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Abstract. We study upward planar straight-line drawings that use only
a constant number of slopes. In particular, we are interested in whether a
given directed graph with maximum in- and outdegree at most k admits
such a drawing with k slopes. We show that this is in general NP-hard
to decide for outerplanar graphs (k = 3) and planar graphs (k ≥ 3). On
the positive side, for cactus graphs deciding and constructing a drawing
can be done in polynomial time. Furthermore, we can determine the
minimum number of slopes required for a given tree in linear time and
compute the corresponding drawing efficiently.
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1 Introduction

One of the main goals in graph drawing is to generate clear drawings. For visu-
alizations of directed graphs (or digraphs for short) that model hierarchical rela-
tions, this could mean that we explicitly represent edge directions by letting each
edge point upward. We may also require a planar drawing and, if possible, we
would thus get an upward planar drawing. For schematic drawings, we try to
keep the visual complexity low, for example by using only few different geometric
primitives [28] – in our case few slopes for edges. If we allow two different slopes
we get orthogonal drawings [14], with three or four slopes we get hexalinear and
octilinear drawings [37], respectively. Here, we combine these requirements and
study upward planar straight-line drawings that use only few slopes.

Upward Planarity. An upward planar drawing of a digraph G is a planar drawing
of G where every edge is drawn as a monotonic upward curve. We call G upward
planar if it admits an upward planar drawing and upward plane if it is equipped
with an upward planar embedding. Note that an upward planar embedding, given
by the edge order around each vertex, is necessarily bimodal, that is, each cyclic
sequence can be split into two contiguous subsequences of incoming edges and out-
going edges [14]. Di Battista and Tamassia [15] have shown that if a digraph is
upward planar, then it also admits an upward planar straight-line drawing.

While upward planarity testing is an NP-complete problem for general
digraphs [23], there exist several FPT algorithms [9,19,25] and polynomial-time
c© Springer Nature Switzerland AG 2021
H. C. Purchase and I. Rutter (Eds.): GD 2021, LNCS 12868, pp. 149–165, 2021.
https://doi.org/10.1007/978-3-030-92931-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92931-2_11&domain=pdf
http://orcid.org/0000-0001-8917-5269
http://orcid.org/0000-0002-7398-718X
https://doi.org/10.1007/978-3-030-92931-2_11


150 J. Klawitter and J. Zink

Fig. 1. (a) A digraph G with (b) upward planar 3-slope drawing; (c) drawing rotated
by 45◦. For readability, edge directions are now given implicitly.

algorithms for special classes, e.g., for single source digraphs [6], outerplanar
digraphs [39], series-parallel digraphs [19], and triconnected digraphs [5]. If the
embedding is given, upward planarity can be tested in polynomial time [5].

k-slope Drawings. A k-slope drawing of a (not necessarily directed) graph G is
a straight-line drawing of G where every edge is drawn with one of at most k
different slopes; see Fig. 1a and b. The slope number of G is the smallest k such
that G admits a k-slope drawing. If only (upward) planar drawings are allowed,
the number is called the (upward) planar slope number of G. The general and
planar slope number have been studied extensively in the past for a variety
of classes [8,16,17,20,21,26,27,31,33–35,38,42], Recently, also the interest in
upward planar drawings on few slopes has grown. For example, allowing one bend
per edge, Bekos et al. [3] studied so-called bitonic st-graphs and complementarily
Di Giacomo et al. [18] considered series-parallel digraphs. Brückner et al. [8]
studied level-planar drawings with a fixed slope set. Older works include results
by Czyzowicz et al. [12,13] on lattices and several results for trees [1,2,7,10].

In a companion paper to this one, Klawitter and Mchedlidze [29] show that
it can be decided in linear time whether a given upward plane digraph admits
an upward planar 2-slope drawing. For the variable embedding scenario and two
slopes, they give a linear-time algorithm for single-source digraphs, a quartic-
time algorithm for series-parallel digraphs, and an FPT algorithm for general
digraphs.

Here, we study the problem of whether a digraph admits an upward planar
k-slope drawing for any k – with a special focus on the next natural case k = 3.
Clearly, we can presume that G has maximum in- and outdegree at most k.
Note that a 2-slope drawing can be sheared in the direction of one slope without
affecting the length of edges drawn with the other slope. The fact that this does
not hold for three or more slopes introduces interesting new geometric aspects.

For the choice of k specific slopes, we propose three settings. In the general
setting, any set of k distinct slopes can be chosen. In the uniform (angles) setting,
we use slopes with angles in {i ·π/k | i ∈ {0, . . . , k −1}} clockwise (cw) from the
x-axis. In the regular grid setting, we define a set of slopes as follows. Let c be
the middle grid point of a W ×W square grid, where W = 2�log2 k�−1. Pick any
k distinct slopes that you get from connecting c to any of the other grid points.



Upward Planar Drawings with Three and More Slopes 151

Fig. 2. Given a drawing using any set of three slopes, we can (i) Rotate, (ii) Shear,
and (iii) Scale it to only use the slope set {↑,↗,→}.

We remark that these slopes are contained in (an extended version of) the W -
th Farey sequence1. Uniform angles naturally lead to more balanced drawings
with more rotational symmetry, which we find more visually appealing. The
downside of this setting is that we cannot always use grid points of the regular
2D grid. E.g., for k = 6, the third slope is tan(26π) =

√
3, which is an irrational

number. Therefore, we assume henceforth for uniform angles a computation and
representation model that can handle implicit coordinates or alternatively real
numbers. On the other hand in the regular grid setting, we get unbalanced edge
angles and irrational edge lengths. Since all of these settings have their natural
justification, we consider all of them. However, note that k = 3 is a special case
because no matter which three slopes we pick, they can be affinely transformed to
the slopes of the angles {45◦, 90◦, 135◦} as illustrated in Fig. 2. Hence, we restrict
considerations to this slope set. For illustrative purposes however, we often rotate
drawings by 45◦ cw and thus use the slope set {↑,↗,→}; see Fig. 1c.

A k-slope assignment of a digraph G assigns each edge of G one of k slopes.
If G is upward plane, we call a k-slope assignment of G consistent if the assign-
ment complies with the cyclic edge order around each vertex; e.g., for k = 3, if a
vertex has three incoming edges, they need to be assigned the slopes →, ↗, and
↑ in counterclockwise (ccw) order. Clearly, if an upward plane embedding does
not admit a consistent k-slope assignment, it also does not admit an upward
planar k-slope drawing.

Contribution. We mainly contribute three results to the study of upward planar
k-slope drawings. Firstly, we classify the upward planar slope numbers of directed
ordered and unordered trees and show how to construct a drawing. Secondly, we
show that for cactus graphs we can construct an upward planar k-slope drawing
in polynomial time. Thirdly, we show that it is NP-hard to decide whether a
given upward outerplanar digraph admits an upward planar 3-slope drawing.
We extend the NP-hardness to k > 3 but restrict the graph class to upward
planar (except for k = 4 if no embedding is given).

For statements marked with “�”, a proof is available in the full version [30].

1 The W -th Farey sequence is the sequence of all completely reduced fractions where
the nominator and denominator is at most W in order of increasing size.
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Fig. 3. Upward k-slope drawings of unordered tree T3,3 with k = 3 and T6,2 with k = 6,
respectively, on the grid.

2 Trees

In this section, we consider upward planar k-slope drawings of directed trees.
While our trees are in general not rooted, results for rooted trees can be derived
or are partially already known [2,7]. For drawings of trees in the fixed and vari-
able embedding scenario, the terms ordered tree, where a planar embedding is
specified, and unordered tree, where it is not, are used. Note that naturally every
unordered tree is upward planar, while an ordered tree is upward planar if and
only if its embedding is bimodal. Not surprisingly, the upward planar slope num-
ber of an unordered directed tree T equals the maximum in- and outdegree of T ;
compare this to the planar slope number of �Δ/2� of an unordered undirected
tree with max. Degree Δ [20]. To show this, we draw T as subgraph of a larger,
regular tree Tk,h for h ≥ 1 where every non-leaf vertex has in- and outdegree k
and each leaf has distance h to a central vertex. To draw Tk,h on a grid with k
slopes, we adopt the strategy of Bachmaier et al. [1] for complete rooted trees;
see Fig. 3. Alternatively, Tk,h can be drawn with k uniform angles; see Fig. 4.

Theorem 1 (�). Let T be an unordered directed tree with maximum indegree
and outdegree k. Then T admits an upward planar k-slope drawing on the regular
grid and another upward planar k-slope drawing with uniform angles.

Note that this recursive drawing procedure requires an exponential-size draw-
ing area (or an exponential edge-length ratio). Different from ordered directed
trees (see below), it is not clear whether exponential area is necessary for some
unordered directed trees when restricting to k slopes. A Θ(n log n) area suffices
for an arbitrary number of slopes [22].

Next, let T be a bimodally ordered directed tree. With the drawing approach
from unordered trees, it is clear that to determine the upward planar slope number
of T it suffices to find a consistent k-slope assignment for T with minimal k. In this
regard, note that the maximum in- and outdegree are natural lower bounds but
that the choice of the (minimal) slope for an edge uv cannot be determined locally
at u and v. For example, the edge vw in Fig. 5a is the third incoming edge at w
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Fig. 4. Upward k-slope drawings of unordered tree T3,3 with k = 3 and T6,2 with k = 6,
respectively, with uniform angles.
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Fig. 5. (a) The minimal slope of an edge is not determined locally; (b) A directed
path requires only one slope; (c) An alternating path requires n − 1 slopes.

but requires at least slope 4, since its preceding edge uw already requires slope 3
at u. This effect only appears along alternating intervals of incoming and outgoing
edges. Hence we have the following observation – see also Fig. 5b and c.

Observation 2. The upward planar slope number of ordered directed trees with
n vertices, n ≥ 2, is bounded within 1 and n − 1 and these bounds are tight.

However, a simple greedy algorithm finds a consistent k-slope assignment for
T , where k is minimal. The algorithm first identifies all edges that can have slope 1,
e.g., if an edge uv is the sole incoming edge at v and the ccw first outgoing edge
at u. Then, it gives any subsequent edge xy the maximum of the slope of its ccw
preceding outgoing edge at x and its ccw preceding incoming edge at y plus one.
Since linear time suffices for this and any additional bookkeeping, we get:

Theorem 3. The upward planar slope number of an ordered directed tree can
be determined in linear time.

Corollary 1. Let T be an ordered directed tree with maximum in-/outdegree k.We
can decide in linear time whether T admits an upward planar k-slope drawing.

Regarding the area requirement for k-slope drawings of ordered directed trees,
we want to remark that Quapil and Jungeblut [40] have shown that there are
ordered trees with a spiral structure that require exponential area for 3 slopes.



154 J. Klawitter and J. Zink

Fig. 6. (a) A cactus graph G; (b) Block-cut tree of G; (c) 3-slope drawing of G.

3 Cactus Graphs

In this section, we show that it can be decided in polynomial time whether a given
cactus digraph admits an upward planar k-slope drawing, both in the fixed and
the variable embedding scenario. We use a dynamic program on the block-cut tree
of the cactus that computes combinable k-slope assignments for each block.

Recall that a block-cut tree T of a graph G has a vertex for each block (bicon-
nected component) and each cut vertex of G and an edge between a block B and
a cut vertex c if c is part of B; see Fig. 6b. Let G be a cactus graph. Note that in
a block-cut tree T of G each block vertex is either a cycle or an edge – we thus
distinguish between cycle blocks and edge blocks. The block-cut tree of G can be
computed in linear time [41]. For G to admit an upward planar k-slope drawing,
each block of T must be drawable under constraints imposed by other blocks.
For example in Fig. 6a–c and k = 3, under a fixed embedding the two edges of
the block B1 incident to the cut vertex c1 need the slopes ↗ and ↑ because of
the blocks B2 and B3. Our strategy is thus as follows.

Algorithm. In the first phase we run a dynamic program (described below) on
the blocks of T to find a consistent slope assignment for each block such that the
blocks are combinatorially combinable. If successful, we enter the second phase,
where we compute drawings of the blocks that are geometrically combinable. In
the last phase we put all block drawings together.

Let G be a cactus and let T be the block-cut tree of G. We pick an arbitrary
block vertex, say B′, of T as root and direct all edges towards B�. As a result,
each block vertex B (except B′) has one outgoing edge towards a cut vertex c.
We then say c is the anchor of B. Let B be a cycle block with anchor c and let
e and e′ be the edges of B incident to c. Suppose we have a slope assignment
for B. Then the anchor type tc(B) of c for B is defined as the slopes of e and e′

and if they are incoming or outgoing edges at c; see Fig. 7. For an edge block B
with edge e, the anchor type tc(B) describes the slope of e and if e is incoming
or outgoing at c. For cycle blocks and edge blocks, there are 2k · (2k − 1) and 2k
different anchor types, respectively.

For a block vertex B with anchor c, a feasible tuple τB = 〈φB , tc(B)〉 consists
of a consistent k-slope assignment φB of B and an anchor type tc(B) of c. A
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Fig. 7. A subset of the anchor types of a cycle block for k = 3.

Fig. 8. Computing the possible slopes and rotations for each edge of a cycle.

feasible set for B is a maximal set of feasible tuples for B that have pairwise
different anchor types. We process T in a post-order traversal. For each block
we compute the feasible set based on the feasible tuples of its descendant blocks.

Combinatorial Realization. Computing the feasible set of a cycle block B with
anchor c works as follows. Let B be the cycle (c = v1, e1, v2, e2, . . . , v|B|, e|B|, v1)
– if an embedding is given, let the order be cw around the inner face. For every
possible slope of e1, we walk around B once and store all tuples of possible slopes
and how far we rotated from the start. We start with e1 and consider the O(1)
feasible tuples of descendant blocks of B anchored at v1 and v2. In the example
of Fig. 8a for k = 3, assuming a fixed embedding, the edge e1 can only have slope
↗ and we have thus rotated 90◦ (starting from the original x-axis). For this tuple
(↗, 90◦), the edge e2 in Fig. 8b has also only one possible slope, namely →, and
the rotation increases by 135◦. However, in the variable embedding scenario,
e1 can also have slopes → and ↑, see Fig. 8c and d. In general, for an edge ei,
i ∈ {2, . . . , |B|}, we consider for all tuples of ei−1 how ei can proceed; again we
consider the feasible tuples of descendant blocks of B at vi and vi+1. For each
found tuple of ei we store a pointer to the tuple(s) of ei−1 it is based on.

When we handle e|B|, we reject all tuples that do not result in a 2π rotation if
the embedding is given or with ±2π if no embedding is given. This ensures that
the cycle has a geometric realization [11]. Combining the slope of e1 and e|B| as
well as whether the rotation is +2π or −2π yields an anchor type of B at c. We
backtrack from the tuple of e|B| to find a consistent slope assignment of B.

Since the edge ei−1 can have at most O(k|B|) possible rotation values, which
imply a slope each, we can compute all possible tuples of ei in O(k|B|) time.
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c

B
B′

Fig. 9. When drawing a single block, we make sure that the anchor point c lies at a
2k-gon edge within the algorithm by Culberson and Rawlins [11]; here k = 4.

Thus, a single feasible tuple of the whole block B can be computed in O(k|B|2)
time and all O(k) feasible tuples of B in O(k2|B|2) time.

Geometric Realization. Suppose we have found a consistent k-slope assignment
for every cycle. In the variable embedding scenario, we now know whether and
how cycles nest. We thus re-root T such that the root block lies on the outer
face. Next, we describe how to obtain a drawing of a cycle block B as a polygon
that does not intersect the edges of its parent block B′ at its anchor point c.

We describe this only for the uniform angles setting and leave it as an open
question for the regular grid setting. Given any sequence σ of rational angles (i.e.,
a rational number times π) that sum up to ±2π, Culberson and Rawlins [11]
describe an algorithm that outputs a polygon with σ as turning angles. Internally,
their so-called Turtlegon algorithm works as follows. It defines a base angle α
as the greatest common divisor of π and all angles in σ; in our case this is π/k.
Larger angles are split into sequences of ±α resulting in a new angle sequence σ′.
W.l.o.g. let σ′ contain more angles +α than −α. Using some of the αs, their
algorithm draws a regular (2π/α)-gon (in our case 2k-gon). To accommodate
additional angles in between, it inserts exponentially shrinking detours at the
corners of the (2π/α)-gon. In the end, we get the original larger angles from
merging the smaller angles [11].

The difficulty for us when employing this O(k|B|) time algorithm, is to ensure
that the edges of the parent block B′ can reach the anchor point c without
intersecting the polygon of B. This might be impossible if c lies within a spiral
inside a detour. However, we can avoid this if we let an incident edge of c be a
side of the 2k-gon (this is always possible because we can pick an appropriate
set of α angles of σ′ for the 2k-gon) and if we let each detour edge shrink by a
sufficiently large factor (e.g., k|B|); see Fig. 9.

The running time of this step is in O(k|B|). Since each vertex is in at most k

blocks, we have that
∑�

i=1|Bi| ≤ kn. Hence, the total running time is in O(k2n).

Putting Blocks Together. We start with a drawing of the root block. We then
recursively draw each child (in a BFS-like order) such that its anchor point
coincides with the corresponding vertex of the parent polygon and scale down
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the drawing of the child block such that the appended polygon does not intersect
the existing drawing. Note that it always suffices to scale down each child to the
size of the minimum distance of any two vertices within in the parent polygon.
We can determine vertex pairs of minimum and maximum distance for a block B
in O(|B| log |B|) time and then place and scale each polygon in linear time.

The total running time is dominated by the dynamic program, which runs
in O(k2|B|2) time for one block B and, hence, in O(k4n2) time for all blocks.

Theorem 4. Let G be an upward planar (or plane) cactus graph with maximum
in- and outdegree k. It can be constructively tested in O(k4n2) time whether G
admits an upward planar k-slope drawing in the uniform angles setting.

For the regular grid setting, we cannot use the algorithm by Culberson and
Rawlins [11] because we have irrational multiples of π as turning angles. For
a sequence of general turning angles, the algorithm by Hartley [24] computes
a polygon realizing that sequence. However, it is not immediately clear how to
guarantee that the edges of the parent polygon at the anchor point are not
intersected. For general polygons, we believe that we can iteratively shrink the
spikes to resolve potential intersections. Since such a procedure involves some
more technicalities, we leave it as an open question for now.

4 Outerplanar and Planar Graphs

In this section, we show that for any constant k ≥ 3 deciding whether an upward
planar (for k = 3, outerplanar) digraph admits an upward planar k-slope draw-
ing is NP-hard. Except for k = 4, this hardness holds true regardless of whether
we prescribe an embedding or not. However, it remains open if the problem is
also NP-complete. Containment in NP is not immediately clear, since it is open
whether some graphs require irrational (or super-polynomial precise) coordinates
for any k-slope drawing. We first describe our NP-hardness reduction for embed-
ded outerplanar graphs for 3 slopes. Afterwards, we show how this extends to
the variable embeddings and to larger k.

We reduce from Planar Monotone 3-SAT [4], an NP-complete version
of 3-SAT, where the three literals of each clause are all either negated or
unnegated – from now on called negative and positive clauses, respectively. More-
over, the incidence graph2 has a planar drawing where the vertices are rectangles,
the edges are vertical straight-line segments, the variables are arranged on a hor-
izontal line, the positive clauses are above, and the negative clauses are below
this line; see Fig. 11a. For a given formula F and a rectangular drawing of its
incidence graph, we construct a corresponding upward outerplanar digraph GF ,
which can only be drawn upward planar with 3 slopes if F is satisfiable. Our
construction follows ideas of Nöllenburg [36] and Kraus [32] and utilizes the
following observations.
2 The incidence graph of a SAT formula has a vertex for each variable and clause and

an edge for each occurrence of a variable in a clause between the corresponding
vertices.
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Fig. 10. (a) The digraph G� admits only an upward 3-slope drawing as square (b);
(c) By combining copies of G� and triangles we can build larger rigid structures; (d)
Upward planar 3-slope drawing of the digraph G↔.

Up to scaling and mirroring diagonally, G� in Fig. 10a admits an upward
planar 3-slope drawing only as an outerplanar square as in Fig. 10b. We can
attach multiple squares (and triangles) to each other as in Fig. 10c. The drawing
of such a bigger digraph is unique up to scaling and mirroring diagonally. If the
squares form a tree, the drawing is outerplanar. We refer to these squares as unit
squares, since, once set, the side lengths for all attached squares are the same.
To allow a certain small degree of freedom, we exploit the following.

Lemma 1 (�). In any upward planar 3-slope drawing of G↔ (see Fig. 10d)

• the edges e1 and e2 are parallel and have the same arbitrary length 	 > 0,
• all edges are oriented as in Fig. 10d up to mirroring along a diagonal axis,
• and all vertical and horizontal edges (besides e1 and e2) have the same lengths,
as well as all diagonal edges.

With this construction kit of useful (sub)graphs in hand, we build a graph
whose upward planar drawings represent the satisfying truth assignments for F .
The high-level construction is depicted in Fig. 11b. We construct, for each
variable xi, a specific digraph – the variable gadget for xi. Similarly, for each
clause cj , there is a specific digraph – the clause gadget for cj . All gadgets mainly
consist of chains of G�s. For a drawing, this enforces a rigid frame structure
built from unit squares. We glue all variable gadgets together in a row and con-
nect variable and clause gadgets by edge gadgets such that the composite graph
remains upward outerplanar (see Fig. 11b) and G�s are drawn as unit squares.

A variable gadget is depicted in Fig. 12. Its base structure is the (violet)
frame composed of chains of unit squares. The core element is the (red) central
chain of unit squares (with a few side-arms), which has one degree of flexibility,
namely, moving as a whole to the left or to the right without leaving the frame
structure of the gadget. It looks and behaves a bit like a pipe cleaning brush that
is stuck inside the frame but can be moved a bit back and forth. Hence, we call
it a brush. It is connected via a G↔ to the brush of the previous variable gadget
(see Fig. 12a/d) and the first brush is connected to the frame via a G↔. This
allows only a horizontal shift of the brushes, but no vertical movement relative
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Fig. 11. Schematic example for our NP-hardness reduction.

to its anchor point at the frame structure. Note that the horizontal position in
any variable gadget is independent of those in all other gadgets. If the brush
is positioned to the very left (right), the corresponding variable is set to false
(true).

For each occurrence of a variable in a positive clause, we have a construction
as depicted in Fig. 12b. There, a long chain of (green) G�s – from now on called
bolt – is attached to the frame structure via two G↔s, which allow only a vertical,
but no horizontal shift. The bolt has on its left side an arm, which can only be
placed in one of two pockets of the frame. It can always be placed in the upper
pocket, which pushes the bolt outwards with respect to the variable gadget (into
an edge and then a clause gadget). It can only be placed in the lower pocket if
the brush is shifted to the very right (i.e. set to true) – then the bolt can “fall”
into a cove of the brush. For each occurrence of a variable in a negative clause,
we have this construction upside-down, such that the bolt can be pulled into the
variable gadget only if the brush is shifted to the very left (i.e. set to false).
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Fig. 12. A variable gadget, which is contained in two positive and one negative clauses.
The brush is positioned to the left and, thus, the variable is set to false. (Color figure
online)

Note that, to maintain outerplanarity of the whole construction, the frame
structure is not contiguous, but connected by G↔s and the arms of the bolts.
Hence, the frame structure decomposes into many components that have fixed
relative horizontal positions and their unit squares have the same side lengths.
However, the components can shift up and down relative to each other. To
keep this vertical shift small enough not to affect the correct functioning of
our reduction, we use, for each such component, the construction depicted in
Fig. 12c. The chain of brushes has no vertical flexibility and serves as a base
ground for an “anchor” of the frame. The frame can move less than one unit up
or down unless it violates planarity. If the frame would be shifted up enough to
be completely above the brush, it would get in conflict with the adjacent bolt.
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Fig. 13. Positive clause gadget in 8 configurations. (Color figure online)

An edge gadget consists of only three straight chains – two frame segments
and a bolt in the middle. Their purpose is to synchronize the distance of the
clause gadgets to the variable gadgets and to preserve the size of the unit squares.
Several edge gadgets are depicted on yellow background color in Fig. 11b.

A clause gadget for a positive clause is depicted in Fig. 13. Within a frame,
which is connected at six points to the frames of three edge gadgets, there is a
horizontal (orange) bar, which is attached via two G↔s to the frame – one G↔
allows a horizontal, the other allows a vertical shift. It resembles a crane that
can move up and extend its arm, while it holds the horizontal bar on a vertical
(orange) rope. The three bolts from the corresponding variable gadgets reach
into the clause gadget. The lengths of these bolts is chosen such that, if they
are pushed out of their variable gadget and into the clause gadget, they only
slightly fit inside the gadget. Depending on whether each of the bolts is pushed
into the clause gadget or pulled out of it, we have eight possible configurations
(with sufficiently small vertical slack). They represent the eight possible truth
assignments to a clause. In Fig. 13, we illustrate that in each configuration, we
can accommodate the horizontal bar in an upward planar 3-slope drawing of the
clause gadget – except for the case when all three bolts push into the clause
gadget, which represents the truth assignment false to all contained variables. A
negative clause gadget uses the same construction, but mirrored vertically.
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Note that, since we have only connected G�s and G↔s, the planar embed-
ding of the constructed graph is unique up to mirroring along a diagonal axis.
Therefore, our reduction holds true also for the variable embedding scenario and
we conclude:

Theorem 5 (�). Deciding whether an upward outerplanar digraph admits an
upward planar 3-slope drawing is NP-hard with and without a given embedding.

Next, we describe how to extend our NP-hardness reduction to more than 3
slopes. There, however, we use only upward planar instead of upward outerplanar
graphs. Observe that, if we fix the embedding and give up outerplanarity, we can
add dummy leaves to each vertex to occupy all but the originally used slopes.
Since any 3 slopes can be projected to {↑,↗,→} and we block all other slopes,
our arguments work for all sets of k slopes and the reduction remains correct.

Last, we show that our NP-hardness reduction remains applicable for k > 4
in the variable embedding setting. This leaves k = 4 in the variable embedding
setting as the only open case. Again, we do this be extending the graph such
that it has only planar embedding up to mirroring along a diagonal axis.

Assume for now that k is an odd number; in the full version [30], we consider
otherwise. From the given k slopes, we pick the 3 middle slopes to host the
graph of the hardness construction described before. For simplicity, we visualize
these 3 middle slopes again as {↑,↗,→} and the other slopes in quadrants
II and IV around a vertex. The key idea is to occupy the unused slopes at
each vertex by fans and beaters as depicted in Fig. 14 instead of simple leaves.
Fans are appended to the outside of each vertex if the angle that has been
formed in the old construction is ≥ 180◦. For each other remaining slope at
each vertex, we add a beater. This is a graph obtained from the wheel graph
W2k+1 of which one spoke e∗ is broken free. This enforces an order on the
spokes and, hence, we prescribe the slope of e∗. Note that the whole beater could
be mirrored leaving two possible slopes for e∗. However, this is unproblematic
since in our construction the “mirrored” slope is also occupied by a beater or
a fan. In the full version [30], we prove that this suffices to enforce a desired
embedding. Though we lost upward outerplanarity, note that the underlying
undirected graph remains outerplanar.

Theorem 6 (�). Deciding whether an upward planar digraph with maximum
in- and outdegree k admits an upward planar drawing with k slopes is NP-hard
for k ≥ 3 if a bimodal embedding is given and is NP-hard for k ∈ N

+ \ {1, 2, 4}
if no embedding is given. This holds true for all choices of k slopes.
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Fig. 14. Example for k = 5 slopes: (a) A fan and (b) a beater. (c) We add fans and
beaters to each vertex of the graph such that all unused slopes are occupied.
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