
Planar and Toroidal Morphs Made Easier

Jeff Erickson(B) and Patrick Lin(B)

University of Illinois, Urbana-Champaign, Champaign, USA
{jeffe,plin15}@illinois.edu

Abstract. We present simpler algorithms for two closely related mor-
phing problems, both based on the barycentric interpolation paradigm
introduced by Floater and Gotsman, which is in turn based on Floater’s
asymmetric extension of Tutte’s classical spring-embedding theorem.

First, we give a very simple algorithm to construct piecewise-linear
morphs between planar straight-line graphs. Specifically, given isomor-
phic straight-line drawings Γ0 and Γ1 of the same 3-connected planar
graph G, with the same convex outer face, we construct a morph from Γ0

to Γ1 that consists of O(n) unidirectional morphing steps, in O(n1+ω/2)
time. Our algorithm entirely avoids the classical edge-collapsing strategy
dating back to Cairns; instead, in each morphing step, we interpolate the
pair of weights associated with a single edge.

Second, we describe a natural extension of barycentric interpolation
to geodesic graphs on the flat torus. Barycentric interpolation cannot
be applied directly in this setting, because the linear systems defining
intermediate vertex positions are not necessarily solvable. We describe
a simple scaling strategy that circumvents this issue. Computing the
appropriate scaling requires O(nω/2) time, after which we can compute
the drawing at any point in the morph in O(nω/2) time. Our algorithm
is considerably simpler than the recent algorithm of Chambers et al. and
produces more natural morphs. Our techniques also yield a simple proof
of a conjecture of Connelly et al. for geodesic torus triangulations.

1 Introduction

Computing morphs between geometric objects is a fundamental problem that
has been well studied, with many applications in graphics, animation, modeling,
and more. A particularly well-studied setting is that of morphing between planar
straight-line graphs. Formally, a morph between two isomorphic planar straight-
line graphs Γ0 and Γ1 consists of a continuous family of planar straight-line
graphs Γt starting at Γ0 and ending at Γ1.

We describe an extremely simple morphing algorithm for planar graphs,
which simultaneously obtains properties of two earlier approaches: Floater and
Gotsman’s barycentric interpolation method [24,26,43–45] results in morphs
that are natural and visually appealing but are represented implicitly; varia-
tions on Cairns’ edge-collapse method [1,7,8,31,46] result in efficient explicit
representations of morphs that are not useful for visualization. Our new algo-
rithm efficiently computes an explicit piecewise-linear representation of a morph
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between drawings of the same 3-connected planar graph, that are potentially
more useful for visualization than morphs based on Cairns’ method.

We also extend Floater and Gotsman’s planar morphing algorithm to
geodesic graphs on the flat torus. Recent results of Luo et al. [37] imply that
Floater and Gotsman’s method directly generalizes to morphs between geodesic
triangulations on surfaces of negative curvature, but a direct generalization to
the torus generically fails [42]. Our extension is based on simple scaling strategy,
and it yields more natural morphs than previous algorithms based on edge col-
lapses [9]. Finally, our arguments yield a straightforward proof of a conjecture
of Connelly et al. [15] about the deformation space of geodesic triangulations.

1.1 Related Work

Planar Morphs. Cairns [7,8] was the first to prove the existence of morphs
between arbitrary isomorphic planar straight-line triangulations, using an induc-
tive argument based on the idea of collapsing an edge from a low-degree vertex to
one of its neighbors. Thomassen [46] extended Cairns’ proof to arbitrary planar
straight-line graphs. Cairns and Thomassen’s proofs are constructive, but yield
morphs consisting of an exponential number of steps.

Floater and Gotsman [24] proposed a more direct method to construct
morphs between planar graphs, based on an extension by Floater [22] of Tutte’s
classical spring embedding theorem [49]. Let Γ be a straight-line drawing of a
planar graph G, such that the boundary of every face of Γ is a strictly convex
polygon. Then every interior vertex in Γ is a strict convex combination of its
neighbors; that is, we can associate a positive weight λu�v with each half-edge
or dart u�v in G, such that the vertex positions pv in Γ satisfy the linear system

∑

u�v

λu�v(pv − pu) = (0, 0) for every interior vertex u (1)

Floater [22] proved that given arbitrary1 positive weights λu�v and an arbitrary
convex outer face, solving linear system (1) yields a straight-line drawing of G
with convex faces. Tutte’s original spring-embedding theorem [49] is the special
case of this result where every dart has weight 1, but his proof extends verbatim
to arbitrary symmetric weights, where λu�v = λv�u for every edge uv [29,41,47].

Floater and Gotsman [24] construct a morph between two convex drawings
of the same planar graph G, with the same outer face, by linearly interpolating
between weights λu�v consistent with the initial and final drawings. Appropri-
ate initial and final weights can be computed in O(n) time using, for exam-
ple, Floater’s mean-value coordinates [23,30]. The resulting morphs are natural
and visually appealing. However, the motions of the vertices are only computed
implicitly; vertex positions at any time can be computed in O(nω/2) time by solv-
ing a linear system via nested dissection [4,34], where ω < 2.37286 is the matrix

1 Floater’s presentation assumes that
∑

u�v λu�v = 1 for every interior vertex v, but
this assumption is clearly unnecessary.
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multiplication exponent [3,33]. Gotsman and Surazhsky generalized Floater and
Gotsman’s technique to arbitrary planar straight-line graphs [26,43–45].

Alamdari et al. [1] describe an efficient algorithm to construct planar morphs
with explicit piecewise-linear vertex trajectories, based on Cairns’ inductive
edge-collapsing strategy. Given any two isomorphic straight-line drawings (with
the same rotation system and nesting structure) of the same n-vertex planar
graph, the algorithm constructs a morph consisting of O(n) unidirectional mor-
phing steps, in which all vertices move along parallel lines at fixed speeds. Thus,
each vertex moves along a piecewise-linear path of complexity O(n), and the
entire morph has complexity O(n2). Recent results of Klemz [32] imply that this
algorithm can be implemented to run in O(n2 log n) time. The resulting morph
contracts all vertices into an exponentially small neighborhood and then expand
them again, so it is not useful for visualization.

Angelini et al. [5] consider the setting of convexity-preserving morphs between
convex drawings; Kleist et al. [31] consider morphing to convexify any 3-
connected planar drawing. Both describe algorithms that produce piecewise-
linear morphs consisting of O(n) steps, and that can be implemented to run
in time O(n1+ω/2). (Klemz [32] conjectures that both running times can be
improved to O(n2 log n).) Combining these algorithms results in an alternative
piecewise-linear morph between 3-connected planar drawings.

Toroidal Morphs. Until recently, very little was known about morphing graphs
on the torus or other more complex surfaces.

Tutte’s spring-embedding theorem was generalized to simple triangulations
of surfaces with non-positive curvature by Colin de Verdière [14] and indepen-
dently by Hass and Scott [27]. Delgado-Friedrichs [19], Lovász [35], and Gortler
et al. [25] also independently proved an extension of Tutte’s theorem to graphs
on the flat torus whose universal covers are simple and 3-connected. For any
toroidal graph and any assignment of positive symmetric weights to the darts,
solving a linear system similar to (1) yields vertex positions of a geodesic draw-
ing with strictly convex faces [20,25]; see Sect. 2 for details. Thus, if two iso-
topic geodesic torus graphs Γ0 and Γ1 can both be described by symmetric dart
weights, linearly interpolating those weights yields a morph from Γ0 to Γ1 [13].

The restriction to symmetric weights is both nontrivial and significant. In
a torus graph with convex faces, every vertex can be described as a convex
combination of its neighbors, but not necessarily with symmetric weights. More-
over, the linear system expressing vertex positions as convex combinations of
its neighbors is rank-deficient, and therefore is not solvable in general; see the
full version [21] for an example. Thus, Floater’s asymmetric extension of Tutte’s
theorem does not directly generalize to the flat torus.

For similar reasons, Floater and Gotsman’s planar morphing algorithm also
does not generalize. Suppose we are given two isotopic geodesic torus graphs Γ0

and Γ1, each with dart weights that express their vertices as convex combina-
tions of their neighbors. Unfortunately, in general, interpolating those weights
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yields linear systems that have no solution; we give a simple example in the full
version [21].

Steiner and Fischer [42] modify the system by fixing a single vertex, restoring
full rank. However, solving the modified system does not necessarily yield a
crossing-free drawing, because the fixed vertex may not lie in the convex hull of
its neighbors. Moreover, even though the initial and final weights are consistent
with crossing-free drawings, averages of those weights may not be. We give an
example of this bad behavior in the full version [21].

Chambers et al. [9] described the first algorithm to morph between arbitrary
essentially 3-connected geodesic torus graphs. Their algorithm uses a combina-
tion of Cairns’ edge-collapsing strategy and spring embeddings to construct a
morph consisting of O(n) unidirectional morphing steps, in O(n1+ω/2) time. Like
planar morphs built from edge collapses, these toroidal morphs contract vertices
into small neighborhoods and thus are not suitable for visualization.

Recently, Luo et al. [37] generalized Floater’s theorem to geodesic triangu-
lations of arbitrary closed Riemannian 2-manifolds with strictly negative cur-
vature, extending the spring-embedding theorems of Colin de Verdière [14] and
Hass and Scott [27] to asymmetric weights. Their result immediately implies
that if two geodesic triangulations of such a surface are homotopic, then linearly
interpolating the dart weights yields a continuous family of crossing-free geodesic
drawings, or in other words, a morph. Their result applies only to surfaces with
negative Euler characteristic; the torus has Euler characteristic 0.

1.2 New Results

We describe two applications of Floater and Gotsman’s barycentric interpolation
strategy, which yield simpler algorithms for morphing planar and toroidal graphs.

First we describe a very simple algorithm to construct piecewise-linear morphs
between planar straight-line graphs. Given two isomorphic planar straight-line
graphs Γ0 and Γ1 with strictly convex faces and the same outer face, we construct
a morph from Γ0 to Γ1 that consists of O(n) unidirectional morphing steps, in
O(n1+ω/2) time. Our morphing algorithm computes barycentric weights for the
darts in Γ0 and Γ1 in a preprocessing phase, and then for each morphing step, inter-
polates only the pair of weights associated with a single edge. Our key observation
is that changing the weights for a single edge e moves all vertices in the Floater
drawing along lines parallel to e. (The same observation was made for symmetric
edge weights by Chambers et al. [9].) Our algorithm is significantly simpler than
that of Angelini et al. [5] for computing convexity-preserving morphs. We then
extend our algorithm to drawings with non-convex faces, using a simpler approach
than Kleist et al. [31]. Figure 1 shows a morph computed by our algorithm; in each
frame, the weights of the bold edge are about to change.

Next, we describe a natural extension of Floater and Gotsman’s method to
geodesic graphs on the flat torus. Our key observation is that barycentric dart
weights can be scaled so that barycentric interpolation works. Specifically, we
call a weight assignment morphable if every column of the resulting Laplacian
linear system sums to zero; averages of morphable weights are morphable. Given
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Fig. 1. Incrementally morphing between planar graphs.

any weight assignment consistent with any convex drawing, we can guarantee
morphability by scaling the weights of all darts leaving each vertex v—or equiv-
alently, scaling each row of the linear system—by a common positive scalar αv.
This scaling obviously has no effect on the solution space of the system. Positivity
of the scaling vector α follows from a weighted directed version of the matrix-tree
theorem [6,17,48]. We can computing the appropriate scaling in O(nω/2) time,
after which we can compute any intermediate drawing in O(nω/2) time, match-
ing the performance of Floater and Gotsman exactly. The resulting morphs are
natural and visually appealing, and our proofs of correctness are considerably
simpler than those of Chambers et al. [9]. However, unlike Chambers et al., our
new morphing algorithm does not compute explicit vertex trajectories. Figure 2
shows a morph computed by our algorithm between two randomly shifted 6 × 6
toroidal grids. (The authors’ Python implementation is available on request.)

Fig. 2. Morphing between randomly shifted toroidal grids.
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It remains an open question whether our results can be combined to compute
explicit low-complexity piecewise-linear toroidal morphs without edge collapses.
We offer some preliminary observations in the full version [21].

2 Definitions and Notation

2.1 Planar Graphs

Any planar straight-line drawing Γ can be represented by a position matrix
P ∈ R

n×2, each row pv of which gives the location of some vertex v. Thus, each
edge uv is drawn as the straight-line segment pupv. We call a planar drawing
convex if it is crossing-free, every bounded face is a convex polygon, and the
outer face is the complement of a convex polygon.

Formally, we regard each edge of any graph as a pair of opposing half-edges
or darts, each directed from its tail to its head. We write rev(d) to denote the
reversal of any dart d. For simple graphs, we write u�v to denote the dart with
tail u and head v. A barycentric weight vector for Γ assigns a positive real
number λu�v to every dart u�v of a graph, so that the vertex positions pv satisfy
Floater’s linear system (1). Conversely, for a fixed graph G with a fixed convex
outer face, the Floater drawing Γλ of G with respect to a positive weight
vector λ is the unique drawing whose vertex positions pv satisfy system (1).

A morph between two planar drawings Γ0 and Γ1 is a continuous family of
crossing-free drawings Γt parametrized by time, starting at Γ0 and ending at Γ1.
A morph is linear if each vertex moves along a straight line at uniform speed,
and piecewise-linear if it is the concatenation of linear morphs. Any piecewise-
linear morph can be described by a finite sequence of straight-line drawings. A
linear morph is unidirectional if vertices move along parallel lines.

2.2 Torus Graphs

The flat torus is the quotient space T = R
2/Z2, also obtained by identifying

opposite sides of the unit square [0, 1]2. A geodesic on the flat torus is the
image of a line segment in R

2 under the projection map π : R2 → T where
π(x, y) = (x mod 1, y mod 1).

A (crossing-free) geodesic torus drawing Γ of a graph G maps its vertices
to distinct points in T and its edges to simple, interior-disjoint geodesics. We
explicitly consider graphs containing loops and parallel edges. We write d : u�v
to declare that d is a dart (possibly one of many) with tail u and head v.

Every geodesic torus drawing Γ of a graph G is the projection of an infi-
nite, doubly-periodic planar straight-line graph Γ̃ , called the universal cover
of Γ [9]. We call Γ essentially simple if its universal cover Γ̃ is simple, and
essentially 3-connected if Γ̃ is 3-connected [39,40]. Finally, we call Γ a con-

vex drawing if every face of Γ̃ is strictly convex. Every convex torus drawing
is both essentially simple and essentially 3-connected, since every infinite planar
graph with strictly convex faces is 3-connected [18].
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Coordinate Representations. Following Chambers et al. [9], we use a coordinate
representation (P, τ) for geodesic torus drawings that records

– a position vector pv ∈ R
2 for each vertex v, and

– a translation vector τd ∈ Z
2 for each dart d, such that τrev(d) = −τd.

These vectors indicate that each dart d : u�v is drawn as the projection of a line
segment from pu to pv +τd in the universal cover Γ̃ . In particular, if we normalize
all vertex positions to the half-open unit square [0, 1)2, then each translation
vector τd indicates the number of times d crosses the vertical boundary of the unit
square to the right, and the number of times d crosses the horizontal boundary
of the unit square upward.

Two crossing-free drawings of the same graph on the torus are isotopic if one
can be deformed into the other through a continuous family of (not necessarily
geodesic) crossing-free drawings; such a deformation is called an isotopy . Two
crossing-free drawings are isotopic if and only if their coordinate representations
can be normalized so that their translation vectors agree; this condition can
be tested in O(n) time [9, Theorem A.1], [12]. A geodesic isotopy or morph
is an isotopy in which all intermediate drawings are geodesic.

Barycentric Weights. In any convex torus drawing Γ , the position pv of each
vertex v can be expressed as a convex combination of its neighbors, as follows. We
can assign a weight λd > 0 to each dart d such that any coordinate representation
(P, τ) of Γ satisfies the linear system

∑

v

∑

d:u�v

λd(pv − pu + τd) = (0, 0) for every vertex u. (2)

We can express this linear system in matrix notation as LλP = Hλ, where

Lλ
ij =

⎧
⎪⎪⎨

⎪⎪⎩

∑

k

∑

d:i�k

λd if i = j

∑

d:i�j

−λd otherwise
and Hλ

i =
∑

j

∑

d:i�j

λdxd (2′)

The (unnormalized, asymmetric) Laplacian matrix Lλ has rank n − 1 [42].
We call any positive weight vector λ satisfying system (2) barycentric for Γ .
Barycentric weights for any convex torus drawing can be computed in O(n) time
using, for example, Floater’s mean-value coordinates [23,30].

On the other hand, suppose we fix the graph G and translation vectors τd

consistent with an essentially 3-connected (but not necessarily geodesic) drawing
of G. Then for any positive weight vector λ, any solution to linear system (2)
gives the vertex positions pv of a convex drawing Γλ of G [25]. In this case, we
say that the Floater drawing Γλ realizes the weight vector λ, and we call
the weight vector λ realizable for the graph G. Every realizable weight vector
is realized by a two-dimensional family of drawings that differ by translation.
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Every symmetric positive weight vector (where λd = λrev(d)) is realizable: for
any assignment of positive weights to the edges of G, there is a corresponding
convex torus drawing [14,19,25,27,35]. Realizable weights are not necessarily
symmetric: there are convex torus drawings with only asymmetric barycentric
weights. Conversely, positive asymmetric weights are not always realizable.

3 Morphing Planar Graphs Edge by Edge

We describe a very simple algorithm to morph planar straight-line graphs that
combines the benefits of both the Floater and Gotsman approach [24,26,43–
45] and the Cairns approach [1,7,8,31,46]. Our algorithm constructs a morph
consisting of O(n) unidirectional morphing steps, in O(n1+ω/2) time. Because our
morphs do not use edge collapses, they are also potentially good for visualization.

Fix a planar graph G and a convex outer face. Let pλ
v denote the position

of vertex v in the Floater drawing Γλ with respect to weight vector λ. The
following lemma is a planar asymmetric version of Lemma 5.1 of Chambers
et al. [9]. Intuitively, it states that changing the weights of the darts of a single
edge e moves each vertex in the Floater drawing along lines parallel to e.

Lemma 1. Let λ and μ be arbitrary positive weight vectors such that λd �= μd

or λrev(d) �= μrev(d) for some dart d, but λd′ = μd′ for all darts d′ /∈ {d, rev(d)}.
For each vertex w, the vector pμ

w − pλ
w is parallel to the drawing of d in Γλ.

Proof: Suppose d has tail u and head v, and (by rotating the drawing if neces-
sary) that d is drawn parallel to the x-axis. For each vertex i, let yλ

i and yμ
i be

the y-coordinates of points pλ
i and pμ

i , respectively, so that yλ
u = yλ

v . We need to
prove that yλ

w = yμ
w for every vertex w.

Projecting linear system (1) for λ onto the y-axis gives us

∑

i�j

λi�j(y
λ
j − yλ

i ) = 0 for each vertex i. (3)

Swapping entries of λ with corresponding entries of μ in the system (3) changes at
most two constraints, corresponding to the two endpoints u and v of d. Moreover,
in each changed constraint, the single changed coefficient is multiplied by yλ

u −
yλ

v = yλ
v −yλ

u = 0, so the yλ
i ’s also solve the corresponding system for μ. Since the

system (3) and its counterpart for μ each have a unique solution, we conclude
that yλ

w = yμ
w for every vertex w. �

Under the assumptions of Lemma 1, linearly interpolating the vertex posi-
tions from Γλ to Γμ yields a unidirectional linear morph [1, Corollary 7.2], [9,
Lemma 5.2]. It follows that we can morph between isomorphic convex drawings
through a sequence of at most 3n−9 unidirectional linear morphing steps, one for
each internal edge, following the algorithm in Fig. 3. Initial and final barycentric
weight vectors can be found in O(n) time using, for example, Floater’s mean-
value method [23,30]. Each intermediate drawing can be computed in O(nω/2)
time using nested dissection [4,34], for a total running time of O(n1+ω/2).
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Fig. 3. Algorithm for morphing between convex planar drawings.

Because all Floater drawings are convex, Lemma 5.2 of Chambers et al. [9]
implies that MorphConvex actually produces a convexity-preserving piecewise-
linear morph; all faces remain convex throughout the morph. Our algorithm is
significantly simpler than that of Angelini et al. [5].

We can extend the previous algorithm to non-convex drawings by first mor-
phing to convex drawings, as follows. We first add edges to the initial and final
drawings to decompose every face into convex polygons, compute barycentric
weights for the resulting drawing, and then reduce the weights of each added
edge (one-by-one) to zero, effectively deleting that edge. Dropping the added
edges yields a piecewise-linear morph from each input drawing to a convex draw-
ing. Again, each intermediate drawing can be computed in O(nω/2) time. Our
complete morphing algorithm is shown in Fig. 4. Our algorithm Convexify is
considerably simpler than that of Kleist et al. [31]; however, unlike Kleist et al.,
our algorithm is not necessarily convexity-increasing.

Fig. 4. Algorithm for morphing between general planar straight-line drawings.

In total, we perform one morphing step for each internal edge of G, plus
at most 2(k − 3) morphing steps for each bounded face with degree k. Euler’s
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formula implies that a 3-connected planar graph has between 1.5n and 3n − 6
edges, and thus at most 3n − 9 internal edges. Thus, we need to add at most
1.5n − 6 edges to convexify the initial and final faces, so our morph consists of
at most 4.5n − 15 linear morphing steps. In summary:

Theorem 1. Given any two isomorphic 3-connected planar straight-line draw-
ings with n vertices and the same convex outer face, we can compute a morph
between them consisting of at most 4.5n−15 unidirectional linear morphing steps,
in O(n1+ω/2) time.

4 Morphable Weight Vectors on the Flat Torus

As observed by Steiner and Fischer [42], Floater and Gotsman’s morphing algo-
rithm does not directly generalize to the toroidal setting, since not all pos-
itive weight vectors λ are realizable. In particular, given arbitrary barycen-
tric weights λ(0) and λ(1) of two isotopic convex torus drawings, intermediate
weights λ(t) := (1 − t)λ(0) + tλ(1) are not necessarily realizable; see the full
version [21].

To bypass this issue, we identify a subspace of morphable weight vectors,
such that every convex torus drawing has a morphable barycentric weight vec-
tor, every morphable weight vector is realizable, and convex combinations of
morphable weights are morphable. Specifically, a positive weight vector λ is
morphable if each column of the matrices Lλ and Hλ sums to 0. The following
lemma is immediate:

Lemma 2. Convex combinations of morphable weight vectors are morphable.

Lemma 3. Every morphable weight vector is realizable.

Proof: If λ is a morphable weight vector, then the nth row of the linear system
LλP = Hλ is implied by the other n−1 rows, so we can remove it. The resulting
abbreviated linear system still has rank n − 1, so it has a (unique) solution. �

Lemma 4. Given a barycentric weight vector λ for a convex torus drawing Γ ,
a morphable barycentric weight vector for Γ can be computed in O(nω/2) time.

Proof: The matrix Lλ has rank n − 1, so there is a one-dimensional space of
(row) vectors α = (α1, . . . , αn) such that αLλ = (0, . . . , 0). We can compute a
non-zero vector α in O(nω/2) time using nested dissection [2,4,34].

A directed version of the matrix tree theorem [6,17,48] implies that we can
choose all αi to be positive. Specifically, let G± be the weighted directed graph
whose weighted arcs correspond to the weighted darts of G. An inward directed
spanning tree is an acyclic spanning subgraph of G± where every vertex except
one (called the root) has out-degree 1. The weight of an inward directed spanning
tree is the product of the weights of its arcs. For each i, let αi be the sum of
the weights of all inward directed spanning trees rooted at vertex i; we have
αi > 0 because all dart weights are positive. The directed matrix tree theorem
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implies that αL = 0, as required; for an elementary proof, see De Leenheer [17,
Theorem 3]. (See also Cohen et al. [11, Lemma 1].)

Define a new weight vector μ by setting μd := αtail(d)λd for each dart d. For
each index i, we immediately have Lμ

i P = αiL
λ
i P = αiH

λ
i = Hμ

i , where P is the
position matrix for Γ , so μ is in fact a barycentric weight vector for Γ . Finally,
we observe that (1, . . . , 1)Lμ = αLλ = (0, . . . , 0) and (1, . . . , 1)Hμ = αHλ =
αLλP = (0, . . . , 0)P = (0, 0), which imply that μ is morphable. �

Theorem 2. Given coordinate representations of two isotopic essentially 3-
connected geodesic torus drawings Γ0 and Γ1, we can efficiently compute a morph
from Γ0 to Γ1. Specifically, after O(nω/2) preprocessing time, we can compute
any intermediate drawing during the morph in O(nω/2) time.

Proof: Suppose Γ0 and Γ1 are convex drawings. First, if necessary, we normalize
the given coordinate representations so that their translation vectors agree, in
O(n) time [9, Theorem A.1]. Then we find barycentric weight vectors λ(0) and
λ(1) for Γ0 and Γ1, respectively, in O(n) time, for example using Floater’s mean-
value coordinates [23,30]. Following Lemma 4, we derive morphable weights μ(0)
and μ(1) from λ(0) and λ(1), respectively, in O(nω/2) time. Finally, given any
real number 0 < t < 1, we set μ(t) := (1 − t)μ(0) + tμ(1) and solve the linear
system Lμ(t)P (t) = Hμ(t) for the position matrix P (t) of an intermediate drawing
Γμ(t); Lemmas 2 and 3 imply that this system is solvable. The function t �→ Γμ(t)

is a convexity-preserving morph between Γ0 and Γ1.
If the faces of Γ0 or Γ1 are not convex, we morph through an intermediate

convex drawing, similarly to Chambers et al. [9, Theorem 8.1]. Let Γ∗ be the
Floater drawing of G obtained by setting every dart weight to 1. Compute any
triangulation T0 of Γ0, and then triangulate the convex faces Γ∗ using the same
diagonals, to obtain a triangulation T∗ isotopic to T0. Assign weight 0 to the
darts of the diagonals in T∗ \ Γ∗ to obtain a barycentric weight vector μ∗ for T∗,
which is symmetric and therefore morphable. Derive morphable weights μ0 for T0

using mean-value coordinates [23,30] and Lemma 4. Then we can morph from T0

to T∗ by weight interpolation, using the weight vector μ(t) := (1 − 2t)μ0 + 2tμ∗
for any 0 ≤ t ≤ 1/2. Ignoring the diagonal edges gives us a morph from Γ0 to Γ∗.
A symmetric procedure yields a morph from Γ∗ to Γ1. �

In the full version [21], we use morphable weights to prove a conjecture of
Connelly et al. [15] about the deformation space of geodesic torus triangulations.

5 Open Questions

It is natural to ask whether our “best-of-both-worlds” planar morph can be
extended to graphs on the flat torus. In the full version [21], we prove a toroidal
analog of Lemma 1 for realizable weight vectors; unfortunately, the main road-
block is that not all weight vectors are realizable. In particular, given a realizable
weight vector (morphable or not), it is not clear when changing the weights for
a single edge results in another realizable weight vector.
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Several previous planar morphing algorithms [1,5,16,31] rely on a certain
convexifying procedure [10,28,31,32], and are (potentially) faster than our algo-
rithm via the implementation recently described by Klemz [32]. It is an open
question whether the procedure can be extended to geodesic torus graphs.

One can also ask if the result can be extended to surfaces of higher genus.
The recent results of Luo et al. [37] imply that Floater and Gotsman’s planar
morphing algorithm [24] extends to geodesic triangulations on higher-genus sur-
faces of negative curvature; however, the existence of (any reasonable analog of)
piecewise-linear morphs on such surfaces remains unknown.
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References

1. Alamdari, S., et al.: How to morph planar graph drawings. SIAM J. Comput.
46(2), 824–852 (2017). https://doi.org/10.1137/16M1069171

2. Aleksandrov, L., Djidjev, H.: Linear algorithms for partitioning embedded graphs
of bounded genus. SIAM J. Discrete Math. 9(1), 129–150 (1996). https://doi.org/
10.1137/S0895480194272183

3. Alman, J., Williams, V.V.: A refined laser method and faster matrix multiplication.
In: Proceedings of the 32nd Annual ACM-SIAM Symposium Discrete Algorithms,
October 2021. https://doi.org/10.1137/1.9781611976465.32

4. Alon, N., Yuster, R.: Matrix sparsification and nested dissection over arbitrary
fields. J. ACM 60(4), 25:1–25:8 (2013). https://doi.org/10.1145/2508028.2505989

5. Angelini, P., Lozzo, G.D., Frati, F., Lubiw, A., Patrignani, M., Roselli, V.: Optimal
morphs of convex drawings. In: Proceedings of 31st International Symposium on
Computational Geometry, pp. 126–140. No. 34 in Leibniz International Proceedings
in Informatics (2015)

6. Borchardt, C.W.: Ueber eine der interpolation entsprechende Darstellung der
Eliminations-Resultante. J. Reine Angew. Math. 57, 111–121 (1860). https://doi.
org/10.1515/crll.1860.57.111

7. Cairns, S.S.: Deformations of plane rectilinear complexes. Amer. Math. Monthly
51(5), 247–252 (1944). https://doi.org/10.2307/2304300

8. Cairns, S.S.: Isotopic deformations of geodesic complexes on the 2-sphere and on
the plane. Ann. Math. 45(2), 207–217 (1944). https://doi.org/10.2307/1969263

9. Chambers, E.W., Erickson, J., Lin, P., Parsa, S.: How to morph graphs on the torus.
In: Proceedings of 32nd Annual ACM-SIAM Symposium Discrete Algorithms, pp.
2759–2778 (2021). https://doi.org/10.1137/1.9781611976465.164

10. Chrobak, M., Goodrich, M.T., Tamassia, R.: Convex drawings of graphs in two and
three dimensions (preliminary version). In: Proceedings of 12th Annual Symposium
on Computational Geometry, pp. 319–328 (1996). https://doi.org/10.1145/237218.
237401

https://doi.org/10.1137/16M1069171
https://doi.org/10.1137/S0895480194272183
https://doi.org/10.1137/S0895480194272183
https://doi.org/10.1137/1.9781611976465.32
https://doi.org/10.1145/2508028.2505989
https://doi.org/10.1515/crll.1860.57.111
https://doi.org/10.1515/crll.1860.57.111
https://doi.org/10.2307/2304300
https://doi.org/10.2307/1969263
https://doi.org/10.1137/1.9781611976465.164
https://doi.org/10.1145/237218.237401
https://doi.org/10.1145/237218.237401


Planar and Toroidal Morphs Made Easier 135

11. Cohen, M.B., Kelner, J., Peebles, J., Peng, R., Sidford, A., Vladu, A.: Faster algo-
rithms for computing the stationary distribution, simulating random walks, and
more. In: Proceedings of 57th Annual IEEE Symposium on Foundations of Com-
puter Science, pp. 583–592 (2016). https://doi.org/10.1109/FOCS.2016.69
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