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Abstract. We present a thorough experimental evaluation of several
crossing minimization heuristics that are based on the construction and
iterative improvement of a planarization, i.e., a planar representation of a
graph with crossings replaced by dummy vertices. The evaluated heuris-
tics include variations and combinations of the well-known planarization
method, the recently implemented star reinsertion method, and a new
approach proposed herein: the mixed insertion method. Our experiments
reveal the importance of several implementation details such as the detec-
tion of non-simple crossings (i.e., crossings between adjacent edges or
multiple crossings between the same two edges). The most notable find-
ing, however, is that the insertion of stars in a fixed embedding setting
is not only significantly faster than the insertion of edges in a variable
embedding setting, but also leads to solutions of higher quality.

Keywords: Crossing number · Experimental evaluation · Algorithm
engineering

1 Introduction

Given a graph G, the crossing number problem asks for the minimum number
of edge crossings in any drawing of G, denoted by cr(G). This problem is NP-
complete [20], even when G is restricted to cubic graphs [24] or graphs that
become planar after removing a single edge [7]. While the currently known integer
linear programming approaches to the problem [6,16,17] solve sparse instances
within a reasonable time frame [12], dense instances require the use of heuristics.

One such heuristic is the well-known planarization method [1,22], which con-
structs a planarization, i.e., a planar representation of G with crossings replaced
by dummy vertices of degree 4. The heuristic first computes a spanning planar
subgraph of G and then iteratively inserts the remaining edges. Several variants
of the planarization method have been thoroughly evaluated, including different
edge insertion algorithms and postprocessing strategies; see [10] for the latest
study. In a recent paper [18], Clancy et al. present an alternative heuristic—the
star reinsertion method—, which differs in two key aspects from the planarization
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method: It (i) starts with a full planarization (instead of a planar subgraph) that
is iteratively improved by reinserting elements, and (ii) the reinserted elements
are stars (vertices with their incident edges) rather than individual edges. These
star insertions are performed using a straight-forward but never tried algorithm
from literature [13]. Clancy et al. were faced with the problem that the imple-
mentations of the aforementioned heuristics were written in different languages,
leading to incomparable running times. In their evaluation, they thus focus on
variants of the star reinsertion method; their comparison with the planarization
method only gives averages over (a quite limited number of) full instance sets
and relies on old data from previous experiments.

Herein, we present a comprehensive experimental evaluation of a wide array
of crossing minimization heuristics based on edge and star insertion encompass-
ing all known strong candidates. This includes not only variants of the planariza-
tion and star reinsertion methods but also combined approaches. In addition, we
present and evaluate a new heuristic that builds up a planarization from a pla-
nar subgraph using both star and edge insertions. All of these algorithms are
implemented as part of the same framework, enabling us to accurately compare
their running times. Furthermore, we suggest ways of simplifying the imple-
mentation of the heuristics, increasing their speed in practice, and improving
their results—e.g., by properly handling crossings between adjacent edges and
multiple crossings between the same two edges.

2 Preliminaries

In the following, we consider a connected undirected graph G (that is usually
simple, i.e., does not contain parallel edges or self-loops) with n vertices and m
edges, denoted by V (G) and E(G) respectively. Let Δ be the maximum degree
of any vertex in V (G) and N(v) := {w | (v, w) ∈ E} the neighborhood of a
vertex v. Then, v along with a subset of its incident edges F ⊆ {(v, w) ∈ E}
is collectively called a star, denoted by (v, F ). Furthermore, a (combinatorial)
embedding of a planar graph G corresponds to a cyclic ordering of the edges
around each vertex in V (G) such that the resulting drawing can be realized
without any edge crossings. This induces a set of cycles that bound the faces of
the embedding. Based on a combinatorial embedding of the primal graph G, we
can define the dual graph G∗, whose vertices correspond to the faces of G, and
vice versa. For each primal edge e ∈ E(G), there exists a dual edge e∗ ∈ E(G∗)
between the dual vertices corresponding to the e-incident primal faces. Note that
G∗ may be a multi-graph with self-loops even if G is simple.

For the purpose of this paper, it is of particular concern how to insert an
edge (v1, v2) into a planarization. First, it is necessary to find a corresponding
insertion path, i.e., a sequence of faces f1, . . . , fk such that v1 is incident to f1,
v2 incident to fk, and fi adjacent to fi+1 for i ∈ {1, . . . , k−1}. An edge between
v1 and v2 can then be inserted into a planarization by subdividing a common
edge for each face pair (fi, fi+1) and routing the new edge as a sequence of edges
from v1 along the subdivision vertices to v2. By extension, the insertion spider
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of a star (v, F ) is a set of insertion paths, one for each edge in F . These insertion
paths necessarily share a common face into which v can be inserted.

3 Algorithms

3.1 Solving Insertion Problems

Insertion problems, and their efficient solutions, form the cornerstone of all
known strong crossing minimization heuristics.

Definition 1 (EIF, SIF). Given a planar graph G, an embedding Π of G,
and an edge (or star) not yet in G, insert this edge (star) into Π such that the
number of crossings in Π is minimized. We refer to these problems as the edge
(star) insertion problem with fixed embedding EIF (SIF, resp.).

Given a primal vertex v, let v̂ be the vertex that is created by contracting the
dual vertices that correspond to v-incident faces. Then, the EIF for any given
edge (v1, v2) can be solved optimally in O(n) time by computing the shortest
path from v̂1 to v̂2 in the dual graph G∗ via breadth-first search (BFS) [1]. By
extension, the SIF for a star (v, F ) can be solved in O(|F |·n) time as follows [13]:
For each edge (v, w) ∈ F , solve the single-source shortest path problem in G∗

with ŵ as the source (via BFS). For each face f , the sum over all of the resulting
distance values at this f then represents the number of crossings that would be
created if v was to be inserted into f . Hence, the face with the minimum distance
sum is the optimal face to insert v into, and the computed shortest paths to
this face collectively form the insertion spider. To avoid crossings between these
shortest paths (due to them not being necessarily unique), we can construct the
insertion spider using a final BFS starting at the optimal face.

Definition 2 (EIV, MEIV, SIV). Given a planar graph G and an edge (a
set of k edges, or a star) not yet in G, find an embedding Π among all possible
embeddings of G such that optimally inserting the edge (set of k edges, star)
into this Π results in the minimum number of crossings. We refer to these prob-
lems as the edge (multiple edge, star) insertion problem with variable embed-
ding EIV (MEIV, SIV, resp.).

The EIV can be solved in O(n) time using an algorithm by Gutwenger et al.
[23], which finds a suitable embedding (with the help of SPR-trees) and then
executes the EIF-algorithm described above. Now consider the MEIV: Solving it
for general k is NP-hard [28], however there exists an O(kn + k2)-time approxi-
mation algorithm with an additive guarantee of Δk log k+

(
k
2

)
[14] that performs

well in practice [10]. Put briefly, the EIV-algorithm is run for each of the k edges
independently, and a single final embedding is identified by combining the indi-
vidual (potentially conflicting) solutions via voting. Then, the EIF-algorithm
can be executed once for each edge. Note that the SIV can be solved optimally
in polynomial time by using dynamic programming techniques [13]. However,
for graphs that are not series-parallel, the resulting running times are exorbitant
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and there is no known implementation of this algorithm. In fact, our results
herein suggest that in the context of crossing minimization heuristics, the solu-
tion power of the SIV-algorithm is fortunately not necessary in practice.

Each problem discussed above has a weighted version which can be solved in
the same manner if each ce-weighted edge e is replaced by ce parallel 1-weighted
edges beforehand. In practice it is worthwhile to compute the shortest paths
during the EIF/SIV-algorithm on the weighted instance directly. However, this
does not allow for the same theoretical upper bounds of the running times since
the weights may be arbitrarily large.

3.2 Crossing Minimization Heuristics

We start with reviewing several crossing minimization heuristics that iteratively
build up a planarization, starting with a planar subgraph:

The planarization method (plm) is the longest studied and best-known approach
considered, achieving strong results in previous evaluations [1,10,22]. First, we
compute a spanning planar subgraph G′ = (V,E′) ⊆ G, usually by employ-
ing a maximum planar subgraph heuristic and extending the result such that
it becomes (inclusion-wise) maximal. Then, the remaining edges F := E \ E′

are either inserted one after another—by solving the respective EIF (fix ) or
EIV (var)—or simultaneously using the MEIV-approximation algorithm (multi).
Gutwenger and Mutzel [22] describe a postprocessing strategy for plm based on
edge insertion: Each edge is deleted from the planarization and reinserted one
after another (all). To incrementally improve the planarization, all can also be
executed once after each individual edge insertion (inc) [10]. In the following, we
represent the use of these postprocessing strategies by appending the respective
shorthand to the algorithm’s abbreviation, e.g. fix-all. When neither all nor inc
is employed, we use the specifier none instead.

The chordless cycle method (ccm) realizes the idea of extending a vertex-induced
planar subgraph to a full planarization via star insertion [13]. It corresponds to
the best-performing scheme for the star insertion algorithm as examined by
Clancy et al. [18]: Search for a chordless cycle in G, e.g., via breadth-first search.
Let G′ denote the subgraph of G that is already embedded and initialize it with
this chordless cycle. Iteratively (until the whole graph is embedded) select a
vertex v �∈ V (G′) such that there exists at least one edge (v, w) that connects v
with the already embedded subgraph G′; insert v into G′ by solving the SIF for
the star (v, {(v, w) ∈ E | w ∈ V (G′)}).

The mixed insertion method (mim) is a novel approach that we propose as an
alternative to the planarization schemes above. It proceeds in a fashion that is
similar to plm but relies on star insertion instead of edge insertion in as many
cases as possible. Accordingly, let G′ denote the subgraph of G that is already
embedded and initialize it with a spanning planar subgraph (V,E′) ⊆ G. Then,
(attempt to) insert the remaining edges F := E \ E′ by reinserting at least
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one endpoint of each edge e ∈ F via star insertion. Since removing and then
reinserting a cut vertex of the planar subgraph G′ would temporarily disconnect
it, the cut vertices of the planar subgraph are computed (cf. [25]) and each edge
e ∈ F is processed as follows: If both endpoints of e are cut vertices of G′, insert
the edge via edge insertion (we choose to do so in a variable embedding setting
as such edge insertions happen rarely). If only one endpoint of the edge is a cut
vertex, reinsert the other one. If neither endpoint of the edge is a cut vertex,
the endpoint to be reinserted can be chosen freely—globally, this corresponds to
finding a vertex cover on the graph induced by F that has to include all vertices
neighboring a cut vertex in G′. Finding an optimal vertex cover is NP-hard
[26]; therefore we compare several heuristics: For each edge e, choose one of the
endpoints randomly (random), choose the one with the higher or lower degree
in G (highG, lowG), choose the one with the higher or lower degree in the graph
induced by all edges in F not incident to a cut vertex in G′ (highF , lowF ), or
choose both endpoints (both). Each of the chosen vertices is then deleted from
the planar subgraph and reinserted together with all of its edges in the original
graph by solving the corresponding SIF.

Herein, we evaluate the aforementioned heuristics not only on their own but
also in combination with the star reinsertion method (srm) by Clancy et al. [18],
a postprocessing strategy based on star insertion. It starts with an already exist-
ing planarization, which may be constructed using any of the methods outlined
above (or even more trivial ones, such as extracting a planarization from a cir-
cular layout of the vertices, which, however, is known to perform worse [18]). To
represent that the result of an algorithm is improved via srm, we append “srm”
to its abbreviation, e.g. fix-none-srm. The given planarization is thereby pro-
cessed as follows: Iteratively choose a vertex v, delete v from G, and reinsert it
again by solving the SIF for the star (v, v ×N(v)). Continue the loop until there
is no more vertex whose reinsertion improves the solution (in which case the
latter is said to be locally optimal). Clancy et al. propose different methods for
choosing v; here, we consider the scheme they report to be the best compromise
between solution quality and running time: In each iteration, try to reinsert
every vertex once and continue with the next iteration as soon as a vertex is
found whose reinsertion improves the number of crossings in the planarization.

The original algorithm only updates a planarization once an actual improve-
ment is found and resets it to its original state otherwise. We propose to never
reset it. This approach is permissible as the SIF is solved optimally and the
number of crossings hence never increases after the reinsertion of a star. Not
resetting the planarization has the potential to save time in practice as it allows
for a simpler implementation without any need to copy the dual graph.

4 A Note on Non-simple Crossings

It is well-known that any crossing-optimal drawing can be assumed to be sim-
ple: No edge self-intersects and each pair of edges intersects at most once (either
in a crossing or an endpoint). In particular, a simple drawing may not contain
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Fig. 1. A non-simple crossing on the red dashed edge as the result of incrementally
solving the same kind of insertion problem. When starting with the black planar sub-
graph, this may happen by solving the SIV using the described algorithm for the colored
vertices in the order of their label numbers. Alternatively, if all solid edges constitute
the initial planar subgraph, solving the EIV for the dashed edges in the order of their
label numbers can have the same result. The examples apply both in the fixed and the
variable embedding setting. Dummy vertices for (non-simple) crossings are represented
by small (black) diamonds. (Color figure online)

Fig. 2. Non-simple crossings between the red and green edges. After their removal (new
edge paths drawn as dashed), the red edge is involved in a new non-simple crossing of
the same type and the green edge in a new non-simple crossing of the opposite type.
Thus, the removal procedure may have to be iterated. (Color figure online)

crossings between adjacent edges (α-crossings) or multiple crossings between the
same two edges (β-crossings). We may hence call any such undesired crossings
non-simple. Surprisingly, earlier implementations of the planarization method
did not consider the emergence and removal of any non-simple crossings [10]
while the implementation of the star reinsertion method by Clancy et al. only
considers β- but not α-crossings [18]. However, we show in Fig. 1 that incremen-
tally solving the same kind of insertion problem may result in a planarization
with α- or β-crossings, even when starting with a planar subgraph. Non-simple
crossings can be removed by reassigning edges in the planarization to different
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edges in the original graph and then deleting the respective dummy vertices (see
Fig. 2). Doing so leads to better results overall, see [15, Appendix C].

5 Experiments

Setup: All algorithms are implemented in C++ as part of the Open Graph Draw-
ing Framework (OGDF, www.ogdf.net, based on the release “2020.02 Catal-
pa”) [11], and compiled with GCC 8.3.0. Each computation is performed on a
single physical processor of a Xeon Gold 6134 CPU (3.2 GHz), with a mem-
ory limit of 4 GB but no time limit. All instances and results are available for
download at http://tcs.uos.de/research/cr.

Instances: Table 1 lists the instance sets used for our evaluation (see [15, Appx. A]
for further statistical analysis). To enable a proper comparison of the tested
algorithms (and potentially in the future, their competitors), we consider mul-
tiple well-known benchmark sets as well as constructed, random, and real-world
instances with varying characteristics. These are preprocessed by computing
the non-planar core (NPC) [9] for each non-planar biconnected component. We
consider only those instances that have at least 25 vertices after the NPC reduc-
tion unless the instance is part of the Complete, Complete-Bip., or KnownCR
instance sets. Moreover, we precompute a planar subgraph and chordless cycle for
each instance such that different runs of plm, mim and ccm can be started with
the same initialization. The planar subgraph is computed by using Chalermsook
and Schmid’s diamond algorithm [8] and extending the result to a maximal pla-
nar subgraph. On average, this computation took only 0.77% of the time needed
to execute the fastest evaluated heuristic fix-none—a comparatively negligible
amount of time that is not further taken into consideration during the evaluation.

The precomputed chordless cycle almost always consists of 3–6 vertices, con-
taining 7–11 vertices for only 15 instances overall. How many edges are deleted
to create the planar subgraph, on the other hand, varies greatly depending on
the size and density of the graph. Of particular interest is the number of deleted
edges that are incident to one or two cut vertices of the planar subgraph: During
mim, the former ones have a fixed endpoint that must be reinserted via star
insertion (disallowing a choice of the reinserted endpoint) while the latter ones
must be inserted via edge insertion. Clearly, more dense instances such as the
complete (bipartite) ones and the expanders require more edges to be deleted to
form a planar subgraph. At the same time, due to their high connectivity, these
instances also have less deleted edges that are connected to cut vertices in the
planar subgraph. In particular, the complete (bipartite) instances do not have a
single such edge. However, even on the sparser instances, mim inserts almost all
edges via star insertion and one can usually choose the endpoint to be reinserted
(see the mim-variants described in Subsect. 3.2).

www.ogdf.net
http://tcs.uos.de/research/cr
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Table 1. Considered instance sets. “#” denotes the number of graphs and |V (G)| the
(range of the) numbers of nodes—both values refer to the instance sets after prepro-
cessing. Further, let δ denote the node degree, � the Cartesian product of two graphs,
Ci the cycle with i edges, Pj the path with j edges, and Gk the 21 non-isomorphic
connected graphs on 5 vertices indexed by k.

Name # |V (G)| Description

Rome 3668 25–58 Well-known benchmark set [3], sparse

North 106 25–64 Well-known benchmark set collected by S. North [2]

Webcompute 75 25–112 Instances sent to our online tool [17] for the exact
computation of crossing numbers, crossings.uos.de

Expanders 240 30–100 20 random regular graphs [27] (expander graphs with
high probability) for each parameterization
(|V (G)|, δ) ∈ {30, 50, 100} × {4, 6, 10, 20}

Circuit-Based 45 26–3045 Hypergraphs from real world electrical networks,
transformed into traditional graphs by replacing
each hyperedge h by a new hypervertex connected to
all vertices contained in h

ISCAS-85 [5] 9 180–3045

ISCAS-89 [4] 24 60–584

ITC-99 [19] 12 26–980

KnownCR 1946 9–250 Benchmark set with cr known through proofs [21]:

C � C 251 9–250 → Ci � Cj with 3 ≤ i ≤ 7, j ≥ i such that i · j ≤ 250

G � P 893 15–245 → Subset of Gi � Pj with 1 ≤ i ≤ 21, 3 ≤ j ≤ 49

G � C 624 15–250 → Subset of Gi � Cj with 1 ≤ i ≤ 21, 3 ≤ j ≤ 50

P ( , ) 178 10–250 → Generalized Petersen graphs P (2k + 1, 2) with
2 ≤ k ≤ 62 and P (m, 3) with 9 ≤ m ≤ 125

Complete 46 5–50 Complete graphs Kn for 5 ≤ n ≤ 50

Complete-Bip. 666 10–80 Complete bipartite graphs Kn1,n2 for 5 ≤ n1, n2 ≤ 40

5.1 Fast Heuristics: Mixed Insertion Method, Chordless Cycle
Method And Fixed Embedding Edge Insertion

The mim-variants, ccm, and fix-none (all without srm-postprocessing) are very
fast but yield a comparably high number of crossings. Figure 3 displays some rep-
resentative results on the expanders, contrasting them with the BEST solution
found by 50 random permutations of any heuristic tested herein (cf. Subsec-
tion 5.4). Among the mim-variants, there are only little differences in compu-
tation speed and resulting number of crossings. However, reinserting both end-
points whenever a choice between two endpoints can be made clearly provides
the best results across all instances while only taking an insignificant amount of
additional time. The variant leads to the highest amount of reinserted stars and
hence also to more chances for an improvement of the number of crossings. In
contrast, highF needs the lowest amount of star insertions and is thus the fastest
variant (but provides results of mixed quality).

http://crossings.uos.de/


Star-Struck by Fixed Embeddings: Modern Crossing Number Heuristics 49

Fig. 3. Comparison of the mim-variants, ccm and fix-none on the expanders.

Compared with fix-none and ccm, mim (from now on always referring to the
both-variant) provides better results on almost all instances. The fastest of the
algorithms, on the other hand, is fix-none. The last of the three, ccm, should only
be considered when examining particularly dense instances: On sparse instance
sets such as Rome or KnownCR, it is slower and yields far worse results than fix-
none (which in turn yields worse results than mim), but the solution and speed
disparity between the algorithms becomes smaller on instances with a higher
density—see, e.g., Fig. 3. On complete (bipartite) instances, ccm even surpasses
mim both in terms of solution quality and speed.

5.2 Planarization Method

The different edge insertion algorithms and postprocessing strategies for the
planarization method allow to greatly improve the final planarizations at the cost
of additional running time. A detailed experimental comparison of these plm-
variants was already carried out in 2012 [10]. We are able to replicate the results
of that study and corroborate its claims with findings on additional instances:
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In terms of solution quality, none provides much worse results than all and
inc across all instance sets. However, postprocessing and inc in particular has
the drawback of very high running times and a large amount of required memory.
Among the edge insertion algorithms, var performs better (but is also slower)
than multi, which in turn performs better than fix. Overall, fix-all is the fastest
plm-variant that still benefits from the quality improvements of postprocessing.
The best compromise between solution quality and speed is provided by the
multi -variants while the best results are achieved by var-inc (cf. [15, Appx. B]).

5.3 Improvements via the Star Reinsertion Method

We tested srm as a postprocessing method for the eight most promising and
interesting algorithms that construct an initial planarization: The three fast algo-
rithms mim, ccm, and fix-none, as well as the more involved fix-all, multi-all,
multi-inc, var-all, and var-inc. In the case of the latter five, a form of post-
processing is already used, and the additional application of srm only leads to a
small increase in running time, comparatively speaking. In the case of the former
three, the additional postprocessing via srm significantly increases the running
times (fix-none-srm becomes even slower than fix-all-srm), but the algorithms
are still surprisingly fast: On sparse instances, the running times are comparable
to multi-inc (without srm); on dense instances, the algorithms are even faster
than fix-all. This is especially interesting as all srm-enhanced algorithms typi-
cally outperform even the best previously known heuristic variant var-inc (see
Figs. 4 and 5). In spite of its simplicity, star insertion in a fixed embedding set-
ting is able to greatly improve intermediate planarizations by inserting multiple
edges at once. It provides better results and is faster than edge insertion in a
variable embedding setting even if the latter uses incremental postprocessing.

When observing the solution quality of the srm-algorithms, the same hierar-
chy as for the algorithms without srm emerges: fix-none-srm performs worse than
the other plm-based srm-variants, with var-inc-srm providing the best results
overall. However, var-inc-srm is rarely worth the additional running time since
the three significantly faster mim-srm, ccm-srm and fix-none-srm perform simi-
larly well or even surpass it on many instances such as several circuit-based ones
and the expanders. In comparison to mim-srm for example, var-inc-srm’s solu-
tion quality difference to BEST is only 1.7% smaller but its median running time
is eight times higher (when averaged over all instances). The running times of the
faster algorithms seem to coincide with the quality of the planarization delivered
by the base algorithm: While fix-none-srm is generally faster than ccm-srm on
sparse instances, the opposite is true on denser ones. On complete (bipartite)
instances, ccm-srm becomes even faster than mim-srm. However, mim-srm is
the otherwise fastest among these algorithms, and thus we recommend to use it.
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Fig. 4. Comparison of the srm-variants on the KnownCR instances. The legend of
Fig. 5 applies. Instance sizes are rounded up to the nearest multiple of fifty. Note that
the results of ccm-srm heavily depend on the structure of the instance; they also vary
a lot across other instance sets (with middling results on average).
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Fig. 5. Comparison of the srm-variants on the Rome instances. The grayed out plots
represent the heuristic variants without srm-postprocessing. Instance sizes are rounded
up to the nearest multiple of five.

5.4 Improvements via Permutations

We will consider one last question: Whether multiple runs of the same algorithm
with different random permutations of the inserted elements can significantly
improve the results. For plm, we permute the order in which the deleted edges are
inserted, and for mim, ccm and srm, we permute the order of (re)inserted stars.
Our experiments compare the effect of 50 random permutations with respect
to the Rome, North, Webcompute and KnownCR instance sets. For the larger
instances and more time-consuming algorithms, this number of permutations is
the limit of what we are able to compute. We focus on the (relative) improvement
for each instance, i.e., the lowest number of crossings divided by the average
number of crossings across 50 permutations (cf. [15, Appendix D]).

Overall, permutations can significantly improve the results of mim, ccm, and
plm-none at the cost of little additional time. However, when more time is avail-
able, plm with postprocessing is clearly preferable. Multiple permutations of all
and inc can be of use if one tries to marginally improve already good solutions.
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Fig. 6. Comparison of relative improvements for 50 permutations over their average
on the Rome and North instances. The legend of Fig. 5 applies.

Fig. 7. Comparison of high-solution-quality heuristics (with a single or 50 permuta-
tions) on the Rome and North instances.
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Among the srm-algorithms, the relative improvement via permutations is consis-
tently low with little variance; for a comparison with the respective plm-variants
see Fig. 6. The one outlier is ccm-srm, which achieves the greatest relative improve-
ments for 50 permutations. Note, however, that we initialize all permutations of
ccm-srm with a fixed small chordless cycle instead of a fixed maximal planar sub-
graph. This allows for greater variance in the solutions of ccm-srm and makes it
difficult to compare the results to other srm-algorithms.

The general trend of high-solution-quality algorithms, taking multiple per-
mutations into account, is shown in Fig. 7: A single permutation of mim-srm or
ccm-srm will yield better solutions than a plm-variant with incremental post-
processing (but no srm). Two layers of postprocessing, i.e., -all-srm or -inc-srm,
improve the results even more. Solutions resulting from 50 permutations are
in a tier of their own, with srm-heuristics achieving higher quality than those
without. Overall, 50 permutations of mim-srm or ccm-srm provide some of the
best results while taking a lot less time than other algorithms in their category.
Consider, e.g., the Rome instances in a 50-permutations setting; var-inc-srm can
reduce the average solution quality difference to BEST by only 1.2% more than
mim-srm, but its median running time is ten times as high.

6 Conclusion

Our in-depth experimental evaluation not only corroborates the results of pre-
vious papers [10,18] but also provides new insights into the performance of star
insertion in crossing minimization heuristics. We presented the novel heuristic
mim, which proceeds similarly to the planarization method but inserts most
edges by reinserting one of their endpoints as a star. Whenever neither endpoint
is a cut vertex of the initial planar subgraph, the endpoint can be chosen freely,
and our experiments indicate that reinserting both endpoints one after another
provides the best results. In general, mim performs better than the basic heuris-
tics from [10,18] that have a similarly low running time (i.e., ccm and fix-none).

A central observation is that postprocessing via star insertion (srm) can
greatly improve the planarizations resulting from fast heuristics: mim-srm, ccm-
srm, and fix-none-srm are all faster than the previously best-performing heuristic
var-inc and provide better results. By inserting multiple adjacent edges at once,
star (re-)insertion changes the planarization and its underlying graph decompo-
sition in a way that is sufficient to properly explore the search space and find
good solutions. Fixed embedding star insertion is thus preferable over the much
slower insertion of edges (or even stars) in a variable embedding setting.

We note that many heuristics—in particular those without edge-wise post-
processing—are prone to create non-simple crossings (due to lack of space see
[15, Appendix C]). Such crossings can be detected and it is worthwhile to remove
them in order to speed up the procedure and improve the results. Lastly, multiple
permutations are beneficial for heuristics that already employ postprocessing.
In particular, their application to mim-srm and ccm-srm provides very high
solution quality at moderate running times.



Star-Struck by Fixed Embeddings: Modern Crossing Number Heuristics 55

References

1. Batini, C., Talamo, M., Tamassia, R.: Computer aided layout of entity relationship
diagrams. J. Syst. Softw. 4(2–3), 163–173 (1984). https://doi.org/10.1016/0164-
1212(84)90006-2

2. Battista, G.D., et al.: Drawing directed acyclic graphs: an experimental study.
Int. J. Comput. Geom. Appl. 10(6), 623–648 (2000). https://doi.org/10.1142/
S0218195900000358

3. Battista, G.D., Garg, A., Liotta, G., Tamassia, R., Tassinari, E., Vargiu, F.: An
experimental comparison of four graph drawing algorithms. Comput. Geom. 7,
303–325 (1997). https://doi.org/10.1016/S0925-7721(96)00005-3

4. Brglez, F., Bryan, D., Kozminski, K.: Notes on the ISCAS 1989 benchmark circuits.
North-Carolina State University, Technical report, October 1989

5. Brglez, F., Fujiwara, H.: A neutral netlist of 10 combinational circuits and a tar-
geted translator in FORTRAN. In: Proceedings of the ISCAS; Special Session on
ATPG and Fault Simulation, pp. 151–158, June 1985

6. Buchheim, C., et al.: A branch-and-cut approach to the crossing number problem.
Discrete Optim. 5(2), 373–388 (2008). https://doi.org/10.1016/j.disopt.2007.05.
006

7. Cabello, S., Mohar, B.: Crossing number and weighted crossing number of
near-planar graphs. Algorithmica 60(3), 484–504 (2011). https://doi.org/10.1007/
s00453-009-9357-5

8. Chalermsook, P., Schmid, A.: Finding triangles for maximum planar subgraphs.
In: Poon, S.-H., Rahman, M.S., Yen, H.-C. (eds.) WALCOM 2017. LNCS, vol.
10167, pp. 373–384. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
53925-6 29

9. Chimani, M., Gutwenger, C.: Non-planar core reduction of graphs. Discrete Math.
309(7), 1838–1855 (2009). https://doi.org/10.1016/j.disc.2007.12.078

10. Chimani, M., Gutwenger, C.: Advances in the planarization method: effective mul-
tiple edge insertions. J. Graph Algorithms Appl. 16(3), 729–757 (2012). https://
doi.org/10.7155/jgaa.00264
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