slovenia,
and Hungary. To examine the short-run relationships, VAR model is established
and long-run relationship is tested by Johannsen cointegration approach. Depend-
ing on the countries analyzed, either short-term or long-term relationship or both
appear as the result of the estimations. Alternatively, same relationship is exam-
ined by Granger et al. (2000) for 9 Asian countries. They point out the significance
of the link between stock markets and exchange rates for all countries except for
Indonesia and Japan. Their results show that either stock prices affect exchange
rates (Philippines) or vice versa (Hong Kong, Malaysia, Singapore, Thailand, and
Taiwan). On the other hand, Abidin et al. (2013) proclaim that stock markets and
exchange rates do not have a long-run relationship for Asia–Pacific countries. The
Engel-Granger’s two-step methodology resulted in cointegration, and hence there
is no long-run equilibrium link between them.

In the literature, not only the stock price and exchange rate relationship but
also the volatility changes are investigated. Şensoy and Sobacı (2014) study the
volatility shifts for Turkey. VAR model and dynamic conditional correlation model
results indicate a positive relationship between stock markets and exchange rates.
In another study, Hajilee and Nasser (2014) examined the relationship between
exchange rate volatility and stock market development for 12 emerging economies.
Their results show that for 10 countries in the short run and for 6 countries in the
long run exchange rate volatility appears statistically significant. For China, Mex-
ico, Pakistan, and Venezuela the long-run volatility coefficient is negative whereas
for Philippines and South Africa it is positive.

Abouwafia and Chambers (2015) investigate the relationship between monetary
policy, exchange rates, and stock prices. Their methodology used in the paper is
structural vector autoregression (SVAR) and the sample covers the Middle East
region, namely Kuwait, Oman, Saudi Arabia, Egypt, and Jordan. They find that
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for those countries, monetary policy and exchange rate shocks affect stock market
prices significantly in the short run. More recently, Tang and Yao (2018) find mixed
results for a selected set of emerging markets: Argentina, Brazil, China, India,
Indonesia, South Korea, Mexico, Russia, Saudi Arabia, South Africa, and Turkey.
They argue that previous results could be misleading due to omitted variable bias.
Therefore, they adopt a multivariate Granger causality framework and find signifi-
cant links between stock market and exchange rate markets for all countries except
China.

A brief glance at the literature with mixed results suggests a need for more
applied work to identify linkages among stock markets and exchange rates.

3.2.2 Stock Market and Industrial Production, Economic Activity
Relationship

Researchers also investigate the linkage between stock prices and industrial pro-
duction. Production processes and the return to its movements in the stock market
remains to be a concern since consumer demands are associated with the produc-
tion in the sectors and reflect the economic state of a country. Therefore, industrial
production is a leading indicator of economic growth and provides insight into the
level of overall economic activity.

The literature on emerging markets is relatively smaller compared to the one
on developed countries. The stock market and industrial production link for the
North and South Euro-zone is examined by Tsagkanos and Siriopoulos (2015).
South Euro-zone consists of Spain, Portugal, Italy, Greece, and North Euro-zone
countries are constructed as Germany, Belgium, Finland, Austria in their paper
covering the period of January 2, 2004 and December 30, 2013. Their data fre-
quency is monthly in the determined period. They use threshold cointegration
approach to understand the dynamic links. Equilibrium adjustment speeds of stock
prices and industrial production in the case of an expansionary or contractionary
shock differ in the long run. In the panel context, North Euro-zone is observed
to be adjusted symmetrically but South of the Euro-zone is observed to have an
asymmetric adjustment.

Linkage between industrial production and the stock market in the US is exam-
ined in Chang and Pinegar (1989). They adopt the Granger causality method to
find the relationship after accounting for seasonality. The monthly data used in the
study covers from January 1958 to December 1985 period. Their findings indicate
that stock returns for large scale firms can lead to seasonal real growth in the long
run. Whereas the effect of the stock returns for small firms remains in the short
run. Bhuiyan and Chowdhury (2020) confirm the strong link for the US. Using
different sector indexes, they find evidence of a strong link for the US, but not for
Canada.

Cavenaile et al. (2014) provide evidence of the relationship between stock
markets, economic growth, and bank development for five developing countries,
namely Malaysia, Nigeria, Mexico, Philippines, and Thailand. They state that there
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is a cointegration relation in the long run between economic growth and finan-
cial development, including both stock market and banking system developments.
Causality is running from financial development to economic growth. From this
viewpoint, Yu et al. (2012) support the existence of the linkage between financial
development, stock markets, and economic growth. They set out a broad country
scope to analyze the relation through the panel estimation framework. For each
country group, there appears to be a different interpretation of long run or short
run results.

3.2.3 Oil Price and Stock Market Relationship

For oil-dependent countries, it is crucial to consider the impact of oil price fluctu-
ations and their reflections on the financial decisions about investments. Since oil
prices affect the economic dynamics of a country by forming the future cash flows
of firms, the relationship between crude oil prices and stock markets is essential
in understanding investment decisions. Degiannakis et al. (2014) investigate the
relationship between the oil price shocks and the stock market volatility for the
European region. For this purpose, they use the Eurostoxx 50 index, which con-
sists of the most leading and liquid fifty stocks in Europe, as the measurement
for the stock market volatility. They use shocks to Brent oil prices and observe
their impacts on stock returns. Estimation results of the study are obtained by a
Structural VAR model. Oil price shocks are divided into three categories namely
supply-side, aggregate demand, and oil-specific demand shocks to offer a better
understanding of the relationship. According to the results, supply-side and oil-
specific demand shocks do not have a significant effect on stock market volatility.
On the other hand, aggregate demand oil price shocks have a significant influence
on stock market volatility. Another approach for the same concept is examined
by Guesmi and Fattoum (2014), which deals with the effect of oil price changes
on stock market returns for ten OECD countries. They establish a dynamic condi-
tional correlation model and use monthly data between the time interval of January
1, 1990 and December 1, 2012. Their findings show that the relationship between
crude oil prices and stock markets was affected by mostly oil prices when an oil
price shock is observed in the global oil market. They contribute to the literature
by revealing the mutual interaction between crude oil prices and stock markets.
The strong link between oil and stock markets is also documented for developing
countries. For example, Cheema and Scrimgeour (2019) show there are stock mar-
ket anomalies associated with rising or falling oil prices in China. This suggests
that more research is necessary to examine existence and nature of these anoma-
lies. Using an international CAPM model for 21 emerging economies, Basher and
Sadorsky (2006) find that oil market risk is significant for stock market returns.
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3.2.4 Oil Prices, Stock Market, and Economic Activity

Oil is a leading commodity that can affect several macroeconomic and financial
variables as well as policy decisions in an economy. Hence, a multivariate frame-
work is needed to account for this multifactor relationship. Hamilton (1983) can
be considered as the pioneering study on the relationships between oil prices and
the macroeconomic variables. He examines the oil industry using annual data cov-
ering the time interval 1948–1972. According to the Granger causality results,
change in oil prices stimulates macroeconomic variables in the following period.
There is little evidence that dramatic changes in macroeconomic variables exhibit
an essential influence to predict the oil prices, but macroeconomic variables are
not found to be completely independent of oil shocks. Papapetrou (2001) aims to
identify the relationship between oil prices and economic development including
the stock market, industrial production, and employment. Papapetrou shows that
oil price shocks have a significant effect not only on industrial production but also
on the employment measures. Results also imply that industrial production and
employment are influenced negatively when an oil price shock emerged. More-
over, real stock returns are reduced in the case of positive oil price shocks. Smiech
and Papiez (2013) investigate a similar nexus with fossil fuel, exchange rate, and
stock market for the European region countries as variables. They found signifi-
cant relation between fuel prices and exchange rates. Similar results hold for the
links between stock market and other variables. They report bidirectional causal-
ity between variables for the period 2006–2008. Apart from the indicated period,
causality between variables appears insignificant. In a similar framework, Sesha-
iah and Behera (2009) examine Indian data to figure out the linkage between stock
prices, exchange rates, and crude oil prices. Data cover the period from 1991 to
2007 of daily frequency. The main finding of this paper is that all the variables are
cointegrated. Causality direction is from exchange rates to stock prices and from
crude oil prices to stock prices. In addition to this causality, exchange rates affect
stock prices. Besides this study, Basher et al. (2012) question the same nexus;
however, they use the MSCI emerging stock market index. They establish a struc-
tural vector autoregression (SVAR) model for this purpose and their monthly data
covers the period from 1988 to 2008. Their finding of the causality between vari-
ables partially supports the study of Seshaiah and Behera (2009) indicating that
oil prices have an effect on stock prices in the short run. On the other hand, the
direction of causality runs from oil prices to exchange rates in the short run. Par-
allel to this issue, Sarı and Soytaş (2006) examine the link between stock market
returns, crude oil prices, and interest rates in Turkey. They use time series anal-
ysis, variance decomposition, and generalized impulse response methodology in
order to investigate the relation between these variables. Their paper provides evi-
dence that oil price shocks do not have a significant effect on the Turkish stock
market. More recently, Olayeni et al. (2020) show that the stock market plays an
intermediary role in passing oil shocks to Nigeria–US exchange rate.

Overall, studies have relied on efficient market hypothesis or arbitrage pric-
ing theory to examine the link between stock returns, macroeconomic variables,
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and energy markets. Recent studies concentrate on the methodological advance-
ments that eliminate the spurious regression problem (Bhuiyan & Chowdhury,
2020). Evidence as to the existence and direction of causality between the vari-
ables in concern is mixed. Regardless of the framework in which these linkages
are examined, there is a gap in the literature regarding emerging markets. This
study attempts to help fill that gap.

3.3 Data

In this study monthly data of exchange rates (EXC), real stock returns (RSR),
crude oil prices (OIL), and manufacturing indices (MI) are used for 15 Morgan
Stanley Capital International (MSCI) emerging countries are used and data covers
the period from 1990:01 to 2016:12. Variables and data ranges are presented in
Table 3.1.

Exchange rates (EXC) are natural logarithms of local currencies per US dollar
for each country. Real stock return estimation is conducted following Papapetrou
(2001) and Sarı and Soytaş (2006). Stock return is computed by taking the differ-
ence of the natural logarithm of the related stock market indices (SMI) for each
country. Real stock market returns (RSR) are computed as the subtraction of nat-
ural logarithm of inflation rates (INF) calculated by Consumer Price Index from
the stock market returns. Formulations are constructed as the following:

Stock Return = LN (SMIt/ SMIt−1)

Real Stock Return = LN (SMIt/ SMIt−1) − LN (INF)

Bloomberg Stock Market Indices are presented in Table 3.2. Stock market index
values are in the form of local currencies per US dollar. Data source for EXC and
INF is the Bloomberg database.

West Texas Intermediate Spot Crude Oil Prices (OIL) are used and taken from
the source of Federal Reserve Bank of St. Louise database in US dollar. Brent
Prices (BOIL) are used for robustness check.

Another variable used to measure economic activity is the Manufacturing Index
(MI) used in the form of the natural logarithm. Data series are obtained for
the majority of the countries from the OECD Statistics. Manufacturing Index of
Philippines is taken from the national government data of the Philippines.

Table 3.3 presents the descriptive statistics for exchange rates (EXC), real stock
returns (RSR), manufacturing indices (MI), Crude oil prices (OIL), and Brent oil
prices (BOIL). Manufacturing index levels persist its upward trend since 1990
resulting in 79.80 average and closest to the maximum value, even though they
face with a sudden decrease in 2010:02. Crude oil prices and Brent oil prices
display a similar pattern by having an upward trend since 1998:12 but the rise in
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Table 3.1 Data ranges of emerging countries

Emerging
countries

Exchange
rate

Crude oil
prices

Brent oil
prices

Inflation
rate

Real stock
return

Manufacturing
Index

Brazil 01–1992
02–2019

01–1990
01–2019

01–1990
01–2019

01–1990
01–2019

02–1996
02–2019

01–1990
02–2019

Chile 10–1988
02–2019

01–1990
01–2019

01–1990
01–2019

01–1990
12–2018

02–1990
02–2019

01–1991
02–2019

Colombia 09–1992
02–2019

01–1990
01–2019

01–1990
01–2019

01–1990
01–2019

08–2002
02–2019

01–1990
12–2018

Czech
Republic

06–1993
02–2019

01–1990
01–2019

01–1990
01–2019

01–1992
02–2019

05–1994
02–2019

01–1991
01–2019

Greece 04–1989
02–2019

01–1990
01–2019

01–1990
01–2019

01–1990
02–2019

01–1990
02–2019

01–1990
01–2019

Hungary 06–1993
02–2019

01–1990
01–2019

01–1990
01–2019

01–1990
01–2019

02–1991
02–2019

01–1992
01–2019

India 11–1988
02–2019

01–1990
01–2019

01–1990
01–2019

01–1990
12–2018

08–1990
02–2019

04–1994
12–2018

Indonesia 11–1991
02–2019

01–1990
01–2019

01–1990
01–2019

01–1990
01–2019

01–1990
02–2019

01–1990
07–2018

Mexico 08–1989
02–2019

01–1990
01–2019

01–1990
01–2019

01–1990
01–2019

02–1994
02–2019

01–1990
01–2019

Philippines 11–1991
02–2019

01–1990
01–2019

01–1990
01–2019

01–1990
02–2019

01–1990
02–2019

01–2001
01–2019

Poland 06–1993
02–2019

01–1990
01–2019

01–1990
01–2019

01–1990
02–2019

07–1994
02–2019

01–1990
02–2019

Russia 07–1993
02–2019

01–1990
01–2019

01–1990
01–2019

01–1992
02–2019

10–1997
03–2018

01–1999
01–2019

South Africa 04–1989
02–2019

01–1990
01–2019

01–1990
01–2019

01–1990
01–2019

07–1995
02–2019

01–1990
01–2019

South Korea 08–1989
02–2019

01–1990
01–2019

01–1990
01–2019

01–1990
01–2019

01–1990
02–2019

01–1990
02–2019

Turkey 04–1989
02–2019

01–1990
01–2019

01–1990
01–2019

01–1990
01–2019

01–1990
02–2019

01–1990
01–2019

Table 3.2 Bloomberg Stock Market Indices

Country Stock Market Index Country Stock Market Index

Brazil IBRX Mexico MEXBOL

Chile IGPA Philippines PCOMP

Colombia COLCAP Poland WIG20

Czech Republic PX Russia IMOEX

Greece ASE South Africa FTSE/JSE

Hungary BUX South Korea KOSPI

India NSE (NIFTY50) Turkey BIST100

Indonesia JCI
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Table 3.3 Descriptive statistics

Country Variable Obs Mean Median St.Dev Max Min

Brazil Exchange rates 300 1.88 1.92 0.93 4.02 0.00

Real Stock Return 251 −1.83 −1.86 0.43 −0.34 −3.12

Manufac. Indices 324 94.67 92.47 13.99 118.66 57.31

Chile Exchange Rates 324 511.26 512.38 107.67 749.25 295.2

Real Stock Return 314 −1.55 −1.43 0.81 1.24 −3.42

Manufac. Indices 312 79.88 78.35 16.01 104.30 48.20

Colombia Exchange Rates 293 1918.5 1949 656.84 3292.9 691.7

Real Stock Return 173 −1.45 −1.51 0.43 −0.57 −2.28

Manufac. Indices 324 82.34 77.78 12.54 108.57 61.47

Czech
Republic

Exchange Rates 283 25.86 24.95 6.40 41.06 15.16

Real Stock Return 259 −0.88 −0.97 1.13 2.37 −2.65

Manufac. Indices 312 70.02 69.64 18.68 105.69 39.99

Greece Exchange Rates 324 0.83 0.80 0.12 1.18 0.63

Real Stock Return 279 −1.52 −1.37 0.92 3.73 −3.32

Manufac. Indices 324 123.2 127.04 14.72 150.30 93.20

Hungary Exchange Rates 283 210.3 215.30 50.70 310.27 91.76

Real Stock Return 292 −1.96 −1.94 1.10 2.33 −3.72

Manufac. Indices 300 64.05 68.74 25.10 103.67 23.13

India Exchange Rates 324 43.44 44.46 11.72 68.42 16.96

Real Stock Return 316 −1.93 − 1.97 0.52 0.84 −3.02

Manufac. Indices 273 62.04 55.34 27.20 106.92 23.23

Indonesia Exchange Rates 302 8047.79 9072 3597.21 14,950 1980

Real Stock Return 322 −2.02 −2.00 0.68 1.21 −4.69

Manufac. Indices 324 69.46 67.73 16.21 107.23 37.43

Mexico Exchange Rates 324 9.77 10.41 4.04 20.73 2.71

Real Stock Return 275 −1.83 −1.54 0.76 −0.77 −3.96

Manufac. Indices 324 80.25 82.94 13.15 103.98 54.55

Philippines Exchange Rates 302 42.04 43.88 9.86 56.35 23.40

Real Stock Return 321 −1.60 −1.72 0.72 1.61 −3.13

Manufac. Indices 192 150.29 152.45 20.05 180.70 110.90

Poland Exchange Rates 283 3.28 3.25 0.63 4.65 1.76

Real Stock Return 241 –1.34 −1.37 1.12 1.61 −3.71

Manufac. Indices 324 54.81 47.50 27.38 108.19 15.59

Russia Exchange Rates 282 26.83 28.61 15.83 75.45 0.99

Real Stock Return 231 −2.48 −2.40 0.65 −1.25 −4.98

Manufac. Indices 216 79.31 82.13 17.44 106.49 46.52

(continued)
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Table 3.3 (continued)

Country Variable Obs Mean Median St.Dev Max Min

South
Africa

Exchange Rates 324 6.92 6.84 3.05 15.89 2.52

Real Stock Return 257 −1.67 −1.77 0.61 1.68 −2.73

Manufac. Indices 324 89.45 90.11 10.25 111.01 66.91

South
Korea

Exchange Rates 324 1038.80 1085.74 195.57 1633 689

Real Stock Return 324 −1.10 −1.20 0.75 1.69 −2.37

Manufac. Indices 324 60.40 55.53 28.43 105.50 19.76

Turkey Exchange Rates 324 1.08 1.33 0.88 3.52 0.00

Real Stock Return 324 −3.14 −3.12 1.07 −1.33 −4.91

Manufac. Indices 324 55.98 46.75 22.36 106.10 27.01

For Each
Country

Oil Prices 324 46.64 32.64 30.52 133.88 11.35

Brent Oil Prices 324 47.58 30.91 34.17 132.72 9.82

the prices disrupted and conspicuous falls observed after mid-2008 and mid-2014
which explains the close value to the minimum estimation. For countries like Chile,
Columbia, Hungary, Indonesia, and South Korea standard deviations of exchange
rates are much higher than deviations in oil prices. These countries may be more
vulnerable to oil price shocks due to the highly sensitive local currencies. The
standard deviations of all manufacturing indices come close but fall short of the
deviations in the oil markets. This is expected as investors in oil markets can shift
their positions faster than firms can shift their production levels. Stock returns in
Czech Republic, Hungary, Poland, and Turkey have the largest variation compared
to other countries. Hence, their stock markets may be more sensitive to oil price
movements.

3.4 Methodology and Results

3.4.1 Toda Yamamoto Procedure

Following the Toda Yamamoto procedure, initially maximum order of the integra-
tion (dmax) for all the variables is determined by implementing a unit root test so
as to determine the order of integration for each country. Lag length (m) selection
is followed in the procedure, in which the Akaike criterion is the base criteria.
As indicated in Grendenhoff and Karlsson (1997), lag length selection is a crucial
issue to discuss and construct a model, since lag length criteria can mislead the
model estimations. They compare both Schwarz or Bayesian Information Criterion
(SC or BIC) and Akaike Information Criterion (AIC) to determine the appropriate
lag length. Their conclusion shows that the true lag length of the model is under-
estimated if Schwarz criterion is employed and interpretations about the result of
the model may not reflect the actual conclusions. When hypothesis testing and
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interpretations about a model are considered, the model may not provide reliable
results with the Schwarz lag length criterion selection. Although lag length spec-
ification of a model may not be accurately known whether the exact lag length is
selected or not, Akaike Information Criterion (AIC) is indicated to perform better
inferences than SC criterion.

Akaike (1974) defines the information criterion (AIC) as follows;

AIC = −2 log(maximum likelihood) + 2k

N

where k is the number of endogenous variables, N is the number of observations.

log(maximum likelihood) = −N

2
·
{
k(1 + log2π) + log

∣∣∣
∑

ε

∣∣∣
}

in which
∣∣∑ ε

∣∣ is defined as;

∣∣∣
∑

ε

∣∣∣ = det

(
1

N − (pk + d)

∑
εtε

′
t

)

where p is the lag included, d is exogenous intercept of C and
∑

εtε
′
t is the sum

of the estimates of residuals.1

Toda and Yamamoto (1995) states that unit root testing may suffer from the
pretest biases unless there exist robust time series processes to test. In order
to avoid these circumstances, Toda Yamamoto augmented VAR procedure for
Granger non-causality Wald test is used to inspect the relationship between
exchange rates, crude oil prices, real stock returns and manufacturing indices. Unit
root test is the first step of the Toda Yamamoto procedure to detect the maximum
order of integration.

3.4.2 Unit Root Tests

Basic unit root theory provides the simple AR (1) process:

yt = ρyt−1 + x′
tδ + εt

where xt is exogenous regressor, ρ and δ are parameters and εt is the white noise.
Mentioned in Dickey and Fuller (1979), model is constructed as below;

�yt = αyt−1 + x′
tδ + εt

1 Lag length criteria are decided by using Eviews tool and results are available upon request.
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where α = ρ – 1, in a generalized form with p lagged difference;

�yt = αyt−1 + x′
tδ + · · · β1�yt−1 + β2�yt−2 + . . . + βp�yt−p + υt

Even though ADF test is useful to find out the integration order of the variables, in
case of trend and mean appears for the time series to be analyzed more developed
tool is required. For this purpose, Elliott et al. (1996) has modified traditional
approach of Augmented Dickey-Fuller unit root test to improve and ensure the
interpretation of the result of testing. As indicated in the paper of Elliott et al.
(1996), new modified version of the model is obtained as follows;

Series of yt is replaced with the residual series of ytd = yt – β′zt where zt =
(1, t)′ is the linear trend. Thus, the modified model is obtained as;

�ydt = α0y
d
t−1 + α1�ydt−1 + α2�ydt−2 + . . . + αp�ydt−p + εt

DFGLS procedure is more powerful than ADF unit root testing due to de-trended
and de-meaned estimation framework.

Augmented Dickey-Fuller (ADF), Dickey-Fuller Generalized Least Square
(DFGLS), and Phillips Perron (PP) unit root tests are applied to find out the order
of integration and also to ensure whether the stationary condition is valid for the
variables. Unit root tests suggested by Phillips and Perron (1988) allow us an anal-
ysis independent from the lag length specification, and also exhibits more robust
form of the heteroscedasticity of the error term disturbances.

The hypotheses for ADF, DFGLS, and PP tests for stationarity determination
are defined as follows;

H0: series has a unit root
H1: series has no unit root

Rejection of the null hypothesis indicates that the series is stationary. Akaike Infor-
mation Criterion (AIC) is selected to determine the lag length for ADF and DFGLS
unit root tests for each of the series. Newey-West Bandwidth automatic selection
is preferred for PP unit root testing.

In the level series ADF unit root results show that among 15 emerging coun-
tries, Brazil exhibits stationary exchange rate and real stock return series in level
by rejecting the null hypothesis at 1% significance. Exchange rates of India, Rus-
sia, Turkey and real stock return of Indonesia share the same interpretation with
Brazil standing at a 1% significant level to reject the null hypothesis. Only the
manufacturing index series of Czech Republic stands in the 5% significant level
which remains to be sufficient to reject the null hypothesis and obtained as station-
ary. All the series for the remaining countries preserve to be nonstationary even at
the significant level of 10%. For these countries, the null hypothesis is failed to be
rejected and the series have a unit root.

PP unit root results for level indicates that variables for the emerging countries
do not satisfy the stationary condition mostly as parallel to the other unit root test
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results. Exchange rates of Brazil, India, Russia, and Turkey are found to be sta-
tistically meaningful at 1% significant level and the null hypothesis of having a
unit root is rejected. Hungary, India, and Poland do not have a unit root at 5% sig-
nificant level for the variable of exchange rates. Exchange rates of the remaining
countries are not detected to be statistically meaningful even at 10% significant
level and the null hypothesis for this variable is failed to be rejected. Real stock
returns of the countries namely, Brazil, Chile, Czech Republic, Hungary, India,
Indonesia, Philippines, Russia, and South Korea are found to be meaningful at 1%
significant level implying that the variable is stationary for the denoted countries.
South Korea and Turkey share the same results with other emerging countries
differently at 5% significant level and the null hypothesis is rejected. Remain-
ing are not performed to be statistically significant even at 10%. Moreover, the
null hypothesis for manufacturing indices is also tested and the main findings are
observed for Czech Republic, Indonesia, and Turkey to be nonstationary at 1%
significant level. The null hypothesis of emerging countries Colombia, Greece,
and South Africa is rejected to have a unit root at 5% significant level. Remaining
countries are observed to be nonstationary.

In the level series according to DFGLS test results, 11 countries fail to reject the
null hypothesis at 10% significant level implying that series have a unit root and
stationary condition is not satisfied. For the remaining three countries, namely for
Czech Republic and South Korea real stock return series is attained to be stationary
and reject the null hypothesis at 5% significant level. In the case of Indonesia,
series of real stock returns are obtained to be stationary. The null hypothesis is
rejected at 1% significant level and stock returns are proved to deny the presence
of a unit root.

ADF, DFGLS, and PP unit root results consistently point out nonstationarity of
oil prices at 10% significant level.

Regarding first differences, variables are observed to be stationary using ADF,
DFGLS, and PP unit root tests. ADF and PP unit root results are consistent with
each other except for the stock market returns in Chile and Greece. Unit Root test
results for the variable in first differences I(1) are presented in Tables 3.4, 3.5, and
3.6. Stationarity is ensured with all applied unit root tests and the null hypothesis
of having a unit root is rejected mostly at 1% significant level.

3.4.3 VAR Stability Detection

VAR (m + n) is established to check the stability of the augmented VAR. Accord-
ing to the VAR (m + n) model, stability of the roots of VAR model is ensured.
Diagnostic tests are monitored to check autocorrelation, heteroscedasticity, and sta-
bility of the parameters in the form of VAR equations. First m parameters of other
variables in the equations are conducted by Wald tests and causality inferences are
interpreted by the results. Causality relations are defined as change in one variable
lead to a change in other dependent variable. Generalized impulse responses also
obtained to get a general picture of the variables.
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Table 3.4 Unit root ADF and PP test results

Country Manufacturing
Index

Exchange rate Real stock return

Test t-stat p-value t-stat p-value t-stat p-value

Brazil Intercept ADF −3.624 0.006 −5.385 0.000 −20.738 0.000

PP −10.288 0.000 −18.310 0.000 −22.605 0.000

Trend ADF −3.925 0.012 −5.413 0.000 −20.717 0.000

PP −11.752 0.000 −18.333 0.000 −22.797 0.000

Chile Intercept ADF −16.058 0.000 −1.113 0.712 −18.802 0.000

PP −16.035 0.000 −12.809 0.000 −28.937 0.000

Trend ADF −16.062 0.000 −0.883 0.955 −18.969 0.000

PP −16.027 0.000 −12.782 0.000 −30.289 0.000

Colombia Intercept ADF −15.240 0.000 −13.274 0.000 −5.684 0.000

PP −15.327 0.000 −13.339 0.000 −32.409 0.000

Trend ADF −15.290 0.000 −13.266 0.000 −5.675 0.000

PP −15.330 0.000 −13.325 0.000 −32.378 0.000

Czech Rep Intercept ADF −16.390 0.000 −14.335 0.000 −4.352 0.000

PP −16.390 0.000 −14.289 0.000 −27.234 0.000

Trend ADF −16.381 0.000 −14.317 0.000 −4.315 0.003

PP −16.381 0.000 −14.270 0.000 −27.613 0.000

Greece Intercept ADF −16.830 0.000 −3.111 0.027 −3.835 0.003

PP −16.813 0.000 −15.583 0.000 −35.737 0.000

Trend ADF −16.811 0.000 −3.091 0.111 −3.910 0.013

PP −16.794 0.000 −15.669 0.000 −36.001 0.000

Hungary Intercept ADF −8.315 0.000 −17.084 0.000 −6.723 0.000

PP −16.525 0.000 −17.234 0.000 −25.818 0.000

Trend ADF −8.374 0.000 −16.938 0.000 −6.853 0.000

PP −16.552 0.000 −17.086 0.000 −26.111 0.000

India Intercept ADF −4.048 0.001 −4.863 0.000 −3.817 0.003

PP −16.404 0.000 −19.394 0.000 −25.949 0.000

Trend ADF −4.156 0.006 −4.854 0.001 −4.011 0.010

PP −16.488 0.000 −19.361 0.000 −26.212 0.000

Indonesia Intercept ADF −4.829 0.000 −3.949 0.002 −4.417 0.000

PP −15.362 0.000 −13.615 0.000 −43.779 0.000

(continued)
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Table 3.4 (continued)

Country Manufacturing
Index

Exchange rate Real stock return

Test t-stat p-value t-stat p-value t-stat p-value

Trend ADF −4.900 0.000 −3.936 0.012 −4.415 0.003

PP −15.354 0.000 −13.601 0.000 −44.003 0.000

Mexico Intercept ADF −9.295 0.000 −6.730 0.000 −7.511 0.000

PP −16.007 0.000 −17.698 0.000 −19.633 0.000

Trend ADF −9.313 0.000 −6.603 0.000 −7.504 0.000

PP −16.071 0.000 −17.673 0.000 −19.632 0.000

Philippines Intercept ADF −8.677 0.000 −10.268 0.000 −4.975 0.000

PP −15.916 0.000 −16.671 0.000 −13.478 0.000

Trend ADF −8.742 0.000 −10.236 0.000 −14.229 0.000

PP −15.917 0.000 −16.634 0.000 −14.222 0.000

Poland Intercept ADF −8.175 0.000 −8.809 0.000 −23.010 0.000

PP −15.664 0.000 −16.480 0.000 −22.336 0.000

Trend ADF −15.676 0.000 −8.791 0.000 −22.974 0.000

PP −15.674 0.000 −16.443 0.000 −22.307 0.000

Russia Intercept ADF −7.154 0.000 −8.532 0.000 −19.659 0.000

PP −9.954 0.000 −15.011 0.000 −20.084 0.000

Trend ADF −7.450 0.000 −8.574 0.000 −19.644 0.000

PP −10.211 0.000 −14.985 0.000 −20.135 0.000

South
Africa

Intercept ADF −17.589 0.000 −5.817 0.000 −10.813 0.000

PP −17.606 0.000 −12.592 0.000 −28.073 0.000

Trend ADF −17.565 0.000 −5.810 0.000 −10.798 0.000

PP −17.582 0.000 −12.575 0.000 −28.033 0.000

South
Korea

Intercept ADF −16.720 0.000 −7.293 0.000 −18.596 0.000

PP −16.715 0.000 −20.384 0.000 −18.596 0.000

Trend ADF −16.709 0.000 −7.247 0.000 −18.661 0.000

PP −16.702 0.000 −20.351 0.000 −18.661 0.000

Turkey Intercept ADF −4.381 0.000 −7.559 0.000 −5.099 0.000

PP −14.037 0.000 −27.447 0.000 −29.371 0.000

Trend ADF −14.250 0.000 −7.546 0.000 −5.203 0.000

PP −14.360 0.000 −27.402 0.000 −29.832 0.000

Maximum lag length is determined by Akaike information criterion for the ADF test. Newey-
West Bandwidth is automatic selection criterion chosen to determine the lag length for PP test.
Significance intervals are as follows: p < 0.01***, p < 0.05**, p < 0.1*
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Table 3.5 DFGLS Unit Root Test results

Country Exchange rates Real stock return Manufacturing Index

DFGLS
statistic

Lag DFGLS
statistic

Lag DFGLS
statistic

Lag

Brazil Intercept −3.561*** 3 2.540** 6 −1.719* 12

Trend −3.642*** 3 −5.016*** 3 −7.565*** 3

Chile Intercept −15.876*** 0 −0.024 11 −1.729* 10

Trend −15.981*** 0 −1.273 11 −2.760* 10

Colombia Intercept −2.812*** 13 −3.102*** 4 −2.113** 6

Trend −15.171*** 0 −7.765*** 1 −3.538*** 6

Czech
Republic

Intercept −7.416*** 2 −1.990** 7 0.034 15

Trend −7.960*** 2 −1.406 7 −1.355 15

Greece Intercept −16.811*** 0 −0.734 13 −0.960 14

Trend −16.831*** 0 −1.916 13 −2.142 14

Hungary Intercept −1.154 15 −1.922* 12 −4.597*** 6

Trend −7.290*** 2 0.43 12 −6.855*** 4

India Intercept −3.883*** 14 −2.585** 11 −1.478 10

Trend −4.149*** 14 −1.602 11 −2.980** 10

Indonesia Intercept −4.836*** 13 −2.523** 15 −0.427 13

Trend −4.877*** 13 −2.278* 15 −1.576 13

Mexico Intercept −8.891*** 3 −0.555 14 −1.592 13

Trend −9.301*** 3 −1.206 14 −2.766* 13

Philippines Intercept −8.591*** 2 −9.268*** 1 −4.896*** 3

Trend −8.631*** 2 −1.088 16 −5.106*** 3

Poland Intercept −3.810*** 5 −1.053 6 0.328 15

Trend −7.383*** 2 −2.473 6 −0.757 15

Russia Intercept −7.027*** 2 −8.309*** 13 −0.742 12

Trend −7.105*** 2 −8.441*** 13 −2.307 12

South
Africa

Intercept −17.162*** 0 −1.954** 5 −10.100*** 2

Trend −17.383*** 0 −3.376** 3 −10.661*** 2

South
Korea

Intercept −4.468*** 8 −4.545*** 12 −3.750*** 5

Trend −16.499*** 0 −6.158*** 11 −11.562*** 1

Turkey Intercept −2.005** 14 −0.309 16 −1.682* 16

Trend −14.204*** 0 −1.745 16 −2.973** 15

Maximum lag length is determined by Akaike information criterion for DFGLS test. Significance
intervals are as follows: p < 0.01***, p < 0.05**, p < 0.1*
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Table 3.6 Oil Prices Unit Root results

Variable Test t-stat p-value/[lag]

OIL Intercept ADF −13.027 0.0000

PP −12.484 0.0000

DFGLS −9.444*** [1]

Trend ADF −13.007 0.0000

PP −13.458 0.0000

DFGLS −12.496*** [0]

BOIL Intercept ADF −13.524 0.0000

PP −13.062 0.0000

DFGLS −2.000** [10]

Trend ADF −13.504 0.0000

PP −13.037 0.0000

DFGLS −3.264** [10]

Maximum lag length is determined by Akaike information criterion for DFGLS test. Significance
intervals are as follows: p < 0.01***, p < 0.05**, p < 0.1*

Roots of the related VARs are monitored to handle the stability condition. VAR
equations are established according to the order of integration and supported the
lag length criteria. Equations used in the analysis are denoted as below.

First VAR equation is constructed as;

EXC =
m+n∑
s=1

αsEXCt−s +
m+n∑
s=1

βsOILt−s +
m+n∑
s=1

γsRSRt−s

+
m+n∑
s=1

θsMIt−s + Dummy variable + C

where α, β, γ, θ are the coefficients of variables respectively exchange rates, crude
oil prices, real stock returns, and manufacturing indices. m is the maximum order
of integration for each of the variables as defined formerly and n is the optimum
lag length.

Causality direction from crude oil prices to exchange rates is estimated by veri-
fying joint hypothesis, which implies that the first m coefficients of crude oil prices
(βs) are not jointly equal to zero. Respectively, causality from the real stock return
to exchange rates (γ s) and manufacturing indices (θ s) to exchange rates proceed
in a similar fashion.
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Second VAR equation is constructed as;

OIL =
m+n∑
s=1

αsEXCt−s +
m+n∑
s=1

βsOILt−s

+
m+n∑
s=1

γsRSRt−s +
m+n∑
s=1

θsMIt−s + Dummy variable + C

Causality from all variables to crude oil prices to other variables are detected by
using this equation and joint hypothesis tests.
Third VAR equation is constructed as;

RSR =
m+n∑
s=1

αsEXCt−s +
m+n∑
s=1

βsOILt−s +
m+n∑
s=1

γsRSRt−s

+
m+n∑
s=1

θsMIt−s + Dummy variable + C

Fourth VAR equation is constructed as;

MI =
m+n∑
s=1

αsEXCt−s +
m+n∑
s=1

βsOILt−s +
m+n∑
s=1

γsRSRt−s

+
m+n∑
s=1

θsMIt−s + Dummy variable + C

Breakpoints for each of the VAR equations allow specifying the dummy variables
which are added to equations to ensure not to have separate serial correlations
in subgroups with the breakpoints and enable them to have a single regres-
sion line. Breakpoint determination is used to construct dummy variables in the
VAR equations and dummy variables are defined to be independent variables of
each equation as denoted in VAR equations not to distort the outcomes. Quandt-
Andrews breakpoint test is conducted for each of the VAR equations and results
are denoted in Table 3.7.

After the stability of the roots and employing VAR equations, we proceed with
autocorrelation, heteroscedasticity, and parameter stability tests. Breusch-Godfrey
serial correlation LM test is used to detect whether there is a relationship between
the variable and its lagged history. The hypotheses of Breusch-Godfrey test are as
follows;

H0: there is a serial correlation
H1: there is no serial correlation
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Table 3.7 Break points of VAR equations

Countries Equation Structural break
point

Countries Equation Structural break
point

Brazil EQN 1 1999–07 Mexico EQN 1 1998–01

EQN 2 2000–10 EQN 2 1999–01

EQN 3 1999–09 EQN 3 1998–10

EQN 4 2009–01 EQN 4 2000–08

Chile EQN 1 2008–11 Philippines EQN 1 2004–05

EQN 2 2002–09 EQN 2 2006–05

EQN 3 2009–04 EQN 3 2014–01

EQN 4 2013–04 EQN 4 2005–12

Colombia EQN 1 2014–11 Poland EQN 1 2008–08

EQN 2 2008–08 EQN 2 2008–08

EQN 3 2007–05 EQN 3 2003–05

EQN 4 2012–11 EQN 4 2003–03

Czech Republic EQN 1 2008–08 Russia EQN 1 2014–04

EQN 2 2007–09 EQN 2 2009–01

EQN 3 2013–01 EQN 3 2001–12

EQN 4 2000–02 EQN 4 2001–12

Greece EQN 1 2008–08 South Africa EQN 1 2002–01

EQN 2 2008–10 EQN 2 2007–09

EQN 3 2009–08 EQN 3 2003–12

EQN 4 1993–11 EQN 4 2008–09

Hungary EQN 1 2008–08 South Korea EQN 1 1998–01

EQN 2 2008–08 EQN 2 1999–04

EQN 3 2011–02 EQN 3 1999–08

EQN 4 2003–03 EQN 4 2009–02

Indonesia EQN 1 1998–03 Turkey EQN 1 2001–02

EQN 2 2001–10 EQN 2 1995–08

EQN 3 2000–11 EQN 3 2002–03

EQN 4 1998–04 EQN 4 1997–04

India EQN 1 2013–05

EQN 2 2013–09

EQN 3 1999–05

EQN 4 2011–04
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When the probability of Chi-Square is detected to be below 5% significant level,
the null hypothesis is rejected. It is deduced that serial correlation is not observed
and each variable can be defined independently from each other. Variance of the
residuals may not be distributed proportionally and stability of the equations can be
disrupted for this reason. In order to investigate and observe the distribution of the
residuals to check the reliability of the estimations, a heteroscedasticity examina-
tion is performed. Breusch-Pagan-Godfrey heteroscedasticity test is conducted for
each VAR equation. The hypotheses of Breusch-Pagan-Godfrey heteroscedasticity
test are defined as;

H0: residuals are homoscedastic
H1: residuals are heteroscedastic

If the probability value of Chi-Square is obtained below 5% significant level, the
null hypothesis of having a homoscedastic distribution of the residuals is rejected.2

Residual tests are useful to take into account since they provide the difference
between the observed (actual) value of the exogenous variable and the expected
(fitted) value. Heteroscedasticity problems can be detected with the graphical
depictions of the VAR equation residuals.

Evaluation of the results exhibits that there exist autocorrelation and het-
eroscedasticity problems in most of the VAR equations which cause to have a
tendency to interpret the outcomes in a biased manner or proceed with an inef-
ficient estimation of parameters. Huber-White and Newey-West estimators are
utilized to derive more robust error variances.

Huber (1967) demonstrates the consistency of the standard errors in a max-
imum likelihood to fit the model in asymptotic normality. The study of White
(1980) about heteroscedasticity issue completes the paper of Huber. White (1980)
aims to provide an alternative estimation to the covariance matrix to be able to
handle with misleading interpretation due to heteroscedasticity. Even though it is
not possible to remove the heteroscedasticity factor completely from the model,
combined approaches allow having a more proper implication about the results.

Regression equations exposed to autocorrelation problems also have a tendency
to give distorted inferences about the results. Newey and West (1987) suggest
estimators to overcome autocorrelation by providing a more consistent covari-
ance matrix of the standard errors. For these cases, HAC (Newey-West) covariance
method is selected to proceed with more appropriate interpretations.

Parameter stability tests are conducted by Cumulative Sum (CUSUM) and
Cumulative Sum of Squares tests to detect if the parameters are changing
systematically or abruptly.

2 Residual Results of the VAR Equations and the diagnostic tests are available upon request.
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3.4.4 Wald Test Results

Causality relations which are examined according to the Toda Yamamoto proce-
dure in both directions are analyzed based on the Wald test results provided in
Table 3.8.

The hypotheses for Wald coefficient tests to detect the causality between each
variable are as follows;

H0: first m parameters of other variable are equal to zero
H1: first m parameters of other variable are not equal to zero

Causality relations those having Chi-square probability value below 5% significant
level are considered to be statistically significant. The defined null hypothesis of
the Wald coefficient test is rejected which implies that first m parameters of other
variables are not equal to zero. Wald test result for the tested variable and country
concluded that causality relation between two variables exists.

Since emerging countries hold dependent economies to foreign sources, having
close relations with foreign investors is regarded as an opportunity for the devel-
opment of a country. Regarding the economic dependence, it is expected that a
shock in exchange rate can be received with a change in other variables conducted
for this study. Furthermore, industry of the emerging countries can rely on mostly
oil-dependent companies. As the result of this dependence, it is anticipated that
there exists a strong relationship between oil prices and the production both from
oil prices to production and from production to oil prices.

As reported in Table 3.8, test results reveal that the strongest causality rela-
tionship is observed running from exchange rates to manufacturing indices. Eight
emerging countries namely Brazil, Colombia, Indonesia, Mexico, Philippines,
Poland, South Korea, and Turkey supports causality claim with the significant
probability values. Nevertheless, Colombia, India, and South Korea are the only
countries with a reverse causality direction mostly standing at the 1% significant
level.

Furthermore, causality from manufacturing indices to oil prices is observed to
be the second strongest linkage with six emerging countries when the general pic-
ture about the outcomes are evaluated. Brazil, Chile, Mexico, Poland, Russia, and
South Korea exhibit meaningful causality relations for the indicated direction. In
the reverse direction from crude oil prices to manufacturing indices, five emerg-
ing countries namely Brazil, Hungary, Philippines, Poland, and Russia appear to
have a close relationship between the variables in the mentioned direction. On the
contrary, few relationships between the variables show statistically insignificant or
weaker outcomes. None of the emerging countries is estimated to be meaningful
for the causality from manufacturing indices to real stock returns. Conversely, only
Indonesia shows a considerable linkage from real stock returns to manufacturing
indices at 5% significant level.
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Meaningful linkage from crude oil prices to exchange rates is observed only
for South Africa; however, in the reverse direction, which is defined as the causal-
ity from exchange rates to crude oil prices, emerging countries Brazil, Colombia,
Greece, Russia, and South Korea are observed to have meaningful relations in
the long run. Additionally, Poland is found to be the unique country to be evi-
denced to have a causal relation from real stock returns to exchange rates at 5%
significant level. Whereas, in the opposite direction, 4 emerging countries indi-
cate a statistically significant causal relationship from exchange rates to real stock
returns, which are evidenced as Brazil, Indonesia, Mexico, and South Korea. These
empirical results and claims are confirmed with the work of Chkili and Nguyen
(2014) for the BRICS countries proving the statement that real stock returns are
not affected by exchange rate changes.

Last causal relation considered between real stock returns and crude oil prices
can be explained in the same framework. Linkage among emerging countries is
observed with the causal direction from crude oil prices to real stock returns at the
5% significant level of Wald test result only for South Korea. Remaining emerging
countries do not contribute to the results with a potential causality relation. Results
are consistent with the analysis of Sarı and Soytaş (2006) conducted primarily for
Turkey that oil price shocks do not explain the change in the real stock returns.
On the other hand, real stock returns are evidenced to Granger cause crude oil
prices at 5% significant level for three emerging countries. Causality results of
India, Indonesia, and Turkey confirm the relation in the long run. This is in line
with Soytas and Oran (2011) results for Turkey.

3.4.5 Generalized Impulse Response Results

In addition to causality analyses, as discussed in Lüktepohl (2005), impulse
response analysis provides the general picture of the dependences of the variables
to each other. Generalized impulse response function is derived for each country
to observe how one variable affects others and how reaction changes over time the
horizon.

Although the response of crude oil prices to real stock returns is positively plot-
ted for all the countries conducted except for Brazil and the Philippines, causality
results are estimated to be insignificant.3 Only South Korea is found to be statis-
tically significant by holding the causality relation. The initial response of Brazil
to the same impulse impacts negatively and the response turns to be positive in
period 4. Similarly, in the case of the Philippines, initial response starts in the
negative region and changes its direction in period 7.

Responses of crude oil prices to exchange rates are observed to be positive
assisting to explain the causal relationship between the denoted variables in the
long run. South Africa is the only emerging country having an analysis of causality

3 Impulse response graphs for emerging countries are available upon request.
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relation that is evidenced to be significant. Despite its close relationship between
crude oil prices and exchange rates, responses of oil prices are observed to be
negative as time period progresses.

Remarkably, Wald coefficient test results state that meaningful causal relations
are not estimated between manufacturing indices and real stock returns in the long
run however response of real stock return to manufacturing indices changes varies
from country to country. Any shock in manufacturing indices is received with a
negative response for the countries Greece and the Philippines. On the other hand,
responses of India, Mexico, Russia, South Africa, South Korea, and Turkey are
captured to be positive to real stock returns. Plotted graphs show that responses
alter their directions in the confidence intervals for the remaining countries. Initial
response of Brazil changes its direction to positive in the second period. Simi-
lar frameworks are observed in Chile, Hungary, and Turkey but they change their
direction of the responses in different periods respectively in period 3, period 4,
and period 6. Positive impact of Colombia alters its direction two times in the
second time horizon. Similarly, real stock returns responses to any unanticipated
shock in any manufacturing indices of Poland start on the positive side and changes
its direction two times in period 3. Responses of Indonesia begin its path in nega-
tive and immediately turn to positive in period 1. In period 5, responses alter two
times and continue its path on the positive side over the time horizon.

3.4.6 Robustness Checks

Conclusions derived from the defined variables are replicated with Brent oil prices
to check for robustness. Outputs are mostly consistent with previous analysis.4

Conducting the relationship between Crude oil Brent oil prices and exchange rates,
causality from Brent oil prices to exchange rates results holds for all the countries
as in the test of crude oil prices. Causality from real stock returns to exchange
rates keeps having a weak relationship claim with the former argument. Statement
that draws a conclusion as no strong relationship between real stock returns and
crude oil prices is found to be valid also for Brent oil prices. Besides, the linkage
between manufacturing indices and Brent oil prices remain the same as interpreted
for most of the countries, but the results of Colombia, Mexico, and South Korea
indicate contradictory results. Outcomes of the causality between real stock returns
and manufacturing indices do not distinguish from previous results when WTI was
used.

4 Causality results estimated with Brent Crude oil prices are available upon request.
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3.5 Conclusion

This paper investigates the relationship between exchange rates, real stock returns,
crude oil spot prices, and manufacturing indices as a representation of the produc-
tion factor of the emerging countries. Toda Yamamoto procedure is pursued by
checking the order of integration for each country, and VAR equations are con-
ducted to establish the significant causality relations between variables showing
the long-run relationship.

One of the most important relationships for emerging countries that allow
revealing more insight interpretations about countries is the linkage between man-
ufacturing indices and WTI spot oil prices. According to the findings conducted
in this paper, not only from manufacturing indices to oil prices but also on the
contrary direction, change in one variable affects other variables in a meaningful
measure. Analysis of Ayres et al. (2013) supports the importance of the energy
prices for economic growth estimated in this paper as the manufacturing indices.
However, no significant relation is found for Colombia, Czech Republic, Greece,
Hungary, India, Indonesia, Philippines, South Africa, and Turkey that can be
explained as the dependence of the economy to outsources, which can be expressed
as the foreign investments, or not having a powerful industrial production process
to be affected by the oil price changes.

As examined in the paper of Fratzscher et al. (2014), fluctuations in foreign
currency put pressure on importers to adapt their budget decisions to be voluntary
to produce or make investments. Exchange rates are expected to have a poten-
tial relation with the production of the emerging countries that can be associated
with the non-US dollar pricing factor of production processes. Causal relationship
results for manufacturing indices and exchange rates seem to support the analysis
made by Fratzscher et al. (2014). In Brazil, Colombia, Indonesia, Mexico, Philip-
pines, Poland, South Korea, and Turkey there exists a strong causal relation from
exchange rates to manufacturing indices. Countries not having a linkage between
variables may not have an accessible trade opportunity or may not have effec-
tive channels for importation and exportation. The inverse relationship appears to
be not as significant as the former relationship for most of the countries. Since
manufacturing indices and crude oil prices comprise close relationships explain-
ing the effects of each other, exchange rate movements can be interpreted with
a similar approach stated by Fratzscher et al. (2014). Wald test causality results
for exchange rates and crude oil prices verify the mentioned relation by obtain-
ing significant statistical measures for the emerging countries of Brazil, Colombia,
Greece, Russia, and South Korea.

Another result found to be crucial to denote is the linkage between real stock
returns and exchange rates. Brazil, Indonesia, Mexico, and South Korea present
meaningful causal relation from exchange rates to real stock returns, which can
be explained by holding financial development with close investor contact for the
stated countries.

For none of the emerging countries there is evidence of causality running from
manufacturing indices to real stock returns. Conversely, only Indonesia shows
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a significant link from real stock returns to manufacturing indices. Findings of
manufacturing indices and real stock returns are in line with the research of Hon-
droyiannis and Papapetrou (2001) supporting the claim that association between
the industrial production and stock market returns is not significant to be linked.
Their empirical results demonstrate that economic activity do not have an influence
on the stock market returns. Similarly, meaningful linkage from crude oil prices to
exchange rates is observed only for South Africa; however, in the reverse direction,
which is defined as the causality from exchange rates to crude oil prices, emerging
countries Brazil, Colombia, Greece, Russia, and South Korea are observed to have
meaningful relations in the long run.

This study extends the literature on the energy, production, stock returns, and
exchange rate nexus in emerging economies. It combines previous empirical liter-
ature conducted on different parts of the nexus to improve our understanding with
a more complete picture and to provide insights to policy makers in the selected
emerging markets. Causal relationships provide an overall view of the dynamic
links between the variables in emerging markets. In that respect, this study contains
many financial and development policy implications.
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4How Do Energy Market Shocks Affect
Economic Activity in the US Under
Changing Financial Conditions?

Mehmet Balcilar, Ojonugwa Usman, and David Roubaud

4.1 Introduction

The evidence of energy poverty arising from the turmoil in the Middle East and
global warming has demonstrated large fluctuations in the energy market vis-à-vis
energy prices in the U.S economy.1 Economic theory predicts that a shock to
the energy market has negative consequences on the macroeconomy through
an increase in the level of inflation and unemployment as well as deteriorating
economic activities. However, following a classic paper by Hamilton (1983),
a conclusion had emerged from a voluminous empirical literature, confirming
the theoretical standing that oil price changes negatively affect macroeconomic
aggregates (see Cuñado & Pérez de Gracia, 2015; Ferderer, 1996; Jimenez-
Rodriguez & Sanchez, 2005; Lardic & Mignon, 2006; Mork, 1989; Mork et al.,
1994; Papapetrou, 2001). In extending the literature, Kilian (2008) accounts for
not only the effects of the oil price shock but also supply and demand shocks
in the oil market using a shock to oil production as a proxy for supply shock
and shipping prices as a proxy for demand shock. This is because oil prices are

1 As argued in the literature, oil prices are a major significant determinant of energy prices, hence
most studies apply only oil prices as all classifications of energy prices are strongly correlated (see
Balcilar et al., 2019).
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directly driven by demand and supply shocks, which may have significant effects
on the economy. To classify demand and supply shocks, one commonly associated
problem is the failure to classify periods that oil prices witness small increases
(i.e. below a certain threshold value) due to a fall in the quantity of crude oil
produced. These small price increases are as powerful supply shocks like those
caused by major disruptions like a natural or political event (see Ready, 2018).

With the 2007–2008 global financial crisis, the financial market instability has
become a distinguishing feature of the world economy. This instability is more evi-
dent in the US economy with all its attendant consequences demonstrated clearly
on the cost of credit and decisions taken by households, business firms, and finan-
cial institutions. These consequences have not only led to credit market disruptions
but also powerfully generating uncertain shocks in the economy. Recently, a sig-
nificant amount of empirical research has revealed that financial markets generate
shocks that have a recessionary effect even more than shocks from the business
cycle (see Alessandri & Mumtaz, 2019; Arellano et al., 2010; Balcilar & Rangan
et al., 2021; Caggiano et al., 2014; Caldara et al., 2016; Stock & Watson, 2012).

Given that the question of how financial market shocks affect economic activity
is central to macroeconomic analysis (see Balcilar et al., 2016; Balcilar & Rangan
et al., 2021; Caldara et al., 2016), there is renewed interest from researchers and
policymakers in the dynamic role of financial shocks over the oil price shocks–out-
put growth nexus and how these shocks have reshaped macroeconomic outcomes.
In this paper, we investigate the effects of economic uncertainty and energy mar-
ket shocks on economic activity in the US under changing financial conditions. In
other words, we examine the impact of uncertainty and energy market shocks
in the US by considering whether economic activity responds differently dur-
ing periods characterized by “normal” and “crisis” financial conditions. To reach
this end, we extend the literature by augmenting the Kilian’s (2008) framework
with oil shocks identification scheme newly proposed by Ready (2018).2 In this
classification, demand shocks are identified as the index of oil-producing firm
returns that are orthogonal to unexpected changes in the Chicago Board Options
Exchange (CBOE) volatility index (VIX) while supply shocks are the remaining
oil price variations. Risk shocks are captured by innovations to the VIX index
(VIX). Therefore, our study contributes significantly to the literature by not only
examining the impact of economic uncertainty and energy market shocks on the
US economic activity but also decomposing oil prices shocks into oil supply, oil
demand, and risk shocks under different financial conditions. Moreover, this study
(to the best of our knowledge) is the first to consider the energy market shocks-
economic activity nexus during different periods of financial conditions/regimes
within the framework of a nonlinear dynamic model. Particularly, by using a

2 Ready (2018) argues that there are three variables required to construct demand and supply
shocks: an oil-producing firms index, a measure of oil price changes, and a proxy for changes in
expected returns. For robustness, Ready proposes “the World integrated oil and gas producer index,
1-month returns on the second nearest maturity NYMEX crude–Light Sweet Oil Contract, and VIX
Index”.
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Bayesian threshold vector autoregressive (TVAR) model with stochastic volatil-
ity component, we allow for modeling the time-varying effect of energy market
shocks and uncertainties stemming directly from the volatility of the structural
shocks in the economy. Furthermore, unlike the method of generalized autoregres-
sive conditional heteroscedasticity (GARCH) which is deterministic, our approach
allows time-varying stochastic volatility shocks. Hence, it provides more robust
outcomes compared to the GARCH approach commonly used.

The remainder of this study is structured as follows: Sect. 4.2 which follows the
introduction undertakes a review of related literature. Section 4.3 presents the data
description and econometric methodology used, which is based on the Bayesian
threshold VAR model with stochastic volatility. Section 4.4 analyses the empirical
results while Sect. 4.5 contains concluding remarks and policy implications.

4.2 Review of Related Literature

The literature on energy market shocks seems to almost entirely support a hypoth-
esis that shocks to energy prices hurt economic activity through increases in the
level of inflation and unemployment (Cunado & Pérez de Gracia, 2005; Ferderer,
1996; Hamilton, 1983; Jimenez-Rodriguez & Sanchez, 2005; Lardic & Mignon,
2006; Lee et al., 1995; Mork, 1989; Mork et al., 1994; Papapetrou, 2001). There
are some reasons why energy price shocks affect economic activity. One reason
boils down to the fact that a change in energy prices has a positive contagious
effect across other prices since these prices are commonly faced by households and
firms. This, in turn, increases the level of inflation and unemployment and hence
reduces macroeconomic performance (Davis & Haltiwanger, 2001; Edelstein &
Kilian, 2009; Herrera et al., 2019; Kilian, 2008; Punzi, 2019; Ramey & Vine,
2006). Second, energy prices are usually characterized by sharp and sustained
increases, which affect the investment decision of firms and households (Kilian,
2008).

While energy market shocks have negative effects on the macroeconomy, there
are channels through which this occurs. One of these channels is through the neg-
ative effect of oil price shock on the level of investment (see Baumeister & Kilian,
2016; Kilian, 2014; Lee et al., 2011). A theoretical model developed based on
a firm-level investment theory relates oil price uncertainty shock to a decline in
current investment (see Aguerrevere, 2009; Bernanke, 1983; Triantis & Hodder,
1990). In testing this theory, Elder and Serletis (2010) show that cyclical fluctua-
tions in the macroeconomic levels are attributed to firm-level investment decisions.
Lee et al. (2011) examine the effect of oil price shocks on investment level by
focusing on the direct effect of oil price volatility based on firm sales growth. The
findings demonstrate that oil price shocks affect investment negatively. This finding
is contrasted with those documented by Kilian (2014) and Baumeister and Kilian
(2016) who both find little support for the theory that future oil price uncertainties
have a significant effect on investment only in non-oil sector industries.
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Another channel of oil price shock-trigger economic dislocation is through
dampening consumption (see Edelstein & Kilian, 2009; Herrera et al., 2019).
Edelstein and Kilian (2009) show that personal consumption expenditure is
negatively affected by energy prices at both aggregate and disaggregated expen-
diture components. This finding is also supported by Davis and Haltiwanger
(2001), Ramey and Vine (2006), and Baumeister and Kilian (2016). Despite a
large number of studies supporting the negative effect of energy market shocks
on economic activity through consumption, recent papers have focused on the
question of asymmetry and the oil price uncertainty impact. Edelstein and Kilian
(2007) provide evidence of asymmetry concerning positive and negative responses
of investment to oil price shocks. Similarly, Alsalman and Karaki (2019) find
evidence in support of asymmetry on how personal consumption expenditure
responds differently to positive and negative shocks in the oil market.

The extent to which oil price shocks affect economic activity may depend on
the effects of demand and supply shocks. This is a recurring theme in the thorough
analysis by Kilian (2008, 2009), Bodenstein et al. (2012), and Lippi and Nobili
(2012). These works disentangle demand and supply shocks-driven effect on real
output. Furthermore, Kilian and Murphy (2014) reveal that the effect of oil price
disruptions is smaller in proportion to changes in real oil price compared to spec-
ulative demand shocks. This finding is also echoed in a study by Aastveit (2014).
A thorough analysis conducted by Baumeister and Hamilton (2019) seemingly
demonstrates that a larger effect of oil supply could be explained by the assump-
tion of the model used, while, on the contrary, Alsalman and Karaki (2019) show
that the effect of supply on aggregate personal consumption expenditure is how-
ever limited. In addition, Herrera and Rangaraju (2020) while applying a SVAR
model, examine the effects of oil price and the US gross domestic product (GDP)
on oil supply disruptions. Their results establish a large response of oil prices with
a larger and longer-lived contraction in the US real GDP.

Following severe impacts of financial distortions during the period of global
financial crises, many studies have emerged and a great deal of these studies seeks
to examine the role of financial market conditions on real output growth. For exam-
ple, Chen et al. (2014) extend the framework of Kilian (2009) by focusing on
the changes in financial market conditions and the macroeconomic imports of oil
price shocks. The results show that financial market conditions are necessary and
must be explicitly considered in the analysis of oil shocks’ impacts. Also, stud-
ies like Arellano et al. (2010), Christiano et al. (2014), and Caldara et al. (2016)
have documented the role of financial frictions on the uncertainty-macroeconomic
nexus. Gilchrist et al. (2014) demonstrate that innovations to uncertainty signif-
icantly affect the outcomes of the macroeconomy through financial instabilities.
Also, studies like Hubrich et al. (2013), Balcilar et al. (2016), and Kiley (2020)
all show that the impacts of financial shocks on real output growth are charac-
terized by asymmetries. Particularly, Hubrich et al. (2013) reveal strong negative
consequences of financial shocks on real output growth during financial crises.
Balcilar et al. (2016) show that the response of inflation to financial shocks during
recessions is significantly high. In recently, Polat (2018) applies a structural VAR
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model to account for the link between oil price shocks and financial stress based
on the US data. The study finds evidence in support of the oil price-financial stress
sensitivity with a stronger impact in the short run. Alessandri and Mumtaz (2019)
divulge in their study based on a nonlinear VAR model that shocks to uncer-
tainty display recessionary effects on the economy irrespective of the financial
market conditions. Also, the impact of uncertainty shocks on output growth is six
times larger during periods of financial instability. Furthermore, Balcilar & Rangan
et al. (2021) present a study on the impact of uncertainty shocks in South Africa
by extending Alessandri and Mumtaz (2019) model. Their empirical results show
that the output growth deterioration emanating from uncertainty shocks is larger
during the normal period compared to the period of financial stress––although this
impact is more persistent during periods the economy experiences financial stress.

Given the foregoing literature, our intention in this paper is to provide empiri-
cal evidence on how energy market shocks and related economic uncertainty affect
real economic activity in the US during normal financial regime periods and stress-
ful financial regime periods. Therefore, this paper is the first to consider the effect
of financial market conditions/regimes in quantifying the impact of energy mar-
ket shocks on real economic activity within the context of a nonlinear model by
accounting for not only uncertainty shocks but also oil supply- and demand-driven
shocks.

4.3 Data and Methodology

4.3.1 Data

In this study, we use a dataset based on monthly observations over the period
1987:M11 to 2021:M1. The choice of the sample period is influenced by data
availability. The dataset includes three group of variables of interest namely, the
energy market shocks, economic activity, and financial conditions. We measure
energy market shocks based on the oil market shock identification scheme pro-
posed by Ready (2018) which is based on the decomposition of oil price changes
into oil supply, demand, and risk shocks. In doing this, we utilize the monthly
price data on the index of oil-producing firms measured as monthly returns of the
World Integrated Oil and Gas Producer Index (RProd

t ), changes in oil prices cap-
tured by 1-month returns on the second nearest maturity NYMEX–Crude-Light
Sweet Oil contract (�pt ), and changes in the market discount rate corresponding
to the CBOE Volatility Index (VIX). We proxy economic activity with the indus-
trial production (IP) index (qt ) while the US financial conditions index (FCI) (Ft ),
being a transition variable in the model, is the Chicago Fed’s National Financial
Conditions Index. Other variables included in the model are the inflation (πt ) cap-
tured by the changes in the US consumer price index CPI, and shadow short rate
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(SSR) (rt ), which measures the US interest rate,3 oil supply shock (st ), aggre-
gate oil demand shock (dt ), and risk shock (νt ). Furthermore, we retrieve all the
data used in our empirical analysis from the Thomson Reuters DataStream except
shadow short rate which is obtained from Krippner (2013) and Wu and Xia (2016).
The time series plots of the major variables are given in Fig. 4.1.

We include the shadow short rate as measure of interest rate in the model. We
need a measure of interest rate in the model to control for the effect of monetary
policy. Empirical macroeconomic studies usually employ federal funds rate (Fed
rate) as a measure of the interest rate or the policy rate. During the global finan-
cial crises that started in 2007–2008, central banks all over the world including the
Federal Reserve Bank of the US (Fed) have reduced the policy rates to near zero
levels and further introduced unconventional monetary policy measures through
large scale asset purchases. In an era when nominal interest rates constrained by
zero lower bound, unconventional monetary policy measures made the Fed’s mon-
etary policy not evaluable with the Fed rate. The SSR first introduced by Krippner
(2013) and further extended by Wu and Xia (2016) represents the stance of mone-
tary policy when the conventional policy rate is at the zero lower bound. The SSR
is a model-based measure obtained as the shortest maturity from the estimated
shadow yield curve. We use the SSR of Krippner (2013) and Wu and Xia (2016)
as a measure of the interest rate. Figure 4.1 shows that SSR becomes negative
during the July 2009–October 2015 and November 2020–January 2021 periods.

Most studies use crude oil price as representative of the energy market shocks.
As Kilian (2009) shows including oil or energy prices directly in a model has
two significant drawbacks. First, because of reverse causality from macroeconomic
aggregates to oil prices cause and effect is not well defined in a model linking
oil prices to macroeconomic variables. Second, the price of oil like any other
commodity is determined by supply and demand forces. Therefore, oil price shocks
in a dynamic model are driven by both demand and supply shocks and as supply
and demand shocks have different dynamic effects, it introduces an indeterminacy.
In order to solve this problem Kilian (2009) proposes a recursive identification
methodology based on a Cholesky identification in structural VAR (SVAR) model.
Kilian’s (2009) methodology is known to give too much weight to oil-specific
demand shocks, lessening the importance of supply shocks. This happens because
the method suffers from identifying oil-specific demand shocks that are ultimately
generated by concerns about the future supply of oil and shocks caused by changes
in oil-specific aggregate demand. Ready (2018) proposed an alternative approach
to overcome his drawback.

Ready (2018) uses returns on an index of oil-producing firms, a measure of
oil price changes, and a proxy variable for changes in expected price of risk to
construct oil demand, oil supply, and risk shocks. The risk shocks are associated

3 Shadow short rate (SSR) simply quantifies the monetary policy stance when the nominal interest
rate is near zero lower bound as shown by Krippner (2013) and Wu and Xia (2016). To resolve the
zero lower bound problem, we use the SSR as the actual short term interest rate.
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Fig. 4.1 Time series plots of the data in levels (Note The figure plots the levels of the CBOE
Volatility Index (VIX, ξVIX,t ), NYMEX Crude–Light Sweet Oil 1-month contract price, the World
Integrated Oil and Gas Producer Index, industrial production (IP) index, consumer price index
(CPI), interest rates (rt ) represented by the shadow short rates (SSR; Krippner, 2013; Wu & Xia,
2016), and the Chicago Fed’s National Financial Conditions Index (FCI) for the period 1986:M1–
2021:M1)
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with expected future aggregate demand changes. Oil demand shocks are defined
as the proportion of returns on a global index of oil producing firms orthogonal
to unexpected changes in the logarithm of the VIX index. The VIX index is used
as a proxy for aggregate changes in market discount rates which are potentially
driven by varying attitudes toward risk. Thus, the unexpected portion of the VIX
index is the risk shock which serves as a proxy for shocks to the price of risk
associated with aggregate demand shocks. Oil supply shocks are then defined as
the innovations in oil price changes orthogonal both to demand and risk shocks.

In this study risk shocks (νt ) are obtained from residuals (ξVIX,t ) of an autore-
gressive moving average model fitted to the log of the VIX index with orders 1 and
1 for autoregressive and moving average orders, respectively. Then, we orthogonal-
ize one month returns on the World Integrated Oil and Gas Producer Index (RProd

t )
with respect to risk shocks νt to obtain oil demand shocks (dt ). Lastly, oil supply
shocks (st ) are obtained by orthogonalizing changes in the NYMEX Crude–Light
Sweet Oil contract price (�pt ) with respect to supply and risk shocks. Figure 4.2
displays oil supply, oil demand, and risk shocks obtained using this procedure.
Visual pattern in Fig. 4.1 evidence the orthogonal nature of these three shocks.
The Pearson correlation coefficient estimates in Table 4.1 between pairs of these
three shocks are also all zero, indicating their orthogonal property. Pairwise corre-
lation coefficient estimates between oil price change and three shocks indicate that
99.93% of the variance of changes in oil prices is accounted by these three shocks.
With a correlation coefficient of 0.862, supply shocks account 74.36% of variabil-
ity in oil price changes followed by demand shocks which accounts 25.22% of the
variance of the oil price changes. Risk shocks have a negative correlation with oil
price changes with an estimate of −0.065 and they account 0.42% of the variance
of oil price changes.

Considering the descriptive statistics in Table 4.1, we observe that risk shocks
have the largest variability with a standard deviation of 16.156 (giving a coefficient
of variation estimate of −198.362) followed by oil price change (standard devia-
tion of 10.724). The next two variables with highest variability are the supply and
demand shocks with standard deviation estimates of 9.246 and 5.126, respectively.
The CPI inflation and short shadow rate display the least volatility with respect
to their observed mean with coefficient of variance estimates of 1.245 and 1.010,
respectively. Comparing the volatility of oil market related shocks, we see that risk
shock are 3.2 times more volatile than demand shocks and 1.7 times more volatile
than supply shocks, while supply shocks are 1.8 times more volatile than demand
shocks.

Table 4.1 also shows that all variables we consider in the model display pos-
itive excess kurtosis implying fat tailed distributions except short shadow rate
which has an excess kurtosis of −1.042. In terms of skewness, VIX, risk shocks,
demand shocks, and financial conditions index has positive skewness estimates,
while oil price change, oil producer index returns, supply shocks, IP growth,
CPI inflation, and SSR have negative skewness estimates. Given the estimates
of excess kurtosis and skewness the Jarque–Bera normality test strongly rejects
normal distribution for all variables. The Ljung-Box autocorrelation statistics also
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Fig. 4.2 Time series plots of oil supply, oil demand, and risk shocks (Note The figure presents
the plots of risk shocks associated with expected shocks to future aggregate demand, oil supply
shocks, and oil demand shocks calculated using the approach of Ready [2018])
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Table 4.1 Descriptive statistics

VIX (ξVIX,t ) Oil Price
Change (�pt )

Integrated Oil
and Gas
Producer Index
(RProd

t )

Industrial
Production
Index (IP) (qt )

CPI (πt )

Mean 20.283 0.167 0.462 0.149 0.207

S.D. 8.100 10.724 5.471 1.000 0.258

Min 10.125 −49.791 −21.895 −13.562 −1.786

Max 62.639 45.502 29.403 6.049 1.367

Skewness 1.906 −0.366 −0.411 −6.070 −1.356

Kurtosis 5.778 2.611 3.305 87.440 10.576

JB 848.873*** 131.177*** 206.569*** 137725.216*** 2110.934***

Q(1) 301.190*** 4.330** 0.416 33.755*** 83.809***

Q(6) 975.969*** 10.882* 6.059 43.094*** 86.241***

ARCH(1) 161.904*** 11.170*** 4.093** 5.930** 67.814***

ARCH(6) 161.471*** 47.772*** 52.957*** 18.208*** 73.253***

SSR (rt) FCI (Ft ) Risk Shock (νt ) Supply Shock
(st )

Demand Shock
(dt )

Mean 2.930 −0.370 −0.081 0.000 0.000

S.D. 2.959 0.497 16.156 9.249 5.126

Min −2.986 −1.066 −34.663 −38.071 −21.372

Max 9.335 2.720 107.948 35.136 28.012

Skewness −0.080 2.656 1.877 −0.397 0.061

Kurtosis −1.042 10.539 7.724 2.663 3.220

JB 19.101*** 2465.308*** 1306.343*** 137.772*** 185.064***

Q(1) 417.192*** 392.403*** 0.000 1.974 0.555

Q(6) 2390.520*** 1745.122*** 4.498 11.654* 10.569

ARCH(1) 408.236*** 355.358*** 1.042 15.441*** 3.319*

ARCH(6) 405.322*** 380.630*** 1.553 37.190*** 58.221***

Pearson correlation coefficient estimates

�pt st dt νt

�pt 1.000

st 0.862 1.000

(continued)
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Table 4.1 (continued)

Pearson correlation coefficient estimates

�pt st dt νt

dt 0.502 0.000 1.000

νt −0.065 0.000 0.000 1.000

Note The table reports descriptive statistics for the Chicago Board of Exchange Volatility Index
(VIX), 1-month returns on the second nearest maturity NYMEX Crude–Light Sweet Oil contract

(�pt ), monthly return on the World Integrated Oil and Gas Producer Index (RProd
t ), growth rate of

the industrial production (IP) index (qt ), inflation (πt ) based on consumer price index (CPI), inter-
est rates (rt ) represented by shadow short rates (SSR; Wu & Xia, 2016), and the Chicago Fed’s
National Financial Conditions Index (FCI, Ft ) in addition to descriptive statistics for risk shocks
(νt ) associated with oil demand shocks, oil supply shocks (st ), and oil demand shocks (dt ) calcu-
lated using the approach of Ready (2018). The Pearson correlation coefficient estimates among the
oil price change and orthogonal risk, supply, and demand shocks are also presented in the table. The
data is at monthly frequency and covers the period 1986:M2–2021:M1 with 420 observations. In
addition to mean, standard deviation (S.D.), minimum value (Min), maximum value (max), skew-
ness, excess Kurtosis, Jarque–Bera normality test (JB), the table reports first [Q(1)] and sixth [Q(6)]
order serial correlation test, and also first [ARCH(1)] and sixth [ARCH(6)] order autoregressive
conditional heteroskedasticity test

indicate strong autocorrelation for majority of the series except oil producer index
returns, risk shocks, and demand shocks. All series display strong autoregressive
conditional heteroskedasticity (ARCH) except risk shocks. In sum, distributional
characteristics of all series imply strong nonlinear effects in all series.

4.3.2 Model Specification

In this section, we present a nonlinear vector autoregression (VAR) within the
framework of a threshold vector autoregressive (TVAR) model. To reach this end,
we follow the oil price shocks identification scheme proposed by Ready (2018)
so that structural shocks driven by oil demand, oil supply, and risk shocks can
be disentangled within the framework of Alessandri and Mumtaz (2019) model.
This model has time-varying, stochastic volatilities, which allow the first-moment
dynamics of the system to have two separate regimes namely, normal and crisis
regimes. Basically, we define the model as follows:

Zt =
(

μ1 +
p∑

i=1

�1i Zt−i +
k∑

i=1

θ1i lnht−i + �
1/2
1t ut

)
R̃t

+
(

μ2 +
p∑

i=1

�2i Zt−i +
k∑

i=1

θ2i lnht−i + �
1/2
2t ut

)(
1 − R̃t

)
(4.1)

where Zt = (Z1t , Z2t , . . . , ZNt )
′
and ut is an i.i.d. innovation with an identity

covariance matrix. N represents the number of variables in the model which



96 M. Balcilar et al.

include the risk shocks (νt ) as represented by the innovations in the CBOE
VIX index (ξVIX,t ),4 growth rate of industrial production index (IP) (qt ), infla-
tion based on consumer price index (CPI) (πt ), shadow short rate SSR (rt ),
and financial conditions index (FCI) (Ft ). Thus, Zt is a (7 × 1) vector given
by Zt = (ξVIX,t , st , dt , qt , πt , rt , Ft )′. Within the framework of this model, ht
appears to capture uncertainty, which is customarily treated as an unobservable
state-variable, where uncertainty is estimated as the average volatility of the struc-
tural shocks over the period under consideration. This is perhaps different from
the procedure in a two-step approach commonly applied in the literature where
uncertainty series is first generated from a forecasting model and then explore in
a separate regression. R̃t is included in Eq. (4.1) to allow for the possibility of
two distinct financial regimes–normal financial regime periods and crisis financial
regime periods. These regimes are bounded between zero and one. The introduc-
tion of R̃t also allows all economic variables in the model to shift endogenously
with respect to potentially different states of financial conditions. In addition, we
allow the level of financial conditions to determine regime in relation to unob-
served threshold variable selected as Z∗ = Ft−d , where the transition variable is
the US financial conditions index, d represents the delay, and t is the time period.
In this setting, R̃t= 1 ⇔ Ft−d ≤ Z∗. Here, Z∗ is the unknown threshold parameter
in Eq. (4.1). The parameters in the model are all allowed to adjust across regimes
as found in the conventional threshold models. Furthermore, the covariance matrix
of the stochastic terms eit = �

1/2
i t ut , i = 1, 2, is defined as �1t = A−1

1 Ht A
−1′
1

and �2t = A−1
2 Ht A

−1′
2 , and the lower triangular matrices are represented by A1

and A2, Ht = ht S, where S = diag(s1, s2, . . . sN ).5 The process of volatility which
represents uncertainty in our case follows an AR(1) process, defined as follows:

loght = α + ϕloght−1 + εt , var(εt ) = Q (4.2)

where εt denotes an innovation with variance Q which is i .i .d. The time variation
of the variance–covariance matrix of the structural shocks is driven by the assump-
tion of a single, scalar volatility process ht . This assumption is a reoccurring
argument in Carriero et al. (2016) and the process is represented by uncertainty in
our case. This intuitively implies that a shock to volatility or uncertainty εt > 0
pushes ht upward thereby resulting in an upward adjustment in the covariance
matrix of the innovations ut . This in turn deteriorates the level of accuracy upon
which an agent predicts future economic variables, Zt+n . The inclusion of ht in
Eq. (4.1) possibly provides a fertile ground for economic variables in the model to
adjust endogenously to a new state of the economy where it is uncertain and less

4 We use innovations in the VIX (ξVIX,t ), which is obtained as the residuals of an ARMA(1,1)
model fitted to the logarithm of the VIX index, instead of the risk shocks νt because νt is a constant
multiple of ξVIX,t .
5 In this model, to achieve identification, it is assumed that lags of endogenous variables do not
affect state-variable ht in any way. Further, the first- and second-moment shocks are orthogonal,
hence; E(utεt ) = 0. For more details, see Alessandri and Mumtaz (2017, 2019).
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predictable. The two regime shifts correspond to periods of calm financial condi-
tion and tense financial condition, which capture the time-varying component of
the underlying transmission mechanisms. Therefore, the nonlinear VAR parame-
ters in the two regimes are given by μ1, �11, . . . , �1p, θ11, . . . , θ1k, A1 and μ2,
�21, . . . , �2p, θ21, . . . , θ2k, A2. The way and manner primitive shocks ut and εt
operate in different regimes display no evidence of placement of restrictions as
shown by Alessandri and Mumtaz (2019).

In estimating our model, Alessandri and Mumtaz (2019) suggest the use of the
Gibbs sampling algorithm. Given draws for the unobserved state-variable ht , the
model collapses to a conventional threshold VAR through the generalized least
squares (GLS) transformation of the variables in the system, which eliminates
heteroscedasticity. After this transformation, the conditional posterior distributions
in the case of regime-dependent VAR parameters, the delay parameter, and the
threshold are indistinguishable from those of a conventional threshold VAR as
shown by Alessandri and Mumtaz (2017). Furthermore, following the descrip-
tion in Chen and Lee (1995), the threshold value of the VAR can be apparently
drawn through a Metropolis step from the non-standard posterior of the threshold
while the delay parameter’s conditional posterior is simply a multinomial distri-
bution. In essence, the conditional posterior distribution for the coefficients of the
VAR model in each of the two regimes is given by N (B∗

i , �i ⊗ (X∗′
i X∗

i )
−1).

Here, B∗
i = (X∗′

i X∗
i )

−1
(
X∗′
i Y ∗

i

)
, where both Y ∗

i and Y ∗
i denote the transformed

variables in the system apparently attached with dummy observations and �i =
A−1
i SA−1′

i . Given the VAR’s residuals and the state-variable ht , the conditional
posterior distribution for Ai is standard, and as such the variance S can be drawn
from inverse Gamma distribution. With all parameters given, the framework for the
model apparently takes the form of a nonlinear state-space where a state-variable
ht is selected using the independence Metropolis algorithm first introduced by
Jacquier et al. (1994) and recently extended to stochastic volatility models by
Jacquier et al. (2002).

Having obtained all the posterior distribution of all parameters, we examine
the potential impact of energy market shocks on economic activity under specific
financial conditions by employing generalized impulse-response functions (GIRFs)
described in Koop et al. (1996) since the coefficients estimates of the TVAR model
seem to provide no much substantial economic meaning and insights (see Balcilar
et al., 2018; Balcilar & Roubaud et al., 2021; Rahman & Serletis, 2010). The
GIRFs are obtained using the Monte Carlo integration as described in Koop et al.
(1996), which is defined as follows:

GI RF R̃
t = E

[
Zt+n|�t,Z

R̃
t−1, δ

]
− E

[
Zt+n|�t,Z

R̃
t−1, δ

]
,

n = 0, 1, 2, . . . (4.3)

where �t denotes all VAR model parameters and hyperparameters, δ denotes the
shock vector, n represents the forecast horizon, R̃ = 0, 1 represents the regimes
(calm financial regime vs. tense financial regime) and Z R̃

t−1 is the regime-specific
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history. In this setup, switching from one regime to another and vice versa is
treated as endogenous. This implies that the transition from the regime of a calm
(normal) financial system to a tense (crises) financial system happens freely with-
out disruptions over the horizon in the economy depending on the sign and size of
such shock.

The GIRFs in Eq. (4.3) shows in essence that the impulse responses are com-
puted as differences between two conditional expectations, i.e. the forecast of
the endogenous variables conditional on a structural shock on the one hand and
the other hand the forecast of the endogenous variables conditional on a base-
line where there is no evidence of a shock. As noted by Alessandri and Mumtaz
(2017), while this approach for computing impulse responses adequately accounts
for unexpected endogenous changes in both regimes, the conditional expectations
are approximated through a VAR model stochastic simulation.

4.4 Empirical Results

4.4.1 Estimate of Economic Uncertainty

Figure 4.3 presents the US financial conditions index and the estimated eco-
nomic uncertainty measured by the median log stochastic volatility over the period

Fig. 4.3 The US financial regimes and estimated economic uncertainty (Note The figure displays
the US financial regimes index [US FCI, right axis and dashed line in red color] and the estimated
economic uncertainty measured by the median log stochastic volatility [left axis and solid line in
blue color]. Gray shaded regions signify the sub-periods when the US economy is characterized
by financial crises i.e. the period when the economy is said to have witnessed an index exceeding
an estimated threshold of 0.0115. For the interpretation of the color references in this figure, the
reader may refer to the web version of this figure available at https://dataverse.harvard.edu/datave
rse/fin_regimes_oil)

https://dataverse.harvard.edu/dataverse/fin_regimes_oil
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1987:M11–2021:M1. The log volatility is estimated by the threshold VAR model
(TVAR) explained in Sect. 4.3. The estimated threshold value is −0.0115. Periods
with the values of FCI above −0.0115 are identified as the financial distress or
crisis regime periods. The light blue band around the log volatility designates the
68% confidence band. The gray shaded regions mark the financial crisis regime
periods identified by the TVAR model. The TVAR model is estimated using the
Gibbs sampling with 50,000 posterior and 50,000 burn-in draws. A training sam-
ple of 20 observations is used for the initialization of priors. The lag order of the
TVAR is 2 and the delay for the transition variable is 2.6 As can be rightly seen,
we identify two sub-periods when the FCI is above the estimated critical threshold
value of −0.0115, suggesting that the US economy has witnessed financial crises.
This is more evident during the outbreak of the sub-prime crisis in the US that
culminated into the global financial crisis in 2008–2009. Moreover, the overall
volatility ht suggests that a higher level of economic uncertainty is observed in
the US in the early eighties due to several factors ranging from the US stock mar-
ket crash and subsequent energy crisis in 1979 as well as the Iranian revolution
that led to oil price upheavals between 1980 and 1981. These factors also harm
the financial markets in the US. In addition, the global financial crisis during the
2008–2009 period suggests also that the economic uncertainty is high. However, it
reaches its peak in 2020 due to the outbreak of the COVID-19 pandemic. A closer
examination of the relationship between financial conditions index and economic
uncertainty suggests that the two variables co-move over time in the US.

4.4.2 Impact of Overall Economic Volatility Shocks on the US
Economy

This section presents the responses of macroeconomic variables [(output growth
proxied by monthly change in the industrial production (IP) index (qt ), CPI infla-
tion (πt ), shadow short rate (SSR,rt ), and financial conditions index (FCI, Ft )]
in the US following an exogenous increase in uncertainty, which in our case, is
a one standard deviation increase in the US overall economic volatility in normal
periods (first row) and crises periods (second row). As earlier defined, normal peri-
ods, which correspond to regime where the value of a threshold variable is below
the estimated threshold value (i.e. −0.0115) while the crises periods correspond
to regime where the value of a threshold variable exceeds the estimated threshold
value, which in our case is −0.0115.

Figure 4.4 displays the impulse responses of the macroeconomic variables fol-
lowing a one standard deviation increase in the US volatility shocks. We find that
a one standard deviation increase in volatility shocks instantly deteriorate out-
put growth and financial conditions as explicitly shown by an immediate jump

6 Replication codes for all results in the paper is available at Harvard Dataverse at address https://
dataverse.harvard.edu/dataverse/fin_regimes_oil.

https://dataverse.harvard.edu/dataverse/fin_regimes_oil
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in the output growth and financial conditions index. This impact is found to be
larger and statistically significant during periods of financial crises compared to
the normal financial regime. However, the contraction impact of volatility shocks
is longer lived. Furthermore, the contraction in output growth during periods of
the financial crises is quite larger than the contraction in output growth during the
normal financial periods. This suggests that financial stress amplifies the impact of
volatility shocks on output growth as confirmed by Arellano et al. (2010), Gilchrist
et al. (2014), Caldara et al. (2016) and the recent study by Alessandri and Mum-
taz (2019). On the contrary, our finding disagrees with Balcilar & Roubaud et al.
(2021) who find no evidence to support that an uncertainty shock seemingly ampli-
fies economic activity in South Africa. Our finding also reveals that an increase
in volatility in periods of financial crises would pave way for financial conditions
to increase further and the negative response of output growth to occur sharply
but when the economy experiences normal financial regime with an increase in
volatility, there will be no much room for financial conditions to increase further.
This finding is consistent with Popescu and Rafael Smets (2010) who aptly sug-
gest that an increase in uncertainty has an impact on credit spreads and risk levels,
but the extent of this impact is relatively modest.

In furtherance to the above explanation, we find empirically that the impact of
overall economic volatility shocks on inflation is positive (i.e. inflationary) and
significant but short-lived in periods of the normal financial regime. The same
cannot be said to have occurred during periods of a tense financial regime where
the impact is negatively significant and more persistent, suggesting that a volatility
shock is anti-inflationary during financial crises. This result perhaps finds no evi-
dence in supporting the aggregate demand effect on prices as contradicted by the
finding described in Mumtaz and Theodoridis (2015) and Redl (2018). The intu-
ition behind this finding is traceable to the credible monetary policy stance and
achievement of price stability in the US. Comparatively, even though the shape
of the response of the inflation to volatility shocks in both regimes looks sim-
ilar, it is clear that such response is larger during periods of financial crises as
also demonstrated in Balcilar et al. (2016) where it is documented that inflation
reacts significantly to financial shocks more at the time of recessions. Moreover,
the shadow short rate which measures short-term interest rate, responds nega-
tively to a one standard deviation increase in volatility shocks with evidence of
a larger response during the period of financial crises. The plausible explanation
to this result is that during financial crises, monetary policy authorities especially
in advanced countries work counter-cyclically to drop interest rates toward zero
lower bound and engage in large-scale asset purchases (LSAPs) and long-term
treasury bills to stimulate output and stabilize prices as also find in Bernanke
and Reinhart (2004), Borio and Disyatat (2010), Bowman et al. (2015) Lim and
Mohapatra (2016), and Balcilar et al. (2020).

Furthermore, it is worthy of note that the process of stochastic volatility in the
TVAR does not depend on a regime, hence the dynamic volatility in the normal and
crises financial regimes are identical as shown in Fig. 4.4. Basically, an increase in
volatility corresponds to a negative shock in demand, which in turn dampen prices,
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output growth, inflation, and interest rate in the economy through the reaction of
economic agents such as households, firms, and governments as shown by Bloom
(2009).

The analysis of the forecast error variance decomposition (FEVD) for the effect
of volatility shocks on the US economy is displayed in Fig. 4.5. This analysis helps
to assess the shares of variance in endogenous variables explained by the overall
economic volatility shocks in the US business cycle over the period under con-
sideration. As we can see from Fig. 4.4, the effect of volatility shocks is largely
noticeable in the variance of the macroeconomic variables captured especially dur-
ing the episodes of financial crises with much more pronouncement on the output
growth and financial conditions. The contribution of the volatility shocks to the
FEVD of output growth and financial conditions during the financial stress or cri-
sis regimes accounts for more than double their variance in the normal financial
regime periods. This result, therefore, confirms Alessandri and Mumtaz (2019) and
demonstrate disagreement with Balcilar et al. (2020). The validation of the earlier
finding of Alessandri and Mumtaz (2019) could be traceable to the debates in the
literature that the way and manner volatility shocks contribute to the FEVD of
output growth may differ significantly. The impact of the volatility shocks with
respect to inflation and short-term interest rate captured by the shadow short rate
also reveals more prominence of the impact during the episodes of financial crises.

4.4.3 Impact of Oil Supply and Oil Demand Shocks on the US
Economy

Figures 4.6 and 4.7 report the impact of oil supply and oil demand shocks on
the macroeconomic variables in the US. As reported in Fig. 4.6, the impact of oil
supply shocks is negative on output growth, suggesting that a shock to oil sup-
ply, which is a reduction in oil supply since the supply shock is identified as a
shock increasing oil price, significantly deteriorates output growth at all times. In
the case of oil demand in Fig. 4.7, the impact of oil demand shocks on output
growth during financial crises and normal financial periods is positive and short-
lived, and afterward deteriorates as explicitly shown by the immediate sharp jump
in the response of the industrial production index. Comparatively, the contrac-
tion impact of the oil supply shocks is stronger and longer lived in the normal
regime compared to the contraction impact of oil demand shocks which displays
an immediate positive but short-lived impact on output growth in both the normal
and crisis periods. However, the impacts of the oil supply and oil demand shocks
on output growth are significant and persistent after two month horizon. Therefore,
our results resonate the finding documented by Kilian (2008), wherein oil supply
and oil demand shocks have different effects on output growth. Similarly, Lippi
and Nobili (2012), Kilian and Murphy (2014), and Herrera and Rangaraju (2020)
find contraction of output growth traceable to oil supply shocks.

Furthermore, the impact of oil supply and oil demand shocks on inflation is pos-
itive and significant both in the normal and crisis financial regimes. This implies
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that oil supply and oil demand shocks increase prices at all times in the US with
evidence of a dramatically sharp and short-lived fall in prices during the episode
of a normal financial regime. Again, the impacts of both shocks are stronger dur-
ing the financial crisis regime. This finding offers support to the previous studies
documented by Fernández-Villaverde et al. (2015) and Mumtaz and Theodoridis
(2015) that supply shocks are inflationary while this finding contradicts Leduc
and Liu (2016) and Basu and Bundick (2017) who establish the opposite (i.e.
supply shocks are anti-inflationary). In the case of the impact of oil supply and
oil demand shocks on the short-term interest rate, we observe dramatic changes
across the regimes: interest rate increases in normal periods and falls in crises
periods. This finding agrees with the position of recent literature that reducing the
short-term interest rate to a zero lower bound especially in an advanced economy
may tend to accelerate economic recovery and stabilize prices (see Bowman et al.,
2015; Lim & Mohapatra, 2016).

Given the impact of oil supply and oil demand shocks discussed in the recital,
we step further, to quantitatively examine their FEVD to all the macroeconomic
variables in the model as reported in Figs. 4.8 and 4.9, respectively. Specifically,
the contribution of oil supply and oil demand volatility shocks to the FEVD of
the macroeconomic variables in the threshold VAR appear to be more pronounced
on all the variables except the short-term interest rate. For example, the fraction
of output growth variance accounted for following the oil supply and oil demand
volatility shocks in the episode of financial crises is roughly three times larger.
Generally, the contribution of volatility shocks resulting from the oil supply and oil
demand to the FEVD of all the macroeconomic variables is much more prominent
during the period of financial crises except in the case of oil supply volatility
shocks where its role is more prominent in the variance of inflation and financial
conditions in the normal financial regime. This result is consistent with not only
the finding of Caldara et al. (2016) but also Alessandri and Mumtaz (2019) who
recently estimated the output growth variance to be larger in the period of crises
with approximately 8% against 4% in normal periods.

4.4.4 Sign and Regime Asymmetry

Unlike linear dynamic models, various shocks likely to have asymmetric effects
on variables in nonlinear dynamic models. For instance, impulses responses may
vary across regimes and negative shock might have different effects from positive
shocks. In order to assess sign and regime asymmetry we plot impulses responses
of output and financial conditions to uncertainty, supply, and demand shocks both
in normal and crises periods in Figs. 4.10–4.12. Regime asymmetry of uncertainty
shocks is presented in Fig. 4.10. Response of output (IP) to uncertainty shocks
look more asymmetric than response of financial conditions. The size, shape, and
persistence of response of output to uncertainty shocks differ for negative shocks
than positivize shocks, with positive shocks having larger and longer effects. On
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Fig. 4.10 Asymmetry in uncertainty shocks (Note The figure presents median impulse responses
of industrial production [left panel] and financial conditions [right panel] to one standard deviation
positive [solid lines] and negative [dashed lines] shock in economic uncertainty in normal [blue
color] and crises periods [red color]. See note to Fig. 4.4 for further details. For the interpretation
of the color references, the reader may refer to web version of this figure available at https://datave
rse.harvard.edu/dataverse/fin_regimes_oil)

the other hand, financial conditions show a stronger response to reduced uncer-
tainty than increased uncertainty. Response of both output and financial conditions
is much stronger during crises periods than normal times.

Figure 4.11 compares the effect of oil supply shocks on output and financial
conditions. Both output and financial conditions show a higher and longer last-
ing response to oil supply shocks in crises periods. We also observe a significant
asymmetry in terms of response to negative shocks compared to positive shocks.
In general, shocks increasing the oil supply—shocks that reduce the price of oil—
have stronger effect than supply shocks that increases the oil price due to reduced
oil supply shocks. An important observation is that the effect of a supply shocks
in the direction of improving financial conditions—a shock that reduces the oil
price—during crises periods is reversed in a month or so, implying that oil price
reductions do not help much to improve financial conditions during recession or
crises periods.

Lastly the response asymmetry of output and financial conditions to aggre-
gate demand shocks is presented in Fig. 4.12. A noteworthy observation is the
much stronger response of both output and financial conditions to both positive
and negative shocks during crises or financial distress periods. This is particularly
more pronounced in the response of financial conditions. The response of finan-
cial conditions in terms of sign of the aggregate demand shock does not show
any noticeable asymmetry. On the other hand, the response of output to demand
shocks shows significant shape asymmetry to the sign of the aggregate demand
shocks. Moreover, the output response to negative demand shocks is much more

https://dataverse.harvard.edu/dataverse/fin_regimes_oil
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Fig. 4.11 Asymmetry in oil supply shocks (Note The figure presents median impulse responses
of industrial production [left panel] and financial conditions [right panel] to one standard deviation
positive [solid lines] and negative [dashed lines] shock in oil supply in normal [blue color] and
crises periods [red color]. See note to Fig. 4.4 for further details. For the interpretation of the color
references, the reader may refer to web version of this figure available at https://dataverse.harvard.
edu/dataverse/fin_regimes_oil)

Fig. 4.12 Asymmetry in oil demand shocks (Note The figure presents median impulse responses
of industrial production [left panel] and financial conditions [right panel] to one standard deviation
positive [solid lines] and negative [dashed lines] shocks in oil demand in normal [blue color] and
crises periods [red color]. See note to Fig. 4.4 for further details. For the interpretation of the color
references, the reader may refer to web version of this figure available at https://dataverse.harvard.
edu/dataverse/fin_regimes_oil)

https://dataverse.harvard.edu/dataverse/fin_regimes_oil
https://dataverse.harvard.edu/dataverse/fin_regimes_oil
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persistent during crises periods. Response of output to aggregate demand shock
that reduces oil prices is reversed in a month, but reduces the output growth after-
wards. The strongest and longer lasting output response is observed for positive
demand shocks during financial distress periods.

4.5 Conclusions

Our understanding of sources of oil price fluctuations and their effects on the US
economic activity has undergone important changes since the initial work of Kilian
(2009). The oil market uncertainty has been also seen to have a significant effect
on economic activity. Not only uncertainty, but oil supply and oil demand shocks
also have different dynamic effects on economic activity. Magnitude and shape of
these effects also show changing behaviors over time.

Eventhough the interaction between energy market shocks and real output
growth has been well-known established in the literature, the extent to which this
interaction occurs under the changing financial conditions/regimes remain con-
tentious and unclear. This paper, therefore, develops a new aspect of the interaction
between oil price shocks and economic activity in the US under the changing
financial regimes. The study further examines the effect of overall uncertainty
shocks, which are largely driven by financial conditions as well as the state of
the oil market. Using monthly a dataset from the US economy over the period
1986:M1–2021:M1 and a threshold VAR model with stochastic volatility compo-
nent, we provide evidence that volatility shocks have a contractionary impact on
output growth at all times with evidence of such impact largely pronounced during
financial crises. This suggests that financial crises amplify the impact of volatil-
ity shocks on output growth. Comparatively, the impact of the overall economic
volatility shocks is much larger, and longer lived compared to when volatility is
disentangled to oil supply- and oil demand-driven shocks.

Our findings further indicate that the shares of the variance of macroeco-
nomic variables explained by volatility shocks are mostly larger during financial
crises. We also find that volatility shocks driven by oil supply and oil demand are
inflationary while those volatility shocks driven by the overall economy are anti-
inflation but their impact on inflation is short-lived in both normal and financial
crises periods. Complimentary to the previous literature, we find that oil supply
shocks–identified as shocks that reduce the oil supply and causing the price of
oil to rise–are contractionary, while aggregate oil demand shock are expansionary.
However, we find that the response of the US economy to uncertainty and oil mar-
ket shocks is strongly asymmetric with larger and more persistent effect during
periods of financial stress.
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5Tracing the Sources of Contagion
in the Oil-Finance Nexus

Scott M. R. Mahadeo, Reinhold Heinlein, and Gabriella D. Legrenzi

5.1 Introduction

In this chapter, we posit a novel approach for tracing the sources of extreme oil
market shocks to assess whether changing conditions in the international crude
oil market can characterise changes in the relationships between oil, exchange
rates, and the stock market. The origins of extreme shocks matter because there is
convincing empirical evidence suggesting that different types of oil market shocks
have different consequences for financial markets (see, e.g., Basher et al., 2018;
Güntner, 2014; Kang et al., 2015b; Kilian & Park, 2009). A principal innovation
of our procedure is a new rule-based specification to classify supply and demand
shocks in the international crude oil market into relatively calm and extreme
shock episodes. This specification consolidates non-linear oil price measures in
the empirical oil economics literature to identify the most profound movements in
oil market shocks over the preceding year (see, e.g., Hamilton, 1996) and devia-
tions in oil market shocks which reside outside a normal range (see, e.g., Akram,
2004), given that such crude oil market episodes are considered to be the most con-
sequential to the economy. Our procedure is also flexible to further filter extreme
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oil market shocks into positive and negative states, which facilitates the detection
of asymmetric behaviours in market relationships during extreme times.

To identify the extreme shocks, the rules are applied to an off-the-shelf method
to disentangle structural (i) oil supply, (ii) global aggregate demand, and (iii) oil-
specific demand innovations in the international oil market. In particular, we use
the structural vector autoregression (SVAR) model suggested in Kilian (2009).
The identification of discrete calm and extreme conditions can be useful to under-
stand the genesis of oil market contagion. Contagion characterises the intermittent
marked increase in cross-market linkages which occur in the wake of a shock to
one market, whereas interdependence refers to consistent co-movement between
markets under pre- and post-shock conditions (Forbes & Rigobon, 2002). The idea
behind contagion analysis is that closely linked markets are more vulnerable as
negative shocks are able to propagate and proliferate more in these markets than
in weakly associated markets (Kritzman et al., 2011). Energy contagion, which
is pertinent to countries whose financial and macroeconomic fate are tied to hard
commodity prices, refers to the deepening of energy-finance linkages under crisis
periods in energy markets (Mahadeo et al., 2019).

We demonstrate the usefulness of our novel procedure by reappraising the
energy contagion analysis of Mahadeo et al. (2019), who examine how the rela-
tionship between the international crude oil market and the exchange rate and
stock market indices of the small open petroleum economy of Trinidad and Tobago
change under oil market crises. Wang et al. (2013) argues that the relative influ-
ence of oil market shocks is based on the degree of importance of oil to national
economy. Trinidad and Tobago provides an appropriate case for contagion anal-
ysis when the crude oil market is the source of adverse shocks: small open
economies are particularly vulnerable to developments in the international oil mar-
ket (Abeysinghe, 2001); and small resource-rich economies have a documented
legacy of underachievement relative to both their larger counterparts and small
resource-poor countries (see Auty, 2017 and references therein).

In addition to using our rule-based specification, we also extend the work of
Mahadeo et al. (2019) by considering time-varying rather than static relationships
in the oil-finance nexus. As contagion is a phenomenon which appears and disap-
pears relatively quick, we are able to evaluate whether there is additional evidence
of contagion that can be diluted in a static correlation analysis. Filis et al. (2011)
use a dynamic conditional correlation (DCC) model and examine how the oil-
stock market correlations for a selection of countries change during momentous
episodes in the crude oil market collated from Kilian (2009) and Hamilton (2009a,
2009b). We estimate a DCC model not only to acquire the time-varying oil-stock
market relationship like Filis et al. (2011), but by including exchange rates we
are able to also obtain the oil-exchange rate and the exchange rate-stock market
relationships. Such an inclusion is important because little is still known about
the dynamic relationship between oil prices, exchange rates, and emerging mar-
ket stock prices (Basher et al., 2012), in spite of the relevance of such variables
in financial stabilisation policies. In fact, recent evidence suggests that exchange
rates have been found to be the most significant macroeconomic fundamental in the
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transmission channel of oil prices on the stock market in emerging markets (see,
e.g., Wei et al., 2019). Indeed, it is crucial to understand the dependence struc-
ture between several variables interacting simultaneously, since essential omissions
provide incomplete information (Aloui & Aïssa, 2016), potentially misleading
policymakers.

Hence, another original contribution of our work is that we are the first to
explicitly consider how the exchange rate-stock market relationship evolves under
alternative global crude oil market conditions. The trade flow-oriented model char-
acterises the influence exchange rates can have on the stock market, while the
portfolio balance approach establishes that stock prices affect exchange rates (see
Chkili & Nguyen, 2014) and references therein), and the correlation between
these two variables can be either positive or negative (Tang & Yao, 2018).
Lin (2012) finds that exchange rate and stock price relationship increases dur-
ing crisis episodes in comparison to tranquil periods, which is consistent with
contagion between financial asset classes.

The economic significance of the oil-stock market relationship is well-
established in the energy-finance literature given the impact oil price changes have
on costing associated with consumption and investment, which are factors affect-
ing stock returns. Furthermore, because stock prices are assumed to reflect all
available market information, the oil-stock market relationship is considered to be
a high-frequency data proxy for the oil-macroeconomy connection. Although there
is no consensus on whether the relationship between oil price shocks and aggregate
stock returns are positive or negative (Chen et al., 2014), a reasonable assumption
held is that oil price shocks create uncertainty for firms which is reflected in higher
stock market volatility (Degiannakis et al., 2018b). In particular, many studies find
that oil price increases due to oil demand shocks are positive news for markets,
while oil price increases due to oil supply shocks hurt the real and financial sectors
(Cheema & Scrimgeour, 2019). In the case of oil-exporting economies, the empir-
ical evidence suggests that the sign and magnitude of responses to oil market
shocks are country-specific (Basher et al., 2018).

While the importance of the oil-exchange rate relationship is also well-known,
how the different types of extreme crude oil market shocks influence this cor-
relation remains unexplored. The oil-exchange rate linkage has implications for
the international competitiveness of an oil-exporter via the wealth effects (see,
inter alia, Basher et al., 2016; Bjørnland, 2009) and Dutch disease (see, inter
alia, Corden, 1984, 2012) channels. Both such channels detail the mechanisms
by which oil price increases lead to exchange rate appreciations for oil-exporters,
making their exports (imports) more expensive (cheaper).

Comparing our results with Mahadeo et al. (2019), we are able to highlight
the further insights gained from employing our innovative rule-based specifica-
tion for filtering oil market shocks into discrete calm and extreme scenarios, as
well as using dynamic rather than static correlations. Our results for the relation-
ship between the crude oil market and the stock market of Trinidad and Tobago
serve as an example. Static correlation analysis shows that this is a relatively weak
relationship but dynamic correlations reveal that this market linkage strengthens
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intermittently during international financial crises events, such as the late 1990s
Asian flu, the crash of the internet bubble in the early 2000s, and the 2008/2009
global financial crisis. Furthermore, our rule-based specification shows that, from
disentangling oil market shocks and classifying them into calm and extreme con-
ditions, it is demand-side rather than supply-side shocks which are more relevant
to this small open energy economy.

The rest of this chapter is organised as follows: Sect. 5.2 details the methodol-
ogy and data; Sect. 5.3 is devoted to the empirical applications; and conclusions
are presented in Sect. 5.4.

5.2 Methods and Data

Our empirical procedures can be outlined in three parts. In the first part, we esti-
mate global oil market shocks with a recursive SVAR model and, using our novel
rule-based specification, we classify these shocks into relatively calm and extreme
episodes. We also decompose crude oil prices into bull and bear market phases,
similar to Mahadeo et al. (2019), to determine which extreme oil market shocks
dominate periods of rising and falling oil prices. Using such a complementary tool
provides a fresh way of conveying which extreme oil market shocks have tended
to dominate historical booms and busts in crude oil prices.

For the second part, we estimate a DCC model to obtain three pairs of dynamic
financial correlations: the oil-exchange rate, the oil-stock market, and the exchange
rate-stock market relationships.

In the third part, we compare how the dynamic correlations change under these
calm versus extreme and bull versus bear conditions in the crude oil market. This is
accomplished by both qualitative (graphical) and quantitative (statistical) analysis
of the correlations during these alternative oil market conditions.

There are a number of reasons why the contemporaneous nature of the time-
varying correlations is appropriate for our analysis. First, contagion tends to appear
and vanish quickly unlike interdependence and cointegrating relationships which
are maintained over a much longer horizon (Reboredo et al., 2014). Second,
stock prices absorb all available information relatively instantaneously including
developments in international oil markets (Bjørnland, 2009), particularly in oil-
dependent economies (Wang et al., 2013). Third, crude oil is mainly indexed in US
dollars (Kayalar et al., 2017), implying that this commodity is likely to be affected
by movements in this currency (Zhang et al., 2008). At the same time, currency
markets are one of the most liquid classes of financial assets and the Trinidad
and Tobago dollar is anchored to the US dollar. As such, the oil-exchange rate
relationship is expected to promptly adjust to reflect the changes in this common
factor.
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The period under investigation is January 1996 to August 2017.1 At each step
of our methodology, we explain the data required and their respective descriptions,
sources, and transformations. All data are monthly, primarily because the approach
for identifying the structural oil market shocks is based on delay restrictions which
are only economically plausible at this frequency (see Kilian, 2009).

5.2.1 Identifying Discrete Oil Market Conditions

The two complementary rule-based approaches to identify discrete oil market
conditions are subsequently detailed.

5.2.1.1 Discrete Calm and Extreme Oil Market Shock Conditions
from a Global Oil Market SVAR Model

We derive oil supply, global aggregate demand, and oil-specific demand shocks
from an international oil market SVAR model postulated in Kilian (2009). This
step requires monthly data from January 1994 to August 2017 on the growth rate in
global oil production, which we proxy with the per cent change in world petroleum
production2 ; a Kilian (2019) correction of the global index of real economic activ-
ity introduced in Kilian (2009)3 ; and the log of real oil prices calculated from the
European Brent crude oil spot prices deflated using the US CPI.4 Equation (5.1)
gives the Kilian (2009) SVAR representation:

A0zt = α +
24∑

i=1

Ai zt−i + εt (5.1)

1 A switch to a dirty floating exchange rate from a fixed exchange rate regime in Trinidad and
Tobago occurred in April 1993. On this grounds we start our analysis in January 1996, to allow
for some time for the economy to acclimatise to the new exchange rate regime.
2 The data are available from the US Energy Information Administration at www.eia.gov/internati
onal/data/world and accessed in November 2018.
3 It is important to note that Hamilton (2018) points out a data transformation error in the index of
nominal freight rates underlying the Kilian (2009) global real economic activity measure, where
the log operator is performed twice. Kilian (2019) acknowledges this coding error and corrects the
global business cycle index. We use this updated data, which are available at https://sites.google.
com/site/lkilian2019/research/data-sets and accessed in November 2018.
4 These data are available from the Federal Reserve Economic Data (FRED) at fred.stlouisfed.
org/, accessed in November 2018. Like Broadstock and Filis (2014), we use the Brent benchmark
instead of the West Texas Intermediate (WTI) to represent the global price of oil. The latter has
been traded at a discounted price since 2011 due to the US shale boom (Kilian, 2016). In light
of such developments, Brent oil has further fortified its prominence as global benchmark, while
the WTI price increasingly reflects US-specific dynamics (Manescu & Van Robays, 2016). More-
over, Trinidad and Tobago produces water-borne crude which is pegged to the Brent crude oil price
benchmark, trading at either a premium or a discount to this international reference price.

https://www.eia.gov/international/data/world
https://sites.google.com/site/lkilian2019/research/data-sets
https://fred.stlouisfed.org/
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where εt is a vector of serially and mutually uncorrelated structural errors; and A−1
0

is recursively identified so that the reduced-form errors et are linear combinations
of the structural errors of the form et = A−1

0 εt , as described in Eq. (5.2). Con-
sistent with the empirical literature, we use a lag length of 24 months to remove
residual autocorrelation and account for the possibility of delays in adjusting to
shocks in the international oil market (see Kang et al., 2015a; Kilian & Park, 2009
and references therein).

et ≡
⎛

⎜⎝
e�global oil production
t

eglobal real activi t yt

ereal oil pricet

⎞

⎟⎠ =
⎡

⎣
a11 0 0
a21 a22 0
a31 a32 a33

⎤

⎦

⎛

⎜⎝
ε
oil supply shock
t

ε
aggregate demand shock
t

ε
oil−speci f ic demand shock
t

⎞

⎟⎠

(5.2)

The identification strategy of the SVAR assumes a vertical short-run oil supply
curve. This indicates that demand innovations in the oil market are contemporane-
ously restricted from affecting oil supply, as implied by the zeros imposed in the
a12 and a13 positions of the A−1

0 matrix in Eq. (5.2). Kilian (2009) argues that such
a specification is reasonable, as the cost associated with adjusting oil production
disincentivises oil-producers to adjust to high-frequency demand shocks. Further,
aggregate demand shocks are innovations to global real activity unexplained by oil
supply shocks. Another zero restriction is imposed in the position of a23 to delay
real oil prices from affecting the aggregate demand within the same month. Lastly,
oil-specific demand shocks are the unexplained innovations to the real price of oil
after oil supply and aggregate demand shocks have been accounted for.

Subsequently, to classify each of the structural oil market shocks into calm and
extreme disturbances, we propose a new discrete rule-based specification which
consolidates two veteran measures for identifying extreme oil prices: outlier oil
prices outside a normal range and net oil price increases over the preceding year.
Regarding the former measure, the idea that oil prices are important if found to
be atypically high or low stems from the work of Akram (2004), who constructs
extrema bands based on a normal range of oil prices with lower and upper bounds
of USD 14 to USD 20, respectively, where values within the band are forced
to zero and values outside the band are retained. Akram (2004) and Bjørnland
(2009) use this oil price band to investigate the asymmetric effects extreme oil
price changes have on the Norwegian exchange rate and stock market, respec-
tively. However, this range is an artefact of oil price behaviour during the 1990s
and much has changed since this period with unprecedented oil booms and busts
characterising the twenty-first-century energy markets. Therefore, we augment this
approach by using the standard deviation value of the three structural oil market
shocks to determine the maximum and minimum values of the band.

On the other hand, the net oil price increases measure is proposed by Hamilton
(1996) as an extension of the positive and negative oil price transformation
suggested in Mork (1989), in an effort to preserve the empirical importance of oil
prices in the US macroeconomy. The net oil price increases measure compares
the current growth rate in the price of oil with the rate over the preceding year
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and censors the current observation if it does not exceed the values observed
over that period. It is straightforward to extend this approach beyond oil prices
to consider net increases from all oil market shocks. We also invert this approach
to also allow for net oil market shock decreases, which are also expected to
have influential implications if, for instance, a small energy-exporting economy is
being considered as is the case here.

We combine these rules to filter the oil market shocks into discrete calm and
extreme oil market conditions defined in Eq. (5.3):

shockdummy
i,t =

⎧
⎪⎪⎨

⎪⎪⎩

1, if |εi,t | > σ ;
if εi,t > max(0, εi,t−1, εi,t−2, ..., εi,t−12);
if εi,t < min(0, εi,t−1, εi,t−2, ..., εi,t−12);

0, otherwise

(5.3)

where i represents the oil supply, global aggregate demand, or oil-specific demand
shocks derived from the oil market SVAR model. In the first rule, σ is the stan-
dard deviation of the structural shocks, which is equal to 0.850 across all structural
oil market shocks. Any value outside this standard deviation band is characterised
as an extreme shock. The second and third rules correspondingly detect the pres-
ence of net oil price positive increases and negative decreases over the previous
12 months. To acquire the extreme positive and negative oil market shocks, from
the rule-based specification described by Eq. (5.3), involves a further filtering of
all periods identified as 1 into episodes where εi,t > 0 and εi,t < 0, respectively.
Considering both symmetric or asymmetric movements in the crude oil market are
especially useful, given that the conclusions in applied studies tend to vary depend-
ing on which has been used (Degiannakis et al., 2018a). The months which are
consistently identified as 0 by the rule-based specification in Eq. (5.3), across all
three structural oil market shocks, form a relatively calm sample. Such a common
calm sample is useful for identifying periods to compare how financial returns and
the relationships between returns behave in calm times (0) to periods otherwise
identified as extreme (1).

5.2.1.2 Classifying Bull and Bear Oil Market Phases
Much of the literature has been devoted to debating and testing the asymmetric
effects of oil prices (see, inter alia, Kilian & Vigfusson, 2011a, 2011b; Cheema &
Scrimgeour, 2019). A novel and interesting way to consider this issue in energy
contagion analysis is with bull and bear market phases, which captures an environ-
ment when oil prices are increasing or decreasing, respectively (Mahadeo et al.,
2019). Rule-based algorithms are more appropriate for in-sample identification of
bear and bull market states than Markov-switching models (Kole & Dijk, 2017).
We use the Pagan and Sossounov (2003) semi-parametric rule-based algorithm to
identify bull and bear oil market phases, as it is one of the most popular of such
approaches (Hanna, 2018). Hence, we are able to test whether an environment
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where oil prices are increasing influences the relationships between oil and finan-
cial variables differently when compared to a period of decreasing oil prices. An
auxiliary benefit of using this procedure is that it permits us to see which types
of extreme oil market shocks dominate the historical bear phases in the crude oil
market over the time period under investigation.

Phases in the Pagan and Sossounov (2003) algorithm are determined based on
maxima and minima in real crude oil prices with the application of various rules.
A peak (trough) is based on whether the oil price in month t is above (below)
other months within the interval t − τwindow and t + τwindow. Furthermore, the
turning points which trigger a switch between phases are restricted with minimum
duration rules. For instance, a cycle cannot be less than 16 months and a phase
cannot be less than 4 months. Additionally, a censor (τcensor ) prevents extrema
values towards the end of the interval from distorting the identification of mar-
ket states. Moreover, the minimum duration rule is overruled if the real oil price
increase or decrease is larger than 20%, which initiates a change in the market
phase. We set τwindow = 8 months and τcensor = 6 months, which are feasible
combinations given in Pagan and Sossounov (2003). We subsequently acquire an
oil price dummy variable where bear (bull) phases are coded as 1 (0).

5.2.2 Estimating Oil-Finance Dynamic Correlations

We specify a DCC model to obtain the three pairs of time-varying correla-
tions between oil, exchange rate, and stock returns. The DCC model uses oil
market data, as well as exchange rate and stock market indicators for Trinidad
and Tobago. For crude oil prices, we again use European Brent crude oil prices in
constant 2010 US dollars from the preceding section. For the exchange rate indi-
cator we use the real effective exchange rate (REER),5 where a rise (fall) in this
index implies currency appreciation (depreciation). We also use real stock prices,
which are represented by the Trinidad and Tobago Stock Exchange (TTSE) Com-
posite Stock Price Index (CSPI) adjusted for inflation, with a 2010 base year, using
the RPI.6 These three variables are first expressed as returns.7 In order to avoid
the issue of omission of relevant variables (see, e.g., Rigobon, 2019), we pre-filter
the return series before approaching the DCC model. Following Mahadeo et al.
(2019), we work with residuals (εt ) from Eqs. (5.4), (5.5), and (5.6), respectively,
as our adjusted returns net of market fundamental. Our specifications for these
regressions are motivated by the plausible assumption that a frontier market such
as Trinidad and Tobago is a price-taker with respect to crude oil market, where

5 Data are sourced from the International Monetary Fund (IMF) International Financial Statistics
and retrieved via Thomson Reuters Eikon, accessed in November 2018.
6 These data are calculated using data from the Central Bank of Trinidad and Tobago (CBTT), and
are available from www.central-bank.org.tt/statistics/data-centre and accessed in November 2018.
7 Returns are calculated as the first difference in the natural logarithm for each series, times 100.
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prices are internationally determined. Hence, the single equation regression in Eq.
(5.4) is used to obtain adjusted oil returns:

� ln BRt = γ0 + γ1� ln BRt−1 + γ2USI Rt−1 + εt (5.4)

where � ln BRt are real Brent crude oil returns, γ0 is a constant, � ln BRt−1 is
the lag of the real Brent crude oil returns, and USI Rt−1 are interest rates for the
US. SBIC suggests an optimal lag length of 1 month and the LM test shows no
statistically significant serial correlation in the residuals.

A VAR model, which includes exogenous regressors, is used to adjust exchange
rates and stock returns for Trinidad and Tobago in order to appropriately treat with
domestic endogenous and foreign exogenous variables. Therefore, we work with
the residuals from Eqs. (5.5) and (5.6) to take market fundamentals into account
for these two series:

� ln REERt =γ10 + γ11� ln REERt−1 + γ12� ln T T SRt−1 + γ13T T I Rt−1

+ γ14� ln BRt−1 + γ15USI Rt−1 + ε1t (5.5)

� ln T T SRt =γ20 + γ21� ln T T SRt−1 + γ22� ln REERt−1 + γ23T T I Rt−1

+ γ24� ln BRt−1 + γ25USI Rt−1 + ε2t (5.6)

where � ln REERt is the REER returns, � ln T T SRt are Trinidad and Tobago
stock market returns, T T I Rt−1 is a domestic interest rate variable for Trinidad
and Tobago, along with exogenous variables for oil returns (� ln BRt−1) and US
interest rates (USI Rt−1). SBIC suggests a 1 month optimal lag length for the VAR
system and a LM test shows no evidence of autocorrelation in the residuals.

In line with the contagion literature, interest rates are included in Eqs. (5.4),
(5.5), and (5.6) to ensure returns are net of market fundamentals (see, inter alia,
Forbes & Rigobon, 2002; Fry et al., 2010). To these ends, we use US shadow short
rates as a foreign interest rate measure relevant to this small-island economy. US
shadow short rates adjusts the conventional policy rate to accommodate for uncon-
ventional monetary authority actions characterising much of the post 2008/2009
global financial crisis era (see Krippner, 2016). The commercial banking median
basic prime lending rate is used to account for activity from the real and financial
sectors, as well as the policy environment in Trinidad and Tobago. Additionally,
we allow exchange rate and stock returns to enter each other’s regression functions
endogenously to account for possible lead-lag effects.

The DCC estimation consists of a two-step process. Step 1 involves the
estimation of univariate generalised autoregressive conditional heteroskedastic
(GARCH) processes for all three adjusted returns. Step 2 uses the residuals from
the first stage to estimate the three pairs of conditional correlations between these
three variables.

In step 1, we aim to optimally estimate each individual return series. Due to
the pre-filtering of the data, the mean equation for each return series (rt ) takes the
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form of a constant only, as no autoregressive terms are necessary, as defined in
Eq. (5.7):

rt = a0 + εt (5.7)

To estimate the conditional variances, we commence with the parsimonious
GARCH(1,1) process given by Eq. (5.8) for each series:

ht = ω0 + α1ε
2
t−1 + β1ht−1 (5.8)

where ω0 is the intercept of the variance, εt are ARCH innovations with a con-
ditional distribution that has a time-dependent variance ht , and ht−1 are lags
of the conditional variance. Further, εt follows the Student’s t-distribution and
the solver used is a non-linear optimisation with augmented Lagrange method.
The GARCH(1,1) models for all returns are stable in variance as the condi-
tion α + β < 1 is met (see Table 5.2). Additionally, the Ljung-Box and ARCH
Lagrange multiplier (LM) tests indicate no concerns regarding autocorrelation and
ARCH effects, respectively, in the residuals of the GARCH(1,1) specification for
all three returns. Moreover, Engle and Ng (1993) sign bias tests provide no sub-
stantive evidence of asymmetric responses to positive and negative news in the
three financial returns.8 Hence, the parsimonious univariate GARCH(1,1) process
is an optimal representation of the conditional variance for each return series.

Step 2 of the DCC model follows Engle (2002). The k x k conditional
covariance matrix of returns, Ht , is decomposed as:

Ht = Dt Pt Dt (5.9)

where Dt are the standard deviation diagonal matrices derived from the
GARCH(1,1) models suggested in Eq. (5.8) and Pt is the correlation evolution
of the (possible) time-varying correlation matrix which takes the form:

Pt = diag
(
q−1/2
1,t , q−1/2

2,t , q−1/2
3,t

)
Qtdiag

(
q−1/2
1,t , q−1/2

2,t , q−1/2
3,t

)
(5.10)

8 We find no statistically significant asymmetric responses to positive and negative news for
exchange rates and stock returns. However, in the case of oil returns, the asymmetric volatility tests
show that the individual sign bias tests convey no asymmetric volatility in the standardised residu-
als, but the joint effects test is statistically significant. Therefore, we consider asymmetric GARCH
variants for this particular series to accommodate for this artefact. Yet, an EGARCH(1,1) for oil
returns, which we find to be the most suitable alternative GARCH specification for this series,
shows that the leverage effects term is not significant. Further, the differences in dynamic correla-
tions estimated from a model where oil returns follows either a GARCH(1,1) or an EGARCH(1,1)
specification is negligible. As such, we revert to the parsimonious GARCH(1,1) model for oil
returns.
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where Qt defined in Eq. (5.11) is a symmetric positive definite matrix whose
elements follow the GARCH(1,1) specified in Eq. (5.8):

Qt = S(1 − λ1 − λ2) + λ1
εt−1√
ht−1

(
εt−1√
ht−1

)′
+ λ2Qt−1 (5.11)

where S is the unconditional correlations matrix, and the adjustment parameters λ1
and λ2 are time-invariant non-negative scalar coefficients related to the exponential
smoothing process that is used to construct the dynamic conditional correlations.
The constraint λ1 + λ2 < 1 indicates that the process is stationary. Finally, the
time-varying correlations are estimated by:

ρi, j,t = qi, j,t/
√
qi,i,t q j, j,t (5.12)

5.2.3 Comparing Dynamic Correlations by Oil Market Conditions

Using the discrete oil market conditions identified with the rule-based specifica-
tions and the time-varying correlations obtained from the DCC model, it becomes
straightforward to perform oil market contagion analysis. We offer complementary
qualitative and quantitative perspectives for this purpose. The qualitative approach
involves a visual analysis of the extreme oil market shocks and bear phases in the
oil market superimposed onto the dynamic correlations. Such graphics are use-
ful for contagion analysis as they can reveal the oil market conditions that tend to
characterise any potential marked increases in the correlations, fully embracing the
time-varying feature of the relationships, without having to average the correlation
values over extreme conditions as this can dilute a crisis.

For a quantitative contagion test, we use the Welch (1947) two-sample t-test to
compare the equality of means for the three pairs of market correlations under the
relatively calm periods versus extreme structural oil market shock conditions, and
bullish versus bearish oil market phases. Welch’s t-test has desirable properties
over the Student’s t-test when comparing the equality of means between two sam-
ples. In particular, the former is robust to unequal variances and unequal sample
sizes relative to the latter, reducing the incidence of a Type I error (Fagerland &
Sandvik, 2009).

5.3 Application to the International Crude Oil Market
and a Small Oil-Exporter

5.3.1 Discrete Calm and Extreme Oil Market Conditions

In Fig. 5.1, the blue dots show the extreme positive shocks and red stars show the
extreme negative shocks identified by our novel rule-based specification, described
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in Eq. (5.3), for classifying oil market shocks into discrete calm and extreme
conditions. Graphs (A), (B), and (C) illustrate the result of this filtering process
applied to each of the structural oil supply, global aggregate demand, and oil-
specific demand shocks, respectively, obtained from the global oil SVAR model
described in Eq. (5.2). With reference to Fig. 5.1 (A) and (C), extreme oil sup-
ply and oil-specific demand shocks, respectively, are seen to occur intermittently
over the entire sample. On the other hand, when compared to the latter half of the
1990s, extreme global aggregate demand shocks in Fig. 5.1 (B) appear to increase
in frequency from the 2000s and especially so in the 2008/2009 Global Financial
Crisis (GFC) and post-GFC eras.

Bear phases in the real Brent crude oil prices are shown by grey vertical panels
in Fig. 5.1. Graph (D) conveys that the contemporary oil slumps identified coin-
cide with international crises such as the Asian financial crisis (1997), the internet
bubble burst and the 9/11 terrorist attacks (2001) in the US, and the GFC (2008).
Additionally, Baumeister and Kilian (2016a, 2016b) find that the stark oil decline
between June 2014 and January 2015 can be explained partly due to a negative
oil-specific demand shock from a slowdown in the global economy, and positive
oil supply shocks coming from the US shale boom and other major oil producers.

5.3.2 Performance of Returns Under Alternative Oil Market
Conditions

Table 5.1 shows simple summary statistics which captures the behaviour of the
monthly returns (adjusted for market fundamentals) under calm and extreme struc-
tural oil market shocks, and during bullish and bearish oil market phases. We
provide results for two samples: a full sample and a sample where the GFC
is censored.9 The latter sample omits the main adverse events associated with
GFC crisis in international markets, which incorporates the infamous collapse of
Lehman Brothers in September 2008. In a study of nine episodes of turbulence in
global financial markets, ranging from 1997 to 2013, Fry-McKibbin et al. (2014)
find that the 2008 Great Recession is a true global financial crisis. As this is an
unprecedented event in our study, we take care to account for the potential role of
the GFC and understand how sensitive our results are to the effects of this global
debacle.

The relatively calm oil market condition, in Table 5.1, is that time period in
the international oil market where no extreme structural shock is identified by our
consolidated non-linear rule-based specification. Such a common calm period can
be used as a basis for comparing how financial returns from the oil, exchange rates,
and stock markets and the relationships between them behave during comparatively

9 The National Bureau of Economic Research defines the timespan of the Great Recession in the
US from December 2007 to June 2009. The dating is obtained from www.nber.org/cycles, and
accessed in November 2018.

http://www.nber.org/cycles/cyclesmain.html
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Fig. 5.1 Graphs (A), (B),
and (C) shows the oil supply,
global aggregate demand, and
oil-specific demand shocks,
respectively, from the
international crude oil market
which are derived from the
SVAR model specified in
Eq. (5.2). For each of these
three graphs, the extreme
positive (blue dots) and
negative (red stars) conditions
for a particular shock are
identified by our novel
rule-based specification in
Eq. (5.3). To provide an
illustrative perspective of our
procedure for identifying
discrete calm and extreme oil
market conditions, consider
that the extreme positive
(negative) shocks in the three
structural oil market shocks
in graphs (A), (B), and (C)
are either values greater (less)
than the standard deviation
band of +0.850 (−0.850) or
the largest (smallest) value
over the preceding 12
months. Bear oil market
phases identified by the
Pagan and Sossounov (2003)
algorithm are shown in grey
vertical panels in graphs (A)
to (D). For reference, graph
(D) shows real Brent crude
oil prices in US dollars per
barrel

calm oil market conditions versus periods when there are extreme oil supply, global
aggregate demand, and oil-specific demand shocks. This relatively calm period is
computed as the periods which are consistently identified as 0 in Eq. (5.3) across
all three structural oil market shocks.
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For the oil market, the highest (lowest) returns are observed under periods of
extreme positive (negative) oil-specific demand shocks. Moreover, the highest mar-
ket volatility occurs during extreme positive oil-specific demand shocks, while the
lowest volatility is, as we might expect, in the calm oil market condition. Fur-
thermore, we find that the mean oil returns are highly significantly different from
zero under extreme positive and negative oil demand shocks, and under bearish
and bullish oil market phases. Also, Welch’s t-test for the equality of means shows
that average oil returns under extreme negative global aggregate demand shocks,
and positive and negative oil demand shocks are significantly different from the
relatively calm period, and average returns in the bearish oil market phases are
statistically different to bullish oil market conditions.

Turning to the returns of the exchange rate index for Trinidad and Tobago, there
are two particularly surprising observations for this small oil-exporter. First, the
mean REER appreciations (depreciations) of the greatest magnitude are exhibited
under extreme negative (positive) oil demand shocks and the value is significantly
different from zero. Secondly, REER depreciations are noted under bullish oil mar-
ket phases and appreciations occur in bearish conditions, where the latter results
are significantly different from zero. Both statistical artefacts contradict the Dutch
disease and positive wealth effects propositions of real exchange rate apprecia-
tions in the presence of increasing oil prices, at least from a contemporaneous
perspective. Moreover, the Welch’s t-test for the equality of means conveys that
there are statistically significant differences in the mean adjusted REER returns
under extreme positive and negative oil demand shocks compared to relative calm
periods, as well as bearish compared to bullish oil market conditions.

Considering stock returns behaviour in this frontier market, the mean returns
are highest in the relatively calm period, while the lowest negative returns are
in periods of extreme negative global demand shocks. However, these results are
sensitive to the GFC. Once this period is censored, the highest returns are instead
observed during bearish oil market phases, whereas the largest negative returns are
observed under extreme positive oil demand shocks. Once again, these are results
contradicting the expectations for a small intensive oil-exporter. Market volatility
is highest in both the full and GFC-censored samples during conditions of extreme
negative oil demand shocks. However, none of the mean adjusted stock returns are
found to be statistically different from zero and the Welch’s t-test for the equality
of means shows that there are no statistically significant differences in the mean
stock returns in calm versus extreme oil market conditions, or in bullish versus
bearish oil market phases.

5.3.3 Oil-Finance Time-Varying Correlations Under Alternative
Oil Market Conditions

The DCC parameters are shown in Table 5.2; while the evolution of the dynamic
oil-REER, oil-stock market, and REER-stock market relationships over the sam-
ple period of January 1996 to August 2017 are graphed as the solid black lines in
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Table 5.2 Crude oil, exchange rate, and stock market returns DCC(1,1) parameter estimates

Coefficient Std. error t value Prob.

aOil
0 0.1212 0.4896 0.2475 0.8045

ωOil
0 8.0666 7.9570 1.0138 0.3107

αOil
1 0.1832 0.0677 2.7082 0.0068

βOil
1 0.7246 0.1295 5.5944 0.0000

aREER
0 −0.0187 0.0526 −0.3558 0.7220

ωREER
0 0.0252 0.0194 1.3017 0.1930

αREER
1 0.0874 0.0433 2.0172 0.0437

βREER
1 0.8873 0.0497 17.8693 0.0000

aStock0 −0.0832 0.1184 −0.7028 0.4822

ωStock
0 0.0000 0.0000 0.0044 0.9965

αStock
1 0.0467 0.0249 1.8752 0.0608

βStock
1 0.9523 0.0206 46.1906 0.0000

λ1 0.0261 0.0154 1.6936 0.0903

λ2 0.8980 0.0466 19.2627 0.0000

Notes The coefficients are from the mean and variance Eqs. (5.7) and (5.8), respectively, from the
first step of the DCC model. The univariate GARCH models are stable as the condition α1 + β1 <

1 is met. λ1 and λ2 are the scalars which take the same value for all the time series from the second
step of the DCC model. The process is stationary as the condition λ1 + λ2 < 1 is satisfied

Figs. 5.2, 5.3, and 5.4, respectively.10 These time-varying correlations are illus-
trated under extreme positive (blue dots) and negative (red stars) oil supply, global
aggregate demand, and oil-specific demand shocks. Bearish oil market phases are
superimposed, as grey vertical bars, for reference. All three pairs of dynamic cor-
relations exhibit contagion effects during the GFC, as all relationships deepen in
this period. The GFC is hallmarked by extreme negative global aggregate demand
and oil-specific demand shocks, an artefact that is well-documented in the litera-
ture (see, e.g., Baumeister & Kilian, 2016a; Kim, 2018), and is a bear phase in the
crude oil market.

Figures 5.2 and 5.4, which, respectively, show the time-varying correlations
between oil and the REER of Trinidad and Tobago, as well as Trinidad and
Tobago’s REER and real stock returns, convey that these are both negative and rel-
atively moderate associations across the two-decade sample period. Apart from the
marked stronger negative relationship in these two DCCs during the GFC period,
there is also additional observational evidence for oil market contagion as these
relationships also deepen during the 2014/2015 oil market crash. In the 2014/2015
oil price plummet, the increase in the magnitude of the relationship for these pair

10 The DCC model coefficients and dynamic correlations are estimated with the rmgarch package
in R (see Ghalanos, 2019).
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Fig. 5.2 Oil-REER DCC
under extreme shocks and
bear phases in the
international crude oil
market. In each graph, the
black solid line is the
dynamic conditional
correlation (DCC) between
the real Brent crude oil
returns and the REER returns
of Trinidad and Tobago
estimated from the DCC(1,1)
model with oil, exchange
rates, and stock returns.
Graphs (A), (B), and (C)
show oil-REER DCC under
periods of extreme oil supply,
global aggregate demand, and
oil-specific demand shocks,
respectively. These extreme
periods are obtained from Eq.
(5.3) applied to the structural
shocks estimated from the
global crude oil SVAR model
in Eq. (5.2). In graphs (A),
(B), and (C) blue stars show
the extreme positive episodes
derived from each particular
shock, while red stars show
the extreme negative shocks.
For reference, the grey
vertical bars in all graphs are
bear oil market phases
identified from the Pagan and
Sossounov (2003) rule-based
algorithm

of DCCs can be seen to coincide with multiple shocks in the international crude oil
market, i.e. extreme positive oil supply, negative global aggregate demand shocks,
and negative oil-specific demand shocks, which are expected to adversely impact
an oil-exporter. For Trinidad and Tobago, these relationships during crisis imply
that as oil prices fell due to such disturbances in the crude oil market, the currency
appreciated and appreciations are associated with negative stock returns.

Figure 5.3 shows that the oil-stock market association is typically weak
with distinct punctuated phases where the correlation strengthens. The negative
oil-stock market relationship prior to 1999 is reversed thereafter to a positive
association, which is in line with the inferences of Miller and Ratti (2009) who
examine a selection of OECD countries. They argue that the positive association



134 S. M. R. Mahadeo et al.

Fig. 5.3 Oil-stock market
DCC under extreme shocks
and bear phases in the
international crude oil
market. In each graph, the
black solid line is the
dynamic conditional
correlation (DCC) between
the real Brent crude oil
returns and the real
composite stock returns of
the Trinidad and Tobago
Stock Exchange estimated
from the DCC(1,1) model
with oil, exchange rates, and
stock returns. Graphs (A),
(B), and (C) show oil-stock
market DCC under periods of
extreme oil supply, global
aggregate demand, and
oil-specific demand shocks,
respectively. These extreme
periods are obtained from Eq.
(5.3) applied to the structural
shocks estimated from the
global crude oil SVAR model
in Eq. (5.2). In graphs (A),
(B), and (C) blue stars show
the extreme positive episodes
derived from each particular
shock, while red stars show
the extreme negative shocks.
For reference, the grey
vertical bars in all graphs are
bear oil market phases
identified from the Pagan and
Sossounov (2003) rule-based
algorithm

is likely due to the existence of stock and oil market bubbles which have char-
acterised twenty-first century financial markets. Indeed, we observe that there are
three distinct periods where the time-varying oil-stock market correlations increase
(in absolute value) over the sample period, which coincide with the Asian financial
crisis, and the dot-com and sub-prime bubbles and crashes. Extreme negative oil
demand shocks occur in all three periods of international financial turmoil, where
we also see that the oil-stock market relationship strengthens.

Table 5.3 conveys the average financial correlations during relatively calm and
extreme structural oil market shocks, and during bullish and bearish oil market
phases, in the full sample and a GFC-censored sample for robustness analysis.
The relatively calm period in the crude oil market forms the sample which is
used as basis for comparing each of the extreme structural shock periods. First,
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Fig. 5.4 REER-stock market DCC under extreme shocks and bear phases in the international
crude oil market. In each graph, the black solid line is the dynamic conditional correlation (DCC)
between Trinidad and Tobago’s REER index returns and the real composite stock returns of the
Trinidad and Tobago Stock Exchange estimated from the DCC(1,1) model with oil, exchange
rates, and stock returns. Graphs (A), (B), and (C) show REER-stock market DCC under periods of
extreme oil supply, global aggregate demand, and oil-specific demand shocks, respectively. These
extreme periods are obtained from Eq. (5.3) applied to the structural shocks estimated from the
global crude oil SVAR model in Eq. (5.2). In graphs (A), (B), and (C) blue stars imply the extreme
positive episodes derived from each particular shock, while red stars imply the extreme negative
shocks. For reference, the grey vertical bars in all graphs are bear oil market phases identified from
the Pagan and Sossounov (2003) rule-based algorithm
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we observe a moderate and inverse oil-REER interdependence. This relationship
suggests that oil price increases (decreases) are associated with exchange rate
depreciations (appreciations), and is inconsistent with the Dutch disease conjec-
ture and the positive wealth effect spillovers expected for an oil-exporter which
implies the opposite outcome. As the US dollar is a vehicle currency and the
energy sector in Trinidad and Tobago has traditionally been the main source of
foreign currency for authorised dealers, the Central Bank of Trinidad and Tobago
supports the local foreign exchange market with the sale of foreign reserves to
authorised dealers. Such interventions maintain exchange rate stability when there
is a shortfall in the inflows of foreign exchange or when the demand for foreign
exchange is robust (CBTT FSR, 2019; CBTT MPR, 2019). In the full sample,
we find statistically significant results that the oil-REER relationship marginally
deepens during extreme global aggregate demand shocks when compared to the
relatively calm period. This conforms with the findings of Atems et al. (2015)
for the responses of exchange rate indexes to this demand-side shock. However,
such evidence of oil market contagion in the oil-REER correlation is primarily
associated with the GFC period.

Looking at the oil-stock market correlation in Table 5.3, this association is
generally weak. Therefore, we find no evidence of either interdependence or con-
tagion. We also observe that oil-stock returns correlation in bullish oil market
phases becomes weaker under bearish conditions. These results can be linked to
the relatively underdeveloped stock market of Trinidad and Tobago, and the fact
that there is only one energy security listed on the stock exchange, which sub-
dues the spillover effects from the international oil market. The minimal effect
of the oil market on the stock market is consistent with evidence from other
oil-exporting markets in the Global South such as the Gulf Cooperation Coun-
cil countries (Al Janabi et al., 2010), Mexico (Basher et al., 2018), and Trinidad
and Tobago (Mahadeo et al., 2019). Yet, this can be contrasted against the expe-
rience of other oil-exporters in the Global North such as Canada (Kang & Ratti,
2013), Norway (Bjørnland, 2009; Park & Ratti, 2008), and Russia (Ji et al., 2018),
where a positive oil-stock market relationship is exhibited.

Turning to the REER-stock market association, the inverse interdependence
suggests that an exchange rate appreciation (depreciation) is correlated with a
downturn (uptick) in stock returns. This result is in contradiction with those of
Delgado et al. (2018) for Mexico, also an emerging market and oil-exporter, who
find that an appreciation of the exchange rate is related to an improvement in
the stock market performance. It is plausible to pin down the differences in the
findings to differences in exchange rate regimes between Mexico (free float) and
Trinidad and Tobago (managed float). Moreover, there is also indication of the
exchange rate and stock market dependence strengthening since the GFC, which
is consistent with Caporale et al. (2014). It can be useful to consider this result
in tandem with the aforementioned oil-REER relationship. Although the oil-stock
returns relationship is weak, it is possible for crude oil to have indirect spillovers
for the stock market performance through the exchange rate channel. We also find
that the REER-stock returns relationship becomes somewhat stronger under the
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global aggregate demand shocks, but this result is sensitive to the omission of
the GFC period. This is in line with Wei et al. (2019), who find that compared
to other macroeconomic fundamentals, the exchange rate market plays the most
significant role in transmitting the impacts of oil prices on the emerging Chinese
stock market, especially in the GFC aftermath.

Altogether, Table 5.3 shows that there are some statistically significant results
for differences in correlations derived from the equality of means tests. However,
the average correlations generally do not convey a marked increase in cross-market
linkages, to satisfy the operational definition of contagion used in this chapter,
under extreme or bearish oil market conditions as these variations tend to be rela-
tively small. Such findings, which are consistent with Mahadeo et al. (2019), might
lead to an inference of no oil market contagion risk for this frontier market. Yet, the
qualitative (graphical) analyses of Figs. 5.2, 5.3, and 5.4 underscore the potential
consequences of overlooking the time-varying nature of correlation as we observe
that the contagion phenomenon has a tendency to intermittently appear and vanish
under certain extreme conditions.

In addition, correlations during the calm period versus periods of extreme oil
supply shocks across all three dynamic relationships appear less sensitive when
compared to correlations under demand-side shocks. This resonates with Atems
et al. (2015) and Basher et al. (2016) who find limited evidence that oil supply
shocks affect exchange rates, and with Filis et al. (2011) who find that supply-side
oil price shocks do not influence the oil-stock market relationship. In fact, many
studies are alluding to the notion that the role of oil supply shocks on the real
and financial sectors is no longer consequential (see Broadstock & Filis, 2014 and
references therein).

Our results also align with Antonakakis et al. (2017), who find that global
aggregate demand innovations are the main source of shocks to stock market dur-
ing economic turbulence, as well as Aloui and Aïssa (2016), who find that the
dependence structure between oil, exchange rates, and stock returns are sensitive
over the 2007–2009 GFC and Great Recession period. Indeed, we also find that
shocks associated with the GFC appear to deepen cross-market linkages between
these three returns more than oil market shocks outside of this period in Trinidad
and Tobago.

5.4 Conclusion

We have put forward an original approach to trace the sources of contagion in
three pairs of financial market relationships: the crude oil-exchange rate returns,
crude oil-stock returns, and exchange rate-stock returns correlations. This is done
by combining non-linear oil price measures to design a rule-based specification
in order to filter supply and demand-side shocks originating from the interna-
tional crude oil market into discrete typical and extreme episodes. Such identified
episodes are then used in order to compare the time-varying financial market
relationships (estimated with a dynamic conditional correlations model) under
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calm versus extreme, as well as bullish versus bearish, oil market conditions.
Our methodology is particularly appropriate for financial stability analysis in
economies vulnerable to disturbances from the international crude oil market.

Our empirical analysis is carried out on the Brent crude oil market and finan-
cial market indicators of the small petroleum intensive economy of Trinidad and
Tobago. The results show a moderate interdependence in the oil-exchange rate
and exchange rate-stock market linkages, as well as a generally weak oil-stock
market relationship. We also find evidence of contagion in all three market rela-
tionships, the most pronounced occurring during the 2008/2009 global financial
crisis. Additionally, the 2014/2015 oil crash is a source of contagion in the relation-
ship between the exchange rate and stock market, whereas intermittent increases in
correlations are observed in the oil-stock market relationship in the Asian financial
crisis in the late 1990s and again in the dot-com crash in the early 2000s. By using
a dynamic framework, as opposed to a static correlation approach, we have been
able to detect further episodes of contagion during international financial crises. In
general, we find that contagion in the nexus between the crude oil market and this
frontier market tends to be driven more by extreme negative demand-side shocks
in the international oil market rather than supply-side shocks.
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6Volatility Contagion Between Crude
Oil and G7 Stock Markets
in the Light of Trade Wars
and COVID-19: A TVP-VAR Extended
Joint Connectedness Approach

Ioannis Chatziantoniou, Christos Floros, and David Gabauer

6.1 Introduction

The link between crude oil and financial markets is a well-researched topic in the
relevant empirical literature. Over the years, researchers have focused on various
aspects of this interaction considering the importance and the repercussions of
developments in crude oil for financial markets. What is more, the examination of
this interaction has become more crucial in the light of the increased financialisa-
tion of the market for crude oil which was initially reflected upon huge investment
activity in commodity exchanges around 2004 (see Silvennoinen & Thorp, 2013).

Some of the most popular strands of the relevant literature include studies that
investigate (i) whether stock market responses to developments in the market for
crude oil depend on the nature of the economy under examination and more partic-
ularly, on whether the stock market response involves either a net oil exporting or
a net oil importing country and (ii) whether stock market responses are triggered
by either demand-side or supply-side developments in the market for crude oil.
As far as the first strand is concerned, the basic argument is that net oil exporting
countries enjoy increased revenue when oil prices rise—a fact that, mitigates the
negative impact from higher oil prices on cost push inflation and could even be
suggestive of a positive reaction from the stock market. Relevant studies in this line
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of research which considers the distinction between net oil importing and net oil
exporting countries include, among others, Filis et al. (2011), Filis and Chatzianto-
niou (2014), Lee et al. (2017), Degiannakis and Filis (2018), Chkir et al. (2020),
Jiang and Yoon (2020).

In turn, the basic argument of the second popular strand in existing relevant
literature is that a shock in the price of oil may differ in its outcome depending on
whether the shock originates in either the demand or the supply side. For example,
it may be the case that hikes in the price of oil due to disruptions in oil production
(i.e., supply-side shock) may indeed act as the bellwether for bad news in global
financial markets. Nonetheless, an increase in the price of oil that occurs due to
higher demand for oil in a period of rapid economic growth might actually be
perceived as good news. For a more thorough analysis with regard to this strand,
the reader is directed to the seminal work by Hamilton (2009a, 2009b) and Kilian
(2009), but also to authors such as Antonakakis et al. (2014, 2017), Kang et al.
(2017), as well as, Kwon (2020).

Following these two important strands that we mention above, another related
strand in existing literature is the distinction between the effects of oil shocks
on stock market volatility and the effects on stock market returns. The crucial
point here is to highlight the inverse relation; that is, to note that when an oil price
shock increases stock market volatility then it should have a diminishing impact on
stock market returns and vice versa. Authors who have considered the difference
between stock market returns and volatility include, among others, Degiannakis
et al. (2014), Kang et al. (2015), and Antonakakis et al. (2017).

Nonetheless, there are factors that affect the volatility in the market for crude
oil as well. In this regard, aspects that affect the latter have also been investigated
in existing literature. Relevant studies include, among others, Efimova and Serletis
(2014), Phan et al. (2016), Chatziantoniou et al. (2019). Among other factors, the
impact from uncertainty in international financial markets has been stressed by
authors such as Chatziantoniou et al. (2021a). Besides, the correlation between
volatility in the market for oil and volatility in various stock markets has been
investigated in the work by Boldanov et al. (2016) who document that the nature of
the correlation is rather dynamic and depends on the ensuing events of each period.
It follows that, there clearly is a link between the market for oil and the stock
market and thus, the investigation of the potential for volatility contagion becomes
crucial in order to better understand developments in these markets.

With these in mind, the objective of this study is to shed additional light upon
the linkages between volatility in the market for crude oil and stock market volatil-
ity in G7 countries. Recent developments such as the decision by the US to revise
tariffs—which affected bilateral trade with countries such as Canada or China, or
the outbreak of the COVID-19 pandemic—which resulted in a remarkable drop
in global demand (i.e., including demand for oil), make this topic particularly
timely for the countries under investigation which are substantially exposed to
international trade.

In this study we are particularly interested in the investigation of possible
channels of volatility transmission across the markets of interest. To this end,
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we employ connectedness as the means to accomplish our research objective.
More particularly, we focus on the time-varying parameter vector autoregressive
(TVP-VAR) extended joint connectedness method (see Balcilar et al., 2021) which
constitutes an augmented version of the standard TVP-VAR connectedness method
(see Antonakakis et al., 2020; Chatziantoniou & Gabauer, 2021; Gabauer & Gupta,
2018). At this point, it should be noted that standard connectedness methods orig-
inate in the work of Diebold and Yılmaz (2009, 2012, 2014). In these studies,
dynamic connectedness is obtained through the popular rolling-windows approach.
Nonetheless, the development of the TVP-VAR presents certain advantages over
the standard rolling-windows approach. More particularly, the TVP-VAR method
ensures that (i) there is no arbitrary choice either of the forecast horizon or of
the window-length, (ii) there is no distortion due to outlier values, and (iii) no
observations are being left out (i.e., as is inevitably the case when we use rolling
windows). In turn, the Balcilar et al. (2021) TVP-VAR extended joint connect-
edness approach further refines existing TVP-VAR methods by considering an
alternative way of normalising connectedness measures (see also the description
of the method in Sect. 6.3 of the present study). It would also be instructive at this
point to note that in the interests of robustness, in this study we present results both
for the standard TVP-VAR method (i.e., which predicates upon the initial normal-
isation approach by Diebold and Yılmaz (2014) and from the TVP-VAR extended
joint connectedness approach which predicates on the normalisation approach by
Lastrapes and Wiesen (2021). In this respect, the contribution of this study rests
mainly with its empirical application. That is, we consider two closely related
connectedness methods to the effect that we obtain robust results and be more
confident in our conclusions about the underlying relations.

Turning to the main findings of the study, first and foremost, we should
highlight that we obtain qualitatively similar results from both methods (i.e., con-
sidering the direction of connectedness and the distinction of the variables of
the network between net transmitters and net recipients) with only minor dif-
ferences associated with the magnitude of connectedness. This fact adds to the
robustness of our approach and lends additional gravity to the relevant arguments.
Findings further suggest that volatility connectedness in this network fluctuates
around relatively high levels over time—which is indicative of the increased con-
tagion potential across the variables of the network. What is more, total dynamic
connectedness appears to be highly responsive to major events that affected inter-
national financial markets throughout the sample period. In addition, we find that
some of the variables of the network may shift from dominant net transmitters
to major net recipients of uncertainty shocks within the network. The market for
crude oil is a striking example of this finding, considering that it assumes an impor-
tant role as a net transmitter of spillover shocks around the time of the oil price
collapse in 2014 while, it clearly receives shocks, on net terms, from capital mar-
kets between 2018 and 2019. In line with the discussion above, the period around
2019 was a very turbulent period for international financial markets reflecting to
a great extent development on international trade. This is also a period when the
French stock market switches into a net transmitting position. The stock markets
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of Germany, Italy, and Japan remain for the most part on the receiving end of
spillover uncertainty shocks while the UK stock market assumes a considerable
net transmitting role around the time of the EU referendum. The US stock mar-
ket is a principal net transmitter of uncertainty in the system almost throughout
the entire period of study until early 2018. From then on—during a period that
was severely marked by trade rearrangements and the outbreak of the COVID
pandemic, the Canadian stock market becomes the dominant net transmitter in
this network; a fact that further highlights the importance of this major export
economy for volatility in international financial markets.

Investigating the linkages and the contagion potential across a network of vari-
ables helps attain a better understanding of the relevant transmission channels
through which uncertainty propagates a system and fuels reactions. By examin-
ing dynamic connectedness within this specific network, policymakers may draw
additional information which could prove particularly useful when considering,
for example, the negative effects of turbulent crude oil markets. Furthermore, in
view of the recent financialisation of commodity markets, the investigation of the
mechanisms through which volatility affects performance could further facilitate
portfolio managers to develop appropriate diversification strategies especially dur-
ing times of financial turmoil. In this regard, dynamic connectedness measures
constitute a crucial tool for the arsenal of decision making.

The remainder of this chapter is organised as follows. In Sect. 6.2, we set out the
data and the market proxies that we have included in the study. Then, in Sect. 6.3
we describe the employed methods highlighting the main difference between the
standard TVP-VAR approach and the TVP-VAR approach which predicates upon
the extended joint connectedness approach. In turn, we present the findings of the
study and proceed with a relevant discussion of the main findings in Sect. 6.4.
Finally, Sect. 6.5 concludes the chapter.

6.2 Data

This study employs a daily dataset retrieved from yahoo finance comprising crude
oil and stock market indices of all G7 countries. In more details, we cover the
American S&P 500, Canadian S&P/TSX, British FTSE 100, German DAX 30,
French CAC 40, Italian FTSE MIB, and Japanese Nikkei 225 index. Our data
spans over the period from 2nd January 2007 to 30th April 2021. We calculate
daily annualised daily per cent standard deviation in the spirit of Parkinson (1980):

σi t = 100 ·
√
√
√
√365 · 0.361

(

xmax
it − xmin

it

xmin
it

)

(6.1)

where xmax
it and xmin

it are the highest and lowest price of variable i on day t,
respectively. The transformed series are shown in Fig. 6.1.
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Fig. 6.1 Crude oil and stock market returns (Notes Series are calculated based on Parkinson
[1980])

Table 6.1 shows that crude oil has by far the highest average variance among all
series, followed by the Italian and German stock market indices. All transformed
series are significantly non-normally distributed according to the Jarque and Bera
(1980) normality test which is also supported by the fact that all series appear to be
right skewed and leptokurtic distributed on the 1% significance level. Furthermore,
all variables are significantly autocorrelated, exhibit ARCH errors, and are station-
ary according to the Elliott et al. (1996) unit-root test on the 1% significance level.
Those results are suggestive that modeling the volatility transmission mechanism
between crude oil and the G7 stock market indices applying a TVP-VAR model is
appropriate.
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6.3 Methodology

The connectedness approach proposed by Diebold and Yılmaz (2009, 2012, 2014)
allows to monitor and evaluate the transmission mechanism within a predetermined
network. This supports in general policymakers to adequately adjust economic and
political strategies in order to mitigate adverse effects that propagate from shocks
in specific variables/sectors. Therefore, it is of essential importance that spillovers
and the relative strength of shocks are accurately measured and investigated.

The relevance and applicability of this framework already led to multiple
improvements and extensions overcoming two major shortcomings which are that
(i) the original dynamic approach rests on a rolling-window VAR—that requires
to choose a rolling-window size—and (ii) that the GFEVD normalization is sub-
optimal (Caloia et al., 2019). The first issue has been tackled by Antonakakis et al.
(2020) who propose a TVP-VAR based connectedness approach to (i) overcome
the arbitrarily chosen VAR window size, (ii) be less sensitive to outliers, (iii) to
monitor more accurately the parameter changes, and (iv) avoid the loss of observa-
tions. A solution for the second shortcoming has been suggested by Lastrapes and
Wiesen (2021) who derived a normalization method based upon the goodness-
of-fit measure R2. Their so-called joint spillover index leads to a more natural
interpretation of connectedness measures and also to a more accurate illustration
of the propagation mechanism at hand. These two concepts have been combined
and extended in Balcilar et al. (2021) who even allowed to examine the net pair-
wise directional connectedness measure in a joint connectedness setting which has
previously not been possible. Additionally, the TVP-VAR based extended joint
connectedness approach includes all aforementioned advantages over the original
connectedness approach of Diebold and Yılmaz (2009, 2012, 2014).

To explore the volatility propagation mechanism between crude oil and the
G7 stock market indices, we first estimate a TVP-VAR1—with a lag length of
order one as suggested by the Bayesian information criterion (BIC)—which can
be outlined as follows,

yt =Bt yt−1 + εt εt ∼ N (0, �t ) (6.2)

vec(Bt ) =vec(Bt−1) + vt vt ∼ N (0, Rt ) (6.3)

where yt , yt−1 and εt are K × 1 dimensional vector and Bt and �t are K × K
dimensional matrices. vec(Bt ) and vt are K 2 × 1 dimensional vectors whereas Rt

is a K 2 × K 2 dimensional matrix. Subsequently, the TVP-VAR is transformed to
a TVP-VMA according to the Wold representation theorem: yt = ∑∞

h=0 Ah,tεt−i

where A0 = IK .

1 Since the detailed algorithm of the TVP-VAR model with heteroscedastic variance-covariances
is beyond the scope of this study interested readers are referred to Antonakakis et al. (2020).
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6.3.1 TVP-VAR Based Connectedness Approach

We start with the TVP-VAR based connectedness approach as some prior knowl-
edge and definitions are required for better understanding the TVP-VAR extended
joint connectedness approach. The TVP-VAR based connectedness approach
(Antonakakis et al., 2020) is based upon the H-step ahead generalised forecast
error variance decomposition (GFEVD) (Koop et al., 1996; Pesaran & Shin,
1998) which represents the effect a shock in series j has on series i. This can
be mathematically formulated as follows:

φ
gen
i j,t (H) =

∑H−1
h=0 (e′

i Aht�t e j )2

(e′
j�t e j )

∑H−1
h=0 (e′

i Aht�t A′
ht ei )

(6.4)

gSOTi j,t = φ
gen
i j,t (H)

∑K
k=1 φ

gen
ik,t (H)

(6.5)

where ei is a K × 1 zero selection vector with unity on its ith position and φ
gen
i j,t (H)

is the unscaled GFEVD (
∑K

j=1 ζ
gen
i j,t (H) �= 1). Based upon the work of Diebold

and Yılmaz (2009, 2012, 2014) the unscaled GFEVD is normalised to unity by
dividing it by the row sum which leads to the scaled GFEVD, gSOTi j,t .

The scaled GFEVD is the fundament on which all other connectedness mea-
sures can be calculated. The total directional connectedness from all others to
series i and the total directional connectedness to all others from a shock in series
i which represents by how much the network influences series i and how much
series i influences the predetermined network, respectively, can be computed as
follows:

Sgen, f rom
i←•,t =

K
∑

j=1,i �= j

gSOTi j,t (6.6)

Sgen,to
i→•,t =

K
∑

j=1,i �= j

gSOTji,t (6.7)

Based upon the previous two measures the net total directional connectedness of
series i can be calculated which can be interpreted as the net influence of series i
on the network,

Sgen,net
i,t = Sgen,to

i→•,t − Sgen, f rom
i←•,t (6.8)

If Sgen,net
i,t > 0 (Sgen,net

i,t < 0), series i is influencing (influenced by) all others
more than being influenced by (influencing) them and thus is considered as a
net transmitter (receiver) of shocks indicating that series i is driving (driven by)
the network.
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At the core of the connectedness approach is the total connectedness index
(TCI) which highlights the degree of network interconnectedness and hence its
market risk. The TCI is equal to the average total directional connectedness from
(to) others and can be outlined by the following:

gSO It = 1
K

K
∑

i=1

Sgen, f rom
i←•,t = 1

K

K
∑

i=1

Sgen,to
i→•,t , (6.9)

A high (low) value implies that the market risk is high (low).
Finally, the connectedness approach supplies also information on the bilateral

level. The net pairwise directional connectedness illustrates the bilateral power
between series i and j,

Sgen,net
i j,t = gSOT gen,to

ji,t − gSOT gen, f rom
i j,t . (6.10)

If Sgen,net
i j,t > 0 (Sgen,net

i j,t < 0), series i dominates (is dominated) series j which
means that series i influences (is influenced by) series j more than being influenced
by it.

6.3.2 TVP-VAR Based Extended Joint Connectedness Approach

The main difference between the joint and the original connectedness approach is
that the normalization method is not chosen arbitrarily but derived from the popular
R2 goodness-of-fit measure.2 S jnt, f rom

i←•,t represents the impact all variables in the
network have on variable i. This can be mathematically formulated by:

ξ t (H) = yt+H − E( yt+H | yt , yt−1, ...) =
H−1
∑

h=0

Ah,tεt+H−h (6.11)

E(ξ t (H)ξ ′
t (H)) =Ah,t�t A′

h,t (6.12)

S jnt, f rom
i←•,t = E(ξ2i,t (H)) − E[ξi,t (H) − E(ξi,t (H))|ε∀�=i,t+1, ..., ε∀�=i,t+H ]2

E(ξ2i t (H))

(6.13)

=
∑H−1

h=0 e′
i Aht�tM i (M ′

i�tM ′
i )

−1M ′
i�t A′

ht ei
∑H−1

h=0 e′
i Aht�t A′

ht ei
(6.14)

2 For the detailed mathematical derivations interested readers are referred to the technical appendix
of original study of Lastrapes and Wiesen (2021).
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where M i is a K × K − 1 rectangular matrix that equals the identity matrix with
the ith column eliminated, and ε∀ �= i , t + 1 denotes the K − 1-dimensional vector
of shocks at time t + 1 for all variables except variable i. In the next step, the joint
total connectedness index is calculated as follows,

j SO It = 1
K

K
∑

i=1

S jnt, f rom
i←•,t (6.15)

which is within zero and unity opposed to the TCI of the originally proposed
approach as shown in Chatziantoniou and Gabauer (2021) and Gabauer (2021).

An important extension of Balcilar et al. (2021) is that multiple scaling factors
are used to link gSOT to jSOT:

λi t = S jnt, f rom
i←•,t

Sgen, f rom
i←•,t

(6.16)

j SOTi j,t =λi t gSOTi j,t (6.17)

Based upon this equality, the total directional connectedness from variable i to
all others, the net total directional and the net pairwise directional connectedness
measures can be calculated as well:

S jnt,to
i→•,t =

K
∑

j=1,i �= j

j SOTji,t (6.18)

S jnt,net
j,t =S jnt,to

i→•,t − S jnt, f rom
•→i,t (6.19)

S jnt,net
i j,t = j SOT jnt,to

ji,t − j SOT jnt, f rom
i j,t . (6.20)

6.4 Results and Discussion

In this section, we set out the main findings of the study based on extended
joint connectedness and elaborate on the corresponding implications. In the inter-
ests of comparison, we also include the results from the standard TVP-VAR
connectedness approach. Please be reminded that the TVP-VAR extended joint
connectedness approach practically constitutes a refined version of the standard
TVP-VAR connectedness approach. In this regard, we expect findings to be qual-
itatively similar across the two different approaches; with the joint connectedness
method though, offering more adequately justified (and in this respect, more
accurate) results.

Furthermore, in order to highlight the dynamic character of the study, we focus
mainly on dynamic results; namely, total dynamic connectedness, net directional
connectedness, as well as, pairwise connectedness.
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6.4.1 Average Connectedness Results

We begin by considering average results; that are, results that emerge when we
consider the entire sample period as a whole. These results are given by Table 6.2.
Please note that the main diagonal element which corresponds to each variable in
our network reflects each variable’s idiosyncratic effect (i.e., own contribution to
uncertainty) while, off diagonal elements represent the contribution of uncertainty
to this variable from others.

Furthermore, according to the average value of the total connectedness index
(TCI) for the period, 67.93% of the forecast error variance in each one of the
variables of our network can be attributed to innovations in all other variables. This
practically implies that average variable co-movement is rather moderate-to-high
and therefore we should not neglect the potential for volatility contagion within
the network.

A closer look at Table 6.2 further allows for a distinction (i.e., always on aver-
age net terms) of the variables of the network between net transmitters and net
recipients of uncertainty shocks. In this regard, we note that Canada appears to
be the major net transmitter in the network with an average net connectedness
value of 16.67%, followed by the US (14.78%), and the UK (5.31%). By con-
trast, all other variables in our network assume a rather net receiving position with
Japan (−14.64%) and Italy (−8.53%) being the main average net recipients of the
network.

Although the averaged results do provide a generic picture of the interaction
among the variables of the network, we should be able to draw safer conclusions
by decomposing the sample period into shorter intervals and by considering a
rather dynamic investigation of the interaction among the variables. The reason
being that average results may mask major economic developments and events that
transpired during the sample period and had a profound impact on the network
under investigation. In this regard, in the sections that follow, we proceed with
such a dynamic investigation of the results that we obtained from both alternative
empirical methods.

6.4.2 Total Dynamic Connectedness

In turn, we consider total connectedness across time. Findings are given by Fig. 6.2
which illustrates the evolution of the total value of connectedness within the
system/network under investigation. For illustration purposes, the black-shaded
area corresponds to extended joint connectedness results while the red solid line
represents the results from the standard TVP-VAR connectedness approach.

First, we notice that—as was in fact expected, results obtained from both of
these methods remain qualitatively similar and differences are practically limited
to the magnitude of connectedness across the sample period. Apparently, both
methods are capable of identifying the relevant peaks and troughs of connectedness
within this particular network of variables.
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Fig. 6.2 Dynamic total connectedness (Notes Results are based on a TVP-VAR model with lag
length of order 1 [BIC] and a 20-step-ahead forecast)

In turn, focusing primarily on the extended joint connectedness results, we note
that, connectedness within this network of variables is relatively high; that is, con-
nectedness is persistently greater than 55% and from time to time it reaches peaks
greater than 75% and—more recently, as high as approximately 90%. These find-
ings are indicative of the very strong association between the variables of this
system. Findings also highlight the strong linkages across international financial
markets and reflect—to some extent, the importance of the financialisation of
the oil market. To give an example, a connectedness value in the region of 55%
practically implies that for a particular point in time, 55% (on average) of the evo-
lution within this particular system of variables can be attributed to developments
within the network itself. To put differently, if connectedness is in this particular
region, then approximately 55% of the forecast error variance in one of the con-
stituents/variables of the network can be attributed to innovations that occur in all
other constituents.

The practical implication is that, researchers by looking into connectedness
have an additional source of information regarding the feedback that each variable
receives within a specified network. In this regard, connectedness becomes a useful
tool towards identifying potential sources of contagion within a given network.
More importantly, under a dynamic framework of study, that is, a framework that
investigates the extent of connectedness through time, researchers can effectively
identify patterns of the responses of this network not only to major developments
in financial markets and the broader economy but also to major crisis episodes that
affect societies the world over.
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It follows that increased levels of connectedness during specific points in time
(e.g., in the light of major crisis episodes) suggest that the variables of the network
move closely together. In fact, if such patterns of increased connectedness system-
atically occur during similar events then connectedness in the network rather is
event-dependent. Being highly responsive to such events, practically causes con-
nectedness to fluctuate across time (as evidenced in Fig. 6.2) exhibiting periodical
peaks and troughs.

By contrast, lower levels of connectedness are suggestive of weak interrelations
within the network. Weak connectedness could in some cases be associated with
rather tranquil periods of time; or—particularly during turbulent periods, it could
be suggestive of decoupling. The latter case would no doubt be very interesting
(and useful) from the standpoint of investments and active portfolio management
considering that differing behaviours during turbulent times could potentially offer
opportunities for diversification. As we shall discuss later on in this section, distin-
guishing the constituents of the network between net transmitters and net receivers
of shocks could provide additional information regarding the dynamic behaviour
of the relevant variables.

In turn, results are suggestive of specific periods whereby connectedness in this
network was rather pronounced. Apparently, connectedness reached very high lev-
els in the beginning of 2009, 2012, and 2018 while its highest value can be located
around the first quarter of 2020. In the section that follows we shed additional light
on these relationships by considering net total connectedness.

6.4.3 Net Total Directional Connectedness

We now focus on Fig. 6.3 which illustrates the specific position of each variable
of the network over time. To put differently, Fig. 6.3 depicts whether any variable
of the particular network assumes either a net transmitting or net receiving role
across the sample period. For the purposes of illustration, please note that values
above zero suggest a net transmitter of shocks into the system while values below
zero, a net recipient.

Understandably, during the sample period, it is not uncommon for a variable
to switch between roles. Notice for example that oil is mostly a recipient of
shocks with a notable exception around 2014. It follows that the adopted empirical
method allows for making a distinction between variables which—for their most
part, have acted as net transmitters and variables which—for their most part, have
rather positioned themselves on the receiving end. The practical implication of
distinguishing between net transmitters and net receivers in this particular network
of variables which focuses on volatility is that it improves our understanding of
potential sources of uncertainty within the network.

Furthermore, given that the empirical method allows for a dynamic analysis of
the issue at hand, we are also able to isolate specific periods whereby a variable
classifies as either a net transmitter or net receiver in the light of some specific
event. For instance, following on from the point that we made earlier about the
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position of oil around 2014, we could further acknowledge that this period largely
coincides with the unprecedented collapse in the price of oil which was particularly
evident between June and December 2014. Within the framework of our model,
this could be interpreted as oil being an important source of uncertainty for the
entire network during these specific months. In other words, during that period,
oil—on net terms, was not so much a receiver of uncertainty shocks from other
variables in the network as it was a transmitter of these shocks.

If we interpret the findings presented in Fig. 6.3 in this way then, we can draw
some useful initial conclusions about the interaction among the variables of the
network. More particularly, we note that most variables assume both roles across
time with the exception perhaps of both the Italian and the Japanese stock mar-
ket who both appear to be on the receiving end. Furthermore, the German stock
market is also a rather persistent net receiver of uncertainty shocks, with only one
or two exceptions throughout the period of study; nonetheless, the magnitude of
transmission from the German stock market during these exceptional intervals was
rather negligible.

Despite those findings in connection with the UK indicate that the extent of
the transmission of this particular stock market is rather low, there clearly exists a
period between the beginning of 2015 and the end of 2016 whereby the UK stock
market appears to have a key role to play as a net transmitter of uncertainty shocks
to the remaining variables of the network. It is perhaps no surprise that this par-
ticular interval coincides with developments associated with the EU membership
referendum which eventually took place in the UK on the 23rd of June 2016.

The French stock market is mainly a net recipient of uncertainty shocks from
all other variables of the network. Nonetheless, there is an interval between the
beginning of 2018 and mid-2019 when the French stock market injects uncer-
tainty into the system. This particular period was marked by high volatility in
international financial markets following events such as the escalating trade war
between China and the US and rising interest rates in the US. An interesting
aspect that makes these developments pertinent for the French index and poten-
tially justifies these findings is that stocks listed on CAC 40 are largely owned
by multinational corporations and overseas investors who were greatly affected by
these developments.

In turn, results suggest that the US stock market is a persistent net transmitter
of uncertainty shocks, a fact that most likely underscores the importance of devel-
opments in the particular market for the global economy. Interestingly enough
though, the US stock market switches to a net recipient role around the beginning
of 2019, which is exactly the period in which the Canadian stock market becomes
an important net transmitter. The latter begs the question of whether this finding is
entirely random or not, suggesting that there may be a common story between the
two markets that lies behind this particular development. To answer this question
(and similar ones) we have to look into net pairwise spillovers—which is the focal
point of the following section.
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6.4.4 Net Pairwise Dynamic Connectedness

We turn to Fig. 6.4 which illustrates the pairwise dimension of the results. In
line with previous analysis, positive values are indicative of net recipient vari-
ables in the network. In effect, the pairwise dimension verifies previously reported
results and also offers a more complete picture with regard to uncertainty spillover
shocks within this particular network.

Focusing on the findings presented in the first column of Fig. 6.4, we notice
that in all cases, oil consistently contributes shocks to the system around the period
of the oil price collapse. In point of fact, results remain qualitatively similar irre-
spectively of whether the country is a net oil importer (e.g., Germany) or a net
oil exporter (e.g., Canada). The episode of the oil price collapse and its effect on
financial markets has been well documented in existing literature (see Balli et al.,
2019; Chatziantoniou et al., 2021a, 2021b; Degiannakis & Filis, 2018).

Furthermore, with the exception of Japan, it is also evident that the oil market
receives considerable uncertainty shocks from all stock markets around 2018. As
aforementioned, the period around 2018 was a very turbulent period for global
stock markets. To be more explicit, 2018 was mostly marked by the escalation
of the trade war between China and the US with the unprecedented measures
of the period (e.g., increased tariffs) having a profound impact both on interna-
tional trade, investments, and financial markets (see Egger & Zhu, 2020; He et al.,
2020; Xu & Lien, 2020). It follows that the economic environment during 2018
was rather discouraging for investments (resulting for instance in a slowdown in
demand for oil) and international tensions had a strong impact on the market for
oil (see Bouoiyour et al., 2019; Li et al., 2020). At the same time, the rather uncer-
tain economic environment of 2018 also affected the oil market through financial
markets—considering the relatively recent financialisation of commodity markets
(see Silvennoinen & Thorp, 2013; Zhang, 2017).

If we then turn our attention to the remaining panels in Fig. 6.4, we can find
out more about the relevant bilateral relationships of the network. For example,
looking down the results presented in the second column (with the exception of
the last panel in that column), we can see the pairwise connectedness between
the US stock market and all other G7 stock markets. Following on from our
discussion above, it seems that the period around 2018 was a period when the
US stock market assumed a dominant role as a net transmitter of uncertainty
shocks in the system. There is indeed a strong link between the US economy
and other economies around the globe and therefore developments affecting the
US could cause a chain reaction to other countries. Apart from developments in
relation to the recent US-China trade war that was previously discussed, evidence
also suggests that contractionary monetary policy in the US (i.e., higher interest
rates)—such as the one we experienced around 2018, could negatively affect GDP
in other countries (see Iacoviello & Navarro, 2019).

Interestingly enough, findings with regard to the Canadian stock market reveal
that volatility in this particular market greatly affected almost all other stock mar-
kets in the network, around the onset of the COVID-19 pandemic. This finding
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is closely linked to our discussion above relating to the slowdown of invest-
ment in recent years; however, in this case, results should be viewed from the
standpoint of Canada being a major exporting country during a period when the
prospects of manufacturing, energy, and the financial sector were rather gloomy
and unfavourable. Given Canada’s reliance on international trade, authors such as
Talbot and Ordonez-Ponce (2020) stress that the COVID-19 pandemic affected the
Canadian economy in a profound way. Considering these prospects, the Toronto
Stock Exchange suffered its most severe decline between February and March
2020 subsequently affecting major stock markets in the world—including the US
stock market; a fact which stands to reason considering that Canada and the US are
very close trade partners. In this regard, the developments of the period affecting
bilateral trade between Canada and the US; that is, particularly in connection with
the increased tariffs of the period (see Cavallo et al., 2021) was also struck from
developments associated with the COVID-19 pandemic. At the same time, authors
such as Xu (2021) point out that uncertainty in connection with COVID-19 had a
profound impact on the Canadian stock market relative to the US.

In retrospect, the main findings of this study indicate that, as far as this particu-
lar network of variables is concerned, volatility connectedness was mostly affected
around three specific periods; that is, around 2014, during 2018, and in the begin-
ning of 2020. All these periods could be linked with certain major events such
as the oil price collapse, stock market unrest, as well as, the outbreak of the
COVID-19 pandemic. Distinguishing the variables of the network into net trans-
mitters and net receivers of spillover shocks improves our understanding of the
underlying dynamics that propagate our system and determine the direction of
contagion across the variables of interest. Understanding these dynamics could be
useful to policy and decision-makers who—in order to restore tranquillity dur-
ing periods of economic turbulence, require information on the interaction among
several macroeconomic and financial variables.

6.5 Conclusion

In this study we focused on a specific network of variables in order to examine the
interrelation between volatility in G7 stock markets and volatility in the market for
crude oil. By looking into this network, we shed additional light into the potential
sources of uncertainty contagion afflicting the relevant markets.

To this end, we collected monthly data for the period between 2007 and 2021
and utilised appropriate proxies. To the effect that we predicated results upon a
robust empirical approach, we employed the extended joint TVP-VAR connected-
ness method (Balcilar et al., 2021) which augments the standard connectedness
index initially developed by Diebold and Yılmaz (2009, 2012, 2014). For the
purposes of illustration and in the interests of comparison we provided results
from both methods. Results were qualitatively similar between the two, exhibiting
mainly differences with regard to the magnitude of connectedness.
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Overall, we found that total dynamic connectedness assumed large values over
time which is indicative of the great extent of interrelation among the variables
of the network. In fact, connectedness persistently remained above the 55% mark
across time while, during the most recent months of the sample period, connect-
edness was as high as approximately 90%. In turn, findings regarding net total
dynamic connectedness helped us distinguish between net transmitters and net
receivers of uncertainty shocks within the network. In point of fact, we were able
to identify specific periods when each variable assumed either role in the light of
events that had a profound impact on international financial markets.

More particularly, we found that crude oil did have an important net transmit-
ting role during the 2014 oil price collapse. In turn, crude oil rather assumed a
noteworthy net receiving position around 2018 which admittedly was a very tur-
bulent period for stock markets around the globe. What is more, the UK stock
market also assumed a net transmitting role for a short period around the events
of the EU referendum.

Furthermore, on net terms, the stock markets of Germany, Italy, and Japan rather
remained on the receiving end of this network. The US stock market on the other
hand constantly acted as a net transmitter of uncertainty shocks within the network
with the exception of the more recent period starting in the beginning of 2019.
With reference to this particular finding, net pairwise analysis suggested that the
US stock market mainly received uncertainty from the Canadian stock market
which—considering its role as a major exporting economy, apparently affected
volatility in many stock markets around the world in a period marked by turbulence
with regard to international terms of trade and the COVID-19 crisis.

To conclude, in this chapter we highlighted the importance for considering a
variety of empirical approaches in order to reach more robust conclusions. We
found that both the standard TVP-VAR connectedness approach and the TVP-
VAR extended joint connectedness approach provided qualitatively similar results
in relation to the direction of connectedness and the distinction between net trans-
mitting and net receiving variables within the network. We maintained that findings
are important for policymakers and decision-makers in general who wish to better
understand the interactions across stock markets and the market for crude oil in
order to formulate and implement the necessary policies.
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Energy, Climate Change and the Environment



7The Impact of Market Uncertainty
on the Systematic Risk of Clean
Energy Stocks

Perry Sadorsky

7.1 Introduction

Addressing climate change and limiting global temperature increases to 2 degrees
above pre-industrialization levels requires a major transition in energy structure
from fossil fuels to renewable energy sources. Through technological innova-
tion, the levelized cost of electricity is falling for renewables and onshore wind
is now less costly than coal (The Economist, 2020). Technological innovation,
clean energy policy, green consumers, and socially responsible investing are pow-
erful forces spurring investment in clean energy companies. Investment in clean
energy equities totaled $6.6 billion in 2019. While this number was below the
record high of $19.7 billion in 2017, the compound annual growth rate between
2004 and 2019 of 24% was above that of private equity or venture capital fund-
ing (Frankfurt School-UNEP Centre/BNEF, 2020). In response to this interest in
clean energy, there is a literature on clean energy equity dynamics (Bondia et al.,
2016; Dutta, 2017; Dutta et al., 2018; Elie et al., 2019; Gupta, 2017; Henriques &
Sadorsky, 2008; Kumar et al., 2012; Maghyereh et al., 2019; Managi & Okimoto,
2013; Reboredo, 2015; Reboredo & Ugolini, 2018; Reboredo et al., 2017; Uddin
et al., 2019; Wen et al., 2014) and the hedging of clean energy equities (Ahmad,
2017; Ahmad et al., 2018; Ahmad & Rais, 2018; Sadorsky, 2012a).

We don’t, however, know much about time variation in clean energy equity
systematic risk (beta) or how market uncertainty affects the systematic risk of clean
energy equities. Systematic risk is often estimated from a capital asset pricing
model (CAPM) and used for measuring the risk premium of an asset. The risk
premium of an asset is equal to the asset’s exposure to market risk (beta) times
the risk premium of the market. The CAPM is one of the cornerstones of modern
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finance theory and is widely used by investors and practitioners to estimate the
cost of capital (Graham & Harvey, 2001) and to formulate investment strategies
(Barber et al., 2016; Berk & van Binsbergen, 2016). Beta is defined as the product
of the correlation between the stock return and the market return and the standard
deviation of the stock return divided by the standard deviation of the market return.
Uncertainty about each of these three components can affect beta. For example,
Naeem et al. (2020) study the impact of energy commodity uncertainty on the
systematic risk of US stock market industries. Energy commodity uncertainty is
measured using returns on oil prices, heating oil, gasoline, and natural gas. A two-
step approach is used where in the first step, GARCH models are used to estimate
industry betas and then in the second step, betas are regressed on commodity
uncertainty variables. There is evidence that energy price uncertainty has a positive
impact on industry betas. Dutta (2017) uses the implied volatility of oil prices
when estimating the impact of oil price uncertainty on clean energy stock volatility.
He finds that realized volatility of the clean energy stock index (Wilder Hill Clean
Energy Index) is positively affected by the implied volatility of oil prices. Implied
volatility is a useful measure of market uncertainty and probably more reliable than
returns or realized volatility because implied volatility is the market’s forecast of
a future movement in an asset’s price. If implied volatility is high, then the market
is forecasting large price swings. If implied volatility is low, then the market is
forecasting small price swings. Implied volatility tends to increase during bear
markets and decrease in bull markets. If implied volatility has a significant impact
on clean energy systematic risk, then this will affect the forecasting of stock returns
and the discounting of future cash flows. The extant literature on clean energy
equities has found stock market prices, oil prices, and technology stock prices to
have an important impact on clean energy stock prices. The uncertainty of these
variables can be measured using implied volatility. As investing in clean energy
equities grows, a better understanding of the impact of market uncertainty on clean
energy systematic risk is required because the systematic risk is important for
forecasting stock returns and discounting future cash flows. This is the gap in the
literature that this paper addresses.

The purpose of this paper is to estimate time-varying betas for clean energy
equities, measured using exchange traded funds (ETFs), and evaluate the impact
of market uncertainty, measured using implied volatility, on systematic risk. This
paper makes several important contributions to the literature. First, time-varying
conditional betas for four popular clean energy ETFs are estimated using multivari-
ate GARCH models. While many earlier studies estimate unconditional and static
beta values, more recent research suggests that time-varying conditional betas are
more relevant for decision making (Bali et al., 2016; Engle, 2018). Thus, condi-
tional time-varying betas are estimated. For robustness two multivariate GARCH
models, asymmetric dynamic conditional correlation (ADCC) (Cappiello et al.,
2006) and generalized orthogonal GARCH (GO-GARCH) (Peter Boswijk & van
der Weide, 2011; van der Weide, 2002), are used. The ADCC model builds on the
well-known dynamic conditional correlation model developed by Engle (2002)
while GO-GARCH is based on the concept of principle components. Second, the
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impact of market uncertainty on clean energy systematic risk is estimated where
uncertainty is measured using implied volatility. Stock market uncertainty is mea-
sured by the CBOE implied volatility index (VIX) and crude oil price uncertainty
is measured by the CBOE implied crude oil volatility index (OVX). Technology
stock market uncertainty is measured by the CBOE implied technology volatility
index (VXN). These volatility indexes measure their respective markets expecta-
tion of 30-day forward looking volatility. Third, following Naeem et al. (2020)
further analysis is conducted for the shale oil revolution period (January 1, 2014
to December 31, 2016) which dramatically increased US domestic oil production.
Greater domestic oil production lessens the reliance on imported oil and this could
affect the systematic risk of clean energy stocks.

This paper reveals several important findings. First, conditional clean energy
equity beta is time varying. Beta tends to rise during times of market uncertainty
and fall in times of tranquility. A recent example of this occurred in 2020. At the
beginning of 2020, beta values were low and then rose starting on Wednesday 11
March, 2020 when the World Health Organization declared COVID19 a pandemic.
The beta values are highly persistent, and the first difference of the betas are mean
reverting. Second, stock market, oil market, and technology market uncertainty, as
measured by implied volatility, does have a significant impact on the changes in
clean energy equity beta.

This paper is organized as follows. The next section sets out the literature
review. The following sections of the paper present the methods, data, and results.
The last section of the paper provides some conclusions and suggestions for future
research.

7.2 Background Literature

The empirical literature on clean energy equities can be categorized according
to methods that focus on multifactor models, correlation dynamics, and hedging.
Multifactor models are used to determine how sensitive clean energy stock returns
are to macroeconomic or company specific factors. Dynamic correlations between
clean energy stocks and other variables has been studied using methods like vector
autoregression, GARCH, copulas, and wavelets.

The use of multifactor models to estimate risk shows that clean energy system-
atic risk is mostly greater than unity indicating that clean energy stocks are riskier
than the overall market. Most studies use data on clean energy sector indices.
Henriques and Sadorsky (2008), using weekly data over the period 3 January,
2001 to 30 May, 2007 find that clean energy betas from the WilderHill Clean
Energy Index are approximately 1.4. Broadstock et al. (2012) use multifactor
models to study the impact of risk factors on energy-related stocks in China.
Oil price increases are associated with an increase in new energy stock returns.
After the global financial crisis risk sensitivity increased. New energy stocks are
more resilient to oil price shocks than other energy stocks. Sadorsky (2012b)
uses clean energy company specific data for the period 2001–2007 to estimate the
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impact of risk factors on stock returns. Market risk varies between 2 and 3. Bohl
et al. (2013) use a four-factor model to study the common risk factors of German
renewable energy stocks for the period 2004–2011. Between 2004 and 2007,
German renewable energy stocks had a strong positive momentum factor and
outperformed the market. However, between 2008 and 2011, the outperformance
reversed, and German renewable energy stocks turned into laggards. They find
a systematic risk factor of approximately 2. Between 2004 and 2011 there is
evidence of speculative bubble behavior. Bohl et al. (2015) further study bubble
behavior in renewable energy stocks and find European and global renewable
stocks do exhibit evidence of bubbles while North American renewable stocks
do not. Market betas are time varying but generally range between 2 and 3.
Inchauspe et al. (2015) use a multifactor state-space model to study the impact of
risk factors on the WilderHill New Energy Global Innovation Index. Market risk
and technology risk factors are more important than oil price risk. Market betas
vary between 0.8 and 1.4. Gupta (2017) uses a firm level data set from 26 coun-
tries to investigate the impact of economic and societal factors on the financial
performance of alternative energy stocks. Country-level technology and innovation
are important determinants of alternative energy stocks. National culture factors
can help explain the cross-country differences in the financial performance of
alternative energy stocks. Reboredo et al. (2017) use multifactor models and
propensity score matching to study the financial performance of alternative energy
mutual funds for the period 2010–2016. One of the important results from this
research is that in terms of returns and downside risk protection, alternative energy
funds underperformed corporate and socially responsible funds. These results are
consistent with investors paying a premium to invest in alternative energy funds.

There are papers that investigate the dynamic correlations between clean
energy stocks and other variables using methods like vector autoregression (VAR),
GARCH, copulas, and wavelets. Henriques and Sadorsky (2008) use a VAR to
study the dynamic interaction between clean energy stock prices, oil prices, inter-
est rates, and a technology factor. They find that the technology factor has a larger
impact on clean energy stock prices than oil prices. Kumar et al. (2012) build
on Henriques and Sadorsky (2008) and include several different clean energy
stock price indices and a variable for carbon prices. Results from VAR estima-
tion show that while technology stock prices and oil prices affect clean energy
stock prices, carbon prices have a limited effect. Managi and Okimoto (2013)
use Markov-switching VAR to study the relationship between clean energy stock
prices, technology stock prices, interest rates, and oil prices. They find evidence
of a structural change in late 2007. The impact of technology shocks on clean
energy stocks is larger than the impact of oil prices. Wen et al. (2014) use a
BEKK model to study the return and volatility spillovers between Chinese fossil
fuel and new energy stocks. There are return and volatility spillovers between the
two asset classes. Negative news has a larger impact on stock returns than posi-
tive news. Fossil fuel stocks and new energy stocks can be viewed as competing
assets. Reboredo (2015) uses copulas to study the dependence and systematic risk
(measured using CoVaR) between oil and renewable energy stocks. One of the
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important findings is that oil price dynamics contributes about 30% to the down-
side and upside risk of renewable energy stocks. There is significant evidence of
tail risk between oil prices and renewable energy stocks. Bondia et al. (2016)
allow for endogenous structural breaks while testing for cointegration between the
stock prices of alternative energy companies (measured using the WilderHill New
Energy Global Innovation Index), technology stock prices, oil prices and inter-
est rates. There is evidence of causality from oil prices, technology stock prices
and interest rates to alternative energy stock prices in the short-run but not in the
long-run. Dutta (2017) studies the impact of implied oil price volatility on the real-
ized volatility of clean energy stock prices. The WilderHill Clean Energy Index is
used to measure clean energy stock prices. Evidence is presented showing that
implied volatility positively impacts the volatility of clean energy stock prices and
the impact of implied oil price volatility is larger than that of oil prices volatil-
ity. Dutta et al. (2018) use a VAR-GARCH model to study return and volatility
relationships between EU carbon dioxide prices and clean energy stock prices.
Clean energy stock prices are measured using the European-based ERIX index
and the US-based ECO index. Volatility linkages are present between EU carbon
prices and European renewable energy stock prices, but EU carbon price volatil-
ity has little impact on US renewable energy stock price volatility. Reboredo and
Ugolini (2018) use multivariate vine-copulas to study quantile price movements
in oil, gas, coal, and electricity on clean energy stock returns. Oil and electricity
were major contributors to the price dynamics of clean energy stock returns. The
price dynamic relationship is symmetrical between upward and downward energy
price movements. These results applied to both European clean energy stocks and
US clean energy stocks. Elie et al. (2019) use copulas to study the role of gold
and oil as a safe-haven (hedge) against clean energy stock prices. Gold and oil
are weak safe-haven assets but oil is a better safe-haven in cases of extreme mar-
ket movements. Maghyereh et al. (2019) use wavelets and DCC-GARCH models
to investigate risk and return transfer from oil and technology stocks to clean
energy stocks. There is evidence of significant bidirectional return and risk trans-
fer between oil and technology stocks to clean energy stocks. These effects are
more pronounced at longer time horizons. Uddin et al. (2019) study the cross-
quantile dependence between renewable energy stock returns, market returns, oil
prices, gold prices, and exchange rates. The relationship between oil prices and
renewable stock prices is not symmetric across quantiles and the asymmetry is
higher in the longer lags.

Research that focusses on hedging clean energy equities often does so by
using multivariate GARCH models to estimate conditional variances. Since condi-
tional variances vary considerably over the sample period, so too do hedge ratios.
Sadorsky (2012a) finds that, on average, a $1 long position in clean energy stocks
can be hedged for 24 cents in a short position in oil prices or a $1.01 short position
in technology stocks. Ahmad (2017) finds that, on average, a $1 long position in
clean energy stocks can be hedged for 32 cents in a short position in oil prices or a
$1.29 short position in technology stocks. Ahmad et al. (2018) use three multivari-
able GARCH models (DCC, ADCC, GO-GARCH) to estimate clean equity hedge
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ratios. They find that VIX is the best hedging instrument followed by OVX and oil
prices. Ahmad and Rais (2018) find that, on average, a $1 long position in clean
energy stocks can be hedged for 21 cents in a short position in WTI oil prices,
or 25 cents in a short position in Brent oil prices, or a 73 cents short position in
technology stocks.

The papers that come closest to this present study are the ones that focus on
estimating clean energy betas (Bohl et al., 2013, 2015; Henriques & Sadorsky,
2008; Inchauspe et al., 2015; Sadorsky, 2012a). These papers differ in methodol-
ogy and data but find that clean energy betas are usually greater than one. What
we don’t know, however, is how implied volatility affects clean energy systematic
risk. This is the gap in the literature that this paper fills.

7.3 Methods

Asset returns are characterized by volatility clustering, leverage, and heavy tails in
the distribution. To account for these issues this paper uses multivariable GARCH
models to estimate conditional betas for clean energy equities. The first model is
the ADCC model (Cappiello et al., 2006). The ADCC model is built on the DCC
model (Engle, 2002). The DCC model can be described as follows:

rt = μt + εt (7.1)

εt = H1/2
t zt (7.2)

The variable, rt, is an n×1 vector of log returns at time t, εt, is a random error term
at time, and μt is the mean vector (which represent the unconditional means of the
returns). Time is indexed by t = 1, …, T. The variable Ht is a n×n matrix of con-
ditional variances at time t, and zt is a n×1 vector of independent and identically
distributed (iid) error terms with mean zero and variance of unity. Different speci-
fications of multivariate GARCH usually involve different specifications of H. The
conditional covariance matrix is decomposed into conditional standard deviations
(D) and a correlation matrix (R).

Ht = Dt Rt Dt (7.3)

Dt = diag

(
h

1
2
11t , . . . , h

1
2
nnt

)
(7.4)

The conditional variance for a univariate GARCH(1,1) model are written as:

ht = ω + αε2t + βht (7.5)
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The conditional correlation matrix, Rt, must be positive definite and inverted at
each point in time. Engle (2002) proposes modeling a proxy process, Qt, where a
+ b < 1 is used to satisfy stationarity and positive definiteness of Qt.

Qt = (1 − a − b)Q̄ + azt−1z
′
t−1 + bQt−1 (7.6)

Rt = diag(Qt )
− 1

2 Qt diag(Qt )
− 1

2 (7.7)

For the ADCC model, Cappiello et al. (2006) generalize the DCC model to include
asymmetric terms in the conditional variance. The dynamics of Qt are:

Qt = (
Q̄ − A′ Q̄ A − B ′ Q̄B − G ′ Q̄−G

)
+ A′zt−1z

′
t−1A + B ′Qt−1B + G ′z−t z′−t G (7.8)

The variables A, B, and G are the n ×n parameter matrices, z−t are the zero-
threshold standardized error that are equal to zt when less than zero and zero
elsewhere. Q̄ and Q̄− are the unconditional matrices of zt and z−t , respectively.
In practice, A, B, and G are estimated assuming they are scalar, diagonal, and
symmetric.
The second model is the GO-GARCH model (Peter Boswijk & van der Weide,
2011; van der Weide, 2002). The GO-GARCH model maps a set of asset returns,
rt, onto a set of uncorrelated components, zt, using a mapping Z.

rt = Zyt (7.9)

The unobserved components, yt, are normalized to have unit variance. Each com-
ponent of yt can be described by a GARCH process. For example, consider a
standard GARCH(1,1) process with a normal distribution.

yt ∼ N (0, Ht ) (7.10)

Ht = diag
(
h1,t , . . . , hn,t

)
(7.11)

hi,t = ωi + αi y
2
i,t−1 + βi hi,t−1 (7.12)

The index i runs from 1 to n. The unconditional covariance matrix of yt is H0 =
I. The conditional covariance matrix of rt is:

Vt = ZHt Z
′ (7.13)

The matrix Z maps the uncorrelated components yt to the observed returns rt.
There exists an orthogonal matrix U such that:

Z = PΛ1/2U ′ (7.14)
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The matrices P and � can be obtained from singular value decomposition on
the unconditional variance matrix V. For example, P contains the orthonormal
eigenvectors of ZZ′ = V and � contains the eigenvalues. The matrix U can be
obtained from the conditional variance matrix Vt. Recent work on GO-GARCH is
concentrated on finding different ways to parameterize and estimate the matrix U.

The GO-GARCH model assumes that the mapping matrix Z is time invariant,
and the covariance matrix Ht is a diagonal matrix. An orthogonal GARCH (OGA-
RCH) model is obtained when Z is restricted to be orthogonal. The OGARCH
model can be estimated using principle components on the normalized data and
GARCH models estimated on the principle components. This corresponds to U
being an identity matrix. The original formation of the GO-GARCH model uses
a 1-step maximum likelihood approach to jointly estimate the rotation matrix and
the dynamics. This method, however, is impractical for many assets because the
maximum likelihood estimation procedure may fail to converge. The matrix U can
also be estimated using nonlinear least squares (Peter Boswijk & van der Weide,
2011). These approaches involve two step and three step estimation procedures.
More recently, it has been proposed that U can be estimated by independent com-
ponent analysis (ICA) and this is the method employed in this paper (Broda &
Paolella, 2009; Zhang & Chan, 2009).1

Asset returns are characterized by autocorrelation, volatility clustering and dis-
tributions that have fat tails. An AR(1) term is added to the mean equation to
account for possible autocorrelation and a leverage term is added to the volatility
equation. The ADCC is estimated with multivariate Student t (MVT) distributions.
The GO-GARCH is estimated with the multivariate affine normal inverse Gaus-
sian (MANIG) distribution. These distributions are useful for modeling data with
heavy tails. All estimation is done in R (Ghalanos, 2019; R Core Team, 2019).

The conditional beta between the return on asset ri and the market return Ri are
calculated as:

betait = cov(rit , Rit )/var(rit ) (7.15)

Once the conditional beta values are calculated, the impact of implied volatility on
the betas can be tested using a linear regression model.

Δln(betait ) = d + δZt−1 + ξt (7.16)

In Eq. (7.16), Z is the explanatory variable (return of the implied volatility) and
ξ is the random error term. As shown in the following sections of the paper, beta
values tend to have high persistence and therefore Eq. (7.16) is estimated using
the first difference of the natural logarithm of beta and the returns of the implied
volatility variables. This ensures that both the dependent and independent variables
in Eq. (7.16) are stationary.

1 The rotation matrix U needs to be estimated. For all but a few factors, maximum likelihood is
not feasible. For a larger number of factors alternative estimation methods must be used. ICA is a
fast statistical technique for estimating hidden factors in relation to observable data.
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7.4 Data

The clean energy exchange traded funds (ETFs) included in this study are the
First Trust NASDAQ Clean Edge Green Energy Index Fund (QCLN), iShares
Global Clean Energy ETF (ICLN), Invesco WilderHill Clean Energy ETF (PBW),
and Invesco Global Clean Energy ETF (PBD). These US listed ETFs are widely
used to invest in the clean energy equity sector (clean energy production, and
energy conservation) but there are some differences between them regarding the
included companies. PBW, the longest trading clean energy ETF, tracks an index
of US listed companies that specialize in the business of clean energy and energy
conservation. PBD is similar to PBW but has more of a global focus in the selec-
tion of companies. PBW mirrors the popular ECO index while PBD mirrors the
popular NEX global innovation energy index (https://nexindex.com/available_pro
ducts.php). PBW is focused on US listed clean energy companies while PBD is
focused on globally listed new energy innovation companies. PBW is composed of
approximately 40 companies while PBD is composed of approximately 90 com-
panies. PBD has a much higher weighting of electric utilities (14%) compared
to PBW (4%). QCLN tracks an index of clean energy stocks listed in the US.
ICLN tracks a global index of clean energy companies that specialize in the pro-
duction of energy from wind, solar, and renewable sources. Other popular clean
energy ETFs like TAN (solar companies) or FAN (wind companies) are not studied
because the focus of this paper is the broad-based clean energy sector. The stock
market index is measured using the iShares MSCI All Country World Index ETF
(ACWI). Implied stock market volatility is measured using the CBOE volatility
index (VIX) which measures the market expectation of 30-day forward looking
volatility. The VIX is used to gage market risk and investors’ sentiments. Implied
oil price volatility is measured using the CBOE crude oil price volatility index
(OVX). The OVX applies the VIX methodology to the United States Oil Fund
ETF (USO) options for different strike prices. The VXN is the CBOE NASDAQ
implied volatility index which is constructed based on the prices of NASDAQ 100
Index options with 30 days to expiration. Stock price ETF data, and data on the
VIX, VXN, and OVX are available from Yahoo finance. The data set begins on
25 June 2008, which reflects the beginning of trading for the ICLN, and ends on
31 July 2020.

The VIX shows sharp spikes in 2008 (the global financial crisis) and March
of 2020 (the COVID19 Pandemic). Like the VIX, the OVX and VXN also show
a sharp spike in March of 2020. The World Health Organization declared the
global outbreak of COVID19 a pandemic on 11 March 2020. The ACWI has
mostly trended upwards across the sample period but experienced a sudden drop
in March of 2020 due to the COVID19 pandemic. PBW, PBD, and ICLN show
similar patterns of a large drop in 2009 and afterward a mostly flat pattern. QCLN
has a positive trend over the time period. All the clean energy ETFs experienced
a drop in March of 2020 (Fig. 7.1).

The largest daily average value is recorded for ACWI (0.022%) and the small-
est value recorded for ICLN (−0.033%) (Table 7.1). The performance of the clean

https://nexindex.com/available_products.php
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Fig. 7.1 Time series plot of the data

Table 7.1 Summary statistics for daily percentage returns

VXN VIX QCLN PBW ACWI ICLN OVX PBD

min −31.305 −35.059 −15.483 −15.637 −11.896 −16.723 −62.225 −20.188

max 46.891 76.825 14.892 15.820 11.701 16.000 85.770 15.876

median −0.525 −0.632 0.128 0.088 0.083 0.000 −0.362 0.088

mean 0.002 0.005 0.012 −0.021 0.022 −0.033 0.000 −0.010

std. dev. 6.733 7.798 2.110 2.211 1.391 2.155 5.632 1.920

skewness 0.876 1.090 −0.576 −0.620 −0.584 −0.741 1.617 −1.026

kurtosis 3.926 6.267 7.229 7.285 11.805 12.078 31.889 13.543

normtest.W 0.949 0.934 0.918 0.914 0.856 0.856 0.828 0.858

normtest.p 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

There are 3046 daily observations. W is the Shapiro–Wilk test of normality

energy ETFs has been weak with none of them recording positive average daily
values. The volatility indices (VIX, OVS, and VXN) have the largest standard
deviations while ACWI has the lowest. For each data series, the mean and median
deviate considerably indicating non-symmetric distributions. This is further veri-
fied by the skewness and kurtosis measures. The observed non-normality of asset
returns, and volatility returns is consistent with stylized facts. Unit root tests, not
reported, show that each return series is stationary.

The return correlations show that the clean energy ETFs correlate highly with
each other and with the ACWI but show a negative correlation with the volatility
indices (Fig. 7.2). Of the implied volatilities, OXV has the weakest correlation with
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Fig. 7.2 Return correlations

Table 7.2 CAPM estimates

QCLN PBW ICLN PBD

α −0.02 −0.05b −0.06a −0.04b

(−0.77) (−2.19) (−2.79) (−2.38)

β 1.24a 1.30a 1.26a 1.21a

(43.16) (43.01) (28.62) (50.68)

R sq 0.66 0.67 0.66 0.77

HAC robust t statistics shown in parentheses. The superscripts a, b denote a level of significance at
0.01 and 0.05 respectively. The estimation equation is: rt = α + β MRt + ξt

the clean energy ETF returns. The implied volatilities have a positive correlation
with each other but a negative correlation with the clean energy ETFs.

As a first look at systematic risk, a standard CAPM model is estimated for each
clean energy ETF (Table 7.2). In Table 7.2, alpha represents the intercept term
and beta is the systematic risk. The estimated beta values are greater than unity
for each clean energy ETF indicating that clean energy stocks are riskier than the
market. PBW is the riskiest while PBD is the least risky. The R squared values
show that between 66 and 77% of the variation in clean energy stock returns are
explained by the CAPM.
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Fig. 7.3 Rolling beta values

As evident from Fig. 7.1, the period under study has experienced considerable
volatility. Consequently, beta values calculated using the full data set may not be
representative for all time periods. It is interesting to see how the beta values have
evolved using a rolling window analysis. The window length was set at 1250 obser-
vations, which corresponds to approximately 5 years of daily trading days. Plots of
the clean energy equity betas show considerably variability over the sample period
(Fig. 7.3). The horizontal lines in Fig. 7.3 represent the static beta values. Each
clean energy ETF recorded the lowest beta values in early 2020. Notice that PBD
recorded a beta value less than unity in early 2020 indicating that at this time,
an investment in PBD was less risky than the market. The sharp increase in beta
resulting from COVID19 was most noticeable for PBW. While each of these ETFs
is a measure of the clean energy sector, different sub-sector focus, geographical
coverage, and firm choice contribute to the different time series patterns in the
betas.

7.5 Results

Plots of the estimated time-varying conditional betas are reported in Figs. 7.4 and
7.5. The plots show evidence of considerable time variation. The betas for QCLN
and PBW show similar patterns which are expected since these two assets display
a high correlation with each other (Fig. 7.2). By comparison, the betas for ICLN
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Fig. 7.4 Conditional betas from ADCC

Fig. 7.5 Conditional betas from GO-GARCH
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Table 7.3 Descriptive statistics for conditional systematic risk

QCLN(A) PBW(A) ICLN(A) PBD(A) QCLN(G) PBW(G) ICLN(G) PBD(G)

nbr.
val.

3046 3046 3046 3046 3046 3046 3046 3046

min 0.549 0.537 0.466 0.477 1.220 1.277 1.231 0.905

max 2.584 2.818 2.176 2.170 1.581 1.768 1.355 1.323

range 2.036 2.281 1.711 1.693 0.361 0.492 0.124 0.418

median 1.286 1.318 1.179 1.158 1.280 1.356 1.280 1.229

mean 1.303 1.338 1.199 1.153 1.294 1.375 1.283 1.225

std.
dev.

0.295 0.314 0.272 0.217 0.058 0.078 0.016 0.040

coef.
var.

0.226 0.234 0.227 0.188 0.045 0.057 0.012 0.033

Acf(1) 0.943 0.943 0.936 0.936 0.968 0.968 0.957 0.964

Beta estimates from the ADCC model (A) and GO-GARCH model (G)

and PBD display different patterns which is consistent with their low correlation
with each other and assets (Fig. 7.2). Beta tends to rise during times of market
uncertainty and fall in times of tranquility. At the beginning of 2020, beta values
were low and then rose starting on Wednesday 11 March 2020 when the World
Health Organization declared COVID19 a pandemic.

For each clean energy equity, the mean values of ADCC and GO-GARCH are
similar. The main difference between the ADCC estimates and the GO-GARCH
estimates appears to be that GO-GARCH produces beta values with lower stan-
dard deviations than those from the ADCC model (Table 7.3). For each clean
energy ETF, the coefficient of variation estimated from the GO-GARCH model is
lower than the corresponding value from the ADCC model. It is also the case that
for each clean energy ETF, the range estimated from the GO-GARCH model is
lower than the corresponding value from the ADCC model. Notice also that ADCC
beta values record minimum values below unity, indicating that these clean energy
equity ETFs have at these values less risk than the overall stock market. Only one
GO-GARCH beta, PBD, has a minimum value below one. The PBD ETF contains
a higher proportion of utility companies compared to the other clean energy ETFs
which may be the reason for the greater occurrence of low beta values. Each of
the beta values has a high degree of persistence as indicated by the first lag of the
autocorrelation function. Acf(1) values range between 0.968 and 0.936.

The correlations between beta values vary between estimation method (Table
7.4). Among the ADCC beta estimates QCLN and PBW correlate the highest while
QCLN and ICLN correlate the least (Table 7.4). Among the GO-GARCH beta esti-
mates, QCLN and PBW correlate the highest while QCLN and PBD correlate the
least. For each ETF, correlations between ADCC beta estimates and GO-GARCH
estimates are 0.64 (QCLN), 0.69 (PBW), 0.45 (ICLN), and 0.22 (PBD). The differ-
ence in correlations between ADCC and GO-GARCH estimated betas is probably
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Table 7.4 Correlations of conditional systematic risk

QCLN(A) PBW(A) ICLN(A) PBD(A) QCLN(G) PBW(G) ICLN(G) PBD(G)

QCLN(A) 1.00 0.91 0.60 0.61 0.64 0.64 0.58 0.22

PBW(A) 0.91 1.00 0.65 0.62 0.69 0.69 0.64 0.30

ICLN(A) 0.60 0.65 1.00 0.71 0.39 0.39 0.45 0.21

PBD(A) 0.61 0.62 0.71 1.00 0.24 0.25 0.30 0.22

QCLN(G) 0.64 0.69 0.39 0.24 1.00 1.00 0.85 0.23

PBW(G) 0.64 0.69 0.39 0.25 1.00 1.00 0.85 0.25

ICLN(G) 0.58 0.64 0.45 0.30 0.85 0.85 1.00 0.56

PBD(G) 0.22 0.30 0.21 0.22 0.23 0.25 0.56 1.00

Beta estimates from the ADCC model (A) and GO-GARCH model (G)

Fig. 7.6 Correlations of conditional systematic risk (full sample)

due to the fact that GO-GARCH beta estimates have lower standard deviation
compared to their respective ADCC values.

The correlations reported in Table 7.4 are displayed graphically in Fig. 7.6.
Figure 7.7 shows the graphical representation of the correlations for the betas over
the shorter shale oil revolution period. Naeem et al. (2020) identify the period 1
January 2014 to 31 December 2016 as the shale oil revolution. Over this time
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Fig. 7.7 Correlations of conditional systematic risk (January 1, 2014 to December 31, 2016)

period WTI crude oil prices dropped from $98 per barrel to $54 per barrel mostly
in response to the large increase in shale oil production. The 11 February 2016 low
of $26 per barrel would not be broken until March of 2020 during the COVID19
pandemic. During the shale oil revolution period US shale oil production increased
dramatically and turned the US from an oil importer to close to self-sufficiency.
September of 2019 marked the first time since 1973 the US was a net oil exporter.
More plentiful domestic oil supply reduces energy supply concerns and could
affect the relationship between clean energy systematic risk and market uncer-
tainty. The most notable difference between Figs. 7.6 and 7.7 is that in Fig. 7.7
the correlations between the beta for PBD and the other betas are higher. This is
also the case for ICLN.

Since betas have a high degree of persistence (Table 7.3), the first difference of
the natural log of beta was used as the dependent variable in estimating the results
in Table 7.5. The Hurst exponent for the first difference of the natural log of the
beta values ranges between 0.254 (ICLN(A)) to 0.343 (PBD(G)) indicating con-
siderable mean reversion. The estimated coefficient on the lag value of the implied
volatility variable is negative and significant for each case except one (PBD(G))
(Table 7.5). This result is consistent with a mean reversion response of beta to
increases in market volatility. An increase in market uncertainty in one period is
followed by a decrease in beta in the next period. This provides strong evidence
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Table 7.5 Impact of implied volatility on conditional systematic risk

VIX OVX VXN

QCLN(A) d 0.0159 0.0130 0.0155

(0.1394) (0.1016) (0.1304)

δ −0.4815a −0.3055a −0.4799a

(−15.4524) (−6.0571) (−13.2736)

R squared 0.2177 0.0457 0.1611

PBW(A) d 0.0164 0.0134 0.0161

(0.1423) (0.1037) (0.1344)

δ −0.4987a −0.2995a −0.5103a

(−14.8584) (−5.9175) (−13.3868)

R squared 0.2192 0.0412 0.1711

ICLN(A) d 0.0099 0.0065 0.0096

(0.0883) (0.0514) (0.0837)

δ −0.5536a −0.3492a −0.5901a

(−14.4256) (−5.3686) (−14.051)

R squared 0.2559 0.0531 0.2167

PBD(A) d 0.0034 0.0013 0.0032

(0.0345) (0.0123) (0.0318)

δ −0.3498a −0.2115a −0.3654a

(−13.0217) (−6.0209) (−11.6516)

R squared 0.1516 0.0289 0.1232

QCLN(G) d 0.0016 0.0012 0.0016

(0.0942) (0.0649) (0.0895)

δ −0.0618a −0.0366a −0.0645a

(−12.0897) (−5.7559) (−11.4041)

R squared 0.1941 0.0355 0.1576

PBW(G) d 0.0020 0.0016 0.0020

(0.0957) (0.0665) (0.0911)

δ −0.0770a −0.0455a −0.0805a

(−12.0634) (−5.7555) (−11.3682)

R squared 0.1929 0.0351 0.1568

ICLN(G) d 0.0004 0.0003 0.0004

(0.082) (0.0565) (0.0783)

δ −0.0174a −0.0111a −0.0182a

(−10.1255) (−4.8659) (−9.8799)

R squared 0.1463 0.0310 0.1196

(continued)
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Table 7.5 (continued)

VIX OVX VXN

PBD(G) d 0.0004 0.0004 0.0004

(0.0274) (0.0289) (0.0277)

δ 0.0038 0.0026 0.0035

(0.919) (0.6403) (0.8014)

R squared 0.0009 0.0002 0.0006

Beta values are calculated from the ADCC model (A) and GO-GARCH model (G). HAC robust t
statistics shown in parentheses. The superscript a denotes a level of significance at 0.01. The esti-
mation equation is: �ln(betat) = d + δ Zt−1 + ξt where Zt−1 is the return on either VIX, OVX,
or VXN

that market uncertainty, measured by implied volatility has a significant impact on
clean energy beta. For each beta, the VIX equation produces the highest R squared
value followed by the VXN and OVX equations respectively. This result is robust
to the choice of GARCH model used to estimate beta, although R squared val-
ues from equations estimated using GO-GARCH betas tend to be less than their
corresponding ADCC values. In the case of ICLN(A), the R squared from the
VIX, VXN, and OVX equations are 0.2559, 0.2167, and 0.0531 respectively. For
the ADCC estimated betas, the estimated coefficient on the market uncertainty
variable ranges between −0.5536 and −0.3498. For the GO-GARCH estimated
betas, the estimated coefficient on the market uncertainty variable, where signifi-
cant, ranges between −0.0770 and −0.0174. Overall, there is strong evidence to
show that market uncertainty affects beta. Omitting the impact of market uncer-
tainty on clean energy equity beta may influence cost of equity calculations or
investment decisions.

Table 7.6 reports the results from estimating the impact of market uncertainty
on clean energy equity beta for the shorter shale oil revolution period. During
this time period, the estimated coefficient on the lag value of the implied volatility
variable is negative and significant for each case (Table 7.6). The biggest difference
between the results reported in Table 7.6 and those reported in Table 7.5 are that
in Table 7.6 all clean energy equity betas are significantly affected by implied
volatility whereas in Table 7.5 all clean energy equity betas except PBD(G) are
significantly affected by implied volatility.

7.6 Conclusions and Implications

Technological innovation, clean energy policy, green consumers, and socially
responsible investing are powerful forces encouraging investment in clean energy
equities. As investing in clean energy equities grows, a better understanding of the
impact of market uncertainty on clean energy systematic risk is required because
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Table 7.6 Impact of implied volatility on conditional systematic risk (January 1, 2014 to Decem-
ber 31, 2016)

VIX OVX VXN

QCLN(A) d 0.0210 0.0569 0.0236

(0.0778) (0.2043) (0.0848)

δ −0.4635a −0.4446a −0.4937a

(−7.9224) (−4.4695) (−6.5777)

R squared 0.1865 0.0581 0.1521

PBW(A) d 0.0074 0.0428 0.0103

(0.028) (0.1569) (0.0378)

δ −0.5140a −0.4372a −0.5518a

(−7.4477) (−3.7966) (−6.7804)

R squared 0.1980 0.0486 0.1641

ICLN(A) d 0.0046 0.0423 0.0077

(0.0193) (0.1662) (0.0319)

δ −0.5588a −0.4645a −0.6114a

(−9.1122) (−4.2027) (−8.1769)

R squared 0.2511 0.0588 0.2161

PBD(A) d −0.0110 0.0135 −0.0090

(−0.0485) (0.0578) (−0.0387)

δ −0.3659a −0.3015a −0.3862a

(−7.689) (−3.1135) (−7)

R squared 0.1517 0.0349 0.1215

QCLN(G) d 0.0018 0.0071 0.0022

(0.0464) (0.1658) (0.0557)

δ −0.0731a −0.0647a −0.0810a

(−7.9564) (−4.8405) (−7.1543)

R squared 0.2138 0.0568 0.1884

PBW(G) d 0.0021 0.0087 0.0026

(0.0421) (0.161) (0.0515)

δ −0.0917a −0.0811a −0.1016a

(−7.9242) (−4.8177) (−7.1287)

R squared 0.2127 0.0564 0.1879

ICLN(G) d 0.0010 0.0027 0.0012

(0.0983) (0.232) (0.1063)

δ −0.0214a −0.0206a −0.0236a

(−8.3872) (−5.0727) (−7.7092)

R squared 0.1982 0.0619 0.1722

(continued)
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Table 7.6 (continued)

VIX OVX VXN

PBD(G) d −0.0009 0.0002 −0.0008

(−0.061) (0.0169) (−0.0569)

δ −0.0093a −0.0142a −0.0113a

(−3.2281) (−3.1862) (−3.1278)

R squared 0.0231 0.0182 0.0245

Beta values are calculated from the ADCC model (A) and GO-GARCH model (G). HAC robust t
statistics shown in parentheses. The superscript a denotes a level of significance at 0.01. The esti-
mation equation is: �ln(betat) = d + δ Zt−1 + ξt where Zt−1 is the return on either VIX, OVX,
or VXN

the systematic risk is used to estimate the cost of capital and to formulate invest-
ment strategies. The focus of this paper is to use multivariate GARCH models
to calculate time-varying conditional clean energy equity betas and to study the
impact that market uncertainty, measured using implied volatility, has on clean
energy equity betas.

Clean energy stock prices are measured using several popular ETFs (QCLN,
PBW, ICLN, and PBD). Time-varying conditional clean energy equity betas are
calculated using multivariable GARCH models. For robustness two multivariate
GARCH models, asymmetric dynamic conditional correlation (ADCC) (Cappiello
et al., 2006) and generalized orthogonal GARCH (GO-GARCH) (Peter Boswijk &
van der Weide, 2011; van der Weide, 2002), are used. Conditional time-varying
betas show considerable variation and time series patterns that are different from
the unconditional static betas. Clean energy equity betas show persistence. Persis-
tence in clean energy equity betas suggests that a random walk forecasting model
for beta is difficult to beat. The change in beta is mean reverting. The impact
of market uncertainty on clean energy equity beta is investigated where stock
market uncertainty is measured using implied stock market volatility (VIX), oil
market uncertainty is measured using implied oil market volatility (OVX), and
technology stock market uncertainty is measured using implied technology stock
market volatility (VXN). Implied volatility has a statistically significant impact on
clean energy equity beta. In regressions where the percentage change in beta is
the dependent variable and the one period lag of the percentage change in implied
volatility is the explanatory variable, the average value of the estimated coefficient
on the VIX is −0.4709 for the ADCC estimated betas and −0.0381 for the GO-
GARCH estimated betas. In comparison, the average estimated coefficient on the
OVX is −0.2914 for the ADCC estimated betas and −0.0227 for the GO-GARCH
estimated betas while the average estimated coefficient on the VXN is −0.4864
for the ADCC estimated betas and −0.0399 for the GO-GARCH estimated betas.
These results are similar to those obtained using a shorter time period that rep-
resents the shale oil revolution indicating that the relationship between beta and
implied volatility over the shale oil revolution period was similar to that for the
full sample period. The findings in this paper are consistent with a mean reversion
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response of clean energy equity beta to increases in market volatility and is robust
to the choice of GARCH model used to estimate beta. For each beta, the VIX
equation produces the highest R squared value followed by the VXN and OVX
equations, respectively. These results are important in establishing that stock mar-
ket uncertainty, oil market uncertainty and technology stock market uncertainty
have significant impacts on clean energy equity beta.

The research in this paper provides some ideas for future research. One possible
direction for future research is to see how important implied volatility is for fore-
casting clean energy equity betas. Forecasting analysis could compare models that
include implied volatility as an explanatory variable to models that do not include
implied volatility. Analysis could be conducted both in-sample and out-of-sample.
Another possible avenue for future research is to broaden the analysis to include
clean energy ETFs that focus on specific clean energy sectors like solar or wind.
A further possible direction for future research would be to look at the impact of
implied volatility on firm specific clean energy company betas.
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8Climate-Finance

Panagiotis Tzouvanas

8.1 Introduction

The late twentieth and the early twenty-first centuries are characterised by signif-
icant changes in weather patterns. A growing number of environmental initiatives
have been activated to harmonise this phenomenon, which has taken monstrous
magnitude mainly thanks to the continuing increase in carbon dioxide emitted by
firms. Social and regulatory forces push firms to adopt a friendly, towards the
environment, behaviour. In turn, firms have to be prepared with adequate tools
and knowledge about the potential climate change effects on their financial per-
formance (FP). These effects can be direct, such as extreme weather events and
indirect such as environmental regulations. This Chapter presents an empirical
investigation on how climate change has affected financial performance. Particu-
larly, the main research question is whether “green” performing firms gain any
financial benefits.

Human activities are estimated to have caused approximately 1 °C of global
warming above pre-industrial levels (IPCC, 2018). The increasing consumption
of goods, that our modern civilisation demands, has raised atmospheric carbon
dioxide levels from 280 parts per million to 409 parts per million in the last
150 years. Given that the current rate of anthropogenic CO2 emissions contin-
ues, global warming is likely to reach 2 °C in the next 50 years (IPCC, 2014).
The main challenge is to maintain global warming below the threshold of 1.5 °C.
Beyond this level, extreme weather events will be more frequent and as a result
the macroeconomic and financial conditions will be deteriorated significantly (Dell
et al., 2012; Stern, 2007; Tzouvanas et al., 2019).
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Keeping global warming below 1.5 °C demands firms to adopt an environmen-
tal approach towards the natural environment. However, this proactive approach
might be opposed with the main objective of firms (e.g., maximise sharehold-
ers’ value). Therefore, firms will agree to comply with the social and regulatory
actions against climate change only if the net benefit from environmental actions
out-weights the compliance costs (Hatakeda et al., 2012). Besides, global warm-
ing has multidimensional characteristics that could potentially affect the financial
performance of firms. For instance, firms can be influenced by the environmental
regulations such as environmental reporting, carbon tax or carbon trading as well
as by the perception of the market participants whose behaviour deviates from the
traditional theory of finance and they might extract utility by turning into envi-
ronmentally sensitive stocks (Fama & French, 2007; Tzouvanas et al., 2020b). On
top of that, the contemporaneous topic of climate change in a micro-economic
level is a rather unexplored field of study and for this reason, there is an uprising
stream of scholars, managers and policymakers who attempt to make an inference
between the firm and the environment (Bebbington & Larrinaga-Gonzalez, 2008).
Therefore, the aim of this chapter is to answer, “if it is pays to be green”.

In existing literature, environmental firms are considered firms with low Green-
house Gas (GHG) emissions (Albertini, 2013; Dixon-Fowler et al., 2013; Endrikat
et al., 2014). Also, the profitability of these firms is measured with account-
ing profitability ratios (e.g., ROA, ROE, ROS and Tobin’s Q). The majority of
the literature (around 60%) between GHG and profitability supports that reduc-
ing GHG increases profits; however, 20% shows that greater reducing GHG is
costly, while the remaining while 20% argues that the relationship is unrelated
(Busch & Lewandowski, 2018; Horvathova, 2010). These inconsistent research
findings have encouraged scholars to delve deeper into this relationship. For exam-
ple, Horvathova (2012) shows that GHG reduction has a time-varying effect on
profitability; in the short term the direction of the effect is negative due to the
additional costs, while in the long-term firms gain a competitive advantage. Also,
Barnett and Salomon (2012), Misani and Pogutz (2015) examine the possibility
that the relationship might be curvilinear, depending upon the magnitude of GHG
reduction. On a different note, Hatakeda et al. (2012) underline that the relation-
ship between GHG and profitability might be affected by the sample used, the
variables employed and the econometric technique.

But why GHG affects firm’s performance? There are two main channels through
which GHG can affect the profitability of the firms. In a nutshell, Fig. 8.1 shows
the two-way relationship between firms and climate change. Firms produce goods.
The production process demands firms to use fossil fuels and other materials,
which emit GHG emissions in the atmosphere. In turn, GHG emissions increase
global temperatures and generate the so-called Greenhouse effect or otherwise
climate change. Amid climate change, firms should decrease their GHG emissions,
if not, these firms might be penalised by their stakeholders. The second reason how
climate change can affect the firms is via the behavioural factor channel. Investors,
influenced by the climate change movements, might be very precautious before
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Fig. 8.1 Conceptualising climate-finance

acquiring a new stock into their portfolio; as Fama and French (2007) argue, some
investors might extract utility by holding social stocks.

In this regard, this chapter investigates if firms, which prevent their own pollu-
tion, also enjoy higher price evaluations. We also explore how such an empirical
research can be conducted, while we discuss various theoretical frameworks. Thus,
the structure of this chapter has three main parts: (1) to investigate the channel
between GHG and firm performance, (2) to empirically test this relationship and
(3) to interpret our findings. In the empirical application, we use a large panel
of firms from around the world and we regress their profitability on their rel-
ative GHG performance. We use full sample analysis, as well as we split the
sample among firms from North America, Europe and Asian-Pacific regions. It is
important to distinguish among regions because of (i) the differences in financial
development, (ii) regulations and (iii) cultural and behaviour characteristics.

Indicatively, Fig. 8.2 shows the GHG emissions from three main markets for
the period 1990–2017. Note that these are country/union data, while our investi-
gation refers to firm-specific data. Nevertheless, it is useful to investigate the trend
across different areas. Clearly, EU follows a decreasing trend, US is rather con-
stant, while China has sharply increase their GHG emissions. Hence, it is important
to understand how investors react to polluting firms across different regions.

This chapter has several contributions. First, we engage in the long-standing
debate between carbon emissions and firm performance by showing that lower
GHG emissions are highly appreciated by investors. Second, we present the theo-
retical framework of the relationship and we show that the stakeholder theory can
well explain this relationship (Tzouvanas et al., 2020a). Third, we provide guid-
ance on how to conduct such an empirical research. We estimate panel data models
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Fig. 8.2 GHG metric tonnes (Source Author’s graph. Data retrieved from: https://stats.oecd.org/
Index.aspx?DataSetCode=AIR_GHG and https://climateactiontracker.org/countries/china/)

as well as we treat for endogeneity with 2SLS regressions. Endogeneity is not a
minor issue, if our model suffers from omitted variable bias or causality, then our
results are not reliable. Fourth, we distinguish between firms from NA, EU and
AP and we show that firms in EU are the ones highly rewarded when decreasing
their GHG emissions. Finally, based on our findings, we provide some important
implications.

The remainder of this chapter is organised as follows. In Sect. 8.2, we present
the theoretical framework and discuss the relevant hypothesis. In Sect. 8.3, we
describe the data and present the methods of the study. The empirical results are
reported in Sect. 8.4. Finally, in Sect. 8.5, we discuss the main results of the study
and reach a conclusion.

8.2 Theoretical Framework

GHG emissions play an essential role in promoting stakeholders’ interests and
influencing the profitability of firms. The connection between GHG and FP is
based on a multitude of theoretical predictions which have been summarised in
Fig. 8.3. The overriding objective of all these theories was to respond to the fol-
lowing question: “How is FP affected if we decrease firm pollution?” In order to
achieve this objective, we provide a broad overview of the existing framework and
further examine under what circumstances GHG emissions affect FP.

The first theoretical prediction suggests that GHG decreases the value of the
firm. This negative link between GHG and FP, as proposed by the instrumental

https://stats.oecd.org/Index.aspx%3FDataSetCode%3DAIR_GHG
https://climateactiontracker.org/countries/china/
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Fig. 8.3 Theoretical framework between GHG and FP (Modified graph retrieved by: Tzouvanas
et al. [2020a]. https://doi.org/10.1016/j.bar.2019.100863)

stakeholder theory (Jones, 1995), presumes that long-term environmental objec-
tives establish a consistent strategy that reduces the uncertainty of environmental
issues and develops dynamic capabilities that in turn attract shareholders. The the-
ory is a combination of the legitimacy and the agency theories. It focuses on the
contracts between managers and stakeholders and claims that trust and coopera-
tion within any company help to create a competitive advantage (Jones, 1995). For
example, by satisfying stakeholder demands concerning climate change, firms may
acquire better reputation, improve customers’ loyalty and, overall, respond more
effectively to external demands (Endrikat et al., 2014).

The second theoretical prediction is the positive link between GHG and FP,
which is supported by the trade-off view (Jensen & Meckling, 1976), indicating
that decreasing firm’s GHG emissions merely reduce firms’ profits. The positive
relationship between GHG and FP can be attributed to the higher cost that firms
have to bear. The neoclassical theory suggests that some industries experience
high environmental compliance costs because they operate under green manage-
ment policies and therefore face a competitive disadvantage (Wagner et al., 2002).
This is particularly the case for manufacturing firms since the cost of decreasing
their emissions is relatively high and results in an increase in the marginal cost of
production. Similarly, the agency theory argues that GHG reductions might be in
conflict with the main objective of the firm (e.g., maximise shareholder value) and
thus would only decrease shareholders’ satisfaction (Jensen & Meckling, 1976).

Finally, there is a third theoretical prediction according to which GHG might
have a non-linear impact on FP (Misani & Pogutz, 2015). What is more, this argu-
ment has largely been supported by empirical research which provides evidence of

https://doi.org/10.1016/j.bar.2019.100863
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a U-shaped relationship (Lewandowski, 2017; Nollet et al., 2016; Trumpp & Guen-
ther, 2017). Initially, reductions in GHG are expected to diminish profits, (i.e., in
line with the trade-off view); however, in time, a continued decrease beyond a
certain level would bring benefits that would potentially offset costs, giving rise
to the U-shape. In fact, the U-shaped relationship is also implied by the natu-
ral resource-based view of the firm. In particular, Hart (1995) opines that firms
should develop new technologies in order to manage their resources efficiently.
The implication is that corporate governance has a keen interest in investing in
EP, expecting that this investment will help improving the future position of the
corporation (Hart & Ahuja, 1996). Apparently, firms that reduce their emissions,
gradually improve their stakeholders’ satisfaction. In turn, gradually increasing
stakeholders’ satisfaction results in benefits outweighing the costs (i.e., the turning
point in the GHG-FP relationship). The threshold at which this turning point occurs
varies considerably, depending mainly on firm-specific characteristics (Broadstock
et al., 2019) (Fig. 8.3).

Similar to the natural resource-based view, the slack resource argument under-
lines that decreasing emissions would not directly increase the FP of firms, but
this depends on various aspects (Symeou et al., 2019). The theory is referred to
the resource endowments in social and human capital and source constraints that
can influence the performance of a firm in a competitive market. GHG emissions
are inevitably connected with the source constrains (Busch & Hoffmann, 2007;
George, 2005). For example, low resources firms have limited available finan-
cial funds to invest in GHG reductions, while, at the same time, pressure from
stakeholders for profit maximisation remains the same. Thus, it is challenging for
managers to increase their profitability while dealing with climate change issues.
By contrast, firms with superior resources may utilise their available income in
order to invest in eco-friendly technologies (Li et al., 2018). At the same time, high
resources firms, are more likely to accomplish effective environmental investments.

On a final note, GHG emissions policies show considerable variability from one
country to another. Governments have differently set greenhouse gas emissions tar-
gets due to variability in environmental regulations (Clarkson et al., 2015), also in
light that to this date there is not a universal agreement on greenhouse emissions.
For example, Clarkson et al. (2015) argue that the creation of the ETS in EU
impacts upon the market valuation of GHG vis a vis other countries. Clarkson
et al. (2015) find that highly GHG emissions firms receive higher negative market
valuation in EU ETS. GHG emissions do not come cheap for firms as they entail
financial costs related to changing their underlying operations and production pro-
cess. Higher costs would increase future liabilities and reduce future cash flow
and earnings. To this end, it is interesting to investigate whether there is variabil-
ity across the regions. In particular, we would like to investigate the differences
between three sizable stock markets, North America, EU and Asian-Pacific. For
example, the US neglects, while the EU highly values climate change issues. Also,
it is interesting to ask the same question for the Asia–Pacific region. In this regard,
the hypothesis postulates that:
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Hypothesis The association between GHG and FP varies across US, EU and Asia-
Pacific regions.

The expectation is that EU firms should be awarded the most when decreasing
their emissions. It is because the EU has paid a lot of attention to climate change
issues, following by the Asian-pacific region. US firms should be the last.

8.2.1 Environmental-Climate Policy

We now turn to consider the regulatory regime against climate change. This fur-
ther motivates the reason to investigate the GHG effects across different regions.
Stabilising carbon emissions is a complicated task. According to Stern (2007),
tackling climate change considers four main actions; (a) regulating the emissions,
(b) incentivise the green investments, (c) minimising asymmetric information and
transaction costs and (d) building informative network to the society. Different
climate change policies are listed below.

The first policy is the Intergovernmental Panel on Climate Change (https://www.
ipcc.ch/about/) which was set up in 1988 and is an international body for assess-
ing climate change. The IPCC presents scientific, technical and socio-economic
information in order to understand the future risk arising from the human-induced
climate change. Its main contribution is to inform about potential impacts and pro-
vides with options for adaptation and mitigation. Furthermore, the United Nations
Framework Convention on Climate Change (UNFCCC, http://newsroom.unfccc.
int/about/) is a treaty which was signed in 1992 and having as a main target to sta-
bilise the GHG in a harmless level to the environment. UNFCCC is probably the
most serious attempt made against climate change and it is a treaty supporting pos-
terior actions such as the Kyoto protocol, Clean Development Mechanism (CDM)
and Paris Agreement. Regarding the Kyoto Protocol (http://unfccc.int/kyoto_pro
tocol/status_of_ratification/items/2613.php), it is an agreement made by UNFCCC
with its main objective being to regulate a permissible limit of GHG. The Pro-
tocol had been negotiated since 1997 and was set in action in 2008. It requires
ratification and signed members ought to decrease their emissions at a level of 5%
below that in 1990. Similar to the Kyoto Protocol, Asia–Pacific Partnership (APP,
http://www.asiapacificpartnership.org/) has attempted to meet goals for national
air pollution reduction and climate change in a way that will not harm the growth
and the sustainability of countries and firms. APP partners are Australia, Canada,
China, India, Japan, Korea, and the United States. Additionally, the Clean Develop-
ment Mechanism (CDM, http://cdm.unfccc.int/about/index.html) is a mechanism
that promotes the low emission technologies in developing countries. Moreover, it
motivates sustainable development emission reductions by giving developed coun-
tries some flexibility in how they meet their emission reduction limitation target
under the Kyoto Protocol. Meeting the demands of CDM will cause an earning
on certified emission reduction credit (CER) each equivalent to a tone of CO2

https://www.ipcc.ch/about/
http://newsroom.unfccc.int/about/
http://unfccc.int/kyoto_protocol/status_of_ratification/items/2613.php
http://www.asiapacificpartnership.org/
http://cdm.unfccc.int/about/index.html
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Accordingly, CDM supports the green investment and gives incentives for emis-
sion reductions. The most recent and prominent attempt against climate change
took place in Paris in December of 2015. Paris agreement (http://unfccc.int/paris_
agreement/items/9444.php) is being ratified by 189 out of 197 countries and was
taken into force on November 2016. The agreement incorporates three main tar-
gets, (a) holding the world temperature increase below 2 °C (after the industrial
revolution the temperature has increased by almost 1 °C), (b) facilitating the adap-
tation of low GHG technologies in respect to the food production and (c) making
finance flows consistent and continuous to low climate-resilient development.

8.3 Data and Methods

8.3.1 Sample

The sample consists of 1800 European firms that are included in the STOXX
Index, covering large, mid and small capitalisation companies around the world.
Particularly, we considered 600 firms from North America (https://www.stoxx.
com/index-details?symbol=SXA1E), 600 firms from the EU (https://www.stoxx.
com/index-details?symbol=SXXP) and 600 firms from the Asian-Pacific region
(https://www.stoxx.com/index-details?symbol=SXP1E). The sample period spans
from 2005 to 2018. We choose to start in 2005, a period when not only talks
against climate change escalated, but also when the first phase of the EU emis-
sions trading scheme was activated. Also, investigating the period before 2005 is
difficult as ESG data are not available. Data have been obtained from Thomson
Reuters Datastream.

8.3.2 Variables

The main dependent variable is the Tobin’s Q. Tobin’s Q has been used by many
previous studies as it is both conceptually and theoretically valid in the exami-
nation between profitability and GHG (Elsayed & Paton, 2005; King & Lenox,
2001; Konar & Cohen, 2001; Nakao et al., 2007). Particularly, it measures the
profitability of firms by controlling for the intangibility. GHG emissions are con-
sidered as an intangible asset (Lins et al., 2017) and thus we expect that GHG
directly influences the Tobin’s Q. We follow Konar and Cohen (2001) to construct
our dependent variable. The author stated that the valuation of the firm is based
on its future profitability. Tobin’s Q can be calculated as in Eq. 8.1:

Tobin′s Q = Market V alue (Equity + Debt + Pre f erred Stock)

Replacement Value(Property, Plant and Equipment + I nventory + Short term Assets)
(8.1)

This is defined as the value of the firm over its replacement cost. If the value of
the firm is exactly equal to its replacement cost, then the ratio is a unity. If firms

http://unfccc.int/paris_agreement/items/9444.php
https://www.stoxx.com/index-details%3Fsymbol%3DSXA1E
https://www.stoxx.com/index-details%3Fsymbol%3DSXXP
https://www.stoxx.com/index-details%3Fsymbol%3DSXP1E
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have substantial intangible assets such as patents, brand names, R&D etc., then
the ratio is over the unity, signifying the future prospects of this firm.

Therefore, it is widely believed that investing in green technologies is consid-
ered as an intangible capital, which is ameliorate the future position of the firms
(Lins et al., 2017). GHG emissions can serve as a good proxy for the environmen-
tal engagement of firms. GHG should be adjusted to firm’s size, using the sales
(some studies have used total assets or market values as well), and then it is mea-
sured as a logarithm in order to account for potential outliers. Following Misani
and Pogutz (2015), the main independent variable is:

lnGHGS = LN

(
GHG

Sales

)
(8.2)

The lnGHGS is our carbon intensity indicator, Higher values correspond to “bad”
carbon performance, the variable avoids high skewness and captures the relative
carbon performance scaled by sales.

Also, leverage (Lev) is used as a proxy of financial risk; it represents the level of
debt to equity. It can be measured by summing the short- and long-term liabilities

divided by the market value
(

Debt
Equity

)
. It is imperative to include risk proxies in

the analysis (Busch & Hoffmann, 2011; Hatakeda et al., 2012; Matsumura et al.,
2014). Tangible assets (Tang) can be a proxy for the collateral and shows the size
of the firm. An ambiguous relationship between FP and tangibility is expected
because creditors can liquidate assets easily and thus, they face less risk (Konar &
Cohen, 2001); however, funds lying idle tend to increase the marginal costs. Future
prosperity can be represented by intangible assets (Inta). They cannot be easily
collateralised, but they can add value to the firm (Psillaki et al., 2010). Inta also
have attributes of research and development (R&D) of the firm (Elsayed & Paton,
2005). Both Tang and Inta are entering the equation in logarithm form in order to
capture for outliers.

8.3.3 Panel Data Model

Having discussed about how GHG and FP are connected, we now proceed to
estimate their relationship. Following previous studies (Delmas et al., 2015; Nollet
et al., 2016; Tzouvanas et al., 2020b) we employ panel data methodology, and we
stress GHG in our regressions as shown below:

Tobin′s Qi,t = a0 + a1lnGHGSi,t + X
′
i,t B +

T∑
t=2

δt Y eart + ei,t (8.3)

where the subscripts i and t correspond to firm and year, respectively, i = 1, 2,
…, N and t = 1, 2, …, T and e the error term. Tobin’s Q denotes the dependent
variable and X’ is a vector that contains control variables (Lev, Tang and Inta).
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We also control for year fixed effects, so α0 intercept is referred to the base year
(2005). In other words, in our 14-year period of our investigation we drop the first
year (2005) to avoid multicollinearity. Thus, summation sigma and delta refer to
the remaining 13 coefficients (2006–2018); year coefficients are not reported in our
results for brevity. Particular attention should be placed on the variable of interest
which is lnGHGS and the coefficient we should observe is α1. According to our
main hypothesis, we perform two-tailed test, so the null hypothesis is H0 : α1 = 0.

The results are presented under fixed effects and random effects models. For all
different specifications, we use robust standard errors. The fixed effects model is
appropriate when we focus on a specific firm characteristic (ci) and therefore ei,t =
vi,t + ci with vi,t being a time-varying error component. The random effects model
represents random draws from the population so that (ci) allows for individual
effects. In contrast with the previous models, a simple OLS estimates constant
coefficients (ci = c). Finally, we report Hausman test results in order to identify
if the individual effects (ci) are unobserved and correlated with the explanatory
variables (Baltagi, 2008; Wooldridge, 2010).

All estimations have been done in STATA 16.1. In the appendix of the Chapter,
you may find the STATA codes.

8.3.4 Descriptive Statistics

Before moving to econometrically test the relationship, it is worth exploring the
descriptive statistics of the variables. Table 8.1 displays these descriptive statistics
for the variables employed in this study. Tobin’s Q is the main dependent variable,
and it has a mean of 1.94; higher Tobin’s Q indicates higher evaluation of the firms.
The main dependent variable is lnGHGS, which has a mean of −3.08. Because
this variable is expressed in logarithmic form, it does not have direct interpretation,

Table 8.1 Descriptive statistics

Variable Mean SD Min Max Skewness Kurtosis

Tobin’s Q 1.936187 2.941973 0.235582 322.6255 61.56267 6262.915

lnGHGS −3.079089 2.105597 −13.14249 10.45109 0.1095257 3.617527

ROA 11.25171 27.91454 −3811.875 335.3424 −110.4951 15,161.22

Leverage 0.9124476 10.3609 −779.2174 491.8462 −29.35681 2237.55

Tangible 15.02573 1.463239 6.77079 19.31605 −0.3492295 4.008937

Intangible 13.34805 2.378086 0 19.55272 −0.7193577 4.37019

Board size 11.11649 3.691236 1 44 1.119114 6.113888

ESG disclosure 58.3311 17.56495 4.77 97.92 −0.2822279 2.3128

Employees 9.358011 1.733109 0 14.64842 −0.6184464 3.984802

Carbon trading 0.1648099 0.3710184 0 1 1.806911 4.264929

Notes Tangible, Intangible and Employees are measured in logarithmic terms
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but higher values correspond to firms that pollute, while low values for firms with
very low emissions. We, next, present the control variables as well as some other
variables that will be used for robustness checks and in the 2SLS regressions. As
far as the distribution of the variables is concerned, lnGHGS, Tang, Inta Employees
are very close to satisfy the normality conditions (Skewness = 0 and Kurtosis =
3). We now move to discuss our main results.

8.4 Results

8.4.1 Main Results

Table 8.2 displays the main results of this Chapter. Columns 1–4 contain results for
the full sample, North America (NA) sample, European (EU) sample and Asian-
Pacific (AP) sample, respectively. Columns “a” and “b” indicate that fixed effects
models and random effects models are used, respectively. Following the principles
of the Hausman test, fixed effects should be considered for the full, NA and EU
samples, while random effects for the AP sample. Nevertheless, the results are
identical between the two estimation methods. Starting with the control variables,
Leverage appears weakly negative, this indicates that risky firms have lower firm
values. Tangible assets have a negative coefficient, this is in line with the previous
literature (e.g., Konar & Cohen, 2001). Tangibles indicate the size of the firms;
large firms have lower profitability than small sized firms. Intangible assets have
also a negative sign. Intangibles show the R&D of firms and hence an explanation
is that R&D might deduct profits in the short run, while such an investment needs
time to pay off. Overall, the effects of our control variables on Tobin’s Q are in
agreement with the previous literature (see, for example, Konar & Cohen, 2001;
Elsayed & Paton, 2005; Nollet et al., 2016; Tzouvanas et al., 2020a).

Turning to the main hypothesis, lnGHGS has always a negative sign and it
is significant at 5% level. Particularly, the full sample reports a coefficient of
−0.1814 at 1% level of significance (column 1a). This indicates that a decrease
of 1% of firm’s relative emissions, will increase firm’s performance by 0.1814%.
When we split the sample, this coefficient varies in magnitude. Although, the sign
remains negative, the EU sample documents the most negative sign. For example,
comparing the coefficients for the fixed effects model, EU reports a coefficient of
−0.2845, then the NA sample follows with −0.0532 and finally, the AP sample
with −0.0274. Based on this, we can confirm the generic hypothesis that high
GHG emissions are detrimental for the firm’ performance. Also, our findings mir-
ror the instrumental stakeholder theory, while these results are in line with the
largest part of the empirical literature (Albertini, 2013; Busch & Lewandowski,
2018; Endrikat et al., 2014; Horvathova, 2010). Finally, our results show impor-
tant variability among the three sub-samples. However, this variability should be
tested for its statistical significance. We, next, continue with some sensitivity tests
in Table 8.3, while in Table 8.4, we will statistically validate the difference among
the three regions.
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Table 8.3 Panel regressions with ROA as dependent variable

(1) (2) (3) (4)

Sample: Full NA EU AP

Dependent: ROA ROA ROA ROA

lnGHGS −0.5074*** −0.3678** −0.5553*** −0.1875*

(0.0828) (0.1484) (0.1261) (0.1110)

Leverage −0.0170* −0.0064 −0.1998*** −0.0670*

(0.0099) (0.0118) (0.0422) (0.0357)

Tangible 0.1825 −0.0450 0.0297 0.3968*

(0.1429) (0.2361) (0.2422) (0.2158)

Intangible −0.9190*** −0.7293*** −1.4521*** −0.5341***

(0.0773) (0.1623) (0.1353) (0.0993)

Constant 21.4942*** 25.0203*** 31.6533*** 11.8462***

(2.0385) (3.4625) (3.3165) (3.0804)

Year Dummies YES YES YES YES

R2 0.0614 0.0463 0.0869 0.0774

Observations 11,300 2944 4840 3516

Notes Robust standard errors in parentheses. ***, ** and * denote the level of significance at 1, 5
and 10%, respectively. Results are based on fixed effects model

8.4.2 Robustness Tests

In order to test the sensitivity of our results we substitute Tobin’s Q in Eq. 8.3 with
return on assets (ROA). Indeed, ROA has been used by many previous studies in
the literature (Misani & Pogutz, 2015; Tzouvanas et al., 2020a). Table 8.3 reports
the results with ROA as a dependent variable. These results are exactly in line with
our previous estimations. Thus, using a different firm performance indicator does
not alter our results. We should also underline that the most negative coefficient
appears in EU sample, following by the NA and then AP. However, we should
underline that comparing coefficients from different samples is not entirely correct.
Instead, we should check their statistical differences among these coefficients.

In order to confidently answer our hypothesis, we should compare the coeffi-
cients across different estimations. This can be done with many different ways.
The simplest one would be to run a t-test among the coefficients. However, we
employ a slightly different approach. We use the full sample and interact lnGHGS
with each region. Since, we have 3 regions we can create 3 different interactions.
Each time, we drop one interaction to avoid multicollinearity. The first interaction
variable is the lnGHGS × N A, this variable denotes that if firms are from the NA
then the interaction takes a value equal to the lnGHGS. By contrast, if firms are
from different regions when the interaction has a value of zero. We repeat this for
lnGHG × EU and lnGHGS × AP . This approach will give an answer about the
region where GHG emissions reductions are appreciated the most by investors.
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Table 8.4 Panel regressions
with region interactions in the
full sample

(1) (2) (3)

Tobin’s Q Tobin’s Q Tobin’s Q

lnGHGS × N A −0.1272 −0.1238

(0.1431) (0.1432)

lnGHGS × EU −0.2493*** −0.2489***

(0.0881) (0.0881)

lnGHGS × AP −0.0817 −0.0837

(0.1266) (0.1265)

Leverage 0.0009 0.0010 0.0009

(0.0064) (0.0064) (0.0064)

Tangible 0.0587 0.0576 0.0571

(0.1076) (0.1076) (0.1076)

Intangible −0.3772*** −0.3722*** −0.3765***

(0.0552) (0.0552) (0.0552)

Constant 5.5409*** 5.7827*** 5.5754***

(1.5657) (1.5639) (1.5648)

Year dummies YES YES YES

R2 0.0106 0.0099 0.0106

Observations 11,434 11,434 11,434

Notes Robust Standard errors in parentheses. ***, ** and * denote
the level of significance at 1, 5 and 10%, respectively. Results are
based on fixed effects model. We drop one interaction term every
time to avoid multicollinearity

For example, in Table 8.4 column (1), the coefficient on the interactions
lnGHGS × N A is insignificant, while the opposite is true for lnGHGS × EU .
In the EU area, the coefficient is statistically significant and negative, while in NA
the coefficient is not statistically different from zero. This indicates that in the EU,
firms are rewarded more than firms in North America, when firms decrease their
GHG emissions. In other words, column (1) considers as a benchmark the situation
in the AP region and thus it compares AP vs. NA and then AP vs. EU. In col-
umn (2), the interactions between NA and AP are not significant, thus these two
regions have homogeneous investors’ reactions when firms decrease their emis-
sions. Another interpretation is that EU, which is the benchmark in column (2), has
a stricter reaction to GHG reductions than NA and AP; that is why their coefficients
appear insignificant. Finally, in column (3), the EU has more negative interaction
than the AP region. Overall, EU is ranked number one in rewarding GHG reduc-
tions, then in the second place, we rank both NA and AP firms together. Note that
insignificant interactions do not contradicting our previous findings, but it only
ranks the regions with the most rewarding behaviour towards GHG reductions.
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Fig. 8.4 Line plots between lnGHGS and Tobin’s Q for different regions (Source Author’s graph)

We can also graphically illustrate these coefficients. Figure 8.4 shows three
lines, all of them have a negative slope, in line with our previous results. The
most negative coefficient appears for the EU sample, then NA and last AP. Even
though, NA’s slope seems more negative than AP’s, there is no statistical difference
between them, as shown in the results of column (2) Table 8.4.

8.4.3 Endogeneity Test

As a final set of robustness checks, we consider endogeneity in our estimations.
Endogeneity occurs because of simultaneity, causality, or omitted variable bias, and
it should be carefully considered in the examination of the relationship between
GHG and firm performance (see Albertini, 2013; Busch & Lewandowski, 2018;
Papavasileiou & Tzouvanas, 2020). In other words, the independent variable (i.e.,
lnGHGS) may correlate with the error term (e), and thus the estimations might
be biassed. A panel two-stage least squares (2SLS) regression is used to further
solidify the results against possible endogeneity concerns. The estimation of this
model is also a two-stage process. The first stage estimates the GHG model by
considering the lagged values of GHG, firm’s board size, ESG disclosure, number
of employees and dummy if firms participate in carbon trading as instruments.
These instruments are not randomly selected but should satisfy the exogeneity
conditions as well as should be theoretically valid. Also, similar instruments have
been chosen in previous empirical works (see Broadstock et al., 2018; Tzouvanas
et al., 2020a; Papavasileiou & Tzouvanas, 2020). In the second stage, the fitted
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values of lnGHGS from Eq. 8.4 are used as an independent variable. Particularly,
the first-stage equation is as follows:

lnGHGSi,t =b0 + b1lnGHGSi,t−1 + b2Board Sizei,t + b3ESGi,t + b4Empi,t

+ b5Tradingi,t + X
′
i,t B +

T∑
t=2

δt Y eart + ei,t (8.4)

where X’ remains the same as in Eq. 8.3 and b1–b5 are the coefficients of the
instruments. In Table 8.5, results from the first stage are reported. Particularly,
today’s GHG is determined by the last year’s GHG, as the coefficient is always
significant and close to the unity. Board size appears insignificant, while ESG,
number of employees and carbon trading seem to be significant determinants of
GHG, especially for the full sample (column, 1).

Table 8.5 IV regressions: first stage results

(1) (2) (3) (4)

Sample: Full NA EU AP

Dependent: lnGHGS lnGHGS lnGHGS lnGHGS

lnGHGSt−1 0.975*** 0.983*** 0.967*** 0.977***

(0.002) (0.004) (0.004) (0.004)

Board size 0.001 0.002 0.000 0.002

(0.001) (0.003) (0.002) (0.002)

ESG disclosure −0.001*** −0.000 −0.001* −0.001

(0.000) (0.001) (0.001) (0.001)

Employees 0.008** 0.004 0.011 −0.000

(0.004) (0.006) (0.007) (0.007)

Carbon trading 0.035*** 0.024 0.063*** 0.004

(0.010) (0.017) (0.018) (0.018)

Leverage 0.000 0.000 −0.002 0.002

(0.001) (0.001) (0.003) (0.002)

Tangible 0.007 0.005 0.001 0.009

(0.005) (0.007) (0.008) (0.009)

Intangible −0.010*** −0.012** −0.002 −0.005

(0.003) (0.005) (0.006) (0.005)

Constant −0.143** −0.069 −0.214** −0.103

(0.058) (0.100) (0.092) (0.113)

Year dummies YES YES YES YES

R2 0.960 0.973 0.953 0.958

Observations 9780 2514 4307 2959

Notes Standard errors in parentheses. ***, ** and * denote the level of significance at 1, 5 and 10%,
respectively
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Table 8.6 IV regressions: second stage results

(1) (2) (3) (4)

Sample: Full NA EU AP

Dependent: Tobin’s Q Tobin’s Q Tobin’s Q Tobin’s Q

lnGHGS
∧

−0.088*** −0.109*** −0.115*** −0.028***

(0.019) (0.010) (0.040) (0.006)

Leverage −0.014** −0.008*** −0.064** −0.015***

(0.006) (0.002) (0.031) (0.004)

Tangible −0.489*** −0.352*** −0.546*** −0.176***

(0.036) (0.018) (0.079) (0.013)

Intangible 0.073*** 0.012 −0.052 0.037***

(0.022) (0.014) (0.056) (0.007)

Constant 8.292*** 7.324*** 10.990*** 3.787***

(0.507) (0.279) (1.042) (0.180)

Year dummies YES YES YES YES

R2 0.028 0.213 0.032 0.105

Observations 9774 2514 4303 2957

Notes Standard errors in parentheses. ***, ** and * denote the level of significance at 1, 5 and 10%,
respectively

Moving to the second stage regressions, we now use the fitted values
(lnGHGS
∧

) from Eq. 8.4 as our main independent variable. 2SLS results are
reported in Table 8.6. In line with our previous estimations, higher GHG dete-
riorates the firm’s value. In fact, across our 4 different specifications, GHG has a
negative sign and significant coefficient at 1% level, while once again, the most
negative coefficient appears for the EU firms.

8.5 Conclusion

Our paper examined the effect of GHG on FP using data from a sample of 1800
global firms for the period 2005–2018. We employed panel data regressions such
as fixed and random effects models. We also controlled for endogeneity with
an instrumental variable approach. This gave us an opportunity to account for
potential endogeneity between GHG and FP.

The main findings that emerge from this paper are that (i) GHG has a negative
effect on FP across all regions, and (ii) firms in EU are rewarded (penalized) the
most for decreasing (increasing) their pollution compared to firms in North Amer-
ica and Asian-Pacific. Taken together, the findings support theories that predict the
negative association between GHG and FP (i.e. instrumental stakeholder theory).

Additionally, our findings should be seen in the light of recent stricter regula-
tions on GHG emissions across all three examined regions. High GHG emissions
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should be connected with high environmental fines, which in turn could directly
increase firms’ costs. High costs might change firms’ strategy towards GHG emis-
sions. In close relation to this, regulators should consider developing cheap access
to finance GHG reductions. Despite the increasing volume and complexity of
environmental regulations, mitigation policies to address climate change provide
insufficient incentives for adaptation. Besides, addressing stricter GHG targets
could potentially increase profits, as documented in our results, it will eventually
create a competitive advantage for firms (Porter, 1991). Our results also highlight
the importance of GHG reductions for managers, financial analysts and investors.
Particularly, from the investors point of view, firms’ emissions have been moni-
tored closely by large mutual and hedge funds, which aim to include low carbon
stocks in their portfolios. Hence, there is a move of funds from polluting firms
to non-polluting ones (see for example, BlackRock’s strategy1 ). This explains
why “greener” firms enjoy higher evaluations. At the same time, financial ana-
lysts should consider the climate risk—the risk related to a climate change—when
evaluate portfolios. From a managerial point of view, our results are straightfor-
ward. Since instrumental stakeholder theory dominates this examination, managers
should try to comply with the social demands against climate change. This can be
a sustainable approach to attract new investors and decrease the cost of capital.

Concluding this paper, we would like to offer some potential avenues for future
research. First, it could be interesting to examine the GHG effects on FP for dif-
ferent industries and countries separately. Second, we can enrich the methodology.
For example, we may use dynamic panel models and non-parametric regressions to
test the robustness of our results. Third, we can substitute GHG variable with other
environmental variables, such as scope 1, scope 2 and scope 3 emissions. Finally,
more research should be devoted to the risk associated with when decreasing emis-
sions. For example, emission reductions might increase the firm risk, and in turn,
higher risk is followed by higher returns. Using risk adjusted performance might
be more accurate measure of FP.

Appendix: Stata Codes

Below, you may find the STATA codes. By changing the variable names according
to your dataset, you can replicate the estimations of this study:

1 https://www.ft.com/content/57db9dc2-3690-11ea-a6d3-9a26f8c3cba4.

https://www.ft.com/content/57db9dc2-3690-11ea-a6d3-9a26f8c3cba4
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. xtset id year // where id is the firm’s id number and year corresponds to the time

. xtreg tobinsq lnghgs lev tang inta i.year, fe r //xtreg is the command to run panel
regressions, tobinsq is the dependent variable following by the control variables, i.year
shows that we have included year dummies, fe indicates that we run fixed effects and r
shows that we used robust standard errors (see Table 8.2, column 1a). If you change
tobinsq with roa, Table 8.3 column (1) will be produced

. xtreg tobinsq lnghgs lev tang inta i.year, re r // re shows that this is a random effects
regression (see Table 8.2, column 1b)

. xtreg tobinsq lnghgs lev tang inta i.year if region = = 1, fe r // You need to create
another variable named region; in our case this variable takes 1 if firms are in the NA, 2
if firms are in the EU and 3 if firms are in the AP region, “if region = = 1” means that
we run the fixed effects regression just for the NA firms. Thus, if we would like to run
the same regression for EU, we simply need to type the following:. xtreg tobinsq lnghgs
lev tang inta i.year if region = = 2, fe r (see Tables 8.2 and 8.3, columns 2–4)

. xtreg tobinsq lnghgs lev tang inta i.year, fe

. estimates store fe

. xtreg tobinsq lnghgs lev tang inta i.year, re

. estimates store re

. hausman fe re //Finally, this code gives us the Haumsan test, if this is significant fixed
effects should be used; if not, random effects is the correct model (see Table 8.2)

. xtreg tobinsq c.lnghgs#c.region1 c.lnghgs#c.region2 lev tang inta i.year, fe r // in this
regression we interact lnghgs with region1 (NA) and lnghgs with region2 (EU), region1
is a dummy that takes 1 if firms are in the NA, 0 otherwise; region2 is a dummy that
takes 1 if firms are in the EU, 0 otherwise and region3 is a dummy that takes 1 if firms
are in the AP, 0 otherwise (see Table 8.4, column 1)

. ivreg2 tobinsq lev tang inta i.year (lnghgs = l.lnghgs boardsize esg employes trading
i.year), first // we now run a 2SLS regression with the ivreg2 command, in the
parenthesis we instrumented lnghgs with exogenous variables. The command first reports
the first stage results (see Tables 8.5 and 8.6, column 1)

. twoway (lfit tobinsq lnghgs if region = = 1, lcolor(black)) (lfit tobinsq lnghgs if
region = = 2, lcolor(red)) (lfit tobinsq lnghgs if region = = 3, lcolor(brown)) // see
Fig. 8.4
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9Minimum Connectedness Portfolios
and the Market for Green Bonds:
Advocating Socially Responsible
Investment (SRI) Activity

David C. Broadstock, Ioannis Chatziantoniou, and David Gabauer

9.1 Introduction

In recent years, the fixed-income investment market has evolved in a number of
ways. Among the more noteworthy innovations has been the introduction of ‘green
bonds’. Green bonds have been a simple yet fundamental, and highly progressive,
market innovation. Their simplicity can be gleaned from their definition: the Green
Bond Principles define a green bond as ‘any type of bond instrument where the
proceeds will be exclusively applied to finance or re-finance, in part or in full, new
and/or existing eligible Green Projects and which are aligned with the four core
components of the GBP’ (ICMA, 2018). Complementary to the explicit ‘green’
orientation on the use of proceeds, it is also the case that a green bond must be both
self-declared as a green bond by the issuer, and verified by an external ‘second-
opinion’ provider, i.e. claiming green credentials is a pre-requisite, and a due-
diligence requirement. Beyond these defining features, green bonds are otherwise
equivalent to conventional (sometimes also known as ‘black’) bonds.

It is, arguably, the overlap in definition between green and black bonds, that
has catalyzed market interest and adoption. Investors and issuers alike do not face
a gap in understanding how they can be used, only in demarcating projects and
project expenditures as being legitimately ‘green’. Admittedly this introduces some
additional cost to issuers, but against the backdrop of modern corporations, and
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the broad diffusion of corporate social responsibility (CSR) practices, these incre-
mental costs are either already sunk within CSR reporting costs, or incrementally
nominal relative to them. Green bonds are part of a wider suite of investment prod-
ucts aimed at supporting ‘socially responsible investment’ (SRI) activity which has
become the dominant vehicle to operationalize corporate social responsibility, and
make material/tangible progress towards achieving sustainable development goals.

Mainstream acceptability of SRI has gradually emerged following the report
‘Who Cares Wins’ published by the U.N. Global Compact,1 and subsequently
became popular after the launch of UN PRI (Principles for Responsible Invest-
ment) in 2006.2 Thus, both CSR and ESG originate from the United Nations. To
maintain momentum for SRI, and specifically the market for green bonds there is
a need to promote secondary market liquidity (Fender et al., 2019). Liquidity is a
defining feature of market efficiency, playing a critical role in the price discovery
process and ensuring investments are fairly priced, and in a timely fashion. Pro-
moting liquidity is nonetheless a challenging task for new financial instruments.
Working against interest in green bonds are at least two features (i) a general
unfamiliarity with the product and (ii) somewhat lapse rules on the disclosure,
monitoring and enforcement of the use of proceeds criteria for the capital raised.
But in the green bonds favour is the fact that as a financial product it is extremely
similar to a regular bond, making it easy for investors to understand. Further-
more, green bonds are firmly in line with principles for responsible investment
and efforts to support global climate action and deliver on SDGs (McInerney &
Johannsdottir, 2016; Tolliver et al., 2019, 2020a, 2020b), and lastly the mecha-
nisms required to enforce transparent use of proceeds consistent with the claims
in the bond prospectus, are not new mechanisms and hence also easy to establish
more rigor behind.

Green bonds already enjoy a global market, as discussed in Tang and Zhang
(2020). Demand is international and often from institutional investors, supply how-
ever has been quite highly regionalized. The initial market position was established
in Europe, and the Eurobond market remains extremely mature, coupled alongside
strong internationally focused financial institutions—this means that the regional
market maintains a strong influence over global market dynamics. The US market
has emerged with arguably a different green bond offering than in some of the
other global regions. There has been a strong interest among corporates to raise
green debt, either as a means to legitimately fund green projects, or for green-
washing/marketing related purposes (Szabo & Webster, 2020). This introduces a
new market dimension, opening the door not only to a new class of issuers but also
opening up the doors to an inflow of funds from a different cluster of investors with
pro-environmental preferences (Zerbib, 2019). Lastly the Greater China region has
in recent years established a dominant position in the overall green bond market.

1 See: https://www.unepfi.org/fileadmin/events/2004/stocks/who_cares_wins_global_compact_2
004.pdf.
2 See: https://www.unpri.org/pri/about-the-pri.

https://www.unepfi.org/fileadmin/events/2004/stocks/who_cares_wins_global_compact_2004.pdf
https://www.unpri.org/pri/about-the-pri
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Evidence of this is manifest in both the value and number of green bond issuances
in the region, which in recent years have constituted around 50% of the global
market.

As will be discussed more thoroughly in Sect. 9.2, the volume of academic
research on the market for green bonds is thin to say the least. One can pos-
tulate that this follows immediately from the relative age and maturity of the
market. With the green bond initiating in 2007, and not achieving scale until
nearer 2014, the availability (or lack thereof) of a sufficiently rich benchmark of
empirical experience, and hence data available for research, has simply not been
amenable to rigorous econometric inquiry. The papers closest to ours include an
early study by Pham (2016) highlighting a material connection between green and
black bond markets, and a suite of studies on the relation between green bonds and
other asset classes as discussed in Reboredo (2018), Reboredo and Ugolini (2020)
and Reboredo et al. (2020). These latter three studies are quite broad in their
focus, trying to establish a comprehensive overview of the multitude of interac-
tions between multiple asset classes. What sets this present paper apart from the
above mentioned studies, aside from the fully dynamic econometric strategy and
data sampling frame, is the explicit attention given to the three major geographies
of the bond market and their interplay. Few existing studies focus on green bonds
in China. Exceptions to this include Wang et al. (2020) who deploy an event-
study to illustrate that (i) firm-specific stock returns are positively reacting to news
about green bond issuance–relative to a matched sample of ‘synthetic conventional
bonds’–and furthermore that (ii) the effect is strengthened for firms with strong
corporate social responsibility profiles. Their findings overlap somewhat with Tang
and Zhang (2020) who suggest, in an international sample including China, that
benefits to green bond issuance include enhanced stock returns and improved stock
liquidity.

We direct our attention towards the following fundamental investment question:

• Do green bonds have a (value enhancing) role to play in a balanced fixed-
income investment portfolio?

The answer to such a question is of interest to at least three audiences. Firstly, the
investment community is constantly looking for renewed guidance on innovative
investment opportunities, and clarity as to whether a new instrument can comple-
ment existing ones in creating value. Second is the group of regulators, policy
makers and compliance specialists, who wish to understand whether the overall
financial performance of bonds of different classes does indeed differ? If it does
not, then these groups need to consider if the existing policies are fit-for-purpose.
Conversely, if performance differentials are extreme then again there is a need
to review the efficacy of existing regulatory and policy frameworks. Lastly, the
third audience with an interest in our findings would be the bond issuers them-
selves. Given the relative infancy of green bond markets, individual issuers have
few personal benchmarks. We propose (hypothesize) that individual issuers would
be able to benefit from (i) the consistent comparison of green versus conventional
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(‘black’) bond benchmarks and moreover that (ii) the differentials between geo-
graphic regions reveal information of incremental value with regard to the market
characteristics that underlay successful green bond issuance.

However, there is a possible tension to our hypothesis, which predicates the
need for formal empirical inquiry. For instance the existence of any ‘green pre-
mium’ of sorts is contingent on investors agreeing that green and black bonds
with common financial characteristics, e.g. tenure, coupon rate, bond rating etc.,
still contain intangible value that will manifest in secondary market trade and liq-
uidity, i.e. a pricing differential between green and black bonds. While it would
be nice to assume that all investors are responsible investors in the SRI sense, it
is more reasonable to assume that many, if not still most, of today’s universe of
investors are more pragmatic and do not value an intangible green premium over
pure financial returns. Worded differently, the difference in premiums between
green and black bonds appeals to an investor’s altruistic behavioural orientation,
which need not and may not exist. We do not investigate these behavioural aspects
here, but recognize they rationalize a plausible tension in our hypothesis, hence
justifying the need for our empirical investigation.

To develop testable hypotheses around our research question, we adopt the
following framework. First, we estimate a time-varying parameter vector-auto-
regression, from which we obtain time-varying variance/co-variance matrices in
a similar fashion to Antonakakis et al. (2020b), which are a vital ingredient for
subsequent portfolio construction. In turn, we exploit variance decomposition anal-
ysis akin to Diebold and Yilmaz (2012, 2014), allowing for a detailed examination
of the connectedness and spillovers between the various bond index benchmarks.
For the third step of analysis, four multivariate portfolio construction methods are
applied, including the time-varying (i) minimum variance, (ii) minimum corre-
lation and (iii), minimum connectedness and (iv) the risk-parity portfolio, each
of which drawing on the estimated time-varying variance-covariance matrix. In
the last step, we use hedge effectiveness and Sharpe ratios to verify the role and
importance of green bonds within a balanced fixed-income investment portfolio.

Main results indicate that, the outbreak of the COVID-19 had a noticeable,
though rather short-lived, impact on connectedness among the variables of our net-
work. More particularly, we note that there are two distinguishable peaks in total
connectedness across the sample period. In both instances, the period around these
peaks is characterized by unique and important events that affected international
financial markets. Furthermore, we note that during the first quarter of 2020, black
US bonds shift from being net recipients to being net transmitters of pricing
shocks. In fact, this shift is the only considerable shift that takes place during
this time interval. At the same time, both green and black Chinese bonds intensify
their role as net transmitters in the network. The same is true for green US bonds.
By contrast, green and black EU bonds, both strong net transmitters up to that
point, appear to exert a rather moderate impact during this first quarter.

Furthermore, our analysis contributes unique evidence to the literature on the
role of SRI practices as a complement to mainstream investment. Specifically, our
results further indicate that green bonds assume a non-trivial role to a fixed-income
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investment portfolio. Portfolio weights for green bonds range on average from
approximately 2% of the portfolio allocation, up to as much as 35% depending on
the time and portfolio construction choice. There are some nuanced characteristics
among portfolio techniques. We find that the minimum variance portfolio approach
is rather selective and focuses mainly on EU black bonds while the risk-parity port-
folio tries to weigh all assets more or less equally. The minimum correlation and
minimum connectedness approach balance those two approaches. All multivariate
portfolios have shown that they are meaningful when it comes to the reduction of
investment risk as all hedging effectiveness scores have been significant on at least
the 10% significance level. Depending on the asset under investigation 9–69% of
the volatility of a single asset has been reduced. Finally, our empirical results sug-
gest that the minimum connectedness portfolio outperforms all others as it reaches
the highest Sharpe ratio and significantly reduces the risk in all assets.

The order of the paper is as follows: Sect. 9.2 provides a synopsis of the existing
literature on green bonds; Sect. 9.3 introduces the data used in the paper; Sect. 9.4
describes the econometric framework; Sect. 9.5 reports the results; and Sect. 9.6
concludes.

9.2 Literature on Green Bonds

In this section of the paper we offer a brief summary of the literature on green
bonds. The brevity of the review is preconditioned by the depth of the extant
literature. As discussed in the introduction, academic research on this subject is
thin. Here we qualify this. We omit discussion of literature focused purely on
conventional bonds, and instead position our review of the literature in terms of
providing a focused understanding of the preliminary research findings that have
emerged from the literature on green bonds.

We begin the literature review by making reference initially to the Scopus
academic literature corpus, which contains an expanse of bibliometric data for aca-
demic research published among leading international research outlets, not limited
purely to journal publications, but also various other books, monographs, con-
ference publications and so forth.3 As broadly discussed and intimated in Aria
et al. (2020), Corbet et al. (2019) among others, examination of bibliographic
data and metadata can be highly revealing as to the depth, breadth, scope and
general intellectual structure of research within a theme. Often these are larger
reviews aimed at summarizing a burgeoning corpus of studies, but there are no
constraints per se that inhibit their application to emerging bodies of literature
such as ours. Nonetheless we do recognize their usefulness grows with sample

3 Scopus is regarded as the most expansive source of academic bibliometric data, serving as an
indispensable tool for thorough literature review. Details on the coverage, and history of Scopus
are available at: https://www.elsevier.com/solutions/scopus/how-scopus-works/content.

https://www.elsevier.com/solutions/scopus/how-scopus-works/content
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Table 9.1 Summary statistics of Scopus search

Measure Value Measure Value

Documents 93 Papers 0 citations 38

Sources (Journals, Books, etc.) 57 Papers 0 citations % 40.86

Timespan 2010:2020 Author’s Keywords (unique) 303

Avg. Papers per year 9.30 Authors 189

Avg. Papers per year (post 2018) 27 Author Appearances 204

Citations 338 sole-authored papers 31

Average citations per documents 3.634 sole-authored papers % 33.33

h-index 11 Multiple-authored papers 62

Papers >100 citations 0 Multiple-authored papers % 66.67

Papers >100 citations % 0

Notes For research with the term ‘green bond’, appearing in either of the title, abstract or key-
word of a paper. Moreover, to ensure we do not contaminate our search results with literature from
chemistry, biological or other natural sciences where green bonds take a very different meaning, we
additional restrict the subject areas to be within either ‘Economics’, ‘Business’ or ‘Social sciences’

size and time, and to this end, we only provide a brief focus on bibliometric sum-
maries, before offering a more ‘conventional’ discursive summary of key research
themes. For this part of our work, a search is conducted over the Scopus corpus
for research with the term ‘green bond’, appearing in either of the title, abstract or
keyword of a paper. Moreover, to ensure we do not contaminate our search results
with literature from chemistry, biological or other natural sciences where green
bonds take a very different meaning, we additionally restrict the subject areas to
be within either ‘Economics’, ‘Business’ or ‘Social sciences’—noting that finance
falls within these areas.4

The search results will be summarized in several tables and plots, to reveal the
core characteristics of the research corpus. First, some outline summary statistics
are given in Table 9.1. The first point to note is that there are a grand total of 94
papers emerging using the specified search criteria. It is intuitive to question if the
search term itself is somehow erroneous, but in our case this is highly unlike, as
we do not require convoluted or multi-term appearances, or impose any constraints
other than to literature within related disciplines. As such our previous assertions
that the literature is thin is not an understatement or to be taken lightly. These
publications cover the period 2010–2020, which is plausible since the first green
bond only came to market in 2007. The literature is growing: across all years the
average number of papers per year is 9.3, whereas the average number of papers
per year in 2019/20 is 27, noting at the time of writing this will understate the true

4 The specific Scopus search term was: ‘TITLE-ABS-KEY ("green bond") AND
(LIMIT-TO (SUBJAREA , "ECON") OR LIMIT-TO (SUBJAREA, "BUSI") OR
LIMIT-TO (SUBJAREA, "SOCI"))’.
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average for this period, since it only covers until July 2020. What this additionally
indicates is that the research is unlikely to have stimulated a large citation profile as
yet, which is verified by the fact that more than 40% of the existing research fails
to have generated citations as yet, though this number should decline substantially
as the area of literature continues to grow. It is also worth noting that no papers
have yet generated 100+ citations, suggesting the absence of a seminal study in
this area as yet.

An important aspect of summarizing the literature is to appreciate the degree
of coherence and consistency in themes of prior work. We will return to this again
later, but some preliminary insights can be taken from Table 9.1. Specifically,
it can be seen that with just 93 papers, some 303 unique keywords have been
generated, thus on average each new paper brings more than 3 unique keywords,
that do not appear in other papers. In total, and not reported in the table, there
are 426 keywords, hence in the overall universe of keywords for these papers
there are also some overlaps, nonetheless these are far fewer than non-overlapping
keywords. This is highly indicative that the current corpus of research is disparate
with loosely connected themes under the wider umbrella of green bonds. Further
evidence indicating the same possible feature of the literature is that the 94 papers
are published across 57 different journals, monograph/book series or other outlets.
Accordingly, few journals have more than one paper on the topic. This is consistent
with the view that the research is disparate or spread over a number of loosely
connected research topics.

Notwithstanding the relative thinness of the literature, corpus analytics tools
permit a structured visualization of the article metadata, which proves to be insight-
ful as to the nature of connected topics. In Fig. 9.1 a network plot is used to show
which keywords are connected with each other. Given the number of unique key-
words, the number of observed permutations or pairs of keywords is prohibitively
large to visualize, however a simple constraint brings the number down to a man-
ageable set. The constraint applied is simply that the same connected pair of
keywords must have appeared more than once. In so doing, the graph indicates
which connected keywords are more likely to emerge as themes. The results are
intuitively plausible. Unsurprisingly, the most connected term is ‘green bonds’, and
this connects with a range of expected terms such as ‘climate change’, ‘climate
finance’, ‘corporate debt’. It is interesting to note that terms such as ‘renewable
energy’ are not directly connected with ‘green bonds’, but instead are indirectly
connected via ‘green finance’. Considering this plot from the lens of our own
work, while we do see that ‘spillovers’ (an alternative term for connectedness) are
linked with ‘green bonds’, we do not see the appearance of either ‘conventional
bonds’ or ‘portfolios’, though admittedly the references to ‘municipal bonds’ and
‘corporate debt’ do potentially cover wider fixed-income instruments than green
bonds.

Risk is the foundation of financial markets, and the path to financial success
when suitably mastered. To understand the notions of risk being discussed in the
literature on green bonds, Fig. 9.2 plots the words which precede risk within the
abstracts of the 93 identified studies. No constraints are required to de-noise this



224 D. C. Broadstock et al.

CLIMATE CHANGE

CLIMATE FINANCE

CORPORATE DEBT

CORPORATE SOCIAL RESPONSIBILITY

ENVIRONMENTAL
 SUSTAINABILITY

FINANCIAL MARKETS

GREEN BONDS

GREEN FINANCE

FINANCIALISATION

SUSTAINABILITY

PRICE SPILLOVERS

SUSTAINABLE DEVELOPMENT

SUSTAINABLE FINANCE

MUNICIPAL BONDS

INFRASTRUCTURE

LIQUIDITY

RESPONSIBLE INVESTMENT

SUSTAINABLE FINANCING

RENEWABLE ENERGY

Fig. 9.1 Network plot of common (n > 1) connected keywords (Notes This plot takes the author
provided keywords from the 93 papers contained in the Scopus corpus, to illustrate the nature of
connected topics. To enable ‘meaningful’ visualisation, we only show keyword combinations that
appear more than once)

change
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Fig. 9.2 Words preceding ‘risk’ (Notes This plot summarizes the term which appear before the
word ‘risk’ within the abstracts of the 93 papers contained in the Scopus corpus. The objective of
this graph is to indicate the aspects of risk which have been prioritized in existing research on green
bonds)

plot to permit useful visualization. Ten terms precede risk, the majority of which
making sense. The most intuitive these are: market-risk; change-risk; investments-
risk; liquidity-risk; financialization-risk; principle-risk; economy-risk; contagion-
risk and environmental-risk. The term factors-risk does not make immediate sense,
though stopwords, such as the word ‘at’ are removed prior to producing the graph,
and this might for example have originally been factors-at-risk. Taken together
these keyterms support the range of issues outlined in the introduction, namely
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that risk to our environment stimulates a need for responsible investment, but the
risk of innovation and change creates an associated investment risk which may
align with poor liquidity. Moreover, being a new and untested financial instrument,
green bonds are likely exposed more heavily to wider economic, financialization or
contagion risk, which in term may jeopardize the invested principle. Of course this
is a little bit of a word-play stringing together the terms appearing in the figure,
yet not an inconceivable string of connections against the known market context.

The last point we will discuss from the Scopus corpus metadata concerns the
geographic distribution of research, and the structure of the author collaboration
network. Figure 9.3 presents a heatmap of research activity for the 93 papers on
green bonds. The countries of the map shaded in white have no research output,
and from this it is especially clear that Africa, and Southeast Asia are lacking
any basic research. Research output increase as the colour graduates from yel-
low to red. From this it can be seen that there are three clusters: North America
(which includes Alaska on definitional grounds); Europe, with UK, France and
Italy being dominant; and China. This is consistent with our proposed geographic
focus of study. It is worth noting that Australia has an emerging research presence,
yet its orange tone indicates only around 7 studies or so. The blue lines overlaid
on the plot indicate the countries which are paired through research collaborations.
For example the line connecting China and the US indicates a paper co-authored
by scholars from Chinese-based institutions with scholars from US-based institu-
tions and so forth. Consistent with the number of papers, the number of co-author
connections between countries is light. It would be remiss to try and attach too
much importance to the geographical coverage and connectivity displayed in this
figure, one can at the same time take some solace from the fact that research does
bear the hallmarks of international collaboration. This implies that regional expe-
riences will not remain in silos, which is a positive pre-condition for the diffusion
of international best practices.

While the brief bibliometric review above uncovers several salient features and
concepts being addressed within the literature, giving a broad oversight of the
intellectual structure of research on green bonds. In the following text we turn
attention to several of the more prominent emergent themes in the research.

9.2.1 Green Bond Policy and Regulatory Framework
Development

The development of domestic and international standards for green bonds, and
green finance, track closely alongside the wider efforts for capacity building and
institutional readiness for financial markets and instruments that more readily sup-
port progress towards climate change and sustainable development goals. Green
bonds and climate bonds have been shown, both theoretically and empirically, to
be a viable part of the toolkit for financing climate policies and activities towards
avoiding deep and irreversible climate change (Flaherty et al., 2017).
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1 19

Scientific production `heatmap' & collaborating countries − colors reflect # of 'paper−author' observations per region

Fig. 9.3 Global production, and collaborative networks for research on green bonds (Notes This
plot summarizes the geographic distribution of research on green bonds as captured within the Sco-
pus database. The color of countries highlights the intensity of scientific production (publications)
whereas the blue lines link countries where research collaborations exist)

However, where the theory and early evidence clarifies a viable role for green
bonds, progress in expanding adoption and use of green bonds is hampered
by incomplete and/or immature institutional environments.5 Ng (2018) directly
addresses the institutional framework for green bonds, in the context of the Hong
Kong market, which in 2020 became the largest exchange by market cap, glob-
ally. Part of the discussion centers around the importance of institutional legitimacy
which is initiated by top-down policy at the national level, and maintained through
market-based activity and engagement. Tolliver et al. (2020a) similarly emphasize
the importance of the national policy environment, highlight that existing domes-
tic policy objectives such as commitments to the Paris Climate Accord act as a
determinant of catalyst of growth in the market for green bonds.

Among the wider issues warranting additional attention is the post issuance
monitoring and due diligence Tolliver et al. (2019). Whereas the definitions for
classifying a bond are (i) quite clearly defined and (ii) subject to both self-
declaration by an issuer, and external verification by a second party, in the early
phase of the market less focus has been placed on post issuance monitoring,
reporting and appraisal of use of proceeds. While efforts to enhance post issuance
monitoring are being made, slow progress to agreed domestic and international
standards remains a hurdle to providing investor confidence. Questions around the
green credentials of green bonds remain a point of contention for researchers,

5 In this regard we especially note the incremental challenges facing developing countries, as
discussed in Banga (2019).
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although recent evidence tends to support the view that green bond markets, and
leading market benchmarks embed ‘greenness’ and reflect a legitimate sense of
green value Kanamura (2020).6

9.2.2 Green Bonds and Financial Markets

While there is something of a lag in development of the green bond market
and regulatory environment, investment activity has been forthcoming. This has
allowed researchers to gain access to data on market activity and begin to raise
questions as to whether and how green bonds may be impacting and potentially
even disrupting wider financial market activity.

Perhaps the earliest study to examine the various interactions in financial mar-
kets is Pham (2016), who provided an examination of the correlations between
green bonds, and black bonds for the US market. This paper introduces several
empirical insights, yet perhaps the most interesting insight concerns the chang-
ing nature in correlation that emerged in 2013/2014, where dynamic correlations
moved from being on average negative, to on average positive. Broadstock and
Cheng (2019) more closely examined this, and recognized this switch aligned in
time quite closely with the dates in which corporate green bond issuers entered the
market. Broadstock and Cheng (2019) proceeded to examine whether the correla-
tion between green and black bond markets was sensitive to a range of financial
market features and market sentiment extracted from news media, and drew the
conclusion that observable empirical connections were consistent with evidence
of a maturing green bond market. Pham and Huynh (2020) build on this line of
reasoning, showing the green bond market returns move in tandem with Google
search activity trends, adding evidence to support that (i) market sentiment aligns
with market performance as might be expected in an efficient market and (ii) that
these movements cannot be solely due to coincident movement in black bond
market returns.

A number of studies take a broader approach, not only looking at alternative
classes of bonds, but aiming to develop a clearer picture of the interaction between
green bonds and wider financial asset classes. Reboredo (2018) using a related
methodology to that which we use in this study, examines the co-movement, con-
nectedness and spillovers between green bonds and other benchmarks including
a global stock index benchmark, and an energy index benchmark among others.
The main findings of the study are that there is clear dependence between green
bonds and conventional corporate and treasury bonds, which result in green bonds
offering but ‘...no diversification effects for investors in the corporate and treasury
bond markets...’, and that dependence with stock markets might only be classified

6 It is worth noting that some earlier literature casts a different view on the legitimacy of green
bonds, see for example Bracking (2015). Such literature remains valid reading as a means to appre-
ciate the importance of robust, comparable and defensible use of proceeds monitoring, reporting
and related due-diligence mechanisms.
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as weak. Reboredo et al. (2020) examine a similar set of questions with an updated
dataset and more flexible econometric model. They identify strong connectedness
(wavelet dependence) between various bond classes in the short run, and long
run for both the EU and US, while connectedness with the stock markets and
energy assets are weaker. Reboredo and Ugolini (2020) also report similar results
using more standard vector auto-regressions. Both Reboredo and Ugolini (2020)
and Reboredo et al. (2020) allude to the portfolio investment implications of their
findings, but fall short of constructing any portfolios to very the empirical nature
of the implications. In a related study Jin et al. (2020) explore the relation between
green bond market outcomes and carbon market (futures) outcomes—in addition
to stock market, energy sub-index and volatility index (VIX) series—using a suite
of dynamic conditional correlation (DCC) model variants. Jin et al. (2020) not only
establish connectedness of a form, but moreover do proceed to examine portfolios
and hedge ratios. They conclude that the ‘...green bond index is the best hedge for
carbon futures...’, and additionally highlight the role green bonds play in shielding
carbon market risk during times of crisis.

9.2.3 Green Bonds and Corporate Social Responsibility

A number of studies are seeking to understand more clearly how green bond inter-
acts with firm activities under the auspices of corporate social responsibility (CSR).
Yet the growing consensus, aligning partly with the increase in empirical evidence,
is that doing good things for the environment does not need to come at the expense
of corporate performance, and firms can in fact ‘do well by doing good’ as dis-
cussed broadly in Bénabou and Tirole (2010). A view shared also more recently by
Albuquerque et al. (2020) who argue that stocks with an environmental orientation
display stronger resilience against uncertainty and negative market events.

In one recent study Tang and Zhang (2020) argue that ‘Green bond issuance
can be viewed as a proxy for firms to make environmentally friendly investments
and change their ESG profiles’. Noting that ESG refers to Environmental, Social
and Governance reporting and scoring, and where ESG scores are often used as a
measure of firm-specific CSR activity and performance. Their conclusion is that
‘...existing shareholders derive net benefits from green bond issuance’, and in this
regard green bonds play valuable role in symbolizing value enhancing ESG activ-
ity. Conversely there are emerging studies which take a more nuanced view of the
role between green bonds and existing ESG practices.

From a more pure financing perspective, several authors including Zerbib
(2019) are active in attempting to quantify the financial value of investors’
pro-environmental preferences. Zerbib (2019) arrives at the conclusion that the
premium is relatively small, at 2 basis points, and that ‘...[this] does not repre-
sent, at this stage, a disincentive for investors to support the expansion of the green
bondmarket’. Gianfrate and Peri (2019) suggest that green bonds are more ‘conve-
nient’ for corporate bond issuers, whereby the ‘...the relative convenience of green
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bonds [is assessed] in terms of returns to be paid to investors...’ and that the rel-
ative decrease in repayment costs for a green bond is 0.18% of the bond value
(or 18 basis points), relative to the repayment cost for a conventional or black
bond. Similar questions about whether investors into the green bond market pay
a premium include Nanayakkara and Colombage (2019), and conclude from an
international market study that investors are willing to pay a premium of 63 basis
points. Hachenberg and Schiereck (2018) examine the nature of the costs versus
premium trade off, along the spectrum of bond ratings from AA to BBB, and find
broadly similar conclusions i.e. that issuance costs may be higher, but lower inter-
ests rates are obtained due to the investor premium, and which can make the net
costs lower relative to a conventional bond. Notwithstanding the above findings,
there remains an open question as to what the true premium is, highlighted here
even through the wide range of suggested premium values. It is additionally worth
noting that studies such as Karpf and Mandel (2018) cannot exclude the possibil-
ity that the premium is ‘...explained by the fundamental properties of the bonds’. In
a somewhat related study on bond yield spreads between green and black bonds,
Febi et al. (2018) indicated that liquidity differentials may explain the yield spread,
but also that the empirical importance of liquidity may have become negligible in
recent years.

9.3 Data

This study is based on a daily dataset consisting of 6 bond market index bench-
marks: US Green Bonds, US Black Bonds, EU Green Bonds, EU Black Bonds,
Chinese Green Bonds and Chinese Black Bonds, with all data having been
retrieved from Datastream. Our data spans the period from 1st July 2016 to 31st
December 2020 based on data availability at the time of collection. The specific
series are as follows:

• US.GB: S&P Green Bond Index Total Return
• EU.GB: Bloomberg Barclays MSCI Euro Green Bond Index Total Return Index

Value Unhedged
• CH.GB: FTSE Chinese (Onshore CNY) Green Bond Index
• US.BB: S&P U.S. Aggregate Bond Total Return Index
• EU.BB: Bloomberg Barclays EuroAgg Total Return Index Value Unhedged

EUR
• CH.BB: Bloomberg Barclays China Aggregate TR Index

Figure 9.4 illustrates the dynamics of these series through time, with each series
standardized to ease visual interpretation. Strong geographical co-movements are
evident, especially in the case of the US and EU. Furthermore, we can observe
that Chinese Green Bonds are almost linearly increasing and clearly have differ-
ent underlying dynamics than the other series under study. Since all those series
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Fig. 9.4 Green and Black Bond Series (Notes This plot shows the index history for the 6 bond
index benchmarks included in our study. The data sample covers 1st July 2016 to 31st Decem-
ber 2020. Additional description on the individual series is given in Sect. 9.3. To aid visualization,
each series is standardized before plotting, noting that the series used in our econometric estimation
work are not scaled)

are considered to be unit root processes according to the unit root test of Elliott
et al. (1996)–not reported for brevity–we apply a log-difference transformation to
each series prior to estimation e.g. ln(xit ) − ln(xit−1) which has the added ben-
efit of being naturally interpreted as index returns. The returns series are shown
in Fig. 9.5, from which we can again see evidence that the Chinese Green Bond
series behaves considerably differently than other index benchmarks. We would
note that the series is nonetheless stationary, but with notable variation from one
period to the next, and does not introduce any specific concerns prior to estimation.

Table 9.2 introduces a range of summary statistics for the returns series that will
be used for our estimation work. The US Green Bond, EU Black Bond and CN
Green Bond are all negatively skewed. In addition, all series are platykurtic except
for the Chinese Green Bond which display significantly leptokurtic. These findings
precede the findings of the Jarque and Bera (1980) normality test which confirms
that all series are non-normally distributed. All series are confirmed to be stationary
at the 10% significance level according to the Elliott et al. (1996) unit root test.
Other important information includes that all time series, except the EU Green
Bonds, exhibit ARCH/GARCH type effects. Finally, the unconditional correla-
tions verify points raised from eye-balling the data (‘eye-conometrics’) including
high geographical correlations in the US and EU whereas the correlation across
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Fig. 9.5 Bond index returns. This plot shows the returns history for each of the 6 bond index
benchmarks included in our study. Returns are calculated using a log-difference transformation e.g.
the first difference of the natural logarithm of the original index values. The data sample covers
1st July 2016 to 31st December 2020. Additional description on the individual series is given in
Sect. 9.3

EU bonds is highest with 0.91. Conversely, the correlation between Chinese bonds
is only 0.114 indicating a low positive correlation. However, an interesting obser-
vation is the fact that the correlations between the Chinese green bonds and the
US and EU bonds, are close to zero or even slightly negative. This is indicative of
unique investment/hedging opportunities when creating investment portfolios.

9.4 Empirical Framework

Here we outline our modelling framework. In the introduction it was noted that
our analysis involves four steps, which is accurate, yet here we precis this into two
stages of methodological analysis. First involving the econometric modelling and
immediate interpretation of the connectedness measures. The second concerning
portfolio construction and evaluation.
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Table 9.2 Summary statistics

US US EU EU CN CN

Green bond Black bond Green bond Black bond Green bond Black bond

Mean 0.017 0.013 0.011 0.008 0.015 0.015

Variance 0.086 0.036 0.053 0.036 0.006 0.061

Skewness −0.895*** −0.808*** −1.092*** −0.824*** −1.271*** 0.168**

(0.000) (0.000) (0.000) (0.000) (0.000) (0.019)

Kurtosis 10.586*** 10.003*** 8.911*** 6.645*** 29.503*** 3.442***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

JB 5628.833*** 5013.559*** 4110.425*** 2288.532*** 42822.697*** 584.175***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ERS −6.918*** −11.142*** −4.706*** −8.878*** −3.464*** −9.102***

(0.000) (0.000) (0.000) (0.000) (0.001) (0.000)

Q(10) 59.454*** 21.132*** 20.279*** 18.196*** 85.552*** 13.575**

(0.000) (0.000) (0.000) (0.001) (0.000) (0.012)

Q2(10) 348.661*** 1066.086*** 655.605*** 622.163*** 32.096*** 20.925***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Unconditional correlations

US Green
Bond

1.000 0.541 0.480 0.475 0.010 0.313

US Black
Bond

0.541 1.000 0.566 0.517 0.027 0.025

EU
Green
Bond

0.480 0.566 1.000 0.941 0.013 0.049

EU Black
Bond

0.475 0.517 0.941 1.000 0.003 0.055

CN
Green
Bond

0.010 0.027 0.013 0.003 1.000 0.082

CN Black
Bond

0.313 0.025 0.049 0.055 0.082 1.000

Notes ∗∗∗, ∗∗, ∗ denote significance at 1%, 5% and 10% significance level; Skewness: D’Agostino (1970)
test; Kurtosis: Anscombe and Glynn (1983) test; JB: Jarque and Bera (1980) normality test; ERS: Elliott

et al. (1996) unit root test; Q2(5): Fisher and Gallagher (2012) weighted portmanteau test

9.4.1 Modelling Time-Varying Connectedness Using a TVP-VAR

In this section, we briefly outline the methodology we apply in order to model
connectedness in a formal time-varying parameter (TVP) econometric framework.
We begin with implementing the multivariate Kalman filter TVP-VAR algorithm
as described in Antonakakis et al. (2020a). The method not only permits parame-
ters of the VAR model to vary over time, but additionally introduces multivariate
exponentially weighted moving average models to allow the error variance and
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the parameter variance matrix to vary over time. As such the model contains
considerable flexibility to capture dynamics.7

Here we outline the key econometric structure of the TVP-VAR. For simplicity
we present this in terms of a first-order VAR, noting that in our later empirical
work Bayesian information criterion also indicates this to be the appropriate lag
order for our exercise.8 The TVP-VAR model can hence be written as follows:

yt =�t yt−1 + et , et |Ft−1 ∼ N (0, H t ) (9.1)

vec(�t ) =vec(�t−1) + ζ t , ζ t |Ft−1 ∼ N (0,�t ) (9.2)

where Ft−1 represents all information available up to t − 1, yt and et represent
m × 1 dimensional vectors and �t and H t are m × m dimensional matrices. In
addition, ζ t and vec(�t ) are m2 × 1 dimensional vectors and �t is an m2 × m2

dimensional matrix. As such, the time-varying parameter transition equation adopts
a random walk structure, which has been shown to be highly effective in capturing
time-varying parameters accurately.9 Financial time series, especially for daily
or higher frequency data, are widely acknowledged to contain time-conditional
heteroskedasticity and the matrices H t and �t play an important role in handling
this by permitting time-varying variance terms in the model.

The time-varying parameters and time-varying error variances are the basic
ingredients for the generalized impulse response functions (GIRF), and general-
ized forecast error variance decompositions (GFEVD), developed by Koop et al.
(1996) and Pesaran and Shin (1998), and on which the connectedness approach
of Diebold and Yilmaz (2012), Diebold and Yılmaz (2014) rests. To obtain the
GIRF and GFEVD, we first need to convert the TVP-VAR into its TVP-VMA
representation by applying the Wold representation theorem, which states that
zt = ∑p

i=1 �i t zt−i + et = ∑∞
j=1 � j t et− j + et .

GIRFs
(
� i j,t (K )

)
, where K is the forecast horizon, do not assume or depend

on the structure/order of the errors, and therefore provide a more robust approach
to interpreting VAR models than standard IRFs, which have been known to be
sensitive to the order of variables entering into the econometric system. The GIRF

7 We note also that the Kalman gain makes the model resilient to outliers, which makes the algo-
rithm well suited to the application at hand, since high frequency financial time series are known
to often contain outlier observations.
8 Similar to Antonakakis et al. (2020a), the lag order, as well as the prior means (coefficient values)
and prior variances used to initialize the Kalman filtering, are obtained from a static VAR(1) on the
first 200 observations.
9 In an extensive Monte-Carlo simulation exercise Alptekin et al. (2019) explore the relative accu-
racy of random walk transition functions for time-varying parameters in a univariate model setting.
Their results indicate that the random walk to be effective/accurate in a variety of different scenar-
ios. Given the underlying mechanics of univariate and multivariate Kalman filters are the same, it
is reasonable to expect similar results may generalize to the multivariate TVP-VAR context.
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approach captures the difference of the dynamics among and between all variables
j. Mathematically, this can be formalized as:

GI RFt
(
K ,

√
Hj j,t , Ft−1

)
=E

(
yt+K |ε j,t = √

Hj j,t , Ft−1

)

− E
(
yt+J |Ft−1

)
(9.3)

� j,t (K ) =H
− 1

2
j j,t�K ,tH tε j,t (9.4)

Subsequently, the GFEVD
(
ψi j,t (K )

)
illustrates the unique contribution of each

variables to the forecast error variance of variable i, interpreted as how much, in
percentage terms, one variable influences the forecast error variance of another
variable in the system. This can be expressed as follows:

ψi j,t (K ) =
∑K−1

t=1 �2
i j,t

∑m
j=1

∑K−1
t=1 �2

i j,t

,

m∑

j=1

ψi j,t (K ) = 1,
m∑

i, j=1

ψi j,t (K ) = m.

(9.5)

With these measures for GIRF and GFEVD available, we are able to accurately
describe how much variable i is influenced by others and how much variable i
influences all the others, and additionally question whether variable i is influencing
others more than being influenced by them. For this purpose we use the following
three measures:

• First, we wish to establish by how much all the other variables in the system
influence variable i. This is achieved by summing the shares of the error vari-
ance for variable i due to all other variables j. This is called the total directional
connectedness FROM all others and is computed as:

�i← j,t (K ) =
∑m

j=1,i �= j ψi j,t (K )
∑m

i=1 ψi j,t (K )
∗ 100 (9.6)

The influence of all the others on variable i has to be strictly below 100% since
the influence of i to itself has been excluded.

• Second, we reverse our interest and calculate the influence variable i to all
the other variables j in the system. This measure is called the total directional
connectedness to all others. It is calculated by accumulating the effects (error
variance) that variable i has to each other variables’ forecast error variance:

�i→ j,t (K ) =
∑m

j=1,i �= j ψ j i,t (K )
∑m

j=1 ψ j i,t (K )
∗ 100 (9.7)

This measure can take values either below equal to, or above 100%.
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• Last, we use the above two measures to obtain what is known as the NET
total directional connectedness. This measure describes whether the influence
of variable i to others is greater than the influence of others to variable i, and
is obtained simply as the difference between equations (9.7) and (9.6):

�i,t (K ) = �i→ j,t (K ) − �i← j,t (K ) (9.8)

A positive (negative) value illustrates that variable i is driving the others more
(less) than it is being driven by them.

It is worth noting that if a variable is found to be a ‘net transmitter’, it does not
mean that it dominates each of the other individual variables in the network, rather
it means that it dominates the others on average. In addition to the three measures
above, which are aggregated summaries, we are also interested in more granular,
pairwise summaries. This allows for a richer appreciation as to which variables j
variable i is a transmitter to, and for it is a receiver.

We unpack the information in the GFEVDs in order to obtain net pairwise
directional connectedness (NPDC) measures which are defined as follows:

N PDCi j (K ) =
(

ψ j i t (K ) − ψi j t (K )

k

)

∗ 100.

Finally, it is standard to examine metrics of total system connectedness. Such mea-
sures do not relay the same richness of information available from those described
above, but instead offer a single measure capable of describing whether or not
overall patterns of connectedness are weak or strong within the system.

The total connectedness index (TCI). Based on Monte Carlo simulations pre-
sented in Chatziantoniou and Gabauer (2021) and Gabauer (2021) it can be shown
that the own variance shares are by construction always larger or equal to all
cross variance shares. This means that the TCI is within

[
0, m−1

m

]
. Since we want

to know the average amount of network co-movement in per cent, which should
range between [0,1], we have to slightly adjust the TCI:

TC I gt (K ) =
∑m

i, j=1,i �= j ψ̃
g
i j,t (K )

k − 1
, 0 ≤ TC I gt (K ) ≤ 1. (9.9)

Finally, the definition of TCI can be modified to obtain pairwise connectedness
index (PCI) scores between variables i and j as follows:

PC Ii j t (K )

= 2

(
ψ̃

g
i j,t (K ) + ψ̃

g
ji,t (K )

ψ̃
g
ii,t (K ) + ψ̃

g
i j,t (K ) + ψ̃

g
ji,t (K ) + ψ̃

g
j j,t (K )

)

,

0 ≤ PC Ii j t (K ) ≤ 1. (9.10)
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The raft of measures described above helps to illustrate the econometric extent and
severity of connectivity between the various bond markets which we examine; to
bridge the gap between statistical and economic importance, and more concretely
illustrate the financial materiality of our results. This is intended to answer the
singular question of whether being cognizant of the green credentials/orientation
of bonds, gives rise to a financial premium.

9.4.2 Portfolio Back Testing

To examine the financial importance of our findings we will explore historical
investment performance by back testing portfolios. The assumptions underpinning
this are that the investor can purchase the index directly (i.e. assuming there is an
investable tracker or equivalent investment vehicle for the index), that the investor
is only interested in investing in bonds, and that the investor is open to international
investment. These are relatively narrow assumptions yet more than sufficient for
our illustrative needs.

We consider several approaches to portfolio construction including
core/traditional approaches. Note, we give only brief summaries of the approaches
we adopt. The estimated time-varying variance-covariance matrix of the TVP-
VAR model is used for portfolio construction in the spirit of Antonakakis et al.
(2021).

9.4.2.1 Minimum Variance Portfolio
One of the most common approaches used in portfolio construction is the min-
imum variance portfolio (MVP) procedure which tries to generate the portfolio
with the lowest volatility based on multiple assets Markovitz (1959). This portfolio
weights can be calculated by the following formula:

wt = H−1
t I

I H−1
t I

(9.11)

where wt is an m × 1 dimensional portfolio weight vector, I is an m-dimensional
vector of ones and H t the m × m dimensional conditional variance-covariance
matrix in period t.

9.4.2.2 Minimum Correlation Portfolio
Another more recently developed approach to portfolio construction, due to
(Christoffersen et al., 2014), obtains portfolio weights using the conditional cor-
relation matrix, instead of the conditional covariance matrix. Before we construct
this multivariate portfolio we have to describe the conditional correlations. This
can be done as follows,

Rt = diag(H t )
−0.5H t diag(H t )

−0.5 (9.12)
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where Rt is an m × m dimensional matrix. With this the minimum correla-
tion portfolio (MCP) weights are given by:

wt = R−1
t I

I R−1
t I

(9.13)

9.4.2.3 Minimum Connectedness Portfolio
In the spirit of the two previously mentioned portfolio techniques, we create a min-
imum connectedness portfolio (MCoP) by using all pairwise connectedness indices
instead of the variance or correlation matrix. Minimizing the interconnectedness
across variables and hence their spillovers offers a portfolio that is not as heavily
affected by, or more resilient to, network shocks. Therefore variables (investment
instruments) which do not influence others, and are not influenced by others, will
be given a higher weight in the portfolio. This can be expressed as follows:

wt = PC I−1
t I

I PC I−1
t I

(9.14)

where PC I t is the pairwise connectedness index matrix, and I the identity matrix.

9.4.2.4 Risk-Parity Portfolio
In the spirit of Maillard et al. (2010), we employ the risk-parity portfolio. This
method allocates the portfolio weights according to the same share of risk contri-
bution. Theoretically speaking it is assumed that given the same risk level, the
portfolio can achieve a better performance and is more resistant against mar-
ket downturns and hence economic crises. Mathematically, this problem can be
formalized by the following minimization problem:

min
N∑

i, j=1

(
wi t (H twt )i − w j t (H twt ) j

)2
. (9.15)

9.4.2.5 Hedging Effectiveness
Finally, in order to represent the portfolio performance, we make use of the Sharpe
ratio, and a hedge effectiveness score.

The Sharpe ratio, also known as the reward-to-volatility ratio Sharpe (1966),
can be written as follows:

SR = r̄ p
√
Var(rp)

(9.16)
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where rp denotes the returns on the portfolio.10 Higher values of SR indicate a
higher level of returns relative to the level of risk in the portfolio.

In the spirit of Ederington (1979) hedge effectiveness is given by:

HE =1 − Var(yp)

Var(yunhedged)
(9.17)

Var(yp) represents the variance of the portfolio returns, and Var(yunhedged) the
variance of the unhedged asset. HE represents the percent reduction in the variance
of the unhedged position. The higher the HE the larger is the risk reduction and
vice versa.11

9.5 Empirical Findings and Discussion

In this section, we set out the key results from the study. We first present and
discuss the results concerning total connectedness, as a first-order indicator of
any semblance of ‘proper’ connectedness between the markets. Following this we
proceed to discuss results obtained using pairwise connectedness measures. In so
doing we may identify dynamics between specific types of bonds. We pay particu-
lar emphasis to developments following the outbreak of the COVID-19 pandemic.
Lastly, we present and examine our portfolio investment assessment, with a view
to unveiling portfolio diversification opportunities.

9.5.1 Total Connectedness (TCI)

The first set of results we present concerns averaged connectedness measures.
These results are given in Table 9.3. It is worth noting that the elements of the
main diagonal of Table 9.3 correspond to own-variable shocks (i.e., idiosyncratic),
while all other elements, relate to the various interactions between the different
bond types.

According to the results, the US and European markets are more tightly con-
nected than China. Looking for example to the diagonal element of Table 9.3 under
the Chinese green bond heading, it can be seen that 93.7% of index evolution is
driven by within index shocks/behaviour, with only 6.3% of index movement being
due to network connections, 1.4% of which being China’s black bond market.
The Chinese black bond index is more tightly connected with other markets, with
approximately 7.5% of pricing spillovers emanating from the US, interestingly

10 For simplicity we assume that the risk-free rate is equal to zero.
11 According to Antonakakis et al. (2020b) the volatility reduction follows an F-distribution which
means that an F-test can be used to reveal whether the volatility reduction of creating a portfolio
is significant or not. Utilizing their Monte Carlo simulation results we select the Fligner-Killeen
Test.
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Table 9.3 Averaged dynamic connectedness table

US EU CN FROM

Green
bond

Black
bond

Green
bond

Black
bond

Green
bond

Black
bond

US green bond 58.0 16.1 9.4 9.7 0.3 6.5 42.0

US black bond 14.8 52.5 17.4 14.1 0.4 0.9 47.5

EU green bond 7.5 14.1 41.9 35.8 0.2 0.5 58.1

EU black bond 7.7 11.6 36.7 43.3 0.3 0.4 56.7

CN green bond 0.6 1.1 0.8 0.9 93.7 2.8 6.3

CN black bond 13.2 3.8 1.5 1.4 1.6 78.3 21.7

Contribution TO
others

43.8 46.8 65.9 61.9 2.8 11.1 232.2

NET total
directional
connectedness

1.9 −0.7 7.7 5.2 −3.5 −10.6 TCI

NPDC
transmitter

3.0 2.0 0.0 1.0 5.0 4.0 46.5

Notes Results are based on a TVP-VAR(0.99,0.99) with one lag and a 20-step ahead forecast
horizon

the highest amount coming from the US green bond market with a connection of
6.5%.

The average TCI value corresponding to the period is 46.5%, implying that co-
movements within this particular network of variables are rather moderate, since
on average only 46.5% of the forecast error variance in one bond type can be
associated with price innovations (shocks) from other bond types included in the
network. However, the results in Table 9.3 average over the full sample results, and
may inadvertently mask dynamics and the influences of specific events shaping the
linkages between the different bond types. Worded alternatively, a narrow analysis
of the averages may result in the loss of important information in connection with
specific economic or political events that took place during the sample period, and
which could potentially trigger substantial deviations from the average TCI value
of 46.5%. Thus, we continue our analysis by exploiting the richer time-varying
output from our fully dynamic econometric framework. We begin by examining
the time-evolution of total connectedness (TCI), as given in Fig. 9.6.

Within the framework of our analysis, large values of the TCI are indicative of
strong co-movements across the network. In turn, strong co-movements may be
indicative of the fact that the perceived risk relating to the bond types of interest is
increasingly equivalent, further reflecting analogous market confidence. In Fig. 9.6,
total connectedness within our network varies considerably over time ranging from
a low of below 40% to a high just shy of 70%, implying that connectedness across
the various bond types not only reacts to events associated with the bond mar-
kets under investigation, but can do so swiftly, and by material amounts. A closer
inspection, further indicates that the TCI exhibits two distinguishable peaks across
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Fig. 9.6 Dynamic total connectedness (Notes Results are based on a TVP-VAR(0.99,0.99) model
with lag length of order 1 (BIC) and a 20-step-ahead forecast)

the sample period. In particular, TCI reaches its first peak towards the end of 2016
and the beginning of 2017. In turn, the TCI embarks on a generally descending
course with some relative peaks along the way; notably, during the second and the
third quarter of 2017, as well as, in the beginning of the second quarter of 2018.
Regarding the more recent observations in our sample, the value of TCI passes
through a trough in the back end of 2018 and then begins to rise rapidly again,
reaching a new peak around the first quarter of 2020. From then on, it starts to
decline again. In line with our framework, dates associated with large connected-
ness values, such as the two distinguishable peaks, reflect very turbulent periods
whereby, the financial assets of our network are all deemed to be relatively equally
risky.

We note that the period around the first peak was rich in unique or important
events for international financial markets. To name but a few, this period involved
the unprecedented devaluation of the Renminbi during 2015 and its subsequent
inclusion in IMF’s Special Drawing Rights (SDR) basket of reserve currencies
in 2016, the ongoing European debt crisis (e.g., the third economic adjustment
programme for Greece in 2015) combined with the peak of the refugee crisis in
Europe, the 2016 EU-Referendum in the UK, as well as, elections in the US.

While there was an interval of relative tranquility starting around the second
quarter of 2017—presumably reflecting an effective absorption on behalf of finan-
cial markets of developments similar to the ones outlined above, a new hike in
connectedness became apparent at the dawn of 2019—reaching a second peak
around the first quarter of 2020. Around this second peak there were two major
destabilizing and risk-inducing developments; namely, the escalating trade dispute
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between China and the US and the outbreak of the COVID-19 pandemic. In point
of fact, we note that the first months into the COVID-19 pandemic resulted in
connectedness assuming its largest value across the sample period.

9.5.2 Net Total Directional Connectedness

We now direct attention towards the evolution of total directional connectedness.
One of the most important features of the chosen econometric framework lies
within its ability to distinguish and classify the different bond types that make up
our network as being either net transmitting or net receiving. This information is
presented in Fig. 9.7. By way of orientation, when the shaded area in Fig. 9.7 falls
within a range of positive values, the corresponding bond ‘type’ is a net transmitter
of shocks to the systems, conversely when the plot area falls in the negative range,
a bond index is classified as being a net recipient of shocks.

Prominent among the results presented in Fig. 9.7 is the fact that in almost all
cases the different bond types included in our study assume only one of the two
roles. This is not a statistical restriction or unintended artefact, which can be ver-
ified by the results for the US black bond index which makes several movements
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with one lag)
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between positive and negative values. As such we fall on the conclusion that there
seems to be a persistent pattern/role within the network for certain bond types to
act either as net transmitters or net receivers of shocks. Notwithstanding this, the
observation variation in each figure over time is indicative of a constantly evolving
intensity attached to each bond types’ role.

Under closer inspection of Fig. 9.7, it can be seen that both green and black
Chinese bonds retain their net receiving character throughout the period of anal-
ysis, with black Chinese bonds in particular, assuming a more pronounced role
as recipients for almost the entire period of study with the exception of the first
quarter of 2020. During this period, which was marked by the outbreak of the
COVID-19 pandemic we note that, green Chinese bonds receive at least as much
as black Chinese bonds. This could be indicative of the unique and pervasive
character of the COVID-19 crisis, which resulted in identical perceptions of risk
in the Chinese bond market.12 Turning to the EU market, we note that green EU
bonds appear to act as a net transmitter of shocks to other markets throughout the
period of study. As far as black EU bonds are concerned, their net transmitting role
appears to diminish completely in the mid-2018 period and for a few months black
EU bonds even assume a net receiving role (although the magnitude is rather neg-
ligible), before reverting back to their net transmitting role, from 2019 onwards.
The COVID-19 outbreak does not appear to have a role-shifting impact on either
green or black EU bonds; however, towards the end of the first quarter of 2020,
there appears to be a short-lived drop in the relatively large transmission levels of
the period and this holds for both EU bond types. Transmission resumes again to
higher levels immediately after that. Finally, with regard to the US market, it is
evident that from late 2016 onwards green mainly transmit shocks to other mar-
kets, with the exception of a period which lasts from around the second quarter of
2019 and ends in the first quarter of 2020. In fact, during the first quarter of 2020
green US bonds reach their highest negative values with regard to net connected-
ness. By contrast, black US bonds appear to be the most ambiguous among the
various bond types of the study as they begin as net recipients, then, almost from
mid-2017 and until early 2018 they seem to assume a rather net transmitting role,
before they start receiving again on net terms almost throughout the remainder of
the sample period (i.e., with a few relatively negligible exceptions). The period of
the COVID-19 outbreak in early 2020 saw black US bonds assuming a brief net
transmitting role which culminated with a positive value greater than 10%.

Overall, net directional connectedness levels, were affected at least to some
extent during the first quarter of 2020 for both bond types of all countries. During
this period apparently (i) the role of green Chinese bonds as net recipients of
pricing shocks intensified, (ii) both EU bond types experienced lower levels of
transmission compared to respective values recorded from 2019 onwards—which

12 Notwithstanding a very temporary transition for China’s green bonds to being a net transmitter
in early 2019.
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marked the second major hike of TCI during our sample period (see, Fig. 9.6), as
well as (iii) the role of green US bonds as net recipients and the role of black US
bonds as net transmitters both intensified.

9.5.3 Net Pairwise Total Connectedness

Despite the fact that, net total connectedness results are quite useful when it
comes to identifying net transmitters and net receivers within our network of vari-
ables, these results fail to capture pairwise dynamics which might reveal additional
insights and a clearer view on what is the exact role (characteristic) that each vari-
able adopts within our network with respect to the others, and over time. In this
regard, we present results relating to such pairwise (or bilateral) outcomes in an
effort to deepen the examination in connection with the linkages across the bond
markets of interest. Results are given in Fig. 9.8.

Starting with China, we note that Chinese green bonds predominantly receive
spillovers from their Chinese black bond counterparts on net terms. While there
are some periods towards the middle of the sample period where net transmitting
activity occurs, the magnitude of effect during these periods is very small. Chinese
green bonds also are net recipients of shocks in all other bond types both in EU
and the US—noting that in these subplots ‘CN Green Bond’ is the second vari-
able and the sequence of the variables matters for interpreting the direction. In all
these cases we note that transmission from all other bonds to green Chinese bonds
intensifies during the first two quarters of 2020. In some cases (such as transmis-
sion from black US bonds) the transmission reaches an unprecedented peak. With
regard to Chinese black bonds, they tend to be receiving spillovers from all other
bond types in both the EU and the US. Similar to green Chinese bonds, trans-
mission towards black Chinese bonds appears to be intensifying during the first
months of 2020.

Turning to the EU, there does not seem to be any noteworthy spillover effects
between green and black bonds, at least not until mid-2018 when EU green
bonds begin to transmit spillovers on net terms, at considerable levels to their
black counterparts. During the first quarter of 2020 the transmission of both EU
bond types to both Chinese bond types becomes considerably stronger. Interest-
ingly enough, both green and black EU bonds seem to be net transmitters of shocks
to both green and black US bonds.

As far as the US market is concerned, for the most part, black US bonds trans-
mit pricing shocks to green US bonds and this transmission becomes stronger
during the first quarter of 2020. However, we also note that from the second quar-
ter of 2020 and almost until the end of the year green US bonds assume a rather
net transmitting role. Overall, the results reveal that across countries, the posi-
tion of green bonds against black bonds, either as net receivers or net transmitters
of shocks in our network, is varied and more so than total connectedness mea-
sures would imply. Net pairwise connectedness results during the first quarter of
2020 which was marked by the COVID-19 outbreak, appear to confirm previously
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Fig. 9.8 Net pairwise directional connectedness (Notes Results are based on a TVP-
VAR(0.99,0.99) with one lag)

reported results, further suggesting that in the onset of the COVID-19 pandemic
both green and black bond markets were considerably affected. EU green and
black bonds are clearly the markets that primarily transmit to all other markets
on net terms; a fact that particularly underscores the importance of the EU bond
market.

9.5.4 Dynamic Portfolios

In this section, we solely focus on the two well-developed markets, namely the US
and EU. The main reason for this decision is caused by the fact that the SR of the
Chinese Green Bond is twice as high compared to all other assets. In addition, the
Chinese Green Bond is nearly constantly increasing over the whole sample period
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Fig. 9.9 Cumulative portfolio returns (Notes Results are based on the time-varying variance-
covariance matrices retrieved from the TVP-VAR(0.99,0.99) with one lag. MVP refers to the
minimum variance portfolio, MCP refers to the minimum correlation portfolio, RPP refers to the
risk-parity portfolio and MCoP to the minimum connectedness portfolio. The dotted gray lines
depict returns on individual bond indices)

and is significantly reducing the risk when combined with any other asset, how-
ever, this is not the case vice versa. Thus, stock selection would be more effective
than portfolio creation even though the majority of the literature recommends that
portfolios should be preferred as they lead to the diversification of risk.

To evaluate which portfolio technique is most appropriate we construct the four
methods described in Sect. 9.4, namely: (i) minimum variance portfolios (MVP);
(ii) minimum correlation portfolios (MCP); (iii) risk-parity portfolios (RPP) and
minimum connectedness portfolio (MCoP). Sharpe ratios and hedge effectiveness
scores are used to evaluate the relative performance of each portfolio.

Figure 9.9 plots the four alternative portfolios. The plot illustrates that four
portfolio methods perform with a visible level of equivalence, sharing the same
underlying dynamics include a modest dip in index values in the end of 2016, fol-
lowed by a pattern of sustained growth up until the first quarter of 2020 whereby,
there is again a short-lived—yet considerable, drop caused by the COVID-19
pandemic. The dotted gray lines depict the individual bond index value, and by
cross-referencing against investing in a single asset it can be confirmed that port-
folios outperform the European green (0.048) and black (0.041) bonds, as well
as, the US green (0.057) and black (0.071) bonds in terms of their Sharpe ratios.
Admittedly, this hierarchy of bond markets is not always the same over the sample
period, nor is it expected to be preserved moving forward.

To give a more concrete understanding of the composition of the individual
portfolios we illustrate the dynamic portfolio weights in Fig. 9.10. Under casual
inspection, it is fairly immediate that the MVP composition differs markedly from
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MCP, RPP and MCoP, while MCP and MCoP share closely matching compositions
with each other and RPP. Addressing first the similarity between the composi-
tions for MCP and MCoP, from a mechanical perspective this is perhaps not a
tremendous surprise, since each are derived from the same time-varying variance-
covariance matrix. Having said that, the transformations involved to arrive at the
final information to be fed into the portfolio calculations diverge in a substantial
fashion. Whereas for MCP, the variance-covariance is ‘simply’ converted into a
correlation matrix, for MCoP a much more involved sequence of calculations are
required. Hence although the initial building blocks are similar for all four meth-
ods, the divergence in transformations does not make it immediately obvious that
they should result in closely correlated portfolio weights.

We would elaborate on this point further still. While under a casual inspection
there appear to be many similarities in the dynamic portfolio weights for MCP and
MCoP, under closer inspection there are some nuanced differences. For example,
we notice that only the value of the weight for MCP exhibits two sharp increases
that coincide with the two aforementioned peaks in the TCI index (i.e., around
the end of 2018 and during the first quarter of 2020). Hence there are at least
qualitative differences that exist while, similar nuances can be found for the other
weights.

Having recognized some empirical similarity between MCP and MCoP, we dig
deeper into the implications for portfolio and risk management. For this purpose,
we compare and contrast the MCoP approach together with standard portfolio
analysis techniques, MVP, MCP and RPP, by examining the hedging effectiveness
scores and Sharpe ratios for each. These results are given by Tables 9.4 and 9.5
respectively. In reporting these we can more objectively contrast each of the port-
folios’ returns against each other. It is perhaps worth reminding ourselves that with
regard to the competing portfolio construction techniques, the MVP approach by
definition minimizes portfolio volatility, the MCP approach focuses on minimizing
correlations across assets, the RPP technique tries to minimize risk contribution of
each asset while the MCoP minimizes the pairwise connectedness.

Starting with Table 9.4, prior to considering the hedge effectiveness ratios,
we will briefly reflect on the average portfolio allocations. The average portfolio
weights indicate that green bonds contribute a non-trivial role to a fixed-income
investment portfolio. By way of example, the portfolio weights for green US bonds
range from approximately 4% under the MVP to around 35% under both the MCP
and MCoP. Interestingly, the green US bond weights are almost constant in the
event of MCP and MCoP until the COVID-19 pandemic when it dropped from
around 40% to 10%. The black US bonds seem to be similarly important for all
portfolio techniques as the average weights are all around 30%. The MVP, MCP,
MCoP and RPP consist of 35, 26, 26 and 29% US black bonds on average, respec-
tively. Concerning European asset weights, we see that those causes the largest
differences between the MCP and MCoP as the European green bonds account for
11% of the MCP and 8% of the MCoP while 28 and 32% of the MCP and MCoP
are based on the European black bonds, respectively. Those weights differ quite
substantially from the MVP and RPP weights. In the case of MVP, only 2% of
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Fig. 9.10 Dynamic multivariate portfolio weights (Notes Results are based on the time-varying
variance-covariance matrices retrieved from the TVP-VAR(0.99,0.99) with one lag. MVP refers to
the minimum variance portfolio, MCP refers to the minimum correlation portfolio, RPP refers to
the risk-parity portfolio, and MCoP to minimum connectedness portfolio)

the portfolio is based on the EU green bonds whereas 59% accounts for EU black
bonds. Even though, the European black bonds are preferred over the European
green bonds in the RPP the difference is much smaller. Generally, we could say
that the MVP is more selective while the RPP tries to take all bonds equally into
account. Both, the MCP and MCoP appear to be balanced between MVP and RPP.
Interestingly though, we find that the MVP prefers EU black bonds, RPP US black
bonds while MCP and MCoP focus most on US green bonds on average.

Regarding the hedge effectiveness ratios in Table 9.4, the results for MVP
approach suggests that if on average we invested 4% in US green bonds, 35% in
US black bonds, 2% in EU green bonds, 59% in EU black bonds, then the volatil-
ity of each asset in this portfolio would be statistically significantly lowered by 69,
25, 49, and 25%, respectively. These volatility reductions are financially meaning-
ful, moreover, they are statistically significant at a 0.1% significance level. Turning
towards the other portfolios, for the MCP approach if on average we invested 35%
in US green bonds, 126% in US black bonds, 11% in EU green bonds, and 28% in
EU black bonds, again we observe that the volatility of the assets in this portfolio
are for the most part statistically significantly lower compared to its initial value.
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Specifically, the MCP chosen allocation of capital would result in a reduction of
the volatility for both green and black US bonds by 62 and 9% and green and black
Eu bonds by 39 and 10%, respectively. These results are similar to the findings
concerning the MCoP technique. If we invest on average 34% in US green bonds,
26% in US black bonds, 8% in EU green bonds, 32% in EU black bonds, the per-
centage reduction in volatility given investing in a single asset is 63, 11, 40, and
12%, respectively. Notably, all values have improved compared to the MCP and
all risk reductions are statistically significant on at least the 5% significance level.
Finally, the RPP approach suggests that if we invest on average 21% in US green
bonds, 29% in US black bonds, 22% in EU green bonds, and 27% in EU black
bonds, we would then manage to reduce the volatility of each asset by 62, 9, 39,
and 10%, respectively. All of the volatility reductions are statistically significant
at least on the 10% significance level.

Overall, findings relating to portfolio analysis seem to confirm the presence
of a dynamic network which allows for diversification opportunities. We do not
have enough evidence from this singular application of the technique to draw any
firm conclusions or claim if this is likely to be the case in other applications.
This is something that future research may wish to remain cognizant of, i.e. the
possibility that risk-parity portfolios give rise to lower volatility with equal returns
performance, relative to minimum correlation portfolios.

Next, we examine Table 9.5 which addresses and reports the reward-to-volatility
(Sharpe) ratios, showing how much profit can be expected from a given portfolio
with risk equal to one standard deviation. We find that the daily mean return is
highest for MCP and MCoP, followed by RPP and MVP. Even though, MVP has
the lowest mean return it is also exposed to the lowest risk followed by MCoP,
MCP, and RPP. The MCoP portfolio displays the largest reward-to-volatility value
at 0.0720 followed by MCP (0.0711), RPP (0.0655), and MVP (0.0602).

9.6 Conclusion

In this study we investigated patterns of risk transmission between green and black
bonds considering three markets; China, Europe and the US. The importance of
this work is set against the absence of existing literature and the increasingly
widespread adoption of socially responsible investment (SRI) practices among
mainstream investors. Green bonds have become a popular vehicle, both for
investors and issuers, to serve the growing demand for socially responsible and
impact investment. In this nascent space China has become a major international
player, yet among the existing research to date, only very limited attention has been
given towards their growing role and influence to the international bond market.

Here we questioned whether the outbreak of the COVID-19 pandemic had had
a pronounced impact on dynamic connectedness among green and black bonds
and whether there were any considerable changes in the role of the variables of
our network as either net transmitters or net receivers. In addition, we further
examine whether green bonds have any value enhancing contribution to portfolios
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Table 9.4 Dynamic multivariate portfolio weights

Mean Std. Dev. 5% 95% HE p-value

Minimum variance portfolio

US green bond 0.04 0.05 0.00 0.14 0.69 0.00

US black bond 0.35 0.10 0.23 0.57 0.25 0.00

EU green bond 0.02 0.07 0.00 0.26 0.49 0.00

EU black bond 0.59 0.14 0.16 0.69 0.25 0.00

Minimum correlation portfolio

US green bond 0.35 0.06 0.21 0.40 0.62 0.00

US black bond 0.26 0.06 0.17 0.38 0.09 0.09

EU green bond 0.11 0.08 0.00 0.22 0.39 0.00

EU black bond 0.28 0.07 0.18 0.42 0.10 0.07

Minimum connectedness portfolio

US green bond 0.34 0.07 0.18 0.40 0.63 0.00

US black bond 0.26 0.04 0.19 0.34 0.11 0.04

EU green bond 0.08 0.07 0.00 0.20 0.40 0.00

EU black bond 0.32 0.09 0.19 0.49 0.12 0.03

Risk-parity portfolio

US green bond 0.21 0.03 0.18 0.28 0.62 0.00

US black bond 0.29 0.02 0.26 0.32 0.09 0.10

EU green bond 0.22 0.02 0.20 0.26 0.39 0.00

EU black bond 0.27 0.01 0.25 0.30 0.10 0.08

Notes Results are based on the time-varying variance-covariance retrieved from the TVP-
VAR(0.99,0.99) with one lag

Table 9.5 Sharpe ratio

MVP MCP RPP MCoP

Mean 0.0098 0.0128 0.0118 0.0128

Std. Dev. 0.1640 0.1801 0.1802 0.1783

SR 0.0602 0.0711 0.0655 0.0720

of investments. We do so by considering green bond and conventional, or black,
bond index benchmarks for each of the three regions US, Europe and China, as
representing the network of fixed-income investment opportunities, and deploy
recent advances in econometric estimation procedures to analyse the network con-
nectedness between the indices, which conveniently provides at the same time the
core information to conduct portfolio analysis. More specifically we adopt a fully
time-varying parameter vector auto-regression (TVP-VAR) econometric frame-
work, applied to daily data spanning July 2016 to December 2020, as well as, four
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distinct portfolio constructing techniques; namely, the minimum variance portfo-
lio, the minimum correlation portfolio, the risk-parity portfolio, and the minimum
connectedness portfolio.

Findings suggest that there was a substantial impact on connectedness in our
network during the first quarter of 2020; however, this effect was rather short-lived.
In particular, during the first quarter of 2020 which was marked by the outbreak
of the COVID-19 pandemic, fixed investments that assumed a net receiving role in
the network (such as green and black Chinese bonds, as well as, green US bonds)
intensified their role as such. Furthermore, during the same quarter there was a
noticeable shift whereby, black US bonds assumed a net transmitting role for the
first time in a while. At the same time, both green and black EU bonds, lost part
of their strength as net transmitters in the network.

In turn, we use the econometric results, and specifically the estimated time-
varying variance-covariance matrix, to feed into a simple yet insightful dynamic
portfolio construction exercise. In this we compare the risk-parity portfolio (RPP),
minimum variance (MVP) against and minimum correlation (MCP) and mini-
mum connectedness portfolios. Our core findings are to some extent invariant (or
robust) to the portfolio construction method inasmuch as each approach supports
the view that green bonds do have a role to play in a fixed-income investment
portfolio, though admittedly regional investment allocations prove to be contin-
gent on the portfolio construction method chosen. Interestingly, we have proven
that our proposed minimum connectedness portfolio has outperformed all alter-
native portfolio techniques. By using the information concerning the propagation
mechanism the minimum connectedness portfolio has reached the highest Sharpe
ratio. Furthermore, its construction significantly reduced the investment risk in all
assets.

Our analysis contributes unique evidence to the literature on the role of SRI
practices as a complement to mainstream investment and is in principle relevant to
at least three audiences. Firstly, we provide incremental evidence to the investment
community to support the view that engagement with SRI through the market for
green bonds has the potential to enhance portfolio performance. Second is to pro-
vide regulators, policy makers and compliance specialists, with a novel snapshot
describing how green and black bond markets are co-evolving and interacting with
each other. While we do not postulate any specific policy/regulatory concerns or
options, what is clear is that green bond definitions remain somewhat ‘hazy’ yet
they still offer investors a route to enhanced financial performance. Whether or
not there is a need to speed up progress in formalizing international green bond
standards would therefore seem to be an open but important question for future
work to consider. Lastly, existing and potential bond issuers are provided an addi-
tional empirical benchmark to illustrate that raising green capital through green
bonds does not require an investor to sacrifice on financial returns, so long as
they (the investor) are able to develop a balanced fixed-income investment portfo-
lio. This may potentially benefit issuers in the process of prospectus design, and
perhaps more important in book building in the lead up to issuance.
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10Are Policy Stances Consistent
with the Global GHG Emission
Persistence?

Bikramaditya Ghosh , Spyros Papathanasiou,
and Vandana Gablani

10.1 Introduction

Greenhouse Gas Emissions (GHG) are the primary components of global warm-
ing and climate change, which are currently the most significant issues of the
planet. GHG emissions have highly increased since the pre-industrial era, due to
high economic and populational growth. A warm climate has a spectrum of poten-
tial ecological, physical and health impacts. Hence, there is a strong relationship
between GHG emissions, prosperity and living standards (Sahu & Patnaik, 2020).
Some countries reduced emissions while increasing Gross domestic product. In
order to reduce GHG emissions, there are two essential areas on which we shall
focus: agriculture (residential, forestry and food production) and energy (defence,
transportation, industry, heat, electricity) (Ritchie & Roser, 2020).

The long-range dependence work began back in 1951 and gathered most of its
critical mass by the end of the 2000s. The concept of a rescaled range analysis has
evolved over time into a favoured stylized fact (Cont, 2005; Ghosh et al., 2021;
Hurst, 1951; Mandelbrot, 2004; Mandelbrot & Wallis, 1969). Fundamentally, it
displays the strong statistical dependence of time series data distanced by a long
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margin. The autocorrelation function declines very slowly with many lags. Accord-
ing to Efficient Market Theory, the farther apart the observations are, the weaker
the autocorrelation function will be; however, in reality that kind of asymptotic
decline remains absent in most times series (ranging from various fields). Some-
times, non-stationary time series having unit root exhibit even stronger statistical
dependence after significant lags. This does not indicate a true long-range depen-
dence or long memory. Thus, mean-reversion remains an important aspect of long
memory.

Long memory properties are described by the differencing parameter (d). Usu-
ally the fractional integrating parameter (d) has a condition of 0 < d < 0.5;
indicating the stationarity of the time series as well. It does not cover any con-
dition such as d = 0 or d < 0. Since the other coefficients (p and q) needed to
be assumed and specified correctly, hence any mis-specification of those would
result in a misleading long memory process (ideally a short memory). Hence, the
proposed theory faced a rebuttal from Lo (1991), as he observed that it over-
laps in such an estimation (Graves et al., 2017). However, the proposed null limit
theory by Lo (1991) (based on modified rescaled range analysis) was coined as
non-standard (Robinson, 2003). Again, it was found that for, d ≥ 0.25, the esti-
mate becomes non-Gaussian (Robinson, 1995, 2003). Moreover, Hosking (1981)
proved that its (d) not a discrete approach to a continuous process, as he suggested
discretising first following a fractionally differencing later (Hosking, 1981). Thus,
it became a natural extension of an ARIMA model for a discrete version of a
Wiener process. Moreover, some proved that long memory was a strictly second
order property of a time series; in which case, estimation of ‘d’ indicating long
memory would be further restricted to 0.25 ≤ d < 0.5 (Rosenblatt, 1961).

Green House Gases (GHG) mostly consist of CO2, SO2 and N2O. Studies were
mostly around CO2 emissions. The aforementioned GHG globally require a similar
kind of investigation. If the time series is not purely stationary, i.e. d �= 0 (non-
stationary at level, further stationary at 1st difference), transitory policy shocks
would fade out eventually indicating the necessity for a steady and permanent
policy stance. Transitory policy shocks last really long provided there is evidence
of long memory with stationarity condition d = 0 (Belbute & Pereira, 2015). Short
term one-off positive shocks such as funding energy efficiency programmes or
allowing significant subsidies for alternative energy sources would work really
well in a case of true existence of long memory (with stationarity condition d =
0).

Emission-related studies mostly concentrated on its convergence (derived from
mean-reversion property). Maturity of the market depends on the convergence.
Policy implication would follow suit. Results however weren’t consistent enough
(Barassi et al., 2011; Lee & Chang, 2009). On studying the CO2 emission pattern
across 18 OECD nations, researchers found 13 of them to be fractionally inte-
grated. Hence, they are nothing but extended long memory processes. Moreover,
these emissions despite being highly persistent, exhibit mean-reversion in the long
run (Barassi et al., 2011). Emission depends on the energy usage. Ideally the per-
sistence property of energy use should also be a long memory process. It has been
found that 39 out of 107 countries (based on per capita energy consumption) are
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mean-reverting and persistent process exhibiting long memory. These are energy
rich developed nations (Fallahi, 2014).

Relative studies about GHG emissions appeared in several countries such as
Italy (Mariantonietta et al., 2018), Spain (Sobrino & Monzon, 2014), Australia
(Leal et al., 2019), China (Qi et al., 2018), Colombia (Contreras et al., 2020), Asia
(Le et al., 2020).

In this chapter we investigate the global GHG emissions persistency in 186
countries globally over 25 years (1990–2014), using three partially overlapping
windows. It confirms the possible nature of the policy stance on GHG emis-
sions across those nations. We use Long Memory identification through Order
of fractional differencing (d) and Hurst Exponent (H) using the ARFIMA pro-
cess. To the best of our knowledge, a similar study concerning the global GHG
emissions including 186 countries globally for a period of 25 years has not been
conducted to this day, so this is the gap our study aspires to fill. So this study
contributes to the existing literature by investigating for the first time, to the best
of our knowledge, global GHG emissions persistency in 186 countries globally
for 25 consecutive years. Furthermore, by adopting our analysis, policymakers
globally will be in a position to increase economic development, to achieve the
environmental targets set and the world economy will be more efficient in all sec-
tors (agricultural, transport, residential, construction, defence, etc.) according to
the specific characteristics of each one. In conclusion, energy efficiency measures
should be implemented according to the needs of each sector.

This chapter in particular is significant for three reasons: First of all, reducing
GHG focuses on adopting a holistic, global, bio-economy for sustainable produc-
tion in many sectors of the world economy. Secondly, in contrast to prior relevant
studies, it examines 186 countries over a period of 25 years for the first time.
Thirdly, policymakers would benefit from this research, as they will redefine strate-
gies and apply targeted climate policy measures following bio-economy routes to
sustainable, post GHG societies. They will improve the efficiency of industrial
production and enhance renewable energy technology.

10.2 Data and Methodology

Data has been obtained from the CAIT Climate Data Explorer. 2017. Washington,
DC: World Resources Institute.1 We considered the data2 of 186 countries yearly
for 24 years, across three specified windows. Window one (1990–1998) has1488

1 CAIT Climate Data Explorer. 2017. Washington, DC: World Resources Institute. Available
online at: http://cait.wri.org.
2 Carbon Dioxide Information Analysis Center; Boden, T.A., G. Marland, and R.J. Andres.
2017. Global, Regional, and National Fossil-Fuel CO2 Emissions. Carbon Dioxide Informa-
tion Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge,
Tenn., U.S.A. https://doi.org/10.3334/CDIAC/00001_V2017. Available online at: http://cdiac.ornl.
gov/trends/emis/overview_2014.html. Food and Agriculture Organization of the United Nations;

http://cait.wri.org
https://doi.org/10.3334/CDIAC/00001_V2017
http://cdiac.ornl.gov/trends/emis/overview_2014.html
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observations; window two (1990–2006) has 2976 observations and window three
(1990–2014) has 4464 observations.

Fundamentally, long memory is the statistical dependence between two ran-
dom points of any time series that are distant. Ideally, their autocorrelation should
decline with a power law signature in most cases. If the autocorrelation coefficient
remains significant despite traversing quite a distance, it is nothing but a long
memory. The autocorrelations coefficients decline rather slowly providing there is
long memory. However, cases of spurious long memory and hysteretic are some-
times found as well. Also occasional level shifts, create false long memory alarm
on select cases. True long memory is said to exist only if the time series or at least
the increments of time series (once deferencied) are strictly mean reversed. Usu-
ally a weak form of efficient market hypothesis (EMH), allows the Hurst exponent
to be non 0.5. In all practical purposes a fractional time series with 0 < d < 0.5,
would exhibit true long memory. The higher the value of d subject to d < 1 is, the
more pronounced the long memory is. Hence, stationarity, fractional nature and
persistence combined give rise to true long memory.

According to Granger (1980, 1981), Granger and Joyeaux (1980) and Hosking
(1981), the relationship is:

(1 − L)d xt = ut , where, t = 0, ±1, ±2 ... ... (10.1)

ut = I(d), where I is for the fractionally integrated models and ‘d’ can be any
real number within the range of 0 to 0.5; L is called as the lag operator.

(1 − L)d can be expressed as binomial expansions for all real ‘d’ values.

(1 − L)d = 1 − dL + d(d − 1)

2
L2 − d(d − 1)(d − 2)

6
L3+

(1 − L)d xt = xt − dxt−1 + d(d − 1)

2
xt−2 − d(d − 1)(d − 2)

6
L3+

(10.2)

‘d’ being the degree of dependence of the series and long memory condition would
remain as is:

Food and Agriculture Organization of the United Nations (FAO). 2016. FAOSTAT Emis-
sions Database. Rome, Italy: FAO. Available at: http://www.fao.org/faostat/en/#data. Interna-
tional Energy Agency; International Energy Agency (IEA). 2016. CO2 Emissions from Fuel
Combustion (2016 edition). Paris, France: OECD/IEA. Available online at: http://data.iea.org/
ieastore/statslisting.asp. © OECD/IEA, [2016]. The World Bank; World Bank. 2017. World
Development Indicators. Washington, DC. Available at: http://data.worldbank.org/. Accessed
September 2017. U.S. Energy Information Administration; U.S. Energy Information Admin-
istration (EIA). 2016. International Energy Statistics Washington, DC: U.S. Department of
Energy. Available online at: http://www.eia.gov/beta/international/data/browser/#/?vs=INTL.44-
1-AFRC-QBTU.A&vo=0&v=H&start=1980&end=2014. U.S. Environmental Protection Agency;
U.S. Environmental Protection Agency (EPA). 2012. “Global Non-CO2 GHG Emissions: 1990–
2030.” Washington, DC: EPA. Available at: https://www.epa.gov/global-mitigation-non-co2-gre
enhouse-gases/non-co2-greenhouse-gases-international-emissions-and.

http://www.fao.org/faostat/en/%23data
http://data.iea.org/ieastore/statslisting.asp
http://data.worldbank.org/
http://www.eia.gov/beta/international/data/browser/%23/%3Fvs%3DINTL.44-1-AFRC-QBTU.A%26vo%3D0%26v%3DH%26start%3D1980%26end%3D2014
https://www.epa.gov/global-mitigation-non-co2-greenhouse-gases/non-co2-greenhouse-gases-international-emissions-and
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0 < d < 0.5. Thus, estimation of Hurst exponent remains H = 2d + 1
2 ; or simply

H = d + 0.5.

Further, we calculate the Hurst exponent H ≈ d + 0.5 (Torre et al., 2007) to
evaluate the long memory intensity. H varies between 0 and 1 and thus the Hurst
exponent can have three major conditions:

When, 0.5 < H≤1, then the series is persistent and shows evidence of long
memory, albeit contradicting the Efficient Market Theory.
When 0 < H < 0.5, then the series is anti-persistent or exhibiting short memory,
indicating fast changes in the trend.
When H = 0.5, then the series follows a random walk, in accordance with the
Efficient Market Theory.

10.3 Empirical Results and Interpretation

Table 10.1 reports some descriptive statistics and stationarity data for GHG
emission data of 186 countries.

It has been observed from Table 10.1 that almost all the GHG data from 186
countries attains stationarity only after the 1st, 2nd, 3rd and sometimes after the 4th
difference. Hence, they are non-stationary as a base process and become stationary
only with their increments. This further indicates the intensity of their stationary
nature. Stationarity is weak. In fact, it borders non-stationarity. This means a ran-
dom policy shock would stay for a longer period and permanent policy change
regarding GHG emissions in all 186 countries is not required (Belbute & Pereira,
2017).

Fourteen out of 186 countries are found to have pure stationarity as well.
Interestingly, more than half of them (57%) belong to the former USSR (Rus-
sia, Ukraine, Belarus, Estonia, Latvia, Kazakhstan, Turkmenistan & Uzbekistan).
Three eastern EU nations (Armenia, Serbia and Bosnia) and two African nations
(Cameroon and Tunisia) feature in the same list as well. A tiny island nation Niue
is included as well. These being pure stationary transitory energy policy or random
shocks would fade away in no time. Hence, a permanent environmental policy is
necessary for these countries. This initial evidence suggests a non-uniform policy
stance (Table 10.2).

Interestingly, persistence and long memory increased by 38% from window
1 to window 3; while persistence decreased 62% from window 1 to window 3.
In other words, intensity of long memory increased for 38% of the cases and
decreased for 62% of the cases. Therefore, we can assume that as the window size
is becoming broader, the effect of long memory becomes weaker. Empirically as
the window size triples (from 1488 to 4464), the impact of long memory decreases
by more than 60%. The scope of this study is rather broad (covering 186 countries
from 1990 to 2014), therefore we can conclude that our finding is probably a new
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Table 10.1 Descriptive statistics and stationarity data for GHG emission data of 186 countries

Country name Min Median Mean Max Kurtosis ADF

Afghanistan 13.9854 18.0006 20.6215 34.7130 2.5194 0.04573****

Albania 5.6799 8.0308 7.8573 11.6920 4.9884 0.01**

Algeria 90.1712 121.4828 129.9967 202.0871 2.1843 0.04**

Andorra 0.4294 0.5434 0.5272 0.6172 1.9175 0.01353***

Angola 52.2201 78.2501 94.4248 157.8168 1.7322 0.01***

Antigua &
Barbuda

0.3970 0.6686 0.7096 1.1346 1.6127 0.03234***

Argentina 233.0957 277.5082 287.8669 348.6472 1.6336 0.01062**

Armenia 5.1794 7.0136 8.4497 24.5752 8.0468 0.01

Australia 477.0781 565.9990 552.5721 648.6069 1.9220 0.02158****

Austria 73.6969 78.9379 80.1366 89.0648 2.2624 0.01*****

Azerbaijan 52.3270 56.7838 59.9264 83.5539 4.0039 0.01**

Bahamas 1.5683 1.9077 1.9905 3.1042 8.3973 0.01076**

Bahrain 13.2061 21.0231 22.6159 35.0448 1.8497 0.01***

Bangladesh 84.9340 114.4974 118.4488 167.7068 1.9517 0.01706***

Barbados 2.6423 3.1911 3.1965 3.6348 1.9267 0.01**

Belarus 76.6572 86.3074 90.7742 136.5524 5.6611 0.01

Belgium 107.5032 130.8931 128.4460 141.0580 2.4175 0.02338**

Belize 5.4621 7.4893 7.5282 9.8017 1.7400 0.01**

Benin 4.9879 7.9807 8.1587 12.7148 1.6261 0.01**

Bhutan 0.7296 0.9836 1.0023 1.5272 3.7201 0.02425***

Bolivia 20.8505 28.7941 32.4384 48.4667 2.1226 0.04175***

Bosnia &
Herzegovina

6.9475 22.0277 21.3157 30.3901 2.5964 0.01

Botswana 9.3009 13.2577 13.5725 22.2055 5.2622 0.01**

Brazil 556.3648 765.5213 771.2744 1051.0013 2.0358 0.01049**

Brunei 12.1192 15.6103 16.0214 19.2080 1.6732 0.03363**

Bulgaria 54.8586 62.6915 65.2449 99.3425 8.1741 0.01**

Burkina Faso 11.0379 15.1997 16.8853 23.5054 1.6509 0.01217*

Burundi 1.9533 2.3007 2.3548 3.3016 4.3690 0.01**

Cambodia 15.2577 19.1515 20.9787 28.8387 1.7553 0.01**

Cameroon 74.9059 81.8115 80.8904 83.7133 3.4480 0.014

Canada 555.7398 681.4384 664.5707 745.1087 2.0781 0.01**

Cape Verde 0.2162 0.4347 0.4750 0.7947 1.4560 0.01**

Central African
Republic

35.9112 44.0617 43.7481 49.7608 1.8241 0.01881*

(continued)
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Table 10.1 (continued)

Country name Min Median Mean Max Kurtosis ADF

Chad 15.4943 23.4049 22.5495 28.9219 1.2293 0.01****

Chile 45.7512 70.0427 72.9037 103.6029 2.0136 0.01****

China 3154.4563 5051.0750 6522.5031 11,911.7118 1.8486 0.01***

Colombia 116.6519 133.9722 137.3804 162.8699 2.4338 0.01**

Comoros 0.2324 0.3031 0.3120 0.4185 2.0325 0.01**

Congo 2.6054 4.9567 5.6764 7.7321 1.8679 0.01799**

Congo, Dem.
Republic

30.3659 33.5368 34.3791 41.1987 2.4974 0.01491****

Cook Islands 0.0785 0.1020 0.0994 0.1118 1.9391 0.01886**

Costa Rica 8.2916 10.2894 11.0715 13.8976 1.7634 0.01498**

Cote d’Ivoire 23.3747 26.0809 26.5985 33.7401 4.0290 0.01**

Croatia 21.1611 24.4456 25.1763 30.0012 1.8166 0.01471**

Cuba 35.1193 42.3262 42.6679 53.0702 3.0869 0.02846*

Cyprus 5.0532 7.6213 7.5176 9.3564 1.9046 0.01979**

Czech Republic 116.7703 140.8975 140.7155 181.0566 4.5387 0.01**

Denmark 48.7741 67.1045 67.5097 87.8829 2.9145 0.04063**

Djibouti 0.8891 1.1394 1.1180 1.5143 2.6104 0.04376****

Dominica 0.1721 0.2180 0.2105 0.2617 1.6477 0.04556*

Dominican
Republic

15.2134 27.4524 26.3453 33.2175 2.0460 0.01**

Ecuador 29.1162 39.7640 42.3986 60.6294 2.1737 0.01445**

Egypt 123.3388 187.4435 198.4890 288.3518 1.4752 0.01**

El Salvador 6.7008 11.2541 10.7190 13.2192 2.5207 0.01**

Equatorial
Guinea

0.1654 12.6546 11.7652 20.7280 1.3104 0.01****

Estonia 18.9324 21.3849 23.1528 42.9105 8.2201 0.01

Ethiopia 61.9145 83.8519 87.3255 129.2132 1.8575 0.01983**

European Union
(28)

4053.6594 4883.3113 4774.9614 5244.2390 3.0277 0.01781***

Fiji 1.6029 1.9348 1.9747 2.3889 2.0328 0.01**

Finland 59.5276 73.9017 73.9871 87.0648 2.8124 0.02325*

France 413.1144 492.7267 482.2297 518.8808 3.2571 0.01**

Gabon 5.3582 6.6554 6.4353 7.3869 1.3777 0.01157***

Gambia 3.7253 5.3617 5.5383 7.6859 1.7449 0.01815*

Georgia 10.9371 12.7628 16.7131 48.0278 7.0951 0.04057

Germany 854.0073 967.9244 975.5326 1154.1051 2.1240 0.04281****

(continued)



262 B. Ghosh et al.

Table 10.1 (continued)

Country name Min Median Mean Max Kurtosis ADF

Ghana 12.4027 19.2060 19.9996 30.8917 2.0884 0.03087*

Greece 84.1137 106.2303 107.2820 123.1803 2.0551 0.02811**

Grenada 1.5642 1.7961 1.7861 2.0022 1.8552 0.03706*

Guatemala 11.4134 20.3985 19.5967 30.8580 2.1797 0.01****

Guinea 7.5107 12.1169 11.9697 16.4436 1.7634 0.01*

Guinea-Bissau 1.2297 1.4673 1.5368 2.0272 2.3435 0.02539*

Guyana 2.4458 3.3532 3.3262 4.4776 3.4710 0.01**

Haiti 4.3472 7.0249 6.6404 8.6718 1.6920 0.01**

Honduras 10.4836 15.1714 15.7964 21.4748 1.4789 0.01**

Hungary 56.7553 73.4540 71.2365 88.2158 3.1396 0.01***

Iceland 2.7040 2.9987 2.9809 3.2251 2.6193 0.03341**

India 1188.8433 1741.9900 1918.9244 3079.8127 2.1262 0.04112****

Indonesia 380.2543 567.7198 575.9953 789.4752 2.0242 0.0206**

Iran 250.5796 476.1853 499.9920 733.6053 1.5808 0.04656***

Iraq 124.0568 173.3779 184.8330 294.8999 3.1690 0.01**

Ireland 53.6667 62.7663 62.6547 71.1437 1.5590 0.01045****

Israel 42.2885 74.9010 70.7009 94.5830 2.1288 0.01***

Italy 403.1072 497.6824 500.7049 560.6943 2.9856 0.01**

Jamaica 8.8860 10.5996 10.7569 13.6309 1.9507 0.04972***

Japan 1171.0379 1266.2313 1261.0078 1353.6294 2.1237 0.0146****

Jordan 17.3556 21.7230 23.2759 32.4030 2.5757 0.01****

Kazakhstan 154.9383 241.4410 243.9179 336.8705 1.6163 0.02451

Kenya 34.1576 37.0977 43.4239 60.5299 1.6527 0.01033**

Kiribati 0.0356 0.0583 0.0594 0.0889 1.4928 0.02052**

Korea (North) 63.8065 97.4176 100.1273 155.8404 3.6775 0.01**

Korea (South) 290.7325 526.7219 510.8230 674.7440 2.1342 0.01**

Kuwait 78.3789 148.9615 147.5070 198.9700 1.7564 0.01**

Kyrgyzstan 8.4426 11.3445 13.4419 32.1268 6.3643 0.0492**

Laos 6.0943 8.2414 8.3329 11.5517 2.0939 0.0328*

Latvia 11.1112 12.7725 14.2848 26.2346 5.8621 0.01

Lebanon 7.4390 19.0841 18.7945 28.5954 2.8126 0.01**

Lesotho 3.1546 3.8509 3.7744 4.3582 1.8755 0.01*

Liberia 0.9289 1.2611 1.3966 2.2001 2.1728 0.01501*

Libya 88.3081 108.5717 110.9764 139.5801 1.6124 0.03661*

Lithuania 19.0352 21.3620 23.6327 46.8420 8.1265 0.01*

Luxembourg 8.3315 11.5066 11.1016 12.7578 2.0601 0.01***

(continued)
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Table 10.1 (continued)

Country name Min Median Mean Max Kurtosis ADF

Macedonia,
FYR

11.3061 12.0650 12.2192 13.3134 2.1411 0.01***

Madagascar 20.7179 24.1836 24.3707 26.8984 2.8474 0.01****

Malawi 6.3236 7.1532 7.6831 10.1969 2.1206 0.01**

Malaysia 103.2140 202.3824 206.0706 316.9021 1.6669 0.0447**

Maldives 0.1999 0.5727 0.6483 1.4230 2.1192 0.01**

Mali 15.2984 20.3308 21.3541 31.5341 1.7291 0.02835*

Malta 2.4345 2.9684 2.8755 3.2799 1.8947 0.01*

Mauritania 6.2575 8.5319 8.5019 11.2128 1.7926 0.01***

Mauritius 2.1318 4.1212 3.9943 5.8427 1.5608 0.03885**

Mexico 426.6553 606.8181 607.8423 742.1449 1.5663 0.01**

Moldova 10.9267 12.2828 15.6372 38.2770 5.8745 0.04829***

Mongolia 23.1480 27.5260 28.6780 40.8634 3.7278 0.0494*

Morocco 38.1101 56.0631 57.4760 81.6906 1.7895 0.03097*

Mozambique 18.1877 20.1826 21.6514 28.4267 2.0625 0.01733***

Myanmar 55.3424 74.9810 77.8143 107.3824 1.8930 0.01***

Namibia 7.3180 9.4723 10.0362 14.9196 4.7437 0.01447*****

Nauru 0.0457 0.0815 0.0814 0.1282 1.5208 0.01734***

Nepal 20.1544 27.9262 27.7969 37.5212 2.3206 0.03949**

Netherlands 180.1740 204.6730 202.3289 223.4976 2.7647 0.03419***

New Zealand 63.9965 73.6541 71.8146 77.7839 1.6990 0.01****

Nicaragua 7.6961 12.3626 11.7459 14.5156 1.6318 0.01**

Niger 10.7912 17.5324 18.1911 27.9757 1.9079 0.01833*

Nigeria 200.7855 256.4924 254.8762 305.0604 1.7182 0.01496***

Niue 0.0336 0.0395 0.0463 0.1012 5.8302 0.02

Norway 42.8588 47.5330 47.7411 52.5466 4.1413 0.01*

Oman 39.8603 65.4475 67.3092 106.3043 2.3544 0.01445**

Pakistan 154.1644 230.6092 242.8771 333.3829 1.6215 0.01****

Panama 7.2486 10.9407 11.7770 17.7577 2.1312 0.01949*

Papua New
Guinea

9.0116 13.5599 13.5908 16.7897 3.1107 0.01**

Paraguay 21.0986 28.1655 29.1426 39.9172 2.7861 0.01**

Peru 41.3511 58.7799 62.2905 89.6600 2.0093 0.01136***

Philippines 90.0489 136.0349 133.9688 181.6361 2.6355 0.0138***

Poland 352.0590 376.4705 384.4338 426.2837 1.7309 0.01***

Portugal 56.4012 67.8688 69.9377 82.9109 1.6581 0.021**

(continued)
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Table 10.1 (continued)

Country name Min Median Mean Max Kurtosis ADF

Qatar 14.1619 30.8134 40.3938 88.1129 2.0064 0.04835**

Romania 108.7927 135.4848 145.0992 237.6710 4.7037 0.04364*

Russian
Federation

1970.5464 2142.9537 2225.0269 2982.7624 5.3422 0.01

Rwanda 3.7247 4.5423 4.8866 6.7283 1.7320 0.01***

Saint Kitts &
Nevis

0.1770 0.2801 0.2672 0.3833 1.9536 0.02677**

Saint Lucia 0.7889 1.0495 1.0250 1.1379 3.1151 0.01**

Saint Vincent &
Grenadines

0.1483 0.2578 0.2483 0.3808 2.7771 0.03901*

Samoa 0.3325 0.4107 0.4028 0.4709 1.5740 0.01466**

Sao Tome &
Principe

0.0941 0.1202 0.1318 0.1903 1.9518 0.01****

Saudi Arabia 187.5226 302.3265 340.8196 583.3701 2.2286 0.01***

Senegal 13.2437 18.6515 19.0271 25.4859 1.6431 0.02515*

Serbia 51.4156 63.2701 63.5316 80.6050 3.0489 0.0338

Seychelles 0.2090 0.5082 0.5045 0.7994 1.7506 0.02272**

Sierra Leone 3.3376 3.9543 4.5080 6.7313 2.7270 0.01***

Singapore 30.9867 43.2257 43.7617 52.9509 2.9939 0.02667**

Slovakia 38.1129 46.5022 47.5279 66.7070 4.8728 0.01244***

Slovenia 16.2491 18.7885 18.4486 20.7990 2.8730 0.04826**

Solomon
Islands

0.3456 0.4332 0.4442 0.5706 1.7042 0.02407**

Somalia 17.7077 22.5286 22.3268 24.5166 5.2673 0.02335**

South Africa 299.7879 401.8235 405.4920 524.8950 1.4715 0.02104**

Spain 271.7052 339.7952 342.5146 431.8756 1.8167 0.0216***

Sri Lanka 22.3599 31.6324 31.2321 40.7536 1.9181 0.03731*

Sudan 77.0875 114.1945 116.7244 151.2507 1.7858 0.02303**

Suriname 2.2345 3.2173 3.0239 3.4205 1.9431 0.01083****

Swaziland 1.6209 2.6575 2.5115 2.9655 2.2718 0.01***

Sweden 50.8732 66.8418 64.4533 77.8628 1.9756 0.01**

Switzerland 47.7050 51.8598 51.7990 54.1510 4.1227 0.01**

Syria 54.1133 73.8924 74.8840 97.0788 2.0113 0.04421***

Tajikistan 6.0732 8.0169 8.7992 17.3192 4.8752 0.01826*

Tanzania 41.7170 52.3613 55.6454 78.0830 2.0898 0.01418**

Thailand 152.0323 264.5703 270.2732 366.3679 2.0085 0.03337***

Togo 2.9764 4.6775 4.8415 6.9944 1.8799 0.02035*

(continued)
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Table 10.1 (continued)

Country name Min Median Mean Max Kurtosis ADF

Tonga 0.2243 0.2680 0.2751 0.3399 1.8170 0.01*

Trinidad &
Tobago

12.8730 17.0679 18.8713 25.8122 1.3782 0.04636**

Tunisia 19.3967 28.7660 28.5971 38.1666 1.8701 0.041

Turkey 199.8824 299.4328 306.9792 431.4751 1.9401 0.01*

Turkmenistan 50.5770 72.4903 77.9131 114.9934 1.7656 0.05

Tuvalu 0.0170 0.0187 0.0200 0.0235 1.4194 0.01*

Uganda 14.2371 18.5694 21.7060 34.1129 1.9142 0.03501**

Ukraine 347.5459 413.5979 476.1499 896.8317 4.8560 0.01663

United Arab
Emirates

74.6428 125.7554 138.4935 221.5072 1.7783 0.01**

United
Kingdom

506.1109 643.6190 636.7958 745.6428 2.4193 0.01848****

United States of
America

5831.4783 6470.9053 6401.8085 6783.5434 2.0846 0.01**

Uruguay 26.0596 30.8125 31.2800 35.4596 2.1607 0.03237**

Uzbekistan 180.6496 210.9883 207.8205 233.6175 2.0343 0.01

Vanuatu 0.4473 0.5298 0.5634 0.7291 2.0750 0.01**

Venezuela 171.1796 217.4547 222.0412 273.6175 1.9534 0.01*

Vietnam 70.5130 149.2641 158.8051 270.2983 1.6924 0.0236*

Yemen 11.9895 22.2551 23.2201 35.6522 1.6483 0.02099*

Zambia 35.3614 41.2642 41.4751 51.2010 2.9505 0.02381**

Zimbabwe 23.2327 27.7244 28.3882 34.1675 1.6546 0.01509***

*Stationary at 1st diff., **Stationary at 2nd diff., ***Stationary at 3rd diff., ****Stationary at 4th
diff., *****Stationary at 5th diff. This table exhibits the descriptive statistics; most importantly
the stationarity pattern in their GHG data (weak or strong) for 186 countries under consideration.
More than 92% of the countries are found to have weak stationarity (achieved at the 1st difference,
2nd difference or 3rd difference). About 12% of the countries witnessed a leptokurtic distribution,
indicating large volatility in their GHG data

stylized fact. As mentioned earlier, random policy shocks can be strong enough
in comparison to permanent policy stance change. Mostly, the stationarity across
the GHG emission data of these nations are weak and for this reason, they border
non-stationarity and become trend stationary only with their stationary increments.
Random policy shocks would have a lasting impact in such cases. The borderline
non-stationarity trait will keep the effects from the random shock alive for a long
period. We have to remember here that about twenty-two countries (half of them
represent former USSR countries) do show pure stationarity. Hence, a uniform
policy stance cannot be suggested. Transitory shocks (random) would fade away
in them. They would require permanent policy changes. This study suggests two
diametrically opposite emission policies for 172 countries with weak stationarity
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having long memory and 14 with strong stationarity having long memory. Since
all of them across all three windows exhibited long memory; persistence is proved
without any doubt.

10.4 Conclusion

The study found that all 186 countries over 25 years are exhibiting persistence
or long memory in their respective GHG emission data to various degrees. A
total of eight countries from the former USSR or Soviet Socialist Republic, three
eastern EU nations such as Armenia, Serbia and Bosnia and two African nations
(Cameroon and Tunisia) feature in the list with strong stationarity coupled with
long memory. Last but not the least, the island nation Niue is included in the
same list. The Russian federation borders the eastern part of the EU zone. Thus,
geographically the former USSR is quite close to Armenia, Serbia and Bosnia
as well. This means that the extended eastern EU part alongside the ex-USSR
domain represents about 79% of the countries having strong stationarity coupled
with long memory. Therefore, a permanent policy stance on GHG emissions of
these countries would help them to reduce their respective carbon footprint. As far
as the other 172 nations are concerned, a steadfast random policy shock from time
to time would restrict their GHG emission within permissible limits, helping them
to reduce the global carbon footprint significantly.

This chapter can shed some light on this topic, since there are few studies
regarding the GHG emissions in a huge sample of countries. Reducing GHG
emissions will have important economic, social and generational implications. Our
findings may be of interest to a wide range of audiences, such as civil societies,
policymakers, and academic researchers. The existing literature documented that
a static trade-off exists between climate control and both economic growth and
social equity (Ravallion et al., 2000) and long-run relationships between GDP and
CO2 emissions (Aung et al., 2017). Furthermore, the literature stated significant
relationships between environmental pollution and income (Brännlund & Ghal-
wash, 2008), strong interacting effects between productivity and inequality and a
significant negative relationship between productivity and GHG emissions (Sahu &
Patnaik, 2020).
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