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Abstract. We study a classic problem introduced thirty years ago by
Eades and Wormald. Let G = (V, E, λ) be a weighted planar graph,
where λ : E → R

+ is a length function. The Fixed Edge-Length Pla-

nar Realization problem (FEPR for short) asks whether there exists
a planar straight-line realization of G, i.e., a planar straight-line drawing
of G where the Euclidean length of each edge e ∈ E is λ(e). Cabello,
Demaine, and Rote showed that the FEPR problem is NP-hard, even
when λ assigns the same value to all the edges and the graph is tri-
connected. Since the existence of large triconnected minors is crucial to
the known NP-hardness proofs, in this paper we investigate the compu-
tational complexity of the FEPR problem for weighted 2-trees, which
are K4-minor free. We show its NP-hardness, even when λ assigns to
the edges only up to four distinct lengths. Conversely, we show that the
FEPR problem is linear-time solvable when λ assigns to the edges up to
two distinct lengths, or when the input has a prescribed embedding.
Furthermore, we consider the FEPR problem for weighted maximal out-
erplanar graphs and prove it to be linear-time solvable if their dual tree is
a path, and cubic-time solvable if their dual tree is a caterpillar. Finally,
we prove that the FEPR problem for weighted 2-trees is slice-wise poly-
nomial in the length of the longest path.

1 Introduction and Preliminary Results

The problem of producing drawings of graphs with geometric constraints is a
core topic for Graph Drawing [3–5,11,14,23,24,27,34,43,45]. In this context, a
classic question is the one of testing if a planar graph can be drawn planarly and
straight-line with prescribed edge lengths. The study of such a question is related
to several topics in computational geometry [17,41,47], rigidity theory [16,30,32],
structural analysis of molecules [8,31], and sensor networks [13,38,40]. Formally,
given a weighted planar graph G = (V,E, λ), i.e., a planar graph equipped with
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Fig. 1. A planar and a non-planar straight-line realization of the same 2-tree.

a length function λ : E → R
+, the Fixed Edge-Length Planar Realiza-

tion problem (FEPR for short) asks whether there exists a planar straight-line
realization of G (PR for short), i.e., a planar straight-line drawing of G where the
Euclidean length of each edge e ∈ E is λ(e). The FEPR problem was first studied
by Eades and Wormald [26], who showed its NP-hardness for triconnected planar
graphs and for biconnected planar graphs with unit lengths. Cabello, Demaine,
and Rote strengthened this result by proving NP-hardness for triconnected pla-
nar graphs with unit lengths [12]. Abel et al. [1] proved the ∃R-completeness of
the FEPR problem with unit lengths, solving a problem posed by Schaefer [42].

Since large triconnected minors are essential in the known NP-hardness proofs
of the FEPR problem, we study its complexity for 2-trees, which are the maximal
graphs with no K4-minor. A 2-tree is a graph composed of 3-cycles glued together
along edges in a tree-like fashion; see Fig. 1, where we show a planar and a non-
planar realization of a weighted 2-tree. Every 2-tree is planar and biconnected,
and the class of 2-trees is the class of maximal series-parallel graphs. There is a
vast amount of research on 2-trees in Graph Drawing (e.g., in [18,25,28,33,39]).
The edge lengths of 2-trees have been studied in [9,10].

In this paper, we first show that the FEPR problem can be solved in linear
time for 2-trees with prescribed embedding1. We note the FEPR problem is
NP-hard for general planar graphs with a prescribed embedding [12]. Second, we
show that, in the variable embedding setting, the FEPR problem is NP-hard
when the number of distinct lengths is at least four, whereas it is linear-time
solvable when the number of distinct lengths is one or two. Note that, for general
planar graphs, the problem is NP-hard even when all the edges are required to
have the same length [26]. Third, we deal with maximal outerplanar graphs.
We show that the FEPR problem can be solved in linear time for maximal
outerpaths, i.e., the maximal outerplanar graphs whose dual tree is a path, and in
cubic time for maximal outerpillars, i.e., the maximal outerplanar graphs whose

1 As in [12], our algorithms adopt the real RAM model, which is customary in com-
putational geometry and supports standard arithmetic operations in constant time.
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Fig. 2. A 2-tree and its decomposition tree rooted at the 3-cycle with label 1.

dual tree is a caterpillar. Finally, we present a slice-wise polynomial algorithm
for 2-trees, parameterized by the length of the longest path.

Because of space limitations, several proofs are omitted. They can be found
in the full version of the paper [2].

Preliminaries. We assume familiarity with Graph Drawing (see, e.g., [21]). A
planar drawing of a graph G defines a clockwise order of the edges incident to
each vertex of G; the set of such orders for all the vertices is a rotation system for
G. Two planar drawings of G are equivalent if (i) they define the same rotation
system for G and (ii) their outer faces have the same boundaries. An equivalence
class of planar drawings is a plane embedding (or simply an embedding). When
referring to a planar drawing Γ of a graph that has a prescribed embedding E ,
we always imply that Γ respects E ; sometimes, we explicitly stress this.

An outerplanar drawing is a planar drawing in which all the vertices are
incident to the outer face. An outerplane embedding is an equivalence class of
outerplanar drawings. An outerplanar graph is a graph that admits an outerpla-
nar drawing. The dual tree T of a biconnected outerplanar graph G is defined
as follows. Consider the (unique) outerplane embedding O of G. Then T has
a node for each internal face of O and has an edge between two nodes if the
corresponding faces of O are incident to the same edge of G. An outerpath is a
biconnected outerplanar graph whose dual tree is a path. A caterpillar is a tree
that becomes a path if its leaves are removed. An outerpillar is a biconnected
outerplanar graph whose dual tree is a caterpillar.

A 2-tree is recursively defined as follows. A 3-cycle is a 2-tree. Given a 2-tree
G containing an edge (u,w), the graph obtained by adding to G a vertex v and
two edges (v, u) and (v, w) is a 2-tree. We observe that the neighbors of any
degree-2 vertex are adjacent. The tree-like structure of a 2-tree G is encoded
by means of the decomposition tree T rooted at a 3-cycle of G. Each node in
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T represents a 3-cycle of G, and two nodes are adjacent if their corresponding
3-cycles share an edge; see Fig. 2. The decomposition tree of a 2-tree is easily
computed in linear time. We adopt the Euclidean metric and assume that the
length function of G is such that every 3-cycle satisfies the triangle inequality.
This is a necessary condition for the existence of a straight-line realization of G,
i.e., a (not necessarily planar) drawing of G in which each edge is represented
by a line segment with the prescribed length. We often refer to 3-cycles of G,
nodes of T , and triangles in a straight-line realization of G interchangeably.

Prescribed Embedding. First, we deal with 2-trees with a prescribed rotation
system or embedding. We start by presenting a geometric tool.

Theorem 1. Let G be an n-vertex weighted 2-tree, E be a plane embedding (resp.
R be a rotation system) for G, and Γ be a straight-line realization of G. There
is an O(n)-time algorithm to test whether Γ is a PR respecting E (resp. R).

The proof of Theorem 1 is based on an algorithm that: i. tests if Γ respects
E (resp. R), ii. triangulates the faces of Γ and checks if they are simple poly-
gons [15], and iii. tests if the obtained drawing is a convex subdivision [20].

We now present our prescribed embedding result.

Theorem 2. Let G be an n-vertex weighted 2-tree and E be a plane embedding
(resp. R be a rotation system) for G. There is an O(n)-time algorithm to test
whether G admits a PR that respects E (resp. R) and to construct one, if any.

The proof of Theorem 2 is based on: i. computing a decomposition tree
T rooted at the 3-cycle c of G with the largest sum of the edge lengths; ii.
computing a candidate PR Γ by visiting T in pre-order while greedily adding to
Γ the drawing of each 3-cycle t, by exploiting E (resp. R) and the containment
relationship between c and t; and iii. testing whether Γ is a PR of G whose
plane embedding (resp. rotation system) is E (resp. R) by means of Theorem 1.

2 NP-Hardness for 2-Trees with 4 Edge Lengths

We sketch a reduction from the NP-complete Planar Monotone 3-SAT prob-
lem [7] (PMS for short) to the FEPR problem with four edge lengths.

Theorem 3. The FEPR problem is NP-hard for weighted 2-trees, even for
instances whose number of distinct edge lengths is 4.

A Boolean CNF formula φ is an instance of PMS if the variable-clause incidence
graph Gφ of φ is planar, and each clause of φ is either positive (it consists of
positive literals) or negative (it consists of negated literals). The PMS problem is
NP-complete even when Gφ comes with a monotone rectilinear representation [7],
i.e., a crossing-free drawing Γφ of Gφ in which i. variables and clauses are boxes,
ii. edges are vertical segments, and iii. positive (resp. negative) clauses lie above
(resp. below) the horizontal strip containing the variable boxes; see Fig. 3(a).
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(a) (b)

(c)

Fig. 3. (a) The monotone rectilinear representation Γφ of Gφ, and (b) Its modified
version Γ ∗

φ . (c) Overview of the reduction showing only the frame triangles (Color
figure online).

First, we transform Γφ into a representation Γ ∗
φ of Gφ that uses segments

with slope 0◦, 60◦, or 90◦; see Fig. 3(b). Then we obtain from Γ ∗
φ a weighted

2-tree Hφ that admits a PR if and only if φ is satisfiable; see Fig. 3(c). The edges
of Hφ are assigned the lengths w1 = 1, w2 = 0.9, w3 = 0.2, and w4 = 1.61. To
obtain Hφ we construct gadgets for the variables, the clauses, and the edges of
Gφ. Our gadgets exploit two main types of triangles: equilateral triangles with
sides of length w1 (frame triangles), and isosceles triangles with base of length
w1 and two sides of length w2 (transmission triangles). The union of the frame
triangles of the gadgets representing variables (gray), edges (yellow), and clauses
(green), together with a set of frame triangles connecting the variable gadgets
(blue), forms a maximal outerplanar graph. Since this graph is formed by frame
triangles, it has a unique PR up to rigid transformations.
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Fig. 4. The (α, β)-clause gadget with α = 4 and β = 2. The values of α and β depend
on the relative positions in Γ ∗

φ of the involved variable gadgets (Color figure online).

Our strategy is to construct Hφ from a “rigid” part (mainly formed by the
union of the frame triangles of the gadgets), and a part that instead allows
for different embedding choices (mainly encoded by the flips of transmission
triangles). Consider for example Fig. 4, where we illustrate the PR of a clause
gadget, which is the most critical gadget in the construction. Each transmission
triangle � (in red) has two possible different embeddings. The choice of this
embedding influences the choice of the embeddings of the transmission triangles
that “conflict” with �, that is, that overlaps with � in one of their embeddings.
These chains of conflict relationships allow for “truth values” that come from the
variable gadgets to “move” along the gadgets representing edges. The relevant
triangles �1

IN, �2
IN, and �3

IN encode such values: In Fig. 4, �1
IN and �2

IN point
downward since the corresponding variable is True, and �3

IN points upward
since the corresponding variable is False. A special set of transmission triangles,
whose flip depends on the orientation of the relevant triangles, overlap in the
pink hexagonal region if all the relevant triangles point upward. Conversely, if
at least one relevant triangle points downward, the clause gadget admits a PR.

3 Linear-Time Algorithm for 2-Trees with 2 Edge
Lengths

This section is devoted to sketch the proof of the following theorem.

Theorem 4. Let G = (V,E, λ) be an n-vertex weighted 2-tree, where λ : E →
{w1, w2} with w1, w2 ∈ R

+. There is an O(n)-time algorithm to test whether G
admits a PR and to construct one, if any.

Let Γ be a PR of G. If w1 = w2, then the existence of Γ implies that G is an
outerplanar graph, which is a linear-time testable property [19,36,46], and that
Γ is outerplanar. Since G is 2-connected, it has a unique outerplane embedding E
which can be constructed in linear time [19,36,37,44,46]. Hence, the problem
reduces to the problem of testing whether G has a PR that respects E , which
can be solved in linear time by Theorem 2.
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Consider now the case in which w1 �= w2. W.l.o.g. assume w1 < w2. Also, let
r = w2

w1
> 1. The realization of any 3-cycle of G is one of the following types of

triangles: i. an equilateral (small equilateral) triangle of side w1, ii. an equilateral
(big equilateral) triangle of side w2, iii. an isosceles (tall isosceles) triangle with
base w1 and two sides of length w2, and iv. an isosceles (flat isosceles) triangle
with base w2 and two sides of length w1; refer to Fig. 5.

Fig. 5. The four possible types of triangles that represent the 3-cycles of G.

Let �1 and �2 be two triangles realizing two different 3-cycles in a PR of G.
We say that �1 is drawn inside �2 if all the points of �1 are points of �2 and
at least one vertex of �1 is an interior point of �2. Let T be the decomposition
tree of G. We have the following.

Lemma 1. If T is rooted at the 3-cycle with the largest sum of edge lengths and
�1 is drawn inside �2, then �1 is a leaf triangle that shares a side with �2.

By Lemma 1, we assume that T is rooted at a 3-cycle with the largest sum
of edge lengths. The framework of G is the subgraph GF ⊆ G obtained, in
linear time, as follows: For each leaf triangle �i that can be drawn inside its
parent or a sibling triangle �j , we remove from G the vertex v that �i does
not share with �j , along with the two edges incident to v. Note that i. GF is
a 2-tree which may contain any type of triangle, ii. by Lemma 1, no triangle of
GF is drawn inside any other triangle in any PR of G, and iii. T is rooted at a
triangle of the framework. We test in linear time if GF is outerplanar and, in such
case, we compute in linear time its unique outerplanar embedding E . Exploiting
Theorem 2, we test if GF admits a PR respecting E . In the negative case G
admits no PR, otherwise we denote by ΓF the obtained PR of GF . Hereafter,
we assume that ΓF exists.

Refer to Fig. 6, where we show an example of a PR of a weighted 2-tree. Let
L� be the set of leaf triangles that were removed from G to obtain GF . Observe
that L� is formed by small equilateral and flat isosceles triangles. We show how
to extend ΓF to a PR of G by embedding the triangles of L�, if possible. Let
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Fig. 6. (Left) A PR of a weighted 2-tree G. Dashed triangles represent alternative
embeddings for some 3-cycles, which would generate conflicts. (Right) The decompo-
sition tree of G rooted at the framework triangle �1. Triangles of ΓF are thick, and
edges of the leaf triangles of L� that are not in ΓF are thin.

� denote a triangle in L�. The triangle � has a side in GF that is incident to
either two internal faces, or to an internal face and the outer face of ΓF ; hence �
has exactly two embedding choices. We say that � has an internal embedding if
it is embedded inside an internal face of ΓF , and an outer embedding otherwise.
We say that � induces a framework conflict if it has an outer embedding and
ΓF ∪� is not planar; e.g., see the (dashed) outer embedding of �16 in Fig. 6. Let
�i and �j be two triangles of L�. We say that �i and �j induce an internal
conflict if both have an internal embedding and ΓF ∪�i ∪�j is not planar; e.g.,
see the (dashed) internal embedding of �9 and the (solid) internal embedding
of �18. On the other hand, we say that �i and �j induce an external conflict
if both have an outer embedding and ΓF ∪ �i ∪ �j is not planar; e.g., see the
(dashed) outer embeddings of �6 and �13.

Lemma 2. Let �i and �j be two leaf triangles of L� that can both be drawn
inside some triangle � ∈ ΓF . The triangles �i and �j induce an internal
conflict if at least one of the following properties holds true:

(a) �i and �j share an edge;
(b)

√
3 < r ≤ 2 cos(π/12) and � is a tall isosceles;

(c) 1 < r ≤
√

3.

The weighted 2-tree shown in Fig. 6 is such that
√

3 < r ≤ 2 cos(π/12), that
is r < 2. By Property b of Lemma 2, two flat isosceles triangles can be drawn
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inside a big equilateral triangle without inducing conflicts, and any pair of leaf
triangles (i.e., either two flat isosceles triangles or a flat isosceles triangle and
a small equilateral triangle) induce an internal conflict inside a tall isosceles
triangle. On the other hand, by Property a of Lemma 2 and the fact every
triangle in L� has two embedding choices, for a PR of G to exist, it must hold
that no three triangles in L� share the same edge with a triangle of GF . If L�
satisfies this requirement, then we say that L� is consistent.

Lemma 3. If L� is consistent, then there are O(1) pairs of triangles sharing
an edge with the same triangle of GF that induce an internal conflict.

Proof. By Lemma 1, two triangles of L� that induce an internal conflict share
an edge with a common triangle � of GF . Since L� is consistent, there exist at
most 6 triangles in L� incident to �. Hence, at most

(
6
2

)
= 15 pairs of triangles

sharing an edge with � can induce an internal conflict. ��

Extending ΓF to a PR of G. Next, we show how to test whether there is a
choice of embeddings for the triangles in L� that yields a PR of G. We distinguish
two cases, based on whether r ≥ 2 or r < 2.

Case r ≥ 2. In this case there are no flat isosceles triangles, and hence the
setting is much simpler than the one depicted in Fig. 6. Every leaf triangle in
L� is a small equilateral triangle whose parent is a tall isosceles triangle. We act
as follows. For any two triangles �1,�2 ∈ L� that share an edge e, we embed
�1 and �2 in ΓF on opposite sides of e. We embed every other leaf triangle
in L� inside its parent triangle. At the end of this process we obtain, in linear
time, a straight-line realization Γ of G, and a plane embedding E of G.

Lemma 4. G has a PR if and only if Γ is planar.

Proof Sketch. First, if two leaf triangles share an edge e, then they lie on opposite
sides of e in any PR, since they would overlap otherwise. Second, each isosceles
triangle may contain only one leaf triangle, since it has only one side of length
w1. Hence, embedding a leaf triangle � inside an isosceles triangle that shares
an edge with � cannot cause crossings, since � does not induce internal con-
flicts. Therefore, a crossing in Γ can only be caused by framework and external
conflicts, which are, however, unavoidable. ��

By Lemma 4, in order to test whether G admits a PR, we can apply Theorem
1 to test in O(n) time whether Γ is a PR of G with embedding E .

Case r < 2. In this case there might be flat isosceles triangles in G which might
or might not need to be embedded inside a framework triangle; in Fig. 6 such
triangles are shaded light gray. Also, more than one leaf triangle can be drawn
inside the same framework triangle which might or might not induce internal
conflicts. Recall that the triangles in L� are small equilateral triangles and/or
flat isosceles triangles.

We construct a 2SAT formula φ with a Boolean variable for each triangle
� ∈ L�. The values of φ are associated with the two possible embeddings of �.
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If two triangles in L� induce a conflict for certain embeddings, then φ contains
a clause that is True if and only if, at least one of the variables representing the
triangles does not have the value corresponding to the embedding generating the
conflict. Further, for each triangle that induces a framework conflict, φ contains
a clause that is True if and only if, the variable representing the triangle does
not have the value corresponding to an outer embedding. We test in O(|φ|)
time if φ is satisfiable [6]. In the positive case, we obtain a PR of G from ΓF

by embedding each triangle in L� according to the value of the corresponding
variable. We reject the instance in the negative case.

It only remains to prove that the number of conflicts (and hence the size of φ)
is in O(n) and that such conflicts can be found in O(n) time. Detecting internal
conflicts is fairly easy: i. by Lemma 1, triangles inducing an internal conflict
are “close” in T (they share an edge with a common framework triangle); ii.
by Lemma 3, there exist O(1) leaf triangles sharing an edge with the same
framework triangle; and iii. since L� is consistent, the maximum degree of T is
bounded by a constant.

Hence, by traversing T we compute in O(n) time the set of O(n) pairs of leaf
triangles that induce an internal conflict.

Efficiently detecting external and framework conflicts is more challenging.
Let L′

� be the subset of L� composed of those triangles that are incident to
external edges of ΓF . We give an outer embedding to every triangle in L′

�.
This results in a (possibly non-planar) straight-line realization Γ ′

F of the graph
G′

F := GF ∪ L′
�. We now construct a bounded-degree graph H whose nodes are

associated with sets of vertices of G′
F so that the following properties hold: (a)

Each node is associated with O(1) degree-2 vertices of G that belong to triangles
in L′

�, (b) if two triangles in L′
� induce an external conflict, then their degree-2

vertices are associated either with the same node or with adjacent nodes, and
(c) if a triangle � ∈ L′

� intersects an edge e of GF (inducing a framework
conflict), then the degree-2 vertex of � and the end-vertices of e are associated
either with the same node or with adjacent nodes.

After constructing H, the external and framework conflicts can be detected
with a linear-time traversal of H.

The graph H is defined as follows. Assume that the bottom-left corner of the
bounding box of Γ ′

F lies on the origin of the Cartesian axes. Consider a square
grid covering the plane whose grid cells have side length 3w2; see Fig. 7. Assign
a label l(v) = (�x(v)

3w2
�, �y(v)

3w2
�) to each vertex v of G′

F . Then H has a node for
each label assigned to at least one vertex of G′

F , and two distinct nodes (i, j)
and (i′, j′) are connected if and only if |i − i′| ≤ 1 and |j − j′| ≤ 1. Note that H
has O(n) edges since it has at most n nodes and maximum degree 8.

We now prove that H satisfies Property (a). The number of degree-2 vertices
of G that belong to triangles in L′

� and are associated with a node (i, j) of H, is
upper bounded by the number k of framework triangles that i. are contained in
the union of the grid cell (i, j) and its 8 surrounding grid cells, and ii. share an
edge with a triangle in L′

�. Note that k is actually the number of big equilateral
and tall isosceles triangles in such nine cells. Since the area of a big equilateral
or tall isosceles triangle is at least the area of a small equilateral triangle, then
k is upper bounded by the ratio between the area of 9 cells, which is 81w2

2, and
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Fig. 7. The straight-line realization Γ ′
F of the graph G′

F := GF ∪ L′
�, where each

triangle in L′
� has an outer embedding. The triangles of GF are gray and those in

L′
� are white. The leaf triangles in the dashed cell can induce conflicts only with the

triangles in the eight highlighted cells surrounding such a cell.

the area of a small equilateral triangle, which is w2
1

√
3/4. Therefore, since r < 2,

we have that k ∈ O(r2) ⊆ O(1).
We next sketch an algorithm to construct H in O(n) time. The vertex set of

H is constructed by removing repetitions from the set of labels l(v) computed for
the vertices v in G′

F . To this aim, we compute a total order π of the vertices of
G′

F such that, for any two vertices u and v with l(u) = (iu, ju) and l(v) = (iv, jv),
we have u ≺π v if and only if i. iu < iv or ii. iu = iv and ju < jv.

Since G′
F is connected and any edge of G′

F has length at most w2, then
0 ≤ i, j ≤ w2n

3w2
= 1

3n for any label (i, j). Hence, we compute π in O(n) time with
counting sort. Since vertices with the same label are consecutive in π, repetitions
can be removed with a linear scan of π.

The edge set of H consists of four disjoint subsets E−, E|, E/, and E\. These
sets contain the edges that connect nodes of H corresponding to grid cells that
are adjacent horizontally, vertically, along the main, and the minor diagonal,
respectively; see Fig. 8. We appropriately define four orders π−, π|, π/, and π\
of the nodes of H such that nodes that are connected by an edge in E−, E|, E/,
and E\ are consecutive in the corresponding order. We compute the four sets of
edges with a linear scan of the orders π−, π|, π/, and π\.

4 Maximal Outerplanar Graphs

In this section we study the FEPR problem for weighted outerplanar 2-trees,
i.e., for weighted maximal outerplanar graphs. We prove the following theorems.

Theorem 5. LetG be an n-vertex weighted maximal outerpath. There is anO(n)-
time algorithm to test whether G admits a PR and to construct one, if any.
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Fig. 8. The edge set of the graph H computed from the drawing Γ ′
F in Fig. 7. The sets

E−, E|, E/, and E\ are shown in yellow, blue, green, and red, respectively (Color figure
online).

Theorem 6. Let G be an n-vertex weighted maximal outerpillar. There is an
O(n3)-time algorithm to test whether G admits a PR and to construct one, if any.

Let G be a weighted 2-tree and e be an edge of G. An e-outer realization of G is a
PR of G such that e is incident to the outer face. An e-outer realization Γ of G is
e-optimal if, for every e-outer realization Γ ′ of G, there is a rigid transformation
of Γ such that the segment representing e coincides with the one in Γ ′ and such
that the interior of Γ is a subset of the interior of Γ ′.

We sketch the proof of Theorem 5; the proof of Theorem 6 uses similar ideas.
Let G be an n-vertex weighted maximal outerpath; see Fig. 9. Let T be the dual
tree of the outerplane embedding O of G; since G is an outerpath, T is a path
(p1, . . . , pk). For i = 1, . . . , k, let ci be the 3-cycle of G bounding the internal face
of O dual to pi and let Ci be the unique, up to rigid transformation, PR of ci.
For i = 1, . . . , k − 1, let ei be the edge of G dual to (pi, pi+1). Let x ∈ {1, . . . , k}

Fig. 9. A maximal outerpath G.
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be such that cx has maximum edge length sum. Let G1 and G2 be the subgraphs
of G composed of the cycles c1, c2, . . . , cx−1 and cx+1, cx+2, . . . , ck, respectively.
Since the length of cx is maximum, the restrictions of any PR of G to G1 and G2

are ex−1-outer and ex-outer realizations, respectively. We prove that G1 (resp.
G2) admits an ex−1-outer (resp. ex-outer) realization if and only if it admits an
ex−1-optimal (resp. ex-optimal) realization. The core of the proof of Theorem 5
is an O(n)-time algorithm, called Outer-Checker, that constructs an ex−1-
optimal (resp. an ex-optimal) realization Γ1 of G1 (resp. Γ2 of G2) and its plane
embedding, if any such a realization exists. If Outer-Checker concludes that
both G1 and G2 admit a PR, then Γ1 and Γ2 (as well as their embeddings) can
be combined in four ways with Cx (see Fig. 10) and each resulting straight-line
realization can be tested for planarity in O(n) time, by Theorem 1.

ex−
1

e
x ex−

1

e
x

ex−
1

e
x e
x

ex−
1

Fig. 10. The four different ways to combine Γ1 and Γ2 with Cx.

We describe how Outer-Checker works on G1. A key observation is that
the restriction of any ex−1-optimal realization of G1 to the graph Gi

1 composed
of the cycles c1, c2, . . . , ci is an ei-optimal realization of Gi

1. This allows Outer-

Checker to work by induction on i to decide whether Gi
1 has an ei-optimal

realization Γ i
1. If i = 1, the graph G1

1 is the cycle c1 whose unique PR C1 is e1-
optimal. If i > 1, an ei-optimal realization Γ i

1 of Gi
1 is constructed, if it exists,

by combining Γ i−1
1 and Ci so that ei−1 coincides in the two realizations. Three

things might happen. First, if Γ i−1
1 “fits” inside Ci, as in Fig. 11(left), then the

resulting PR Γ i
1 is ei-optimal. Else, if Γ i−1

1 “fits” outside Ci, as in Fig. 11(middle),
once cycles Ci and Ci−1 lie on different sides of ei−1, then the resulting PR Γ i

1 is
ei-optimal. Otherwise, Gi

1 admits no ei-optimal realization, as in Fig. 11(right).
A naive implementation of Outer-Checker takes O(n2) time. Indeed, for

each of the O(n) inductive steps, one can check in O(n) time whether Γ i−1
1

fits inside and/or outside Ci using Theorem 1. We achieve O(n) total running
time avoiding a planarity test at each step. For i = 1, . . . , x − 1, we compute
a “candidate” straight-line realization Γ i

1 of Gi
1, and only test for planarity the

final realization Γ x−1
1 . By “candidate” we mean that, if Gi

1 admits an ei-optimal
realization, then Γ i

1 is such a realization. In order to do that, Outer-Checker

dynamically maintains the boundary Bi
1 of the convex hull of Γ i

1, which is guar-
anteed to actually be the boundary of the convex hull of Γ i

1 if Γ i
1 is planar.

We compute Bi
1 by suitably exploiting a linear-time algorithm by Melkman [35],

which incrementally computes the convex hull of a point set spanned by a planar
path, provided that the points are given in the order of the path.
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e
i−

1

e i
−
1

e i
−
1

Fig. 11. The three cases in the construction of Γ i
1 . The triangle Ci is bold. (Left) Γ i−1

1

fits inside Ci. (Middle) Γ i−1
1 does not fit inside Ci, but it fits outside Ci. (Right) Γ i−1

1

fits neither inside nor outside Ci.

After constructing Γ x−1
1 (which comes with a plane embedding), we test

its planarity in O(n) time using Theorem 1. If the test is successful, Γ x−1
1 is

an ex−1-optimal PR of Gx−1
1 , otherwise no ex−1-optimal PR of Gx−1

1 exists.
Each step of Outer-Checker takes O(1) time, except for the computation of
the boundary Bi

1. However, the computation of the boundaries B1
1,B2

1, . . . ,Bx−1
1

takes O(n) time in total [35]. Hence, the overall running time of Outer-

Checker is in O(n).

5 2-Trees with Short Longest Path

In this section, we sketch a proof of the following theorem.

Theorem 7. Let G be an n-vertex weighted 2-tree and let � be the length of a
longest path of G. There is an nO(4�)-time algorithm to test whether G admits a
PR and to construct one, if any.

Theorem 7 is actually a corollary of a stronger theorem, which relates to SPQ-
trees; these are a specialization for 2-trees of the well-known SPQR-trees [22,29].
The SPQ-tree T of G is a tree that represents a recursive decomposition of G into
subgraphs along separation pairs. Each node μ of T corresponds to a subgraph
Gμ of G, which is joined to the rest of the graph via two vertices uμ and vμ.
Assume that T is rooted at the neighbor of an edge of G with maximum length
and let h be the height of T . We design an nO(2h)-time algorithm that tests
whether G admits a PR and, in the positive case, constructs such a realization.
Then Theorem 7 follows, as we can prove that h ≤ 2� − 2.

The nO(2h)-time algorithm performs a visit of T . When visiting a node μ,
the algorithm either concludes that G admits no PR, or constructs a set Rμ

of “optimal” PRs of Gμ. Here, “optimal” means that, for every PR Γμ of Gμ,
there is a PR Γ ′

μ ∈ Rμ whose interior is a subset of the interior of Γμ, after
a suitable rigid transformation. The main ingredient needed for bounding the
running time of the algorithm is the following. Suppose that Gμ consists of a
“parallel” composition of graphs Gν1 , . . . , Gνk

. Then “few” of the permutations
of Gν1 , . . . , Gνk

need to be considered when constructing Rμ. Namely, we can
sort Gν1 , . . . , Gνk

by increasing length of the 2-edge paths between uμ and vμ

they contain. Then, in any PR of G, the graph Gνi
is either “to the left” or “to the
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right” of all the graphs Gν1 , . . . , Gνi−1 ; further, whether a PR of G is optimal
only depends on the choice of the “leftmost” and “rightmost” graphs among
Gν1 , . . . , Gνk

(and on their drawings, which are taken from Rν1 , . . . ,Rνk
), and

not on the permutation of the remaining graphs, as long as planarity is ensured.

6 Open Problems

Our results on the FEPR problem when G is a 2-tree motivate the study of
several open questions:

– Determine the computational complexity of the FEPR problem for weighted
2-trees with 3 prescribed edge lengths (we proved it is linear-time solvable for
2 and NP-hard for 4).

– Determine if it is possible to improve our XP algorithm for general 2-trees to
an FPT algorithm.

– Study the computational complexity of the FEPR problem for general max-
imal outerplanar graphs.

– Study the computational complexity of the FEPR problem for graphs with
treewidth 2 and for 2-degenerate planar graphs; both these classes generalize
the one of 2-trees.
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